WorldWideScience

Sample records for nrc-licensed nuclear facilities

  1. Safeguards at NRC licensed facilities: Are we doing enough

    International Nuclear Information System (INIS)

    Asselstine, J.K.

    1986-01-01

    Safeguards at the Nuclear Regulatory Commission (NRC) facilities are discussed in this paper. The NRC is pursuing a number of initiatives in the safeguards area. The Commission is conducting a reassessment of its safeguards design basis threat statements to consider the possible implications of an explosive-laden vehicle for U.S. nuclear safeguards and to examine the comparability of safeguards features at NRC-licensed and DOE facilities. The Commission is also completing action on measures to protect against the sabotage threat from an insider at NRC-licensed facilities, and is examining the potential safety implications of safeguards measures. Finally, the NRC has developed measures to reduce the theft potential for high-enriched uranium

  2. Safeguards at NRC licensed facilities: Are we doing enough

    International Nuclear Information System (INIS)

    Asselstine, J.K.

    1986-01-01

    The Nuclear Regulatory Commission is pursuing a number of initiatives in the safeguards area. The Commission is conducting a reassessment of its safeguards design basis threat statements to consider the possible implications of an explosive-laden vehicle for U.S. nuclear safeguards and to examine the comparability of safeguards features at NRC-licensed and DOE facilities. The Commission is also completing action on measures to protect against the sabotage threat from an insider at NRC-licensed facilities, and is examining the potential safety implications of safeguards measures. Finally, the NRC has developed measures to reduce the theft potential for high-enriched uranium

  3. Spent Nuclear Fuel Project path forward: nuclear safety equivalency to comparable NRC-licensed facilities

    International Nuclear Information System (INIS)

    Garvin, L.J.

    1995-11-01

    This document includes the Technical requirements which meet the nuclear safety objectives of the NRC regulations for fuel treatment and storage facilities. These include requirements regarding radiation exposure limits, safety analysis, design and construction. This document also includes administrative requirements which meet the objectives of the major elements of the NRC licensing process. These include formally documented design and safety analysis, independent technical review, and oppportunity for public involvement

  4. NRC Response to an Act or Threat of Terrorism at an NRC-Licensed Facility

    International Nuclear Information System (INIS)

    Frank Congel

    2000-01-01

    The mandated response to a threat or act of terrorism at a U.S. Nuclear Regulatory Commission (NRC)-licensed facility was examined through a tabletop exercise in May 2000 and a limited field exercise in August 2000. This paper describes some of the new issues addressed and lessons learned from those exercises

  5. Plan for reevaluation of NRC policy on decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    1978-12-01

    The present decommissioning regulations contained in Sections 50.33(f) and 50.82 of 10 CFR part 50 require applicants for power reactor operating licenses to demonstrate that they can obtain the funds needed to meet both operating costs and estimated costs of shutdown and decommissioning. The development of detailed, specific decommissioning plans for nuclear power plants is not currently required until the licensee seeks to terminate his operating license. Recognizing that the current generation of large commercial reactors and supporting nuclear facilities would substantially increase the need for future decommissionings, the NRC staff began an in-depth review and reevaluation of NRC's regulatory approach to decommissioning in 1975. The Nuclear Regulatory Commission is now considering development of a more explicit overall policy for nuclear facility decommissioning and amending its regulations in 10 CFR Parts 30, 40, 50, and 70 to include more specific guidance on decommissioning criteria for production and utilization facility licensees and byproduct, source, and special nuclear material licensees. In response to comments from the public and states, and to information gained during the initial stage of execution of the plan, several modifications of the plan are now required. The revised overall report sets forth in detail the current NRC staff plan for the development of an overall NRC policy on decommissioning of nuclear facilities

  6. 77 FR 26321 - Reed College, Reed Research Nuclear Reactor, Renewed Facility Operating License No. R-112

    Science.gov (United States)

    2012-05-03

    ... Nuclear Reactor, Renewed Facility Operating License No. R-112 AGENCY: Nuclear Regulatory Commission... Commission (NRC or the Commission) has issued renewed Facility Operating License No. R- 112, held by Reed... License No. R-112 will expire 20 years from its date of issuance. The renewed facility operating license...

  7. Evaluating physical protection systems of licensed nuclear facilities using systems engineered inspection guidance

    International Nuclear Information System (INIS)

    Bradley, R.T.; Olson, A.W.; Rogue, F.; Scala, S.; Richard, E.W.

    1980-01-01

    The Lawrence Livermore National Laboratory (LLNL) and the US Nuclear Regulatory Commission (NRC) Office of Nuclear Regulatory Research (RES) have applied a systems engineering approach to provide the NRC Office of Inspection and Enforcement (IE) with improved methods and guidance for evaluating the physical protection systems of licensed nuclear facilities

  8. Future of Nuclear Power: NRC emergency preparedness licensing activities agenda

    International Nuclear Information System (INIS)

    Essig, T.H.

    1995-01-01

    This talk summary addresses the issue of how future policies of the NRC will affect nuclear power in areas such as construction, emergency preparedness, and licensing. Specific topics covered include the following: Emergent EP licensing issues for operating nuclear Power Plants; 10CFR Part 52 and the process for licensing of Advanced Light Water Reactors (ALWRs); and potential revisions to emergency preparedness programs for future nuclear power plants

  9. NRC antitrust licensing actions, 1978--1996

    International Nuclear Information System (INIS)

    Mayer, S.J.; Simpson, J.J.

    1997-09-01

    NUREG-0447, Antitrust Review of Nuclear Power Plants, was published in May 1978 and includes a compilation and discussion of U.S. Nuclear Regulatory Commission (NRC) proceedings and activity involving the NRC's competitive review program through February 1978, NUREG-0447 is an update of an earlier discussion of the NRC's antitrust review of nuclear power plants, NR-AIG-001, The US Nuclear Regulatory Commission's Antitrust Review of Nuclear Power Plants: The Conditioning of Licenses, which reviewed the Commission's antitrust review function from its inception in December 1970 through April 1976. This report summarizes the support provided to NRC staff in updating the compilation of the NRC's antitrust licensing review activities for commercial nuclear power plants that have occurred since February 1978. 4 refs., 4 tabs

  10. NRC antitrust licensing actions, 1978--1996

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, S.J.; Simpson, J.J.

    1997-09-01

    NUREG-0447, Antitrust Review of Nuclear Power Plants, was published in May 1978 and includes a compilation and discussion of U.S. Nuclear Regulatory Commission (NRC) proceedings and activity involving the NRC`s competitive review program through February 1978, NUREG-0447 is an update of an earlier discussion of the NRC`s antitrust review of nuclear power plants, NR-AIG-001, The US Nuclear Regulatory Commission`s Antitrust Review of Nuclear Power Plants: The Conditioning of Licenses, which reviewed the Commission`s antitrust review function from its inception in December 1970 through April 1976. This report summarizes the support provided to NRC staff in updating the compilation of the NRC`s antitrust licensing review activities for commercial nuclear power plants that have occurred since February 1978. 4 refs., 4 tabs.

  11. Review of NRC Commission Papers on Regulatory Basis for Licensing and Regulating Reprocessing Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jae Yeong; Shin, Hyeong Ki [KINS, Daejeon (Korea, Republic of)

    2016-05-15

    Spent nuclear fuel (SNF) accumulated in nuclear power plant has been a serious issue in most countries with operating nuclear power plants. Direct disposal of SNF could be a solution of the problem but many countries including the Republic of Korea have had a hard time selecting a site for high level waste repository because of low public acceptance. SNF recycling technologies consisting of reprocessing and transmutation have been developed so as to reduce the final volume of the disposed radioactive waste and to diminish the radiotoxicity of the waste. The Republic of Korea is now developing pyroprocessing and sodium-cooled fast reactor (SFR) technology to be used for the recycling of the wastes. KAERI has a plan to construct a pyroprocessing facility with a capacity of 30 tHM/y and a facility manufacturing TRU fuel for SFR by 2025. However, to license these facility and secure the safety, the current regulatory system related to SNF treatment needs to be improved and amended since the system has been developed focusing on facilities to examine irradiated nuclear materials. Status of reprocessing facility regulations developed by U.S.NRC was reviewed based on SECY papers. U.S.NRC has approved the development of a new rule referred to nationally as '10CFR Part 7x'. Existing 10CFR 50 and 70 has been evolved mainly for nuclear power plants and fuel cycle facilities whose radiological hazard is much lower than reprocessing plants respectively. U.S.NRC also derived many regulatory gaps including safety assessment methods, technical specification, general design criteria and waste classification and continue to develop the regulatory framework limited in scope to the resolution of Gap 5.

  12. 78 FR 40519 - Cooper Nuclear Station; Application and Amendment to Facility Operating License Involving...

    Science.gov (United States)

    2013-07-05

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 50-298; NRC-2013-0139] Cooper Nuclear Station; Application and Amendment to Facility Operating License Involving Proposed No Significant Hazards..., issued to Nebraska Public Power District (the licensee), for operation of the Cooper Nuclear Station (CNS...

  13. Plan for reevaluation of NRC policy on decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    1978-03-01

    Recognizing that the current generation of large commercial reactors and supporting nuclear facilities would substantially increase future decommissioning needs, the NRC staff began an in-depth review and re-evaluation of NRC's regulatory approach to decommissioning in 1975. Major technical studies on decommissioning have been initiated at Battelle Pacific Northwest Laboratory in order to provide a firm information base on the engineering methodology, radiation risks, and estimated costs of decommissioning light water reactors and associated fuel cycle facilities. The Nuclear Regulatory Commission is now considering development of a more explicit overall policy for nuclear facility decommissioning and amending its regulations in 10 CFR Parts 30, 40, 50, and 70 to include more specific guidance on decommissioning criteria for production and utilization facility licensees and byproduct, source, and special nuclear material licensees. The report sets forth in detail the NRC staff plan for the development of an overall NRC policy on decommissioning of nuclear facilities

  14. NRC - regulator of nuclear safety

    International Nuclear Information System (INIS)

    1997-01-01

    The U.S. Nuclear Regulatory Commission (NRC) was formed in 1975 to regulate the various commercial and institutional uses of nuclear energy, including nuclear power plants. The agency succeeded the Atomic Energy Commission, which previously had responsibility for both developing and regulating nuclear activities. Federal research and development work for all energy sources, as well as nuclear weapons production, is now conducted by the U.S. Department of Energy. Under its responsibility to protect public health and safety, the NRC has three principal regulatory functions: (1) establish standards and regulations, (2) issue licenses for nuclear facilities and users of nuclear materials, and (3) inspect facilities and users of nuclear materials to ensure compliance with the requirements. These regulatory functions relate to both nuclear power plants and to other uses of nuclear materials - like nuclear medicine programs at hospitals, academic activities at educational institutions, research work, and such industrial applications as gauges and testing equipment. The NRC places a high priority on keeping the public informed of its work. The agency recognizes the interest of citizens in what it does through such activities as maintaining public document rooms across the country and holding public hearings, public meetings in local areas, and discussions with individuals and organizations

  15. Spent nuclear fuel project multi-canister overpack, additional NRC requirements

    International Nuclear Information System (INIS)

    Garvin, L.J.

    1998-01-01

    The US Department of Energy (DOE), established in the K Basin Spent Nuclear Fuel Project Regulatory Policy, dated August 4, 1995 (hereafter referred to as the Policy), the requirement for new Spent Nuclear Fuel (SNF) Project facilities to achieve nuclear safety equivalency to comparable US Nuclear Regulatory Commission (NRC)-licensed facilities. For activities other than during transport, when the Multi-Canister Overpack (MCO) is used and resides in the Canister Storage Building (CSB), Cold Vacuum Drying (CVD) facility or Hot Conditioning System, additional NRC requirements will also apply to the MCO based on the safety functions it performs and its interfaces with the SNF Project facilities. An evaluation was performed in consideration of the MCO safety functions to identify any additional NRC requirements needed, in combination with the existing and applicable DOE requirements, to establish nuclear safety equivalency for the MCO. The background, basic safety issues and general comparison of NRC and DOE requirements for the SNF Project are presented in WHC-SD-SNF-DB-002

  16. NRC Licensing Status Summary Report for NGNP

    Energy Technology Data Exchange (ETDEWEB)

    Moe, Wayne Leland [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kinsey, James Carl [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-11-01

    The Next Generation Nuclear Plant (NGNP) Project, initiated at Idaho National Laboratory (INL) by the U.S. Department of Energy (DOE) pursuant to provisions of the Energy Policy Act of 2005, is based on research and development activities supported by the Department of Energy Generation IV Nuclear Energy Systems Initiative. The principal objective of the NGNP Project is to support commercialization of high temperature gas-cooled reactor (HTGR) technology. The HTGR is a helium-cooled and graphite moderated reactor that can operate at temperatures much higher than those of conventional light water reactor (LWR) technologies. The NGNP will be licensed for construction and operation by the Nuclear Regulatory Commission (NRC). However, not all elements of current regulations (and their related implementation guidance) can be applied to HTGR technology at this time. Certain policies established during past LWR licensing actions must be realigned to properly accommodate advanced HTGR technology. A strategy for licensing HTGR technology was developed and executed through the cooperative effort of DOE and the NRC through the NGNP Project. The purpose of this report is to provide a snapshot of the current status of the still evolving pre-license application regulatory framework relative to commercial HTGR technology deployment in the U.S. The following discussion focuses on (1) describing what has been accomplished by the NGNP Project up to the time of this report, and (2) providing observations and recommendations concerning actions that remain to be accomplished to enable the safe and timely licensing of a commercial HTGR facility in the U.S.

  17. NRC's license renewal regulations

    International Nuclear Information System (INIS)

    Akstulewicz, Francis

    1991-01-01

    In order to provide for the continuity of the current generation of nuclear power plant operating licenses and at the same time ensure the health and safety of the public, and the quality of the environment, the US Nuclear Regulatory Commission (NRC) established a goal of developing and issuing regulations and regulatory guidance for license renewal in the early 1990s. This paper will discuss some of those activities underway to achieve this goal. More specifically, this paper will discuss the Commission's regulatory philosophy for license renewal and the two major license renewal rule makings currently underway. The first is the development of a new Part 54 to address procedural and technical requirements for license renewal; the second is a revision to existing Part 51 to exclude environmental issues and impacts from consideration during the license renewal process. (author)

  18. USNRC licensing process as related to nuclear criticality safety

    International Nuclear Information System (INIS)

    Ketzlach, N.

    1987-01-01

    The U.S. Code of Federal Regulations establishes procedures and criteria for the issuance of licenses to receive title to, own, acquire, deliver, receive, possess, use, and initially transfer special nuclear material; and establishes and provides for the terms and conditions upon which the Nuclear Regulatory Commission (NRC) will issue such licenses. Section 70.22 of the regulations, ''Contents of Applications'', requires that applications for licenses contain proposed procedures to avoid accidental conditions of criticality. These procedures are elements of a nuclear criticality safety program for operations with fissionable materials at fuels and materials facilities (i.e., fuel cycle facilities other than nuclear reactors) in which there exists a potential for criticality accidents. To assist the applicant in providing specific information needed for a nuclear criticality safety program in a license application, the NRC has issued regulatory guides. The NRC requirements for nuclear criticality safety include organizational, administrative, and technical requirements. For purely technical matters on nuclear criticality safety these guides endorse national standards. Others provide guidance on the standard format and content of license applications, guidance on evaluating radiological consequences of criticality accidents, or guidance for dealing with other radiation safety issues. (author)

  19. NRC licensing requirements: DOD options

    International Nuclear Information System (INIS)

    Pike, W.J.; O'Reilly, P.D.

    1982-09-01

    This report describes the licensing process (both safety and environmental) that would apply if the Department of Defense (DOD) chooses to obtain licenses from the US Nuclear Regulatory Commission (NRC) for using nuclear energy for power and luminous sources. The specific nuclear energy sources being considered include: small or medium-size nuclear power reactors; radioisotopic thermoelectric generators with 90 Sr or 238 Pu; radioisotopic dynamic electric generators with 90 Sr or 238 Pu; and applications of radioisotopes for luminous sources (lights) with 3 H, 85 Kr, or 147 Pm. The steps of the licensing process are summarized in the following sections, with particular attention given to the schedule and level of effort necessary to support the process

  20. Decommissioning and decontamination of licensed reactor facilities and demonstration nuclear power plants

    International Nuclear Information System (INIS)

    Lear, G.; Erickson, P.B.

    1975-01-01

    Decommissioning of licensed reactors and demonstration nuclear power plants has been accomplished by mothballing (protective storage), entombment, and dismantling or a combination of these three. The alternative selected by a licensee seems to be primarily based on cost. A licensee must, however, show that the decommissioning process provides adequate protection of the health and safety of the public and no adverse impact on the environment. To date the NRC has approved each of the alternatives in the decommissioning of different facilities. The decommissioning of small research reactors has been accomplished primarily by dismantling. Licensed nuclear power plants, however, have been decommissioned primarily by being placed in a mothballed state in which they continue to retain a reactor license and the associated licensee responsibilities

  1. NRC regulation of DOE facilities

    International Nuclear Information System (INIS)

    Buhl, A.R.; Edgar, G.; Silverman, D.; Murley, T.

    1997-01-01

    The US Department of Energy (DOE), its contractors, and the Nuclear Regulatory Commission (NRC) are in for major changes if the DOE follows through on its intentions announced December 20, 1996. The DOE is seeking legislation to establish the NRC as the regulatory agency with jurisdiction over nuclear health, safety, and security at a wide range of DOE facilities. At this stage, it appears that as many as 200 (though not all) DOE facilities would be affected. On March 28, 1997, the NRC officially endorsed taking over the responsibility for regulatory oversight of DOE nuclear facilities as the DOE had proposed, contingent upon adequate funding, staffing resources, and a clear delineation of NRC authority. This article first contrasts the ways in which the NRC and the DOE carry out their basic regulatory functions. Next, it describes the NRC's current authority over DOE facilities and the status of the DOE's initiative to expand that authority. Then, it discusses the basic changes and impacts that can be expected in the regulation of DOE facilities. The article next describes key lessons learned from the recent transition of the GDPs from DOE oversight to NRC regulation and the major regulatory issues that arose in that transition. Finally, some general strategies are suggested for resolving issues likely to arise as the NRC assumes regulatory authority over DOE facilities

  2. The use of U.S. NRC licensing practices for VVERs

    International Nuclear Information System (INIS)

    Popp, D.M.

    2000-01-01

    The licensing process for the upgraded Temelin I and C and Fuel designs were enhanced with the introduction of U.S. Nuclear Regulatory Commission, NRC practices. Specifically, the use of the NRC Regulatory Guide 1.70, 'Standard Format and Content Guide for Safety Analyses Reports' and NRC NUREG 0800, 'Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants', were beneficial in the development and review of Temelin licensing documentation. These standards have been used for the preparation and review of Safety Analysis Reports in the United States and also in a large number of licensing applications around the world. Both Regulatory Guide 1.70 and NUREG 0800 were developed to provide a predictable and structured approach to licensing. This paper discusses this approach and identifies the benefits to designers, writers of licensing documentation and reviewers of licensing documents. (author)

  3. 76 FR 62868 - Washington State University; Notice of Issuance of Renewed Facility Operating License No. R-76

    Science.gov (United States)

    2011-10-11

    ...; Notice of Issuance of Renewed Facility Operating License No. R-76 AGENCY: Nuclear Regulatory Commission. ACTION: Notice of issuance of renewed facility operating license No. R- 76. ADDRESSES: You can access.... Nuclear Regulatory Commission (NRC, the Commission) has issued renewed Facility Operating License No. R-76...

  4. 75 FR 10526 - In the Matter of Mr. Lawrence E. Grimm; Order Prohibiting Involvement in NRC-Licensed Activities

    Science.gov (United States)

    2010-03-08

    ... NUCLEAR REGULATORY COMMISSION [IA-09-068; NRC-2010-0085] In the Matter of Mr. Lawrence E. Grimm; Order Prohibiting Involvement in NRC-Licensed Activities I Mr. Lawrence E. Grimm was employed as a... NIST-Boulder facility in accordance with the conditions specified therein. Mr. Grimm was listed on the...

  5. Standard Specification for Nuclear Facility Transient Worker Records

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1995-01-01

    1.1 This specification covers the required content and provides retention requirements for records needed for in-processing of nuclear facility transient workers. 1.2 This specification applies to records to be used for in-processing only. 1.3 This specification is not intended to cover specific skills records (such as equipment operating licenses, ASME inspection qualifications, or welding certifications). 1.4 This specification does not reduce any regulatory requirement for records retention at a licensed nuclear facility. Note 1—Nuclear facilities operated by the U.S. Department of Energy (DOE) are not licensed by the U.S. Nuclear Regulatory Commission (NRC), nor are other nuclear facilities that may come under the control of the U.S. Department of Defense (DOD) or individual agreement states. The references in this specification to licensee, the U.S. NRC Regulatory Guides, and Title 10 of the U.S. Code of Federal Regulations are to imply appropriate alternative nomenclature with respect to DOE, DOD...

  6. 77 FR 7613 - Dow Chemical Company; Dow Chemical TRIGA Research Reactor; Facility Operating License No. R-108

    Science.gov (United States)

    2012-02-13

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 50-264; NRC-2012-0026] Dow Chemical Company; Dow Chemical TRIGA Research Reactor; Facility Operating License No. R-108 AGENCY: Nuclear Regulatory Commission... Facility Operating License No. R-108 (``Application''), which currently authorizes the Dow Chemical Company...

  7. Licensed fuel facility status report: Inventory difference data, July 1, 1994--June 30, 1995. Volume 15

    International Nuclear Information System (INIS)

    Joy, D.R.

    1996-05-01

    The Nuclear Regulatory Commission (NRC) is committed to the periodic publication of licensed fuel facility inventory difference data, following agency review of the information and completion of any related NRC investigations. Information in this report includes inventory difference data for active fuel fabrication facilities possessing more than one effective kilogram of special nuclear material

  8. Recommendations to the NRC on acceptable standard format and content for the Fundamental Nuclear Material Control (FNMC) Plan required for low-enriched uranium enrichment facilities

    International Nuclear Information System (INIS)

    Moran, B.W.; Belew, W.L.; Hammond, G.A.; Brenner, L.M.

    1991-11-01

    A new section, 10 CFR 74.33, has been added to the material control and accounting (MC ampersand A) requirements of 10 CFR Part 74. This new section pertains to US Nuclear Regulatory Commission (NRC)-licensed uranium enrichment facilities that are authorized to produce and to possess more than one effective kilogram of special nuclear material (SNM) of low strategic significance. The new section is patterned after 10 CFR 74.31, which pertains to NRC licensees (other than production or utilization facilities licensed pursuant to 10 CFR Part 50 and 70 and waste disposal facilities) that are authorized to possess and use more than one effective kilogram of unencapsulated SNM of low strategic significance. Because enrichment facilities have the potential capability of producing SNM of moderate strategic significance and also strategic SNM, certain performance objectives and MC ampersand A system capabilities are required in 10 CFR 74.33 that are not contained in 10 CFR 74.31. This document recommends to the NRC information that the licensee or applicant should provide in the fundamental nuclear material control (FNMC) plan. This document also describes methods that should be acceptable for compliance with the general performance objectives. While this document is intended to cover various uranium enrichment technologies, the primary focus at this time is gas centrifuge and gaseous diffusion

  9. Emergency preparedness source term development for the Office of Nuclear Material Safety and Safeguards-Licensed Facilities

    International Nuclear Information System (INIS)

    Sutter, S.L.; Mishima, J.; Ballinger, M.Y.; Lindsey, C.G.

    1984-08-01

    In order to establish requirements for emergency preparedness plans at facilities licensed by the Office of Nuclear Materials Safety and Safeguards, the Nuclear Regulatory Commission (NRC) needs to develop source terms (the amount of material made airborne) in accidents. These source terms are used to estimate the potential public doses from the events, which, in turn, will be used to judge whether emergency preparedness plans are needed for a particular type of facility. Pacific Northwest Laboratory is providing the NRC with source terms by developing several accident scenarios for eleven types of fuel cycle and by-product operations. Several scenarios are developed for each operation, leading to the identification of the maximum release considered for emergency preparedness planning (MREPP) scenario. The MREPP scenarios postulated were of three types: fire, tornado, and criticality. Fire was significant at oxide fuel fabrication, UF 6 production, radiopharmaceutical manufacturing, radiopharmacy, sealed source manufacturing, waste warehousing, and university research and development facilities. Tornadoes were MREPP events for uranium mills and plutonium contaminated facilities, and criticalities were significant at nonoxide fuel fabrication and nuclear research and development facilities. Techniques for adjusting the MREPP release to different facilities are also described

  10. 76 FR 18261 - University of Wisconsin; Notice of Issuance of Renewed Facility License No. R-74

    Science.gov (United States)

    2011-04-01

    ... of Issuance of Renewed Facility License No. R-74 The U.S. Nuclear Regulatory Commission (NRC, the Commission) has issued renewed Facility License No. R-74, held by the University of Wisconsin (the licensee... to 1.4% [Delta]k/k. The renewed Facility License No. R-74 will expire at midnight 20 years from its...

  11. Federal/State cooperation in the licensing of a nuclear power project. A joint licensing process between the US Nuclear Regulatory Commission and the Washington State Energy Facility Site Evaluation Council

    International Nuclear Information System (INIS)

    1984-05-01

    This report summarizes and documents a joint environmental review and licensing process established between the US Nuclear Regulatory Commission (NRC) and the Washington State Energy Facility Site Evaluation Council (EFSEC) in 1980-1983 for the Skagit/Hanford Nuclear Project (S/HNP). It documents the agreements made between the agencies to prepare a joint environmental impact statement responsive to the requirements of the National Environmental Policy Act of 1969 (NEPA) and the Washington State Environmental Policy Act. These agreements also established protocol to conduct joint public evidentiary hearings on matters of mutual jurisdiction, thereby reducing the duplication of effort and increasing the efficiency of the use of resources of federal and state governments and other entities involved in the process. This report may provide guidance and rationale to licensing bodies that may wish to adopt some of the procedures discussed in the report in the event that they become involved in the licensing of a nuclear power plant project. The history of the S/HNP and of the agreement processes are discussed. Discussions are provided on implementing the joint review process. A separate section is included which presents independent evaluations of the process by the applicant, NRC, and EFSEC

  12. Occupational radiation exposures at NRC-licensed facilities

    International Nuclear Information System (INIS)

    Brooks, B.G.

    1980-01-01

    For the past ten years, the Nuclear Regulatory Commission and its predecessor, the Atomic Energy Commission, have required certain licensees to routinely submit two types of occupational radiation exposure reports: termination and annual reports. Each licensee engaged in any one of the activities: (1) operation of nuclear power reactors, (2) industrial radiography, (3) fuel fabrication, processing and reprocessing, and (4) large supply of byproduct material, is required to submit an annual statistical report and a termination report for each monitored employee who ends his employment or work assignment. A new regulation now requires all NRC licensees to submit annual reports for the years 1978 and 1979. These reports have been collected, computerized and maintained by the Commission at Oak Ridge, Tennessee. They are useful to the NRC in the evaluation of the risk of radiation exposure associated with the related activities. (author)

  13. Considerations about the licensing process of special nuclear industrial facilities

    Energy Technology Data Exchange (ETDEWEB)

    Talarico, M.A., E-mail: talaricomarco@hotmail.com [Marinha do Brasil, Rio de Janeiro, RJ (Brazil). Coordenacao do Porgrama de Submarino com Propulsao Nuclear; Melo, P.F. Frutuoso e [Coordenacao dos Programas de Pos-Graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear

    2015-07-01

    This paper brings a discussion about the challenges involved in the development of a new kind of nuclear facility in Brazil, a naval base for nuclear submarines, with attention to the licensing process and considerations about the risk-informed decision making application to the licensing process. Initially, a model of such a naval base, called in this work, special industrial facility, is proposed, with its systems and respective sets of basic requirements, in order to make it possible the accomplishment of the special industrial facility support function to the nuclear submarine. A discussion about current challenges to overcome in this project is presented: the challenges due to the new characteristics of this type of nuclear facility; existence of several interfaces between the special industrial facilities systems and nuclear submarine systems in design activities; lack of specific regulation in Brazil to allow the licensing process of special industrial facilities by the nuclear safety authority; and comments about the lack of information from reference nuclear facilities, as is the case with nuclear power reactors (for example, the German Grafenrheinfeld nuclear plant is the reference plant for the Brazilian Angra 2 nuclear plant). Finally, in view of these challenges, an analysis method of special industrial facility operational scenarios to assist the licensing process is proposed. Also, considerations about the application of risk-informed decision making to the special industrial facility activity and licensing process in Brazil are presented. (author)

  14. Considerations about the licensing process of special nuclear industrial facilities

    International Nuclear Information System (INIS)

    Talarico, M.A.; Melo, P.F. Frutuoso e

    2015-01-01

    This paper brings a discussion about the challenges involved in the development of a new kind of nuclear facility in Brazil, a naval base for nuclear submarines, with attention to the licensing process and considerations about the risk-informed decision making application to the licensing process. Initially, a model of such a naval base, called in this work, special industrial facility, is proposed, with its systems and respective sets of basic requirements, in order to make it possible the accomplishment of the special industrial facility support function to the nuclear submarine. A discussion about current challenges to overcome in this project is presented: the challenges due to the new characteristics of this type of nuclear facility; existence of several interfaces between the special industrial facilities systems and nuclear submarine systems in design activities; lack of specific regulation in Brazil to allow the licensing process of special industrial facilities by the nuclear safety authority; and comments about the lack of information from reference nuclear facilities, as is the case with nuclear power reactors (for example, the German Grafenrheinfeld nuclear plant is the reference plant for the Brazilian Angra 2 nuclear plant). Finally, in view of these challenges, an analysis method of special industrial facility operational scenarios to assist the licensing process is proposed. Also, considerations about the application of risk-informed decision making to the special industrial facility activity and licensing process in Brazil are presented. (author)

  15. What it took to get an NRC license for centralized incineration

    International Nuclear Information System (INIS)

    DiSalvo, R.; Zielenbach, W.

    1987-01-01

    In 1982, Battelle joined five other commercial generators of low level radioactive waste in conducting a study of the technical and economic feasibility and the licensability of a central facility for incinerating LLW. The project generated a license application to the USNRC and supporting documentation related to the safety and environmental impacts of the facility. After thorough review, the NRC has issued a Finding of No Significant Impact and the associated license authorization, which is the first of its kind for an incineration facility

  16. Nuclear plant license renewal

    International Nuclear Information System (INIS)

    Gazda, P.A.; Bhatt, P.C.

    1991-01-01

    During the next 10 years, nuclear plant license renewal is expected to become a significant issue. Recent Electric Power Research Institute (EPRI) studies have shown license renewal to be technically and economically feasible. Filing an application for license renewal with the Nuclear Regulatory Commission (NRC) entails verifying that the systems, structures, and components essential for safety will continue to perform their safety functions throughout the license renewal period. This paper discusses the current proposed requirements for this verification and the current industry knowledge regarding age-related degradation of structures. Elements of a license renewal program incorporating NRC requirements and industry knowledge including a schedule are presented. Degradation mechanisms for structural components, their significance to nuclear plant structures, and industry-suggested age-related degradation management options are also reviewed

  17. Licensed fuel facility status report

    International Nuclear Information System (INIS)

    1990-04-01

    NRC is committed to the periodic publication of licensed fuel facilities inventory difference data, following agency review of the information and completion of any related NRC investigations. Information in this report includes inventory difference data for active fuel fabrication facilities possessing more than one effective kilogram of high enriched uranium, low enriched uranium, plutonium, or uranium-233

  18. Licensed fuel facility status report

    International Nuclear Information System (INIS)

    Joy, D.; Brown, C.

    1993-04-01

    NRC is committed to the periodic publication of licensed fuel facilities inventory difference data, following agency review of the information and completion of any related NRC investigations. Information in this report includes inventory difference data for active fuel fabrication facilities possessing more than one effective kilogram of high enriched uranium, low enriched uranium, plutonium, or uranium-233

  19. 76 FR 65544 - Standard Format and Content of License Applications for Mixed Oxide Fuel Fabrication Facilities

    Science.gov (United States)

    2011-10-21

    ... NUCLEAR REGULATORY COMMISSION [NRC-2009-0323] Standard Format and Content of License Applications... revision to regulatory guide (RG) 3.39, ``Standard Format and Content of License Applications for Mixed Oxide Fuel Fabrication Facilities.'' This guide endorses the standard format and content for license...

  20. Decommissioning of nuclear facilities using current criteria

    International Nuclear Information System (INIS)

    Shum, E.Y.; Swift, J.J.; Malaro, J.C.

    1991-01-01

    When a licensed nuclear facility ceases operation, the US Nuclear Regulatory Commission (NRC) is responsible for ensuring that the facility and its site are decontaminated to an acceptable level so that it is safe to release that facility and site for unrestricted public use. Currently, the NRC is developing decommissioning criteria based on reducing public doses from residual contamination in soils and structures at sites released for unrestricted use to as low as is reasonably achievable (ALARA). Plans are to quantify ALARA in terms of an annual total effective dose equivalent (TEDE) to an average member of the most highly exposed population group. The NRC is working on a regulatory guidance document to provide a technical basis for translating residual contamination levels to annual dose levels. Another regulatory guide is being developed to provide guidance to the licensee on how to conduct radiological surveys to demonstration compliance with the NRC decommissioning criteria. The methods and approaches used in these regulatory guides on the decommissioning of a nuclear facility are discussed in the paper

  1. NRC licensing of uranium enrichment plants

    International Nuclear Information System (INIS)

    Moran, B.W.

    1991-01-01

    The US Nuclear Regulatory Commission (NRC) is preparing a rule making that establishes the licensing requirements for low-enriched uranium enrichment plants. Although implementation of this rule making is timed to correspond with receipt of a license application for the Louisiana Energy Services centrifuge enrichment plant, the rule making is applicable to all uranium enrichment technologies. If ownership of the US gaseous diffusion plants and/or atomic vapor laser isotope separation is transferred to a private or government corporation, these plants also would be licensable under the new rule making. The Safeguards Studies Department was tasked by the NRC to provide technical assistance in support of the rule making and guidance preparation process. The initial and primary effort of this task involved the characterization of the potential safeguards concerns associated with a commercial enrichment plant, and the licensing issues associated with these concerns. The primary safeguards considerations were identified as detection of the loss of special nuclear material, detection of unauthorized production of material of low strategic significance, and detection of production of uranium enriched to >10% 235 U. The primary safeguards concerns identified were (1) large absolute limit of error associated with the material balance closing, (2) the inability to shutdown some technologies to perform a cleanout inventory of the process system, and (3) the flexibility of some technologies to produce higher enrichments. Unauthorized production scenarios were identified for some technologies that could prevent conventional material control and accounting programs from detecting the production and removal of 5 kg 235 U as highly enriched uranium. Safeguards techniques were identified to mitigate these concerns

  2. 1996 NRC annual report. Volume 13

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    This 22nd annual report of the US Nuclear Regulatory Commission (NRC) describes accomplishments, activities, and plans made during Fiscal Year 1996 (FH 1996)--October 1, 1995, through September 30, 1996. Significant activities that occurred early in FY 1997 are also described, particularly changes in the Commission and organization of the NRC. The mission of the NRC is to ensure that civilian uses of nuclear materials in the US are carried out with adequate protection of public health and safety, the environment, and national security. These uses include the operation of nuclear power plants and fuel cycle plants and medical, industrial, and research applications. Additionally, the NRC contributes to combating the proliferation of nuclear weapons material worldwide. The NRC licenses and regulates commercial nuclear reactor operations and research reactors and other activities involving the possession and use of nuclear materials and wastes. It also protects nuclear materials used in operation and facilities from theft or sabotage. To accomplish its statutorily mandated regulatory mission, the NRC issues rules and standards, inspects facilities and operations, and issues any required enforcement actions.

  3. 1996 NRC annual report. Volume 13

    International Nuclear Information System (INIS)

    1997-01-01

    This 22nd annual report of the US Nuclear Regulatory Commission (NRC) describes accomplishments, activities, and plans made during Fiscal Year 1996 (FH 1996)--October 1, 1995, through September 30, 1996. Significant activities that occurred early in FY 1997 are also described, particularly changes in the Commission and organization of the NRC. The mission of the NRC is to ensure that civilian uses of nuclear materials in the US are carried out with adequate protection of public health and safety, the environment, and national security. These uses include the operation of nuclear power plants and fuel cycle plants and medical, industrial, and research applications. Additionally, the NRC contributes to combating the proliferation of nuclear weapons material worldwide. The NRC licenses and regulates commercial nuclear reactor operations and research reactors and other activities involving the possession and use of nuclear materials and wastes. It also protects nuclear materials used in operation and facilities from theft or sabotage. To accomplish its statutorily mandated regulatory mission, the NRC issues rules and standards, inspects facilities and operations, and issues any required enforcement actions

  4. 10 CFR Appendix N to Part 110 - Illustrative List of Lithium Isotope Separation Facilities, Plants and Equipment Under NRC's...

    Science.gov (United States)

    2010-01-01

    ..., Plants and Equipment Under NRC's Export Licensing Authority N Appendix N to Part 110 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXPORT AND IMPORT OF NUCLEAR EQUIPMENT AND MATERIAL Pt. 110, App. N Appendix N to Part 110—Illustrative List of Lithium Isotope Separation Facilities, Plants and Equipment...

  5. Licensing considerations in converting NRC-licensed non-power reactors from high-enriched to low-enriched uranium fuels

    International Nuclear Information System (INIS)

    Carter, R.E.

    1985-01-01

    During the mid-1970s, there was increasing concern with the possibility that highly enriched uranium (HEU), widely used in non-power reactors around the world, might be diverted from its intended peaceful uses. In 1982 the U.S. Nuclear Regulatory Commission (NRC) issued a policy statement that was intended to conform with the perceived international thinking, and that addressed the two relevant areas in which NRC has statutory responsibility, namely, export of special nuclear materials for non-USA non-power reactors, and the licensing of USA-based non-power reactors not owned by the Federal government. To further address the second area, NRC issued a proposed rule for public comment that would require all NRC-licensed non-power reactors using HEU to convert to low enriched uranium (LEU) fuel, unless they could demonstrate a unique purpose. Currently the NRC staff is revising the proposed rule. An underlying principle guiding the staff is that as long as a change in enrichment does not lead to safety-related reactor modifications, and does not involve an unreviewed safety question, the licensee could convert the core without prior NRC approval. At the time of writing this paper, a regulatory method of achieving this principle has not been finalized. (author)

  6. Licensing considerations in converting NRC-licensed non-power reactors from high-enriched to low-enriched uranium fuels

    Energy Technology Data Exchange (ETDEWEB)

    Carter, R E

    1985-07-01

    During the mid-1970s, there was increasing concern with the possibility that highly enriched uranium (HEU), widely used in non-power reactors around the world, might be diverted from its intended peaceful uses. In 1982 the U.S. Nuclear Regulatory Commission (NRC) issued a policy statement that was intended to conform with the perceived international thinking, and that addressed the two relevant areas in which NRC has statutory responsibility, namely, export of special nuclear materials for non-USA non-power reactors, and the licensing of USA-based non-power reactors not owned by the Federal government. To further address the second area, NRC issued a proposed rule for public comment that would require all NRC-licensed non-power reactors using HEU to convert to low enriched uranium (LEU) fuel, unless they could demonstrate a unique purpose. Currently the NRC staff is revising the proposed rule. An underlying principle guiding the staff is that as long as a change in enrichment does not lead to safety-related reactor modifications, and does not involve an unreviewed safety question, the licensee could convert the core without prior NRC approval. At the time of writing this paper, a regulatory method of achieving this principle has not been finalized. (author)

  7. Licensing an assured isolation facility for low-level radioactive waste. Volume 1: Licensing strategy and issues

    International Nuclear Information System (INIS)

    Silverman, D.J.; Bauser, M.A.; Baird, R.D.

    1998-07-01

    This report provides a detailed set of proposed criteria and guidance for the preparation of a license application for an assured isolation facility (AIF). The report is intended to provide a detailed planning basis upon which a prospective applicant may begin pre-licensing discussions with the Nuclear Regulatory Commission and initiate development of a license application. The report may also be useful to the NRC or to state regulatory agencies that may be asked to review such an application. Volume 1 of this report provides background information, and describes the licensing approach and methodology. Volume 2 identifies specific information that is recommended for inclusion in a license application

  8. Decommissioning of nuclear facilities involving operations with uranium and thorium

    International Nuclear Information System (INIS)

    Shum, E.Y.; Neuder, S.M.

    1990-01-01

    When a licensed nuclear facility ceases operation, the U.S. Nuclear Regulatory Commission (NRC) ensures that the facility and its site are decontaminated to acceptable levels so they may safely be released for unrestricted public use. Because specific environmental standards or broad federal guidelines governing release of residual radioactive contamination have not been issued, NRC has developed ad hoc cleanup criteria for decommissioning nuclear facilities that involved uranium and thorium. Cleanup criteria include decontamination of buildings, equipment, and land. We will address cleanup criteria and their rationale; procedures for decommissioning uranium/thorium facilities; radiological survey designs and procedures; radiological monitoring and measurement; and cost-effectiveness to demonstrate compliance

  9. Licensed fuel facility status report: Inventory difference data, January 1988--June 1988

    International Nuclear Information System (INIS)

    1989-03-01

    NRC is committed to the periodic publication of licensed fuel facilities' inventory difference data, after Agency review of the information and completion of any related investigations. Information in this report includes inventory difference data for active fuel fabrication facilities possessing more than (i) one effective kilogram of special nuclear material of low strategic significance, (ii) one effective kilogram of special nuclear material of moderate strategic significance, (iii) one effective kilogram of strategic special nuclear material contained in irradiated fuel reprocessing operations, or (iv) five formula kilograms of strategic special nuclear material

  10. Application of PLUTO Test Facility for U. S. NRC Licensing of a Fuel Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Dongseok; Shin, Changhwan; Lee, Kanghee; Kang, Heungseok [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    The fuel assembly of the PLUS-7 loaded in the APR-1400 follows the same schedule. Meanwhile, In July 1998, the U.S. NRC adopted a research plan to address the effects of high burnup from a Loss of Coolant Accident (LOCA). From these programs, several important technical findings for rule revision were obtained. Based on the technical findings, the U. S. NRC has amended the 10 CFR 50.46 which will be proclaimed sooner or later. Through the amendment, a LOCA analysis on the fuel assembly has to show the safety at both a fresh and End of Life (EOL) state. The U. S. NRC has already required EOL effects on seismic/LOCA performance for a fuel assembly since 1998. To obtain U.S NRC licensing of a fuel assembly, based on the amendment of 10CFR50.46, a LOCA analysis of the fuel assembly has to show safety both fresh and EOL states. The proper damping factor of the fuel assembly measured at the hydraulic test loop for a dynamic model in a LOCA and a seismic analysis code are at least required. In this paper, we have examined the damping technologies and compared the test facility of PLUTO with others in terms of performance. PLUTO has a better performance on the operating conditions than any others.

  11. Background as a residual radioactivity criterion for decommissioning: Appendix A to the Generic Environmental Impact Statement in support of rulemaking on radiological criteria for decommissioning of NRC-licensed nuclear facilities. Draft report

    International Nuclear Information System (INIS)

    Huffert, A.M.; Meck, R.A.; Miller, K.M.

    1994-08-01

    This report was originally published as an appendix to the draft U.S. Nuclear Regulatory Commission (NRC) document entitled, open-quotes Generic Environmental Impact Statement in Support of Rulemaking on Radiological Criteria for Decommissioning of NRC-Licensed Nuclear Facilities.close quotes Because of the great interest in this report by members of the public, citizen and environmental organizations, academicians, licensees, and regulators, the NRC staff is publishing this report separately, so that it can be readily available to a diverse audience. This report was created to assist both the NRC staff and interested members of the public in evaluating background radiation (background) as a decommissioning criterion, by serving as a primer on background and providing information on the existing applications of background in regulatory criteria and standards. This report also discusses some of the methods available to measure and distinguish between the very low radiation levels associated with background and man-made sources of radiation. Two approaches are considered for applying background as a decommissioning criterion; these are the use of background dose rates and background radionuclide concentrations. This report concludes that the temporal and spatial variability of background produces a wide range of doses to United States residents, which prevents the application of background dose rates as a decommissioning criterion. Instead, this report recommends that local background radionuclide concentrations serve as a benchmark for decommissioning criteria, while taking into account the concept of reducing residual radioactivity to a level as low as is reasonably achievable

  12. Environmental assessment proposed license renewal of Nuclear Metals, Inc. Concord, Massachusetts

    International Nuclear Information System (INIS)

    Miller, R.L.; Easterly, C.E.; Lombardi, C.E.; Treitler, I.E.; Winbow, R.T.; Zimmerman, G.P.

    1997-02-01

    The US Nuclear Regulatory Commission (NRC) has prepared this Environmental Assessment (EA) to evaluate environmental issues associated with the renewal of licenses issued by NRC for facilities operated by Nuclear Metals, Inc. (NMI) in Concord, Massachusetts. By renewing the licenses, NRC proposes to allow the continuation of ongoing operations involving radioactive materials at NMI's facilities. This EA focuses on the potential impacts related to air emissions at NMI during normal (incident-free) operations and accidental releases. Findings indicate that there are only two areas of potential concern. First, modeling results for sulfur dioxide (SO 2 ) emissions from the boilers during normal operations indicate that the potential exists for exceeding the short-term National Ambient Air Quality Standards (NAAQS). NMI is prepared to undertake mitigative action to prevent potential exceedances of the short-term SO 2 NAAQS, and the Massachusetts Department of Environmental Protection is prepared to resolve the issue via a permit/approval change or through a Consent Order. Second, in the unlikely event of a severe fire, predicted sulfuric acid (H 2 SO 4 ) concentrations based on conservative (upper bound) modeling exceed the Emergency Response Planning Guideline (ERPG) levels. NMI has committed to NRC to give a briefing for local emergency response officials regarding the potential for an accidental H 2 SO 4 release

  13. Economic implications of nuclear plant license renewal in the U.S

    International Nuclear Information System (INIS)

    Smith, L.J.

    2001-01-01

    The NRC and the nuclear industry struggled for many years with the development of a viable license renewal rule. Now that a workable rule appears to have been developed, and the first license renewal applicants have received renewed licenses, the floodgates have opened and a large number of nuclear utilities have announced intentions to seek renewed NRC operating licenses. In this time when profound changes are being experienced in the electric generation markets in the United States, nuclear plant license renewal can have several economic effects that should be considered by utilities prior to the pursuit of an NRC license renewal. This paper examines some of the factors that may be affected by the prospect of an additional 20-year operating life of a nuclear plant. (author)

  14. Nuclear regulation. License renewal questions for nuclear plants need to be resolved

    International Nuclear Information System (INIS)

    Fultz, Keith O.; Kruslicky, Mary Ann; McDowell, William D. Jr.; Coleman, Robert L.

    1989-04-01

    A December 1986 pipe rupture at Virginia Power's Surry unit 2 nuclear power plant injured eight workers; four later died. As a result of this accident, Representative Edward J. Markey requested GAO to examine the Surry accident and assess the problems confronting aging nuclear plants. In March 1988 we reported our findings concerning the accident and a July 1987 incident at the Trojan nuclear plant in Oregon. This report addresses problems confronting aging nuclear plants by examining the Nuclear Regulatory Commission's (NRC) program to develop a license renewal policy and accompanying regulations, and the initiatives underway by the Department of Energy (DOE) and the electric utility industry to extend the operating lives of these plants. Nuclear power has become second only to coal as the largest producer of electricity in the United States. The 110 nuclear plants currently in service are operated by 54 utilities, provide about 20 percent of the nation's electricity, and represent a capital investment of over $200 billion. The Atomic Energy Act authorizes NRC to issue nuclear plant operating licenses for up to 40 years and provides for license extensions beyond the initial operating period. The act does not, however, stipulate the criteria for evaluating a utility request to operate a nuclear plant longer than 40 years. The oldest operating license currently in effect will expire in the year 2000. According to NRC, about one-half of the existing operating licenses will terminate by the year 2015, and most licenses will expire by about 2030. Many utilities will have to decide in the early 1990s whether to continue operating older nuclear plants or to construct new generating capacity. A clear understanding of the terms and conditions governing the license renewal process will be a key element in deciding how to meet future electricity demand. Although NRC has developed 3 possible license renewal policy options and identified 15 areas of regulatory uncertainty that

  15. Overview of the NRC nuclear waste management program

    International Nuclear Information System (INIS)

    Malaro, J.C.

    1976-01-01

    The NRC has firmly established waste management as a high-priority effort and has made the commitment to act rapidly and methodically to establish a sound regulatory base for licensing waste management activities. We believe the priorities for NRC work in waste management are consistent with the needs of the overall national waste management program. Present licensing procedures and criteria are adequate for the short term, and priority attention is being given to the longer term, when the quantities of waste to be managed will be greater and licensing demands will increase. Recognizing that its decision will affect industry, other governmental jurisdictions, private interest groups, and the public at large, NRC has encouraged and will continue to encourage their participation in planning our program. We also recognize that the problems of nuclear waste management are international in scope. Many waste management problems (e.g., potential for contamination of oceans and atmosphere, need for isolation of some wastes for longer periods than governments and political boundaries have remained stable in the past), require a set of internationally acceptable and accepted solutions. The wastes from the U.S. nuclear industry will account for only about one third of the nuclear waste generated in the world. Therefore, we propose to cooperate and where appropriate take the lead in establishing acceptable worldwide policies, standards and procedures for handling nuclear wastes

  16. Generic environmental impact statement in support of rulemaking on radiological criteria for license termination of NRC-licensed nuclear facilities. Final report, main report

    International Nuclear Information System (INIS)

    1997-07-01

    The action being considered in this Final Generic Environmental Impact Statement (GEIS) is an amendment to the Nuclear Regulatory Commission's (NRC) regulations in 10 CFR Part 20 to include radiological criteria for decommissioning of lands and structures at nuclear facilities. Under the National Environmental Policy Act (NEPA), all Federal agencies must consider the effect of their actions on the environment. To fulfill NRC's responsibilities under NEPA, the Commission is preparing this GEIS which analyzes alternative courses of action and the costs and impacts associated with those alternatives. In preparing the final GEIS, the following approach was taken: (1) a listing was developed of regulatory alternatives for establishing radiological criteria for decommissioning; (2) for each alternative, a detailed analysis and comparison of incremental impacts, both radiological and nonradiological, to workers, members of the public, and the environment, and costs, were performed; and (3) based on the analysis of impacts and costs, conclusions on radiological criteria for decommissioning were provided. Contained in the GEIS are results and conclusions related to achieving, as an objective of decommissioning ALARA, reduction to preexisting background, the radiological criterion for unrestricted use, decommissioning ALARA analysis for soils and structures containing contamination, restricted use and alternative analysis for special site specific situations, and groundwater cleanup. In its analyses, the final GEIS includes consideration of comments made on the draft GEIS during the public comment period

  17. Introduction to Technology Export License of Nuclear Facility

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Hana; Lee, Chansuh; Shin, Donghoon [Korea Institute of Nuclear Nonproliferation and Control, Daejeon (Korea, Republic of)

    2014-05-15

    In this regime, the Nuclear Safety and Security Commission (NSSC) has authority on final decision making. And the Korea Institute of Nuclear nonproliferation and Control (KINAC) has missions to review the classification and export licensing technically. In principle, classification and export licensing are applied and reviewed individually. However, the number of application for classification and licensing has increased geometrically in the last three years. This is largely a due to the contract that the Republic of Korea (ROK) has finalized to build the UAE Barakah Nuclear Power Plant (BNPP) and Jordan Research and Training Reactor (JRTR). This circumstance brought an administrative burden for the government and related institutes as well as stakeholders. This article introduces the law related to the 'Technology Export License of Nuclear Facility' which was developed and legislated to improve the efficiency and effectiveness of commodities classification and export licensing. This system could significantly reduce the licensing burden for transferring the technologies. However, the classification and license on this system are still requested when transferring the goods. Therefore, KINAC will continue to figure out the needs for the stakeholders and keep searching for solutions to problems inherent in the industry.

  18. Introduction to Technology Export License of Nuclear Facility

    International Nuclear Information System (INIS)

    Seo, Hana; Lee, Chansuh; Shin, Donghoon

    2014-01-01

    In this regime, the Nuclear Safety and Security Commission (NSSC) has authority on final decision making. And the Korea Institute of Nuclear nonproliferation and Control (KINAC) has missions to review the classification and export licensing technically. In principle, classification and export licensing are applied and reviewed individually. However, the number of application for classification and licensing has increased geometrically in the last three years. This is largely a due to the contract that the Republic of Korea (ROK) has finalized to build the UAE Barakah Nuclear Power Plant (BNPP) and Jordan Research and Training Reactor (JRTR). This circumstance brought an administrative burden for the government and related institutes as well as stakeholders. This article introduces the law related to the 'Technology Export License of Nuclear Facility' which was developed and legislated to improve the efficiency and effectiveness of commodities classification and export licensing. This system could significantly reduce the licensing burden for transferring the technologies. However, the classification and license on this system are still requested when transferring the goods. Therefore, KINAC will continue to figure out the needs for the stakeholders and keep searching for solutions to problems inherent in the industry

  19. Nuclear facilities licensing

    International Nuclear Information System (INIS)

    Carvalho, A.J.M. de.

    1978-01-01

    The need for the adoption of a legal and normative system, defining objectives, pescriptions and the process of nuclear licensing and building of nuclear power plants in Brazil is enphasized. General rules for the development of this system are presented. The Brazilian rules on the matter are discussed. A general view of the German legal system for nuclear power plant licensing and the IAEA recommendations on the subject are finally presented. (A.L.S.L.) [pt

  20. Scenarios and analytical methods for UF6 releases at NRC-licensed fuel cycle facilities

    International Nuclear Information System (INIS)

    Siman-Tov, M.; Dykstra, J.; Holt, D.D.; Huxtable, W.P.; Just, R.A.; Williams, W.R.

    1984-06-01

    This report identifies and discusses potential scenarios for the accidental release of UF 6 at NRC-licensed UF 6 production and fuel fabrication facilities based on a literature review, site visits, and DOE enrichment plant experience. Analytical tools needed for evaluating source terms for such releases are discussed, and the applicability of existing methods is reviewed. Accident scenarios are discussed under the broad headings of cylinder failures, UF 6 process system failures, nuclear criticality events, and operator errors and are categorized by location, release source, phase of UF 6 prior to release, release flow characteristics, release causes, initiating events, and UF 6 inventory at risk. At least three types of releases are identified for further examination: (1) a release from a liquid-filled cylinder outdoors, (2) a release from a pigtail or cylinder in a steam chest, (3) an indoor release from either (a) a pigtail or liquid-filled cylinder or (b) other indoor source depending on facility design and operating procedures. Indoor release phenomena may be analyzed to determine input terms for a ventilation model by using a time-dependent homogeneous compartment model or a more complex hydrodynamic model if time-dependent, spatial variations in concentrations, temperature, and pressure are important. Analytical tools for modeling directed jets and explosive releases are discussed as well as some of the complex phenomena to be considered in analyzing UF 6 releases both indoors and outdoors

  1. Web-Based Training on Reviewing Dose Modeling Aspects of NRC Decommissioning and License Termination Plans

    International Nuclear Information System (INIS)

    LePoire, D.; Cheng, J.J.; Kamboj, S.; Arnish, J.; Richmond, P.; Chen, S.Y.; Barr, C.; McKenney, C.

    2008-01-01

    NRC licensees at decommissioning nuclear facilities submit License Termination Plans (LTP) or Decommissioning Plans (DP) to NRC for review and approval. To facilitate a uniform and consistent review of these plans, the NRC developed training for its staff. A live classroom course was first developed in 2005, which targeted specific aspects of the LTP and DP review process related to dose-based compliance demonstrations or modeling. A web-based training (WBT) course was developed in 2006 and 2007 to replace the classroom-based course. The advantage of the WBT is that it will allow for staff training or refreshers at any time, while the advantage of a classroom-based course is that it provides a forum for lively discussion and the sharing of experience of classroom participants. The objective of this course is to train NRC headquarters and regional office staff on how to review sections of a licensee's DP or LTP that pertain to dose modeling. The DP generally refers to the decommissioning of non-reactor facilities, while the LTP refers specifically to the decommissioning of reactors. This review is part of the NRC's licensing process, in which the NRC determines if a licensee has provided a suitable technical basis to support derived concentration guideline levels (DCGLs)1 or dose modeling analyses performed to demonstrate compliance with dose-based license termination rule criteria. This type of training is one component of an organizational management system. These systems 'use a range of practices to identify, create, represent, and distribute knowledge for reuse, awareness and learning'. This is especially important in an organization undergoing rapid change or staff turnover to retain organizational information and processes. NRC is committed to maintaining a dynamic program of training, development, and knowledge transfer to ensure that the NRC acquires and maintains the competencies needed to accomplish its mission. This paper discusses one specific project

  2. 76 FR 73727 - Biweekly Notice; Applications and Amendments to Facility Operating Licenses Involving No...

    Science.gov (United States)

    2011-11-29

    ..., Donald C. Cook Nuclear Plant, Unit 2 (DCCNP-2), Berrien County, Michigan; Date of amendment request... Counsel, Indiana Michigan Power Company, One Cook Place, Bridgman, MI 49106. NRC Acting Branch Chief: Thomas J. Wengert. Notice of Issuance of Amendments to Facility Operating Licenses During the period...

  3. NRC nuclear waste geochemistry 1983

    International Nuclear Information System (INIS)

    Alexander, D.H.; Birchard, G.F.

