WorldWideScience

Sample records for np95 connects dna

  1. The multi-domain protein Np95 connects DNA methylation and histone modification

    Science.gov (United States)

    Rottach, Andrea; Frauer, Carina; Pichler, Garwin; Bonapace, Ian Marc; Spada, Fabio; Leonhardt, Heinrich

    2010-01-01

    DNA methylation and histone modifications play a central role in the epigenetic regulation of gene expression and cell differentiation. Recently, Np95 (also known as UHRF1 or ICBP90) has been found to interact with Dnmt1 and to bind hemimethylated DNA, indicating together with genetic studies a central role in the maintenance of DNA methylation. Using in vitro binding assays we observed a weak preference of Np95 and its SRA (SET- and Ring-associated) domain for hemimethylated CpG sites. However, the binding kinetics of Np95 in living cells was not affected by the complete loss of genomic methylation. Investigating further links with heterochromatin, we could show that Np95 preferentially binds histone H3 N-terminal tails with trimethylated (H3K9me3) but not acetylated lysine 9 via a tandem Tudor domain. This domain contains three highly conserved aromatic amino acids that form an aromatic cage similar to the one binding H3K9me3 in the chromodomain of HP1ß. Mutations targeting the aromatic cage of the Np95 tandem Tudor domain (Y188A and Y191A) abolished specific H3 histone tail binding. These multiple interactions of the multi-domain protein Np95 with hemimethylated DNA and repressive histone marks as well as with DNA and histone methyltransferases integrate the two major epigenetic silencing pathways. PMID:20026581

  2. The multi-domain protein Np95 connects DNA methylation and histone modification.

    Science.gov (United States)

    Rottach, Andrea; Frauer, Carina; Pichler, Garwin; Bonapace, Ian Marc; Spada, Fabio; Leonhardt, Heinrich

    2010-04-01

    DNA methylation and histone modifications play a central role in the epigenetic regulation of gene expression and cell differentiation. Recently, Np95 (also known as UHRF1 or ICBP90) has been found to interact with Dnmt1 and to bind hemimethylated DNA, indicating together with genetic studies a central role in the maintenance of DNA methylation. Using in vitro binding assays we observed a weak preference of Np95 and its SRA (SET- and Ring-associated) domain for hemimethylated CpG sites. However, the binding kinetics of Np95 in living cells was not affected by the complete loss of genomic methylation. Investigating further links with heterochromatin, we could show that Np95 preferentially binds histone H3 N-terminal tails with trimethylated (H3K9me3) but not acetylated lysine 9 via a tandem Tudor domain. This domain contains three highly conserved aromatic amino acids that form an aromatic cage similar to the one binding H3K9me3 in the chromodomain of HP1ss. Mutations targeting the aromatic cage of the Np95 tandem Tudor domain (Y188A and Y191A) abolished specific H3 histone tail binding. These multiple interactions of the multi-domain protein Np95 with hemimethylated DNA and repressive histone marks as well as with DNA and histone methyltransferases integrate the two major epigenetic silencing pathways.

  3. The PHD Domain of Np95 (mUHRF1) Is Involved in Large-Scale Reorganization of Pericentromeric Heterochromatin

    Science.gov (United States)

    Papait, Roberto; Pistore, Christian; Grazini, Ursula; Babbio, Federica; Cogliati, Sara; Pecoraro, Daniela; Brino, Laurent; Morand, Anne-Laure; Dechampesme, Anne-Marie; Spada, Fabio; Leonhardt, Heinrich; McBlane, Fraser; Oudet, Pierre

    2008-01-01

    Heterochromatic chromosomal regions undergo large-scale reorganization and progressively aggregate, forming chromocenters. These are dynamic structures that rapidly adapt to various stimuli that influence gene expression patterns, cell cycle progression, and differentiation. Np95-ICBP90 (m- and h-UHRF1) is a histone-binding protein expressed only in proliferating cells. During pericentromeric heterochromatin (PH) replication, Np95 specifically relocalizes to chromocenters where it highly concentrates in the replication factories that correspond to less compacted DNA. Np95 recruits HDAC and DNMT1 to PH and depletion of Np95 impairs PH replication. Here we show that Np95 causes large-scale modifications of chromocenters independently from the H3:K9 and H4:K20 trimethylation pathways, from the expression levels of HP1, from DNA methylation and from the cell cycle. The PHD domain is essential to induce this effect. The PHD domain is also required in vitro to increase access of a restriction enzyme to DNA packaged into nucleosomal arrays. We propose that the PHD domain of Np95-ICBP90 contributes to the opening and/or stabilization of dense chromocenter structures to support the recruitment of modifying enzymes, like HDAC and DNMT1, required for the replication and formation of PH. PMID:18508923

  4. Connecting DNA Origami Structures Using the Biotin-Streptavidin ...

    African Journals Online (AJOL)

    Abstract. This work made use of the strong interaction between biotin and streptavidin to connect designed DNA origami structures. The caDNAno software was used to design a 6 layer 3D origami cross-like structure. Selected DNA strands at the engineered attachment sites on the DNA origami structure were biotinylated.

  5. DNA: The Strand that Connects Us All

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, Matt [Univ. of Arizona, Tucson, AZ (United States). Genetics Core Facility

    2011-03-29

    Learn how the methods and discoveries of human population genetics are applied for personal genealogical reconstruction and anthropological testing. Dr. Kaplan starts with a short general review of human genetics and the biology behind this form of DNA testing. He looks at how DNA testing is performed and how samples are processed in the University of Arizona laboratory. He also examines examples of personal genealogical results from Family Tree DNA and personal anthropological results from the Genographic Project. Finally, he describes the newest project in the UA laboratory, the DNA Shoah Project.

  6. Connecting localized DNA strand displacement reactions

    Science.gov (United States)

    Mullor Ruiz, Ismael; Arbona, Jean-Michel; Lad, Amitkumar; Mendoza, Oscar; Aimé, Jean-Pierre; Elezgaray, Juan

    2015-07-01

    Logic circuits based on DNA strand displacement reactions have been shown to be versatile enough to compute the square root of four-bit numbers. The implementation of these circuits as a set of bulk reactions faces difficulties which include leaky reactions and intrinsically slow, diffusion-limited reaction rates. In this paper, we consider simple examples of these circuits when they are attached to platforms (DNA origamis). As expected, constraining distances between DNA strands leads to faster reaction rates. However, it also induces side-effects that are not detectable in the solution-phase version of this circuitry. Appropriate design of the system, including protection and asymmetry between input and fuel strands, leads to a reproducible behaviour, at least one order of magnitude faster than the one observed under bulk conditions.Logic circuits based on DNA strand displacement reactions have been shown to be versatile enough to compute the square root of four-bit numbers. The implementation of these circuits as a set of bulk reactions faces difficulties which include leaky reactions and intrinsically slow, diffusion-limited reaction rates. In this paper, we consider simple examples of these circuits when they are attached to platforms (DNA origamis). As expected, constraining distances between DNA strands leads to faster reaction rates. However, it also induces side-effects that are not detectable in the solution-phase version of this circuitry. Appropriate design of the system, including protection and asymmetry between input and fuel strands, leads to a reproducible behaviour, at least one order of magnitude faster than the one observed under bulk conditions. Electronic supplementary information (ESI) available. See DOI: 10.1039/C5NR02434J

  7. Connecting DNA origami structures using the biotin- streptavidin ...

    African Journals Online (AJOL)

    Aghomotsegin

    carbon nanotubes on DNA origami. In order to reconfigure DNA origami pliers, Kuzuya (Kuzuya et al.,. 2011) and colleagues used the strong binding biotin- streptavidin interaction. All these researchers made use of the biotin- streptavidin interaction to functionalize the DNA strand or. DNA origami structures. In this work, we ...

  8. Assessing connectivity in salmonid fishes with DNA microsatellite markers

    Science.gov (United States)

    Helen Neville; Jason Dunham; Mary Peacock

    2006-01-01

    Connectivity is a key consideration for the management and conservation of any species, but empirical characterizations of connectivity can be extremely challenging. Assessments of connectivity require biologically realistic classifications of landscape structure (Kotliar and Wiens 1990), and an understanding of how landscape structure affects migration, dispersal, and...

  9. Emerging connection between centrosome and DNA repair machinery

    International Nuclear Information System (INIS)

    Shimada, Mikio; Komatsu, Kenshi

    2009-01-01

    Centrosomes function in proper cell division in animal cells. The centrosome consists of a pair of centrioles and the surrounding pericentriolar matrix (PCM). After cytokinesis, daughter cells each acquire one centrosome, which subsequently duplicates at the G1/S phase in a manner that is dependent upon CDK2/cyclin-E activity. Defects in the regulation of centrosome duplication lead to tumorigenesis through abnormal cell division and resulting inappropriate chromosome segregation. Therefore, maintenance of accurate centrosome number is important for cell fate. Excess number of centrosomes can be induced by several factors including ionizing radiation (IR). Recent studies have shown that several DNA repair proteins localize to the centrosome and are involved in the regulation of centrosome number possibly through cell cycle checkpoints or direct modification of centrosome proteins. Furthermore, it has been reported that the development of microcephaly is likely caused by defective expression of centrosome proteins, such as ASPM, which are also involved in the response to IR. The present review highlights centrosome duplication in association with genotoxic stresses and the regulatory mechanism mediated by DNA repair proteins. (author)

  10. A quantitative 14-3-3 interaction screen connects the nuclear exosome targeting complex to the DNA damage response

    DEFF Research Database (Denmark)

    Blasius, Melanie; Wagner, Sebastian A; Choudhary, Chuna Ram

    2014-01-01

    RNA metabolism is altered following DNA damage, but the underlying mechanisms are not well understood. Through a 14-3-3 interaction screen for DNA damage-induced protein interactions in human cells, we identified protein complexes connected to RNA biology. These include the nuclear exosome...

  11. WE-DE-202-01: Connecting Nanoscale Physics to Initial DNA Damage Through Track Structure Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Schuemann, J. [Massachusetts General Hospital (United States)

    2016-06-15

    Radiation therapy for the treatment of cancer has been established as a highly precise and effective way to eradicate a localized region of diseased tissue. To achieve further significant gains in the therapeutic ratio, we need to move towards biologically optimized treatment planning. To achieve this goal, we need to understand how the radiation-type dependent patterns of induced energy depositions within the cell (physics) connect via molecular, cellular and tissue reactions to treatment outcome such as tumor control and undesirable effects on normal tissue. Several computational biology approaches have been developed connecting physics to biology. Monte Carlo simulations are the most accurate method to calculate physical dose distributions at the nanometer scale, however simulations at the DNA scale are slow and repair processes are generally not simulated. Alternative models that rely on the random formation of individual DNA lesions within one or two turns of the DNA have been shown to reproduce the clusters of DNA lesions, including single strand breaks (SSBs), double strand breaks (DSBs) without the need for detailed track structure simulations. Efficient computational simulations of initial DNA damage induction facilitate computational modeling of DNA repair and other molecular and cellular processes. Mechanistic, multiscale models provide a useful conceptual framework to test biological hypotheses and help connect fundamental information about track structure and dosimetry at the sub-cellular level to dose-response effects on larger scales. In this symposium we will learn about the current state of the art of computational approaches estimating radiation damage at the cellular and sub-cellular scale. How can understanding the physics interactions at the DNA level be used to predict biological outcome? We will discuss if and how such calculations are relevant to advance our understanding of radiation damage and its repair, or, if the underlying biological

  12. WE-DE-202-01: Connecting Nanoscale Physics to Initial DNA Damage Through Track Structure Simulations

    International Nuclear Information System (INIS)

    Schuemann, J.

