WorldWideScience

Sample records for nrcam mouse mutations

  1. Characterization of mutations at the mouse phenylalanine hydroxylase locus

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, J.D.; Charlton, C.K. [Wichita State Univ., KS (United States)

    1997-02-01

    Two genetic mouse models for human phenylketonuria have been characterized by DNA sequence analysis. For each, a distinct mutation was identified within the protein coding sequence of the phenylalanine hydroxylase gene. This establishes that the mutated locus is the same as that causing human phenylketonuria and allows a comparison between these mouse phenylketonuria models and the human disease. A genotype/phenotype relationship that is strikingly similar to the human disease emerges, underscoring the similarity of phenylketonuria in mouse and man. In PAH{sup ENU1}, the phenotype is mild. The Pah{sup enu1} mutation predicts a conservative valine to alanine amino acid substitution and is located in exon 3, a gene region where serious mutations are rare in humans. In PAH{sup ENU2} the phenotype is severe. The Pah{sup enu2} mutation predicts a radical phenylalanine to serine substitution and is located in exon 7, a gene region where serious mutations are common in humans. In PAH{sup ENU2}, the sequence information was used to devise a direct genotyping system based on the creation of a new Alw26I restriction endonuclease site. 26 refs., 2 figs., 1 tab.

  2. Augmentation of phenotype in a transgenic Parkinson mouse heterozygous for a Gaucher mutation.

    Science.gov (United States)

    Fishbein, Ianai; Kuo, Yien-Ming; Giasson, Benoit I; Nussbaum, Robert L

    2014-12-01

    The involvement of the protein α-synuclein (SNCA) in the pathogenesis of Parkinson's disease is strongly supported by the facts that (i) missense and copy number mutations in the SNCA gene can cause inherited Parkinson's disease; and (ii) Lewy bodies in sporadic Parkinson's disease are largely composed of aggregated SNCA. Unaffected heterozygous carriers of Gaucher disease mutations have an increased risk for Parkinson's disease. As mutations in the GBA gene encoding glucocerebrosidase (GBA) are known to interfere with lysosomal protein degradation, GBA heterozygotes may demonstrate reduced lysosomal SNCA degradation, leading to increased steady-state SNCA levels and promoting its aggregation. We have created mouse models to investigate the interaction between GBA mutations and synucleinopathies. We investigated the rate of SNCA degradation in cultured primary cortical neurons from mice expressing wild-type mouse SNCA, wild-type human SNCA, or mutant A53T SNCA, in a background of either wild-type Gba or heterozygosity for the L444P GBA mutation associated with Gaucher disease. We also tested the effect of this Gaucher mutation on motor and enteric nervous system function in these transgenic animals. We found that human SNCA is stable, with a half-life of 61 h, and that the A53T mutation did not significantly affect its half-life. Heterozygosity for a naturally occurring Gaucher mutation, L444P, reduced GBA activity by 40%, reduced SNCA degradation and triggered accumulation of the protein in culture. This mutation also resulted in the exacerbation of motor and gastrointestinal deficits found in the A53T mouse model of Parkinson's disease. This study demonstrates that heterozygosity for a Gaucher disease-associated mutation in Gba interferes with SNCA degradation and contributes to its accumulation, and exacerbates the phenotype in a mouse model of Parkinson's disease. © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain

  3. Single-mass mutations associated with mouse lymphomas

    International Nuclear Information System (INIS)

    Guerrero, I.; Berman, J.W.; Diamond, L.E.; Newcomb, E.W.; Villasante, A.

    1986-01-01

    The authors study the induction of mouse lymphomas after treatment with a chemical carcinogen, nitrosomethyl urea (NMU), or with gamma irradiation. The koplan fractionated gamma radiation scheme and an established protocol for NMU tumor formation were chosen as protocols for induction of mouse lymphomas. In both cases, the mice developed thymic lymphomas with up to 90% incidence. In NMU induction, the latency period is shorter than irradiation

  4. In vivo somatic mutation systems in the mouse

    International Nuclear Information System (INIS)

    Russell, L.B.

    1979-01-01

    In an effort to meet the need for a fast and cheap in vivo prescreen for inherited mammalian point mutations, a somatic forward-mutation method, originally developed in an x-ray experiment, has more recently been tested in work with chemical mutagens. The method makes use of coat-color mutations because the gene product is usually locally expressed, mosaics can be detected with minimal effort, and opportunities for making comparison with induction of germinal point mutations are greatest.--Following treatment of embryos that are heterozygous at specific coat-color loci, various induced genetic changes can result in expression of the recessive (RS) in clones derived from mutant melanocyte precursor cells. However, other events, such as decrease in the number of precursor cells, or disturbed differentiation, can also result in spots, which with careful classification can usually be distinguished from RS's on the basis of their location and color. When this is done, the relative RS frequencies for a series of compounds at least roughly parallel the relative spermatogonial mutation rates. The fact that easily measurable (though low) RS rates are obtained with compounds that have yielded negative results in spermatogonial tests is not surprising in view of the fact that RS's can be caused by several mechanisms besides point mutation.--In spite of the parallelism observed in one laboratory, the usefulness of the in vivo somatic mutation method as a prescreen could come to be doubted because of major discrepancies between results of similar experiments at different laboratories. However, It appears probable that at least some of these discrepancies are due to failure to discriminate between spots that probably resulted from melanocyte insufficiency and spots that resulted from expression of the recessive.--Reverse somatic mutation systems can potentially avoid some of the pitfalls of forward mutation systems. Such system are still in developmental stages

  5. Germ-line mutations at a mouse ESTR (Pc-3) locus and human microsatellite loci

    International Nuclear Information System (INIS)

    Ryo, Haruko; Nakajima, Hiroo; Nomura, Taisei

    2006-01-01

    We examined the use of the mouse Pc-3 ESTR (expanded simple tandem repeat) locus and 72 human microsatellite loci as potentially sensitive biomarkers for mutagenic exposures to germ cells in mice and humans respectively. In the mouse work, we treated male mice with TCDD (2, 3, 7, 8-tetrachlo-rodibenzo-p-dioxin; a chemical known to induce congenital anomalies in humans and mice) and, analysed the F 1 fetuses for Pc-3 mutations. Although the incidence of anomalies was higher in the TCDD group, there were no induced mutations. However, respiratory distress syndrome (RDS) was observed in 3 of 7 fetuses born to male mice which were treated with TCDD and which showed abnormal length of Pc-3 allele. In the human studies, the children of Chernobyl liquidators were examined for mutations at a total of 72 (31 autosomal, 1 X-linked and 40 Y-linked) microsatellite loci. This study was prompted by earlier findings of increases in microsatellite mutations in barn swallows and wheat in the highly contaminated areas after the Chernobyl accident. We examined 64 liquidator families (70 children) and 66 control families (70 children). However, no increases in mutation rates were found. The estimated mean dose to the liquidators was about 39 mSv and this might be one possible reason why no increases of mutations could be found. (author)

  6. Localization of the panhypopituitary dwarf mutation (df) on mouse chromosome 11 in an intersubspecific backcross.

    Science.gov (United States)

    Buckwalter, M S; Katz, R W; Camper, S A

    1991-07-01

    Ames dwarf (df) is an autosomal recessive mutation characterized by severe dwarfism and infertility. This mutation provides a mouse model for panhypopituitarism. The dwarf phenotype results from failure in the differentiation of the cells which produce growth hormone, prolactin, and thyroid stimulating hormone. Using the backcross (DF/B-df/df X CASA/Rk) X DF/B-df/df, we confirmed the assignment of df to mouse chromosome 11 and demonstrated recombination between df and the growth hormone gene. This backcross is an invaluable resource for screening candidate genes for the df mutation. The df locus maps to less than 1 cM distal to Pad-1 (0.85 +/- 0.85 cM). Two new genes localized on mouse chromosome 11, Rpo2-1, and Edp-1, map to a region of conserved synteny with human chromosome 17. The localization of the alpha 1 adrenergic receptor, Adra-1, extends a known region of synteny conservation between mouse chromosome 11 and human chromosome 5, and suggests that a human counterpart to df would map to human chromosome 5.

  7. Mutational landscape of EGFR-, MYC-, and Kras-driven genetically engineered mouse models of lung adenocarcinoma.

    Science.gov (United States)

    McFadden, David G; Politi, Katerina; Bhutkar, Arjun; Chen, Frances K; Song, Xiaoling; Pirun, Mono; Santiago, Philip M; Kim-Kiselak, Caroline; Platt, James T; Lee, Emily; Hodges, Emily; Rosebrock, Adam P; Bronson, Roderick T; Socci, Nicholas D; Hannon, Gregory J; Jacks, Tyler; Varmus, Harold

    2016-10-18

    Genetically engineered mouse models (GEMMs) of cancer are increasingly being used to assess putative driver mutations identified by large-scale sequencing of human cancer genomes. To accurately interpret experiments that introduce additional mutations, an understanding of the somatic genetic profile and evolution of GEMM tumors is necessary. Here, we performed whole-exome sequencing of tumors from three GEMMs of lung adenocarcinoma driven by mutant epidermal growth factor receptor (EGFR), mutant Kirsten rat sarcoma viral oncogene homolog (Kras), or overexpression of MYC proto-oncogene. Tumors from EGFR- and Kras-driven models exhibited, respectively, 0.02 and 0.07 nonsynonymous mutations per megabase, a dramatically lower average mutational frequency than observed in human lung adenocarcinomas. Tumors from models driven by strong cancer drivers (mutant EGFR and Kras) harbored few mutations in known cancer genes, whereas tumors driven by MYC, a weaker initiating oncogene in the murine lung, acquired recurrent clonal oncogenic Kras mutations. In addition, although EGFR- and Kras-driven models both exhibited recurrent whole-chromosome DNA copy number alterations, the specific chromosomes altered by gain or loss were different in each model. These data demonstrate that GEMM tumors exhibit relatively simple somatic genotypes compared with human cancers of a similar type, making these autochthonous model systems useful for additive engineering approaches to assess the potential of novel mutations on tumorigenesis, cancer progression, and drug sensitivity.

  8. Random mtDNA mutations modulate proliferation capacity in mouse embryonic fibroblasts

    International Nuclear Information System (INIS)

    Kukat, Alexandra; Edgar, Daniel; Bratic, Ivana; Maiti, Priyanka; Trifunovic, Aleksandra

    2011-01-01

    Highlights: → Increased mtDNA mutations in MEFs lead to high level of spontaneous immortalization. → This process is independent of endogenous ROS production. → Aerobic glycolysis significantly contributes to spontaneous immortalization of MEFs. -- Abstract: An increase in mtDNA mutation load leads to a loss of critical cells in different tissues thereby contributing to the physiological process of organismal ageing. Additionally, the accumulation of senescent cells that display changes in metabolic function might act in an active way to further disrupt the normal tissue function. We believe that this could be the important link missing in our understanding of the molecular mechanisms of premature ageing in the mtDNA mutator mice. We tested proliferation capacity of mtDNA mutator cells in vitro. When cultured in physiological levels of oxygen (3%) their proliferation capacity is somewhat lower than wild-type cells. Surprisingly, in conditions of increased oxidative stress (20% O 2 ) mtDNA mutator mouse embryonic fibroblasts exhibit continuous proliferation due to spontaneous immortalization, whereas the same conditions promote senescence in wild-type cells. We believe that an increase in aerobic glycolysis observed in mtDNA mutator mice is a major mechanism behind this process. We propose that glycolysis promotes proliferation and allows a fast turnover of metabolites, but also leads to energy crisis due to lower ATP production rate. This could lead to compromised replication and/or repair and therefore, in rare cases, might lead to mutations in tumor suppressor genes and spontaneous immortalization.

  9. Mutational landscape of EGFR-, MYC-, and Kras-driven genetically engineered mouse models of lung adenocarcinoma

    Science.gov (United States)

    McFadden, David G.; Politi, Katerina; Bhutkar, Arjun; Chen, Frances K.; Song, Xiaoling; Pirun, Mono; Santiago, Philip M.; Kim-Kiselak, Caroline; Platt, James T.; Lee, Emily; Hodges, Emily; Rosebrock, Adam P.; Bronson, Roderick T.; Socci, Nicholas D.; Hannon, Gregory J.; Jacks, Tyler; Varmus, Harold

    2016-01-01

    Genetically engineered mouse models (GEMMs) of cancer are increasingly being used to assess putative driver mutations identified by large-scale sequencing of human cancer genomes. To accurately interpret experiments that introduce additional mutations, an understanding of the somatic genetic profile and evolution of GEMM tumors is necessary. Here, we performed whole-exome sequencing of tumors from three GEMMs of lung adenocarcinoma driven by mutant epidermal growth factor receptor (EGFR), mutant Kirsten rat sarcoma viral oncogene homolog (Kras), or overexpression of MYC proto-oncogene. Tumors from EGFR- and Kras-driven models exhibited, respectively, 0.02 and 0.07 nonsynonymous mutations per megabase, a dramatically lower average mutational frequency than observed in human lung adenocarcinomas. Tumors from models driven by strong cancer drivers (mutant EGFR and Kras) harbored few mutations in known cancer genes, whereas tumors driven by MYC, a weaker initiating oncogene in the murine lung, acquired recurrent clonal oncogenic Kras mutations. In addition, although EGFR- and Kras-driven models both exhibited recurrent whole-chromosome DNA copy number alterations, the specific chromosomes altered by gain or loss were different in each model. These data demonstrate that GEMM tumors exhibit relatively simple somatic genotypes compared with human cancers of a similar type, making these autochthonous model systems useful for additive engineering approaches to assess the potential of novel mutations on tumorigenesis, cancer progression, and drug sensitivity. PMID:27702896

  10. A Novel Mouse Model of a Patient Mucolipidosis II Mutation Recapitulates Disease Pathology*

    OpenAIRE

    Paton, Leigh; Bitoun, Emmanuelle; Kenyon, Janet; Priestman, David A.; Oliver, Peter L.; Edwards, Benjamin; Platt, Frances M.; Davies, Kay E.

    2014-01-01

    Mucolipidosis II (MLII) is a lysosomal storage disorder caused by loss of N-acetylglucosamine-1-phosphotransferase, which tags lysosomal enzymes with a mannose 6-phosphate marker for transport to the lysosome. In MLII, the loss of this marker leads to deficiency of multiple enzymes and non-enzymatic proteins in the lysosome, leading to the storage of multiple substrates. Here we present a novel mouse model of MLII homozygous for a patient mutation in the GNPTAB gene. Whereas the current gene ...

  11. A Mouse Neurodegenerative Dynein Heavy Chain Mutation Alters Dynein Motility and Localization in Neurospora crassa

    Science.gov (United States)

    Sivagurunathan, Senthilkumar; Schnittker, Robert R.; Nandini, Swaran; Plamann, Michael D.; King, Stephen J.

    2013-01-01

    Cytoplasmic dynein is responsible for the transport and delivery of cargoes in organisms ranging from humans to fungi. Dysfunction of dynein motor machinery due to mutations in dynein or its activating complex dynactin can result in one of several neurological diseases in mammals. The mouse Legs at odd angles (Loa) mutation in the tail domain of the dynein heavy chain has been shown to lead to progressive neurodegeneration in mice. The mechanism by which the Loa mutation affects dynein function is just beginning to be understood. In this work, we generated the dynein tail mutation observed in Loa mice into the Neurospora crassa genome and utilized cell biological and complementing biochemical approaches to characterize how that tail mutation affected dynein function. We determined that the Loa mutation exhibits several subtle defects upon dynein function in N. crassa that were not seen in mice, including alterations in dynein localization, impaired velocity of vesicle transport, and in the biochemical properties of purified motors. Our work provides new information on the role of the tail domain on dynein function and points out areas of future research that will be of interest to pursue in mammalian systems. PMID:22991199

  12. Evaluation of Lama5 as a candidate for the mouse ragged (Ra) mutation

    DEFF Research Database (Denmark)

    Durkin, M E; Albrechtsen, R; Chambers, D M

    1998-01-01

    The laminin alpha5 chain is a component of the basement membranes of many developing and adult tissues. The mouse laminin alpha5 chain gene (Lama5) has been mapped close to the locus of the semidominant ragged (Ra) mutation on distal chromosome 2. The cause of the Ra mutation, which is usually...... lethal in the homozygous state, has not been determined. We have investigated whether a defect in Lama5 is responsible for the ragged mutation, using the RaJ strain. No differences in the level of the laminin alpha5 chain transcript were found in placental RNA from homozygous RaJ mutant embryos compared...... to normal littermates. Antiserum raised against a recombinant laminin alpha5 chain polypeptide stained the basement membranes of both normal and homozygous mutant embryos to a similar extent. More precise mapping of Lama5 on an interspecific Ra backcross indicated that Lama5 is proximal to the Ra locus...

  13. Re-analysis of radiation-induced specific locus mutations in the mouse

    International Nuclear Information System (INIS)

    Abrahamson, S.; Wolff, S.

    1976-01-01

    It is stated that a re-analysis of published data on mouse mutation rates induced by x-and gamma rays suggests that the kinetics of induction can be analysed by fitting that data to a parabolic curve. This is interpreted to mean that a substantial proportion of the induced mutations results from gross chromosomal changes such as deletions, some of which are one-track and some of which are two-track. This analysis is based on the assumption that the shape of the dose curve, which in the female is concave upward, reflects the manner in which the mutations are induced rather than representing a one-track (linear) curve whose shape has been modified by differential repair. (author)

  14. Induction of specific-locus mutations in the mouse by tritiated water

    International Nuclear Information System (INIS)

    Russell, W.L.; Cumming, R.B.; Kelly, E.M.; Phipps, E.L.

    1978-01-01

    The results reported are the first obtained on transmtted gene mutations induced by tritium in any form in any mammal. They are, therefore, of obvious practical importance in the estimaton of the possible biological hazards of man-made tritium in the environment. Male mice were injected intraperitoneally with either 0.75 or 0.50 mCi per gram of body weight of tritiated water. They were then used in our standard specific-locus mutation test in which the treated wild-type stock of mice is mated to a stock homozygous for seven recessive marker genes. Mutations at any of the seven loci are scored in the offspring. The earlier matings provided information on the mutation frequency in germ cells irradiated in postspermatogonial stages, and the later matings gave the mutation frequency in treated spermatogonia. The spermatogonia are the important cells so far as human risks are concerned, and the mouse results for this germ-cell stage yielded a relative biological effectiveness (RBE) of approximately 2 for tritiated water compared with low-dose-rate gamma irradiation. There are various uncertainties involved in arriving at this figure, and the difference between it and l is probably not statistically significant. However, for risk estimation, it seems prudent to use the RBE value of 2, which is, after all, the best point estimate computed from the present data

  15. A mild mutator phenotype arises in a mouse model for malignancies associated with neurofibromatosis type 1

    International Nuclear Information System (INIS)

    Garza, Rene; Hudson, Robert A.; McMahan, C. Alex; Walter, Christi A.; Vogel, Kristine S.

    2007-01-01

    Defects in genes that control DNA repair, proliferation, and apoptosis can increase genomic instability, and thus promote malignant progression. Although most tumors that arise in humans with neurofibromatosis type 1 (NF1) are benign, these individuals are at increased risk for malignant peripheral nerve sheath tumors (MPNST). To characterize additional mutations required for the development of MPNST from benign plexiform neurofibromas, we generated a mouse model for these tumors by combining targeted null mutations in Nf1 and p53, in cis. CisNf1+/-; p53+/- mice spontaneously develop PNST, and these tumors exhibit loss-of-heterozygosity at both the Nf1 and p53 loci. Because p53 has well-characterized roles in the DNA damage response, DNA repair, and apoptosis, and because DNA repair genes have been proposed to act as modifiers in NF1, we used the cisNf1+/-; p53+/- mice to determine whether a mutator phenotype arises in NF1-associated malignancies. To quantitate spontaneous mutant frequencies (MF), we crossed the Big Blue mouse, which harbors a lacI transgene, to the cisNf1+/-; p53+/- mice, and isolated genomic DNA from both tumor and normal tissues in compound heterozygotes and wild-type siblings. Many of the PNST exhibited increased mutant frequencies (MF = 4.70) when compared to normal peripheral nerve and brain (MF = 2.09); mutations occurred throughout the entire lacI gene, and included base substitutions, insertions, and deletions. Moreover, the brains, spleens, and livers of these cisNf1+/-; p53+/- animals exhibited increased mutant frequencies when compared to tissues from wild-type littermates. We conclude that a mild mutator phenotype arises in the tumors and tissues of cisNf1+/-; p53+/- mice, and propose that genomic instability influences NF1 tumor progression and disease severity

  16. The Charles River "hairless" rat mutation maps to chromosome 1: allelic with fuzzy and a likely orthologue of mouse frizzy.

    Science.gov (United States)

    Ahearn, K; Akkouris, G; Berry, P R; Chrissluis, R R; Crooks, I M; Dull, A K; Grable, S; Jeruzal, J; Lanza, J; Lavoie, C; Maloney, R A; Pitruzzello, M; Sharma, R; Stoklasek, T A; Tweeddale, J; King, T R

    2002-01-01

    Recent evidence has indicated that the recessive mutation affecting hypotrichosis in the Charles River (CR) "hairless" rat does not involve the hairless gene (hr) on rat chromosome 15. To determine if this mutation might be allelic (or orthologous) with any other previously mapped hypotrichosis-generating mutation in mammals, we have produced a panel of backcross rats segregating for the CR hairless rat mutation as well as numerous other markers from throughout the rat genome. Analysis of this panel has located the CR hairless rat's hypotrichosis-generating mutation on chromosome 1, near Myl2, where only the fuzzy mutation in rat (fz) and the frizzy mutation in mouse (fr) have been previously localized. Intercrossing fz/fz and CR hairless rats produced hybrid offspring with abnormal hair, showing that these two rat mutations are allelic. We suggest that the CR hairless rat mutation and fuzzy be renamed frizzy-Charles River (fr(CR)) and frizzy-Harlan (fr(H)), respectively, to reflect their likely orthology with the mouse fr mutation.

  17. The Charles River "hairless" rat mutation is distinct from the hairless mouse alleles.

    Science.gov (United States)

    Panteleyev, A A; Christiano, A M

    2001-02-01

    The Charles River (CR) "hairless" rat is one of the autosomal recessive hypotrichotic animal models actively studied in pharmacologic and dermatologic research. Despite its widespread use, the molecular basis of this monogenic mutation remains unknown, and the skin histologic features of this phenotype have never been described. However, the designation "hairless" has been used as an extension of the hairless mouse (hr) nomenclature on the basis of the clinical absence of hairs in both phenotypes. We present a description of the histopathologic changes in heterozygous and homozygous CR hairless rat mutants during the first month of life. The postnatal homozygous rat skin was characterized by abnormal keratinization of the hair shaft and formation of a thick and dense layer of corneocytes in the lower portion of the epidermal stratum corneum. This layer prevented the improperly keratinized hair shaft from penetrating the skin surface. Starting from the latest stages of hair follicle (HF) development, obvious signs of HF degeneration were observed in homozygous skin. This process was extremely rapid, and by day 12, mainly atrophic HFs with abnormal or broken hairs were present in the skin. Therefore, the mutation in the CR rat abrogates cell proliferation in the hair matrix and affects keratinocyte differentiation in the HF and interfollicular epidermis, a phenotype that is completely distinct from hr/hr. To test whether the CR rat harbored a mutation in the hr gene, we analyzed the coding region of this gene and consensus intron splice site sequences in mutant rats and found no mutation, further supporting phenotypic evidence that the hairless phenotype in CR rats is not allelic with hairless. Finally, using intragenic polymorphisms, we were able to exclude homozygosity at the hairless locus by use of genotypic analysis. Thus, morphologic analysis of successive stages of phenotype development in the CR hairless rat, together with definitive molecular studies

  18. Hypomorphic mutation in mouse Nppc gene causes retarded bone growth due to impaired endochondral ossification

    International Nuclear Information System (INIS)

    Tsuji, Takehito; Kondo, Eri; Yasoda, Akihiro; Inamoto, Masataka; Kiyosu, Chiyo; Nakao, Kazuwa; Kunieda, Tetsuo

    2008-01-01

    Long bone abnormality (lbab/lbab) is a spontaneous mutant mouse characterized by dwarfism with shorter long bones. A missense mutation was reported in the Nppc gene, which encodes C-type natriuretic peptide (CNP), but it has not been confirmed whether this mutation is responsible for the dwarf phenotype. To verify that the mutation causes the dwarfism of lbab/lbab mice, we first investigated the effect of CNP in lbab/lbab mice. By transgenic rescue with chondrocyte-specific expression of CNP, the dwarf phenotype in lbab/lbab mice was completely compensated. Next, we revealed that CNP derived from the lbab allele retained only slight activity to induce cGMP production through its receptor. Histological analysis showed that both proliferative and hypertrophic zones of chondrocytes in the growth plate of lbab/lbab mice were markedly reduced. Our results demonstrate that lbab/lbab mice have a hypomorphic mutation in the Nppc gene that is responsible for dwarfism caused by impaired endochondral ossification

  19. The slaty mutation affects the morphology and maturation of melanosomes in the mouse melanocytes.

    Science.gov (United States)

    Hirobe, Tomohisa; Abe, Hiroyuki

    2006-10-01

    The slaty (Dct(slt)) mutation is known to reduce the activity of dopachrome tautomerase in melanocytes and to reduce the melanin content in skin, hairs and eyes. Although the melanosomes in slaty melanocytes are reported to be eumelanosome-like, detailed melanosome biogenesis is not well studied. To address this point, melanosomes in neonatal epidermal melanocytes from wild-type (Dct+/Dct+) mice at the slaty locus as well as its congenic mouse mutant (Dct(slt)/Dct(slt)) in serum-free primary culture were observed under the electron microscope. Wild-type melanocytes possessed exclusively elliptical melanosomes with internal longitudinal structures, whereas in mutant melanocytes, numerous spherical melanosomes with globular depositions of pigment and elliptical melanosomes as well as mixed type of the two melanosomes were observed. Mature stage IV melanosomes were greatly decreased in mutant melanocytes, whereas immature stage III melanosomes were more numerous than in wild-type melanocytes. These results suggest that the slaty mutation affects the morphology and maturation of melanosomes in mouse melanocytes.

  20. A Phenotype-Driven Approach to Generate Mouse Models with Pathogenic mtDNA Mutations Causing Mitochondrial Disease

    Directory of Open Access Journals (Sweden)

    Johanna H.K. Kauppila

    2016-09-01

    Full Text Available Mutations of mtDNA are an important cause of human disease, but few animal models exist. Because mammalian mitochondria cannot be transfected, the development of mice with pathogenic mtDNA mutations has been challenging, and the main strategy has therefore been to introduce mutations found in cell lines into mouse embryos. Here, we describe a phenotype-driven strategy that is based on detecting clonal expansion of pathogenic mtDNA mutations in colonic crypts of founder mice derived from heterozygous mtDNA mutator mice. As proof of concept, we report the generation of a mouse line transmitting a heteroplasmic pathogenic mutation in the alanine tRNA gene of mtDNA displaying typical characteristics of classic mitochondrial disease. In summary, we describe a straightforward and technically simple strategy based on mouse breeding and histology to generate animal models of mtDNA-mutation disease, which will be of great importance for studies of disease pathophysiology and preclinical treatment trials.

  1. UVA-induced mutational spectra in the laci gene from transgenic mouse skin

    International Nuclear Information System (INIS)

    Gorelick, N.J.; O'Kelly, J.A.; Biedermann, K.A.

    1995-01-01

    The UVB (295-320 nm) component of sunlight was once thought to be the sole cause of photoaging and skin cancer. However, there is now compelling evidence to suggest that chronic irradiation with UVA (320-400 nm) is a significant component of the etiologies of these diseases. To identify acute markers of UVA damage, we investigated UVA-induced mutagenesis in vivo by using a lacI transgenic mouse mutation assay. The backs of adult female C57BL/6 Big Blue reg-sign mice were shaved and exposed daily to a low or a high dose of UVA for 5 consecutive days. One group remained unexposed. The high dose of UVA significantly increased the mutant frequency in skin determined 12 days after the last exposure. Mutant frequencies were (Avg ± SEM, n=7-8/group): 6.1 ± 0.5 x 10 -5 (high dose). DNA sequence analysis of mutant lacI genes demonstrated that the high dose of UVA produced a different mutational spectrum compared to control. The mutational spectrum from the low dose mutants was not different from the control spectrum in skin generated previously; the predominant classes of recovered mutations were GC→At transitions at CpG sites (11/35) and GC →TA transversions (12/35). In contrast, in the high dose group, GC →AT transitions at non-CpG sites predominated (61/97 mutations); three tandem base substitutions (1 GG →AA; 2 CC→TT) were uniquely recovered; and an increased frequency of recovered GC→CG substitutions was observed (12/97 vs. none in controls). The recovered high dose spectrum is consistent with the types of DNA damage generated by UVA as well as by reactive oxygen species. These studies demonstrate that UVA is mutagenic in vivo and that this assay can be used to study early events in UVA-induced skin damage

  2. Physiology of SLC12 transporters: lessons from inherited human genetic mutations and genetically engineered mouse knockouts.

    Science.gov (United States)

    Gagnon, Kenneth B; Delpire, Eric

    2013-04-15

    Among the over 300 members of the solute carrier (SLC) group of integral plasma membrane transport proteins are the nine electroneutral cation-chloride cotransporters belonging to the SLC12 gene family. Seven of these transporters have been functionally described as coupling the electrically silent movement of chloride with sodium and/or potassium. Although in silico analysis has identified two additional SLC12 family members, no physiological role has been ascribed to the proteins encoded by either the SLC12A8 or the SLC12A9 genes. Evolutionary conservation of this gene family from protists to humans confirms their importance. A wealth of physiological, immunohistochemical, and biochemical studies have revealed a great deal of information regarding the importance of this gene family to human health and disease. The sequencing of the human genome has provided investigators with the capability to link several human diseases with mutations in the genes encoding these plasma membrane proteins. The availability of bacterial artificial chromosomes, recombination engineering techniques, and the mouse genome sequence has simplified the creation of targeting constructs to manipulate the expression/function of these cation-chloride cotransporters in the mouse in an attempt to recapitulate some of these human pathologies. This review will summarize the three human disorders that have been linked to the mutation/dysfunction of the Na-Cl, Na-K-2Cl, and K-Cl cotransporters (i.e., Bartter's, Gitleman's, and Andermann's syndromes), examine some additional pathologies arising from genetically modified mouse models of these cotransporters including deafness, blood pressure, hyperexcitability, and epithelial transport deficit phenotypes.

  3. The Robertsonian phenomenon in the house mouse: mutation, meiosis and speciation.

    Science.gov (United States)

    Garagna, Silvia; Page, Jesus; Fernandez-Donoso, Raul; Zuccotti, Maurizio; Searle, Jeremy B

    2014-12-01

    Many different chromosomal races with reduced chromosome number due to the presence of Robertsonian fusion metacentrics have been described in western Europe and northern Africa, within the distribution area of the western house mouse Mus musculus domesticus. This subspecies of house mouse has become the ideal model for studies to elucidate the processes of chromosome mutation and fixation that lead to the formation of chromosomal races and for studies on the impact of chromosome heterozygosities on reproductive isolation and speciation. In this review, we briefly describe the history of the discovery of the first and subsequent metacentric races in house mice; then, we focus on the molecular composition of the centromeric regions involved in chromosome fusion to examine the molecular characteristics that may explain the great variability of the karyotype that house mice show. The influence that metacentrics exert on the nuclear architecture of the male meiocytes and the consequences on meiotic progression are described to illustrate the impact that chromosomal heterozygosities exert on fertility of house mice-of relevance to reproductive isolation and speciation. The evolutionary significance of the Robertsonian phenomenon in the house mouse is discussed in the final section of this review.

  4. A mouse model of the human Fragile X syndrome I304N mutation.

    Directory of Open Access Journals (Sweden)

    Julie B Zang

    2009-12-01

    Full Text Available The mental retardation, autistic features, and behavioral abnormalities characteristic of the Fragile X mental retardation syndrome result from the loss of function of the RNA-binding protein FMRP. The disease is usually caused by a triplet repeat expansion in the 5'UTR of the FMR1 gene. This leads to loss of function through transcriptional gene silencing, pointing to a key function for FMRP, but precluding genetic identification of critical activities within the protein. Moreover, antisense transcripts (FMR4, ASFMR1 in the same locus have been reported to be silenced by the repeat expansion. Missense mutations offer one means of confirming a central role for FMRP in the disease, but to date, only a single such patient has been described. This patient harbors an isoleucine to asparagine mutation (I304N in the second FMRP KH-type RNA-binding domain, however, this single case report was complicated because the patient harbored a superimposed familial liver disease. To address these issues, we have generated a new Fragile X Syndrome mouse model in which the endogenous Fmr1 gene harbors the I304N mutation. These mice phenocopy the symptoms of Fragile X Syndrome in the existing Fmr1-null mouse, as assessed by testicular size, behavioral phenotyping, and electrophysiological assays of synaptic plasticity. I304N FMRP retains some functions, but has specifically lost RNA binding and polyribosome association; moreover, levels of the mutant protein are markedly reduced in the brain specifically at a time when synapses are forming postnatally. These data suggest that loss of FMRP function, particularly in KH2-mediated RNA binding and in synaptic plasticity, play critical roles in pathogenesis of the Fragile X Syndrome and establish a new model for studying the disorder.

  5. Reciprocal mouse and human limb phenotypes caused by gain- and loss-of-function mutations affecting Lmbr1.

    OpenAIRE

    Clark, R M; Marker, P C; Roessler, E; Dutra, A; Schimenti, J C; Muenke, M; Kingsley, D M

    2001-01-01

    The major locus for dominant preaxial polydactyly in humans has been mapped to 7q36. In mice the dominant Hemimelic extra toes (Hx) and Hammertoe (Hm) mutations map to a homologous chromosomal region and cause similar limb defects. The Lmbr1 gene is entirely within the small critical intervals recently defined for both the mouse and human mutations and is misexpressed at the exact time that the mouse Hx phenotype becomes apparent during limb development. This result suggests that Lmbr1 may un...

  6. Computational mouse atlases and their application to automatic assessment of craniofacial dysmorphology caused by the Crouzon mutation Fgfr2

    DEFF Research Database (Denmark)

    Ólafsdóttir, Hildur; Darvann, Tron Andre; Hermann, Nuno V.

    2007-01-01

    Crouzon syndrome is characterised by premature fusion of sutures and synchondroses. Recently the first mouse model of the syndrome was generated, having the mutation Cys342Tyr in Fgfr2c, equivalent to the most common human Crouzon/Pfeiffer syndrome mutation. In this study, a set of Micro CT scann....... Furthermore, the nonrigid approach is essential when it comes to analysing local, nonlinear shape differences.......Crouzon syndrome is characterised by premature fusion of sutures and synchondroses. Recently the first mouse model of the syndrome was generated, having the mutation Cys342Tyr in Fgfr2c, equivalent to the most common human Crouzon/Pfeiffer syndrome mutation. In this study, a set of Micro CT....... Subsequently, the atlas was deformed to match each subject from the two groups of mice. The accuracy of these registrations was measured by a comparison of manually placed landmarks from two different observers and automatically assessed landmarks. Both of the automatic approaches were within the inter...

  7. An inducible mouse model of podocin-mutation-related nephrotic syndrome.

    Directory of Open Access Journals (Sweden)

    Mansoureh Tabatabaeifar

    Full Text Available Mutations in the NPHS2 gene, encoding podocin, cause hereditary nephrotic syndrome. The most common podocin mutation, R138Q, is associated with early disease onset and rapid progression to end-stage renal disease. Knock-in mice carrying a R140Q mutation, the mouse analogue of human R138Q, show developmental arrest of podocytes and lethal renal failure at neonatal age. Here we created a conditional podocin knock-in model named NPHS2 R140Q/-, using a tamoxifen-inducible Cre recombinase, which permits to study the effects of the mutation in postnatal life. Within the first week of R140Q hemizygosity induction the animals developed proteinuria, which peaked after 4-5 weeks. Subsequently the animals developed progressive renal failure, with a median survival time of 12 (95% CI: 11-13 weeks. Foot process fusion was observed within one week, progressing to severe and global effacement in the course of the disease. The number of podocytes per glomerulus gradually diminished to 18% compared to healthy controls 12-16 weeks after induction. The fraction of segmentally sclerosed glomeruli was 25%, 85% and 97% at 2, 4 and 8 weeks, respectively. Severe tubulointerstitial fibrosis was present at later disease stage and was correlated quantitatively with the level of proteinuria at early disease stages. While R140Q podocin mRNA expression was elevated, protein abundance was reduced by more than 50% within one week following induction. Whereas miRNA21 expression persistently increased during the first 4 weeks, miRNA-193a expression peaked 2 weeks after induction. In conclusion, the inducible R140Q-podocin mouse model is an auspicious model of the most common genetic cause of human nephrotic syndrome, with a spontaneous disease course strongly reminiscent of the human disorder. This model constitutes a valuable tool to test the efficacy of novel pharmacological interventions aimed to improve podocyte function and viability and attenuate proteinuria

  8. Primary Ovarian Insufficiency Induced by Fanconi Anemia E Mutation in a Mouse Model.

    Science.gov (United States)

    Fu, Chun; Begum, Khurshida; Overbeek, Paul A

    2016-01-01

    In most cases of primary ovarian insufficiency (POI), the cause of the depletion of ovarian follicles is unknown. Fanconi anemia (FA) proteins are known to play important roles in follicular development. Using random insertional mutagenesis with a lentiviral transgene, we identified a family with reduced fertility in the homozygous transgenic mice. We identified the integration site and found that the lentivirus had integrated into intron 8 of the Fanconi E gene (Fance). By RT-PCR and in situ hybridization, we found that Fance transcript levels were significantly reduced. The Fance homozygous mutant mice were assayed for changes in ovarian development, follicle numbers and estrous cycle. Ovarian dysplasias and a severe lack of follicles were seen in the mutant mice. In addition, the estrous cycle was disrupted in adult females. Our results suggest that POI has been induced by the Fance mutation in this new mouse model.

  9. Mutation spectrum in FE1-MUTA(TM) Mouse lung epithelial cells exposed to nanoparticulate carbon black

    DEFF Research Database (Denmark)

    Jacobsen, Nicklas Raun; White, Paul A; Gingerich, John

    2011-01-01

    It has been shown previously that carbon black (CB), Printex 90 exposure induces cII and lacZ mutants in the FE1-Muta(TM) Mouse lung epithelial cell line and causes oxidatively damaged DNA and the production of reactive oxygen species (ROS). The purpose of this study was to determine the mutation...

  10. The PRRT2 knockout mouse recapitulates the neurological diseases associated with PRRT2 mutations.

    Science.gov (United States)

    Michetti, Caterina; Castroflorio, Enrico; Marchionni, Ivan; Forte, Nicola; Sterlini, Bruno; Binda, Francesca; Fruscione, Floriana; Baldelli, Pietro; Valtorta, Flavia; Zara, Federico; Corradi, Anna; Benfenati, Fabio

    2017-03-01

    Heterozygous and rare homozygous mutations in PRoline-Rich Transmembrane protein 2 (PRRT2) underlie a group of paroxysmal disorders including epilepsy, kinesigenic dyskinesia episodic ataxia and migraine. Most of the mutations lead to impaired PRRT2 expression and/or function. Recently, an important role for PRTT2 in the neurotransmitter release machinery, brain development and synapse formation has been uncovered. In this work, we have characterized the phenotype of a mouse in which the PRRT2 gene has been constitutively inactivated (PRRT2 KO). β-galactosidase staining allowed to map the regional expression of PRRT2 that was more intense in the cerebellum, hindbrain and spinal cord, while it was localized to restricted areas in the forebrain. PRRT2 KO mice are normal at birth, but display paroxysmal movements at the onset of locomotion that persist in the adulthood. In addition, adult PRRT2 KO mice present abnormal motor behaviors characterized by wild running and jumping in response to audiogenic stimuli that are ineffective in wild type mice and an increased sensitivity to the convulsive effects of pentylentetrazol. Patch-clamp electrophysiology in hippocampal and cerebellar slices revealed specific effects in the cerebellum, where PRRT2 is highly expressed, consisting in a higher excitatory strength at parallel fiber-Purkinje cell synapses during high frequency stimulation. The results show that the PRRT2 KO mouse reproduces the motor paroxysms present in the human PRRT2-linked pathology and can be proposed as an experimental model for the study of the pathogenesis of the disease as well as for testing personalized therapeutic approaches. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Complementation analyses for 45 mutations encompassing the pink-eyed dilution (p) locus of the mouse

    Energy Technology Data Exchange (ETDEWEB)

    Russell, L.B.; Montgomery, C.S.; Cacheiro, N.L.A.; Johnson, D.K. [Oak Ridge National Lab., TN (United States)

    1995-12-01

    The homozygous and heterozygous phenotypes are described and characterized for 45 new pink-eyed dilution (p) locus mutations, most of them radiation-induced, that affect survival at various stages of mouse development. Cytogenetically detectable aberrations were found in three of the new p mutations (large deletion, inversion, translocation), with band 7C involved in each case. The complementation map developed from the study of 810 types of compound heterozygotes identifies five functional units: jls and jlm (two distinct juvenile-fitness functions, the latter associated with neuromuscular defects), pl-1 and pl-2 (associated with early-postimplantation and preimplantation death, respectively), and nl [neonatal lethality associated with cleft palate (the frequency of rare {open_quotes}escapers{close_quotes} from this defect varied with the genotype)]. Orientation of these units relative to genetic markers is as follows: centromere, Gas-2, pl-1, jls, jlm p, nl (equatable to cp1= Gabrb3); pl-2 probably resides in the c-deletion complex. pl-1 does not mask preimplantation lethals between Gas2 and p; and no genes affecting survival are located between p and cp1. The alleles specifying mottling or darker pigment (generically, p{sup m} and p{sup x}, respectively) probably do not represent deletions of p-coding sequences but could be small rearrangements involving proximal regulatory elements. 43 refs., 5 figs., 7 tabs.

  12. Sequencing analysis of mutations induced by N-ethyl-N-nitrosourea at different sampling times in mouse bone marrow.

    Science.gov (United States)

    Wang, Jianyong; Chen, Tao

    2010-03-01

    In our previous study (Wang et al., 2004, Toxicol. Sci. 82: 124-128), we observed that the cII gene mutant frequency (MF) in the bone marrow of Big Blue mice showed significant increase as early as day 1, reached the maximum at day 3 and then decreased to a plateau by day 15 after a single dose of carcinogen N-ethyl-N-nitrosourea (ENU) treatment, which is different from the longer mutation manifestation time and the constancy of MFs after reaching their maximum in some other tissues. To determine the mechanism underlying the quick increase in MF and the peak formation in the mutant manifestation, we examined the mutation frequencies and spectra of the ENU-induced mutants collected from different sampling times in this study. The cII mutants from days 1, 3 and 120 after ENU treatment were randomly selected from different animals. The mutation frequencies were 33, 217, 305 and 144 x 10(-6) for control, days 1, 3, and 120, respectively. The mutation spectra at days 1 and 3 were significantly different from that at day 120. Considering that stem cells are responsible for the ultimate MF plateau (day 120) and transit cells are accountable for the earlier MF induction (days 1 or 3) in mouse bone marrow, we conclude that transit cells are much more sensitive to mutation induction than stem cells in mouse bone marrow, which resulted in the specific mutation manifestation induced by ENU.

  13. Sequential mutations in Notch1, Fbxw7, and Tp53 in radiation-induced mouse thymic lymphomas.

    Science.gov (United States)

    Jen, Kuang-Yu; Song, Ihn Young; Banta, Karl Luke; Wu, Di; Mao, Jian-Hua; Balmain, Allan

    2012-01-19

    T-cell acute lymphoblastic lymphomas commonly demonstrate activating Notch1 mutations as well as mutations or deletions in Fbxw7. However, because Fbxw7 targets Notch1 for degradation, genetic alterations in these genes are expected to be mutually exclusive events in lymphomagenesis. Previously, by using a radiation-induced Tp53-deficient mouse model for T-cell acute lymphoblastic lymphoma, we reported that loss of heterozygosity at the Fbxw7 locus occurs frequently in a Tp53-dependent manner. In the current study, we show that these thymic lymphomas also commonly exhibit activating Notch1 mutations in the proline-glutamic acid-serine-threonine (PEST) domain. Moreover, concurrent activating Notch1 PEST domain mutations and single-copy deletions at the Fbxw7 locus occur with high frequency in the same individual tumors, indicating that these changes are not mutually exclusive events. We further demonstrate that although Notch1 PEST domain mutations are independent of Tp53 status, they are completely abolished in mice with germline Fbxw7 haploinsufficiency. Therefore, Notch1 PEST domain mutations only occur when Fbxw7 expression levels are intact. These data suggest a temporal sequence of mutational events involving these important cancer-related genes, with Notch1 PEST domain mutations occurring first, followed by Fbxw7 deletion, and eventually by complete loss of Tp53.

  14. The neurological mouse mutations jittery and hesitant are allelic and map to the region of mouse chromosome 10 homologous to 19p13.3

    Energy Technology Data Exchange (ETDEWEB)

    Kapfhamer, D.; Sufalko, D.; Warren, S. [Univ. of Michigan, Ann Arbor, MI (United States)] [and others

    1996-08-01

    Jittery (ji) is a recessive mouse mutation on Chromosome 10 characterized by progressive ataxic gait, dystonic movements, spontaneus seizures, and death by dehydration/starvation before fertility. Recently, a viable neurological recessive mutation, hesitant, was discovered. It is characterized by hesitant, uncoordinated movements, exaggerated stepping of the hind limbs, and reduced fertility in males. In a complementation test and by genetic mapping we have shown here that hesitant and jittery are allelic. Using several large intersubspecific backcrosses and intercrosses we have genetically mapped ji near the marker Amh and microsatellite markers D10Mit7, D10Mit21, and D10Mit23. The linked region of mouse Chromosome 10 is homologous to human 19p13.3, to which several human ataxia loci have recently been mapped. By excluding genes that map to human 21q22.3 (Pfkl) and 12q23 (Nfyb), we conclude that jittery is not likely to be a genetic mouse model for human Unverricht-Lundborg progressive myoclonus epilepsy (EPM1) on 21q22.3 nor for spinocerebellar ataxia II (SCA2) on 12q22-q24. The closely linked markers presented here will facilitate positional cloning of the ji gene. 31 refs., 2 figs.

  15. Enhanced Reconstitution of Human Erythropoiesis and Thrombopoiesis in an Immunodeficient Mouse Model with KitWv Mutations

    Directory of Open Access Journals (Sweden)

    Ayano Yurino

    2016-09-01

    Full Text Available In human-to-mouse xenograft models, reconstitution of human hematopoiesis is usually B-lymphoid dominant. Here we show that the introduction of homozygous KitWv mutations into C57BL/6.Rag2nullIl2rgnull mice with NOD-Sirpa (BRGS strongly promoted human multi-lineage reconstitution. After xenotransplantation of human CD34+CD38− cord blood cells, these newly generated C57BL/6.Rag2nullIl2rgnullNOD-Sirpa KitWv/Wv (BRGSKWv/Wv mice showed significantly higher levels of human cell chimerism and long-term multi-lineage reconstitution compared with BRGS mice. Strikingly, this mouse displayed a robust reconstitution of human erythropoiesis and thrombopoiesis with terminal maturation in the bone marrow. Furthermore, depletion of host macrophages by clodronate administration resulted in the presence of human erythrocytes and platelets in the circulation. Thus, attenuation of mouse KIT signaling greatly enhances the multi-lineage differentiation of human hematopoietic stem and progenitor cells (HSPCs in mouse bone marrow, presumably by outcompeting mouse HSPCs to occupy suitable microenvironments. The BRGSKWv/Wv mouse model is a useful tool to study human multi-lineage hematopoiesis.

  16. Conditional mutation of Smc5 in mouse embryonic stem cells perturbs condensin localization and mitotic progression.

    Science.gov (United States)

    Pryzhkova, Marina V; Jordan, Philip W

    2016-04-15

    Correct duplication of stem cell genetic material and its appropriate segregation into daughter cells are requisites for tissue, organ and organism homeostasis. Disruption of stem cell genomic integrity can lead to developmental abnormalities and cancer. Roles of the Smc5/6 structural maintenance of chromosomes complex in pluripotent stem cell genome maintenance have not been investigated, despite its important roles in DNA synthesis, DNA repair and chromosome segregation as evaluated in other model systems. Using mouse embryonic stem cells (mESCs) with a conditional knockout allele of Smc5, we showed that Smc5 protein depletion resulted in destabilization of the Smc5/6 complex, accumulation of cells in G2 phase of the cell cycle and apoptosis. Detailed assessment of mitotic mESCs revealed abnormal condensin distribution and perturbed chromosome segregation, accompanied by irregular spindle morphology, lagging chromosomes and DNA bridges. Mutation of Smc5 resulted in retention of Aurora B kinase and enrichment of condensin on chromosome arms. Furthermore, we observed reduced levels of Polo-like kinase 1 at kinetochores during mitosis. Our study reveals crucial requirements of the Smc5/6 complex during cell cycle progression and for stem cell genome maintenance. © 2016. Published by The Company of Biologists Ltd.

  17. A single amino acid mutation in SNAP-25 induces anxiety-related behavior in mouse.

    Directory of Open Access Journals (Sweden)

    Masakazu Kataoka

    Full Text Available Synaptosomal-associated protein of 25 kDa (SNAP-25 is a presynaptic protein essential for neurotransmitter release. Previously, we demonstrate that protein kinase C (PKC phosphorylates Ser(187 of SNAP-25, and enhances neurotransmitter release by recruiting secretory vesicles near to the plasma membrane. As PKC is abundant in the brain and SNAP-25 is essential for synaptic transmission, SNAP-25 phosphorylation is likely to play a crucial role in the central nervous system. We therefore generated a mutant mouse, substituting Ser(187 of SNAP-25 with Ala using "knock-in" technology. The most striking effect of the mutation was observed in their behavior. The homozygous mutant mice froze readily in response to environmental change, and showed strong anxiety-related behavior in general activity and light and dark preference tests. In addition, the mutant mice sometimes exhibited spontaneously occurring convulsive seizures. Microdialysis measurements revealed that serotonin and dopamine release were markedly reduced in amygdala. These results clearly indicate that PKC-dependent SNAP-25 phosphorylation plays a critical role in the regulation of emotional behavior as well as the suppression of epileptic seizures, and the lack of enhancement of monoamine release is one of the possible mechanisms underlying these defects.

  18. Bacterial Expression of Mouse Argonaute 2 for Functional and Mutational Studies

    Directory of Open Access Journals (Sweden)

    Aniello Russo

    2010-02-01

    Full Text Available RNA interference (RNAi is a post-transcriptional gene-silencing process that occurs in many eukaryotic organisms upon intracellular exposure to double-stranded RNA. Argonaute 2 (Ago2 protein is the catalytic engine of mammalian RNAi. It contains a PIWI domain that is structurally related to RNases H and possibly shares with them a two-metal-ion catalysis mechanism. Here we describe the expression in E. coli of mouse Ago2 and testing of its enzymatic activity in a RISC assay, i.e., for the ability to cleave a target RNA in a single position specified by a complementary small interfering RNA (siRNA. The results show that the enzyme can load the siRNA and cleave the complementary RNA in absence of other cellular factors, as described for human Ago2. It was also found that mutation of Arg669, a residue previously proposed to be involved in substrate and/or B metal ion binding, doesn’t affect the enzymatic activity, suggesting that this residue doesn’t belong to the active site.

  19. INDUCTION OF DNA ADDUCTS, TUMORS, AND KI-RAS ONCOGENE MUTATIONS IN STRAIN A/J MOUSE LUNG BY IP. ADMINISTRATION OF DIBENZ[A,H]ANTHRACENE

    Science.gov (United States)

    Induction of DNA adducts, tumors, and Ki-ras oncogene mutations in strain AlJ mouse lung by ip. administration of dibenz[a,h]anthracene Previous studies of polycyclic aromatic hydrocarbon (P AH) induced lung tumors in the strain NJ mouse model system have demonstrated qua...

  20. Generation and Characterization of a Transgenic Mouse Carrying a Functional Human β-Globin Gene with the IVSI-6 Thalassemia Mutation

    Directory of Open Access Journals (Sweden)

    Giulia Breveglieri

    2015-01-01

    Full Text Available Mouse models that carry mutations causing thalassemia represent a suitable tool to test in vivo new mutation-specific therapeutic approaches. Transgenic mice carrying the β-globin IVSI-6 mutation (the most frequent in Middle-Eastern regions and recurrent in Italy and Greece are, at present, not available. We report the production and characterization of a transgenic mouse line (TG-β-IVSI-6 carrying the IVSI-6 thalassemia point mutation within the human β-globin gene. In the TG-β-IVSI-6 mouse (a the transgenic integration region is located in mouse chromosome 7; (b the expression of the transgene is tissue specific; (c as expected, normally spliced human β-globin mRNA is produced, giving rise to β-globin production and formation of a human-mouse tetrameric chimeric hemoglobin αmu-globin2/βhu-globin2 and, more importantly, (d the aberrant β-globin-IVSI-6 RNAs are present in blood cells. The TG-β-IVSI-6 mouse reproduces the molecular features of IVSI-6 β-thalassemia and might be used as an in vivo model to characterize the effects of antisense oligodeoxynucleotides targeting the cryptic sites responsible for the generation of aberrantly spliced β-globin RNA sequences, caused by the IVSI-6 mutation. These experiments are expected to be crucial for the development of a personalized therapy for β-thalassemia.

  1. Generation and Characterization of a Transgenic Mouse Carrying a Functional Human β-Globin Gene with the IVSI-6 Thalassemia Mutation

    Science.gov (United States)

    Mancini, Irene; Lampronti, Ilaria; Salvatori, Francesca; Fabbri, Enrica; Zuccato, Cristina; Cosenza, Lucia C.; Montagner, Giulia; Borgatti, Monica; Altruda, Fiorella; Fagoonee, Sharmila; Carandina, Gianni; Aiello, Vincenzo; Breda, Laura; Rivella, Stefano; Gambari, Roberto

    2015-01-01

    Mouse models that carry mutations causing thalassemia represent a suitable tool to test in vivo new mutation-specific therapeutic approaches. Transgenic mice carrying the β-globin IVSI-6 mutation (the most frequent in Middle-Eastern regions and recurrent in Italy and Greece) are, at present, not available. We report the production and characterization of a transgenic mouse line (TG-β-IVSI-6) carrying the IVSI-6 thalassemia point mutation within the human β-globin gene. In the TG-β-IVSI-6 mouse (a) the transgenic integration region is located in mouse chromosome 7; (b) the expression of the transgene is tissue specific; (c) as expected, normally spliced human β-globin mRNA is produced, giving rise to β-globin production and formation of a human-mouse tetrameric chimeric hemoglobin mu α-globin2/hu β-globin2 and, more importantly, (d) the aberrant β-globin-IVSI-6 RNAs are present in blood cells. The TG-β-IVSI-6 mouse reproduces the molecular features of IVSI-6 β-thalassemia and might be used as an in vivo model to characterize the effects of antisense oligodeoxynucleotides targeting the cryptic sites responsible for the generation of aberrantly spliced β-globin RNA sequences, caused by the IVSI-6 mutation. These experiments are expected to be crucial for the development of a personalized therapy for β-thalassemia. PMID:26097845

  2. Mutation induction in a mouse lymphoma cell mutant sensitive to 4-nitroquinoline 1-oxide and ultraviolet radiation

    International Nuclear Information System (INIS)

    Sato, K.; Hieda, N.

    1980-01-01

    The mutant mouse lymphoma cell Q31, which is sensitive to 4-nitroquinoline 1-oxide and ultraviolet radiation (UV), was compared with the parental L5178Y cell for the effect of caffeine and mutation induction after UV irradiation. Caffeine potentiated the lethal effect of UV in both cell strains to a similar extent, indicating that the defective process in Q31 cells was caffeine-insensitive. UV-induced mutation to 6-thioguanine resistance was determined in L5178Y and Q31 cells. The maximal yield of mutants was obtained 7 days post-irradiation in L5178Y cells and 14 days in Q31 cells for higher UV doses. It appears that a much longer time is required for the mutant cells than for the parental cells for full expression of the resistance phenotype even at equitoxic UV doses. A substantially higher frequency in induced mutations was observed in Q31 cells than in L5178Y cells at a given dose of UV. A plot of induced mutation frequency as a function of logarithm of surviving fraction again indicates hypermutability of Q31 cells as compared with the parental strain. In contrast, X-rays induced a similar frequency of mutations to 6-thioguanine resistance in L5178Y and Q31 cells. (orig.)

  3. Knock-in human GDF5 proregion L373R mutation as a mouse model for proximal symphalangism.

    Science.gov (United States)

    Zhang, Xinxin; Xing, Xuesha; Liu, Xing; Hu, Yu; Qu, Shengqiang; Wang, Heyi; Luo, Yang

    2017-12-26

    Proximal symphalangism (SYM1) is an autosomal dominant disorder, mainly characterized by bony fusions of the proximal phalanges of the hands and feet. GDF5 and NOG were identified to be responsible for SYM1. We have previously reported on a p.Leu373Arg mutation in the GDF5 proregion present in a Chinese family with SYM1. Here, we investigated the effects of the GDF-L373R mutation. The variant caused proteolysis efficiency of GDF5 increased in ATDC5 cells. The variant also caused upregulation of SMAD1/5/8 phosphorylation and increased expression of target genes SMURF1 , along with COL2A1 and SOX9 which are factors associated with chondrosis. Furthermore, we developed a human-relevant SYM1 mouse model by making a Gdf5 L367R (the orthologous position for L373R in humans) knock-in mouse. Gdf5 L367R/+ and Gdf5 L367R/L367R mice displayed stiffness and adhesions across the proximal phalanx joint which were in complete accord with SYM1. It was also confirmed the joint formation and development was abnormal in Gdf5 L367R/+ and Gdf5 L367R/L367R mice, including the failure to develop the primary ossification center and be hypertrophic chondrocytes during embryonic development. This knock-in mouse model offers a tool for assessing the pathogenesis of SYM1 and the function of the GDF5 proregion.

  4. Single residue AAV capsid mutation improves transduction of photoreceptors in the Abca4-/- mouse and bipolar cells in the rd1 mouse and human retina ex vivo.

    Science.gov (United States)

    De Silva, Samantha R; Charbel Issa, Peter; Singh, Mandeep S; Lipinski, Daniel M; Barnea-Cramer, Alona O; Walker, Nathan J; Barnard, Alun R; Hankins, Mark W; MacLaren, Robert E

    2016-11-01

    Gene therapy using adeno-associated viral (AAV) vectors for the treatment of retinal degenerations has shown safety and efficacy in clinical trials. However, very high levels of vector expression may be necessary for the treatment of conditions such as Stargardt disease where a dual vector approach is potentially needed, or in optogenetic strategies for end-stage degeneration in order to achieve maximal light sensitivity. In this study, we assessed two vectors with single capsid mutations, rAAV2/2(Y444F) and rAAV2/8(Y733F) in their ability to transduce retina in the Abca4 -/- and rd1 mouse models of retinal degeneration. We noted significantly increased photoreceptor transduction using rAAV2/8(Y733F) in the Abca4 -/- mouse, in contrast to previous work where vectors tested in this model have shown low levels of photoreceptor transduction. Bipolar cell transduction was achieved following subretinal delivery of both vectors in the rd1 mouse, and via intravitreal delivery of rAAV2/2(Y444F). The successful use of rAAV2/8(Y733F) to target bipolar cells was further validated on human tissue using an ex vivo culture system of retinal explants. Capsid mutant AAV vectors transduce human retinal cells and may be particularly suited to treat retinal degenerations in which high levels of transgene expression are required.

  5. A mutation in the envelope protein fusion loop attenuates mouse neuroinvasiveness of the NY99 strain of West Nile virus

    International Nuclear Information System (INIS)

    Zhang Shuliu; Li Li; Woodson, Sara E.; Huang, Claire Y.-H.; Kinney, Richard M.; Barrett, Alan D.T.; Beasley, David W.C.

    2006-01-01

    Substitutions were engineered individually and in combinations at the fusion loop, receptor-binding domain and a stem-helix structure of the envelope protein of a West Nile virus strain, NY99, and their effects on mouse virulence and presentation of epitopes recognized by monoclonal antibodies (MAbs) were assessed. A single substitution within the fusion loop (L107F) attenuated mouse neuroinvasiveness of NY99. No substitutions attenuated NY99 neurovirulence. The L107F mutation also abolished binding of a non-neutralizing MAb, 3D9, whose epitope had not been previously identified. MAb 3D9 was subsequently shown to be broadly cross-reactive with other flaviviruses, consistent with binding near the highly conserved fusion loop

  6. Mitochondrial DNA deletion mutations in adult mouse cardiac side population cells

    International Nuclear Information System (INIS)

    Lushaj, Entela B.; Lozonschi, Lucian; Barnes, Maria; Anstadt, Emily; Kohmoto, Takushi

    2012-01-01

    We investigated the presence and potential role of mitochondrial DNA (mtDNA) deletion mutations in adult cardiac stem cells. Cardiac side population (SP) cells were isolated from 12-week-old mice. Standard polymerase chain reaction (PCR) was used to screen for the presence of mtDNA deletion mutations in (a) freshly isolated SP cells and (b) SP cells cultured to passage 10. When present, the abundance of mtDNA deletion mutation was analyzed in single cell colonies. The effect of different levels of deletion mutations on SP cell growth and differentiation was determined. MtDNA deletion mutations were found in both freshly isolated and cultured cells from 12-week-old mice. While there was no significant difference in the number of single cell colonies with mtDNA deletion mutations from any of the groups mentioned above, the abundance of mtDNA deletion mutations was significantly higher in the cultured cells, as determined by quantitative PCR. Within a single clonal cell population, the detectable mtDNA deletion mutations were the same in all cells and unique when compared to deletions of other colonies. We also found that cells harboring high levels of mtDNA deletion mutations (i.e. where deleted mtDNA comprised more than 60% of total mtDNA) had slower proliferation rates and decreased differentiation capacities. Screening cultured adult stem cells for mtDNA deletion mutations as a routine assessment will benefit the biomedical application of adult stem cells.

  7. Tbc1d1 mutation in lean mouse strain confers leanness and protects from diet-induced obesity

    DEFF Research Database (Denmark)

    Chadt, Alexandra; Leicht, Katja; Deshmukh, Atul

    2008-01-01

    We previously identified Nob1 as a quantitative trait locus for high-fat diet-induced obesity and diabetes in genome-wide scans of outcross populations of obese and lean mouse strains. Additional crossbreeding experiments indicated that Nob1 represents an obesity suppressor from the lean Swiss Jim...... Lambert (SJL) strain. Here we identify a SJL-specific mutation in the Tbc1d1 gene that results in a truncated protein lacking the TBC Rab-GTPase-activating protein domain. TBC1D1, which has been recently linked to human obesity, is related to the insulin signaling protein AS160 and is predominantly...... and reduced glucose uptake in isolated skeletal muscle. Our data strongly suggest that mutation of Tbc1d1 suppresses high-fat diet-induced obesity by increasing lipid use in skeletal muscle....

  8. MutSpec: a Galaxy toolbox for streamlined analyses of somatic mutation spectra in human and mouse cancer genomes.

    Science.gov (United States)

    Ardin, Maude; Cahais, Vincent; Castells, Xavier; Bouaoun, Liacine; Byrnes, Graham; Herceg, Zdenko; Zavadil, Jiri; Olivier, Magali

    2016-04-18

    The nature of somatic mutations observed in human tumors at single gene or genome-wide levels can reveal information on past carcinogenic exposures and mutational processes contributing to tumor development. While large amounts of sequencing data are being generated, the associated analysis and interpretation of mutation patterns that may reveal clues about the natural history of cancer present complex and challenging tasks that require advanced bioinformatics skills. To make such analyses accessible to a wider community of researchers with no programming expertise, we have developed within the web-based user-friendly platform Galaxy a first-of-its-kind package called MutSpec. MutSpec includes a set of tools that perform variant annotation and use advanced statistics for the identification of mutation signatures present in cancer genomes and for comparing the obtained signatures with those published in the COSMIC database and other sources. MutSpec offers an accessible framework for building reproducible analysis pipelines, integrating existing methods and scripts developed in-house with publicly available R packages. MutSpec may be used to analyse data from whole-exome, whole-genome or targeted sequencing experiments performed on human or mouse genomes. Results are provided in various formats including rich graphical outputs. An example is presented to illustrate the package functionalities, the straightforward workflow analysis and the richness of the statistics and publication-grade graphics produced by the tool. MutSpec offers an easy-to-use graphical interface embedded in the popular Galaxy platform that can be used by researchers with limited programming or bioinformatics expertise to analyse mutation signatures present in cancer genomes. MutSpec can thus effectively assist in the discovery of complex mutational processes resulting from exogenous and endogenous carcinogenic insults.

  9. Ultra-deep sequencing of mouse mitochondrial DNA: mutational patterns and their origins.

    Directory of Open Access Journals (Sweden)

    Adam Ameur

    2011-03-01

    Full Text Available Somatic mutations of mtDNA are implicated in the aging process, but there is no universally accepted method for their accurate quantification. We have used ultra-deep sequencing to study genome-wide mtDNA mutation load in the liver of normally- and prematurely-aging mice. Mice that are homozygous for an allele expressing a proof-reading-deficient mtDNA polymerase (mtDNA mutator mice have 10-times-higher point mutation loads than their wildtype siblings. In addition, the mtDNA mutator mice have increased levels of a truncated linear mtDNA molecule, resulting in decreased sequence coverage in the deleted region. In contrast, circular mtDNA molecules with large deletions occur at extremely low frequencies in mtDNA mutator mice and can therefore not drive the premature aging phenotype. Sequence analysis shows that the main proportion of the mutation load in heterozygous mtDNA mutator mice and their wildtype siblings is inherited from their heterozygous mothers consistent with germline transmission. We found no increase in levels of point mutations or deletions in wildtype C57Bl/6N mice with increasing age, thus questioning the causative role of these changes in aging. In addition, there was no increased frequency of transversion mutations with time in any of the studied genotypes, arguing against oxidative damage as a major cause of mtDNA mutations. Our results from studies of mice thus indicate that most somatic mtDNA mutations occur as replication errors during development and do not result from damage accumulation in adult life.

  10. Gtl2lacZ, an insertional mutation on mouse chromosome 12 with parental origin-dependent phenotype.

    Science.gov (United States)

    Schuster-Gossler, K; Simon-Chazottes, D; Guenet, J L; Zachgo, J; Gossler, A

    1996-01-01

    We have produced a transgenic mouse line, Gtl2lacZ (Gene trap locus 2), that carries an insertional mutation with a dominant modified pattern of inheritance:heterozygous Gtl2lacZ mice that inherited the transgene from the father show a proportionate dwarfism phenotype, whereas the penetrance and expressivity of the phenotype is strongly reduced in Gtl2lacZ mice that inherited the transgene from the mother. On a mixed genetic background this pattern of inheritance was reversible upon transmission of the transgene through the germ line of the opposite sex. On a predominantly 129/Sv genetic background, however, transgene passage through the female germ line modified the transgene effect, such that the penetrance of the mutation was drastically reduced and the phenotype was no longer obvious after subsequent male germ line transmission. Expression of the transgene, however, was neither affected by genetic background nor by parental legacy. Gtl2lacZ maps to mouse Chromosome 12 in a region that displays imprinting effects associated with maternal and paternal disomy. Our results suggest that the transgene insertion in Gtl2lacZ mice affects an endogenous gene(s) required for fetal and postnatal growth and that this gene(s) is predominantly paternally expressed.