    1984-05-01

    The purpose of the meeting was to present results from NRC-sponsored research and to identify regulatory research issues which need to be addressed prior to licensing a high-level waste repository. Important summaries of technical issues and recommendations are included with each paper. The issue reflect areas of technical uncertainty addressed by the NRC Research program in geochemistry. The objectives of the NRC Research Program in geochemistry are to provide a technical basis for waste management rulemaking, to provide the NRC Waste Management Licensing Office with information that can be used to support sound licensing decisions, and to identify investigations that need to be conducted by DOE to support a license application. Individual papers were processed for inclusion in the Energy Data Base

  4. NRC [Nuclear Regulatory Commission] TLD [thermoluminescent dosimeter] direct radiation monitoring network

    International Nuclear Information System (INIS)

    Struckmeyer, R.; McNamara, N.

    1989-09-01

    This report provides the status and results of the NRC Thermoluminescent Dosimeter (TLD) Direct Radiation Monitoring Network. It presents the radiation levels measured in the vicinity of NRC licensed facility sites throughout the country for the second quarter of 1989

  5. Public perspectives on proposed license renewal regulations for nuclear power plants

    International Nuclear Information System (INIS)

    Ligon, D.; Hughes, A.; Seth, S.

    1991-01-01

    On 17 July 1990, the U.S Nuclear Regulatory Commission (NRC) issued for public comment its proposed rule for renewing the operating licenses of nuclear power plants (55 FR 29043). This solicitation marked the fourth time that NRC has Invited public comments on its efforts to develop regulatory requirements for re licensing nuclear power plants. Previously, NRC solicited public comments on establishing a policy statement on plant life extension, and on the issues and options for license renewal discussed in NUREG-1317. On 13-14 November 1989, NRC held a public workshop where the NRC staff discussed a conceptual approach to the rule and solicited written comments on the regulatory philosophy, conceptual rule, and on certain questions. NRC is taking into account all comments received in its development of the final rule which is scheduled for issuance in the summer of 1991

  6. 75 FR 76055 - Nebraska Public Power District Cooper Nuclear Station; Notice of Issuance of Renewed Facility...

    Science.gov (United States)

    2010-12-07

    ... NUCLEAR REGULATORY COMMISSION Docket No. 50-298; NRC-2008-0617] Nebraska Public Power District Cooper Nuclear Station; Notice of Issuance of Renewed Facility Operating License No. DPR-46 for an... Power District (NPPD), the operator of the Cooper Nuclear Station (CNS). Renewed facility operating...

  7. Nuclear power plant simulation facility evaluation methodology

    International Nuclear Information System (INIS)

    Haas, P.M.; Carter, R.J.; Laughery, K.R. Jr.

    1985-01-01

    A methodology for evaluation of nuclear power plant simulation facilities with regard to their acceptability for use in the US Nuclear Regulatory Commission (NRC) operator licensing exam is described. The evaluation is based primarily on simulator fidelity, but incorporates some aspects of direct operator/trainee performance measurement. The panel presentation and paper discuss data requirements, data collection, data analysis and criteria for conclusions regarding the fidelity evaluation, and summarize the proposed use of direct performance measurment. While field testing and refinement of the methodology are recommended, this initial effort provides a firm basis for NRC to fully develop the necessary methodology

  8. Environmental assessment proposed license renewal of Nuclear Metals, Inc. Concord, Massachusetts

    Energy Technology Data Exchange (ETDEWEB)

    Miller, R.L.; Easterly, C.E.; Lombardi, C.E.; Treitler, I.E.; Winbow, R.T.; Zimmerman, G.P. [Oak Ridge National Lab., TN (United States)

    1997-02-01

    The US Nuclear Regulatory Commission (NRC) has prepared this Environmental Assessment (EA) to evaluate environmental issues associated with the renewal of licenses issued by NRC for facilities operated by Nuclear Metals, Inc. (NMI) in Concord, Massachusetts. By renewing the licenses, NRC proposes to allow the continuation of ongoing operations involving radioactive materials at NMI`s facilities. This EA focuses on the potential impacts related to air emissions at NMI during normal (incident-free) operations and accidental releases. Findings indicate that there are only two areas of potential concern. First, modeling results for sulfur dioxide (SO{sub 2}) emissions from the boilers during normal operations indicate that the potential exists for exceeding the short-term National Ambient Air Quality Standards (NAAQS). NMI is prepared to undertake mitigative action to prevent potential exceedances of the short-term SO{sub 2} NAAQS, and the Massachusetts Department of Environmental Protection is prepared to resolve the issue via a permit/approval change or through a Consent Order. Second, in the unlikely event of a severe fire, predicted sulfuric acid (H{sub 2}SO{sub 4}) concentrations based on conservative (upper bound) modeling exceed the Emergency Response Planning Guideline (ERPG) levels. NMI has committed to NRC to give a briefing for local emergency response officials regarding the potential for an accidental H{sub 2}SO{sub 4} release.

  9. 75 FR 62153 - Notice of the Nuclear Regulatory Commission Issuance of Materials License SUA-1596 for Uranium...

    Science.gov (United States)

    2010-10-07

    ... Commission Issuance of Materials License SUA-1596 for Uranium One Americas, Inc. Moore Ranch In Situ Recovery.... SUPPLEMENTARY INFORMATION: The Nuclear Regulatory Commission (NRC) has issued a license to Uranium One Americas, Inc. (Uranium One) for its Moore Ranch uranium in situ recovery (ISR) facility in Campbell County...

  10. Management of the licensing of users of radioactive materials should be improved

    International Nuclear Information System (INIS)

    1976-01-01

    Radioactive material licenses are required for manufacturing nuclear fuel for reactors and for industrial, commercial, medical, and educational uses of radioactive materials. This type of license is not for constructing or operating nuclear power reactors and facilities for processing used nuclear fuels. This report discusses the need for better management improvements in the NRC's program for licensing the users. As of December 31, 1974, there were 8,253 active NRC-issued material licenses held by 6,310 licensees. The study reviewed NRC's policies, procedures, and practices, and examined recent evaluations of state programs to identify problems encountered by the states

  11. NRC licensing criteria for portable radwaste systems

    International Nuclear Information System (INIS)

    Hayes, J.J. Jr.

    1983-01-01

    The shortcomings of various components of the liquid and solid radwaste systems at nuclear power reactors has resulted in the contracting of the functions performed by these systems to various contractors who utilize portable equipment. In addition, some streams, for which treatment was not originally anticipated, have been processed by portable equipment. The NRC criteria applicable to portable liquid and solid radwaste systems is presented along with discussion on what is required to provide an adequate 10 CFR Part 50.59 review for those situations where changes are made to an existing system. The criteria the NRC is considering for facilities which may intend to utilize portable incinerators is also presented

  12. Generic environmental impact statement in support of rulemaking on radiological criteria for license termination of NRC-licensed nuclear facilities. Final report, appendices A and B

    International Nuclear Information System (INIS)

    1997-07-01

    The action being considered in this Final Generic Environmental Impact Statement (GEIS) is an amendment to the Nuclear Regulatory Commission''s (NRC) regulations in 10 CFR Part 20 to include radiological criteria for decommissioning of lands and structures at nuclear facilities. Under the National Environmental Policy Act (NEPA), all Federal agencies must consider the effect of their actions on the environment. To fulfill NRC''s responsibilities under NEPA, the Commission is preparing this GEIS which analyzes alternative courses of action and the costs and impacts associated with those alternatives. In preparing the final GEIS, the following approach was taken: (1) a listing was developed of regulatory alternatives for establishing radiological criteria for decommissioning; (2) for each alternative, a detailed analysis and comparison of incremental impacts, both radiological and nonradiological, to workers, members of the public, and the environment, and costs were performed; and (3) based on the analysis of impacts and costs, conclusions on radiological criteria for decommissioning were provided. Contained in the GEIS are results and conclusions related to achieving, as an objective of decommissioning ALARA, reduction to preexisting background, the radiological criterion for unrestricted use, decommissioning ALARA analysis for soils and structures containing contamination, restricted use and alternative analysis for special site-specific situations and groundwater cleanup. In its analyses, the final GEIS includes consideration of comments made on the draft GEIS during the public comment period

  13. 77 FR 30332 - Mr. James Chaisson; Order Prohibiting Involvement in NRC-Licensed Activities

    Science.gov (United States)

    2012-05-22

    ... industrial radiographic operations in accordance with conditions specified therein. The license was... NRC conducted a safety and security inspection of the use of byproduct material for industrial... requirements. Mr. Chaisson chose to store a radiographic exposure device at a leased facility on Elk Street in...

  14. Decommissioning of the nuclear licensed facilities at the Fontenay aux Roses CEA Center; cleanup of nuclear licensed facility 57 and monitoring of operations and operating feedback

    International Nuclear Information System (INIS)

    Estivie, D.; Bohar, M.P.; Jeanjacques, M.; Binet, C.; Bremond, M.P.; Poyau, C.; Mandard, L.; Boissonneau, J.F.; Fouquereau, A.; Pichereau, E.

    2008-01-01

    This is a summary of the program for the decommissioning of all the CEA Licensed Nuclear Facilities in Fontenay aux Roses. The particularity of this center is now it is located in a built-up area. It is presented like example the operations to clean up the equipment of the Nuclear Licensed Facility 57 (NLF 57). Due to the diversity of the research and development work carried out on the reprocessing of spent fuel in it, this installation is emblematic of many of the technical and organizational issues liable to be encountered in the final closure of nuclear facilities. It was developed a method applied to establish the multi-annual budget, monitor the progress of operations and integrate, as work continues, the operating feedback. (author)

  15. Licensed reactor nuclear safety criteria applicable to DOE reactors

    International Nuclear Information System (INIS)

    1993-11-01

    This document is a compilation and source list of nuclear safety criteria that the Nuclear Regulatory Commission (NRC) applies to licensed reactors; it can be used by DOE and DOE contractors to identify NRC criteria to be evaluated for application to the DOE reactors under their cognizance. The criteria listed are those that are applied to the areas of nuclear safety addressed in the safety analysis report of a licensed reactor. They are derived from federal regulations, USNRC regulatory guides, Standard Review Plan (SRP) branch technical positions and appendices, and industry codes and standards

  16. Integrating industry nuclear codes and standards into United States Department of Energy facilities

    Energy Technology Data Exchange (ETDEWEB)

    Jacox, J.

    1995-02-01

    Recently the United States Department of Energy (DOE) has mandated facilities under their jurisdiction use various industry Codes and Standards developed for civilian power reactors that operate under U.S. Nuclear Regulatory Commission License. While this is a major step forward in putting all our nuclear facilities under common technical standards there are always problems associated with implementing such advances. This paper will discuss some of the advantages and problems experienced to date. These include the universal challenge of educating new users of any technical documents, repeating errors made by the NRC licensed facilities over the years and some unique problems specific to DOE facilities.

  17. Licensing of nuclear facilities according to the Bulgarian Act on the Safe Use of Nuclear Energy

    International Nuclear Information System (INIS)

    Stoyanova-Todorova, P.

    2004-01-01

    The new Bulgarian Act on the Safe Use of Nuclear Energy /Nuclear Act/ has replaced the former Act on the Use of Nuclear Energy for Peaceful Purposes. The new Nuclear Act covers the activities involving nuclear energy and sources of ionising radiation mainly by establishing a consistent licensing regime. About 13 regulations specifying the provisions of the Nuclear Act have been recently adopted by the Council of Ministers, the most important one being the Regulation on the Procedure for Issue of Licenses and Permits for the Safe Use of Nuclear Energy. The Chairman of the Nuclear Regulatory Agency (NRA) is authorised by the law to consider any application for issue of a license or a permit under the Bulgarian Nuclear Act. The procedure starts with an application, filed with the NRA, and continues about nine months. The final decision could be for issuing of the license or permit or a refusal for issuing the claimed document. The denial must be grounded and is subject to appeal. The Nuclear Act prescribes the conditions for issuing of two types of licensing documents (authorisations): licenses and permits. From a legal point of view the two types of licensing documents have one and the same nature - they are individual administrative acts according to the Bulgarian law. That is why there is no difference between them in terms of the issuing procedure. The difference between licenses and permits could be explained as follows: while a license is issued for reiterated activities, a permit is issued for non-reoccurring activities, this division being a specific feature of the Bulgarian Nuclear Act. In the field of nuclear facilities usage only one type of license is provided for by the Nuclear Act - a license for operation of a nuclear facility unit. For the rest of the activities issuing of permits is envisaged, those permits being in compliance with the main stages of the authorisation process formulated by the IAEA, following the step-by-step approach - siting, design

  18. 76 FR 45301 - PSEG Nuclear LLC, Hope Creek Generating Station; Notice of Issuance of Renewed Facility Operating...

    Science.gov (United States)

    2011-07-28

    ... NUCLEAR REGULATORY COMMISSION Docket No. 50-354 [NRC-2009-0391] PSEG Nuclear LLC, Hope Creek... operator of the Hope Creek Generating Station (HCGS). Renewed Facility Operating License No. NPF- 57... Renewal of Nuclear Power Plants, Supplement 45, Regarding Hope Creek Generating Station and Salem Nuclear...

  19. Staged licensing: An essential element of the NRC's revised regulations

    International Nuclear Information System (INIS)

    Echols, F.S.

    1997-01-01

    Over the past several years, Congress has directed the Department of Energy (DOE), the Nuclear Regulatory Commission (NRC), and the Environmental Protection Agency (EPA) to abandon their efforts to assess an array of potential candidate geologic repository sites for the permanent disposal of spent nuclear reactor fuel and high level radioactive waste, to develop generally applicable requirements for licensing geologic repositories, and to develop generally applicable radiation protection standards for geologic repositories, and instead to focus their efforts to determine whether a single site located at Yucca Mountain, Nevada can be developed as a geologic repository which providing reasonable assurance that public health and safety and the environment will be adequately protected. If the Yucca Mountain site is found to be suitable for development as a geologic repository, then at each stage of development DOE will have to provide the NRC with progressively more detailed information regarding repository design and long-term performance. NRC regulations reflect the fact that it will not be until the repository has been operated for a number of years that the NRC will be able to make a final determination as to long-term repository performance. Nevertheless, the NRC will be able to allow DOE to construct and operate a repository, provided that the NRC believes that the documented results of existing studies, together with the anticipated results from continuing and future studies, will enable the NRC to make a final determination that it has reasonable assurance that the repository system's long-term performance will not cause undue risk to the public. Thus, in its efforts to revise its current regulations to assure that the technical criteria are specifically applicable to the Yucca Mountain site, the NRC should also make sure that it preserves and clarifies the concept of staged repository development

  20. Licensed reactor nuclear safety criteria applicable to DOE reactors

    International Nuclear Information System (INIS)

    1991-04-01

    The Department of Energy (DOE) Order DOE 5480.6, Safety of Department of Energy-Owned Nuclear Reactors, establishes reactor safety requirements to assure that reactors are sited, designed, constructed, modified, operated, maintained, and decommissioned in a manner that adequately protects health and safety and is in accordance with uniform standards, guides, and codes which are consistent with those applied to comparable licensed reactors. This document identifies nuclear safety criteria applied to NRC [Nuclear Regulatory Commission] licensed reactors. The titles of the chapters and sections of USNRC Regulatory Guide 1.70, Standard Format and Content of Safety Analysis Reports for Nuclear Power Plants, Rev. 3, are used as the format for compiling the NRC criteria applied to the various areas of nuclear safety addressed in a safety analysis report for a nuclear reactor. In each section the criteria are compiled in four groups: (1) Code of Federal Regulations, (2) US NRC Regulatory Guides, SRP Branch Technical Positions and Appendices, (3) Codes and Standards, and (4) Supplemental Information. The degree of application of these criteria to a DOE-owned reactor, consistent with their application to comparable licensed reactors, must be determined by the DOE and DOE contractor

  1. 76 FR 81994 - UniStar Nuclear Energy; Combined License Application for Calvert Cliffs Nuclear Power Plant, Unit...

    Science.gov (United States)

    2011-12-29

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 52-016; NRC-2008-0250] UniStar Nuclear Energy; Combined License Application for Calvert Cliffs Nuclear Power Plant, Unit 3; Exemption 1.0 Background: UniStar Nuclear Energy (UNE) submitted to the U.S. Nuclear Regulatory Commission (NRC or the Commission ) a...

  2. Safety Second: the NRC and America's nuclear power plants

    International Nuclear Information System (INIS)

    Adato, M.; MacKenzie, J.; Pollard, R.; Weiss, E.

    1987-01-01

    In 1975, Congress created the Nuclear Regulatory Commission (NRC). Its primary responsibility was to be the regulation of the nuclear power industry in order to maintain public health and safety. On March 28, 1979, in the worst commercial nuclear accident in US history, the plant at Three Mile Island began to leak radioactive material. How was Three Mile Island possible? Where was the NRC? This analysis by the Union of Concerned Scientists (UCS) of the NRC's first decade, points specifically to the factors that contributed to the accident at Three Mile Island. The NRC, created as a watchdog of the nuclear power industry, suffers from problems of mindset, says the UCS. The commission's problems are political, not technical; it repeatedly ranks special interests above the interest of public safety. This book critiques the NRC's performance in four specific areas. It charges that the agency has avoided tackling the most pervasive safety issues; has limited public participation in decision making and power plant licensing; has failed to enforce safety standards or conduct adequate regulation investigations; and, finally, has maintained a fraternal relationship with the industry it was created to regulate, serving as its advocate rather than it adversary. The final chapter offers recommendations for agency improvement that must be met if the NRC is to fulfill its responsibility for safety first

  3. 77 FR 34093 - License Renewal for Calvert Cliffs Nuclear Power Plant, LLC's

    Science.gov (United States)

    2012-06-08

    ... Nuclear Power Plant, LLC's AGENCY: Nuclear Regulatory Commission. ACTION: Environmental assessment and... Spent Fuel Storage Installation (ISFSI) at the Calvert Cliffs Nuclear Power Plant site near Lusby... Cliffs Nuclear Power Plant, LLC (CCNPP) submitted an application to the NRC to renew NRC License SNM-2505...

  4. Personality Factors and Nuclear Power Plant Operators: Initial License Success

    Science.gov (United States)

    DeVita-Cochrane, Cynthia

    Commercial nuclear power utilities are under pressure to effectively recruit and retain licensed reactor operators in light of poor candidate training completion rates and recent candidate failures on the Nuclear Regulatory Commission (NRC) license exam. One candidate failure can cost a utility over $400,000, making the successful licensing of new operators a critical path to operational excellence. This study was designed to discover if the NEO-PI-3, a 5-factor measure of personality, could improve selection in nuclear utilities by identifying personality factors that predict license candidate success. Two large U.S. commercial nuclear power corporations provided potential participant contact information and candidate results on the 2014 NRC exam from their nuclear power units nation-wide. License candidates who participated (n = 75) completed the NEO-PI-3 personality test and results were compared to 3 outcomes on the NRC exam: written exam, simulated operating exam, and overall exam result. Significant correlations were found between several personality factors and both written and operating exam outcomes on the NRC exam. Further, a regression analysis indicated that personality factors, particularly Conscientiousness, predicted simulated operating exam scores. The results of this study may be used to support the use of the NEO-PI-3 to improve operator selection as an addition to the current selection protocol. Positive social change implications from this study include support for the use of a personality measure by utilities to improve their return-on-investment in candidates and by individual candidates to avoid career failures. The results of this study may also positively impact the public by supporting the safe and reliable operation of commercial nuclear power utilities in the United States.

  5. 78 FR 5840 - Notice of License Termination for University of Illinois Advanced TRIGA Reactor, License No. R-115

    Science.gov (United States)

    2013-01-28

    ... University of Illinois Advanced TRIGA Reactor, License No. R-115 The U.S. Nuclear Regulatory Commission (NRC) is noticing the termination of Facility Operating License No. R-115, for the University of Illinois... Operating License No. R-115 is terminated. The above referenced documents may be examined, and/or copied for...

  6. Nuclear regulation. NRC's security clearance program can be strengthened

    International Nuclear Information System (INIS)

    Fultz, Keith O.; Kruslicky, Mary Ann; Bagnulo, John E.

    1988-12-01

    Because of the national security implications of its programs, the Nuclear Regulatory Commission (NRC) investigates the background of its employees and consultants as well as others to ensure that they are reliable and trustworthy. If the investigation indicates that an employee will not endanger national security, NRC grants a security clearance that allows access to classified information, material, and facilities. NRC also requires periodic checks for some clearance holders to ensure their continued clearance eligibility. The Chairman, Subcommittee on Environment, Energy, and Natural Resources, House Committee on Government Operations, asked GAO to review NRC's personnel security clearance program and assess the procedures that NRC uses to ensure that those who operate nuclear power plants do not pose a threat to the public. The Atomic Energy Act of 1954 requires NRC to conduct background investigations of its employees and consultants as well as others who have access to classified information, material, or facilities. To do this, NRC established a personnel security clearance program. Under NRC policies, a security clearance is granted after the Office of Personnel Management (OPM) or the Federal Bureau of Investigation checks the background of those applying for an NRC clearance. NRC also periodically reassesses the integrity of those holding the highest level clearance. NRC employees, consultants, contractors, and licensees as well as other federal employees hold approximately 10,600 NRC clearances. NRC does not grant clearances to commercial nuclear utility employees unless they require access to classified information or special nuclear material. However, the utilities have voluntarily established screening programs to ensure that their employees do not pose a threat to nuclear plants. NRC faces a dilemma when it hires new employees. Although its policy calls for new hires to be cleared before they start work, the security clearance process takes so long

  7. Future of nuclear licensing

    International Nuclear Information System (INIS)

    Denton, H.R.

    1984-01-01

    The following topics are outlined: Comparison of US and best foreign experience in nuclear power plant construction and operation; Status of licensing and construction; Observed attributes; Reduced construction time; Fewer reactor trips; Higher capacity factor; Diesel generator reliability; Steam generator tube leakage; and US regulatory initiatives: NRC efforts and industry efforts

  8. Environmental licensing of nuclear facilities: compatibility of technical competencies

    International Nuclear Information System (INIS)

    Shu, J.; Paiva, R.L.C. de; Mezrahi, A.; Cardoso, E.M.; Aquino, W.P.; Deppe, A.L.; Menezes, R.M.; Prado, V.; Franco, N.M.F.L.; Nouailhetas, Y.; Xavier, A.M.

    1996-01-01

    The Brazilian Nuclear Energy Commission (CNEN) has the technical competency for diagnosing environmental radiological impacts, as well as evaluating the safety and requiring adequate control of the facilities which, due to their activities, represent a potential risk of radiological contamination for the environment. The institution is responsible for emission of radioprotection guidelines, controls and surveys in nuclear safety according to the country's regulations and international recommendations. The methodology to assure the limitation of radiation exposure is consequence from shared control over the nuclear activities, in special the nuclear facilities. According to the Federal Constitution of 1988, the nuclear activities must be under exclusive control of the Union in special related to the nuclear policies, economical, laboral and nuclear safety aspects, while the health and environmental controls of these activities are shared by the Federation, Union, States, Federal District and Counties. The controls related to specific aspects have to be harmonized in such a way to be optimized and effective. In this paper the results of compatibilization of nuclear legislation and environmental legislation are presented aiming to optimize the licensing of nuclear facilities. (author)

  9. The United States nuclear regulatory commission license renewal process

    International Nuclear Information System (INIS)

    Holian, B.E.

    2009-01-01

    The United States (U.S.) Nuclear Regulatory Commission (NRC) license renewal process establishes the technical and administrative requirements for the renewal of operating power plant licenses. Reactor ope-rating licenses were originally issued for 40 years and are allowed to be renewed. The review process for license renewal applications (L.R.A.) provides continued assurance that the level of safety provided by an applicant's current licensing basis is maintained for the period of extended operation. The license renewal review focuses on passive, long-lived structures and components of the plant that are subject to the effects of aging. The applicant must demonstrate that programs are in place to manage those aging effects. The review also verifies that analyses based on the current operating term have been evaluated and shown to be valid for the period of extended operation. The NRC has renewed the licenses for 52 reactors at 30 plant sites. Each applicant requested, and was granted, an extension of 20 years. Applications to renew the licenses of 20 additional reactors at 13 plant sites are under review. As license renewal is voluntary, the decision to seek license renewal and the timing of the application is made by the licensee. However, the NRC expects that, over time, essentially all U.S. operating reactors will request license renewal. In 2009, the U.S. has 4 plants that enter their 41. year of ope-ration. The U.S. Nuclear Industry has expressed interest in 'life beyond 60', that is, requesting approval of a second renewal period. U.S. regulations allow for subsequent license renewals. The NRC is working with the U.S. Department of Energy (DOE) on research related to light water reactor sustainability. (author)

  10. Scenario guidance handbook for emergency-preparedness exercises at nuclear facilities

    International Nuclear Information System (INIS)

    Laughlin, G.J.; Martin, G.F.; Desrosiers, A.E.

    1983-01-01

    As part of the Emergency Preparedness Implementation Appraisal Program conducted by the Nuclear Regulatory Commission (NRC) with the technical assistance of the Pacific Northwest Laboratory (PNL), emergency preparedness exercises are observed on an annual basis at all licensed reactor facilities. One of the significant findings to arise from these observations was that a large number of the commonly observed problems originated in the design of the scenarios used as a basis for each exercise. In an effort to help eliminate some of these problems a scenario guidance handbook has been generated by PNL for the NRC to assist nuclear power plant licensees in developing scenarios for emergency preparedness exercises

  11. The importance of environmental education in the process of nuclear and environmental licensing of nuclear facilities

    International Nuclear Information System (INIS)

    Araujo, Jefferson Borges; Ribeiro, Katia Maria Bruno

    2009-01-01

    Today, there is a thread with regard to the global environment. To reduce the environmental impact due to spending supplies to meet the basic needs of the global population. Can be considered as the power of these needs and in this context, the environmental impact occurs by the use of fossil fuels and loss of land for use of water resources. To minimize these impacts, governments are establishing appropriate laws towards the use of renewable energy. However it appears that there is still a great distance between the established law and implementation in practice. In this context nuclear energy is an attractive option, both economic and environmental. The facilities that are somehow associated with nuclear power plants are classified as radioactive or nuclear. These facilities are subject to two licensing procedures: Environmental (by IBAMA) and Nuclear (by CNEN). Nuclear installations such as nuclear power plants Angra 1 and 2, deposits and tailings facilities of the nuclear fuel cycle in Rezende that are more the attention of the population. As part of these processes are reports of analysis of safety and environmental impacts and socio-economic (EIA/RIMA RFAS), which are available to the public and then discussed at public hearings, where there is the opportunity for questions on these reports. These questions are mainly related with the social-environmental and economic due to construction and operation of these facilities. This work is a research, discussing the law, identifying the difficulties in the licensing process and presents a discussion on the importance of environmental education at all school levels, for adult audiences and is a connection between the environmental education and process of environmental licensing and nuclear, showing how the popular consciousness more informed can better discuss issues associated with these licenses, understand the advantages and disadvantages and obtain benefits. (author)

  12. A guide for determining compliance with the Clean Air Act Standards for radionuclide emissions from NRC-licensed and non-DOE federal facilities (Rev. 1)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-10-01

    The Environmental Protection Agency (EPA) issued standards under Section 112 of the Clean Air Act of February 6, 1985 that limit airborne emissions of radionuclides to the atmosphere. In February 1989 these standards were re proposed , and in November 1989 final standards may be promulgated. This document provides guidance for determining compliance with one of the National Emissions for Hazardous Air Pollutants covering facilities that are licensed by NRC, and federal facilities not operated by the DOE, that could emit radionuclides to the ai00.

  13. Procedure for estimating facility decommissioning costs for non-fuel-cycle nuclear facilities

    International Nuclear Information System (INIS)

    Short, S.M.

    1988-01-01

    The Nuclear Regulatory Commission (NRC) staff has been reappraising its regulatory position relative to the decommissioning of nuclear facilities over the last several years. Approximately 30 reports covering the technology, safety, and costs of decommissioning reference nuclear facilities have been published during this period in support of this effort. One of these reports, Technology, Safety, and Costs of Decommissioning Reference Non-Fuel-Cycle Nuclear Facilities (NUREG/CR-1754), was published in 1981 and was felt by the NRC staff to be outdated. The Pacific Northwest Laboratory (PNL) was asked by the NRC staff to revise the information provided in this report to reflect the latest information on decommissioning technology and costs and publish the results as an addendum to the previous report. During the course of this study, the NRC staff also asked that PNL provide a simplified procedure for estimating decommissioning costs of non-fuel-cycle nuclear facilities. The purpose being to provide NRC staff with the means to easily generate their own estimate of decommissioning costs for a given facility for comparison against a licensee's submittal. This report presents the procedure developed for use by NRC staff

  14. Public comments on the proposed 10 CFR Part 51 rule for renewal of nuclear power plant operating licenses and supporting documents: Review of concerns and NRC staff response. Volume 1

    International Nuclear Information System (INIS)

    1996-05-01

    This report documents the Nuclear Regulatory Commission (NRC) staff review of public comments provided in response to the NRC's proposed amendments to 10 Code of Federal Regulations (CFR) Part 51, which establish new requirements for the environmental review of applications for the renewal of operating licenses of nuclear power plants. The public comments include those submitted in writing, as well as those provided at public meetings that were held with other Federal agencies, State agencies, nuclear industry representatives, public interest groups, and the general public. This report also contains the NRC staff response to the various concerns raised, and highlights the changes made to the final rule and the supporting documents in response to these concerns

  15. NRC TLD Direct Radiation Monitoring Network. Volume 5, No. 2. Progress report, April-June 1985

    International Nuclear Information System (INIS)

    Jang, J.; Kramaric, M.; Cohen, L.

    1985-09-01

    The US Nuclear Regulatory Commission (NRC) Direct Radiation Monitoring Network provides continuous measurement of the ambient radiation levels around licensed NRC facilities, primarily power reactors. The Network is intended to measure radiation levels during routine facility operations and to establish background radiation levels used to assess the radiological impact of an unusual condition, such as an accident. This report presents the radiation levels measured around all facilities in the Network for the second quarter of 1985. A complete listing of the site facilities monitored is included

  16. License renewal - an idea whose time has come. Hatch nuclear plant license renewal program: an actual example of application of the license renewal rule to the Intake Structure

    International Nuclear Information System (INIS)

    Chandiwala, F.; Evans, W.P.

    1999-01-01

    After the NRC issued a revised license renewal rule in May 1995, the nuclear industry focussed on developing generic industry for implementing the rule and testing the guidance through various demonstration programs and work products in conjunction with the NRC. In addition, plant-specific programs also proceeded forward. These activities show that implementation issues continue to exist. Since the issuance of the rule, the NRC has issued a draft standard review plan for license renewal (SRP-LR), working draft, September 1997. Southern Nuclear Operating Company (SNC) has begun development work on a license renewal application for Plant Hatch Units 1 and 2. Plant Hatch Units 1 and 2 are BWR 4, Mark I plants whose operating licenses expire in 2014 and 2018, respectively. The Plant Hatch initiative also involves teaming with other boiling water reactors (BWRs) to develop the license renewal technology within the BWR fleet, and to support Plant Hatch by providing an oversight role for the application process. The teaming effort involved two other utilities, each being assigned to prepare a common report on a mechanical system or a structure. The common report could be presented to the NRC with modifications to suit the individual plants, thereby saving time and money, and hopefully resulting in quicker approval by the NRC. The desired license renewal process end result is a renewed license with up to a 20 year extension (10CFR 54.31(b)). (orig.)

  17. NRC TLD Direct Radiation Monitoring Network

    International Nuclear Information System (INIS)

    Struckmeyer, R.; McNamara, N.

    1992-06-01

    The US Nuclear Regulatory Commission (NRC) Direct Radiation Monitoring Network is operated by the NRC in cooperation with participating states to provide continuous measurement of the ambient radiation levels around licensed NRC facilities, primarily power reactors. Ambient radiation levels result from naturally occurring radionuclides present in the soil, cosmic radiation constantly bombarding the earth from outer space, and the contribution, if any, from the monitored facilities and other man-made sources. The Network is intended to measure radiation levels during routine facility operations and to establish background radiation levels used to assess the radiological impact of an unusual condition, such as an accident. This report presents the radiation levels measured around all facilities in the Network for the first quarter of 1992. All radiation measurements are made using small, passive detectors called thermoluminescent dosimeters (TLDs), which provide a quantitative measurement of the radiation levels in the area in which they are placed. Each site is monitored by arranging approximately 40 to 50 TLD stations in two concentric rings extending to about five miles from the facility. All TLD stations are outside the site boundary of the facility

  18. Occupational radiation exposure at commercial nuclear power reactors and other facilities, 1989

    International Nuclear Information System (INIS)

    Raddatz, C.T.

    1992-04-01

    This report summarizes the occupational radiation exposure information that has been reported to the NRC's Radiation Exposure Information Reporting System (REIRS) by nuclear power facilities and certain other categories of NRC 1 licensees during the years 1969 through 1989. The bulk of the data presented in the report was obtained from annual radiation exposure reports submitted in accordance with the requirements of 10 CFR 20.407 and the technical specifications of nuclear power plants. Data on workers terminating their employment at certain NRC 1 licensed facilities were obtained from reports submitted pursuant to 10 CFR 20.408. The 1989 annual reports submitted by about 448 licensees indicated that approximately 216,294 individuals were monitored 111,000 of whom were monitored by nuclear power facilities. They incurred an average individual does of 0.18 rem (cSv) and an average measurable dose of 0.36 (cSv). Termination radiation exposure reports were analyzed to reveal that about 113,535 individuals completed their employment with one or more of the 448 covered licensees during 1989. Some 76,561 of these individuals terminated from power reactor facilities, and about 10, 344 of them were considered to be transient workers who received an average dose of 0.64 rem (cSv)

  19. Occupational radiation exposure at commercial nuclear power reactors and other facilities, 1988

    International Nuclear Information System (INIS)

    Raddatz, C.T.

    1991-07-01

    This report summarizes the occupational radiation exposure information that has been reported to the NRC's Radiation Exposure Information Reporting System (REIRS) by nuclear power facilities and certain other categories of NRC licensees during the years 1969 through 1988. The bulk of the data presented in the report was obtained from annual radiation exposure reports submitted in accordance with the requirements of 10 CFR 20.407 and the technical specifications of nuclear power plants. Data on workers terminating their employment at certain NRC licensed facilities were obtained from reports submitted pursuant to 10 CFR 20.408. The 1988 annual reports submitted by about 429 licensees indicated that approximately 220,048 individuals were monitored, 113,00 of whom were monitored by nuclear power facilities. They incurred an average individual dose of 0.20 rem (cSv) and an average measurable dose of 0.41 (cSv). Termination radiation exposure reports were analyzed to reveal that about 113,072 individuals completed their employment with one or more of the 429 covered licensees during 1988. Some 80,211 of these individuals terminated from power reactor facilities, and about 8,760 of them were considered to be transient workers who received an average dose of 0.27 rem (cSv). 17 refs., 11 figs., 29 tabs

  20. Occupational radiation exposure at commercial nuclear power reactors and other facilities, 1991

    International Nuclear Information System (INIS)

    Raddatz, C.T.

    1993-07-01

    This report summarizes the occupational radiation exposure information that has been reported to the NRC's Radiation Exposure Information Reporting System (REIRS) by nuclear power facilities and certain other categories of NRC licensees during the years 1969 through 1991. The bulk of the data presented in the report was obtained from annual radiation exposure reports submitted in accordance with the requirements of 10 CFR 20.407 and the technical specifications of nuclear power plants. Data on workers terminating their employment at certain NRC licensed facilities were obtained from reports submitted pursuant to 10 CFR 20.408. The 1991 annual reports submitted by about 436 licensees indicated that approximately 206,732 individuals were monitored, 182,334 of whom were monitored by nuclear power facilities. They incurred an average individual dose of 0.15 rem (cSv) and an average measurable dose of about 0.31 (cSv). Termination radiation exposure reports were analyzed to reveal that about 96,231 individuals completed their employment with one or more of the 436 covered licensees during 1991. Some 68,115 of these individuals terminated from power reactor facilities, and about 7,763 of them were considered to be transient workers who received an average dose of 0.52 rem (cSv)

  1. Experience with the licensing of the interim spent fuel storage facility modification

    International Nuclear Information System (INIS)

    Bezak, S.; Beres, J.

    1999-01-01

    After political and economical changes in the end of eighties, the utility operating the nuclear power plants in the Slovak Republic (SE, a.s.) decided to change the original scheme of the back-end of the nuclear fuel cycle; instead of reprocessing in the USSR/Russian Federation spent fuel will be stored in an interim spent fuel storage facility until the time of the final decision. As the best solution, a modification of the existing interim spent fuel storage facility has been proposed. Due to lack of legal documents for this area, the Regulatory Authority of the Slovak Republic (UJD SR) performed licensing procedures of the modification on the basis of recommendations by the IAEA, the US NRC and the relevant parts of the US CFR Title 10. (author)

  2. Generic environmental impact statement in support of rulemaking on radiological criteria for decommissioning of NRC-licensed nuclear facilities. Appendices; Draft report for comment -- Volume 2

    International Nuclear Information System (INIS)

    1994-08-01

    The action being considered in this draft Generic Environmental Impact Statement (GEIS) is an amendment to the Nuclear Regulatory Commission's (NRC) regulations in 10 CFR Part 20 to include radiological criteria for decommissioning of lands and structures at nuclear facilities. Under the National Environmental Policy Act (NEPA), all Federal agencies must consider the effect of their actions on the environment. To fulfill NRC's responsibilities under NEPA, the Commission is preparing this GEIS which analyzes alternative courses of action and the costs and impacts associated with those alternatives. In preparing the GEIS, the following approach was taken: (1) a listing was developed of regulatory alternatives for establishing radiological criteria for decommissioning; (2) for each alternative, a detailed analysis and comparison of incremental impacts, both radiological and nonradiological, to workers, members of the public, and the environment, and costs, were performed; and (3) based on the analysis of impacts and costs, preliminary recommendations were provided. Contained in the GEIS are recommendations related to the definition of decommissioning, the scope of rulemaking, the radiological criteria, restrictions on use, citizen participation, use of the GEIS in site-specific cases, and minimization of contamination

  3. Licensed fuel facility status report: Inventory difference data, July 1, 1990--June 30, 1991

    International Nuclear Information System (INIS)

    1992-03-01

    NRC is committed to the periodic publication of licensed fuel facilities inventory difference data, following agency review of the information and completion of any related NRC investigations. Information in this report includes inventory difference data for active fuel fabrication facilities possessing more than one effective kilogram of high enriched uranium, low enriched uranium, plutonium, or uranium-233

  4. The importance of independent research and evaluation in assessing nuclear fuel cycle and waste management facility safety

    International Nuclear Information System (INIS)

    Downing, Walter D.; Patrick, Wesley C.; Sagar, Budhi

    2009-01-01

    In 1987, the United States Nuclear Regulatory Commission (NRC) established at Southwest Research Institute (SwRI) a federally funded research and development center. Known as the Center for Nuclear Waste Regulatory Analyses (CNWRA), its overall mission is to provide NRC with an independent assessment capability on technical and regulatory issues related to a potential geologic repository for spent nuclear fuel and high-level radioactive waste, as well as interim storage and other nuclear fuel-cycle facilities. For more than 20 years, the CNWRA has supported NRC through an extensive pre-licensing period of establishing the framework of regulations and guidance documents, developing computer codes and other review tools, and conducting independent laboratory, field, and numerical analyses. In June 2008, the United States Department of Energy (DOE) submitted a license application and final environmental impact statement to NRC seeking authorization to construct the nation's first geologic repository at Yucca Mountain, Nevada. The CNWRA will assist NRC in conducting a detailed technical review to critically evaluate the DOE license application to assess whether the potential repository has been designed and can be constructed and operated to safely dispose spent nuclear fuel and high-level radioactive waste. NRC access to independent, unbiased, technical advice from the CNWRA is an important aspect of the evaluation process. This paper discusses why an independent perspective is important when dealing with nuclear fuel cycle and waste management issues. It addresses practical considerations such as avoiding conflicts of interest while at the same time maintaining a world-class research program in technical areas related to the nuclear fuel cycle. It also describes an innovative approach for providing CNWRA scientists and engineers a creative outlet for professional development through an internally funded research program that is focused on future nuclear waste

  5. Licensing of nuclear and radioactive installations in Peru

    International Nuclear Information System (INIS)

    Medina Gironzini, E.

    1987-01-01

    In Peru, the Regulation for Ionizing Radiation Sources is applied, which establishes the norms and procedures to follow in the nuclear and radioactive installations of the country in order to assure their correct operation as concerns to the nuclear safety and radiological protection, allowing the emission of the respective licenses. As for the nuclear facilities, this authorization includes the Previous License, the Construction License and the Operation License (provisional and definitive) and for radioactive facilities and equipment generating ionizing radiations: the Construction License and the Operation License. The personnel also require a license that can be an operator license (as for nuclear reactors) or a supervisor license (for nuclear and radioactive facilities). In spite of the above mentioned regulation and its long enforcement period, less than 10% of radioactive facilities in this country are licensed, due to different problems which will be solved in the medium term. (Author)

  6. Department of Energy interest and involvement in nuclear plant license renewal activities

    International Nuclear Information System (INIS)

    Bustard, Larry D.; Harrison, Dennis L.

    1991-01-01

    Recognizing the importance of nuclear license renewal to the nation's energy strategy, the Department of Energy (DOE) initiated a plant lifetime improvement program during 1985 to determine the feasibility of the license renewal option for US nuclear plants. Initial activities of the DOE program focused on determining whether there were technical and economic obstacles that might preclude or limit the successful implementation of the license renewal option. To make this determination, DOE co-sponsored with the Electric Power Research Institute (EPRI) 'pilot-plant' efforts by Virginia Electric Power and Northern States Power. Both pilot-plant efforts concluded that life extension is technically and economically feasible. In parallel with the pilot plant activities, DOE performed national economic studies that demonstrated the economic desirability of life extension. Having demonstrated the feasibility of life extension, DOE, in conjunction with EPRI, selected two lead plants to demonstrate the license renewal process. These lead plants are Yankees Atomic's Yankee Rowe facility and Northern States Power's Monticello facility. DOE also initiated activities to develop the technical and regulatory bases to support the license renewal process in the United States. These include (1) development of a methodology for identifying systems, structures, and components important to license renewal, (2) development of industry reports that describe industry-accepted approaches for license renewal of ten important classes of equipment, (3) development of technical basis to support license renewal, and (4) interaction/negotiation with the NRC through the Nuclear Management Resources Council (NUMARC) regarding appropriate regulatory requirements for license renewal. DOE has recently identified nuclear plant license renewal to be an important element of its National Energy Strategy. This paper summarizes the significant results, conclusions and ongoing activities of the DOE effort

  7. Memorandum of Understanding Between U.S. EPA Superfund and U.S. NRC

    International Nuclear Information System (INIS)

    Walker, Stuart

    2008-01-01

    The Environmental Protection Agency (EPA) Office of Superfund Remediation and Technology Innovation (OSRTI) and the Nuclear Regulatory Commission (NRC) are responsible for implementing the 'Memorandum of Understanding Between the Environmental Protection Agency and the Nuclear Regulatory Commission: Consultation and Finality on Decommissioning and Decontamination of Contaminated Sites'. This paper provides a brief overview of the origin of the Memorandum of Understanding (MOU), the major features of the MOU, and how the MOU has been implemented site specifically. EPA and NRC developed the MOU in response to direction from the House Committee on Appropriations to EPA and NRC to work together to address the potential for dual regulation. The MOU was signed by EPA on September 30, 2002 and NRC on October 9, 2002. The two agencies had worked on the MOU since March 2000. While both EPA and NRC have statutory authority to clean up these sites, the MOU provides consultation procedures between EPA and NRC to eliminate dual regulation. Under the MOU, EPA and NRC identified the interactions of the two agencies for the decommissioning and decontamination of NRC-licensed sites and the ways in which those responsibilities will be exercised. Except for Section VI, which addresses corrective action under the Resource Conservation and Recovery Act (RCRA), this MOU is limited to the coordination between EPA, when acting under its CERCLA authority, and NRC, when a facility licensed by the NRC is undergoing decommissioning, or when a facility has completed decommissioning, and the NRC has terminated its license. EPA believes that implementation of the MOU between the two agencies will ensure that future confusion about dual regulation does not occur regarding the cleanup and reuse of NRC-licensed sites. NRC and EPA have so far exchanged MOU consultation letters on eight NRC-licensed sites. EPA has responded to each consultation request with a letter expressing its views on actions

  8. Gas processing at DOE nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Jacox, J.

    1995-02-01

    The term {open_quotes}Gas Processing{close_quotes} has many possible meanings and understandings. In this paper, and panel, we will be using it to generally mean the treatment of gas by methods other than those common to HVAC and Nuclear Air Treatment. This is only a working guideline not a rigorous definition. Whether a rigorous definition is desirable, or even possible is a question for some other forum. Here we will be discussing the practical aspects of what {open_quotes}Gas Processing{close_quotes} includes and how existing Codes, Standards and industry experience can, and should, apply to DOE and NRC Licensed facilities. A major impediment to use of the best engineering and technology in many nuclear facilities is the administrative mandate that only systems and equipment that meet specified {open_quotes}nuclear{close_quotes} documents are permissible. This paper will highlight some of the limitations created by this approach.

  9. Generic environmental impact statement in support of rulemaking on radiological criteria for decommissioning of NRC-licensed nuclear facilities. Main report; Draft report for comment: Volume 1

    International Nuclear Information System (INIS)

    1994-08-01

    The action being considered in this draft Generic Environmental Impact Statement (GEIS) is an amendment to the Nuclear Regulatory Commission's (NRC) regulations in 10 CFR Part 20 to include radiological criteria for decommissioning of lands and structures at nuclear facilities. Under the National Environmental Policy Act (NEPA), all Federal agencies must consider the effect of their actions on the environment. To fulfill NRC's responsibilities under NEPA, the Commission is preparing this GEIS which analyzes alternative courses of action and the costs and impacts associated with those alternatives. In preparing the GEIS, the following approach was taken: (1) a listing was developed of regulatory alternatives for establishing radiological criteria for decommissioning; (2) for each alternative, a detailed analysis and comparison of incremental impacts, both radiological and nonradiological, to workers, members of the public, and the environment, and costs, were performed; and (3) based on the analysis of impacts and costs, preliminary recommendations were provided. Contained in the GEIS are recommendations related to the definition of decommissioning, the scope of rulemaking, the radiological criteria, restrictions on use, citizen participation, use of the GEIS in site-specific cases, and minimization of contamination

  10. Licensing operators for commercial nuclear power plants

    International Nuclear Information System (INIS)

    Hannon, J.N.

    1988-01-01

    The human element in the operation of commercial nuclear power plants is of utmost importance. Not only must the operators be technically competent in the execution of numerous complicated tasks, they must be capable of working together as a team to diagnose dynamic plant conditions to ensure that their plants are operated safely. The significance of human interaction skills and crew communications has been demonstrated most vividly in TMI and Chernobyl. It follows that the NRC must retain its high standards for licensing operators. This paper discusses activities and initiatives being employed by the NRC to enhance the reliability of its licensing examinations, and to build a highly qualified examiner work force

  11. Nuclear licensing in Slovenia

    International Nuclear Information System (INIS)

    Prah, M.; Spiler, J.; Vojnovic, D.; Pristavec, M.

    1998-01-01

    The article presents the approach to nuclear licensing in Slovenia. The paper describes, the initialization, internal authorization and review process in the Krsko NPP. The overall process includes preparation, internal independent evaluation, the Krsko Operating Committee and the Krsko Safety Committee review and internal approval. In addition, the continuation of the licensing process is discussed which includes independent evaluation by an authorized institution and a regulatory body approval process. This regulatory body approval process includes official hearing of the licensee, communication with the licensee, and final issuance of a license amendment. The internal evaluation, which follows the methodology of US NRC (defined in 10 CFR 50.59 and NUMARC 125) is described. This concept is partially implemented in domestic legislation.(author)

  12. Licensing an assured isolation facility for low-level radioactive waste. Volume 2: Recommendations on the content and review of an application

    International Nuclear Information System (INIS)

    Silverman, D.J.; Bauser, M.A.; Baird, R.D.

    1998-07-01

    This report provides a detailed set of proposed criteria and guidance for the preparation of a license application for an assured isolation facility (AIF). The report is intended to provide a detailed planning basis upon which a prospective applicant may begin pre-licensing discussions with the Nuclear Regulatory Commission and initiate development of a license application. The report may also be useful to the NRC or to state regulatory agencies that may be asked to review such an application. Volume 1 of this report provides background information, and describes the licensing approach and methodology. Volume 2 identifies specific information that is recommended for inclusion in a license application

  13. Licensing an assured isolation facility for low-level radioactive waste. Volume 2: Recommendations on the content and review of an application

    Energy Technology Data Exchange (ETDEWEB)

    Silverman, D.J.; Bauser, M.A. [Morgan, Lewis and Bockius, Washington, DC (United States); Baird, R.D. [Rogers and Associates Engineering Corp., Salt Lake City, UT (United States)

    1998-07-01

    This report provides a detailed set of proposed criteria and guidance for the preparation of a license application for an assured isolation facility (AIF). The report is intended to provide a detailed planning basis upon which a prospective applicant may begin pre-licensing discussions with the Nuclear Regulatory Commission and initiate development of a license application. The report may also be useful to the NRC or to state regulatory agencies that may be asked to review such an application. Volume 1 of this report provides background information, and describes the licensing approach and methodology. Volume 2 identifies specific information that is recommended for inclusion in a license application.

  14. Will nuclear power plant standardization reduce the licensing impact on construction

    International Nuclear Information System (INIS)

    Allen, J.M.; Bingham, W.G.; Keith, D.G.

    1976-01-01

    The NRC and the nuclear industry have been pursuing standardization quite vigorously in an effort to reduce the cost and schedule for the design and construction of nuclear power plants. The NRC is currently reviewing standard plant applications submitted under each of four standardization options. In addition, the NRC has published Standard Review Plans and Standard Technical Specifications. Although problems exist in the implementation of standardization and in areas unaffected by standardization, each of these standardization methods has the potential to reduce the licensing impact on construction

  15. Inspection methods for safeguards systems at nuclear facilities

    International Nuclear Information System (INIS)

    Minichino, C.; Richard, E.W.

    1981-01-01

    A project team at Lawrence Livermore National Laboratory has been developing inspection procedures and training materials for the NRC inspectors of safeguards systems at licensed nuclear facilities. This paper describes (1) procedures developed for inspecting for compliance with the Code of Federal Regulations, (2) training materials for safeguards inspectors on technical topics related to safeguards systems, such as computer surety, alarm systems, sampling techniques, and power supplies, and (3) an inspector-oriented methodology for evaluating the overall effectiveness of safeguards systems

  16. Building confidence in nuclear waste regulation: how NRC is adapting in response to stakeholder concerns

    International Nuclear Information System (INIS)

    Kotra, Janet P.

    2004-01-01

    Increasing public confidence in the U.S. Nuclear Regulatory Commission as an effective and independent regulator is an explicit goal of the Agency. When developing new, site-specific regulations for the proposed geologic repository at Yucca Mountain, Nevada, NRC sought to improve its efforts to inform and involve the public in NRC's decision-making process. To this end, NRC has made, and continues to make significant organizational, process and policy changes. NRC successfully applied these changes as it completed final regulations for Yucca Mountain, when introducing a draft license review plan for public comment, and when responding to public requests for information on NRC's licensing and hearing process. It should be understood, however, that these changes emerged, and continue to be applied, in the context of evolving agency concern for increasing stakeholder confidence reflected in institutional changes within the agency as a whole. (author)

  17. The Public Opinion participation in the Nuclear Facilities Licensing Regime: A study for The Egyptian Nuclear Law and other countries laws

    International Nuclear Information System (INIS)

    Ali, A. M.; Abd El-Moniem, A. E.

    2012-12-01

    This paper deals with the Nuclear Facilities Licensing Regime and the public Opinion participation. It discusses the general conceptual framework such as the importance of public opinion in the licensing process for nuclear facilities. It deals with the transparency principle and the nuclear safety. It also an analysis the Egyptian nuclear law for regulating the nuclear and radiological activities(law No.7) and its provisions that regulate the participation of the public in the licensing process (Article No.12 paragraph No.7 and 16 ) that staled that the regulatory body will set the regulation to involve the public in the licensing and it will also issues publicly a garrulity report about the nuclear safety situation in the state. It also deals with the legal rules for licensing and the participation of public in it many states such as Japan, France and Germany. The paper concluded that the lunch of a nuclear programme should lunch, in parallel, a programme for the public communications because in the absent of such a public programme, the political decisions of nuclear programme might be lose its effectiveness and the programme might be slow dow. (Author)

  18. NRC as referee (reactor licensing following the Three Mile Island accident)

    International Nuclear Information System (INIS)

    Eisenhut, D.G.

    1984-01-01

    In this article, the NRC's licensing director reports on the progress made by US utilities in complying with the key regulations stemming from the Three Mile Island accident. Over 130 items must be improved at more than 65 reactors. The actions taken by France in response to its own analysis of the accident are discussed. New NRC requirements with regard to operational safety, design, and emergency-response capability are outlined. Nearly all the training, or software, items in Nureg-0737 (''Clarification of TMI Action Plan Requirements'') and more than half of the mechanical, or hardware, items have been completed at plants with operating reactors. The Committee to Review Generic Requirements was created to develop means for controlling the number and nature of NRC requirements placed on licensees. Probabilistic risk-assessment techniques were not widely used by the NRC until after the Three Mile Island accident. The NRC has directed licensees and applicants for operating licenses to conduct control-room design reviews to identify and correct human-engineering discrepancies. Includes 2 tables

  19. Environmental assessment for final rule on nuclear power plant license renewal

    International Nuclear Information System (INIS)

    1991-12-01

    The Atomic Energy Act and Nuclear Regulatory Commission (NRC) regulations provide for the renewal of nuclear power plant operating licenses beyond their initial 40-year term. The Act and NRC regulations, however, do not specify the procedures, criteria, and standards that must be satisfied in order to renew a license. The NRC is promulgating a rule (10 CFR Part 54) to codify such requirements prior to the receipt of applications for license renewal. The NRC has assessed the possible environmental effects of promulgating requirements in 10 CFR Part 54 now rather than employing such requirements in an ad hoc manner in individual licensing actions. The final part 54 rule requires the development of information and analyses to identify aging problems of systems, structures, and components unique to license renewal that will be of concern during the period of extended operation and will not be controlled by existing effective programs. In general, licensee activities for license renewal may involve replacement, refurbishment, inspection, testing, or monitoring. Such actions will be generally be within the range of similar actions taken for plants during the initial operating term. These actions would be primarily confined within the plants with potential for only minor disruption to the environment. It is unlikely that these actions would change the operating conditions of plants in ways that would change the environmental effects already being experienced. Relicensing under existing regulations would also be primarily focused on aging degradation and would likely result in requirements similar to those that will result from relicensing under the final rule

  20. The regulatory approach for spent nuclear storage and conditioning facility: The Hanford example

    International Nuclear Information System (INIS)

    Sellers, E.D.; Mooers, G.C. III; Daschke, K.D.; Driggers, S.A.; Timmins, D.C.

    1996-01-01

    Hearings held before the House Subcommittee on Energy and Mineral Resources in March 1994, requested that officials of federal agencies and other experts explore options for providing regulatory oversight of the US Department of Energy (DOE) facilities and operations. On January, 25, 1995, the DOE, supported by the White House Office of Environmental Quality and the Office of Management and Budget, formally initiated an Advisory Committee on External Regulation of DOE Nuclear Safety. In concert with this initiative and public opinion, the DOE Richland Operations Office has initiated the K Basin Spent Nuclear Fuel Project -- Regulatory Policy. The DOE has established a program to move the spent nuclear fuel presently stored in the K Basins to a new storage facility located in the 200 East Area of the Hanford Site. New facilities will be designed and constructed for safe conditioning and interim storage of the fuel. In implementing this Policy, DOE endeavors to achieve in these new facilities ''nuclear safety equivalency'' to comparable US Nuclear Regulatory Commission (NRC)-licensed facilities. The DOE has established this Policy to take a proactive approach to better align its facilities to the requirements of the NRC, anticipating the future possibility of external regulation. The Policy, supplemented by other DOE rules and directives, form the foundation of an enhanced regulatory, program that will be implemented through the DOE K Basin Spent Nuclear Fuel Project (the Project)

  1. NRC TLD Direct Radiation Monitoring Network

    International Nuclear Information System (INIS)

    Struckmeyer, R.; McNamara, N.