    2016-01-01

    Radiation therapy for the treatment of cancer has been established as a highly precise and effective way to eradicate a localized region of diseased tissue. To achieve further significant gains in the therapeutic ratio, we need to move towards biologically optimized treatment planning. To achieve this goal, we need to understand how the radiation-type dependent patterns of induced energy depositions within the cell (physics) connect via molecular, cellular and tissue reactions to treatment outcome such as tumor control and undesirable effects on normal tissue. Several computational biology approaches have been developed connecting physics to biology. Monte Carlo simulations are the most accurate method to calculate physical dose distributions at the nanometer scale, however simulations at the DNA scale are slow and repair processes are generally not simulated. Alternative models that rely on the random formation of individual DNA lesions within one or two turns of the DNA have been shown to reproduce the clusters of DNA lesions, including single strand breaks (SSBs), double strand breaks (DSBs) without the need for detailed track structure simulations. Efficient computational simulations of initial DNA damage induction facilitate computational modeling of DNA repair and other molecular and cellular processes. Mechanistic, multiscale models provide a useful conceptual framework to test biological hypotheses and help connect fundamental information about track structure and dosimetry at the sub-cellular level to dose-response effects on larger scales. In this symposium we will learn about the current state of the art of computational approaches estimating radiation damage at the cellular and sub-cellular scale. How can understanding the physics interactions at the DNA level be used to predict biological outcome? We will discuss if and how such calculations are relevant to advance our understanding of radiation damage and its repair, or, if the underlying biological

  13. Comparison of immunofluorescence investigations and a new anti-DNA-antibody radioimmunoassay for the diagnosis of connective tissue diseases

    International Nuclear Information System (INIS)

    Neumeier, D.; Vogt, W.; Knedel, M.

    1976-01-01

    The procedure of determining the anti-DNA antibody activity is simplified by high-molecular double strand DNA labelled with 125 I. Cases of suspected connective tissue disease should first be examined by immunofluorescence microscopy, since this method can detect a wider spectrum of diseases with similar symptoms. For a differential diagnosis of SLE, the anti-DNA antibody activity is then investigated by a radioimmunoassay. When assessing the antibody activity, the following criteria should be kept in mind: - Findings of less than 10 units/ml serum do not indicate pathological changes, - Higher antibody activities up to 35 units/ml serum may occur in SLE patients but are also possible in other ANA positive diseases with similar symptoms, - Activities over 35 units/ml serum are nearly always a sign of SLE. (orig./GSE) [de

  14. Comparison of immunofluorescence investigations and a new anti-DNA-antibody radioimmunoassay for the diagnosis of connective tissue diseases

    Energy Technology Data Exchange (ETDEWEB)

    Neumeier, D; Vogt, W; Knedel, M

    1976-01-01

    The procedure of determining the anti-DNA antibody activity is simplified by high-molecular double strand DNA labelled with /sup 125/I. Cases of suspected connective tissue disease should first be examined by immunofluorescence microscopy, since this method can detect a wider spectrum of diseases with similar symptoms. For a differential diagnosis of SLE, the anti-DNA antibody activity is then investigated by a radioimmunoassay. When assessing the antibody activity, the following criteria should be kept in mind: - Findings of less than 10 units/ml serum do not indicate pathological changes, - Higher antibody activities up to 35 units/ml serum may occur in SLE patients but are also possible in other ANA positive diseases with similar symptoms, - Activities over 35 units/ml serum are nearly always a sign of SLE.

  15. The cGAS-cGAMP-STING pathway connects DNA damage to inflammation, senescence, and cancer.

    Science.gov (United States)

    Li, Tuo; Chen, Zhijian J

    2018-05-07

    Detection of microbial DNA is an evolutionarily conserved mechanism that alerts the host immune system to mount a defense response to microbial infections. However, this detection mechanism also poses a challenge to the host as to how to distinguish foreign DNA from abundant self-DNA. Cyclic guanosine monophosphate (GMP)-adenosine monophosphate (AMP) synthase (cGAS) is a DNA sensor that triggers innate immune responses through production of the second messenger cyclic GMP-AMP (cGAMP), which binds and activates the adaptor protein STING. However, cGAS can be activated by double-stranded DNA irrespective of the sequence, including self-DNA. Although how cGAS is normally kept inactive in cells is still not well understood, recent research has provided strong evidence that genomic DNA damage leads to cGAS activation to stimulate inflammatory responses. This review summarizes recent findings on how genomic instability and DNA damage trigger cGAS activation and how cGAS serves as a link from DNA damage to inflammation, cellular senescence, and cancer. © 2018 Li and Chen.

  16. Understanding the connection between epigenetic DNA methylation and nucleosome positioning from computer simulations.

    Directory of Open Access Journals (Sweden)

    Guillem Portella

    Full Text Available Cytosine methylation is one of the most important epigenetic marks that regulate the process of gene expression. Here, we have examined the effect of epigenetic DNA methylation on nucleosomal stability using molecular dynamics simulations and elastic deformation models. We found that methylation of CpG steps destabilizes nucleosomes, especially when these are placed in sites where the DNA minor groove faces the histone core. The larger stiffness of methylated CpG steps is a crucial factor behind the decrease in nucleosome stability. Methylation changes the positioning and phasing of the nucleosomal DNA, altering the accessibility of DNA to regulatory proteins, and accordingly gene functionality. Our theoretical calculations highlight a simple physical-based explanation on the foundations of epigenetic signaling.

  17. Ancient DNA reveals genetic connections between early Di-Qiang and Han Chinese.

    Science.gov (United States)

    Li, Jiawei; Zeng, Wen; Zhang, Ye; Ko, Albert Min-Shan; Li, Chunxiang; Zhu, Hong; Fu, Qiaomei; Zhou, Hui

    2017-12-04

    Ancient Di-Qiang people once resided in the Ganqing region of China, adjacent to the Central Plain area from where Han Chinese originated. While gene flow between the Di-Qiang and Han Chinese has been proposed, there is no evidence to support this view. Here we analyzed the human remains from an early Di-Qiang site (Mogou site dated ~4000 years old) and compared them to other ancient DNA across China, including an early Han-related site (Hengbei site dated ~3000 years old) to establish the underlying genetic relationship between the Di-Qiang and ancestors of Han Chinese. We found Mogou mtDNA haplogroups were highly diverse, comprising 14 haplogroups: A, B, C, D (D*, D4, D5), F, G, M7, M8, M10, M13, M25, N*, N9a, and Z. In contrast, Mogou males were all Y-DNA haplogroup O3a2/P201; specifically one male was further assigned to O3a2c1a/M117 using targeted unique regions on the non-recombining region of the Y-chromosome. We compared Mogou to 7 other ancient and 38 modern Chinese groups, in a total of 1793 individuals, and found that Mogou shared close genetic distances with Taojiazhai (a more recent Di-Qiang population), Hengbei, and Northern Han. We modeled their interactions using Approximate Bayesian Computation, and support was given to a potential admixture of ~13-18% between the Mogou and Northern Han around 3300-3800 years ago. Mogou harbors the earliest genetically identifiable Di-Qiang, ancestral to the Taojiazhai, and up to ~33% paternal and ~70% of its maternal haplogroups could be found in present-day Northern Han Chinese.

  18. DNA and dispersal models highlight constrained connectivity in a migratory marine megavertebrate

    Science.gov (United States)

    Naro-Maciel, Eugenia; Hart, Kristen M.; Cruciata, Rossana; Putman, Nathan F.

    2016-01-01

    Population structure and spatial distribution are fundamentally important fields within ecology, evolution, and conservation biology. To investigate pan-Atlantic connectivity of globally endangered green turtles (Chelonia mydas) from two National Parks in Florida, USA, we applied a multidisciplinary approach comparing genetic analysis and ocean circulation modeling. The Everglades (EP) is a juvenile feeding ground, whereas the Dry Tortugas (DT) is used for courtship, breeding, and feeding by adults and juveniles. We sequenced two mitochondrial segments from 138 turtles sampled there from 2006-2015, and simulated oceanic transport to estimate their origins. Genetic and ocean connectivity data revealed northwestern Atlantic rookeries as the major natal sources, while southern and eastern Atlantic contributions were negligible. However, specific rookery estimates differed between genetic and ocean transport models. The combined analyses suggest that post-hatchling drift via ocean currents poorly explains the distribution of neritic juveniles and adults, but juvenile natal homing and population history likely play important roles. DT and EP were genetically similar to feeding grounds along the southern US coast, but highly differentiated from most other Atlantic groups. Despite expanded mitogenomic analysis and correspondingly increased ability to detect genetic variation, no significant differentiation between DT and EP, or among years, sexes or stages was observed. This first genetic analysis of a North Atlantic green turtle courtship area provides rare data supporting local movements and male philopatry. The study highlights the applications of multidisciplinary approaches for ecological research and conservation.

  19. How many tautomerization pathways connect Watson-Crick-like G*·T DNA base mispair and wobble mismatches?

    Science.gov (United States)

    Brovarets', Ol'ha O; Hovorun, Dmytro M

    2015-01-01

    In this study, we have theoretically demonstrated the intrinsic ability of the wobble G·T(w)/G*·T*(w)/G·T(w1)/G·T(w2) and Watson-Crick-like G*·T(WC) DNA base mispairs to interconvert into each other via the DPT tautomerization. We have established that among all these transitions, only one single G·T(w) ↔ G*·T(WC) pathway is eligible from a biological perspective. It involves short-lived intermediate - the G·T*(WC) base mispair - and is governed by the planar, highly stable, and zwitterionic [Formula: see text] transition state stabilized by the participation of the unique pattern of the five intermolecular O6(+)H⋯O4(-), O6(+)H⋯N3(-), N1(+)H⋯N3(-), N1(+)H⋯O2(-), and N2(+)H⋯O2(-) H-bonds. This non-dissociative G·T(w) ↔ G*·T(WC) tautomerization occurs without opening of the pair: Bases within mispair remain connected by 14 different patterns of the specific intermolecular interactions that successively change each other along the IRC. Novel kinetically controlled mechanism of the thermodynamically non-equilibrium spontaneous point GT/TG incorporation errors has been suggested. The mutagenic effect of the analogues of the nucleotide bases, in particular 5-bromouracil, can be attributed to the decreasing of the barrier of the acquisition by the wobble pair containing these compounds of the enzymatically competent Watson-Crick's geometry via the intrapair mutagenic tautomerization directly in the essentially hydrophobic recognition pocket of the replication DNA-polymerase machinery. Proposed approaches are able to explain experimental data, namely growth of the rate of the spontaneous point incorporation errors during DNA biosynthesis with increasing temperature.

  20. Multi-omic integrated networks connect DNA methylation and miRNA with skeletal muscle plasticity to chronic exercise in Type 2 diabetic obesity.

    Science.gov (United States)

    Rowlands, David S; Page, Rachel A; Sukala, William R; Giri, Mamta; Ghimbovschi, Svetlana D; Hayat, Irum; Cheema, Birinder S; Lys, Isabelle; Leikis, Murray; Sheard, Phillip W; Wakefield, St John; Breier, Bernhard; Hathout, Yetrib; Brown, Kristy; Marathi, Ramya; Orkunoglu-Suer, Funda E; Devaney, Joseph M; Leiken, Benjamin; Many, Gina; Krebs, Jeremy; Hopkins, Will G; Hoffman, Eric P

    2014-10-15

    Epigenomic regulation of the transcriptome by DNA methylation and posttranscriptional gene silencing by miRNAs are potential environmental modulators of skeletal muscle plasticity to chronic exercise in healthy and diseased populations. We utilized transcriptome networks to connect exercise-induced differential methylation and miRNA with functional skeletal muscle plasticity. Biopsies of the vastus lateralis were collected from middle-aged Polynesian men and women with morbid obesity (44 kg/m(2) ± 10) and Type 2 diabetes before and following 16 wk of resistance (n = 9) or endurance training (n = 8). Longitudinal transcriptome, methylome, and microRNA (miRNA) responses were obtained via microarray, filtered by novel effect-size based false discovery rate probe selection preceding bioinformatic interrogation. Metabolic and microvascular transcriptome topology dominated the network landscape following endurance exercise. Lipid and glucose metabolism modules were connected to: microRNA (miR)-29a; promoter region hypomethylation of nuclear receptor factor (NRF1) and fatty acid transporter (SLC27A4), and hypermethylation of fatty acid synthase, and to exon hypomethylation of 6-phosphofructo-2-kinase and Ser/Thr protein kinase. Directional change in the endurance networks was validated by lower intramyocellular lipid, increased capillarity, GLUT4, hexokinase, and mitochondrial enzyme activity and proteome. Resistance training also lowered lipid and increased enzyme activity and caused GLUT4 promoter hypomethylation; however, training was inconsequential to GLUT4, capillarity, and metabolic transcriptome. miR-195 connected to negative regulation of vascular development. To conclude, integrated molecular network modelling revealed differential DNA methylation and miRNA expression changes occur in skeletal muscle in response to chronic exercise training that are most pronounced with endurance training and topographically associated with functional metabolic and

  1. Mitochondrial DNA Analyses Indicate High Diversity, Expansive Population Growth and High Genetic Connectivity of Vent Copepods (Dirivultidae) across Different Oceans.