  11. A CTRP5 gene S163R mutation knock-in mouse model for late-onset retinal degeneration.

    Science.gov (United States)

    Chavali, Venkata R M; Khan, Naheed W; Cukras, Catherine A; Bartsch, Dirk-Uwe; Jablonski, Monica M; Ayyagari, Radha

    2011-05-15

    Late-onset retinal macular degeneration (L-ORD) is an autosomal dominant inherited disorder caused by a single missense mutation (S163R) in the CTRP5/C1QTNF5 protein. Early phenotypic features of L-ORD include: dark adaptation abnormalities, nyctalopia, and drusen deposits in the peripheral macular region. Apart from posterior segment abnormalities, these patients also develop abnormally long anterior lens zonules. In the sixth decade of life the rod and cone function declines, accompanied by electroretinogram (ERG) abnormalities. Some patients also develop choroidal neovascularization and glaucoma. In order to understand the disease pathology and mechanisms involved in retinal dystrophy, we generated a knock-in (Ctrp5(+/-)) mouse model carrying the disease-associated mutation in the mouse Ctrp5/C1QTNF5 gene. These mice develop slower rod-b wave recovery consistent with early dark adaptation abnormalities, accumulation of hyperautofluorescence spots, retinal pigment epithelium abnormalities, drusen, Bruch's membrane abnormalities, loss of photoreceptors, and retinal vascular leakage. The Ctrp5(+/-) mice, which have most of the pathological features of age-related macular degeneration, are unique and may serve as a valuable model both to understand the molecular pathology of late-onset retinal degeneration and to evaluate therapies.

  12. Discovery of candidate disease genes in ENU-induced mouse mutants by large-scale sequencing, including a splice-site mutation in nucleoredoxin.

    Directory of Open Access Journals (Sweden)

    Melissa K Boles

    2009-12-01

    Full Text Available An accurate and precisely annotated genome assembly is a fundamental requirement for functional genomic analysis. Here, the complete DNA sequence and gene annotation of mouse Chromosome 11 was used to test the efficacy of large-scale sequencing for mutation identification. We re-sequenced the 14,000 annotated exons and boundaries from over 900 genes in 41 recessive mutant mouse lines that were isolated in an N-ethyl-N-nitrosourea (ENU mutation screen targeted to mouse Chromosome 11. Fifty-nine sequence variants were identified in 55 genes from 31 mutant lines. 39% of the lesions lie in coding sequences and create primarily missense mutations. The other 61% lie in noncoding regions, many of them in highly conserved sequences. A lesion in the perinatal lethal line l11Jus13 alters a consensus splice site of nucleoredoxin (Nxn, inserting 10 amino acids into the resulting protein. We conclude that point mutations can be accurately and sensitively recovered by large-scale sequencing, and that conserved noncoding regions should be included for disease mutation identification. Only seven of the candidate genes we report have been previously targeted by mutation in mice or rats, showing that despite ongoing efforts to functionally annotate genes in the mammalian genome, an enormous gap remains between phenotype and function. Our data show that the classical positional mapping approach of disease mutation identification can be extended to large target regions using high-throughput sequencing.

  13. Repair and mutation induction in mouse germ cells: a summary and some thoughts

    International Nuclear Information System (INIS)

    Russell, L.B.

    1979-01-01

    The various lines of evidence for repair of premutational damage in mouse germ cells are reviewed with the implications for future experiment planning. Relation between mutagenicity and carcinogenicity are discussed

  14. TLR4 mutation reduces microglial activation, increases Aβ deposits and exacerbates cognitive deficits in a mouse model of Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Song Min

    2011-08-01

    Full Text Available Abstract Background Amyloid plaques, a pathological hallmark of Alzheimer's disease (AD, are accompanied by activated microglia. The role of activated microglia in the pathogenesis of AD remains controversial: either clearing Aβ deposits by phagocytosis or releasing proinflammatory cytokines and cytotoxic substances. Microglia can be activated via toll-like receptors (TLRs, a class of pattern-recognition receptors in the innate immune system. We previously demonstrated that an AD mouse model homozygous for a loss-of-function mutation of TLR4 had increases in Aβ deposits and buffer-soluble Aβ in the brain as compared with a TLR4 wild-type AD mouse model at 14-16 months of age. However, it is unknown if TLR4 signaling is involved in initiation of Aβ deposition as well as activation and recruitment of microglia at the early stage of AD. Here, we investigated the role of TLR4 signaling and microglial activation in early stages using 5-month-old AD mouse models when Aβ deposits start. Methods Microglial activation and amyloid deposition in the brain were determined by immunohistochemistry in the AD models. Levels of cerebral soluble Aβ were determined by ELISA. mRNA levels of cytokines and chemokines in the brain and Aβ-stimulated monocytes were quantified by real-time PCR. Cognitive functions were assessed by the Morris water maze. Results While no difference was found in cerebral Aβ load between AD mouse models at 5 months with and without TLR4 mutation, microglial activation in a TLR4 mutant AD model (TLR4M Tg was less than that in a TLR4 wild-type AD model (TLR4W Tg. At 9 months, TLR4M Tg mice had increased Aβ deposition and soluble Aβ42 in the brain, which were associated with decrements in cognitive functions and expression levels of IL-1β, CCL3, and CCL4 in the hippocampus compared to TLR4W Tg mice. TLR4 mutation diminished Aβ-induced IL-1β, CCL3, and CCL4 expression in monocytes. Conclusion This is the first demonstration of TLR4

  15. RNA interference gene therapy in dominant retinitis pigmentosa and cone-rod dystrophy mouse models caused by GCAP1 mutations

    Directory of Open Access Journals (Sweden)

    Li eJiang

    2014-04-01

    Full Text Available RNA interference (RNAi knockdown is an efficacious therapeutic strategy for silencing genes causative for dominant retinal dystrophies. To test this, we used self-complementary (sc AAV2/8 vector to develop an RNAi-based therapy in two dominant retinal degeneration mouse models. The allele-specific model expresses transgenic bovine GCAP1(Y99C establishing a rapid RP-like phenotype, whereas the nonallele-specific model expresses mouse GCAP1(L151F producing a slowly progressing cone/rod dystrophy (CORD. The late onset GCAP1(L151F-CORD mimics the dystrophy observed in human GCAP1-CORD patients. Subretinal injection of scAAV2/8 carrying shRNA expression cassettes specific for bovine or mouse GCAP1 showed strong expression at one week post-injection. In both allele-specific (GCAP1(Y99C-RP and nonallele-specific (GCAP1(L151F-CORD models of dominant retinal dystrophy, RNAi-mediated gene silencing enhanced photoreceptor survival, delayed onset of degeneration and improved visual function. Such results provide a proof of concept toward effective RNAi-based gene therapy mediated by scAAV2/8 for dominant retinal disease based on GCAP1 mutation. Further, nonallele-specific RNAi knockdown of GCAP1 may prove generally applicable toward the rescue of any human GCAP1-based dominant cone-rod dystrophy.

  16. Disheveled hair and ear (Dhe, a spontaneous mouse Lmna mutation modeling human laminopathies.

    Directory of Open Access Journals (Sweden)

    Paul R Odgren

    Full Text Available BACKGROUND: Investigations of naturally-occurring mutations in animal models provide important insights and valuable disease models. Lamins A and C, along with lamin B, are type V intermediate filament proteins which constitute the proteinaceous boundary of the nucleus. LMNA mutations in humans cause a wide range of phenotypes, collectively termed laminopathies. To identify the mutation and investigate the phenotype of a spontaneous, semi-dominant mutation that we have named Disheveled hair and ear (Dhe, which causes a sparse coat and small external ears in heterozygotes and lethality in homozygotes by postnatal day 10. FINDINGS: Genetic mapping identified a point mutation in the Lmna gene, causing a single amino acid change, L52R, in the coiled coil rod domain of lamin A and C proteins. Cranial sutures in Dhe/+ mice failed to close. Gene expression for collagen types I and III in sutures was deficient. Skulls were small and disproportionate. Skeletons of Dhe/+ mice were hypomineralized and total body fat was deficient in males. In homozygotes, skin and oral mucosae were dysplastic and ulcerated. Nuclear morphometry of cultured cells revealed gene dose-dependent blebbing and wrinkling. CONCLUSION: Dhe mice should provide a useful new model for investigations of the pathogenesis of laminopathies.

  17. A Mouse Model That Reproduces the Developmental Pathways and Site Specificity of the Cancers Associated With the Human BRCA1 Mutation Carrier State

    Directory of Open Access Journals (Sweden)

    Ying Liu

    2015-10-01

    Full Text Available Predisposition to breast and extrauterine Müllerian carcinomas in BRCA1 mutation carriers is due to a combination of cell-autonomous consequences of BRCA1 inactivation on cell cycle homeostasis superimposed on cell-nonautonomous hormonal factors magnified by the effects of BRCA1 mutations on hormonal changes associated with the menstrual cycle. We used the Müllerian inhibiting substance type 2 receptor (Mis2r promoter and a truncated form of the Follicle stimulating hormone receptor (Fshr promoter to introduce conditional knockouts of Brca1 and p53 not only in mouse mammary and Müllerian epithelia, but also in organs that control the estrous cycle. Sixty percent of the double mutant mice developed invasive Müllerian and mammary carcinomas. Mice carrying heterozygous mutations in Brca1 and p53 also developed invasive tumors, albeit at a lesser (30% rate, in which the wild type alleles were no longer present due to loss of heterozygosity. While mice carrying heterozygous mutations in both genes developed mammary tumors, none of the mice carrying only a heterozygous p53 mutation developed such tumors (P < 0.0001, attesting to a role for Brca1 mutations in tumor development. This mouse model is attractive to investigate cell-nonautonomous mechanisms associated with cancer predisposition in BRCA1 mutation carriers and to investigate the merit of chemo-preventive drugs targeting such mechanisms.

  18. Mutation screening and association analysis of six candidate genes for autism on chromosome 7q

    DEFF Research Database (Denmark)

    Bonora, E.; Lamb, J.A.; Barnby, G.

    2005-01-01

    in the genes CUTL1, LAMB1 and PTPRZ1. Analysis of genetic variants provided evidence for association with autism for one of the new missense changes identified in LAMB1; this effect was stronger in a subgroup of affected male sibling pair families, implying a possible specific sex-related effect......Genetic studies have provided evidence for an autism susceptibility locus (AUTS1) on chromosome 7q. Screening for mutations in six genes mapping to 7q, CUTL1, SRPK2, SYPL, LAMB1, NRCAM and PTPRZ1 in 48 unrelated individuals with autism led to the identification of several new coding variants...

  19. Gipc3 mutations associated with audiogenic seizures and sensorineural hearing loss in mouse and human

    NARCIS (Netherlands)

    Charizopoulou, N.; Lelli, A.; Schraders, M.; Ray, K.; Hildebrand, M.S.; Ramesh, A.; Srisailapathy, C.R.; Oostrik, J.; Admiraal, R.J.C.; Neely, H.R.; Latoche, J.R.; Smith, R.J.; Northup, J.K.; Kremer, J.M.J.; Holt, J.R.; Noben-Trauth, K.

    2011-01-01

    Sensorineural hearing loss affects the quality of life and communication of millions of people, but the underlying molecular mechanisms remain elusive. Here, we identify mutations in Gipc3 underlying progressive sensorineural hearing loss (age-related hearing loss 5, ahl5) and audiogenic seizures

  20. Cross-species comparison of aCGH data from mouse and human BRCA1- and BRCA2-mutated breast cancers

    International Nuclear Information System (INIS)

    Holstege, Henne; Wessels, Lodewyk FA; Nederlof, Petra M; Jonkers, Jos; Beers, Erik van; Velds, Arno; Liu, Xiaoling; Joosse, Simon A; Klarenbeek, Sjoerd; Schut, Eva; Kerkhoven, Ron; Klijn, Christiaan N

    2010-01-01

    Genomic gains and losses are a result of genomic instability in many types of cancers. BRCA1- and BRCA2-mutated breast cancers are associated with increased amounts of chromosomal aberrations, presumably due their functions in genome repair. Some of these genomic aberrations may harbor genes whose absence or overexpression may give rise to cellular growth advantage. So far, it has not been easy to identify the driver genes underlying gains and losses. A powerful approach to identify these driver genes could be a cross-species comparison of array comparative genomic hybridization (aCGH) data from cognate mouse and human tumors. Orthologous regions of mouse and human tumors that are commonly gained or lost might represent essential genomic regions selected for gain or loss during tumor development. To identify genomic regions that are associated with BRCA1- and BRCA2-mutated breast cancers we compared aCGH data from 130 mouse Brca1 Δ/Δ ;p53 Δ/Δ , Brca2 Δ/Δ ;p53 Δ/Δ and p53 Δ/Δ mammary tumor groups with 103 human BRCA1-mutated, BRCA2-mutated and non-hereditary breast cancers. Our genome-wide cross-species analysis yielded a complete collection of loci and genes that are commonly gained or lost in mouse and human breast cancer. Principal common CNAs were the well known MYC-associated gain and RB1/INTS6-associated loss that occurred in all mouse and human tumor groups, and the AURKA-associated gain occurred in BRCA2-related tumors from both species. However, there were also important differences between tumor profiles of both species, such as the prominent gain on chromosome 10 in mouse Brca2 Δ/Δ ;p53 Δ/Δ tumors and the PIK3CA associated 3q gain in human BRCA1-mutated tumors, which occurred in tumors from one species but not in tumors from the other species. This disparity in recurrent aberrations in mouse and human tumors might be due to differences in tumor cell type or genomic organization between both species. The selection of the oncogenome during

  1. Mapping of the X-linked cataract (Xcat) mutation, the gene implicated in the Nance Horan syndrome, on the mouse X chromosome.

    Science.gov (United States)

    Stambolian, D; Favor, J; Silvers, W; Avner, P; Chapman, V; Zhou, E

    1994-07-15

    The Xcat mutation in the mouse, an X-linked inherited disorder, is characterized by the congenital onset of cataracts. The cataracts have morphologies similar to those of cataracts found in the human Nance Horan (X-linked cataract dental) syndrome, suggesting that Xcat is an animal model for Nance Horan. The Xcat mutation provides an opportunity to investigate, at the molecular level, the pathogenesis of cataract. As a first step to cloning the Xcat gene, we report the localization of the Xcat mutation with respect to known molecular markers on the mouse X chromosome. Back-cross progeny carrying the Xcat mutation were obtained from an interspecific cross. Genomic DNA from each mouse was subjected to Southern and PCR analysis to identify restriction fragment length polymorphisms and simple sequence length polymorphisms, respectively. Our results refine the location of Xcat to a 2-cM region, eliminate several genes from consideration as the Xcat mutation, identify molecular probes tightly linked with Xcat, and suggest candidate genes responsible for the Xcat phenotype.

  2. The Pleiotropic Phenotype of Apc Mutations in the Mouse: Allele Specificity and Effects of the Genetic Background

    Science.gov (United States)

    Halberg, Richard B.; Chen, Xiaodi; Amos-Landgraf, James M.; White, Alanna; Rasmussen, Kristin; Clipson, Linda; Pasch, Cheri; Sullivan, Ruth; Pitot, Henry C.; Dove, William F.

    2008-01-01

    Familial adenomatous polyposis (FAP) is a human cancer syndrome characterized by the development of hundreds to thousands of colonic polyps and extracolonic lesions including desmoid fibromas, osteomas, epidermoid cysts, and congenital hypertrophy of the pigmented retinal epithelium. Afflicted individuals are heterozygous for mutations in the APC gene. Detailed investigations of mice heterozygous for mutations in the ortholog Apc have shown that other genetic factors strongly influence the phenotype. Here we report qualitative and quantitative modifications of the phenotype of Apc mutants as a function of three genetic variables: Apc allele, p53 allele, and genetic background. We have found major differences between the Apc alleles Min and 1638N in multiplicity and regionality of intestinal tumors, as well as in incidence of extracolonic lesions. By contrast, Min mice homozygous for either of two different knockout alleles of p53 show similar phenotypic effects. These studies illustrate the classic principle that functional genetics is enriched by assessing penetrance and expressivity with allelic series. The mouse permits study of an allelic gene series on multiple genetic backgrounds, thereby leading to a better understanding of gene action in a range of biological processes. PMID:18723878

  3. Mild myopathy is associated with COMP but not MATN3 mutations in mouse models of genetic skeletal diseases.

    Directory of Open Access Journals (Sweden)

    Katarzyna A Piróg

    Full Text Available Pseudoachondroplasia (PSACH and multiple epiphyseal dysplasia (MED are skeletal disorders resulting from mutations in COMP, matrilin-3 or collagen IX and are characterised by short-limbed dwarfism and premature osteoarthritis. Interestingly, recent reports suggest patients can also manifest with muscle weakness. Here we present a detailed analysis of two mouse models of the PSACH/MED disease spectrum; ΔD469 T3-COMP (PSACH and V194D matrilin-3 (MED. In grip test experiments T3-COMP mice were weaker than wild-type littermates, whereas V194D mice behaved as controls, confirming that short-limbed dwarfism alone does not contribute to PSACH/MED-related muscle weakness. Muscles from T3-COMP mice showed an increase in centronuclear fibers at the myotendinous junction. T3-COMP tendons became more lax in cyclic testing and showed thicker collagen fibers when compared with wild-type tissue; matrilin-3 mutant tissues were indistinguishable from controls. This comprehensive study of the myopathy associated with PSACH/MED mutations enables a better understanding of the disease progression, confirms that it is genotype specific and that the limb weakness originates from muscle and tendon pathology rather than short-limbed dwarfism itself. Since some patients are primarily diagnosed with neuromuscular symptoms, this study will facilitate better awareness of the differential diagnoses that might be associated with the PSACH/MED spectrum and subsequent care of PSACH/MED patients.

  4. A mutation in synaptojanin 2 causes progressive hearing loss in the ENU-mutagenised mouse strain Mozart.

    Science.gov (United States)

    Manji, Shehnaaz S M; Williams, Louise H; Miller, Kerry A; Ooms, Lisa M; Bahlo, Melanie; Mitchell, Christina A; Dahl, Hans-Henrik M

    2011-03-15

    Hearing impairment is the most common sensory impairment in humans, affecting 1:1,000 births. We have identified an ENU generated mouse mutant, Mozart, with recessively inherited, non-syndromic progressive hearing loss caused by a mutation in the synaptojanin 2 (Synj2), a central regulatory enzyme in the phosphoinositide-signaling cascade. The hearing loss in Mozart is caused by a p.Asn538Lys mutation in the catalytic domain of the inositol polyphosphate 5-phosphatase synaptojanin 2. Within the cochlea, Synj2 mRNA expression was detected in the inner and outer hair cells but not in the spiral ganglion. Synj2(N538K) mutant protein showed loss of lipid phosphatase activity, and was unable to degrade phosphoinositide signaling molecules. Mutant Mozart mice (Synj2(N538K/N538K)) exhibited progressive hearing loss and showed signs of hair cell degeneration as early as two weeks of age, with fusion of stereocilia followed by complete loss of hair bundles and ultimately loss of hair cells. No changes in vestibular or neurological function, or other clinical or behavioral manifestations were apparent. Phosphoinositides are membrane associated signaling molecules that regulate many cellular processes including cell death, proliferation, actin polymerization and ion channel activity. These results reveal Synj2 as a critical regulator of hair cell survival that is essential for hair cell maintenance and hearing function.

  5. The tyrosine kinase receptor Tyro3 enhances lifespan and neuropeptide Y (Npy neuron survival in the mouse anorexia (anx mutation

    Directory of Open Access Journals (Sweden)

    Dennis Y. Kim

    2017-05-01

    Full Text Available Severe appetite and weight loss define the eating disorder anorexia nervosa, and can also accompany the progression of some neurodegenerative disorders such as amyotrophic lateral sclerosis (ALS. Although acute loss of hypothalamic neurons that produce appetite-stimulating neuropeptide Y (Npy and agouti-related peptide (Agrp in adult mice or in mice homozygous for the anorexia (anx mutation causes aphagia, our understanding of the factors that help maintain appetite regulatory circuitry is limited. Here we identify a mutation (C19T that converts an arginine to a tryptophan (R7W in the TYRO3 protein tyrosine kinase 3 (Tyro3 gene, which resides within the anx critical interval, as contributing to the severity of anx phenotypes. Our observation that, like Tyro3−/− mice, anx/anx mice exhibit abnormal secondary platelet aggregation suggested that the C19T Tyro3 variant might have functional consequences. Tyro3 is expressed in the hypothalamus and other brain regions affected by the anx mutation, and its mRNA localization appeared abnormal in anx/anx brains by postnatal day 19 (P19. The presence of wild-type Tyro3 transgenes, but not an R7W-Tyro3 transgene, doubled the weight and lifespans of anx/anx mice and near-normal numbers of hypothalamic Npy-expressing neurons were present in Tyro3-transgenic anx/anx mice at P19. Although no differences in R7W-Tyro3 signal sequence function or protein localization were discernible in vitro, distribution of R7W-Tyro3 protein differed from that of Tyro3 protein in the cerebellum of transgenic wild-type mice. Thus, R7W-Tyro3 protein localization deficits are only detectable in vivo. Further analyses revealed that the C19T Tyro3 mutation is present in a few other mouse strains, and hence is not the causative anx mutation, but rather an anx modifier. Our work shows that Tyro3 has prosurvival roles in the appetite regulatory circuitry and could also provide useful insights towards the development of interventions

  6. A Genetically Engineered Mouse Model of Neuroblastoma Driven by Mutated ALK and MYCN

    Science.gov (United States)

    2014-09-01

    super-enhancer driven transcriptional programs in MYCN- amplified cells. George RE. Advances in Neuroblastoma Research Conference, Cologne, Germany ...crizotinib in ALK-mutated cells The above results suggested that deregulated MYCN could contribute to the sustained upregulation of mTORC1 activity in...incomplete inhibition of mTORC1 limits the activity of crizotinib in NB cells that express both ALKF1174L and deregulated MYCN. This interpretation is

  7. New mutation in the mouse Xpd/Ercc2 gene leads to recessive cataracts.

    Directory of Open Access Journals (Sweden)

    Sarah Kunze

    Full Text Available Cataracts are the major eye disorder and have been associated mainly with mutations in lens-specific genes, but cataracts are also frequently associated with complex syndromes. In a large-scale high-throughput ENU mutagenesis screen we analyzed the offspring of paternally treated C3HeB/FeJ mice for obvious dysmorphologies. We identified a mutant suffering from rough coat and small eyes only in homozygotes; homozygous females turned out to be sterile. The mutation was mapped to chromosome 7 between the markers 116J6.1 and D7Mit294;4 other markers within this interval did not show any recombination among 160 F2-mutants. The critical interval (8.6 Mb contains 3 candidate genes (Apoe, Six5, Opa3; none of them showed a mutation. Using exome sequencing, we identified a c.2209T>C mutation in the Xpd/Ercc2 gene leading to a Ser737Pro exchange. During embryonic development, the mutant eyes did not show major changes. Postnatal histological analyses demonstrated small cortical vacuoles; later, cortical cataracts developed. Since XPD/ERCC2 is involved in DNA repair, we checked also for the presence of the repair-associated histone γH2AX in the lens. During the time, when primary lens fiber cell nuclei are degraded, γH2AX was strongly expressed in the cell nuclei; later, it demarcates clearly the border of the lens cortex to the organelle-free zone. Moreover, we analyzed also whether seemingly healthy heterozygotes might be less efficient in repair of DNA damage induced by ionizing radiation than wild types. Peripheral lymphocytes irradiated by 1Gy Cs137 showed 6 hrs after irradiation significantly more γH2AX foci in heterozygotes than in wild types. These findings demonstrate the importance of XPD/ERCC2 not only for lens fiber cell differentiation, but also for the sensitivity to ionizing radiation. Based upon these data, we hypothesize that variations in the human XPD/ERCC2 gene might increase the susceptibility for several disorders besides Xeroderma

  8. Analysis of Transcription Factors Key for Mouse Pancreatic Development Establishes NKX2-2 and MNX1 Mutations as Causes of Neonatal Diabetes in Man

    Science.gov (United States)

    Flanagan, Sarah E.; De Franco, Elisa; Lango Allen, Hana; Zerah, Michele; Abdul-Rasoul, Majedah M.; Edge, Julie A.; Stewart, Helen; Alamiri, Elham; Hussain, Khalid; Wallis, Sam; de Vries, Liat; Rubio-Cabezas, Oscar; Houghton, Jayne A.L.; Edghill, Emma L.; Patch, Ann-Marie; Ellard, Sian; Hattersley, Andrew T.

    2014-01-01

    Summary Understanding transcriptional regulation of pancreatic development is required to advance current efforts in developing beta cell replacement therapies for patients with diabetes. Current knowledge of key transcriptional regulators has predominantly come from mouse studies, with rare, naturally occurring mutations establishing their relevance in man. This study used a combination of homozygosity analysis and Sanger sequencing in 37 consanguineous patients with permanent neonatal diabetes to search for homozygous mutations in 29 transcription factor genes important for murine pancreatic development. We identified homozygous mutations in 7 different genes in 11 unrelated patients and show that NKX2-2 and MNX1 are etiological genes for neonatal diabetes, thus confirming their key role in development of the human pancreas. The similar phenotype of the patients with recessive mutations and mice with inactivation of a transcription factor gene support there being common steps critical for pancreatic development and validate the use of rodent models for beta cell development. PMID:24411943

  9. Dominant lethal mutations and histological changes produced in mouse oocytes by gamma irradiation

    International Nuclear Information System (INIS)

    Vyglenov, A.; Baev, I.; Rupova, I.; Kusheva, R.

    1976-01-01

    Mouse female were exposed to a total dose of 500 or 1000 rad 137 Cs gamma rays delivered at 0.01 rad/min. Effects were scored at 1, 5, 7, and 10 weeks after cessation of treatment. Histologically, ovaria in the 500 rad group showed a decrease up to 11% in follicle numbers as compared to controls; with the prolongation of the time after exposure, a further fall in follicle numbers is observed. In the 1000 rad group, depopulation of ovaria was complete. With the 500 rad dose, total dominant lethality was found to be increased for any of the time intervals between radiation exposure and conception; postimplantation dominant lethality was comparatively low, with similar scores between the weeks investigated. (author)

  10. A Mutation of the Prdm9 Mouse Hybrid Sterility Gene Carried by a Transgene.

    Science.gov (United States)

    Mihola, O; Trachtulec, Z

    2017-01-01

    PRDM9 is a protein with histone-3-methyltransferase activity, which specifies the sites of meiotic recombination in mammals. Deficiency of the Prdm9 gene in the laboratory mouse results in complete arrest of the meiotic prophase of both sexes. Moreover, the combination of certain PRDM9 alleles from different mouse subspecies causes hybrid sterility, e.g., the male-specific meiotic arrest found in the (PWD/Ph × C57BL/6J)F1 animals. The fertility of all these mice can be rescued using a Prdm9-containing transgene. Here we characterized a transgene made from the clone RP24-346I22 that was expected to encompass the entire Prdm9 gene. Both (PWD/Ph × C57BL/6J)F1 intersubspecific hybrid males and Prdm9-deficient laboratory mice of both sexes carrying this transgene remained sterile, suggesting that Prdm9 inactivation occurred in the Tg(RP24-346I22) transgenics. Indeed, comparative qRT-PCR analysis of testicular RNAs from transgene-positive versus negative animals revealed similar expression levels of Prdm9 mRNAs from the exons encoding the C-terminal part of the protein but elevated expression from the regions coding for the N-terminus of PRDM9, indicating that the transgenic carries a new null Prdm9 allele. Two naturally occurring alternative Prdm9 mRNA isoforms were overexpressed in Tg(RP24-346I22), one formed via splicing to a 3'-terminal exon consisting of short interspersed element B2 and one isoform including an alternative internal exon of 28 base pairs. However, the overexpression of these alternative transcripts was apparently insufficient for Prdm9 function or for increasing the fertility of the hybrid males.

  11. Genome-wide association analysis of coffee drinking suggests association with CYP1A1/CYP1A2 and NRCAM.

    Science.gov (United States)

    Amin, N; Byrne, E; Johnson, J; Chenevix-Trench, G; Walter, S; Nolte, I M; Vink, J M; Rawal, R; Mangino, M; Teumer, A; Keers, J C; Verwoert, G; Baumeister, S; Biffar, R; Petersmann, A; Dahmen, N; Doering, A; Isaacs, A; Broer, L; Wray, N R; Montgomery, G W; Levy, D; Psaty, B M; Gudnason, V; Chakravarti, A; Sulem, P; Gudbjartsson, D F; Kiemeney, L A; Thorsteinsdottir, U; Stefansson, K; van Rooij, F J A; Aulchenko, Y S; Hottenga, J J; Rivadeneira, F R; Hofman, A; Uitterlinden, A G; Hammond, C J; Shin, S-Y; Ikram, A; Witteman, J C M; Janssens, A C J W; Snieder, H; Tiemeier, H; Wolfenbuttel, B H R; Oostra, B A; Heath, A C; Wichmann, E; Spector, T D; Grabe, H J; Boomsma, D I; Martin, N G; van Duijn, C M

    2012-11-01

    Coffee consumption is a model for addictive behavior. We performed a meta-analysis of genome-wide association studies (GWASs) on coffee intake from 8 Caucasian cohorts (N=18 176) and sought replication of our top findings in a further 7929 individuals. We also performed a gene expression analysis treating different cell lines with caffeine. Genome-wide significant association was observed for two single-nucleotide polymorphisms (SNPs) in the 15q24 region. The two SNPs rs2470893 and rs2472297 (P-values=1.6 × 10(-11) and 2.7 × 10(-11)), which were also in strong linkage disequilibrium (r(2)=0.7) with each other, lie in the 23-kb long commonly shared 5' flanking region between CYP1A1 and CYP1A2 genes. CYP1A1 was found to be downregulated in lymphoblastoid cell lines treated with caffeine. CYP1A1 is known to metabolize polycyclic aromatic hydrocarbons, which are important constituents of coffee, whereas CYP1A2 is involved in the primary metabolism of caffeine. Significant evidence of association was also detected at rs382140 (P-value=3.9 × 10(-09)) near NRCAM-a gene implicated in vulnerability to addiction, and at another independent hit rs6495122 (P-value=7.1 × 10(-09))-an SNP associated with blood pressure-in the 15q24 region near the gene ULK3, in the meta-analysis of discovery and replication cohorts. Our results from GWASs and expression analysis also strongly implicate CAB39L in coffee drinking. Pathway analysis of differentially expressed genes revealed significantly enriched ubiquitin proteasome (P-value=2.2 × 10(-05)) and Parkinson's disease pathways (P-value=3.6 × 10(-05)).

  12. The effect of mutation on Rhodococcus equi virulence plasmid gene expression and mouse virulence.

    Science.gov (United States)

    Ren, Jun; Prescott, John F

    2004-11-15

    An 81 kb virulence plasmid containing a pathogenicity island (PI) plays a crucial role in the pathogenesis of Rhodococcus equi pneumonia in foals but its specific function in virulence and regulation of plasmid-encoded virulence genes is unclear. Using a LacZ selection marker developed for R. equi in this study, in combination with an apramycin resistance gene, an efficient two-stage homologous recombination targeted gene mutation procedure was used to mutate three virulence plasmid genes, a LysR regulatory gene homologue (ORF4), a ResD-like two-component response regulator homologue (ORF8), and a gene (ORF10) of unknown function that is highly expressed by R. equi inside macrophages, as well as the chromosomal gene operon, phoPR. Virulence testing by liver clearance after intravenous injection in mice showed that the ORF4 and ORF8 mutants were fully attenuated, that the phoPR mutant was hypervirulent, and that virulence of the ORF10 mutant remained unchanged. A virulence plasmid DNA microarray was used to compare the plasmid gene expression profile of each of the four gene-targeted mutants against the parental R. equi strain. Changes were limited to PI genes and gene induction was observed for all mutants, suggesting that expression of virulence plasmid genes is dominated by a negative regulatory network. The finding of attenuation of ORF4 and ORF8 mutants despite enhanced transcription of vapA suggests that factors other than VapA are important for full expression of virulence. ORF1, a putative Lsr antigen gene, was strongly and similarly induced in all mutants, implying a common regulatory pathway affecting this gene for all four mutated genes. ORF8 is apparently the centre of this common pathway. Two distinct highly correlated gene induction patterns were observed, that of the ORF4 and ORF8 mutants, and that of the ORF10 and phoPR mutants. The gene induction pattern distinguishing these two groups paralleled their virulence in mice.

  13. The role of mutated amyloid beta 1-42 stimulating dendritic cells in a PDAPP transgenic mouse

    Directory of Open Access Journals (Sweden)

    LI Jia-lin

    2012-06-01

    Full Text Available Background Amyloid plaque is one of the pathological hallmarks of Alzheimer's disease (AD. Anti-beta-amyloid (Aβ immunotherapy is effective in removing brain Aβ, but has shown to be associated with detrimental effects. To avoid severe adverse effects such as meningoencephalitis induced by amyloid beta vaccine with adjuvant, and take advantage of amyloid beta antibody's therapeutic effect on Alzheimer's disease sufficiently, our group has developed a new Alzheimer vaccine with mutated amyloid beta 1-42 peptide stimulating dendritic cells (DC. Our previous work has confirmed that DC vaccine can induce adequate anti-amyloid beta antibody in PDAPP Tg mice safely and efficiently. The DC vaccine can improve impaired learning and memory in the Alzheimer's animal model, and did not cause microvasculitis, microhemorrhage or meningoencephalitis in the animal model. However, the exact mechanism of immunotherapy which reduces Aβ deposition remains unknown. In this report, we studied the mechanism of the vaccine, thinking that this may have implications for better understanding of the pathogenesis of Alzheimer's disease. Methods A new Alzheimer vaccine with mutated amyloid beta 1-42 peptide stimulating DC which were obtained from C57/B6 mouse bone marrow was developed. Amyloid beta with Freund's adjuvant was inoculated at the same time to act as positive control. After the treatment was done, the samples of brains were collected, fixed, cut. Immunohistochemical staining was performed to observe the expression of the nuclear hormone liver X receptor (LXR, membrane-bound protein tyrosine phosphatase (CD45, the ATP-binding cassette family of active transporters (ABCA1, receptor for advanced glycation end products (RAGE, β-site APP-cleaving enzyme (BACE and Aβ in mouse brain tissue. Semi-quantitative analysis was used to defect CA1, CA2, CA3, DG, Rad in hippocampus region and positive neuron in cortex region. Results Aβ was significantly reduced in the

  14. Tyrosine Mutation in AAV9 Capsid Improves Gene Transfer to the Mouse Lung.

    Science.gov (United States)

    Martini, Sabrina V; Silva, Adriana L; Ferreira, Debora; Rabelo, Rafael; Ornellas, Felipe M; Gomes, Karina; Rocco, Patricia R M; Petrs-Silva, Hilda; Morales, Marcelo M

    2016-01-01

    Adeno-associated virus (AAV) vectors are being increasingly used as the vector of choice for in vivo gene delivery and gene therapy for many pulmonary diseases. Recently, it was shown that phosphorylation of surface-exposed tyrosine residues from AAV capsid targets the viral particles for ubiquitination and proteasome-mediated degradation, and mutations of these tyrosine residues lead to highly efficient vector transduction in vitro and in vivo in different organs. In this study, we evaluated the pulmonary transgene expression efficacy of AAV9 vectors containing point mutations in surface-exposed capsid tyrosine residues. Eighteen C57BL/6 mice were randomly assigned into three groups: (1) a control group (CTRL) animals underwent intratracheal (i.t.) instillation of saline, (2) the wild-type AAV9 group (WT-AAV9, 1010 vg), and (3) the tyrosine-mutant Y731F AAV9 group (M-AAV9, 1010 vg), which received (i.t.) self-complementary AAV9 vectors containing the DNA sequence of enhanced green fluorescence protein (eGFP). Four weeks after instillation, lung mechanics, morphometry, tissue cellularity, gene expression, inflammatory cytokines, and growth factor expression were analyzed. No significant differences were observed in lung mechanics and morphometry among the experimental groups. However, the number of polymorphonuclear cells was higher in the WT-AAV9 group than in the CTRL and M-AAV9 groups, suggesting that the administration of tyrosine-mutant AAV9 vectors was better tolerated. Tyrosine-mutant AAV9 vectors significantly improved transgene delivery to the lung (30%) compared with their wild-type counterparts, without eliciting an inflammatory response. Our results provide the impetus for further studies to exploit the use of AAV9 vectors as a tool for pulmonary gene therapy. © 2016 The Author(s) Published by S. Karger AG, Basel.

  15. Kidney adysplasia and variable hydronephrosis, a new mutation affecting the odd-skipped related 1 gene in the mouse, causes variable defects in kidney development and hydronephrosis.

    Science.gov (United States)

    Davisson, Muriel T; Cook, Susan A; Akeson, Ellen C; Liu, Don; Heffner, Caleb; Gudis, Polyxeni; Fairfield, Heather; Murray, Stephen A

    2015-06-15

    Many genes, including odd-skipped related 1 (Osr1), are involved in regulation of mammalian kidney development. We describe here a new recessive mutation (kidney adysplasia and variable hydronephrosis, kavh) in the mouse that leads to downregulation of Osr1 transcript, causing several kidney defects: agenesis, hypoplasia, and hydronephrosis with variable age of onset. The mutation is closely associated with a reciprocal translocation, T(12;17)4Rk, whose Chromosome 12 breakpoint is upstream from Osr1. The kavh/kavh mutant provides a model to study kidney development and test therapies for hydronephrosis. Copyright © 2015 the American Physiological Society.

  16. S113R mutation in SLC33A1 leads to neurodegeneration and augmented BMP signaling in a mouse model

    Directory of Open Access Journals (Sweden)

    Pingting Liu

    2017-01-01

    Full Text Available The S113R mutation (c.339T>G (MIM #603690.0001 in SLC33A1 (MIM #603690, an ER membrane acetyl-CoA transporter, has been previously identified in individuals with hereditary spastic paraplegia type 42 (SPG42; MIM #612539. SLC33A1 has also been shown to inhibit the bone morphogenetic protein (BMP signaling pathway in zebrafish. To better understand the function of SLC33A1, we generated and characterized Slc33a1S113R knock-in mice. Homozygous Slc33a1S113R mutant mice were embryonic lethal, whereas heterozygous Slc33a1 mutant mice (Slc33a1wt/mut exhibited behavioral abnormalities and central neurodegeneration, which is consistent with hereditary spastic paraplegia (HSP phenotypes. Importantly, we found an upregulation of BMP signaling in the nervous system and mouse embryonic fibroblasts of Slc33a1wt/mut mice. Using a sciatic nerve crush injury model in vivo and dorsal root ganglion (DRG culture in vitro we showed that injury-induced axonal regeneration in Slc33a1wt/mut mice was accelerated and mediated by upregulated BMP signaling. Exogenous addition of BMP signaling antagonist, noggin, could efficiently alleviate the accelerated injury-induced axonal regrowth. These results indicate that SLC33A1 can negatively regulate BMP signaling in mice, further supporting the notion that upregulation of BMP signaling is a common mechanism of a subset of hereditary spastic paraplegias.

  17. Mottled Neuherberg (Mo sup(N)), a new male-lethal coat colour mutation of the house mouse (Mus musculus)

    International Nuclear Information System (INIS)

    Schroeder, J.H.

    1975-01-01

    A new semidominant X-chromosomal mutation, Mottled Neuherberg (Mo sup(N)), which causes coat colour variegation is described. Mo sup(N) arose in the second postirradiation generation after 2 x 200 R of X-rays (24 hours apart) to oocytes of X/O mice. Heterozygous Mo sup(N) females have irregular patches of fully and lightly coloured fur over the whole coat with curly vibrissae. Their viability is reduced, about 3% of the heterozygotes dying prenatally and 6 to 28% dying postnatally before weaning. Survivors are fertile without externally visible abnormalities. Hemizygous Mo sup(N) males die in utero after implantation. The recombination frequency between Mo sup(N) and tabby (Ta) was 3.65 +- 3.16% (with 95% -confidence limits). Therefore, it is suggested that Mo sup(N) is a new allele of the mottled (Mo) locus of the house mouse. Mo sup(N)-bearing ova seem to have a lower chance of becoming fertilized by wild-type spermatozoa than by Ta-bearing spermatozoa. (orig.) [de

  18. A novel mouse model carrying a human cytoplasmic dynein mutation shows motor behavior deficits consistent with Charcot-Marie-Tooth type 2O disease.

    Science.gov (United States)

    Sabblah, Thywill T; Nandini, Swaran; Ledray, Aaron P; Pasos, Julio; Calderon, Jami L Conley; Love, Rachal; King, Linda E; King, Stephen J

    2018-01-29

    Charcot-Marie-Tooth disease (CMT) is a peripheral neuromuscular disorder in which axonal degeneration causes progressive loss of motor and sensory nerve function. The loss of motor nerve function leads to distal muscle weakness and atrophy, resulting in gait problems and difficulties with walking, running, and balance. A mutation in the cytoplasmic dynein heavy chain (DHC) gene was discovered to cause an autosomal dominant form of the disease designated Charcot-Marie-Tooth type 2 O disease (CMT2O) in 2011. The mutation is a single amino acid change of histidine into arginine at amino acid 306 (H306R) in DHC. In order to understand the onset and progression of CMT2, we generated a knock-in mouse carrying the corresponding CMT2O mutation (H304R/+). We examined H304R/+ mouse cohorts in a 12-month longitudinal study of grip strength, tail suspension, and rotarod assays. H304R/+ mice displayed distal muscle weakness and loss of motor coordination phenotypes consistent with those of individuals with CMT2. Analysis of the gastrocnemius of H304R/+ male mice showed prominent defects in neuromuscular junction (NMJ) morphology including reduced size, branching, and complexity. Based on these results, the H304R/+ mouse will be an important model for uncovering functions of dynein in complex organisms, especially related to CMT onset and progression.

  19. A New Mouse Model of Limb-Girdle Muscular Dystrophy Type 2I Homozygous for the Common L276I Mutation Mimicking the Mild Phenotype in Humans

    DEFF Research Database (Denmark)

    Krag, Thomas O; Vissing, John

    2015-01-01

    Limb-girdle muscular dystrophy type 2I (LGMD2I) is caused by mutations in the Fukutin-related protein (FKRP) gene, leading to inadequate glycosylation of α-dystroglycan, an important protein linking the extracellular matrix to the cytoskeleton. We created a mouse model of the common FKRP L276I...... mutation and a hemizygous FKRP L276I knockout model. We studied histopathology and protein expression in the models at different ages and found that homozygous FKRP L276I mice developed a mild progressive myopathy with increased muscle regeneration and fibrosis starting from 1 year of age. This was likely...... in maintaining proper glycosylation of α-dystroglycan. The mild progression in the homozygous FKRP L276I model resembles that in patients with LGMD2I who are homozygous for the L276I mutation. This animal model could, therefore, be relevant for understanding the pathophysiology of and developing a treatment...

  20. Autosomal dominant hypercalciuria in a mouse model due to a mutation of the epithelial calcium channel, TRPV5.

    Directory of Open Access Journals (Sweden)

    Nellie Y Loh

    Full Text Available Hypercalciuria is a major cause of nephrolithiasis, and is a common and complex disorder involving genetic and environmental factors. Identification of genetic factors for monogenic forms of hypercalciuria is hampered by the limited availability of large families, and to facilitate such studies, we screened for hypercalciuria in mice from an N-ethyl-N-nitrosourea mutagenesis programme. We identified a mouse with autosomal dominant hypercalciuria (HCALC1. Linkage studies mapped the Hcalc1 locus to a 11.94 Mb region on chromosome 6 containing the transient receptor potential cation channel, subfamily V, members 5 (Trpv5 and 6 (Trpv6 genes. DNA sequence analysis of coding regions, intron-exon boundaries and promoters of Trpv5 and Trpv6 identified a novel T to C transition in codon 682 of TRPV5, mutating a conserved serine to a proline (S682P. Compared to wild-type littermates, heterozygous (Trpv5(682P/+ and homozygous (Trpv5(682P/682P mutant mice had hypercalciuria, polyuria, hyperphosphaturia and a more acidic urine, and ∼10% of males developed tubulointerstitial nephritis. Trpv5(682P/682P mice also had normal plasma parathyroid hormone but increased 1,25-dihydroxyvitamin D(3 concentrations without increased bone resorption, consistent with a renal defect for the hypercalciuria. Expression of the S682P mutation in human embryonic kidney cells revealed that TRPV5-S682P-expressing cells had a lower baseline intracellular calcium concentration than wild-type TRPV5-expressing cells, suggesting an altered calcium permeability. Immunohistological studies revealed a selective decrease in TRPV5-expression from the renal distal convoluted tubules of Trpv5(682P/+ and Trpv5(682P/682P mice consistent with a trafficking defect. In addition, Trpv5(682P/682P mice had a reduction in renal expression of the intracellular calcium-binding protein, calbindin-D(28K, consistent with a specific defect in TRPV5-mediated renal calcium reabsorption. Thus, our findings

  1. Molecular analysis of two mouse dilute locus deletion mutations: Spontaneous dilute lethal20J and radiation-induced dilute prenatal lethal Aa2 alleles

    International Nuclear Information System (INIS)

    Strobel, M.C.; Seperack, P.K.; Copeland, N.G.; Jenkins, N.A.

    1990-01-01

    The dilute (d) coat color locus of mouse chromosome 9 has been identified by more than 200 spontaneous and mutagen-induced recessive mutations. With the advent of molecular probes for this locus, the molecular lesion associated with different dilute alleles can be recognized and precisely defined. In this study, two dilute mutations, dilute-lethal20J (dl20J) and dilute prenatal lethal Aa2, have been examined. Using a dilute locus genomic probe in Southern blot analysis, we detected unique restriction fragments in dl20J and Aa2 DNA. Subsequent analysis of these fragments showed that they represented deletion breakpoint fusion fragments. DNA sequence analysis of each mutation-associated deletion breakpoint fusion fragment suggests that both genomic deletions were generated by nonhomologous recombination events. The spontaneous dl20J mutation is caused by an interstitial deletion that removes a single coding exon of the dilute gene. The correlation between this discrete deletion and the expression of all dilute-associated phenotypes in dl20J homozygotes defines the dl20J mutation as a functional null allele of the dilute gene. The radiation-induced Aa2 allele is a multilocus deletion that, by complementation analysis, affects both the dilute locus and the proximal prenatal lethal-3 (pl-3) functional unit. Molecular analysis of the Aa2 deletion breakpoint fusion fragment has provided access to a previously undefined gene proximal to d. Initial characterization of this new gene suggests that it may represent the genetically defined pl-3 functional unit

  2. Qualitative analysis of mouse specific-locus mutations: information on genetic organization, gene expression, and the chromosomal nature of induced lesions

    International Nuclear Information System (INIS)

    Russell, L.B.

    1982-01-01

    Analysis of mouse specific-locus (SL) mutations at three loci has identified over 33 distinct complementation groups - most of which are probably overlapping deficiencies - and 13 to 14 new functional units. The complementation maps that have been generated for the d-se and c regions include numerous vital functions; however, some of the genes in these regions are non-vital. At such loci, hypomorphic mutants must represent intragenic alterations, and some viable nulls could conceivably be intragenic lesions also. Analysis of SL mutations has provided information on genetic expression. Homozygous deficiencies can be completely viable or can kill at any one of a range of developmental stages. Heterozygonus deficiencies of up to 6 cM or more in genetic length have been recovered and propagated. The time of death of homozygous and the degree of inviability of heterozygous deficiencies are related more to specific content of the missing segment than to its length. Combinations of deficiencies with x-autosome translocations that inactivate the homologous region in a mosaic fashion have shown that organismic lethals are not necessarily cell lethal. The spectrum of mutations induced depends on the nature of the mutagen and the type of germ cell exposed. Radiation of spermatogonia produces intragenic as well as null mutations. Spontaneous mutations have an admixture of types not present in populations of mutations induced in germ cells, and this raises doubts concerning the accuracy of doubling-dose calculations in genetic risk estimation. The analysis of SL mutations has yielded genetic tools for the construction of detailed gene-dosage series, cis-trans comparisons, the mapping of known genes and identification of new genes, genetic rescue of various types, and the identification and isolation of DNA sequences

  3. Mutation of the mouse Syce1 gene disrupts synapsis and suggests a link between synaptonemal complex structural components and DNA repair.

    Directory of Open Access Journals (Sweden)

    Ewelina Bolcun-Filas

    2009-02-01

    Full Text Available In mammals, the synaptonemal complex is a structure required to complete crossover recombination. Although suggested by cytological work, in vivo links between the structural proteins of the synaptonemal complex and the proteins of the recombination process have not previously been made. The central element of the synaptonemal complex is traversed by DNA at sites of recombination and presents a logical place to look for interactions between these components. There are four known central element proteins, three of which have previously been mutated. Here, we complete the set by creating a null mutation in the Syce1 gene in mouse. The resulting disruption of synapsis in these animals has allowed us to demonstrate a biochemical interaction between the structural protein SYCE2 and the repair protein RAD51. In normal meiosis, this interaction may be responsible for promoting homologous synapsis from sites of recombination.

  4. N-ethyl-N-nitrosourea-induced null mutation at the mouse Car-2 locus: An animal model for human carbonic anhydrase II deficiency syndrome

    International Nuclear Information System (INIS)

    Lewis, S.E.; Barnett, L.B.; Erickson, R.P.; Venta, P.J.; Tashian, R.E.

    1988-01-01

    Electrophoretic screening of (C57BL/6J x DBA/2J)F 1 progeny of male mice treated with N-ethyl-N-nitrosourea revealed a mouse that lacked the paternal carbonic anhydrase II (Ca II). Breeding tests showed that this trait was heritable and due to a null mutation at the Car-2 locus on chromosome 3. Like humans with the same inherited enzyme defect, animals homozygous for the new null allele are runted and have renal tubular acidosis. However, the prominent osteopetrosis found in humans with CA II deficiency could be detected even in very old homozygous null mice. A molecular analysis of the deficient mice shows that the mutant gene is not deleted and is transcribed. The CA II protein, which is normally expressed in most tissues, could not be detected by immunodiffusion analysis in any tissues of the CA II-deficient mice, suggesting a nonsense or a missense mutation at the Car-2 locus

  5. A mutation in the tuft mouse disrupts TET1 activity and alters the expression of genes that are crucial for neural tube closure

    Directory of Open Access Journals (Sweden)

    Keith S. K. Fong

    2016-05-01

    Full Text Available Genetic variations affecting neural tube closure along the head result in malformations of the face and brain. Neural tube defects (NTDs are among the most common birth defects in humans. We previously reported a mouse mutant called tuft that arose spontaneously in our wild-type 3H1 colony. Adult tuft mice present midline craniofacial malformations with or without an anterior cephalocele. In addition, affected embryos presented neural tube closure defects resulting in insufficient closure of the anterior neuropore or exencephaly. Here, through whole-genome sequencing, we identified a nonsense mutation in the Tet1 gene, which encodes a methylcytosine dioxygenase (TET1, co-segregating with the tuft phenotype. This mutation resulted in premature termination that disrupts the catalytic domain that is involved in the demethylation of cytosine. We detected a significant loss of TET enzyme activity in the heads of tuft embryos that were homozygous for the mutation and had NTDs. RNA-Seq transcriptome analysis indicated that multiple gene pathways associated with neural tube closure were dysregulated in tuft embryo heads. Among them, the expressions of Cecr2, Epha7 and Grhl2 were significantly reduced in some embryos presenting neural tube closure defects, whereas one or more components of the non-canonical WNT signaling pathway mediating planar cell polarity and convergent extension were affected in others. We further show that the recombinant mutant TET1 protein was capable of entering the nucleus and affected the expression of endogenous Grhl2 in IMCD-3 (inner medullary collecting duct cells. These results indicate that TET1 is an epigenetic determinant for regulating genes that are crucial to closure of the anterior neural tube and its mutation has implications to craniofacial development, as presented by the tuft mouse.

  6. Impaired action potential initiation in GABAergic interneurons causes hyperexcitable networks in an epileptic mouse model carrying a human Na(V)1.1 mutation.

    Science.gov (United States)

    Hedrich, Ulrike B S; Liautard, Camille; Kirschenbaum, Daniel; Pofahl, Martin; Lavigne, Jennifer; Liu, Yuanyuan; Theiss, Stephan; Slotta, Johannes; Escayg, Andrew; Dihné, Marcel; Beck, Heinz; Mantegazza, Massimo; Lerche, Holger

    2014-11-05

    Mutations in SCN1A and other ion channel genes can cause different epileptic phenotypes, but the precise mechanisms underlying the development of hyperexcitable networks are largely unknown. Here, we present a multisystem analysis of an SCN1A mouse model carrying the NaV1.1-R1648H mutation, which causes febrile seizures and epilepsy in humans. We found a ubiquitous hypoexcitability of interneurons in thalamus, cortex, and hippocampus, without detectable changes in excitatory neurons. Interestingly, somatic Na(+) channels in interneurons and persistent Na(+) currents were not significantly changed. Instead, the key mechanism of interneuron dysfunction was a deficit of action potential initiation at the axon initial segment that was identified by analyzing action potential firing. This deficit increased with the duration of firing periods, suggesting that increased slow inactivation, as recorded for recombinant mutated channels, could play an important role. The deficit in interneuron firing caused reduced action potential-driven inhibition of excitatory neurons as revealed by less frequent spontaneous but not miniature IPSCs. Multiple approaches indicated increased spontaneous thalamocortical and hippocampal network activity in mutant mice, as follows: (1) more synchronous and higher-frequency firing was recorded in primary neuronal cultures plated on multielectrode arrays; (2) thalamocortical slices examined by field potential recordings revealed spontaneous activities and pathological high-frequency oscillations; and (3) multineuron Ca(2+) imaging in hippocampal slices showed increased spontaneous neuronal activity. Thus, an interneuron-specific generalized defect in action potential initiation causes multisystem disinhibition and network hyperexcitability, which can well explain the occurrence of seizures in the studied mouse model and in patients carrying this mutation. Copyright © 2014 the authors 0270-6474/14/3414874-16$15.00/0.

  7. Effect of Ku80 deficiency on mutation frequencies and spectra at a LacZ reporter locus in mouse tissues and cells.

    Directory of Open Access Journals (Sweden)

    Rita A Busuttil

    Full Text Available Non-homologous end joining (NHEJ is thought to be an important mechanism for preventing the adverse effects of DNA double strand breaks (DSBs and its absence has been associated with premature aging. To investigate the effect of inactivated NHEJ on spontaneous mutation frequencies and spectra in vivo and in cultured cells, we crossed a Ku80-deficient mouse with mice harboring a lacZ-plasmid-based mutation reporter. We analyzed various organs and tissues, as well as cultured embryonic fibroblasts, for mutations at the lacZ locus. When comparing mutant with wild-type mice, we observed a significantly higher number of genome rearrangements in liver and spleen and a significantly lower number of point mutations in liver and brain. The reduced point mutation frequency was not due to a decrease in small deletion mutations thought to be a hallmark of NHEJ, but could be a consequence of increased cellular responses to unrepaired DSBs. Indeed, we found a substantial increase in persistent 53BP1 and gammaH2AX DNA damage foci in Ku80-/- as compared to wild-type liver. Treatment of cultured Ku80-deficient or wild-type embryonic fibroblasts, either proliferating or quiescent, with hydrogen peroxide or bleomycin showed no differences in the number or type of induced genome rearrangements. However, after such treatment, Ku80-deficient cells did show an increased number of persistent DNA damage foci. These results indicate that Ku80-dependent repair of DNA damage is predominantly error-free with the effect of alternative more error-prone pathways creating genome rearrangements only detectable after extended periods of time, i.e., in young adult animals. The observed premature aging likely results from a combination of increased cellular senescence and an increased load of stable, genome rearrangements.

  8. The effects of MSH2 deficiency on spontaneous and radiation-induced mutation rates in the mouse germline

    International Nuclear Information System (INIS)

    Burr, Karen L-A.; Duyn-Goedhart, Annemarie van; Hickenbotham, Peter; Monger, Karen; Buul, Paul P.W. van; Dubrova, Yuri E.

    2007-01-01

    Mutation rates at two expanded simple tandem repeat (ESTR) loci were studied in the germline of mismatch repair deficient Msh2 knock-out mice. Spontaneous mutation rates in homozygous Msh2 -/- males were significantly higher than those in isogenic wild-type (Msh2 +/+ ) and heterozygous (Msh2 +/- ) mice. In contrast, the irradiated Msh2 -/- mice did not show any detectable increases in their mutation rate, whereas significant ESTR mutation induction was observed in the irradiated Msh2 +/+ and Msh2 +/- animals. Considering these data and the results of other publications, we propose that the Msh2-deficient mice possess a mutator phenotype in their germline and somatic tissues while the loss of a single Msh2 allele does not affect the stability of heterozygotes

  9. Bm-muted, orthologous to mouse muted and encoding a subunit of the BLOC-1 complex, is responsible for the otm translucent mutation of the silkworm Bombyx mori.

    Science.gov (United States)

    Zhang, Haokun; Kiuchi, Takashi; Wang, Lingyan; Kawamoto, Munetaka; Suzuki, Yutaka; Sugano, Sumio; Banno, Yutaka; Katsuma, Susumu; Shimada, Toru

    2017-09-20

    "Tanaka's mottled translucent" (otm) is a mutation of the silkworm Bombyx mori that exhibits translucent skin during larval stages. We performed positional cloning of the gene responsible for otm and mapped it to a 364-kb region on chromosome 5 that contains 22 hypothetical protein-coding genes. We performed RNA-seq analysis of the epidermis and fat body of otm larvae and determined that the gene BGIBMGA002619 may be responsible for the otm mutation. BGIBMGA002619 encodes the biosynthesis of lysosome-related organelles complex 1 (BLOC-1) subunit 5, whose ortholog is responsible for the Muted mutant in mouse. Accordingly, we named this gene Bm-muted. We discovered that the expression of Bm-muted in the epidermis and fat body of otm mutants was dramatically suppressed compared with the wild type. We determined the nucleotide sequences of the full-length cDNA and genomic region corresponding to Bm-muted and found that a 538-bp long DNA sequence similar to B. mori transposon Organdy was inserted into the 3' end of the first intron of Bm-muted in two otm strains. The Bm-muted cDNA of otm mutants lacked exon 2, and accordingly generated a premature stop codon in exon 3. In addition, short interfering RNA (siRNA)-mediated knockdown of this gene caused localized partial translucency of larval skin. These data indicate that the mutation in Bm-muted caused the otm-mutant phenotype. We propose that the insertion of Organdy caused a splicing disorder in Bm-muted in the otm mutant, resulting in a null mutation of Bm-muted. This mutation is likely to cause deficiencies in urate granule formation in epidermal cells that result in translucent larval skin. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Age-related increase in the rate of spontaneou and γ-ray-induced hprt mutations in mouse spleen lymphocytes

    International Nuclear Information System (INIS)

    Gazlev, A.I.; Podlutskii, A.Ya.; Bradbury, R.

    1994-01-01

    Endogenous and exogenous factors continually afflict DNA of cells of organisms. A certain amount of the damage is accumulated causing mutations, increasing the risk of malignacies, impairing cell functions, and upsetting the body's homeostasis. The research reported here studies the rates of spontaneous hprt nmutationsand those induced you ggammairradiation in the splenocytes of mice at various ages. The rate of spontaneous and induced hprt gene mutations increases with aging. In gamma irradiated mice the rate of radiation-induced mutations depended on the absorbed dose and age, with the rate 2.3-3.0 fold higher in 104-110 week old mice than in younger pups. 15 refs., 1 tab

  11. Mouse models of two missense mutations in actin-binding domain 1 of dystrophin associated with Duchenne or Becker muscular dystrophy.

    Science.gov (United States)

    McCourt, Jackie L; Talsness, Dana M; Lindsay, Angus; Arpke, Robert W; Chatterton, Paul D; Nelson, D'anna M; Chamberlain, Christopher M; Olthoff, John T; Belanto, Joseph J; McCourt, Preston M; Kyba, Michael; Lowe, Dawn A; Ervasti, James M

    2018-02-01

    Missense mutations in the dystrophin protein can cause Duchenne muscular dystrophy (DMD) or Becker muscular dystrophy (BMD) through an undefined pathomechanism. In vitro studies suggest that missense mutations in the N-terminal actin-binding domain (ABD1) cause protein instability, and cultured myoblast studies reveal decreased expression levels that can be restored to wild-type with proteasome inhibitors. To further elucidate the pathophysiology of missense dystrophin in vivo, we generated two transgenic mdx mouse lines expressing L54R or L172H mutant dystrophin, which correspond to missense mutations identified in human patients with DMD or BMD, respectively. Our biochemical, histologic and physiologic analysis of the L54R and L172H mice show decreased levels of dystrophin which are proportional to the phenotypic severity. Proteasome inhibitors were ineffective in both the L54R and L172H mice, yet mice homozygous for the L172H transgene were able to express even higher levels of dystrophin which caused further improvements in muscle histology and physiology. Given that missense dystrophin is likely being degraded by the proteasome but whole body proteasome inhibition was not possible, we screened for ubiquitin-conjugating enzymes involved in targeting dystrophin to the proteasome. A myoblast cell line expressing L54R mutant dystrophin was screened with an siRNA library targeting E1, E2 and E3 ligases which identified Amn1, FBXO33, Zfand5 and Trim75. Our study establishes new mouse models of dystrophinopathy and identifies candidate E3 ligases that may specifically regulate dystrophin protein turnover in vivo. © The Author(s) 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Molecular and genetic characterization of a radiation-induced structural rearrangement in mouse chromosome 2 causing mutations at the limb deformity and agouti loci

    International Nuclear Information System (INIS)

    Woychik, R.P.; Generoso, W.M.; Russell, L.B.; Cain, K.T.; Cacheiro, N.L.; Bultman, S.J.; Selby, P.B.; Dickinson, M.E.; Hogan, B.L.

    1990-01-01

    Molecular characterization of mutations in the mouse, particularly those involving agent-induced major structural alterations, is proving to be useful for correlating the structure and expression of individual genes with their function in the whole organism. Here we present the characterization of a radiation-induced mutation that simultaneously generated distinct alleles of both the limb deformity (ld) and agouti (a) loci, two developmentally important regions of chromosome 2 normally separated by 20 centimorgans. Cytogenetic analysis revealed that an interstitial segment of chromosome 17 (17B- 17C; or, possibly, 17A2-17B) had been translocated into the distal end of chromosome 2, resulting in a smaller-than-normal chromosome 17 (designated 17del) and a larger form of chromosome 2 designated 2(17). Additionally, a large interstitial segment of the 2(17) chromosome, immediately adjacent and proximal to the insertion site, did not match bands 2E4-2H1 at corresponding positions on a normal chromosome 2. Molecular analysis detected a DNA rearrangement in which a portion of the ld locus was joined to sequences normally tightly linked to the a locus. This result, along with the genetic and cytogenetic data, suggests that the alleles of ld and a in this radiation-induced mutation, designated ldIn2 and ajIn2, were associated with DNA breaks caused by an inversion of an interstitial segment in the 2(17) chromosome

  13. Specific-locus mutation frequencies in mouse stem-cell spermatogonia at very low radiation dose rates, and their use in the estimation of genetic hazards of radiation in man

    International Nuclear Information System (INIS)

    Russell, W.L.; Kelly, E.M.

    1982-01-01

    Experiments were undertaken to augment the information on the lowest radiation dose rates feasible for scoring transmitted induced mutations detected by the specific-locus method in the mouse. This is the type of information most suitable for estimating genetic hazards of radiation in man. The results also aid in resolving conflicting possibilities about the relationship between mutation frequency and radiation dose at low dose rates

  14. Within-host selection of drug resistance in a mouse model reveals dose-dependent selection of atovaquone resistance mutations

    NARCIS (Netherlands)

    Nuralitha, Suci; Murdiyarso, Lydia S.; Siregar, Josephine E.; Syafruddin, Din; Roelands, Jessica; Verhoef, Jan; Hoepelman, Andy I.M.; Marzuki, Sangkot

    2017-01-01

    The evolutionary selection of malaria parasites within an individual host plays a critical role in the emergence of drug resistance. We have compared the selection of atovaquone resistance mutants in mouse models reflecting two different causes of failure of malaria treatment, an inadequate

  15. A dominant-negative mutation of mouse Lmx1b causes glaucoma and is semi-lethal via LDB1-mediated dimerization [corrected].

    Directory of Open Access Journals (Sweden)

    Sally H Cross

    2014-05-01

    Full Text Available Mutations in the LIM-homeodomain transcription factor LMX1B cause nail-patella syndrome, an autosomal dominant pleiotrophic human disorder in which nail, patella and elbow dysplasia is associated with other skeletal abnormalities and variably nephropathy and glaucoma. It is thought to be a haploinsufficient disorder. Studies in the mouse have shown that during development Lmx1b controls limb dorsal-ventral patterning and is also required for kidney and eye development, midbrain-hindbrain boundary establishment and the specification of specific neuronal subtypes. Mice completely deficient for Lmx1b die at birth. In contrast to the situation in humans, heterozygous null mice do not have a mutant phenotype. Here we report a novel mouse mutant Icst, an N-ethyl-N-nitrosourea-induced missense substitution, V265D, in the homeodomain of LMX1B that abolishes DNA binding and thereby the ability to transactivate other genes. Although the homozygous phenotypic consequences of Icst and the null allele of Lmx1b are the same, heterozygous Icst elicits a phenotype whilst the null allele does not. Heterozygous Icst causes glaucomatous eye defects and is semi-lethal, probably due to kidney failure. We show that the null phenotype is rescued more effectively by an Lmx1b transgene than is Icst. Co-immunoprecipitation experiments show that both wild-type and Icst LMX1B are found in complexes with LIM domain binding protein 1 (LDB1, resulting in lower levels of functional LMX1B in Icst heterozygotes than null heterozygotes. We conclude that Icst is a dominant-negative allele of Lmx1b. These findings indicate a reassessment of whether nail-patella syndrome is always haploinsufficient. Furthermore, Icst is a rare example of a model of human glaucoma caused by mutation of the same gene in humans and mice.

  16. Substrate compositional variation with tissue/region and Gba1 mutations in mouse models--implications for Gaucher disease.

    Directory of Open Access Journals (Sweden)

    Ying Sun

    Full Text Available Gaucher disease results from GBA1 mutations that lead to defective acid β-glucosidase (GCase mediated cleavage of glucosylceramide (GC and glucosylsphingosine as well as heterogeneous manifestations in the viscera and CNS. The mutation, tissue, and age-dependent accumulations of different GC species were characterized in mice with Gba1 missense mutations alone or in combination with isolated saposin C deficiency (C*. Gba1 heteroallelism for D409V and null alleles (9V/null led to GC excesses primarily in the visceral tissues with preferential accumulations of lung GC24∶0, but not in liver, spleen, or brain. Age-dependent increases of different GC species were observed. The combined saposin C deficiency (C* with V394L homozygosity (4L;C* showed major GC18:0 degradation defects in the brain, whereas the analogous mice with D409H homozygosity and C* (9H;C* led to all GC species accumulating in visceral tissues. Glucosylsphingosine was poorly degraded in brain by V394L and D409H GCases and in visceral tissues by D409V GCase. The neonatal lethal N370S/N370S genotype had insignificant substrate accumulations in any tissue. These results demonstrate age, organ, and mutation-specific quantitative differences in GC species and glucosylsphingosine accumulations that can have influence in the tissue/regional expression of Gaucher disease phenotypes.

  17. Mouse spermatogonia exposed to a high, multiply fractionated dose of a cancer chemotherapeutic drug: mutation analysis by electrophoresis.

    Science.gov (United States)

    Johnson, F M; Lewis, S E

    1981-04-01

    Male mice of the DBA/2J strain were injected with procarbazine at a dose of 200 mg/kg body weight twice weekly until an accumulated dose of 2400 mg/kg was reached. A concurrent control group, injected only with the vehicle (saline) was also established. Most of the treated animals died as a result of exposure and all survivors became temporarily sterile. After regaining fertility the few survivors were repeatedly mated with C57BL/6J females over several weeks time to generate a population of F1 animals. The parental animals and the F1 were subsequently analyzed by electrophoresis for the occurrence of newly arisen mutations of spermatogonial origin. A mutation in the gene Pep-3 was found.

  18. Mutations in the Human Orthologue of the Mouse underwhite Gene (uw) Underlie a New Form of Oculocutaneous Albinism, OCA4

    OpenAIRE

    Newton, J. M.; Cohen-Barak, Orit; Hagiwara, Nobuko; Gardner, John M.; Davisson, Muriel T.; King, Richard A.; Brilliant, Murray H.

    2001-01-01

    Oculocutaneous albinism (OCA) affects ∼1/20,000 people worldwide. All forms of OCA exhibit generalized hypopigmentation. Reduced pigmentation during eye development results in misrouting of the optic nerves, nystagmus, alternating strabismus, and reduced visual acuity. Loss of pigmentation in the skin leads to an increased risk for skin cancer. Two common forms and one infrequent form of OCA have been described. OCA1 (MIM 203100) is associated with mutations of the TYR gene encoding tyrosinas...