    1991-12-01

    This report provides the status and results of the NRC Thermoluminescent Dosimeter (TLD) Direct Radiation Monitoring Network. It presents the radiation levels measured in the vicinity of NRC licensed facilities throughout the country for the third quarter of 1991

  2. Operating reactors licensing actions summary

    International Nuclear Information System (INIS)

    1982-07-01

    The operating reactors licensing actions summary is designed to provide the management of the Nuclear Regulatory Commission (NRC) with an overview of licensing actions dealing with operating power and nonpower reactors. These reports utilize data collected from the Division of Licensing in the Office of Nuclear Reactor Regulation and are prepared by the Office of Management and Program Analysis. This summary report is published primarily for internal NRC use in managing the operating reactors licensing actions program. Its content will change based on NRC management informational requirements

  3. Operating reactors licensing actions summary

    International Nuclear Information System (INIS)

    1982-05-01

    The operating reactors licensing actions summary is designed to provide the management of the Nuclear Regulatory Commission (NRC) with an overview of licensing actions dealing with operating power and nonpower reactors. These reports utilize data collected from the Division of Licensing in the Office of Nuclear Reactor Regulation and are prepared by the Office of Management and Program Analysis. This summary report is published primarily for internal NRC use in managing the operating reactors licensing actions program. Its content will change based on NRC management informational requirements

  4. Operating reactors licensing actions summary

    International Nuclear Information System (INIS)

    1983-01-01

    The operating reactors licensing actions summary is designed to provide the management of the Nuclear Regulatory Commission (NRC) with an overview of licensing actions dealing with operating power and nonpower reactors. These reports utilize data collected from the Division of Licensing in the Office of Nuclear Reactor Regulation and are prepared by the Office of Management and Program Analysis. This summary report is published primarily for internal NRC use in managing the operating reactors licensing actions program. Its content will change based on NRC management informational requirements

  5. Operating reactors licensing actions summary

    International Nuclear Information System (INIS)

    1983-03-01

    The operating reactors licensing actions summary is designed to provide the management of the Nuclear Regulatory Commission (NRC) with an overview of licensing actions dealing with operating power and nonpower reactors. These reports utilize data collected from the Division of Licensing in the Office of Nuclear Reactor Regulation and are prepared by the Office of Management and Program Analysis. This summary report is published primarily for internal NRC use in managing the operating reactors licensing actions program. Its content will change based on NRC management informational requirements

  6. Operating reactors licensing actions summary

    International Nuclear Information System (INIS)

    1982-11-01

    The operating reactors licensing actions summary is designed to provide the management of the Nuclear Regulatory Commission (NRC) with an overview of licensing actions dealing with operating power and nonpower reactors. These reports utilize data collected from the Division of Licensing in the Office of Nuclear Reactor Regulation and are prepared by the Office of Management and Program Analysis. This summary report is published primarily for internal NRC use in managing the operating reactors licensing actions program. Its content will change based on NRC management informational requirements

  7. Operating reactors licensing actions summary

    International Nuclear Information System (INIS)

    1982-10-01

    The operating reactors licensing actions summary is designed to provide the management of the Nuclear Regulatory Commission (NRC) with an overview of licensing actions dealing with operating power and nonpower reactors. These reports utilize data collected from the Division of Licensing in the Office of Nuclear Reactor Regulation and are prepared by the Office of Management and Program Analysis. This summary report is published primarily for internal NRC use in managing the operating reactors licensing actions program. Its content will change based on NRC management informational requirements

  8. Operating reactors licensing actions summary

    International Nuclear Information System (INIS)

    1982-08-01

    The operating reactors licensing actions summary is designed to provide the management of the Nuclear Regulatory Commission (NRC) with an overview of licensing actions dealing with operating power and nonpower reactors. These reports utilize data collected from the Division of Licensing in the Office of Nuclear Reactor Regulation and are prepared by the Office of Management and Program Analysis. This summary report is published primarily for internal NRC use in managing the operating reactors licensing actions program. Its content will change based on NRC management informational requirements

  9. Operating reactors licensing actions summary

    International Nuclear Information System (INIS)

    1982-09-01

    The operating reactors licensing actions summary is designed to provide the management of the Nuclear Regulatory Commission (NRC) with an overview of licensing actions dealing with operating power and nonpower reactors. These reports utilize data collected from the Division of Licensing in the Office of Nuclear Reactor Regulation and are prepared by the Office of Management and Program Analysis. This summary report is published primarily for internal NRC use in managing the operating reactors licensing actions program. Its content will change based on NRC management informational requirements

  10. Pilot program: NRC severe reactor accident incident response training manual: US Nuclear Regulatory Commission response

    International Nuclear Information System (INIS)

    Sakenas, C.A.; McKenna, T.J.; Perkins, K.; Miller, C.W.; Hively, L.M.; Sharpe, R.W.; Giitter, J.G.; Watkins, R.M.

    1987-02-01

    This pilot training manual has been written to fill the need for a general text on NRC response to reactor accidents. The manual is intended to be the foundation for a course for all NRC response personnel. US Nuclear Regulatory Commission Response is the fifth in a series of volumes that collectively summarize the US Nuclear Regulatory Commission (NRC) emergency response during severe power reactor accidents and provide necessary background information. This volume describes NRC response modes, organizations, and official positions; roles of other federal agencies are also described briefly. Each volume serves, respectively, as the text for a course of instruction in a series of courses for NRC response personnel. These materials do not provide guidance or license requirements for NRC licensees. Each volume is accompanied by an appendix of slides that can be used to present this material. The slides are called out in the text

  11. Operator licensing examiner standards

    International Nuclear Information System (INIS)

    1987-05-01

    The Operator Licensing Examiner Standards provide policy and guidance to NRC examiners and establish the procedures and practices for examining and licensing of applicants for NRC operator licenses pursuant to Part 55 of Title 10 of the Code of Federal Regulations (10 CFR 55). They are intended to assist NRC examiners and facility licensees to understand the examination process better and to provide for equitable and consistent administration of examinations to all applicants by NRC examiners. These standards are not a substitute for the operator licensing regulations and are subject to revision or other internal operator examination licensing policy changes

  12. Agency procedures for the NRC incident response plan. Final report

    International Nuclear Information System (INIS)

    1983-02-01

    The NRC Incident Response Plan, NUREG-0728/MC 0502 describes the functions of the NRC during an incident and the kinds of actions that comprise an NRC response. The NRC response plan will be activated in accordance with threshold criteria described in the plan for incidents occurring at nuclear reactors and fuel facilities involving materials licensees; during transportation of licensed material, and for threats against facilities or licensed material. In contrast to the general overview provided by the Plan, the purpose of these agency procedures is to delineate the manner in which each planned response function is performed; the criteria for making those response decisions which can be preplanned; and the information and other resources needed during a response. An inexperienced but qualified person should be able to perform functions assigned by the Plan and make necessary decisions, given the specified information, by becoming familiar with these procedures. This rule of thumb has been used to determine the amount of detail in which the agency procedures are described. These procedures form a foundation for the training of response personnel both in their normal working environment and during planned emergency exercises. These procedures also form a ready reference or reminder checklist for technical team members and managers during a response

  13. Licensed fuel facility status report. Inventory difference data, January-June 1982

    International Nuclear Information System (INIS)

    1983-02-01

    NRC is committed to the periodic publication of licensed fuel facilities inventory difference data, following agency review of the information and completion of any related investigations. Information in this report includes inventory difference data for active fuel fabrication facilities possessing more than one effective kilogram of high enriched uranium, low enriched uranium, plutonium, or uranium-233

  14. 77 FR 33243 - Applications and Amendments to Facility Operating Licenses and Combined Licenses Involving...

    Science.gov (United States)

    2012-06-05

    ... expansion process, thermal expansion mismatch between the tube and tubesheet, and from the differential... NUCLEAR REGULATORY COMMISSION [NRC-2012-0125] Applications and Amendments to Facility Operating...

  15. 75 FR 2163 - Constellation Energy; Notice of Docketing of Special Nuclear Material License SNM-2505 Amendment...

    Science.gov (United States)

    2010-01-14

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 72-8; NRC-2010-0011] Constellation Energy; Notice of Docketing of Special Nuclear Material License SNM-2505 Amendment Application for the Calvert Cliffs... Constellation Energy (Constellation) to amend its Special Nuclear Material License No. SNM-2505, under the...

  16. U.S. NRC training for research and training reactor inspectors

    International Nuclear Information System (INIS)

    Sandquist, G.M.; Kunze, J.F.

    2011-01-01

    Currently, a large number of license activities (Early Site Permits, Combined Operating License, reactor certifications, etc.), are pending for review before the United States Nuclear Regulatory Commission (US NRC). Much of the senior staff at the NRC is now committed to these review and licensing actions. To address this additional workload, the NRC has recruited a large number of new Regulatory Staff for dealing with these and other regulatory actions such as the US Fleet of Research and Test Reactors (RTRs). These reactors pose unusual demands on Regulatory Staff since the US Fleet of RTRs, although few (32 Licensed RTRs as of 2010), they represent a broad range of reactor types, operations, and research and training aspects that nuclear reactor power plants (such as the 104 LWRs) do not pose. The US NRC must inspect and regulate all these entities. This paper addresses selected training topics and regulatory activities provided US NRC Inspectors for US RTRs. (author)

  17. NRC [Nuclear Regulatory Commission] safety research in support of regulation, 1987

    International Nuclear Information System (INIS)

    1988-05-01

    This report, the third in a series of annual reports, was prepared in response to congressional inquiries concerning how nuclear regulatory research is used. It summarizes the accomplishments of the Office of Nuclear Regulatory Research during 1987. The goal of this office is to ensure that research provides the technical bases for rulemaking and for related decisions in support of NRC licensing and inspection activities. This report describes both the direct contributions to scientific and technical knowledge with regard to nuclear safety and their regulatory applications

  18. Status of safety issues at licensed power plants

    International Nuclear Information System (INIS)

    1991-03-01

    As part of ongoing US Nuclear Regulatory Commission (NRC) efforts to ensure the quality and accountability of safety issue information, a program has been established whereby an annual NUREG series report will be published on the status of licensee implementation and NRC verification of safety issues in major NRC requirement areas. The data contained in this report are a product of the NRC's Safety Issues Management System database, which is maintained by the Project Management Staff in the Office of Nuclear Reactor Regulation and by personnel in the NRC regions. This report has been prepared in order to provide a comprehensive description of the implementation and verification status of all the TMI Action Plan requirements at licensed reactors, and to make this information available to other interested parties, including the public. A corollary purpose of this report is for it to serve as a follow-on to NUREG-0933, ''A Prioritization of Safety Issues,'' which tracks safety issues up until requirements are approved for imposition at licensed facilities

  19. 76 FR 63330 - Policy Regarding Submittal of Amendments for Processing of Equivalent Feed at Licensed Uranium...

    Science.gov (United States)

    2011-10-12

    ... Processing of Equivalent Feed at Licensed Uranium Recovery Facilities AGENCY: Nuclear Regulatory Commission... NRC and Agreement State-licensed uranium recovery site. This action is necessary to correct several... read ``(see Page A2 of SECY-99-011, ``Draft Rulemaking Plan: Domestic Licensing of Uranium and Thorium...

  20. Occupational radiation exposure at commercial nuclear power reactors and other facilities, 1990: Twenty-third annual report

    International Nuclear Information System (INIS)

    Raddatz, C.T.

    1993-01-01

    This report summarizes the occupational radiation exposure information that has been reported to the NRC's Radiation Exposure Information Reporting System (REIRS) by nuclear power facilities and certain other categories of NRC licensees during the years 1969 through 1990. The bulk of the data presented in the report was obtained from annual radiation exposure reports submitted in accordance with the requirements of 10 CFR 20.407 and the technical specifications of nuclear power plants. Data on workers terminating their employment at certain NRC licensed facilities were obtained from reports submitted pursuant to 10 CFR 20.408. The 1990 annual reports submitted by about 443 licensees indicated that approximately 214,568 individuals were monitored, 110,204 of whom were monitored by nuclear power facilities. They incurred an average individual dose of 0.19 rem (cSv) and an average measurable dose of about 0.36 (cSv). Termination radiation exposure reports were analyzed to reveal that about 113,361 individuals completed their employment with one or more of the 443 covered licensees during 1990. Some 77,633 of these individuals terminated from power reactor facilities, and about 11,083 of them were considered to be transient workers who received an average dose of 0.67 rem (cSv)

  1. May compact storage facilities be licensed

    International Nuclear Information System (INIS)

    Gleim, A.; Winter, G.

    1980-01-01

    The authors examine as potential statements fo fact for licensing so-called compact storage facilities for spent fuel elements Sec. 6 to 9c of the German Atomic Energy Act and Sec. 4 of the German Radiation Protection Ordinance. They find that none of these provisions were applicable to compact stroage facilities. In particular, the storage of spent fuel elements was no storage of nuclear fuels licensable under Sec. 6 of the Atomic Energy Act, because Sec. 6 did not cover spent fuel elements. Also in the other wording of the Atomic Energy Act there was no provision, which could be used as a statement of fact for licensing compact storage facilities. Such facilities could not be licensed and, for that reason, were not permitted. (IVR) [de

  2. Evaluation of Nuclear Facility Decommissioning Projects program

    International Nuclear Information System (INIS)

    Baumann, B.L.

    1983-01-01

    The objective of the Evaluation of Nuclear Facility Decommissioning Projects (ENFDP) program is to provide the NRC licensing staff with data which will allow an assessment of radiation exposure during decommissioning and the implementation of ALARA techniques. The data will also provide information to determine the funding level necessary to ensure timely and safe decommissioning operations. Actual decommissioning costs, methods and radiation exposures are compared with those estimated by the Battelle-PNL and ORNL NUREGs on decommissioning. Exposure reduction techniques applied to decommissioning activities to meet ALARA objectives are described. The lessons learned concerning various decommissioning methods are evaluated

  3. NRC regulatory agenda

    International Nuclear Information System (INIS)

    1993-07-01

    The NRC Regulatory Agenda is a compilation of all rules on which the NRC has recently completed action, or has proposed action, or is considering action, and all petitions for rulemaking which have been received by the Commission and are pending disposition by the Commission. The Regulatory Agenda is updated and issued each quarter. The rules on which final action has been taken since March 31, 1993 are: Repeal of NRC standards of conduct; Fitness-for-duty requirements for licensees who possess, use, or transport Category I material; Training and qualification of nuclear power plant personnel; Monitoring the effectiveness of maintenance at nuclear power plants; Licensing requirements for land disposal of radioactive wastes; and Licensees' announcements of safeguards inspections

  4. Summary of technical information and agreements from Nuclear Management and Resources Council industry reports addressing license renewal

    International Nuclear Information System (INIS)

    Regan, C.; Lee, S.

    1996-10-01

    In about 1990, the Nuclear Management and Resources Council (NUMARC) submitted for NRC review ten industry reports (IRs) addressing aging issues associated with specific structures and components of nuclear power plants ad one IR addressing the screening methodology for integrated plant assessment. The NRC staff had been reviewing the ten NUMARC IRs; their comments on each IR and NUMARC responses to the comments have been compiled as public documents. This report provides a brief summary of the technical information and NUMARC/NRC agreements from the ten IRs, except for the Cable License Renewal IR. The technical information and agreements documented herein represent the status of the NRC staffs review when the NRC staff and industry resources were redirected to address rule implementation issues. The NRC staff plans to incorporate appropriate technical information and agreements into the draft standard review plan for license renewal

  5. 75 FR 8754 - Notice of Environmental Assessment Related to the Issuance of a License Amendment to Masters...

    Science.gov (United States)

    2010-02-25

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 030-34325; NRC-2010-0068] Notice of Environmental Assessment Related to the Issuance of a License Amendment to Masters Materials License 03-23853-01VA, for Unrestricted Release of a Department of Veterans Affairs Facility in Gainesville, FL AGENCY: Nuclear Regulatory Commission. ACTION: Issuance of...

  6. Development of RESRAD probabilistic computer codes for NRC decommissioning and license termination applications

    International Nuclear Information System (INIS)

    Chen, S. Y.; Yu, C.; Mo, T.; Trottier, C.

    2000-01-01

    In 1999, the US Nuclear Regulatory Commission (NRC) tasked Argonne National Laboratory to modify the existing RESRAD and RESRAD-BUILD codes to perform probabilistic, site-specific dose analysis for use with the NRC's Standard Review Plan for demonstrating compliance with the license termination rule. The RESRAD codes have been developed by Argonne to support the US Department of Energy's (DOEs) cleanup efforts. Through more than a decade of application, the codes already have established a large user base in the nation and a rigorous QA support. The primary objectives of the NRC task are to: (1) extend the codes' capabilities to include probabilistic analysis, and (2) develop parameter distribution functions and perform probabilistic analysis with the codes. The new codes also contain user-friendly features specially designed with graphic-user interface. In October 2000, the revised RESRAD (version 6.0) and RESRAD-BUILD (version 3.0), together with the user's guide and relevant parameter information, have been developed and are made available to the general public via the Internet for use

  7. Web-based training related to NRC staff review of dose modeling aspects of license termination and decommissioning plans

    International Nuclear Information System (INIS)

    LePoire, D.; Arnish, J.; Cheng, J.J.; Kamboj, S.; Richmond, P.; Chen, S.Y.; Barr, C.; McKenney, C.

    2007-01-01

    NRC licensees at decommissioning nuclear facilities submit License Termination Plans (LTP) or Decommissioning Plans (DP) to NRC for review and approval. To facilitate a uniform and consistent review of these plans, the NRC developed training for its staff. A live classroom course was first developed in 2005, which targeted specific aspects of the LTP and DP review process related to dose-based compliance demonstrations or modeling. A web-based training (WBT) course is being developed in 2006 to replace the classroom-based course. The advantage of the WBT is that it will allow for staff training or refreshers at any time, while the advantage of a classroom-based course is that it provides a forum for lively discussion and the sharing of experience of classroom participants. The training course consists of the core and advanced modules tailored to specific NRC job functions. Topics for individual modules include identifying the characteristics of simple and complex sites, identifying when outside expertise or consultation is needed, demonstrating how to conduct acceptance and technical reviews of dose modeling, and providing details regarding the level of justification needed for realistic scenarios for both dose modeling and derivation of DCGLs. Various methods of applying probabilistic uncertainty analysis to demonstrate compliance with dose-based requirements are presented. These approaches include: (1) modeling the pathways of radiological exposure and estimating doses to receptors from a combination of contaminated media and radionuclides, and (2) using probabilistic analysis to determine an appropriate set of input parameters to develop derived concentration guideline limits or DCGLs (DCGLs are media- and nuclide-specific concentration limits that will meet dose-based, license termination rule criteria found in 10 CFR Part 20, Subpart E). Calculation of operational (field) DCGL's from media- and nuclide-specific DCGLs and use of operational DCGLs in conducting

  8. Licensed-fuel-facility status report: inventory difference data, July 1981-December 1981

    International Nuclear Information System (INIS)

    1982-10-01

    NRC is committed to the periodic publication of licensed fuel facilities inventory difference data, following agency review of the information and completion of any related investigations. Information in this report includes inventory difference data for active fuel fabrication facilities possessing more than one effective kilogram of high enriched uranium, low enriched uranium, plutonium, or uranium-233

  9. Licensed fuel facility status report: Inventory difference data, January 1986-June 1986

    International Nuclear Information System (INIS)

    1987-02-01

    NRC is committed to the periodic publication of licensed fuel facilities' inventory difference data, following agency review of the information and completion of any related investigations. Information in this report includes inventory difference data for active fuel fabrication facilities possessing more than one effective kilogram of high enriched uranium, low enriched uranium, plutonium, or uranium-233

  10. Licensed fuel facility status report: Inventory difference data, January 1987-June 1987

    International Nuclear Information System (INIS)

    1988-03-01

    NRC is committed to the periodic publication of licensed fuel facilities' inventory difference data, following agency review of the information and completion of any related investigations. Information in this report includes inventory difference data for active fuel fabrication facilities possessing more than one effective kilogram of high enriched uranium, low enriched uranium, plutonium, or uranium-233

  11. Licensed fuel facility status report: Inventory difference data, July 1987-December 1987

    International Nuclear Information System (INIS)

    1988-09-01

    NRC is committed to the periodic publication of licensed fuel facilities' inventory difference data, following agency review of the information and completion of any related investigations. Information in this report includes inventory difference data for active fuel fabrication facilities possessing more than one effective kilogram of high enriched uranium, low enriched uranium, plutonium, or uranium-233

  12. Operator licensing examiner standards

    International Nuclear Information System (INIS)

    1983-10-01

    The Operator Licensing Examiner Standards provide policy and guidance to NRC examiners and establish the procedures and practices for examining and licensing of applicants for NRC operator licenses pursuant to Part 55 of Title 10 of the Code of Federal Regulations (10 CFR 55). They are intended to assist NRC examiners and facility licensees to understand the examination process better and to provide for equitable and consistent administration of examinations to all applicants by NRC examiners. These standards are not a substitute for the operator licensing regulations and are subject to revision or other internal operator examination licensing policy changes. As appropriate, these standards will be revised periodically to accommodate comments and reflect new information or experience

  13. Process of licensing nuclear facilities (resume from the Spanish National Report for the Joint Convention, 2005)

    International Nuclear Information System (INIS)

    Prieto, N.

    2007-01-01

    The process of licensing both nuclear and radioactive facilities is governed by the Regulation on Nuclear and Radioactive Facilities (Span. Reglamento de Instalaciones Nucleares y Radiactivas, RINR), approved by Royal Decree 1836/1999, of 3 December. According to the RINR, these authorizations are granted by the Ministry of Industry, Tourism and Trade (Span. Ministerio de Industria, Turismo y Comercio, MITYC), to which the corresponding requests should be addressed, along with the documentation required in each case, The MITYC sends a copy of each request and accompanying documentation to the Nuclear Safety Council (Span. Consejo de Seguridad Nuclear, CSN) for its mandatory report.) The CSN reports are mandatory and binding, both were negative or withholding in nature with respect to the request and, when positive, as regards the conditions established. On receiving the report from the CSN, and following whatever decisions or further reports might be required in each case, the MITYC will adopt the appropriate resolution. System for the licensing of nuclear facilities. According to the definitions included in the RINR, the following are nuclear facilities: - Nuclear power plants. - Nuclear reactors. - Manufacturing facilities using nuclear fuels to produce nuclear substances and those at which nuclear substances are treated. - Facilities for the permanent storage of nuclear substances. In compliance with the RINR, the nuclear facilities require different permits or administrative authorizations for their operation, these being the preliminary or site authorization, the construction permit, the operating permit, the authorization for modification and the dismantling permit. The procedure for the awarding of each of these authorizations is regulated by the Regulation itself and is briefly described below. (author)

  14. Status of the Monticello nuclear generating plant lead plant license renewal program

    International Nuclear Information System (INIS)

    Pickens, T.A.

    1992-01-01

    In 1988, the Monticello nuclear generating plant was chosen by the US Department of Energy through Sandia National Laboratories and the Electric Power Research Institute to serve as the lead boiling water reactor in the lead plant license renewal program. The purpose of the lead plant license renewal program is to provide insights during the development of and to demonstrate the license renewal regulatory process with the US Nuclear Regulatory Commission (NRC). The work being performed in three phases: (1) preparation of the technical basis for license renewal; (2) development of the technical basis into a formal license renewal application; and (3) review of the application by the NRC. This paper discusses the systems and structures identified as important to license renewal in accordance with 10CFR54 as well as the plant documents and programs that were used in going through the identification process. The systems and structures important to license renewal will then provide insights into how structures and components were identified that are required to be evaluated for aging, the elements of the aging evaluations, and the effective programs used to manage potentially significant aging

  15. License renewal in the United States

    International Nuclear Information System (INIS)

    Brons, Jack

    2002-01-01

    Full text: Nuclear plants in the United States are licensed for 40 years, a length specified in the Atomic Energy Act of 1954, which laid out much of the regulatory basis for the commercial nuclear industry. The Act, however, made provision for license renewal. The original 40-year license period was chosen arbitrarily by the U.S. Congress because it was the typical period over which utilities recovered their investment in electricity generating plants. Nuclear plants, however, are subject to a rigorous program of Nuclear Regulatory Commission oversight, maintenance and equipment replacement. In effect, they must be in the same operating condition on the last day of their licenses as they were on the first. As the industry matured, it became apparent that there was no physical limitation on the continued operation of nuclear plants past 40 years. The industry turned its attention toward license renewal. When the issue was first raised, the NRC considered stringent process equivalent to seeking a new operating license for each plant. The complexity, length and cost of the process made it unlikely that many nuclear plants would seek license renewal. The nuclear industry worked successfully with NRC on the application of generic principles to license renewal, however, and in 1995, the NRC issued an efficient, tightly-focused rule that made license renewal a safe, viable option. To extend the operating license for a reactor, a company must demonstrate to the NRC that aging effects will be adequately managed during the renewal terms, thus ensuring equipment functionality. The rule allows licensees to apply for extensions of up to 20 years. The first license renewal application was filed in 1998 by the owner of the two-unit Calvert Cliffs plant. Shortly thereafter, an application was filed for the three-unit Oconee Nuclear Station. The NRC renewed the licenses for all five units in 2000, and since then, five more licenses have been renewed. The NRC has received 37

  16. Occupational radiation exposure at commercial nuclear power reactors and other facilities 1992. Twenty-fifth annual report, Volume 14

    International Nuclear Information System (INIS)

    Raddatz, C.T.

    1993-12-01

    This report summarizes the occupational radiation exposure information that has been reported to the NRC's Radiation Exposure Information Reporting System (REIRS) by nuclear power facilities and certain other categories of NRC licensees during the years 1969 through 1992. The bulk of the data presented in the report was obtained from annual radiation exposure reports submitted in accordance with the requirements of 10CFR20.407 and the technical specifications of nuclear power plants. Data on workers terminating their employment at certain NRC licensed facilities were obtained from reports submitted pursuant to 10CFR20.408. The 1992 annual reports submitted by about 364 licensees indicated that approximately 204,365 individuals were monitored, 183,927 of whom were monitored by nuclear power facilities. They incurred an average individual dose of 0.16 rem (cSv) and an average measurable dose of about 0.30 (cSv). Termination radiation exposure reports were analyzed to reveal that about 74,566 individuals completed their employment with one or more of the 364 covered licensees during 1992. Some 71,846 of these individuals terminated from power reactor facilities, and about 9,724 of them were considered to be transient workers who received an average dose of 0.50 rem (cSv)

  17. Occupational radiation exposure at commercial nuclear power reactors and other facilities, 1993. Volume 15, Twenty-six annual report

    International Nuclear Information System (INIS)

    Raddatz, C.T.

    1995-01-01

    This report the occupational radiation exposure information that has been reported to the NRC's Radiation Exposure Information Reporting System (REIRS) by nuclear power facilities and certain other categories of NRC licensees during the years 1969 through 1993. The bulk of the data presented in the report was obtained from annual radiation exposure reports submitted in accordance with the requirements of 10 CFR 20.407 and the technical specifications of nuclear power plants. Data on workers terminating their employment at certain NRC licensed facilities were obtained from reports submitted pursuant to 10 CFR 20.408. The 1993 annual reports submitted by about 360 licensees indicated that approximately 189,711 individuals were monitored, 169,872 of whom were monitored by nuclear power facilities. They incurred an average individual dose of 0.16 rem (cSv) and an average measured dose of about 0.31 (cSv). Termination radiation exposure reports were analyzed to reveal that about 99,749 individuals completed their employment with one or more of the 360 covered licensees during 1993. Some 91,000 of these individuals terminated from power reactor facilities, and about 12,685 of them were considered to be transient workers who received an average dose of 0.49 rem (cSv)

  18. NRC licensing speedup. Hearing before a Subcommittee of the Committee on Government Operations, House of Representatives, Ninety-Seventh Congress, First Session, June 18, 1981

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    Joseph Hendrie, Acting Chairman of the Nuclear Regulatory Commission (NRC), was the principal witness at a June 18, 1981 hearing on whether the NRC is responsible for idling and delaying nuclear plants at a high cost to consumers. Congress is considering an interim licensing procedure that will allow plants to operate before safety hearings are completed. NRC evidence suggests that most plant delays are only projected ones, and that utilities must bear the blame for slippage in most construction schedules. Mr. Hendrie discussed the status of the nine impacted plants on the NRC list and outlined steps the Commission is taking to improve efficiency without impairing safety. His testimony and letters, statements, and other materials submitted for the record make up the hearing report

  19. 76 FR 79228 - Combined Licenses at William States Lee III Nuclear Station Site, Units 1 and 2; Duke Energy...

    Science.gov (United States)

    2011-12-21

    ... NUCLEAR REGULATORY COMMISSION [Docket Nos. 52-018 and 52-019; NRC-2008-0170] Combined Licenses at William States Lee III Nuclear Station Site, Units 1 and 2; Duke Energy Carolinas, LLC AGENCY: Nuclear.... SUMMARY: Notice is hereby given that the U.S. Nuclear Regulatory Commission (NRC) and the U.S. Army Corps...

  20. Nuclear power reactor licensing and regulation in the United States

    International Nuclear Information System (INIS)

    Shapar, H.K.

    1979-01-01

    The report is devoted to four subjects: an explanation of the origins, statutory basis and development of the present regulatory system in the United States; a description of the various actions which must be taken by a license applicant and by the Nuclear Regulatory Commission before a nuclear power plant can be constructed and placed on-line, an account of the current regulatory practices followed by the US NRC in licensing nuclear power reactors; an identification of some of the 'lessons learned' from the Three Mile Island accident and some proposed regulatory and legislative solutions. (NEA) [fr

  1. Current status of ground motions evaluation in seismic design guide for nuclear power facilities. Investigation on IAEA and US.NRC

    International Nuclear Information System (INIS)

    Nakajima, Masato; Ito, Hiroshi; Hirata, Kazuta

    2009-01-01

    Recently, IAEA (International Atomic Energy Agency) and US.NRC (US. Nuclear Regulatory Commission) published several standards and technical reports on seismic design and safety evaluation for nuclear power facilities. This report summarizes the current status of the international guidelines on seismic design and safety evaluation for nuclear power facilities in order to explore the future research topics. The main results obtained are as follows: 1 IAEA: (1) In the safety standard series, two levels are defined as seismic design levels, and design earthquake ground motion is determined corresponding to each seismic design level. (2) A new framework on seismic design which consists of conventional deterministic method and risk-based method is discussed in the technical report although the framework is not adopted in the safety guidelines. 2 USA: (1) US.NRC discusses a performance-based seismic design framework which has been originally developed by the private organization (American Society of Civil Engineers). (2) Design earthquakes and earthquake ground motion are mainly evaluated and determined based on probabilistic seismic hazard evaluations. 3 Future works: It should be emphasized that IAEA and US.NRC have investigated the implementation of risk-based concept into seismic design. The implementation of risk-based concept into regulation and seismic design makes it possible to consider various uncertainties and to improve accountability. Therefore, we need to develop the methods for evaluating seismic risk of structures, and to correlate seismic margin and seismic risk quantitatively. Moreover, the probabilistic method of earthquake ground motions, that is required in the risk-based design, should be applied to sites in Japan. (author)

  2. NRC performance assessment program

    International Nuclear Information System (INIS)

    Coplan, S.M.

    1986-01-01

    The U.S. Nuclear Regulatory Commission's (NRC) performance assessment program includes the development of guidance to the U.S. Department of Energy (DOE) on preparation of a license application and on conducting the studies to support a license application. The nature of the licensing requirements of 10 CFR Part 60 create a need for performance assessments by the DOE. The NRC and DOE staffs each have specific roles in assuring the adequacy of those assessments. Performance allocation is an approach for determining what testing and analysis will be needed during site characterization to assure that an adequate data base is available to support the necessary performance assessments. From the standpoint of establishing is implementable methodology, the most challenging performance assessment needed for licensing is the one that will be used to determine compliance with the U.S. Environmental Protection Agency's (EPA) containment requirement

  3. NRC overview: Repository QA

    International Nuclear Information System (INIS)

    Kennedy, J.E.

    1988-01-01

    The US Department of Energy (DOE) is on the threshold of an extensive program for characterizing Yucca Mountain in Nevada to determine if it is a suitable site for the permanent disposal of high-level nuclear waste. Earlier this year, the DOE published the Consultation Draft Site Characterization Plan for the Nevada site, which describes in some detail the studies that need to be performed to determine if the site is acceptable. In the near future, the final site characterization plan (SCP) is expected to be issued and large-scale site characterization activities to begin. The data and analyses that will result from the execution of that plan are expected to be the primary basis for the license application to the US Nuclear Regulatory Commission (NRC). Because of the importance of these data and analyses in the assessment of the suitability of the site and in the demonstration of that suitability in the NRC licensing process, the NRC requires in 10CFR60 that site characterization be performed under a quality assurance (QA) program. The QA program is designed to provide confidence that data are valid, retrievable, and reproducible. The documentation produced by the program will form an important part of the record on which the suitability of the site is judged in licensing. In addition, because the NRC staff can review only a selected portion of the data collected, the staff will need to rely on the system of controls in the DOE QA program

  4. Department of Energy licensing strategy

    International Nuclear Information System (INIS)

    Frei, M.W.

    1984-01-01

    The Department of Energy (DOE) is authorized by the Nuclear Waste Policy Act of 1982 (Act) to site, design, construct, and operate mined geologic repositories for high-level radioactive wastes and is required to obtain licenses from the Nuclear Regulatory Commission (NRC) to achieve that mandate. To this end the DOE has developed a licensing approach which defines program strategies and which will facilitate and ease the licensing process. This paper will discuss the regulatory framework within which the repository program is conducted, the DOE licensing strategy, and the interactions between DOE and NRC in implementing the strategy. A licensing strategy is made necessary by the unique technical nature of the repository. Such a facility has never before been licensed; furthermore, the duration of isolation of waste demanded by the proposed EPA standard will require a degree of reliance on probabilistic performance assessment as proof of compliance that is a first of a kind for any industry. The licensing strategy is also made necessary by the complex interrelationships among the many involved governmental agencies and even within DOE itself, and because these relationships will change with time. Program activities which recognize these relationships are essential for implementing the Act. The guiding principle in this strategy is an overriding commitment to safeguarding public health and safety and to protecting the environment

  5. The Role of License Renewal in PLiM for U.S. Nuclear Power Plants

    International Nuclear Information System (INIS)

    Young, G.G.

    2012-01-01

    At the 2nd International Symposium on Nuclear Power Plant Life Management (PLiM) in 2007, it was reported that the NRC had approved renewal of operating licenses for 48 nuclear units, which would allow operation for up to 60 years (i.e., an additional 20 years from the original 40-year license term). Of the 104 operating nuclear units in the U.S. in 2007, it was anticipated that almost 100% would eventually pursue license renewal. At that time, it was also concluded that the regulatory process was stable and predictable for license renewal, and that successful PLiM activities were helping to ensure the safety, economic, and political factors in the U.S. remained favorable for continued success with license renewal. The status of license renewal in 2012 is even better than it was in 2007. As of April 2012, the NRC has approved renewal of the operating licenses for 71 nuclear units and has applications under review for 15 more units. In addition, nuclear plant owners of at least 14 more units have announced plans to submit license renewal applications over the next few years. This brings the total of renewed licenses and announced plans for license renewal to 96% of the 104 currently operating nuclear units in the U.S. The prediction that almost 100% would eventually pursue license renewal is assured. This positive trend for long term operation of nuclear power plants in the U.S. is attributed to: (1) the success of PLiM activities in achieving an excellent safety record for the nuclear power industry and in ensuring on-going positive economics for nuclear plant operation, and (2) the stable and predictable regulatory process for license renewal. U.S. efforts are now underway to consider long term operation for more than 60 years and the process of preparing a second round of license renewals for up to 80 years of operation is likely to begin within the next few years. (author)

  6. Implementing 'Continuous Improvement' in the U.S. Nuclear Regulatory Commission's Decommissioning Program

    International Nuclear Information System (INIS)

    Orlando, D. A.; Buckley, J. T.; Johnson, R. L.; Gillen, D. M.

    2006-01-01

    The United States Nuclear Regulatory Commission's (US NRC's) comprehensive decommissioning program encompasses the decommissioning of all US NRC licensed facilities, ranging from the termination of routine licenses for sealed sources, to the closure of complex materials sites and nuclear power reactor facilities. Of the approximately 200 materials licenses that are terminated each year, most are routine and require little, if any, remediation to meet the US NRC unrestricted release criteria. However, some present technical and policy challenges that require large expenditures of resources, including a few complex materials sites that have requested license termination under the restricted-use provisions of 10 CFR 20.1403. Fiscal constraints to reduce budgeted resources in the decommissioning program, as well as concerns over the time to complete the decommissioning process have led to actions to improve the program and use resources more efficiently. In addition, the US NRC's Strategic Plan requires efforts to identify and implement improvements to US NRC programs in order to improve efficiency, effectiveness, timeliness, and openness, of the US NRC's activities, while maintaining the necessary focus on safety. Decommissioning regulations, and more recently the analysis of several issues associated with implementing those regulations, also have been significant catalysts for improvements in the decommissioning program. Actions in response to these catalysts have resulted in a program focused on the management of complex sites in a comprehensive, consistent, and risk-informed manner, as opposed to the past practice of focusing on sites deemed to be problematic. This paper describes the current status of the decommissioning of US NRC-licensed nuclear facilities, including an overview of recent decommissioning project completion efforts. It provides a detailed summary of past, current, and future improvements in the US NRC decommissioning program including the

  7. Intervention in independent spent fuel storage facility license application proceedings for storage on the power plant site

    International Nuclear Information System (INIS)

    Jordan, J.

    1992-01-01

    This presentation summarizes the intervention in the Nuclear Regulatory Commission (NRC) licensing process for currently operating Independent Spent fuel Storage Installation (ISFSI) projects at Carolina Power and Light's Company's H.B. Robinson, Duke Power Company's Oconee, and Virginia Power Company's Surry. In addition, intervention at dry storage facilities that are currently under development are also described. The utilities and reactors include Baltimore Gas and Electric Company's Calvert Cliffs, Public Service Company of Colorado's Fort St. Vrain plant, Northern States Power Company's Prairie Island, Wisconsin Electric Power Company's Point Beach, and Consumers Power Company's Palisades

  8. Public citizen slams NRC on nuclear inspections

    International Nuclear Information System (INIS)

    Newman, P.

    1993-01-01

    Charging the Nuclear Regulatory Commission with open-quotes abandoning tough regulation of the nuclear power industry,close quotes Public Citizen's Critical Mass Energy Project on Wednesday released a report asserting that NRC is shielding sensitive internal nuclear industry self-evaluations from public scrutiny. Based on their review of 56 Institute of Nuclear Power Operations reports and evaluations and comparing these to the NRC's Systematic Assessment of Licensee Performance reports for the same plants, it was concluded that the NRC failed to address issues raised in all eight areas evaluated by the INPO reports

  9. NRC testimony before the Subcommittee on Nuclear Regulation of the Committee on Environment and Public Works, United States Senate

    International Nuclear Information System (INIS)

    1977-10-01

    NRC staff testimony before the U.S. Senate's Subcommittee on Nuclear Regulation, Committee on Environment and Public, is presented. The testimony pertains to the staff's role in the licensing process affecting the Virginia Electric and Power Company's North Anna nuclear plant. It explains the steps taken since 1973, and particularly since formation of the U.S. Nuclear Regulatory Commission in January 1975, to improve the timeliness of submission of information from the staff to the Commission licensing boards

  10. Operator licensing examiner standards

    International Nuclear Information System (INIS)

    1993-01-01

    The Operator Licensing Examiner Standards provide policy and guidance to NRC examiners and establish the procedures and practices for examining licensees and applicants for reactor operator and senior reactor operator licenses at power reactor facilities pursuant to Part 55 of Title 10 of the Code of Federal Regulations (10 CFR 55). The Examiner Standards are intended to assist NRC examiners and facility licensees to better understand the initial and requalification examination processes and to ensure the equitable and consistent administration of examinations to all applicants. These standards are not a substitute for the operator licensing regulations and are subject to revision or other internal operator licensing policy changes

  11. Nuclear power plant licensing: opportunities for improvement

    International Nuclear Information System (INIS)

    1977-06-01

    On April 20, 1977, the Commission directed that recently completed licensing actions be reviewed by the staff for the purpose of identifying ways to improve the effectiveness and efficiency of NRC nuclear power plant licensing activities. This report summarizes the results of a study undertaken by an internal ad hoc Study Group established in response to that directive. The Study Group limited its considerations to safety and environmental review activities. The background, scope, assumptions and objectives of the study are discussed. A prime assumption of this study was that improvements in the efficiency should not be permitted to reduce the current quality achieved in the licensing process. This consideration underlies the conclusions and recommendations of the study

  12. Decommissioning of the Nuclear Licensed Facilities at the Fontenay aux Roses CEA Center

    International Nuclear Information System (INIS)

    Jeanjacques, Michel; Piketty, Laurence; Mandard, Lionel; Pedron, Guy; Boissonneau, Jean Francois; Fouquereau, Alain; Pichereau, Eric; Lethuaire, Nathalie; Estivie, David; Binet, Cedric; Meden, Igor

    2008-01-01

    This is a summary of the program for the decommissioning of all the CEA's facilities in Fontenay aux Roses. The particularity of this center is that it is located in a built-up area. Taking into account the particularities of the various buildings and the levels of radioactivity in them, it was possible to devise a coherent, optimized program for the CEA-FAR licensed nuclear facility decommissioning operations

  13. Preparation of Phased and Merged Safety Analysis Reports for New DOE Nuclear Facilities

    International Nuclear Information System (INIS)

    BISHOP, G.E.

    2000-01-01

    The Spent Nuclear Fuels Project (SNFP) is charged with moving to storage 2,100 metric tons of spent nuclear fuel elements left over from plutonium production at DOE'S Hanford site in Washington state. Two new facilities, the Cold Vacuum Drying Facility (CVDF) and the Canister Storage Building (CSB) are in final construction. In order to meet aggressive schedule commitments, the SNFP chose to prepare the safety analysis reports (SAR's) in phases that covered only specific portions of each facility's design as it was built. Each SAR also merged the preliminary and final safety analysis reports into a single SAR, thereby covering all aspects of design, construction, and operation for that portion (phase) of the facility. A policy of ''NRC equivalency'' was also implemented in parallel with this effort, with the goal of achieving a rigor of safety analysis equivalent to that of NRC-licensed fuel processing facilities. DOE Order 5480.23. ''Nuclear Safety Analysis Reports'' allows preparation of both a phased and a merged SAR to accelerate construction schedules. However, project managers must be aware that such acceleration is not guaranteed. Managers considering this approach for their project should be cognizant of numerous obstacles that will be encountered. Merging and phasing SAR's will create new, unique, and unanticipated difficulties which may actually slow construction unless expeditiously and correctly managed. Pitfalls to be avoided and good practices to be implemented in preparing phased and merged SAR's are presented. The value of applying NRC requirements to the DOE safety analysis process is also discussed. As of December, 1999, the SNFP has completed and approved a SAR for the CVDF. Approval of the SAR for the CSB is pending

  14. Managing the high level waste nuclear regulatory commission licensing process

    International Nuclear Information System (INIS)

    Baskin, K.P.

    1992-01-01

    This paper reports that the process for obtaining Nuclear Regulatory Commission permits for the high level waste storage facility is basically the same process commercial nuclear power plants followed to obtain construction permits and operating licenses for their facilities. Therefore, the experience from licensing commercial reactors can be applied to the high level waste facility. Proper management of the licensing process will be the key to the successful project. The management of the licensing process was categorized into four areas as follows: responsibility, organization, communication and documentation. Drawing on experience from nuclear power plant licensing and basic management principles, the management requirement for successfully accomplishing the project goals are discussed

  15. Chemical process safety at fuel cycle facilities

    International Nuclear Information System (INIS)

    Ayres, D.A.

    1997-08-01

    This NUREG provides broad guidance on chemical safety issues relevant to fuel cycle facilities. It describes an approach acceptable to the NRC staff, with examples that are not exhaustive, for addressing chemical process safety in the safe storage, handling, and processing of licensed nuclear material. It expounds to license holders and applicants a general philosophy of the role of chemical process safety with respect to NRC-licensed materials; sets forth the basic information needed to properly evaluate chemical process safety; and describes plausible methods of identifying and evaluating chemical hazards and assessing the adequacy of the chemical safety of the proposed equipment and facilities. Examples of equipment and methods commonly used to prevent and/or mitigate the consequences of chemical incidents are discussed in this document

  16. NRC Bulletin No. 87-02, Supplement 1: Fastener testing to determine conformance with applicable material specifications

    International Nuclear Information System (INIS)

    Rossi, C.E.

    1992-01-01

    Item 5 of NRC Compliance Bulletin 87-02 requested that all holders of operating licenses or construction permits for nuclear power reactors information regarding the identity of the suppliers and manufacturers of the safety-related and non-safety-related fasteners selected for testing. After further consideration, the NRC has determined that it needs information regarding the identity of all vendors from which safety-related and non-safety-related fasteners have been obtained within the past 10 years, a reasonable period which will not put undue burden on addressees. This information will assist the NRC in determining whether nuclear facility fasteners in use have been supplied in accordance with their intended use. In addition, this information is needed so that the NRC can properly coordinate information with other government agencies concerned with problems identified in the quality of fasteners

  17. Operating reactors licensing actions summary. Vol. 3, No. 6

    International Nuclear Information System (INIS)

    1983-07-01

    The operating reactors licensing actions summary is designed to provide the management of the Nuclear Regulatory Commission (NRC) with an overview of licensing actions dealing with operating power and nonpower reactors. These reports utilize data collected from the Division of Licensing in the Office of Nuclear Reactor Regulation and are prepared by the Office of Management and Program Analysis. This summary report is published primarily for internal NRC use in managing the operating reactors licensing actions program. Its content will change based on NRC management informational requirements

  18. Operating reactors licensing actions summary. Volume 5, No. 6

    International Nuclear Information System (INIS)

    1985-08-01

    The operating reactors licensing actions summary is designed to provide the management of the Nuclear Regulatory Commission (NRC) with an overview of licensing actions dealing with operating power and nonpower reactors. These reports utilize data collected from the Division of Licensing in the Office of Nuclear Reactor Regulation and are prepared by the Office of Resource Management. This summary report is published for internal NRC use in managing the Operating Reactors Licensing Actions Program. Its content will change based on NRC management informational requirements

  19. Operating Nuclear Power Stations in a Regulated Cyber Security Environment

    Energy Technology Data Exchange (ETDEWEB)

    Dorman, E.

    2014-07-01

    The United States Nuclear Regulatory Commission (NRC) issued 10CFR73.54 to implement a regulated Cyber Security Program at each operating nuclear reactor facility. Milestones were implemented December 31, 2012 to mitigate the attack vectors for the most critical digital assets acknowledged by the industry and the NR C. The NRC inspections have begun. The nuclear Cyber Security Plan, implemented by the site Cyber Security Program (Program), is an element of the operating license at each facility. (Author)

  20. Operating Nuclear Power Stations in a Regulated Cyber Security Environment

    International Nuclear Information System (INIS)

    Dorman, E.

    2014-01-01

    The United States Nuclear Regulatory Commission (NRC) issued 10CFR73.54 to implement a regulated Cyber Security Program at each operating nuclear reactor facility. Milestones were implemented December 31, 2012 to mitigate the attack vectors for the most critical digital assets acknowledged by the industry and the NR C. The NRC inspections have begun. The nuclear Cyber Security Plan, implemented by the site Cyber Security Program (Program), is an element of the operating license at each facility. (Author)

  1. United States Nuclear Regulatory Commission staff practice and procedure digest: Commission, Appeal Board and Licensing Board decisions, July 1972--December 1987

    International Nuclear Information System (INIS)

    1988-11-01

    This Revision 10 of the fourth edition of the NRC Staff Practice and Procedure Digest contains a digest of a number of Commission, Atomic Safety and Licensing Appeal Board, and Atomic Safety and licensing Board decisions issued during the period from July 1, 1972 to December 31, 1987 interpreting the NRC's Rules of Practice in 10 CFR Part 2. This Revision 10 replaces in part earlier editions and supplements and includes appropriate changes reflecting the amendments to the Rules of Practice effective through December 31, 1987. The Digest is roughly structured in accordance with the chronological sequence of the nuclear facility licensing process as set forth in Appendix A to 10 CFR Part 2. Those decisions which did not fit into that structure are dealt with in a section on ''general matters.'' Where appropriate, particular decisions are indexed under more than one heading. Some topical headings contain no decision citations or discussion

  2. United States Nuclear Regulatory Commission staff practice and procedure digest: Commission, Appeal Board and Licensing Board decisions, July 1972--September 1987

    International Nuclear Information System (INIS)

    1988-07-01

    This Revision 9 of the fourth edition of the NRC Staff Practice and Procedure Digest contains a digest of a number of Commission, Atomic Safety and Licensing Appeal Board, and Atomic Safety and Licensing Board decisions issued during the period from July 1, 1972 to September 30, 1987 interpreting the NRC's Rules of Practice in 10 CFR Part 2. This Revision 9 replaces in part earlier editions and supplements and includes appropriate changes reflecting the amendments to the Rules of Practice effective through September 30, 1987. The Digest is roughly structured in accordance with the chronological sequence of the nuclear facility licensing process as set forth in Appendix A to 10 CFR Part 2. Those decisions which did not fit into that structure are dealt with in a section on ''general matters.'' Where appropriate, particular decisions are indexed under more than one heading. Some topical headings contain no decisions citations or discussion. It is anticipated that future updates to the Digest will utilize these headings

  3. Current regulatory and licensing status for byproduct sources, facilities and applications

    International Nuclear Information System (INIS)

    Tingey, G.L.; Jensen, G.A.; Hazelton, R.F.

    1985-02-01

    Public use of nuclear byproducts, especially radioactive isotopes, will require approval by various regulatory agencies. Use of cesium-137 as an irradiation source for sterilizing medical products will require US Nuclear Regulatory Commission (NRC) approval. Two applications have been filed with NRC, and approval is expected soon. Widespread use of irradiation for food products depends on a favorable ruling by the Food and Drug Administration (FDA). A ruling is pending that would permit irradiation of fruits and vegetables up to 100 krad. NRC also controls the use of isotopes in remote power generators, but little regulatory action has been required in recent years. Recent development of radioluminescent (RL) lighting for runway lights has led to interest by commercial manufacturers. At the present time, a license has been issued to at least one manufacturer for sale of tritium-powered runway lights. 28 refs., 1 fig

  4. Summary and analysis of public comments on NUREG-1317: Regulatory options for nuclear plant license renewal: Final report

    International Nuclear Information System (INIS)

    Ligon, D.M.; Seth, S.S.

    1989-03-01

    On August 29, 1988, the US Nuclear Regulatory Commission (NRC) issued an Advance Notice of Proposed Rulemaking on nuclear plant license renewal and solicited public comments on NUREG-1317, ''Regulatory Options for Nuclear Plant License Renewal.'' NUREG-1317 presents a discussion of fifteen topics involving technical, environmental, and procedural issues and poses a set of related questions. As part of its ongoing task for the NRC, The MITRE Corporation has summarized and analyzed the public comments received. Fifty-three written comments were received. Of these, 83 percent were from nuclear industry representatives; the remaining comments represented federal and state agencies, public interest groups, and a private citizen

  5. NRC staff review of licensee responses to pressure-locking and thermal-binding issue

    Energy Technology Data Exchange (ETDEWEB)

    Rathbun, H.J.

    1996-12-01

    Commercial nuclear power plant operating experience has indicated that pressure locking and thermal binding represent potential common mode failure mechanisms that can cause safety-related power-operated gate valves to fail in the closed position, thus rendering redundant safety-related systems incapable of performing their safety functions. In Generic Letter (GL) 95-07, {open_quotes}Pressure Locking and Thermal Binding of Safety-Related Power-Operated Gate Valves,{close_quotes} the U.S. Nuclear Regulatory Commission (NRC) staff requested that nuclear power plant licensees take certain actions to ensure that valves susceptible to pressure locking or thermal binding are capable of performing their safety functions within the current licensing bases of the facility. The NRC staff has received summary information from licensees in response to GL 95-07 describing actions they have taken to prevent the occurrence of pressure locking and thermal binding. The NRC staff has developed a systematic process to help ensure uniform and consistent review of licensee submittals in response to GL 95-07.

  6. Cleansing and dismantling of CEA-Saclay nuclear licensed facilities

    International Nuclear Information System (INIS)

    Jeanjacques, Michel; Delaire, Isabelle; Glevarec, Rebecca; Mandard, Lionel; Martin, Jean-Louis; Serrano, Roger

    2013-01-01

    This summary presents the cleansing and dismantling operations currently realized on the CEA center of Saclay (CEA-Saclay). It was initiated at the beginning of the 2000 years a cleansing and dismantling program of the old Nuclear Licensed Facilities (NLF). Currently this program relates the dismantling operations to the Hot Laboratories (Laboratoires de Haute Activite: LHA) and the old workshops of the Liquid Waste Treatment Plant (Station des Effluents Liquides: STEL), the dismantling preparation of Ulysse reactor and the dismantling studies to the Solid Waste Management Plant (SWMP; Zone de Gestion des Dechets Solides) and the Osiris reactor. (authors)

  7. Licensed-fuel-facility status report, inventory difference data January 1981-June 1981

    International Nuclear Information System (INIS)

    1982-07-01

    NRC is committed to the periodic release of inventory difference data from the licensed fuel facilities after the agency has had an opportunity to review the data and has performed any related investigations associated with the data. Information included in this report includes inventory difference data for active fuel fabrication facilities possessing more than one effective kilogram of high enriched uranium, low enriched uranium, plutonium, or uranium-233

  8. NRC safety research in support of regulation - FY 1994. Volume 9

    International Nuclear Information System (INIS)

    1995-06-01

    This report, the tenth in a series of annual reports, was prepared in response to congressional inquiries concerning how nuclear regulatory research is used. It summarizes the accomplishments of the Office of Nuclear Regulatory Research during FY 1994. The goal of the Office of Nuclear Regulatory Research (RES) is to ensure the availability of sound technical bases for timely rulemaking and related decisions in support of NRC regulatory/licensing/inspection activities. RES also has responsibilities related to the resolution of generic safety issues and to the review of licensee submittals regarding individual plant examinations. It is the responsibility of RES to conduct the NRC's rulemaking process, including the issuance of regulatory guides and rules that govern NRC licensed activities

  9. System engineering in the Nuclear Regulatory Commission licensing process: Program architecture process and structure

    International Nuclear Information System (INIS)

    Romine, D.T.

    1989-01-01

    In October 1987, the U.S. Nuclear Regulatory Commission (NRC) established the Center for Nuclear Waste Regulatory Analyses at Southwest Research Institute in San Antonio, Texas. The overall mission of the center is to provide a sustained level of high-quality research and technical assistance in support of NRC regulatory responsibilities under the Nuclear Waste Policy Act (NWPA). A key part of that mission is to assist the NRC in the development of the program architecture - the systems approach to regulatory analysis for the NRC high-level waste repository licensing process - and the development and implementation of the computer-based Program Architecture Support System (PASS). This paper describes the concept of program architecture, summarizes the process and basic structure of the PASS relational data base, and describes the applications of the system

  10. 76 FR 387 - Atomic Safety and Licensing Board; AREVA Enrichment Services, LLC (Eagle Rock Enrichment Facility)

    Science.gov (United States)

    2011-01-04

    ... and Licensing Board; AREVA Enrichment Services, LLC (Eagle Rock Enrichment Facility) December 17, 2010... construction and operation of a gas centrifuge uranium enrichment facility--denoted as the Eagle Rock... site at http://www.nrc.gov/materials/fuel-cycle-fac/arevanc.html . These and other documents relating...

  11. License renewal process

    International Nuclear Information System (INIS)

    Fable, D.; Prah, M.; Vrankic, K.; Lebegner, J.

    2004-01-01

    The purpose of this paper is to provide information about license renewal process, as defined by Nuclear Regulatory Commission (NRC). The Atomic Energy Act and NRC regulations limit commercial power reactor licenses to an initial 40 years but also permit such licenses to be renewed. This original 40-year term for reactor licenses was based on economic and antitrust considerations not on limitations of nuclear technology. Due to this selected time period; however, some structures and components may have been engineered on the basis of an expected 40-year service life. The NRC has established a timely license renewal process and clear requirements codified in 10 CFR Part 51 and 10 CFR Part 54, that are needed to assure safe plant operation for extended plant life. The timely renewal of licenses for an additional 20 years, where appropriate to renew them, may be important to ensuring an adequate energy supply during the first half of the 21st Century. License renewal rests on the determination that currently operating plants continue to maintain adequate levels of safety, and over the plant's life, this level has been enhanced through maintenance of the licensing bases, with appropriate adjustments to address new information from industry operating experience. Additionally, NRC activities have provided ongoing assurance that the licensing bases will continue to provide an acceptable level of safety. This paper provides additional discussion of license renewal costs, as one of key elements in evaluation of license renewal justifiability. Including structure of costs, approximately value and two different approaches, conservative and typical. Current status and position of Nuclear Power Plant Krsko, related to license renewal process, will be briefly presented in this paper. NPP Krsko is designed based on NRC Regulations, so requirements from 10 CFR 51, and 10 CFR 54, are applicable to NPP Krsko, as well. Finally, this paper will give an overview of current status of

  12. Physical security of nuclear facilities

    International Nuclear Information System (INIS)

    Dixon, H.

    1987-01-01

    A serious problem with present security systems at nuclear facilities is that the threats and standards prepared by the NRC and DOE are general, and the field offices are required to develop their own local threats and, on that basis, to prepared detailed specifications for security systems at sites in their jurisdiction. As a result, the capabilities of the systems vary across facilities. Five steps in particular are strongly recommended as corrective measures: 1. Those agencies responsible for civil nuclear facilities should jointly prepare detailed threat definitions, operational requirements, and equipment specifications to protect generic nuclear facilities, and these matters should be issued as policy. The agencies should provide sufficient detail to guide the design of specific security systems and to identify candidate components. 2. The DOE, NRC, and DOD should explain to Congress why government-developed security and other military equipment are not used to upgrade existing security systems and to stock future ones. 3. Each DOE and NRC facility should be assessed to determine the impact on the size of the guard force and on warning time when personnel-detecting radars and ground point sensors are installed. 4. All security guards and technicians should be investigated for the highest security clearance, with reinvestigations every four years. 5. The processes and vehicles used in intrafacility transport of nuclear materials should be evaluated against a range of threats and attack scenarios, including violent air and vehicle assaults. All of these recommendations are feasible and cost-effective. The appropriate congressional subcommittees should direct that they be implemented as soon as possible

  13. Implementation study for the NRC Application and Development Facility

    International Nuclear Information System (INIS)

    Sherwood, R.J.; Ross, D.J.; Sasser, D.W.