    Science.gov (United States)

    Gollner, Sabine; Stuckas, Heiko; Kihara, Terue C; Laurent, Stefan; Kodami, Sahar; Martinez Arbizu, Pedro

    2016-01-01

    Communities in spatially fragmented deep-sea hydrothermal vents rich in polymetallic sulfides could soon face major disturbance events due to deep-sea mineral mining, such that unraveling patterns of gene flow between hydrothermal vent populations will be an important step in the development of conservation policies. Indeed, the time required by deep-sea populations to recover following habitat perturbations depends both on the direction of gene flow and the number of migrants available for re-colonization after disturbance. In this study we compare nine dirivultid copepod species across various geological settings. We analyze partial nucleotide sequences of the mtCOI gene and use divergence estimates (FST) and haplotype networks to infer intraspecific population connectivity between vent sites. Furthermore, we evaluate contrasting scenarios of demographic population expansion/decline versus constant population size (using, for example, Tajima's D). Our results indicate high diversity, population expansion and high connectivity of all copepod populations in all oceans. For example, haplotype diversity values range from 0.89 to 1 and FST values range from 0.001 to 0.11 for Stygiopontius species from the Central Indian Ridge, Mid Atlantic Ridge, East Pacific Rise, and Eastern Lau Spreading Center. We suggest that great abundance and high site occupancy by these species favor high genetic diversity. Two scenarios both showed similarly high connectivity: fast spreading centers with little distance between vent fields and slow spreading centers with greater distance between fields. This unexpected result may be due to some distinct frequency of natural disturbance events, or to aspects of individual life histories that affect realized rates of dispersal. However, our statistical performance analyses showed that at least 100 genomic regions should be sequenced to ensure accurate estimates of migration rate. Our demography parameters demonstrate that dirivultid

  2. Evolution and connectivity in the world-wide migration system of the mallard: Inferences from mitochondrial DNA

    Directory of Open Access Journals (Sweden)

    Kraus Robert HS

    2011-11-01

    Full Text Available Abstract Background Main waterfowl migration systems are well understood through ringing activities. However, in mallards (Anas platyrhynchos ringing studies suggest deviations from general migratory trends and traditions in waterfowl. Furthermore, surprisingly little is known about the population genetic structure of mallards, and studying it may yield insight into the spread of diseases such as Avian Influenza, and in management and conservation of wetlands. The study of evolution of genetic diversity and subsequent partitioning thereof during the last glaciation adds to ongoing discussions on the general evolution of waterfowl populations and flyway evolution. Hypothesised mallard flyways are tested explicitly by analysing mitochondrial mallard DNA from the whole northern hemisphere. Results Phylogenetic analyses confirm two mitochondrial mallard clades. Genetic differentiation within Eurasia and North-America is low, on a continental scale, but large differences occur between these two land masses (FST = 0.51. Half the genetic variance lies within sampling locations, and a negligible portion between currently recognised waterfowl flyways, within Eurasia and North-America. Analysis of molecular variance (AMOVA at continent scale, incorporating sampling localities as smallest units, also shows the absence of population structure on the flyway level. Finally, demographic modelling by coalescence simulation proposes a split between Eurasia and North-America 43,000 to 74,000 years ago and strong population growth (~100fold since then and little migration (not statistically different from zero. Conclusions Based on this first complete assessment of the mallard's world-wide population genetic structure we confirm that no more than two mtDNA clades exist. Clade A is characteristic for Eurasia, and clade B for North-America although some representatives of clade A are also found in North-America. We explain this pattern by evaluating competing

  3. DNA nanotechnology

    Science.gov (United States)

    Seeman, Nadrian C.; Sleiman, Hanadi F.

    2018-01-01

    DNA is the molecule that stores and transmits genetic information in biological systems. The field of DNA nanotechnology takes this molecule out of its biological context and uses its information to assemble structural motifs and then to connect them together. This field has had a remarkable impact on nanoscience and nanotechnology, and has been revolutionary in our ability to control molecular self-assembly. In this Review, we summarize the approaches used to assemble DNA nanostructures and examine their emerging applications in areas such as biophysics, diagnostics, nanoparticle and protein assembly, biomolecule structure determination, drug delivery and synthetic biology. The introduction of orthogonal interactions into DNA nanostructures is discussed, and finally, a perspective on the future directions of this field is presented.

  4. Connecting Grammaticalisation

    DEFF Research Database (Denmark)

    Nørgård-Sørensen, Jens; Heltoft, Lars; Schøsler, Lene

    morphological, topological and constructional paradigms often connect to form complex paradigms. The book introduces the concept of connecting grammaticalisation to describe the formation, restructuring and dismantling of such complex paradigms. Drawing primarily on data from Germanic, Romance and Slavic...

  5. Major groove binding track residues of the connection subdomain of human immunodeficiency virus type 1 reverse transcriptase enhance cDNA synthesis at high temperatures.

    Science.gov (United States)

    Matamoros, Tania; Barrioluengo, Verónica; Abia, David; Menéndez-Arias, Luis

    2013-12-23

    At high temperatures, RNA denaturation can improve the efficiency and specificity of reverse transcription. Refined structures and molecular models of HIV-1 reverse transcriptases (RTs) from phylogenetically distant clades (i.e., group M subtype B and group O) revealed a major interaction between the template-primer and the Arg³⁵⁸-Gly³⁵⁹-Ala³⁶⁰ triad in the large subunit of HIV-1M/B RT. However, fewer contacts were predicted for the equivalent Lys³⁵⁸-Ala³⁵⁹-Ser³⁶⁰ triad of HIV-1O RT and the nucleic acid. An engineered HIV-1O K358R/A359G/S360A RT showed increased cDNA synthesis efficiency above 68 °C, as determined by qualitative and quantitative reverse transcription polymerase chain reactions. In comparison with wild-type HIV-1O RT, the mutant enzyme showed higher thermal stability but retained wild-type RNase H activity. Mutations that increased the accuracy of HIV-1M/B RTs were tested in combination with the K358R/A359G/S360A triple mutation. Some of them (e.g., F61A, K65R, K65R/V75I, and V148I) had a negative effect on reverse transcription efficiency above 65 °C. RTs with improved DNA binding affinities also showed higher cDNA synthesis efficiencies at elevated temperatures. Two of the most thermostable RTs (i.e., mutants T69SSG/K358R/A359G/S360A and K358R/A359G/S360A/E478Q) showed moderately increased fidelity in forward mutation assays. Our results demonstrate that the triad of Arg³⁵⁸, Gly³⁵⁹, and Ala³⁶⁰ in the major groove binding track of HIV-1 RT is a major target for RT stabilization, and most relevant for improving reverse transcription efficiency at high temperatures.

  6. Ancient DNA

    DEFF Research Database (Denmark)

    Willerslev, Eske; Cooper, Alan

    2004-01-01

    ancient DNA, palaeontology, palaeoecology, archaeology, population genetics, DNA damage and repair......ancient DNA, palaeontology, palaeoecology, archaeology, population genetics, DNA damage and repair...

  7. Making Connections

    Science.gov (United States)

    Pien, Cheng Lu; Dongsheng, Zhao

    2011-01-01

    Effective teaching includes enabling learners to make connections within mathematics. It is easy to accord with this statement, but how often is it a reality in the mathematics classroom? This article describes an approach in "connecting equivalent" fractions and whole number operations. The authors illustrate how a teacher can combine a common…

  8. About Connections

    Directory of Open Access Journals (Sweden)

    Kathleen S Rockland

    2015-05-01

    Full Text Available Despite the attention attracted by connectomics, one can lose sight of the very real questions concerning What are connections? In the neuroimaging community, structural connectivity is ground truth and underlying constraint on functional or effective connectivity. It is referenced to underlying anatomy; but, as increasingly remarked, there is a large gap between the wealth of human brain mapping and the relatively scant data on actual anatomical connectivity. Moreover, connections have typically been discussed as pairwise, point x projecting to point y (or: to points y and z, or more recently, in graph theoretical terms, as nodes or regions and the interconnecting edges. This is a convenient shorthand, but tends not to capture the richness and nuance of basic anatomical properties as identified in the classic tradition of tracer studies. The present short review accordingly revisits connectional weights, heterogeneity, reciprocity, topography, and hierarchical organization, drawing on concrete examples. The emphasis is on presynaptic long-distance connections, motivated by the intention to probe current assumptions and promote discussions about further progress and synthesis.

  9. Internet Connectivity

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Internet Connectivity. BSNL, SIFY, HCL in Guwahati; only BSNL elsewhere in NE (local player in Shillong). Service poor; All vendors lease BW from BSNL.

  10. Mathematics Connection

    African Journals Online (AJOL)

    MATHEMATICS CONNECTION aims at providing a forum topromote the development of Mathematics Education in Ghana. Articles that seekto enhance the teaching and/or learning of mathematics at all levels of theeducational system are welcome.

  11. HR Connect

    Data.gov (United States)

    US Agency for International Development — HR Connect is the USAID HR personnel system which allows HR professionals to process HR actions related to employee's personal and position information. This system...

  12. Establishing Connectivity

    DEFF Research Database (Denmark)

    Kjær, Poul F.

    Global law settings are characterised by a structural pre-eminence of connectivity norms, a type of norm which differs from coherency or possibility norms. The centrality of connectivity norms emerges from the function of global law, which is to increase the probability of transfers of condensed ...... and human rights can be understood as serving a constitutionalising function aimed at stabilising and facilitating connectivity. This allows for an understanding of colonialism and contemporary global governance as functional, but not as normative, equivalents.......Global law settings are characterised by a structural pre-eminence of connectivity norms, a type of norm which differs from coherency or possibility norms. The centrality of connectivity norms emerges from the function of global law, which is to increase the probability of transfers of condensed...... social components, such as economic capital and products, religious doctrines and scientific knowledge, from one legally structured context to another within world society. This was the case from colonialism and colonial law to contemporary global supply chains and human rights. Both colonial law...

  13. Connected Traveler

    Energy Technology Data Exchange (ETDEWEB)

    2016-06-01

    The Connected Traveler framework seeks to boost the energy efficiency of personal travel and the overall transportation system by maximizing the accuracy of predicted traveler behavior in response to real-time feedback and incentives. It is anticipated that this approach will establish a feedback loop that 'learns' traveler preferences and customizes incentives to meet or exceed energy efficiency targets by empowering individual travelers with information needed to make energy-efficient choices and reducing the complexity required to validate transportation system energy savings. This handout provides an overview of NREL's Connected Traveler project, including graphics, milestones, and contact information.

  14. Making connections

    NARCIS (Netherlands)

    Marion Duimel

    2007-01-01

    Original title: Verbinding maken; senioren en internet. More and more older people are finding their way to the Internet. Many people aged over 50 who have only recently gone online say that a new world has opened up for them. By connecting to the Internet they have the feeling that they

  15. CMS Connect

    Science.gov (United States)

    Balcas, J.; Bockelman, B.; Gardner, R., Jr.; Hurtado Anampa, K.; Jayatilaka, B.; Aftab Khan, F.; Lannon, K.; Larson, K.; Letts, J.; Marra Da Silva, J.; Mascheroni, M.; Mason, D.; Perez-Calero Yzquierdo, A.; Tiradani, A.