  19. Mutation studies upon spermatogonial stem cells of mammals and genetic tests for non-disjunction in the mouse

    International Nuclear Information System (INIS)

    Cattanach, B.M.

    1993-01-01

    Studies upon strain differences in genetic response to radiation may facilitate extrapolation of mouse data to man. The objective of the project is to investigate the basis of the genetic responses obtained with different treatment regimes. Two systems of genetic (complementation) tests were developed using Robertsonian translocations in tester animals to detect non-disjunction and chromosome loss events in normal mice. The aim is to evaluate the two methods for detecting chromosome 11 loss, and compare the frequency of chromosomes 11 and 13 loss following X-irradiation of males and females. (R.P.) 6 refs., 3 tabs

  20. A second tyrosinase-related protein, TRP-2, maps to and is mutated at the mouse slaty locus.

    OpenAIRE

    Jackson, I J; Chambers, D M; Tsukamoto, K; Copeland, N G; Gilbert, D J; Jenkins, N A; Hearing, V

    1992-01-01

    We have cloned and sequenced mouse cDNAs corresponding to a third member of a family of melanocyte-specific mRNAs, which encode tyrosinase and related proteins. This new member, tyrosinase-related protein-2 (TRP-2), has approximately 40% amino acid identity with the two other proteins in the family and has the same structural features including two copper binding sites, two cysteine-rich regions, a signal peptide and a transmembrane domain. We now show that one of the cysteine-rich regions in...

  1. Characterization of the chromosomal inversion associated with the Koa mutation in the mouse revealed the cause of skeletal abnormalities

    Directory of Open Access Journals (Sweden)

    Suzuki Hiroetsu

    2009-09-01

    Full Text Available Abstract Background Koala (Koa is a dominant mutation in mice causing bushy muzzle and pinna, and is associated with a chromosomal inversion on the distal half of chromosome 15. To identify the gene responsible for the Koa phenotypes, we investigated phenotypes of Koa homozygous mice and determined the breakpoints of the inversion with a genetic method using recombination between two different chromosomal inversions. Results Skeletal preparation of Koa homozygotes showed marked deformity of the ribs and a wider skull with extended zygomatic arches, in addition to a general reduction in the lengths of long bones. They also had open eyelids at birth caused by a defect in the extension of eyelid anlagen during the embryonic stages. The proximal and distal breakpoints of the Koa inversion were determined to be 0.8-Mb distal to the Trsps1 gene and to 0.1-Mb distal to the Hoxc4 gene, respectively, as previously reported. The phenotypes of mice with the recombinant inverted chromosomes revealed the localization of the gene responsible the Koa phenotype in the vicinity of the proximal recombinant breakpoint. Expression of the Trsps1 gene in this region was significantly reduced in the Koa homozygous and heterozygous embryos. Conclusion While no gene was disrupted by the chromosomal inversion, an association between the Koa phenotype and the proximal recombinant breakpoint, phenotypic similarities with Trps1-deficient mice or human patients with TRSP1 mutations, and the reduced expression of the Trsps1 gene in Koa mice, indicated that the phenotypes of the Koa mice are caused by the altered expression of the Trps1 gene.

  2. Optimizing the Targeting of Mouse Parvovirus 1 to Murine Melanoma Selects for Recombinant Genomes and Novel Mutations in the Viral Capsid Gene

    Directory of Open Access Journals (Sweden)

    Matthew Marr

    2018-01-01

    Full Text Available Combining virus-enhanced immunogenicity with direct delivery of immunomodulatory molecules would represent a novel treatment modality for melanoma, and would require development of new viral vectors capable of targeting melanoma cells preferentially. Here we explore the use of rodent protoparvoviruses targeting cells of the murine melanoma model B16F10. An uncloned stock of mouse parvovirus 1 (MPV1 showed some efficacy, which was substantially enhanced following serial passage in the target cell. Molecular cloning of the genes of both starter and selected virus pools revealed considerable sequence diversity. Chimera analysis mapped the majority of the improved infectivity to the product of the major coat protein gene, VP2, in which linked blocks of amino acid changes and one or other of two apparently spontaneous mutations were selected. Intragenic chimeras showed that these represented separable components, both contributing to enhanced infection. Comparison of biochemical parameters of infection by clonal viruses indicated that the enhancement due to changes in VP2 operates after the virus has bound to the cell surface and penetrated into the cell. Construction of an in silico homology model for MPV1 allowed placement of these changes within the capsid shell, and revealed aspects of the capsid involved in infection initiation that had not been previously recognized.

  3. Autoradiographic detection of mutation to exotoxin-A resistance in mouse fibroblasts treated with ethyl methanesulfonate, X-rays and ultraviolet light

    International Nuclear Information System (INIS)

    Tiah, M.; Ronen, A.

    1989-01-01

    P. aeruginosa exotoxin-A (PE) blocks protein synthesis in mammalian cells by inactivating elongation factor 2 (EF-2). Toxin-resistant mutant cells can be detected autoradioraphically, in cultures grown on microscope coverslips in the presence of PE, and exposed to [ 3 H]leucine. The frequency of PE-resistant cells detected by the autoradiographic assay in non-mutagenized cells of the established mouse cell line LTKA is 9.7 j 0.6 x 10 -5 . Upon treatment with ethyl methanesulfonate (EMS), X-rays of ultraviolet (UV) light it increases in a dose-dependent fashion. The mutational nature of the resistance detected by the assay is indicated by its clonal inheritance, and by the dose-dependent increase in the frequency of resistant cells after utagenesis. On the basis of the high frequency of PE-resistant cells detected by the autoradiographic assay, and their cross-resistance to diphteria toxin (DT), the authors suggest that the PE-resistant mutants detected by the autoradiographic assay are of class II, i.e., they are altered in the structural gene for EF-2. (author). 27 refs.; 5 figs.; 3 tabs

  4. Cauli: a mouse strain with an Ift140 mutation that results in a skeletal ciliopathy modelling Jeune syndrome.

    Directory of Open Access Journals (Sweden)

    Kerry A Miller

    2013-08-01

    Full Text Available Cilia are architecturally complex organelles that protrude from the cell membrane and have signalling, sensory and motility functions that are central to normal tissue development and homeostasis. There are two broad categories of cilia; motile and non-motile, or primary, cilia. The central role of primary cilia in health and disease has become prominent in the past decade with the recognition of a number of human syndromes that result from defects in the formation or function of primary cilia. This rapidly growing class of conditions, now known as ciliopathies, impact the development of a diverse range of tissues including the neural axis, craniofacial structures, skeleton, kidneys, eyes and lungs. The broad impact of cilia dysfunction on development reflects the pivotal position of the primary cilia within a signalling nexus involving a growing number of growth factor systems including Hedgehog, Pdgf, Fgf, Hippo, Notch and both canonical Wnt and planar cell polarity. We have identified a novel ENU mutant allele of Ift140, which causes a mid-gestation embryonic lethal phenotype in homozygous mutant mice. Mutant embryos exhibit a range of phenotypes including exencephaly and spina bifida, craniofacial dysmorphism, digit anomalies, cardiac anomalies and somite patterning defects. A number of these phenotypes can be attributed to alterations in Hedgehog signalling, although additional signalling systems are also likely to be involved. We also report the identification of a homozygous recessive mutation in IFT140 in a Jeune syndrome patient. This ENU-induced Jeune syndrome model will be useful in delineating the origins of dysmorphology in human ciliopathies.

  5. Responses of the L51781Y tk/sup +//tk/sup -/ mouse lymphoma cell forward mutation assay: III. 72 coded chemicals

    Energy Technology Data Exchange (ETDEWEB)

    McGregor, D.B.; Brown, A.; Cattanach, P.; Edwards, I.; McBride, D.; Riach, C.; Caspary, W.J.

    1988-01-01

    Seventy-two chemicals were tested for their mutagenic potential in the L51781Y tk/sup +///sup -/ mouse lymphoma cell forward mutation assay, using procedures based upon those described previously. Cultures were exposed to the chemicals for 4 hr, then cultured for 2 days before planting in soft agar with or without trifluorothymidine (TFT), 3 ..mu..g/ml. The chemicals were tested at least twice. Significant responses were obtained with allyl isothiocyanate, p-benzoquinone dioxime, benzyl acetate, 2-biphenylamine HCl, bis(2-chloro-1-methylethyl)ether, cadmium chloride, chlordane, chlorobenzene, chlorobenzilate, 2-chloroethanol, chlorothalonil, cytarabine x HCl, p,p'-DDE, diazinon, 2,6-dichloro-p-phenylenediamine, N,N-diethylthiourea, diglycidylresorcinol ether, 2,4-dimethoxy aniline x HCl, disperse yellow 3, endosulfan, 1,2-epoxyhexadecane, ethyl acrylate, ethyl benzene, ethylene thiourea, F D and C yellow Number 6, furan, heptachlor, isophorone, mercuric chloride, 4,4'-methylenedianiline x 2 HCl, methyl viologen, nickel sulfate x 6H/sub 2/O, 4,4'-oxydianiline, pentachloroethane, piperonyl butoxide, propyl gallate, quinoline, rotenone, 2,4,5,6-tetrachloro-4-nitro-anisole, 1,1,1,2-tetrachloroethane, trichlorfon, 2,4,6-trichlorophenol, 2,4,5-trimethoxybenzaldehyde, 1,1,3-trimethyl-2-thiourea, 1-vinyl-3-cyclopetene dioxide, vinyl toluene, and ziram. The assay was incapable of providing a clear indication of whether some chemicals were mutagens; these benzyl alcohol, 1,4-dichlorobenzene, phenol, succinic acid-2,2-dimethyl hydrazide, and toluene.

  6. Mutagenicity of the peroxisome proliferators clofibrate, Wyeth 14,643 and di-2-ethylhexyl phthalate in the lacZ plasmid-based transgenic mouse mutation assay

    Directory of Open Access Journals (Sweden)

    Boerrigter Michaël

    2004-01-01

    Full Text Available Abstract Background Peroxisome proliferators are considered rodent carcinogens that are putative human non-carcinogens based on the presumed absence of direct genetic toxicity in rodent and human cells and the resistance of human cells to the induction of peroxisomes by peroxisome proliferators. The highly sensitive lacZ plasmid-based transgenic mouse mutation assay was employed to investigate the mutagenicity of several peroxisome proliferators based on several lines of evidence suggesting that these agents may in fact exert a genotoxic effect. Methods Male and female lacZ-plasmid based transgenic mice were treated at 4 months of age with 6 doses of 2,333 mg di-2-ethylhexyl phthalate (DHEP, 200 mg Wyeth-14,643, or 90 mg clofibrate per kg of bodyweight, respectively, over a two-week period. Control animals were treated with the respective vehicles only (35% propyl glycol for DEHP and Wyeth-14,643 treatment controls and sterile water for clofibrate treatment controls. The mutant frequency in liver, kidney and spleen DNA was determined as the proportion of retrieved mutant and wild-type lacZ plasmids expressed in Escherichia Coli C host cells employing a positive selection system for mutant plasmids. Results Exposure to DEHP or Wyeth-14,643 significantly increased the mutant frequency in liver, but not in kidney or spleen, of both female and male mice. Treatment with clofibrate did not lead to an increased mutant frequency in any of the organs studied. Conclusion The results indicate that some peroxisome proliferators display an organ-specific mutagenicity in lacZ plasmid-based transgenic mice consistent with historical observations of organ- and compound-specific carcinogenicity.

  7. Expression of biomarker genes of differentiation in D3 mouse embryonic stem cells after exposure to different embryotoxicant and non-embryotoxicant model chemicals

    Directory of Open Access Journals (Sweden)

    Andrea C. Romero

    2015-12-01

    Full Text Available There is a necessity to develop in vitro methods for testing embryotoxicity (Romero et al., 2015 [1]. We studied the progress of D3 mouse embryonic stem cells differentiation exposed to model embryotoxicants and non-embryotoxicants chemicals through the expression of biomarker genes. We studied a set of 16 different genes biomarkers of general cellular processes (Cdk1, Myc, Jun, Mixl, Cer and Wnt3, ectoderm formation (Nrcam, Nes, Shh and Pnpla6, mesoderm formation (Mesp1, Vegfa, Myo1e and Hdac7 and endoderm formation (Flk1 and Afp. We offer dose response in order to derive the concentration causing either 50% or 200% of expression of the biomarker gene. These records revealed to be a valuable end-point to predict in vitro the embryotoxicity of chemicals (Romero et al., 2015 [1].

  8. Codon 61 mutations in the c-Harvey-ras gene in mouse skin tumors induced by 7,12-dimethylbenz[a]anthracene plus okadaic acid class tumor promoters.

    Science.gov (United States)

    Fujiki, H; Suganuma, M; Yoshizawa, S; Kanazawa, H; Sugimura, T; Manam, S; Kahn, S M; Jiang, W; Hoshina, S; Weinstein, I B

    1989-01-01

    Three okadaic acid class tumor promoters, okadaic acid, dinophysistoxin-1, and calyculin A, have potent tumor-promoting activity in two-stage carcinogenesis experiments on mouse skin. DNA isolated from tumors induced by 7,12-dimethylbenz[a]anthracene (DMBA) and each of these tumor promoters revealed the same mutation at the second nucleotide of codon 61 (CAA----CTA) in the c-Ha-ras gene, determined by the polymerase chain reaction procedure and DNA sequencing. Three potent 12-O-tetradecanoylphorbol-13-acetate (TPA)-type tumor promoters, TPA, teleocidin, and aplysiatoxin, showed the same effects. These results provide strong evidence that this mutation in the c-Ha-ras gene is due to a direct effect of DMBA rather than a selective effect of specific tumor promoters.

  9. A mouse genetic model for familial cholestasis caused by ATP8B1 mutations reveals perturbed bile salt homeostasis but no impairment in bile secretion

    NARCIS (Netherlands)

    Pawlikowska, Ludmila; Groen, Annemiek; Eppens, Elaine F.; Kunne, Cindy; Ottenhoff, Roelof; Looije, Norbert; Knisely, A. S.; Killeen, Nigel P.; Bull, Laura N.; Elferink, Ronald P. J. Oude; Freimer, Nelson B.

    2004-01-01

    Mutations in ATP8B1, a broadly expressed P-type ATPase, result, through unknown mechanisms, in disorders of bile secretion. These disorders vary in severity from mild and episodic to progressive with liver failure. We generated Atp8b1(G308V/G308V) mutant mice, which carry a mutation orthologous to

  10. MEK-ERK pathway modulation ameliorates disease phenotypes in a mouse model of Noonan syndrome associated with the Raf1L613V mutation

    Science.gov (United States)

    Wu, Xue; Simpson, Jeremy; Hong, Jenny H.; Kim, Kyoung-Han; Thavarajah, Nirusha K.; Backx, Peter H.; Neel, Benjamin G.; Araki, Toshiyuki

    2011-01-01

    Hypertrophic cardiomyopathy (HCM) is a leading cause of sudden death in children and young adults. Abnormalities in several signaling pathways are implicated in the pathogenesis of HCM, but the role of the RAS-RAF-MEK-ERK MAPK pathway has been controversial. Noonan syndrome (NS) is one of several autosomal-dominant conditions known as RASopathies, which are caused by mutations in different components of this pathway. Germline mutations in RAF1 (which encodes the serine-threonine kinase RAF1) account for approximately 3%–5% of cases of NS. Unlike other NS alleles, RAF1 mutations that confer increased kinase activity are highly associated with HCM. To explore the pathogenesis of such mutations, we generated knockin mice expressing the NS-associated Raf1L613V mutation. Like NS patients, mice heterozygous for this mutation (referred to herein as L613V/+ mice) had short stature, craniofacial dysmorphia, and hematologic abnormalities. Valvuloseptal development was normal, but L613V/+ mice exhibited eccentric cardiac hypertrophy and aberrant cardiac fetal gene expression, and decompensated following pressure overload. Agonist-evoked MEK-ERK activation was enhanced in multiple cell types, and postnatal MEK inhibition normalized the growth, facial, and cardiac defects in L613V/+ mice. These data show that different NS genes have intrinsically distinct pathological effects, demonstrate that enhanced MEK-ERK activity is critical for causing HCM and other RAF1-mutant NS phenotypes, and suggest a mutation-specific approach to the treatment of RASopathies. PMID:21339642

  11. Different effects of dose rate on radiation-induced mutation frequency in various germ-cell stages of the mouse, and their implications for the analysis of tumorigenesis

    International Nuclear Information System (INIS)

    Russell, W.L.

    1979-01-01

    The following factors affecting mutation induction by radiation in mice are discussed: dose rate, cell stage, and sex. It is suggested that for cancers of presumed mutational origin, the risk from chronic radiation exposure may be only one-third the risk from acute exposure. This is based only on responses of spermatogonia; other cell types behave quite differently. Specific and general applications are discussed

  12. An ENU-induced point mutation in the mouse Btaf1 gene causes post-gastrulation embryonic lethality and protein instability

    NARCIS (Netherlands)

    Wansleeben, C.; van Gurp, L.; de Graaf, P.; Mousson, F.; Timmers, H.T.; Meijlink, F.

    2011-01-01

    The mouse Btaf1 gene, an ortholog of yeast MOT1, encodes a highly conserved general transcription factor. The function of this SNF2-like ATPase has been studied mainly in yeast and human cells, which has revealed that it binds directly to TBP, forming the B-TFIID complex. This complex binds to core

  13. Establishment of mouse model of MYH9 disorders: heterozygous R702C mutation provokes macrothrombocytopenia with leukocyte inclusion bodies, renal glomerulosclerosis and hearing disability.

    Science.gov (United States)

    Suzuki, Nobuaki; Kunishima, Shinji; Ikejiri, Makoto; Maruyama, Shoichi; Sone, Michihiko; Takagi, Akira; Ikawa, Masahito; Okabe, Masaru; Kojima, Tetsuhito; Saito, Hidehiko; Naoe, Tomoki; Matsushita, Tadashi

    2013-01-01

    Nonmuscle myosin heavy chain IIA (NMMHCIIA) encoded by MYH9 is associated with autosomal dominantly inherited diseases called MYH9 disorders. MYH9 disorders are characterized by macrothrombocytopenia and very characteristic inclusion bodies in granulocytes. MYH9 disorders frequently cause nephritis, sensorineural hearing disability and cataracts. One of the most common and deleterious mutations causing these disorders is the R702C missense mutation. We generated knock-in mice expressing the Myh9 R702C mutation. R702C knock-in hetero mice (R702C+/- mice) showed macrothrombocytopenia. We studied megakaryopoiesis of cultured fetal liver cells of R702C+/- mice and found that proplatelet formation was impaired: the number of proplatelet tips was decreased, proplatelet size was increased, and proplatelet shafts were short and enlarged. Although granulocyte inclusion bodies were not visible by May-Grünwald Giemsa staining, immunofluorescence analysis indicated that NMMHCIIA proteins aggregated and accumulated in the granulocyte cytoplasm. In other organs, R702C+/- mice displayed albuminuria which increased with age. Renal pathology examination revealed glomerulosclerosis. Sensory hearing loss was indicated by lowered auditory brainstem response. These findings indicate that Myh9 R702C knock-in mice mirror features of human MYH9 disorders arising from the R702C mutation.

  14. Mutated CaV2.1 channels dysregulate CASK/P2X3 signaling in mouse trigeminal sensory neurons of R192Q Cacna1a knock-in mice.

    Science.gov (United States)

    Gnanasekaran, Aswini; Bele, Tanja; Hullugundi, Swathi; Simonetti, Manuela; Ferrari, Michael D; van den Maagdenberg, Arn M J M; Nistri, Andrea; Fabbretti, Elsa

    2013-12-02

    ATP-gated P2X3 receptors of sensory ganglion neurons are important transducers of pain as they adapt their expression and function in response to acute and chronic nociceptive signals. The present study investigated the role of calcium/calmodulin-dependent serine protein kinase (CASK) in controlling P2X3 receptor expression and function in trigeminal ganglia from Cacna1a R192Q-mutated knock-in (KI) mice, a genetic model for familial hemiplegic migraine type-1. KI ganglion neurons showed more abundant CASK/P2X3 receptor complex at membrane level, a result that likely originated from gain-of-function effects of R192Q-mutated CaV2.1 channels and downstream enhanced CaMKII activity. The selective CaV2.1 channel blocker ω-Agatoxin IVA and the CaMKII inhibitor KN-93 were sufficient to return CASK/P2X3 co-expression to WT levels. After CASK silencing, P2X3 receptor expression was decreased in both WT and KI ganglia, supporting the role of CASK in P2X3 receptor stabilization. This process was functionally observed as reduced P2X3 receptor currents. We propose that, in trigeminal sensory neurons, the CASK/P2X3 complex has a dynamic nature depending on intracellular calcium and related signaling, that are enhanced in a transgenic mouse model of genetic hemiplegic migraine.

  15. Physiological Levels of Pik3ca H1047R Mutation in the Mouse Mammary Gland Results in Ductal Hyperplasia and Formation of ERα-Positive Tumors

    Science.gov (United States)

    Tikoo, Anjali; Roh, Vincent; Montgomery, Karen G.; Ivetac, Ivan; Waring, Paul; Pelzer, Rebecca; Hare, Lauren; Shackleton, Mark; Humbert, Patrick; Phillips, Wayne A.

    2012-01-01

    PIK3CA, the gene coding for the p110α subunit of phosphoinositide 3-kinase, is frequently mutated in a variety of human tumors including breast cancers. To better understand the role of mutant PIK3CA in the initiation and/or progression of breast cancer, we have generated mice with a conditional knock-in of the common activating mutation, Pik3caH1047R, into one allele of the endogenous gene in the mammary gland. These mice developed a ductal anaplasia and hyperplasia by 6 weeks of age characterized by multi-layering of the epithelial lining of the mammary ducts and expansion of the luminal progenitor (Lin−; CD29lo; CD24+; CD61+) cell population. The Pik3caH1047R expressing mice eventually develop mammary tumors with 100% penetrance but with a long latency (>12 months). This is significantly longer than has been reported for transgenic models where expression of the mutant Pik3ca is driven by an exogenous promoter. Histological analysis of the tumors formed revealed predominantly ERα-positive fibroadenomas, carcinosarcomas and sarcomas. In vitro induction of Pik3caH1047R in immortalized mammary epithelial cells also resulted in tumor formation when injected into the mammary fat pad of immunodeficient recipient mice. This novel model, which reproduces the scenario of a heterozygous somatic mutation occurring in the endogenous PIK3CA gene, will thus be a valuable tool for investigating the role of Pik3caH1047R mutation in mammary tumorigenesis both in vivo and in vitro. PMID:22666336

  16. Physiological levels of Pik3ca(H1047R mutation in the mouse mammary gland results in ductal hyperplasia and formation of ERα-positive tumors.

    Directory of Open Access Journals (Sweden)

    Anjali Tikoo

    Full Text Available PIK3CA, the gene coding for the p110α subunit of phosphoinositide 3-kinase, is frequently mutated in a variety of human tumors including breast cancers. To better understand the role of mutant PIK3CA in the initiation and/or progression of breast cancer, we have generated mice with a conditional knock-in of the common activating mutation, Pik3ca(H1047R, into one allele of the endogenous gene in the mammary gland. These mice developed a ductal anaplasia and hyperplasia by 6 weeks of age characterized by multi-layering of the epithelial lining of the mammary ducts and expansion of the luminal progenitor (Lin(-; CD29(lo; CD24(+; CD61(+ cell population. The Pik3ca(H1047R expressing mice eventually develop mammary tumors with 100% penetrance but with a long latency (>12 months. This is significantly longer than has been reported for transgenic models where expression of the mutant Pik3ca is driven by an exogenous promoter. Histological analysis of the tumors formed revealed predominantly ERα-positive fibroadenomas, carcinosarcomas and sarcomas. In vitro induction of Pik3ca(H1047R in immortalized mammary epithelial cells also resulted in tumor formation when injected into the mammary fat pad of immunodeficient recipient mice. This novel model, which reproduces the scenario of a heterozygous somatic mutation occurring in the endogenous PIK3CA gene, will thus be a valuable tool for investigating the role of Pik3ca(H1047R mutation in mammary tumorigenesis both in vivo and in vitro.

  17. A pathogenic S250F missense mutation results in a mouse model of mild aromatic l-amino acid decarboxylase (AADC) deficiency.

    Science.gov (United States)

    Caine, Charlotte; Shohat, Meytal; Kim, Jeong-Ki; Nakanishi, Koki; Homma, Shunichi; Mosharov, Eugene V; Monani, Umrao R

    2017-11-15

    Homozygous mutations in the aromatic l-amino acid decarboxylase (AADC) gene result in a severe depletion of its namesake protein, triggering a debilitating and often fatal form of infantile Parkinsonism known as AADC deficiency. AADC deficient patients fail to produce normal levels of the monoamine neurotransmitters dopamine and serotonin, and suffer a multi-systemic disorder characterized by movement abnormalities, developmental delay and autonomic dysfunction; an absolute loss of dopamine is generally considered incompatible with life. There is no optimal treatment for AADC deficiency and few truly good models in which to investigate disease mechanisms or develop and refine therapeutic strategies. In this study, we introduced a relatively frequently reported but mildly pathogenic S250F missense mutation into the murine Aadc gene. We show that mutants homozygous for the mutation are viable and express a stable but minimally active form of the AADC protein. Although the low enzymatic activity of the protein resulted in only modestly reduced concentrations of brain dopamine, serotonin levels were markedly diminished, and this perturbed behavior as well as autonomic function in mutant mice. Still, we found no evidence of morphologic abnormalities of the dopaminergic cells in mutant brains. The striatum as well as substantia nigra appeared normal and no loss of dopamine expressing cells in the latter was detected. We conclude that even minute levels of active AADC are sufficient to allow for substantial amounts of dopamine to be produced in model mice harboring the S250F mutation. Such mutants represent a novel, mild model of human AADC deficiency. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. The actin regulator coronin-1A is mutated in a thymic egress deficient mouse strain and in a T?B+NK+ SCID patient

    OpenAIRE

    Shiow, Lawrence R.; Roadcap, David W.; Paris, Kenneth; Watson, Susan R.; Grigorova, Irina L.; Lebet, Tonya; An, Jinping; Xu, Ying; Jenne, Craig N.; F?ger, Niko; Sorensen, Ricardo U.; Goodnow, Christopher C.; Bear, James E.; Puck, Jennifer M.; Cyster, Jason G.

    2008-01-01

    Mice carrying the recessive peripheral T cell deficiency (Ptcd) locus have a block in thymic egress but the mechanism responsible is undefined. Here we found that Ptcd T cells have an intrinsic migration defect, impaired lymphoid tissue trafficking and irregularly shaped protrusions. Characterization of the Ptcd locus revealed an E26K point mutation within the actin regulator coronin-1A (Coro1a) that enhanced its inhibition of the actin regulator Arp2/3 and resulted in its mislocalization fro...

  19. Novel inactivating mutations of the DCAF17 gene in American and Turkish families cause male infertility and female subfertility in the mouse model.

    Science.gov (United States)

    Gurbuz, F; Desai, S; Diao, F; Turkkahraman, D; Wranitz, F; Wood-Trageser, M; Shin, Y-H; Kotan, L D; Jiang, H; Witchel, S; Gurtunca, N; Yatsenko, S; Mysliwec, D; Topaloglu, K; Rajkovic, A

    2018-04-01

    Loss-of-function DCAF17 variants cause hypogonadism, partial alopecia, diabetes mellitus, mental retardation, and deafness with variable clinical presentation. DCAF17 pathogenic variants have been largely reported in the Middle Eastern populations, but the incidence in American families is rare and animal models are lacking. Exome sequencing in 5 women with syndromic hypergonadotropic hypogonadism from 2 unrelated families revealed novel pathogenic variants in the DCAF17 gene. DCAF17 exon 2 (c.127-1G > C) novel homozygous variants were discovered in 4 Turkish siblings, while 1 American was compound heterozygous for 1-stop gain variant in exon 5 (c.C535T; p.Gln179*) and previously described stop gain variant in exon 9 (c.G906A; p.Trp302*). A mouse model mimicking loss of function in exon 2 of Dcaf17 was generated using CRISPR/Cas9 and showed female subfertility and male infertility. Our results identify 2 novel variants, and show that Dcaf17 plays a significant role in mammalian gonadal development and infertility. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Functional Analysis of Mouse G6pc1 Mutations Using a Novel In Situ Assay for Glucose-6-Phosphatase Activity and the Effect of Mutations in Conserved Human G6PC1/G6PC2 Amino Acids on G6PC2 Protein Expression.

    Directory of Open Access Journals (Sweden)

    Kayla A Boortz

    Full Text Available Elevated fasting blood glucose (FBG has been associated with increased risk for development of type 2 diabetes. Single nucleotide polymorphisms (SNPs in G6PC2 are the most important common determinants of variations in FBG in humans. Studies using G6pc2 knockout mice suggest that G6pc2 regulates the glucose sensitivity of insulin secretion. G6PC2 and the related G6PC1 and G6PC3 genes encode glucose-6-phosphatase catalytic subunits. This study describes a functional analysis of 22 non-synonymous G6PC2 SNPs, that alter amino acids that are conserved in human G6PC1, mouse G6pc1 and mouse G6pc2, with the goal of identifying variants that potentially affect G6PC2 activity/expression. Published data suggest strong conservation of catalytically important amino acids between all four proteins and the related G6PC3 isoform. Because human G6PC2 has very low glucose-6-phosphatase activity we used an indirect approach, examining the effect of these SNPs on mouse G6pc1 activity. Using a novel in situ functional assay for glucose-6-phosphatase activity we demonstrate that the amino acid changes associated with the human G6PC2 rs144254880 (Arg79Gln, rs149663725 (Gly114Arg and rs2232326 (Ser324Pro SNPs reduce mouse G6pc1 enzyme activity without affecting protein expression. The Arg79Gln variant alters an amino acid mutation of which, in G6PC1, has previously been shown to cause glycogen storage disease type 1a. We also demonstrate that the rs368382511 (Gly8Glu, rs138726309 (His177Tyr, rs2232323 (Tyr207Ser rs374055555 (Arg293Trp, rs2232326 (Ser324Pro, rs137857125 (Pro313Leu and rs2232327 (Pro340Leu SNPs confer decreased G6PC2 protein expression. In summary, these studies identify multiple G6PC2 variants that have the potential to be associated with altered FBG in humans.

  1. Capsid Mutated Adeno-Associated Virus Delivered to the Anterior Chamber Results in Efficient Transduction of Trabecular Meshwork in Mouse and Rat.

    Directory of Open Access Journals (Sweden)

    Barbara Bogner

    Full Text Available Adeno associated virus (AAV is well known for its ability to deliver transgenes to retina and to mediate improvements in animal models and patients with inherited retinal disease. Although the field is less advanced, there is growing interest in AAV's ability to target cells of the anterior segment. The purpose of our study was to fully articulate a reliable and reproducible method for injecting the anterior chamber (AC of mice and rats and to investigate the transduction profiles of AAV2- and AAV8-based capsid mutants containing self-complementary (sc genomes in the anterior segment of the eye.AC injections were performed in C57BL/6 mice and Sprague Dawley rats. The cornea was punctured anterior of the iridocorneal angle. To seal the puncture site and to prevent reflux an air bubble was created in the AC. scAAVs expressing GFP were injected and transduction was evaluated by immunohistochemistry. Both parent serotype and capsid modifications affected expression. scAAV2- based vectors mediated efficient GFP-signal in the corneal endothelium, ciliary non-pigmented epithelium (NPE, iris and chamber angle including trabecular meshwork, with scAAV2(Y444F and scAAV2(triple being the most efficient.This is the first study to semi quantitatively evaluate transduction of anterior segment tissues following injection of capsid-mutated AAV vectors. scAAV2- based vectors transduced corneal endothelium, ciliary NPE, iris and trabecular meshwork more effectively than scAAV8-based vectors. Mutagenesis of surface-exposed tyrosine residues greatly enhanced transduction efficiency of scAAV2 in these tissues. The number of Y-F mutations was not directly proportional to transduction efficiency, however, suggesting that proteosomal avoidance alone may not be sufficient. These results are applicable to the development of targeted, gene-based strategies to investigate pathological processes of the anterior segment and may be applied toward the development of gene

  2. Role of wild-type p53 in apoptotic and non-apoptotic cell death induced by X-irradiation and heat treatment in p53-mutated mouse M10 cells

    International Nuclear Information System (INIS)

    Ito, Atsushi; Nakano, Hisako; Shinohara, Kunio

    2010-01-01

    The sensitizing effects of wild-type p53 on X-ray-induced cell death and on heat-induced apoptosis in M10, a radiosensitive and Trp53 (mouse p53 gene)-mutated lymphoma cell line which dies through necrosis by X-irradiation, were investigated using three M10 derived transfectants with wild-type TP53 (human p53 gene). Cell death was determined by colony formation and/or dye exclusion test, and apoptosis was detected as the changes in nuclear morphology by Giemsa staining. Expression of wild-type p53 protein increased radiosensitivity of cell death as determined by both clonogenic and dye exclusion assays. This increase in radiosensitivity was attributable largely to apoptosis induction in addition to a small enhancement of necrosis. Interestingly neither pathway to cell death was accompanied by caspase-3 activation. On the other hand, heat-induced caspase-3 dependent apoptotic cell death without transfection was further increased by the transfection of wild-type p53. In conclusion, the introduction of wild-type p53 enhanced apoptotic cell death by X-rays or heat via different mechanisms that do or do not activate caspase-3, respectively. In addition, p53 also enhanced the X-ray-induced necrosis in M10 cells. (author)

  3. Molecular analysis of the mouse agouti gene and the role of dominant agouti-locus mutations in obesity and insulin resistance

    Energy Technology Data Exchange (ETDEWEB)

    Klebig, M.L.; Woychik, R.P. [Oak Ridge National Lab., TN (United States); Wilkinson, J.E. [Univ. of Tennessee, Knoxville, TN (United States)

    1994-09-01

    The lethal yellow (A{sup y/-}) and viable yellow (A{sup vy/-}) mouse agouti mutants have a predominantly yellow pelage and display a complex syndrome that includes obesity, hyperinsulinemia, and insulin resistance, hallmark features of obesity-associated noninsulin-dependent diabetes mellitus (NIDDM) in humans. A new dominant agouti allele, A{sup iapy}, has recently been identified; like the A{sup vy} allele, it is homozygous viable and confers obesity and yellow fur in heterozygotes. The agouti gene was cloned and characterized at the molecular level. The gene is expressed in the skin during hair growth and is predicted to encode a 131 amino acid protein, that is likely to be a secreted factor. In both Ay/- and A{sup iapy}/- mice, the obesity and other dominant pleiotropic effects are associated with an ectopic expression of agouti in many tissues where the gene product is normally not produced. In Ay, a 170-kb deletion has occurred that causes an upstream promoter to drive the ectopic expression of the wild-type agouti coding exons. In A{sup iapy}, the coding region of the gene is expressed from a cryptic promoter within the LTR of an intracisternal A-particle (IAP), which has integrated within the region just upstream of the first agouti coding exon. Transgenic mice ubiquitously expressing the cloned agouti gene under the influence of the beta-actin and phosphoglycerate kinase promoters display obesity, hyperinsulinemia, and yellow coat color. This demonstrates unequivocally that ectopic expression of agouti is responsible for the yellow obese syndrome.

  4. The radioprotector WR-2721 reduces neutron-induced mutations at the hypoxanthine-guanine phosphoribosyl transferase locus in mouse splenocytes when administered prior to or following irradiation

    International Nuclear Information System (INIS)

    Grdina, D.J.; Basic, I.

    1992-01-01

    An in vitro T-lymphocyte cloning technique has been applied to study the effects of JANUS fission-spectrum neutron irradiation and the radioprotector S-2-(3-aminopropylamino) ethylphosphorothioic acid (WR-2721) on the subsequent development of somatic mutations at the hypoxanthine-guanine phosphoribosyl transferase (hprt) locus in hybrid B6CF1 male mice. In control studies performed to establish an in vitro cloning technique, the mutant frequencies of splenic T-lymphocytes, as a result of exposure to a 100 cGy dose of neutrons, increased with time from a control level of 9 x 10 -7 to a maximum value of 1.7 x 10 -5 at 56 days following irradiation. Between 56 and 150 days after irradiation, mutant frequencies were observed to plateau and remain stable. All subsequent determinations were performed at 56 days following the experimental treatment of animals. WR-2721 at a dose of 400 mg/kg was effective in protecting against the induction of hprt mutants (i.e. a mutant frequency reduction factor, MFRF) following the largest dose of neutrons used (i.e. 150 cGy). The antimutagenic effectiveness of WR-2721 administered 30 min prior to irradiation was unaffected, even when the dose was reduced to 200 mg/kg. These findings confirm our earlier report using the radioprotector N-(2-mercaptoethyl)-1,2-diaminopropane (WR-1065) under in vitro conditions, and demonstrate that these agents can be used as effective antimutagens even when they are administered up to 3 h following radiation exposure. (Author)

  5. Expression of alpha and beta subunit isoforms of Na,K-ATPase in the mouse inner ear and changes with mutations at the Wv or Sld loci.

    Science.gov (United States)

    Schulte, B A; Steel, K P

    1994-07-01

    Mice homozygous for mutations at the viable dominant spotting (Wv) and Steel-dickie (Sld) loci exhibit a similar phenotype which includes deafness. The auditory dysfunction derives from failure of the stria vascularis to develop normally and to generate a high positive endocochlear potential (EP). Because strial function is driven by Na,K-ATPase its expression was investigated in inner ears of Wv/Wv and Sld/Sld mice and their wild-type littermates by immunostaining with antisera against four of the enzyme's subunit isoforms. Wild-type mice from two different genetic backgrounds showed an identical distribution of subunit isoforms among inner ear transport cells. Several epithelial cell types coexpressed the alpha 1 and beta 1 subunits. Vestibular dark cells showed no reactivity for beta 1 but expressed abundant beta 2, whereas, strial marginal cells stained strongly for both beta isoforms. The only qualitative difference between mutant and wild-type mice was the absence of beta 1 subunit in marginal cells of the mutant's stria. However, it is unlikely that this difference accounts for failure of mutants to generate a high EP because the beta 1 subunit is not present in the stria vascularis of either rats or gerbils with normal EP values. Strong immunostaining for Na,K-ATPase in lateral wall fibrocytes of normal mice along with diminished immunoreactivity in the mutants supports the concept that these strategically located transport fibrocytes actively resorb K+ leaked across Reissner's membrane into scala vestibuli or effluxed from hair cells and nerves into scala tympani. It is further speculated that the resorbed K+ normally is siphoned down its concentration gradient into the intrastrial space through gap junctions between fibrocytes and strial basal and intermediate cells where it is recycled back to endolymph via marginal cells. Thus, failure of mutants to generate a positive EP could be explained by the absence of intermediate cells which may form the final

  6. Utrophin Compensates dystrophin Loss during Mouse Spermatogenesis

    OpenAIRE

    Chen, Hung-Chih; Chin, Yu-Feng; Lundy, David J.; Liang, Chung-Tiang; Chi, Ya-Hui; Kuo, Paolin; Hsieh, Patrick C. H.

    2017-01-01

    Duchenne muscular dystrophy (DMD) is an X-linked genetic disorder resulting from mutations in the dystrophin gene. The mdx/utrn ?/? mouse, lacking in both dystrophin and its autosomal homologue utrophin, is commonly used to model the clinical symptoms of DMD. Interestingly, these mice are infertile but the mechanisms underlying this phenomenon remain unclear. Using dystrophin deficient mdx mouse and utrophin haplodeficient mdx/utrn +/? mouse models, we demonstrate the contribution of Dp427 (f...

  7. Mouse models of Fanconi anemia

    International Nuclear Information System (INIS)

    Parmar, Kalindi; D'Andrea, Alan; Niedernhofer, Laura J.

    2009-01-01

    Fanconi anemia is a rare inherited disease characterized by congenital anomalies, growth retardation, aplastic anemia and an increased risk of acute myeloid leukemia and squamous cell carcinomas. The disease is caused by mutation in genes encoding proteins required for the Fanconi anemia pathway, a response mechanism to replicative stress, including that caused by genotoxins that cause DNA interstrand crosslinks. Defects in the Fanconi anemia pathway lead to genomic instability and apoptosis of proliferating cells. To date, 13 complementation groups of Fanconi anemia were identified. Five of these genes have been deleted or mutated in the mouse, as well as a sixth key regulatory gene, to create mouse models of Fanconi anemia. This review summarizes the phenotype of each of the Fanconi anemia mouse models and highlights how genetic and interventional studies using the strains have yielded novel insight into therapeutic strategies for Fanconi anemia and into how the Fanconi anemia pathway protects against genomic instability.

  8. Mouse models of Fanconi anemia

    Energy Technology Data Exchange (ETDEWEB)

    Parmar, Kalindi; D' Andrea, Alan [Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston, MA 02115 (United States); Niedernhofer, Laura J., E-mail: niedernhoferl@upmc.edu [Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine and Cancer Institute, 5117 Centre Avenue, Hillman Cancer Center, Research Pavilion 2.6, Pittsburgh, PA 15213-1863 (United States)

    2009-07-31

    Fanconi anemia is a rare inherited disease characterized by congenital anomalies, growth retardation, aplastic anemia and an increased risk of acute myeloid leukemia and squamous cell carcinomas. The disease is caused by mutation in genes encoding proteins required for the Fanconi anemia pathway, a response mechanism to replicative stress, including that caused by genotoxins that cause DNA interstrand crosslinks. Defects in the Fanconi anemia pathway lead to genomic instability and apoptosis of proliferating cells. To date, 13 complementation groups of Fanconi anemia were identified. Five of these genes have been deleted or mutated in the mouse, as well as a sixth key regulatory gene, to create mouse models of Fanconi anemia. This review summarizes the phenotype of each of the Fanconi anemia mouse models and highlights how genetic and interventional studies using the strains have yielded novel insight into therapeutic strategies for Fanconi anemia and into how the Fanconi anemia pathway protects against genomic instability.

  9. Mutations Inactivating Herpes Simplex Virus 1 MicroRNA miR-H2 Do Not Detectably Increase ICP0 Gene Expression in Infected Cultured Cells or Mouse Trigeminal Ganglia.

    Science.gov (United States)

    Pan, Dongli; Pesola, Jean M; Li, Gang; McCarron, Seamus; Coen, Donald M

    2017-01-15

    Herpes simplex virus 1 (HSV-1) latency entails the repression of productive ("lytic") gene expression. An attractive hypothesis to explain some of this repression involves inhibition of the expression of ICP0, a lytic gene activator, by a viral microRNA, miR-H2, which is completely complementary to ICP0 mRNA. To test this hypothesis, we engineered mutations that disrupt miR-H2 without affecting ICP0 in HSV-1. The mutant virus exhibited drastically reduced expression of miR-H2 but showed wild-type levels of infectious virus production and no increase in ICP0 expression in lytically infected cells, which is consistent with the weak expression of miR-H2 relative to the level of ICP0 mRNA in that setting. Following corneal inoculation of mice, the mutant was not significantly different from wild-type virus in terms of infectious virus production in the trigeminal ganglia during acute infection, mouse mortality, or the rate of reactivation from explanted latently infected ganglia. Critically, the mutant was indistinguishable from wild-type virus for the expression of ICP0 and other lytic genes in acutely and latently infected mouse trigeminal ganglia. The latter result may be related to miR-H2 being less effective in inhibiting ICP0 expression in transfection assays than a host microRNA, miR-138, which has previously been shown to inhibit lytic gene expression in infected ganglia by targeting ICP0 mRNA. Additionally, transfected miR-138 reduced lytic gene expression in infected cells more effectively than miR-H2. While this study provides little support for the hypothesis that miR-H2 promotes latency by inhibiting ICP0 expression, the possibility remains that miR-H2 might target other genes during latency. Herpes simplex virus 1 (HSV-1), which causes a variety of diseases, can establish lifelong latent infections from which virus can reactivate to cause recurrent disease. Latency is the most biologically interesting and clinically vexing feature of the virus. Ever since

  10. Mouse adhalin

    DEFF Research Database (Denmark)

    Liu, L; Vachon, P H; Kuang, W

    1997-01-01

    . To analyze the biological roles of adhalin, we cloned the mouse adhalin cDNA, raised peptide-specific antibodies to its cytoplasmic domain, and examined its expression and localization in vivo and in vitro. The mouse adhalin sequence was 80% identical to that of human, rabbit, and hamster. Adhalin...... was specifically expressed in striated muscle cells and their immediate precursors, and absent in many other cell types. Adhalin expression in embryonic mouse muscle was coincident with primary myogenesis. Its expression was found to be up-regulated at mRNA and protein levels during myogenic differentiation...

  11. Mutations induced by ultraviolet light

    International Nuclear Information System (INIS)

    Pfeifer, Gerd P.; You, Young-Hyun; Besaratinia, Ahmad

    2005-01-01

    The different ultraviolet (UV) wavelength components, UVA (320-400 nm), UVB (280-320 nm), and UVC (200-280 nm), have distinct mutagenic properties. A hallmark of UVC and UVB mutagenesis is the high frequency of transition mutations at dipyrimidine sequences containing cytosine. In human skin cancers, about 35% of all mutations in the p53 gene are transitions at dipyrimidines within the sequence 5'-TCG and 5'-CCG, and these are localized at several mutational hotspots. Since 5'-CG sequences are methylated along the p53 coding sequence in human cells, these mutations may be derived from sunlight-induced pyrimidine dimers forming at sequences that contain 5-methylcytosine. Cyclobutane pyrimidine dimers (CPDs) form preferentially at dipyrimidines containing 5-methylcytosine when cells are irradiated with UVB or sunlight. In order to define the contribution of 5-methylcytosine to sunlight-induced mutations, the lacI and cII transgenes in mouse fibroblasts were used as mutational targets. After 254 nm UVC irradiation, only 6-9% of the base substitutions were at dipyrimidines containing 5-methylcytosine. However, 24-32% of the solar light-induced mutations were at dipyrimidines that contain 5-methylcytosine and most of these mutations were transitions. Thus, CPDs forming preferentially at dipyrimidines with 5-methylcytosine are responsible for a considerable fraction of the mutations induced by sunlight in mammalian cells. Using mouse cell lines harboring photoproduct-specific photolyases and mutational reporter genes, we showed that CPDs (rather than 6-4 photoproducts or other lesions) are responsible for the great majority of UVB-induced mutations. An important component of UVB mutagenesis is the deamination of cytosine and 5-methylcytosine within CPDs. The mutational specificity of long-wave UVA (340-400 nm) is distinct from that of the shorter wavelength UV and is characterized mainly by G to T transversions presumably arising through mechanisms involving oxidized DNA

  12. Radiation-induced mutations in mammals

    International Nuclear Information System (INIS)

    Ehling, U.H.

    1993-01-01

    The aims of the proposed project are to provide a better basis for extrapolation of animal data to man. Genetic endpoint, strain and species comparisons are made, which will provide critical experimental data regarding strategies in extrapolating laboratory animal data to man. Experiments were conducted to systematically compare the spontaneous and radiation-induced mutation rates for recessive specific-locus, dominant cataract and enzyme activity alleles in the mouse as well as a comparison of the mutation rate in the mouse and hamster for dominant cataract and enzyme activity alleles. The comparison of the radiation-dose response for recessive specific-locus and dominant cataract mutations are extended. Selected mutations are characterized at the genetic, biochemical and molecular levels. (R.P.) 5 refs., 3 tabs

  13. Mutation in cultured mammalian cells

    International Nuclear Information System (INIS)

    Nakamura, N.; Okada, S.

    1982-01-01

    Mammalian cell cultures were exposed to gamma-rays at various dose rates. Dose-rate effects were observed in cultured somatic cells of the mouse for cell killing and mutations resistant to 6-thioguanine (TGsup(r)) and to methotrexate (MTXsup(r)). Linear quadratic model may be applied to cell killing and TGsup(r) mutations in some cases but can not explain the whole data. Results at low doses with far low dose-rate were not predictable from data at high doses with acute or chronic irradiation. Radioprotective effects of dimethyl sulfoxide were seen only after acute exposure but not after chronic one, suggesting that damages by indirect action of radiations may be potentially reparable by cells. TGsup(r) mutations seem to contain gross structural changes whereas MTXsup(r) ones may have smaller alterations. (Namekawa, K.)

  14. Tissue-specific expression of the human laminin alpha5-chain, and mapping of the gene to human chromosome 20q13.2-13.3 and to distal mouse chromosome 2 near the locus for the ragged (Ra) mutation

    DEFF Research Database (Denmark)

    Durkin, M E; Loechel, F; Mattei, M G

    1997-01-01

    , heart, lung, skeletal muscle, kidney, and pancreas. The human laminin alpha5-chain gene (LAMA5) was assigned to chromosome 20q13.2-q13.3 by in situ hybridization, and the mouse gene (Lama5) was mapped by linkage analysis to a syntonic region of distal chromosome 2, close to the locus for the ragged (Ra...

  15. Breeding a PKU-mouse model on Phe-free diet, is it possible?

    DEFF Research Database (Denmark)

    Dagnæs-Hansen, Frederik; Johansen, Karen Singers; Vorup-Jensen, Thomas

    2014-01-01

    The PKU-mouse model mutated in the PAH gene was developed in the 1990s in the laboratory of Dr. Alexandra Shedlovsky at the McArdle Laboratory for Cancer Research, University of Wisconsin. The mutation was generated by ENU (N-ethyl-N-nitrosourea) treatment of BTBR males. Several mutation was found...

  16. The Mouse Genome Database (MGD): facilitating mouse as a model for human biology and disease.

    Science.gov (United States)

    Eppig, Janan T; Blake, Judith A; Bult, Carol J; Kadin, James A; Richardson, Joel E

    2015-01-01

    The Mouse Genome Database (MGD, http://www.informatics.jax.org) serves the international biomedical research community as the central resource for integrated genomic, genetic and biological data on the laboratory mouse. To facilitate use of mouse as a model in translational studies, MGD maintains a core of high-quality curated data and integrates experimentally and computationally generated data sets. MGD maintains a unified catalog of genes and genome features, including functional RNAs, QTL and phenotypic loci. MGD curates and provides functional and phenotype annotations for mouse genes using the Gene Ontology and Mammalian Phenotype Ontology. MGD integrates phenotype data and associates mouse genotypes to human diseases, providing critical mouse-human relationships and access to repositories holding mouse models. MGD is the authoritative source of nomenclature for genes, genome features, alleles and strains following guidelines of the International Committee on Standardized Genetic Nomenclature for Mice. A new addition to MGD, the Human-Mouse: Disease Connection, allows users to explore gene-phenotype-disease relationships between human and mouse. MGD has also updated search paradigms for phenotypic allele attributes, incorporated incidental mutation data, added a module for display and exploration of genes and microRNA interactions and adopted the JBrowse genome browser. MGD resources are freely available to the scientific community. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. TFAP2B mutation and dental anomalies.

    Science.gov (United States)

    Tanasubsinn, Natchaya; Sittiwangkul, Rekwan; Pongprot, Yupada; Kawasaki, Katsushige; Ohazama, Atsushi; Sastraruji, Thanapat; Kaewgahya, Massupa; Kantaputra, Piranit Nik

    2017-08-01

    Mutations inTFAP2B has been reported in patients with isolated patent ductus arteriosus (PDA) and Char syndrome. We performed mutation analysis of TFAP2B in 43 patients with isolated PDA, 7 patients with PDA with other congenital heart defects and 286 patients with isolated tooth agenesis with or without other dental anomalies. The heterozygous c.1006G>A mutation was identified in 20 individuals. Those mutation carriers consisted of 1 patient with term PDA (1/43), 16 patients with isolated tooth agenesis with or without other dental anomalies (16/286; 5.6%), 1 patient with PDA and severe valvular aortic stenosis and tooth agenesis (1/4) and 2 normal controls (2/100; 1%). The mutation is predicted to cause an amino-acid substitution p.Val336Ile in the TFAP2B protein. Tfap2b expression during early mouse tooth development supports the association of TFAP2B mutation and dental anomalies. It is hypothesized that this incidence might have been the result of founder effect. Here we report for the first time that TFAP2B mutation is associated with tooth agenesis, microdontia, supernumerary tooth and root maldevelopment. In addition, we also found that TFAP2B mutations, the common causes of PDA in Caucasian, are not the common cause of PDA in Thai population.

  18. Behavioral phenotypes of genetic mouse models of autism.

    Science.gov (United States)

    Kazdoba, T M; Leach, P T; Crawley, J N

    2016-01-01

    More than a hundred de novo single gene mutations and copy-number variants have been implicated in autism, each occurring in a small subset of cases. Mutant mouse models with syntenic mutations offer research tools to gain an understanding of the role of each gene in modulating biological and behavioral phenotypes relevant to autism. Knockout, knockin and transgenic mice incorporating risk gene mutations detected in autism spectrum disorder and comorbid neurodevelopmental disorders are now widely available. At present, autism spectrum disorder is diagnosed solely by behavioral criteria. We developed a constellation of mouse behavioral assays designed to maximize face validity to the types of social deficits and repetitive behaviors that are central to an autism diagnosis. Mouse behavioral assays for associated symptoms of autism, which include cognitive inflexibility, anxiety, hyperactivity, and unusual reactivity to sensory stimuli, are frequently included in the phenotypic analyses. Over the past 10 years, we and many other laboratories around the world have employed these and additional behavioral tests to phenotype a large number of mutant mouse models of autism. In this review, we highlight mouse models with mutations in genes that have been identified as risk genes for autism, which work through synaptic mechanisms and through the mTOR signaling pathway. Robust, replicated autism-relevant behavioral outcomes in a genetic mouse model lend credence to a causal role for specific gene contributions and downstream biological mechanisms in the etiology of autism. © 2015 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  19. A report from the Sixth International Mouse Genome Conference

    Energy Technology Data Exchange (ETDEWEB)

    Brown, S. [Saint Mary`s Hospital Medical School, London (United Kingdom). Dept. of Biochemistry and Molecular Genetics

    1992-12-31

    The Sixth Annual Mouse Genome Conference was held in October, 1992 at Buffalo, USA. The mouse is one of the primary model organisms in the Human Genome Project. Through the use of gene targeting studies the mouse has become a powerful biological model for the study of gene function and, in addition, the comparison of the many homologous mutations identified in human and mouse have widened our understanding of the biology of these two organisms. A primary goal in the mouse genome program has been to create a genetic map of STSs of high resolution (<1cM) that would form the basis for the physical mapping of the whole mouse genome. Buffalo saw substantial new progress towards the goal of a very high density genetic map and the beginnings of substantive efforts towards physical mapping in chromosome regions with a high density of genetic markers.

  20. Mutations of the SRY-responsive enhancer of SOX9 are uncommon in XY gonadal dysgenesis.

    Science.gov (United States)

    Georg, I; Bagheri-Fam, S; Knower, K C; Wieacker, P; Scherer, Gerd; Harley, V R

    2010-01-01

    During mouse sex determination, SRY upregulates the core testis-specific enhancer of Sox9, TESCO. Mutations in human SRY are found in one third of cases with XY pure gonadal dysgenesis (XY GD; Swyer syndrome), while two thirds remain unexplained. Heterozygous SOX9 mutations can cause XY GD in association with the skeletal malformation syndrome campomelic dysplasia. We hypothesized that human TESCO mutations could cause isolated XY GD. Sixty-six XY GD cases with an intact SRY were analyzed for TESCO point mutations or deletions. No mutations were identified. We conclude that TESCO mutations are not a common cause of XY GD. Copyright © 2010 S. Karger AG, Basel.

  1. Glucocorticoid Steroid and Alendronate Treatment Alleviates Dystrophic Phenotype with Enhanced Functional Glycosylation of α-Dystroglycan in Mouse Model of Limb-Girdle Muscular Dystrophy with FKRPP448L Mutation.

    Science.gov (United States)

    Wu, Bo; Shah, Sapana N; Lu, Peijuan; Richardson, Stephanie M; Bollinger, Lauren E; Blaeser, Anthony; Madden, Kyle L; Sun, Yubo; Luckie, Taylor M; Cox, Michael D; Sparks, Susan; Harper, Amy D; Lu, Qi Long

    2016-06-01

    Fukutin-related protein-muscular dystrophy is characterized by defects in glycosylation of α-dystroglycan with variable clinical phenotypes, most commonly as limb-girdle muscular dystrophy 2I. There is no effective therapy available. Glucocorticoid steroids have become the standard treatment for Duchenne and other muscular dystrophies with serious adverse effects, including excessive weight gain, immune suppression, and bone loss. Bisphosphonates have been used to treat Duchenne muscular dystrophy for prevention of osteoporosis. Herein, we evaluated prednisolone and alendronate for their therapeutic potential in the FKRPP448L-mutant mouse representing moderate limb-girdle muscular dystrophy 2I. Mice were treated with prednisolone, alendronate, and both in combination for up to 6 months. Prednisolone improved muscle pathology with significant reduction in muscle degeneration, but had no effect on serum creatine kinase levels and muscle strength. Alendronate treatment did not ameliorate muscle degeneration, but demonstrated a limited enhancement on muscle function test. Combined treatment of prednisolone and alendronate provided best improvement in muscle pathology with normalized fiber size distribution and significantly reduced serum creatine kinase levels, but had limited effect on muscle force generation. The use of alendronate significantly mitigated the bone loss. Prednisolone alone and in combination with alendronate enhance functionally glycosylated α-dystroglycan. These results, for the first time, demonstrate the efficacy and feasibility of this alliance treatment of the two drugs for fukutin-related protein-muscular dystrophy. Copyright © 2016 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  2. Mouse Chromosome Engineering for Modeling Human Disease

    OpenAIRE

    van der Weyden, Louise; Bradley, Allan

    2006-01-01

    Chromosomal rearrangements occur frequently in humans and can be disease-associated or phenotypically neutral. Recent technological advances have led to the discovery of copy-number changes previously undetected by cytogenetic techniques. To understand the genetic consequences of such genomic changes, these mutations need to be modeled in experimentally tractable systems. The mouse is an excellent organism for this analysis because of its biological and genetic similarity to humans, and the e...

  3. Role of Mitochondrial DNA Mutations in Cellular Vulnerability to Mitochondria-Specific Environmental Toxins

    National Research Council Canada - National Science Library

    Hirsch, Etienne C

    2005-01-01

    .... To test such a hypothesis in Parkinson's disease we proposed to: 1) develop an animal model with accumulated mtDNA mutations in catecholaminergic neurons by creating a transgenic mouse containing a tyrosine hydroxylase (TH...

  4. Analysis of time of death of prenatally lethal Steeloid mutations

    International Nuclear Information System (INIS)

    Rinchik, E.M.; Cummings, C.C.; Bangham, J.W.; Hunsicker, P.R.; Phipps, E.L.; Stelzner, K.F.

    1987-01-01

    Deletion mutations have been extremely useful in initiating the functional and molecular dissections of regions of the mouse genome. For the d-se and c regions, for example, it was observed that radiation mutations carrying lethal factors separable, by complementation analysis, from the primary d, se, or c mutation itself, could often be associated at both the genetic and molecular levels with multilocus chromosomal deletions. Since many of the Oak Ridge Sld mutations arose in radiation mutagenesis experiments, a substantial number may carry chromosomal deletions that involve the Sl locus in chromosome 10. Because of the great value of deletion mutations for the genetic and molecular analysis of chromosomal regions and complex genetic loci, they have initiated a series of experiments designed to test whether radiation-induced Sld mutations carry other lethal factors, in addition to the lethality caused by severe alleles of the Sl locus itself, as one prescreen for identifying Sld's that are caused by deletions

  5. Skeletal muscle repair in a mouse model of nemaline myopathy

    OpenAIRE

    Sanoudou, Despina; Corbett, Mark A.; Han, Mei; Ghoddusi, Majid; Nguyen, Mai-Anh T.; Vlahovich, Nicole; Hardeman, Edna C.; Beggs, Alan H.

    2006-01-01

    Nemaline myopathy (NM), the most common non-dystrophic congenital myopathy, is a variably severe neuromuscular disorder for which no effective treatment is available. Although a number of genes have been identified in which mutations can cause NM, the pathogenetic mechanisms leading to the phenotypes are poorly understood. To address this question, we examined gene expression patterns in an NM mouse model carrying the human Met9Arg mutation of alpha-tropomyosin slow (Tpm3). We assessed five d...

  6. Centralized mouse repositories.

    Science.gov (United States)

    Donahue, Leah Rae; Hrabe de Angelis, Martin; Hagn, Michael; Franklin, Craig; Lloyd, K C Kent; Magnuson, Terry; McKerlie, Colin; Nakagata, Naomi; Obata, Yuichi; Read, Stuart; Wurst, Wolfgang; Hörlein, Andreas; Davisson, Muriel T

    2012-10-01

    Because the mouse is used so widely for biomedical research and the number of mouse models being generated is increasing rapidly, centralized repositories are essential if the valuable mouse strains and models that have been developed are to be securely preserved and fully exploited. Ensuring the ongoing availability of these mouse strains preserves the investment made in creating and characterizing them and creates a global resource of enormous value. The establishment of centralized mouse repositories around the world for distributing and archiving these resources has provided critical access to and preservation of these strains. This article describes the common and specialized activities provided by major mouse repositories around the world.

  7. Mouse models of long QT syndrome

    Science.gov (United States)

    Salama, Guy; London, Barry

    2007-01-01

    Congenital long QT syndrome is a rare inherited condition characterized by prolongation of action potential duration (APD) in cardiac myocytes, prolongation of the QT interval on the surface electrocardiogram (ECG), and an increased risk of syncope and sudden death due to ventricular tachyarrhythmias. Mutations of cardiac ion channel genes that affect repolarization cause the majority of the congenital cases. Despite detailed characterizations of the mutated ion channels at the molecular level, a complete understanding of the mechanisms by which individual mutations may lead to arrhythmias and sudden death requires study of the intact heart and its modulation by the autonomic nervous system. Here, we will review studies of molecularly engineered mice with mutations in the genes (a) known to cause long QT syndrome in humans and (b) specific to cardiac repolarization in the mouse. Our goal is to provide the reader with a comprehensive overview of mouse models with long QT syndrome and to emphasize the advantages and limitations of these models. PMID:17038432

  8. Mutation frequencies in female mice and the estimation of genetic hazards of radiation in women

    International Nuclear Information System (INIS)

    Russell, W.L.

    1977-01-01

    The female germ cell stage of primary importance in radiation genetic hazards is the immature, arrested oocyte. In the mouse, this stage has a near zero or zero sensitivity to mutation induction by radiation. However, the application of these mouse results to women has been questioned on the ground that the mouse arrested oocytes are highly sensitive to killing by radiation, while the human cells are not; and, furthermore, that the mature and maturing oocytes in the mouse, which are resistant to killing, are sensitive to mutation induction. The present results have a 2-fold bearing on this problem. First, a more detailed analysis of oocyte-stage sensitivity to killing and mutation induction shows that there is no consistent correlation, either negative or positive, between the two. This indicates that the sensitivity to cell killing of the mouse immature oocyte may not be sufficient reason to prevent its use in predicting the mutational response of the human immature oocyte. Second, if the much more cautious assumption is made that the human arrested oocyte might be as mutationally sensitive as the most sensitive of all oocyte stages in the mouse, namely the maturing and mature ones, then the present data on the duration of these stages permit more accurate estimates than were heretofore possible on the mutational response of these stages to chronic irradiation

  9. Depressed Frank-Starling mechanism in the left ventricular muscle of the knock-in mouse model of dilated cardiomyopathy with troponin T deletion mutation ΔK210.

    Science.gov (United States)

    Inoue, Takahiro; Kobirumaki-Shimozawa, Fuyu; Kagemoto, Tatsuya; Fujii, Teruyuki; Terui, Takako; Kusakari, Yoichiro; Hongo, Kenichi; Morimoto, Sachio; Ohtsuki, Iwao; Hashimoto, Kazuhiro; Fukuda, Norio

    2013-10-01

    It has been reported that the Frank-Starling mechanism is coordinately regulated in cardiac muscle via thin filament "on-off" equilibrium and titin-based lattice spacing changes. In the present study, we tested the hypothesis that the deletion mutation ΔK210 in the cardiac troponin T gene shifts the equilibrium toward the "off" state and accordingly attenuate the sarcomere length (SL) dependence of active force production, via reduced cross-bridge formation. Confocal imaging in isolated hearts revealed that the cardiomyocytes were enlarged, especially in the longitudinal direction, in ΔK210 hearts, with striation patterns similar to those in wild type (WT) hearts, suggesting that the number of sarcomeres is increased in cardiomyocytes but the sarcomere length remains unaltered. For analysis of the SL dependence of active force, skinned muscle preparations were obtained from the left ventricle of WT and knock-in (ΔK210) mice. An increase in SL from 1.90 to 2.20μm shifted the mid-point (pCa50) of the force-pCa curve leftward by ~0.21pCa units in WT preparations. In ΔK210 muscles, Ca(2+) sensitivity was lower by ~0.37pCa units, and the SL-dependent shift of pCa50, i.e., ΔpCa50, was less pronounced (~0.11pCa units), with and without protein kinase A treatment. The rate of active force redevelopment was lower in ΔK210 preparations than in WT preparations, showing blunted thin filament cooperative activation. An increase in thin filament cooperative activation upon an increase in the fraction of strongly bound cross-bridges by MgADP increased ΔpCa50 to ~0.21pCa units. The depressed Frank-Starling mechanism in ΔK210 hearts is the result of a reduction in thin filament cooperative activation. © 2013.

  10. Quantitative changes in endogenous DNA adducts correlate with conazole mutagenicity and tumorigenicity in mouse liver.**

    Science.gov (United States)

    We have previously shown that the conazole fungicides triadimefon and propiconazole, which are tumorigenic in mouse liver, are in vivo mouse liver mutagens in the Big Blue" transgenic mutation assay when administered in feed at tumorigenic doses. The nontumorigenic conazole myclo...

  11. Quantitative changes in endogenous DNA adducts correlate with conazole mutagenicity and tumorigenicity in mouse liver.

    Science.gov (United States)

    We have previously shown that the conazole fungicides triadimefon and propiconazole, which are tumorigenic in mouse liver, are in vivo mouse liver mutagens in the Big Blue" transgenic mutation assay when administered in feed at tumorigenic doses. The nontumorigenic conazole myclo...

  12. Mutated N-ras does not induce p19 arf in CO25 cell line | Saleh ...

    African Journals Online (AJOL)

    The mouse cell line (CO25) used in this study was transfected with a glucocorticoid inducible mutated human N-ras oncogene under transcriptional control of the steroid-sensitive promoter of the mouse mammary tumors virus long terminal repeat MMTV-LTR. This study was aimed to investigate the expression of p19arf and ...

  13. BAG3 Directly Interacts with Mutated alphaB-Crystallin to Suppress Its Aggregation and Toxicity

    NARCIS (Netherlands)

    Hishiya, Akinori; Salman, Mortada Najem; Carra, Serena; Kampinga, Harm H.; Takayama, Shinichi

    2011-01-01

    A homozygous disruption or genetic mutation of the bag3 gene causes progressive myofibrillar myopathy in mouse and human skeletal and cardiac muscle disorder while mutations in the small heat shock protein aB-crystallin gene ( CRYAB) are reported to be responsible for myofibrillar myopathy. Here, we

  14. Mouse SNP Miner: an annotated database of mouse functional single nucleotide polymorphisms

    Directory of Open Access Journals (Sweden)

    Ramensky Vasily E

    2007-01-01

    Full Text Available Abstract Background The mapping of quantitative trait loci in rat and mouse has been extremely successful in identifying chromosomal regions associated with human disease-related phenotypes. However, identifying the specific phenotype-causing DNA sequence variations within a quantitative trait locus has been much more difficult. The recent availability of genomic sequence from several mouse inbred strains (including C57BL/6J, 129X1/SvJ, 129S1/SvImJ, A/J, and DBA/2J has made it possible to catalog DNA sequence differences within a quantitative trait locus derived from crosses between these strains. However, even for well-defined quantitative trait loci ( Description To help identify functional DNA sequence variations within quantitative trait loci we have used the Ensembl annotated genome sequence to compile a database of mouse single nucleotide polymorphisms (SNPs that are predicted to cause missense, nonsense, frameshift, or splice site mutations (available at http://bioinfo.embl.it/SnpApplet/. For missense mutations we have used the PolyPhen and PANTHER algorithms to predict whether amino acid changes are likely to disrupt protein function. Conclusion We have developed a database of mouse SNPs predicted to cause missense, nonsense, frameshift, and splice-site mutations. Our analysis revealed that 20% and 14% of missense SNPs are likely to be deleterious according to PolyPhen and PANTHER, respectively, and 6% are considered deleterious by both algorithms. The database also provides gene expression and functional annotations from the Symatlas, Gene Ontology, and OMIM databases to further assess candidate phenotype-causing mutations. To demonstrate its utility, we show that Mouse SNP Miner successfully finds a previously identified candidate SNP in the taste receptor, Tas1r3, that underlies sucrose preference in the C57BL/6J strain. We also use Mouse SNP Miner to derive a list of candidate phenotype-causing mutations within a previously

  15. 40 CFR 798.5195 - Mouse biochemical specific locus test.