    1979-01-01

    The Nuclear Regulatory Commission (NRC) has expressed the desire to establish an Application and Development Facility (ADF) for NRC Headquarters. The ADF is a computer system which will provide safeguards analysts access to safeguards analysis computer software. This report analyzes the issues, requirements and options available in the establishment of an ADF. The purpose and goals of the ADF are presented, along with some general issues to be considered in the implementation of such a system. A phased approach for ADF implementation, which will allow for the earliest possible access to existing codes and also allow for future expansion, is outlined. Several options for central computers are discussed, along with the characteristics and approximate costs for each. The report concludes with recommended actions proposed to start the development of the ADF

  14. Standard Guide for Preparing Waste Management Plans for Decommissioning Nuclear Facilities

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This guide addresses the development of waste management plans for potential waste streams resulting from decommissioning activities at nuclear facilities, including identifying, categorizing, and handling the waste from generation to final disposal. 1.2 This guide is applicable to potential waste streams anticipated from decommissioning activities of nuclear facilities whose operations were governed by the Nuclear Regulatory Commission (NRC) or Agreement State license, under Department of Energy (DOE) Orders, or Department of Defense (DoD) regulations. 1.3 This guide provides a description of the key elements of waste management plans that if followed will successfully allow for the characterization, packaging, transportation, and off-site treatment or disposal, or both, of conventional, hazardous, and radioactive waste streams. 1.4 This guide does not address the on-site treatment, long term storage, or on-site disposal of these potential waste streams. 1.5 This standard does not purport to address ...

  15. The role of research in nuclear regulation: An NRC perspective

    International Nuclear Information System (INIS)

    Morrison, D.L.

    1997-01-01

    The role of research in the US Nuclear Regulatory Commission was broadly defined by the US Congress in the Energy Reorganization Act of 1975. This Act empowered the Commission to do research that it deems necessary for the performance of its licensing and regulatory functions. Congress cited a need for an independent capability that would support the licensing and regulatory process through the development and analysis of technical information related to reactor safety, safeguards and environmental protection. Motivation for establishing such a safety research function within the regulatory agency is the need to address the defects, abnormal occurrences and shutdowns involving light water reactors. Congress further stated that the NRC should limit its research to open-quotes confirmatory assessmentclose quotes and that the Agency open-quotes should never be placed in a position to generate, and then have to defend, basic design data of its own.close quotes The author reviews the activities of the research arm as related to regulatory research, performed in the past, today, and projected for the future. NRC's public health and safety mission demands that its research products be developed independently from its licensees; be credible and of the highest technical quality as established through peer review; and open to the public scrutiny through publication in technical journals as well as NRC documents. A special trust is placed on regulatory research through the products it produces as well as the three dimensions that underlie the processes through which they are produced

  16. Review process for license renewal applications

    International Nuclear Information System (INIS)

    Craig, John W.; Kuo, P.T.

    1991-01-01

    In preparation for license renewal reviews, the Nuclear Regulatory Commission has recently published for public review and comment a proposed rule for license renewal and a draft Standard Review Plan as well as a draft Regulatory Guide relating to the implementation of the proposed rule. In support of future license renewal applications, the nuclear industry has also submitted 11 industry reports for NRC review and approval. This paper briefly describe how these parallel regulatory and industry activities will be factored into the NRC review process for license renewal. (author)

  17. Licensed fuel facility status report. Inventory difference data, January-June 1983. Volume 4, No. 1

    International Nuclear Information System (INIS)

    1984-03-01

    NRC is committed to the periodic publication of licensed fuel facilities inventory difference data, following agency review of the information and completion of any related investigations. Information in this report includes inventory difference data for active fuel fabrication facilities possessing more than one effective kilogram of high enriched uranium, low enriched uranium, or uranium-233

  18. Nuclear Regulatory Commission Staff practice and procedure digest. Commission, Appeal Board and Licensing Board Decision, July 1972 - June 1995

    International Nuclear Information System (INIS)

    1996-04-01

    This is the seventh edition of the Nuclear Regulatory Commission (NRC) Staff Practice and Procedure Digest. It contains a digest of a number of Commission, Atomic Safety and Licensing Appeal Board, and Atomic Safety and Licensing Board decisions issued during the period from July 1, 1972 to June 1995 interpreting the NRC rules of practice in 10 CFR part 2

  19. NRC [Nuclear Regulatory Commission] staff evaluation of the General Electric Company Nuclear Reactor Study (''Reed Report'')

    International Nuclear Information System (INIS)

    1987-07-01

    In 1975, the General Electric Company (GE) published a Nuclear Reactor Study, also referred to as ''the Reed Report,'' an internal product-improvement study. GE considered the document ''proprietary'' and thus, under the regulations of the Nuclear Regulatory Commission (NRC), exempt from mandatory public disclosure. Nonetheless, members of the NRC staff reviewed the document in 1976 and determined that it did not raise any significant new safety issues. The staff also reached the same conclusion in subsequent reviews. However, in response to recent inquiries about the report, the staff reevaluated the Reed Report from a 1987 perspective. This re-evaluation, documented in this staff report, concluded that: (1) there are no issues raised in the Reed Report that support a need to curtail the operation of any GE boiling water reactor (BWR); (2) there are no new safety issues raised in the Reed Report of which the staff was unaware; and (3) although certain issues addressed by the Reed Report are still being studied by the NRC and the industry, there is no basis for suspending licensing and operation of GE BWR plants while these issues are being resolved

  20. 78 FR 29393 - University of Missouri-Columbia Facility Operating License No. R-103

    Science.gov (United States)

    2013-05-20

    ... Facility Operating License No. R-103 AGENCY: Nuclear Regulatory Commission. ACTION: License renewal... the renewal of Facility Operating License No. R-103 (``Application''), which currently authorizes the... application for the renewal of Facility Operating License No. R-103, which, currently authorizes the licensee...

  1. Licensing and supervision of nuclear facilities in Finland; Genehmigung und Aufsicht von nuklearen Anlagen in Finnland

    Energy Technology Data Exchange (ETDEWEB)

    Laaksonen, J. [STUK - Radiation and Nuclear Safety Authority, Helsinki (Finland)

    2006-01-01

    In Finland, the licensing process of all nuclear facilities is specified in the Nuclear Energy Act. The licensing procedure comprises three steps, each of which requires a decision by the government: basic decision, construction permit, and operating license. All licensing decisions are taken upon application to the Ministry of Trade and Industry. The Ministry invites comments and opinions on a broad basis and drafts a statement for the government. The basic decision by the government is political, pre-supposing a positive statement by the Central Office for Nuclear Safety (STUK) and a positive decision by the local government of the planned plant location. The construction permit and the operating license are mainly based on points of nuclear safety. STUK is the independent nuclear supervisory agency with administrative powers; its staff has the technical and scientific competence required for safety assessments and for supervision. STUK operates under the supervision of the Ministry for Social Affairs and Health which, to demonstrate its independence, has no duties in the energy sector and, in addition, supervises STUK in administrative matters, not in scientific and technical decisions. Internal rules of STUK ensure neutrality also of its staff in matters of energy policy. The activities of STUK as a supervisory and licensing authority in Finland are described in detail for the management of spent nuclear fuel and the new Olkiluoto 3 nuclear power plant currently under construction. (orig.)

  2. Nuclear power plant operator licensing

    International Nuclear Information System (INIS)

    1997-01-01

    The guide applies to the nuclear power plant operator licensing procedure referred to the section 128 of the Finnish Nuclear Energy Degree. The licensing procedure applies to shift supervisors and those operators of the shift teams of nuclear power plant units who manipulate the controls of nuclear power plants systems in the main control room. The qualification requirements presented in the guide also apply to nuclear safety engineers who work in the main control room and provide support to the shift supervisors, operation engineers who are the immediate superiors of shift supervisors, heads of the operational planning units and simulator instructors. The operator licensing procedure for other nuclear facilities are decided case by case. The requirements for the basic education, work experience and the initial, refresher and complementary training of nuclear power plant operating personnel are presented in the YVL guide 1.7. (2 refs.)

  3. The licensing processes influence on nuclear market

    International Nuclear Information System (INIS)

    Locatelli, Giorgio; Mancini, Mauro; Sainati, Tristano; Sallinen, Liisa

    2011-01-01

    The paper deals with the licensing nuclear power plants; it focuses primarily on the licensing process implications into the international nuclear market. Nowadays there are twenty-six countries that are planning to build new nuclear facilities, and thirty-seven where nuclear reactors are proposed; on the other hand, there are mainly ten international reactor vendors. At international level, there are few vendors that have sufficient resources, capabilities and experience to carry out the design and delivering of a nuclear power plant in the international market; On the other hand, the licensing processes are strictly dependent on national law frameworks, and on the nuclear policies. The paper proposes a comparison of six licensing processes (the ones established in Finland, France, Italy, South Korea, USA and UK), and analyzes its main features and implications; the IAEA licensing process is taken as reference point. The objective of the paper is to propose a systemic approach for considering the licensing procedures. The framework proposed enables facilitating the licensing management and inferring the main features of licensing contexts. The paper concludes with a forecast of the nuclear licensing context, especially with respect to the fourth generation of nuclear reactors. (author)

  4. Licensing procedures and siting problems of nuclear power stations in Japan

    International Nuclear Information System (INIS)

    Saito, Osamu.

    1981-10-01

    This paper describes the legislative and regulatory framework for nuclear power plant licensing in Japan and the different stages in the licensing procedure. The role and responsibilities of the authorities competent for the different types of nuclear facilities (power generation, ship propulsion and research) are also reviewed. The Annexes to the paper contain charts of the administrative structure for nuclear activities, the licensing procedure and nuclear facilities. (NEA) [fr

  5. Socio-economic impacts of nuclear generating stations: summary report on the NRC post-licensing studies

    International Nuclear Information System (INIS)

    Chalmers, J.; Pijawka, D.; Branch, K.; Bergmann, P.; Flynn, J.; Flynn, C.

    1982-07-01

    Information is presented concerning the conceptual framework for the assessment of socioeconomic impacts; methodology for the post-licensing case studies; socioeconomic changes due to the construction and operation of nuclear generating stations; public response to the construction and operation of nuclear generating stations; socioeconomic consequences of the accident at Three Mile Island; the significance of socioeconomic change due to the construction and operation of nuclear generating stations; findings of the post-licensing studies relative to the nuclear station impact literature; and implications of the findings for projective assessments and planning studies

  6. Compilation of fastener testing data received in response to NRC Compliance Bulletin 87-02

    International Nuclear Information System (INIS)

    Cwalina, G.C.; Conway, J.T.; Parker, L.B.

    1989-06-01

    On November 6, 1987, the Nuclear Regulatory Commission (NRC) issued Bulletin 87-02, ''Fastener Testing to Determine Conformance With Applicable Material Specifications,'' to all holders of operating licenses or construction permits for nuclear power reactors (licensees). The bulletin was issued so that the NRC staff could gather data to determine whether counterfeit fasteners are a problem in the nuclear power industry. The bulletin requested nuclear power plant owners to determine whether fasteners obtained from suppliers and/or manufacturers for use in their facilities meet the mechanical and chemical specifications stipulated in the procurement documents. The licensees were requested to sample a minimum of 10 safety-related and 10 non-safety-related fasteners (studs, bolts, and/or cap screws) and a sample of typical nuts that would be used with each fastener and to report the testing results to the NRC. The results of this study did not indicate a safety concern relating to the use of mismarked or counterfeit fasteners in the nuclear industry, but they did indicate a nonconformance rate of 8 to 12 percent for fasteners. The NRC staff is considering taking action to improve the effectiveness of receipt inspection and testing programs for all materials at nuclear power plants

  7. Regulatory challenges facing the global nuclear energy partnership

    International Nuclear Information System (INIS)

    Lyman, Edwin S.

    2007-01-01

    In January 2006 the Department of Energy (DOE) announced the creation of the Global Nuclear Energy Partnership (GNEP), an ambitious plan to reshape the nuclear energy production sector both in the United States and worldwide. If fully realized in the United States, GNEP would entail the construction of a large number of sodium-cooled fast reactors utilizing actinide-based fuels, multiple commercial-scale reprocessing plants for both light-water and fast reactors, and fast reactor fuel fabrication plants. It appears likely that the first commercial-scale GNEP facilities, as well as a future full-scale GNEP complex, would fall under the licensing jurisdiction of the Nuclear Regulatory Commission (NRC). This will be a challenging endeavor for the NRC, primarily because the proposed GNEP facilities will in large part be based on novel and untested designs and processes that have not been developed on a commercial scale. In order to effectively regulate the GNEP complex, the NRC will have to quickly address the many technical and policy questions that will arise in any GNEP licensing scheme. This paper identifies some difficult issues that will be encountered in GNEP licensing by examining the potential implications of NRC's current policies and regulatory requirements, and analyzing the impacts of some emerging post-9/11 security issues. (author)

  8. Licensed fuel facility status report. Inventory difference data, January-June 1985. Volume 6, No. 1

    International Nuclear Information System (INIS)

    1986-02-01

    NRC is committed to the periodic publication of licensed fuel facilities' inventory difference data, following agency review of the information and completion of any related investigations. Information in this report includes inventory difference data for active fuel fabrication facilities possessing more than one effective kilogram of high enriched uranium, low enriched uranium, plutonium, or uranium-233

  9. Licensed fuel facility status report. Inventory difference data, July-December 1985. Volume 6, No. 2

    International Nuclear Information System (INIS)

    1986-08-01

    NRC is committed to the periodic publication of licensed fuel facilities' inventory difference data, following agency review of the information and completion of any related investigations. Information in this report includes inventory difference data for active fuel fabrication facilities possessing more than one effective kilogram of high enriched uranium, low enriched uranium, plutonium, or uranium-233

  10. Licensed fuel facility status report. Inventory difference data, January-June 1984. Volume 5, No. 1

    International Nuclear Information System (INIS)

    1985-04-01

    NRC is committed to the periodic publication of licensed fuel facilities' inventory difference data, following agency review of the information and completion of any related investigations. Information in this report includes inventory difference data for active fuel fabrication facilities possessing more than one effective kilogram of high enriched uranium, low enriched uranium, plutonium, or Uranium-233

  11. Evaluation of alternatives for the future of facilities at the Western New York Nuclear Service Center

    International Nuclear Information System (INIS)

    1978-08-01

    Regulatory considerations are discussed. Alternatives for the continued operation or decommissioning of the state-licensed burial area, the low-level waste treatment facilities, and the NRC licensed burial area are evaluated. Radiological impact analyses were also performed for alternatives on other facilities

  12. Licensing process for future applications of advanced-design nuclear reactors

    International Nuclear Information System (INIS)

    Miller, C.L.

    1990-01-01

    The existing 10CFR50 two-step licensing process in the Code of Federal Regulations can continue to be a viable licensing vehicle for future applications, at least for the near future. The US Nuclear Regulatory Commission (NRC) Commissioners and staff, the public, and the utilities (along with supporting architect/engineers and nuclear steam supply system vendors) have a vast body of experience and knowledge of the existing part 50 licensing process. All these participants are familiar with their respective roles in this process, and history shows this process to be a workable licensing vehicle. Nevertheless, the use of 10CFR52 should be encouraged for future applications. This proposed new rule is intended to achieve the early resolution of licensing issues, to reduce the complexity and uncertainty of the licensing process, and enhance the safety and reliability of nuclear power plants. Part 52's overall purpose is to improve reactor safety and streamline the licensing process by encouraging the use of standard reactor designs and by allowing the early resolution of site environmental and reactor safety issues. The public should be afforded an earlier entry into the licensing process as a result of design certification rulemaking process and combined construction permit/operating license hearings

  13. A simple program to reduce the stress associated with NRC nuclear operator examinations

    International Nuclear Information System (INIS)

    Sajwau, T.; Chardos, S.

    1988-01-01

    The NRC license for nuclear reactor operators requires periodic written examinations to demonstrate ongoing technical competency. Poor performance raises a competency question and can affect the individuals' careers. Accordingly, the exams can be highly stressful events. Stress has been demonstrated to affect memory, perception, other cognitive attitudes, and test performance. The phenomenon of test anxiety is well known. Instead of a generic, broadly focused stress management approach, a sharply focused, two-part program was developed for TVA operators scheduled to take the NRC examination. The first part was presented early in preparatory training, and the second part was given just prior to the examination. The first part consisted of a simple model of stress found in exams, early warning signs of test stress, and tactics of stress management that were practical to use during the NRC exam itself

  14. Nuclear R and D

    International Nuclear Information System (INIS)

    1991-09-01

    Within the next 20 years, the licenses for 42 of 113 nuclear power plants that the Nuclear Regulatory Commission (NRC) has licensed to operate will expire. NRC and industry have been developing information and analyses that would be needed as a basis for renewing the operating licenses of these plants, and NRC is developing guidance for industry on the information required for license renewal. At NRC's request, the National Research Council of the National Academy of Sciences examined the future role of NRC's regulatory research, including research on the aging of nuclear power reactors and the possibility of extending their operating licenses for 20 years beyond the normal 40-year license term. The Council issued a report in 1986 with many recommendations directed broadly toward revitalizing nuclear safety research; only four of these recommendations were directed at research related to license extension. This paper provides information on: the actions NRC has taken to implement the Council's recommendations concerning the need for NRC to conduct research on reactor aging to supports its license renewal efforts, the research on reactor aging that the Department of Energy (DOE) and industry have initiated and completed as a result of the Council's recommendations that research be performed to prove that license conditions set by NRC can be met, and whether the results have been provided to NRC, and NRC's plan to refine the estimates of risks (or the probability of accidents) created by extending the life of the present generation of reactors

  15. Conceptual Design of On-line Based Licensing Review and Assesment System of Nuclear Installations and Nuclear Materials ('PRIBEN')

    International Nuclear Information System (INIS)

    Melani, Ai; Chang, Soon Heung

    2008-01-01

    At the present Indonesia has no nuclear power plant in operation yet, although it is expected that the first nuclear power plant will be operated and commercially available in around the year of 2016 to 2017 in Muria Peninsula. There are only three research reactors, one nuclear fuel fabrication plant for research reactors, and one experimental fuel fabrication plant for nuclear power, one isotope production facility and some other research facilities. All the facility is under Nuclear Energy Regulatory Agency (BAPETEN) controlling through regulation, licensing and inspection. The organizations operation submits licensing application to BAPETEN before utilizing the facility. According to the regulation before BAPETEN give license they perform review and assessment for the utility application. Based on the review and assessment result, BAPETEN may stipulate, reject, delay or terminate the license. In anticipation of expansion of the nuclear program in Indonesia, BAPETEN should have an integrated and updated system for review and asses the licensing application. For this reason, an expert system for the review and asses the licensing application, so-called PRIBEN (Perizinan Reaktor, Instalasi dan Bahan Nuklir/Licensing of Reactor, Nuclear Installations and Nuclear Materials), is developed which runs on the online-based reality environment

  16. Operating reactors licensing actions summary. Volume 5, No. 2

    International Nuclear Information System (INIS)

    1985-04-01

    The Operating Reactors Licensing Actions Summary is designed to provide the management of the Nuclear Regulatory Commission (NRC) with an overview of licensing actions dealing with operating power and nonpower reactors. These reports utilize data collected from the Division of Licensing in the Office of Nuclear Reactor Regulation and are prepared by the Office of Resource Management. This summary report is published primarily for internal NRC use in managing the Operating Reactors Licensing Actions Program

  17. Nuclear licensing and supervision in Germany

    International Nuclear Information System (INIS)

    1996-06-01

    The legal instrument for implementing the licensing and supervisory procedure is specified by statutory ordinances, guidelines and provisions. The licensing requirements for nuclear power plants on the final storage of radioactive wastes in the federal republic of germany are described. The nuclear facilities are subject to continuous state supervision after they have been granted. The appendix gives a brief account of the most important ordinances relating to the AtG and extracts from the Nuclear Safety Convention. (HP)

  18. Renewing the licenses of US nuclear plants: An assessment of the socioeconomic impacts

    International Nuclear Information System (INIS)

    Schweitzer, M.; Saulsbury, J.W.; Schexnayder, S.M.

    1993-01-01

    In recent years, increased national attention has been focused on the potential effects of renewing, or not renewing, the licenses of nuclear power plants as the oldest of them approach the end of the 40-year operating period allowed by their original licenses. As part of a larger study for the US Nuclear Regulatory commission (NRC), the authors conducted an assessment of the potential socioeconomic impacts to those communities throughout the country in which nuclear power plants are located and which, therefore, are most directly affected by renewal of nuclear power plant licenses. This paper focuses on six key issues that are traditionally considered essential in the assessment of social impacts: Population; housing; tax payments; local public services; land use and development; and economic structure

  19. Nuclear Security: Action May Be Needed to Reassess the Security of NRC-Licensed Research Reactors. Report to the Ranking Member, Subcommittee on National Security and Foreign Affairs, Committee on Oversight and Government Reform, House of Representatives. GAO-08-403

    Science.gov (United States)

    Aloise, Gene

    2008-01-01

    There are 37 research reactors in the United States, mostly located on college campuses. Of these, 33 reactors are licensed and regulated by the Nuclear Regulatory Commission (NRC). Four are operated by the Department of Energy (DOE) and are located at three national laboratories. Although less powerful than commercial nuclear power reactors,…

  20. 78 FR 4467 - UniStar Nuclear Energy, Combined License Application for Calvert Cliffs Power Plant, Unit 3...

    Science.gov (United States)

    2013-01-22

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 52-016; NRC-2008-0250] UniStar Nuclear Energy, Combined License Application for Calvert Cliffs Power Plant, Unit 3, Exemption 1.0 Background UniStar Nuclear Energy (UNE), on behalf of Calvert Cliffs Nuclear Project, LLC and UniStar Nuclear Operating Services...

  1. The U.S. Nuclear Regulatory Commission's antitrust review of nuclear power plants: the conditioning of licenses

    International Nuclear Information System (INIS)

    Penn, D.W.; Delaney, J.B.; Honeycutt, T.C.

    1976-04-01

    The 1970 amendments to Section 105 of the Atomic Energy Act require the Nuclear Regulatory Commission to conduct a prelicensing antitrust review of applications for licenses to construct and operate nuclear power plants. The Commission must make a finding as to whether the granting of a license 'would create or maintain a situation inconsistent with the antitrust laws,' and it has the authority to issue or continue a license, to refuse to issue a license, to rescind or amend a license, and to issue a license with conditions that it deems appropriate. This report provides information about the antitrust license conditions that have resulted from the NRC's antitrust review process. The process itself is described and a catalog of the applications requiring antitrust license conditions is presented. For each application, the license conditions are put into the general categories of unit access, transmission services, coordination, and contractual provisions. For completeness, the report also catalogs applications requiring no antitrust license conditions, and lists applications that were exempted from the 1970 amendments, are the subject of litigation, or have been withdrawn

  2. New nuclear plant design and licensing process

    International Nuclear Information System (INIS)

    Luangdilok, W.

    1996-01-01

    This paper describes latest developments in the nuclear power reactor technology with emphasis on three areas: (1) the US technology of advanced passive light water reactors (AP600 and S BWR), (2) regulatory processes that certify their safety, and (3) current engineering concerns. The goal is to provide and insight of how the government's regulatory agency guarantees public safety by looking into how new passive safety features were designed and tested by vendors and how they were re-evaluated and retested by the US NRC. The paper then discusses the US 1989 nuclear licensing reform (10 CFR Part 52) whose objectives are to promote the standardization of nuclear power plants and provide for the early and definitive resolution of site and design issues before plants are built. The new licensing process avoids the unpredictability nd escalated construction cost under the old licensing process. Finally, the paper summarizes engineering concerns found in current light water reactors that may not go away in the new design. The concerns are related the material and water chemistry technology in dealing with corrosion problems in water-cooled nuclear reactor systems (PWRs and BWRs). These engineering concerns include core shroud cracking (BWRs), jet pump hold-down beam cracking (BWRs), steam generator tube stress corrosion cracking (PWR)

  3. Operator licensing examiner standards

    International Nuclear Information System (INIS)

    1994-06-01

    The Operator Licensing Examiner Standards provide policy and guidance to NRC examiners and establish the procedures and practices for examining licensees and applicants for reactor operator and senior reactor operator licenses at power reactor facilities pursuant to Part 55 of Title 10 of the Code of Federal Regulations (10 CFR 55). The Examiner Standards are intended to assist NRC examiners and facility licensees to better understand the initial and requalification examination processes and to ensure the equitable and consistent administration of examinations to all applicants. These standards are not a substitute for the operator licensing regulations and are subject to revision or other internal operator licensing policy changes. Revision 7 was published in January 1993 and became effective in August 1993. Supplement 1 is being issued primarily to implement administrative changes to the requalification examination program resulting from the amendment to 10 CFR 55 that eliminated the requirement for every licensed operator to pass an NRC-conducted requalification examination as a condition for license renewal. The supplement does not substantially alter either the initial or requalification examination processes and will become effective 30 days after its publication is noticed in the Federal Register. The corporate notification letters issued after the effective date will provide facility licensees with at least 90 days notice that the examinations will be administered in accordance with the revised procedures

  4. NRC TLD direct radiation monitoring network: Progress report, April--June 1988

    International Nuclear Information System (INIS)

    Struckmeyer, R.; McNamara, N.

    1988-09-01

    This report provides the status and results of the NRC Thermoluminescent Dosimeter (TLD) Direct Radiation Monitoring Network. It presents the radiation levels measured in the vicinity of NRC licensed facility sites throughout the country for the second quarter of 1988

  5. Prediction of ground motion from underground nuclear weapons tests as it relates to siting of a nuclear waste storage facility at NTS and compatibility with the weapons test program

    International Nuclear Information System (INIS)

    Vortman, L.J. IV.

    1980-04-01

    This report assumes reasonable criteria for NRC licensing of a nuclear waste storage facility at the Nevada Test Site where it would be exposed to ground motion from underground nuclear weapons tests. Prediction equations and their standard deviations have been determined from measurements on a number of nuclear weapons tests. The effect of various independent parameters on standard deviation is discussed. That the data sample is sufficiently large is shown by the fact that additional data have little effect on the standard deviation. It is also shown that coupling effects can be separated out of the other contributions to the standard deviation. An example, based on certain licensing assumptions, shows that it should be possible to have a nuclear waste storage facility in the vicinity of Timber Mountain which would be compatible with a 700 kt weapons test in the Buckboard Area if the facility were designed to withstand a peak vector acceleration of 0.75 g. The prediction equation is a log-log linear equation which predicts acceleration as a function of yield of an explosion and the distance from it

  6. Non-Power Reactor Operator Licensing Examiner Standards

    International Nuclear Information System (INIS)

    1994-06-01

    The Non-Power Reactor Operator Licensing Examiner Standards provide policy and guidance to NRC examiners and establish the procedures and practices for examining and licensing of applicants for NRC operator licenses pursuant to Part 55 of Title 10 of the Code of Federal Regulations (10 CFR Part 55). They are intended to assist NRC examiners and facility licensees to understand the examination process better and to provide for equitable and consistent administration of examinations to all applicants by NRC examiners. These standards are not a substitute for the operator licensing regulations and are subject to revision or other internal operator examination licensing policy changes. As appropriate, this standard will be revised periodically to accommodate comments and reflect new information or experience

  7. Performance testing of dosimetry processors, status of NRC rulemaking for improved personnel dosimetry processing, and some beta dosimetry and instrumentation problems observed by NRC regional inspectors

    International Nuclear Information System (INIS)

    Dennis, N.A.; Kinneman, J.D.; Costello, F.M.; White, J.R.; Nimitz, R.L.

    1983-01-01

    Early dosimetry processor performance studies conducted between 1967 and 1979 by several different investigators indicated that a significant percentage of personnel dosimetry processors may not be performing with a reasonable degree of accuracy. Results of voluntary performance testing of US personnel dosimetry processors against the final Health Physics Society Standard, Criteria for Testing Personnel Dosimetry Performance by the University of Michigan for the Nuclear Regulatory Commission (NRC) will be summarized with emphasis on processor performance in radiation categories involving beta particles and beta particles and photon mixtures. The current status of the NRC's regulatory program for improved personnel dosimetry processing will be reviewed. The NRC is proposing amendments to its regulations, 10 CFR Part 20, that would require its licensees to utilize specified personnel dosimetry services from processors accredited by the National Voluntary Laboratory Accreditation Program of the National Bureau of Standards. Details of the development and schedule for implementation of the program will be highlighted. Finally, selected beta dosimetry and beta instrumentation problems observed by NRC Regional Staff during inspections of NRC licensed facilities will be discussed

  8. High-level-waste records management system: the NRC pilot project

    International Nuclear Information System (INIS)

    Bender, A.; Altomare, P.

    1987-01-01

    The US Nuclear Regulatory Commission (NRC) and the US Dept. of Energy (DOE) have agreed to develop a licensing support system (LSS) to address the records management requirements created by the Nuclear Waste Policy Act (NWPA). The NRC is planning to conduct a negotiated rule making the modify 10CFR2, including rules governing discovery, so that parties to the licensing process will use a single information management system as a source for all licensing-related documents. The successful demonstration of the pilot project has resulted in an operational on-line record management system for NRC-related HLW documents. Both incoming and outgoing documents are being scanned and stored on a mainframe system and on an optical disk. At this writing the optical disk portion of the system is being tested to evaluate its potential use as a future archival and distribution medium for licensing records. Experience gained from this project is being shared with other government agencies that are in the process of using similar technologies to come to grips with the complex records management problem endemic to our information-based society

  9. Operating reactors licensing actions summary. Vol. 3, No. 3

    International Nuclear Information System (INIS)

    1983-04-01

    The operating reactors licensing actions summary is designed to provide the management of the Nuclear Regularory Commission (NRC) with an overview of licensing actions dealing with operating power and nonpower reactors. These reports utilize data collected from the Division of Licensing in the Office of Nuclear Reactor Regulation and are prepared by the Office of Management and Program Analysis. This summary report is published primarily for internal NRC use in managing the operating reactors licensing actions program

  10. Licensed fuel facility status report. Inventory difference data, July 1983-December 1983. Volume 4, No. 2

    International Nuclear Information System (INIS)

    1984-08-01

    NRC is committed to the periodic publication of licensed fuel facilities inventory difference data, following agency review of the information and completion of any related investigations. Information in this report includes inventory difference data for active fuel fabrication facilities possessing more than one effective kilogram of high enriched uranium, low enriched uranium, plutonium, or uranium-233

  11. Licensed-fuel-facility status report: inventory difference data, July 1982-December 1982. Vol. 3, No. 2

    International Nuclear Information System (INIS)

    1983-07-01

    NRC is committed to the periodic publication of licensed fuel facilities inventory difference data, following agency review of the information and completion of any related investigations. Information in this report includes inventory difference data for active fuel fabrication facilities possessing more than one effective kilogram of high enriched uranium, low enriched uranium, plutonium, or uranium-233

  12. Licensed fuel facility status report. Volume 5, No. 2. Inventory difference data, July 1984-December 1984

    International Nuclear Information System (INIS)

    1985-10-01

    NRC is committed to the periodic publication of licensed fuel facilities' inventory difference data, following agency review of the information and completion of any related investigations. Information in this report includes inventory difference data for active fuel fabrication facilities possessing more than one effective kilogram of high enriched uranium, low enriched uranium, plutonium, or uranium-233

  13. Aging management review for license renewal and plant life management

    International Nuclear Information System (INIS)

    Rinckel, M.A.; Young, G.G.

    2002-01-01

    Full text: United States nuclear power plants are initially licensed for a period of 40-years. The 40-year term, which was established by the Atomic Energy Commission in the 1950s, is believed to be based on engineering judgement and is consistent with the typical amortization schedule for purchasing fossil power plants. Under 10 CFR Part 54, the license renewal rule, additional terms of 20-years may be obtained through the preparation of a license renewal application that must be reviewed and approved by the Nuclear Regulatory Commission (NRC). The license renewal rule requires that applicants perform ageing management reviews on passive long-lived structures and components to demonstrate that ageing will be managed during the period of extended operation (i.e., additional 20 years of operation). ageing of active components, which are excluded from 10 CFR Part 54, is accomplished through the Maintenance Rule, 10 CFR Part 65, using performance-based monitoring. The license renewal rule, 10 CFR Part 54, was initially published in 1991. After significant interaction with the nuclear industry from 1991 through 1994, the NRC revised the rule in 1995 to focus on passive long-lived structures and components. In 1998, the first two applications for license renewal were submitted to the NRC by Baltimore Gas and Electric for the two-unit Calvert Cliffs nuclear power plant and by Duke Energy for the three-unit Oconee nuclear power plant. In March 2000, the NRC approved the application for the two-unit Calvert Cliffs nuclear power plant for an additional 20 years. Two months later, the NRC approved the renewal of the operating licenses for the three-unit Oconee nuclear station. The NRC completed these reviews in a timely, predictable, and stable manner. As of February 2002, the NRC has approved renewal of operating licenses for eight nuclear units and has applications under review for 15 more units. Twelve additional companies have notified the NRC of their intention to seek

  14. Licensing reform in the USA

    International Nuclear Information System (INIS)

    1991-01-01

    The licensing process for nuclear power plants in the USA is currently in two distinct stages: the issuance of a construction permit followed later by the issuance of an operation license. The ''two-step'' process has come under heavy criticism from the U.S. nuclear industry on the grounds that it causes uncertainty and delays and therefore inhibits new commitments to nuclear power plants. In 1989 the NRC published new regulations for the licensing of nuclear power plants which provide for the issuance of early site permits, safety certifications of standard designs, and combined construction permits and operating licences. The new rule was challenged by intervenors representing antinuclear groups who filed a legal challenge seeking to have the rule set aside on the grounds that it violates the Atomic Energy Act which they allege makes two-step licensing mandatory. In November 1990 the US Court of Appeals upheld the NRC's authority to issue combined licenses. An appeal for a rehearing has been filed. The paper analyses the events and the possible consequences of an adverse court decision. It reviews the options open to the NRC and industry if the court decision is upheld. The possibility of congressional action to amend the Atomic Energy Act is discussed. (author)

  15. Operating reactors licensing actions summary. Volume 5, Number 1

    International Nuclear Information System (INIS)

    1985-03-01

    This document is designed to provide the management of the Nuclear Regulatory Commission (NRC) with an overview of licensing actions dealing with operating power and nonpower reactors. These reports utilize data collected from the Division of Licensing in the Office of Nuclear Reactor Regulation and are prepared by the Office of Resource Management. This summary report is published primarily for internal NRC use in managing the operating reactors licensing actions program

  16. Selection/licensing of nuclear power plant operators

    International Nuclear Information System (INIS)

    Saari, L.M.

    1983-07-01

    An important aspect of nuclear power plant (NPP) safety is the reactor operator in the control room. The operators are the first individuals to deal with an emergency situation, and thus, effective performance on their part is essential for safe plant operations. Important issues pertaining to NPP reactor operators would fall within the personnel subsystem of our safety system analysis. While there are many potential aspects of the personnel subsystem, a key first step in this focus is the selection of individuals - attempting to choose individuals for the job of reactor operator who will safely perform the job. This requires a valid (job-related) selection process. Some background information on the Nuclear Regulatory Commission (NRC) licensing process used for selecting NPP reactor operators is briefly presented and a description of a research endeavor now underway at Battelle for developing a valid reactor operator licensing examination is included

  17. Psychological characteristics of licensed nuclear power plant operators

    International Nuclear Information System (INIS)

    Sajwaj, T.; Ford, T.; McGee, R.K.

    1987-01-01

    The safe production of electricity by nuclear power plants has been the focus of considerable attention. Much of this concern has been focused on equipment and procedural issues, with less attention to the psychological factors that affect the operations staff of the plants, i.e., those individuals who are most directly responsible for a plant's operations. Stress and type A qualities would be significant for these individuals because of their relationships to job performance and health. Of equal significance would be work-related factors, such as job involvement and work pressure. Also of interest would be hostile tendencies because of the need for cooperation and communications among operations staff. Two variables could influence these psychological factors. One is the degree of responsibility for a plant's nuclear reactors. The individuals with the greatest responsibility are licensed by the US Nuclear Regulatory Commission (NRC). There are also individuals with less direct responsibilities who are not licensed. A second variable is the operating status of the plant, whether or not the plant is currently producing electricity. Relative to ensuring the safe operation of nuclear power plants, these data suggest a positive view of licensed operators. Of interest are the greater stress scores in the licensed staff of the operating plant in contrast with their peers in the nonoperating plant

  18. Analysis of license renewal at U.S. Nuclear Power Plants

    International Nuclear Information System (INIS)

    Nagayama, Munehiro

    2017-01-01

    The U.S. NRC had implemented the rules for LR (License Renewal) of NPPs (Nuclear Power Plants) and the LR rules allow plus 20-year operation of NPPs adding to initial 40-year term for reactor license. The U.S. NRC has already issued ROL (Renewed Operating License) for over forty NPPs. The Atomic Energy Act do not limit the number of LR, so the fleet of U.S. Nuclear, including agency, industry and academy, is continuing efforts to develop rules for SLR (Subsequent License Renewal). The framework of SLR rules has been developed and there is a plan of implementation of SLR for a pilot plant on FY 2018. The total operating term of a SLR plant is 80-year. The LR/SLR of NPPs is effective for stable power supply, greenhouse gas suppression, maintenance of technology, and securing employment. These profits will return to society. It is important to maintain required function of SSCs (Structure, System, and Components) for period of long term operation of NPPs. The U.S. fleet has established integrated ageing management strategy and each NPPs is developing their maintenance plans for long term operation. These adequate maintenance plans may enable to achieve good capacity factor of LR applied NPPs. In this report, domestic LR position will be considered by referring the good performance of U.S. NPPs which entered long term operation beyond 40-year and some conditions such as energy security. (author)

  19. Standardization of nuclear power plants in the United States: recent regulatory developments

    International Nuclear Information System (INIS)

    Cowan, B.Z.; Tourtellotte, J.R.

    1992-01-01

    On April 18, 1989, the United States (U.S.) Nuclear Regulatory Commission (NRC) amended the regulations governing the process for licensing nuclear power plants in the United States to provide for issuance of early site permits, standard design certifications and combined construction permits and operating licenses for nuclear power reactors. The new regulations are designed to achieve early resolution of licensing issues and facilitate standardization of nuclear power plants in the United States. The program for design standardization is central to efforts mounted by the U.S. government and industry to ensure that there will be a next generation of nuclear power facilities in the U.S. The most significant changes are provisions for certification of standard designs and for issuance prior to start of construction of combined licenses which incorporate a construction permit and an operating license with conditions. Such certifications and combined licenses must contain tests, inspections and analyses, and acceptance criteria, which are necessary and sufficient to provide reasonable assurance that the facility has been constructed and will operate in accordance with the combined license. A number of significant implementation issues have arisen. In addition a major court case brought by several anti-nuclear groups is pending, challenging NRC authority to issue combined licenses. It is the goal of the U.S. nuclear industry to have the first of the next generation of standardized nuclear power plants ordered, licensed, constructed and on-line by the year 2000. (author)

  20. 77 FR 9273 - USEC Inc. (American Centrifuge Lead Cascade Facility and American Centrifuge Plant); Direct...

    Science.gov (United States)

    2012-02-16

    ... NUCLEAR REGULATORY COMMISSION [NRC-2010-0355] USEC Inc. (American Centrifuge Lead Cascade Facility and American Centrifuge Plant); Direct Transfer of Licenses In the Matter of USEC INC. (American Centrifuge Lead Cascade Facility and American Centrifuge Plant); Order EA-12- [[Page 9274

  1. Licensed Healthcare Facilities

    Data.gov (United States)

    California Natural Resource Agency — The Licensed Healthcare Facilities point layer represents the locations of all healthcare facilities licensed by the State of California, Department of Health...

  2. NRC program of inspection and enforcement

    International Nuclear Information System (INIS)

    LeDoux, J.C.; Rehfuss, C.

    1978-01-01

    The Nuclear Regulatory Commission (NRC) regulates civilian uses of nuclear materials to ensure the protection of the public health and safety and the environment. The Office of Inspection and Enforcement (IE) develops and implements the inspection, investigation, and enforcement programs for the NRC. The IE conducts inspection programs for reactors under construction and in operation, nuclear industry vendors, fuel facilities and users of nuclear materials, and all aspects of the safeguarding of facilities and materials. Recently the IE began implementing a program that will place inspectors on site at nuclear power reactors and will provide for national appraisal of licensee performance and for an evaluation of the effectiveness of the inspection programs

  3. 78 FR 33995 - Nuclear Proliferation Assessment in Licensing Process for Enrichment or Reprocessing Facilities

    Science.gov (United States)

    2013-06-06

    ... NRC's regulations on physical security, information security, material control and accounting, cyber... security, information security, material control and accounting, cyber security, and export control create... construction and operation of the proposed facility. While the NRC recognizes the importance of the petitioner...

  4. Operating reactors licensing actions summary

    International Nuclear Information System (INIS)

    1982-04-01

    The operating reactors licensing actions summary is designed to provide the management of the Nuclear Regulatory Commission (NRC) with an overview of licensing actions dealing with operating power and nonpower reactors. These reports utilize data collected from the Division of Licensing in the Office of Nuclear Reactor Regulation and are prepared by the Office of Management and Program Analysis

  5. NUMARC view of license renewal criteria

    International Nuclear Information System (INIS)

    Edwards, D.W.

    1989-01-01

    The Atomic Energy Act and the implementing regulations of the US Nuclear Regulatory Commission (NRC) permit the renewal of nuclear plant operating licenses upon expiration of their 40-year license term. However, the regulatory process by which license renewal may be accomplished and the requirements for the scope and content of renewal applications are yet to be established. On August 29, 1988, the NRC published an Advanced Notice of Proposed Rulemaking regarding the subject of license renewal. This Advanced Notice and the NUREG which it references, NUREG-1317, Regulatory Options for Nuclear Plant License Renewal, provide the most recent regulatory thought on this issue. The basic issue addressed by NUREG-1317 is the definition of an adequate licensing basis for the renewal of a plant license. The report contemplates three alternatives in this regard. This paper discusses each of these three proposals. The NUMARC NUPLEX Working Group endorses a license renewal process based on a plant's current licensing basis along with an evaluation of the pertinent components, systems, and structures affected by age-related degradation. The NUMARC NUPLEX Working group believes that an appropriate scope for NRC review of the license renewal application should focus on those safety-significant structures systems, and components subject to significant age-related degradation that are not subject to existing recognized effective replacement, refurbishment, or inspection programs. The paper also briefly discusses NUMARC's view of the role of the Backfit Rule in the license renewal process

  6. Reactor licensing process: a status report

    International Nuclear Information System (INIS)

    Long, J.A.

    1977-01-01

    The Nuclear Regulatory Commission (NRC), in its review of applications for licenses to construct and operate nuclear power plants, is required to consider those measures necessary to ensure the protection of the health and safety of the public and the environment. The article discusses the NRC staff procedures and policies for conducting the detailed safety, environmental, and antitrust reviews that provide the basis for these assurances. Included is a discussion of the improvements to the licensing process currently being proposed or implemented to enhance its stability and predictability for the benefit of all involved with the regulation of nuclear power. The views and opinions expressed in the article are those of the author alone and do not represent positions of the NRC

  7. NPP License Renewal and Aging Management: Revised Guidance

    International Nuclear Information System (INIS)

    Hull, A.B.; Hiser, A.L.; Lindo-Talin, S.E.

    2012-01-01

    Based on the Atomic Energy Act, the NRC issues licenses for commercial power reactors to operate for up to 40 years and allows these licenses to be renewed for up to another 20 years. NRC has approved license renewal for well over 50% of U.S. located reactors originally licensed to operate for 40 years. Of these 104 reactors (69 PWRs, 35 BWRs), the NRC has issued renewed licenses for 71 units and is currently reviewing applications for another 15 units. As of May 1, 2012, ten plants at nine sites had entered their 41st year of operation and thus are in their first period of extended operation (PEO). Five more plants will enter the PEO by the end of 2012. One foundation of the license renewal process has been license renewal guidance documents (LRGDs). The U.S. Nuclear Regulatory Commission (NRC) revised key guidance documents used for nuclear power license renewal in 2010 and 2011. These include NUREG-1800, 'Standard Review Plan for Review of License Renewal Applications,' revision 2 (SRP-LR), and NUREG-1801, 'Generic Aging Lessons Learned (GALL) Report,' revision 2 (GALL Report). The guidance documents were updated to reflect lessons learned and operating experience gained since the guidance documents were last issued in 2005. (author)

  8. Operating reactors licensing actions summary

    International Nuclear Information System (INIS)

    1981-08-01

    The Operating Reactors Licensing Actions Summary is designed to provide the management of the Nuclear Regulatory Commission (NRC) with an overview of licensing actions dealing with operating power and nonpower reactors

  9. NRC inventory of dams

    International Nuclear Information System (INIS)

    Lear, G.E.; Thompson, O.O.

    1983-01-01

    The NRC Inventory of Dams has been prepared as required by the charter of the NRC Dam Safety Officer. The inventory lists 51 dams associated with nuclear power plant sites and 14 uranium mill tailings dams (licensed by NRC) in the US as of February 1, 1982. Of the 85 listed nuclear power plants (148 units), 26 plants obtain cooling water from impoundments formed by dams. The 51 dams associated with the plants are: located on a plant site (29 dams at 15 plant sites); located off site but provide plant cooling water (18 dams at 11 additional plant sites); and located upstream from a plant (4 dams) - they have been identified as dams whose failure, and ensuing plant flooding, could result in a radiological risk to the public health and safety. The dams that might be considered NRC's responsibility in terms of the federal dam safety program are identified. This group of dams (20 on nuclear power plant sites and 14 uranium mill tailings dams) was obtained by eliminating dams that do not pose a flooding hazard (e.g., submerged dams) and dams that are regulated by another federal agency. The report includes the principal design features of all dams and related useful information

  10. Ground-water flow and transport modeling of the NRC-licensed waste disposal facility, West Valley, New York

    International Nuclear Information System (INIS)

    Kool, J.B.; Wu, Y.S.

    1991-10-01

    This report describes a simulation study of groundwater flow and radionuclide transport from disposal at the NRC licensed waste disposal facility in West Valley, New York. A transient, precipitation driven, flow model of the near-surface fractured till layer and underlying unweathered till was developed and calibrated against observed inflow data into a recently constructed interceptor trench for the period March--May 1990. The results suggest that lateral flow through the upper, fractured till layer may be more significant than indicated by previous, steady state flow modeling studies. A conclusive assessment of the actual magnitude of lateral flow through the fractured till could however not be made. A primary factor contributing to this uncertainty is the unknown contribution of vertical infiltration through the interceptor trench cap to the total trench inflow. The second part of the investigation involved simulation of the migration of Sr-90, Cs-137 and Pu-239 from the one of the fuel hull disposal pits. A first-order radionuclide leach rate with rate coefficient of 10 -6 /day was assumed to describe radionuclide release into the disposal pit. The simulations indicated that for wastes buried below the fractured till zone, no significant migration would occur. However, under the assumed conditions, significant lateral migration could occur for radionuclides present in the upper, fractured till zone. 23 refs., 68 figs., 12 tabs

  11. Site Selection and Characterization Status Report for Next Generation Nuclear Plant (NGNP)

    International Nuclear Information System (INIS)

    Holbrook, Mark

    2007-01-01

    In the near future, the US Department of Energy (DOE) will need to make important decisions regarding design and construction of the Next Generation Nuclear Plant (NGNP). One part of making these decisions is considering the potential environmental impacts that this facility may have, if constructed here at the Idaho National Laboratory (INL). The National Environmental Policy Act (NEPA) of 1969 provides DOE decision makers with a process to systematically consider potential environmental consequences of agency decisions. In addition, the Energy Policy Act of 2005 (Title VI, Subtitel C, Section 644) states that the 'Nuclear Regulatory Commission (NRC) shall have licensing and regulatory authority for any reactor authorized under this subtitle.' This stipulates that the NRC will license the NGNP for operation. The NRC NEPA Regulations (10 CFR Part 51) require tha thte NRC prepare an Environmental Impact Statement (EIS) for a permit to construct a nuclear power plant. The applicant is required to submit an Environmental report (ER) to aid the NRC in complying with NEPA.

  12. NRC TLD [thermoluminescent dosimeter] Direct Radiation Monitoring Network: Progress report, January-March 1988

    International Nuclear Information System (INIS)

    Struckmeyer, R.; McNamara, N.

    1988-06-01

    This report provides the status and results of the NRC Thermoluminescent Dosimeter (TLD) Direct Radiation Monitoring Network. It presents the radiation levels measured in the vicinity of NRC licensed facility sites throughout the country for the first quarter of 1988

  13. Non-Power Reactor Operator Licensing Examiner Standards. Revision 1

    International Nuclear Information System (INIS)

    1995-06-01

    The Non-Power Reactor Operator Licensing Examiner Standards provide policy and guidance to NRC examiners and establish the procedures and practices for examining and licensing of applicants for NRC operator licenses pursuant to Part 55 of Title 10 of the Code of Federal Regulations (10 CFR 55). They are intended to assist NRC examiners and facility licensees to understand the examination process better and to provide for equitable and consistent administration of examinations to all applicants by NRC examiners. These standards are not a substitute for the operator licensing regulations and are subject to revision or other internal operator examination licensing policy changes. As appropriate, these standards will be revised periodically to accommodate comments and reflect new information or experience

  14. Non-Power Reactor Operator Licensing Examiner Standards. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    The Non-Power Reactor Operator Licensing Examiner Standards provide policy and guidance to NRC examiners and establish the procedures and practices for examining and licensing of applicants for NRC operator licenses pursuant to Part 55 of Title 10 of the Code of Federal Regulations (10 CFR 55). They are intended to assist NRC examiners and facility licensees to understand the examination process better and to provide for equitable and consistent administration of examinations to all applicants by NRC examiners. These standards are not a substitute for the operator licensing regulations and are subject to revision or other internal operator examination licensing policy changes. As appropriate, these standards will be revised periodically to accommodate comments and reflect new information or experience.

  15. NPP License Renewal and Aging Management: Revised Guidance

    International Nuclear Information System (INIS)

    Hull, A.B.; Hiser, A.L.; Lindo-Talin, S.E.

    2012-01-01

    Based on the Atomic Energy Act, the NRC issues licenses for commercial power reactors to operate for up to 40 years and allows these licenses to be renewed for up to another 20 years. NRC has approved license renewal (LR) for well over 50% of U.S. located reactors originally licensed to operate for 40 years. Of these 104 reactors (69 PWRs, 35 BWRs), the NRC has issued renewed licenses for 71 units and is currently reviewing applications for another 15 units. As of May 1, 2012, ten plants at nine sites had entered their 41st year of operation and thus are in their first period of extended operation (PEO). Five more plants will enter the PEO by the end of 2012. One foundation of the license renewal process has been license renewal guidance documents (LRGDs). The U.S. Nuclear Regulatory Commission (NRC) revised key guidance documents used for nuclear power LR in 2010 and 2011. These include NUREG-1800, 'Standard Review Plan for Review of License Renewal Applications,' revision 2 (SRP-LR), and NUREG-1801, 'Generic Aging Lessons Learned (GALL) Report,' revision 2 (GALL Report). The guidance documents were updated to reflect lessons learned and operating experience gained since the guidance documents were last issued in 2005. The reactor LRGDs referenced in this poster can all be accessed at http://www.nrc.gov/reactors/operating/licensing/renewal/guidance.html (author)

  16. Why operators fail licensing examinations

    International Nuclear Information System (INIS)

    Roth, D.R.; Zerbo, J.N.

    1975-01-01

    A survey was conducted among nuclear utility operators who have taken NRC licensing examinations to determine which factors they considered important in their success or failure. The operators also compared the actual NRC examination with their expectations prior to taking the examination. The results of the survey supplement NRC statistics with regard to failure rates. Over 350 operators and 20 utilities participated in the survey and a good cross section of the nuclear community is represented. Reactor theory and emergency procedures are important areas in which operators found NRC emphasis to be different than expected. Observation Training and Design Lecture Series are two training segments which appear to require improvement. Recommendations are made for the use of data collected through this survey and for continuation of the effort to give operators a mechanism of supplying feedback to the training and licensing process

  17. MARSSIM guidelines for non-impacted area identification in support of partial site release prior to license termination

    International Nuclear Information System (INIS)

    Parish, D.

    1999-01-01

    Regulations are in place which allow plants undergoing decommissioning to remove obsolete requirements from their licenses. Large buffer areas to the site boundary, needed for emergency planning purposes during power operation, are not required for permanently defueled facilities. It is important that non-impacted areas be removed from license restrictions as soon as possible post shutdown to allow rapid asset recovery and return the large environmental resources these areas represent to beneficial use. License termination surveys are not required for non-impacted areas in accordance with the guidance of US Nuclear Regulatory Commission (NRC) NUREG-1575 (MARSSIM), and NRC Draft Regulatory Guide DG-4006. Thus, such areas do not fall under the license termination requirements of 10CFR50.82 (US Code of Federal Regulations). This report describes methods of classifying areas as non-impacted in accordance with MARRSIM and other NRC guidance, and the licensing options for release of non-impacted areas prior to license termination. The status of Big Rock Point's efforts toward early release of non-impacted areas also is provided. (author)

  18. 75 FR 10517 - Nebraska Public Power District, Cooper Nuclear Station; Exemption

    Science.gov (United States)

    2010-03-08

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 50-298; NRC-2010-0061] Nebraska Public Power District, Cooper Nuclear Station; Exemption 1.0 Background Nebraska Public Power District (NPPD or the licensee) is the holder of Facility Operating License No. DPR-46 which authorizes operation of the Cooper Nuclear...

  19. Licensing issues

    International Nuclear Information System (INIS)

    Roberts, J.P.; Desell, L.J.; Birch, M.L.; Berkowitz, L.; Bader, J.F.

    1992-01-01

    To provide guidance for the Department of Energy's (DOE) Civilian Radioactive Waste Management Program, the Nuclear Regulatory Commission (NRC) has issued a draft regulatory guide on the Format and Content for the License Application for the High-Level Waste Repository (FCRG). To facilitate the development of the FCRG, NRC suggested that DOE use the draft guide as the basis for preparing an annotated outline for a license application. DOE is doing so using an iterative process called the Annotated Outline Initiative. DOE;s use of the Initiative will assist in achieving the desired incorporation of actual experience in the FCRG, contribute to the development of shared interpretation and understanding of NRC regulations, and provide other important programmatic benefits described in this paper

  20. Reflections on nuclear security. The USA's top nuclear regulator reviews the 9/11 response

    International Nuclear Information System (INIS)

    Meserve, R.A.

    2002-01-01

    There are three fundamental points related to nuclear security that should be emphasized. First, the physical protection at nuclear power plants was strong before September 11. Second, there have been no specific credible threats of a terrorist attack on nuclear power plants since September 11. Third, in light of the events of September 11, the NRC has recognized the need to reexamine past security strategies to ensure that we have the right protections in place for the long term. Following the attacks, the NRC issued over 30 safeguards and threat advisories to the major licensed facilities, placing them on the highest security level. Security across the nuclear industry was enhanced as a result of these actions, and many of the strengthened security measures are now requirements as a result of subsequently issued NRC Orders. One should note that nuclear facilities are the strongest and most well protected civilian facilities in our country. But the need to enhance those protections must be recognized. The NRC is dedicated to meeting the obligation to protect the public health and safety and the common defense and security from threats of all kinds. Much has been accomplished over the last year, but there is more to be done. Put in place within months of the September 2001 terrorist attacks, the IAEA's Action Plan on Nuclear Security is now being implemented on many fronts worldwide

  1. Technical Cybersecurity Controls for Nuclear Facilities

    International Nuclear Information System (INIS)

    Oh, Jinseok; Ryou, Jaecheol; Kim, Youngmi; Jeong, Choonghei

    2014-01-01

    To strengthen cybersecurity for nuclear facilities, many countries take a regulatory approach. For example, US Government issued several regulations . Title 10, of the Code of Federal Regulations, Section 73.54, 'Protection of Digital Computer and Communication Systems and Networks (10 CFR 73.54) for cybersecurity requirements and Regulatory Guide 5.71 (RG. 5.71) for cybersecurity guidance and so on. In the case of Korea, Korean Government issued '8.22 Cybersecurity of I and C systems (KINS/RG-NO8.22). In particular, Reg. 5.71 provides a list of security controls to address the potential cyber risks to a nuclear facilities. Implementing and adopting security controls, we can improve the level of cybersecurity for nuclear facilities. RG 5.71 follows the recommendation of NIST SP 800-53. NIST standard provides security controls for IT systems. And NRC staff tailored the controls in NIST standards to unique environments of nuclear facilities. In this paper, we are going to analysis and compare NRC RG 5.71 and NIST SP800-53, in particular, for technical security controls. If RG 5.71 omits the specific security control that is included in SP800-53, we would review that omitting is adequate or not. If RG 5.71 includes the specific security control that is not included in SP800-53, we would also review the rationale. And we are going to some security controls to strengthen cybersecurity of nuclear facilities. In this paper, we compared and analyzed of two regulation in technical security controls. RG 5.71 that is based on NIST standard provides well-understood security controls for nuclear facility. But some omitting from NIST standard can threaten security state of nuclear facility

  2. Technical Cybersecurity Controls for Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Jinseok; Ryou, Jaecheol [Chungnam National Univ., Daejeon (Korea, Republic of); Kim, Youngmi; Jeong, Choonghei [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2014-05-15

    To strengthen cybersecurity for nuclear facilities, many countries take a regulatory approach. For example, US Government issued several regulations . Title 10, of the Code of Federal Regulations, Section 73.54, 'Protection of Digital Computer and Communication Systems and Networks (10 CFR 73.54) for cybersecurity requirements and Regulatory Guide 5.71 (RG. 5.71) for cybersecurity guidance and so on. In the case of Korea, Korean Government issued '8.22 Cybersecurity of I and C systems (KINS/RG-NO8.22). In particular, Reg. 5.71 provides a list of security controls to address the potential cyber risks to a nuclear facilities. Implementing and adopting security controls, we can improve the level of cybersecurity for nuclear facilities. RG 5.71 follows the recommendation of NIST SP 800-53. NIST standard provides security controls for IT systems. And NRC staff tailored the controls in NIST standards to unique environments of nuclear facilities. In this paper, we are going to analysis and compare NRC RG 5.71 and NIST SP800-53, in particular, for technical security controls. If RG 5.71 omits the specific security control that is included in SP800-53, we would review that omitting is adequate or not. If RG 5.71 includes the specific security control that is not included in SP800-53, we would also review the rationale. And we are going to some security controls to strengthen cybersecurity of nuclear facilities. In this paper, we compared and analyzed of two regulation in technical security controls. RG 5.71 that is based on NIST standard provides well-understood security controls for nuclear facility. But some omitting from NIST standard can threaten security state of nuclear facility.