    2017-10-01

    The CMS experiment collects and analyzes large amounts of data coming from high energy particle collisions produced by the Large Hadron Collider (LHC) at CERN. This involves a huge amount of real and simulated data processing that needs to be handled in batch-oriented platforms. The CMS Global Pool of computing resources provide +100K dedicated CPU cores and another 50K to 100K CPU cores from opportunistic resources for these kind of tasks and even though production and event processing analysis workflows are already managed by existing tools, there is still a lack of support to submit final stage condor-like analysis jobs familiar to Tier-3 or local Computing Facilities users into these distributed resources in an integrated (with other CMS services) and friendly way. CMS Connect is a set of computing tools and services designed to augment existing services in the CMS Physics community focusing on these kind of condor analysis jobs. It is based on the CI-Connect platform developed by the Open Science Grid and uses the CMS GlideInWMS infrastructure to transparently plug CMS global grid resources into a virtual pool accessed via a single submission machine. This paper describes the specific developments and deployment of CMS Connect beyond the CI-Connect platform in order to integrate the service with CMS specific needs, including specific Site submission, accounting of jobs and automated reporting to standard CMS monitoring resources in an effortless way to their users.

  16. Gendered Connections

    DEFF Research Database (Denmark)

    Jensen, Steffen Bo

    2009-01-01

    This article explores the gendered nature of urban politics in Cape Town by focusing on a group of female, township politicians. Employing the Deleuzian concept of `wild connectivity', it argues that these politically entrepreneurial women were able to negotiate a highly volatile urban landscape...... by drawing on and operationalizing violent, male networks — from struggle activists' networks, to vigilante groups and gangs, to the police. The fact that they were women helped them to tap into and exploit these networks. At the same time, they were restricted by their sex, as their ability to navigate...... space also drew on quite traditional notions of female respectability. Furthermore, the article argues, the form of wild connectivity to an extent was a function of the political transition, which destabilized formal structures of gendered authority. It remains a question whether this form...

  17. Cosmic Connections

    CERN Document Server

    Ellis, Jonathan Richard

    2003-01-01

    A National Research Council study on connecting quarks with the cosmos has recently posed a number of the more important open questions at the interface between particle physics and cosmology. These questions include the nature of dark matter and dark energy, how the Universe began, modifications to gravity, the effects of neutrinos on the Universe, how cosmic accelerators work, and whether there are new states of matter at high density and pressure. These questions are discussed in the context of the talks presented at this Summer Institute.

  18. Places Connected:

    DEFF Research Database (Denmark)

    Hansen, Annette Skovsted

    This paper argues that development assistance contributed to the globalization of the 20th century by financing truly global networks of people. By focusing on the networks financed by development assistance bound by the national histories of Denmark and Japan, I illustrate how the people who...... experiences of place, however, when it is often the same people who experience many different places? Along with many other so-called donors in the 1950s, Denmark and Japan chose to invest in the education of own and other nationals involved in development and thereby financed personal connections between...... individuals throughout the world. Development assistance , where there are two or three links only between a Bangladeshi farmer, a street child in Sao Paolo and the President of the United States, the Queen of Denmark, or a suburban house wife in Japan, who has never left the Osaka area, but mothered a United...

  19. Modeling DNA

    Science.gov (United States)

    Robertson, Carol

    2016-01-01

    Deoxyribonucleic acid (DNA) is life's most amazing molecule. It carries the genetic instructions that almost every organism needs to develop and reproduce. In the human genome alone, there are some three billion DNA base pairs. The most difficult part of teaching DNA structure, however, may be getting students to visualize something as small as a…

  20. Minimum cost connection networks

    DEFF Research Database (Denmark)

    Hougaard, Jens Leth; Tvede, Mich

    In the present paper we consider the allocation of cost in connection networks. Agents have connection demands in form of pairs of locations they want to be connected. Connections between locations are costly to build. The problem is to allocate costs of networks satisfying all connection demands...

  1. DNA methylation in obesity

    Directory of Open Access Journals (Sweden)

    Małgorzata Pokrywka

    2014-11-01

    Full Text Available The number of overweight and obese people is increasing at an alarming rate, especially in the developed and developing countries. Obesity is a major risk factor for diabetes, cardiovascular disease, and cancer, and in consequence for premature death. The development of obesity results from the interplay of both genetic and environmental factors, which include sedentary life style and abnormal eating habits. In the past few years a number of events accompanying obesity, affecting expression of genes which are not directly connected with the DNA base sequence (e.g. epigenetic changes, have been described. Epigenetic processes include DNA methylation, histone modifications such as acetylation, methylation, phosphorylation, ubiquitination, and sumoylation, as well as non-coding micro-RNA (miRNA synthesis. In this review, the known changes in the profile of DNA methylation as a factor affecting obesity and its complications are described.

  2. DISSECTING HABITAT CONNECTIVITY

    Science.gov (United States)

    abstractConnectivity is increasingly recognized as an important element of a successful reserve design. Connectivity matters in reserve design to the extent that it promotes or hinders the viability of target populations. While conceptually straightforward, connectivity i...

  3. Mixed Connective Tissue Disease

    Science.gov (United States)

    Mixed connective tissue disease Overview Mixed connective tissue disease has signs and symptoms of a combination of disorders — primarily lupus, scleroderma and polymyositis. For this reason, mixed connective tissue disease ...

  4. Undifferentiated Connective Tissue Disease

    Science.gov (United States)

    ... Home Conditions Undifferentiated Connective Tissue Disease (UCTD) Undifferentiated Connective Tissue Disease (UCTD) Make an Appointment Find a Doctor ... by Barbara Goldstein, MD (February 01, 2016) Undifferentiated connective tissue disease (UCTD) is a systemic autoimmune disease. This ...

  5. Intermodal Passenger Connectivity Database -

    Data.gov (United States)

    Department of Transportation — The Intermodal Passenger Connectivity Database (IPCD) is a nationwide data table of passenger transportation terminals, with data on the availability of connections...

  6. DNA Camouflage

    Science.gov (United States)

    2016-01-08

    1 DNA Camouflage Supplementary Information Bijan Zakeri1,2*, Timothy K. Lu1,2*, Peter A. Carr2,3* 1Department of Electrical Engineering and...ll.mit.edu). Distribution A: Public Release   2 Supplementary Figure 1 DNA camouflage with the 2-state device. (a) In the presence of Cre, DSD-2[α...10 1 + Cre 1 500 1,000 length (bp) chromatogram alignment template − Cre   4 Supplementary Figure 3 DNA camouflage with a switchable

  7. DNA Barcoding Investigations Bring Biology to Life

    Science.gov (United States)

    Musante, Susan

    2010-01-01

    This article describes how DNA barcoding investigations bring biology to life. Biologists recognize the power of DNA barcoding not just to teach biology through connections to the real world but also to immerse students in the exciting process of science. As an investigator in the Program for the Human Environment at Rockefeller University in New…

  8. DNA glue

    DEFF Research Database (Denmark)

    Filichev, Vyacheslav V; Astakhova, Irina V.; Malakhov, Andrei D.

    2008-01-01

    Significant alterations in thermal stability of parallel DNA triplexes and antiparallel duplexes were observed upon changing the attachment of ethynylpyrenes from para to ortho in the structure of phenylmethylglycerol inserted as a bulge into DNA (TINA). Insertions of two ortho-TINAs as a pseudo...

  9. Hyperstretching DNA

    NARCIS (Netherlands)

    Schakenraad, Koen; Biebricher, Andreas S.; Sebregts, Maarten; Ten Bensel, Brian; Peterman, Erwin J.G.; Wuite, Gijs J L; Heller, Iddo; Storm, Cornelis; Van Der Schoot, Paul

    2017-01-01

    The three-dimensional structure of DNA is highly susceptible to changes by mechanical and biochemical cues in vivo and in vitro. In particular, large increases in base pair spacing compared to regular B-DNA are effected by mechanical (over)stretching and by intercalation of compounds that are widely

  10. Minimum cost connection networks

    DEFF Research Database (Denmark)

    Hougaard, Jens Leth; Tvede, Mich

    2015-01-01

    In the present paper we consider the allocation of costs in connection networks. Agents have connection demands in form of pairs of locations they want to have connected. Connections between locations are costly to build. The problem is to allocate costs of networks satisfying all connection...... demands. We use a few axioms to characterize allocation rules that truthfully implement cost minimizing networks satisfying all connection demands in a game where: (1) a central planner announces an allocation rule and a cost estimation rule; (2) every agent reports her own connection demand as well...... as all connection costs; (3) the central planner selects a cost minimizing network satisfying reported connection demands based on the estimated costs; and, (4) the planner allocates the true costs of the selected network. It turns out that an allocation rule satisfies the axioms if and only if relative...

  11. DNA probes

    International Nuclear Information System (INIS)

    Castelino, J.

    1992-01-01

    The creation of DNA probes for detection of specific nucleotide segments differs from ligand detection in that it is a chemical rather than an immunological reaction. Complementary DNA or RNA is used in place of the antibody and is labelled with 32 P. So far, DNA probes have been successfully employed in the diagnosis of inherited disorders, infectious diseases, and for identification of human oncogenes. The latest approach to the diagnosis of communicable and parasitic infections is based on the use of deoxyribonucleic acid (DNA) probes. The genetic information of all cells is encoded by DNA and DNA probe approach to identification of pathogens is unique because the focus of the method is the nucleic acid content of the organism rather than the products that the nucleic acid encodes. Since every properly classified species has some unique nucleotide sequences that distinguish it from every other species, each organism's genetic composition is in essence a finger print that can be used for its identification. In addition to this specificity, DNA probes offer other advantages in that pathogens may be identified directly in clinical specimens

  12. DNA probes

    Energy Technology Data Exchange (ETDEWEB)

    Castelino, J

    1993-12-31

    The creation of DNA probes for detection of specific nucleotide segments differs from ligand detection in that it is a chemical rather than an immunological reaction. Complementary DNA or RNA is used in place of the antibody and is labelled with {sup 32}P. So far, DNA probes have been successfully employed in the diagnosis of inherited disorders, infectious diseases, and for identification of human oncogenes. The latest approach to the diagnosis of communicable and parasitic infections is based on the use of deoxyribonucleic acid (DNA) probes. The genetic information of all cells is encoded by DNA and DNA probe approach to identification of pathogens is unique because the focus of the method is the nucleic acid content of the organism rather than the products that the nucleic acid encodes. Since every properly classified species has some unique nucleotide sequences that distinguish it from every other species, each organism`s genetic composition is in essence a finger print that can be used for its identification. In addition to this specificity, DNA probes offer other advantages in that pathogens may be identified directly in clinical specimens 10 figs, 2 tabs

  13. Connected vehicle standards.

    Science.gov (United States)

    2016-01-01

    Connected vehicles have the potential to transform the way Americans travel by : allowing cars, buses, trucks, trains, traffic signals, smart phones, and other devices to : communicate through a safe, interoperable wireless network. A connected vehic...