    Science.gov (United States)

    2010-07-01

    ...-induced variants are bred to determine the genetic nature of the change. (f) Data and reports—(1... SUBSTANCES CONTROL ACT (CONTINUED) HEALTH EFFECTS TESTING GUIDELINES Genetic Toxicity § 798.5195 Mouse...) A biochemical specific locus mutation is a genetic change resulting from a DNA lesion causing...

  16. Role of Polymerase Gamma Mutations in Breast Tumorigenesis

    Science.gov (United States)

    2010-08-01

    triggers steatosis in mouse liver. J Pharmacol. Exp. Ther 2007;321:526–535. [PubMed: 17277197] 21. Yu M, Zhou Y, Shi Y, Ning L, Yang Y, Wei X, et al...encodes an inner mitochondrial membrane protein and is mutated in infantile hepatic mitochondrial DNA depletion. Nat. Genet 2006;38:570–575. [PubMed

  17. The Mouse House: A brief history of the ORNL mouse-genetics program, 1947–2009

    Energy Technology Data Exchange (ETDEWEB)

    Russell, Liane B.

    2013-10-01

    The large mouse genetics program at the Oak Ridge National Lab is often re-membered chiefly for the germ-cell mutation-rate data it generated and their uses in estimating the risk of heritable radiation damage. In fact, it soon became a multi-faceted research effort that, over a period of almost 60 years, generated a wealth of information in the areas of mammalian mutagenesis, basic genetics (later enriched by molecular techniques), cytogenetics, reproductive biology, biochemistry of germ cells, and teratology. Research in the area of germ-cell mutagenesis explored the important physical and biological factors that affect the frequency and nature of induced mutations and made several unexpected discoveries, such as the major importance of the perigametic interval (the zygote stage) for the origin of spontaneous mutations and for the sensitivity to induced genetic change. Of practical value was the discovery that ethylnitrosourea was a supermutagen for point mutations, making high-efficiency mutagenesis in the mouse feasible worldwide. Teratogenesis findings resulted in recommendations still generally accepted in radiological practice. Studies supporting the mutagenesis research added whole bodies of information about mammalian germ-cell development and about molecular targets in germ cells. The early decision to not merely count but propagate genetic variants of all sorts made possible further discoveries, such as the Y-Chromosome s importance in mammalian sex determination and the identification of rare X-autosome translocations, which, in turn, led to the formulation of the single-active-X hypothesis and provided tools for studies of functional mosaicism for autosomal genes, male sterility, and chromosome-pairing mechanism. Extensive genetic and then molecular analyses of large numbers of induced specific-locus mutants resulted in fine-structure physical and correlated functional mapping of significant portions of the mouse genome and constituted a valuable

  18. The Mouse House: a brief history of the ORNL mouse-genetics program, 1947-2009.

    Science.gov (United States)

    Russell, Liane B

    2013-01-01

    The large mouse genetics program at the Oak Ridge National Laboratory (ORNL) is often remembered chiefly for the germ-cell mutation-rate data it generated and their uses in estimating the risk of heritable radiation damage. In fact, it soon became a multi-faceted research effort that, over a period of almost 60 years, generated a wealth of information in the areas of mammalian mutagenesis, basic genetics (later enriched by molecular techniques), cytogenetics, reproductive biology, biochemistry of germ cells, and teratology. Research in the area of germ-cell mutagenesis explored the important physical and biological factors that affect the frequency and nature of induced mutations and made several unexpected discoveries, such as the major importance of the perigametic interval (the zygote stage) for the origin of spontaneous mutations and for the sensitivity to induced genetic change. Of practical value was the discovery that ethylnitrosourea was a supermutagen for point mutations, making high-efficiency mutagenesis in the mouse feasible worldwide. Teratogenesis findings resulted in recommendations still generally accepted in radiological practice. Studies supporting the mutagenesis research added whole bodies of information about mammalian germ-cell development and about molecular targets in germ cells. The early decision to not merely count but propagate genetic variants of all sorts made possible further discoveries, such as the Y-chromosome's importance in mammalian sex determination and the identification of rare X-autosome translocations, which, in turn, led to the formulation of the single-active-X hypothesis and provided tools for studies of functional mosaicism for autosomal genes, male sterility, and chromosome-pairing mechanism. Extensive genetic and then molecular analyses of large numbers of induced specific-locus mutants resulted in fine-structure physical and correlated functional mapping of significant portions of the mouse genome and constituted a

  19. Oxidative Stress in Dilated Cardiomyopathy Caused by MYBPC3 Mutation

    Directory of Open Access Journals (Sweden)

    Thomas L. Lynch

    2015-01-01

    Full Text Available Cardiomyopathies can result from mutations in genes encoding sarcomere proteins including MYBPC3, which encodes cardiac myosin binding protein-C (cMyBP-C. However, whether oxidative stress is augmented due to contractile dysfunction and cardiomyocyte damage in MYBPC3-mutated cardiomyopathies has not been elucidated. To determine whether oxidative stress markers were elevated in MYBPC3-mutated cardiomyopathies, a previously characterized 3-month-old mouse model of dilated cardiomyopathy (DCM expressing a homozygous MYBPC3 mutation (cMyBP-C(t/t was used, compared to wild-type (WT mice. Echocardiography confirmed decreased percentage of fractional shortening in DCM versus WT hearts. Histopathological analysis indicated a significant increase in myocardial disarray and fibrosis while the second harmonic generation imaging revealed disorganized sarcomeric structure and myocyte damage in DCM hearts when compared to WT hearts. Intriguingly, DCM mouse heart homogenates had decreased glutathione (GSH/GSSG ratio and increased protein carbonyl and lipid malondialdehyde content compared to WT heart homogenates, consistent with elevated oxidative stress. Importantly, a similar result was observed in human cardiomyopathy heart homogenate samples. These results were further supported by reduced signals for mitochondrial semiquinone radicals and Fe-S clusters in DCM mouse hearts measured using electron paramagnetic resonance spectroscopy. In conclusion, we demonstrate elevated oxidative stress in MYPBC3-mutated DCM mice, which may exacerbate the development of heart failure.

  20. Hotspots of missense mutation identify novel neurodevelopmental disorder genes and functional domains

    Science.gov (United States)

    Geisheker, Madeleine R.; Heymann, Gabriel; Wang, Tianyun; Coe, Bradley P.; Turner, Tychele N.; Stessman, Holly A.F.; Hoekzema, Kendra; Kvarnung, Malin; Shaw, Marie; Friend, Kathryn; Liebelt, Jan; Barnett, Christopher; Thompson, Elizabeth M.; Haan, Eric; Guo, Hui; Anderlid, Britt-Marie; Nordgren, Ann; Lindstrand, Anna; Vandeweyer, Geert; Alberti, Antonino; Avola, Emanuela; Vinci, Mirella; Giusto, Stefania; Pramparo, Tiziano; Pierce, Karen; Nalabolu, Srinivasa; Michaelson, Jacob J.; Sedlacek, Zdenek; Santen, Gijs W.E.; Peeters, Hilde; Hakonarson, Hakon; Courchesne, Eric; Romano, Corrado; Kooy, R. Frank; Bernier, Raphael A.; Nordenskjöld, Magnus; Gecz, Jozef; Xia, Kun; Zweifel, Larry S.; Eichler, Evan E.

    2017-01-01

    Although de novo missense mutations have been predicted to account for more cases of autism than gene-truncating mutations, most research has focused on the latter. We identified the properties of de novo missense mutations in patients with neurodevelopmental disorders (NDDs) and highlight 35 genes with excess missense mutations. Additionally, 40 amino acid sites were recurrently mutated in 36 genes, and targeted sequencing of 20 sites in 17,689 NDD patients identified 21 new patients with identical missense mutations. One recurrent site (p.Ala636Thr) occurs in a glutamate receptor subunit, GRIA1. This same amino acid substitution in the homologous but distinct mouse glutamate receptor subunit Grid2 is associated with Lurcher ataxia. Phenotypic follow-up in five individuals with GRIA1 mutations shows evidence of specific learning disabilities and autism. Overall, we find significant clustering of de novo mutations in 200 genes, highlighting specific functional domains and synaptic candidate genes important in NDD pathology. PMID:28628100

  1. Rapid identification of HEXA mutations in Tay-Sachs patients.

    Science.gov (United States)

    Giraud, Carole; Dussau, Jeanne; Azouguene, Emilie; Feillet, François; Puech, Jean-Philippe; Caillaud, Catherine

    2010-02-19

    Tay-Sachs disease (TSD) is a recessively inherited neurodegenerative disorder due to mutations in the HEXA gene resulting in a beta-hexosaminidase A (Hex A) deficiency. The purpose of this study was to characterize the molecular abnormalities in patients with infantile or later-onset forms of the disease. The complete sequencing of the 14 exons and flanking regions of the HEXA gene was performed with a unique technical condition in 10 unrelated TSD patients. Eleven mutations were identified, including five splice mutations, one insertion, two deletions and three single-base substitutions. Four mutations were novel: two splice mutations (IVS8+5G>A, IVS2+4delAGTA), one missense mutation in exon 6 (c.621T>G (p.D207E)) and one small deletion (c.1211-1212delTG) in exon 11 resulting in a premature stop codon at residue 429. The c.621T>G missense mutation was found in a patient presenting an infantile form. Its putative role in the pathogenesis of TSD is suspected as residue 207 is highly conserved in human, mouse and rat. Moreover, structural modelling predicted changes likely to affect substrate binding and catalytic activity of the enzyme. The time-saving procedure reported here could be useful for the characterization of Tay-Sachs-causing mutations, in particular in non-Ashkenazi patients mainly exhibiting rare mutations. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  2. Deletion mutations of bacteriophage

    International Nuclear Information System (INIS)

    Ryo, Yeikou

    1975-01-01

    Resolution of mutation mechanism with structural changes of DNA was discussed through the studies using bacteriophage lambda. One of deletion mutations inductions of phage lambda is the irradiation of ultraviolet ray. It is not clear if the inductions are caused by errors in reparation of ultraviolet-induced damage or by the activation of int gene. Because the effective site of int gene lies within the regions unnecessary for existing, it is considered that int gene is connected to deletion mutations induction. A certain system using prophage complementarity enables to detect deletion mutations at essential hereditary sites and to solve the relations of deletion mutations with other recombination system, DNA reproduction and repairment system. Duplication and multiplication of hereditary elements were discussed. If lambda deletion mutations of the system, which can control recombination, reproduction and repairment of added DNA, are constructed, mutations mechanism with great changes of DNA structure can be solved by phage lambda. (Ichikawa, K.)

  3. Gaze beats mouse

    DEFF Research Database (Denmark)

    Mateo, Julio C.; San Agustin, Javier; Hansen, John Paulin

    2008-01-01

    Facial EMG for selection is fast, easy and, combined with gaze pointing, it can provide completely hands-free interaction. In this pilot study, 5 participants performed a simple point-and-select task using mouse or gaze for pointing and a mouse button or a facial-EMG switch for selection. Gaze...

  4. Better plants through mutations

    International Nuclear Information System (INIS)

    1988-01-01

    This is a public relations film describing problems associated with the genetic improvement of crop plants through induced mutations. Mutations are the ultimate source of genetic variation in plants. Mutation induction is now established as a practical tool in plant breeding. The Joint FAO/IAEA Division and the IAEA's laboratory at Seibersdorf have supported research and practical implementation of mutation breeding of both seed propagated and vegetatively propagated plants. Plant biotechnology based on in vitro culture and recombinant DNA technology will make a further significant contribution to plant breeding

  5. Mitochondrial DNA mutations in mutator mice confer respiration defects and B-cell lymphoma development.

    Directory of Open Access Journals (Sweden)

    Takayuki Mito

    Full Text Available Mitochondrial DNA (mtDNA mutator mice are proposed to express premature aging phenotypes including kyphosis and hair loss (alopecia due to their carrying a nuclear-encoded mtDNA polymerase with a defective proofreading function, which causes accelerated accumulation of random mutations in mtDNA, resulting in expression of respiration defects. On the contrary, transmitochondrial mito-miceΔ carrying mtDNA with a large-scale deletion mutation (ΔmtDNA also express respiration defects, but not express premature aging phenotypes. Here, we resolved this discrepancy by generating mtDNA mutator mice sharing the same C57BL/6J (B6J nuclear background with that of mito-miceΔ. Expression patterns of premature aging phenotypes are very close, when we compared between homozygous mtDNA mutator mice carrying a B6J nuclear background and selected mito-miceΔ only carrying predominant amounts of ΔmtDNA, in their expression of significant respiration defects, kyphosis, and a short lifespan, but not the alopecia. Therefore, the apparent discrepancy in the presence and absence of premature aging phenotypes in mtDNA mutator mice and mito-miceΔ, respectively, is partly the result of differences in the nuclear background of mtDNA mutator mice and of the broad range of ΔmtDNA proportions of mito-miceΔ used in previous studies. We also provided direct evidence that mtDNA abnormalities in homozygous mtDNA mutator mice are responsible for respiration defects by demonstrating the co-transfer of mtDNA and respiration defects from mtDNA mutator mice into mtDNA-less (ρ(0 mouse cells. Moreover, heterozygous mtDNA mutator mice had a normal lifespan, but frequently developed B-cell lymphoma, suggesting that the mtDNA abnormalities in heterozygous mutator mice are not sufficient to induce a short lifespan and aging phenotypes, but are able to contribute to the B-cell lymphoma development during their prolonged lifespan.

  6. Clinical and Biologic Significance of MYC Genetic Mutations in De Novo Diffuse Large B-cell Lymphoma

    DEFF Research Database (Denmark)

    Xu-Monette, Zijun Y; Deng, Qipan; Manyam, Ganiraju C

    2016-01-01

    .1% at the protein level (nonsynonymous mutations). Most of the nonsynonymous mutations correlated with better survival outcomes; in contrast, T58 and F138 mutations (which were associated with MYC rearrangements), as well as several mutations occurred at the 3' untranslated region, correlated with significantly...... worse survival outcomes. However, these mutations occurred infrequently (only in approximately 2% of DLBCL). A germline SNP encoding the Myc-N11S variant (observed in 6.5% of the study cohort) was associated with significantly better patient survival, and resulted in reduced tumorigenecity in mouse...

  7. The pathophysiology of mitochondrial disease as modeled in the mouse.

    Science.gov (United States)

    Wallace, Douglas C; Fan, Weiwei

    2009-08-01

    It is now clear that mitochondrial defects are associated with a plethora of clinical phenotypes in man and mouse. This is the result of the mitochondria's central role in energy production, reactive oxygen species (ROS) biology, and apoptosis, and because the mitochondrial genome consists of roughly 1500 genes distributed across the maternal mitochondrial DNA (mtDNA) and the Mendelian nuclear DNA (nDNA). While numerous pathogenic mutations in both mtDNA and nDNA mitochondrial genes have been identified in the past 21 years, the causal role of mitochondrial dysfunction in the common metabolic and degenerative diseases, cancer, and aging is still debated. However, the development of mice harboring mitochondrial gene mutations is permitting demonstration of the direct cause-and-effect relationship between mitochondrial dysfunction and disease. Mutations in nDNA-encoded mitochondrial genes involved in energy metabolism, antioxidant defenses, apoptosis via the mitochondrial permeability transition pore (mtPTP), mitochondrial fusion, and mtDNA biogenesis have already demonstrated the phenotypic importance of mitochondrial defects. These studies are being expanded by the recent development of procedures for introducing mtDNA mutations into the mouse. These studies are providing direct proof that mtDNA mutations are sufficient by themselves to generate major clinical phenotypes. As more different mtDNA types and mtDNA gene mutations are introduced into various mouse nDNA backgrounds, the potential functional role of mtDNA variation in permitting humans and mammals to adapt to different environments and in determining their predisposition to a wide array of diseases should be definitively demonstrated.

  8. Mutation and premating isolation

    Science.gov (United States)

    Woodruff, R. C.; Thompson, J. N. Jr

    2002-01-01

    While premating isolation might be traceable to different genetic mechanisms in different species, evidence supports the idea that as few as one or two genes may often be sufficient to initiate isolation. Thus, new mutation can theoretically play a key role in the process. But it has long been thought that a new isolation mutation would fail, because there would be no other individuals for the isolation-mutation-carrier to mate with. We now realize that premeiotic mutations are very common and will yield a cluster of progeny carrying the same new mutant allele. In this paper, we discuss the evidence for genetically simple premating isolation barriers and the role that clusters of an isolation mutation may play in initiating allopatric, and even sympatric, species divisions.

  9. Mutation of miRNA target sequences during human evolution

    DEFF Research Database (Denmark)

    Gardner, Paul P; Vinther, Jeppe

    2008-01-01

    It has long-been hypothesized that changes in non-protein-coding genes and the regulatory sequences controlling expression could undergo positive selection. Here we identify 402 putative microRNA (miRNA) target sequences that have been mutated specifically in the human lineage and show that genes...... containing such deletions are more highly expressed than their mouse orthologs. Our findings indicate that some miRNA target mutations are fixed by positive selection and might have been involved in the evolution of human-specific traits....

  10. Distinct effects of the recurrent Mlh1G67R mutation on MMR functions, cancer, and meiosis

    OpenAIRE

    Avdievich, Elena; Reiss, Cora; Scherer, Stefan J.; Zhang, Yongwei; Maier, Sandra M.; Jin, Bo; Hou, Harry; Rosenwald, Andreas; Riedmiller, Hubertus; Kucherlapati, Raju; Cohen, Paula E.; Edelmann, Winfried; Kneitz, Burkhard

    2008-01-01

    Mutations in the human DNA mismatch repair (MMR) gene MLH1 are associated with hereditary nonpolyposis colorectal cancer (Lynch syndrome, HNPCC) and a significant proportion of sporadic colorectal cancer. The inactivation of MLH1 results in the accumulation of somatic mutations in the genome of tumor cells and resistance to the genotoxic effects of a variety of DNA damaging agents. To study the effect of MLH1 missense mutations on cancer susceptibility, we generated a mouse line carrying the ...

  11. Stimulation of growth in the little mouse.

    Science.gov (United States)

    Beamer, W H; Eicher, E M

    1976-10-01

    The new mouse mutation little (lit) in the homozygous state causes a pituitary deficiency involving at least growth hormone (GH) and prolactin. The resultant growth failure of lit/lit mice was shown to be reversed by experimental conditions that enhanced levels of GH or GH and prolactin in the circulation. Two measures of growth, actual weight gain and bone dimension, were significantly improved by the physiological processes of pregnancy and pseudopregnancy, by extra-sellar graft of a normal mouse pituitary, and by treatment with GH but not prolactin. These data confirmed pituitary dysfunction as the basic defect caused by the mutation lit and showed that the GH deficiency is responsible for growth failure. However, the biological site of gene action, the pituitary or hypothalamus, has not been established. Little mice exhibit a number of characteristics similar to those of human genetic ateleotic dwarfism Type 1, namely genetic inheritance, time of onset of growth retardation, proportionate skeletal size reduction, and pituitary GH deficiency.

  12. A single nucleotide mutation in Nppc is associated with a long bone abnormality in lbab mice

    Directory of Open Access Journals (Sweden)

    Roe Bruce A

    2007-04-01

    Full Text Available Abstract Background The long bone abnormality (lbab mouse is a new autosomal recessive mutant characterized by overall smaller body size with proportionate dwarfing of all organs and shorter long bones. Previous linkage analysis has located the lbab mutation on chromosome 1 between the markers D1Mit9 and D1Mit488. Results A genome-based positional approach was used to identify a mutation associated with lbab disease. A total of 122 genes and expressed sequence tags at the lbab region were screened for possible mutation by using genomic DNA from lbabl/lbab, lbab/+, and +/+ B6 mice and high throughput temperature gradient capillary electrophoresis. A sequence difference was identified in one of the amplicons of gene Nppc between lbab/lbab and +/+ mice. One-step reverse transcriptase polymerase chain reaction was performed to validate the difference of Nppc in different types of mice at the mRNA level. The mutation of Nppc was unique in lbab/lbab mice among multiple mouse inbred strains. The mutation of Nppc is co-segregated with lbab disease in 200 progenies produced from heterozygous lbab/+ parents. Conclusion A single nucleotide mutation of Nppc is associated with dwarfism in lbab/lbab mice. Current genome information and technology allow us to efficiently identify single nucleotide mutations from roughly mapped disease loci. The lbab mouse is a useful model for hereditary human achondroplasia.

  13. A single nucleotide mutation in Nppc is associated with a long bone abnormality in lbab mice.

    Science.gov (United States)

    Jiao, Yan; Yan, Jian; Jiao, Feng; Yang, Hongbin; Donahue, Leah Rae; Li, Xinmin; Roe, Bruce A; Stuart, John; Gu, Weikuan

    2007-04-17

    The long bone abnormality (lbab) mouse is a new autosomal recessive mutant characterized by overall smaller body size with proportionate dwarfing of all organs and shorter long bones. Previous linkage analysis has located the lbab mutation on chromosome 1 between the markers D1Mit9 and D1Mit488. A genome-based positional approach was used to identify a mutation associated with lbab disease. A total of 122 genes and expressed sequence tags at the lbab region were screened for possible mutation by using genomic DNA from lbabl/lbab, lbab/+, and +/+ B6 mice and high throughput temperature gradient capillary electrophoresis. A sequence difference was identified in one of the amplicons of gene Nppc between lbab/lbab and +/+ mice. One-step reverse transcriptase polymerase chain reaction was performed to validate the difference of Nppc in different types of mice at the mRNA level. The mutation of Nppc was unique in lbab/lbab mice among multiple mouse inbred strains. The mutation of Nppc is co-segregated with lbab disease in 200 progenies produced from heterozygous lbab/+ parents. A single nucleotide mutation of Nppc is associated with dwarfism in lbab/lbab mice. Current genome information and technology allow us to efficiently identify single nucleotide mutations from roughly mapped disease loci. The lbab mouse is a useful model for hereditary human achondroplasia.

  14. Mouse Genome Informatics (MGI)

    Data.gov (United States)

    U.S. Department of Health & Human Services — MGI is the international database resource for the laboratory mouse, providing integrated genetic, genomic, and biological data to facilitate the study of human...

  15. Mouse Phenome Database (MPD)

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Mouse Phenome Database (MPD) has characterizations of hundreds of strains of laboratory mice to facilitate translational discoveries and to assist in selection...

  16. Deficiency of the DNA repair protein nibrin increases the basal but not the radiation induced mutation frequency in vivo

    International Nuclear Information System (INIS)

    Wessendorf, Petra; Vijg, Jan; Nussenzweig, André; Digweed, Martin

    2014-01-01

    Highlights: • lacZ mutant frequencies measured in vivo in mouse models of radiosensitive Nijmegen Breakage Syndrome. • Spontaneous mutation frequencies are increased in lymphatic tissue due to Nbn mutation. • Single base transitions, not deletions, dominate the mutation spectrum. • Radiation induced mutation frequencies are not increased due to Nbn mutation. - Abstract: Nibrin (NBN) is a member of a DNA repair complex together with MRE11 and RAD50. The complex is associated particularly with the repair of DNA double strand breaks and with the regulation of cell cycle check points. Hypomorphic mutation of components of the complex leads to human disorders characterised by radiosensitivity and increased tumour occurrence, particularly of the lymphatic system. We have examined here the relationship between DNA damage, mutation frequency and mutation spectrum in vitro and in vivo in mouse models carrying NBN mutations and a lacZ reporter plasmid. We find that NBN mutation leads to increased spontaneous DNA damage in fibroblasts in vitro and high basal mutation rates in lymphatic tissue of mice in vivo. The characteristic mutation spectrum is dominated by single base transitions rather than the deletions and complex rearrangements expected after abortive repair of DNA double strand breaks. We conclude that in the absence of wild type nibrin, the repair of spontaneous errors, presumably arising during DNA replication, makes a major contribution to the basal mutation rate. This applies also to cells heterozygous for an NBN null mutation. Mutation frequencies after irradiation in vivo were not increased in mice with nibrin mutations as might have been expected considering the radiosensitivity of NBS patient cells in vitro. Evidently apoptosis is efficient, even in the absence of wild type nibrin

  17. Deficiency of the DNA repair protein nibrin increases the basal but not the radiation induced mutation frequency in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Wessendorf, Petra [Institute of Medical and Human Genetics, Charité – Universitätsmedizin Berlin, Augustenburger Platz 1, D-13353 Berlin (Germany); Vijg, Jan [Albert Einstein College of Medicine, Michael F. Price Center, 1301 Morris Park Avenue, Bronx, NY 10461 (United States); Nussenzweig, André [Laboratory of Genome Integrity, National Cancer Institute, National Institute of Health, 37 Convent Drive, Room 1106, Bethesda, MD 20892 (United States); Digweed, Martin, E-mail: martin.digweed@charite.de [Institute of Medical and Human Genetics, Charité – Universitätsmedizin Berlin, Augustenburger Platz 1, D-13353 Berlin (Germany)

    2014-11-15

    Highlights: • lacZ mutant frequencies measured in vivo in mouse models of radiosensitive Nijmegen Breakage Syndrome. • Spontaneous mutation frequencies are increased in lymphatic tissue due to Nbn mutation. • Single base transitions, not deletions, dominate the mutation spectrum. • Radiation induced mutation frequencies are not increased due to Nbn mutation. - Abstract: Nibrin (NBN) is a member of a DNA repair complex together with MRE11 and RAD50. The complex is associated particularly with the repair of DNA double strand breaks and with the regulation of cell cycle check points. Hypomorphic mutation of components of the complex leads to human disorders characterised by radiosensitivity and increased tumour occurrence, particularly of the lymphatic system. We have examined here the relationship between DNA damage, mutation frequency and mutation spectrum in vitro and in vivo in mouse models carrying NBN mutations and a lacZ reporter plasmid. We find that NBN mutation leads to increased spontaneous DNA damage in fibroblasts in vitro and high basal mutation rates in lymphatic tissue of mice in vivo. The characteristic mutation spectrum is dominated by single base transitions rather than the deletions and complex rearrangements expected after abortive repair of DNA double strand breaks. We conclude that in the absence of wild type nibrin, the repair of spontaneous errors, presumably arising during DNA replication, makes a major contribution to the basal mutation rate. This applies also to cells heterozygous for an NBN null mutation. Mutation frequencies after irradiation in vivo were not increased in mice with nibrin mutations as might have been expected considering the radiosensitivity of NBS patient cells in vitro. Evidently apoptosis is efficient, even in the absence of wild type nibrin.

  18. Engineered mutations in fibrillin-1 leading to Marfan syndrome act at the protein, cellular and organismal levels.

    Science.gov (United States)

    Zeyer, Karina A; Reinhardt, Dieter P

    2015-01-01

    Fibrillins are the major components of microfibrils in the extracellular matrix of elastic and non-elastic tissues. They are multi-domain proteins, containing primarily calcium binding epidermal growth factor-like (cbEGF) domains and 8-cysteine/transforming growth factor-beta binding protein-like (TB) domains. Mutations in the fibrillin-1 gene give rise to Marfan syndrome, a connective tissue disorder with clinical complications in the cardiovascular, skeletal, ocular and other organ systems. Here, we review the consequences of engineered Marfan syndrome mutations in fibrillin-1 at the protein, cellular and organismal levels. Representative point mutations associated with Marfan syndrome in affected individuals have been introduced and analyzed in recombinant fibrillin-1 fragments. Those mutations affect fibrillin-1 on a structural and functional level. Mutations which impair folding of cbEGF domains can affect protein trafficking. Protein folding disrupted by some mutations can lead to defective secretion in mutant fibrillin-1 fragments, whereas fragments with other Marfan mutations are secreted normally. Many Marfan mutations render fibrillin-1 more susceptible to proteolysis. There is also evidence that some mutations affect heparin binding. Few mutations have been further analyzed in mouse models. An extensively studied mouse model of Marfan syndrome expresses mouse fibrillin-1 with a missense mutation (p.C1039G). The mice display similar characteristics to human patients with Marfan syndrome. Overall, the analyses of engineered mutations leading to Marfan syndrome provide important insights into the pathogenic molecular mechanisms exerted by mutated fibrillin-1. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Mouse models of cataract

    Indian Academy of Sciences (India)

    2009-12-31

    Dec 31, 2009 ... (Graw 2003), and one of the most important events is the in- teraction of the ... A comparison of eight different and independent Cryg mutations (figure 1) ..... in exclusive expression of the alternative isoform containing exon 1A.

  20. Genetic Mutations in Cancer

    Science.gov (United States)

    Many different types of genetic mutations are found in cancer cells. This infographic outlines certain types of alterations that are present in cancer, such as missense, nonsense, frameshift, and chromosome rearrangements.

  1. AIP mutations and gigantism.

    Science.gov (United States)

    Rostomyan, Liliya; Potorac, Iulia; Beckers, Pablo; Daly, Adrian F; Beckers, Albert

    2017-06-01

    AIP mutations are rare in sporadic acromegaly but they are seen at a higher frequency among certain specific populations of pituitary adenoma patients (pituitary gigantism cases, familial isolated pituitary adenoma (FIPA) kindreds, and patients with macroadenomas who are diagnosed ≤30 years). AIP mutations are most prevalent in patients with pituitary gigantism (29% of this group were found to have mutations in AIP gene). These data support targeted genetic screening for AIP mutations/deletions in these groups of pituitary adenoma patients. Earlier diagnosis of AIP-related acromegaly-gigantism cases enables timely clinical evaluation and treatment, thereby improving outcomes in terms of excessive linear growth and acromegaly comorbidities. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  2. Mutation breeding in peas

    Energy Technology Data Exchange (ETDEWEB)

    Jaranowski, J [Institute of Genetics and Plant Breeding, Academy of Agriculture, Poznan (Poland); Micke, A [Joint FAO/IAEA Division of Isotope and Radiation Applications of Atomic Energy for Food and Agricultural Development, International Atomic Energy Agency, Vienna (Austria)

    1985-02-01

    The pea as an ancient crop plant still today has wide uses and is an import source of food protein. It is also an important object for genetic studies and as such has been widely used in mutation induction experiments. However, in comparison with cereals this ancient crop plant (like several other grain legumes) has gained relatively little from advances in breeding. The review focuses on the prospects of genetic improvement of pea by induced mutations, discusses principles and gives methodological information. (author)

  3. Mutation breeding in peas

    International Nuclear Information System (INIS)

    Jaranowski, J.; Micke, A.

    1985-01-01

    The pea as an ancient crop plant still today has wide uses and is an import source of food protein. It is also an important object for genetic studies and as such has been widely used in mutation induction experiments. However, in comparison with cereals this ancient crop plant (like several other grain legumes) has gained relatively little from advances in breeding. The review focuses on the prospects of genetic improvement of pea by induced mutations, discusses principles and gives methodological information. (author)

  4. Immunostimulatory mouse granuloma protein.

    Science.gov (United States)

    Fontan, E; Fauve, R M; Hevin, B; Jusforgues, H

    1983-10-01

    Earlier studies have shown that from subcutaneous talc-induced granuloma in mice, a fraction could be extracted that fully protected mice against Listeria monocytogenes. Using standard biochemical procedures--i.e., ammonium sulfate fractionation, preparative electrophoresis, gel filtration chromatography, isoelectric focusing, and preparative polyacrylamide gel electrophoresis--we have now purified an active factor to homogeneity. A single band was obtained in NaDodSO4/polyacrylamide gel with an apparent Mr of 55,000. It migrated with alpha 1-globulins and the isoelectric point was 5 +/- 0.1. The biological activity was destroyed with Pronase but not with trypsin and a monospecific polyclonal rabbit antiserum was obtained. The intravenous injection of 5 micrograms of this "mouse granuloma protein" fully protects mice against a lethal inoculum of L. monocytogenes. Moreover, after their incubation with 10 nM mouse granuloma protein, mouse peritoneal cells became cytostatic against Lewis carcinoma cells.

  5. Burn mouse models

    DEFF Research Database (Denmark)

    Calum, Henrik; Høiby, Niels; Moser, Claus

    2014-01-01

    Severe thermal injury induces immunosuppression, involving all parts of the immune system, especially when large fractions of the total body surface area are affected. An animal model was established to characterize the burn-induced immunosuppression. In our novel mouse model a 6 % third-degree b......Severe thermal injury induces immunosuppression, involving all parts of the immune system, especially when large fractions of the total body surface area are affected. An animal model was established to characterize the burn-induced immunosuppression. In our novel mouse model a 6 % third...... with infected burn wound compared with the burn wound only group. The burn mouse model resembles the clinical situation and provides an opportunity to examine or develop new strategies like new antibiotics and immune therapy, in handling burn wound victims much....

  6. Diabetes Insipidus in Mice with a Mutation in Aquaporin-2.

    Directory of Open Access Journals (Sweden)

    2005-08-01

    Full Text Available Congenital nephrogenic diabetes insipidus (NDI is a disease characterized by failure of the kidney to concentrate urine in response to vasopressin. Human kindreds with nephrogenic diabetes insipidus have been found to harbor mutations in the vasopressin receptor 2 (Avpr2 gene or the vasopressin-sensitive water channel aquaporin-2 (Aqp2 gene. Development of a treatment is rendered difficult due to the lack of a viable animal model. Through forward genetic screening of ethylnitrosourea-mutagenized mice, we report the identification and characterization of a mouse model of NDI, with an F204V mutation in the Aqp2 gene. Unlike previously attempted murine models of NDI, our mice survive to adulthood and more exactly recapitulate the human disorder. Previous in vitro experiments using renal cell lines suggest recessive Aqp2 mutations result in improper trafficking of the mutant water pore. Using these animals, we have directly proven this hypothesis of improper AQP2 translocation as the molecular defect in nephrogenic diabetes insipidus in the intact organism. Additionally, using a renal cell line we show that the mutated protein, AQP2-F204V, is retained in the endoplasmic reticulum and that this abnormal localization can be rescued by wild-type protein. This novel mouse model allows for further mechanistic studies as well as testing of pharmacological and gene therapies for NDI.

  7. Mutator activity in Schizophyllum commune

    Energy Technology Data Exchange (ETDEWEB)

    Shneyour, Y.; Koltin, Y. (Tel Aviv Univ. (Israel). Dept. of Microbiology)

    1983-01-01

    A strain with an elevated level of spontaneous mutations and an especially high rate of reversion at a specific locus (pab/sup -/) was identified. The mutator trait is recessive. UV sensitivity and the absence of a UV-specific endonucleolytic activity were associated with the enhancement of the mutation rate in mutator strains. The endonuclease associated with the regulation of the mutation rate also acted on single-stranded DNA. The molecular weight of this enzyme is about 38,000 daltons.

  8. HFE gene: Structure, function, mutations, and associated iron abnormalities.

    Science.gov (United States)

    Barton, James C; Edwards, Corwin Q; Acton, Ronald T

    2015-12-15

    The hemochromatosis gene HFE was discovered in 1996, more than a century after clinical and pathologic manifestations of hemochromatosis were reported. Linked to the major histocompatibility complex (MHC) on chromosome 6p, HFE encodes the MHC class I-like protein HFE that binds beta-2 microglobulin. HFE influences iron absorption by modulating the expression of hepcidin, the main controller of iron metabolism. Common HFE mutations account for ~90% of hemochromatosis phenotypes in whites of western European descent. We review HFE mapping and cloning, structure, promoters and controllers, and coding region mutations, HFE protein structure, cell and tissue expression and function, mouse Hfe knockouts and knockins, and HFE mutations in other mammals with iron overload. We describe the pertinence of HFE and HFE to mechanisms of iron homeostasis, the origin and fixation of HFE polymorphisms in European and other populations, and the genetic and biochemical basis of HFE hemochromatosis and iron overload. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. ENU-induced phenovariance in mice: inferences from 587 mutations

    Directory of Open Access Journals (Sweden)

    Arnold Carrie N

    2012-10-01

    Full Text Available Abstract Background We present a compendium of N-ethyl-N-nitrosourea (ENU-induced mouse mutations, identified in our laboratory over a period of 10 years either on the basis of phenotype or whole genome and/or whole exome sequencing, and archived in the Mutagenetix database. Our purpose is threefold: 1 to formally describe many point mutations, including those that were not previously disclosed in peer-reviewed publications; 2 to assess the characteristics of these mutations; and 3 to estimate the likelihood that a missense mutation induced by ENU will create a detectable phenotype. Findings In the context of an ENU mutagenesis program for C57BL/6J mice, a total of 185 phenotypes were tracked to mutations in 129 genes. In addition, 402 incidental mutations were identified and predicted to affect 390 genes. As previously reported, ENU shows strand asymmetry in its induction of mutations, particularly favoring T to A rather than A to T in the sense strand of coding regions and splice junctions. Some amino acid substitutions are far more likely to be damaging than others, and some are far more likely to be observed. Indeed, from among a total of 494 non-synonymous coding mutations, ENU was observed to create only 114 of the 182 possible amino acid substitutions that single base changes can achieve. Based on differences in overt null allele frequencies observed in phenotypic vs. non-phenotypic mutation sets, we infer that ENU-induced missense mutations create detectable phenotype only about 1 in 4.7 times. While the remaining mutations may not be functionally neutral, they are, on average, beneath the limits of detection of the phenotypic assays we applied. Conclusions Collectively, these mutations add to our understanding of the chemical specificity of ENU, the types of amino acid substitutions it creates, and its efficiency in causing phenovariance. Our data support the validity of computational algorithms for the prediction of damage caused by

  10. Genomes of the Mouse Collaborative Cross.

    Science.gov (United States)

    Srivastava, Anuj; Morgan, Andrew P; Najarian, Maya L; Sarsani, Vishal Kumar; Sigmon, J Sebastian; Shorter, John R; Kashfeen, Anwica; McMullan, Rachel C; Williams, Lucy H; Giusti-Rodríguez, Paola; Ferris, Martin T; Sullivan, Patrick; Hock, Pablo; Miller, Darla R; Bell, Timothy A; McMillan, Leonard; Churchill, Gary A; de Villena, Fernando Pardo-Manuel

    2017-06-01

    The Collaborative Cross (CC) is a multiparent panel of recombinant inbred (RI) mouse strains derived from eight founder laboratory strains. RI panels are popular because of their long-term genetic stability, which enhances reproducibility and integration of data collected across time and conditions. Characterization of their genomes can be a community effort, reducing the burden on individual users. Here we present the genomes of the CC strains using two complementary approaches as a resource to improve power and interpretation of genetic experiments. Our study also provides a cautionary tale regarding the limitations imposed by such basic biological processes as mutation and selection. A distinct advantage of inbred panels is that genotyping only needs to be performed on the panel, not on each individual mouse. The initial CC genome data were haplotype reconstructions based on dense genotyping of the most recent common ancestors (MRCAs) of each strain followed by imputation from the genome sequence of the corresponding founder inbred strain. The MRCA resource captured segregating regions in strains that were not fully inbred, but it had limited resolution in the transition regions between founder haplotypes, and there was uncertainty about founder assignment in regions of limited diversity. Here we report the whole genome sequence of 69 CC strains generated by paired-end short reads at 30× coverage of a single male per strain. Sequencing leads to a substantial improvement in the fine structure and completeness of the genomes of the CC. Both MRCAs and sequenced samples show a significant reduction in the genome-wide haplotype frequencies from two wild-derived strains, CAST/EiJ and PWK/PhJ. In addition, analysis of the evolution of the patterns of heterozygosity indicates that selection against three wild-derived founder strains played a significant role in shaping the genomes of the CC. The sequencing resource provides the first description of tens of thousands of

  11. Colonization, mouse-style

    Directory of Open Access Journals (Sweden)

    Searle Jeremy B

    2010-10-01

    Full Text Available Abstract Several recent papers, including one in BMC Evolutionary Biology, examine the colonization history of house mice. As well as background for the analysis of mouse adaptation, such studies offer a perspective on the history of movements of the humans that accidentally transported the mice. See research article: http://www.biomedcentral.com/1471-2148/10/325

  12. ITGB6 loss-of-function mutations cause autosomal recessive amelogenesis imperfecta.

    Science.gov (United States)

    Wang, Shih-Kai; Choi, Murim; Richardson, Amelia S; Reid, Bryan M; Lin, Brent P; Wang, Susan J; Kim, Jung-Wook; Simmer, James P; Hu, Jan C-C

    2014-04-15

    Integrins are cell-surface adhesion receptors that bind to extracellular matrices (ECM) and mediate cell-ECM interactions. Some integrins are known to play critical roles in dental enamel formation. We recruited two Hispanic families with generalized hypoplastic amelogenesis imperfecta (AI). Analysis of whole-exome sequences identified three integrin beta 6 (ITGB6) mutations responsible for their enamel malformations. The female proband of Family 1 was a compound heterozygote with an ITGB6 transition mutation in Exon 4 (g.4545G > A c.427G > A p.Ala143Thr) and an ITGB6 transversion mutation in Exon 6 (g.27415T > A c.825T > A p.His275Gln). The male proband of Family 2 was homozygous for an ITGB6 transition mutation in Exon 11 (g.73664C > T c.1846C > T p.Arg616*) and hemizygous for a transition mutation in Exon 6 of Nance-Horan Syndrome (NHS Xp22.13; g.355444T > C c.1697T > C p.Met566Thr). These are the first disease-causing ITGB6 mutations to be reported. Immunohistochemistry of mouse mandibular incisors localized ITGB6 to the distal membrane of differentiating ameloblasts and pre-ameloblasts, and then ITGB6 appeared to be internalized by secretory stage ameloblasts. ITGB6 expression was strongest in the maturation stage and its localization was associated with ameloblast modulation. Our findings demonstrate that early and late amelogenesis depend upon cell-matrix interactions. Our approach (from knockout mouse phenotype to human disease) demonstrates the power of mouse reverse genetics in mutational analysis of human genetic disorders and attests to the need for a careful dental phenotyping in large-scale knockout mouse projects.

  13. Are There Mutator Polymerases?

    Directory of Open Access Journals (Sweden)

    Miguel Garcia-Diaz

    2003-01-01

    Full Text Available DNA polymerases are involved in different cellular events, including genome replication and DNA repair. In the last few years, a large number of novel DNA polymerases have been discovered, and the biochemical analysis of their properties has revealed a long list of intriguing features. Some of these polymerases have a very low fidelity and have been suggested to play mutator roles in different processes, like translesion synthesis or somatic hypermutation. The current view of these processes is reviewed, and the current understanding of DNA polymerases and their role as mutator enzymes is discussed.

  14. MUTATIONS IN CALMODULIN GENES

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention relates to an isolated polynucleotide encoding at least a part of calmodulin and an isolated polypeptide comprising at least a part of a calmodulin protein, wherein the polynucleotide and the polypeptide comprise at least one mutation associated with a cardiac disorder. The ...... the binding of calmodulin to ryanodine receptor 2 and use of such compound in a treatment of an individual having a cardiac disorder. The invention further provides a kit that can be used to detect specific mutations in calmodulin encoding genes....

  15. Mass spectrometry analysis of hepcidin peptides in experimental mouse models.

    Directory of Open Access Journals (Sweden)

    Harold Tjalsma

    Full Text Available The mouse is a valuable model for unravelling the role of hepcidin in iron homeostasis, however, such studies still report hepcidin mRNA levels as a surrogate marker for bioactive hepcidin in its pivotal function to block ferroportin-mediated iron transport. Here, we aimed to assess bioactive mouse Hepcidin-1 (Hep-1 and its paralogue Hepcidin-2 (Hep-2 at the peptide level. To this purpose, Fourier transform ion cyclotron resonance (FTICR and tandem-MS was used for hepcidin identification, after which a time-of-flight (TOF MS-based methodology was exploited to routinely determine Hep-1 and -2 levels in mouse serum and urine. This method was biologically validated by hepcidin assessment in: i 3 mouse strains (C57Bl/6; DBA/2 and BABL/c upon stimulation with intravenous iron and LPS, ii homozygous Hfe knock out, homozygous transferrin receptor 2 (Y245X mutated mice and double affected mice, and iii mice treated with a sublethal hepatotoxic dose of paracetamol. The results showed that detection of Hep-1 was restricted to serum, whereas Hep-2 and its presumed isoforms were predominantly present in urine. Elevations in serum Hep-1 and urine Hep-2 upon intravenous iron or LPS were only moderate and varied considerably between mouse strains. Serum Hep-1 was decreased in all three hemochromatosis models, being lowest in the double affected mice. Serum Hep-1 levels correlated with liver hepcidin-1 gene expression, while acute liver damage by paracetamol depleted Hep-1 from serum. Furthermore, serum Hep-1 appeared to be an excellent indicator of splenic iron accumulation. In conclusion, Hep-1 and Hep-2 peptide responses in experimental mouse agree with the known biology of hepcidin mRNA regulators, and their measurement can now be implemented in experimental mouse models to provide novel insights in post-transcriptional regulation, hepcidin function, and kinetics.

  16. Mutagenicity studies with the mouse spot test

    Energy Technology Data Exchange (ETDEWEB)

    Gocke, E.; Wild, D.; Eckhardt, K.; King, M.T.

    1983-04-01

    The mammalian spot test, which detects somatic gene mutations in mouse embryos, was investigated with selected chemicals to (a) further validate this test system ethylnitrosourea, ethyl methanesulfonate, 2-acetylaminofluorene and colchicine (ENU, EMS, 2AAF), and (b) evaluate the mutagenic potential, in a whole-mammal system, of environmental compounds that had been previously recognized as mutagens in other mammalian or submammalian test systems (1,2-dichloroethane, hydroquinone, nitrofurantoin, o-phenylenediamine, fried sausage extract). Of these substances, ENU, EMS and 2AAF were significantly mutagenic, 1,2-dichloroethane was probably weakly mutagenic. The ENU data were used to estimate the number of pigment precursor cells present at the time of treatment (day 9.25). We also describe in this report the use of a fluorescence microscope for classification of hairs from spots on the coat of C57BL/6JHan X T hybrids.

  17. Generation of an inducible colon-specific Cre enzyme mouse line for colon cancer research.

    Science.gov (United States)

    Tetteh, Paul W; Kretzschmar, Kai; Begthel, Harry; van den Born, Maaike; Korving, Jeroen; Morsink, Folkert; Farin, Henner; van Es, Johan H; Offerhaus, G Johan A; Clevers, Hans

    2016-10-18

    Current mouse models for colorectal cancer often differ significantly from human colon cancer, being largely restricted to the small intestine. Here, we aim to develop a colon-specific inducible mouse model that can faithfully recapitulate human colon cancer initiation and progression. Carbonic anhydrase I (Car1) is a gene expressed uniquely in colonic epithelial cells. We generated a colon-specific inducible Car1 CreER knock-in (KI) mouse with broad Cre activity in epithelial cells of the proximal colon and cecum. Deletion of the tumor suppressor gene Apc using the Car1 CreER KI caused tumor formation in the cecum but did not yield adenomas in the proximal colon. Mutation of both Apc and Kras yielded microadenomas in both the cecum and the proximal colon, which progressed to macroadenomas with significant morbidity. Aggressive carcinomas with some invasion into lymph nodes developed upon combined induction of oncogenic mutations of Apc, Kras, p53, and Smad4 Importantly, no adenomas were observed in the small intestine. Additionally, we observed tumors from differentiated Car1-expressing cells with Apc/Kras mutations, suggesting that a top-down model of intestinal tumorigenesis can occur with multiple mutations. Our results establish the Car1 CreER KI as a valuable mouse model to study colon-specific tumorigenesis and metastasis as well as cancer-cell-of-origin questions.

  18. Comparative analysis of genome maintenance genes in naked mole rat, mouse, and human

    NARCIS (Netherlands)

    S.L. Macrae (Sheila L.); Q. Zhang (Quanwei); C. Lemetre (Christophe); I. Seim (Inge); R.B. Calder (Robert B.); J.H.J. Hoeijmakers (Jan); Y. Suh (Yousin); V.N. Gladyshev (Vadim N.); A. Seluanov (Andrei); V. Gorbunova (Vera); J. Vijg (Jan); Z.D. Zhang (Zhengdong D.)

    2015-01-01

    textabstractGenome maintenance (GM) is an essential defense system against aging and cancer, as both are characterized by increased genome instability. Here, we compared the copy number variation and mutation rate of 518 GM-associated genes in the naked mole rat (NMR), mouse, and human genomes. GM

  19. Seven mutations in the human insulin gene linked to permanent neonatal/infancy-onset diabetes mellitus

    DEFF Research Database (Denmark)

    Colombo, Carlo; Porzio, Ottavia; Liu, Ming

    2008-01-01

    Permanent neonatal diabetes mellitus (PNDM) is a rare disorder usually presenting within 6 months of birth. Although several genes have been linked to this disorder, in almost half the cases documented in Italy, the genetic cause remains unknown. Because the Akita mouse bearing a mutation in the ...

  20. Linkage studies and mutation analysis of the PDEB gene in 23 families with Leber congenital amaurosis

    DEFF Research Database (Denmark)

    Riess, O; Weber, B; Nørremølle, Anne

    1992-01-01

    as to whether mutations in the human PDEB gene might cause LCA. We have previously cloned and characterized the human homologue of the mouse Pdeb gene and have mapped it to chromosome 4p16.3. In this study, a total of 23 LCA families of various ethnic backgrounds have been investigated. Linkage analysis using...

  1. Genetic analysis of radiation-induced mouse thymic lymphomas

    International Nuclear Information System (INIS)

    Kominami, R.; Wakabayashi, Y.; Niwa, O.

    2003-01-01

    Mouse thymic lymphomas are one of the classic models of radiation-induced malignancies, and the model has been used for the study of genes involved in carcinogenesis. ras oncogenes are the first isolate which undergoes mutations in 10 to 30 % of lymphomas, and p16INK4a and p19ARF in the INK4a-ARF locus are also frequently inactivated. In our previous study, the inactivation of Ikaros, a key regurator of lymphoid system, was found in those lymphomas, and it was suggested that there are other responsible genes yet to be discovered. On the other hand, genetic predisposition to radiation-induced lymphoma often differs in different strains, and this reflects the presence of low penetrance genes that can modify the impact of a given mutation. Little study of such modifiers or susceptibility genes has been performed, either. Recent availability of databases on mouse genome information and the power of mouse genetic system underline usefulness of the lymphoma model in search for novel genes involved, which may provide clues to molecular mechanisms of development of the radiogenic lymphoma and also genes involved in human lymphomas and other malignancies. Accordingly, we have carried out positional cloning for the two different types of tumor-related genes. In this symposium, our current progress is presented that includes genetic mapping of susceptibility/ resistance loci on mouse chromosomes 4, 5 and 19, and also functional analysis of a novel tumor suppressor gene, Rit1/Bcl11b, that has been isolated from allelic loss (LOH) mapping and sequence analysis for γ -ray induced mouse thymic lymphomas

  2. Mutation, somatic mutation and diseases of man

    International Nuclear Information System (INIS)

    Burnet, F.M.

    1976-01-01

    The relevance of the intrinsic mutagenesis for the evolution process, genetic diseases and the process of aging is exemplified. The fundamental reaction is the function of the DNA and the DNA-enzymes like the DNA-polymerases in replication, repair, and transcription. These defects are responsible for the mutation frequency and the genetic drift in the evolution process. They cause genetic diseases like Xeroderma pigmentosum which is described here in detail. The accumulation of structural and functional mistakes leads to diseases of old age, for example to autoimmune diseases and immune suppression. There is a proportionality between the duration of life and the frequency of mistakes in the enzymatic repair system. No possibility of prophylaxis or therapy is seen. Methods for prognosis could be developed. (AJ) [de

  3. Mutations and chromosomal aberrations

    International Nuclear Information System (INIS)

    Kihlman, B.A.

    1977-01-01

    The genetic changes of mutations and chromosomal aberrations are discussed. The consequences of both depend not only on the type of genetic change produced but also on the type of cell that is affected and on the development stage of the organism. (C.F.)

  4. Mutations in GABRB3

    DEFF Research Database (Denmark)

    Møller, Rikke S; Wuttke, Thomas V; Helbig, Ingo

    2017-01-01

    OBJECTIVE: To examine the role of mutations in GABRB3 encoding the β3 subunit of the GABAA receptor in individual patients with epilepsy with regard to causality, the spectrum of genetic variants, their pathophysiology, and associated phenotypes. METHODS: We performed massive parallel sequencing ...

  5. Kin Selection - Mutation Balance

    DEFF Research Database (Denmark)

    Dyken, J. David Van; Linksvayer, Timothy Arnold; Wade, Michael J.

    2011-01-01

    selection-mutation balance, which provides an evolutionary null hypothesis for the statics and dynamics of cheating. When social interactions have linear fitness effects and Hamilton´s rule is satisfied, selection is never strong enough to eliminate recurrent cheater mutants from a population, but cheater...

  6. Alpha-cardiac myosin heavy chain (MYH6) mutations affecting myofibril formation are associated with congenital heart defects.

    Science.gov (United States)

    Granados-Riveron, Javier T; Ghosh, Tushar K; Pope, Mark; Bu'Lock, Frances; Thornborough, Christopher; Eason, Jacqueline; Kirk, Edwin P; Fatkin, Diane; Feneley, Michael P; Harvey, Richard P; Armour, John A L; David Brook, J

    2010-10-15

    Congenital heart defects (CHD) are collectively the most common form of congenital malformation. Studies of human cases and animal models have revealed that mutations in several genes are responsible for both familial and sporadic forms of CHD. We have previously shown that a mutation in MYH6 can cause an autosomal dominant form of atrial septal defect (ASD), whereas others have identified mutations of the same gene in patients with hypertrophic and dilated cardiomyopathy. In the present study, we report a mutation analysis of MYH6 in patients with a wide spectrum of sporadic CHD. The mutation analysis of MYH6 was performed in DNA samples from 470 cases of isolated CHD using denaturing high-performance liquid chromatography and sequence analysis to detect point mutations and small deletions or insertions, and multiplex amplifiable probe hybridization to detect partial or complete copy number variations. One non-sense mutation, one splicing site mutation and seven non-synonymous coding mutations were identified. Transfection of plasmids encoding mutant and non-mutant green fluorescent protein-MYH6 fusion proteins in mouse myoblasts revealed that the mutations A230P and A1366D significantly disrupt myofibril formation, whereas the H252Q mutation significantly enhances myofibril assembly in comparison with the non-mutant protein. Our data indicate that functional variants of MYH6 are associated with cardiac malformations in addition to ASD and provide a novel potential mechanism. Such phenotypic heterogeneity has been observed in other genes mutated in CHD.

  7. The Mouse That Soared

    Science.gov (United States)

    2004-09-01

    Astronomers have used an X-ray image to make the first detailed study of the behavior of high-energy particles around a fast moving pulsar. The image, from NASA's Chandra X-ray Observatory, shows the shock wave created as a pulsar plows supersonically through interstellar space. These results will provide insight into theories for the production of powerful winds of matter and antimatter by pulsars. Chandra's image of the glowing cloud, known as the Mouse, shows a stubby bright column of high-energy particles, about four light years in length, swept back by the pulsar's interaction with interstellar gas. The intense source at the head of the X-ray column is the pulsar, estimated to be moving through space at about 1.3 million miles per hour. VLA Radio Image of the Mouse, Full Field VLA Radio Image of the Mouse, Full Field A cone-shaped cloud of radio-wave-emitting particles envelopes the X-ray column. The Mouse, a.k.a. G359.23-0.82, was discovered in 1987 by radio astronomers using the National Science Foundation's Very Large Array in New Mexico. It gets its name from its appearance in radio images that show a compact snout, a bulbous body, and a remarkable long, narrow, tail that extends for about 55 light years. "A few dozen pulsar wind nebulae are known, including the spectacular Crab Nebula, but none have the Mouse's combination of relatively young age and incredibly rapid motion through interstellar space," said Bryan Gaensler of the Harvard-Smithsonian Center for Astrophysics and lead author of a paper on the Mouse that will appear in an upcoming issue of The Astrophysical Journal. "We effectively are seeing a supersonic cosmic wind tunnel, in which we can study the effects of a pulsar's motion on its pulsar wind nebula, and test current theories." Illustration of the Mouse System Illustration of the Mouse System Pulsars are known to be rapidly spinning, highly magnetized neutron stars -- objects so dense that a mass equal to that of the Sun is packed into a

  8. Sequence analysis of LACI mutations obtained from lung cells of control and radon-exposed Big Blue trademark transgenic mice

    International Nuclear Information System (INIS)

    Jostes, R.F.; Cross, F.T.; Stillwell, L.

    1995-01-01

    We have exposed Stratagene Big Blue trademark transgenic mice by inhalation to 310, 640 and 960 Working Level Months (WLM) of radon progency. Twelve LacI mutations have been isolated from the lung tissue of a mouse from the 960-WLM group and the LacI gene sequenced. Mutations are scored only if they occur unambiguously in both strands of the mutant gene; the entire gene is evaluated. In addition, sixteen LacI mutations were isolated from the lung tissue of a mouse from the 640-WLM group; seven have been completely sequenced. Nine LacI mutations from the lung tissue of unirradiated control mice have been sequenced. Sequence data from the unirradiated mice are similar to that found in lung tissue at Stratagene; predominately G:C to A:T transitions in the protein associated region. The mutation spectrum from radon-irradiated mice is markedly different from that obtained with the control, unirradiated mice. Small deletions and insertions compromise 53% of the mutations in the irradiated mice. No multiple events have been noted in the spontaneous mutations; six of the mutations obtained from radon-irradiated mice (26%) have multiple events within the gene. In some, deletions, insertions are base changes occur together. The mutational events in the irradiated mice are approximately equally distributed throughout the gene. The breakpoint rejoining regions of large deletions obtained from the radon-irradiated mice are being studied at the University of California, San Francisco

  9. Mutations in galactosemia

    Energy Technology Data Exchange (ETDEWEB)

    Reichardt, J.K.V. [Univ. of Southern California School of Medicine, Los Angeles, CA (United States)

    1995-10-01

    This Letter raises four issues concerning two papers on galactosemia published in the March 1995 of the Journal. First, table 2 in the paper by Elsas et al. incorrectly attributes seven galactose-l-phosphate uridyl transferase (GALT) mutations (S135L, L195P, K285N, N314D, R333W, R333G, and K334R). The table also fails to mention that others have reported the same two findings attributed to {open_quotes}Leslie et al.; Elsas et al. and in press{close_quotes} and {open_quotes}Leslie et al.; Elsas et al.{close_quotes} The first finding on the prevalence of the Q188R galactosemia mutation in the G/G Caucasian population has also been described by Ng et al., and the second finding on the correlation of the N314D GALT mutation with the Duarte variant was reported by Lin et al. Second, Elsas et al. suggest that the E203K and N314D mutations may {open_quotes}produce intra-allelic complementation when in cis{close_quotes}. This speculation is supported by the activity data of individual III-2 but is inconsistent with the activities of three other individuals I-1, II-1, and III-1 of the same pedigree. The GALT activity measured in these three individuals suggests a dominant negative effect of E203K in E203K-N314D chromosomes, since they all have less than normal activity. Thus, the preponderance of the data in this paper is at odds with the authors speculation. It is worth recalling that Lin et al. also identified four N314D GALT mutations on 95 galactosemic chromosomes examined. A similar situation also appears to be the case in proband III-1 (with genotype E203K-N314D/IVSC) in the Elsas et al. paper. 9 refs.

  10. Mouse forward genetics in the study of the peripheral nervous system and human peripheral neuropathy

    Science.gov (United States)

    Douglas, Darlene S.; Popko, Brian

    2009-01-01

    Forward genetics, the phenotype-driven approach to investigating gene identity and function, has a long history in mouse genetics. Random mutations in the mouse transcend bias about gene function and provide avenues towards unique discoveries. The study of the peripheral nervous system is no exception; from historical strains such as the trembler mouse, which led to the identification of PMP22 as a human disease gene causing multiple forms of peripheral neuropathy, to the more recent identification of the claw paw and sprawling mutations, forward genetics has long been a tool for probing the physiology, pathogenesis, and genetics of the PNS. Even as spontaneous and mutagenized mice continue to enable the identification of novel genes, provide allelic series for detailed functional studies, and generate models useful for clinical research, new methods, such as the piggyBac transposon, are being developed to further harness the power of forward genetics. PMID:18481175

  11. Mutation breeding newsletter. No. 45

    International Nuclear Information System (INIS)

    2001-07-01

    This issue of the Mutation Breeding newsletter contains 39 articles dealing with radiation induced mutations and chemical mutagenesis techniques in plant breeding programs with the aims of improving crop productivity and disease resistance as well as exploring genetic variabilities

  12. Mutation breeding newsletter. No. 33

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-01-01

    This issue of the newsletter reports a number of research news and research abstracts on application of radiation induced mutation techniques to increase mutagenesis and mutation frequency in plant breeding projects.

  13. Mutation breeding newsletter. No. 33

    International Nuclear Information System (INIS)

    1989-01-01

    This issue of the newsletter reports a number of research news and research abstracts on application of radiation induced mutation techniques to increase mutagenesis and mutation frequency in plant breeding projects

  14. Development of A Mouse Model of Menopausal Ovarian Cancer

    Directory of Open Access Journals (Sweden)

    Elizabeth R. Smith

    2014-02-01

    Full Text Available Despite significant understanding of the genetic mutations involved in ovarian epithelial cancer and advances in genomic approaches for expression and mutation profiling of tumor tissues, several key questions in ovarian cancer biology remain enigmatic: the mechanism for the well-established impact of reproductive factors on ovarian cancer risk remains obscure; questions of the cell of origin of ovarian cancer continue to be debated; and the precursor lesion, sequence, or events in progression remain to be defined. Suitable mouse models should complement the analysis of human tumor tissues and may provide clues to these questions currently perplexing ovarian cancer biology.A potentially useful model is the germ cell-deficient Wv (white spotting variant mutant mouse line, which may be used to study the impact of menopausal physiology on the increased risk of ovarian cancer. The Wv mice harbor a point mutation in c-Kit that reduces the receptor tyrosine kinase activity to about 1-5% (it is not a null mutation. Homozygous Wv mutant females have a reduced ovarian germ cell reservoir at birth and the follicles are rapidly depleted upon reaching reproductive maturity, but other biological phenotypes are minimal and the mice have a normal life span. The loss of ovarian function precipitates changes in hormonal and metabolic activity that model features of menopause in humans. As a consequence of follicle depletion, the Wv ovaries develop ovarian tubular adenomas, a benign epithelial tumor corresponding to surface epithelial invaginations and papillomatosis that mark human ovarian aging. Ongoing work will test the possibility of converting the benign epithelial tubular adenomas into neoplastic tumors by addition of an oncogenic mutation, such as of Tp53, to model the genotype and biology of serous ovarian cancer.Model based on the Wv mice may have the potential to gain biological and etiological insights into ovarian cancer development and prevention.

  15. Olfaction in three genetic and two MPTP-induced Parkinson's disease mouse models.

    Directory of Open Access Journals (Sweden)

    Stefan Kurtenbach

    Full Text Available Various genetic or toxin-induced mouse models are frequently used for investigation of early PD pathology. Although olfactory impairment is known to precede motor symptoms by years, it is not known whether it is caused by impairments in the brain, the olfactory epithelium, or both. In this study, we investigated the olfactory function in three genetic Parkinson's disease (PD mouse models and mice treated with MPTP intraperitoneally and intranasally. To investigate olfactory function, we performed electro-olfactogram recordings (EOGs and an olfactory behavior test (cookie-finding test. We show that neither a parkin knockout mouse strain, nor intraperitoneal MPTP treated animals display any olfactory impairment in EOG recordings and the applied behavior test. We also found no difference in the responses of the olfactory epithelium to odorants in a mouse strain over-expressing doubly mutated α-synuclein, while this mouse strain was not suitable to test olfaction in a cookie-finding test as it displays a mobility impairment. A transgenic mouse expressing mutated α-synuclein in dopaminergic neurons performed equal to control animals in the cookie-finding test. Further we show that intranasal MPTP application can cause functional damage of the olfactory epithelium.

  16. Mouse Model Resources for Vision Research

    Directory of Open Access Journals (Sweden)

    Jungyeon Won

    2011-01-01

    Full Text Available The need for mouse models, with their well-developed genetics and similarity to human physiology and anatomy, is clear and their central role in furthering our understanding of human disease is readily apparent in the literature. Mice carrying mutations that alter developmental pathways or cellular function provide model systems for analyzing defects in comparable human disorders and for testing therapeutic strategies. Mutant mice also provide reproducible, experimental systems for elucidating pathways of normal development and function. Two programs, the Eye Mutant Resource and the Translational Vision Research Models, focused on providing such models to the vision research community are described herein. Over 100 mutant lines from the Eye Mutant Resource and 60 mutant lines from the Translational Vision Research Models have been developed. The ocular diseases of the mutant lines include a wide range of phenotypes, including cataracts, retinal dysplasia and degeneration, and abnormal blood vessel formation. The mutations in disease genes have been mapped and in some cases identified by direct sequencing. Here, we report 3 novel alleles of Crxtvrm65, Rp1tvrm64, and Rpe65tvrm148 as successful examples of the TVRM program, that closely resemble previously reported knockout models.

  17. The Ptch1DL mouse: a new model to study lambdoid craniosynostosis and basal cell nevus syndrome associated skeletal defects

    OpenAIRE

    Feng, Weiguo; Choi, Irene; Clouthier, David E.; Niswander, Lee; Williams, Trevor

    2013-01-01

    Mouse models provide valuable opportunities for probing the underlying pathology of human birth defects. Employing an ENU-based screen for recessive mutations affecting craniofacial anatomy we isolated a mouse strain, Dogface-like (DL), with abnormal skull and snout morphology. Examination of the skull indicated that these mice developed craniosynostosis of the lambdoid suture. Further analysis revealed skeletal defects related to the pathology of basal cell nevus syndrome (BCNS) including de...

  18. Blocking antibodies induced by immunization with a hypoallergenic parvalbumin mutant reduce allergic symptoms in a mouse model of fish allergy

    OpenAIRE

    Freidl, Raphaela; Gstoettner, Antonia; Baranyi, Ulrike; Swoboda, Ines; Stolz, Frank; Focke-Tejkl, Margarete; Wekerle, Thomas; van Ree, Ronald; Valenta, Rudolf; Linhart, Birgit

    2016-01-01

    Background Fish is a frequent elicitor of severe IgE-mediated allergic reactions. Beside avoidance, there is currently no allergen-specific therapy available. Hypoallergenic variants of the major fish allergen, parvalbumin, for specific immunotherapy based on mutation of the 2 calcium-binding sites have been developed. Objectives This study sought to establish a mouse model of fish allergy resembling human disease and to investigate whether mouse and rabbit IgG antibodies induced by immunizat...

  19. Multivariate Analysis of Variance: Finding significant growth in mice with craniofacial dysmorphology caused by the Crouzon mutation

    DEFF Research Database (Denmark)

    Thorup, Signe Strann; Ólafsdóttir, Hildur; Darvann, Tron Andre

    2010-01-01

    Crouzon syndrome is characterized by growth disturbances caused by premature fusion of the cranial growth zones. A mouse model with mutation Fgfr2C342Y, equivalent to the most common Crouzon syndrome mutation (henceforth called the Crouzon mouse model), has a phenotype showing many parallels to t...... used micro-CT scans of 4-week-old mice (N=5) and 6-week-old mice (N=10) with Crouzon syndrome (Fgfr2 C342Y/+) were compared to control groups of 4-week-old wild-type mice (N=5) and 6-week-old wild-type mice (N=10), respectively....