  3. NRC systematic evaluation program: seismic review

    International Nuclear Information System (INIS)

    Levin, H.A.

    1980-01-01

    The NRC Systematic Evaluation Program is currently making an assessment of the seismic design safety of 11 older nuclear power plant facilities. The general review philosophy and review criteria relative to seismic input, structural response, and equipment functionability are presented, including the rationale for the development of these guidelines considering the significant evolution of seismic design criteria since these plants were originally licensed. Technical approaches thought more realistic in light of current knowledge are utilized. Initial findings for plants designed to early seismic design procedures suggest that with minor exceptions, these plants possess adequate seismic design margins when evaluated against the intent of current criteria. However, seismic qualification of electrical equipment has been identified as a subject which requires more in-depth evaluation

  4. A materials engineering view of license renewal at the US Nuclear Regulatory Commission

    International Nuclear Information System (INIS)

    Banic, M.

    1999-01-01

    This paper discusses the treatment of license renewal at the US Nuclear Regulatory Commission (NRC) with emphasis on the review process by the staff of the Materials and Chemical Engineering Branch (EMCB). The paper covers the rules governing license renewal, the applications received, the schedule, the approach, and the technical issues. The NRC has a tight schedule of 30-36 months to renew a license. To date, Baltimore Gas and Electric (BG and E) and Duke Power have applied for license renewal. Expecting more applicants, the staff has taken steps to address the public's concern that the effects of aging will be adequately managed and the industry's concern that the reviews will be timely, efficient, and uniform. These steps include identifying aging effects and making the results available in a report and computerized database, approving topical reports and aging management programs for generic use, and reviewing aging management programs according to specific criteria. Materials Engineering staff have a major role because many of the aging issues are materials related. (author)

  5. Safety evaluation review of the prototype license application safety analysis report

    International Nuclear Information System (INIS)

    1991-08-01

    The US Nuclear Regulatory Commission (NRC) staff and consultants reviewed a Prototype License Application Safety Analysis Report (PLASAR) submitted by the US Department of Energy (DOE) for the belowground vault (BGV) alternative method of low-level radioactive waste disposal. In Volume 1 of NUREG-1375, the NRC staff provided the safety review results for an earth-mounded concrete bunker PLASAR. In the current report, the staff focused its review on the design, construction, and operational aspects of the BGV PLASAR. The staff developed review comments and questions using the Standard Review Plan (SRP), Rev. 1 (NUREG-1200) as the basis for evaluating the acceptability of the information provided in the BGV PLASAR. The detailed review comments provided in this report are intended to be useful guidance to facility developers and State regulators in addressing issues likely to be encountered in the review of a license application for a low-level-waste disposal facility. 44 refs

  6. Environmental Standard Review Plan for the review of license renewal applications for nuclear power plants

    International Nuclear Information System (INIS)

    O'Brien, J.; Kim, T.J.; Reynolds, S.

    1991-08-01

    The Environmental Standard Review Plan for the Review of License Applications for Nuclear Power Plants (ESRP-LR) is to be used by the NRC staff when performing environmental reviews of applications for the renewal of power reactor licenses. The use of the ESRP-LR provides a framework for the staff to determine whether or not environmental issues important to license renewal have been identified and the impacts evaluated and provides acceptance standards to help the reviewers comply with the National Environmental Policy Act

  7. Streamlining the license renewal review process

    International Nuclear Information System (INIS)

    Dozier, J.; Lee, S.; Kuo, P.T.

    2001-01-01

    The staff of the NRC has been developing three regulatory guidance documents for license renewal: the Generic Aging Lessons Learned (GALL) report, Standard Review Plan for License Renewal (SRP-LR), and Regulatory Guide (RG) for Standard Format and Content for Applications to Renew Nuclear Power Plant Operating Licenses. These documents are designed to streamline the license renewal review process by providing clear guidance for license renewal applicants and the NRC staff in preparing and reviewing license renewal applications. The GALL report systematically catalogs aging effects on structures and components; identifies the relevant existing plant programs; and evaluates the existing programs against the attributes considered necessary for an aging management program to be acceptable for license renewal. The GALL report also provides guidance for the augmentation of existing plant programs for license renewal. The revised SRP-LR allows an applicant to reference the GALL report to preclude further NRC staff evaluation if the plant's existing programs meet the criteria described in the GALL report. During the review process, the NRC staff will focus primarily on existing programs that should be augmented or new programs developed specifically for license renewal. The Regulatory Guide is expected to endorse the Nuclear Energy Institute (NEI) guideline, NEI 95-10, Revision 2, entitled 'Industry Guideline for Implementing the Requirements of 10 CFR Part 54 - The License Renewal Rule', which provides guidance for preparing a license renewal application. This paper will provide an introduction to the GALL report, SRP-LR, Regulatory Guide, and NEI 95-10 to show how these documents are interrelated and how they will be used to streamline the license renewal review process. This topic will be of interest to domestic power utilities considering license renewal and international ICONE participants seeking state-of-the-art information about license renewal in the United States

  8. U.S. licensing process and ABWR certification

    International Nuclear Information System (INIS)

    Quirk, J.F.; Williams, W.A.

    1996-01-01

    Part 50 of Title 10 of the Code of Federal Regulation (CFR) establishes a two-step licensing process by which the U.S. Nuclear Regulatory Committee (NRC) authorizes nuclear reactor plant construction through issuance of a construction permit and authorizes operation by issuance of an operating license. At each stage, the NRC Staff conducts technical reviews and there is potential for public hearings. In 1989, the NRC issued a new, simplified licensing process: Part 52. The purpose of the Part 52 licensing process is to provide a regulatory framework that brings about earlier resolution of licensing issues. Because issues are not resolved early in the Part 50 licensing process, approval of an operating license is not assured until after a significant investment has been made in the plant. Part 52 increases the stability and certainty of the licensing process by providing for the early resolution of safety and environmental issues. The Part 52 licensing process features (1) early site permits, (2) design certification, and (3) combined construction permit and operating licenses. As part of the U.S. Advanced Light Water Reactor (ALWR) Program to revitalize the nuclear option through the integration of government/utility/industry efforts, GE undertook the role of applying for certification for its latest product line, the Advanced Boiling Water Reactor (ABWR), under the U.S. ABWR certification program. The ABWR design is an essentially complete plant. Initial application for design certification was in 1987 under Part 50. GE reapplied in late 1991 under the newly promulgated Part 52. Following seven years of intensive interactions with the NRC and ACRS, GE was awarded the first Final Design Approval (FDA) under Part 52. The Commission initiated rulemaking by publishing the proposed ABWR Certification Rule in the Federal Register in early 1995. Certification is anticipated mid-1996. (J.P.N.)

  9. Development model to public hearing for environmental licensing of nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Vasques, Luciana Gomes; Aquino, Afonso Rodrigues de, E-mail: lu_vasques@usp.br, E-mail: araquino@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    The use of nuclear technology has always been a matter of concern from an environmental point of view. Although disputed, the generation of electricity in nuclear reactors was considered a source of clean emission in relation to emission of gases responsible for the greenhouse effect. In Brazil, nuclear activities are regulated and supervised by the Brazilian Commission of Nuclear Energy - CNEN. Environmental issues associated with nuclear activities are described by CONAMA, and the developments in this area are licensed by IBAMA, regardless of obtaining nuclear licenses issued by CNEN. Obtaining environmental licenses (prior, installation and operation) depends initially on preparing the Environmental Impact Study - EIS and the Environmental Impact Report - EIR, consisting of a presentation of EIS in language accessible to all. EIR is forwarded to bodies and entities with some connection to the enterprise, to be manifested with IBAMA about the relevance of its content. This information serves as a resource for Public Hearings, which are meetings organized by entrepreneurs, conducted by IBAMA, and rely on public participation, can be considered as a licensing step. Public Hearings are subject to subjectivity, and the model proposed in this research becomes more objective ill-defined, difficult to understand actions for the entrepreneur. (author)

  10. Development model to public hearing for environmental licensing of nuclear facilities

    International Nuclear Information System (INIS)

    Vasques, Luciana Gomes; Aquino, Afonso Rodrigues de

    2015-01-01

    The use of nuclear technology has always been a matter of concern from an environmental point of view. Although disputed, the generation of electricity in nuclear reactors was considered a source of clean emission in relation to emission of gases responsible for the greenhouse effect. In Brazil, nuclear activities are regulated and supervised by the Brazilian Commission of Nuclear Energy - CNEN. Environmental issues associated with nuclear activities are described by CONAMA, and the developments in this area are licensed by IBAMA, regardless of obtaining nuclear licenses issued by CNEN. Obtaining environmental licenses (prior, installation and operation) depends initially on preparing the Environmental Impact Study - EIS and the Environmental Impact Report - EIR, consisting of a presentation of EIS in language accessible to all. EIR is forwarded to bodies and entities with some connection to the enterprise, to be manifested with IBAMA about the relevance of its content. This information serves as a resource for Public Hearings, which are meetings organized by entrepreneurs, conducted by IBAMA, and rely on public participation, can be considered as a licensing step. Public Hearings are subject to subjectivity, and the model proposed in this research becomes more objective ill-defined, difficult to understand actions for the entrepreneur. (author)

  11. NMSS handbook for decommissioning fuel cycle and materials licensees

    International Nuclear Information System (INIS)

    Orlando, D.A.; Hogg, R.C.; Ramsey, K.M.

    1997-03-01

    The US Nuclear Regulatory Commission amended its regulations to set forth the technical and financial criteria for decommissioning licensed nuclear facilities. These regulations were further amended to establish additional recordkeeping requirements for decommissioning; to establish timeframes and schedules for the decommissioning; and to clarify that financial assurance requirements must be in place during operations and updated when licensed operations cease. Reviews of the Site Decommissioning Management Plan (SDMP) program found that, while the NRC staff was overseeing the decommissioning program at nuclear facilities in a manner that was protective of public health and safety, progress in decommissioning many sites was slow. As a result NRC determined that formal written procedures should be developed to facilitate the timely decommissioning of licensed nuclear facilities. This handbook was developed to aid NRC staff in achieving this goal. It is intended to be used as a reference document to, and in conjunction with, NRC Inspection Manual Chapter (IMC) 2605, ''Decommissioning Inspection Program for Fuel Cycle and Materials Licensees.'' The policies and procedures discussed in this handbook should be used by NRC staff overseeing the decommissioning program at licensed fuel cycle and materials sites; formerly licensed sites for which the licenses were terminated; sites involving source, special nuclear, or byproduct material subject to NRC regulation for which a license was never issued; and sites in the NRC's SDMP program. NRC staff overseeing the decommissioning program at nuclear reactor facilities subject to regulation under 10 CFR Part 50 are not required to use the procedures discussed in this handbook

  12. Licensing of ''grandfather's'' facilities: Ukrainian experience

    International Nuclear Information System (INIS)

    Mikolaitchouk, H.; Bogdan, L.; Steinberg, N.

    1995-01-01

    In the former USSR, unlike most countries, radioactive waste management activities including waste disposal needed no license. But after the USSR breakdown the Ukrainian Parliament -- Verkhovna Rada -- invoked the revised Law on Business activities. According to Article 4 of the Law, in order to treat or to dispose radioactive waste every enterprise has to get a special permission or license. In compliance with the Law, the Cabinet of Ministers by its Ordinance of January 13, 1993, authorized the Ukrainian State Committee for Nuclear and Radiation Safety (UkrSCNRS) to issue special permissions or licenses for waste treatment and disposal. And that requirement was valid not only for future activities but also for existing facilities in operation. Taking into account the undergoing legislative process, SCNRS began to develop its licensing process without waiting for the special nuclear laws to be passed. On the basis of the legislation already in effect, first of all the Law on Enterprises (full responsibility of enterprises for their activities) and Law on Business activities (requirement to have a license for special types of activities), the newly formed national regulatory body had to identify all the enterprises that needed to be licensed, to establish relevant procedures, to develop related regulatory documents, to implement these procedures and documents at operating enterprises, and for each case to make a decision concerning feasibility of issuing a license, period of validity and license conditions

  13. Applications of probabilistic techniques at NRC

    International Nuclear Information System (INIS)

    Thadani, A.; Rowsome, F.; Speis, T.

    1984-01-01

    The NRC is currently making extensive use of probabilistic safety assessment in the reactor regulation. Most of these applications have been introduced in the regulatory activities in the past few years. Plant Probabilistic Safety Studies are being utilized as a design tool for applications for standard designs and for assessment of plants located in regions of particularly high population density. There is considerable motivation for licenses to perform plant-specific probabilistic studies for many, if not all, of the existing operating nuclear power plants as a tool for prioritizing the implementation of the many outstanding licensing actions of these plants as well as recommending the elimination of a number of these issues which are judged to be insignificant in terms of their contribution to safety and risk. Risk assessment perspectives are being used in the priorization of generic safety issues, development of technical resolution of unresolved safety issues, assessing safety significance of proposed new regulatory requirements, assessment of safety significance of some of the occurrences at operating facilities and in environmental impact analyses of license applicants as required by the National Environmental Policy Act. (orig.)

  14. Specification of requirements to get a license for an Independent Spent Fuel Dry Storage Installation (ISFSI) at the site of the NPP-LV

    International Nuclear Information System (INIS)

    Serrano R, M. L.

    2015-09-01

    This article describes some of the work done in the Comision Nacional de Seguridad Nuclear y Salvaguardias (CNSNS) to define specifically the requirements that the Federal Electricity Commission (CFE) shall meet to submit for consideration of CNSNS an operation request of an Independent Spent Fuel Dry Storage Installation (ISFSI). The project of a facility of this type arose from the need to provide storage capacity for spent nuclear fuel in the nuclear power plant of Laguna Verde (NPP-LV) and to continue the operation at the same facility in a safe manner. The licensing of these facilities in the United States of America has two modes: specific license or general license. The characteristics of these licenses are described in this article. However, in Mexico the existing national legislation is not designed for such license types, in fact there is a lack of standards or regulations in this regard. The regulatory law of Article 27 of the Constitution in the nuclear matter, only generally establishes that this type of facility requires an authorization from the Ministry of Energy. For this reason and because there is not a national legislation, was necessary to use the legislation that provides the Nuclear Regulatory Commission of USA, the US NRC. However, it cannot be applied as is established, so was necessary that the CNSNS analyze one by one the requirements of both types of license and determine what would be required to NPP-LV to submit its operating license of ISFSI. The American regulatory applicable to an ISFSI, the 10-Cfr-72 of the US NRC, establishes the requirements for both types of licenses. Chapter 10-Cfr was analyzed in all its clauses and coupled to the laws, regulations and standards as well as to the requirements established by CNSNS, all associated with a store spent fuel on site; the respective certification of containers for spent fuel dry storage was not included in this article, even though the CNSNS also performed that activity under the

  15. ABWR certification work brings US licensing stability nearer

    International Nuclear Information System (INIS)

    Wilkins, D.R.; Quirk, J.F.

    1991-01-01

    The Advanced Boiling Water Reactor (ABWR) is now approaching Final Design Approval by the US Nuclear Regulatory Commission (NRC) and will then proceed on to the certification phase of the NRC's new standard plant licensing process. Successful completion of this will usher in a new era of standardization and reactor licensing stability in the US. (author)

  16. Coupled processes in NRC high-level waste research

    International Nuclear Information System (INIS)

    Costanzi, F.A.

    1987-01-01

    The author discusses NRC research effort in support of evaluating license applications for disposal of nuclear waste and for promulgating regulations and issuing guidance documents on nuclear waste management. In order to do this they fund research activities at a number of laboratories, academic institutions, and commercial organizations. One of our research efforts is the coupled processes study. This paper discusses interest in coupled processes and describes the target areas of research efforts over the next few years. The specific research activities relate to the performance objectives of NRC's high-level waste (HLW) regulation and the U.S. Environmental Protection Agency (EPA) HLW standard. The general objective of the research program is to ensure the NRC has a sufficient independent technical base to make sound regulatory decisions

  17. Preliminary dismantling for the decommissioning of nuclear licensed facilities at the CEA Centre in Fontenay aux Roses

    International Nuclear Information System (INIS)

    Estivie, D.; Bohar, M.P.; Jeanjacques, M.; Binet, C.

    2008-01-01

    Under the perimeter modification programme for the Nuclear Licensed Facilities (NLFs) of the French Atomic Energy Commission centre at Fontenay aux Roses (CEN-FAR), preliminary dismantling work proved necessary to decommission the buildings outside the nuclear perimeter and create interim storage areas for waste packages. This summary describes the dismantling of Buildings 07, 53 and 91/54, which are the most representative of the preliminary dismantling work. (author)

  18. Integration of MGDS design into the licensing process

    International Nuclear Information System (INIS)

    1997-12-01

    This paper presents an overview of how the Mined Geologic Disposal System (MGDS) design for a potential repository is integrated into the licensing process. The integration process employs a two-told approach: (1) ensure that the MGDS design complies with applicable Nuclear Regulatory Commission (NRC) licensing requirements, and (2) ensure that the MGDS design is appropriately reflected in a license application that is acceptable to the NRC for performing acceptance and compliance reviews

  19. NRC TLD Direct Radiation Monitoring Network. Progress report, January-June 1981

    International Nuclear Information System (INIS)

    1982-04-01

    This report provides the status and results of the NRC Thermoluminescent Dosimeter (TLD) Direct Radiation Monitoring Network. It presents the radiation levels measured in the vicinity of 55 NRC-licensed facility sites throughout the country for the first half of 1981. The program objectives, scope, and methodology are given. The TLD system, dosimeter location, data processing scheme, and quality assurance program are outlined

  20. Two Approaches to Reactor Decommissioning: 10 CFR Part 50 License Termination and License Amendment, Lessons Learned from the Regulatory Perspective

    International Nuclear Information System (INIS)

    Watson, B.A.; Buckley, J.T.; Craig, C.M.

    2006-01-01

    Trojan Nuclear Plant (Trojan) and Maine Yankee Nuclear Plant (Maine Yankee) were the first two power reactors to complete decommissioning under the U. S. Nuclear Regulatory Commission's (NRC's) License Termination Rule (LTR), 10 CFR Part 20, Subpart E. The respective owners' decisions to decommission the sites resulted in different approaches to both the physical aspects of the decommissioning, and the approach for obtaining approval for completing the decommissioning in accordance with regulations. Being in different States, the two single-unit pressurized water reactor sites had different State requirements and levels of public interest that impacted the decommissioning approaches. This resulted in significant differences in decommissioning planning, conduct of decommissioning operations, volumes of low- level radioactive waste disposed, and the final status survey (FSS) program. While both licensees have Independent Spent Fuel Storage Installations (ISFSIs), Trojan obtained a separate license for the ISFSI in accordance with the requirements of 10 CFR Part 72 and terminated their 10 CFR Part 50 license. Maine Yankee elected to obtain a general license under 10 CFR Part 50 for the ISFSI and reduce the physical site footprint to the ISFSI through a series of license amendments. While the NRC regulations are flexible and allow different approaches to ISFSI licensing there are separate licensing requirements that must be addressed. In 10 CFR 50.82, the NRC mandates public participation in the decommissioning process. For Maine Yankee, public input resulted in the licensee entering into an agreement with a concerned citizen group and resulted in State legislation that significantly lowered the dose limit below the NRC radiological criteria of 25 mrem (0.25 mSv) per year (yr) in 10 CFR 20.1402 for unrestricted use. The lowering of the radiological criteria resulted in a significant dose modeling effort using site-specific Derived Concentrations Guideline Levels (DCGLs

  1. Regulation of Federal radioactive waste activities. Report to Congress on extending the Nuclear Regulatory Commission's licensing or regulatory authority to Federal radioactive waste storage and disposal activities

    International Nuclear Information System (INIS)

    1979-09-01

    The report contains two recommendations for extending the Commission's regulatory authority: (1) NRC licensing authority should be extended to cover all new DOE facilities for disposal of transuranic (TRU) waste and nondefense low-level waste. (2) A pilot program, focused on a few specific DOE waste management activities, should be established to test the feasibility of extending NRC regulatory authority on a consultative basis to DOE waste management activities not now covered by NRC's licensing authority or its extension as recommended in Recommendation 1

  2. A BWR licensing experience in the USA

    International Nuclear Information System (INIS)

    Powers, J.; Ogura, C.; Arai, K.; Thomas, S.; Mookhoek, B.

    2015-09-01

    The US-Advanced Boiling Water Reactor (A BWR), certified by the United States Nuclear Regulatory Commission (US NRC), is a third generation, evolutionary boiling water reactor design which is the reference for the South Texas Project Units 3 and 4 (STP3-4) Combined License Application (Cola). Nuclear Innovation North America (Nina) is the License Applicant for this new build project, and Toshiba is the selected primary technology contractor. The STP3-4 project has finished the US NRC technical review of the Cola through the final meeting of the Advisory Committee on Reactor Safeguards (ACRS), and the Final Safety Evaluation Report (FSER) is scheduled to be issued by the US NRC in the middle of 2015. The next steps are to support the Mandatory Hearing process, and voting by the NRC commissioners on the motion to grant the Combined License, which is scheduled beginning of 2016 according to US NRC schedule as of March 30, 2015. This paper summarizes the history and progress of the US-A BWR licensing, including the experiences of the Licensee, Nina, and Toshiba as the Epc team worked through the Code of Federal Regulations Title 10 (10-Cfr) Part 52 process, and provides some perspectives on how the related licensing material would also be of value within a 10-Cfr Part 50, two-step process to minimize schedule and financial risks which could arise from ongoing technical developments and regulatory reviews. (Author)

  3. A BWR licensing experience in the USA

    Energy Technology Data Exchange (ETDEWEB)

    Powers, J.; Ogura, C. [Toshiba America Nuclear Energy, Charlotte, North Carolina (United States); Arai, K. [Toshiba Corporation, Yokohama, Kanagawa (Japan); Thomas, S.; Mookhoek, B., E-mail: jim.powers@toshiba.com [Nuclear Innovation North America, Lake Jackson, Texas (United States)

    2015-09-15

    The US-Advanced Boiling Water Reactor (A BWR), certified by the United States Nuclear Regulatory Commission (US NRC), is a third generation, evolutionary boiling water reactor design which is the reference for the South Texas Project Units 3 and 4 (STP3-4) Combined License Application (Cola). Nuclear Innovation North America (Nina) is the License Applicant for this new build project, and Toshiba is the selected primary technology contractor. The STP3-4 project has finished the US NRC technical review of the Cola through the final meeting of the Advisory Committee on Reactor Safeguards (ACRS), and the Final Safety Evaluation Report (FSER) is scheduled to be issued by the US NRC in the middle of 2015. The next steps are to support the Mandatory Hearing process, and voting by the NRC commissioners on the motion to grant the Combined License, which is scheduled beginning of 2016 according to US NRC schedule as of March 30, 2015. This paper summarizes the history and progress of the US-A BWR licensing, including the experiences of the Licensee, Nina, and Toshiba as the Epc team worked through the Code of Federal Regulations Title 10 (10-Cfr) Part 52 process, and provides some perspectives on how the related licensing material would also be of value within a 10-Cfr Part 50, two-step process to minimize schedule and financial risks which could arise from ongoing technical developments and regulatory reviews. (Author)

  4. 77 FR 11173 - Renewal of Facility Operating License No. NPF-30, Union Electric Company, Callaway Plant, Unit 1

    Science.gov (United States)

    2012-02-24

    ... . NRC's Agencywide Documents Access and Management System (ADAMS): You may access publicly-available... order to serve documents through the Electronic Information Exchange System, users will be required to... NUCLEAR REGULATORY COMMISSION [Docket No. 50-483; NRC-2012-0001] Renewal of Facility Operating...

  5. 76 FR 19148 - Entergy Nuclear Operations, Inc., Entergy Nuclear Vermont Yankee, LLC, Vermont Yankee Nuclear...

    Science.gov (United States)

    2011-04-06

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 50-271; License No. DPR-28; NRC-2011-0074] Entergy Nuclear Operations, Inc., Entergy Nuclear Vermont Yankee, LLC, Vermont Yankee Nuclear Power Station..., ``Requests for Action under this Subpart,'' the U.S. Nuclear Regulatory Commission (NRC) take action with...

  6. 78 FR 25484 - License Amendment for Anadarko Petroleum Corporation, Bear Creek Facility, Converse County, Wyoming

    Science.gov (United States)

    2013-05-01

    ... Petroleum Corporation, Bear Creek Facility, Converse County, Wyoming AGENCY: Nuclear Regulatory Commission.... 47 for its Bear Creek Uranium Mill facility in Converse County, Wyoming. The NRC has prepared an... INFORMATION: I. Background The Bear Creek Uranium Mill operated from September 1977 until January 1986, and...

  7. Noneconomic factors influencing scrap metal disposition decisions at DOE and NRC-licensed nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Ewen, M.D.; Robinson, L.A.

    1997-02-01

    The U.S. Environmental Protection Agency (EPA) is currently developing radiation protection standards for scrap metal, which will establish criteria for the unconditional clearance of scrap from nuclear facilities. In support of this effort, Industrial Economics, Incorporated is assessing the costs and benefits attributable to the rulemaking. The first step in this analysis is to develop an in-depth understanding of the factors influencing scrap disposition decisions, so that one can predict current and future practices under existing requirements and compare them to the potential effects of EPA`s rulemaking. These baseline practices are difficult to predict due to a variety of factors. First, because decommissioning activities are just beginning at many sites, current practices do not necessarily provide an accurate indicator of how these practices may evolve as site managers gain experience with related decisions. Second, a number of different regulations and policies apply to these decisions, and the interactive effects of these requirements can be difficult to predict. Third, factors other than regulatory constraints and costs may have a significant effect on related decisions, such as concerns about public perceptions. In general, research suggests that these factors tend to discourage the unconditional clearance of scrap metal.

  8. Importance of the licensing process on the safety culture in the Brazilian nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    Motta, E.S.; Sousa, A.L.B. de; Paiva, R.L.C. de; Mezrahi, A.

    2013-01-01

    The main objective of the Nuclear Fuel Cycle Facilities licensing processes is to ensure the safety of these installations in their entire life cycle (in the installation site selection, designing, construction, pre-operational tests, operational and decommissioning phases). The Brazilian licensing process requires from the operator, among others, before the operating license: (I) a Site Report and a Final Safety Analysis Report, ensuring that all safety related issues are adequately analyzed and understood; (II) a formal structured Management System focused on the installation safety; and (III) dissemination of safety related information to all involved operator employees and subcontractors. Therefore, these requirements reflect in an adequate operator actions and practices, ensuring a working environment with a high level of safety culture. (author)

  9. Importance of the licensing process on the safety culture in the Brazilian nuclear fuel cycle facilities

    Energy Technology Data Exchange (ETDEWEB)

    Motta, E.S.; Sousa, A.L.B. de; Paiva, R.L.C. de; Mezrahi, A., E-mail: emotta@cnen.gov.br [Comissao Nacional de Energia Nuclear (CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2013-07-01

    The main objective of the Nuclear Fuel Cycle Facilities licensing processes is to ensure the safety of these installations in their entire life cycle (in the installation site selection, designing, construction, pre-operational tests, operational and decommissioning phases). The Brazilian licensing process requires from the operator, among others, before the operating license: (I) a Site Report and a Final Safety Analysis Report, ensuring that all safety related issues are adequately analyzed and understood; (II) a formal structured Management System focused on the installation safety; and (III) dissemination of safety related information to all involved operator employees and subcontractors. Therefore, these requirements reflect in an adequate operator actions and practices, ensuring a working environment with a high level of safety culture. (author)

  10. License renewal demonstration program: NRC observations and lessons learned

    International Nuclear Information System (INIS)

    Prato, R.J.; Kuo, P.T.; Newberry, S.F.

    1996-12-01

    This report summarizes the Nuclear Regulatory Commission staff's observations and lessons learned from the five License Renewal Demonstration Program (LRDP) site visits performed by the staff from March 25, 1996, through August 16, 1996. The LRDP was a Nuclear Energy Institute (NEI) program intended to assess the effectiveness of the guidance provided by NEI 95-10, Revision 0, open-quotes Industry Guideline for Implementing the Requirements of 10 CFR Part 54 - The License Renewal Rule,close quotes to implement the requirements of Title 10 of the Code of Federal Regulations, Part 54 (10 CFR Part 54), open-quotes Requirements for Renewal of Operating Licenses for Nuclear Power Plants.close quotes In general, NEI 95-10 appeared to contain the basic guidance needed for scoping, screening, identifying aging effects, developing aging management programs, and performing time-limited aging analyses. However, inconsistent implementation of this guidance in some areas was an indication that clarification of existing guidance and/or the inclusion-of some new guidance may be needed for applicants to develop a license renewal program that is consistent with the intent of the rule

  11. 77 FR 68155 - The Armed Forces Radiobiology Research Institute TRIGA Reactor: Facility Operating License No. R-84

    Science.gov (United States)

    2012-11-15

    ... Research Institute TRIGA Reactor: Facility Operating License No. R-84 AGENCY: Nuclear Regulatory Commission... considering an application for the renewal of Facility Operating License No. R-84 (Application), which... the renewal of Facility Operating License No. R-84, which currently authorizes the licensee to operate...

  12. Compliance determination procedures for environmental radiation protection standards for uranium recovery facilities 40 CFR part 190

    International Nuclear Information System (INIS)

    1982-03-01

    Uranium Milling operations are licensed by the Nuclear Regulatory Commission and by some States in agreement with the Commission. The radiation dose to any individual from the operation of facilities within the uranium fuel cycle is limited to levels set by the Environmental Protection Agency. These levels are contained in the EPA Environmental Radiation Protection Standards for Nuclear Power Operations, in Part 190 of Title 40 of the Code of Federal Regulations (40 CFR Part 190). This report describes the procedures used within NRC's Uranium Recovery Licensing Branch for evaluating compliance with these regulations for uranium milling operations. The report contains descriptions of these procedures, dose factors for evaluating environmental measurement data, and guidance to the NRC staff reviewer

  13. Use of limited information in a license application to construct a repository

    International Nuclear Information System (INIS)

    McGarry, J.M. III; Echols, F.S.

    1996-01-01

    The purpose of this paper is to provide a rationale for the proposition that the Department of Energy's (DOE's) submittal of a license application (LA) for the construction of a geologic repository to the Nuclear Regulatory Commission (NRC) may be, and arguably must be, based on statutorily-limited site characterization data and design information. The Nuclear Waste Policy Act of 1982 (NWPA), as amended, is the controlling statute for the disposal of spent nuclear fuel in a licensed geologic repository. Applicable NRC regulations for the licensing of such a repository are found for the most part in 10 C.F.R. Part 60

  14. Proposed Activities to Address Regulatory Gaps and Challenges for Licensing Advanced Reactors Using Seismic Isolation

    International Nuclear Information System (INIS)

    Coleman, Justin Leigh; Kammerer, Annie M.; Whittaker, Andrew S.

    2016-01-01

    Over the last decade, particularly since implementation of the certified design regulatory approaches outlined in 10 CFR 52, 'Licenses, Certifications, and Approvals for Nuclear Power Plants,' interest has been increasing in the use of seismic isolation (SI) technology to support seismic safety in nuclear facilities. In 2009, the United States (U.S.) Nuclear Regulatory Commission (NRC) initiated research activities to develop new guidance targeted at isolated facilities because SI is being considered for nuclear power plants in the U.S. One product of that research, which was developed around a risk-informed regulatory approach, is a draft NRC NUREG series (NUREG/CR) report that investigates and discusses considerations for use of SI in otherwise traditionally founded large light water reactors (LWRs). A coordinated effort led to new provisions for SI of LWRs in the American Society of Civil Engineers standard ASCE/SEI 4-16, 'Seismic Analysis of Safety Related Nuclear Structures.' The risk-informed design philosophy that underpinned development of the technical basis for these documents led to a set of proposed performance objectives and acceptance criteria intended to serve as the foundation for future NRC guidance on the use of SI and related technology. Although the guidance provided in the draft SI NUREG/CR report and ASCE/SEI 4 16 provides a sound basis for further development of nuclear power plant designs incorporating SI, these initial documents were focused on surface-founded or near-surface-founded LWRs and were, necessarily, limited in scope. For example, there is limited information in both the draft NUREG/CR report and ASCE/SEI 4-16 related to nonlinear analysis of soil-structure systems for deeply-embedded reactors, the isolation of components, and the use of vertical isolation systems. Also not included in the draft SI NUREG/CR report are special considerations for licensing of isolated facilities using the certified design

  15. Proposed Activities to Address Regulatory Gaps and Challenges for Licensing Advanced Reactors Using Seismic Isolation

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, Justin Leigh [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kammerer, Annie M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Whittaker, Andrew S. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-12-01

    Over the last decade, particularly since implementation of the certified design regulatory approaches outlined in 10 CFR 52, “Licenses, Certifications, and Approvals for Nuclear Power Plants,” interest has been increasing in the use of seismic isolation (SI) technology to support seismic safety in nuclear facilities. In 2009, the United States (U.S.) Nuclear Regulatory Commission (NRC) initiated research activities to develop new guidance targeted at isolated facilities because SI is being considered for nuclear power plants in the U.S. One product of that research, which was developed around a risk-informed regulatory approach, is a draft NRC NUREG series (NUREG/CR) report that investigates and discusses considerations for use of SI in otherwise traditionally founded large light water reactors (LWRs). A coordinated effort led to new provisions for SI of LWRs in the American Society of Civil Engineers standard ASCE/SEI 4-16, “Seismic Analysis of Safety Related Nuclear Structures.” The risk-informed design philosophy that underpinned development of the technical basis for these documents led to a set of proposed performance objectives and acceptance criteria intended to serve as the foundation for future NRC guidance on the use of SI and related technology. Although the guidance provided in the draft SI NUREG/CR report and ASCE/SEI 4 16 provides a sound basis for further development of nuclear power plant designs incorporating SI, these initial documents were focused on surface-founded or near-surface-founded LWRs and were, necessarily, limited in scope. For example, there is limited information in both the draft NUREG/CR report and ASCE/SEI 4-16 related to nonlinear analysis of soil-structure systems for deeply-embedded reactors, the isolation of components, and the use of vertical isolation systems. Also not included in the draft SI NUREG/CR report are special considerations for licensing of isolated facilities using the certified design approach in 10 CFR

  16. Licensed operating reactors

    International Nuclear Information System (INIS)

    1989-11-01

    The US Nuclear Regulatory Commission's monthly Licensed Operating Reactors Status Summary Report provides data on the operation of nuclear units as timely and accurately as possible. This information is collected by the Office of Information Resources Management, from the Headquarters Staff of NRC's Office of Inspection and Enforcement, from NRC's Regional Offices, and from utilities. Since all of the data concerning operation of the units is provided by the utility operators less than two weeks after the end of the month, necessary corrections to published information are shown on the errata page

  17. Nuclear export criteria and controls in the United States

    International Nuclear Information System (INIS)

    Shapar, H.K.

    1979-01-01

    The paper describes the export licensing procedure and the modifications made to it under the 1978 Nuclear Non-Proliferation Act (NNPA) to achieve greater control over exports of nuclear material and facilities. Export licences from the Nuclear Regulatory Commission are now required for certain items connected with nuclear plant construction and the procedure for obtaining the views of the Executive Branch have been formalised. The President is enabled to override the denial of an export licence by the NRC. Amongst the new criteria on the export licensing procedure added to the 1954 Atomic Energy Act, the NNPA provides that the IAEA Safeguards under the Non-Proliferation Treaty are applicable to exported nuclear material or facilities, together with adequate physical protection measures. (NEA) [fr

  18. Licensing of simple digital devices

    International Nuclear Information System (INIS)

    Jackson, T. W.

    2008-01-01

    The inability to guarantee error-free software gave rise to the potential for common-cause failure of digital safety systems in nuclear power plants. To address this vulnerability, the U. S. Nuclear Regulatory Commission (NRC) required a quality software development process and a defense-in-depth and diversity analysis for digital safety systems. As a result of recent interim [NRC] staff guidance in the digital instrumentation and control (I and C) area, licensing of simple digital devices decreases some regulatory burden with respect to demonstrating a quality software development process and defense-in-depth and diversity analysis. This paper defines simple digital devices and addresses the interim staff guidance that applies to such devices. The paper also highlights the technical aspects that affect the licensing of such devices and incorporates licensing experience in the U.S. to date. (authors)

  19. Licensing procedures for Low-Level Waste disposal facilities

    International Nuclear Information System (INIS)

    Roop, R.D.; Van Dyke, J.W.

    1985-09-01

    This report describes the procedures applicable to siting and licensing of disposal facilities for low-level radioactive wastes. Primary emphasis is placed on those procedures which are required by regulations, but to the extent possible, non-mandatory activities which will facilitate siting and licensing are also considered. The report provides an overview of how the procedural and technical requirements for a low-level waste (LLW) disposal facility (as defined by the Nuclear Regulatory Commission's Rules 10 CFR Parts 2, 51, and 61) may be integrated with activities to reduce and resolve conflict generated by the proposed siting of a facility. General procedures are described for site screening and selection, site characterization, site evaluation, and preparation of the license application; specific procedures for several individual states are discussed. The report also examines the steps involved in the formal licensing process, including docketing and initial processing, preparation of an environmental impact statement, technical review, hearings, and decisions. It is concluded that development of effective communication between parties in conflict and the utilization of techniques to manage and resolve conflicts represent perhaps the most significant challenge for the people involved in LLW disposal in the next decade. 18 refs., 6 figs

  20. Conformation of an evaluation process for a license renovation solicitude of a nuclear power plant in Mexico

    International Nuclear Information System (INIS)

    Serrano R, M. L.

    2012-10-01

    So that the construction stages, of operation, closing, dismantlement and the radioactive waste disposal of a nuclear power plant (NPP) are carried out in Mexico, is necessary that the operator has a license, permission or authorization for each stage. In Mexico, these licenses, permissions or authorizations are granted by the Energy Secretariat with base in the verdict of the Comision Nacional de Seguridad Nuclear y Salvaguardias (CNSNS). The operation licenses ar the moment effective for the reactors of the Nuclear Power Plant of Laguna Verde (NPP-L V) they will expire respectively in the year 2020 and 2025 for the Unit 1 and Unit 2, for what the CNSNS has begun its preparation before a potential solicitude of the licensee to continue the operation of the NPP-L V. Defining the process to continue and to generate the documents that would help in this phase as normalization, guides, procedures, regulations, controls, etc., is the task that intends to be carried out the regulator body so that the evaluation process is effective and efficient, so much for the same regulator body as for the licensee. This work exposes the advance that the CNSNS has in this aspect and is centered specifically in the conformation of an evaluation process of license renovation solicitude, taking as base what the regulator body of the United States of North America (US NRC) established and following to the IAEA. Also, this work includes statistical of electric power production in Mexico, licensing antecedents for the NPP-L V, a world perspective of the license renovations and the regulation of the US NRC related to the license renovation of a NPP. (Author)

  1. Operating reactors licensing actions summary. Volume 5, No. 7

    International Nuclear Information System (INIS)

    1985-09-01

    The Operating Reactors Licensing Actions Summary is designed to provide the management of the Nuclear Regulatory Commission (NRC) with an overview of licensing actions dealing with operating power and nonpower reactors. These reports utilize data collected from the Division of Licensing in the Office of Nuclear Reactor Regulation and are prepared by the Office of Resource Management

  2. Geoprocessing semiautomated applied to licensing of nuclear facilities

    International Nuclear Information System (INIS)

    Oliveira, Aline Fabiane Gonçalves de

    2017-01-01

    In recent decades, Brazilian environmental legislation has undergone considerable evolution. This fact occurs concurrently with changes related to environmental studies, which aim increasingly to guarantee sustainability and environmental balance. Thus, it is important to use technological resources to optimize the environmental studies involved in the licensing processes. The present work sought to analyze and direct the application of geotechnologies (Geoprocessing) in environmental studies of the Local Report (RL) of the Center for the Development of Nuclear Technology (CDTN). The proposal to apply the Geoprocessing tools and the possibilities inherent to the Geographic Information Systems (GIS) technology, as a tool to subsidize the environmental studies in accordance with the requirements of the RL was aimed at contributing to the modernization of the stages involved in the process of Nuclear licensing, such as in the structuring and execution of environmental studies, as well as in the activities of environmental monitoring, always considering the precepts in force in the laws and resolutions and standards in force of the National Nuclear Energy Commission (CNEN) for nuclear licensing. In order to achieve the objective, the ArcGis application was adopted and one of its analytical tools Model Builder. This allowed the macro (schematization) of the methodology from the GIS tools applied, presenting as an advantage the efficiency and optimization of the execution time of the procedures in situations where it is necessary to apply the same routine of tasks, besides being editable, Which provides possibilities for adaptations and improvements. In order to achieve this objective, the applicability of the methodology was highly feasible, the model developed by Model Builder / ArcMap, provided a semi-automated process, and provided a flowchart that depicts the procedure to be performed in order to reach the Final process to make inferences and analyzes with greater

  3. Electronic licensing filing system development and implementation experience

    International Nuclear Information System (INIS)

    Walderhaug, J.

    1993-01-01

    The Electronic Licensing Filing System (ELFS) is a microcomputer-based integrated document search and retrieval system for the Nuclear Regulatory Affairs Division of Southern California Edison (SCE). ELFS allows the user access to the current licensing basis of a subject by providing an easily searchable electronic information data base consisting of regulatory correspondence, design-bases documentation, licensing documents [updated final safety and analysis report (UFSAR) and technical specifications], and regulatory guidance or directives [10CFR, generic letters, bulletins, notices, circulars, regulatory guides, policy statements, and selected US Nuclear Regulatory Commission (NRC) regulations]. It is used in the preparation of correspondence and submittals to the NRC, 50.59 safety evaluations, design-bases reconstitution, and commitment tracking and management

  4. 75 FR 19431 - Union Electric Company; Notice of Consideration of Issuance of Amendment to Facility Operating...

    Science.gov (United States)

    2010-04-14

    ... Consideration of Issuance of Amendment to Facility Operating License, Proposed No Significant Hazards Consideration Determination, and Opportunity for a Hearing The U.S. Nuclear Regulatory Commission (NRC or the... staff must determine that the amendment request involves no significant hazards consideration. Under the...

  5. Regulatory systems-based licensing guidance documentation

    International Nuclear Information System (INIS)

    Delligatti, M.S.

    1991-01-01

    The US Nuclear Regulatory Commission (NRC) has developed a series of licensing guidance documents based on the regulatory requirements in Part 60 of Title 10 of the Code of Federal Regulations (10 CFR Part 60). This regulatory systems-based approach to licensing guidance documentation relies on the definition of the high-level waste repository in 10 CFR Part 60. A document which is important for the frame-work it gives to other programmatic licensing guidance is the Draft Regulatory Guide open-quotes Format and Content for the License Application for the High-Level Waste Repositoryclose quotes (FCRG). The FCRG describes a format and content acceptable to NRC for a high-level waste repository license application pursuant to the requirements of 10 CFR Part 60. Other licensing guidance documents will be compatible with the FCRG

  6. NRC [Nuclear Regulatory Commission] perspective of software QA [quality assurance] in the nuclear history

    International Nuclear Information System (INIS)

    Weiss, S.H.

    1988-01-01

    Computer technology has been a part of the nuclear industry since its inception. However, it is only recently that computers have been integrated into reactor operations. During the early history of commercial nuclear power in the United States, the US Nuclear Regulatory Commission (NRC) discouraged the use of digital computers for real-time control and monitoring of nuclear power plant operation. At the time, this position was justified since software engineering was in its infancy, and horror stories on computer crashes were plentiful. Since the advent of microprocessors and inexpensive computer memories, significant advances have been made in fault-tolerant computer architecture that have resulted in highly reliable, durable computer systems. The NRC's requirement for safety parameter display system (SPDS) stemmed form the results of studies and investigations conducted on the Three Mile Island Unit 2 (TMI-2) accident. An NRC contractor has prepared a handbook of software QA techniques applicable to the nuclear industry, published as NUREG/CR-4640 in August 1987. Currently, the NRC is considering development of an inspection program covering software QA. Future efforts may address verification and validation as applied to expert systems and artificial intelligence programs

  7. The NRC weighs public input on plant cleanup standards

    International Nuclear Information System (INIS)

    Simpson, J.

    1993-01-01

    In the wake of seven public open-quotes work-shopsclose quotes held around the country over the past several months, the Nuclear Regulatory Commission (NRC) is preparing to develop radiological criteria for decommissioning nuclear power plants. The criteria will apply to plants that operate for their normal lifespan, those that shut down prematurely, as well as a range of other NRC-licensed facilities, including materials licensees, fuel reprocessing and fabrication plants, and independent spent fuel storage installations. The criteria have been years in the making, and their progress is being monitored closely by the Environmental Protection Agency (EPA), which shares with the NRC the authority to regulate radiological hazards. Both agencies have made abortive attempts to promulgate standards in the past. The EPA's most recent proposal, dating from 1986, has yet to reach the final rule stage. The NCRC's 1990 policy statement, open-quotes Below Regulatory Concern,close quotes was overturned by the Energy Policy Act of 1992, a setback that prompted the Commission's call for open-quotes enhanced participatory rulemakingclose quotes-a.k.a., public meetings-last December. In its Rulemaking Issues Paper, the NRC outlined for discussion four open-quotes fundamentalclose quotes objectives as a basis for developing decommissioning criteria: (1) establishing limits above which the risks to the public are deemed open-quotes unacceptableclose quotes; (2) establishing open-quotes goalsclose quotes below which the risks to the public are deemed open-quotes trivialclose quotes; (3) establishing criteria for what is achievable using the open-quotes best availableclose quotes cleanup technology; and (4) removing all radioactivity attributable to plant activity. The NRC expects to publish a proposed rule and a draft generic environmental impact statement in April 1994; the final rule is scheduled for May 1995

  8. Nuclear fuel licensing requirements: present status and future trends

    International Nuclear Information System (INIS)

    Gantchev, T.; Vitkova, M.; Gorinov, I.; Datcheva, D.; Rashkova, N.

    2001-01-01

    The nuclear fuel licensing process must be directed to establishing of criteria for licensing (fuel safety criteria) and relationship between safety limits, technical specifications and operational conditions. This paper discusses the fuel safety criteria as used by NRC and Russian vendor. A survey on the available fuel behavior, modeling and related computer codes is given with respect to help the licensing process including new safety features of general changes in fuel design and operational conditions. Several types of computer codes that are used in safety analysis are sensitive to fuel-related parameters. The need for further code development and verification has been stated on many occasions: new design elements, such as different cladding materials, higher burnup, different fuel microstructure and use of MOX fuel can affect the performance of these codes. Regulatory inspection practices during operation and refueling in different countries are also shown. Future trends are discussed in particular with regard to the coming high burnup and to new core management schemes

  9. Operating reactors licensing actions summary. Vol.4, No. 4

    International Nuclear Information System (INIS)

    1984-06-01

    The operating reactors licensing actions summary is designed to provide the management of the Nuclear Regulatory Commission (NRC) with an overview of licensing actions dealing with operating power and nonpower reactors

  10. The Monticello license renewal project

    International Nuclear Information System (INIS)

    Clauss, J.M.; Harrison, D.L.; Pickens, T.A.

    1993-01-01

    Today, 111 nuclear power plants provide over 20 percent of the electrical energy generated in the United States. The operating license of the oldest operating plant will expire in 2003, one-third of the existing operating licenses will expire by 2010 and the newest plant's operating license will expire in 2033. The National Energy Strategy (NES) prepared by the Department of Energy (DOE) assumes that 70 percent of the current operating plants will continue to operate beyond their current license expiration. Power from current operating plants can assist in ensuring an adequate, diverse, and environmentally acceptable energy supply for economic growth and improved U.S. competitiveness. In order to preserve this energy resource, three major tasks must be successfully completed: (1) establishment of regulations, technical standards, and procedures for the preparation and review of License Renewal Applications (LRAs); (2) development of technical criteria and bases for monitoring, refurbishing or replacing plant equipment; and (3) demonstration of the regulatory process by a plant obtaining a renewed license. Since 1986, the DOE has been working with the nuclear industry and the Nuclear Regulatory Commission (NRC) to establish and demonstrate the option to extend the life of a nuclear power plant by renewing the operating license. The Monticello Lead Plant demonstration project was initiated in September 1988, following the Pilot Plant studies. This paper is primarily focused on the status and insights gained from the Northern States Power Company (NSP) Monticello Lead Plant demonstration project. The following information is included: (1) Current Status - Monticello License Renewal Application; (2) Economic Analysis; (3) License Renewal Regulatory Uncertainty Issues; (4) Key Decisions; (5) Management Structure; (6) Technical and Licensing Perspective; (7) NRC Interactions; (8) Summary

  11. Decommissioning of U.S. uranium production facilities

    Energy Technology Data Exchange (ETDEWEB)

    1995-02-01

    From 1980 to 1993, the domestic production of uranium declined from almost 44 million pounds U{sub 3}O{sub 8} to about 3 million pounds. This retrenchment of the U.S. uranium industry resulted in the permanent closing of many uranium-producing facilities. Current low uranium prices, excess world supply, and low expectations for future uranium demand indicate that it is unlikely existing plants will be reopened. Because of this situation, these facilities eventually will have to be decommissioned. The Uranium Mill Tailings and Radiation Control Act of 1978 (UMTRCA) vests the U.S. Environmental Protection Agency (EPA) with overall responsibility for establishing environmental standards for decommissioning of uranium production facilities. UMTRCA also gave the U.S. Nuclear Regulatory Commission (NRC) the responsibility for licensing and regulating uranium production and related activities, including decommissioning. Because there are many issues associated with decommissioning-environmental, political, and financial-this report will concentrate on the answers to three questions: (1) What is required? (2) How is the process implemented? (3) What are the costs? Regulatory control is exercised principally through the NRC licensing process. Before receiving a license to construct and operate an uranium producing facility, the applicant is required to present a decommissioning plan to the NRC. Once the plan is approved, the licensee must post a surety to guarantee that funds will be available to execute the plan and reclaim the site. This report by the Energy Information Administration (EIA) represents the most comprehensive study on this topic by analyzing data on 33 (out of 43) uranium production facilities located in Colorado, Nebraska, New Mexico, South Dakota, Texas, Utah, and Washington.

  12. Decommissioning of U.S. uranium production facilities

    International Nuclear Information System (INIS)

    1995-02-01

    From 1980 to 1993, the domestic production of uranium declined from almost 44 million pounds U 3 O 8 to about 3 million pounds. This retrenchment of the U.S. uranium industry resulted in the permanent closing of many uranium-producing facilities. Current low uranium prices, excess world supply, and low expectations for future uranium demand indicate that it is unlikely existing plants will be reopened. Because of this situation, these facilities eventually will have to be decommissioned. The Uranium Mill Tailings and Radiation Control Act of 1978 (UMTRCA) vests the U.S. Environmental Protection Agency (EPA) with overall responsibility for establishing environmental standards for decommissioning of uranium production facilities. UMTRCA also gave the U.S. Nuclear Regulatory Commission (NRC) the responsibility for licensing and regulating uranium production and related activities, including decommissioning. Because there are many issues associated with decommissioning-environmental, political, and financial-this report will concentrate on the answers to three questions: (1) What is required? (2) How is the process implemented? (3) What are the costs? Regulatory control is exercised principally through the NRC licensing process. Before receiving a license to construct and operate an uranium producing facility, the applicant is required to present a decommissioning plan to the NRC. Once the plan is approved, the licensee must post a surety to guarantee that funds will be available to execute the plan and reclaim the site. This report by the Energy Information Administration (EIA) represents the most comprehensive study on this topic by analyzing data on 33 (out of 43) uranium production facilities located in Colorado, Nebraska, New Mexico, South Dakota, Texas, Utah, and Washington

  13. Truck bomb and insider threats to nuclear facilities

    International Nuclear Information System (INIS)

    Hirsch, D.

    1987-01-01

    In the nuclear field, two the these weak links in the security chain are the truck bomb threat and the insider threat. The risks associated with terrorist use of vehicular bombs against nuclear targets surfaced (actually, resurfaced) followed the terrorist attacks on the US Embassy annex and the Marine compound in Leb Concern was expressed that similar attacks against nuclear facilities could result in substantial damage and release of radioactivity. Since the current regulations of the NRC require licensees to protect only against attacks on foot (and even then, only against very small attacking forces), shortly after the Lebanon bombings, that agency commenced an urgent rulemaking to require its licensees to protect against truck bombs. Inexplicably, that rulemaking was called off after research results indicated that the truck bomb threat to nuclear facilities was even more serious than previously thought. Even were nuclear facilities adequately protected against external attack, be the aim theft or sabotage, the greatest security risk to these sites - the threat of action by insiders - would remain. The traditional methods of protecting against the insider threat - such as the two-person rule, strict compartmentalization of vital areas, and design features that make damage to two or more redundant systems by one individual difficult - are generally expensive and have encountered substantial resistance from the nuclear industry, which has restrained the NRC from requiring them

  14. Decommissioning Licensing Process of Nuclear Installations in Spain

    International Nuclear Information System (INIS)

    Correa Sainz, Cristina

    2016-01-01

    The Enresa experience related to the decommissioning of nuclear facilities includes the decommissioning of the Vandellos I and Jose Cabrera NPPs. The Vandellos I gas-graphite reactor was decommissioned in about five years (from 1998 to 2003) to what is known as level 2. In February 2010, the decommissioning of Jose Cabrera power plant has been initiated and it is scheduled to be finished by 2018. The decommissioning of a nuclear power plant is a complex administrative process, the procedure for changing from operation to decommissioning is established in the Spanish law. This paper summarizes the legal framework defining the strategies, the main activities and the basic roles of the various agents involved in the decommissioning of nuclear facilities in Spain. It also describes briefly the Licensing documents required to obtain the decommissioning authorization and the Enresa point of view, as licensee, on the licensing decommissioning process. (author)

  15. Operator licensing examination standards for power reactors. Interim revision 8

    International Nuclear Information System (INIS)

    1997-01-01

    These examination standards are intended to assist NRC examiners and facility licensees to better understand the processes associated with initial and requalification examinations. The standards also ensure the equitable and consistent administration of examinations for all applicants. These standards are for guidance purposes and are not a substitute for the operator licensing regulations (i.e., 10 CFR Part 55), and they are subject to revision or other changes in internal operator licensing policy. This interim revision permits facility licensees to prepare their initial operator licensing examinations on a voluntary basis pending an amendment to 10 CFR Part 55 that will require facility participation. The NRC intends to solicit comments on this revision during the rulemaking process and to issue a final Revision 8 in conjunction with the final rule

  16. 75 FR 53985 - Arizona Public Service Company, et al., Palo Verde Nuclear Generating Station, Unit 3; Temporary...

    Science.gov (United States)

    2010-09-02

    ... NUCLEAR REGULATORY COMMISSION [Docket No. STN 50-530; NRC-2010-0281] Arizona Public Service Company, et al., Palo Verde Nuclear Generating Station, Unit 3; Temporary Exemption 1.0 Background Arizona Public Service Company (APS, the licensee) is the holder of Facility Operating License No. NPF-74, which...

  17. 78 FR 49305 - Luminant Generation Company LLC, Comanche Peak Nuclear Power Plant, Unit Nos. 1 and 2...

    Science.gov (United States)

    2013-08-13

    ... NUCLEAR REGULATORY COMMISSION [Docket Nos. 50-445 and 50-446; NRC-2013-0182] Luminant Generation Company LLC, Comanche Peak Nuclear Power Plant, Unit Nos. 1 and 2; Application for Amendment to Facility... Operating License Nos. NPF-87 and NPF-89 for the Comanche Peak Nuclear Power Plant, Unit Nos. 1 and 2...

  18. Licensing procedures for Low-Level Waste disposal facilities

    Energy Technology Data Exchange (ETDEWEB)

    Roop, R.D.; Van Dyke, J.W.

    1985-09-01

    This report describes the procedures applicable to siting and licensing of disposal facilities for low-level radioactive wastes. Primary emphasis is placed on those procedures which are required by regulations, but to the extent possible, non-mandatory activities which will facilitate siting and licensing are also considered. The report provides an overview of how the procedural and technical requirements for a low-level waste (LLW) disposal facility (as defined by the Nuclear Regulatory Commission's Rules 10 CFR Parts 2, 51, and 61) may be integrated with activities to reduce and resolve conflict generated by the proposed siting of a facility. General procedures are described for site screening and selection, site characterization, site evaluation, and preparation of the license application; specific procedures for several individual states are discussed. The report also examines the steps involved in the formal licensing process, including docketing and initial processing, preparation of an environmental impact statement, technical review, hearings, and decisions. It is concluded that development of effective communication between parties in conflict and the utilization of techniques to manage and resolve conflicts represent perhaps the most significant challenge for the people involved in LLW disposal in the next decade. 18 refs., 6 figs.