  14. DNA Damage, Repair, and Cancer Metabolism

    Science.gov (United States)

    Turgeon, Marc-Olivier; Perry, Nicholas J. S.; Poulogiannis, George

    2018-01-01

    Although there has been a renewed interest in the field of cancer metabolism in the last decade, the link between metabolism and DNA damage/DNA repair in cancer has yet to be appreciably explored. In this review, we examine the evidence connecting DNA damage and repair mechanisms with cell metabolism through three principal links. (1) Regulation of methyl- and acetyl-group donors through different metabolic pathways can impact DNA folding and remodeling, an essential part of accurate double strand break repair. (2) Glutamine, aspartate, and other nutrients are essential for de novo nucleotide synthesis, which dictates the availability of the nucleotide pool, and thereby influences DNA repair and replication. (3) Reactive oxygen species, which can increase oxidative DNA damage and hence the load of the DNA-repair machinery, are regulated through different metabolic pathways. Interestingly, while metabolism affects DNA repair, DNA damage can also induce metabolic rewiring. Activation of the DNA damage response (DDR) triggers an increase in nucleotide synthesis and anabolic glucose metabolism, while also reducing glutamine anaplerosis. Furthermore, mutations in genes involved in the DDR and DNA repair also lead to metabolic rewiring. Links between cancer metabolism and DNA damage/DNA repair are increasingly apparent, yielding opportunities to investigate the mechanistic basis behind potential metabolic vulnerabilities of a substantial fraction of tumors. PMID:29459886

  15. Charge transfer through DNA/DNA duplexes and DNA/RNA hybrids: complex theoretical and experimental studies.

    Science.gov (United States)

    Kratochvílová, Irena; Vala, Martin; Weiter, Martin; Špérová, Miroslava; Schneider, Bohdan; Páv, Ondřej; Šebera, Jakub; Rosenberg, Ivan; Sychrovský, Vladimír

    2013-01-01

    Oligonucleotides conduct electric charge via various mechanisms and their characterization and understanding is a very important and complicated task. In this work, experimental (temperature dependent steady state fluorescence spectroscopy, time-resolved fluorescence spectroscopy) and theoretical (Density Functional Theory) approaches were combined to study charge transfer processes in short DNA/DNA and RNA/DNA duplexes with virtually equivalent sequences. The experimental results were consistent with the theoretical model - the delocalized nature of HOMO orbitals and holes, base stacking, electronic coupling and conformational flexibility formed the conditions for more effective short distance charge transfer processes in RNA/DNA hybrids. RNA/DNA and DNA/DNA charge transfer properties were strongly connected with temperature affected structural changes of molecular systems - charge transfer could be used as a probe of even tiny changes of molecular structures and settings. © 2013. Published by Elsevier B.V. All rights reserved.

  16. Connecting to Everyday Practices

    DEFF Research Database (Denmark)

    Iversen, Ole Sejer; Smith, Rachel Charlotte

    2012-01-01

    construction and reproduction of cultural heritage creating novel connections between self and others and between past, present and future. We present experiences from a current research project, the Digital Natives exhibition, in which social media was designed as an integral part of the exhibition to connect...... focusing on the connections between audiences practices and the museum exhibition....

  17. DNA methylation

    DEFF Research Database (Denmark)

    Williams, Kristine; Christensen, Jesper; Helin, Kristian

    2012-01-01

    DNA methylation is involved in key cellular processes, including X-chromosome inactivation, imprinting and transcriptional silencing of specific genes and repetitive elements. DNA methylation patterns are frequently perturbed in human diseases such as imprinting disorders and cancer. The recent...... discovery that the three members of the TET protein family can convert 5-methylcytosine (5mC) into 5-hydroxymethylcytosine (5hmC) has provided a potential mechanism leading to DNA demethylation. Moreover, the demonstration that TET2 is frequently mutated in haematopoietic tumours suggests that the TET...... proteins are important regulators of cellular identity. Here, we review the current knowledge regarding the function of the TET proteins, and discuss various mechanisms by which they contribute to transcriptional control. We propose that the TET proteins have an important role in regulating DNA methylation...

  18. DNA data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Raw DNA chromatogram data produced by the ABI 373, 377, 3130 and 3730 automated sequencing machines in ABI format. These are from fish (primarily Sebastes spp.,...

  19. SIRT participates at DNA damage response

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Mi Yong; Joeng, Jae Min; Lee, Kee Ho [Korea Cancer Center Hospital, Seoul (Korea, Republic of); Park, Gil Hong [College of Medicine, Korea University, Seoul (Korea, Republic of)

    2009-05-15

    Sir2 maintains genomic stability in multiple ways in yeast. As a NAD{sup +}-dependent histone deacetylase, Sir2 has been reported to control chromatin silencing. In both budding yeast and Drosophila, overexpression of Sir2 extends life span. Previous reports have also demonstrated that Sir2 participate at DNA damage repair. A protein complex containing Sir2 has been reported to translocate to DNA double-strand breaks. Following DNA damage response, SIRT1 deacetylates p53 protein and attenuates its ability as a transcription factor. Consequently, SIRT1 over-expression increases cell survival under DNA damage inducing conditions. These previous observations mean a possibility that signals generated during the process of DNA repair are delivered through SIRT1 to acetylated p53. We present herein functional evidence for the involvement of SIRT1 in DNA repair response to radiation. In addition, this modulation of DNA repair activity may be connected to deacetylation of MRN proteins.

  20. DNA expressions - A formal notation for DNA

    NARCIS (Netherlands)

    Vliet, Rudy van

    2015-01-01

    We describe a formal notation for DNA molecules that may contain nicks and gaps. The resulting DNA expressions denote formal DNA molecules. Different DNA expressions may denote the same molecule. Such DNA expressions are called equivalent. We examine which DNA expressions are minimal, which

  1. Cooperation between catalytic and DNA binding domains enhances thermostability and supports DNA synthesis at higher temperatures by thermostable DNA polymerases.

    Science.gov (United States)

    Pavlov, Andrey R; Pavlova, Nadejda V; Kozyavkin, Sergei A; Slesarev, Alexei I

    2012-03-13

    We have previously introduced a general kinetic approach for comparative study of processivity, thermostability, and resistance to inhibitors of DNA polymerases [Pavlov, A. R., et al. (2002) Proc. Natl. Acad. Sci. U.S.A.99, 13510-13515]. The proposed method was successfully applied to characterize hybrid DNA polymerases created by fusing catalytic DNA polymerase domains with various sequence-nonspecific DNA binding domains. Here we use the developed kinetic analysis to assess basic parameters of DNA elongation by DNA polymerases and to further study the interdomain interactions in both previously constructed and new chimeric DNA polymerases. We show that connecting helix-hairpin-helix (HhH) domains to catalytic polymerase domains can increase thermostability, not only of DNA polymerases from extremely thermophilic species but also of the enzyme from a faculatative thermophilic bacterium Bacillus stearothermophilus. We also demonstrate that addition of Topo V HhH domains extends efficient DNA synthesis by chimerical polymerases up to 105 °C by maintaining processivity of DNA synthesis at high temperatures. We found that reversible high-temperature structural transitions in DNA polymerases decrease the rates of binding of these enzymes to the templates. Furthermore, activation energies and pre-exponential factors of the Arrhenius equation suggest that the mechanism of electrostatic enhancement of diffusion-controlled association plays a minor role in binding of templates to DNA polymerases.

  2. Conectando famílias de construções genéticas: testes de DNA na reunificação da família somali na Finlândia Connecting genes-building families: DNA testing in somali family reunification in Finland

    Directory of Open Access Journals (Sweden)

    Petri Hautaniemi

    2007-12-01

    Full Text Available Os temas centrais desse artigo, reunificação familiar em geral e teste de DNA em particular, surgiram a partir de uma pesquisa em andamento acerca de jovens da Somália na Finlândia. Desde 1996, realizo uma pesquisa etnográfica - em escolas, clubes de jovens, ruas e cafés - com jovens da Somália que chegaram à Finlândia por volta de 1994 e que freqüentam escolas finlandesas nos subúrbios de Helsinki. Meu interesse geral nesta pesquisa longitudinal era conhecer as experiências de passagem para a vida adulta em contextos altamente diferenciados, não apenas do ponto de vista do país anfitrião, mas também cultural e transnacionalmente. O tema, testes de DNA, toca na questão central desta pesquisa de modo profundo. Aqui, crescer não é visto como uma simples questão biológica. É um processo social no qual as relações, como laços de parentesco, são constituídas, vivenciadas e contestadas. Essas relações são poderosas para a identificação individual e social. A testagem-DNA pode violar simbólica e fisicamente o processo social de identificações íntimas e de integridade pessoal.The central themes of this article, family reunification in general, and DNA testing in particular, came to the fore during a research project about young Somalians in Finland. Since 1996, I have been conducting ethnographic research - in schools, youth clubs, streets and cafés - with youngsters from Somalia who arrived in Finland around 1994, and who attend Finnish schools in the suburbs of Helsinki. My general interest in this longitudinal study was to learn about the experiences of coming of age in highly dispersed settings, not only in the vein of a local host country, but also culturally and transnationally. Here, growing up is seen not as a simple biological question. It is a social process in which relationships such as kinship ties are constituted, experienced, and contested. These are powerful relations for individual and social

  3. Network connectivity value.

    Science.gov (United States)

    Dragicevic, Arnaud; Boulanger, Vincent; Bruciamacchie, Max; Chauchard, Sandrine; Dupouey, Jean-Luc; Stenger, Anne

    2017-04-21

    In order to unveil the value of network connectivity, we formalize the construction of ecological networks in forest environments as an optimal control dynamic graph-theoretic problem. The network is based on a set of bioreserves and patches linked by ecological corridors. The node dynamics, built upon the consensus protocol, form a time evolutive Mahalanobis distance weighted by the opportunity costs of timber production. We consider a case of complete graph, where the ecological network is fully connected, and a case of incomplete graph, where the ecological network is partially connected. The results show that the network equilibrium depends on the size of the reception zone, while the network connectivity depends on the environmental compatibility between the ecological areas. Through shadow prices, we find that securing connectivity in partially connected networks is more expensive than in fully connected networks, but should be undertaken when the opportunity costs are significant. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. What Is Mitochondrial DNA?

    Science.gov (United States)

    ... DNA What is mitochondrial DNA? What is mitochondrial DNA? Although most DNA is packaged in chromosomes within ... proteins. For more information about mitochondria and mitochondrial DNA: Molecular Expressions, a web site from the Florida ...

  5. Handbook of networking & connectivity

    CERN Document Server

    McClain, Gary R

    1994-01-01

    Handbook of Networking & Connectivity focuses on connectivity standards in use, including hardware and software options. The book serves as a guide for solving specific problems that arise in designing and maintaining organizational networks.The selection first tackles open systems interconnection, guide to digital communications, and implementing TCP/IP in an SNA environment. Discussions focus on elimination of the SNA backbone, routing SNA over internets, connectionless versus connection-oriented networks, internet concepts, application program interfaces, basic principles of layering, proto

  6. 78 FR 55684 - ConnectED Workshop

    Science.gov (United States)

    2013-09-11

    ... tools move everything from homework assignments to testing into the cloud. The workshop will explore possible strategies to connect virtually all of our students to next-generation broadband in a timely, cost-effective way. It will also share promising practices, from NTIA's Broadband Technology Opportunities...

  7. The Connected Traveler

    Energy Technology Data Exchange (ETDEWEB)

    Young, Stanley

    2017-04-24

    The Connected Traveler project is a multi-disciplinary undertaking that seeks to validate potential for transformative transportation system energy savings by incentivizing energy efficient travel behavior.

  8. Connections: All Issues

    Science.gov (United States)

    Goals Recycling Green Purchasing Pollution Prevention Reusing Water Resources Environmental Management Plateau, and more... Connections Newsletter December 2016 December 2016 Science-themed gifts available at

  9. DNA Vaccines

    Indian Academy of Sciences (India)

    diseases. Keywords. DNA vaccine, immune response, antibodies, infectious diseases. GENERAL .... tein vaccines require expensive virus/protein purification tech- niques as ... sphere continue to remain major health hazards in developing nations. ... significance since it can be produced at a very low cost and can be stored ...

  10. DNA Investigations.

    Science.gov (United States)

    Mayo, Ellen S.; Bertino, Anthony J.