  20. Mutation breeding in pepper

    Energy Technology Data Exchange (ETDEWEB)

    Daskalov, S [Plant Breeding Unit, Joint FAO/IAEA Division of Isotope and Radiation Applications of Atomic Energy for Food and Agricultural Development, Seibersdorf Laboratory, International Atomic Energy Agency, Vienna (Austria)

    1986-03-01

    Pepper (Capsicum sp.) is an important vegetable and spice crop widely grown in tropical as well as in temperate regions. Until recently the improvement programmes were based mainly on using natural sources of germ plasma, crossbreeding and exploiting the heterosis of F{sub 1} hybrids. However, interest in using induced mutations is growing. A great number of agronomically useful mutants as well as mutants valuable for genetic, cytological and physiological studies have been induced and described. In this review information is presented about suitable mutagen treatment procedures with radiation as well as chemicals, M{sub 1} effects, handling the treated material in M{sub 1}, M{sub 2} and subsequent generations, and mutant screening procedures. This is supplemented by a description of reported useful mutants and released cultivars. Finally, general advice is given on when and how to incorporate mutation induction in Capsicum improvement programmes. (author)

  1. Mutation breeding in pepper

    International Nuclear Information System (INIS)

    Daskalov, S.

    1986-01-01

    Pepper (Capsicum sp.) is an important vegetable and spice crop widely grown in tropical as well as in temperate regions. Until recently the improvement programmes were based mainly on using natural sources of germ plasma, crossbreeding and exploiting the heterosis of F 1 hybrids. However, interest in using induced mutations is growing. A great number of agronomically useful mutants as well as mutants valuable for genetic, cytological and physiological studies have been induced and described. In this review information is presented about suitable mutagen treatment procedures with radiation as well as chemicals, M 1 effects, handling the treated material in M 1 , M 2 and subsequent generations, and mutant screening procedures. This is supplemented by a description of reported useful mutants and released cultivars. Finally, general advice is given on when and how to incorporate mutation induction in Capsicum improvement programmes. (author)

  2. Mutated hilltop inflation revisited

    Science.gov (United States)

    Pal, Barun Kumar

    2018-05-01

    In this work we re-investigate pros and cons of mutated hilltop inflation. Applying Hamilton-Jacobi formalism we solve inflationary dynamics and find that inflation goes on along the {W}_{-1} branch of the Lambert function. Depending on the model parameter mutated hilltop model renders two types of inflationary solutions: one corresponds to small inflaton excursion during observable inflation and the other describes large field inflation. The inflationary observables from curvature perturbation are in tune with the current data for a wide range of the model parameter. The small field branch predicts negligible amount of tensor to scalar ratio r˜ O(10^{-4}), while the large field sector is capable of generating high amplitude for tensor perturbations, r˜ O(10^{-1}). Also, the spectral index is almost independent of the model parameter along with a very small negative amount of scalar running. Finally we find that the mutated hilltop inflation closely resembles the α -attractor class of inflationary models in the limit of α φ ≫ 1.

  3. Mutation breeding in jute

    International Nuclear Information System (INIS)

    Joshua, D.C.

    1980-01-01

    Mutagenic studies in jute in general dealt with the morphological abnormalities of the M 1 generation in great detail. Of late, induction of a wide spectrum of viable mutations have been reported in different varieties of both the species. Mutations affecting several traits of agronomic importance such as, plant height, time of flowering, fibre yield and quality, resistance to pests and diseases are also available. Cytological analysis of a large collection of induced mutants resulted in the isolation of seven trisomics in an olitorius variety. Several anatomical parameters which are the components of fibre yield, have also received attention. Some mutants with completely altered morphology were used for interpreting the evolution of leaf shape in Tiliaceas and related families. A capsularis variety developed using mutation breeding technique has been released for cultivation. Several others, including derivatives of inter-mutant hybridization have been found to perform well at different locations in the All India Coordinated Trials. Presently, chemical mutagenesis and induction of mutants of physiological significance are receiving considerable attention. The induced variability is being used in genetic and linkage studies. (author)

  4. Calreticulin Mutations in Myeloproliferative Neoplasms

    Directory of Open Access Journals (Sweden)

    Noa Lavi

    2014-10-01

    Full Text Available With the discovery of the JAK2V617F mutation in patients with Philadelphia chromosome-negative (Ph− myeloproliferative neoplasms (MPNs in 2005, major advances have been made in the diagnosis of MPNs, in understanding of their pathogenesis involving the JAK/STAT pathway, and finally in the development of novel therapies targeting this pathway. Nevertheless, it remains unknown which mutations exist in approximately one-third of patients with non-mutated JAK2 or MPL essential thrombocythemia (ET and primary myelofibrosis (PMF. At the end of 2013, two studies identified recurrent mutations in the gene encoding calreticulin (CALR using whole-exome sequencing. These mutations were revealed in the majority of ET and PMF patients with non-mutated JAK2 or MPL but not in polycythemia vera patients. Somatic 52-bp deletions (type 1 mutations and recurrent 5-bp insertions (type 2 mutations in exon 9 of the CALR gene (the last exon encoding the C-terminal amino acids of the protein calreticulin were detected and found always to generate frameshift mutations. All detected mutant calreticulin proteins shared a novel amino acid sequence at the C-terminal. Mutations in CALR are acquired early in the clonal history of the disease, and they cause activation of JAK/STAT signaling. The CALR mutations are the second most frequent mutations in Ph− MPN patients after the JAK2V617F mutation, and their detection has significantly improved the diagnostic approach for ET and PMF. The characteristics of the CALR mutations as well as their diagnostic, clinical, and pathogenesis implications are discussed in this review.

  5. Cardiac disease and arrhythmogenesis: Mechanistic insights from mouse models

    Directory of Open Access Journals (Sweden)

    Lois Choy

    2016-09-01

    Full Text Available The mouse is the second mammalian species, after the human, in which substantial amount of the genomic information has been analyzed. With advances in transgenic technology, mutagenesis is now much easier to carry out in mice. Consequently, an increasing number of transgenic mouse systems have been generated for the study of cardiac arrhythmias in ion channelopathies and cardiomyopathies. Mouse hearts are also amenable to physical manipulation such as coronary artery ligation and transverse aortic constriction to induce heart failure, radiofrequency ablation of the AV node to model complete AV block and even implantation of a miniature pacemaker to induce cardiac dyssynchrony. Last but not least, pharmacological models, despite being simplistic, have enabled us to understand the physiological mechanisms of arrhythmias and evaluate the anti-arrhythmic properties of experimental agents, such as gap junction modulators, that may be exert therapeutic effects in other cardiac diseases. In this article, we examine these in turn, demonstrating that primary inherited arrhythmic syndromes are now recognized to be more complex than abnormality in a particular ion channel, involving alterations in gene expression and structural remodelling. Conversely, in cardiomyopathies and heart failure, mutations in ion channels and proteins have been identified as underlying causes, and electrophysiological remodelling are recognized pathological features. Transgenic techniques causing mutagenesis in mice are extremely powerful in dissecting the relative contributions of different genes play in producing disease phenotypes. Mouse models can serve as useful systems in which to explore how protein defects contribute to arrhythmias and direct future therapy.

  6. Gain and frequency tuning within the mouse cochlear apex

    Energy Technology Data Exchange (ETDEWEB)

    Oghalai, John S.; Raphael, Patrick D. [Department of Otolaryngology, Stanford University School of Medicine, Stanford, California (United States); Gao, Simon [Department of Otolaryngology, Stanford University School of Medicine, Stanford, California (United States); Department of Bioengineering, Rice University, Houston, Texas (United States); Lee, Hee Yoon [Department of Otolaryngology, Stanford University School of Medicine, Stanford, California (United States); Department of Electrical Engineering, Stanford University, Stanford, California (United States); Groves, Andrew K. [Department of Neuroscience, Department of Molecular and Human Genetics, and Program in Developmental Biology, Baylor College of Medicine, Houston, Texas (United States); Zuo, Jian [Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee (United States); Applegate, Brian E. [Department of Biomedical Engineering, Texas A& M University, College Station, Texas (United States)

    2015-12-31

    Normal mammalian hearing requires cochlear outer hair cell active processes that amplify the traveling wave with high gain and sharp tuning, termed cochlear amplification. We have used optical coherence tomography to study cochlear amplification within the apical turn of the mouse cochlea. We measured not only classical basilar membrane vibratory tuning curves but also vibratory responses from the rest of the tissues that compose the organ of Corti. Basilar membrane tuning was sharp in live mice and broad in dead mice, whereas other regions of the organ of Corti demonstrated phase shifts consistent with additional filtering beyond that provided by basilar membrane mechanics. We use these experimental data to support a conceptual framework of how cochlear amplification is tuned within the mouse cochlear apex. We will also study transgenic mice with targeted mutations that affect different biomechanical aspects of the organ of Corti in an effort to localize the underlying processes that produce this additional filtering.

  7. Gain and frequency tuning within the mouse cochlear apex

    International Nuclear Information System (INIS)

    Oghalai, John S.; Raphael, Patrick D.; Gao, Simon; Lee, Hee Yoon; Groves, Andrew K.; Zuo, Jian; Applegate, Brian E.

    2015-01-01

    Normal mammalian hearing requires cochlear outer hair cell active processes that amplify the traveling wave with high gain and sharp tuning, termed cochlear amplification. We have used optical coherence tomography to study cochlear amplification within the apical turn of the mouse cochlea. We measured not only classical basilar membrane vibratory tuning curves but also vibratory responses from the rest of the tissues that compose the organ of Corti. Basilar membrane tuning was sharp in live mice and broad in dead mice, whereas other regions of the organ of Corti demonstrated phase shifts consistent with additional filtering beyond that provided by basilar membrane mechanics. We use these experimental data to support a conceptual framework of how cochlear amplification is tuned within the mouse cochlear apex. We will also study transgenic mice with targeted mutations that affect different biomechanical aspects of the organ of Corti in an effort to localize the underlying processes that produce this additional filtering

  8. Mapping of the Mouse Actin Capping Protein Beta Subunit Gene

    Directory of Open Access Journals (Sweden)

    Cooper John A

    2000-07-01

    Full Text Available Abstract Background Capping protein (CP, a heterodimer of α and β subunits, is found in all eukaryotes. CP binds to the barbed ends of actin filaments in vitro and controls actin assembly and cell motility in vivo. Vertebrates have three isoforms of CPβ produced by alternatively splicing from one gene; lower organisms have one gene and one isoform. Results We isolated genomic clones corresponding to the β subunit of mouse CP and identified its chromosomal location by interspecies backcross mapping. Conclusions The CPβ gene (Cappb1 mapped to Chromosome 4 between Cdc42 and D4Mit312. Three mouse mutations, snubnose, curly tail, and cribriform degeneration, map in the vicinity of the β gene.

  9. A dystrophic Duchenne mouse model for testing human antisense oligonucleotides.

    Directory of Open Access Journals (Sweden)

    Marcel Veltrop

    Full Text Available Duchenne muscular dystrophy (DMD is a severe muscle-wasting disease generally caused by reading frame disrupting mutations in the DMD gene resulting in loss of functional dystrophin protein. The reading frame can be restored by antisense oligonucleotide (AON-mediated exon skipping, allowing production of internally deleted, but partially functional dystrophin proteins as found in the less severe Becker muscular dystrophy. Due to genetic variation between species, mouse models with mutations in the murine genes are of limited use to test and further optimize human specific AONs in vivo. To address this we have generated the del52hDMD/mdx mouse. This model carries both murine and human DMD genes. However, mouse dystrophin expression is abolished due to a stop mutation in exon 23, while the expression of human dystrophin is abolished due to a deletion of exon 52. The del52hDMD/mdx model, like mdx, shows signs of muscle dystrophy on a histological level and phenotypically mild functional impairment. Local administration of human specific vivo morpholinos induces exon skipping and dystrophin restoration in these mice. Depending on the number of mismatches, occasional skipping of the murine Dmd gene, albeit at low levels, could be observed. Unlike previous models, the del52hDMD/mdx model enables the in vivo analysis of human specific AONs targeting exon 51 or exon 53 on RNA and protein level and muscle quality and function. Therefore, it will be a valuable tool for optimizing human specific AONs and genome editing approaches for DMD.

  10. Translational Mouse Models of Autism: Advancing Toward Pharmacological Therapeutics

    Science.gov (United States)

    Kazdoba, Tatiana M.; Leach, Prescott T.; Yang, Mu; Silverman, Jill L.; Solomon, Marjorie

    2016-01-01

    Animal models provide preclinical tools to investigate the causal role of genetic mutations and environmental factors in the etiology of autism spectrum disorder (ASD). Knockout and humanized knock-in mice, and more recently knockout rats, have been generated for many of the de novo single gene mutations and copy number variants (CNVs) detected in ASD and comorbid neurodevelopmental disorders. Mouse models incorporating genetic and environmental manipulations have been employed for preclinical testing of hypothesis-driven pharmacological targets, to begin to develop treatments for the diagnostic and associated symptoms of autism. In this review, we summarize rodent behavioral assays relevant to the core features of autism, preclinical and clinical evaluations of pharmacological interventions, and strategies to improve the translational value of rodent models of autism. PMID:27305922

  11. Nuclear Factor-kappaB in Autoimmunity: Man and Mouse.

    Science.gov (United States)

    Miraghazadeh, Bahar; Cook, Matthew C

    2018-01-01

    NF-κB (nuclear factor-kappa B) is a transcription complex crucial for host defense mediated by innate and adaptive immunity, where canonical NF-κB signaling, mediated by nuclear translocation of RelA, c-Rel, and p50, is important for immune cell activation, differentiation, and survival. Non-canonical signaling mediated by nuclear translocation of p52 and RelB contributes to lymphocyte maturation and survival and is also crucial for lymphoid organogenesis. We outline NF-κB signaling and regulation, then summarize important molecular contributions of NF-κB to mechanisms of self-tolerance. We relate these mechanisms to autoimmune phenotypes described in what is now a substantial catalog of immune defects conferred by mutations in NF-κB pathways in mouse models. Finally, we describe Mendelian autoimmune syndromes arising from human NF-κB mutations, and speculate on implications for understanding sporadic autoimmune disease.

  12. Mutation breeding in chickpea

    International Nuclear Information System (INIS)

    2009-01-01

    Chickpea is an important food legume in Turkey. Turkey is one of the most important gene centers in the world for legumes. The most widely known characteristic of chickpea is that it is an important vegetable protein source used in human and animal nutrition. However, the dry grains of chickpea, has 2-3 times more protein than our traditional food of wheat. In addition, cheakpea is also energy source because of its high carbohydrate content. It is very rich in some vitamin and mineral basis. In the plant breeding, mutation induction has become an effective way of supplementing existing germplasm and improving cultivars. Many successful examples of mutation induction have proved that mutation breeding is an effective and important approach to food legume improvement. The induced mutation technique in chickpea has proved successful and good results have been attained. Realizing the potential of induced mutations, a mutation breeding programme was initiated at the Nuclear Agriculture Section of the Saraykoey Nuclear Research and Training Center in 1994. The purpose of the study was to obtain high yielding chickpea mutants with large seeds, good cooking quality and high protein content. Beside this some characters such as higher adaptation ability, tolerant to cold and drought, increased machinery harvest type, higher yield, resistant to diseases especially to antracnose and pest were investigated too. Parents varieties were ILC-482, AK-7114 and AKCIN-91 (9 % seed moisture content and germination percentage 98 %) in these experiments. The irradiation doses were 0 (control), 50, 100, 150, 200, 250, 300, 350, 400, 500 ve 600 Gy for greenhouse experiments and 0 (control), 50, 100, 150, 200, 250, 300, 350 ve 400 Gy for field experiments, respectively. One thousand seeds for per treatment were sown in the field for the M 1 . At maturity, 3500 single plants were harvested and 20 seeds were taken from each M 1 plant and planted in the following season. During plant growth

  13. Mutations of PTPN23 in developmental and epileptic encephalopathy

    KAUST Repository

    Sowada, Nadine

    2017-10-31

    Developmental and epileptic encephalopathies (DEE) are a heterogeneous group of neurodevelopmental disorders with poor prognosis. Recent discoveries have greatly expanded the repertoire of genes that are mutated in epileptic encephalopathies and DEE, often in a de novo fashion, but in many patients, the disease remains molecularly uncharacterized. Here, we describe a new form of DEE in patients with likely deleterious biallelic variants in PTPN23. The phenotype is characterized by early onset drug-resistant epilepsy, severe and global developmental delay, microcephaly, and sometimes premature death. PTPN23 encodes a tyrosine phosphatase with strong brain expression, and its knockout in mouse is embryonically lethal. Structural modeling supports a deleterious effect of the identified alleles. Our data suggest that PTPN23 mutations cause a rare severe form of autosomal-recessive DEE in humans, a finding that requires confirmation.

  14. Effective gene editing by high-fidelity base editor 2 in mouse zygotes

    Directory of Open Access Journals (Sweden)

    Puping Liang

    2017-06-01

    Full Text Available ABSTRACT Targeted point mutagenesis through homologous recombination has been widely used in genetic studies and holds considerable promise for repairing disease-causing mutations in patients. However, problems such as mosaicism and low mutagenesis efficiency continue to pose challenges to clinical application of such approaches. Recently, a base editor (BE system built on cytidine (C deaminase and CRISPR/Cas9 technology was developed as an alternative method for targeted point mutagenesis in plant, yeast, and human cells. Base editors convert C in the deamination window to thymidine (T efficiently, however, it remains unclear whether targeted base editing in mouse embryos is feasible. In this report, we generated a modified high-fidelity version of base editor 2 (HF2-BE2, and investigated its base editing efficacy in mouse embryos. We found that HF2-BE2 could convert C to T efficiently, with up to 100% biallelic mutation efficiency in mouse embryos. Unlike BE3, HF2-BE2 could convert C to T on both the target and non-target strand, expanding the editing scope of base editors. Surprisingly, we found HF2-BE2 could also deaminate C that was proximal to the gRNA-binding region. Taken together, our work demonstrates the feasibility of generating point mutations in mouse by base editing, and underscores the need to carefully optimize base editing systems in order to eliminate proximal-site deamination.

  15. Earlier onset of motor deficits in mice with double mutations in Dyt1 and Sgce.

    Science.gov (United States)

    Yokoi, Fumiaki; Yang, Guang; Li, Jindong; DeAndrade, Mark P; Zhou, Tong; Li, Yuqing

    2010-10-01

    DYT1 early-onset generalized torsion dystonia is an inherited movement disorder caused by mutations in DYT1 coding for torsinA with ∼30% penetrance. Most of the DYT1 dystonia patients exhibit symptoms during childhood and adolescence. On the other hand, DYT1 mutation carriers without symptoms during these periods mostly do not exhibit symptoms later in their life. Little is known about what controls the timing of the onset, a critical issue for DYT1 mutation carriers. DYT11 myoclonus-dystonia is caused by mutations in SGCE coding for ε-sarcoglycan. Two dystonia patients from a single family with double mutations in DYT1 and SGCE exhibited more severe symptoms. A recent study suggested that torsinA contributes to the quality control of ε-sarcoglycan. Here, we derived mice carrying mutations in both Dyt1 and Sgce and found that these double mutant mice showed earlier onset of motor deficits in beam-walking test. A novel monoclonal antibody against mouse ε-sarcoglycan was developed by using Sgce knock-out mice to avoid the immune tolerance. Western blot analysis suggested that functional deficits of torsinA and ε-sarcoglycan may independently cause motor deficits. Examining additional mutations in other dystonia genes may be beneficial to predict the onset in DYT1 mutation carriers.

  16. Induced mutations in citrus

    International Nuclear Information System (INIS)

    Spiegel-Roy, P.; Vardi, Aliza

    1990-01-01

    Full text: Parthenocarpic tendency is an important prerequisite for successful induction of seedlessness in breeding and especially in mutation breeding. A gene for asynapsis and accompanying seedless fruit has been found by us in inbred progeny of cv. 'Wilking'. Using budwood irradiation by gamma rays, seedless mutants of 'Eureka' and 'Villafranca' lemon (original clone of the latter has 25 seeds) and 'Minneola' tangelo have been obtained. Ovule sterility of the three mutants is nearly complete, with some pollen fertility still remaining. A semi-compact mutant of Shamouti orange has been obtained by irradiation. A programme for inducing seedlessness in easy peeling citrus varieties and selections has been initiated. (author)

  17. Induced skeletal mutations

    International Nuclear Information System (INIS)

    Selby, P.B.

    1979-01-01

    This paper describes a large-scale experiment that, by means of breeding tests, confirmed that many dominant skeletal mutations are induced by large-dose radiation exposure. The author also discusses: (1) the major advantages and disadvantages of the skeletal method in improving estimates of genetic hazard to man; (2) future uses of the skeletal method; (3) direct estimation of risk beyond the first generation using the skeletal method; and (4) the possibility of using the skeletal method as a quick and easy screen for chemical mutagens

  18. Autoactivation of mouse trypsinogens is regulated by chymotrypsin C via cleavage of the autolysis loop.

    Science.gov (United States)

    Németh, Balázs Csaba; Wartmann, Thomas; Halangk, Walter; Sahin-Tóth, Miklós

    2013-08-16

    Chymotrypsin C (CTRC) is a proteolytic regulator of trypsinogen autoactivation in humans. CTRC cleavage of the trypsinogen activation peptide stimulates autoactivation, whereas cleavage of the calcium binding loop promotes trypsinogen degradation. Trypsinogen mutations that alter these regulatory cleavages lead to increased intrapancreatic trypsinogen activation and cause hereditary pancreatitis. The aim of this study was to characterize the regulation of autoactivation of mouse trypsinogens by mouse Ctrc. We found that the mouse pancreas expresses four trypsinogen isoforms to high levels, T7, T8, T9, and T20. Only the T7 activation peptide was cleaved by mouse Ctrc, causing negligible stimulation of autoactivation. Surprisingly, mouse Ctrc poorly cleaved the calcium binding loop in all mouse trypsinogens. In contrast, mouse Ctrc readily cleaved the Phe-150-Gly-151 peptide bond in the autolysis loop of T8 and T9 and inhibited autoactivation. Mouse chymotrypsin B also cleaved the same peptide bond but was 7-fold slower. T7 was less sensitive to chymotryptic regulation, which involved slow cleavage of the Leu-149-Ser-150 peptide bond in the autolysis loop. Modeling indicated steric proximity of the autolysis loop and the activation peptide in trypsinogen, suggesting the cleaved autolysis loop may directly interfere with activation. We conclude that autoactivation of mouse trypsinogens is under the control of mouse Ctrc with some notable differences from the human situation. Thus, cleavage of the trypsinogen activation peptide or the calcium binding loop by Ctrc is unimportant. Instead, inhibition of autoactivation via cleavage of the autolysis loop is the dominant mechanism that can mitigate intrapancreatic trypsinogen activation.

  19. Mutation Breeding Newsletter. No. 39

    International Nuclear Information System (INIS)

    1992-01-01

    This newsletter contains brief articles on the use of radiation to induce mutations in plants; radiation-induced mutants in Chrysanthemum; disrupting the association between oil and protein content in soybean seeds; mutation studies on bougainvillea; a new pepper cultivar; and the use of mutation induction to improve the quality of yam beans. A short review of the seminar on the use of mutation and related biotechnology for crop improvement in the Middle East and Mediterranean regions, and a description of a Co-ordinated Research Programme on the application of DNA-based marker mutations for the improvement of cereals and other sexually reproduced crop species are also included. Two tables are given: these are based on the ''FAO/IAEA Mutant Varieties Database'' and show the number of mutated varieties and the number of officially released mutant varieties in particular crops/species. Refs and tabs

  20. Targeted disruption of Ataxia-telangiectasia mutated gene in miniature pigs by somatic cell nuclear transfer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young June; Ahn, Kwang Sung; Kim, Minjeong; Kim, Min Ju; Park, Sang-Min; Ryu, Junghyun; Ahn, Jin Seop; Heo, Soon Young; Kang, Jee Hyun; Choi, You Jung [Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan (Korea, Republic of); Choi, Seong-Jun [Institute of Tissue Regeneration Engineering, Dankook University, Cheonan (Korea, Republic of); Shim, Hosup, E-mail: shim@dku.edu [Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan (Korea, Republic of); Institute of Tissue Regeneration Engineering, Dankook University, Cheonan (Korea, Republic of); Department of Physiology, Dankook University School of Medicine, Cheonan (Korea, Republic of)

    2014-10-03

    Highlights: • ATM gene-targeted pigs were produced by somatic cell nuclear transfer. • A novel large animal model for ataxia telangiectasia was developed. • The new model may provide an alternative to the mouse model. - Abstract: Ataxia telangiectasia (A-T) is a recessive autosomal disorder associated with pleiotropic phenotypes, including progressive cerebellar degeneration, gonad atrophy, and growth retardation. Even though A-T is known to be caused by the mutations in the Ataxia telangiectasia mutated (ATM) gene, the correlation between abnormal cellular physiology caused by ATM mutations and the multiple symptoms of A-T disease has not been clearly determined. None of the existing ATM mouse models properly reflects the extent to which neurological degeneration occurs in human. In an attempt to provide a large animal model for A-T, we produced gene-targeted pigs with mutations in the ATM gene by somatic cell nuclear transfer. The disrupted allele in the ATM gene of cloned piglets was confirmed via PCR and Southern blot analysis. The ATM gene-targeted pigs generated in the present study may provide an alternative to the current mouse model for the study of mechanisms underlying A-T disorder and for the development of new therapies.

  1. Targeted disruption of Ataxia-telangiectasia mutated gene in miniature pigs by somatic cell nuclear transfer

    International Nuclear Information System (INIS)

    Kim, Young June; Ahn, Kwang Sung; Kim, Minjeong; Kim, Min Ju; Park, Sang-Min; Ryu, Junghyun; Ahn, Jin Seop; Heo, Soon Young; Kang, Jee Hyun; Choi, You Jung; Choi, Seong-Jun; Shim, Hosup

    2014-01-01

    Highlights: • ATM gene-targeted pigs were produced by somatic cell nuclear transfer. • A novel large animal model for ataxia telangiectasia was developed. • The new model may provide an alternative to the mouse model. - Abstract: Ataxia telangiectasia (A-T) is a recessive autosomal disorder associated with pleiotropic phenotypes, including progressive cerebellar degeneration, gonad atrophy, and growth retardation. Even though A-T is known to be caused by the mutations in the Ataxia telangiectasia mutated (ATM) gene, the correlation between abnormal cellular physiology caused by ATM mutations and the multiple symptoms of A-T disease has not been clearly determined. None of the existing ATM mouse models properly reflects the extent to which neurological degeneration occurs in human. In an attempt to provide a large animal model for A-T, we produced gene-targeted pigs with mutations in the ATM gene by somatic cell nuclear transfer. The disrupted allele in the ATM gene of cloned piglets was confirmed via PCR and Southern blot analysis. The ATM gene-targeted pigs generated in the present study may provide an alternative to the current mouse model for the study of mechanisms underlying A-T disorder and for the development of new therapies

  2. Mutations induced in plant breeding

    International Nuclear Information System (INIS)

    Barriga B, P.

    1984-01-01

    The most significant aspects of the use of ionizing radiations in plant breeding are reviewed. Aspects such as basic principles of mutation, expression and selection in obtention of mutants, methods for using induced mutations and sucess achieved with this methodology in plant breeding are reviewed. Results obtained in a program of induced mutation on wheat for high content of protein and lysine at the Universidad Austral de Chile are presented. (Author)

  3. Mutations induced in plant breeding

    Energy Technology Data Exchange (ETDEWEB)

    Barriga B, P. (Universidad Austral de Chile, Valdivia. Inst. de Produccion y Sanidad Vegetal)

    1984-10-01

    The most significant aspects of the use of ionizing radiations in plant breeding are reviewed. Aspects such as basic principles of mutation, expression and selection in obtention of mutants, methods for using induced mutations and sucess achieved with this methodology in plant breeding are reviewed. Results obtained in a program of induced mutation on wheat for high content of protein and lysine at the Universidad Austral de Chile are presented.

  4. Heart-specific expression of laminopathic mutations in transgenic zebrafish.

    Science.gov (United States)

    Verma, Ajay D; Parnaik, Veena K

    2017-07-01

    Lamins are key determinants of nuclear organization and function in the metazoan nucleus. Mutations in human lamin A cause a spectrum of genetic diseases that affect cardiac muscle and skeletal muscle as well as other tissues. A few laminopathies have been modeled using the mouse. As zebrafish is a well established model for the study of cardiac development and disease, we have investigated the effects of heart-specific lamin A mutations in transgenic zebrafish. We have developed transgenic lines of zebrafish expressing conserved lamin A mutations that cause cardiac dysfunction in humans. Expression of zlamin A mutations Q291P and M368K in the heart was driven by the zebrafish cardiac troponin T2 promoter. Homozygous mutant embryos displayed nuclear abnormalities in cardiomyocyte nuclei. Expression analysis showed the upregulation of genes involved in heart regeneration in transgenic mutant embryos and a cell proliferation marker was increased in adult heart tissue. At the physiological level, there was deviation of up to 20% from normal heart rate in transgenic embryos expressing mutant lamins. Adult homozygous zebrafish were fertile and did not show signs of early mortality. Our results suggest that transgenic zebrafish models of heart-specific laminopathies show cardiac regeneration and moderate deviations in heart rate during embryonic development. © 2017 International Federation for Cell Biology.

  5. Mutation Analysis of JAK2V617F, FLT3-ITD, NPM1, and DNMT3A in Chinese Patients with Myeloproliferative Neoplasms

    Directory of Open Access Journals (Sweden)

    Min Wang

    2014-01-01

    Full Text Available Since the discovery of JAK2V617F tyrosine kinase-activating mutation, several genes have been found mutated in myeloproliferative neoplasms (MPNs. FLT3-ITD, NPM1, and DNMT3A mutations frequently occurred in AML patients and have been found conferred with myeloproliferative neoplasms in mouse model. Therefore, we sought to search for mutations in JAK2V617F, FLT3-ITD, NPM1, and DNMT3A in 129 cases including 120 classic MPN cases and 9 MDS/MPN cases. JAK2V617F mutation was found in 60% of the 120 classic MPNs. However, none of the patients displayed FLT3-ITD and NPM1 mutations; only 2 patients harbored DNMT3A R882 mutation. Further studies including whole-genome sequence will be conducted to investigate the possible involvement of these genes in MPN.

  6. Mutation breeding newsletter. No. 43

    International Nuclear Information System (INIS)

    1997-10-01

    This issue of the Newsletter includes articles dealing with radiation induced mutation based plant breeding research findings aimed at improving productivity, disease resistance and tolerance of stress conditions

  7. Mutation breeding in mangosteen

    International Nuclear Information System (INIS)

    Mohd Khalid Mohd Zain

    2002-01-01

    Mangosteen the queen of the tropical fruits is apomitic and only a cultivar is reported and it reproduces asexually. Conventional breeding is not possible and the other methods to create variabilities are through genetic engineering and mutation breeding. The former technique is still in the infantry stage in mangosteen research while the latter has been an established tool in breeding to improve cultivars. In this mutation breeding seeds of mangosteen were irradiated using gamma rays and the LD 50 for mangosteen was determined and noted to be very low at 10 Gy. After sowing in the seedbed, the seedlings were transplanted in polybags and observed in the nursery bed for about one year before planted in the field under old oil palm trees in Station MARDI, Kluang. After evaluation and screening, about 120 mutant mangosteen plants were selected and planted in Kluang. The plants were observed and some growth data taken. There were some mutant plants that have good growth vigour and more vigorous that the control plants. The trial are now in the fourth year and the plants are still in the juvenile stage. (Author)

  8. Mutation breeding in chickpea

    International Nuclear Information System (INIS)

    Sagel, Z.; Tutluer, M. I.; Peskircioglu, H.; Kantoglu, Y.; Kunter, B.

    2009-01-01

    Chickpea is an important food legume in Turkey. Turkey is one of the most important gene centers in the world for legumes. Realizing the potential of induced mutations, a mutation breeding programme was initiated at the Nuclear Agriculture Section of the Saraykoy Nuclear Research and Training Center in 1994. The purpose of the study was to obtain high yielding chickpea mutants with large seeds, good cooking quality and high protein content. Beside this some characters such as higher adaptation ability, tolerant to cold and drought, increased machinery harvest type, higher yield, resistant to diseases especially to antracnose and pest were investigated too. Parent varieties were ILC-482, AK-7114 and AKCIN-91 had been used in these experiments. The irradiation doses were 0 (control), 50, 100, 150, 200, 250, 300, 350 and 400 Gy for field experiments, respectively. As a result of these experiments, two promising mutant lines were chosen and given to the Seed Registration and Certification Center for official registration These two promising mutants were tested at five different locations of Turkey, in 2004 and 2005 years. After 2 years of registration experiments one of outstanding mutants was officially released as mutant chickpea variety under the name TAEK-SAGEL, in 2006. Some basic characteristics of this mutant are; earliness (95-100 day), high yield capacity (180-220 kg/da), high seed protein (22-25 %), first pot height (20-25 cm), 100 seeds weight (42-48 g), cooking time (35-40 min) and resistance to Ascochyta blight.

  9. Mutations in PIK3CA are infrequent in neuroblastoma

    International Nuclear Information System (INIS)

    Dam, Vincent; Morgan, Brian T; Mazanek, Pavel; Hogarty, Michael D

    2006-01-01

    Neuroblastoma is a frequently lethal pediatric cancer in which MYCN genomic amplification is highly correlated with aggressive disease. Deregulated MYC genes require co-operative lesions to foster tumourigenesis and both direct and indirect evidence support activated Ras signaling for this purpose in many cancers. Yet Ras genes and Braf, while often activated in cancer cells, are infrequent targets for activation in neuroblastoma. Recently, the Ras effector PIK3CA was shown to be activated in diverse human cancers. We therefore assessed PIK3CA for mutation in human neuroblastomas, as well as in neuroblastomas arising in transgenic mice with MYCN overexpressed in neural-crest tissues. In this murine model we additionally surveyed for Ras family and Braf mutations as these have not been previously reported. Sixty-nine human neuroblastomas (42 primary tumors and 27 cell lines) were sequenced for PIK3CA activating mutations within the C2, helical and kinase domain 'hot spots' where 80% of mutations cluster. Constitutional DNA was sequenced in cases with confirmed alterations to assess for germline or somatic acquisition. Additionally, Ras family members (Hras1, Kras2 and Nras) and the downstream effectors Pik3ca and Braf, were sequenced from twenty-five neuroblastomas arising in neuroblastoma-prone transgenic mice. We identified mutations in the PIK3CA gene in 2 of 69 human neuroblastomas (2.9%). Neither mutation (R524M and E982D) has been studied to date for effects on lipid kinase activity. Though both occurred in tumors with MYCN amplification the overall rate of PIK3CA mutations in MYCN amplified and single-copy tumors did not differ appreciably (2 of 31 versus 0 of 38, respectively). Further, no activating mutations were identified in a survey of Ras signal transduction genes (including Hras1, Kras2, Nras, Pik3ca, or Braf genes) in twenty-five neuroblastic tumors arising in the MYCN-initiated transgenic mouse model. These data suggest that activating

  10. MicroRNA-142 is mutated in about 20% of diffuse large B-cell lymphoma

    International Nuclear Information System (INIS)

    Kwanhian, Wiyada; Lenze, Dido; Alles, Julia; Motsch, Natalie; Barth, Stephanie; Döll, Celina; Imig, Jochen; Hummel, Michael; Tinguely, Marianne; Trivedi, Pankaj; Lulitanond, Viraphong; Meister, Gunter; Renner, Christoph; Grässer, Friedrich A

    2012-01-01

    MicroRNAs (miRNAs) are short 18–23 nucleotide long noncoding RNAs that posttranscriptionally regulate gene expression by binding to mRNA. Our previous miRNA profiling of diffuse large B-cell lymphoma (DLBCL) revealed a mutation in the seed sequence of miR-142-3p. Further analysis now showed that miR-142 was mutated in 11 (19.64%) of the 56 DLBCL cases. Of these, one case had a mutation in both alleles, with the remainder being heterozygous. Four mutations were found in the mature miR-142-5p, four in the mature miR-142-3p, and three mutations affected the miR-142 precursor. Two mutations in the seed sequence redirected miR-142-3p to the mRNA of the transcriptional repressor ZEB2 and one of them also targeted the ZEB1 mRNA. However, the other mutations in the mature miR-142-3p did not influence either the ZEB1 or ZEB2 3′ untranslated region (3′ UTR). On the other hand, the mutations affecting the seed sequence of miR-142-3p resulted in a loss of responsiveness in the 3′ UTR of the known miR-142-3p targets RAC1 and ADCY9. In contrast to the mouse p300 gene, the human p300 gene was not found to be a target for miR-142-5p. In one case with a mutation of the precursor, we observed aberrant processing of the miR-142-5p. Our data suggest that the mutations in miR-142 probably lead to a loss rather than a gain of function. This is the first report describing mutations of a miRNA gene in a large percentage of a distinct lymphoma subtype

  11. Genetic deletion of amphiregulin restores the normal skin phenotype in a mouse model of the human skin disease tylosis

    Directory of Open Access Journals (Sweden)

    Vishnu Hosur

    2017-08-01

    Full Text Available In humans, gain-of-function (GOF mutations in RHBDF2 cause the skin disease tylosis. We generated a mouse model of human tylosis and show that GOF mutations in RHBDF2 cause tylosis by enhancing the amount of amphiregulin (AREG secretion. Furthermore, we show that genetic disruption of AREG ameliorates skin pathology in mice carrying the human tylosis disease mutation. Collectively, our data suggest that RHBDF2 plays a critical role in regulating EGFR signaling and its downstream events, including development of tylosis, by facilitating enhanced secretion of AREG. Thus, targeting AREG could have therapeutic benefit in the treatment of tylosis.

  12. Analysis of the albino-locus region of the mouse. II. Mosaic mutants

    International Nuclear Information System (INIS)

    Russell, L.B.

    1979-01-01

    Among 119 mutations involving the c locus that were recovered in the course of mouse specific-locus experiments with external radiations, 16 were found in mosaic, or fractional, mutants. The number of additional c-locus fractionals that could have occurred in these experiments and, for a variety of reasons, might not have been clearly identified, probably does not exceed the present number. There was no evidence for radiation induction of the fractionals, and even those occurring in the irradiated groups may thus be assumed to be of spontaneous origin. Since only two mutations in the control groups were found in whole-body mutants, it appears that the bulk of spontaneous c-locus mutations are fractionals. None of the mutations recovered in fractional mutants was homozygous lethal; 25% were viable intermediate alleles, and the remainder were albino-like mutants, all viable except for one subvital and one not tested. Genetic tests of the fractionals indicated no major selection against the new mutations, either gametically or in the progeny. For the group of fractionals as a whole, about one-half of the germinal tissue carried the mutation, indicating that the fractionals came from an overall blastomere population that was one-half mutant. Such a population could result from mutation in one strand of the gamete DNA, in a daughter chromosome derived from pronuclear DNA synthesis of the zygote, or in one of the first two blastomeres prior to replication. Since the mouse embryo does not stem from all of the cleavage products of the zygote, the frequency of fractionals observeed underestimates the frequency of mutational events that result in two types of blastomeres

  13. Studies on mutation techniques in rice breeding

    International Nuclear Information System (INIS)

    Wang Cailian; Chen Qiufang; Jin Wei

    2001-01-01

    Synthetical techniques for improving rice mutation breeding efficiency were studied. The techniques consist of corresponding relationship between radiosensitivity and mutation frequency, choosing appropriate materials, combination of physical and chemical mutagens, mutagenic effects of the new mutagenic agents as proton, ions, synchronous irradiation and space mutation. These techniques and methods for inducing mutations are very valuable to increase inducing mutation efficiency and breeding level

  14. Aberrant brain microRNA target and miRISC gene expression in the anx/anx anorexia mouse model

    DEFF Research Database (Denmark)

    Mercader, Josep M; González, Juan R; Lozano, Juan José

    2012-01-01

    The anorexia mouse model, anx/anx, carries a spontaneous mutation not yet identified and homozygous mutants are characterized by anorexia-cachexia, hyperactivity, and ataxia. In order to test if the microRNA function was altered in these mice, hypothalamus and cortex transcriptomes were evaluated...

  15. Mutation breeding in soybean

    International Nuclear Information System (INIS)

    Baradjanegara, A.A.

    1983-01-01

    In Indonesia, soybean is one of the important crop after rice. It is generally cultivated in the lowlands and rarely in the highlands. Seeds of soybean variety ORBA were treated with various doses of fast neutrons, gamma rays, EMS and NaN 3 with the aims of studying the mutagen effects in M-1 and M-2 generations and also to select mutants adapted to highland conditions. D-50 doses for gamma rays, fast neutrons and EMS were around 23 krad, 2,300 rad, 0.3%, respectively. Much higher chlorophyll mutation frequency was observed in EMS treatment of 0.3%. Seven mutants were shorter and four early mutants matured from 4 to 20 days earlier than the control plants. Two early mutants were quite adaptable in both the low and highlands and produced better yields than the parental material. (author)

  16. Founder Mutations in Xeroderma Pigmentosum

    Science.gov (United States)

    Tamura, Deborah; DiGiovanna, John J.; Kraemer, Kenneth H.

    2012-01-01

    In this issue, Soufir et al. report a founder mutation in the XPC DNA repair gene in 74% of families with xeroderma pigmentosum (XP) in the Maghreb region (Algeria, Morocco, and Tunisia) of northern Africa. These patients have a high frequency of skin cancer. The presence of this founder mutation provides an opportunity for genetic counseling and early diagnosis of XP. PMID:20463673

  17. Mutations causative of familial hypercholesterolaemia

    DEFF Research Database (Denmark)

    Benn, Marianne; Watts, Gerald F; Tybjærg-Hansen, Anne

    2016-01-01

    causing mutations in 98 098 participants from the general population, the Copenhagen General Population Study. METHODS AND RESULTS: We genotyped for LDLR[W23X;W66G;W556S] and APOB[R3500Q] accounting for 38.7% of pathogenic FH mutations in Copenhagen. Clinical FH assessment excluded mutation information......-cholesterol concentration to discriminate between mutation carriers and non-carriers was 4.4 mmol/L. CONCLUSION: Familial hypercholesterolaemia-causing mutations are estimated to occur in 1:217 in the general population and are best identified by a definite or probable phenotypic diagnosis of FH based on the DLCN criteria....... The prevalence of the four FH mutations was 0.18% (1:565), suggesting a total prevalence of FH mutations of 0.46% (1:217). Using the Dutch Lipid Clinic Network (DLCN) criteria, odds ratios for an FH mutation were 439 (95% CI: 170-1 138) for definite FH, 90 (53-152) for probable FH, and 18 (13-25) for possible FH...

  18. MPL mutations in myeloproliferative disorders

    DEFF Research Database (Denmark)

    Beer, Philip A.; Campbell, Peter J.; Scott, Linda M.

    2008-01-01

    Activating mutations of MPL exon 10 have been described in a minority of patients with idiopathic myelofibrosis (IMF) or essential thrombocythemia (ET), but their prevalence and clinical significance are unclear. Here we demonstrate that MPL mutations outside exon 10 are uncommon in platelet c......DNA and identify 4 different exon 10 mutations in granulocyte DNA from a retrospective cohort of 200 patients with ET or IMF. Allele-specific polymerase chain reaction was then used to genotype 776 samples from patients with ET entered into the PT-1 studies. MPL mutations were identified in 8.5% of JAK2 V617F......(-) patients and a single V617F(+) patient. Patients carrying the W515K allele had a significantly higher allele burden than did those with the W515L allele, suggesting a functional difference between the 2 variants. Compared with V617F(+) ET patients, those with MPL mutations displayed lower hemoglobin...

  19. Mutation induction by heavy ions

    Science.gov (United States)

    Kiefer, J.; Stoll, U.; Schneider, E.

    1994-10-01

    Mutation induction by heavy ions is compared in yeast and mammalian cells. Since mutants can only be recovered in survivors the influence of inactivation cross sections has to be taken into account. It is shown that both the size of the sensitive cellular site as well as track structure play an important role. Another parameter which influences the probability of mutation induction is repair: Contrary to naive assumptions primary radiation damage does not directly lead to mutations but requires modification to reconstitute the genetic machinery so that mutants can survive. The molecular structure of mutations was analyzed after exposure to deuterons by amplification with the aid of polymerase chain reaction. The results-although preliminary-demonstrate that even with densely ionizing particles a large fraction does not carry big deletions which suggests that point mutations may also be induced by heavy ions.

  20. Mutation breeding in ornamental plants

    International Nuclear Information System (INIS)

    Datta, S.K.

    1990-01-01

    Full text: Mutation induction produced a large number of new promising varieties in ornamental species. 37 new mutants of Chrysanthemum and 14 of rose have been developed by mutations and released for commercialisation. The mutations in flower colour/shape were detected as chimeras in M 1 V 1 , M 1 V 2 , M 1 V 3 generations. The mutation frequency varied with the cultivar and exposure to gamma rays. Comparative analysis of original cultivars and their respective induced mutants on cytomorphological, anatomical and biochemical characters are being carried out for better understanding of the mechanism involved in the origin and evolution of somatic flower colour/shape mutations. Cytological analysis with reference to chromosomal aberrations, chromosome number, ICV, INV and DNA content gave no differences between the original and mutant cultivars. Analysis of florets/petal pigments by TLC and spectrophotometric methods indicated both qualitative and quantitative changes. (author)

  1. In utero exposure to nanosized carbon black (Printex90) does not induce tandem repeat mutations in female murine germ cells

    DEFF Research Database (Denmark)

    Boisen, Anne Mette Zenner; Shipley, Thomas; Jackson, Petra

    2013-01-01

    Inhalation of particles has been shown to induce mutations in the male germline in mice following both prenatal and adult exposures in several experiments. In contrast, the effects of particles on female germ cell mutagenesis are not well established. Germline mutations are induced during active...... cell division, which occurs during fetal development in females. We investigated the effects of prenatal exposure to carbon black nanoparticles (CB) on induction of mutations in the female mouse germline during fetal development, spanning the critical developmental stages of oogenesis. Pregnant C57BL/6...... mutation rates in the resulting F2 generation were determined from full pedigrees (mother, father, offspring) of F1 female mice (178 CB-exposed and 258 control F2 offspring). ESTR mutation rates in CB-exposed F2 female offspring were not statistically different from those of F2 female control offspring....

  2. BAG3 regulates contractility and Ca2+ homeostasis in adult mouse ventricular myocytes

    OpenAIRE

    Feldman, Arthur M.; Gordon, Jennifer; Wang, JuFang; Song, Jianliang; Zhang, Xue-Qian; Myers, Valerie D.; Tilley, Douglas G.; Gao, Erhe; Hoffman, Nicholas E.; Tomar, Dhanendra; Madesh, Muniswamy; Rabinowitz, Joseph; Koch, Walter J.; Su, Feifei; Khalili, Kamel

    2016-01-01

    Bcl2-associated athanogene 3 (BAG3) is a 575 amino acid anti-apoptotic protein that is constitutively expressed in the heart. BAG3 mutations, including mutations leading to loss of protein, are associated with familial cardiomyopathy. Furthermore, BAG3 levels have been found to be reduced in end-stage non-familial failing myocardium. In contrast to neonatal myocytes in which BAG3 is found in the cytoplasm and involved in protein quality control and apoptosis, in adult mouse left ventricular (...

  3. Biallelic Mutations in MITF Cause Coloboma, Osteopetrosis, Microphthalmia, Macrocephaly, Albinism, and Deafness.

    Science.gov (United States)

    George, Aman; Zand, Dina J; Hufnagel, Robert B; Sharma, Ruchi; Sergeev, Yuri V; Legare, Janet M; Rice, Gregory M; Scott Schwoerer, Jessica A; Rius, Mariana; Tetri, Laura; Gamm, David M; Bharti, Kapil; Brooks, Brian P

    2016-12-01

    Human MITF is, by convention, called the "microphthalmia-associated transcription factor" because of previously published seminal mouse genetic studies; however, mutations in MITF have never been associated with microphthalmia in humans. Here, we describe a syndrome that we term COMMAD, characterized by coloboma, osteopetrosis, microphthalmia, macrocephaly, albinism, and deafness. COMMAD is associated with biallelic MITF mutant alleles and hence suggests a role for MITF in regulating processes such as optic-fissure closure and bone development or homeostasis, which go beyond what is usually seen in individuals carrying monoallelic MITF mutations. Copyright © 2016. Published by Elsevier Inc.

  4. Coffin-Siris syndrome and cardiac anomaly with a novel SOX11 mutation.

    Science.gov (United States)

    Okamoto, Nobuhiko; Ehara, Eiji; Tsurusaki, Yoshinori; Miyake, Noriko; Matsumoto, Naomichi

    2017-08-08

    Coffin-Siris syndrome (CSS) is characterized by growth deficiency, intellectual disability, microcephaly, dysmorphic features, and hypoplastic nails of the fifth fingers and/or toes. Variants in the genes encoding subunits of the BAF complex as well as in SOX11 encoding the transcriptional factor under the control of BAF complex are associated with CSS. We report a new patient with a novel SOX11 mutation. He showed the CSS phenotype and coarctation of the aorta. Sox11 is known to be associated with cardiac outflow development in mouse studies. Therefore, cardiac anomalies might be an important complication in patients with SOX11 mutations. © 2017 Japanese Teratology Society.

  5. Mutational meltdown in laboratory yeast populations

    NARCIS (Netherlands)

    Zeyl, C.; Mizesko, M.; Visser, de J.A.G.M.

    2001-01-01

    In small or repeatedly bottlenecked populations, mutations are expected to accumulate by genetic drift, causing fitness declines. In mutational meltdown models, such fitness declines further reduce population size, thus accelerating additional mutation accumulation and leading to extinction. Because

  6. A mutation in the mitochondrial fission gene Dnm1l leads to cardiomyopathy.

    Directory of Open Access Journals (Sweden)

    Houman Ashrafian

    2010-06-01

    Full Text Available Mutations in a number of genes have been linked to inherited dilated cardiomyopathy (DCM. However, such mutations account for only a small proportion of the clinical cases emphasising the need for alternative discovery approaches to uncovering novel pathogenic mutations in hitherto unidentified pathways. Accordingly, as part of a large-scale N-ethyl-N-nitrosourea mutagenesis screen, we identified a mouse mutant, Python, which develops DCM. We demonstrate that the Python phenotype is attributable to a dominant fully penetrant mutation in the dynamin-1-like (Dnm1l gene, which has been shown to be critical for mitochondrial fission. The C452F mutation is in a highly conserved region of the M domain of Dnm1l that alters protein interactions in a yeast two-hybrid system, suggesting that the mutation might alter intramolecular interactions within the Dnm1l monomer. Heterozygous Python fibroblasts exhibit abnormal mitochondria and peroxisomes. Homozygosity for the mutation results in the death of embryos midway though gestation. Heterozygous Python hearts show reduced levels of mitochondria enzyme complexes and suffer from cardiac ATP depletion. The resulting energy deficiency may contribute to cardiomyopathy. This is the first demonstration that a defect in a gene involved in mitochondrial remodelling can result in cardiomyopathy, showing that the function of this gene is needed for the maintenance of normal cellular function in a relatively tissue-specific manner. This disease model attests to the importance of mitochondrial remodelling in the heart; similar defects might underlie human heart muscle disease.

  7. KRAS and BRAF Mutation Detection: Is Immunohistochemistry a Possible Alternative to Molecular Biology in Colorectal Cancer?

    Directory of Open Access Journals (Sweden)

    Nicolas Piton

    2015-01-01

    Full Text Available KRAS genotyping is mandatory in metastatic colorectal cancer treatment prior to undertaking antiepidermal growth factor receptor (EGFR monoclonal antibody therapy. BRAF V600E mutation is often present in colorectal carcinoma with CpG island methylator phenotype and microsatellite instability. Currently, KRAS and BRAF evaluation is based on molecular biology techniques such as SNaPshot or Sanger sequencing. As molecular testing is performed on formalin-fixed paraffin-embedded (FFPE samples, immunodetection would appear to be an attractive alternative for detecting mutations. Thus, our objective was to assess the validity of KRAS and BRAF immunodetection of mutations compared with the genotyping reference method in colorectal adenocarcinoma. KRAS and BRAF genotyping was assessed by SNaPshot. A rabbit anti-human KRAS polyclonal antibody was tested on 33 FFPE colorectal tumor samples with known KRAS status. Additionally, a mouse anti-human BRAF monoclonal antibody was tested on 30 FFPE tumor samples with known BRAF status. KRAS immunostaining demonstrated both poor sensitivity (27% and specificity (64% in detecting KRAS mutation. Conversely, BRAF immunohistochemistry showed perfect sensitivity (100% and specificity (100% in detecting V600E mutation. Although molecular biology remains the reference method for detecting KRAS mutation, immunohistochemistry could be an attractive method for detecting BRAF V600E mutation in colorectal cancer.

  8. KRAS and BRAF Mutation Detection: Is Immunohistochemistry a Possible Alternative to Molecular Biology in Colorectal Cancer?

    Science.gov (United States)

    Borrini, Francesco; Bolognese, Antonio; Lamy, Aude; Sabourin, Jean-Christophe

    2015-01-01

    KRAS genotyping is mandatory in metastatic colorectal cancer treatment prior to undertaking antiepidermal growth factor receptor (EGFR) monoclonal antibody therapy. BRAF V600E mutation is often present in colorectal carcinoma with CpG island methylator phenotype and microsatellite instability. Currently, KRAS and BRAF evaluation is based on molecular biology techniques such as SNaPshot or Sanger sequencing. As molecular testing is performed on formalin-fixed paraffin-embedded (FFPE) samples, immunodetection would appear to be an attractive alternative for detecting mutations. Thus, our objective was to assess the validity of KRAS and BRAF immunodetection of mutations compared with the genotyping reference method in colorectal adenocarcinoma. KRAS and BRAF genotyping was assessed by SNaPshot. A rabbit anti-human KRAS polyclonal antibody was tested on 33 FFPE colorectal tumor samples with known KRAS status. Additionally, a mouse anti-human BRAF monoclonal antibody was tested on 30 FFPE tumor samples with known BRAF status. KRAS immunostaining demonstrated both poor sensitivity (27%) and specificity (64%) in detecting KRAS mutation. Conversely, BRAF immunohistochemistry showed perfect sensitivity (100%) and specificity (100%) in detecting V600E mutation. Although molecular biology remains the reference method for detecting KRAS mutation, immunohistochemistry could be an attractive method for detecting BRAF V600E mutation in colorectal cancer. PMID:25983749

  9. Retrospective genetic study of germinative mutations in Str loci of individuals potentially exposed to ionizing radiation

    International Nuclear Information System (INIS)

    Costa, Emilia Oliveira Alves

    2010-01-01

    The Brazilian radiological accident that occurred in 1987, in Goiania, it was a terrible radiation episode. As a consequence, hundreds of people were contaminated due to the Cesium-137 radiation. Recently, many studies had shown that genome instabilities, such as, mutations, chromosomal aberrations, micronuclei formation and micro satellite instability and a delay on cellular death are usually reported on mammal cells exposed to ionizing radiation, being considered as a manly risk to humans. Mutations can be spontaneous, and the occurrence is dependent on the organism, or, induced, being associated to mutagenic exposition. Ionizing radiations are an example of physical and mutagenic agents that could harm the cell repair and could cause the development of many types of cancer. The evaluation of the biological effects of the ionizing radiation, in somatic and germ line cells, with a consequent determination of the radio-induced mutations, it is extremely important to estimate the genetic risks, manly in population exposed to radiation. The analyses of repetitive DNA sequences have been demonstrated that such sequences are prone to high rates of spontaneous mutations. The minisatellites and microsatellites have been used to demonstrate the induction of germ line mutation rates on mouse, humans, among others organisms. The aim of the present study was to analyze the frequency of microsatellite alterations to determine the mutation rates occurred in germ cells of the parents exposed to the ionizing radiation of the Cesium-137. The studied group was constitute of 10 families of individuals accidentally exposed to Cesium-137 and by the control group constituted by 645 healthy individuals who carried out paternity tests on 2009. We found only one mutation of paternal origin in the D8S1179 locus on the exposed group, being the mutation rate of 0.002. In the control group, we found 01 mutation on D16S539 loei and on D3S1358; 02 mutations on Penta E loeus; 04 mutations on D

  10. Characterisation of a C1qtnf5 Ser163Arg knock-in mouse model of late-onset retinal macular degeneration.

    Directory of Open Access Journals (Sweden)

    Xinhua Shu

    Full Text Available A single founder mutation resulting in a Ser163Arg substitution in the C1QTNF5 gene product causes autosomal dominant late-onset retinal macular degeneration (L-ORMD in humans, which has clinical and pathological features resembling age-related macular degeneration. We generated and characterised a mouse "knock-in" model carrying the Ser163Arg mutation in the orthologous murine C1qtnf5 gene by site-directed mutagenesis and homologous recombination into mouse embryonic stem cells. Biochemical, immunological, electron microscopic, fundus autofluorescence, electroretinography and laser photocoagulation analyses were used to characterise the mouse model. Heterozygous and homozygous knock-in mice showed no significant abnormality in any of the above measures at time points up to 2 years. This result contrasts with another C1qtnf5 Ser163Arg knock-in mouse which showed most of the features of L-ORMD but differed in genetic background and targeting construct.

  11. Functional significance of SRJ domain mutations in CITED2.

    Directory of Open Access Journals (Sweden)

    Chiann-mun Chen

    Full Text Available CITED2 is a transcriptional co-activator with 3 conserved domains shared with other CITED family members and a unique Serine-Glycine Rich Junction (SRJ that is highly conserved in placental mammals. Loss of Cited2 in mice results in cardiac and aortic arch malformations, adrenal agenesis, neural tube and placental defects, and partially penetrant defects in left-right patterning. By screening 1126 sporadic congenital heart disease (CHD cases and 1227 controls, we identified 19 variants, including 5 unique non-synonymous sequence variations (N62S, R92G, T166N, G180-A187del and A187T in patients. Many of the CHD-specific variants identified in this and previous studies cluster in the SRJ domain. Transient transfection experiments show that T166N mutation impairs TFAP2 co-activation function and ES cell proliferation. We find that CITED2 is phosphorylated by MAPK1 in vitro at T166, and that MAPK1 activation enhances the coactivation function of CITED2 but not of CITED2-T166N. In order to investigate the functional significance in vivo, we generated a T166N mutation of mouse Cited2. We also used PhiC31 integrase-mediated cassette exchange to generate a Cited2 knock-in allele replacing the mouse Cited2 coding sequence with human CITED2 and with a mutant form deleting the entire SRJ domain. Mouse embryos expressing only CITED2-T166N or CITED2-SRJ-deleted alleles surprisingly show no morphological abnormalities, and mice are viable and fertile. These results indicate that the SRJ domain is dispensable for these functions of CITED2 in mice and that mutations clustering in the SRJ region are unlikely to be the sole cause of the malformations observed in patients with sporadic CHD. Our results also suggest that coding sequence mutations observed in case-control studies need validation using in vivo models and that predictions based on structural conservation and in vitro functional assays, or even in vivo global loss of function models, may be

  12. Three loci on mouse chromosome 5 and 10 modulate sex determination in XX Ods/+ mice.

    Science.gov (United States)

    Poirier, Christophe; Moran, Jennifer L; Kovanci, Ertug; Petit, Deborah C; Beier, David R; Bishop, Colin E

    2007-07-01

    In mouse, XY embryos are committed to the male sex determination pathway after the transient expression of the Y-linked Sry gene in the Sertoli cell lineage between 10.5 and 12.5 dpc. In the C57BL/6J strain, male sex determination program can be modulated by some autosomal genes. The C57BL/6J alleles at these autosomal loci can antagonize male sex determination in combination with specific Sry alleles. In this report, the authors have identified an effect of these C57BL/6J specific alleles in combination with a mutated Sox9 allele, Sox9(Ods). Authors report the mapping of three of these genetic loci on mouse chromosome 5 and 10 in a backcross of the Ods mutation to the C57BL/6J background. Our study confirms the importance of the strain C57BL/6J for the investigation of the genetic mechanisms that control sex determination.

  13. Minisequencing mitochondrial DNA pathogenic mutations

    Directory of Open Access Journals (Sweden)

    Carracedo Ángel

    2008-04-01

    Full Text Available Abstract Background There are a number of well-known mutations responsible of common mitochondrial DNA (mtDNA diseases. In order to overcome technical problems related to the analysis of complete mtDNA genomes, a variety of different techniques have been proposed that allow the screening of coding region pathogenic mutations. Methods We here propose a minisequencing assay for the analysis of mtDNA mutations. In a single reaction, we interrogate a total of 25 pathogenic mutations distributed all around the whole mtDNA genome in a sample of patients suspected for mtDNA disease. Results We have detected 11 causal homoplasmic mutations in patients suspected for Leber disease, which were further confirmed by standard automatic sequencing. Mutations m.11778G>A and m.14484T>C occur at higher frequency than expected by change in the Galician (northwest Spain patients carrying haplogroup J lineages (Fisher's Exact test, P-value Conclusion We here developed a minisequencing genotyping method for the screening of the most common pathogenic mtDNA mutations which is simple, fast, and low-cost. The technique is robust and reproducible and can easily be implemented in standard clinical laboratories.

  14. Mutation breeding in malting barley

    Energy Technology Data Exchange (ETDEWEB)

    Hiraki, Makoto; Sanada, Matsuyoshi

    1984-03-01

    The released varieties of malting barley through mutation breeding is more than ten in number, including foreign varieties. In Japan four varieties has been released so far. We started mutation breeding in 1956 together with cross breeding that we employed before. Until now, Gamma 4, Amagi Nijo 1 and Fuji Nijo 2 have been produced from the direct use of induced mutations and Nirasaki Nijo 8 from the indirect use of them. Mutation breeding has been used mainly in the partial improvement of agronomic characteristics since the selection for malting quality was very complicated. As the variety bred by induced mutation is usually equivalent to the original variety in malting quality, both this new variety and the original one could be cultivated in the same area without any problem on later malt production. Particularly when one farmer cultivates barley in an extensive acreage, he can harvest at the best time according to the different maturing time of each variety. From these points of view, mutation breeding is an efficient tool in malting barley breeding. Mutagens we have used so far are X-rays, ..gamma..-rays, neutron and chemicals such as dES. From our experience in selection, the low dose of radiation and chemical mutagens are more effective in selection of point mutation than the high dose of radiation which tends to produce many abnormal but few practical mutants. (author).

  15. Overexpression of mouse TTF-2 gene causes cleft palate

    Science.gov (United States)

    Meng, Tian; Shi, Jia-Yu; Wu, Min; Wang, Yan; Li, Ling; Liu, Yan; Zheng, Qian; Huang, Lei; Shi, Bing

    2012-01-01

    In humans, mutations of the gene encoding for thyroid transcription factor-2 (TTF-2 or FOXE1) result in Bamforth syndrome. Bamforth syndrome is characterized by agenesis, cleft palate, spiky hair and choanal atresia. TTF-2 null mice (TTF-2−/−) also exhibit cleft palate, suggesting its involvement in the palatogenesis. However, the molecular pathology and genetic regulation by TTF2 remain largely unknown. In the present study, the recombinant expression vector pBROAD3-TTF-2 containing the promoter of the mouse ROSA26 gene was created to form the structural gene of mouse TTF-2 and was microinjected into the male pronuclei of fertilized ova. Sequence analysis confirmed that the TTF-2 transgenic mouse model was established successfully. The transgenic mice displayed a phenotype of cleft palate. In addition, we found that TTF-2 was highly expressed in the medial edge epithelium (MEE) from the embryonic day 12.5 (E12.5) to E14.5 in TTF-2 transgenic mice. These observations suggest that overexpression of TTF-2 during palatogenesis may contribute to formation of cleft palate. PMID:22304410

  16. Introduction of the human proα1(I) collagen gene into proα1(I)-deficient Mov-13 mouse cells leads to formation of functional mouse-human hybrid type I collagen

    International Nuclear Information System (INIS)

    Schnieke, A.; Dziadek, M.; Bateman, J.; Mascara, T.; Harbers, K.; Gelinas, R.; Jaenisch, R.

    1987-01-01

    The Mov-13 mouse strain carries a retroviral insertion in the proα1(I) collagen gene that prevents transcription of the gene. Cell lines derived from homozygous embryos do not express type I collagen although normal amounts of proα2 mRNA are synthesized. The authors have introduced genomic clones of either the human or mouse proα1(I) collagen gene into homozygous cell lines to assess whether the human or mouse proα1(I) chains can associate with the endogenous mouse proα2(I) chain to form stable type I collagen. The human gene under control of the simian virus 40 promoter was efficiently transcribed in the transfected cells. Protein analyses revealed that stable heterotrimers consisting of two human α1 chains and one mouse α2 chain were formed and that type I collagen was secreted by the transfected cells at normal rates. However, the electrophoretic migration of both α1(I) and α2(I) chains in the human-mouse hybrid molecules were retarded, compared to the α(I) chains in control mouse cells. Inhibition of the posttranslational hydroxylation of lysine and proline resulted in comigration of human and mouse α1 and α2 chains, suggesting that increased posttranslational modification caused the altered electrophoretic migration in the human-mouse hybrid molecules. Amino acid sequence differences between the mouse and human α chains may interfere with the normal rate of helix formation and increase the degree of posttranslational modifications similar to those observed in patients with lethal perinatal osteogenesis imperfecta. The Mov-13 mouse system should allow the authors to study the effect specific mutations introduced in transfected proα1(I) genes have on the synthesis, assembly, and function of collagen I

  17. HNPCC: Six new pathogenic mutations

    Directory of Open Access Journals (Sweden)

    Epplen Joerg T

    2004-06-01

    Full Text Available Abstract Background Hereditary non-polyposis colorectal cancer (HNPCC is an autosomal dominant disease with a high risk for colorectal and endometrial cancer caused by germline mutations in DNA mismatch-repair genes (MMR. HNPCC accounts for approximately 2 to 5% of all colorectal cancers. Here we present 6 novel mutations in the DNA mismatch-repair genes MLH1, MSH2 and MSH6. Methods Patients with clinical diagnosis of HNPCC were counselled. Tumor specimen were analysed for microsatellite instability and immunohistochemistry for MLH1, MSH2 and MSH6 protein was performed. If one of these proteins was not detectable in the tumor mutation analysis of the corresponding gene was carried out. Results We identified 6 frameshift mutations (2 in MLH1, 3 in MSH2, 1 in MSH6 resulting in a premature stop: two mutations in MLH1 (c.2198_2199insAACA [p.N733fsX745], c.2076_2077delTG [p.G693fsX702], three mutations in MSH2 (c.810_811delGT [p.C271fsX282], c.763_766delAGTGinsTT [p.F255fsX282], c.873_876delGACT [p.L292fsX298] and one mutation in MSH6 (c.1421_1422dupTG [p.C475fsX480]. All six tumors tested for microsatellite instability showed high levels of microsatellite instability (MSI-H. Conclusions HNPCC in families with MSH6 germline mutations may show an age of onset that is comparable to this of patients with MLH1 and MSH2 mutations.

  18. Cerebellar Expression of the Neurotrophin Receptor p75 in Naked-Ataxia Mutant Mouse

    Directory of Open Access Journals (Sweden)

    Maryam Rahimi Balaei

    2016-01-01

    Full Text Available Spontaneous mutation in the lysosomal acid phosphatase 2 (Acp2 mouse (nax—naked-ataxia mutant mouse correlates with severe cerebellar defects including ataxia, reduced size and abnormal lobulation as well as Purkinje cell (Pc degeneration. Loss of Pcs in the nax cerebellum is compartmentalized and harmonized to the classic pattern of gene expression of the cerebellum in the wild type mouse. Usually, degeneration starts in the anterior and posterior zones and continues to the central and nodular zones of cerebellum. Studies have suggested that the p75 neurotrophin receptor (NTR plays a role in Pc degeneration; thus, in this study, we investigated the p75NTR pattern and protein expression in the cerebellum of the nax mutant mouse. Despite massive Pc degeneration that was observed in the nax mouse cerebellum, p75NTR pattern expression was similar to the HSP25 pattern in nax mice and comparable with wild type sibling cerebellum. In addition, immunoblot analysis of p75NTR protein expression did not show any significant difference between nax and wild type sibling (p > 0.5. In comparison with wild type counterparts, p75NTR pattern expression is aligned with the fundamental cytoarchitecture organization of the cerebellum and is unchanged in the nax mouse cerebellum despite the severe neurodevelopmental disorder accompanied with Pc degeneration.