  19. Safety evaluation report related to the construction permit and operating license for the research reactor at the University of Texas (Docket No. 50-602)

    International Nuclear Information System (INIS)

    1992-01-01

    The Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission (NRC) has prepared Supplement 1 to NUREG-1135, ''Safety Evaluation Report Related to the Construction Permit and Operating License for the Research Reactor at the University of Texas'' (SER) May 1985. The reactor facility is owned by The University of Texas at Austin (UT, the applicant) and is located at the University's Balcones Research Center in Austin, Texas. This supplement to the SER (SSER) describes the changes to the reactor facility design from the description in the SER. The SER and SSER together reflect the facility as built. The SSER also documents the reviews that the NRC has completed regarding the applicant's emergency plan, security plan, and technical specifications that were identified as open in the SER

  20. Overview of the Yucca Mountain Licensing Process

    International Nuclear Information System (INIS)

    M. Wisenburg

    2004-01-01

    This paper presents an overview of the licensing process for a Yucca Mountain repository for high-level radioactive waste and spent nuclear fuel. The paper discusses the steps in the licensing proceeding, the roles of the participants, the licensing and hearing requirements contained in the Code of Federal Regulations. A description of the Nuclear Regulatory Commission (NRC) staff acceptance and compliance reviews of the Department of Energy (DOE) application for a construction authorization and a license to receive and possess high-level radioactive waste and spent nuclear fuel is provided. The paper also includes a detailed description of the hearing process

  1. Recent developments in NRC guidelines for atmosphere cleanup systems

    International Nuclear Information System (INIS)

    Bellamy, R.R.

    1976-01-01

    The Nuclear Regulatory Commission (NRC) maintains the policy of updating when necessary, its published guidance for the design of engineered safety feature (ESF) and normal ventilation systems. The guidance is disseminated by means of issuing new, or revisions to, existing Regulatory Guides, Standard Review Plans, Branch Technical Positions and Technical Specifications. A revised Regulatory Guide, new Technical Specifications and new Standard Review Plans with Branch Technical Positions for atmosphere cleanup systems are discussed. Regulatory Guide 1.52, ''Design, Testing and Maintenance Criteria for Atmosphere Cleanup System Air Filtration and Adsorption Units of Light-Water-Cooled Nuclear Power Plants,'' was issued in July 1973. The major comments received from the nuclear industry since the guide was issued, NRC's experience in implementing the guide in recent license applications, status of operating plants in meeting the guidelines and NRC's continuing assessment of operating data and laboratory tests to assure that the guide reflects the latest technology are discussed

  2. 78 FR 14361 - In the Matter of Luminant Generation Company LLC, Comanche Peak Nuclear Power Plant, Units 1 and...

    Science.gov (United States)

    2013-03-05

    ... NUCLEAR REGULATORY COMMISSION [NRC-2012-0310; Docket Nos. 50-445 and 50-446; License Nos. NPF-87 and NPF-89] In the Matter of Luminant Generation Company LLC, Comanche Peak Nuclear Power Plant, Units... Nuclear Power Plant, Units 1 and 2 (CPNPP), and its Independent Spent Fuel Storage Installation Facility...

  3. Issues related to the licensing of final disposal facilities for radioactive waste

    International Nuclear Information System (INIS)

    Medici, M.A.; Alvarez, D.E.; Lee Gonzales, H.; Piumetti, E.H.; Palacios, E.

    2010-01-01

    The licensing process of a final disposal facility for radioactive waste involves the design, construction, pre-operation, operation, closure and post closure stages. While design and pre-operational stages are, to a reasonable extent, similar to other kind of nuclear or radioactive facilities, construction, operation, closure and post-closure of a radioactive waste disposal facility have unique meanings. As consequence of that, the licensing process should incorporate these particularities. Considering the long timeframes involved at each stage of a waste disposal facility, it is convenient that the development of the project being implemented in and step by step process, be flexible enough as to adapt to new requirements that would arise as a consequence of technology improvements or due to variations in the socio-economical and political conditions. In Argentina, the regulatory Standard AR 0.1.1 establishes the general guideline for the 'Licensing of Class I facilities (relevant facilities)'. Nevertheless, for radioactive waste final disposal facilities a new specific guidance should be developed in addition to the Basic Standard mentioned. This paper describes the particularities of final disposal facilities indicating that a specific licensing system for this type of facilities should be foreseen. (authors) [es

  4. Overview of the role of economics in plant life management license renewal in the U.S

    International Nuclear Information System (INIS)

    Young, G.G.; Nelson, A.P.

    2002-01-01

    Full text: In 1995, the U.S. Nuclear Regulatory Commission (NRC) published a revised rule in 10 CFR Part 54 that provides the requirements for an operating nuclear plant to seek license renewal. U.S. nuclear power plants obtain a 40-year initial operating license, but under 10 CFR Part 54, additional terms of 20-years each may be obtained through license renewal. Prior to 1995, the estimated cost just to prepare a license renewal application was about $40 million. Under the revised rule, the cost to prepare an application was reduced to about $10 million or less. Although the revised rule generated considerable interest, the decision to seek license renewal is fundamentally an economic decision. In 1995, many people believed that only a select few operating nuclear plants would pursue license renewal and that most would operate for no more than 40 years. The primary reason for this belief was that the cost of keeping U.S. nuclear plants running did not appear to be competitive with other forms of electricity generation. By 1998, the economic conditions in the U.S. were changing dramatically. Electricity deregulation was moving ahead, the need for electricity was growing, and the operating costs for nuclear power plants were declining. Also, in 1998, the first two applications for license renewal were submitted to the NRC by Baltimore Gas and Electric for the two-unit Calvert Cliffs nuclear power plant and by Duke Energy for the three-unit Oconee nuclear power plant. The U.S. nuclear industry was somewhat skeptical that the NRC could complete the license renewal process in a timely and predictable manner. This skepticism was due to the protracted and unpredictable process used by the NRC to approve the original operating licenses, especially in the 1980's and early 1990's. In March 2000, the NRC approved the renewal of the 40-year operating licenses for the two-unit Calvert Cliffs nuclear power plant for an additional 20 years. Two months later, the NRC approved the

  5. Decontamination and Decommissioning at Small Nuclear Facilities: Facilitating the Submission of Decommissioning Funding Plans

    International Nuclear Information System (INIS)

    Minor, D.A.; Grumbles, A.

    2009-01-01

    This paper describes the efforts of the Washington State Department of Health to ensure that small nuclear facilities have the tools each needs to submit Decommissioning Funding Plans. These Plans are required by both the U.S. Nuclear Regulatory Commission (NRC) and in some states - in the case of Washington state, the Washington State Department of Health is the regulator of radioactive materials. Unfortunately, the guidance documents provided by the U.S. NRC pertain to large nuclear facilities, such as nuclear fuel fabrication plants, not the small nuclear laboratory nor small nuclear laundry that may also be required to submit such Plans. These small facilities are required to submit Decommissioning Funding Plans by dint of their nuclear materials inventory, but have only a small staff, such as a Radiation Safety Officer and few authorized users. The Washington State Department of Health and Attenuation Environmental Company have been working on certain tools, such as templates and spreadsheets, that are intended to assist these small nuclear facilities prepare compliant Decommissioning Funding Plans with a minimum of experience and effort. (authors)

  6. Lessons Learned from Design and Construction of New US Nuclear Facility

    International Nuclear Information System (INIS)

    Seamans, S. E.; Horvath, D. A.

    2012-01-01

    For reasons related to licensing uncertainty, economic slowdown, and questionable financial backing, no new nuclear facility projects have been undertaken in the United States since the Three Mile Island Incident in 1979; however, a need for such facilities (both nuclear power plants and nuclear fuel facilities) continues and various incentives leading to the start of a nuclear renaissance have occurred. One incentive is a complete overhaul by the US Nuclear Regulatory Commission of the earlier two step licensing process under 10 CFR 50. The earlier approach required first a construction permit and then an operating license, whereas the new approach allows a more streamlined (one step) combined license (COL) approach utilizing Standard Design Certifications via the regulatory framework created by 10 CFR 52. Other incentives include US Government backed loan guarantees as well as private company contributions. One aspect to the new process has been consideration and implementation of many new topic-specific regulations and industry standards which have continued to evolve during the past 30 years in spite of the lack of new plant design and construction activity. Therefore, an Owner attempting a new nuclear facility project under 10 CFR 52 needs to address a myriad of new requirements previously unconsidered. Several new projects including both power plants and fuel facilities have begun the new licensing process with its many new requirements to consider, but a uranium enrichment facility has run the gamut first. This paper will summarize many of the lessons learned from designing, constructing and testing this first new nuclear facility to be built in the US in over 30 years.(author).

  7. Licensed operating reactors

    International Nuclear Information System (INIS)

    1990-01-01

    The US Nuclear Regulatory Commission's monthly LICENSED OPERATING REACTORS Status Summary Report provides data on the operation of nuclear units as timely and accurately as possible. This information is collected by the Office of Information Resources Management, from the Headquarters Staff of NRC's Office of Inspection and Enforcement, from NRC's Regional Offices, and from utilities. This report is divided into three sections: the first contains monthly highlights and statistics for commercial operating units, and errata from previously reported data; the second is a compilation of detailed information on each unit, provided by NRC Regional Offices, IE Headquarters and the Utilities; and the third section is an appendix for miscellaneous information such as spent fuel storage capability, reactor years of experience and non-power reactors in the United States

  8. Licensed operating reactors

    International Nuclear Information System (INIS)

    Hartfield, R.A.

    1990-03-01

    The US Nuclear Regulatory Commission's monthly Licensed Operating Reactors Status Summary Report provides data on the operation of nuclear units as timely and accurately as possible. This information is collected by the Office of Information Resources Management, from the Headquarters Staff of NRC's Office of Inspection and Enforcement, from NRC's Regional Offices, and from utilities. This report is divided into three sections: the first contains monthly highlights and statistics for commercial operating units, and errata from previously reported data; the second is a compilation of detailed information on each unit, provided by NRC Regional Offices, IE Headquarters and the Utilities; and the third section is an appendix for miscellaneous information such as spent fuel storage capability, reactor years of experience and non-power reactors in the United States

  9. Licensed operating reactors

    International Nuclear Information System (INIS)

    1989-08-01

    The US Nuclear Regulatory Commission's monthly LICENSED OPERATING REACTORS Status Summary Report provides data on the operation of nuclear units as timely and accurately as possible. This information is collected by the Office of Information Resources Management, from the Headquarters Staff of NRC's Office of Inspection and Enforcement, from NRC's Regional Offices, and from utilities. This report is divided into three sections: the first contains monthly highlights and statistics for commercial operating units, and errata from previously reported data; the second is a compilation of detailed information on each unit, provided by NRC Regional Offices, IE Headquarters and the utilities; and the third section is an appendix for miscellaneous information such as spent fuel storage capability, reactor years of experience and non-power reactors in the United States

  10. Operating reactors licensing actions summary. Volume 5, No. 9

    International Nuclear Information System (INIS)

    1985-11-01

    This document is designed to provide the management of the Nuclear Regulatory Commission (NRC) with an overview of licensing actions dealing with operating power and nonpower reactors. These reports utilize data collected from the Division of Licensing in the Office of Nuclear Reactor Regulation and are prepared by the Office of Resource Management

  11. Operating reactors licensing actions summary. Volume 5, No. 8

    International Nuclear Information System (INIS)

    1985-10-01

    This summary is designed to provide the management of the Nuclear Regulatory Commission (NRC) with an overview of licensing actions dealing with operating power and nonpower reactors. These reports utilize data collected from the Division of Licensing in the Office of Nuclear Reactor Regulation and are prepared by the Office of Resource Management

  12. Operating reactors licensing actions summary. Volume 4, No. 9

    International Nuclear Information System (INIS)

    1984-11-01

    This document is designed to provide the management of the Nuclear Regulatory Commission (NRC) with an overview of licensing actions dealing with operating power and nonpower reactors. These reports utilize data collected from the division of licensing in the Office of Nuclear Reactor Regulation and are prepared by the Office of Resource Management

  13. Operating reactors licensing actions summary. Vol. 4, No. 2

    International Nuclear Information System (INIS)

    1984-04-01

    This summary is designed to provide the management of the Nuclear Regulatory Commission (NRC) with an overview of licensing actions dealing with operating power and nonpower reactors. These reports utilize data collected from the Division of Licensing in the Office of Nuclear Reactor Regulation and are prepared by the Office of Resource Management

  14. ONR Licensing and Regulation of a Geological Disposal Facility in the UK

    International Nuclear Information System (INIS)

    Boydon, Frans; Glazbrook, David

    2014-01-01

    Document available in abstract form only. Full text follows: The UK has substantial quantities of waste which has arisen from operation and decommissioning of legacy nuclear plant. While a disposal route for Low Level Waste (LLW) has been in operation in the UK for many years, there is as yet no such route for Higher Activity Waste. The government invited local communities to express an interest in hosting a Geological Disposal Facility (GDF). However, the Scottish government is opposed to deep disposal and proposes long-term interim storage in Scotland. This paper describes the work underway and current progress in developing a GDF for the UK. In particular it describes the current legal system in the UK that enables nuclear facilities to be licensed and the background underpinning licensing of existing disposal facilities. It identifies changes which will be necessary to legislation to enable a GDF to be licensed and work which it is performing in close co-operation with the Environment Agency which operate a permitting regime for environmental aspects. The Office of Nuclear Regulation (ONR) regulates safety, security and transport associated with nuclear sites. This paper focuses on the regulation of safety and radioactive waste. The UK licensing regime is non-prescriptive and proportionate, allowing for a flexible approach to licensing. The licence is not time-limited but is designed to be used from construction, through commissioning for the lifetime of the facility. Under the Nuclear Installations Act 1965 (as amended) ONR may attach licence conditions: - In the interests of safety; or - with respect to the handling, treatment and disposal of nuclear matter. ONR has developed a suite of 36 Licence conditions, which typically require the operator to made 'adequate arrangements' to ensure safety. These arrangements would involve the use of 'hold points' beyond which the operator must not proceed without ONR's agreement. In determining

  15. Status report on NRC's current below regulatory concern activities

    International Nuclear Information System (INIS)

    Dragonette, K.S.

    1988-01-01

    The concept of below regulatory concern (BRC) is not new to the Nuclear Regulatory Commission (NRC) or its predecessor agency, the Atomic Energy Commission. The regulations and licensing decisions have involved limited and de facto decisions on BRC since the beginning. For example, consumer products containing radioactive materials have been approved for distribution to persons exempt from licensing for some time and procedures for survey and release of equipment have traditionally been a part of many licensees' radiation safety programs. However, these actions have generally been ad hoc decisions in response to specific needs and have not been necessarily consistent. The need to deal with this regulatory matter has been receiving attention from both Congress and the NRC Commissioners. NRC response has grown from addressing specific waste streams, to generic rulemaking for wastes, and finally to efforts to develop a broad generic BRC policy. Section 10 of the Low-Level Radioactive Waste Policy Amendments Act of 1985 addressed NRC actions on specific waste streams. In response, NRC issued guidance on rulemaking petitions for specific wastes. NRC also issued an advance notice of proposed rulemaking indicating consideration of Commission initiated regulations to address BRC wastes in a generic manner. The Commissioners have directed staff to develop an umbrella policy for all agency decisions concerning levels of risk or dose that do not require government regulation

  16. Regulations and financing for decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    Kumakura, Osamu

    1981-01-01

    The purpose of this report is to survey the French legislation concerning the decommissioning of nuclear facilities and the method of financing for it. There is no clause in French regulations, which states any specific criterion or licensing procedure for the proper decommissioning. The legal problems in this domain are treated within the general regulation system on atomic energy. The decommissioning of nuclear facilities is carried out in accordance with the licensing procedure for constructing nuclear facilities or the permission procedure for operating them, according to the ''Decree on nuclear installations, 1963''. The works for the final shut-down and decommissioning are regarded as the modification to the safety report or the general operation instructions, and new permit is required. In the case that the radioactivity of substances after decommissioning is above the criteria of the Decree, 1963, the new license is required. In the case of below the criteria, the facilities are governed by the ''Act on installations classified for environmental protection, 1976''. The ''Decree on general radiation protection, 1966'', the ''Decree on radiation protection of workers in nuclear installations, 1975'', the ''Ministerial order on transport of dangerous materials, 1945'', and two ministerial orders on radioactive effluent discharge, 1974, are applied to the decommissioning works. (Kako, I.)

  17. An assessment of the contribution of NRC [Nuclear Regulatory Commission] regulatory growth to nuclear plant cost growth using engineering scope changes

    International Nuclear Information System (INIS)

    Cohen, S.

    1987-03-01

    The purpose of this study is to determine the contribution of NRC regulations to the growth in nuclear power plant capital costs using the case study method. The two plants selected for the case studies are Florida Power and Light Company's (FP and L) St. Lucie Unit 1 (SL1) and St. Lucie Unit 2 (SL2). SL1 was constructed in the early 1970s and was granted an operating license in 1976. SL2 was constructed in the late 1970s and early 1980s, and was granted an operating license in 1983. The information bases were the amendments to the contracts between FP and L and its architect-engineer/constructor, i.e., the ''scope changes''. These were examined and analyzed for causation, i.e., NRC-initiated or utility-initiated, and all of the costs associated with scope changes of each type were aggregated to determine the contribution of each. Although the scope changes accounted for only a small fraction of the total cost growth for either plant, they were still used to determine the relative contribution of regulatory growth to cost growth. Unexpectedly, a significantly higher percentage of out-of-scope work (approximately 84%) was attributable to NRC regulatory requirements for SL1 than SL2 (approximately 47%). These results were unexpected because SL2 was constructed during a period in which regulation was considered to be particularly unstable. However, a more detailed analysis of causation indicates that a shift occurred from an ad-hoc mode of regulation in the early 1970s to a more prescriptive process in the late 1970s. Thus the number of formal NRC requirements may not be a valid measure of regulatory stability

  18. CEQ regulations called peril to nuclear licensing process

    International Nuclear Information System (INIS)

    O'Neill, J.V.

    1979-01-01

    Court challenges are expected over regulations of the Council on Environmental Quality (CEQ) that were designed to improve nuclear-licensing decisions, but that have actually changed the meanings of National Environmental Policy Act (NEPA) regulations. The legal implications of these changes could, unless resolved, make the licensing process for nuclear facilities even more uncertain. Agency comments are thought to be critical, although the CEQ has declined to release them, and some question the Council's legality. The Nuclear Regulatory Commission faults the CEQ regulations for revising existing law, being inconsistent with the responsibilities of an independent regulatory body, and extending the CEQ's authority beyond the role assigned by NEPA and the President's Executive Order

  19. Licensing of HTGRs in the United States

    International Nuclear Information System (INIS)

    Fisher, C.R.; Orvis, D.D.

    1981-01-01

    The licensing history of the high-temperature gas-cooled reactor (HTGR) in the United States is given historical perspective. The experience began with the licensing of the Peach Bottom Atomic Power Station and extends to the continuing experience at the Fort St. Vrain Nuclear Generating Station. Additional experience was obtained from the licensing reviews in the mid-1970s of the large HTGR plants that were to be built by Philadelphia Electric Company and Delmarva Power and Light. Also, information was provided by the licensing review of the General Atomic standard plant by the U.S. Nuclear Regulatory Commission (NRC) at about the same time. These experiences are summarized in terms of the principal design criteria that were required by the regulatory authority for each project. These criteria include specification of the design basis accidents that were postulated for the plant safety analysis. Several technical issues raised by the NRC during their review of the large HTGR are presented. (author)

  20. Licensing of HTGRs in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, C. R.; Orvis, D. D. [General Atomic Co., San Diego, CA (USA)

    1981-01-15

    The licensing history of the high-temperature gas-cooled reactor (HTGR) in the United States is given historical perspective. The experience began with the licensing of the Peach Bottom Atomic Power Station and extends to the continuing experience at the Fort St. Vrain Nuclear Generating Station. Additional experience was obtained from the licensing reviews in the mid-1970s of the large HTGR plants that were to be built by Philadelphia Electric Company and Delmarva Power and Light. Also, information was provided by the licensing review of the General Atomic standard plant by the U.S. Nuclear Regulatory Commission (NRC) at about the same time. These experiences are summarized in terms of the principal design criteria that were required by the regulatory authority for each project. These criteria include specification of the design basis accidents that were postulated for the plant safety analysis. Several technical issues raised by the NRC during their review of the large HTGR are presented.

  1. Strategic Basis for License Application Planning for a Potential Yucca Mountain Repository

    International Nuclear Information System (INIS)

    Newberry, C. M.; Brocoum, S. J.; Gamble, R. P.; Murray, R. C.; Cline, M.

    2002-01-01

    If Yucca Mountain, Nevada is designated as the site for development of a geologic repository for disposal of spent nuclear fuel and high-level radioactive waste, the Department of Energy (DOE) must obtain Nuclear Regulatory Commission (NRC) approval first for repository construction, then for an operating license, and, eventually, for repository closure and decommissioning. The licensing criteria defined in Code of Federal Regulations, Title 10, Part 63 (10 CFR Part 63) establish the basis for these NRC decisions. Submittal of a license application (LA) to the NRC for authorization to construct a repository at the Yucca Mountain site is, at this point, only a potential future action by the DOE. The policy process defined in the Nuclear Waste Policy Act (NWPA), as amended, for recommendation and designation of Yucca Mountain as a repository site makes it difficult to predict whether or when the site might be designated. The DOE may only submit a LA to the NRC if the site designation takes effect. In spite of this uncertainty, the DOE must take prudent and appropriate action now, and over the next several years, to prepare for development and timely submittal of a LA. This is particularly true given the need for the DOE to develop, load, and certify the operation of its electronic information system to provide access to its relevant records as part of the licensing support network (LSN) in compliance with NRC requirements six months prior to LA submittal. The DOE must also develop a LA, which is a substantially different document from those developed to support a Site Recommendation (SR) decision. The LA must satisfy NRC licensing criteria and content requirements, and address the acceptance criteria defined by the NRC in its forthcoming Yucca Mountain Review Plan (YMRP). The content of the LA must be adequate to facilitate NRC acceptance and docketing for review, and the LA and its supporting documents must provide the documented basis for the NR C findings required

  2. Licensing of advanced reactors: Status report and perspective

    International Nuclear Information System (INIS)

    King, T.

    1988-01-01

    In July, 1986, the U.S. Nuclear Regulatory Commission issued a Policy State on the Regulation of Advanced Nuclear Power Plants. As part of this policy, advanced reactor designers were encouraged to interact with NRC [Nuclear Regulatory Commission] early in the design process to obtain feedback regarding licensing requirements for advanced reactors. Accordingly, the staff has been interacting with the Department of Energy (DOE) and its contractors on the review of three advanced reactor conceptual designs: one modular high temperature gas-cooled reactor (MHTGR) and two liquid metal reactors (LMRs). This paper provides a status of the NRC review effort, describes the key policy and technical issues resulting from our review and provides the current status and approach to the development of licensing guidance on each

  3. Use of modeling in repository licensing

    International Nuclear Information System (INIS)

    McGarry, J.M. III; Echols, F.S.

    1995-01-01

    A review of the regulatory history of the Nuclear Regulatory Commission (NRC) regulations applicable to the licensing of a geologic repository, as well as a review of NRC administrative (licensing) decisions and federal case law, support the NRC's use of simplified models, in appropriate circumstances, which provide well-documented and reasonably conservative bounding assumptions, together with the use of expert judgement, natural analogues, and other aids to supplement available information, in reaching its reasonable assurance determination whether the public health and safety will be adequately protected if the Yucca Mountain, Nevada site should be licensed for development as a geologic repository. Specific examples are provided to assist the reader to better understand how such qualitative concepts as open-quote reasonable assurance close-quote, open-quote reasonably conservative close-quote, and open-quote adequate close-quote protection are used in an administrative context to resolve technical issues

  4. Final report of the NRC-Agreement State Working Group to evaluate control and accountability of licensed devices

    International Nuclear Information System (INIS)

    1996-10-01

    US NRC staff acknowledged that licensees were having problems maintaining control over and accountability for devices containing radioactive material. In June 1995, NRC approved the staff's suggestion to form a joint NRC-Agreement State Working Group to evaluate the problem and propose solutions. The staff indicated that the Working Group was necessary to address the concerns from a national perspective, allow for a broad level of Agreement State input, and to reflect their experience. Agreement State participation in the process was essential since some Agreement States have implemented effective programs for oversight of device users. This report includes the 5 recommendations proposed by the Working Group to increase regulatory oversight, increase control and accountability of devices, ensure proper disposal, and ensure disposal of orphaned devices. Specifically, the Working Group recommends that: (1) NRC and Agreement States increase regulatory oversight for users of certain devices; (2) NRC and Agreement State impose penalties on persons losing devices; (3) NRC and Agreement States ensure proper disposal of orphaned devices; (4) NRC encourage States to implement similar oversight programs for users of Naturally-Occurring or Accelerator- Produced Material; and (5) NRC encourage non-licensed stakeholders to take appropriate actions, such as instituting programs for material identification

  5. Final report of the NRC-Agreement State Working Group to evaluate control and accountability of licensed devices

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    US NRC staff acknowledged that licensees were having problems maintaining control over and accountability for devices containing radioactive material. In June 1995, NRC approved the staff`s suggestion to form a joint NRC-Agreement State Working Group to evaluate the problem and propose solutions. The staff indicated that the Working Group was necessary to address the concerns from a national perspective, allow for a broad level of Agreement State input, and to reflect their experience. Agreement State participation in the process was essential since some Agreement States have implemented effective programs for oversight of device users. This report includes the 5 recommendations proposed by the Working Group to increase regulatory oversight, increase control and accountability of devices, ensure proper disposal, and ensure disposal of orphaned devices. Specifically, the Working Group recommends that: (1) NRC and Agreement States increase regulatory oversight for users of certain devices; (2) NRC and Agreement State impose penalties on persons losing devices; (3) NRC and Agreement States ensure proper disposal of orphaned devices; (4) NRC encourage States to implement similar oversight programs for users of Naturally-Occurring or Accelerator- Produced Material; and (5) NRC encourage non-licensed stakeholders to take appropriate actions, such as instituting programs for material identification.

  6. New trends in the evaluation and implementation of the safety-related operating experience associated with NRC-licensed reactors

    International Nuclear Information System (INIS)

    Michelson, C.; Heltemes, C.J.

    1981-01-01

    This article is an overview of the Nuclear Regulatory Commission program for the evaluation and dissemination of the safety-related operating experience associated with all NRC-licensed reactors. It discusses the historical background and past problems that led to the recent formation of NRC's Office for Analysis and Evaluation of Operational Data (AEOD) and details its activities, organization, staffing, and proposed analysis and evaluation methodology. The programs of industry organizations and nuclear plant licensees and the integration of foreign operating experience are included in the overview. The problems and limitations of the Licensee Event Report (LER) program and the Nuclear Plant Reliability Data system program are discussed. The AEOD analysis and evaluation methodology program includes some new improvements in the assessment of safety-related operating experience. Of particular note is the sequence coding and search procedure being developed by AEOD under a contract with the Nuclear Safety Information Center at the Oak Ridge National Laboratory. This computer-based retrieval system will have markedly improved search strategy capability for such items as commoncause failures or complex system interactions involving various failure sequences and other relationships associated with an event. The system retrieves failure data and information on the principal LER occurrence and on related component and system responses. The computer-generated Power Reactor Watch List enables AEOD to monitor all critical or unusual situations warranting close attention because of potential public health and safety. This listing is supported by a preestablished computer search strategy of the historical data base permitting identification of all past events and statistical information that are applicable to the situation being watched

  7. Economics of license renewal in the U.S. - entergy's perspective

    International Nuclear Information System (INIS)

    Young, Garry G.

    2003-01-01

    License renewal of operating nuclear plants in the United States has become one of the most successful U.S. nuclear regulatory activities in the past few years. In 1995, the U.S. Nuclear Regulatory Commission (NRC) published a revised rule in 10 CFR Part 54 that provided the requirements for an operating nuclear plant to seek license renewal. At that time, many people believed that only a select few operating nuclear plants would pursue license renewal and that most plants would operate for no more than 40 years. By mid-2003, the owners of approximately 52% of the U.S. nuclear fleet of 103 operating nuclear plants have decided to pursue license renewal and more are expected to follow. This change in direction since 1995 can be attributed to the improving economics of U.S. nuclear power plant operation and to the improved regulatory process resulting from the 1995 revision to 10 CFR Part 54. In 2000, Entergy submitted a license renewal application for Arkansas Nuclear One, Unit 1 (ANO-1). This application was the third to be submitted to the NRC at a time when it was still unclear how successful the regulatory process might be. However, less than 17 months later, in June 2001, the NRC granted a renewed operating license for ANO-1 at a total cost of approximately $11 million. Due in part to the ANO-1 license renewal success, Entergy now has tentative plans to pursue license renewal for the entire fleet of operating nuclear power plants. Without license renewal, Entergy's current nuclear fleet capacity of approximately 9,000 MW(e) would begin to decline in 2012. With license renewal, Entergy's nuclear fleet capacity can remain in place until 2032. This projection does not include the expected improvements in capacity due to power uprate that is currently planned. The combination of power uprate and license renewal will add significant economic value to Entergy's nuclear fleet. One of the major factors in strong performance is capacity factor. In 1990, the average

  8. Special feature of the facilities for final disposal of radioactive waste and its potential impact on the licensing process

    International Nuclear Information System (INIS)

    Lee Gonzales, Horacio M.; Medici, Marcela A.; Alvarez, Daniela E.; Biaggio, Alfredo L.

    2009-01-01

    During the lifetime of a radioactive waste disposal facility it is possible to identify five stages: design, construction, operation, closure and post-closure. While the design, and pre-operation stages are, to some extent, similar to other kind of nuclear or radioactive facilities; construction, operation, closure and post-closure have quite special meanings in the case of radioactive waste disposal systems. For instance, the 'closure' stage of a final disposal facility seems to be equivalent to the commissioning stage of a conventional nuclear or radioactive facility. This paper describes the unique characteristics of these stages of final disposal systems, that lead to concluded that their licensing procedure can not be assimilated to the standard licensing procedures in use for other nuclear or radioactive facilities, making it necessary to develop a tailored license system. (author)

  9. Cyclotron facilities in Brazil: Current status and licensing aspects

    International Nuclear Information System (INIS)

    Facure, A.; Carvalho, S.M.; Di Prinzio, R.; Silveira, C.S.; Gasparian, P.B.R.; Franca, W.F.

    2017-01-01

    Positron Emission Tomography (PET) is a highly sensitive and accurate nuclear medicine imaging technology but the major problem of this technique is the use of radioisotopes with short half-life, less than two hours. The production and selling of short half-life radioisotopes used to be monopoly of the Brazilian Government. In 2006, a Constitutional Amendment revoked the state monopoly due to the need for the use of short half-life radioisotopes in nuclear medicine centers very far from the government production facilities. The aim of this study is to describe the current status of short half-life radioisotopes production in Brazil and discuss some licensing process. In Brazil, as has been occurring worldwide, the number of nuclear medicine centers is increasing. Currently there are 123 services performing PET scans in Brazil. There are 14 cyclotrons operating in Brazil. The type of licensing process conducted in Brazil does not take into account the population density of each state, with a free competition model being adopted. Because of this there is a lot of equipment concentrated in the Southeast and no cyclotrons operating in the Northern part of the country. One of the biggest obstacles during the licensing process is the designation of qualified personnel as operation workers and radiation safety officers. The number of cyclotron accelerators and PET/CT equipment increased in recent years. However, a number of external factors such as the distance from the nuclear medicine centers, and qualified personnel have proved crucial for the economic viability of this type of facility. (author)

  10. Cyclotron facilities in Brazil: Current status and licensing aspects

    Energy Technology Data Exchange (ETDEWEB)

    Facure, A.; Carvalho, S.M.; Di Prinzio, R.; Silveira, C.S.; Gasparian, P.B.R.; Franca, W.F., E-mail: facure@cnen.gov.br [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil)

    2017-09-01

    Positron Emission Tomography (PET) is a highly sensitive and accurate nuclear medicine imaging technology but the major problem of this technique is the use of radioisotopes with short half-life, less than two hours. The production and selling of short half-life radioisotopes used to be monopoly of the Brazilian Government. In 2006, a Constitutional Amendment revoked the state monopoly due to the need for the use of short half-life radioisotopes in nuclear medicine centers very far from the government production facilities. The aim of this study is to describe the current status of short half-life radioisotopes production in Brazil and discuss some licensing process. In Brazil, as has been occurring worldwide, the number of nuclear medicine centers is increasing. Currently there are 123 services performing PET scans in Brazil. There are 14 cyclotrons operating in Brazil. The type of licensing process conducted in Brazil does not take into account the population density of each state, with a free competition model being adopted. Because of this there is a lot of equipment concentrated in the Southeast and no cyclotrons operating in the Northern part of the country. One of the biggest obstacles during the licensing process is the designation of qualified personnel as operation workers and radiation safety officers. The number of cyclotron accelerators and PET/CT equipment increased in recent years. However, a number of external factors such as the distance from the nuclear medicine centers, and qualified personnel have proved crucial for the economic viability of this type of facility. (author)

  11. Trends in nuclear licensing

    Energy Technology Data Exchange (ETDEWEB)

    Dalton, N W [Council for Nuclear Safety, Hennopsmeer, Pretoria (South Africa)

    1990-06-01

    The development of nuclear safety and licensing is briefly reviewed in four stages namely: The Formative Period (1946-1959), The Expansive Period (1960-1969), The Mature Period (1970-1979) and the Apprehensive Period (1980-1989). Particular safety issues in the respective periods are highlighted to indicate the changing emphasis of nuclear licensing over the past thirty years or so. Against this background, nuclear licensing. (author)

  12. Trends in nuclear licensing

    International Nuclear Information System (INIS)

    Dalton, N.W.

    1990-01-01

    The development of nuclear safety and licensing is briefly reviewed in four stages namely: The Formative Period (1946-1959), The Expansive Period (1960-1969), The Mature Period (1970-1979) and the Apprehensive Period (1980-1989). Particular safety issues in the respective periods are highlighted to indicate the changing emphasis of nuclear licensing over the past thirty years or so. Against this background, nuclear licensing. (author)

  13. Toward the Framework and Implementation for Clearance of Materials from Regulated Facilities

    International Nuclear Information System (INIS)

    Chen, Shih-Yew; Moeller, Dade W.; Dornsife, William P.; Meyer, H Robert; Lamastra, Anthony; Lubenau, Joel O.; Strom, Daniel J.; Yusko, James G.

    2005-01-01

    The disposition of solid materials from nuclear facilities has been a subject of public debate for several decades. The primary concern has been the potential health effects resulting from exposure to residual radioactive materials to be released for unrestricted use. These debates have intensified in the last decade as many regulated facilities are seeking viable management decisions on the disposition of the large amounts of materials potentially containing very low levels of residual radioactivity. Such facilities include the nuclear weapons complex sites managed by the U.S. Department of Energy (DOE), commercial power plants licensed by the U.S. Nuclear Regulatory Commission (NRC), and other materials licensees regulated by the NRC or the Agreement States. Other facilities that generate radioactive material containing naturally occurring radioactive materials (NORM) or technologically enhanced NORM (TENORM) are also seeking to dispose of similar materials that may be radioactively contaminated. In contrast to the facilities operated by the DOE and the nuclear power plants licensed by the NRC, NORM and TENORM facilities are regulated by the individual states. Current federal laws and regulations do not specify criteria for releasing these materials that may contain residual radioactivity of either man-made or natural origin from regulatory controls. In fact, the current regulatory scheme offers no explicit provision as to permit materials being released as ''non-radioactive'', including those that are essentially free of contamination. The only method used to date with limited success has been case-by-case evaluation and approval. In addition, there is a poorly defined and inconsistent regulatory framework for regulating NORM and TENORM. Some years ago, the International Atomic Energy Agency (IAEA) introduced the concept of clearance, that is, controlling releases of any such materials within the regulatory domain. This paper aims to clarify clearance as an

  14. NRC licensing of Diablo Canyon. Hearing before the Subcommittee on Energy Conservation and Power of the Committee on Energy and Commerce, House of Representatives, Ninety-Ninth Congress, First Session, July 10, 1985

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    The members of the Nuclear Regulatory Commission (NRC) and two California members of Congress testified at a hearing to examine the decision-making capacity and the integrity of the NRC. The specific issue was whether the issuance of an operating license to the Diablo Canyon nuclear plant violated the Atomic Energy Act in the area of safety. The transcripts of closed meetings of the NRC and the expression of concern by California congressmen and a member of the NRC about the Commission's decision-making process prompted the hearings. Specific concerns were the possible avoidance of a public hearing on emergency plans in the event of an earthquake and to avoid the costs of a hearing and the quality of information used as a basis for the decision. Each member of the Commission testified in response to these concerns. The California representatives noted that Commissioners did not follow legal advice, and that they relied upon second-hand information. Other material and documents submitted for the record follows the testimony

  15. Licensing of away-from-reactor (AFR) installations

    International Nuclear Information System (INIS)

    Gray, P.L.

    1980-01-01

    Storage of spent fuel at Away-From-Reactor (AFR) installations will allow reactors to continue to operate until reprocessing or other fuel disposal means are available. AFR installations must be licensed by the Nuclear Regulatory Commission (NRC). Although wide experience in licensing reactors exists, the licensing of an AFR installation is a relatively new activity. Only one has been licensed to date. This paper delineates the requirements for licensing an AFR installation and projects a licensing schedule. Because the NRC is developing specific AFR requirements, this schedule is based primarily on draft NRC documents. The major documents needed for an AFR license application are similar to those for a reactor. They include: a Safety Analysis Report (SAR), and Environmental Report (ER), safeguards and security plans, decommissioning plans, proposed technical specifications, and others. However, the licensing effort has one major difference in that for AFR installations it will be a one-step effort, with follow-up, rather than the two-step process used for reactors. The projected licensing schedule shows that the elapsed time between filing an application and issuance of a license will be about 32 months, assuming intervention. The legal procedural steps will determine the time schedule and will override considerations of technical complexity. A license could be issued in about 14 months in the absence of intervention

  16. Acceptance criteria for determining armed response force size at nuclear power plants

    International Nuclear Information System (INIS)

    1983-02-01

    This guidance document contains acceptance criteria to be used in the NRC license review process. It consists of a scored worksheet and guidelines for interpreting the worksheet score that can be used in determining the adequacy of the armed response force size at a nuclear power reactor facility

  17. Standard format and content for a license application to store spent fuel and high-level radioactive waste

    International Nuclear Information System (INIS)

    1989-09-01

    Subpart B, ''License Application, Form, and Contents,'' of 10 CFR Part 72, ''Licensing Requirements for the Independent Storage of Spent Nuclear Fuel and High-Level Radioactive Waste,'' specifies the information to be covered in an application for a license to store spent fuel in an independent spent fuel storage installation (ISFSI) or to store spent fuel and high-level radioactive waste in a monitored retrievable storage facility (MRS). However, Part 72 does not specify the format to be followed in the license application. This regulatory guide suggests a format acceptable to the NRC staff for submitting the information specified in Part 72 for license application to store spent fuel in an ISFSI or to store spent fuel and high-level radioactive waste in an MRS

  18. Status of safety issues at licensed power plants

    International Nuclear Information System (INIS)

    1991-05-01

    As part of ongoing US Nuclear Regulatory Commission (NRC) efforts to ensure the quality and accountability of safety issue information, a program has been established whereby an annual NUREG report will be published on the status of licensee implementation and NRC verification of safety issues in major NRC requirement areas. This report, the second volume of a three-volume series, addresses the status of unresolved safety issues (USIs) at licensed plants. The data contained in these NUREG reports are a product of the NRC's Safety Issues Management System (SIMS) database, which is maintained by the Project Management Staff in the Office of Nuclear Reactor Regulation and by NRC regional personnel. The purpose of this report is to provide a comprehensive description of the status of implementation and verification of the 27 safety issues designated as USIs and to make this information available to other interested parties, including the public. A corollary purpose of this NUREG report is to serve as a follow-on to NUREG-0933, ''A Prioritization of Generic Safety Issues,'' which tracks safety issues up until requirements are approved for imposition at licensed plants. 3 figs., 4 tabs

  19. Congress, NRC mull utility access to FBI criminal files

    International Nuclear Information System (INIS)

    Ultroska, D.

    1984-01-01

    Experiences at Alabama Power Company and other nuclear utilities have promped a request for institutionalizing security checks of personnel in order to eliminated convicted criminals and drug users. The Nuclear Regulatory Commission (NRC), which could provide FBI criminal history information by submitting fingerprints, does not do so, and would require new legislation to take on that duty. Believing that current malevolent employees can be managed with existing procedures, NRC allows criminal background checks only on prospective employees in order to avoid a negative social impact on personnel. Legislation to transfer criminal histories to nuclear facilities is now pending, and NRC is leaning toward a request for full disclosure, partly because of terrorist threats and partly to save manpower time and costs in reviewing case histories

  20. Statistical problems in nuclear regulation: introduction and overview

    International Nuclear Information System (INIS)

    Moore, R.H.; Easterling, R.G.

    1978-01-01

    The U.S. Nuclear Regulatory Commission (NRC) was organized formally in January 1975. The Commission's responsibilities can be categorized into four broad areas involving the licensing and use of nuclear materials and facilities: protecting public health and safety; protecting the environment; safeguarding nuclear materials and facilities; and assuring conformity with antitrust laws. A large variety of statistical problems are related to these basic responsibilities. They arise from the data-based nature of many of the issues to be resolved in making regulatory decisions. Hence, they are reflected in interactions among the NRC staff and licensees, vendors, and the public. This paper identifies and outlines some of these problems, providing a spectrum for comparison with the other presentations in this session. These problems are linked by the need for clear and objective treatment of data; their articulation and solution will benefit from insights and contributions from an informed statistical community

  1. Branch technical position for performance assessment of low-level radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    Campbell, A.C.; Abramson, L.; Byrne, R.M.

    1994-01-01

    The U.S. Nuclear Regulatory Commission has developed a Draft Branch Technical Position on Performance Assessment of Low-Level Radioactive Waste Disposal Facilities. The draft technical position addresses important issues in performance assessment modeling and provides a framework and technical basis for conducting and evaluating performance assessments in a disposal facility license application. The technical position also addresses specific technical policy issues and augments existing NRC guidance pertaining to LLW performance assessment

  2. 76 FR 59173 - Standard Format and Content of License Applications for Conventional Uranium Mills

    Science.gov (United States)

    2011-09-23

    ... NUCLEAR REGULATORY COMMISSION [NRC-2008-0302] Standard Format and Content of License Applications for Conventional Uranium Mills AGENCY: Nuclear Regulatory Commission. ACTION: Draft regulatory guide..., ``Standard Format and Content of License Applications for Conventional Uranium Mills.'' DG- 3024 was a...

  3. Safety Evaluation Report related to the operation of Diablo Canyon Nuclear Power Plant, Units 1 and 2 (Docket Nos. 50-275 and 50-323)

    International Nuclear Information System (INIS)

    1991-06-01

    Supplement 34 to the Safety Evaluation Report for the application by Pacific Gas and Electric Company (PG ampersand E) for licenses to operate Diablo Canyon Nuclear Power Plant, Unit Nos. 1 and 2 (Docket Nos. 50-275 and 50-323, respectively) has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. This supplement documents the NRC staff review of the Long-Term Seismic Program conducted by PG ampersand E in response to License Condition 2.C.(7) of Facility Operating License DPR-80, the Diablo Canyon Unit 1 operating license. 111 refs., 20 figs., 31 tabs

  4. Westinghouse AP1000 licensing maturity

    International Nuclear Information System (INIS)

    Schulz, T.; Vijuk, R.P.

    2005-01-01

    The Westinghouse AP1000 Program is aimed at making available a nuclear power plant that is economical in the U.S deregulated electrical power industry in the near-term. The AP1000 is two-loop 1000 MWe pressurizer water reactor (PWR). It is an up rated version of the AP600. The AP1000 uses passive safety systems to provide significant and measurable improvements in plant simplification, safety, reliability, investment protection and plant costs. The AP1000 uses proven technology, which builds on over 35 years of operating PWR experience. The AP1000 received Final Design Approval by the United States Nuclear Regulatory Commission (U.S. NRC) in September 2004. The AP1000 meets the US utility requirements. The AP1000 and its sister plant the AP600 have gone through a very through and complete licensing review. This paper describes the U.S. NRC review efforts of both the AP600 and the AP1000. The detail of the review and the independent calculations, evaluations and testing is discussed. The AP600 licensing documentation was submitted in 1992. The U.S. NRC granted Final Design Approval in 1999. During the intervening 7 years, the U.S. NRC asked thousands of questions, performed independent safety analysis, audited Westinghouse calculations and analysis, and performed independent testing. The more significant areas of discussion will be described. For the AP1000 Westinghouse first engaged the U.S. NRC in pre-certification discussions to define the extent of the review required, since the design is so similar to the AP600. The AP1000 licensing documentation was submitted in March 2002. The U.S. NRC granted Final Design Approval in September 2004. During the intervening 2 1/2 years, the U.S. NRC asked hundreds of questions, performed independent safety analysis, audited Westinghouse calculations and analysis, and performed independent testing. The more significant areas of discussion will be described. The implications of this review and approval on AP1000 applications in

  5. Licensing process characteristics of Small Modular Reactors and spent nuclear fuel repository

    Energy Technology Data Exchange (ETDEWEB)

    Söderholm, Kristiina, E-mail: kristiina.soderholm@fortum.com [Fortum Power (Finland); Tuunanen, Jari, E-mail: jari.tuunanen@fortum.com [Fortum Power (Finland); Amaba, Ben, E-mail: baamaba@us.ibm.com [IBM Complex Systems (United States); Bergqvist, Sofia, E-mail: sofia.bergqvist@se.ibm.com [IBM Rational Software (Sweden); Lusardi, Paul, E-mail: plusardi@nuscalepower.com [NuScale Power (United States)

    2014-09-15

    Highlights: • We examine the licensing process challenges of modular nuclear facilities. • We compare the features of Small Modular Reactors and spent nuclear fuel repository. • We present the need of nuclear licensing simplification. • Part of the licensing is proposed to be internationally applicable. • Systems engineering and requirements engineering benefits are presented. - Abstract: This paper aims to increase the understanding of the licensing processes characteristics of Small Modular Reactors (SMR) compared with licensing of spent nuclear fuel repository. The basis of the SMR licensing process development lies in licensing processes used in Finland, France, the UK, Canada and the USA. These countries have been selected for this study because of their various licensing processes and recent actions in the new NPP construction. Certain aspects of the aviation industry licensing process have also been studied and selected practices have been investigated as possibly suitable for use in nuclear licensing. Suitable features for SMR licensing are emphasized and suggested. The licensing features of the spent nuclear fuel deep repository along with similar features of SMR licensing are discussed. Since there are similar types of challenges of lengthy licensing time frames, as well as modular features to be taken into account in licensing, these two different nuclear industry fields can be compared. The main SMR features to take into account in licensing are: • Standardization of the design. • Modularity. • Mass production. • Serial construction. Modularity can be divided into two different categories: the first category is simply a single power plant unit constructed of independently engineered modules (e.g. construction process for Westinghouse AP-1000 NPP) and the second one a power plant composed of many reactor modules, which are manufactured in factories and installed as needed (e.g. NuScale Power SMR design). The deep underground repository

  6. Safeguards Summary Event List (SSEL). Pre-NRC through June 30, 1981

    International Nuclear Information System (INIS)

    MacMurdy, P.; Davidson, J.; Lin, H.

    1981-09-01

    The Safeguards Summary Event List (SSEL) provides brief summaries of several hundred safeguards-related events involving nuclear material or facilities regulated by the U.S. Nuclear Regulatory Commission (NRC). Events are described under the categories of bomb-related, intrusion, missing and/or allegedly stolen, transportation, vandalism, arson, firearms, sabotage and miscellaneous. The information contained in the event descriptions is derived primarily from official NRC reporting channels

  7. Demonstrating safety during license renewal should not be a large task

    International Nuclear Information System (INIS)

    Berto, D.S.

    1993-01-01

    The principal regulatory goal related to nuclear power plant operation is to ensure the health and safety of the public. The principal goal of extended plant operation via the license renewal process is also to ensure the health and safety of the public. The license renewal documentation issued by the Nuclear Regulatory Commission (NRC) provides guidance on what will be acceptable to the NRC in a license renewal application to demonstrate that this goal will be met. Application of this guidance is currently open to wide interpretation, with many of the current approaches proving to be extremely costly, complex, and uncertain of acceptability. This paper evaluates the requirements necessary to ensure the continued health and safety of the public during any license renewal term. This evaluation is based on the stated goals of the License Renewal Rule and on the published bases for the Rule. An approach to License Renewal is recommended that: (1) meets the stated goals of the NRC; (2) is consistent with current regulatory practices; and (3) will continue to ensure the health and safety of the public. This recommended approach is also much less costly than other current approaches, and can be easily agreed to by all participants. This approach will meet regulatory goals, while removing the cost and uncertainty obstacles currently being confronted by utilities. Providing a viable approach to license renewal will allow the renewal process to be pursued by utilities. Without such an approach, safe and reliable nuclear power plants will be permanently shut down at the arbitrary 40 year license limit

  8. The Finnish Experience with the Construction of Onkalo. Licensing of a repository for nuclear waste in Finland

    International Nuclear Information System (INIS)

    Avolahti, Jaana

    2014-01-01

    Pursuant to the Nuclear Energy Act (990/1987), a license holder whose operations result, or have resulted, in the generation of nuclear waste must perform all measures included in the management of nuclear waste and preparation thereof and bear all the costs of nuclear waste management. Under law, spent nuclear fuel is regarded as nuclear waste. According to the amendment made to the Nuclear Energy Act in 1994, nuclear waste generated in Finland must be handled, stored and permanently disposed of in Finland. Nuclear waste generated elsewhere may not be handled, stored and permanently disposed of in Finland. The Finnish nuclear legislation defines spent fuel as nuclear waste and requires that it has to be disposed of in the Finnish bedrock. Over 30 years of systematic R and D has been carried out to develop the repository concept, site selection, technologies, safety assessment and the regulatory approach. Activities are based on the Finnish Government's long term strategies since 1983. The stepwise development and future plans for disposal are presented in Table 1. The licensing procedure for a disposal facility has several steps that are similar to all nuclear facilities in Finland and are defined in Nuclear Energy Act (990/1987) and Decree (161/1988). These licensing steps are: - Decision in Principle (DiP); - Construction License; - Operational License. An Environmental Impact Assessment (EIA) shall be conducted prior to the first authorization step of a major nuclear waste facility. The EIA procedure for the final disposal of spent nuclear fuel from three units of the Olkiluoto nuclear power plant and two units of the Loviisa nuclear power plant was carried out in 1998-1999 and extended to one more unit at Olkiluoto in 2008- 2009. Pursuant to the Nuclear Energy Act, before making the DiP the Government shall ascertain whether the municipality planned as the location of the nuclear facility is in favour of the facility, and ensure that no facts indicating a

  9. The nuclear licensing and supervisory procedures for nuclear facilities in the Federal Republic of Germany

    International Nuclear Information System (INIS)

    Franzen, L.F.

    1982-02-01

    A combined system has been developed in the Federal Republic of Germany: the States execute the Atomic Energy Act on behalf of the Federal Government. Despite these differences, the safety requirements and the safety standard achieved vary only insignificantly, as a result of a world-wide communication and of international cooperation. The legal prerequesites for the German nuclear licensing procedures have been established about 20 years ago, and, by a number of amendments have been adapted to new perceptions and developments. Several supplementary ordinances, due to further developments in nuclear technology, are being prepared. The work on associated technical provision, which had been neglected for a long time, has in recent years been tackled systematically and should, before long, lead to a comprehensive programme of safety standards, which simplifies and expedites the nuclear licensing procedures. Essential features of the licensing procedure are the phased structure and the division into intermediate steps which render it possible to adapt the safety requirements to the advancing state of science and technology. The responsible authorities call in experts for the safety verification of the application documents. It is the task of these experts to make assessments and to conduct quality examinations in the manufacturing plants and at the site, and to carry out recurrent tests. The public is involved by the announcement of the projects, the display of the documents and by the opportunity to raise objections during the licensing procedure. Licenses granted can be contested before the administrative courts. This procedure paves the way for the achievement of a satisfactory balance between private and public interests. (orig./HP)

  10. Safety evaluation report related to the renewal of the operating license for the research reactor at North Carolina State University

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    This safety evaluation report (SER) summarizes the findings of a safety review conducted by the staff of the U.S. Nuclear Regulatory Commission (NRC), Office of Nuclear Reactor Regulation (NRR). The staff conducted this review in response to a timely application filed by North Carolina State University (the licensee or NCSU) for a 20-year renewal of Facility Operating License R-120 to continue to operate the NCSU PULSTAR research reactor. The facility is located in the Burlington Engineering Laboratory complex on the NCSU campus in Raleigh, North Carolina. In its safety review, the staff considered information submitted by the licensee (including past operating history recorded in the licensee`s annual reports to the NRC), as well as inspection reports prepared by NRC Region H personnel and first-hand observations. On the basis of this review, the staff concludes that NCSU can continue to operate the PULSTAR research reactor, in accordance with its application, without endangering the health and safety of the public. 16 refs., 31 figs., 7 tabs.

  11. Safety evaluation report related to the renewal of the operating license for the research reactor at North Carolina State University

    International Nuclear Information System (INIS)

    1997-04-01

    This safety evaluation report (SER) summarizes the findings of a safety review conducted by the staff of the U.S. Nuclear Regulatory Commission (NRC), Office of Nuclear Reactor Regulation (NRR). The staff conducted this review in response to a timely application filed by North Carolina State University (the licensee or NCSU) for a 20-year renewal of Facility Operating License R-120 to continue to operate the NCSU PULSTAR research reactor. The facility is located in the Burlington Engineering Laboratory complex on the NCSU campus in Raleigh, North Carolina. In its safety review, the staff considered information submitted by the licensee (including past operating history recorded in the licensee's annual reports to the NRC), as well as inspection reports prepared by NRC Region H personnel and first-hand observations. On the basis of this review, the staff concludes that NCSU can continue to operate the PULSTAR research reactor, in accordance with its application, without endangering the health and safety of the public. 16 refs., 31 figs., 7 tabs

  12. Licensed fuel facility status report. Inventory difference data, July 1, 1995--June 30, 1996

    International Nuclear Information System (INIS)

    Pham, T.N.

    1998-02-01

    The U.S. Nuclear Regulatory Commission is committed to an annual publication of licensed fuel cycle facility inventory difference data, following Agency review of the information and completion of any related investigations. Information in this report includes inventory difference results for active fuel fabrication facilities possessing more than one effective kilogram of special nuclear material. 1 tab

  13. NRC/DAE reactor safety research Data Bank

    International Nuclear Information System (INIS)

    Laats, E.T.

    1982-01-01

    In 1976, the United States Nuclear Regulatory Commission (NRC) established the NRC/Division of Accident Evaluation (DAE) Data Bank to collect, store, and make available data from the many domestic and foreign water reactor safety research programs. This program has since grown from the conceptual stage to a useful, usable service for computer code development, code assessment, and experimentation groups in meeting the needs of the nuclear industry. Data from 20 facilities are now processed and permanently stored in the Data Bank, which utilizes the Control Data Corporation (CDC) CYBER 176 computer system located at the Idaho National Engineering Laboratory (INEL). New data and data sources are continually being added to the Data Bank. In addition to providing data storage and access software, the Data Bank program supplies data entry, documentation, and training and advisory services to users and the NRC. Management of the NRC/DAE Data Bank is provided by EG and G Idaho, Inc

  14. Updated Strategic Assessment of the U.S. NRC Low-Level Radioactive Waste (LLW) Program and the new WCS Commercial Disposal Facility for LLW

    Energy Technology Data Exchange (ETDEWEB)

    Kessel, David S.; Kim, Chang-Lak [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2015-05-15

    The purpose of this paper is to review the updated NRC low level radioactive waste regulatory strategy and also present an update on a significant change in the LLW disposal landscape in the U.S., the opening of a new commercial disposal facility, the Texas Compact Waste Facility (CWF) in Andrews, Texas. Operational since spring of 2012, the CWF is owned and licensed by the state of Texas and operated by Waste Control Specialists LLC (WCS). The WCS facility in western Andrews County is the only commercial facility in the United States licensed to dispose of Class A, B and C LLW in the U.S. in the past 40 years. Based on the observation that other suitable sites have been identified such as the Clive, Utah site that meet (almost) all of these criteria it would appear that the first and last factors in our list are the most problematic and it will require a change in the public acceptance and the political posture of states to help solve the national issue of safe and cost-effective LLW disposal.

  15. Methodology and findings of the NRC's materials licensing process redesign

    International Nuclear Information System (INIS)

    Rathbun, P.A.; Brown, K.D.; Madera, J.R.; Moriarty, M.; Pelchat, J.M.; Usilton, W.K.; Whitten, J.E.; Vacca, P.C.