    1991-01-01

    Presents a simulation activity that allow students to work through the exercise of DNA profiling and to grapple with some analytical and ethical questions involving a couple arranging with a surrogate mother to have a baby. Can be used to teach the principles of restriction enzyme digestion, gel electrophoresis, and probe hybridization. (MDH)

  11. A New Euler's Formula for DNA Polyhedra

    Science.gov (United States)

    Hu, Guang; Qiu, Wen-Yuan; Ceulemans, Arnout

    2011-01-01

    DNA polyhedra are cage-like architectures based on interlocked and interlinked DNA strands. We propose a formula which unites the basic features of these entangled structures. It is based on the transformation of the DNA polyhedral links into Seifert surfaces, which removes all knots. The numbers of components , of crossings , and of Seifert circles are related by a simple and elegant formula: . This formula connects the topological aspects of the DNA cage to the Euler characteristic of the underlying polyhedron. It implies that Seifert circles can be used as effective topological indices to describe polyhedral links. Our study demonstrates that, the new Euler's formula provides a theoretical framework for the stereo-chemistry of DNA polyhedra, which can characterize enzymatic transformations of DNA and be used to characterize and design novel cages with higher genus. PMID:22022596

  12. Context dependent DNA evolutionary models

    DEFF Research Database (Denmark)

    Jensen, Jens Ledet

    This paper is about stochastic models for the evolution of DNA. For a set of aligned DNA sequences, connected in a phylogenetic tree, the models should be able to explain - in probabilistic terms - the differences seen in the sequences. From the estimates of the parameters in the model one can...... start to make biologically interpretations and conclusions concerning the evolutionary forces at work. In parallel with the increase in computing power, models have become more complex. Starting with Markov processes on a space with 4 states, and extended to Markov processes with 64 states, we are today...... studying models on spaces with 4n (or 64n) number of states with n well above one hundred, say. For such models it is no longer possible to calculate the transition probability analytically, and often Markov chain Monte Carlo is used in connection with likelihood analysis. This is also the approach taken...

  13. Archives: Mathematics Connection

    African Journals Online (AJOL)

    Items 1 - 9 of 9 ... Archives: Mathematics Connection. Journal Home > Archives: Mathematics Connection. Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register · Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives. 1 - 9 of 9 Items. 2011 ...

  14. Connective Tissue Disorders

    Science.gov (United States)

    ... of connective tissue. Over 200 disorders that impact connective tissue. There are different types: Genetic disorders, such as Ehlers-Danlos syndrome, Marfan syndrome, and osteogenesis imperfecta Autoimmune disorders, such as lupus and scleroderma Cancers, like some types of soft tissue sarcoma Each ...

  15. Generalized connectivity of graphs

    CERN Document Server

    Li, Xueliang

    2016-01-01

    Noteworthy results, proof techniques, open problems and conjectures in generalized (edge-) connectivity are discussed in this book. Both theoretical and practical analyses for generalized (edge-) connectivity of graphs are provided. Topics covered in this book include: generalized (edge-) connectivity of graph classes, algorithms, computational complexity, sharp bounds, Nordhaus-Gaddum-type results, maximum generalized local connectivity, extremal problems, random graphs, multigraphs, relations with the Steiner tree packing problem and generalizations of connectivity. This book enables graduate students to understand and master a segment of graph theory and combinatorial optimization. Researchers in graph theory, combinatorics, combinatorial optimization, probability, computer science, discrete algorithms, complexity analysis, network design, and the information transferring models will find this book useful in their studies.

  16. Handbook of Brain Connectivity

    CERN Document Server

    Jirsa, Viktor K

    2007-01-01

    Our contemporary understanding of brain function is deeply rooted in the ideas of the nonlinear dynamics of distributed networks. Cognition and motor coordination seem to arise from the interactions of local neuronal networks, which themselves are connected in large scales across the entire brain. The spatial architectures between various scales inevitably influence the dynamics of the brain and thereby its function. But how can we integrate brain connectivity amongst these structural and functional domains? Our Handbook provides an account of the current knowledge on the measurement, analysis and theory of the anatomical and functional connectivity of the brain. All contributors are leading experts in various fields concerning structural and functional brain connectivity. In the first part of the Handbook, the chapters focus on an introduction and discussion of the principles underlying connected neural systems. The second part introduces the currently available non-invasive technologies for measuring struct...

  17. Modeling Structural Brain Connectivity

    DEFF Research Database (Denmark)

    Ambrosen, Karen Marie Sandø

    The human brain consists of a gigantic complex network of interconnected neurons. Together all these connections determine who we are, how we react and how we interpret the world. Knowledge about how the brain is connected can further our understanding of the brain’s structural organization, help...... improve diagnosis, and potentially allow better treatment of a wide range of neurological disorders. Tractography based on diffusion magnetic resonance imaging is a unique tool to estimate this “structural connectivity” of the brain non-invasively and in vivo. During the last decade, brain connectivity...... has increasingly been analyzed using graph theoretic measures adopted from network science and this characterization of the brain’s structural connectivity has been shown to be useful for the classification of populations, such as healthy and diseased subjects. The structural connectivity of the brain...

  18. Mediator and Cohesin Connect Gene Expression and Chromatin Architecture

    Science.gov (United States)

    Kagey, Michael H.; Newman, Jamie J.; Bilodeau, Steve; Zhan, Ye; Orlando, David A.; van Berkum, Nynke L.; Ebmeier, Christopher C.; Goossens, Jesse; Rahl, Peter B.; Levine, Stuart S.; Taatjes, Dylan J.; Dekker, Job; Young, Richard A.

    2010-01-01

    Summary Transcription factors control cell specific gene expression programs through interactions with diverse coactivators and the transcription apparatus. Gene activation may involve DNA loop formation between enhancer-bound transcription factors and the transcription apparatus at the core promoter, but this process is not well understood. We report here that Mediator and Cohesin physically and functionally connect the enhancers and core promoters of active genes in embryonic stem cells. Mediator, a transcriptional coactivator, forms a complex with Cohesin, which can form rings that connect two DNA segments. The Cohesin loading factor Nipbl is associated with Mediator/Cohesin complexes, providing a means to load Cohesin at promoters. DNA looping is observed between the enhancers and promoters occupied by Mediator and Cohesin. Mediator and Cohesin occupy different promoters in different cells, thus generating cell-type specific DNA loops linked to the gene expression program of each cell. PMID:20720539

  19. DNA repair

    International Nuclear Information System (INIS)

    Setlow, R.

    1978-01-01

    Some topics discussed are as follows: difficulty in extrapolating data from E. coli to mammalian systems; mutations caused by UV-induced changes in DNA; mutants deficient in excision repair; other postreplication mechanisms; kinds of excision repair systems; detection of repair by biochemical or biophysical means; human mutants deficient in repair; mutagenic effects of UV on XP cells; and detection of UV-repair defects among XP individuals

  20. DNA cytoskeleton for stabilizing artificial cells.

    Science.gov (United States)

    Kurokawa, Chikako; Fujiwara, Kei; Morita, Masamune; Kawamata, Ibuki; Kawagishi, Yui; Sakai, Atsushi; Murayama, Yoshihiro; Nomura, Shin-Ichiro M; Murata, Satoshi; Takinoue, Masahiro; Yanagisawa, Miho

    2017-07-11

    Cell-sized liposomes and droplets coated with lipid layers have been used as platforms for understanding live cells, constructing artificial cells, and implementing functional biomedical tools such as biosensing platforms and drug delivery systems. However, these systems are very fragile, which results from the absence of cytoskeletons in these systems. Here, we construct an artificial cytoskeleton using DNA nanostructures. The designed DNA oligomers form a Y-shaped nanostructure and connect to each other with their complementary sticky ends to form networks. To undercoat lipid membranes with this DNA network, we used cationic lipids that attract negatively charged DNA. By encapsulating the DNA into the droplets, we successfully created a DNA shell underneath the membrane. The DNA shells increased interfacial tension, elastic modulus, and shear modulus of the droplet surface, consequently stabilizing the lipid droplets. Such drastic changes in stability were detected only when the DNA shell was in the gel phase. Furthermore, we demonstrate that liposomes with the DNA gel shell are substantially tolerant against outer osmotic shock. These results clearly show the DNA gel shell is a stabilizer of the lipid membrane akin to the cytoskeleton in live cells.

  1. Connected motorcycle system performance.

    Science.gov (United States)

    2016-01-15

    This project characterized the performance of Connected Vehicle Systems (CVS) on motorcycles based on two key components: global positioning and wireless communication systems. Considering that Global Positioning System (GPS) and 5.9 GHz Dedicated Sh...

  2. Connected vehicle applications : environment.

    Science.gov (United States)

    2016-01-01

    The U.S. Department of Transportation has developed a number of connected vehicle environmental applications, including the Applications for the Environment Real-Time Information Synthesis (AERIS) research program applications and road weather applic...

  3. Connected vehicle applications : safety.

    Science.gov (United States)

    2016-01-01

    Connected vehicle safety applications are designed to increase situational awareness : and reduce or eliminate crashes through vehicle-to-infrastructure, vehicle-to-vehicle, : and vehicle-to-pedestrian data transmissions. Applications support advisor...

  4. IDRC Connect User Guide

    International Development Research Centre (IDRC) Digital Library (Canada)

    Kristina Kamichaitis

    Once an account has been created by IDRC staff, you will receive .... content label in the table to access additional information. Table 3: ... One of the primary functions of IDRC Connect is to enable efficient and automated submission of final.

  5. Connected vehicles and cybersecurity.

    Science.gov (United States)

    2016-01-01

    Connected vehicles are a next-generation technology in vehicles and in infrastructure that will make travel safer, cleaner, and more efficient. The advanced wireless technology enables vehicles to share and communicate information with each other and...

  6. Hydrologically Connected Road Segments

    Data.gov (United States)

    Vermont Center for Geographic Information — Link it ArcGIS Item is HERE.The connectivity layer was created to assist municipalities in preparing for the forthcoming DEC Municipal Roads General Permit in 2018....

  7. IDRC Connect User Guide

    International Development Research Centre (IDRC) Digital Library (Canada)

    Kristina Kamichaitis

    IDRC Extranet home page, which is an umbrella for a number of applications available to IDRC external users. ... IDRC Connect is not formatted for mobile users. ..... Thesis. • Training Material. • Website. • Working Paper. • Workshop Report.

  8. [Connective tissue and inflammation].

    Science.gov (United States)

    Jakab, Lajos

    2014-03-23

    The author summarizes the structure of the connective tissues, the increasing motion of the constituents, which determine the role in establishing the structure and function of that. The structure and function of the connective tissue are related to each other in the resting as well as inflammatory states. It is emphasized that cellular events in the connective tissue are part of the defence of the organism, the localisation of the damage and, if possible, the maintenance of restitutio ad integrum. The organism responds to damage with inflammation, the non specific immune response, as well as specific, adaptive immunity. These processes are located in the connective tissue. Sterile and pathogenic inflammation are relatively similar processes, but inevitable differences are present, too. Sialic acids and glycoproteins containing sialic acids have important roles, and the role of Siglecs is also highlighted. Also, similarities and differences in damages caused by pathogens and sterile agents are briefly summarized. In addition, the roles of adhesion molecules linked to each other, and the whole event of inflammatory processes are presented. When considering practical consequences it is stressed that the structure (building up) of the organism and the defending function of inflammation both have fundamental importance. Inflammation has a crucial role in maintaining the integrity and the unimpaired somato-psychological state of the organism. Thus, inflammation serves as a tool of organism identical with the natural immune response, inseparably connected with the specific, adaptive immune response. The main events of the inflammatory processes take place in the connective tissue.

  9. Quick connect fastener

    Science.gov (United States)

    Weddendorf, Bruce

    1994-01-01

    A quick connect fastener and method of use is presented wherein the quick connect fastener is suitable for replacing available bolts and screws, the quick connect fastener being capable of installation by simply pushing a threaded portion of the connector into a member receptacle hole, the inventive apparatus being comprised of an externally threaded fastener having a threaded portion slidably mounted upon a stud or bolt shaft, wherein the externally threaded fastener portion is expandable by a preloaded spring member. The fastener, upon contact with the member receptacle hole, has the capacity of presenting cylindrical threads of a reduced diameter for insertion purposes and once inserted into the receiving threads of the receptacle member hole, are expandable for engagement of the receptacle hole threads forming a quick connect of the fastener and the member to be fastened, the quick connect fastener can be further secured by rotation after insertion, even to the point of locking engagement, the quick connect fastener being disengagable only by reverse rotation of the mated thread engagement.