  19. Mouse ENU Mutagenesis to Understand Immunity to Infection: Methods, Selected Examples, and Perspectives

    Directory of Open Access Journals (Sweden)

    Grégory Caignard

    2014-09-01

    Full Text Available Infectious diseases are responsible for over 25% of deaths globally, but many more individuals are exposed to deadly pathogens. The outcome of infection results from a set of diverse factors including pathogen virulence factors, the environment, and the genetic make-up of the host. The completion of the human reference genome sequence in 2004 along with technological advances have tremendously accelerated and renovated the tools to study the genetic etiology of infectious diseases in humans and its best characterized mammalian model, the mouse. Advancements in mouse genomic resources have accelerated genome-wide functional approaches, such as gene-driven and phenotype-driven mutagenesis, bringing to the fore the use of mouse models that reproduce accurately many aspects of the pathogenesis of human infectious diseases. Treatment with the mutagen N-ethyl-N-nitrosourea (ENU has become the most popular phenotype-driven approach. Our team and others have employed mouse ENU mutagenesis to identify host genes that directly impact susceptibility to pathogens of global significance. In this review, we first describe the strategies and tools used in mouse genetics to understand immunity to infection with special emphasis on chemical mutagenesis of the mouse germ-line together with current strategies to efficiently identify functional mutations using next generation sequencing. Then, we highlight illustrative examples of genes, proteins, and cellular signatures that have been revealed by ENU screens and have been shown to be involved in susceptibility or resistance to infectious diseases caused by parasites, bacteria, and viruses.

  20. Factor V Leiden Mutation and PT 20210 Mutation Test

    Science.gov (United States)

    ... Disorders Fibromyalgia Food and Waterborne Illness Fungal Infections Gout Graves Disease Guillain-Barré Syndrome Hashimoto Thyroiditis Heart ... Tested? To determine whether you have an inherited gene mutation that increases your risk of developing a ...

  1. Neonatal disease environment limits the efficacy of retinal transplantation in the LCA8 mouse model

    OpenAIRE

    Cho, Seo-Hee; Song, Ji Yun; Shin, Jinyeon; Kim, Seonhee

    2016-01-01

    Background Mutations of Crb1 gene cause irreversible and incurable visual impairment in humans. This study aims to use an LCA8-like mouse model to identify host-mediated responses that might interfere with survival, retinal integration and differentiation of grafted cells during neonatal cell therapy. Methods Mixed retinal donor cells (1?~?2???104) isolated from neural retinas of neonatal eGFP transgenic mice were injected into the subretinal space of LCA8-like model neonatal mice. Markers of...

  2. The phenotype of FancB-mutant mouse embryonic stem cells

    OpenAIRE

    Kim, Tae Moon; Ko, Jun Ho; Choi, Yong Jun; Hu, Lingchuan; Hasty, Paul

    2011-01-01

    Fanconi anemia (FA) is a rare autosomal recessive disease characterized by bone marrow failure, developmental defects and cancer. There are multiple FA genes that enable the repair of interstrand crosslinks (ICLs) in coordination with a variety of other DNA repair pathways in a way that is poorly understood. Here we present the phenotype of mouse embryonic stem (ES) cells mutated for FancB. We found FancB-mutant cells exhibited reduced cellular proliferation, hypersensitivity to the crosslink...

  3. Radiation mutation breeding

    International Nuclear Information System (INIS)

    Song, Hi Sup; Kim, Jae Sung; Kim, Jin Kyu; Shin, In Chul; Lim, Young Taek

    1998-04-01

    In order to develop an advanced technical knowledge for the selection of better mutants, some of the crops were irradiated and the mutation rate, the survival rate and the method for selction of a mutant were studied. Furthermore, this study aimed to obtain basic data applicable to the development of genetic resources by evaluation and analysis the specific character for selection of the superior mutant and its plant breeding. 1. selection of the mutant with a superior resistance against environment in the principal crops 1) New varieties of mutant rices such as Wonpyeongbyeo, Wongwangbyeo, Winmibyeo, and heogseon chalbeyeo (sticky forma) were registered in the national variety list and made an application to crop variety protection right. They are under review now. 2) We also keep on studying on the number of a grain of 8 lines of excellent mutant rice for the purpose of improvement of breeding . 3) We selected 3 lines which have a resistance to pod and stem blight in large soybean, 31 lines with small grain size and higher yield, 112 lines of soybean of cooking, 7 lines of low lipoxygenase content, and 12 lines with decreased phytic acid content by 20 % compared to the previous level. 2. Selection of advanced Mugunwha (Rose of Sharon) mutant 1) Bagseul, a new variety of mutant, was developed and 30 plantlets of it are being proliferated. 2) Fifty-three lines of a mutant having a various morphologies were selected

  4. Radiation mutation breeding

    Energy Technology Data Exchange (ETDEWEB)

    Song, Hi Sup; Kim, Jae Sung; Kim, Jin Kyu; Shin, In Chul; Lim, Young Taek

    1998-04-01

    In order to develop an advanced technical knowledge for the selection of better mutants, some of the crops were irradiated and the mutation rate, the survival rate and the method for selction of a mutant were studied. Furthermore, this study aimed to obtain basic data applicable to the development of genetic resources by evaluation and analysis the specific character for selection of the superior mutant and its plant breeding. 1. selection of the mutant with a superior resistance against environment in the principal crops 1) New varieties of mutant rices such as Wonpyeongbyeo, Wongwangbyeo, Winmibyeo, and heogseon chalbeyeo (sticky forma) were registered in the national variety list and made an application to crop variety protection right. They are under review now. 2) We also keep on studying on the number of a grain of 8 lines of excellent mutant rice for the purpose of improvement of breeding . 3) We selected 3 lines which have a resistance to pod and stem blight in large soybean, 31 lines with small grain size and higher yield, 112 lines of soybean of cooking, 7 lines of low lipoxygenase content, and 12 lines with decreased phytic acid content by 20 % compared to the previous level. 2. Selection of advanced Mugunwha (Rose of Sharon) mutant 1) Bagseul, a new variety of mutant, was developed and 30 plantlets of it are being proliferated. 2) Fifty-three lines of a mutant having a various morphologies were selected.

  5. Mutation breeding in wheat

    International Nuclear Information System (INIS)

    Amer, I.M.

    2002-01-01

    The study aims to improve the productivity of wheat by using gamma ray (100 - 600 Gy) in mutation breading. Five local varieties were used and the program continued for the Sakha 69 for seven generations. Seeds irradiated with 600 Gy were not germinated in the field, while low doses (100-150 Gy) stimulated the root growth and spike length. The higher doses caused gradual decrease of growth with differences in varieties response. in the second generation, a genetic differences were noticed in most varieties using doses of 100-300 Gy, and the dispike was disappeared when 250 Gy was used. 79 plants from irradiated Sakha 69 were selected according to spike length and the number of grains and planted with the control to test the third generation. differences between the varieties were noticed and 8 mutants with high productivity were selected and evaluated in the fourth and fifth generations with the local variety. The mutants improve the productivity and in particular the mutants Nos.. (19-1), (14-3), and (30-2). The experiment showed the relation between the planting sites and the mutants in the sixth and seven generations

  6. Induced mutations in castor

    International Nuclear Information System (INIS)

    Ganesan, K.; Javad Hussain, H.S.; Vindhiyavarman, P.

    2001-01-01

    Castor (Ricinus communis L.) is an important oilseed crop in India. To create variability mutations were induced in two cultivars 'TMV5' (maturing in 130-140 days) and 'CO1' (perennial type). Gamma rays and diethyl sulphate and ethidium bromide were used for seed treatment. Ten doses, from 100 to 1000 Gy were employed. For chemical mutagenesis five concentrations of mutagenes from 10 to 50 mM were tried. No economic mutants could be isolated after treatment with the chemical mutagens. The following economic mutants were identified in the dose 300 Gy of gamma rays. Annual types from perennial CO 1 castor CO 1 is a perennial variety (8-10 years) with bold seeds (100 seed weight 90 g) and high oil content (57%). Twenty-one lines were isolated with annual types (160-180 days) with high yield potential as well as bold seeds and high oil content. These mutants, identified in M 3 generation were bred true in subsequent generations up to M 8 generation. Critical evaluation of the mutants in yield evaluation trials is in progress

  7. The circling mutant Pcdh15roda is a new mouse model for hearing loss.

    Science.gov (United States)

    Torres, Adriana Amorim; Rzadzinska, Agnieszka K; Ribeiro, Andrea Frozino; Silva, Daniel Almeida da Silva E; Guénet, Jean-Louis; Massironi, Sílvia Maria Gomes; Godard, Ana Lúcia Brunialti

    2013-01-01

    Mouse mutagenesis is a key tool for studying gene function and several mutant alleles have been described and constitute mouse models for human hereditary diseases. Genetic hearing loss represents over 50% of all hearing loss cases in children and, due to the heterogeneity of the disorder, there is still a demand for the isolation and characterization of new genes and alleles. Here we report phenotypic and molecular characterization of a new mouse model for hereditary hearing loss. The mutant rodador, isolated by Massironi and colleagues in 2006, presents an autosomal recessive disorder characterized by deafness and balance dysfunction associated with abnormal stereocilia in the inner ear. The mutation was mapped to mouse chromosome 10, and characterization of the gene Pcdh15 revealed an AT-to-GC transition in intron 23 of mutant animals. The alteration led to the switch of a dinucleotide ApA for ApG, creating a novel intronic acceptor splice site, which leads to incorporation of eight intronic bases into the processed mRNA and alteration of the downstream reading frame. In silico analysis indicated that the mutated protein is truncated and lacks two cadherin domains, and the transmembrane and cytoplasmic domains. Real Time PCR analyses revealed a significantly reduced Pcdh15 mRNA level in the brain of mutant mice, which might be due to the mechanism of non-sense mediated decay. In man, mutations in the orthologue PCDH15 cause non-syndromic deafness and Usher Syndrome Type 1F, a genetic disorder characterized by hearing loss and retinitis pigmentosa. Rodador mouse constitutes a new model for studying deafness in these conditions and may help in the comprehension of the pathogeneses of the disease, as well as of the mechanisms involved in the morphogenesis and function of inner ear stereocilia. This is a new ENU-induced allele and the first isolated in a BALB/c background. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Influenza A virus NS1 gene mutations F103L and M106I increase replication and virulence

    Directory of Open Access Journals (Sweden)

    Ping Jihui

    2011-01-01

    Full Text Available Abstract Background To understand the evolutionary steps required for a virus to become virulent in a new host, a human influenza A virus (IAV, A/Hong Kong/1/68(H3N2 (HK-wt, was adapted to increased virulence in the mouse. Among eleven mutations selected in the NS1 gene, two mutations F103L and M106I had been previously detected in the highly virulent human H5N1 isolate, A/HK/156/97, suggesting a role for these mutations in virulence in mice and humans. Results To determine the selective advantage of these mutations, reverse genetics was used to rescue viruses containing each of the NS1 mouse adapted mutations into viruses possessing the HK-wt NS1 gene on the A/PR/8/34 genetic backbone. Both F103L and M106I NS1 mutations significantly enhanced growth in vitro (mouse and canine cells and in vivo (BALB/c mouse lungs as well as enhanced virulence in the mouse. Only the M106I NS1 mutation enhanced growth in human cells. Furthermore, these NS1 mutations enhanced early viral protein synthesis in MDCK cells and showed an increased ability to replicate in mouse interferon β (IFN-β pre-treated mouse cells relative to rPR8-HK-NS-wt NS1. The double mutant, rPR8-HK-NS-F103L + M106I, demonstrated growth attenuation late in infection due to increased IFN-β induction in mouse cells. We then generated a rPR8 virus possessing the A/HK/156/97 NS gene that possesses 103L + 106I, and then rescued the L103F + I106M mutant. The 103L + 106I mutations increased virulence by >10 fold in BALB/c mice. We also inserted the avian A/Ck/Beijing/1/95 NS1 gene (the source lineage of the A/HK/156/97 NS1 gene that possesses 103L + 106I, onto the A/WSN/33 backbone and then generated the L103F + I106M mutant. None of the H5N1 and H9N2 NS containing viruses resulted in increased IFN-β induction. The rWSN-A/Ck/Beijing/1/95-NS1 gene possessing 103L and 106I demonstrated 100 fold enhanced growth and >10 fold enhanced virulence that was associated with increased tropism for lung

  9. A mouse model for inherited renal fibrosis associated with endoplasmic reticulum stress

    Directory of Open Access Journals (Sweden)

    Sian E. Piret

    2017-06-01

    Full Text Available Renal fibrosis is a common feature of renal failure resulting from multiple etiologies, including diabetic nephropathy, hypertension and inherited renal disorders. However, the mechanisms of renal fibrosis are incompletely understood and we therefore explored these by establishing a mouse model for a renal tubular disorder, referred to as autosomal dominant tubulointerstitial kidney disease (ADTKD due to missense uromodulin (UMOD mutations (ADTKD-UMOD. ADTKD-UMOD, which is associated with retention of mutant uromodulin in the endoplasmic reticulum (ER of renal thick ascending limb cells, is characterized by hyperuricemia, interstitial fibrosis, inflammation and renal failure, and we used targeted homologous recombination to generate a knock-in mouse model with an ADTKD-causing missense cysteine to arginine uromodulin mutation (C125R. Heterozygous and homozygous mutant mice developed reduced uric acid excretion, renal fibrosis, immune cell infiltration and progressive renal failure, with decreased maturation and excretion of uromodulin, due to its retention in the ER. The ER stress marker 78 kDa glucose-regulated protein (GRP78 was elevated in cells expressing mutant uromodulin in heterozygous and homozygous mutant mice, and this was accompanied, both in vivo and ex vivo, by upregulation of two unfolded protein response pathways in primary thick ascending limb cells from homozygous mutant mice. However, this did not lead to an increase in apoptosis in vivo. Thus, we have developed a novel mouse model for renal fibrosis, which will be a valuable resource to decipher the mechanisms linking uromodulin mutations with ER stress and renal fibrosis.

  10. Human germline hedgehog pathway mutations predispose to fatty liver.

    Science.gov (United States)

    Guillen-Sacoto, Maria J; Martinez, Ariel F; Abe, Yu; Kruszka, Paul; Weiss, Karin; Everson, Joshua L; Bataller, Ramon; Kleiner, David E; Ward, Jerrold M; Sulik, Kathleen K; Lipinski, Robert J; Solomon, Benjamin D; Muenke, Maximilian

    2017-10-01

    Non-alcoholic fatty liver disease (NAFLD) is the most common form of liver disease. Activation of hedgehog (Hh) signaling has been implicated in the progression of NAFLD and proposed as a therapeutic target; however, the effects of Hh signaling inhibition have not been studied in humans with germline mutations that affect this pathway. Patients with holoprosencephaly (HPE), a disorder associated with germline mutations disrupting Sonic hedgehog (SHH) signaling, were clinically evaluated for NAFLD. A combined mouse model of Hh signaling attenuation (Gli2 heterozygous null: Gli2 +/- ) and diet-induced NAFLD was used to examine aspects of NAFLD and hepatic gene expression profiles, including molecular markers of hepatic fibrosis and inflammation. Patients with HPE had a higher prevalence of liver steatosis compared to the general population, independent of obesity. Exposure of Gli2 +/- mice to fatty liver-inducing diets resulted in increased liver steatosis compared to wild-type mice. Similar to humans, this effect was independent of obesity in the mutant mice and was associated with decreased expression of pro-fibrotic and pro-inflammatory genes, and increased expression of PPARγ, a potent anti-fibrogenic and anti-inflammatory regulator. Interestingly, tumor suppressors p53 and p16INK4 were found to be downregulated in the Gli2 +/- mice exposed to a high-fat diet. Our results indicate that germline mutations disrupting Hh signaling promotes liver steatosis, independent of obesity, with reduced fibrosis. While Hh signaling inhibition has been associated with a better NAFLD prognosis, further studies are required to evaluate the long-term effects of mutations affecting this pathway. Lay summary: Non-alcoholic fatty liver disease (NAFLD) is characterized by excess fat deposition in the liver predominantly due to high calorie intake and a sedentary lifestyle. NAFLD progression is usually accompanied by activation of the Sonic hedgehog (SHH) pathway leading to fibrous

  11. Leu452His mutation in lipoprotein lipase gene transfer associated with hypertriglyceridemia in mice in vivo.

    Directory of Open Access Journals (Sweden)

    Kaiyue Sun

    Full Text Available Mutated mouse lipoprotein lipase (LPL containing a leucine (L to histidine (H substitution at position 452 was transferred into mouse liver by hydrodynamics-based gene delivery (HD. Mutated-LPL (MLPL gene transfer significantly increased the concentrations of plasma MLPL and triglyceride (TG but significantly decreased the activity of plasma LPL. Moreover, the gene transfer caused adiposis hepatica and significantly increased TG content in mouse liver. To understand the effects of MLPL gene transfer on energy metabolism, we investigated the expression of key functional genes related to energy metabolism in the liver, epididymal fat, and leg muscles. The mRNA contents of hormone-sensitive lipase (HSL, adipose triglyceride lipase (ATGL, fatty acid-binding protein (FABP, and uncoupling protein (UCP were found to be significantly reduced. Furthermore, we investigated the mechanism by which MLPL gene transfer affected fat deposition in the liver, fat tissue, and muscle. The gene expression and protein levels of forkhead Box O3 (FOXO3, AMP-activated protein kinase (AMPK, and peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1α were found to be remarkably decreased in the liver, fat and muscle. These results suggest that the Leu452His mutation caused LPL dysfunction and gene transfer of MLPL in vivo produced resistance to the AMPK/PGC-1α signaling pathway in mice.

  12. Understanding mammalian genetic systems: the challenge of phenotyping in the mouse.

    Directory of Open Access Journals (Sweden)

    Steve D M Brown

    2006-08-01

    Full Text Available Understanding mammalian genetic systems is predicated on the determination of the relationship between genetic variation and phenotype. Several international programmes are under way to deliver mutations in every gene in the mouse genome. The challenge for mouse geneticists is to develop approaches that will provide comprehensive phenotype datasets for these mouse mutant libraries. Several factors are critical to success in this endeavour. It will be important to catalogue assay and environment and where possible to adopt standardised procedures for phenotyping tests along with common environmental conditions to ensure comparable datasets of phenotypes. Moreover, the scale of the task underlines the need to invest in technological development improving both the speed and cost of phenotyping platforms. In addition, it will be necessary to develop new informatics standards that capture the phenotype assay as well as other factors, genetic and environmental, that impinge upon phenotype outcome.

  13. Comparative analysis of genome maintenance genes in naked mole rat, mouse, and human.

    Science.gov (United States)

    MacRae, Sheila L; Zhang, Quanwei; Lemetre, Christophe; Seim, Inge; Calder, Robert B; Hoeijmakers, Jan; Suh, Yousin; Gladyshev, Vadim N; Seluanov, Andrei; Gorbunova, Vera; Vijg, Jan; Zhang, Zhengdong D

    2015-04-01

    Genome maintenance (GM) is an essential defense system against aging and cancer, as both are characterized by increased genome instability. Here, we compared the copy number variation and mutation rate of 518 GM-associated genes in the naked mole rat (NMR), mouse, and human genomes. GM genes appeared to be strongly conserved, with copy number variation in only four genes. Interestingly, we found NMR to have a higher copy number of CEBPG, a regulator of DNA repair, and TINF2, a protector of telomere integrity. NMR, as well as human, was also found to have a lower rate of germline nucleotide substitution than the mouse. Together, the data suggest that the long-lived NMR, as well as human, has more robust GM than mouse and identifies new targets for the analysis of the exceptional longevity of the NMR. © 2015 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  14. Mutation breeding newsletter. No. 22

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1983-07-01

    This issue of the Newsletter presents new reports on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants.

  15. Mutation breeding newsletter. No. 34

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-07-01

    This issue of the Newsletter presents abstracts and short communications of research results on radiation and chemical induced mutation breeding projects. Positive traits such as disease resistance and increased productivity are highlighted.

  16. Mutation breeding newsletter. No. 29

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1987-02-01

    This issue of the Newsletter presents reports and rea search abstracts on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants.

  17. Mutation breeding newsletter. No. 15

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1980-02-01

    This issue of the Newsletter presents new reports on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants.

  18. Mutation breeding newsletter. No. 5

    International Nuclear Information System (INIS)

    1975-02-01

    This issue of the Newsletter presents reports and rea search abstracts on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants

  19. Mutation breeding newsletter. No. 15

    International Nuclear Information System (INIS)

    1980-02-01

    This issue of the Newsletter presents new reports on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants

  20. Mutation breeding newsletter. No. 14

    International Nuclear Information System (INIS)

    1979-07-01

    This issue of the Newsletter presents new reports on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants

  1. Mutation breeding newsletter. No. 16

    International Nuclear Information System (INIS)

    1980-07-01

    This issue of the Newsletter presents new reports on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants

  2. Mutation breeding newsletter. No. 12

    International Nuclear Information System (INIS)

    1978-07-01

    This issue of the Newsletter presents new reports on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants

  3. Mutation breeding newsletter. No. 28

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1986-09-01

    This issue of the Newsletter presents reports and research abstracts on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants.

  4. Mutation breeding newsletter. No. 29

    International Nuclear Information System (INIS)

    1987-02-01

    This issue of the Newsletter presents reports and rea search abstracts on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants

  5. Mutation breeding newsletter. No. 9

    International Nuclear Information System (INIS)

    1977-01-01

    This issue of the Newsletter presents new reports on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants

  6. Mutation breeding newsletter. No. 7

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1976-01-01

    This issue of the Newsletter presents reports and rea search abstracts on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants.

  7. Mutation Breeding Newsletter. No. 37

    International Nuclear Information System (INIS)

    1991-01-01

    This newsletter contains a brief account of FAO/IAEA meetings held in 1990 on plant breeding involving the use of induced mutations. It also features a list of commercially available plant cultivars produced by such techniques. Refs and tabs

  8. Mutation breeding newsletter. No. 4

    International Nuclear Information System (INIS)

    1974-08-01

    This issue of the Newsletter presents reports and rea search abstracts on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants

  9. Mutation breeding newsletter. No. 18

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1981-07-01

    This issue of the Newsletter presents new reports on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants.

  10. Mutation breeding newsletter. No. 9

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-01-01

    This issue of the Newsletter presents new reports on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants.

  11. Mutation breeding newsletter. No. 34

    International Nuclear Information System (INIS)

    1989-07-01

    This issue of the Newsletter presents abstracts and short communications of research results on radiation and chemical induced mutation breeding projects. Positive traits such as disease resistance and increased productivity are highlighted

  12. Mutation breeding newsletter. No. 24

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1984-07-01

    This issue of the Newsletter presents reports and research abstracts on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants.

  13. Mutation breeding newsletter. No. 32

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-07-01

    This issue of the Newsletter presents new reports on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants.

  14. Mutation breeding newsletter. No. 36

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-07-01

    This issue of the Newsletter presents abstracts and short communications of research results on radiation and chemical induced mutation breeding projects. Positive traits such as disease resistance and increased productivity are highlighted.

  15. Mutation breeding newsletter. No. 3

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1974-01-01

    This issue of the Newsletter presents reports and rea search abstracts on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants.

  16. Mutation breeding newsletter. No. 3

    International Nuclear Information System (INIS)

    1974-01-01

    This issue of the Newsletter presents reports and rea search abstracts on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants

  17. Mutation breeding newsletter. No. 11

    International Nuclear Information System (INIS)

    1978-02-01

    This issue of the Newsletter presents new reports on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants

  18. Mutation breeding newsletter. No. 6

    International Nuclear Information System (INIS)

    1975-08-01

    This issue of the Newsletter presents reports and rea search abstracts on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants

  19. Mutation breeding newsletter. No. 1

    International Nuclear Information System (INIS)

    1972-05-01

    This issue of the Newsletter presents reports and rea search abstracts on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants

  20. Mutation breeding newsletter. No. 31

    International Nuclear Information System (INIS)

    1988-03-01

    This issue of the Newsletter presents new reports on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants

  1. Mutation breeding newsletter. No. 44

    International Nuclear Information System (INIS)

    1999-04-01

    This issue of the Newsletter presents research reports on the role of radiation induced mutation and chemical mutagens in improving productivity, disease resistance; cold and salinity tolerance of various crops and ornamental plants

  2. Mutation breeding newsletter. No. 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1972-05-01

    This issue of the Newsletter presents reports and rea search abstracts on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants.

  3. Mutation breeding newsletter. No. 25

    International Nuclear Information System (INIS)

    1985-01-01

    This issue of the Newsletter presents reports and research abstracts on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants

  4. Mutation breeding newsletter. No. 32

    International Nuclear Information System (INIS)

    1988-07-01

    This issue of the Newsletter presents new reports on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants

  5. Mutation breeding newsletter. No. 5

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1975-02-01

    This issue of the Newsletter presents reports and rea search abstracts on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants.

  6. Mutation breeding newsletter. No. 20

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1982-07-01

    This issue of the Newsletter presents new reports on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants.

  7. Mutation breeding newsletter. No. 28

    International Nuclear Information System (INIS)

    1986-09-01

    This issue of the Newsletter presents reports and research abstracts on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants

  8. Mutation breeding newsletter. No. 17

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1981-03-01

    This issue of the Newsletter presents new reports on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants.

  9. Mutation breeding newsletter. No. 16

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1980-07-01

    This issue of the Newsletter presents new reports on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants.

  10. Mutation breeding newsletter. No. 8

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1976-09-01

    This issue of the Newsletter presents new reports on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants.

  11. Mutation breeding newsletter. No. 4

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1974-08-01

    This issue of the Newsletter presents reports and rea search abstracts on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants.

  12. Mutation breeding newsletter. No. 12

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1978-07-01

    This issue of the Newsletter presents new reports on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants.

  13. Mutation breeding newsletter. No. 6

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1975-08-01

    This issue of the Newsletter presents reports and rea search abstracts on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants.

  14. Mutation breeding newsletter. No. 10

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-07-01

    This issue of the Newsletter presents new reports on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants.

  15. Mutation breeding newsletter. No. 14

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1979-07-01

    This issue of the Newsletter presents new reports on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants.

  16. Mutation breeding newsletter. No. 36

    International Nuclear Information System (INIS)

    1990-07-01

    This issue of the Newsletter presents abstracts and short communications of research results on radiation and chemical induced mutation breeding projects. Positive traits such as disease resistance and increased productivity are highlighted

  17. CHRNE Mutation and Congenital Myasthenia

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2009-01-01

    Full Text Available The CHRNE e1293insG mutation was identified in 14 (60% of 23 North African families with an early onset form of congenital myasthenic syndrome studied at centers in France, Tunisia, Algeria, and UK.

  18. Mutation breeding newsletter. No. 19

    International Nuclear Information System (INIS)

    1982-01-01

    This issue of the Newsletter presents new reports on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants

  19. Mutation breeding newsletter. No. 7

    International Nuclear Information System (INIS)

    1976-01-01

    This issue of the Newsletter presents reports and rea search abstracts on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants

  20. Mutation breeding newsletter. No. 24

    International Nuclear Information System (INIS)

    1984-07-01

    This issue of the Newsletter presents reports and research abstracts on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants

  1. Mutation breeding newsletter. No. 20

    International Nuclear Information System (INIS)

    1982-07-01

    This issue of the Newsletter presents new reports on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants

  2. Mutation breeding newsletter. No. 18

    International Nuclear Information System (INIS)

    1981-07-01

    This issue of the Newsletter presents new reports on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants

  3. Mutation breeding newsletter. No. 31

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-03-01

    This issue of the Newsletter presents new reports on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants.

  4. Mutation breeding newsletter. No. 27

    International Nuclear Information System (INIS)

    1986-02-01

    This issue of the Newsletter presents reports and research abstracts on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants

  5. Mutation breeding newsletter. No. 26

    International Nuclear Information System (INIS)

    1985-10-01

    This issue of the Newsletter presents reports and research abstracts on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants

  6. Mutation breeding newsletter. No. 17

    International Nuclear Information System (INIS)

    1981-03-01

    This issue of the Newsletter presents new reports on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants

  7. Mutation breeding newsletter. No. 30

    International Nuclear Information System (INIS)

    1987-07-01

    This issue of the Newsletter presents new reports on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants

  8. Mutation breeding newsletter. No. 13

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1979-02-01

    This issue of the Newsletter presents new reports on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants.

  9. Mutation breeding newsletter. No. 30

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1987-07-01

    This issue of the Newsletter presents new reports on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants.

  10. Mutation breeding newsletter. No. 19

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1982-01-01

    This issue of the Newsletter presents new reports on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants.

  11. Mutation breeding newsletter. No. 26

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1985-10-01

    This issue of the Newsletter presents reports and research abstracts on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants.

  12. Mutation breeding newsletter. No. 25

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1985-01-01

    This issue of the Newsletter presents reports and research abstracts on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants.

  13. Mutation breeding newsletter. No. 23

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1983-01-01

    This issue of the Newsletter presents new reports on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants.

  14. Mutation breeding newsletter. No. 27

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1986-02-01

    This issue of the Newsletter presents reports and research abstracts on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants.

  15. Mutation breeding newsletter. No. 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1973-02-01

    This issue of the Newsletter presents reports and rea search abstracts on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants.

  16. Mutation breeding newsletter. No. 11

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1978-02-01

    This issue of the Newsletter presents new reports on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants.

  17. Mutation breeding newsletter. No. 23

    International Nuclear Information System (INIS)

    1983-01-01

    This issue of the Newsletter presents new reports on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants

  18. Mutation breeding newsletter. No. 2

    International Nuclear Information System (INIS)

    1973-02-01

    This issue of the Newsletter presents reports and rea search abstracts on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants

  19. Mutation breeding newsletter. No. 10

    International Nuclear Information System (INIS)

    1977-07-01

    This issue of the Newsletter presents new reports on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants

  20. Mutation breeding newsletter. No. 8

    International Nuclear Information System (INIS)

    1976-09-01

    This issue of the Newsletter presents new reports on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants

  1. Mutation breeding newsletter. No. 13

    International Nuclear Information System (INIS)

    1979-02-01

    This issue of the Newsletter presents new reports on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants

  2. BRAF mutations in conjunctival melanoma

    DEFF Research Database (Denmark)

    Larsen, Ann-Cathrine; Dahl, Christina; Dahmcke, Christina M.

    2016-01-01

    with atypia. BRAF mutations were identified in 39 of 111 (35%) cases. The rate ratio of BRAF-mutated versus BRAF-wild-type melanoma did not change over time. BRAF mutations were associated with T1 stage (p = 0.007), young age (p = 0.001), male gender (p = 0.02), sun-exposed location (p = 0.01), mixed....../non-pigmented tumour colour (p = 0.02) and nevus origin (p = 0.005), but did not associate with prognosis. BRAF status in conjunctival melanoma and paired premalignant lesions corresponded in 19 of 20 cases. Immunohistochemistry detected BRAF V600E mutations with a sensitivity of 0.94 and a specificity of 1...

  3. Mutation breeding newsletter. No. 22

    International Nuclear Information System (INIS)

    1983-07-01

    This issue of the Newsletter presents new reports on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants

  4. Inner ear morphology is perturbed in two novel mouse models of recessive deafness.

    Directory of Open Access Journals (Sweden)

    Kerry A Miller

    Full Text Available Human MYO7A mutations can cause a variety of conditions involving the inner ear. These include dominant and recessive non-syndromic hearing loss and syndromic conditions such as Usher syndrome. Mouse models of deafness allow us to investigate functional pathways involved in normal and abnormal hearing processes. We present two novel mouse models with mutations in the Myo7a gene with distinct phenotypes. The mutation in Myo7a(I487N/I487N ewaso is located within the head motor domain of Myo7a. Mice exhibit a profound hearing loss and manifest behaviour associated with a vestibular defect. A mutation located in the linker region between the coiled-coil and the first MyTH4 domains of the protein is responsible in Myo7a(F947I/F947I dumbo. These mice show a less severe hearing loss than in Myo7a(I487N/I487N ewaso; their hearing loss threshold is elevated at 4 weeks old, and progressively worsens with age. These mice show no obvious signs of vestibular dysfunction, although scanning electron microscopy reveals a mild phenotype in vestibular stereocilia bundles. The Myo7a(F947I/F947I dumbo strain is therefore the first reported Myo7a mouse model without an overt vestibular phenotype; a possible model for human DFNB2 deafness. Understanding the molecular basis of these newly identified mutations will provide knowledge into the complex genetic pathways involved in the maintenance of hearing, and will provide insight into recessively inherited sensorineural hearing loss in humans.

  5. Visual impairment in FOXG1-mutated individuals and mice.

    Science.gov (United States)

    Boggio, E M; Pancrazi, L; Gennaro, M; Lo Rizzo, C; Mari, F; Meloni, I; Ariani, F; Panighini, A; Novelli, E; Biagioni, M; Strettoi, E; Hayek, J; Rufa, A; Pizzorusso, T; Renieri, A; Costa, M

    2016-06-02

    The Forkead Box G1 (FOXG1 in humans, Foxg1 in mice) gene encodes for a DNA-binding transcription factor, essential for the development of the telencephalon in mammalian forebrain. Mutations in FOXG1 have been reported to be involved in the onset of Rett Syndrome, for which sequence alterations of MECP2 and CDKL5 are known. While visual alterations are not classical hallmarks of Rett syndrome, an increasing body of evidence shows visual impairment in patients and in MeCP2 and CDKL5 animal models. Herein we focused on the functional role of FOXG1 in the visual system of animal models (Foxg1(+/Cre) mice) and of a cohort of subjects carrying FOXG1 mutations or deletions. Visual physiology of Foxg1(+/Cre) mice was assessed by visually evoked potentials, which revealed a significant reduction in response amplitude and visual acuity with respect to wild-type littermates. Morphological investigation showed abnormalities in the organization of excitatory/inhibitory circuits in the visual cortex. No alterations were observed in retinal structure. By examining a cohort of FOXG1-mutated individuals with a panel of neuro-ophthalmological assessments, we found that all of them exhibited visual alterations compatible with high-level visual dysfunctions. In conclusion our data show that Foxg1 haploinsufficiency results in an impairment of mouse and human visual cortical function. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  6. Adaptive Mutations in Influenza A/California/07/2009 Enhance Polymerase Activity and Infectious Virion Production

    Science.gov (United States)

    Slaine, Patrick D.; MacRae, Cara; Kleer, Mariel; Lamoureux, Emily; McAlpine, Sarah; Warhuus, Michelle; Comeau, André M.; Hatchette, Todd

    2018-01-01

    Mice are not natural hosts for influenza A viruses (IAVs), but they are useful models for studying antiviral immune responses and pathogenesis. Serial passage of IAV in mice invariably causes the emergence of adaptive mutations and increased virulence. Here, we report the adaptation of IAV reference strain A/California/07/2009(H1N1) (also known as CA/07) in outbred Swiss Webster mice. Serial passage led to increased virulence and lung titers, and dissemination of the virus to brains. We adapted a deep-sequencing protocol to identify and enumerate adaptive mutations across all genome segments. Among mutations that emerged during mouse-adaptation, we focused on amino acid substitutions in polymerase subunits: polymerase basic-1 (PB1) T156A and F740L and polymerase acidic (PA) E349G. These mutations were evaluated singly and in combination in minigenome replicon assays, which revealed that PA E349G increased polymerase activity. By selectively engineering three PB1 and PA mutations into the parental CA/07 strain, we demonstrated that these mutations in polymerase subunits decreased the production of defective viral genome segments with internal deletions and dramatically increased the release of infectious virions from mouse cells. Together, these findings increase our understanding of the contribution of polymerase subunits to successful host adaptation. PMID:29783694

  7. Mutation breeding in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Neto, A T; Menten, J O.M. [Centro de Energia Nuclear na Agricultura, Piracicaba (Brazil); Ando, A

    1980-03-01

    How mutation induction is used for plant breeding in Brazil is reported. For upland rice, the combined treatment with gamma-ray and mutagens (ethylene imine or ethylmethane sulfonate) has been used on the variety, Dourado Precoce, and some mutants with shortculm length and/or earliness without altering the productivity have been obtained. A project on the quantitative and qualitative protein improvement in upland rice was also started in 1979. In corn, the effect of gamma-irradiation on heterosis has been analyzed, and it was found that the single hybrids from two parental lines derived from irradiated seeds had increased ear productivity. For beans (Phaseolus yulgaris), gamma-irradiation and chemical mutagens have been used to induce the mutants with different seed color, disease resistance to golden mosaic virus and Xanthomonas phaseoli, earliness, high productivity and high protein content. Some mutants with partly improved characters have been obtained in these experiments. Two varieties of wheat tolerant to aluminum toxicity have been obtained, but the one showed high lodging due to its unfavorable plant height, and the other was highly susceptible to culm rust. Therefore, irradiation experiments have been started to improve these characters. The projects involving the use of gamma-irradiation have been tested to obtain the mutant lines insensitive to photoperiod and resistant to bud-blight in soybean, the mutant lines resistant to mosaic virus in papaya, the photoperiod-insensitive mutants in sorghum, the mosaic virus resistant and non-flowering mutants in sugar cane, and the Fusarium and nematode-resistant mutants in black pepper.

  8. Mouse Models for Drug Discovery. Can New Tools and Technology Improve Translational Power?

    Science.gov (United States)

    Zuberi, Aamir; Lutz, Cathleen

    2016-01-01

    Abstract The use of mouse models in biomedical research and preclinical drug evaluation is on the rise. The advent of new molecular genome-altering technologies such as CRISPR/Cas9 allows for genetic mutations to be introduced into the germ line of a mouse faster and less expensively than previous methods. In addition, the rapid progress in the development and use of somatic transgenesis using viral vectors, as well as manipulations of gene expression with siRNAs and antisense oligonucleotides, allow for even greater exploration into genomics and systems biology. These technological advances come at a time when cost reductions in genome sequencing have led to the identification of pathogenic mutations in patient populations, providing unprecedented opportunities in the use of mice to model human disease. The ease of genetic engineering in mice also offers a potential paradigm shift in resource sharing and the speed by which models are made available in the public domain. Predictively, the knowledge alone that a model can be quickly remade will provide relief to resources encumbered by licensing and Material Transfer Agreements. For decades, mouse strains have provided an exquisite experimental tool to study the pathophysiology of the disease and assess therapeutic options in a genetically defined system. However, a major limitation of the mouse has been the limited genetic diversity associated with common laboratory mice. This has been overcome with the recent development of the Collaborative Cross and Diversity Outbred mice. These strains provide new tools capable of replicating genetic diversity to that approaching the diversity found in human populations. The Collaborative Cross and Diversity Outbred strains thus provide a means to observe and characterize toxicity or efficacy of new therapeutic drugs for a given population. The combination of traditional and contemporary mouse genome editing tools, along with the addition of genetic diversity in new modeling

  9. Arrhythmia phenotype in mouse models of human long QT.

    Science.gov (United States)

    Salama, Guy; Baker, Linda; Wolk, Robert; Barhanin, Jacques; London, Barry

    2009-03-01

    Enhanced dispersion of repolarization (DR) was proposed as a unifying mechanism, central to arrhythmia genesis in the long QT (LQT) syndrome. In mammalian hearts, K(+) channels are heterogeneously expressed across the ventricles resulting in 'intrinsic' DR that may worsen in long QT. DR was shown to be central to the arrhythmia phenotype of transgenic mice with LQT caused by loss of function of the dominant mouse K(+) currents. Here, we investigated the arrhythmia phenotype of mice with targeted deletions of KCNE1 and KCNH2 genes which encode for minK/IsK and Merg1 (mouse homolog of human ERG) proteins resulting in loss of function of I(Ks) and I(Kr), respectively. Both currents are important human K(+) currents associated with LQT5 and LQT2. Loss of minK, a protein subunit that interacts with KvLQT1, results in a marked reduction of I(Ks) giving rise to the Jervell and Lange-Nielsen syndrome and the reduced KCNH2 gene reduces MERG and I(Kr). Hearts were perfused, stained with di-4-ANEPPS and optically mapped to compare action potential durations (APDs) and arrhythmia phenotype in homozygous minK (minK(-/-)) and heterozygous Merg1 (Merg(+/-)) deletions and littermate control mice. MinK(-/-) mice has similar APDs and no arrhythmias (n = 4). Merg(+/-) mice had prolonged APDs (from 20 +/- 6 to 32 +/- 9 ms at the base, p mice (60% vs. 10%). A comparison of mouse models of LQT based on K(+) channel mutations important to human and mouse repolarization emphasizes DR as a major determinant of arrhythmia vulnerability.

  10. Mice with missense and nonsense NF1 mutations display divergent phenotypes compared with human neurofibromatosis type I

    Directory of Open Access Journals (Sweden)

    Kairong Li

    2016-07-01

    Full Text Available Neurofibromatosis type 1 (NF1 is a common genetic disorder characterized by the occurrence of nerve sheath tumors and considerable clinical heterogeneity. Some translational studies have been limited by the lack of animal models available for assessing patient-specific mutations. In order to test therapeutic approaches that might restore function to the mutated gene or gene product, we developed mice harboring NF1 patient-specific mutations including a nonsense mutation (c.2041C>T; p.Arg681* and a missense mutation (c.2542G>C; p.Gly848Arg. The latter is associated with the development of multiple plexiform neurofibromas along spinal nerve roots. We demonstrate that the human nonsense NF1Arg681* and missense NF1Gly848Arg mutations have different effects on neurofibromin expression in the mouse and each recapitulates unique aspects of the NF1 phenotype, depending upon the genetic context when assessed in the homozygous state or when paired with a conditional knockout allele. Whereas the missense Nf1Gly848Arg mutation fails to produce an overt phenotype in the mouse, animals homozygous for the nonsense Nf1Arg681* mutation are not viable. Mice with one Nf1Arg681* allele in combination with a conditional floxed Nf1 allele and the DhhCre transgene (Nf14F/Arg681*; DhhCre display disorganized nonmyelinating axons and neurofibromas along the spinal column, which leads to compression of the spinal cord and paralysis. This model will be valuable for preclinical testing of novel nonsense suppression therapies using drugs to target in-frame point mutations that create premature termination codons in individuals with NF1.

  11. The effects of extremely low frequency magnetic fields on mutation induction in mice

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, James W. [Department of Genetics, University of Leicester, Leicester LE1 7RH (United Kingdom); Haines, Jackie; Sienkiewicz, Zenon [Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Didcot, Oxfordshire OX11 0RQ (United Kingdom); Dubrova, Yuri E., E-mail: yed2@le.ac.uk [Department of Genetics, University of Leicester, Leicester LE1 7RH (United Kingdom)

    2015-03-15

    Highlights: • The effects of 50 Hz magnetic fields on mutation induction in mice were analyzed. • The frequency of ESTR mutation was established in sperm and blood. • Exposure to 10–300 μT for 2 and 15 h did not result in mutation induction. • Mutagenic effects of 50 Hz magnetic fields are likely to be negligible. - Abstract: The growing human exposure to extremely low frequency (ELF) magnetic fields has raised a considerable concern regarding their genotoxic effects. The aim of this study was to evaluate the in vivo effects of ELF magnetic fields irradiation on mutation induction in the germline and somatic tissues of male mice. Seven week old BALB/c × CBA/Ca F{sub 1} hybrid males were exposed to 10, 100 or 300 μT of 50 Hz magnetic fields for 2 or 15 h. Using single-molecule PCR, the frequency of mutation at the mouse Expanded Simple Tandem Repeat (ESTR) locus Ms6-hm was established in sperm and blood samples of exposed and matched sham-treated males. ESTR mutation frequency was also established in sperm and blood samples taken from male mice exposed to 1 Gy of acute X-rays. The frequency of ESTR mutation in DNA samples extracted from blood of mice exposed to magnetic fields did not significantly differ from that in sham-treated controls. However, there was a marginally significant increase in mutation frequency in sperm but this was not dose-dependent. In contrast, acute exposure X-rays led to significant increases in mutation frequency in sperm and blood of exposed males. The results of our study suggest that, within the range of doses analyzed here, the in vivo mutagenic effects of ELF magnetic fields are likely to be minor if not negligible.

  12. Molecular analysis on germline mutation caused by low-dose irradiation

    International Nuclear Information System (INIS)

    Uchiyama, R.; Fujikawa, K.; Nishimura, M.; Adzuma, H.; Shimada, Y.; Yamauchi, M.

    2003-01-01

    Full text: Genetic heterogeneity and a low frequency of germline mutation at single-copy gene loci have limited the direct measurement of germline mutation in human populations. Two conflicting results have been reported for the effect of ionizing radiation on germline mutation in human populations. A study conducted on the first-generation progeny of the survivors of the atomic bombs at Hiroshima and Nagasaki found no significant increase in germline mutations. On the other hand, a significant increase in germline mutation was reported among the human population in the Belarus area after the Chernobyl accident in 1986. We investigated the germline mutation at the molecular level using experimental mouse strains with different genetic backgrounds to assess the risk of ionizing radiation on human populations. The C3H male parents were exposed to X ray (0, 0.3, 1, and 3Gy) and mated with unexposed C57BL females after two weeks interval, so as to detect the germline mutation occurred at the spermatid stage. Genomic DNA samples were prepared from the both parents and F1s, and the genomic DNA sequences were compared between parents and offspring at the specific genomic gene loci, such as adenine phosphoribosyl transferase (aprt) gene and cytidine triphosphate synthetase (ctps) gene, using the automated DNA sequencer. Also hypervariable Pc-1 (Ms6-hm) minisatellite repeat locus was analyzed by using Southern blot hybridization technique. Our preliminary results indicated that the changes of the restriction DNA fragment length in offspring did not reflect the occurrence of the mutation, such as point mutation, insertion, and deletion, in the genomic gene loci including the intervening sequence (intron)

  13. The effects of extremely low frequency magnetic fields on mutation induction in mice

    International Nuclear Information System (INIS)

    Wilson, James W.; Haines, Jackie; Sienkiewicz, Zenon; Dubrova, Yuri E.

    2015-01-01

    Highlights: • The effects of 50 Hz magnetic fields on mutation induction in mice were analyzed. • The frequency of ESTR mutation was established in sperm and blood. • Exposure to 10–300 μT for 2 and 15 h did not result in mutation induction. • Mutagenic effects of 50 Hz magnetic fields are likely to be negligible. - Abstract: The growing human exposure to extremely low frequency (ELF) magnetic fields has raised a considerable concern regarding their genotoxic effects. The aim of this study was to evaluate the in vivo effects of ELF magnetic fields irradiation on mutation induction in the germline and somatic tissues of male mice. Seven week old BALB/c × CBA/Ca F 1 hybrid males were exposed to 10, 100 or 300 μT of 50 Hz magnetic fields for 2 or 15 h. Using single-molecule PCR, the frequency of mutation at the mouse Expanded Simple Tandem Repeat (ESTR) locus Ms6-hm was established in sperm and blood samples of exposed and matched sham-treated males. ESTR mutation frequency was also established in sperm and blood samples taken from male mice exposed to 1 Gy of acute X-rays. The frequency of ESTR mutation in DNA samples extracted from blood of mice exposed to magnetic fields did not significantly differ from that in sham-treated controls. However, there was a marginally significant increase in mutation frequency in sperm but this was not dose-dependent. In contrast, acute exposure X-rays led to significant increases in mutation frequency in sperm and blood of exposed males. The results of our study suggest that, within the range of doses analyzed here, the in vivo mutagenic effects of ELF magnetic fields are likely to be minor if not negligible

  14. Screening of three Mediterranean phenylketonuria mutations in ...

    Indian Academy of Sciences (India)

    as the most frequent mutation (Dahri et al. 2010). The. E280K mutation was also reported in Mediterranean popu- lations (Guldberg et al. 1993). Since Tunisia is a Mediter- ranean country, patients with PKU are presumed to have these mutations. The aim of this study was to assess prevalence of the three above mutations ...

  15. Signatures of mutational processes in human cancer

    NARCIS (Netherlands)

    Alexandrov, L.B.; Nik-Zainal, S.; Wedge, D.C.; Aparicio, S.A.; Behjati, S.; Biankin, A.V.; Bignell, G.R.; Bolli, N.; Borg, A.; Borresen-Dale, A.L.; Boyault, S.; Burkhardt, B.; Butler, A.P.; Caldas, C.; Davies, H.R.; Desmedt, C.; Eils, R.; Eyfjord, J.E.; Foekens, J.A.; Greaves, M.; Hosoda, F.; Hutter, B.; Ilicic, T.; Imbeaud, S.; Imielinsk, M.; Jager, N.; Jones, D.T.; Knappskog, S.; Kool, M.; Lakhani, S.R.; Lopez-Otin, C.; Martin, S.; Munshi, N.C.; Nakamura, H.; Northcott, P.A.; Pajic, M.; Papaemmanuil, E.; Paradiso, A.; Pearson, J.V.; Puente, X.S.; Raine, K.; Ramakrishna, M.; Richardson, A.L.; Richter, J.; Rosenstiel, P.; Schlesner, M.; Schumacher, T.N.; Span, P.N.; Teague, J.W.; Totoki, Y.; Tutt, A.N.; Valdes-Mas, R.; Buuren, M.M. van; Veer, L. van 't; Vincent-Salomon, A.; Waddell, N.; Yates, L.R.; Zucman-Rossi, J.; Futreal, P.A.; McDermott, U.; Lichter, P.; Meyerson, M.; Grimmond, S.M.; Siebert, R.; Campo, E.; Shibata, T.; Pfister, S.M.; Campbell, P.J.; Stratton, M.R.; Schlooz-Vries, M.S.; Tol, J.J. van; Laarhoven, H.W. van; Sweep, F.C.; Bult, P.; et al.,

    2013-01-01

    All cancers are caused by somatic mutations; however, understanding of the biological processes generating these mutations is limited. The catalogue of somatic mutations from a cancer genome bears the signatures of the mutational processes that have been operative. Here we analysed 4,938,362

  16. TL transgenic mouse strains

    International Nuclear Information System (INIS)

    Obata, Y.; Matsudaira, Y.; Hasegawa, H.; Tamaki, H.; Takahashi, T.; Morita, A.; Kasai, K.

    1993-01-01

    As a result of abnormal development of the thymus of these mice, TCR αβ lineage of the T cell differentiation is disturbed and cells belonging to the TCR γδ CD4 - CD8 - double negative (DN) lineage become preponderant. The γδ DN cells migrate into peripheral lymphoid organs and constitute nearly 50% of peripheral T cells. Immune function of the transgenic mice is severely impaired, indicating that the γδ cells are incapable of participating in these reactions. Molecular and serological analyses of T-cell lymphomas reveal that they belong to the γδ lineage. Tg.Tla a -3-1 mice should be useful in defining the role of TL in normal and abnormal T cell differentiation as well as in the development of T-cell lymphomas, and further they should facilitate studies on the differentiation and function of γδ T cells. We isolated T3 b -TL gene from B6 mice and constructed a chimeric gene in which T3 b -TL is driven by the promoter of H-2K b . With the chimeric gene, two transgenic mouse strains, Tg. Con.3-1 and -2 have been derived in C3H background. Both strains express TL antigen in various tissues including skin. The skin graft of transgenic mice on C3H and (B6 X C3H)F 1 mice were rejected. In the mice which rejected the grafts, CD8 + TCRαβ cytotoxic T cells (CTL) against TL antigens were recognized. The recognition of TL by CTL did not require the antigen presentation by H-2 molecules. The results indicated that TL antigen in the skin becomes a transplantation antigen and behaves like a typical allogeneic MHC class I antigen. The facts that (B6 X C3H)F 1 mice rejected the skin expressing T3 b -TL antigen and induced CTL that killed TL + lymphomas of B6 origin revealed that TL antigen encoded by T3 b -TL is recognized as non-self in B6 mice. Experiments are now extended to analyze immune responses to TL antigen expressed on autochthonous T cell lymphomas. (J.P.N.)

  17. 10. international mouse genome conference

    Energy Technology Data Exchange (ETDEWEB)

    Meisler, M.H.

    1996-12-31

    Ten years after hosting the First International Mammalian Genome Conference in Paris in 1986, Dr. Jean-Louis Guenet presided over the Tenth Conference at the Pasteur Institute, October 7--10, 1996. The 1986 conference was a satellite to the Human Gene Mapping Workshop and had approximately 50 attendees. The 1996 meeting was attended by 300 scientists from around the world. In the interim, the number of mapped loci in the mouse increased from 1,000 to over 20,000. This report contains a listing of the program and its participants, and two articles that review the meeting and the role of the laboratory mouse in the Human Genome project. More than 200 papers were presented at the conference covering the following topics: International mouse chromosome committee meetings; Mutant generation and identification; Physical and genetic maps; New technology and resources; Chromatin structure and gene regulation; Rate and hamster genetic maps; Informatics and databases; and Quantitative trait analysis.

  18. Teratology studies in the mouse.

    Science.gov (United States)

    Marsden, Edward; Leroy, Mariline

    2013-01-01

    The rat is the routine species of choice as the rodent model for regulatory safety testing of xenobiotics such as medicinal products, food additives, and other chemicals. However, the rat is not always suitable for pharmacological, toxicological, immunogenic, pharmacokinetic, or even practical reasons. Under such circumstances, the mouse offers an alternative for finding a suitable rodent model acceptable to the regulatory authorities. Since all essential routes of administration are possible, the short reproductive cycle and large litter size of the mouse make it a species well adapted for use in teratology studies. Given that good quality animals, including virgin mated females, can be acquired relatively easily and inexpensively, the mouse has been used in reproductive toxicity studies for decades and study protocols are well established.

  19. Animal Models of Congenital Cardiomyopathies Associated With Mutations in Z-Line Proteins.

    Science.gov (United States)

    Bang, Marie-Louise

    2017-01-01

    The cardiac Z-line at the boundary between sarcomeres is a multiprotein complex connecting the contractile apparatus with the cytoskeleton and the extracellular matrix. The Z-line is important for efficient force generation and transmission as well as the maintenance of structural stability and integrity. Furthermore, it is a nodal point for intracellular signaling, in particular mechanosensing and mechanotransduction. Mutations in various genes encoding Z-line proteins have been associated with different cardiomyopathies, including dilated cardiomyopathy, hypertrophic cardiomyopathy, arrhythmogenic right ventricular cardiomyopathy, restrictive cardiomyopathy, and left ventricular noncompaction, and mutations even within the same gene can cause widely different pathologies. Animal models have contributed to a great advancement in the understanding of the physiological function of Z-line proteins and the pathways leading from mutations in Z-line proteins to cardiomyopathy, although genotype-phenotype prediction remains a great challenge. This review presents an overview of the currently available animal models for Z-line and Z-line associated proteins involved in human cardiomyopathies with special emphasis on knock-in and transgenic mouse models recapitulating the clinical phenotypes of human cardiomyopathy patients carrying mutations in Z-line proteins. Pros and cons of mouse models will be discussed and a future outlook will be given. J. Cell. Physiol. 232: 38-52, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  20. Elucidating the impact of neurofibromatosis-1 germline mutations on neurofibromin function and dopamine-based learning.

    Science.gov (United States)

    Anastasaki, Corina; Woo, Albert S; Messiaen, Ludwine M; Gutmann, David H

    2015-06-15

    Neurofibromatosis type 1 (NF1) is a common autosomal dominant neurologic condition characterized by significant clinical heterogeneity, ranging from malignant cancers to cognitive deficits. Recent studies have begun to reveal rare genotype-phenotype correlations, suggesting that the specific germline NF1 gene mutation may be one factor underlying disease heterogeneity. The purpose of this study was to define the impact of the germline NF1 gene mutation on brain neurofibromin function relevant to learning. Herein, we employ human NF1-patient primary skin fibroblasts, induced pluripotent stem cells and derivative neural progenitor cells (NPCs) to demonstrate that NF1 germline mutations have dramatic effects on neurofibromin expression. Moreover, while all NF1-patient NPCs exhibit increased RAS activation and reduced cyclic AMP generation, there was a neurofibromin dose-dependent reduction in dopamine (DA) levels. Additionally, we leveraged two complementary Nf1 genetically-engineered mouse strains in which hippocampal-based learning and memory is DA-dependent to establish that neuronal DA levels and signaling as well as mouse spatial learning are controlled in an Nf1 gene dose-dependent manner. Collectively, this is the first demonstration that different germline NF1 gene mutations differentially dictate neurofibromin function in the brain. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. High Mutation Levels are Compatible with Normal Embryonic Development in Mlh1-Deficient Mice.

    Science.gov (United States)

    Fan, Xiaoyan; Li, Yan; Zhang, Yulong; Sang, Meixiang; Cai, Jianhui; Li, Qiaoxia; Ozaki, Toshinori; Ono, Tetsuya; He, Dongwei

    2016-10-01

    To elucidate the role of the mismatch repair gene Mlh1 in genome instability during the fetal stage, spontaneous mutations were studied in Mlh1-deficient lacZ-transgenic mouse fetuses. Mutation levels were high at 9.5 days post coitum (dpc) and gradually increased during the embryonic stage, after which they remained unchanged. In addition, mutations that were found in brain, liver, spleen, small intestine and thymus showed similar levels and no statistically significant difference was found. The molecular nature of mutations at 12.5 dpc in fetuses of Mlh1 +/+ and Mlh1 -/- mice showed their own unique spectra, suggesting that deletion mutations were the main causes in the deficiency of the Mlh1 gene. Of note, fetuses of irradiated mice exhibited marked differences such as post-implantation loss and Mendelian distribution. Collectively, these results strongly suggest that high mutation ofMlh1 -/- -deficient fetuses has little effect on the fetuses during their early developmental stages, whereas Mlh1 -/- -deficient fetuses from X-ray irradiated mothers are clearly effected.

  2. Plac8 Links Oncogenic Mutations to Regulation of Autophagy and Is Critical to Pancreatic Cancer Progression

    Directory of Open Access Journals (Sweden)

    Conan Kinsey

    2014-05-01

    Full Text Available Mutations in p53 and RAS potently cooperate in oncogenic transformation, and correspondingly, these genetic alterations frequently coexist in pancreatic ductal adenocarcinoma (PDA and other human cancers. Previously, we identified a set of genes synergistically activated by combined RAS and p53 mutations as frequent downstream mediators of tumorigenesis. Here, we show that the synergistically activated gene Plac8 is critical for pancreatic cancer growth. Silencing of Plac8 in cell lines suppresses tumor formation by blocking autophagy, a process essential for maintaining metabolic homeostasis in PDA, and genetic inactivation in an engineered mouse model inhibits PDA progression. We show that Plac8 is a critical regulator of the autophagic machinery, localizing to the lysosomal compartment and facilitating lysosome-autophagosome fusion. Plac8 thus provides a mechanistic link between primary oncogenic mutations and the induction of autophagy, a central mechanism of metabolic reprogramming, during PDA progression.

  3. Mouse Resource Browser-a database of mouse databases

    NARCIS (Netherlands)

    Zouberakis, Michael; Chandras, Christina; Swertz, Morris; Smedley, Damian; Gruenberger, Michael; Bard, Jonathan; Schughart, Klaus; Rosenthal, Nadia; Hancock, John M.; Schofield, Paul N.; Kollias, George; Aidinis, Vassilis

    2010-01-01

    The laboratory mouse has become the organism of choice for discovering gene function and unravelling pathogenetic mechanisms of human diseases through the application of various functional genomic approaches. The resulting deluge of data has led to the deployment of numerous online resources and the

  4. A Transgenic Tri-Modality Reporter Mouse

    OpenAIRE

    Yan, Xinrui; Ray, Pritha; Paulmurugan, Ramasamy; Tong, Ricky; Gong, Yongquan; Sathirachinda, Ataya; Wu, Joseph C.; Gambhir, Sanjiv S.

    2013-01-01

    Transgenic mouse with a stably integrated reporter gene(s) can be a valuable resource for obtaining uniformly labeled stem cells, tissues, and organs for various applications. We have generated a transgenic mouse model that ubiquitously expresses a tri-fusion reporter gene (fluc2-tdTomato-ttk) driven by a constitutive chicken β-actin promoter. This "Tri-Modality Reporter Mouse" system allows one to isolate most cells from this donor mouse and image them for bioluminescent (fluc2), fluorescent...

  5. Lrit3 deficient mouse (nob6): a novel model of complete congenital stationary night blindness (cCSNB).

    Science.gov (United States)

    Neuillé, Marion; El Shamieh, Said; Orhan, Elise; Michiels, Christelle; Antonio, Aline; Lancelot, Marie-Elise; Condroyer, Christel; Bujakowska, Kinga; Poch, Olivier; Sahel, José-Alain; Audo, Isabelle; Zeitz, Christina

    2014-01-01

    Mutations in LRIT3, coding for a Leucine-Rich Repeat, immunoglobulin-like and transmembrane domains 3 protein lead to autosomal recessive complete congenital stationary night blindness (cCSNB). The role of the corresponding protein in the ON-bipolar cell signaling cascade remains to be elucidated. Here we genetically and functionally characterize a commercially available Lrit3 knock-out mouse, a model to study the function and the pathogenic mechanism of LRIT3. We confirm that the insertion of a Bgeo/Puro cassette in the knock-out allele introduces a premature stop codon, which presumably codes for a non-functional protein. The mouse line does not harbor other mutations present in common laboratory mouse strains or in other known cCSNB genes. Lrit3 mutant mice exhibit a so-called no b-wave (nob) phenotype with lacking or severely reduced b-wave amplitudes in the scotopic and photopic electroretinogram (ERG), respectively. Optomotor tests reveal strongly decreased optomotor responses in scotopic conditions. No obvious fundus auto-fluorescence or histological retinal structure abnormalities are observed. However, spectral domain optical coherence tomography (SD-OCT) reveals thinned inner nuclear layer and part of the retina containing inner plexiform layer, ganglion cell layer and nerve fiber layer in these mice. To our knowledge, this is the first time that SD-OCT technology is used to characterize an animal model for CSNB. This phenotype is noted at 6 weeks and at 6 months. The stationary nob phenotype of mice lacking Lrit3, which we named nob6, confirms the findings previously reported in patients carrying LRIT3 mutations and is similar to other cCSNB mouse models. This novel mouse model will be useful for investigating the pathogenic mechanism(s) associated with LRIT3 mutations and clarifying the role of LRIT3 in the ON-bipolar cell signaling cascade.

  6. Lrit3 deficient mouse (nob6: a novel model of complete congenital stationary night blindness (cCSNB.

    Directory of Open Access Journals (Sweden)

    Marion Neuillé

    Full Text Available Mutations in LRIT3, coding for a Leucine-Rich Repeat, immunoglobulin-like and transmembrane domains 3 protein lead to autosomal recessive complete congenital stationary night blindness (cCSNB. The role of the corresponding protein in the ON-bipolar cell signaling cascade remains to be elucidated. Here we genetically and functionally characterize a commercially available Lrit3 knock-out mouse, a model to study the function and the pathogenic mechanism of LRIT3. We confirm that the insertion of a Bgeo/Puro cassette in the knock-out allele introduces a premature stop codon, which presumably codes for a non-functional protein. The mouse line does not harbor other mutations present in common laboratory mouse strains or in other known cCSNB genes. Lrit3 mutant mice exhibit a so-called no b-wave (nob phenotype with lacking or severely reduced b-wave amplitudes in the scotopic and photopic electroretinogram (ERG, respectively. Optomotor tests reveal strongly decreased optomotor responses in scotopic conditions. No obvious fundus auto-fluorescence or histological retinal structure abnormalities are observed. However, spectral domain optical coherence tomography (SD-OCT reveals thinned inner nuclear layer and part of the retina containing inner plexiform layer, ganglion cell layer and nerve fiber layer in these mice. To our knowledge, this is the first time that SD-OCT technology is used to characterize an animal model for CSNB. This phenotype is noted at 6 weeks and at 6 months. The stationary nob phenotype of mice lacking Lrit3, which we named nob6, confirms the findings previously reported in patients carrying LRIT3 mutations and is similar to other cCSNB mouse models. This novel mouse model will be useful for investigating the pathogenic mechanism(s associated with LRIT3 mutations and clarifying the role of LRIT3 in the ON-bipolar cell signaling cascade.

  7. Uncovering the mutation-fixation correlation in short lineages

    Directory of Open Access Journals (Sweden)

    Vallender Eric J

    2007-09-01

    Full Text Available Abstract Background We recently reported a highly unexpected positive correlation between the fixation probability of nonsynonymous mutations (estimated by ω and neutral mutation rate (estimated by Ks in mammalian lineages. However, this positive correlation was observed for lineages with relatively long divergence time such as the human-mouse lineage, and was not found for very short lineages such as the human-chimpanzee lineage. It was previously unclear how to interpret this discrepancy. It may indicate that the positive correlation between ω and Ks in long lineages is a false finding. Alternatively, it may reflect a biologically meaningful difference between various lineages. Finally, the lack of positive correlation in short lineages may be the result of methodological artifacts. Results Here we show that a strong positive correlation can indeed be seen in short lineages when a method was introduced to correct for the inherently high levels of stochastic noise in the use of Ks as an estimator of neutral mutation rate. Thus, the previously noted lack of positive correlation between ω and Ks in short lineages is due to stochastic noise in Ks that makes it a far less reliable estimator of neutral mutation rate in short lineages as compared to long lineages. Conclusion A positive correlation between ω and Ks can be observed in all mammalian lineages for which large amounts of sequence data are available, including very short lineages. It confirms the authenticity of this highly unexpected correlation, and argues that the correction likely applies broadly across all mammals and perhaps even non-mammalian species.

  8. Missense Mutations in CRYAB Are Liable for Recessive Congenital Cataracts.

    Directory of Open Access Journals (Sweden)

    Xiaodong Jiao

    Full Text Available This study was initiated to identify causal mutations responsible for autosomal recessive congenital cataracts in consanguineous familial cases.Affected individuals underwent a detailed ophthalmological and clinical examination, and slit-lamp photographs were ascertained for affected individuals who have not yet been operated for the removal of the cataractous lens. Blood samples were obtained, and genomic DNA was extracted from white blood cells. A genome-wide scan was completed with short tandem repeat (STR markers, and the logarithm of odds (LOD scores were calculated. Protein coding exons of CRYAB were sequenced, bi-directionally. Evolutionary conservation was investigated by aligning CRYAB orthologues, and the expression of Cryab in embryonic and postnatal mice lens was investigated with TaqMan probe.The clinical and ophthalmological examinations suggested that all affected individuals had nuclear cataracts. Genome-wide linkage analysis suggested a potential region on chromosome 11q23 harboring CRYAB. DNA sequencing identified a missense variation: c.34C>T (p.R12C in CRYAB that segregated with the disease phenotype in the family. Subsequent interrogation of our entire cohort of familial cases identified a second familial case localized to chromosome 11q23 harboring a c.31C>T (p.R11C mutation. In silico analyses suggested that the mutations identified in familial cases, p.R11C and p.R12C will not be tolerated by the three-dimensional structure of CRYAB. Real-time PCR analysis identified the expression of Cryab in mouse lens as early as embryonic day 15 (E15 that increased significantly until postnatal day 6 (P6 with steady level of expression thereafter.Here, we report two novel missense mutations, p.R11C and p.R12C, in CRYAB associated with autosomal recessive congenital nuclear cataracts.

  9. Common Β- Thalassaemia Mutations in

    Directory of Open Access Journals (Sweden)

    P Azarfam

    2005-01-01

    Full Text Available Introduction: β –Thalassaemia was first explained by Thomas Cooly as Cooly’s anaemia in 1925. The β- thalassaemias are hereditary autosomal disorders with decreased or absent β-globin chain synthesis. The most common genetic defects in β-thalassaemias are caused by point mutations, micro deletions or insertions within the β-globin gene. Material and Methods: In this research , 142 blood samples (64 from childrens hospital of Tabriz , 15 samples from Shahid Gazi hospital of Tabriz , 18 from Urumia and 45 samples from Aliasghar hospital of Ardebil were taken from thalassaemic patients (who were previously diagnosed .Then 117 non-familial samples were selected . The DNA of the lymphocytes of blood samples was extracted by boiling and Proteinase K- SDS procedure, and mutations were detected by ARMS-PCR methods. Results: From the results obtained, eleven most common mutations,most of which were Mediterranean mutations were detected as follows; IVS-I-110(G-A, IVS-I-1(G-A ،IVS-I-5(G-C ,Frameshift Codon 44 (-C,( codon5(-CT,IVS-1-6(T-C, IVS-I-25(-25bp del ,Frameshift 8.9 (+G ,IVS-II-1(G-A ,Codon 39(C-T, Codon 30(G-C the mutations of the samples were defined. The results showed that Frameshift 8.9 (+G, IVS-I-110 (G-A ,IVS-II-I(G-A, IVS-I-5(G-C, IVS-I-1(G-A , Frameshift Codon 44(-C , codon5(-CT , IVS-1-6(T-C , IVS-I-25(-25bp del with a frequency of 29.9%, 25.47%,17.83%, 7.00%, 6.36% , 6.63% , 3.8% , 2.5% , 0.63% represented the most common mutations in North - west Iran. No mutations in Codon 39(C-T and Codon 30(G-C were detected. Cunclusion: The frequency of the same mutations in patients from North - West of Iran seems to be different as compared to other regions like Turkey, Pakistan, Lebanon and Fars province of Iran. The pattern of mutations in this region is more or less the same as in the Mediterranean region, but different from South west Asia and East Asia.