    1996-04-01

    This report describes the work and vision of the team chartered to redesign the process for licensing users of nuclear materials. The Business Process Redesign team was chartered to improve the speed of the existing licensing process while maintaining or improving public safety and to achieve required resource levels. The report describes the team's methods for acquiring and analyzing information about the existing materials licensing process and the steps necessary to radically change this process to the envisioned future process

  16. Recent NRC research activities addressing valve and pump issues

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, D.L.

    1996-12-01

    The mission of the U.S. Nuclear Regulatory Commission (NRC) is to ensure the safe design, construction, and operation of commercial nuclear power plants and other facilities in the U.S.A. One of the main roles that the Office of Nuclear Regulatory Research (RES) plays in achieving the NRC mission is to plan, recommend, and implement research programs that address safety and technical issues deemed important by the NRC. The results of the research activities provide the bases for developing NRC positions or decisions on these issues. Also, RES performs confirmatory research for developing the basis to evaluate industry responses and positions on various regulatory requirements. This presentation summarizes some recent RES supported research activities that have addressed safety and technical issues related to valves and pumps. These activities include the efforts on determining valve and motor-operator responses under dynamic loads and pressure locking events, evaluation of monitoring equipment, and methods for detecting and trending aging of check valves and pumps. The role that RES is expected to play in future years to fulfill the NRC mission is also discussed.

  17. Licensed operating reactors

    International Nuclear Information System (INIS)

    1989-08-01

    THE OPERATING UNITS STATUS REPORT - LICENSED OPERATING REACTORS provides data on the operation of nuclear units as timely and accurately as possible. This information is collected by the Office of Information Resources Management from the Headquarters staff of NRC's Office of Enforcement (OE), from NRC's Regional Offices, and from utilities. The three sections of the report are: monthly highlights and statistics for commercial operating units, and errata from previously reported data; a compilation of detailed information on each unit, provided by NRC's Regional Offices, OE Headquarters and the utilities; and an appendix for miscellaneous information such as spent fuel storage capability, reactor-years of experience and non-power reactors in the US

  18. Licensed operating reactors

    International Nuclear Information System (INIS)

    1990-04-01

    The Operating Units Status Report --- Licensed Operating Reactors provides data on the operation of nuclear units as timely and accurately as possible. This information is collected by the Office of Information Resources Management from the Headquarters staff on NRC's Office of Enforcement (OE), from NRC's Regional Offices, and from utilities. The three sections of the report are: monthly highlights and statistics for commercial operating units, and errata from previously reported data; a compilation of detailed information on each unit, provided by NRC's Regional Offices, OE Headquarters and the utilities; and an appendix for miscellaneous information such as spent fuel storage capability, reactor-years of experience and non- power reactors in the US

  19. Nuclear power stations licensing

    International Nuclear Information System (INIS)

    Solito, J.

    1978-04-01

    The judicial aspects of nuclear stations licensing are presented. The licensing systems of the United States, Spain, France and Federal Republic of Germany are focused. The decree n 0 60.824 from July 7 sup(th), 1967 and the following legislation which define the systematic and area of competence in nuclear stations licensing are analysed [pt

  20. Potential threat to licensed nuclear activities from insiders (insider study). Technical report

    International Nuclear Information System (INIS)

    Mullen, S.A.; Davidson, J.J.; Jones, H.B. Jr.

    1980-07-01

    The Insider Study was undertaken by NRC staff at the request of the Commission. Its objectives were to: (1) determine the characteristics of potential insider adversaries to licensed nuclear activities; (2) examine security system vulnerabilities to insider adversaries; and (3) assess the effectiveness of techniques used to detect or prevent insider malevolence. The study analyzes insider characteristics as revealed in incidents of theft or sabotage that occurred in the nuclear industry, analogous industries, government agencies, and the military. Adversary characteristics are grouped into four categories: position-related, behavioral, resource and operational. It also analyzes (1) the five security vulnerabilities that most frequently accounted for the success of the insider crimes in the data base; (2) the 11 means by which insider crimes were most often detected; and (3) four major and six lesser methods aimed at preventing insider malevolence. In addition to case history information, the study contains data derived from non-NRC studies and from interviews with over 100 security experts in industry, government (federal and state), and law enforcement

  1. Nuclear proliferation and civilian nuclear power: report of the Nonproliferation Alternative Systems Assessment Program. Volume VI. Safety and environmental considerations for licensing

    International Nuclear Information System (INIS)

    1979-12-01

    Volume 6 of the Nonproliferation Alternative Systems Assessment Program report addresses safety and environmental considerations in licensing the principal alternative nuclear reactors and fuel cycles in the United States for large-scale commercial nuclear power plants. In addition, this volume examines the safety and environmental considerations for licensing fuel service centers. These centers, which have been proposed for controlling sensitive fuel-cycle facilities and special nuclear materials, would contain a combination of such facilities as reprocessing plants, fabrication plants, and reactors. For this analysis, two fuel service center concepts were selected - one with power-generating capability and one without. This volume also provides estimates of the time required for development of large-scale commercial reactor systems to reach the construction permit application stage and for fuel-cycle facilities to reach the operating license application stage, which is a measure of the relative technical status of alternative nuclear systems

  2. Policy on the decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    1988-08-01

    This Regulatory Policy Statement describes the policy of the Atomic Energy Control Board (AECB) on the decommissioning of those facilities defined as nuclear facilities in the Atomic Energy Control (AEC) Regulations. It is intended as a formal statement, primarily for the information of licensees, or potential licensees, of the regulatory process and requirements generally applicable to the decommissioning of nuclear facilities licensed and regulated by the AECB pursuant to the authority of the AEC Act and Regulations

  3. Conformation of an evaluation process for a license renovation solicitude of a nuclear power plant in Mexico. Part 2

    International Nuclear Information System (INIS)

    Serrano R, M. de L.

    2013-10-01

    At the present time the operation licenses in force for the reactors of the Nuclear Power Plant of Laguna Verde (NPP-L V) will expire in the year 2020 and 2025 for the Unit-1 and Unit-2, respectively, for which the Comision Nacional de Seguridad Nuclear y Salvaguardias (CNSNS) has begun its preparation to assist a solicitude of the licensee to continue the operation of the NPP-L V. The present work has the purpose of defining the steps to continue and to generate the documents that would help in this process, as the normative, guides, procedures, regulations, controls, etc. so that the evaluation process will be effective and efficient, as much for the regulator organ as for the licensee. The advance carried out in the continuation of the conformation of an evaluation process of license renovation solicitude is also exposed, taking like base the requirements established by the CNSNS, the regulator organ of the United States (US NRC), and the IAEA for license renovation solicitude of this type. A summary of the licenses granted from the beginning of commercial operation of the NPP-L V is included, both units and the amendments to these licenses, explaining the reason of the amendment shortly and in the dates they were granted. A brief exposition of the nuclear power plants to world level that have received extension of its operation is included. The normative that can be applied in a life extension evaluation is presented, the evaluation process to continue with the guides of the US NRC, the reach of the evaluation and the minimum information required to the licensee that should accompany to their solicitude. (author)

  4. Safeguards Summary Event List (SSEL), Pre-NRC through December 31, 1985

    International Nuclear Information System (INIS)

    1987-02-01

    The Safeguards Summary Event List (SSEL) provides brief summaries of several hundred safeguards-related events involving nuclear material or facilities regulated by the US Nuclear Regulatory Commission (NRC). Events are described under the categories of bomb-related, intrusion, missing and/or allegedly stolen, transportation, tampering/vandalism, arson, firearms, radiological sabotage, non-radiological sabotage, and miscellaneous. The information contained in the event descriptions is derived primarily from official NRC reporting channels

  5. Safeguards Summary Event List (SSEL): Pre-NRC through December 31, 1986

    International Nuclear Information System (INIS)

    1987-07-01

    The Safeguards Summary Event List (SSEL) provides brief summaries of several hundred safeguards-related events involving nuclear material or facilities regulated by the US Nuclear Regulatory Commission (NRC). Events are described under the categories of bomb-related, intrusion, missing and/or allegedly stolen, transportation, tampering/vandalism, arson, firearms, radiological sabotage, nonradiological sabotage and miscellaneous. The information contained in the event descriptions is derived primarily from official NRC reporting channels

  6. Waste management practices in decommissioning nuclear facilities

    International Nuclear Information System (INIS)

    Dickson, H.W.

    1979-01-01

    Several thousand sites exist in the United States where nuclear activities have been conducted over the past 30 to 40 years. Questions regarding potential public health hazards due to residual radioactivity and radiation fields at abandoned and inactive sites have prompted careful ongoing review of these sites by federal agencies including the Department of Energy (DOE) and the Nuclear Regulatory Commission (NRC). In some instances, these reviews are serving to point out poor low-level waste management practices of the past. Many of the sites in question lack adequate documentation on the radiological conditions at the time of release for unrestricted use or were released without appropriate restrictions. Recent investigations have identified residual contamination and radiation levels on some sites which exceed present-day standards and guidelines. The NRC, DOE, and Environmental Protection Agency are all involved in developing decontamination and decommissioning (D and D) procedures and guidelines which will assure that nuclear facilities are decommissioned in a manner that will be acceptable to the nuclear industry, various regulatory agencies, other stakeholders, and the general public

  7. Nuclear reactor operator licensing

    International Nuclear Information System (INIS)

    Bursey, R.J.

    1978-01-01

    The Atomic Energy Act of 1954, which was amended in 1974 by the Energy Reorganization Act, established the requirement that individuals who had the responsibility of operating the reactors in nuclear power plants must be licensed. Section 107 of the act states ''the Commission shall (1) prescribe uniform conditions for licensing individuals; (2) determine the qualifications of such individuals; and (3) issue licenses to such individuals in such form as the Commission may prescribe.'' The article discusses the types of licenses, the selection and training of individuals, and the administration of the Nuclear Regulatory Commission licensing examinations

  8. 77 FR 73684 - Biweekly Notice; Applications and Amendments to Facility Operating Licenses and Combined Licenses...

    Science.gov (United States)

    2012-12-11

    ... in accordance with the Commission's ``Rules of Practice for Domestic Licensing Proceedings'' in 10... emergency diesel generator, and the stored lube oil inventory will also continue to require that a 7-day supply be available for each diesel generator. The changes are consistent with NRC-approved Technical...

  9. 77 FR 35079 - License Renewal Application for Seabrook Station, Unit 1 ; NextEra Energy Seabrook, LLC

    Science.gov (United States)

    2012-06-12

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 50-443; NRC-2010-0206] License Renewal Application for Seabrook Station, Unit 1 ; NextEra Energy Seabrook, LLC AGENCY: Nuclear Regulatory Commission. ACTION: License renewal application; intent to prepare supplement to draft [[Page 35080

  10. Revised inspection program for nuclear power plants

    International Nuclear Information System (INIS)

    1978-01-01

    The United States Nuclear Regulatory Commission (NRC) regulates nuclear power plants to assure adequate protection of the public and the environment from the dangers associated with nuclear materials. NRC fulfills this responsibility through comprehensive safety reviews of nuclear facilities, licensing of organizations that use nuclear materials, and continuing inspection. The NRC inspection program is currently conducted from the five regional offices in or near Philadelphia, Atlanta, Chicago, Dallas and San Francisco. Inspectors travel from the regional offices to nuclear power plants in various phases of construction, test and operation in order to conduct inspections. However, in June 1977 the Commission approved a revision to the inspection program that will include stationing inspectors at selected plants under construction and at all plants in operation. In addition, the revised program provides for appraising the performance of licensees on a national basis and involves more direct measurement and observation by NRC inspectors of work and tests in progress. The program also includes enhanced career management consisting of improved training and career development for inspectors and other professionals. The report was requested in the Conference Report on the NRC Authorization for Appropriations for Fiscal Year 1978. The report provides a discussion of the basis for both the current and revised inspection programs, describes these programs, and shows how the NRC inspection force will be trained and utilized. In addition, the report includes a discussion of the actions that will be taken to assure the objectivity of inspectors

  11. NRC nuclear-plant-analyzer concept and status at INEL

    International Nuclear Information System (INIS)

    Aguilar, F.; Wagner, R.J.

    1982-01-01

    The Office of Research of the US NRC has proposed development of a software-hardware system called the Nuclear Plant Analyzer (NPA). This paper describes how we of the INEL envision the nuclear-plant analyzer. The paper also describes a pilot RELAP5 plant-analyzer project completed during the past year and current work. A great deal of analysis is underway to determine nuclear-steam-system response. System transient analysis being so complex, there is the need to present analytical results in a way that interconnections among phenomena and all the nuances of the transient are apparent. There is the need for the analyst to dynamically control system calculations to simulate plant operation in order to perform what if studies as well as the need to perform system analysis within hours of a plant emergency to diagnose the state of the stricken plant and formulate recovery actions. The NRC-proposed nuclear-plant analyzer can meet these needs

  12. Department of Energy interest and involvement in nuclear plant license renewal activities

    International Nuclear Information System (INIS)

    Bustard, L.D.; Harrison, D.L.

    1991-01-01

    Recognizing the importance of nuclear license renewal to the nation's energy strategy, the Department of Energy (DOE) initiated a plant lifetime improvement program during 1985 to determine the feasibility of the license renewal option for US nuclear plants. Initial activities of the DOE program focused on determining whether there were technical and economic obstacles that might preclude or limit the successful implementation of the license renewal option. To make this determination, DOE cosponsored with the Electric Power Research Institute (EPRI) pilot-plant efforts by Virginia Electric Power and Northern States Power. Both pilot-plant efforts concluded that life extension is technically and economically feasible. In parallel with the pilot-plant activities, DOE performed national economic studies that demonstrated the economic desirability of life extension. Having demonstrated the feasibility of life extension, DOE, in conjunction with EPRI, selected two lead plants to demonstrate the license renewal process. These lead plants are Yankee Atomic's Yankee Rowe facility and Northern States Power's Monticello facility. DOE also initiated activities to develop the technical and regulatory bases to support the license renewal process in the United States. DOE has recently identified nuclear plant license renewal to be an important element of its National Energy Strategy. This paper summarizes the significant results, conclusions, and ongoing activities of the DOE effort. 18 refs

  13. Safeguards summary event list (SSEL): Pre-NRC through December 31, 1987

    International Nuclear Information System (INIS)

    1988-07-01

    The Safeguards Summary Event List (SSEL) provides brief summaries of several hundred safeguards-related events involving nuclear material or facilities regulated by the US Nuclear Regulatory Commission (NRC). Events are described under the categories of bomb-related, intrusion, missing and/or allegedly stolen, transportation, tampering/vandalism, arson, firearms, radiological sabotage, nonradiological sabotage, alcohol and drugs, and miscellaneous. The information contained in the event descriptions is derived primarily from official NRC reporting channels

  14. Generic environmental impact statement for license renewal of nuclear plants. Final report

    International Nuclear Information System (INIS)

    1996-05-01

    This GEIS examines the possible environmental impacts that could occur as a result of renewing the licenses of individual nuclear power plants under 10 CFR 54. To the extent possible, it establishes the bounds and significance of these potential impacts. The analysis encompasses all operating light-water reactors. For each type of environmental impact, the GEIS attempts to establish generic findings covering as many plants as possible. While plant and site-specific information is used in developing the generic findings, the NRC does not intend for the GEIS to be a compilation of individual plant environmental impacts statements. This document has three principal objectives: (1) to provide an understanding of the types and severity of environmental impacts that may occur as a result of license renewal, (2) to identify and assess those impacts that are expected to be generic to license renewal, and (3) to support rulemaking (10 CFR 51) to define the number and scope of issues that need to be addressed by the applicants in plant-by-plant license renewal proceedings

  15. Licensed operating reactors

    International Nuclear Information System (INIS)

    1990-01-01

    The US Nuclear Regulatory Commission's monthly LICENSED OPERATING REACTORS Status Summary Report provides data on the operation of nuclear units as timely and accurately as possible. This information is collected by the Office of Information Resources Management, from the Headquarters Staff of NRC's Office of Inspection and Enforcement, from NRC's Regional Offices, and from utilities. Since all of the data concerning operation of the units is provided by the utility operators less than two weeks after the end of the month, necessary corrections to published information are shown on the ERRATA page. This report is divided into three sections: the first contains monthly highlights and statistics for commercial operating units, and errata from previously reported data; the second is a compilation of detailed information on each unit, provided by NRC Regional Offices, IE Headquarters and the Utilities; and the third section is an appendix for miscellaneous information such as spent fuel storage capability, reactor years of experience and non-power reactors in the United States

  16. Licensed operating reactors

    International Nuclear Information System (INIS)

    1989-06-01

    The US Nuclear Regulatory Commission's monthly LICENSED OPERATING REACTORS Status Summary Report provides data on the operation of nuclear units as timely and accurately as possible. This information is collected by the Office of Information Resources Management, from the Headquarters Staff of NRC's Office of Inspection and Enforcement, from NRC's Regional Offices, and from utilities. Since all of the data concerning operation of the units are provided by the utility operators less than two weeks after the end of the month, necessary corrections to published information are shown on the ERRATA page. This report is divided into three sections: the first contains monthly highlights and statistics for commercial operating units, and errata from previously reported data; the second is a compilation of detailed information on each unit, provided by NRC Regional Offices, IE Headquarters and the Utilities; and the third section is an appendix for miscellaneous information such as spent fuel storage capability, reactor years of experience and non-power reactors in the United States

  17. 75 FR 29785 - Draft Regulatory Guide: Issuance, Availability

    Science.gov (United States)

    2010-05-27

    ... ``Regulatory Guides'' collection of the NRC's Electronic Reading Room at http://www.nrc.gov/reading-rm/doc... NUCLEAR REGULATORY COMMISSION [NRC-2010-0187] Draft Regulatory Guide: Issuance, Availability... Guide, DG-1248, ``Nuclear Power Plant Simulation Facilities for Use in Operator Training, License...

  18. Reactive inspection response of NRC Region III to potential technical deficiencies identified in recent Nuclear Air Cleaning Conference papers

    International Nuclear Information System (INIS)

    Gill, C.F.

    1987-01-01

    In order to effectively meet its responsibility to protect the public health and safety, the Nuclear Regulatory Commission (NRC) nuclear power plant licensing and inspection programs respond to potential technical deficiencies identified by conference and professional society meeting papers when deemed appropriate. The NRC staff's response mechanisms for such technical deficiencies include: generic letters, Bulletins, Information Notices, Standard Review Plan (NUREG-0800) revisions, docketed Final Safety Analysis Report (FSAR) questions, special studies, special (reactive) inspection, and inspection program revisions. This paper describes reactive inspection efforts by Region III in response to potential technical deficiencies identified in recent air cleaning conference papers, including: post-accident effluent sample line deposition losses; failure to implement good engineering practices in the design, construction, and testing of Nuclear Air Treatment Systems (NATS); filter bypass via filter housing drain lines; spinster carbon degradation; use of silicone sealants and other temporary patching material in NATS; filter housing fire protection deluge system problems; lack of charcoal batch traceability; Quality Assurance records problems involving equipment, vendor, filter, and personnel qualifications; inadequate ANSI/ASME N510 acceptance criteria and tests; and failure to adequately demonstrate control room habitability per 10 CFR 50, Appendix A, General Design Criterion-19. Region III inspections indicate that many of these deficiencies appear to be prevalent. Inspection findings and utility responses to the findings are discussed. NRC Region III and Headquarters programmatic reactions to the identified generic problem areas are also discussed

  19. Regulation of chemical safety at fuel cycle facilities by the United States Nuclear Regulatory Commission

    International Nuclear Information System (INIS)

    Ramsey, Kevin M.

    2013-01-01

    When the U.S. Nuclear Regulatory Commission (NRC) was established in 1975, its regulations were based on radiation dose limits. Chemical hazards rarely influenced NRC regulations. After the Three Mile Island reactor accident in 1979, the NRC staff was directed to address emergency planning at non-reactor facilities. Several fuel cycle facilities were ordered to submit emergency plans consistent with reactor emergency plans because no other guidance was available. NRC published a notice that it was writing regulations to codify the requirements in the Orders and upgrade the emergency plans to address all hazards, including chemical hazards. The legal authority of NRC to regulate chemical safety was questioned. In 1986, an overfilled uranium hexafluoride cylinder ruptured and killed a worker. The NRC staff was directed to address emergency planning for hazardous chemicals in its regulations. The final rule included a requirement for fuel cycle facilities to certify compliance with legislation requiring local authorities to establish emergency plans for hazardous chemicals. As with emergency planning, NRC's authority to regulate chemical safety during routine operations was limited. NRC established memoranda of understanding (MOUs) with other regulatory agencies to encourage exchange of information between the agencies regarding occupational hazards. In 2000, NRC published new, performance-based, regulations for fuel cycle facilities. The new regulations required an integrated safety analysis (ISA) which used quantitative standards to assess chemical exposures. Some unique chemical exposure cases were addressed while implementing the new regulations. In addition, some gaps remain in the regulation of hazardous chemicals at fuel cycle facilities. The status of ongoing efforts to improve regulation of chemical safety at fuel cycle facilities is discussed. (authors)

  20. Conceptual design report for the away from reactor spent fuel storage facility, Savannah River Plant

    International Nuclear Information System (INIS)

    1978-12-01

    The Department of Energy (DOE) requested that Du Pont prepare a conceptual design and appraisal of cost for Federal budget planning for an away from reactor spent fuel storage facility that could be ready to store fuel by December 1982. This report describes the basis of the appraisal of cost in the amount of $270,000,000 for all facilities. The proposed action is to provide a facility at the Savannah River Plant. The facility will have an initial storage capacity of 5000 metric tons of spent fuel and will be capable of receiving 1000 metric tons per year. The spent fuel will be stored in water-filled concrete basins that are lined with stainless steel. The modular construction of the facility will allow future expansion of the storage basins and auxiliary services in a cost-effective manner. The facility will be designed to receive, handle, decontaminate and reship spent fuel casks; to remove irradiated fuel from casks; to place the fuel in a storage basin; and to cool and control the quality of the water. The facility will also be designed to remove spent fuel from storage basins, load the spent fuel into shipping casks, decontaminated loaded casks and ship spent fuel. The facility requires a license by the Nuclear Regulatory Commission (NRC). Features of the design, construction and operations that may affect the health and safety of the workforce and the public will conform with NRC requirements. The facility would be ready to store fuel by January 1983, based on normal Du Pont design and construction practices for DOE. The schedule does not include the effect of licensing by the NRC. To maintain this option, preparation of the documents and investigation of a site at the Savannah River Plant, as required for licensing, were started in FY '78

  1. Indexes to Nuclear Regulatory Commission issuance, July-December 1980. Index of Volume 12, Number 4

    International Nuclear Information System (INIS)

    1980-01-01

    Issuances of the Atomic Safety and Licensing Board (ASLB), the Atomic Safety and Licensing Appeal Boards (ALAB), the Administrative Law Judge (ALJ), regulatory issuances of the Commission (CLI), the Directors Denial (DD), and the Denials of Petitions for Rulemaking for the period July through December 1980 appear in Nuclear Regulatory Commission Issuances, 12 NRC No. 1, Pages 1-136, through 12 NRC No. 6, Pages 607-742. Digests and indexes for these issuances are presented in this document. These digests and indexes are intended to serve as a guide to the issuances. Information elements common to the cases heard and ruled upon are: Case name (owners of facility); Name of facility, docket number; Type of hearing (for construction permit, operating licenses, etc.); Issues raised by appellants; Issuance number; Type of issuance (memorandum, order, decision, etc.); Issuance pagination; Legal citations (cases, regulations, and statutes); and Subject matter of issues and/or rulings. These information elements are displayed in one or more of five separate formats arranged as follows: Case name index; Digests and headers; Legal citation index; Subject index; and Facility index

  2. Systematic evaluation program review of NRC Safety Topic VI-7.3 associated with the electrical, instrumentation and control portions of the ECCS actuation system for the Dresden II Nuclear Power Plant

    International Nuclear Information System (INIS)

    St Leger-Barter, G.

    1980-11-01

    This report documents the technical evaluation and review of NRC Safety Topic VI-7.A.3, associated with the electrical, instrumentation, and control portions of the classification of the ECCS actuation system for the Dresden II nuclear power plant, using current licensing criteria

  3. Licensing Support Network: An Electronic Discovery System

    International Nuclear Information System (INIS)

    Gil, A. V.; Jensen, D.; McKinnon, B.

    2002-01-01

    The necessary authorization for the U. S. Department of Energy's (DOE) Office of Civilian Radioactive Waste Management (OCRWM) to submit a License Application (LA) is contingent upon the policy process defined in the Nuclear Waste Policy Act, as amended (NWPA), with some steps yet to occur. In spite of this uncertainty, the DOE must take prudent and appropriate action now, and over the next several years, to prepare for submittal of an application and to facilitate the U. S. Nuclear Regulatory Commission (NRC) review of this application, if the Yucca Mountain site is recommended and approved for repository development. One of these steps the DOE has taken involves working with the NRC's Advisory Review Panel to develop Licensing Support Network (LSN) requirements and guidelines. The NRC has made a prototype of the LSN web page available at www.LSNNET.gov. The OCRWM part of the LSN currently has an indefinite life cycle and may need to remain in existence until the repository is closed, which could be as long as 325 years

  4. Regulatory analysis for amendments to regulations for the environmental review for renewal of nuclear power plant operating licenses. Final report

    International Nuclear Information System (INIS)

    1996-05-01

    This regulatory analysis provides the supporting information for a proposed rule that will amend the Nuclear Regulatory Commission's environmental review requirements for applications for renewal of nuclear power plant operating licenses. The objective of the proposed rulemaking is to improve regulatory efficiency by providing for the generic evaluation of certain environmental impacts associated with nuclear plant license renewal. After considering various options, the staff identified and analyzed two major alternatives. With Alternative A, the existing regulations would not be amended. This option requires that environmental reviews be performed under the existing regulations. Alternative B is to assess, on a generic basis, the environmental impacts of renewing the operating license of individual nuclear power plants, and define the issues that will need to be further analyzed on a case-by-case basis. In addition, Alternative B removes from NRC's review certain economics-related issues. The findings of this assessment are to be codified in 10 CFR 51. The staff has selected Alternative B as the preferred alternative

  5. License renewal

    International Nuclear Information System (INIS)

    Newberry, S.

    1993-01-01

    This article gives an overview of the process of license renewal for nuclear power plants. It explains what is meant by license renewal, the significance of license renewal, and goes over key elements involved in the process of license renewal. Those key elements are NRC requirements embodied in 10 CFR Part 54 (Reactor Safety) and 10 CFR Part 51 (Environmental Issues). In addition Industry Reports must be developed and reviewed. License renewal is essentially the process of applying for a 20 year extension to the original 40 year operating license granted for the plant. This is a very long term process, which involves a lot of preparation, and compliance with regulatory rules and guidelines. In general it is a process which is expected to begin when plants reach an operating lifetime of 20 years. It has provisions for allowing the public to become involved in the review process

  6. A personal computer code for seismic evaluations of nuclear power plant facilities

    International Nuclear Information System (INIS)

    Xu, J.; Graves, H.

    1991-01-01

    In the process of review and evaluation of licensing issues related to nuclear power plants, it is essential to understand the behavior of seismic loading, foundation and structural properties and their impact on the overall structural response. In most cases, such knowledge could be obtained by using simplified engineering models which, when properly implemented, can capture the essential parameters describing the physics of the problem. Such models do not require execution on large computer systems and could be implemented through a personal computer (PC) based capability. Recognizing the need for a PC software package that can perform structural response computations required for typical licensing reviews, the US Nuclear Regulatory Commission sponsored the development of a PC operated computer software package CARES (Computer Analysis for Rapid Evaluation of Structures) system. This development was undertaken by Brookhaven National Laboratory (BNL) during FY's 1988 and 1989. A wide range of computer programs and modeling approaches are often used to justify the safety of nuclear power plants. It is often difficult to assess the validity and accuracy of the results submitted by various utilities without developing comparable computer solutions. Taken this into consideration, CARES is designed as an integrated computational system which can perform rapid evaluations of structural behavior and examine capability of nuclear power plant facilities, thus CARES may be used by the NRC to determine the validity and accuracy of analysis methodologies employed for structural safety evaluations of nuclear power plants. CARES has been designed to operate on a PC, have user friendly input/output interface, and have quick turnaround. This paper describes the various features which have been implemented into the seismic module of CARES version 1.0

  7. 76 FR 20052 - Notice of Issuance of Regulatory Guide

    Science.gov (United States)

    2011-04-11

    ... the NRC's public Web site under ``Regulatory Guides'' at http://www.nrc.gov/reading-rm/doc-collections... NUCLEAR REGULATORY COMMISSION [NRC-2010-0187] Notice of Issuance of Regulatory Guide AGENCY... Guide 1.149, ``Nuclear Power Plant Simulation Facilities for Use in Operator Training, License...

  8. Preliminary site requirements and considerations for a monitored retrievable storage facility

    International Nuclear Information System (INIS)

    1991-08-01

    This report presents preliminary requirements and considerations for siting monitored retrievable storage (MRS) facility. It purpose is to provide guidance for assessing the technical suitability of potential sites for the facility. It has been reviewed by the NRC staff, which stated that this document is suitable for ''guidance in making preliminary determinations concerning MRS site suitability.'' The MRS facility will be licensed by the US Nuclear Regulatory Commission. It will receive spent fuel from commercial nuclear power plants and provide a limited amount of storage for this spent fuel. When a geologic repository starts operations, the MRS facility will also stage spent-fuel shipments to the repository. By law, storage at the MRS facility is to be temporary, with permanent disposal provided in a geologic repository to be developed by the DOE

  9. Summary report on safety and licensing strategy support for the ABR prototype

    International Nuclear Information System (INIS)

    Cahalan, J. E.; Nuclear Engineering Division

    2007-01-01

    Argonne National Laboratory is providing support to the US Department of Energy in the Global Nuclear Energy Partnership (GNEP) in certification of an advanced, sodium-cooled fast reactor. The reactor is to be constructed as a prototype for future commercial power reactors that will produce electricity while consuming actinides recovered from light water reactor spent fuel. This prototype reactor has been called the Advanced Burner Reactor, or ABR, and is now often referred to as the advanced recycle reactor. As part of its activities, Argonne is providing technical services to assist definition of a safety and licensing strategy for the ABR prototype, and to further implementation of the strategy. In FY06, an organizational meeting was held for DOE and its laboratory contractors to discuss licensing alternatives and review previous licensing experience for the Fast Flux Test Facility (FFTF) and the Clinch River Breeder Reactor Plant (CRBRP). Near the end of FY06, a report summarizing the discussions and conclusions was written. One of the top-level conclusions recorded in the report was a recommendation to follow a licensing strategy that included the US Nuclear Regulatory Commission (NRC) as the regulatory review and licensing authority. In FY07, activities ar Argonne to support safety and licensing progress have continued. These activities have focused on further evaluation of licensing alternatives; assessment of design, analysis, and documentation implications of licensing paths; and initial technical interactions with the Nuclear Regulatory Commission. This report summarizes FY07 activities

  10. Final Environmental Impact Statement for the construction and operation of Claiborne Enrichment Center, Homer, Louisiana (Docket No. 70-3-70). Volume 2, Public comments and NRC response

    International Nuclear Information System (INIS)

    Zeitoun, A.

    1994-08-01

    The Final Environmental Impact Statement (FEIS) (Volume 1), was prepared by the Nuclear Regulatory Commission (NRC) in accordance with regulation 10 CFR Part 51, which implements the National Environmental Policy Act (NEPA), to assess the potential environmental impacts for licensing the construction and operation of a proposed gaseous centrifuge enrichment facility to be built in Claiborne Parish, Louisiana by Louisiana Energy Services, L.P. (LES). The proposed facility would have a production capacity of about 866 metric tons annually of up to 5 weight percent enriched UF 6 , using a proven centrifuge technology. Included in the assessment are co on, both normal operations and potential accidents (internal and external events), and the eventual decontamination and decommissioning of the site. In order to help assure that releases from the operation of the facility and potential impacts on the public are as low as reasonably achievable, an environmental monitoring program was developed by LES to detect significant changes in the background levels of uranium around the site. Other issues addressed include the purpose and need for the facility, the alternatives to the proposed action, potential disposition of the tails, the site selection process, and environmental justice. The NRC staff concludes that the facility can be constructed and operated with small and acceptable impacts on the public and the environment, and proposes to issue a license to the applicant, Louisiana Energy Services, to authorize construction and operation of the proposed facility. The letters in this Appendix have been divided into three sections. Section One contains letters to which the NRC responded by addressing specific comments. Section Two contains the letters that concerned the communities of Forest Grove and Center Springs. Section Three is composed of letters that required no response. These letters were generally in support of the facility

  11. Final Environmental Impact Statement for the construction and operation of Claiborne Enrichment Center, Homer, Louisiana (Docket No. 70-3-70). Volume 2, Public comments and NRC response

    Energy Technology Data Exchange (ETDEWEB)

    Zeitoun, A. [Science Applications International Corp., Germantown, MD (United States)

    1994-08-01

    The Final Environmental Impact Statement (FEIS) (Volume 1), was prepared by the Nuclear Regulatory Commission (NRC) in accordance with regulation 10 CFR Part 51, which implements the National Environmental Policy Act (NEPA), to assess the potential environmental impacts for licensing the construction and operation of a proposed gaseous centrifuge enrichment facility to be built in Claiborne Parish, Louisiana by Louisiana Energy Services, L.P. (LES). The proposed facility would have a production capacity of about 866 metric tons annually of up to 5 weight percent enriched UF{sub 6}, using a proven centrifuge technology. Included in the assessment are co on, both normal operations and potential accidents (internal and external events), and the eventual decontamination and decommissioning of the site. In order to help assure that releases from the operation of the facility and potential impacts on the public are as low as reasonably achievable, an environmental monitoring program was developed by LES to detect significant changes in the background levels of uranium around the site. Other issues addressed include the purpose and need for the facility, the alternatives to the proposed action, potential disposition of the tails, the site selection process, and environmental justice. The NRC staff concludes that the facility can be constructed and operated with small and acceptable impacts on the public and the environment, and proposes to issue a license to the applicant, Louisiana Energy Services, to authorize construction and operation of the proposed facility. The letters in this Appendix have been divided into three sections. Section One contains letters to which the NRC responded by addressing specific comments. Section Two contains the letters that concerned the communities of Forest Grove and Center Springs. Section Three is composed of letters that required no response. These letters were generally in support of the facility.

  12. Safeguards Summary Event List (SSEL), Pre-NRC through December 31, 1983. Rev. 9

    International Nuclear Information System (INIS)

    1984-06-01

    The Safeguards Summary Event List (SSEL) provides brief summaries of several hundred safeguards-related events involving nuclear material or facilities regulated by the US Nuclear Regulatory Commission (NRC). Events are described under the categories of bomb-related, intrusion, missing/allegedly stolen, transportation, tampering/vandalism, arson, firearms-related, radiological sabotage and miscellaneous. The information contained in the event descriptions is derived primarily from official NRC reporting channels

  13. Final Safety Evaluation Report to license the construction and operation of a facility to receive, store, and dispose of 11e.(2) byproduct material near Clive, Utah (Docket No. 40-8989)

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    The Final Safety Evaluation Report (FSER) summarizes the US Nuclear Regulatory Commission (NRC) staff`s review of Envirocare of Utah, Inc.`s (Envirocare`s) application for a license to receive, store, and dispose of uranium and thorium byproduct material (as defined in Section 11e.(2) of the Atomic Energy Act of 1954, as amended) at a site near Clive, Utah. Envirocare proposes to dispose of high-volume, low-activity Section 11e.(2) byproduct material in separate earthen disposal cells on a site where the applicant currently disposes of naturally occurring radioactive material (NORM), low-level waste, and mixed waste under license by the Utah Department of Environmental Quality. The NRC staff review of the December 23, 1991, license application, as revised by page changes dated July 2 and August 10, 1992, April 5, 7, and 10, 1993, and May 3, 6, 7, 11, and 21, 1993, has identified open issues in geotechnical engineering, water resources protection, radon attenuation, financial assurance, and radiological safety. The NRC will not issue a license for the proposed action until Envirocare adequately resolves these open issues.

  14. Final Safety Evaluation Report to license the construction and operation of a facility to receive, store, and dispose of 11e.(2) byproduct material near Clive, Utah (Docket No. 40-8989)

    International Nuclear Information System (INIS)

    1994-01-01

    The Final Safety Evaluation Report (FSER) summarizes the US Nuclear Regulatory Commission (NRC) staff's review of Envirocare of Utah, Inc.'s (Envirocare's) application for a license to receive, store, and dispose of uranium and thorium byproduct material (as defined in Section 11e.(2) of the Atomic Energy Act of 1954, as amended) at a site near Clive, Utah. Envirocare proposes to dispose of high-volume, low-activity Section 11e.(2) byproduct material in separate earthen disposal cells on a site where the applicant currently disposes of naturally occurring radioactive material (NORM), low-level waste, and mixed waste under license by the Utah Department of Environmental Quality. The NRC staff review of the December 23, 1991, license application, as revised by page changes dated July 2 and August 10, 1992, April 5, 7, and 10, 1993, and May 3, 6, 7, 11, and 21, 1993, has identified open issues in geotechnical engineering, water resources protection, radon attenuation, financial assurance, and radiological safety. The NRC will not issue a license for the proposed action until Envirocare adequately resolves these open issues

  15. Specification of requirements to get a license for an Independent Spent Fuel Dry Storage Installation (ISFSI) at the site of the NPP-LV; Especificacion de los requerimientos para tramitar una licencia de una instalacion independiente de almacenamiento temporal en seco de combustible gastado (ISFSI) en el sitio de la CNLV

    Energy Technology Data Exchange (ETDEWEB)

    Serrano R, M. L., E-mail: mlserrano@cnsns.gob.mx [Comision Nacional de Seguridad Nuclear y Salvaguardias, Dr. Barragan 779, Col. Narvarte, 03020 Ciudad de Mexico (Mexico)

    2015-09-15

    This article describes some of the work done in the Comision Nacional de Seguridad Nuclear y Salvaguardias (CNSNS) to define specifically the requirements that the Federal Electricity Commission (CFE) shall meet to submit for consideration of CNSNS an operation request of an Independent Spent Fuel Dry Storage Installation (ISFSI). The project of a facility of this type arose from the need to provide storage capacity for spent nuclear fuel in the nuclear power plant of Laguna Verde (NPP-LV) and to continue the operation at the same facility in a safe manner. The licensing of these facilities in the United States of America has two modes: specific license or general license. The characteristics of these licenses are described in this article. However, in Mexico the existing national legislation is not designed for such license types, in fact there is a lack of standards or regulations in this regard. The regulatory law of Article 27 of the Constitution in the nuclear matter, only generally establishes that this type of facility requires an authorization from the Ministry of Energy. For this reason and because there is not a national legislation, was necessary to use the legislation that provides the Nuclear Regulatory Commission of USA, the US NRC. However, it cannot be applied as is established, so was necessary that the CNSNS analyze one by one the requirements of both types of license and determine what would be required to NPP-LV to submit its operating license of ISFSI. The American regulatory applicable to an ISFSI, the 10-Cfr-72 of the US NRC, establishes the requirements for both types of licenses. Chapter 10-Cfr was analyzed in all its clauses and coupled to the laws, regulations and standards as well as to the requirements established by CNSNS, all associated with a store spent fuel on site; the respective certification of containers for spent fuel dry storage was not included in this article, even though the CNSNS also performed that activity under the

  16. Challenges in licensing a sodium-cooled advanced recycling reactor

    International Nuclear Information System (INIS)

    Levin, Alan E.

    2008-01-01

    As part of the Global Nuclear Energy Partnership (GNEP), the U.S. Department of Energy (DOE) has focused on the use of sodium-cooled fast reactors (SFRs) for the destruction of minor actinides derived from used reactor fuel. This approach engenders an array of challenges with respect to the licensing of the reactor: the U.S. Nuclear Regulatory Commission (NRC) has never completed the review of an application for an operating license for a sodium-cooled reactor. Moreover, the current U.S. regulatory structure has been developed to deal almost exclusively with light-water reactor (LWR) designs. Consequently, the NRC must either (1) develop a new regulatory process for SFRs, or (2) reinterpret the existing regulations to apply them, as appropriate, to SFR designs. During the 1980s and 1990s, the NRC conducted preliminary safety assessments of the Sodium Advanced Fast Reactor (SAFR) and the Power Reactor Innovative Small Module (PRISM) designs, and in that context, began to consider how to apply LWR-based regulations to SFR designs. This paper builds on that work to consider the challenges, from the reactor designer's point of view, associated with licensing an SFR today, considering (1) the evolution of SFR designs, (2) the particular requirements of reactor designs to meet GNEP objectives, and (3) the evolution of NRC regulations since the conclusion of the SAFR and PRISM reviews. (author)

  17. Aseismic Design Licensings and guidelines for nuclear power plant in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Yoshizawa, Kazumi [Agency of Natural Resources and Energy, Tokyo (Japan)

    1997-03-01

    This paper describes Aseismic Design Licensing for Japanese Nuclear Power Plants which includes system, procedures and brief contents concerned application, permit and inspection, and the `Examination Guide for Aseismic Design of the Nuclear Power Reactor Facilities` which focused principals of seismic design loads, load combinations, and allowable limits. (J.P.N.)

  18. Aseismic Design Licensings and guidelines for nuclear power plant in Japan

    International Nuclear Information System (INIS)

    Yoshizawa, Kazumi

    1997-01-01

    This paper describes Aseismic Design Licensing for Japanese Nuclear Power Plants which includes system, procedures and brief contents concerned application, permit and inspection, and the 'Examination Guide for Aseismic Design of the Nuclear Power Reactor Facilities' which focused principals of seismic design loads, load combinations, and allowable limits. (J.P.N.)

  19. Safeguards Summary Event List (SSEL), pre-NRC through December 31, 1989

    International Nuclear Information System (INIS)

    1992-07-01

    The Safeguards Summary Event List (SSEL), Vol. 1, provides brief summaries of several hundred safeguards-related events involving nuclear material or facilities regulated by the US Nuclear Regulatory Commission (NRC) which occurred and were reported from pre-NRC through December 31, 1989. Because of public interest, the Miscellaneous category includes a few events which involve either source material, byproduct material, or natural uranium which are exempt from safeguards requirements. Events are described under the categories of bomb-related, intrusion, missing and/or allegedly stolen, transportation, tampering/vandalism, arson, firearms, radiological sabotage, nonradiological sabotage, and miscellaneous. The information contained in the event descriptions is derived primarily from official NRC reporting channels

  20. The comparison of license management procedure for nuclear power plant in China and United States

    International Nuclear Information System (INIS)

    Yu Zusheng

    2006-01-01

    'Tow steps' license management procedure for nuclear power plant has been performed bas- ted on the requirement of 10CFR Part50-DOMESTIC LICENSING OF PRODUCTION AND UTILIZATION FACILITIES in United States since last century fifties. In order to ulterior reduce the risk of investment and technical for new construction nuclear power plants, new regulations 'One step' license management procedure-10CFR Part52-EARLY SITE PERMITS; STANDARD DESIGN CERTIFICATIONS; AND COMBINED LICENSES FOR NUCLEAR POWER PLANTS issued in 1989. The new regulations has been adopted by new design of nuclear power plant, for example AP1000. ‘The similar tow steps’ license management procedure for nuclear power plant has been performed basted on the requirement of HAFO01/01 Rules for the Implementation of Regulations on the Safety Regulation for Civilian Nuclear Installations of the People's Re- public of China Part One: Application and Issuance of Safety License for Nuclear Power Plant (December 1993) in China since last century nineties. This article introduces and compares the requirements and characteristics of above license management procedure for nuclear power plant in China and United States. (author)

  1. Safeguards Summary Event List (SSEL). Pre-NRC-June 30, 1985. Revision 11

    International Nuclear Information System (INIS)

    1986-01-01

    The Safeguards Summary Event List (SSRL) provides brief summaries of several hundred safeguards-related events involving nuclear material or facilities regulated by the US Nuclear Regulatory Commission (NRC). Events are described under the categories of bomb-related, intrusion, missing and/or allegedly stolen, transportation, tampering/vandalism, arson, firearms, radiological sabotage, non-radiological sabotage and miscellaneous. The information contained in the event descriptions is derived primarily from official NRC reporting channels. 12 figs

  2. Methodology and findings of the NRC`s materials licensing process redesign

    Energy Technology Data Exchange (ETDEWEB)

    Rathbun, P.A.; Brown, K.D.; Madera, J.R.; Moriarty, M.; Pelchat, J.M.; Usilton, W.K.; Whitten, J.E.; Vacca, P.C.

    1996-04-01

    This report describes the work and vision of the team chartered to redesign the process for licensing users of nuclear materials. The Business Process Redesign team was chartered to improve the speed of the existing licensing process while maintaining or improving public safety and to achieve required resource levels. The report describes the team`s methods for acquiring and analyzing information about the existing materials licensing process and the steps necessary to radically change this process to the envisioned future process.

  3. Nuclear proliferation and civilian nuclear power. Report of the Nonproliferation Alternative Systems Assessment Program. Volume VI. Safety and environmental considerations for licensing

    International Nuclear Information System (INIS)

    1980-06-01

    This volume of the Nonproliferation Alternative Systems Assessment Program report addresses safety and environmental considerations in licensing the principal alternative nuclear reactors and fuel cycles in the United States for large-scale commercial nuclear power plants. In addition, this volume examines the safety and environmental considerations for licensing fuel service centers. These centers, which have been proposed for controlling sensitive fuel-cycle facilities and special nuclear materials, would contain a combination of such facilities as reprocessing plants, fabrication plants, and reactors. For this analysis, two fuel service center concepts were selected - one with power - generating capability and one without

  4. Safeguards Summary Event List (SSEL). Pre-NRC trhough December 31, 1978

    International Nuclear Information System (INIS)

    1978-12-01

    Nine categories of events involving NRC licensed material or licensees are included. As additional information is obtained on an event, it will be incorporated in future editions. The list contains incidents as well as less significant events. The nine categories are: bomb-related (divided into two sections: (a) those events in which a bomb or explosive material was located or an explosion occurred at or in the vicinity of a licensed facility, (b) a complete chronological list), intrusion, missing and/or allegedly stolen, transportation-related, vandalism, arson, firearms-related, sabotage, and miscellaneous

  5. Armenian nuclear power plant: US NRC assistance programme for seismic upgrade and safety analysis

    International Nuclear Information System (INIS)

    Simos, N.; Perkins, K.; Jo, J.; Carew, J.; Ramsey, J.

    2003-01-01

    This paper summarizes the U.S. Nuclear Regulatory Commission's (US NRC) technical support program activities associated with the Armenian Nuclear Power Plant (ANPP) safety upgrade. The US NRC program, integrated within the overall IAEA-led initiative for safety re-evaluation of the WWER plants, has as its main thrust the technical support to the Armenian Nuclear Regulatory Authority (ANRA) through close collaboration with the scientific staff at Brookhaven National Laboratory (BNL). Several major technical areas of support to ANRA form the basis of the NRC program. These include the seismic re-evaluation and upgrade of the ANPP, safety evaluation of critical systems, and the generation of the Safety Analysis Report (SAR). Specifically, the seismic re-evaluation of the ANPP is part of a broader activity that involves the re-assessment of the seismic hazard at the site, the identification of the Safe Shutdown Equipment at the plant and the evaluation of their seismic capacity, the detailed modeling and analysis of the critical facilities at ANPP, and the generation of the Floor Response Spectra (FRS). Based on the new spectra that incorporate all new findings (hazard, site soil, structure, etc.), the overall capacity of the main structures and the seismic capacity of the critical systems are being re-evaluated. In addition, analyses of critical safe shutdown systems and safe shutdown processes are being performed to ensure both the capabilities of the operating systems and the enhancement of safety due to system upgrades. At present, one of the principal goals of the US NRC's regulatory assistance activities with ANRA is enhancing ANRA's regulatory oversight of high-priority safety issues (both generic and plant-specific) associated with operation of the ANPP. As such, assisting ANRA in understanding and assessing plant-specific seismic and other safety issues associated with the ANPP is a high priority given the ANPP's being located in a seismically active area

  6. Licensing process at Grand Gulf Nuclear Powerplant. Oversight hearing before the Subcommittee on Energy and the Environment of the Committee on Interior and Insular Affairs, House of Representatives, Ninety-Eighth Congress, Second Session, July 24, 1984

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    A panel of Commissioners from the Nuclear Regulatory Commission (NRC) headed by Nunzio Palladino and a panel of witnesses from the Jacksonians United for Livable Energy Policies and the Union of Concerned Scientists testified at a hearing on licensing of the Grand Gulf nuclear plant for low-power operation and the reasons for delaying its application for full-power licensing. At issue were a number of irregularities during the design and construction stages and the integrity of the regulatory systems. Panelists were asked to limit their comments to licensing procedures, and not to debate safety issues. Witnesses were critical of NRC's handling of the licensing in view of the large number of errors, unqualified personnel, mishaps, and other problems which have plagued the plant. An appendix with additional material from the witnesses and others follows the testimony

  7. Safeguards Summary Event List (SSEL). Pre-NRC through December 31, 1984. Revision 10

    International Nuclear Information System (INIS)

    1985-05-01

    The Safeguards Summary Event List (SSEL) provides brief summaries of several hundred safeguards-related events involving nuclear material or facilities regulated by the US Nuclear Regulatory Commission (NRC). Events are described under the categories of bomb-related, intrusion, missing and/or allegedly stolen, transportation, tampering/vandalism, arson, firearms, radiological sabotage, non-radiological sabotage and miscellaneous. The information contained in the event descriptions in derived primarily from official NRC reporting channels

  8. Analysis of public comments on the proposed rule on nuclear power plant license renewal

    International Nuclear Information System (INIS)

    1991-12-01

    This report provides a summary and analysis of public comments on the proposed license renewal rule for the nuclear power plants (10 CFR Part 54) published in the Federal Register on 17 July 1990. It also documents the NRC's resolution of the issues raised by the commenters. Comments from 121 organizations and 76 individuals were reviewed and analyzed to identify the issues, including those pertaining to the adequacy of the licensing basis, the performance of an integrated plant assessment, backfit considerations, and need for public hearings. The analysis included grouping of commenters' views according to the issues raised. The public comments analyzed in this report were taken into consideration in the development of the final rule and revisions to the supporting documents

  9. Cyber Security in Nuclear Power Plants - U.S. NRC Regulatory Guide 5.71

    International Nuclear Information System (INIS)

    Pogacic, Goran

    2014-01-01

    We have already made a big step into new millennia and with it there is no more dilemma about presence of computers and internet in our lives. Almost all modern facilities struggle with this new dimension of information flow and how to use it to their best interest. But there is also the other side of the coin- the security threat. For nuclear power plants this threat poses even greater risk. In addition to protecting their trade secrets, personal data or other common targets of cyber attacks, nuclear power plants need to protect their digital computers, communication systems and networks up to and including the design basis threat (DBT). As stated in U.S. Nuclear Regulatory Commission (NRC) Regulatory Commission Regulations, Title 10, Code of Federal Regulations (CFR), section 73.1, 'Purpose and Scope' this includes protection against acts of radiological sabotage and prevention of the theft or diversion of special nuclear material. The main purpose of this paper is to explore the NRC Regulatory Guide (RG) 5.71 and its guidance in implementing cyber security requirements stated in NRC 10 CFR, section 73.54, 'Protection of Digital Computer and Communication Systems and Networks'. In particular, this section requires protection of digital computers, communication systems and networks associated with the following categories of functions: · safety-related and important-to-safety functions, · security functions, · emergency preparedness functions, including offsite communication, and · support systems and equipment which, if compromised, would adversely impact safety, security, or emergency preparedness functions. This section requires protection of such systems and networks from those cyber attacks that would act to modify, destroy, or compromise the integrity or confidentiality of data or software; deny access to systems, services or data; and impact the operation of systems, networks, and equipment. This paper will also present some of

  10. U.S. N.R.C. special safeguards study on nuclear material control and accounting

    International Nuclear Information System (INIS)

    Smith, G.D.

    1976-01-01

    In Feb. 1975, NRC directed that an effort be made to determine a safeguards program for Pu recycle. This paper summarizes results of individual contractor evaluations of upgrading material control and accounting concepts as applied to strategically important special nuclear material and describes staff interpretations of these results as applied to future high-throughput fuel-cycle facilities. Real-time material control, design for physical inventory, Pu isotopics control and calorimetry, and material control and accounting for highly enriched uranium fuel materials were the concepts studied. 1 table, 15 references

  11. NRC analysis of the environmental impacts and licensing policies for expanded spent fuel storage in the United States

    International Nuclear Information System (INIS)

    Smith, C.V. Jr.

    1978-01-01

    This paper reviews the findings of the U.S. environmental impact studies on spent fuel storage to the year 2000, addresses design criteria for independent spent fuel storage installations and expresses the position of the NRC for licensing expanded spent fuel storage capabilities until such time as final solutions are established

  12. Review process for low-level radioactive waste disposal license application under Low-Level Radioactive Waste Policy Amendments Act

    International Nuclear Information System (INIS)

    Pittiglio, C.L. Jr.

    1987-08-01

    This document estimates the level of effort and expertise that is needed to review a license application within the required time. It is intended to be used by the NRC staff as well as States and interested parties to provide a better understanding of what the NRC envisions will be involved in licensing a low-level radioactive waste disposal facility. 5 refs., 3 figs., 1 tab

  13. Recommendations for NRC policy on shift scheduling and overtime at nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, P.M.

    1985-07-01

    This report contains the Pacific Northwest Laboratory's (PNL's) recommendations to the US Nuclear Regulatory Commission (NRC) for an NRC policy on shift scheduling and hours of work (including overtime) for control room operators and other safety-related personnel in nuclear power plants. First, it is recommended that NRC make three additions to its present policy on overtime: (1) limit personnel to 112 hours of work in a 14-day period, 192 hours in 28 days, and 2260 hours in one year; exceeding these limits would require plant manager approval; (2) add a requirement that licensees obtain approval from NRC if plant personnel are expected to exceed 72 hours of work in a 7-day period, 132 hours in 14 days, 228 hours in 28 days, and 2300 hours in one year; and (3) make the policy a requirement, rather than a nonbinding recommendation. Second, it is recommended that licensees be required to obtain NRC approval to adopt a routine 12-hour/day shift schedule. Third, it is recommended that NRC add several nonbinding recommendations concerning routine 8-hour/day schedules. Finally, because additional data can strengthen the basis for future NRC policy on overtime, five methods are suggested for collecting data on overtime and its effects. 44 refs., 10 tabs.

  14. Recommendations for NRC policy on shift scheduling and overtime at nuclear power plants

    International Nuclear Information System (INIS)

    Lewis, P.M.

    1985-07-01

    This report contains the Pacific Northwest Laboratory's (PNL's) recommendations to the US Nuclear Regulatory Commission (NRC) for an NRC policy on shift scheduling and hours of work (including overtime) for control room operators and other safety-related personnel in nuclear power plants. First, it is recommended that NRC make three additions to its present policy on overtime: (1) limit personnel to 112 hours of work in a 14-day period, 192 hours in 28 days, and 2260 hours in one year; exceeding these limits would require plant manager approval; (2) add a requirement that licensees obtain approval from NRC if plant personnel are expected to exceed 72 hours of work in a 7-day period, 132 hours in 14 days, 228 hours in 28 days, and 2300 hours in one year; and (3) make the policy a requirement, rather than a nonbinding recommendation. Second, it is recommended that licensees be required to obtain NRC approval to adopt a routine 12-hour/day shift schedule. Third, it is recommended that NRC add several nonbinding recommendations concerning routine 8-hour/day schedules. Finally, because additional data can strengthen the basis for future NRC policy on overtime, five methods are suggested for collecting data on overtime and its effects. 44 refs., 10 tabs

  15. Managing aging in nuclear power plants: Insights from NRC's maintenance team inspection reports

    International Nuclear Information System (INIS)

    Fresco, A.; Subudhi, M.

    1994-01-01

    Age-related degradation is managed through the maintenance program of a nuclear plant. From 1988 to 1991, the Nuclear Regulatory Commission (NRC) evaluated the maintenance program of every nuclear power plant in the United States. The authors reviewed 44 out of a total of 67 of the reports issued by the NRC on these in-depth team inspections. The reports were reviewed for insights into the strengths and weaknesses of the programs as related to the need to understand and manage the effects of aging on nuclear plant structures, systems, and components. The authors' conclusions are presented. 6 refs

  16. Nuclear Regulatory Commission Information Digest 1992 edition

    International Nuclear Information System (INIS)

    Olive, K.

    1992-03-01

    The Nuclear Regulatory Commission Information Digest provides a summary of information about the US Nuclear Regulatory Commission (NRC), NRC's regulatory responsibilities, the activities NRC licenses, and general information on domestic and worldwide nuclear energy. This digest is a compilation of nuclear- and NRC-related data and is designed to provide a quick reference to major facts about the agency and industry it regulates. In general, the data cover 1975 through 1991, with exceptions noted. Information on generating capacity and average capacity factor for operating US commercial nuclear power reactors is obtained from monthly operating reports that are submitted directly to the NRC by the licensee. This information is reviewed by the NRC for consistency only and no independent validation and/or verification is performed

  17. 75 FR 3261 - Powertech (USA) Inc.; Dewey-Burdock Project; New Source Material License Application; Notice of...

    Science.gov (United States)

    2010-01-20

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 40-9075; NRC-2009-0575] Powertech (USA) Inc.; Dewey... review process related to the Dewey- Burdock Uranium Project application, please contact the NRC... documents associated with the Dewey-Burdock Uranium Project, including the license application, are...