  10. Connectivity in river deltas

    Science.gov (United States)

    Passalacqua, P.; Hiatt, M. R.; Sendrowski, A.

    2016-12-01

    Deltas host approximately half a billion people and are rich in ecosystem diversity and economic resources. However, human-induced activities and climatic shifts are significantly impacting deltas around the world; anthropogenic disturbance, natural subsidence, and eustatic sea-level rise are major causes of threat to deltas and in many cases have compromised their safety and sustainability, putting at risk the people that live on them. In this presentation, I will introduce a framework called Delta Connectome for studying connectivity in river deltas based on different representations of a delta as a network. Here connectivity indicates both physical connectivity (how different portions of the system interact with each other) as well as conceptual (pathways of process coupling). I will explore several network representations and show how quantifying connectivity can advance our understanding of system functioning and can be used to inform coastal management and restoration. From connectivity considerations, the delta emerges as a leaky network that evolves over time and is characterized by continuous exchanges of fluxes of matter, energy, and information. I will discuss the implications of connectivity on delta functioning, land growth, and potential for nutrient removal.

  11. JavaScript DNA translator: DNA-aligned protein translations.

    Science.gov (United States)

    Perry, William L

    2002-12-01

    There are many instances in molecular biology when it is necessary to identify ORFs in a DNA sequence. While programs exist for displaying protein translations in multiple ORFs in alignment with a DNA sequence, they are often expensive, exist as add-ons to software that must be purchased, or are only compatible with a particular operating system. JavaScript DNA Translator is a shareware application written in JavaScript, a scripting language interpreted by the Netscape Communicator and Internet Explorer Web browsers, which makes it compatible with several different operating systems. While the program uses a familiar Web page interface, it requires no connection to the Internet since calculations are performed on the user's own computer. The program analyzes one or multiple DNA sequences and generates translations in up to six reading frames aligned to a DNA sequence, in addition to displaying translations as separate sequences in FASTA format. ORFs within a reading frame can also be displayed as separate sequences. Flexible formatting options are provided, including the ability to hide ORFs below a minimum size specified by the user. The program is available free of charge at the BioTechniques Software Library (www.Biotechniques.com).

  12. DyNAvectors: dynamic constitutional vectors for adaptive DNA transfection.

    Science.gov (United States)

    Clima, Lilia; Peptanariu, Dragos; Pinteala, Mariana; Salic, Adrian; Barboiu, Mihail

    2015-12-25

    Dynamic constitutional frameworks, based on squalene, PEG and PEI components, reversibly connected to core centers, allow the efficient identification of adaptive vectors for good DNA transfection efficiency and are well tolerated by mammalian cells.

  13. DNA repair

    International Nuclear Information System (INIS)

    Van Zeeland, A.A.

    1984-01-01

    In this chapter a series of DNA repair pathways are discussed which are available to the cell to cope with the problem of DNA damaged by chemical or physical agents. In the case of microorganisms our knowledge about the precise mechanism of each DNA repair pathway and the regulation of it has been improved considerably when mutants deficient in these repair mechanisms became available. In the case of mammalian cells in culture, until recently there were very little repair deficient mutants available, because in almost all mammalian cells in culture at least the diploid number of chromosomes is present. Therefore the frequency of repair deficient mutants in such populations is very low. Nevertheless because replica plating techniques are improving some mutants from Chinese hamsters ovary cells and L5178Y mouse lymphoma cells are now available. In the case of human cells, cultures obtained from patients with certain genetic diseases are available. A number of cells appear to be sensitive to some chemical or physical mutagens. These include cells from patients suffering from xeroderma pigmentosum, Ataxia telangiectasia, Fanconi's anemia, Cockayne's syndrome. However, only in the case of xeroderma pigmentosum cells, has the sensitivity to ultraviolet light been clearly correlated with a deficiency in excision repair of pyrimidine dimers. Furthermore the work with strains obtained from biopsies from man is difficult because these cells generally have low cloning efficiencies and also have a limited lifespan in vitro. It is therefore very important that more repair deficient mutants will become available from established cell lines from human or animal origin

  14. DNA hybridization sensing for cytogenetic analysis

    DEFF Research Database (Denmark)

    Kwasny, Dorota; Dapra, Johannes; Brøgger, Anna Line

    2013-01-01

    are rearrangements between two chromosome arms that results in two derivative chromosomes having a mixed DNA sequence. The current detection method is a Fluorescent In situ Hybridization, which requires a use of expensive, fluorescently labeled probes that target the DNA sequences of two chromosomes involved...... in the translocation (Kwasny et al., 2012). We have developed a new double hybridization assay that allows for sorting of the DNA chromosomal fragments into separate compartment, moreover allowing for detection of the translocation. To detect the translocation it is necessary to determine that the two DNA sequences...... forming a derivative chromosome are connected, which is achieved by two subsequent hybridization steps. The first example of the translocation detection was presented on lab-on-a-disc using fluorescently labeled DNA fragments, representing the derivative chromosome (Brøgger et al., 2012). To allow...

  15. Synthesis of furan-based DNA binders and their interaction with DNA

    International Nuclear Information System (INIS)

    Voege, Andrea; Hoffmann, Sascha; Gabel, Detlef

    2006-01-01

    In recent years, many substances, based on naturally occurring DNA-binding molecules have been developed for the use in cancer therapy and as virostatica. Most of these substances are binding specifically to A-T rich sequences in the DNA minor groove. Neutral and positively charged DNA-binders are known. BNCT is most effective, which the boron is directly located in the cellular nucleus, so that the intercation with thermal neutrons can directly damage the DNA. To reach this aim, we have connected ammonioundecahydrododecaborate(1-) to DNA-binding structures such as 2,5-bis(4-formylphenyl)furan via a Schiff-Base reaction followed by a reduction of the imine to a secondary amine. In a following step the amine can be alkylated to insert positive charges to prevent repulsion between the compounds and the negatively charged sugar-phosphate-backbone of the DNA. (author)

  16. Connectable solar air collectors

    Energy Technology Data Exchange (ETDEWEB)

    Oestergaard Jensen, S.; Bosanac, M.

    2002-02-01

    The project has proved that it is possible to manufacture solar air collector panels, which in an easy way can be connected into large collector arrays with integrated ducting without loss of efficiency. The developed connectable solar air collectors are based on the use of matrix absorbers in the form of perforated metal sheets. Three interconnected solar air collectors of the above type - each with an transparent area of approx. 3 m{sup 2} - was tested and compared with parallel tests on two single solar air collectors also with a transparent area of approx. 3 m{sup 2} One of the single solar air collectors has an identical absorber as the connectable solar air collectors while the absorber of the other single solar air collector was a fibre cloth. The efficiency of the three solar air collectors proved to be almost identical in the investigated range of mass flow rates and temperature differences. The solar air collectors further proved to be very efficient - as efficient as the second most efficient solar air collectors tested in the IEA task 19 project Solar Air Systems. Some problems remain although to be solved: the pressure drop across especially the connectable solar air collectors is too high - mainly across the inlets of the solar air collectors. It should, however, be possible to considerably reduce the pressure losses with a more aerodynamic design of the inlet and outlet of the solar air collectors; The connectable solar air collectors are easy connectable but the air tightness of the connections in the present form is not good enough. As leakage leads to lower efficiencies focus should be put on making the connections more air tight without loosing the easiness in connecting the solar air collectors. As a spin off of the project a simple and easy way to determine the efficiency of solar, air collectors for pre-heating of fresh air has been validated. The simple method of determining the efficiency has with success been compared with an advance method

  17. Connectivity and superconductivity

    CERN Document Server

    Rubinstein, Jacob

    2000-01-01

    The motto of connectivity and superconductivity is that the solutions of the Ginzburg--Landau equations are qualitatively influenced by the topology of the boundaries, as in multiply-connected samples. Special attention is paid to the "zero set", the set of the positions (also known as "quantum vortices") where the order parameter vanishes. The effects considered here usually become important in the regime where the coherence length is of the order of the dimensions of the sample. It takes the intuition of physicists and the awareness of mathematicians to find these new effects. In connectivity and superconductivity, theoretical and experimental physicists are brought together with pure and applied mathematicians to review these surprising results. This volume is intended to serve as a reference book for graduate students and researchers in physics or mathematics interested in superconductivity, or in the Schrödinger equation as a limiting case of the Ginzburg--Landau equations.

  18. Regulation of DNA repair processes in mammalian cell

    International Nuclear Information System (INIS)

    Bil'din, V.N.; Sergina, T.B.; Zhestyanikov, V.D.

    1992-01-01

    A study was made of the repair of ionizing radiation-induced DNA single-strand breaks (SSB) in proliferating and quiescent mouse Swiss 3T6 cells and in those stimulated from the quiet status by epidermal growth factor in combination with insulin, in the presence of specific inhibitors of DNA polymerase α and β (aphidicolin) and DNA polymerase β (2', 3'-dideoxythjymidine-5'-triphosphate). The repair of DNA SSB induced by X-ray-irradiation (10 Gy) or by γ-ray irradiation (150 Gy) is more sensitive to aphidicolin and mitogen-simulated cells three times stronger than in proliferating cells. The influence of 2', 3'-dideoxythymidine-5'-triphosphate on the rate of DNA SSB repair in cells of all the three types does not differ. Thus, the decrease in DNA repair efficiency in quiescent cells is connected with a decrease in the activity of aphidicolin-sensitive DNA polymerase, apparently DNA polymerase α

  19. A super soliton connection

    International Nuclear Information System (INIS)

    Gurses, M.; Oguz, O.

    1985-07-01

    Integrable super non-linear classical partial differential equations are considered. A super s1(2,R) algebra valued connection 1-form is constructed. It is shown that curvature 2-form of this super connection vanishes by virtue of the integrable super equations of motion. A super extension of the AKNS scheme is presented and a class of super extension of the Lax hierarchy and super non-linear Schroedinger equation are found. O(N) extension and the Baecklund transformations of the above super equations are also considered. (author)

  20. Connecting textual segments

    DEFF Research Database (Denmark)

    Brügger, Niels

    2017-01-01

    history than just the years of the emergence of the web, the chapter traces the history of how segments of text have deliberately been connected to each other by the use of specific textual and media features, from clay tablets, manuscripts on parchment, and print, among others, to hyperlinks on stand......In “Connecting textual segments: A brief history of the web hyperlink” Niels Brügger investigates the history of one of the most fundamental features of the web: the hyperlink. Based on the argument that the web hyperlink is best understood if it is seen as another step in a much longer and broader...

  1. Best connected rectangular arrangements

    Directory of Open Access Journals (Sweden)

    Krishnendra Shekhawat

    2016-03-01

    Full Text Available It can be found quite often in the literature that many well-known architects have employed either the golden rectangle or the Fibonacci rectangle in their works. On contrary, it is rare to find any specific reason for using them so often. Recently, Shekhawat (2015 proved that the golden rectangle and the Fibonacci rectangle are one of the best connected rectangular arrangements and this may be one of the reasons for their high presence in architectural designs. In this work we present an algorithm that generates n-4 best connected rectangular arrangements so that the proposed solutions can be further used by architects for their designs.

  2. Connections among quantum logics

    International Nuclear Information System (INIS)

    Lock, P.F.; Hardegree, G.M.

    1985-01-01

    This paper gives a brief introduction to the major areas of work in quantum event logics: manuals (Foulis and Randall) and semi-Boolean algebras (Abbott). The two theories are compared, and the connection between quantum event logics and quantum propositional logics is made explicit. In addition, the work on manuals provides us with many examples of results stated in Part I. (author)

  3. Connectivity measures: a review

    Czech Academy of Sciences Publication Activity Database

    Kindlmann, Pavel; Burel, F.