  10. SQSTM1 Mutations and Glaucoma.

    Directory of Open Access Journals (Sweden)

    Todd E Scheetz

    Full Text Available Glaucoma is the most common cause of irreversible blindness worldwide. One subset of glaucoma, normal tension glaucoma (NTG occurs in the absence of high intraocular pressure. Mutations in two genes, optineurin (OPTN and TANK binding kinase 1 (TBK1, cause familial NTG and have known roles in the catabolic cellular process autophagy. TKB1 encodes a kinase that phosphorylates OPTN, an autophagy receptor, which ultimately activates autophagy. The sequestosome (SQSTM1 gene also encodes an autophagy receptor and also is a target of TBK1 phosphorylation. Consequently, we hypothesized that mutations in SQSTM1 may also cause NTG. We tested this hypothesis by searching for glaucoma-causing mutations in a cohort of NTG patients (n = 308 and matched controls (n = 157 using Sanger sequencing. An additional 1098 population control samples were also analyzed using whole exome sequencing. A total of 17 non-synonymous mutations were detected which were not significantly skewed between cases and controls when analyzed separately, or as a group (p > 0.05. These data suggest that SQSTM1 mutations are not a common cause of NTG.

  11. Mutation breeding in Philippine fruits

    International Nuclear Information System (INIS)

    Espino, R.R.C.

    1987-09-01

    Studies were made to establish standard conditions for mutation induction by gamma-irradiation to be performed in combination with in-vitro culture for banana and citrus spp. Besides this, radio-sensitivity of seeds and/or plantlets of mango, sugar apple, soursop, lanzones and Jack fruit was investigated and primary observation on the occurrence of mutation was made. For the mutagenesis of banana shoot tip cultures, radio-sensitivity of plantlets derived from the culture as well as fresh-cultured shoots was examined and phenotypes indicative of mutation, such as chlorophyl streaking, slow growth, pigmentation and varied bunch orientation were recorded. Isozyme analysis for mutated protein structure was not conclusive. In the in-vitro culture of Citrus spp., seeds placed on fresh media as well as germinating seeds and two-leaf stage seedlings in test tubes were examined for their radio-sensitivity. Irradiated materials were propagated for further observation. In these two crops, basic methodology for mutation induction with combined use of in-vitro culture and gamma-irradiation was established. In mango, sugar apple, soursop, lanzones and Jack fruit, basic data on radiosensitivity were obtained. In mango, leaf abnormalities were observed after the treatment of scions

  12. ATM localization and gene expression in the adult mouse eye.

    Science.gov (United States)

    Leemput, Julia; Masson, Christel; Bigot, Karine; Errachid, Abdelmounaim; Dansault, Anouk; Provost, Alexandra; Gadin, Stéphanie; Aoufouchi, Said; Menasche, Maurice; Abitbol, Marc

    2009-01-01

    High levels of metabolism and oxygen consumption in most adult murine ocular compartments, combined with exposure to light and ultraviolet (UV) radiation, are major sources of oxidative stress, causing DNA damage in ocular cells. Of all mammalian body cells, photoreceptor cells consume the largest amount of oxygen and generate the highest levels of oxidative damage. The accumulation of such damage throughout life is a major factor of aging tissues. Several multiprotein complexes have recently been identified as the major sensors and mediators involved in the maintenance of DNA integrity. The activity of these complexes initially seemed to be restricted to dividing cells, given their ultimate role in major cell cycle checkpoints. However, it was later established that they are also active in post-mitotic cells. Recent findings demonstrate that the DNA damage response (DDR) is essential for the development, maintenance, and normal functioning of the adult central nervous system. One major molecular factor in the DDR is the protein, ataxia telangiectasia mutated (ATM). It is required for the rapid induction of cellular responses to DNA double-strand breaks. These cytotoxic DNA lesions may be caused by oxidative damage. To understand how ATM prevents oxidative stress and participates in the maintenance of genomic integrity and cell viability of the adult retina, we determined the ATM expression patterns and studied its localization in the adult mouse eye. Atm gene expression was analyzed by RT-PCR experiments and its localization by in situ hybridization on adult mouse ocular and cerebellar tissue sections. ATM protein expression was determined by western blot analysis of proteins homogenates extracted from several mouse tissues and its localization by immunohistochemistry experiments performed on adult mouse ocular and cerebellar tissue sections. In addition, subcellular localization was realized by confocal microscopy imaging of ocular tissue sections, with a special

  13. The Oak Ridge Polycystic Kidney mouse: modeling ciliopathies of mice and men.

    Energy Technology Data Exchange (ETDEWEB)

    Lehman, J M [University of Alabama, Birmingham; Michaud III, Edward J [ORNL; Schoeb, T [University of Alabama, Birmingham; Aydin Son, Yesim [University of Tennessee, Knoxville (UTK); Miller, M [University of Alabama, Birmingham; Yoder, Bradley [University of Alabama, Birmingham

    2008-08-01

    The Oak Ridge Polycystic Kidney (ORPK) mouse was described nearly 14 years ago as a model for human recessive polycystic kidney disease. The ORPK mouse arose through integration of a transgene into an intron of the Ift88 gene resulting in a hypomorphic allele (Ift88Tg737Rpw). The Ift88Tg737Rpw mutation impairs intraflagellar transport (IFT), a process required for assembly of motile and immotile cilia. Historically, the primary immotile cilium was thought to have minimal importance for human health; however, a rapidly expanding number of human disorders have now been attributed to ciliary defects. Importantly, many of these phenotypes are present and can be analyzed using the ORPK mouse. In this review, we highlight the research conducted using the OPRK mouse and the phenotypes shared with human cilia disorders. Furthermore, we describe an additional follicular dysplasia phenotype in the ORPK mouse, which alongside the ectodermal dysplasias seen in human Ellis-van Creveld and Sensenbrenner's syndromes, suggests an unappreciated role for primary cilia in the skin and hair follicle.

  14. Charged particle mutagenesis at low dose and fluence in mouse splenic T cells

    Energy Technology Data Exchange (ETDEWEB)

    Grygoryev, Dmytro [Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR 97239 (United States); Gauny, Stacey [Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Lasarev, Michael; Ohlrich, Anna [Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR 97239 (United States); Kronenberg, Amy [Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Turker, Mitchell S., E-mail: turkerm@ohsu.edu [Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR 97239 (United States); Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239 (United States)

    2016-06-15

    Highlights: • Densely ionizing forms of space radiation induce mutations in splenic T cells at low fluence. • Large interstitial deletions and discontinuous LOH patterns are radiation signature mutations. • Space radiation mutagenesis suggests a cancer risk from deep space travel. - Abstract: High-energy heavy charged particles (HZE ions) found in the deep space environment can significantly affect human health by inducing mutations and related cancers. To better understand the relation between HZE ion exposure and somatic mutation, we examined cell survival fraction, Aprt mutant frequencies, and the types of mutations detected for mouse splenic T cells exposed in vivo to graded doses of densely ionizing {sup 48}Ti ions (1 GeV/amu, LET = 107 keV/μm), {sup 56}Fe ions (1 GeV/amu, LET = 151 keV/μm) ions, or sparsely ionizing protons (1 GeV, LET = 0.24 keV/μm). The lowest doses for {sup 48}Ti and {sup 56}Fe ions were equivalent to a fluence of approximately 1 or 2 particle traversals per nucleus. In most cases, Aprt mutant frequencies in the irradiated mice were not significantly increased relative to the controls for any of the particles or doses tested at the pre-determined harvest time (3–5 months after irradiation). Despite the lack of increased Aprt mutant frequencies in the irradiated splenocytes, a molecular analysis centered on chromosome 8 revealed the induction of radiation signature mutations (large interstitial deletions and complex mutational patterns), with the highest levels of induction at 2 particles nucleus for the {sup 48}Ti and {sup 56}Fe ions. In total, the results show that densely ionizing HZE ions can induce characteristic mutations in splenic T cells at low fluence, and that at least a subset of radiation-induced mutant cells are stably retained despite the apparent lack of increased mutant frequencies at the time of harvest.

  15. Increased susceptibility to cortical spreading depression in the mouse model of familial hemiplegic migraine type 2.

    Directory of Open Access Journals (Sweden)

    Loredana Leo

    2011-06-01

    Full Text Available Familial hemiplegic migraine type 2 (FHM2 is an autosomal dominant form of migraine with aura that is caused by mutations of the α2-subunit of the Na,K-ATPase, an isoform almost exclusively expressed in astrocytes in the adult brain. We generated the first FHM2 knock-in mouse model carrying the human W887R mutation in the Atp1a2 orthologous gene. Homozygous Atp1a2(R887/R887 mutants died just after birth, while heterozygous Atp1a2(+/R887 mice showed no apparent clinical phenotype. The mutant α2 Na,K-ATPase protein was barely detectable in the brain of homozygous mutants and strongly reduced in the brain of heterozygous mutants, likely as a consequence of endoplasmic reticulum retention and subsequent proteasomal degradation, as we demonstrate in transfected cells. In vivo analysis of cortical spreading depression (CSD, the phenomenon underlying migraine aura, revealed a decreased induction threshold and an increased velocity of propagation in the heterozygous FHM2 mouse. Since several lines of evidence involve a specific role of the glial α2 Na,K pump in active reuptake of glutamate from the synaptic cleft, we hypothesize that CSD facilitation in the FHM2 mouse model is sustained by inefficient glutamate clearance by astrocytes and consequent increased cortical excitatory neurotransmission. The demonstration that FHM2 and FHM1 mutations share the ability to facilitate induction and propagation of CSD in mouse models further support the role of CSD as a key migraine trigger.

  16. Electroretinographic genotype-phenotype correlations for mouse and man at the dmd/DMD locus

    Energy Technology Data Exchange (ETDEWEB)

    Millers, D.M.; Weleber, R.G.; Woodward, W.R. [Oregon Health Sciences Univ., Portland, OR (United States)] [and others

    1994-09-01

    Reduced or absent b-waves in the dark-adapted electroretinogram (ERG) of Duchenne and Becker muscular dystrophy (DMD/BMD) patients led to the identification of dystrophin in human retina and the proposal that it plays a role in retinal electrophysiology. Study of a large group of Duchenne and Becker muscular dystrophy males to determine their ocular characteristics indicated that there were position-specific effects of deletions, with 3{prime} defects associated with severe electroretinographic changes, whereas some 5{prime} patients demonstrated less severe, or even normal, ERGs. We studied the mdx mouse, a model with X-linked muscular dystrophy and defective full-length dystrophin, which failed to show any ERG abnormalities. Given the presence of alternate isoforms of dystrophin in retina, and the 5{prime} deletion DMD/BMD patients with normal ERGs, we studied mouse models with differing dystrophin mutations (mdx{sup Cv3}, mdx{sup Cv5}) to determine the usefulness of alternate strains as models for the visual effects of dystropin. Abnormal ERGs similar to those seen in DMD/BMS patients exist in the mdx{sup Cv3} strain of muscular dystrophy mice. Normal ERGs were found the mdx{sup Cv5} strain. The mutations in the mdx and mdx{sup Cv5} mice have been mapped to the 5{prime} end of the dmd gene, while the mutation in the mdx{sup Cv3} mouse is in the 3{prime} end. Thus, there are position effects of the gene defect on the ERG phenotype that are conserved in the mouse. Such genotype-phenotype correlations may reflect differential expression of shorter isoforms of dystrophin.

  17. Thalassemia mutations in Gaziantep, Turkey

    African Journals Online (AJOL)

    STORAGESEVER

    2010-02-22

    Feb 22, 2010 ... Table 3. Frequency of β-thalassemia mutations in the Eastern Mediterranean. Mutation. This study Turkey Cyprus Greece Syria Palestine Bulgaria Azerbaijan Iran Iraq. IVS 1.110 (G>A). 29.1. 39.3. 79.7. 42.1. 24.1. 17.6. 24.2. 20.2. 4.8 1.9. IVS 2.1 (G>A). 12.3. 4.7. -. 3.3. 4.2. 2.9. -. -. 33.9 18.3. IVS 1.1 (G>A).

  18. Abnormal nuclear envelope in the cerebellar Purkinje cells and impaired motor learning in DYT11 myoclonus-dystonia mouse models

    OpenAIRE

    Yokoi, Fumiaki; Dang, Mai T.; Yang, Guang; Li, JinDong; Doroodchi, Atbin; Zhou, Tong; Li, Yuqing

    2011-01-01

    Myoclonus-dystonia (M-D) is a movement disorder characterized by myoclonic jerks with dystonia. DYT11 M-D is caused by mutations in SGCE which codes for ε-sarcoglycan. SGCE is maternally imprinted and paternally expressed. Abnormal nuclear envelope has been reported in mouse models of DYT1 generalized torsion dystonia. However, it is not known whether similar alterations occur in DYT11 M-D. We developed a mouse model of DYT11 M-D using paternally-inherited Sgce heterozygous knockout (Sgce KO)...

  19. The Mouse Lemur, a Genetic Model Organism for Primate Biology, Behavior, and Health.

    Science.gov (United States)

    Ezran, Camille; Karanewsky, Caitlin J; Pendleton, Jozeph L; Sholtz, Alex; Krasnow, Maya R; Willick, Jason; Razafindrakoto, Andriamahery; Zohdy, Sarah; Albertelli, Megan A; Krasnow, Mark A

    2017-06-01

    Systematic genetic studies of a handful of diverse organisms over the past 50 years have transformed our understanding of biology. However, many aspects of primate biology, behavior, and disease are absent or poorly modeled in any of the current genetic model organisms including mice. We surveyed the animal kingdom to find other animals with advantages similar to mice that might better exemplify primate biology, and identified mouse lemurs ( Microcebus spp.) as the outstanding candidate. Mouse lemurs are prosimian primates, roughly half the genetic distance between mice and humans. They are the smallest, fastest developing, and among the most prolific and abundant primates in the world, distributed throughout the island of Madagascar, many in separate breeding populations due to habitat destruction. Their physiology, behavior, and phylogeny have been studied for decades in laboratory colonies in Europe and in field studies in Malagasy rainforests, and a high quality reference genome sequence has recently been completed. To initiate a classical genetic approach, we developed a deep phenotyping protocol and have screened hundreds of laboratory and wild mouse lemurs for interesting phenotypes and begun mapping the underlying mutations, in collaboration with leading mouse lemur biologists. We also seek to establish a mouse lemur gene "knockout" library by sequencing the genomes of thousands of mouse lemurs to identify null alleles in most genes from the large pool of natural genetic variants. As part of this effort, we have begun a citizen science project in which students across Madagascar explore the remarkable biology around their schools, including longitudinal studies of the local mouse lemurs. We hope this work spawns a new model organism and cultivates a deep genetic understanding of primate biology and health. We also hope it establishes a new and ethical method of genetics that bridges biological, behavioral, medical, and conservation disciplines, while

  20. Accurate quantification of mouse mitochondrial DNA without co-amplification of nuclear mitochondrial insertion sequences.

    Science.gov (United States)

    Malik, Afshan N; Czajka, Anna; Cunningham, Phil

    2016-07-01

    Mitochondria contain an extra-nuclear genome in the form of mitochondrial DNA (MtDNA), damage to which can lead to inflammation and bioenergetic deficit. Changes in MtDNA levels are increasingly used as a biomarker of mitochondrial dysfunction. We previously reported that in humans, fragments in the nuclear genome known as nuclear mitochondrial insertion sequences (NumtS) affect accurate quantification of MtDNA. In the current paper our aim was to determine whether mouse NumtS affect the quantification of MtDNA and to establish a method designed to avoid this. The existence of NumtS in the mouse genome was confirmed using blast N, unique MtDNA regions were identified using FASTA, and MtDNA primers which do not co-amplify NumtS were designed and tested. MtDNA copy numbers were determined in a range of mouse tissues as the ratio of the mitochondrial and nuclear genome using real time qPCR and absolute quantification. Approximately 95% of mouse MtDNA was duplicated in the nuclear genome as NumtS which were located in 15 out of 21 chromosomes. A unique region was identified and primers flanking this region were used. MtDNA levels differed significantly in mouse tissues being the highest in the heart, with levels in descending order (highest to lowest) in kidney, liver, blood, brain, islets and lung. The presence of NumtS in the nuclear genome of mouse could lead to erroneous data when studying MtDNA content or mutation. The unique primers described here will allow accurate quantification of MtDNA content in mouse models without co-amplification of NumtS. Copyright © 2016 Elsevier B.V. and Mitochondria Research Society. All rights reserved.

  1. GATA-1 directly regulates Nanog in mouse embryonic stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wen-Zhong; Ai, Zhi-Ying [College of Life Sciences, Northwest A& F University, Yangling 712100 (China); Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A& F University, Yangling 712100 (China); Wang, Zhi-Wei [School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027 (China); Chen, Lin-Lin [College of Life Sciences, Northwest A& F University, Yangling 712100 (China); Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A& F University, Yangling 712100 (China); Guo, Ze-Kun, E-mail: gzknwaf@126.com [College of Veterinary Medicine, Northwest A& F University, Yangling 712100 (China); Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A& F University, Yangling 712100 (China); Zhang, Yong, E-mail: zylabnwaf@126.com [College of Veterinary Medicine, Northwest A& F University, Yangling 712100 (China); Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A& F University, Yangling 712100 (China)

    2015-09-25

    Nanog safeguards pluripotency in mouse embryonic stem cells (mESCs). Insight into the regulation of Nanog is important for a better understanding of the molecular mechanisms that control pluripotency of mESCs. In a silico analysis, we identify four GATA-1 putative binding sites in Nanog proximal promoter. The Nanog promoter activity can be significantly repressed by ectopic expression of GATA-1 evidenced by a promoter reporter assay. Mutation studies reveal that one of the four putative binding sites counts for GATA-1 repressing Nanog promoter activity. Direct binding of GATA-1 on Nanog proximal promoter is confirmed by electrophoretic mobility shift assay and chromatin immunoprecipitation. Our data provide new insights into the expanded regulatory circuitry that coordinates Nanog expression. - Highlights: • The Nanog proximal promoter conceives functional element for GATA-1. • GATA-1 occupies the Nanog proximal promoter in vitro and in vivo. • GATA-1 transcriptionally suppresses Nanog.

  2. Novel Alternative Splice Variants of Mouse Cdk5rap2.

    Directory of Open Access Journals (Sweden)

    Nadine Kraemer

    Full Text Available Autosomal recessive primary microcephaly (MCPH is a rare neurodevelopmental disorder characterized by a pronounced reduction of brain volume and intellectual disability. A current model for the microcephaly phenotype invokes a stem cell proliferation and differentiation defect, which has moved the disease into the spotlight of stem cell biology and neurodevelopmental science. Homozygous mutations of the Cyclin-dependent kinase-5 regulatory subunit-associated protein 2 gene CDK5RAP2 are one genetic cause of MCPH. To further characterize the pathomechanism underlying MCPH, we generated a conditional Cdk5rap2 LoxP/hCMV Cre mutant mouse. Further analysis, initiated on account of a lack of a microcephaly phenotype in these mutant mice, revealed the presence of previously unknown splice variants of the Cdk5rap2 gene that are at least in part accountable for the lack of microcephaly in the mice.

  3. p53-dependent manner of persistent activation of the radiation-induced reversion in the pink-eyed unstable mouse embryo

    International Nuclear Information System (INIS)

    Shiraishi, K.; Yonezawa, M.; Niwa, O.

    2003-01-01

    Full text: We previously reported that radiation has an ability to induce genomic instability which causes delayed and untargeted mutation. These mutations aren't accounted for by the usual relationship between DNA damages and repair. However, the mechanisms of a long-term memory of DNA damage and the persistence of up-regulated recombination activity have yet to be elucidated. The mouse pink-eyed unstable (pun) mutation is due to an intragenic duplication of the pink-eyed dilution locus and frequently reverts black to the wild type in germ cells as well as somatic cells. The frequency of reversion was estimated by counting cluster of pigment cells in retinal pigment epithelium. Twice increase of the reversion was observed in F1 mice born to 6Gy irradiated male at spermatozoa stage, but not at other spermatogenesis stages( -tid, -cyte, -gonia ). Trans-genarational effect in F2 mice also didn't observe. Therefore, this phenomenon only occurs under the restricted germ cell stage. Additionally, the reversion frequency of p53 deficient F1 mouse born to irradiated sperm was less than irradiated wild mouse. 5aza-dc chemical agent, which is DNA methylation emzyme inhibitor, also suppressed pun allele recombination in mouse embryo. These data indicate that p53 contributes delayed and untargeted mutation, perhaps, by regulation of DNA metylation status

  4. Limited impact of Cntn4 mutation on autism-related traits in developing and adult C57BL/6J mice

    NARCIS (Netherlands)

    Molenhuis, Remco T; Bruining, Hilgo; Remmelink, Esther; de Visser, Leonie; Loos, Maarten; Burbach, J Peter H; Kas, Martien J H

    2016-01-01

    BACKGROUND: Mouse models offer an essential tool to unravel the impact of genetic mutations on autism-related phenotypes. The behavioral impact of some important candidate gene models for autism spectrum disorder (ASD) has not yet been studied, and existing characterizations mostly describe

  5. The Mouse SAGE Site: database of public mouse SAGE libraries

    Czech Academy of Sciences Publication Activity Database

    Divina, Petr; Forejt, Jiří

    2004-01-01

    Roč. 32, - (2004), s. D482-D483 ISSN 0305-1048 R&D Projects: GA MŠk LN00A079; GA ČR GV204/98/K015 Grant - others:HHMI(US) 555000306 Institutional research plan: CEZ:AV0Z5052915 Keywords : mouse SAGE libraries * web -based database Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 7.260, year: 2004

  6. The I2020T Leucine-rich repeat kinase 2 transgenic mouse exhibits impaired locomotive ability accompanied by dopaminergic neuron abnormalities

    Directory of Open Access Journals (Sweden)

    Maekawa Tatsunori

    2012-04-01

    Full Text Available Abstract Background Leucine-rich repeat kinase 2 (LRRK2 is the gene responsible for autosomal-dominant Parkinson’s disease (PD, PARK8, but the mechanism by which LRRK2 mutations cause neuronal dysfunction remains unknown. In the present study, we investigated for the first time a transgenic (TG mouse strain expressing human LRRK2 with an I2020T mutation in the kinase domain, which had been detected in the patients of the original PARK8 family. Results The TG mouse expressed I2020T LRRK2 in dopaminergic (DA neurons of the substantia nigra, ventral tegmental area, and olfactory bulb. In both the beam test and rotarod test, the TG mice exhibited impaired locomotive ability in comparison with their non-transgenic (NTG littermates. Although there was no obvious loss of DA neurons in either the substantia nigra or striatum, the TG brain showed several neurological abnormalities such as a reduced striatal dopamine content, fragmentation of the Golgi apparatus in DA neurons, and an increased degree of microtubule polymerization. Furthermore, the tyrosine hydroxylase-positive primary neurons derived from the TG mouse showed an increased frequency of apoptosis and had neurites with fewer branches and decreased outgrowth in comparison with those derived from the NTG controls. Conclusions The I2020T LRRK2 TG mouse exhibited impaired locomotive ability accompanied by several dopaminergic neuron abnormalities. The TG mouse should provide valuable clues to the etiology of PD caused by the LRRK2 mutation.

  7. Abrupt onset of mutations in a developmentally regulated gene during terminal differentiation of post-mitotic photoreceptor neurons in mice.

    Directory of Open Access Journals (Sweden)

    Ivette M Sandoval

    Full Text Available For sensitive detection of rare gene repair events in terminally differentiated photoreceptors, we generated a knockin mouse model by replacing one mouse rhodopsin allele with a form of the human rhodopsin gene that causes a severe, early-onset form of retinitis pigmentosa. The human gene contains a premature stop codon at position 344 (Q344X, cDNA encoding the enhanced green fluorescent protein (EGFP at its 3' end, and a modified 5' untranslated region to reduce translation rate so that the mutant protein does not induce retinal degeneration. Mutations that eliminate the stop codon express a human rhodopsin-EGFP fusion protein (hRho-GFP, which can be readily detected by fluorescence microscopy. Spontaneous mutations were observed at a frequency of about one per retina; in every case, they gave rise to single fluorescent rod cells, indicating that each mutation occurred during or after the last mitotic division. Additionally, the number of fluorescent rods did not increase with age, suggesting that the rhodopsin gene in mature rod cells is less sensitive to mutation than it is in developing rods. Thus, there is a brief developmental window, coinciding with the transcriptional activation of the rhodopsin locus, in which somatic mutations of the rhodopsin gene abruptly begin to appear.

  8. Pericentriolar Targeting of the Mouse Mammary Tumor Virus GAG Protein.

    Directory of Open Access Journals (Sweden)

    Guangzhi Zhang

    Full Text Available The Gag protein of the mouse mammary tumor virus (MMTV is the chief determinant of subcellular targeting. Electron microscopy studies show that MMTV Gag forms capsids within the cytoplasm and assembles as immature particles with MMTV RNA and the Y box binding protein-1, required for centrosome maturation. Other betaretroviruses, such as Mason-Pfizer monkey retrovirus (M-PMV, assemble adjacent to the pericentriolar region because of a cytoplasmic targeting and retention signal in the Matrix protein. Previous studies suggest that the MMTV Matrix protein may also harbor a similar cytoplasmic targeting and retention signal. Herein, we show that a substantial fraction of MMTV Gag localizes to the pericentriolar region. This was observed in HEK293T, HeLa human cell lines and the mouse derived NMuMG mammary gland cells. Moreover, MMTV capsids were observed adjacent to centrioles when expressed from plasmids encoding either MMTV Gag alone, Gag-Pro-Pol or full-length virus. We found that the cytoplasmic targeting and retention signal in the MMTV Matrix protein was sufficient for pericentriolar targeting, whereas mutation of the glutamine to alanine at position 56 (D56/A resulted in plasma membrane localization, similar to previous observations from mutational studies of M-PMV Gag. Furthermore, transmission electron microscopy studies showed that MMTV capsids accumulate around centrioles suggesting that, similar to M-PMV, the pericentriolar region may be a site for MMTV assembly. Together, the data imply that MMTV Gag targets the pericentriolar region as a result of the MMTV cytoplasmic targeting and retention signal, possibly aided by the Y box protein-1 required for the assembly of centrosomal microtubules.

  9. Energy parasites trigger oncogene mutation

    Czech Academy of Sciences Publication Activity Database

    Pokorný, Jiří; Pokorný, Jan; Jandová, Anna; Kobilková, J.; Vrba, J.; Vrba, J. jr.

    2016-01-01

    Roč. 92, č. 10 (2016), s. 577-582 ISSN 0955-3002 R&D Projects: GA ČR GA16-12757S Institutional support: RVO:68378271 ; RVO:67985882 Keywords : cancer initiation * cell-mediated immunity * coherent electromagnetic states * genome somatic mutation * LDH virus * parasitic energy consumption Subject RIV: BO - Biophysics Impact factor: 1.992, year: 2016

  10. Induced mutation of Dendrobium orchid

    International Nuclear Information System (INIS)

    Sakinah Ariffin; Mohd Nazir Basiran

    2000-01-01

    Dendrobiiim orchids serve as the main orchid cut flower export of Malaysia. The wide range of colour and forms presently available in the market are obtained through hybridisation. Induced mutation breeding program was initiated on a commercial variety Dendrobium 'Sonia Kai' to explore the possibilities of obtaining new colour and forms. Matured seeds from self pollination were cultured and irradiated at 35 Gy at the protocorm-like bodies (PLBS) stage. Selection of induced mutations was done after the first flowering of the plants regenerated from the irradiated protocorms. Results showed changes in flower colour, shape and size. Most of these chances are expressed in different combinations in the petals, sepals and lip of the flowers. Thus, resulting. in a very wide spectrum of mutations. Some of these chances are not stable. To date, mutants that showed stable characteristics changes are grouped into 11 categories based on flower colour and form. These results show that the combination of its vitro technique and induced mutation can be applied in orchid breeding to produce new interesting and attractive variety for the market

  11. Mutational specificity of SOS mutagenesis

    International Nuclear Information System (INIS)

    Kato, Takeshi

    1986-01-01

    In an approach to the isolation of mutants of E. coli unable to produce mutations by ultraviolet light, the author has found new umuC-mutants. Their properties could be explained by ''SOS hypothesis of Radman and Witkin'', which has now been justified by many investigators. Analysis of the umuC region of E. coli chromosome cloned in pSK 100 has led to the conclusion that two genes, umuD and umuC, having the capacity of mutation induction express in the same mechanism as that of SOS genes, which is known to be inhibited by LexA protein bonding to ''SOS box'' found at promotor region. Suppressor analysis for mutational specificity has revealed: (i) umuDC-independent mutagens, such as EMS and (oh) 4 Cy, induce selected base substitution alone; and (ii) umuDC-dependent mutagens, such as X-rays and gamma-rays, induce various types of base substitution simultaneously, although they have mutational specificity. In the umuDC-dependent processes of basechange mutagenesis, the spectra of base substitution were a mixture of base substitution reflecting the specific base damages induced by individual mutagens and nonspecific base substitution. In conclusion, base substitution plays the most important role in umuDC-dependent mutagenesis, although mutagenesis of umuDC proteins remains uncertain. (Namekawa, K.)

  12. 2-O-α-glucopytanosyl L-ascorbic acid reduced mutagenicity at HPRT locus of mouse splenocytes following BNCT

    International Nuclear Information System (INIS)

    Kinashi, Yuko; Masunaga, Shin-ichiro; Suzuki, Minoru; Nagata, Kanji; Ono, Koji

    2006-01-01

    In boron neutron capture therapy (BNCT), normal tissue surrounding the tumor cells sometimes take up boron compounds resulting in radiation-induced damage to normal tissue. We have previously reported the evidence for increased the mutagenicity of thermal neutron in the presence of boron. In addition, we described the biological radio-protective effects of the ascorbic acid for mutation induction following BNCT in vitro. Here, we investigated these radio-protective effects of ascorbic acid for mutation induction in mouse splenocytes on HPRT locus following a BNCT study in vivo. (author)

  13. Mutated genes as research tool

    International Nuclear Information System (INIS)

    1981-01-01

    Green plants are the ultimate source of all resources required for man's life, his food, his clothes, and almost all his energy requirements. Primitive prehistoric man could live from the abundance of nature surrounding him. Man today, dominating nature in terms of numbers and exploiting its limited resources, cannot exist without employing his intelligence to direct natural evolution. Plant sciences, therefore, are not a matter of curiosity but an essential requirement. From such considerations, the IAEA and FAO jointly organized a symposium to assess the value of mutation research for various kinds of plant science, which directly or indirectly might contribute to sustaining and improving crop production. The benefit through developing better cultivars that plant breeders can derive from using the additional genetic resources resulting from mutation induction has been assessed before at other FAO/IAEA meetings (Rome 1964, Pullman 1969, Ban 1974, Ibadan 1978) and is also monitored in the Mutation Breeding Newsletter, published by IAEA twice a year. Several hundred plant cultivars which carry economically important characters because their genes have been altered by ionizing radiation or other mutagens, are grown by farmers and horticulturists in many parts of the world. But the benefit derived from such mutant varieties is without any doubt surpassed by the contribution which mutation research has made towards the advancement of genetics. For this reason, a major part of the papers and discussions at the symposium dealt with the role induced-mutation research played in providing insight into gene action and gene interaction, the organization of genes in plant chromosomes in view of homology and homoeology, the evolutionary role of gene duplication and polyploidy, the relevance of gene blocks, the possibilities for chromosome engineering, the functioning of cytroplasmic inheritance and the genetic dynamics of populations. In discussing the evolutionary role of

  14. Radiation-induced mutation at minisatellite loci

    International Nuclear Information System (INIS)

    Dubrova, Y.E.; Nesterov, V.N.; Krouchinsky, N.G.

    1997-01-01

    We are studying the radiation-induced increase of mutation rate in minisatellite loci in mice and humans. Minisatellite mutations were scored by multilocus DNA fingerprint analysis in the progeny of γ-irradiated and non-irradiated mice. The frequency of mutation in offspring of irradiated males was 1.7 higher that in the control group. Germline mutation at human minisatellite loci was studied among children born in heavily polluted areas of the Mogilev district of Belarus after the Chernobyl accident and in a control population. The frequency of mutation assayed both by DNA fingerprinting and by eight single locus probes was found to be two times higher in the exposed families than in the control group. Furthermore, mutation rate was correlated with the parental radiation dose for chronic exposure 137 Cs, consistent with radiation-induction of germline mutation. The potential use of minisatellites in monitoring germline mutation in humans will be discussed

  15. Recurrent LDL-receptor mutation causes familial ...

    African Journals Online (AJOL)

    1995-05-05

    May 5, 1995 ... 3. eaudet . New. Recurrent LDL-receptor mutation causes familial hypercholesterolaemia in ... amplification refractory mutation system (ARMS)" and single- strand conformation .... Location. Afrikaner. Mixed race. ApaLl.

  16. Manual on mutation breeding. 2. ed.

    International Nuclear Information System (INIS)

    1977-01-01

    The manual is a compilation of work done on the use of induced mutations in plant breeding, and presents general methods and techniques in this field. The use of chemical mutagens and ionizing radiations (X-rays, gamma rays, α- and β-particles, protons, neutrons) are described as well as the effects of these mutagens. The different types of mutations achieved can be divided into genome mutations, chromosome mutations and extra nuclear mutations. Separate chapters deal with mutation techniques in breeding seed-propagated species and asexually propagated plants (examples of development of cultivars given). Plant characters which can be improved by mutation breeding include yield, ripening time, growth habit, disease resistance and tolerance to environmental factors (temperature, salinity etc.). The use of mutagens for some specific plant breeding problems is discussed and attention is also paid to somatic cell genetics in connection with induced mutations. The manual contains a comprehensive bibliography (60 p. references) and a subject index

  17. Mutation at codon 442 in the rpoB gene of Mycobacterium leprae does not confer resistance to rifampicin.

    Science.gov (United States)

    Lavania, Mallika; Hena, Abu; Reja, Hasanoor; Nigam, Astha; Biswas, Nibir Kumar; Singh, Itu; Turankar, Ravindra P; Gupta, Ud; Kumar, Senthil; Rewaria, Latika; Patra, Pradip K R; Sengupta, Utpal; Bhattacharya, Basudeb

    2016-03-01

    Rifampicin is the major drug in the treatment of leprosy. The rifampicin resistance of Mycobacterium leprae results from a mutation in the rpoB gene, encoding the β subunit of RNA polymerase. As M. leprae is a non-cultivable organism observation of its growth using mouse food-pad (MFP) is the only Gold Standard assay used for confirmation of "in-vivo" drug resistance. Any mutation at molecular level has to be verified by MFP assay for final confirmation of drug resistance in leprosy. In the present study, M. leprae strains showing a mutation only at codon 442 Gln-His and along with mutation either at codon 424 Val-Gly or at 438 Gln-Val within the Rifampicin Resistance Determining Region (RRDR) confirmed by DNA sequencing and by high resolution melting (HRM) analysis were subjected for its growth in MFP. The M. leprae strain having the new mutation at codon 442 Gln-His was found to be sensitive to all the three drugs and strains having additional mutations at 424 Val-Gly and 438 Gln-Val were conferring resistance with Multi drug therapy (MDT) in MFP. These results indicate that MFP is the gold standard method for confirming the mutations detected by molecular techniques.

  18. Novel Polymerase Gene Mutations for Human Adaptation in Clinical Isolates of Avian H5N1 Influenza Viruses.

    Directory of Open Access Journals (Sweden)

    Yasuha Arai

    2016-04-01

    Full Text Available A major determinant in the change of the avian influenza virus host range to humans is the E627K substitution in the PB2 polymerase protein. However, the polymerase activity of avian influenza viruses with a single PB2-E627K mutation is still lower than that of seasonal human influenza viruses, implying that avian viruses require polymerase mutations in addition to PB2-627K for human adaptation. Here, we used a database search of H5N1 clade 2.2.1 virus sequences with the PB2-627K mutation to identify other polymerase adaptation mutations that have been selected in infected patients. Several of the mutations identified acted cooperatively with PB2-627K to increase viral growth in human airway epithelial cells and mouse lungs. These mutations were in multiple domains of the polymerase complex other than the PB2-627 domain, highlighting a complicated avian-to-human adaptation pathway of avian influenza viruses. Thus, H5N1 viruses could rapidly acquire multiple polymerase mutations that function cooperatively with PB2-627K in infected patients for optimal human adaptation.

  19. Usherin expression is highly conserved in mouse and human tissues.

    Science.gov (United States)

    Pearsall, Nicole; Bhattacharya, Gautam; Wisecarver, Jim; Adams, Joe; Cosgrove, Dominic; Kimberling, William

    2002-12-01

    Usher syndrome is an autosomal recessive disease that results in varying degrees of hearing loss and retinitis pigmentosa. Three types of Usher syndrome (I, II, and III) have been identified clinically with Usher type II being the most common of the three types. Usher type II has been localized to three different chromosomes 1q41, 3p, and 5q, corresponding to Usher type 2A, 2B, and 2C respectively. Usherin is a basement membrane protein encoded by the USH2A gene. Expression of usherin has been localized in the basement membrane of several tissues, however it is not ubiquitous. Immunohistochemistry detected usherin in the following human tissues: retina, cochlea, small and large intestine, pancreas, bladder, prostate, esophagus, trachea, thymus, salivary glands, placenta, ovary, fallopian tube, uterus, and testis. Usherin was absent in many other tissues such as heart, lung, liver, kidney, and brain. This distribution is consistent with the usherin distribution seen in the mouse. Conservation of usherin is also seen at the nucleotide and amino acid level when comparing the mouse and human gene sequences. Evolutionary conservation of usherin expression at the molecular level and in tissues unaffected by Usher 2a supports the important structural and functional role this protein plays in the human. In addition, we believe that these results could lead to a diagnostic procedure for the detection of Usher syndrome and those who carry an USH2A mutation.

  20. Molecular evidence for the induction of large interstitial deletions on mouse chromosome 8 by ionizing radiation

    International Nuclear Information System (INIS)

    Turker, Mitchell S.; Pieretti, Maura; Kumar, Sudha

    1997-01-01

    The P19H22 mouse embryonal carcinoma cell line is characterized by a hemizygous deficiency for the chromosome 8 encoded aprt (adenine phosphoribosyltransferase) gene and heterozygosity for many chromosome 8 loci. We have previously demonstrated that this cell line is suitable for mutational studies because it is permissive of events ranging in size from base-pair substitutions at the aprt locus to apparent loss of chromosome 8. Large mutational events, defined by loss of the remaining aprt allele, were found to predominate in spontaneous mutants and those induced by ionizing radiation. In this study we have used a PCR based assay to screen for loss of heterozygosity at microsatellite loci both proximal and distal to aprt in 137 Cs-induced and spontaneous aprt mutants. This approach allowed us to distinguish apparent interstitial deletional events from apparent recombinational events. Significantly, 32.5% (26 of 80) of the mutational events induced by 137 Cs appeared to be interstitial deletions as compared with 7.7% (6 of 78) in the spontaneous group. This difference was statistically significant (p 137 Cs caused a significant number of deletion mutations. Most 137 Cs-induced interstitial deletions were larger than 6 cM, whereas none of the spontaneous deletions were larger than 6 cM. These results provide further support for the notion that ionizing radiation induces deletion mutations and validate the use of the P19H22 cell line for the study of events induced by ionizing radiation

  1. Adaptive mutation: has the unicorn landed?

    Science.gov (United States)

    Foster, P L

    1998-01-01

    Reversion of an episomal Lac- allele during lactose selection has been studied as a model for adaptive mutation. Although recent results show that the mutations that arise during selection are not "adaptive" in the original sense, the mutagenic mechanism that produces these mutations may nonetheless be of evolutionary significance. In addition, a transient mutational state induced in a subpopulation of starving cells could provide a species with a mechanism for adaptive evolution. PMID:9560365

  2. Adaptive mutation: has the unicorn landed?

    Science.gov (United States)

    Foster, P L

    1998-04-01

    Reversion of an episomal Lac- allele during lactose selection has been studied as a model for adaptive mutation. Although recent results show that the mutations that arise during selection are not "adaptive" in the original sense, the mutagenic mechanism that produces these mutations may nonetheless be of evolutionary significance. In addition, a transient mutational state induced in a subpopulation of starving cells could provide a species with a mechanism for adaptive evolution.

  3. Urinary Tract Effects of HPSE2 Mutations

    OpenAIRE

    Stuart, H; Roberts, N; Hilton, E; McKenzie, E; Daly, S; Hadfield, K; Rahal, J; Gardiner, N; Tanley, S; Lewis, M; Sites, E; Angle, B; Alves, C; Lourenço, T; Rodrigues, M

    2015-01-01

    Urofacial syndrome (UFS) is an autosomal recessive congenital disease featuring grimacing and incomplete bladder emptying. Mutations of HPSE2, encoding heparanase 2, a heparanase 1 inhibitor, occur in UFS, but knowledge about the HPSE2 mutation spectrum is limited. Here, seven UFS kindreds with HPSE2 mutations are presented, including one with deleted asparagine 254, suggesting a role for this amino acid, which is conserved in vertebrate orthologs. HPSE2 mutations were absent in 23 non-neurog...

  4. Mutations in Dnaaf1 and Lrrc48 Cause Hydrocephalus, Laterality Defects, and Sinusitis in Mice

    Directory of Open Access Journals (Sweden)

    Seungshin Ha

    2016-08-01

    Full Text Available We have previously described a forward genetic screen in mice for abnormalities of brain development. Characterization of two hydrocephalus mutants by whole-exome sequencing after whole-genome SNP mapping revealed novel recessive mutations in Dnaaf1 and Lrrc48. Mouse mutants of these two genes have not been previously reported. The Dnaaf1 mutant carries a mutation at the splice donor site of exon 4, which results in abnormal transcripts. The Lrrc48 mutation is a missense mutation at a highly conserved leucine residue, which is also associated with a decrease in Lrrc48 transcription. Both Dnaaf1 and Lrrc48 belong to a leucine-rich repeat-containing protein family and are components of the ciliary axoneme. Their Chlamydomonas orthologs are known to be required for normal ciliary beat frequency or flagellar waveform, respectively. Some Dnaaf1 or Lrrc48 homozygote mutants displayed laterality defects, suggesting a motile cilia defect in the embryonic node. Mucus accumulation and neutrophil infiltration in the maxillary sinuses suggested sinusitis. Dnaaf1 mutants showed postnatal lethality, and none survived to weaning age. Lrrc48 mutants survive to adulthood, but had male infertility. ARL13B immunostaining showed the presence of motile cilia in the mutants, and the distal distribution of DNAH9 in the axoneme of upper airway motile cilia appeared normal. The phenotypic abnormalities suggest that mutations in Dnaaf1 and Lrrc48 cause defects in motile cilia function.

  5. The estimation of risks from the induction of recessive mutations after exposure to ionising radiation

    International Nuclear Information System (INIS)

    Searle, A.G.; Edwards, J.H.

    1986-01-01

    Induced recessive mutations can cause harm by (1) partnership with a defective allele already established in the population; (2) partnership with another recessive mutation induced at the same locus; (3) the formation of homozygous descendants, that is, identify by descent; and (4) heterozygous effects. Calculations based on a combination of data from observations on human populations and from mouse experiments suggest that an extra genetically significant dose of 1 cGy X or γ irradiation received by each parent in a stable population with a million liveborn offspring would induce up to 1200 extra recessive mutations. From partnership effects, about one extra case of recessive disease would be expected in the following 10 generations. Homozygosity resulting from identity by descent could not normally occur until the fourth generation after exposure but, on certain assumptions, about ten extra cases of recessive disease would be expected from this cause by the tenth generation. In the same period, about 250 recessive alleles would be eliminated in heterozygotes given 2.5% heterozygous disadvantage. These deleterious heterozygous effects should not be combined with those of dominants, as has been done in some previous risk estimates. It is considered unlikely that many radiation induced recessives would show heterozygous advantage. Certain dominants should be excluded from calculations of mutational risk because they are unlikely to be maintained by mutation. (author)

  6. Glycomic analyses of mouse models of congenital muscular dystrophy.

    Science.gov (United States)

    Stalnaker, Stephanie H; Aoki, Kazuhiro; Lim, Jae-Min; Porterfield, Mindy; Liu, Mian; Satz, Jakob S; Buskirk, Sean; Xiong, Yufang; Zhang, Peng; Campbell, Kevin P; Hu, Huaiyu; Live, David; Tiemeyer, Michael; Wells, Lance

    2011-06-17

    Dystroglycanopathies are a subset of congenital muscular dystrophies wherein α-dystroglycan (α-DG) is hypoglycosylated. α-DG is an extensively O-glycosylated extracellular matrix-binding protein and a key component of the dystrophin-glycoprotein complex. Previous studies have shown α-DG to be post-translationally modified by both O-GalNAc- and O-mannose-initiated glycan structures. Mutations in defined or putative glycosyltransferase genes involved in O-mannosylation are associated with a loss of ligand-binding activity of α-DG and are causal for various forms of congenital muscular dystrophy. In this study, we sought to perform glycomic analysis on brain O-linked glycan structures released from proteins of three different knock-out mouse models associated with O-mannosylation (POMGnT1, LARGE (Myd), and DAG1(-/-)). Using mass spectrometry approaches, we were able to identify nine O-mannose-initiated and 25 O-GalNAc-initiated glycan structures in wild-type littermate control mouse brains. Through our analysis, we were able to confirm that POMGnT1 is essential for the extension of all observed O-mannose glycan structures with β1,2-linked GlcNAc. Loss of LARGE expression in the Myd mouse had no observable effect on the O-mannose-initiated glycan structures characterized here. Interestingly, we also determined that similar amounts of O-mannose-initiated glycan structures are present on brain proteins from α-DG-lacking mice (DAG1) compared with wild-type mice, indicating that there must be additional proteins that are O-mannosylated in the mammalian brain. Our findings illustrate that classical β1,2-elongation and β1,6-GlcNAc branching of O-mannose glycan structures are dependent upon the POMGnT1 enzyme and that O-mannosylation is not limited solely to α-DG in the brain.

  7. Cultures of preimplantation mouse embryos

    International Nuclear Information System (INIS)

    Streffer, C.; Molls, M.

    1987-01-01

    In the preimplantation mouse embryos the chromosomal damage develops through several postradiation cell cycles and mitoses. New chromosome aberrations are seen during the second and third postradiation mitoses. Also, more micronuclei appear during later postradiation interphases. This is in agreement with the assumption that unrepaired chromosomal radiation damage develops during the cell generation cycle to such a form (i.e. double-strand breaks in DNA) that chromosomal breaks occur. This proposition is strengthened by the observation that radiation-induced damage is more rapidly expressed after neutron exposure (first or second postradiation mitosis) than after exposure to X rays at the one- or two-cell stage. The preimplantation mouse embryo culture is an inviting system for additional studies at the molecular level, especially now that within the last few years more sensitive methods have been developed for study of DNA and protein structure, regulation, and synthesis. The results from these studies of cultures of preimplantation mouse embryos present a favorable case for the study of complex biological systems under very defined conditions in vitro for extrapolation to effects in vivo

  8. Mouse Models of Gastric Cancer

    Science.gov (United States)

    Hayakawa, Yoku; Fox, James G.; Gonda, Tamas; Worthley, Daniel L.; Muthupalani, Sureshkumar; Wang, Timothy C.

    2013-01-01

    Animal models have greatly enriched our understanding of the molecular mechanisms of numerous types of cancers. Gastric cancer is one of the most common cancers worldwide, with a poor prognosis and high incidence of drug-resistance. However, most inbred strains of mice have proven resistant to gastric carcinogenesis. To establish useful models which mimic human gastric cancer phenotypes, investigators have utilized animals infected with Helicobacter species and treated with carcinogens. In addition, by exploiting genetic engineering, a variety of transgenic and knockout mouse models of gastric cancer have emerged, such as INS-GAS mice and TFF1 knockout mice. Investigators have used the combination of carcinogens and gene alteration to accelerate gastric cancer development, but rarely do mouse models show an aggressive and metastatic gastric cancer phenotype that could be relevant to preclinical studies, which may require more specific targeting of gastric progenitor cells. Here, we review current gastric carcinogenesis mouse models and provide our future perspectives on this field. PMID:24216700

  9. Haploid rice plants in mutation studies

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, S [Institute of Radiation Breeding, Ministry of Agriculture and Forestry, Ohmiya, Ibaraki-ken (Japan)

    1970-03-01

    Studies were made on chlorophyll-deficient sectors and diploid-like sectors in haploid rice plants exposed to chronic gamma irradiation, and on germinal mutations in diploid strains derived from the haploid plants. The induction and elimination of somatic mutations in haploid plants and the occurrence of drastic germinal mutations in diploid strains from haploid plants are discussed. (author)

  10. Studies of human mutation rates: Progress report

    International Nuclear Information System (INIS)

    Neel, J.V.

    1988-01-01

    Progress was recorded between January 1 and July 1, 1987 on a project entitled ''Studies of Human Mutation Rates''. Studies underway include methodology for studying mutation at the DNA level, algorithms for automated analyses of two-dimensional polyacrylamide DNA gels, theoretical and applied population genetics, and studies of mutation frequency in A-bomb survivors

  11. Mitochondrial mutations drive prostate cancer aggression

    DEFF Research Database (Denmark)

    Hopkins, Julia F.; Sabelnykova, Veronica Y.; Weischenfeldt, Joachim

    2017-01-01

    Nuclear mutations are well known to drive tumor incidence, aggression and response to therapy. By contrast, the frequency and roles of mutations in the maternally inherited mitochondrial genome are poorly understood. Here we sequence the mitochondrial genomes of 384 localized prostate cancer...... in prostate cancer, and suggest interplay between nuclear and mitochondrial mutational profiles in prostate cancer....

  12. Mapping of the mouse actin capping protein {alpha} subunit genes and pseudogenes

    Energy Technology Data Exchange (ETDEWEB)

    Hart, M.C.; Korshunova, Y.O.; Cooper, J.A. [Washington Univ. School of Medicine, St. Louis, MO (United States)

    1997-02-01

    Capping protein (CP), a heterodimer of {alpha} and {beta} subunits, is found in all eukaryotes. CP binds to the barbed ends of actin filaments in vitro and controls actin assembly and cell motility in vivo. Vertebrates have three {alpha} isoforms ({alpha}1, {alpha}2, {alpha}3) produced from different genes, whereas lower organisms have only one gene and one isoform. We isolated genomic clones corresponding to the a subunits of mouse CP and found three {alpha}1 genes, two of which are pseudogenes, and a single gene for both {alpha}2 and {alpha}3. Their chromosomal locations were identified by interspecies backcross mapping. The {alpha}1 gene (Cappa1) mapped to Chromosome 3 between D3Mit11 and D3Mit13. The {alpha}1 pseudogenes (Cappa1-ps1 and Cappa1-ps2) mapped to Chromosomes 1 and 9, respectively. The {alpha}2 gene (Cappa2) mapped to Chromosome 6 near Ptn. The {alpha}3 gene (Cappa3) also mapped to Chromosome 6, approximately 68 cM distal from Cappa2 near Kras2. One mouse mutation, de, maps in the vicinity of the {alpha}1 gene. No known mouse mutations map to regions near the {alpha}2 or {alpha}3 genes. 29 refs., 3 figs., 1 tab.

  13. Pancreas-specific deletion of mouse Gata4 and Gata6 causes pancreatic agenesis

    Science.gov (United States)

    Xuan, Shouhong; Borok, Matthew J.; Decker, Kimberly J.; Battle, Michele A.; Duncan, Stephen A.; Hale, Michael A.; Macdonald, Raymond J.; Sussel, Lori

    2012-01-01

    Pancreatic agenesis is a human disorder caused by defects in pancreas development. To date, only a few genes have been linked to pancreatic agenesis in humans, with mutations in pancreatic and duodenal homeobox 1 (PDX1) and pancreas-specific transcription factor 1a (PTF1A) reported in only 5 families with described cases. Recently, mutations in GATA6 have been identified in a large percentage of human cases, and a GATA4 mutant allele has been implicated in a single case. In the mouse, Gata4 and Gata6 are expressed in several endoderm-derived tissues, including the pancreas. To analyze the functions of GATA4 and/or GATA6 during mouse pancreatic development, we generated pancreas-specific deletions of Gata4 and Gata6. Surprisingly, loss of either Gata4 or Gata6 in the pancreas resulted in only mild pancreatic defects, which resolved postnatally. However, simultaneous deletion of both Gata4 and Gata6 in the pancreas caused severe pancreatic agenesis due to disruption of pancreatic progenitor cell proliferation, defects in branching morphogenesis, and a subsequent failure to induce the differentiation of progenitor cells expressing carboxypeptidase A1 (CPA1) and neurogenin 3 (NEUROG3). These studies address the conserved and nonconserved mechanisms underlying GATA4 and GATA6 function during pancreas development and provide a new mouse model to characterize the underlying developmental defects associated with pancreatic agenesis. PMID:23006325

  14. Mutation types and aging differently affect revertant fiber expansion in dystrophic mdx and mdx52 mice.

    Directory of Open Access Journals (Sweden)

    Yusuke Echigoya

    Full Text Available Duchenne muscular dystrophy (DMD, one of the most common and lethal genetic disorders, and the mdx mouse myopathies are caused by a lack of dystrophin protein. These dystrophic muscles contain sporadic clusters of dystrophin-expressing revertant fibers (RFs, as detected by immunohistochemistry. RFs are known to arise from muscle precursor cells with spontaneous exon skipping (alternative splicing and clonally expand in size with increasing age through the process of muscle degeneration/regeneration. The expansion of revertant clusters is thought to represent the cumulative history of muscle regeneration and proliferation of such precursor cells. However, the precise mechanisms by which RFs arise and expand are poorly understood. Here, to test the effects of mutation types and aging on RF expansion and muscle regeneration, we examined the number of RFs in mdx mice (containing a nonsense mutation in exon 23 and mdx52 mice (containing deletion mutation of exon 52 with the same C57BL/6 background at 2, 6, 12, and 18months of age. Mdx mice displayed a significantly higher number of RFs compared to mdx52 mice in all age groups, suggesting that revertant fiber expansion largely depends on the type of mutation and/or location in the gene. A significant increase in the expression and clustering levels of RFs was found beginning at 6months of age in mdx mice compared with mdx52 mice. In contrast to the significant expansion of RFs with increasing age, the number of centrally nucleated fibers and embryonic myosin heavy chain-positive fibers (indicative of cumulative and current muscle regeneration, respectively decreased with age in both mouse strains. These results suggest that mutation types and aging differently affect revertant fiber expansion in mdx and mdx52 mice.

  15. Wallerian degeneration slow mouse neurons are protected against cell death caused by mechanisms involving mitochondrial electron transport dysfunction.

    Science.gov (United States)

    Tokunaga, Shinji; Araki, Toshiyuki

    2012-03-01

    Ischemia elicits a variety of stress responses in neuronal cells, which result in cell death. wld(S) Mice bear a mutation that significantly delays Wallerian degeneration. This mutation also protects all neuronal cells against other types of stresses resulting in cell death, including ischemia. To clarify the types of stresses that neuronal cell bodies derived from wld(S) mice are protected from, we exposed primary cultured neurons derived from wld(S) mice to various components of hypoxic stress. We found that wld(S) mouse neurons are protected against cellular injury induced by reoxygenation following hypoxic stress. Furthermore, we found that wld(S) mouse neurons are protected against functional impairment of the mitochondrial electron transport chain. These data suggest that Wld(S) protein expression may provide protection against neuronal cell death caused by mechanisms involving mitochondrial electron transport dysfunction. Copyright © 2011 Wiley Periodicals, Inc.

  16. Characterization of a sensitive mouse Aβ40 PD biomarker assay for Alzheimer's disease drug development in wild-type mice.

    Science.gov (United States)

    Lu, Yanmei; Hoyte, Kwame; Montgomery, William H; Luk, Wilman; He, Dongping; Meilandt, William J; Zuchero, Y Joy Yu; Atwal, Jasvinder K; Scearce-Levie, Kimberly; Watts, Ryan J; DeForge, Laura E

    2016-05-01

    Transgenic mice that overexpress human amyloid precursor protein with Swedish or London (APPswe or APPlon) mutations have been widely used for preclinical Alzheimer's disease (AD) drug development. AD patients, however, rarely possess these mutations or overexpress APP. We developed a sensitive ELISA that specifically and accurately measures low levels of endogenous Aβ40 in mouse plasma, brain and CSF. In wild-type mice treated with a bispecific anti-TfR/BACE1 antibody, significant Aβ reductions were observed in the periphery and the brain. APPlon transgenic mice showed a slightly less reduction, whereas APPswe mice did not have any decrease. This sensitive and well-characterized mouse Aβ40 assay enables the use of wild-type mice for preclinical PK/PD and efficacy studies of potential AD therapeutics.

  17. Gamma radiation-induced heritable mutations at repetitive DNA loci in out-bred mice

    International Nuclear Information System (INIS)

    Somers, C.M.; Sharma, R.; Quinn, J.S.; Boreham, D.R.

    2004-01-01

    Recent studies have shown that expanded-simple-tandem-repeat (ESTR) DNA loci are efficient genetic markers for detecting radiation-induced germ line mutations in mice. Dose responses following irradiation, however, have only been characterized in a small number of inbred mouse strains, and no studies have applied Esters to examine potential modifiers of radiation risk, such as adaptive response. We gamma-irradiated groups of male out-bred Swiss-Webster mice with single acute doses of 0.5 and 1.0 Gy, and compared germ line mutation rates at ESTR loci to a sham-irradiated control. To test for evidence of adaptive response we treated a third group with a total dose of 1.1 Gy that was fractionated into a 0.1 Gy adapting dose, followed by a challenge dose of 1.0 Gy 24 h later. Paternal mutation rates were significantly elevated above the control in the 0.5 Gy (2.8-fold) and 1.0 Gy (3.0-fold) groups, but were similar to each other despite the difference in radiation dose. The doubling dose for paternal mutation induction was 0.26 Gy (95% CI = 0.14-0.51 Gy). Males adapted with a 0.1 Gy dose prior to a 1.0 Gy challenge dose had mutation rates that were not significantly elevated above the control, and were 43% reduced compared to those receiving single doses. We conclude that pre-meiotic male germ cells in out-bred Swiss-Webster mice are sensitive to ESTR mutations induced by acute doses of ionizing radiation, but mutation induction may become saturated at a lower dose than in some strains of inbred mice. Reduced mutation rates in the adapted group provide intriguing evidence for suppression of ESTR mutations in the male germline through adaptive response. Repetitive DNA markers may be useful tools for exploration of biological factors affecting the probability of heritable mutations caused by low-dose ionizing radiation exposure. The biological significance of ESTR mutations in terms of radiation risk assessment, however, is still undetermined

  18. The Number of Point Mutations in Induced Pluripotent Stem Cells and Nuclear Transfer Embryonic Stem Cells Depends on the Method and Somatic Cell Type Used for Their Generation.

    Science.gov (United States)

    Araki, Ryoko; Mizutani, Eiji; Hoki, Yuko; Sunayama, Misato; Wakayama, Sayaka; Nagatomo, Hiroaki; Kasama, Yasuji; Nakamura, Miki; Wakayama, Teruhiko; Abe, Masumi

    2017-05-01

    Induced pluripotent stem cells hold great promise for regenerative medicine but point mutations have been identified in these cells and have raised serious concerns about their safe use. We generated nuclear transfer embryonic stem cells (ntESCs) from both mouse embryonic fibroblasts (MEFs) and tail-tip fibroblasts (TTFs) and by whole genome sequencing found fewer mutations compared with iPSCs generated by retroviral gene transduction. Furthermore, TTF-derived ntESCs showed only a very small number of point mutations, approximately 80% less than the number observed in iPSCs generated using retrovirus. Base substitution profile analysis confirmed this greatly reduced number of point mutations. The point mutations in iPSCs are therefore not a Yamanaka factor-specific phenomenon but are intrinsic to genome reprogramming. Moreover, the dramatic reduction in point mutations in ntESCs suggests that most are not essential for genome reprogramming. Our results suggest that it is feasible to reduce the point mutation frequency in iPSCs by optimizing various genome reprogramming conditions. We conducted whole genome sequencing of ntES cells derived from MEFs or TTFs. We thereby succeeded in establishing TTF-derived ntES cell lines with far fewer point mutations. Base substitution profile analysis of these clones also indicated a reduced point mutation frequency, moving from a transversion-predominance to a transition-predominance. Stem Cells 2017;35:1189-1196. © 2017 AlphaMed Press.

  19. Characterisation of CDKL5 Transcript Isoforms in Human and Mouse.

    Science.gov (United States)

    Hector, Ralph D; Dando, Owen; Landsberger, Nicoletta; Kilstrup-Nielsen, Charlotte; Kind, Peter C; Bailey, Mark E S; Cobb, Stuart R

    2016-01-01

    Mutations in the X-linked Cyclin-Dependent Kinase-Like 5 gene (CDKL5) cause early onset infantile spasms and subsequent severe developmental delay in affected children. Deleterious mutations have been reported to occur throughout the CDKL5 coding region. Several studies point to a complex CDKL5 gene structure in terms of exon usage and transcript expression. Improvements in molecular diagnosis and more extensive research into the neurobiology of CDKL5 and pathophysiology of CDKL5 disorders necessitate an updated analysis of the gene. In this study, we have analysed human and mouse CDKL5 transcript patterns both bioinformatically and experimentally. We have characterised the predominant brain isoform of CDKL5, a 9.7 kb transcript comprised of 18 exons with a large 6.6 kb 3'-untranslated region (UTR), which we name hCDKL5_1. In addition we describe new exonic regions and a range of novel splice and UTR isoforms. This has enabled the description of an updated gene model in both species and a standardised nomenclature system for CDKL5 transcripts. Profiling revealed tissue- and brain development stage-specific differences in expression between transcript isoforms. These findings provide an essential backdrop for the diagnosis of CDKL5-related disorders, for investigations into the basic biology of this gene and its protein products, and for the rational design of gene-based and molecular therapies for these disorders.

  20. Characterisation of CDKL5 Transcript Isoforms in Human and Mouse.

    Directory of Open Access Journals (Sweden)

    Ralph D Hector

    Full Text Available Mutations in the X-linked Cyclin-Dependent Kinase-Like 5 gene (CDKL5 cause early onset infantile spasms and subsequent severe developmental delay in affected children. Deleterious mutations have been reported to occur throughout the CDKL5 coding region. Several studies point to a complex CDKL5 gene structure in terms of exon usage and transcript expression. Improvements in molecular diagnosis and more extensive research into the neurobiology of CDKL5 and pathophysiology of CDKL5 disorders necessitate an updated analysis of the gene. In this study, we have analysed human and mouse CDKL5 transcript patterns both bioinformatically and experimentally. We have characterised the predominant brain isoform of CDKL5, a 9.7 kb transcript comprised of 18 exons with a large 6.6 kb 3'-untranslated region (UTR, which we name hCDKL5_1. In addition we describe new exonic regions and a range of novel splice and UTR isoforms. This has enabled the description of an updated gene model in both species and a standardised nomenclature system for CDKL5 transcripts. Profiling revealed tissue- and brain development stage-specific differences in expression between transcript isoforms. These findings provide an essential backdrop for the diagnosis of CDKL5-related disorders, for investigations into the basic biology of this gene and its protein products, and for the rational design of gene-based and molecular therapies for these disorders.

  1. Skeletal muscle repair in a mouse model of nemaline myopathy.

    Science.gov (United States)

    Sanoudou, Despina; Corbett, Mark A; Han, Mei; Ghoddusi, Majid; Nguyen, Mai-Anh T; Vlahovich, Nicole; Hardeman, Edna C; Beggs, Alan H

    2006-09-01

    Nemaline myopathy (NM), the most common non-dystrophic congenital myopathy, is a variably severe neuromuscular disorder for which no effective treatment is available. Although a number of genes have been identified in which mutations can cause NM, the pathogenetic mechanisms leading to the phenotypes are poorly understood. To address this question, we examined gene expression patterns in an NM mouse model carrying the human Met9Arg mutation of alpha-tropomyosin slow (Tpm3). We assessed five different skeletal muscles from affected mice, which are representative of muscles with differing fiber-type compositions, different physiological specializations and variable degrees of pathology. Although these same muscles in non-affected mice showed marked variation in patterns of gene expression, with diaphragm being the most dissimilar, the presence of the mutant protein in nemaline muscles resulted in a more similar pattern of gene expression among the muscles. This result suggests a common process or mechanism operating in nemaline muscles independent of the variable degrees of pathology. Transcriptional and protein expression data indicate the presence of a repair process and possibly delayed maturation in nemaline muscles. Markers indicative of satellite cell number, activated satellite cells and immature fibers including M-Cadherin, MyoD, desmin, Pax7 and Myf6 were elevated by western-blot analysis or immunohistochemistry. Evidence suggesting elevated focal repair was observed in nemaline muscle in electron micrographs. This analysis reveals that NM is characterized by a novel repair feature operating in multiple different muscles.

  2. Genetic organization of the agouti region of the mouse

    International Nuclear Information System (INIS)

    Siracusa, L.D.; Russell, L.B.; Eicher, E.M.; Corrow, D.J.; Copeland, N.G.; Jenkins, N.A.

    1987-01-01

    The agouti locus on mouse chromosome 2 acts via the hair follicle to control the melanic type and distribution of hair pigments. The diverse phenotypes associated with various agouti mutations have led to speculation about the organization of the agouti locus. Earlier studies indicated that two presumed agouti alleles, lethal yellow (A/sup y/) and lethal light-bellied nonagouti (a/sup x/), are pseudoallelic. The authors present genetic data showing probable recombination between A/sup y/ and three agouti mutations (a/sup t/, a, and a/sup x/), which suggest that A/sup y/ is a pseudoallele of the agouti locus. The close linkage of an endogenous ecotropic murine leukemia provirus, Emv-15, to A/sup y/ provides a molecular access to genes at or near the agouti locus. However, previous studies suggested that the Emv-15 locus can recombine with some agouti alleles and therefore they analyzed mice from recombinant inbred strains and backcrosses to measure the genetic distance between various agouti alleles and the Emv-15 locus. The data indicate that the Emv-15 locus is less the 0.3 cM from the agouti locus. These experiments provide a conceptual framework for initiating chromosome walking experiments designed to retrieve sequences from the agouti locus and give new insight into the genetic organization of the agouti region

  3. IDH mutations in liver cell plasticity and biliary cancer

    Science.gov (United States)

    Saha, Supriya K; Parachoniak, Christine A; Bardeesy, Nabeel

    2014-01-01

    Intrahepatic cholangiocarcinoma (ICC) is an aggressive cancer associated with the bile ducts within the liver. These tumors are characterized by frequent gain-of-function mutations in the isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) genes—that are also common in subsets of neural, haematopoietic and bone tumors, but rare or absent in the other types of gastrointestinal malignancy. Mutant IDH acts through a novel mechanism of oncogenesis, producing high levels of the metabolite 2-hydroxyglutarate, which interferes with the function of α-ketoglutarate-dependent enzymes that regulate diverse cellular processes including histone demethylation and DNA modification. Recently, we used in vitro stem cell systems and genetically engineered mouse models (GEMMs) to demonstrate that mutant IDH promotes ICC formation by blocking hepatocyte differentiation and increasing pools of hepatic progenitors that are susceptible to additional oncogenic hits leading to ICC. We found that silencing of HNF4A—encoding a master transcriptional regulator of hepatocyte identity and quiescence—was critical to mutant IDH-mediated inhibition of liver differentiation. In line with these findings, human ICC with IDH mutations are characterized by a hepatic progenitor cell transcriptional signature suggesting that they are a distinct ICC subtype as compared to IDH wild type tumors. The role of mutant IDH in controlling hepatic differentiation state suggests the potential of newly developed inhibitors of the mutant enzyme as a form of differentiation therapy in a solid tumor. PMID:25485496

  4. Dmdmdx/Largemyd: a new mouse model of neuromuscular diseases useful for studying physiopathological mechanisms and testing therapies

    Directory of Open Access Journals (Sweden)

    Poliana C. M. Martins

    2013-09-01

    Although muscular dystrophies are among the most common human genetic disorders, there are few treatment options available. Animal models have become increasingly important for testing new therapies prior to entering human clinical trials. The Dmdmdx mouse is the most widely used animal model for Duchenne muscular dystrophy (DMD, presenting the same molecular and protein defect as seen in humans with the disease. However, this mouse is not useful for clinical trials because of its very mild phenotype. The mouse model for congenital myodystrophy type 1D, Largemyd, harbors a mutation in the glycosyltransferase Large gene and displays a severe phenotype. To help elucidate the role of the proteins dystrophin and LARGE in the organization of the dystrophin-glycoprotein complex in muscle sarcolemma, we generated double-mutant mice for the dystrophin and LARGE proteins. The new Dmdmdx/Largemyd mouse model is viable and shows a severe phenotype that is associated with the lack of dystrophin in muscle. We tested the usefulness of our new mouse model for cell therapy by systemically injecting them with normal murine mesenchymal adipose stem cells (mASCs. We verified that the mASCs were hosted in the dystrophic muscle. The new mouse model has proven to be very useful for the study of several other therapies, because injected cells can be screened both through DNA and protein analysis. Study of its substantial muscle weakness will also be very informative in the evaluation of functional benefits of these therapies.