  18. 78 FR 28244 - Agency Information Collection Activities; Proposed Collection; Comment Request

    Science.gov (United States)

    2013-05-14

    ... Licensing of Production and Utilization Facilities,'' specifies technical information and data to be... NUCLEAR REGULATORY COMMISSION [Docket No. NRC-2013-0085] Agency Information Collection Activities; Proposed Collection; Comment Request AGENCY: Nuclear Regulatory Commission. ACTION: Notice of pending NRC...

  19. NRC influences on nuclear training

    International Nuclear Information System (INIS)

    Hannon, J.N.

    1987-01-01

    NRC influences on utility training programs through prescriptive requirements and evaluation of industry self-initiatives are discussed. NRC regulation and industry initiatives are complimentary and in some instances industry initiatives are replacing NRC requirements. Controls and feedback mechanisms designed to enhance positive NRC influences and minimize or eliminate negative influences are discussed. Industry and NRC efforts to reach an acceptable mix between regulator oversight and self-initiatives by the industry are recognized. Problem areas for continued cooperation to enhance training and minimize conflicting signals to industry are discussed. These areas include: requalification examination scope and content, depth of training and examination on emergency procedures; improved learning objectives as the basis for training and examination, and severe accident training

  20. Occupational Radiation Exposure at Commercial Nuclear Power Reactors and Other Facilities 2010, Prepared for the Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, May 2012

    Energy Technology Data Exchange (ETDEWEB)

    D. E. Lewis D. A. Hagemeyer Y. U. McCormick

    2012-07-07

    This report summarizes the occupational exposure data that are maintained in the U.S. Nuclear Regulatory Commission’s (NRC) Radiation Exposure Information and Reporting System (REIRS). The bulk of the information contained in the report was compiled from the 2010 annual reports submitted by five of the seven categories of NRC licensees subject to the reporting requirements of 10 CFR 20.2206. Because there are no geologic repositories for high-level waste currently licensed and no NRC-licensed low-level waste disposal facilities currently in operation, only five categories will be considered in this report. The annual reports submitted by these licensees consist of radiation exposure records for each monitored individual. These records are analyzed for trends and presented in this report in terms of collective dose and the distribution of dose among the monitored individuals. Annual reports for 2010 were received from a total of 190 NRC licensees. The summation of reports submitted by the 190 licensees indicated that 192,424 individuals were monitored, 81,961 of whom received a measurable dose. When adjusted for transient workers who worked at more than one licensee during the year, there were actually 142,471 monitored individuals and 62,782 who received a measurable dose. The collective dose incurred by these individuals was 10,617 person-rem, which represents a 12% decrease from the 2009 value. This decrease was primarily due to the decrease in collective dose at commercial nuclear power reactors, as well as a decrease in the collective dose for most of the other categories of NRC licensees. The number of individuals receiving a measurable dose also decreased, resulting in an average measurable dose of 0.13 rem for 2010. The average measurable dose is defined as the total effective dose equivalent (TEDE) divided by the number of individuals receiving a measurable dose. In calendar year 2010, the average annual collective dose per reactor for light water reactor

  1. Toward the framework and implementation for clearance of materials from regulated facilities.

    Science.gov (United States)

    Chen, S Y; Moeller, D W; Dornsife, W P; Meyer, H R; Lamastra, A; Lubenau, J O; Strom, D J; Yusko, J G

    2005-08-01

    The disposition of solid materials from nuclear facilities has been a subject of public debate for several decades. The primary concern has been the potential health effects resulting from exposure to residual radioactive materials to be released for unrestricted use. These debates have intensified in the last decade as many regulated facilities are seeking viable management decisions on the disposition of the large amounts of materials potentially containing very low levels of residual radioactivity. Such facilities include the nuclear weapons complex sites managed by the U.S. Department of Energy, commercial power plants licensed by the U.S. Nuclear Regulatory Commission (NRC), and other materials licensees regulated by the NRC or the Agreement States. Other facilities that generate radioactive material containing naturally occurring radioactive materials (NORM) or technologically enhanced NORM (TENORM) are also seeking to dispose of similar materials that may be radioactively contaminated. In contrast to the facilities operated by the DOE and the nuclear power plants licensed by the U.S. Nuclear Regulatory Commission, NORM and TENORM facilities are regulated by the individual states. Current federal laws and regulations do not specify criteria for releasing these materials that may contain residual radioactivity of either man-made or natural origin from regulatory controls. In fact, the current regulatory scheme offers no explicit provision to permit materials being released as "non-radioactive," including those that are essentially free of contamination. The only method used to date with limited success has been case-by-case evaluation and approval. In addition, there is a poorly defined and inconsistent regulatory framework for regulating NORM and TENORM. Some years ago, the International Atomic Energy Agency introduced the concept of clearance, that is, controlling releases of any such materials within the regulatory domain. This paper aims to clarify

  2. 10 CFR Appendix B to Part 110 - Illustrative List of Gas Centrifuge Enrichment Plant Components Under NRC's Export Licensing...

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Illustrative List of Gas Centrifuge Enrichment Plant... 110—Illustrative List of Gas Centrifuge Enrichment Plant Components Under NRC's Export Licensing Authority 1. Assemblies and components especially designed or prepared for use in gas centrifuges. Note: The...

  3. 10 CFR Appendix H to Part 110 - Illustrative List of Electromagnetic Enrichment Plant Equipment and Components Under NRC Export...

    Science.gov (United States)

    2010-01-01

    ... Equipment and Components Under NRC Export Licensing Authority H Appendix H to Part 110 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXPORT AND IMPORT OF NUCLEAR EQUIPMENT AND MATERIAL Pt. 110, App. H Appendix H to Part 110—Illustrative List of Electromagnetic Enrichment Plant Equipment and Components Under...

  4. Conformation of an evaluation process for a license renovation solicitude of a nuclear power plant in Mexico; Conformacion de un proceso de evaluacion para una solicitud de renovacion de licencia de una central nuclear en Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Serrano R, M. L., E-mail: mlserrano@cnsns.gob.mx [Comision Nacional de Seguridad Nuclear y Salvaguardias, Dr. Barragan No. 779, Col. Narvarte, 03020 Mexico D. F. (Mexico)

    2012-10-15

    So that the construction stages, of operation, closing, dismantlement and the radioactive waste disposal of a nuclear power plant (NPP) are carried out in Mexico, is necessary that the operator has a license, permission or authorization for each stage. In Mexico, these licenses, permissions or authorizations are granted by the Energy Secretariat with base in the verdict of the Comision Nacional de Seguridad Nuclear y Salvaguardias (CNSNS). The operation licenses ar the moment effective for the reactors of the Nuclear Power Plant of Laguna Verde (NPP-L V) they will expire respectively in the year 2020 and 2025 for the Unit 1 and Unit 2, for what the CNSNS has begun its preparation before a potential solicitude of the licensee to continue the operation of the NPP-L V. Defining the process to continue and to generate the documents that would help in this phase as normalization, guides, procedures, regulations, controls, etc., is the task that intends to be carried out the regulator body so that the evaluation process is effective and efficient, so much for the same regulator body as for the licensee. This work exposes the advance that the CNSNS has in this aspect and is centered specifically in the conformation of an evaluation process of license renovation solicitude, taking as base what the regulator body of the United States of North America (US NRC) established and following to the IAEA. Also, this work includes statistical of electric power production in Mexico, licensing antecedents for the NPP-L V, a world perspective of the license renovations and the regulation of the US NRC related to the license renovation of a NPP. (Author)

  5. Safety Evaluation Report related to the operation of Nine Mile Point Nuclear Station, Unit No. 2 (Docket No. 50-410)

    International Nuclear Information System (INIS)

    1985-02-01

    The Safety Evaluation Report for the application filed by the Niagara Mohawk Power Corporation, as applicant and co-owner, for a license to operate the Nine Mile Point Nuclear Station, Unit 2 (Docket No. 50-410), has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is located near Oswego, New York. Subject to favorable resolution of the items discussed in this report, the NRC staff concludes that the facility can be operated by the applicant without endangering the health and safety of the public

  6. International exchange of safety and licensing information

    International Nuclear Information System (INIS)

    Lafleur, J.D. Jr.; Hauber, R.D.; Chenier, D.M.

    1977-01-01

    A network of formal and informal bilateral arrangements for the exchange of nuclear safety information is being established by the U.S. Nuclear Regulatory Commission. For developing countries, such arrangements can provide ready access to the extensive, fully documented safety analyses and safety research results that NRC has accumulated. NRC has been receiving foreign visitors at a rate of about 500 per year, largely for discussions of safety and licensing questions related to light water reactors. Exchanges also are taking place on the safety of advanced reactors. A special interest of the NRC is in providing for reciprocal communicaion, at the earliest possible time, of important problems, decisions and other actions on nuclear safety matters. For example, it is essential that a newly-discovered problem in a nuclear reactor be brought immediately to the attention of other governments which are responsible for the safety of similar reactors. Definite progress has been made in the U.S. Freedom of Information Act. Certain exchanges have taken place on this basis. Experience in the establishment and operation of NRC's bilateral exchange arrangements is summarized. A typical exchange with the regulatory authority of country building its first power reactor is described

  7. Meteorological instrumentation for nuclear facilities

    International Nuclear Information System (INIS)

    Costa, A.C.L. da.

    1983-01-01

    The main requirements of regulatory agencies, concerning the meteorological instrumentation needed for the licensing of nuclear facilities are discussed. A description is made of the operational principles of sensors for the various meteorological parameters and associated electronic systems. An analysis of the problems associated with grounding of a typical meteorological station is presented. (Author) [pt

  8. Control room habitability survey of licensed commercial nuclear power generating stations

    International Nuclear Information System (INIS)

    Driscoll, J.W.

    1988-10-01

    This document presents the results of a survey of control room habitability systems at twelve commercial nuclear generating stations. The survey, conducted by Argonne National Laboratory (ANL), is part of an NRC program initiated in response to concerns and recommendations of the Advisory Committee on Reactor Safeguards (ACRS). The major conclusion of the report is that the numerous types of potentially significant discrepancies found among the surveyed plants may be indicative of similar discrepancies throughout the industry. The report provides plant-specific and generalized findings regarding safety functions with respect to the consistency of the design, construction, operation and testing of control room habitability systems and corresponding Technical Specifications compared with descriptions provided in the license basis documentation including assumptions in the operator toxic gas concentration and radiation dose calculations. Calculations of operator toxic gas concentrations and radiation doses were provided in the license basis documentation and were not performed by the ANL survey team. Recommendation for improvements are provided in the report

  9. NRC program for the resolution of generic issues related to nuclear power plants. (Includes plans for the resolution of ''unresolved safety issues'' pursuant to Section 210 of the Energy Reorganization Act of 1974, as amended)

    International Nuclear Information System (INIS)

    1977-12-01

    This report provides a description of the Nuclear Regulatory Commission's Program for the Resolution of Generic Issues Related to Nuclear Power Plants. The NRC program is of considerably broader scope than the ''Unresolved Safety Issues Plan'' required by Section 210. The NRC program does include plans for the resolution of ''Unresolved Safety Issues''; however, in addition, it includes generic tasks for the resolution of environmental issues, for the development of improvements in the reactor licensing process and for consideration of less conservative design criteria or operating limitations in areas where over conservatisms may be unnecessarily restrictive or costly

  10. The evolution of the structure and application of U.S. NRC regulations and standards

    International Nuclear Information System (INIS)

    Murley, T.E.; Rosztoczy, Z.R.; McPherson, G.D.

    1991-01-01

    NRC regulations and standards and their implementation have evolved from early adaptations of conventional engineering practices to a mature, cohesive set of regulations that govern NRC regulation of nuclear power plant safety in the United States. From a simple set of rules and design criteria and from the standards of the professional engineering societies, a hierarchy of practices, standards, guides, rules and goals has developed. Resting on a foundation of industrial practices, this hierarchy rises through levels of national standards, regulatory guides and standard review plans, policy statements and NRC regulations. The licensing process is evolving today toward one that permits both site approval and standard design certification before the plant is constructed. At the present time, NRC is reviewing five standard designs for certification for a period of 15 years. NRC focuses its regulation of operating nuclear plants on inspections conducted from five regional offices. Resident inspectors, specialist inspectors, and multi-disciplinary inspection teams examine specific plant situations. The results of all these inspections are used to develop a complete understanding of a plant's physical condition, its operation, maintenance and management. To improve safe operation of nuclear plants in the U.S., a most important program, the Systematic Assessment of Licensee Performance, measures operational performance, using a broad spectrum of functional areas. (orig.)

  11. 76 FR 54986 - NRC Enforcement Policy

    Science.gov (United States)

    2011-09-06

    ... NUCLEAR REGULATORY COMMISSION 10 CFR Chapter I [NRC-2011-0209] NRC Enforcement Policy AGENCY: Nuclear Regulatory Commission. ACTION: Proposed enforcement policy revision; request for comment. SUMMARY: The U.S. Nuclear Regulatory Commission (NRC or the Commission) is soliciting comments from interested...

  12. 76 FR 76192 - NRC Enforcement Policy

    Science.gov (United States)

    2011-12-06

    ... NUCLEAR REGULATORY COMMISSION [NRC-2011-0273] NRC Enforcement Policy AGENCY: Nuclear Regulatory Commission. ACTION: Proposed enforcement policy revision; request for comment. SUMMARY: The U.S. Nuclear... licensees, vendors, and contractors), on proposed revisions to the NRC's Enforcement Policy (the Policy) and...

  13. NRC Analysis of the environmental impacts and licensing policies for expanded spent fuel storage in the United States

    International Nuclear Information System (INIS)

    Clifford, V.S.

    1978-01-01

    The findings of the U.S. environmental impact studies on spent fuel storage to the year 2000 are reviewed, the design criteria for independent spent fuel storage installations are addressed and the position of the NRC for licensing expanded spent fuel storage capabilities, until such time as final solutions are established, is expressed. (author)

  14. The role of the US regulatory process in public acceptance of nuclear power

    International Nuclear Information System (INIS)

    Rowden, M.A.

    1977-01-01

    This paper focuses, on NRC's regulatory responsibilities in relation to public acceptance of nuclear power. Since public attitudes in the United States may influence reaction to nuclear power in other nations, it is fair to say that the credibility of our regulatory program has international significance. Stated simply, unless the public is convinced that the regulatory process is effective in assuring safety, safeguarding nuclear facilities and materials, and protecting the environment, the use of nuclear power could be curtailed or even brought to a halt. Not only must the regulatory process be effective, it must at the same time be recognized by the public as being effective. Opinion polls in the United States have shown consistently that a majority of Americans believe it is important to develop nuclear power to help meet our future energy needs. The direction of public concern has shifted from year to year. Most recently, public apprehension has been expressed about the potential hazards of long-term storage of the high-level wastes from spent fuel reprocessing, and about the risks that nuclear materials and facilities may be subject to theft or diversion or sabotage. Uppermost in the public mind is the question whether the regulatory process can cope with these potential threats to public health and safety. The licensing process of the NRC is conducted in full public view. Issues of a generic nature are aired in rulemaking hearings, while each proposal to construct and operate a nuclear power plant or a facility such as fuel reprocessing plant is the subject of public hearings, which are held near the site of the proposed plant. During the last two years, we have noted that some persons who object to nuclear power plants have indicated that they believe that decisions to permit construction of such plants should be made at the State government level, rather than by a Federal agency. As a result, there now are movements to enact State laws and to set up State

  15. NRC's geotechnical engineering research needs for the high-level waste repository program

    International Nuclear Information System (INIS)

    Gupta, D.C.; Philip, J.; Lorig, L.J.; Chowdhury, A.H.

    1992-01-01

    To develop the capability for independently assessing the US Department of Energy's (DOE's) geologic repository design within a limited time, the US Nuclear Regulatory Commission (NRC) staff needs to perform certain research well before receiving the license application. The NRC staff is using a number of factors to identify the areas that it needs to research. The staff assigns priorities to the needed research based on programmatic considerations and the significance of the work. In the geotechnical engineering field, the staff is conducting research in the following three areas: response of the repository to repeated strong ground motion, rock-mass sealing, and coupled thermo-hydro-mechanical interactions. In this paper, the NRC staff also presents the areas of additional research needed in the geotechnical engineering field

  16. Training of nuclear facility personnel: boon or boondoggle

    International Nuclear Information System (INIS)

    Remick, F.J.

    1975-01-01

    The training of nuclear facility personnel has been a requirement of the reactor licensing process for over two decades. However, the training of nuclear facility personnel remains a combination of boon and boondoggle. The opportunity to develop elite, well trained, professionally aggressive reactor operation staffs is not being realized to its full potential. Improvements in the selection of personnel, training programs, operational tools and professional pride can result in improved plant operation and contribute to improved plant capacity factors. Industry, regulatory agencies, professional societies and universities can do much to improve standards and quality of the training of nuclear facility personnel and to improve the professional level of plant operation

  17. NRC comprehensive records disposition schedule

    International Nuclear Information System (INIS)

    1983-05-01

    Effective January 1, 1982, NRC will institute records retention and disposal practives in accordance with the approved Comprehensive Records Disposition Schedule (CRDS). CRDS is comprised of NRC Schedules (NRCS) 1 to 4 which apply to the agency's program or substantive records and General Records Schedules (GRS) 1 to 24 which apply to housekeeping or facilitative records. NRCS-I applies to records common to all or most NRC offices; NRCS-II applies to program records as found in the various offices of the Commission, Atomic Safety and Licensing Board Panel, and the Atomic Safety and Licensing Appeal Panel; NRCS-III applies to records accumulated by the Advisory Committee on Reactor Safeguards; and NRCS-IV applies to records accumulated in the various NRC offices under the Executive Director for Operations. The schedules are assembled functionally/organizationally to facilitate their use. Preceding the records descriptions and disposition instructions for both NRCS and GRS, there are brief statements on the organizational units which accumulate the records in each functional area, and other information regarding the schedules' applicability

  18. Systematic evaluation program review of NRC safety topic VII-2 associated with the electrical, instrumentation and control portions of the ESF system control logic and design for the Dresden Station, Unit II nuclear power plant

    International Nuclear Information System (INIS)

    St Leger-Barter, G.

    1980-11-01

    This report documents the technical evaluation and review of NRC Safety Topic VII-2, associated with the electrical, instrumentation, and control portions of the ESF system control logic and design for the Dresden Station Unit II nuclear power plant, using current licensing criteria

  19. 78 FR 73566 - Standard Format and Content for a License Application for an Independent Spent Fuel Storage...

    Science.gov (United States)

    2013-12-06

    ... NUCLEAR REGULATORY COMMISSION [NRC-2013-0264] Standard Format and Content for a License...), DG-3042, ``Standard Format and Content for a License Application for an Independent Spent Fuel..., Form, and Contents,'' specifies the information that must be in an application for a license to store...

  20. Recommendations to the NRC for review criteria for alternative methods of low-level radioactive waste disposal: Environmental monitoring and surveillance programs

    International Nuclear Information System (INIS)

    Denham, D.H.; Stenner, R.D.; Eddy, P.A.; Jaquish, R.E.; Ramsdell, J.V. Jr.

    1988-07-01

    Licensing of a facility for low-level radioactive waste disposal requires the review of the environmental monitoring and surveillance programs. A set of review criteria is recommended for the US Nuclear Regulatory Commission (NRC) staff to use in each monitoring phase---preoperational, operational, and post operational---for evaluating radiological and selected nonradiological parameters in proposed environmental monitoring and surveillance programs at low-level waste disposal facilities. Applicable regulations, industry standards, and technical guidance on low-level radioactive waste are noted throughout the document. In the preoperational phase, the applicant must demonstrate that the environmental monitoring program identifies radiation levels and radionuclide concentrations at the site and also provides adequate basic data on the disposal site. Data recording and statistical analyses for this phase are addressed

  1. Status of long term operation of nuclear power plants in the US

    Energy Technology Data Exchange (ETDEWEB)

    Young, G., E-mail: gyoung4@entergy.com [Entergy Nuclear, License Renewal, New Orleans, LA (United States)

    2014-07-01

    As of early-2014, the U.S. Nuclear Regulatory Commission (NRC) has renewed the operating licenses for 73 of the 100 U.S. operating nuclear units, allowing for up to 60 years of safe operation. In addition, the NRC has license renewal applications under review for 18 more units and up to 8 additional units have announced plans to submit applications by 2018. This brings the total of renewed licenses and announced plans for renewal to 99% of the operating nuclear units in the U.S. In addition, by the end of 2014, there will be 38 nuclear plants that will have operated for more than 40 years and will be eligible to seek a subsequent license renewal to allow operation up to 80 years. Although some of the operating nuclear units are expected to shutdown due to economic issues, most of the remaining operating plant owners are keeping the option open for long term operation beyond 60 years. NRC and the U.S. nuclear industry have made significant progress in preparing the way for subsequent license renewal applications. This presentation covers the status of the U.S. license renewal process and issues being addressed for possible applications for subsequent renewals for up to 80 years of operation. (author)

  2. Performance assessment strategy for low-level waste disposal sites

    International Nuclear Information System (INIS)

    Starmer, R.J.; Deering, L.G.; Weber, M.F.

    1988-01-01

    This paper describes US Nuclear Regulatory Commission (NRC) staff views on predicting the performance of low-level radioactive waste disposal facilities. Under the Atomic Energy Act, as amended, and the Low Level Radioactive Waste Policy Act, as amended, the NRC and Agreement States license land disposal of low-level radioactive waste (LLW) using the requirements in 10 CFR Part 61 or comparable state requirements. The purpose of this paper is to briefly describe regulatory requirements for performance assessment in low-level waste licensing, a strategy for performance assessments to support license applications, and NRC staff licensing evaluation of performance assessments. NRC's current activities in developing a performance assessment methodology will provide an overall systems modeling approach for assessing the performance of LLW disposal facilities. NRC staff will use the methodology to evaluate performance assessments conducted by applicants for LLW disposal facilities. The methodology will be made available to states and other interested parties

  3. Application of the New Decommissioning Regulation to the Nuclear Licensed Facilities (NLF) at Fontenay-aux-Roses's Nuclear Center (CEA)

    International Nuclear Information System (INIS)

    Sauret, Josiane; Piketty, Laurence; Jeanjacques, Michel

    2008-01-01

    This abstract describes the application of the new decommissioning regulation on all Nuclear Licensed Facilities (NLF is to say INB in French) at Fontenay-aux-Roses's Center (CEA/FAR). The decommissioning process has been applied in six buildings which are out of the new nuclear perimeter proposed (buildings no 7, no 40, no 94, no 39, no 52/1 and no 32) and three buildings have been reorganized (no 54, no 91 and no 53 instead of no 40 and no 94) in order to increase the space for temporary nuclear waste disposal and to reduce the internal transports of nuclear waste on the site. The advantages are the safety and radioprotection improvements and a lower operating cost. A global safety file was written in 2002 and 2003 and was sent to the French Nuclear Authority on November 2003. The list of documents required is given in the paragraph I of this paper. The main goals were two ministerial decrees (one decree for each NLF) getting the authorization to modify the NLF perimeter and to carry out cleaning and dismantling activities leading to the whole decommissioning of all NLF. Some specific authorizations were necessary to carry out the dismantling program during the decommissioning procedure. They were delivered by the French Nuclear Safety Authority (FNSA) or with limited delegation by the General Executive Director (GED) on the CEA Fontenay-aux-Roses's Center, called internal authorization. Some partial dismantling or decontamination examples are given below: - evaporator for the radioactive liquid waste treatment station (building no 53): FNSA authorization: phase realised in 2002/2003. - disposal tanks for the radioactive liquid waste treatment station (building no 53) FNSA authorization: phase realised in 2004, - incinerator for the radioactive solid waste treatment station (building no 07): FNSA authorization: operation realised in 2004, - research equipments in the building no. 54 and building no. 91: internal authorization ; realised in 2005, - sample

  4. Evaluation of Terminated Nuclear Material Licenses

    International Nuclear Information System (INIS)

    Spencer, K.M.; Zeighami, E.A.

    1999-01-01

    This report presents the results of a six-year project that reviewed material licenses that had been terminated during the period from inception of licensing until approximately late-1994. The material licenses covered in the review project were Part 30, byproduct material licenses; Part 40, source material licenses; and Part 70, special nuclear material licenses. This report describes the methodology developed for the project, summarizes the findings of the license file inventory process, and describes the findings of the reviews or evaluations of the license files. The evaluation identified nuclear material use sites that need review of the licensing material or more direct follow-up of some type. The review process also identified licenses authorized to possess sealed sources for which there was incomplete or missing documentation of the fate of the sources

  5. NRC regulatory agenda: Quarterly report, April-June 1987

    International Nuclear Information System (INIS)

    1987-07-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  6. Nuclear Regulatory Commission information digest

    International Nuclear Information System (INIS)

    1990-03-01

    The Nuclear Regulatory Commission information digest provides summary information regarding the US Nuclear Regulatory Commission, its regulatory responsibilities, and areas licensed by the commission. This is an annual publication for the general use of the NRC Staff and is available to the public. The digest is divided into two parts: the first presents an overview of the US Nuclear Regulatory Commission and the second provides data on NRC commercial nuclear reactor licensees and commercial nuclear power reactors worldwide

  7. Licensed fuel facility. Volume 14. Inventory difference data, status report, July 1, 1993--June 30, 1994

    International Nuclear Information System (INIS)

    Joy, D.R.

    1995-03-01

    The Nuclear Regulatory Commission is committed to an annual publication of licensed fuel facilities' inventory difference (ID) results, after Agency review of the information and completion of any related investigations. Information in this report includes ID results for active fuel fabrication and/or recovery facilities

  8. Technical issues in licensing low-level radioactive waste facilities

    Energy Technology Data Exchange (ETDEWEB)

    Junkert, R. [California Dept. of Health Services, CA (United States)

    1993-03-01

    The California Department of Health Service spent two years in the review of an application for a low-level radioactive waste disposal facility in California. During this review period a variety of technical issues had to be evaluated and resolved. One of the first issues was the applicability and use of NRC guidance documents for the development of LLW disposal facilities. Other technical issues that required intensive evaluations included surface water hydrology, seismic investigation, field and numerical analysis of the unsaturated zone, including a water infiltration test. Source term verification became an issue because of one specific isotope that comprised more than 90% of the curies projected for disposal during the operational period. The use of trench liners and the proposed monitoring of the unsaturated zone were reviewed by a highly select panel of experts to provide guidance on the need for liners and to ensure that the monitoring system was capable of monitoring sufficient representative areas for radionuclides in the soil, soil gas, and soil moisture. Finally, concerns about the quality of the preoperational environmental monitoring program, including data, sample collection procedures, laboratory analysis, data review and interpretation and duration of monitoring caused a significant delay in completing the licensing review.

  9. 76 FR 63668 - Guidelines for Preparing and Reviewing Licensing Applications for the Production of Radioisotopes

    Science.gov (United States)

    2011-10-13

    ..., Research and Test Reactors Projects Branch, Division of Policy and Rulemaking, Office of Nuclear Reactor... NUCLEAR REGULATORY COMMISSION [NRC-2011-0135] Guidelines for Preparing and Reviewing Licensing Applications for the Production of Radioisotopes AGENCY: Nuclear Regulatory Commission. ACTION: Draft interim...

  10. Assuring the availability of funds for decommissioning nuclear reactors

    International Nuclear Information System (INIS)

    1990-08-01

    The general requirements for applications for license termination and decommissioning nuclear power, research, and test reactors are contained in 10 CFR Part 50, ''Domestic Licensing of Production and Utilization Facilities.'' On June 27, 1988, the Commission published amendments to 10 CFR Part 50 (53 FR 24018) concerning specific criteria for decommissioning nuclear facilities. Amended 10 CFR 50.33(k), 50.75, and 50.82(b) require operating license applicants and existing licensees to submit information on how reasonable assurance will be provided that funds are available to decommission the facility. Amended section 50.75 establishes requirements for indicating how this assurance will be provided, namely the amount of funds that must provided, including updates, and the methods to be used for assuring funds. This regulatory guide has been developed in conjunction with the rule amendments and was published for public comment in May 1989. This version incorporates, where appropriate, the public comments received. Its purpose is to provide guidance to applicants and licensees of nuclear power, research, and test reactors concerning methods acceptable to the NRC staff for complying with requirements in the amended rule regarding the amount of funds for decommissioning. It also provides guidance on the content and form of the financial assurance mechanisms indicated in the rule amendments. 9 refs

  11. Management of Small Quantity of Nuclear Material at Locations Outside Facilities in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seung Sik; Kim, Ki Hyun [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    Small quantity of nuclear material (SQNM) is prescribed to be less than specified minimum quantities of nuclear material in a facility. SQNM is used at the locations called locations outside facilities (LOFs). LOFs are used to control the locations and installations that store nuclear materials under one effective Kg, respectively. Holders of SQNM don't need to require a license for use or possession of Uranium or Thorium exclusively for non-nuclear activities, or neither report them to the System of Accounting for and Control of nuclear material (SSAC) under specified quantities according to the Atomic Safety Law. Well defined safeguards law is fundamental to the effective control of nuclear material, facilities and nuclear related activities. In the current nuclear safety legislation, there are some exceptive clauses. Users of SQNM don't need to require a license for use or possession of Uranium or Thorium exclusively for non-nuclear activities, or not report them to the national authority below specified amount.

  12. Management of Small Quantity of Nuclear Material at Locations Outside Facilities in Korea

    International Nuclear Information System (INIS)

    Park, Seung Sik; Kim, Ki Hyun

    2016-01-01

    Small quantity of nuclear material (SQNM) is prescribed to be less than specified minimum quantities of nuclear material in a facility. SQNM is used at the locations called locations outside facilities (LOFs). LOFs are used to control the locations and installations that store nuclear materials under one effective Kg, respectively. Holders of SQNM don't need to require a license for use or possession of Uranium or Thorium exclusively for non-nuclear activities, or neither report them to the System of Accounting for and Control of nuclear material (SSAC) under specified quantities according to the Atomic Safety Law. Well defined safeguards law is fundamental to the effective control of nuclear material, facilities and nuclear related activities. In the current nuclear safety legislation, there are some exceptive clauses. Users of SQNM don't need to require a license for use or possession of Uranium or Thorium exclusively for non-nuclear activities, or not report them to the national authority below specified amount

  13. Funding for reactor decommissioning: the NRC perspective

    International Nuclear Information System (INIS)

    Wood, R.S.

    1981-01-01

    The cost of decommissioning a nuclear power plant is discussed. Four funding approaches that have received the most attention from the NRC are: prepayment into a trust fund of estimated decommissioning funds at the start of facility operation; annual contributions into a trust fund outside the control of the utility over the estimated life of a facility; internal reserve or sinking fund amortizations over the estimated life of a facility; and insurance or other surety mechanisms used separately or in conjunction with any of the first three mechanisms

  14. IRIS Licensing Status

    International Nuclear Information System (INIS)

    Kling, Charles L.; Carelli, Mario D.

    2006-01-01

    The International Reactor Innovative and Secure (IRIS) nuclear power plant is well into the pre-application review process with the US NRC and has accomplished its first near term goal of obtaining US NRC feedback on the long term testing program. To date, the IRIS team has submitted to the US NRC a number of documents patterned after the Evaluation Model Development and Assessment Process (EMDAP) outlined in Regulatory Guide 1,203. They have covered a detailed description of IRIS, initial safety analysis results, PIRT development for limiting transients, scaling analysis and a description of the test program. The IRIS Safety-by-Desing TM intrinsically eliminates and/or significantly reduces the consequences of traditional LWR accidents. In addition, the fewer passive safety systems are similar in principle to those of the US NRC approved AP1000 design. For these reasons, the IRIS testing program only needs to include those features unique to the IRIS design. NRC feedback was that the planned test program appeared to be complete and could generate sufficient information to support a Design Certification (DC) submittal. The US NRC has also stated that a DC application must include complete information regarding the test program. On this basis the IRIS team has initiated an aggressive program to conduct IRIS testing to support a DC submittal by the end of 2008. Subsequent US NRC review should be expeditious because of the AP1000 precedent, allowing IRIS to obtain its Final Design Approval (FDA) in 2012; thereby, maintaining its goal of deployment in the 2015-2017 time frame. The next steps in the pre-application review process will be to provide the US NRC with a road map of the anticipated IRIS licensing process, a review of current licensing requirements showing that IRIS meets or exceeds all current criteria and information to support the long term goal of redefining the Emergency Planning Zone (EPZ)

  15. Preparing as an organization to review a construction license application for a DGR for HLW and SF in the USA

    International Nuclear Information System (INIS)

    Hill, Brittain

    2014-01-01

    Although formally opposed by the State of Nevada, the Yucca Mountain site (Nevada) recommendation was approved by the U.S. Congress and the President, which authorized DOE to prepare and submit a license application for a deep geologic repository for the nation's spent nuclear fuel and high-level waste. In June of 2008, DOE submitted this application to the U.S. Nuclear Regulatory Commission (NRC) for its review and formal adjudication of contested issues during a 3-4 year period. Although subsequent actions by the Administration and Congress have changed the direction for geologic disposal in the U.S., the NRC staff was able to conduct a thorough technical review of the DOE license application and issue technical evaluation reports before the review and hearings were suspended in September 2011. This paper provides the author's perspective on how the NRC prepared for, and conducted, this first-of-a-kind licensing review: planning framework, key preparations for staff and for processes, events after the receipt of a license application, retrospective on staff preparations and on processes. By the end of September 2011, the NRC staff had issued three Technical Evaluation Reports using a risk-informed, performance-based approach to review the DOE license application for this deep geologic repository at Yucca Mountain

  16. Storage facilities of spent nuclear fuel in dry for Mexican nuclear facilities

    International Nuclear Information System (INIS)

    Salmeron V, J. A.; Camargo C, R.; Nunez C, A.; Mendoza F, J. E.; Sanchez J, J.

    2013-10-01

    In this article the relevant aspects of the spent fuel storage and the questions that should be taken in consideration for the possible future facilities of this type in the country are approached. A brief description is proposed about the characteristics of the storage systems in dry, the incorporate regulations to the present Nuclear Regulator Standard, the planning process of an installation, besides the approaches considered once resolved the use of these systems; as the modifications to the system, the authorization periods for the storage, the type of materials to store and the consequent environmental impact to their installation. At the present time the Comision Nacional de Seguridad Nuclear y Salvaguardias (CNSNS) considers the possible generation of two authorization types for these facilities: Specific, directed to establish a new nuclear installation with the authorization of receiving, to transfer and to possess spent fuel and other materials for their storage; and General, focused to those holders that have an operation license of a reactor that allows them the storage of the nuclear fuel and other materials that they possess. Both authorizations should be valued according to the necessities that are presented. In general, this installation type represents a viable solution for the administration of the spent fuel and other materials that require of a temporary solution previous to its final disposal. Its use in the nuclear industry has been increased in the last years demonstrating to be appropriate and feasible without having a significant impact to the health, public safety and the environment. Mexico has two main nuclear facilities, the nuclear power plant of Laguna Verde of the Comision Federal de Electricidad (CFE) and the facilities of the TRIGA Reactor of the Instituto Nacional de Investigaciones Nucleares (ININ) that will require in a future to use this type of disposition installation of the spent fuel and generated wastes. (Author)

  17. Pilot program: NRC severe reactor accident incident response training manual. Overview and summary of major points

    International Nuclear Information System (INIS)

    McKenna, T.J.; Martin, J.A. Jr.; Giitter, J.G.; Miller, C.W.; Hively, L.M.; Sharpe, R.W.; Watkins

    1987-02-01

    Overview and Summary of Major Points is the first in a series of volumes that collectively summarize the U.S. Nuclear Regulatory Commission (NRC) emergency response during severe power reactor accidents and provide necessary background information. This volume describes elementary perspectives on severe accidents and accident assessment. Other volumes in the series are: Volume 2-Severe Reactor Accident Overview; Volume 3- Response of Licensee and State and Local Officials; Volume 4-Public Protective Actions-Predetermined Criteria and Initial Actions; Volume 5 - U.S. Nuclear Regulatory Commission. Each volume serves, respectively, as the text for a course of instruction in a series of courses for NRC response personnel. These materials do not provide guidance or license requirements for NRC licensees. The volumes have been organized into these training modules to accommodate the scheduling and duty needs of participating NRC staff. Each volume is accompanied by an appendix of slides that can be used to present this material

  18. RM - ODP to express nuclear licensing

    International Nuclear Information System (INIS)

    Barbosa, E.A.; Martucci, M. Jr.

    2002-01-01

    The scope of CNEN (Comissao Nacional de Energia Nuclear) is established by standards and procedures, which allow one context where several activities for nuclear licensing are realized by persons, machines and other entities of real world and by software systems. The CNEN objectives for licensing nuclear installations can be specified and they define how the systems are consisted, its nature, and which important elements were considered relevant for its constitution. The behavior, where the software will be operated, was likely defined in this paper through all aspects of its business process, which means from its licensing context. The concepts and definition showed here defined one specifics business domain, through ODP context. The functionalities of nuclear licensing process, the relationship scope and the rules of interaction that contributed for to specify the nuclear licensing process were defined, too. Therefore, the definition of the domain follows the orientation of architecture concepts and allows to implement the reflection model, where, with the auxiliary from IDEF0 (Integration Definition for Function Modeling) diagrams, the interactions between extern domains were mapped

  19. Environmental assessment related to the operation of Hansen uranium mill project, WM-24, Cyprus Mines Corporation

    International Nuclear Information System (INIS)

    1981-01-01

    An environmental assessment was prepared by the staff of the U.S. Nuclear Regulatory Commission, Office of Nuclear Material Safety and Safeguards, in response to a request for technical assistance from the State of Colorado in connection with licensing action on the proposed Cyprus Mines Corporation, Hansen uranium project. The major components of discussion are (1) a summary and recommended licensing conditions, (2) a description of the site environment and the proposed facility operation as well as alternatives in comparison with NRC's performance objectives for tailings management, and (3) a radiological assessment for estimating the facility's compliance with 10 CFR 20 and 40 CFR 190 dose regulations. The NRC recommends licensing the proposed mill subject to stipulated license conditions

  20. New NRC methodology for estimating biological risks from exposure to ionizing radiation

    International Nuclear Information System (INIS)

    Willis, C.A; Branagan, E.F.

    1983-01-01

    In licensing commercial nuclear power reactors, in the US Nuclear Regulatory Commission considers the potential health effects from the release of radioactive effluents. This entails reliance on epidemiological study results and interpretations. The BEIR III report is a principal source of information but as newer information becomes available, it is desirable to include this in NRC models. To facilitate both the estimation of potential health effects and the evaluation of epidemiological study results, the NRC has supported the development of a new computer code (SPAHR). This new code utilizes much more comprehensive demographic models than did the previously used codes (CAIRD and BIERMOD). SPAHR can accommodate variations in all the principal demographic statistics such as age distribution, age-specific computing risks, and sex ratio. Also SPAHR can project effects over a number of generations

  1. Threatened and endangered species evaluation for 75 licensed commercial nuclear power generating plants

    Energy Technology Data Exchange (ETDEWEB)

    Sackschewsky, M.R.

    1997-03-01

    The Endangered Species Act (ESA) of 1973, as amended, and related implementing regulations of the jurisdictional federal agencies, the U.S. Departments of Commerce and Interior, at 50 CFR Part 17. 1, et seq., require that federal agencies ensure that any action authorized, funded, or carried out under their jurisdiction is not likely to jeopardize the continued existence of any threatened or endangered species or result in the destruction or adverse modification of critical habitats for such species. The issuance and maintenance of a federal license, such as a construction permit or operating license issued by the U.S. Nuclear Regulatory Commission (NRC) for a commercial nuclear power generating facility is a federal action under the jurisdiction of a federal agency, and is therefore subject to the provisions of the ESA. The U.S. Department of the Interior (through the Fish and Wildlife Service), and the U.S. Department of Commerce, share responsibility for administration of the ESA. The National Marine Fisheries Service (NMFS) deals with species that inhabit marine environments and anadromous fish, while the U.S. Fish and Wildlife Service (USFWS) is responsible for terrestrial and freshwater species and migratory birds. A species (or other distinct taxonomic unit such as subspecies, variety, and for vertebrates, distinct population units) may be classified for protection as `endangered` when it is in danger of extinction within the foreseeable future throughout all or a significant portion of its range. A `threatened` classification is provided to those animals and plants likely to become endangered within the foreseeable future throughout all or a significant portion of their ranges. As of February 1997, there were about 1067 species listed under the ESA in the United States. Additionally there were approximately 125 species currently proposed for listing as threatened or endangered, and another 183 species considered to be candidates for formal listing proposals.

  2. Threatened and endangered species evaluation for 75 licensed commercial nuclear power generating plants

    International Nuclear Information System (INIS)

    Sackschewsky, M.R.

    1997-03-01

    The Endangered Species Act (ESA) of 1973, as amended, and related implementing regulations of the jurisdictional federal agencies, the U.S. Departments of Commerce and Interior, at 50 CFR Part 17. 1, et seq., require that federal agencies ensure that any action authorized, funded, or carried out under their jurisdiction is not likely to jeopardize the continued existence of any threatened or endangered species or result in the destruction or adverse modification of critical habitats for such species. The issuance and maintenance of a federal license, such as a construction permit or operating license issued by the U.S. Nuclear Regulatory Commission (NRC) for a commercial nuclear power generating facility is a federal action under the jurisdiction of a federal agency, and is therefore subject to the provisions of the ESA. The U.S. Department of the Interior (through the Fish and Wildlife Service), and the U.S. Department of Commerce, share responsibility for administration of the ESA. The National Marine Fisheries Service (NMFS) deals with species that inhabit marine environments and anadromous fish, while the U.S. Fish and Wildlife Service (USFWS) is responsible for terrestrial and freshwater species and migratory birds. A species (or other distinct taxonomic unit such as subspecies, variety, and for vertebrates, distinct population units) may be classified for protection as 'endangered' when it is in danger of extinction within the foreseeable future throughout all or a significant portion of its range. A 'threatened' classification is provided to those animals and plants likely to become endangered within the foreseeable future throughout all or a significant portion of their ranges. As of February 1997, there were about 1067 species listed under the ESA in the United States. Additionally there were approximately 125 species currently proposed for listing as threatened or endangered, and another 183 species considered to be candidates for formal listing proposals

  3. Catalog of physical protection equipment. Book 3: Volume VI. Automated response components

    International Nuclear Information System (INIS)

    Haberman, W.

    1977-06-01

    The Catalog of Physical Protection Equipment presents information on currently available physical protection equipment that could be employed to safeguard special nuclear materials. The primary source of information was the responses of manufacturers and vendors to requests for literature and data. All equipment listed in the Catalog has been screened in accordance with the following general criteria, and only items meeting one or more of these criteria have been included: (1) equipment is commercially available off-the-shelf; (2) equipment is currently in use at commercial nuclear facilities licensed or to be licensed by NRC; (3) equipment is applicable for use at nuclear facilities licensed or to be licensed by NRC; (4) equipment can operate in the environmental conditions present at nuclear facilities; and (5) equipment is not designed solely or primarily for residential use. The final report describes the methodology and rationale used to create the Catalog of Physical Protection Equipment

  4. Design considerations for the Yucca Mountain project exploratory shaft facility

    International Nuclear Information System (INIS)

    Bullock, R.L. Sr.

    1990-01-01

    This paper reports on the regulatory/requirements challenges of this project which exist because this is the first facility of its kind to ever be planned, characterized, designed, and built under the purview of a U.S. Nuclear Regulatory Agency. The regulations and requirements that flow down to the Architect/Engineer (A/E) for development of the Exploratory Shaft Facility (ESF) design are voluminous and unique to this project. The subsurface design and construction of the ESF underground facility may eventually become a part of the future repository facility and, if so, will require licensing by the Nuclear Regulatory Commission (NRC). The Fenix and Scisson of Nevada-Yucca Mountain Project (FSN-YMP) group believes that all of the UMP design and construction related activities, with good design/construct control, can be performed to meet all engineering requirements, while following a strict quality assurance program that will also meet regulatory requirements

  5. Licensing and Operations of the Clive, Utah Low-Level Containerized Radioactive Waste Disposal Facility- A Continuation of Excellence

    International Nuclear Information System (INIS)

    Ledoux, M. R.; Cade, M. S.

    2002-01-01

    Envirocare's Containerized Waste Facility (CWF) is the first commercial low-level radioactive waste disposal facility to be licensed in the 21st century and the first new site to be opened and operated since the late 1970's. The licensing of this facility has been the culmination of over a decade's effort by Envirocare of Utah at their Clive, Utah site. With the authorization to receive and dispose of higher activity containerized Class A low-level radioactive waste (LLRW), this facility has provided critical access to disposal for the nuclear power industry, as well as the related research and medical communities. This paper chronicles the licensing history and operational efforts designed to address the disposal of containerized LLRW in accordance with state and federal regulations

  6. 75 FR 60485 - NRC Enforcement Policy Revision

    Science.gov (United States)

    2010-09-30

    ... NUCLEAR REGULATORY COMMISSION [NRC-2008-0497] NRC Enforcement Policy Revision AGENCY: Nuclear Regulatory Commission. ACTION: Policy statement. SUMMARY: The Nuclear Regulatory Commission (NRC or Commission) is publishing a major revision to its Enforcement Policy (Enforcement Policy or Policy) to...

  7. Preliminary statement on general policy for rulemaking to improve nuclear power plant licensing

    International Nuclear Information System (INIS)

    1978-11-01

    In June 1977 an NRC study group seeking to identify ways to improve the effectiveness of NRC nuclear power plant licensing procedures, recommended (among other measures) that rulemaking should be considered for the generic resolution of certain major issues that are presently litigated in individual licensing proceedings (NUREG--0292). In response to a Commission directive, the staff prepared an interim statement of general policy and plans for rulemaking, which the Commission approved for publication n the Federal Register at Affirmation Session 78-7 held on October 26, 1978. This interim policy statement fully supports Executive Order 12044 of March 23, 1978, requesting improvement of existing and future government regulations so as to be as simple and clear as possible and avoid imposing unnecessary burdens on the economy, on individuals, on public and private organizations, or on State and local governments. This NUREG publication includes the full text of the Federal Register notice published concurrently. Also provided are Enclosures A and B which contain more complete information than is presented in the FR notice regarding the selection and discussion of issues proposed by the staff for generic rulemaking. However, the discussion of issues avoids being overly specific about the likely outcome of rulemaking in order to stimulate creative public and industry comments as desirable inputs to shaping the ultimate form of generic rules

  8. Qualification of quality assurance program audit personnel for nuclear power plants - August 1980

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    Appendix B, Quality Assurance Criteria for Nuclear Power Plants and Fuel Reprocessing Plants, to 10 CFR Part 50, Domestic Licensing of Production and Utilization Facilities, establishes overall quality assurance requirements for the design, construction, and operation of safety-related structures, and components of nuclear power plants. Criterion XVIII, Audits, of Appendix B establishes requirements for conducting audits of the quality assurance program. This guide describes a method acceptable to the NRC staff for complying with the Commission's regulations with regard to qualification of quality assurance program audit personnel for nuclear power plants

  9. Safety evaluation status report for the prototype license application safety analysis report

    International Nuclear Information System (INIS)

    1989-07-01

    The US Nuclear Regulatory Commission (NRC) staff and consultants reviewed a Prototype License Application Safety Analysis Report (PLASAR) submitted by the US Department of Energy (DOE) for the earth-mounded concrete bunker (EMCB) alternative method of low-level radioactive waste disposal. The NRC reviewers relied extensively on the Standard Review Plan (SRP), Rev.1 (NUREG-1200), to evaluate the acceptability of the information provided in the EMCB PLASAR. The NRC staff selected certain review areas in the PLASAR for development of safety evaluation report input to provide examples of safety assessments that are necessary as part of a licensing review. Because of the fictitious nature of the assumed disposal site, and the decision to limit the review to essentially first-round review status, the NRC staff report is labeled a ''Safety Evaluation Status Report'' (SESR). Appendix A comprises the NRC review comments and questions on the information that DOE submitted in the PLASAR. The NRC concentrated its review on the design and operations-related portions of the EMCB PLASAR

  10. Occupational radiation exposure at NRC-licensed facilities, 1975

    International Nuclear Information System (INIS)

    Cool, W.S.

    1978-01-01

    By letter dated August 25, 1976, licensees of the Nuclear Regulatory Commission were requested to submit, as a voluntary one-time action, a statistical summary report of whole-body personnel monitoring results for their activities during 1975. This report presents these personnel monitoring data in the form of tables and log-probability plots that facilitate evaluation and comparison of the data. Licensee estimates of the effort (man-hours and total cost) expended in preparing the statistical summary report are also presented

  11. Environmental impact appraisal for renewal of Special Nuclear Material License No. SNM-1097 (Docket No. 70-1113)

    International Nuclear Information System (INIS)

    1984-06-01

    The proposed action, the full 5-year renewal of License SNM-1097, is necessary for GE to continue producing fuel used in light-water nuclear reactors. The fuel manufacturing operation principally involves converting UF 6 to UO 2 powder, pressing the UO 2 powder into pellets, sintering and grinding the pellets, loading the pellets into Zircaloy tubes, and then assembling the loaded tubes into fuel bundles. A variety of radiological and nonradiological gaseous, liquid, and solid wastes are generated. After treatment, some of the wastes are released to the environment. In addition to the nuclear fuel fabrication operation, there are other operations performed at GE which do not require NRC licensing (e.g., zirconium metal processing, production of fuel bundle and mechanical reactor components, and the manufacture of aircraft engine parts) and are not associated with the proposed action. 28 references, 15 figures, 21 tables

  12. NRC safety research in support of regulation, 1988

    International Nuclear Information System (INIS)

    1989-05-01

    This report, the fourth in a series of annual reports, was prepared in response to Congressional inquiries concerning how nuclear regulatory research is used. It summarizes the accomplishments of the Office of Nuclear Regulatory Research during 1988. The goal of this office is to ensure that safety-related research provides the technical bases for rulemaking and for related decisions in support of NRC licensing and inspection activities. This research is necessary to make certain that the regulations that are imposed on licensees provide an adequate margin of safety so as to protect the health and safety of the public. This report describes both the direct contributions to scientific and technical knowledge with regard to nuclear safety and their regulatory applications

  13. Childhood leukemia around five nuclear facilities in Canada

    International Nuclear Information System (INIS)

    Elaguppillai, V.

    1992-05-01

    As a result of public concern over the incidence of leukemia around the Sellafield nuclear fuel reprocessing plant, the Canadian Atomic Energy Control Board commissioned a study to test for similar clustering around licensed nuclear facilities in Ontario. In this study the incidence and mortality of leukemia among children up to the age of 14 years born within a radius of about 25 km from five different types of facilities were compared to the provincial average. The facilities considered were the Pickering Nuclear Generating Station, the Bruce Nuclear Power Development, the uranium conversion facility at Port Hope, the uranium mine and mill facilities in Elliot Lake, and the Chalk River Laboratories. The ratio of observed to expected childhood leukemias was around unity at the 95 percent confidence level, indicating that the occurrence of the disease is not significantly different from the provincial average. The sample size is not large enough to distinguish between a change occurrence and a true excess or deficit. (table)

  14. Implementation of 10 CFR 20.1406 through Life Cycle Planning for Decommissioning

    International Nuclear Information System (INIS)

    O'Donnell, E.; Ott, W.R.

    2009-01-01

    This paper summarizes a newly released regulatory guide (RG 4.21 'Minimization of Contamination and Radioactive Waste Generation - Life Cycle Planning') issued by the U.S. Nuclear Regulatory Commission (NRC) in June 2008. The purpose of RG 4.21 is to support implementation of 10 CFR 20.1406 'Minimization of Contamination'. That regulation is a portion of NRC's License Termination Rule and it is intended to avoid 'legacy sites', that is, those without financial means to satisfactorily terminate a license. As currently written, 10 CFR 20.1406 applies to all NRC license applications and applications for standard design certifications submitted after August 20, 1997. The regulation requires applicants to address in their application how they will (1) minimize contamination of the facility and environment, (2) minimize waste generation, and (3) facilitate decommissioning. The regulation represents a dramatically different approach to licensing because it mandates consideration of decommissioning before submittal of a license application or design for certification. The guidance in RG 4.21 consists of design considerations drawn from nuclear industry experience and lessons learned from decommissioning. These have been combined to support the development of a contaminant management philosophy. The principles embodied in this philosophy are threefold: (1) prevention of unintended releases; (2) early detection, if there is unintended release of radioactive contamination; and (3) prompt assessment to support a timely and appropriate response. Applying these principles requires the use of sound design, proven engineering practices, conservative radiation protection principles, and attention to operational practices. All of this should be considered in the context of the life cycle of the facility from the early planning stages through the final plans for decommissioning and waste disposal. This guide describes some of the mechanisms that can be employed for facility life

  15. 10 CFR 110.8 - List of nuclear facilities and equipment under NRC export licensing authority.

    Science.gov (United States)

    2010-01-01

    ... isotopes of uranium (source material or special nuclear material) including gas centrifuge plants, gaseous diffusion plants, aerodynamic enrichment plants, chemical exchange or ion exchange enrichment plants, laser... of uranium. (See appendices to this part for lists of: gas centrifuge equipment—Appendix B; gaseous...

  16. Transition from Consultation to Monitoring-NRC's Increasingly Focused Review of Factors Important to F-Area Tank Farm Facility Performance - 13153

    Energy Technology Data Exchange (ETDEWEB)

    Barr, Cynthia; Grossman, Christopher; Alexander, George; Parks, Leah; Fuhrmann, Mark; Shaffner, James; McKenney, Christepher [U.S. NRC, Rockville, MD (United States); Pabalan, Roberto; Pickett, David [Center for Nuclear Waste Regulatory Analyses, Southwest Research Institute, San Antonio, TX (United States); Dinwiddie, Cynthia [Southwest Research Institute, San Antonio, TX (United States)

    2013-07-01

    In consultation with the NRC, DOE issued a waste determination for the F-Area Tank Farm (FTF) facility in March 2012. The FTF consists of 22 underground tanks, each 2.8 to 4.9 million liters in capacity, used to store liquid high-level waste generated as a result of spent fuel reprocessing. The waste determination concluded stabilized waste residuals and associated tanks and auxiliary components at the time of closure are not high-level and can be disposed of as LLW. Prior to issuance of the final waste determination, during the consultation phase, NRC staff reviewed and provided comments on DOE's revision 0 and revision 1 FTF PAs that supported the waste determination and produced a technical evaluation report documenting the results of its multi-year review in October 2011. Following issuance of the waste determination, NRC began to monitor DOE disposal actions to assess compliance with the performance objectives in 10 CFR Part 61, Subpart C. To facilitate its monitoring responsibilities, NRC developed a plan to monitor DOE disposal actions. NRC staff was challenged in developing a focused monitoring plan to ensure limited resources are spent in the most cost-effective manner practical. To address this challenge, NRC prioritized monitoring areas and factors in terms of risk significance and timing. This prioritization was informed by NRC staff's review of DOE's PA documentation, independent probabilistic modeling conducted by NRC staff, and NRC-sponsored research conducted by the Center for Nuclear Waste Regulatory Analyses in San Antonio, TX. (authors)

  17. Licensed fuel facility status report: Inventory difference data, July 1, 1992--June 30, 1993

    International Nuclear Information System (INIS)

    Joy, D.R.

    1994-02-01

    The Nuclear Regulatory Commission is committed to an annual publication of licensed fuel facilities' inventory difference (ID) results, after Agency review of the information and completion of any related investigations. Information in this report includes ID results for active fuel fabrication and/or recovery facilities. Acronyms and/or abbreviations used in this report are identified on page vii. The various terms and acronyms used in this publication are defined on pages 1 through 4. It should be noted that UNC-Naval Products (Docket No. 70-371 and License No. SNM-368) in Montville, Connecticut, has been deleted from this report because of its inactive status

  18. Safety evaluation report related to the operation of Millstone Nuclear Power Station, Unit No. 3 (Docket No. 50-423)

    International Nuclear Information System (INIS)

    1984-07-01

    The Safety Evaluation Report for the application filed by Northeast Nuclear Energy Company, as applicant and agent for the owners, for a license to operate the Millstone Nuclear Power Station Unit 3 (Docket No. 50-423), has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is located in the town of Waterford, New London County, Connecticut, on the north shore of Long Island Sound. Subject to favorable resolution of the items discussed in this report, the NRC staff concludes that the facility can be operated by the applicant without endangering the health and safety of the public

  19. Facilities inventory protection for nuclear facilities

    International Nuclear Information System (INIS)

    Schmitt, F.J.

    1989-01-01

    The fact that shut-down applications have been filed for nuclear power plants, suggests to have a scrutinizing look at the scopes of assessment and decision available to administrations and courts for the protection of facilities inventories relative to legal and constitutional requirements. The paper outlines the legal bases which need to be observed if purposeful calculation is to be ensured. Based on the different actual conditions and legal consequences, the author distinguishes between 1) the legal situation of facilities licenced already and 2) the legal situation of facilities under planning during the licencing stage. As indicated by the contents and restrictions of the pertinent provisions of the Atomic Energy Act and by the corresponding compensatory regulation, the object of the protection of facilities inventor in the legal position of the facility owner within the purview of the Atomic Energy Act, and the licensing proper. Art. 17 of the Atomic Energy Act indicates the legislators intent that, once issued, the licence will be the pivotal point for regulations aiming at protection and intervention. (orig./HSCH) [de

  20. Nuclear Regulatory Commission issuances, October 1993

    International Nuclear Information System (INIS)

    1993-10-01

    This document contains a Commission issuance in which the Commission denies the petitioners' motion to quash or modify a subpoena issued by the NRC staff in the course of an investigation to determine if the petitioners' have violated NRC regulations and to determine if safety-related problems exist at NRC-licensed facilities. The pertinent regulations and the Commission's Memorandum and Order are included