  5. RAC1 Missense Mutations in Developmental Disorders with Diverse Phenotypes.

    Science.gov (United States)

    Reijnders, Margot R F; Ansor, Nurhuda M; Kousi, Maria; Yue, Wyatt W; Tan, Perciliz L; Clarkson, Katie; Clayton-Smith, Jill; Corning, Ken; Jones, Julie R; Lam, Wayne W K; Mancini, Grazia M S; Marcelis, Carlo; Mohammed, Shehla; Pfundt, Rolph; Roifman, Maian; Cohn, Ronald; Chitayat, David; Millard, Tom H; Katsanis, Nicholas; Brunner, Han G; Banka, Siddharth

    2017-09-07

    RAC1 is a widely studied Rho GTPase, a class of molecules that modulate numerous cellular functions essential for normal development. RAC1 is highly conserved across species and is under strict mutational constraint. We report seven individuals with distinct de novo missense RAC1 mutations and varying degrees of developmental delay, brain malformations, and additional phenotypes. Four individuals, each harboring one of c.53G>A (p.Cys18Tyr), c.116A>G (p.Asn39Ser), c.218C>T (p.Pro73Leu), and c.470G>A (p.Cys157Tyr) variants, were microcephalic, with head circumferences between -2.5 to -5 SD. In contrast, two individuals with c.151G>A (p.Val51Met) and c.151G>C (p.Val51Leu) alleles were macrocephalic with head circumferences of +4.16 and +4.5 SD. One individual harboring a c.190T>G (p.Tyr64Asp) allele had head circumference in the normal range. Collectively, we observed an extraordinary spread of ∼10 SD of head circumferences orchestrated by distinct mutations in the same gene. In silico modeling, mouse fibroblasts spreading assays, and in vivo overexpression assays using zebrafish as a surrogate model demonstrated that the p.Cys18Tyr and p.Asn39Ser RAC1 variants function as dominant-negative alleles and result in microcephaly, reduced neuronal proliferation, and cerebellar abnormalities in vivo. Conversely, the p.Tyr64Asp substitution is constitutively active. The remaining mutations are probably weakly dominant negative or their effects are context dependent. These findings highlight the importance of RAC1 in neuronal development. Along with TRIO and HACE1, a sub-category of rare developmental disorders is emerging with RAC1 as the central player. We show that ultra-rare disorders caused by private, non-recurrent missense mutations that result in varying phenotypes are challenging to dissect, but can be delineated through focused international collaboration. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  6. Mouse Models for Pendrin-Associated Loss of Cochlear and Vestibular Function

    Directory of Open Access Journals (Sweden)

    Philine Wangemann

    2013-12-01

    Full Text Available The human gene SLC26A4 and the mouse ortholog Slc26a4 code for the protein pendrin, which is an anion exchanger expressed in apical membranes of selected epithelia. In the inner ear, pendrin is expressed in the cochlea, the vestibular labyrinth and the endolymphatic sac. Loss-of-function and hypo-functional mutations cause an enlargement of the vestibular aqueduct (EVA and sensorineural hearing loss. The relatively high prevalence of SLC26A4 mutations provides a strong imperative to develop rational interventions that delay, ameliorate or prevent pendrin-associated loss of cochlear and vestibular function. This review summarizes recent studies in mouse models that have been developed to delineate the role of pendrin in the physiology of hearing and balance and that have brought forward the concept that a temporally and spatially limited therapy may be sufficient to secure a life-time of normal hearing in children bearing mutations of SLC26A4.

  7. Morpholino oligomer-mediated exon skipping averts the onset of dystrophic pathology in the mdx mouse.

    Science.gov (United States)

    Fletcher, Sue; Honeyman, Kaite; Fall, Abbie M; Harding, Penny L; Johnsen, Russell D; Steinhaus, Joshua P; Moulton, Hong M; Iversen, Patrick L; Wilton, Stephen D

    2007-09-01

    Duchenne and Becker muscular dystrophies are allelic disorders arising from mutations in the dystrophin gene. Duchenne muscular dystrophy is characterized by an absence of functional protein, whereas Becker muscular dystrophy, commonly caused by in-frame deletions, shows synthesis of partially functional protein. Anti-sense oligonucleotides can induce specific exon removal during processing of the dystrophin primary transcript, while maintaining or restoring the reading frame, and thereby overcome protein-truncating mutations. The mdx mouse has a non-sense mutation in exon 23 of the dystrophin gene that precludes functional dystrophin production, and this model has been used in the development of treatment strategies for dystrophinopathies. A phosphorodiamidate morpholino oligomer (PMO) has previously been shown to exclude exon 23 from the dystrophin gene transcript and induce dystrophin expression in the mdxmouse, in vivo and in vitro. In this report, a cell-penetrating peptide (CPP)-conjugated oligomer targeted to the mouse dystrophin exon 23 donor splice site was administered to mdxmice by intraperitoneal injection. We demonstrate dystrophin expression and near-normal muscle architecture in all muscles examined, except for cardiac muscle. The CPP greatly enhanced uptake of the PMO, resulting in widespread dystrophin expression.

  8. A new mouse model of Canavan leukodystrophy displays hearing impairment due to central nervous system dysmyelination

    Directory of Open Access Journals (Sweden)

    Marina R. Carpinelli

    2014-06-01

    Full Text Available Canavan disease is a leukodystrophy caused by mutations in the ASPA gene. This gene encodes the enzyme that converts N-acetylaspartate into acetate and aspartic acid. In Canavan disease, spongiform encephalopathy of the brain causes progressive mental retardation, motor deficit and death. We have isolated a mouse with a novel ethylnitrosourea-induced mutation in Aspa. This mutant, named deaf14, carries a c.516T>A mutation that is predicted to cause a p.Y172X protein truncation. No full-length ASPA protein is produced in deaf14 brain and there is extensive spongy degeneration. Interestingly, we found that deaf14 mice have an attenuated startle in response to loud noise. The first auditory brainstem response peak has normal latency and amplitude but peaks II, III, IV and V have increased latency and decreased amplitude in deaf14 mice. Our work reveals a hitherto unappreciated pathology in a mouse model of Canavan disease, implying that auditory brainstem response testing could be used in diagnosis and to monitor the progression of this disease.

  9. Nucleotide excision repair- and p53-deficient mouse models in cancer research

    Energy Technology Data Exchange (ETDEWEB)

    Hoogervorst, Esther M. [Laboratory of Toxicology, Pathology and Genetics, National Institute of Public Health and the Environment, P.O. Box 1, 3720 BA Bilthoven (Netherlands); Utrecht University, Department of Pathobiology, Utrecht (Netherlands); Steeg, Harry van [Laboratory of Toxicology, Pathology and Genetics, National Institute of Public Health and the Environment, P.O. Box 1, 3720 BA Bilthoven (Netherlands); Vries, Annemieke de [Laboratory of Toxicology, Pathology and Genetics, National Institute of Public Health and the Environment, P.O. Box 1, 3720 BA Bilthoven (Netherlands)]. E-mail: Annemieke.de.Vries@rivm.nl

    2005-07-01

    Cancer is caused by the loss of controlled cell growth due to mutational (in)activation of critical genes known to be involved in cell cycle regulation. Three main mechanisms are known to be involved in the prevention of cells from becoming cancerous; DNA repair and cell cycle control, important to remove DNA damage before it will be fixed into mutations and apoptosis, resulting in the elimination of cells containing severe DNA damage. Several human syndromes are known to have (partially) deficiencies in these pathways, and are therefore highly cancer prone. Examples are xeroderma pigmentosum (XP) caused by an inborn defect in the nucleotide excision repair (NER) pathway and the Li-Fraumeni syndrome, which is the result of a germ line mutation in the p53 gene. XP patients develop skin cancer on sun exposed areas at a relatively early age, whereas Li-Fraumeni patients spontaneously develop a wide variety of early onset tumors, including sarcomas, leukemia's and mammary gland carcinomas. Several mouse models have been generated to mimic these human syndromes, providing us information about the role of these particular gene defects in the tumorigenesis process. In this review, spontaneous phenotypes of mice deficient for nucleotide excision repair and/or the p53 gene will be described, together with their responses upon exposure to either chemical carcinogens or radiation. Furthermore, possible applications of these and newly generated mouse models for cancer will be given.

  10. BAG3 directly interacts with mutated alphaB-crystallin to suppress its aggregation and toxicity.

    Directory of Open Access Journals (Sweden)

    Akinori Hishiya

    Full Text Available A homozygous disruption or genetic mutation of the bag3 gene causes progressive myofibrillar myopathy in mouse and human skeletal and cardiac muscle disorder while mutations in the small heat shock protein αB-crystallin gene (CRYAB are reported to be responsible for myofibrillar myopathy. Here, we demonstrate that BAG3 directly binds to wild-type αB-crystallin and the αB-crystallin mutant R120G, via the intermediate domain of BAG3. Peptides that inhibit this interaction in an in vitro binding assay indicate that two conserved Ile-Pro-Val regions of BAG3 are involved in the interaction with αB-crystallin, which is similar to results showing BAG3 binding to HspB8 and HspB6. BAG3 overexpression increased αB-crystallin R120G solubility and inhibited its intracellular aggregation in HEK293 cells. BAG3 suppressed cell death induced by αB-crystallin R120G overexpression in differentiating C2C12 mouse myoblast cells. Our findings indicate a novel function for BAG3 in inhibiting protein aggregation caused by the genetic mutation of CRYAB responsible for human myofibrillar myopathy.

  11. BAG3 Directly Interacts with Mutated alphaB-Crystallin to Suppress Its Aggregation and Toxicity

    Science.gov (United States)

    Hishiya, Akinori; Salman, Mortada Najem; Carra, Serena; Kampinga, Harm H.; Takayama, Shinichi

    2011-01-01

    A homozygous disruption or genetic mutation of the bag3 gene causes progressive myofibrillar myopathy in mouse and human skeletal and cardiac muscle disorder while mutations in the small heat shock protein αB-crystallin gene (CRYAB) are reported to be responsible for myofibrillar myopathy. Here, we demonstrate that BAG3 directly binds to wild-type αB-crystallin and the αB-crystallin mutant R120G, via the intermediate domain of BAG3. Peptides that inhibit this interaction in an in vitro binding assay indicate that two conserved Ile-Pro-Val regions of BAG3 are involved in the interaction with αB-crystallin, which is similar to results showing BAG3 binding to HspB8 and HspB6. BAG3 overexpression increased αB-crystallin R120G solubility and inhibited its intracellular aggregation in HEK293 cells. BAG3 suppressed cell death induced by αB-crystallin R120G overexpression in differentiating C2C12 mouse myoblast cells. Our findings indicate a novel function for BAG3 in inhibiting protein aggregation caused by the genetic mutation of CRYAB responsible for human myofibrillar myopathy. PMID:21423662

  12. Mutation of CDH23, encoding a new member of the cadherin gene family, causes Usher syndrome type 1D.

    Science.gov (United States)

    Bolz, H; von Brederlow, B; Ramírez, A; Bryda, E C; Kutsche, K; Nothwang, H G; Seeliger, M; del C-Salcedó Cabrera, M; Vila, M C; Molina, O P; Gal, A; Kubisch, C

    2001-01-01

    Usher syndrome type I (USH1) is an autosomal recessive disorder characterized by congenital sensorineural hearing loss, vestibular dysfunction and visual impairment due to early onset retinitis pigmentosa (RP). So far, six loci (USH1A-USH1F) have been mapped, but only two USH1 genes have been identified: MYO7A for USH1B and the gene encoding harmonin for USH1C. We identified a Cuban pedigree linked to the locus for Usher syndrome type 1D (MIM 601067) within the q2 region of chromosome 10). Affected individuals present with congenital deafness and a highly variable degree of retinal degeneration. Using a positional candidate approach, we identified a new member of the cadherin gene superfamily, CDH23. It encodes a protein of 3,354 amino acids with a single transmembrane domain and 27 cadherin repeats. In the Cuban family, we detected two different mutations: a severe course of the retinal disease was observed in individuals homozygous for what is probably a truncating splice-site mutation (c.4488G-->C), whereas mild RP is present in individuals carrying the homozygous missense mutation R1746Q. A variable expression of the retinal phenotype was seen in patients with a combination of both mutations. In addition, we identified two mutations, Delta M1281 and IVS51+5G-->A, in a German USH1 patient. Our data show that different mutations in CDH23 result in USH1D with a variable retinal phenotype. In an accompanying paper, it is shown that mutations in the mouse ortholog cause disorganization of inner ear stereocilia and deafness in the waltzer mouse.

  13. Lrit3 Deficient Mouse (nob6): A Novel Model of Complete Congenital Stationary Night Blindness (cCSNB)

    OpenAIRE

    Neuillé, Marion; El Shamieh, Said; Orhan, Elise; Michiels, Christelle; Antonio, Aline; Lancelot, Marie-Elise; Condroyer, Christel; Bujakowska, Kinga; Poch, Olivier; Sahel, José-Alain; Audo, Isabelle; Zeitz, Christina

    2014-01-01

    International audience; Mutations in LRIT3, coding for a Leucine-Rich Repeat, immunoglobulin-like and transmembrane domains 3 protein lead to autosomal recessive complete congenital stationary night blindness (cCSNB). The role of the corresponding protein in the ON-bipolar cell signaling cascade remains to be elucidated. Here we genetically and functionally characterize a commercially available Lrit3 knockout mouse, a model to study the function and the pathogenic mechanism of LRIT3. We confi...

  14. Radiation induced chlorophyll mutations in rice

    International Nuclear Information System (INIS)

    Bari, G.; Mustafa, G.; Soomro, A.M.; Baloch, A.W.

    1985-01-01

    Air dried grains of four local varieties of rice were treated with gamma-rays and fast neutrons for determining their mutagenic effectiveness through the occurence of chlorophyll mutations. Fast neutrons were more effective in inducing chlorophyll mutations and the rice variety Basmati 370 produced maximum number of mutations followed by varieties Sonahri Sugdasi, Jajai 77 and Sada Gulab. The highest frequency of chlorophyll mutations was that of albina types followed by striata types. The xantha, viridis and tigrina types of mutations were less frequent. (authors)

  15. Mutation Clusters from Cancer Exome.

    Science.gov (United States)

    Kakushadze, Zura; Yu, Willie

    2017-08-15

    We apply our statistically deterministic machine learning/clustering algorithm *K-means (recently developed in https://ssrn.com/abstract=2908286) to 10,656 published exome samples for 32 cancer types. A majority of cancer types exhibit a mutation clustering structure. Our results are in-sample stable. They are also out-of-sample stable when applied to 1389 published genome samples across 14 cancer types. In contrast, we find in- and out-of-sample instabilities in cancer signatures extracted from exome samples via nonnegative matrix factorization (NMF), a computationally-costly and non-deterministic method. Extracting stable mutation structures from exome data could have important implications for speed and cost, which are critical for early-stage cancer diagnostics, such as novel blood-test methods currently in development.

  16. Gene mutations in hepatocellular adenomas

    DEFF Research Database (Denmark)

    Raft, Marie B; Jørgensen, Ernö N; Vainer, Ben

    2015-01-01

    is associated with bi-allelic mutations in the TCF1 gene and morphologically has marked steatosis. β-catenin activating HCA has increased activity of the Wnt/β-catenin pathway and is associated with possible malignant transformation. Inflammatory HCA is characterized by an oncogene-induced inflammation due...... to alterations in the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway. In the diagnostic setting, sub classification of HCA is based primarily on immunohistochemical analyzes, and has had an increasing impact on choice of treatment and individual prognostic assessment....... This review offers an overview of the reported gene mutations associated with hepatocellular adenomas together with a discussion of the diagnostic and prognostic value....

  17. 9. international mouse genome conference

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    This conference was held November 12--16, 1995 in Ann Arbor, Michigan. The purpose of this conference was to provide a multidisciplinary forum for exchange of state-of-the-art information on genetic mapping in mice. This report contains abstracts of presentations, focusing on the following areas: mutation identification; comparative mapping; informatics and complex traits; mutagenesis; gene identification and new technology; and genetic and physical mapping.

  18. Mutation breeding newsletter. No. 41

    International Nuclear Information System (INIS)

    1994-07-01

    This newsletter contains short descriptions of research methods for the use of radiation to induce mutations and facilitate plant breeding. This method is used to develop species of plants that can survive in harsh climates and thus provide a food supply for humans and animals. Some of the mutants discussed include a salt tolerant barley, a disease resistant shrub, a cold tolerant chickpea, a highly productive Canavalia virosa and productive tomato. Refs, figs and tabs

  19. The condensed mutation in sunflower

    International Nuclear Information System (INIS)

    Leclercq, P.

    1978-01-01

    Three inbred lines of sunflower were treated with gamma rays. In the progeny of one of these lines, the desired dwarf mutation appeared with a high frequency (23%). The dwarfing was accompanied by various undesirable characteristics (lateness, poor seed production, etc.), for which correction through genetic diversification and selection is in progress. The ratio capitulum diameter/stem height has increased from 1/8 up to 1/3 [fr

  20. Rare beneficial mutations can halt Muller's ratchet

    Science.gov (United States)

    Balick, Daniel; Goyal, Sidhartha; Jerison, Elizabeth; Neher, Richard; Shraiman, Boris; Desai, Michael

    2012-02-01

    In viral, bacterial, and other asexual populations, the vast majority of non-neutral mutations are deleterious. This motivates the application of models without beneficial mutations. Here we show that the presence of surprisingly few compensatory mutations halts fitness decay in these models. Production of deleterious mutations is balanced by purifying selection, stabilizing the fitness distribution. However, stochastic vanishing of fitness classes can lead to slow fitness decay (i.e. Muller's ratchet). For weakly deleterious mutations, production overwhelms purification, rapidly decreasing population fitness. We show that when beneficial mutations are introduced, a stable steady state emerges in the form of a dynamic mutation-selection balance. We argue this state is generic for all mutation rates and population sizes, and is reached as an end state as genomes become saturated by either beneficial or deleterious mutations. Assuming all mutations have the same magnitude selective effect, we calculate the fraction of beneficial mutations necessary to maintain the dynamic balance. This may explain the unexpected maintenance of asexual genomes, as in mitochondria, in the presence of selection. This will affect in the statistics of genetic diversity in these populations.

  1. Rare and unexpected beta thalassemic mutations in Qazvin ...

    African Journals Online (AJOL)

    About 13 beta-globin mutations encompass 70 - 90% of mutation spectrum in Iran. These mutations are called common beta-globin mutations. The rest are rare or unknown mutations. The objective of this study was to identify and describe rare or unknown beta-globin mutations in Qazvin province. EDTAcontaining venous ...

  2. Rare and unexpected beta thalassemic mutations in Qazvin ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-01-04

    Jan 4, 2010 ... About 13 beta-globin mutations encompass 70 - 90% of mutation spectrum in Iran. These mutations are called common beta-globin mutations. The rest are rare or unknown mutations. The objective of this study was to identify and describe rare or unknown beta-globin mutations in Qazvin province. EDTA-.

  3. Mutation breeding in vegetable crops

    International Nuclear Information System (INIS)

    Yamaguchi, Takashi

    1984-01-01

    Vegetables breed by seeds and vegetative organs. In main vegetables, the differentiation of clopping types, the adoption of monoculture and year-round production and shipment are carried out, adapting to various socio-economic and cultivation conditions. Protected agriculture has advanced mainly for fruit vegetables, and the seeds for sale have become almost hybrid varieties. Reflecting the situation like this, the demand for breeding is diversified and characteristic, and the case of applying mutation breeding seems to be many. The present status of the mutation breeding of vegetables is not yet well under way, but about 40 raised varieties have been published in the world. The characters introduced by induced mutation and irradiation were compact form, harvesting aptitude, the forms and properties of stems and leaves, anti-lodging property, the size, form and uniformity of fruits, male sterility and so on. The radiation sources used were mostly gamma ray or X-ray, but sometimes, combined irradiation was used. As the results obtained in Japan, burdocks as an example of gamma ray irradiation to seeds, tomatoes as an example of inducing the compound resistance against disease injury and lettuces as an example of internal beta irradiation are reported. (Kako, I.)

  4. Mutation Breeding for Crop Improvement

    International Nuclear Information System (INIS)

    Rajbir, S. Sangwan

    2017-01-01

    Chromosomes contain genes responsible of different traits of any organism. Induced mutation using chemical mutagens and radiation to modify molecular structure of plants played a major role in the development of high genetic variability and help develop new superior crop varieties. The Mutation Breeding is applicable to all plants and has generated lot of agronomically interesting mutants, both in vegetatively and seed propagated plants. The technique is easy but long and challenging to detect, isolate and characterize the mutant and gene. A specific dose of irradiation has to be used to obtain desired mutants. However, with modern molecular technique, the gene responsible for mutation can be identified. The CRISPR-Cas9 allows the removal of a specific gene which is responsible of unwanted trait and replacing it with a gene which induces a desired trait. There have been more than 2700 officially released mutant varieties from 170 different plant species in more than 60 countries throughout the world and A more participatory approach, involving all stakeholders in plant breeding, is needed to ensure that it is demand/farmers driven.

  5. Induced mutations in sesame breeding

    International Nuclear Information System (INIS)

    Ashri, A.

    2001-01-01

    The scope of induced mutations in sesame (Sesamum indicum L.) breeding is reviewed. So far in Egypt, India, Iraq, Rep. of Korea, and Sri Lanka, 14 officially released varieties have been developed through induced mutations: 12 directly and 2 through cross breeding (one using the 'dt45' induced mutant from Israel). For another variety released in China there are no details. The induced mutations approach was adopted primarily in order to obtain genetic variability that was not available in the germplasm collection. The mutagens commonly applied have been gamma rays, EMS and sodium azide. Sesame seeds can withstand high mutagen doses, and there are genotypic differences in sensitivity between varieties. The mutants induced in the above named countries and others include better yield, improved seed retention, determinate habit, modified plant architecture and size, more uniform and shorter maturation period, earliness, resistance to diseases, genic male sterility, seed coat color, higher oil content and modified fatty acids composition. Some of the induced mutants have already given rise to improved varieties, the breeding value of other mutants is now being assessed and still others can serve as useful markers in genetic studies and breeding programmes. (author)

  6. Germline APC mutations in hepatoblastoma.

    Science.gov (United States)

    Yang, Adeline; Sisson, Rebecca; Gupta, Anita; Tiao, Greg; Geller, James I

    2018-04-01

    Conflicting reports on the frequency of germline adenomatous polyposis coli (APC) gene mutations in patients with hepatoblastoma (HB) have called into question the clinical value of APC mutation testing on apparently sporadic HB. An Institutional Review Board approved retrospective review of clinical data collected from patients with HB who received APC testing at our institution was conducted. All HB patients seen at Cincinnati Children's Hospital Medical Center were eligible for testing. Potential genotype/phenotype correlations were assessed. As of July 2015, 29 patients with HB had received constitutional APC testing. Four (14%) were found to have APC pathogenic truncations of the APC protein and in addition two (7%) had APC missense variants of unknown clinical significance. Two patients (7%) had family histories indicative of familial adenomatous polyposis (FAP). Response to chemotherapy tracked differently in APC pathogenic cases, with a slower imaging response despite an equivalent or slightly faster α-fetoprotein (AFP) response. The prevalence of pathogenic APC variants in apparently sporadic HB may be higher than previously detected. Differences in time to imaging response, despite similar AFP response, may impact surgical planning. All patients with HB warrant germline APC mutation testing for underlying FAP. © 2017 Wiley Periodicals, Inc.

  7. Mutation induction by ion beams in plants

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Atsushi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2001-03-01

    The effect of ion beams such as C, He, and Ne ions was investigated on the mutation induction in plants with the expectation that ion beams of high linear energy transfer (LET) can frequently produce large DNA alternation such as inversion, translocation and large deletion rather than point mutation. Mutation frequency was investigated using Arabidopsis visible phenotype loci and was 8 to 33 fold higher for 220 MeV carbon ions than for electrons. Mutation spectrum was investigated on the flower color of chrysanthemum cv to find that flower mutants induced by ion beams show complex and stripe types rather than single color. Polymerase chain reaction analysis was performed to investigate DNA alteration of mutations. In conclusion, the characteristics of ion beams for the mutation induction are 1) high frequency, 2) broad mutation spectrum, and 3) novel mutants. (S. Ohno)

  8. Mutation induction by ion beams in plants

    International Nuclear Information System (INIS)

    Tanaka, Atsushi

    2001-01-01

    The effect of ion beams such as C, He, and Ne ions was investigated on the mutation induction in plants with the expectation that ion beams of high linear energy transfer (LET) can frequently produce large DNA alternation such as inversion, translocation and large deletion rather than point mutation. Mutation frequency was investigated using Arabidopsis visible phenotype loci and was 8 to 33 fold higher for 220 MeV carbon ions than for electrons. Mutation spectrum was investigated on the flower color of chrysanthemum cv to find that flower mutants induced by ion beams show complex and stripe types rather than single color. Polymerase chain reaction analysis was performed to investigate DNA alteration of mutations. In conclusion, the characteristics of ion beams for the mutation induction are 1) high frequency, 2) broad mutation spectrum, and 3) novel mutants. (S. Ohno)

  9. Steroid metabolism in the mouse placenta

    International Nuclear Information System (INIS)

    Okker-Reitsma, G.H.

    1976-01-01

    The purpose of the study described in this thesis was to investigate the capacity for steroid synthesis of the mouse placenta - especially the production of progesterone, androgens and estrogens - and to determine, if possible, the relation of steroid synthesis to special cell types. In an introductory chapter the androgen production in the mouse placenta is surveyed by means of a histochemical and bioindicator study of different stages of development of the placenta. The metabolism of [ 3 H]-dehydroepiandrosterone and [ 3 H]-progesterone by mouse placental tissue in vitro is studied. The metabolism of [ 3 H]-progesterone by the mouse fetal adrenal in vitro is also studied

  10. Failure of catalase to protect against aflatoxin B1-induced mouse lung tumorigenicity

    International Nuclear Information System (INIS)

    Guindon, Katherine A.; Foley, Julie F.; Maronpot, Robert R.; Massey, Thomas E.

    2008-01-01

    The carcinogenic mycotoxin aflatoxin B 1 (AFB 1 ) induces 8-hydroxy-2'-deoxyguanosine (8-OHdG) formation in mouse lung, an effect that can be prevented by treatment with polyethylene glycol-conjugated catalase (PEG-CAT). G → T transversion mutation in K-ras, an early event in AFB 1 -induced mouse lung carcinogenesis, is thought to result from AFB 1 -8,9-exo-epoxide binding to DNA to form AFB 1 -N 7 -guanine, but may also result from formation of 8-OHdG. Therefore, oxidative DNA damage may be important in AFB 1 carcinogenicity. The objective of this study was to determine whether PEG-CAT would prevent AFB 1 tumorigenicity. Mouse lung tumorigenesis was assessed following treatment of female A/J mice with 300 kU/kg PEG-CAT ip and/or 50 mg/kg AFB 1 . Mice were killed 7 months post-treatment and tumors greater than 1 mm in diameter were excised. Unexpectedly, the mean number of tumors per mouse in the PEG-CAT + AFB 1 group (8.81 ± 3.64, n = 47) was greater than that of the group treated with AFB 1 alone (7.05 ± 3.45, n = 42) (P 1 were larger than those from mice treated with AFB 1 alone (P 1 and PEG-CAT + AFB 1 groups (P > 0.05). In vitro incubation with mouse liver catalase (CAT) resulted in conversion of [ 3 H]AFB 1 into a DNA-binding species, a possible explanation for the results observed in vivo. These results demonstrate that PEG-CAT is not protective against AFB 1 carcinogenicity in mouse lung despite preventing DNA oxidation

  11. Oncogene mutational profile in nasopharyngeal carcinoma

    Directory of Open Access Journals (Sweden)

    Zhang ZC

    2014-03-01

    Full Text Available Zi-Chen Zhang,1,* Sha Fu,1,* Fang Wang,1 Hai-Yun Wang,1 Yi-Xin Zeng,2 Jian-Yong Shao11Department of Molecular Diagnostics, 2Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, People's Republic of China *These authors contributed equally to this work Abstract: Nasopharyngeal carcinoma (NPC is a common tumor in Southern China, but the oncogene mutational status of NPC patients has not been clarified. Using time-of-flight mass spectrometry, 238 mutation hotspots in 19 oncogenes were examined in 123 NPC patients. The relationships between mutational status and clinical data were assessed with a χ2 or Fisher's exact test. Survival analysis was performed using the Kaplan–Meier method with the log-rank test. In 123 patients, 21 (17.1% NPC tumors were positive for mutations in eight oncogenes: six patients had PIK3CA mutations (4.9%, five NRAS mutations (4.1%, four KIT mutations (3.3%, two PDGFRA mutations (1.6%, two ABL mutations (1.6%, and one with simultaneous mutations in HRAS, EGFR, and BRAF (1%. Patients with mutations were more likely to relapse or develop metastasis than those with wild-type alleles (P=0.019. No differences or correlations were found in other clinical characteristics or in patient survival. No mutations were detected in oncogenes AKT1, AKT2, CDK, ERBB2, FGFR1, FGFR3, FLT3, JAK2, KRAS, MET, and RET. These results demonstrate an association between NPC and mutations in NRAS, KIT, PIK3CA, PDGFRA, and ABL, which are associated with patient relapse and metastasis. Keywords: NPC, oncogene, mutation

  12. Identification of adaptive mutations in the influenza A virus non-structural 1 gene that increase cytoplasmic localization and differentially regulate host gene expression.

    Directory of Open Access Journals (Sweden)

    Nicole Forbes

    Full Text Available The NS1 protein of influenza A virus (IAV is a multifunctional virulence factor. We have previously characterized gain-of-function mutations in the NS1 protein arising from the experimental adaptation of the human isolate A/Hong Kong/1/1968(H3N2 (HK to the mouse. The majority of these mouse adapted NS1 mutations were demonstrated to increase virulence, viral fitness, and interferon antagonism, but differ in binding to the post-transcriptional processing factor cleavage and polyadenylation specificity factor 30 (CPSF30. Because nuclear trafficking is a major genetic determinant of influenza virus host adaptation, we assessed subcellular localization and host gene expression of NS1 adaptive mutations. Recombinant HK viruses with adaptive mutations in the NS1 gene were assessed for NS1 protein subcellular localization in mouse and human cells using confocal microscopy and cellular fractionation. In human cells the HK wild-type (HK-wt virus NS1 protein partitioned equivalently between the cytoplasm and nucleus but was defective in cytoplasmic localization in mouse cells. Several adaptive mutations increased the proportion of NS1 in the cytoplasm of mouse cells with the greatest effects for mutations M106I and D125G. The host gene expression profile of the adaptive mutants was determined by microarray analysis of infected mouse cells to show either high or low extents of host-gene regulation (HGR or LGR phenotypes. While host genes were predominantly down regulated for the HGR group of mutants (D2N, V23A, F103L, M106I+L98S, L98S, M106V, and M106V+M124I, the LGR phenotype mutants (D125G, M106I, V180A, V226I, and R227K were characterized by a predominant up regulation of host genes. CPSF30 binding affinity of NS1 mutants did not predict effects on host gene expression. To our knowledge this is the first report of roles of adaptive NS1 mutations that impact intracellular localization and regulation of host gene expression.

  13. Therapeutic cloning in the mouse

    Science.gov (United States)

    Mombaerts, Peter

    2003-01-01

    Nuclear transfer technology can be applied to produce autologous differentiated cells for therapeutic purposes, a concept termed therapeutic cloning. Countless articles have been published on the ethics and politics of human therapeutic cloning, reflecting the high expectations from this new opportunity for rejuvenation of the aging or diseased body. Yet the research literature on therapeutic cloning, strictly speaking, is comprised of only four articles, all in the mouse. The efficiency of derivation of embryonic stem cell lines via nuclear transfer is remarkably consistent among these reports. However, the efficiency is so low that, in its present form, the concept is unlikely to become widespread in clinical practice. PMID:12949262

  14. Rex3 (reduced in expression 3) as a new tumor marker in mouse hepatocarcinogenesis

    International Nuclear Information System (INIS)

    Braeuning, Albert; Jaworski, Maike; Schwarz, Michael; Koehle, Christoph

    2006-01-01

    In a previous microarray expression analysis, Rex3, a gene formerly not linked to tumor formation, was found to be highly overexpressed in both Ctnnb1-(β-Catenin) and Ha-ras-mutated mouse liver tumors. Subsequent analyses by in situ hybridization and real-time PCR confirmed a general liver tumor-specific overexpression of the gene (up to 400-fold). To investigate the role of Rex3 in liver tumors, hepatoma cells were transfected with FLAG- and Myc-tagged Rex3 expression vectors. Rex3 was shown to be exclusively localized to the cytoplasm, as determined by fluorescence microscopy and Western blotting. However, forced overexpression of Rex3 did not significantly affect proliferation or stress-induced apoptosis of transfected mouse hepatoma cells. Rex3 mRNA was determined in primary hepatocytes in culture by real-time PCR. In primary mouse hepatocytes, expression of Rex3 increased while cells dedifferentiated in culture. This effect was abolished when hepatocytes were maintained in a differentiated state. Furthermore, expression of Rex3 decreased in mouse liver with age of mice and the expression profile was highly correlated to that of the tumor markers α-fetoprotein and H19. The findings suggest a role of Rex3 as a marker for hepatocyte differentiation/dedifferentiation processes and tumor formation

  15. Blocking of proteolytic processing and deletion of glycosaminoglycan side chain of mouse DMP1 by substituting critical amino acid residues.

    Science.gov (United States)

    Peng, Tao; Huang, Bingzhen; Sun, Yao; Lu, Yongbo; Bonewald, Lynda; Chen, Shuo; Butler, William T; Feng, Jerry Q; D'Souza, Rena N; Qin, Chunlin

    2009-01-01

    Dentin matrix protein 1 (DMP1) is present in the extracellular matrix (ECM) of dentin and bone as processed NH(2)- and COOH-terminal fragments, resulting from proteolytic cleavage at the NH(2) termini of 4 aspartic acid residues during rat DMP1 processing. One cleavage site residue, Asp(181) (corresponding to Asp(197) of mouse DMP1), and its flanking region are highly conserved across species. We speculate that cleavage at the NH(2) terminus of Asp(197) of mouse DMP1 represents an initial, first-step scission in the whole cascade of proteolytic processing. To test if Asp(197) is critical for initiating the proteolytic processing of mouse DMP1, we substituted Asp(197) with Ala(197) by mutating the corresponding nucleotides of mouse cDNA that encode this amino acid residue. This mutant DMP1 cDNA was cloned into a pcDNA3.1 vector. Data from transfection experiments indicated that this single substitution blocked the proteolytic processing of mouse DMP1 in HEK-293 cells, indicating that cleavage at the NH(2) terminus of Asp(197) is essential for exposing other cleavage sites for the conversion of DMP1 to its fragments. The NH(2)-terminal fragment of DMP1 occurs as a proteoglycan form (DMP1-PG) that contains a glycosaminoglycan (GAG) chain. Previously, we showed that a GAG chain is linked to Ser(74) in rat DMP1 (Ser(89) in mouse DMP1). To confirm that mouse DMP1-PG possesses a single GAG chain attached to Ser(89), we substituted Ser(89) by Gly(89). Data from transfection analysis indicated that this substitution completely prevented formation of the GAG-containing form, confirming that DMP1-PG contains a single GAG chain attached to Ser(89) in mouse DMP1. Copyright 2008 S. Karger AG, Basel.

  16. Generation and characterization of PDGFRα-GFPCreERT2 knock-In mouse line.

    Science.gov (United States)

    Miwa, Hiroyuki; Era, Takumi

    2015-05-01

    Platelet-derived growth factor (PDGF) and its receptor play an important role in embryogenesis. PDGF receptor α (PDGFRα) is expressed specifically in the embryonic day 7.5 (E7.5) mesoderm and in the E9.5 neural crest among other tissues. PDGFRα-expressing cells and their descendants are involved in the formation of various tissues. To trace PDGFRα-expressing cells in vivo, we generated a knock-in mouse line that expressed a fusion protein of green fluorescent protein (GFP), Cre recombinase (Cre), and mutated estrogen receptor ligand-binding domain (ERT2) under the control of the PDGFRα promoter. In these mice, Cre activity in PDGFRα-expressing cells could be induced by tamoxifen treatment. Taken together, our results suggest that the knock-in mouse line generated here could be useful for studying PDGFRα-expressing cells and their descendants in vivo at various stages of development. © 2015 Wiley Periodicals, Inc.

  17. Phenotypic and pathologic evaluation of the myd mouse. A candidate model for facioscapulohumeral dystrophy

    Energy Technology Data Exchange (ETDEWEB)

    Mathews, K.D.; Rapisarda, D.; Bailey, H.L. [Univ. of Iowa College of Medicine, Iowa City, IA (United States)] [and others

    1995-07-01

    Facioscapulohumeral dystrophy (FSHD) is an autosomal dominant disease of unknown pathogenesis which is characterized by weakness of the face and shoulder girdle. It is associated with a sensorineural hearing loss which may be subclinical. FSHD has been mapped to the distalmost portion of 4q35, although the gene has not yet been identified. Distal 4q has homology with a region of mouse chromosome 8 to which a mouse mutant, myodystrophy (myd), has been mapped. Muscle from homozygotes for the myd mutation appears dystrophic, showing degenerating and regenerating fibers, inflammatory infiltrates, central nuclei, and variation in fiber size. Brainstem auditory evoked potentials reveal a sensorineural hearing loss in myd homozygotes. Based on the homologous genetic map locations, and the phenotypic syndrome of dystrophic muscle with sensorineural hearing loss, we suggest that myd represents an animal model for the human disease FSHD. 28 refs., 4 figs.

  18. Nonsense and missense mutation of mitochondrial ND6 gene promotes cell migration and invasion in human lung adenocarcinoma

    International Nuclear Information System (INIS)

    Yuan, Yang; Wang, Weixing; Li, Huizhong; Yu, Yongwei; Tao, Jin; Huang, Shengdong; Zeng, Zhiyong

    2015-01-01

    Previous study showed that mitochondrial ND6 (mitND6) gene missense mutation resulted in NADH dehydrogenase deficiency and was associated with tumor metastasis in several mouse tumor cell lines. In the present study, we investigated the possible role of mitND6 gene nonsense and missense mutations in the metastasis of human lung adenocarcinoma. The presence of mitND6 gene mutations was screened by DNA sequencing of tumor tissues from 87 primary lung adenocarcinoma patients and the correlation of the mutations with the clinical features was analyzed. In addition, we constructed cytoplasmic hybrid cells with denucleared primary lung adenocarcinoma cell as the mitochondria donor and mitochondria depleted lung adenocarcinoma A549 cell as the nuclear donor. Using these cells, we studied the effects of mitND6 gene nonsense and missense mutations on cell migration and invasion through wounding healing and matrigel-coated transwell assay. The effects of mitND6 gene mutations on NADH dehydrogenase activity and ROS production were analyzed by spectrophotometry and flow cytometry. mitND6 gene nonsense and missense mutations were detected in 11 of 87 lung adenocarcinoma specimens and was correlated with the clinical features including age, pathological grade, tumor stage, lymph node metastasis and survival rate. Moreover, A549 cell containing mitND6 gene nonsense and missense mutation exhibited significantly lower activity of NADH dehydrogenase, higher level of ROS, higher capacity of cell migration and invasion, and higher pAKT and pERK1/ERK2 expression level than cells with the wild type mitND6 gene. In addition, NADH dehydrogenase inhibitor rotenone was found to significantly promote the migration and invasion of A549 cells. Our data suggest that mitND6 gene nonsense and missense mutation might promote cell migration and invasion in lung adenocarcinoma, probably by NADH dehydrogenase deficiency induced over-production of ROS

  19. Characterization of a mutation commonly associated with persistent stuttering: evidence for a founder mutation

    Science.gov (United States)

    Fedyna, Alison; Drayna, Dennis; Kang, Changsoo

    2010-01-01

    Stuttering is a disorder which affects the fluency of speech. It has been shown to have high heritability, and has recently been linked to mutations in the GNPTAB gene. One such mutation, Glu1200Lys, has been repeatedly observed in unrelated families and individual cases. Eight unrelated individuals carrying this mutation were analyzed in an effort to distinguish whether these arise from repeated mutation at the same site, or whether they represent a founder mutation with a single origin. Results show that all 12 chromosomes carrying this mutation share a common haplotype in this region, indicating it is a founder mutation. Further analysis estimated the age of this allele to be ~572 generations. Construction of a cladogram tracing the mutation through our study sample also supports the founder mutation hypothesis. PMID:20944643

  20. Genotoxic effects of synthetic amorphous silica nanoparticles in the mouse lymphoma assay

    Directory of Open Access Journals (Sweden)

    Eşref Demir

    Full Text Available Synthetic amorphous silica nanoparticles (SAS NPs have been used in various industries, such as plastics, glass, paints, electronics, synthetic rubber, in pharmaceutical drug tablets, and a as food additive in many processed foods. There are few studies in the literature on NPs using gene mutation approaches in mammalian cells, which represents an important gap for genotoxic risk estimations. To fill this gap, the mouse lymphoma L5178Y/Tk+/− assay (MLA was used to evaluate the mutagenic effect for five different concentrations (from 0.01 to 150 μg/mL of two different sizes of SAS NPs (7.172 and 7.652 nm and a fine collodial form of silicon dioxide (SiO2. This assay detects a broad spectrum of mutational events, from point mutations to chromosome alterations. The results obtained indicate that the two selected SAS NPs are mutagenic in the MLA assay, showing a concentration-dependent effect. The relative mutagenic potencies according to the induced mutant frequency (IMF are as follows: SAS NPs (7.172 nm (IMF = 705.5 × 10−6, SAS NPs (7.652 nm (IMF = 575.5 × 10−6, and SiO2 (IMF = 57.5 × 10−6. These in vitro results, obtained from mouse lymphoma cells, support the genotoxic potential of NPs as well as focus the discussion of the benefits/risks associated with their use in different areas. Keywords: Synthetic amorphous silica nanoparticles, Mouse lymphoma assay, Mutagenic agents, Thymidine kinase (Tk gene, In vitro mutagenicity

  1. Establishment of a mouse model with misregulated chromosome condensation due to defective Mcph1 function.

    Directory of Open Access Journals (Sweden)

    Marc Trimborn

    Full Text Available Mutations in the human gene MCPH1 cause primary microcephaly associated with a unique cellular phenotype with premature chromosome condensation (PCC in early G2 phase and delayed decondensation post-mitosis (PCC syndrome. The gene encodes the BRCT-domain containing protein microcephalin/BRIT1. Apart from its role in the regulation of chromosome condensation, the protein is involved in the cellular response to DNA damage. We report here on the first mouse model of impaired Mcph1-function. The model was established based on an embryonic stem cell line from BayGenomics (RR0608 containing a gene trap in intron 12 of the Mcph1 gene deleting the C-terminal BRCT-domain of the protein. Although residual wild type allele can be detected by quantitative real-time PCR cell cultures generated from mouse tissues bearing the homozygous gene trap mutation display the cellular phenotype of misregulated chromosome condensation that is characteristic for the human disorder, confirming defective Mcph1 function due to the gene trap mutation. While surprisingly the DNA damage response (formation of repair foci, chromosomal breakage, and G2/M checkpoint function after irradiation appears to be largely normal in cell cultures derived from Mcph1(gt/gt mice, the overall survival rates of the Mcph1(gt/gt animals are significantly reduced compared to wild type and heterozygous mice. However, we could not detect clear signs of premature malignant disease development due to the perturbed Mcph1 function. Moreover, the animals show no obvious physical phenotype and no reduced fertility. Body and brain size are within the range of wild type controls. Gene expression on RNA and protein level did not reveal any specific pattern of differentially regulated genes. To the best of our knowledge this represents the first mammalian transgenic model displaying a defect in mitotic chromosome condensation and is also the first mouse model for impaired Mcph1-function.

  2. Establishment of a mouse model with misregulated chromosome condensation due to defective Mcph1 function.

    Science.gov (United States)

    Trimborn, Marc; Ghani, Mahdi; Walther, Diego J; Dopatka, Monika; Dutrannoy, Véronique; Busche, Andreas; Meyer, Franziska; Nowak, Stefanie; Nowak, Jean; Zabel, Claus; Klose, Joachim; Esquitino, Veronica; Garshasbi, Masoud; Kuss, Andreas W; Ropers, Hans-Hilger; Mueller, Susanne; Poehlmann, Charlotte; Gavvovidis, Ioannis; Schindler, Detlev; Sperling, Karl; Neitzel, Heidemarie

    2010-02-16

    Mutations in the human gene MCPH1 cause primary microcephaly associated with a unique cellular phenotype with premature chromosome condensation (PCC) in early G2 phase and delayed decondensation post-mitosis (PCC syndrome). The gene encodes the BRCT-domain containing protein microcephalin/BRIT1. Apart from its role in the regulation of chromosome condensation, the protein is involved in the cellular response to DNA damage. We report here on the first mouse model of impaired Mcph1-function. The model was established based on an embryonic stem cell line from BayGenomics (RR0608) containing a gene trap in intron 12 of the Mcph1 gene deleting the C-terminal BRCT-domain of the protein. Although residual wild type allele can be detected by quantitative real-time PCR cell cultures generated from mouse tissues bearing the homozygous gene trap mutation display the cellular phenotype of misregulated chromosome condensation that is characteristic for the human disorder, confirming defective Mcph1 function due to the gene trap mutation. While surprisingly the DNA damage response (formation of repair foci, chromosomal breakage, and G2/M checkpoint function after irradiation) appears to be largely normal in cell cultures derived from Mcph1(gt/gt) mice, the overall survival rates of the Mcph1(gt/gt) animals are significantly reduced compared to wild type and heterozygous mice. However, we could not detect clear signs of premature malignant disease development due to the perturbed Mcph1 function. Moreover, the animals show no obvious physical phenotype and no reduced fertility. Body and brain size are within the range of wild type controls. Gene expression on RNA and protein level did not reveal any specific pattern of differentially regulated genes. To the best of our knowledge this represents the first mammalian transgenic model displaying a defect in mitotic chromosome condensation and is also the first mouse model for impaired Mcph1-function.

  3. Predictable Phenotypes of Antibiotic Resistance Mutations.

    Science.gov (United States)

    Knopp, M; Andersson, D I

    2018-05-15

    Antibiotic-resistant bacteria represent a major threat to our ability to treat bacterial infections. Two factors that determine the evolutionary success of antibiotic resistance mutations are their impact on resistance level and the fitness cost. Recent studies suggest that resistance mutations commonly show epistatic interactions, which would complicate predictions of their stability in bacterial populations. We analyzed 13 different chromosomal resistance mutations and 10 host strains of Salmonella enterica and Escherichia coli to address two main questions. (i) Are there epistatic interactions between different chromosomal resistance mutations? (ii) How does the strain background and genetic distance influence the effect of chromosomal resistance mutations on resistance and fitness? Our results show that the effects of combined resistance mutations on resistance and fitness are largely predictable and that epistasis remains rare even when up to four mutations were combined. Furthermore, a majority of the mutations, especially target alteration mutations, demonstrate strain-independent phenotypes across different species. This study extends our understanding of epistasis among resistance mutations and shows that interactions between different resistance mutations are often predictable from the characteristics of the individual mutations. IMPORTANCE The spread of antibiotic-resistant bacteria imposes an urgent threat to public health. The ability to forecast the evolutionary success of resistant mutants would help to combat dissemination of antibiotic resistance. Previous studies have shown that the phenotypic effects (fitness and resistance level) of resistance mutations can vary substantially depending on the genetic context in which they occur. We conducted a broad screen using many different resistance mutations and host strains to identify potential epistatic interactions between various types of resistance mutations and to determine the effect of strain

  4. A Genetically Engineered Mouse Model of Neuroblastoma Driven by Mutated ALK and MYCN

    Science.gov (United States)

    2015-09-01

    of new laboratory skills during the course of the experiments described above. How were the results disseminated to communities of interest...Institute (Cambridge, MA, USA). The constructs were transfected into 293T cells with helper plasmids for virus production. Cells were then transduced

  5. A Mouse Model of Cardiomyopathy Induced by Mutations in the Hemochromatosis HFE Gene.

    Science.gov (United States)

    Djemai, Haidar; Thomasson, Rémi; Trzaskus, Yvan; Mougenot, Nathalie; Meziani, Amira; Toussaint, Jean-François; Noirez, Philippe; Vitiello, Damien

    2017-07-01

    The heart is 1 of the organs most affected by hereditary hemochromatosis (HH). The clinical impact of cardiomyopathy in patients with HH requires a particular diagnosis and less invasive treatments. We developed a model of cardiomyopathy in knockout (KO) mice for the high-Fe (HFE) gene and assessed left ventricular (LV) function and structure from 7-20 months. Male wild-type (WT) heterozygous and KO SV129 mice for the HFE gene were used in this study. Twenty-four mice were used to assess LV function and structure by echocardiography at 7, 14, 18, and 20 months. Evaluations of LV function and structure and myocardial fibrosis were performed at 7 and 20 months. The percent decrease of LV thickness-to-radius ratio between 7 and 20 months was higher in KO mice compared with WT mice (-30.2% ± 5.3% vs -10.5% ± 4.9%; P HFE-related hemochromatosis. Copyright © 2017 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.

  6. A Mutation of the Prdm9 Mouse Hybrid Sterility Gene Carried by a Transgene

    Czech Academy of Sciences Publication Activity Database

    Mihola, Ondřej; Trachtulec, Zdeněk

    2017-01-01

    Roč. 63, č. 1 (2017), s. 27-30 ISSN 0015-5500 R&D Projects: GA MŠk(CZ) LQ1604 Institutional support: RVO:68378050 Keywords : Prdm9 * transgene * meiosis Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Genetics and heredity (medical genetics to be 3) Impact factor: 0.939, year: 2016

  7. PBI creams: a spontaneously mutated mouse strain showing wild animal-type reactivity.

    Science.gov (United States)

    Hendrie, C A; Van Driel, K S; Talling, J C; Inglis, I R

    2001-01-01

    PBI creams are mice derived from warfarin-resistant wild stock that has been maintained under laboratory conditions since the 1970s. This study compares their behaviour to that of laboratory mice and wild house and wood mice. Animals were tested in a black/white box and a 2.64x1.4 m runway. In the black/white box, the behaviour of PBI creams was not significantly different from that of house mice and differed most from that of laboratory mice. Notably, the PBI creams showed the greatest activity and escape-orientated behaviours. When animals were approached by the experimenter in the open runway test, the PBI creams had higher flight speeds than both house and wood mice, whilst laboratory mice failed to respond. In the closed runway test where the animals could not escape, the PBI creams, house mice and wood mice all turned and attempted to run past the approaching experimenter, whilst the laboratory mice again failed to react. At the end of this test session, the time taken to catch each animal was recorded. It took less than 5 s to catch laboratory mice but significantly longer to catch the wild strains and the PBI creams (90-100 s for the latter). In these tests, the PBI creams showed wild animal-type reactivity, and as this behaviour has been retained in the laboratory colony for over 30 years, these animals may be useful in the study of the physiological and genetic basis of fear/anxiety in mice.

  8. MPL mutation profile in JAK2 mutation-negative patients with myeloproliferative disorders.

    Science.gov (United States)

    Ma, Wanlong; Zhang, Xi; Wang, Xiuqiang; Zhang, Zhong; Yeh, Chen-Hsiung; Uyeji, Jennifer; Albitar, Maher

    2011-03-01

    Mutations in the thrombopoietin receptor gene (myeloproliferative leukemia, MPL) have been reported in patients with JAK2 V617F-negative chronic myeloproliferative disorders (MPDs). We evaluated the prevalence of MPL mutations relative to JAK2 mutations in patients with suspected MPDs. A total of 2790 patient samples submitted for JAK2 mutation analysis were tested using real-time polymerase chain reaction and bidirectional sequencing of plasma RNA. JAK2 V617F-negative samples were tested for JAK2 exons 12 to 14 mutations, and those with negative results were then tested for mutations in MPL exons 10 and 11. Of the 2790 patients, 529 (18.96%) had V617F, 12 (0.43%) had small insertions or deletions in exon 12, and 7 (0.25%) had other JAK2 mutations in exons 12 to 14. Of the 2242 JAK2 mutation-negative patients, 68 (3.03%) had MPL mutations. W515L was the predominant MPL mutation (n=46; 68%), and 10 (15%) patients had other W515 variants. The remaining MPL mutations (n=12, 17%) were detected at other locations in exons 10 and 11 and included 3 insertion/deletion mutations. The S505N mutation, associated with familial MPD, was detected in 3 patients. Overall, for every 100 V617F mutations in patients with suspected MPDs, there were 12.9 MPL mutations, 2.3 JAK2 exon 12 mutations, and 1.3 JAK2 exons 13 to 14 mutations. These findings suggest that MPL mutation screening should be performed before JAK2 exons 12 to 14 testing in JAK2 V617F-negative patients with suspected MPDs.

  9. Calreticulin Mutations in Bulgarian MPN Patients.

    Science.gov (United States)

    Pavlov, Ivan; Hadjiev, Evgueniy; Alaikov, Tzvetan; Spassova, Sylva; Stoimenov, Angel; Naumova, Elissaveta; Shivarov, Velizar; Ivanova, Milena

    2018-01-01

    Somatic mutations in JAK2, MPL and CALR are recurrently identified in most of the cases with Philadelphia chromosome negative myeloproliferative neoplasms (MPNs). We applied four molecular genetic methods for identification of CALR exon 9 mutations, including high resolution melt (HRM) analysis, Sanger sequencing, semiconductor target genes sequencing and whole exome sequencing. A total of 78 patients with myeloid malignancies were included in the study. We identified 14 CALR exon 9 mutated cases out of 78 studied patients with myeloid malignancies. All mutated patients were diagnosed with MPN being either PMF (n = 7) or ET (n = 7). Nine cases had type 1 mutations and 5 cases had type 2 mutations. CALR exon 9, MPL exon 10 and JAK2 p. V617F were mutually exclusive. There were no statistically significant differences in the hematological parameters between the cases with CALR and JAK2 or MPL mutations. Notably, all four techniques were fully concordant in the detection of CALR mutations. This is one of the few reports on the CALR mutations frequency in South-eastern populations. Our study shows that the frequency and patterns of these mutations is identical to those in the patients' cohorts from Western countries. Besides we demonstrated the utility of four different methods for their detection.

  10. Take care of your mouse!

    CERN Multimedia

    IT Department

    2011-01-01

    “Stop --- Think --- Click" is the basic recommendation for securely browsing the Internet and for securely reading e-mails. Users who have followed this recommendation in the past were less likely to have their computer infected or their computing account compromised. We would like to thank all those who donated their mouse to the CERN Animal Shelter for Computer Mice (http://cern.ch/c-a-s). For those who still use a mouse, please stay vigilant and  alert: do not click on links whose origin you do not trust or which look like gibberish. Do not install untrusted software or plug-ins, since software from untrusted sources may infect or compromise your computer, or violate copyrights. Finally, take particular care with e-mails: Do not open unexpected or suspicious e-mails or attachments. Delete them if they do not concern you or if they appear strange. If in doubt, or if you have questions, please do not hesitate to contact Computer.Security@cern.ch

  11. Mutation in LIM2 Is Responsible for Autosomal Recessive Congenital Cataracts.

    Directory of Open Access Journals (Sweden)

    Bushra Irum

    Full Text Available To identify the molecular basis of non-syndromic autosomal recessive congenital cataracts (arCC in a consanguineous family.All family members participating in the study received a comprehensive ophthalmic examination to determine their ocular phenotype and contributed a blood sample, from which genomic DNA was extracted. Available medical records and interviews with the family were used to compile the medical history of the family. The symptomatic history of the individuals exhibiting cataracts was confirmed by slit-lamp biomicroscopy. A genome-wide linkage analysis was performed to localize the disease interval. The candidate gene, LIM2 (lens intrinsic membrane protein 2, was sequenced bi-directionally to identify the disease-causing mutation. The physical changes caused by the mutation were analyzed in silico through homology modeling, mutation and bioinformatic algorithms, and evolutionary conservation databases. The physiological importance of LIM2 to ocular development was assessed in vivo by real-time expression analysis of Lim2 in a mouse model.Ophthalmic examination confirmed the diagnosis of nuclear cataracts in the affected members of the family; the inheritance pattern and cataract development in early infancy indicated arCC. Genome-wide linkage analysis localized the critical interval to chromosome 19q with a two-point logarithm of odds (LOD score of 3.25. Bidirectional sequencing identified a novel missense mutation, c.233G>A (p.G78D in LIM2. This mutation segregated with the disease phenotype and was absent in 192 ethnically matched control chromosomes. In silico analysis predicted lower hydropathicity and hydrophobicity but higher polarity of the mutant LIM2-encoded protein (MP19 compared to the wild-type. Moreover, these analyses predicted that the mutation would disrupt the secondary structure of a transmembrane domain of MP19. The expression of Lim2, which was detected in the mouse lens as early as embryonic day 15 (E15

  12. Enhanced Polyubiquitination of Shank3 and NMDA receptor in a mouse model of Autism

    OpenAIRE

    Bangash, M Ali; Park, Joo Min; Melnikova, Tatiana; Wang, Dehua; Jeon, Soo Kyeong; Lee, Deidre; Syeda, Sbaa; Kim, Juno; Kouser, Mehreen; Schwartz, Joshua; Cui, Yiyuan; Zhao, Xia; Speed, Haley E.; Kee, Sara E.; Tu, Jian Cheng

    2011-01-01

    We have created a mouse genetic model that mimics a human mutation of Shank3 that deletes the C-terminus and is associated with autism. Expressed as a single copy [Shank3(+/ΔC) mice], Shank3ΔC protein interacts with the WT gene product and results in >90 % reduction of Shank3 at synapses. This “gain of function” phenotype is linked to increased polyubiquitination of WT Shank3 and its redistribution into proteasomes. Similarly, the NR1 subunit of the NMDA receptor is reduced at synapses with i...

  13. The loss-of-allele assay for ES cell screening and mouse genotyping.

    Science.gov (United States)

    Frendewey, David; Chernomorsky, Rostislav; Esau, Lakeisha; Om, Jinsop; Xue, Yingzi; Murphy, Andrew J; Yancopoulos, George D; Valenzuela, David M

    2010-01-01

    Targeting vectors used to create directed mutations in mouse embryonic stem (ES) cells consist, in their simplest form, of a gene for drug selection flanked by mouse genomic sequences, the so-called homology arms that promote site-directed homologous recombination between the vector and the target gene. The VelociGene method for the creation of targeted mutations in ES cells employs targeting vectors, called BACVecs, that are based on bacterial artificial chromosomes. Compared with conventional short targeting vectors, BacVecs provide two major advantages: (1) their much larger homology arms promote high targeting efficiencies without the need for isogenicity or negative selection strategies; and (2) they enable deletions and insertions of up to 100kb in a single targeting event, making possible gene-ablating definitive null alleles and other large-scale genomic modifications. Because of their large arm sizes, however, BACVecs do not permit screening by conventional assays, such as long-range PCR or Southern blotting, that link the inserted targeting vector to the targeted locus. To exploit the advantages of BACVecs for gene targeting, we inverted the conventional screening logic in developing the loss-of-allele (LOA) assay, which quantifies the number of copies of the native locus to which the mutation was directed. In a correctly targeted ES cell clone, the LOA assay detects one of the two native alleles (for genes not on the X or Y chromosome), the other allele being disrupted by the targeted modification. We apply the same principle in reverse as a gain-of-allele assay to quantify the copy number of the inserted targeting vector. The LOA assay reveals a correctly targeted clone as having lost one copy of the native target gene and gained one copy of the drug resistance gene or other inserted marker. The combination of these quantitative assays makes LOA genotyping unequivocal and amenable to automated scoring. We use the quantitative polymerase chain reaction

  14. Mouse allergen exposure and immunologic responses: IgE-mediated mouse sensitization and mouse specific IgG and IgG4 levels

    NARCIS (Netherlands)

    Matsui, Elizabeth C.; Krop, Esmeralda J. M.; Diette, Gregory B.; Aalberse, Rob C.; Smith, Abigail L.; Eggleston, Peyton A.

    2004-01-01

    Although there is evidence that contact with mice is associated with IgE-mediated mouse sensitization and mouse specific antibody responses, the exposure-response relationships remain unclear. To determine whether IgE-mediated mouse sensitization and mouse specific IgG (mIgG) and mIgG4 levels

  15. Molecular determinants of non-competitive antagonist binding to the mouse GPRC6A receptor

    DEFF Research Database (Denmark)

    Faure, Helene; Gorojankina, Tatiana; Rice, Nadejda

    2009-01-01

    GPRC6A displays high sequence homology to the Ca2+-sensing receptor (CaSR). Here we report that the calcimimetic Calindol and the calcilytic NPS2143 antagonize increases in inositol phosphate elicited by L-ornithine-induced activation of mouse GPRC6A after transient coexpression with Galpha(qG66D...... demonstrated to interact with calcilytics or calcimimetics. The mutations F666A(3.32), F670A(3.36), W797A(6.48) caused a loss of L-ornithine ability to activate GPRC6A mutants. The F800A(6.51) mutant was not implicated in either Calindol or NPS 2143 recognition. The E816Q(7.39) mutation led to a loss...

  16. The wobbler mouse, an ALS animal model

    DEFF Research Database (Denmark)

    Moser, Jakob Maximilian; Bigini, Paolo; Schmitt-John, Thomas

    2013-01-01

    This review article is focused on the research progress made utilizing the wobbler mouse as animal model for human motor neuron diseases, especially the amyotrophic lateral sclerosis (ALS). The wobbler mouse develops progressive degeneration of upper and lower motor neurons and shows striking...

  17. Mouse adenovirus type 1 infection of macrophages

    NARCIS (Netherlands)

    Ashley, S.L.; Welton, A.R.; Harwood, K.M.; Rooijen, van N.; Spindler, K.R.

    2009-01-01

    Mouse adenovirus type 1 (MAV-1) causes acute and persistent infections in mice, with high levels of virus found in the brain, spinal cord and spleen in acute infections. MAV-1 infects endothelial cells throughout the mouse, and monocytes/macrophages have also been implicated as targets of the virus.

  18. Mutation Spectrum and Phenotypic Features in Noonan Syndrome with PTPN11 Mutations: Definition of Two Novel Mutations.

    Science.gov (United States)

    Atik, Tahir; Aykut, Ayca; Hazan, Filiz; Onay, Huseyin; Goksen, Damla; Darcan, Sukran; Tukun, Ajlan; Ozkinay, Ferda

    2016-06-01

    To evaluate the spectrum of PTPN11 gene mutations in Noonan syndrome patients and to study the genotype-phenotype associations. In this study, twenty Noonan syndrome patients with PTPN11 mutations were included. The patients underwent a detailed clinical and physical evaluation. To identify inherited cases, parents of all mutation positive patients were analyzed. Thirteen different PTPN11 mutations, two of them being novel, were detected in the study group. These mutations included eleven missense mutations: p.G60A, p.D61N, p.Y62D, p.Y63C, p.E69Q, p.Q79R, p.Y279C,p.N308D, p.N308S, p.M504V, p.Q510R and two novel missense mutations: p.I56V and p.I282M. The frequency of cardiac abnormalities and short stature were found to be 80 % and 80 %, respectively. Mental retardation was not observed in patients having exon 8 mutations. No significant correlations were detected between other phenotypic features and genotypes. By identifying genotype-phenotype correlations, this study provides information on phenotypes observed in NS patients with different PTPN11 mutations.

  19. Induced Mutations in Thai Rice

    International Nuclear Information System (INIS)

    Klakhaeng, Kanchana

    2014-01-01

    Rice is the primary source of food for more than half of the world's population. It benefits greatly from technological inputs in the area of breeding such as induced mutation. Induced mutation can produce mutants with significant improvement in plant type, maturity, yields and protein ratio when compared to the parent. These improved traits enable the mutants to fit into farming systems with either shorter or longer growing seasons. Three induced mutant rice varieties, including RD6, RD10 and RD15, are well accepted by farmers and consumers in Thailand. RD6 and RD15 were aromatic, photosensitive varieties which were derived from KDML105 by acute irradiation of 20 and 15 kilorad gamma ray, respectively. After induced mutation, pedigree selection was applied. RD6 showed drought tolerance and also good grain quality including softness and good aroma with a higher average yield than the famous glutinous variety, San-Pah-Tong. Additionally, it was resistant to blast and brown spot diseases with an average yield of 4.19 tons/ha. RD15 showed drought tolerance and resistance to brown spot disease with the highest yield of 3.5 tons/ha. These two mutant varieties are currently the most famous aromatic rice varieties in Thailand. On the other hand, RD10 is a glutinous, photoperiod insensitive rice variety which was derived from RD1 by irradiation of 1 kilorad fast neutrons. RD10 showed good grain quality such as softness and stickiness with the yield of 4.25 tons/ha. As an on-going project, recommended rice varieties were irradiated with electron beam for anaerobic germination ability, submergence tolerance, stagnant-flood tolerance and also internode elongation.

  20. The non-small cell lung cancer EGFR extracellular domain mutation, M277E, is oncogenic and drug-sensitive

    Directory of Open Access Journals (Sweden)

    Yu S

    2017-09-01

    Full Text Available Su Yu,1,2 Yang Zhang,1 Yunjian Pan,1 Chao Cheng,1,3 Yihua Sun,1,3 Haiquan Chen1–4 1Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; 2Cancer Research Center, Fudan University Shanghai Cancer Center, Shanghai, China; 3Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; 4Institutes of Biomedical Sciences, Fudan University, Shanghai, China Purpose: To identify novel oncogenic mutations in non-small cell lung cancer patient specimens that lack mutations in known targetable genes (“pan-negative” patients.Methods: Comprehensive mutational analyses were performed on 1,356 lung adenocarcinoma specimens. In this cohort of patients, common lung cancer oncogenic driver mutations were detected in the epidermal growth factor receptor (EGFR kinase domain, the human epidermal growth factor receptor 2 kinase domain, as well as the KRAS, BRAF, ALK, ROS1 and RET genes. A sub-cohort of pan-negative patient specimens was assayed for mutations in the EGFR extracellular domain (ECD. Additionally, EGFR mutant NIH-3T3 stable cell lines were constructed and assessed for protein content, anchorage-independent growth, and tumor formation in xenograft models to identify oncogenic mutations. BaF3 lymphocytes were also used to test sensitivities of the mutations to tyrosine kinase inhibitors.Results: In pan-negative lung adenocarcinoma cases, a novel oncogenic EGFR ECD mutation was identified (M277E. EGFR M277E mutations encoded oncoproteins that transformed NIH-3T3 cells to grow in the absence of exogenous epidermal growth factor. Transformation was further evidenced by anchorage-independent growth and tumor formation in immunocompromised xenograft mouse models. Finally, as seen in the canonical EGFR L858R mutation, the M277E mutation conferred sensitivity to both erlotinib and cetuximab in BaF3 cell lines and to erlotinib in xenograft models.Conclusion: Here, a new EGFR driver mutation, M277E