    2008-01-01

    Roč. 23, č. 1 (2008), s. 879-890 ISSN 0921-2973 R&D Projects: GA MŠk LC06073; GA AV ČR(CZ) IAA6087301 Institutional research plan: CEZ:AV0Z60870520 Keywords : Conservation biology * Habitat fragmentation * Landscape connectivity * Measures * Species extinction Subject RIV: EH - Ecology, Behaviour Impact factor: 2.453, year: 2008

  4. Clip, connect, clone

    DEFF Research Database (Denmark)

    Fujima, Jun; Lunzer, Aran; Hornbæk, Kasper

    2010-01-01

    using three mechanisms: clipping of input and result elements from existing applications to form cells on a spreadsheet; connecting these cells using formulas, thus enabling result transfer between applications; and cloning cells so that multiple requests can be handled side by side. We demonstrate...

  5. A Connective Pedagogy.

    Science.gov (United States)

    Goral, Mary

    2000-01-01

    Our increasingly hurried lifestyle, changes in family structure, and intense economic pressures place stress on children and families. Waldorf education provides an educational environment that alleviates this stress through a connective pedagogy that encompasses continuity of people, curriculum, and instruction; a reverence and respect for the…

  6. Connected vehicle application : safety.

    Science.gov (United States)

    2015-01-01

    Connected vehicle safety applications are designed to increase situational awareness : and reduce or eliminate crashes through vehicle-to-infrastructure (V2I), vehicle-to-vehicle (V2V), and vehicle-to-pedestrian (V2P) data transmissions. Applications...

  7. Mathematics Connection: Editorial Policies

    African Journals Online (AJOL)

    Focus and Scope. MATHEMATICS CONNECTION aims at providing a forum to promote the development of Mathematics Education in Ghana. Articles that seek to enhance the teaching and/or learning of mathematics at all levels of the educational system are welcome ...

  8. Making the Connection

    Science.gov (United States)

    Perna, Mark C.

    2006-01-01

    Enrollment marketing is not just about enrollment; it is about creating relationships and serving one's community or target audience for many years. In this article, the author states that the first step in building such relationships is making a connection, and that is what effective marketing is all about. Administrators, teachers and critical…

  9. Connecting numeric models

    International Nuclear Information System (INIS)

    Caremoli, C.; Erhard, P.

    1996-01-01

    Computerized simulation uses calculation codes whose validation is reliable. Reactor simulators should take greater advantage of latest computer technology impact, in particular in the field of parallel processing. Instead of creating more global simulation codes whose validation might be a problem, connecting several existing codes should be a promising solution. (D.L.). 3 figs

  10. From connection to customer

    International Nuclear Information System (INIS)

    Milatz, H.; Soeters, R.

    2001-01-01

    Energy companies can no longer be certain that a customer today will remain a customer tomorrow. They have to work hard to achieve that. They are going from thinking in terms of connections to pampering their customers. Good Customer Relationship Management is a way to achieve a competitive advantage. The whole organisation has to adapt, particularly the customer orientation of employees

  11. Mapping functional connectivity

    Science.gov (United States)

    Peter Vogt; Joseph R. Ferrari; Todd R. Lookingbill; Robert H. Gardner; Kurt H. Riitters; Katarzyna Ostapowicz

    2009-01-01

    An objective and reliable assessment of wildlife movement is important in theoretical and applied ecology. The identification and mapping of landscape elements that may enhance functional connectivity is usually a subjective process based on visual interpretations of species movement patterns. New methods based on mathematical morphology provide a generic, flexible,...

  12. IDRC Connect User Guide

    International Development Research Centre (IDRC) Digital Library (Canada)

    Kristina Kamichaitis

    2 Jul 2015 ... IDRC Connect contribuye a la aplicación de la Política de Acceso abierto de IDRC facilitando ..... Tesis. • Material de capacitación. • Sitio web. • Documento de trabajo ..... incluir planes de estudios, metodologías y manuales.

  13. DNA Repair Systems

    Indian Academy of Sciences (India)

    DNA molecule which makes it ideal for storage and propagation of genetic information. ... of these errors are broadly referred to as DNA repair. DNA can ... changes occur in the human genome per day. ..... nails, frequent physical and mental.

  14. Synthesis of DNA

    Science.gov (United States)

    Mariella, Jr., Raymond P.

    2008-11-18

    A method of synthesizing a desired double-stranded DNA of a predetermined length and of a predetermined sequence. Preselected sequence segments that will complete the desired double-stranded DNA are determined. Preselected segment sequences of DNA that will be used to complete the desired double-stranded DNA are provided. The preselected segment sequences of DNA are assembled to produce the desired double-stranded DNA.

  15. Caffeine, cyclic AMP and postreplication repair of mammalian DNA

    International Nuclear Information System (INIS)

    Ehmann, U.K.

    1976-01-01

    The methylxanthines, caffeine and theophylline, inhibit postreplication repair of DNA in mammalian cells. Because they also inhibit cyclic AMP phosphodiesterase, it was thought that there might be some connection between concentrations of cyclic AMP and postreplication repair. This possibility was tested by performing DNA sedimentation experiments with a cyclic AMP-resistant mouse lymphoma cell mutant and its wild-type counterpart. The results show that there is no connection between cellular cyclic AMP concentrations and the rate of postreplication repair. Therefore, it is more likely that caffeine and theophylline inhibit postreplication repair by some other means, such as by binding to DNA

  16. Cooperation between Catalytic and DNA-binding Domains Enhances Thermostability and Supports DNA Synthesis at Higher Temperatures by Thermostable DNA Polymerases

    Science.gov (United States)

    Pavlov, Andrey R.; Pavlova, Nadejda V.; Kozyavkin, Sergei A.; Slesarev, Alexei I.

    2012-01-01

    We have previously introduced a general kinetic approach for comparative study of processivity, thermostability, and resistance to inhibitors of DNA polymerases (Pavlov et. al., (2002) Proc. Natl. Acad. Sci. USA 99, 13510–13515). The proposed method was successfully applied to characterize hybrid DNA polymerases created by fusing catalytic DNA polymerase domains with various non-specific DNA binding domains. Here we use the developed kinetic analysis to assess basic parameters of DNA elongation by DNA polymerases and to further study the interdomain interactions in both previously constructed and new chimeric DNA polymerases. We show that connecting Helix-hairpin-Helix (HhH) domains to catalytic polymerase domains can increase thermostability, not only of DNA polymerases from extremely thermophilic species, but also of the enzyme from a faculatative thermophilic bacterium Bacillus stearothermophilus. We also demonstrate that addition of TopoV HhH domains extends efficient DNA synthesis by chimerical polymerases up to 105°C by maintaining processivity of DNA synthesis at high temperatures. We also found that reversible high-temperature structural transitions in DNA polymerases decrease the rates of binding of these enzymes to the templates. Furthermore, activation energies and pre-exponential factors of the Arrhenius equation suggest that the mechanism of electrostatic enhancement of diffusion-controlled association plays a minor role in binding templates to DNA polymerases. PMID:22320201

  17. Connecting the Production Multiple

    DEFF Research Database (Denmark)

    Lichen, Alex Yu; Mouritsen, Jan

    &OP process itself is a fluid object, but there is still possibility to organise the messy Production. There are connections between the Production multiple and the managerial technology fluid. The fluid enacted the multiplicity of Production thus making it more difficult to be organised because there were...... in opposite directions. They are all part of the fluid object. There is no single chain of circulating references that makes the object a matter of fact. Accounting fluidity means that references drift back and forth and enact new realities also connected to the chain. In this setting future research may......This paper is about objects. It follows post ANT trajectories and finds that objects are multiple and fluid. Extant classic ANT inspired accounting research largely sees accounting inscriptions as immutable mobiles. Although multiplicity of objects upon which accounting acts has been explored...

  18. Melanesian mtDNA complexity.

    Directory of Open Access Journals (Sweden)

    Jonathan S Friedlaender

    Full Text Available Melanesian populations are known for their diversity, but it has been hard to grasp the pattern of the variation or its underlying dynamic. Using 1,223 mitochondrial DNA (mtDNA sequences from hypervariable regions 1 and 2 (HVR1 and HVR2 from 32 populations, we found the among-group variation is structured by island, island size, and also by language affiliation. The more isolated inland Papuan-speaking groups on the largest islands have the greatest distinctions, while shore dwelling populations are considerably less diverse (at the same time, within-group haplotype diversity is less in the most isolated groups. Persistent differences between shore and inland groups in effective population sizes and marital migration rates probably cause these differences. We also add 16 whole sequences to the Melanesian mtDNA phylogenies. We identify the likely origins of a number of the haplogroups and ancient branches in specific islands, point to some ancient mtDNA connections between Near Oceania and Australia, and show additional Holocene connections between Island Southeast Asia/Taiwan and Island Melanesia with branches of haplogroup E. Coalescence estimates based on synonymous transitions in the coding region suggest an initial settlement and expansion in the region at approximately 30-50,000 years before present (YBP, and a second important expansion from Island Southeast Asia/Taiwan during the interval approximately 3,500-8,000 YBP. However, there are some important variance components in molecular dating that have been overlooked, and the specific nature of ancestral (maternal Austronesian influence in this region remains unresolved.

  19. Evaluation of 604 Connect

    OpenAIRE

    Ladner, S.; Ihnat, M.

    2000-01-01

    The Vancouver Community Network (VCN) is a not-for-profit Internet Service Provider (ISP), based on the “freenet” model of public Internet access. As a VolNet delivery agency, VCN committed to providing participating organizations with the following: (1) A communications protocol, (2) Internet Access, (3) Computer Equipment, (4) Training, and (5) Technical Support. In April 1999, VCN began receiving applications from non-profit organizations for its 604 Connect program, so named for the 604 t...

  20. Energy storage connection system

    Science.gov (United States)

    Benedict, Eric L.; Borland, Nicholas P.; Dale, Magdelena; Freeman, Belvin; Kite, Kim A.; Petter, Jeffrey K.; Taylor, Brendan F.

    2012-07-03

    A power system for connecting a variable voltage power source, such as a power controller, with a plurality of energy storage devices, at least two of which have a different initial voltage than the output voltage of the variable voltage power source. The power system includes a controller that increases the output voltage of the variable voltage power source. When such output voltage is substantially equal to the initial voltage of a first one of the energy storage devices, the controller sends a signal that causes a switch to connect the variable voltage power source with the first one of the energy storage devices. The controller then causes the output voltage of the variable voltage power source to continue increasing. When the output voltage is substantially equal to the initial voltage of a second one of the energy storage devices, the controller sends a signal that causes a switch to connect the variable voltage power source with the second one of the energy storage devices.

  1. Cutter Connectivity Bandwidth Study

    Science.gov (United States)

    2002-10-01

    The goal of this study was to determine how much bandwidth is required for cutters to meet emerging data transfer requirements. The Cutter Connectivity Business Solutions Team with guidance front the Commandant's 5 Innovation Council sponsored this study. Today, many Coast Guard administrative and business functions are being conducted via electronic means. Although our larger cutters can establish part-time connectivity using commercial satellite communications (SATCOM) while underway, there are numerous complaints regarding poor application performance. Additionally, smaller cutters do not have any standard means of underway connectivity. The R&D study shows the most important factor affecting web performance and enterprise applications onboard cutters was latency. Latency describes the time it takes the signal to reach the satellite and come back down through space. The latency due to use of higher orbit satellites is causing poor application performance and inefficient use of expensive SATCOM links. To improve performance, the CC must, (1) reduce latency by using alternate communications links such as low-earth orbit satellites, (2) tailor applications to the SATCOM link and/or (3) optimize protocols used for data communication to minimize time required by present applications to establish communications between the user and the host systems.

  2. Autonomous informational stability in connective tissues.

    Science.gov (United States)

    Brand, R A

    1992-02-01

    No coherent theories currently explain connective tissue stability (i.e. 'memory') as well as spatial and temporal adaptability in the face of continual flux of its constituents. Furthermore, explanations of stability based exclusively upon DNA raise certain inherent problems, particularly with the spatial concordance of somatic tissues. As an alternative explanation, it is hypothesized that while connective tissue cells produce extracellular protein precursors through DNA-dependent processes, the assembly, location, orientation and configuration of the extracellular macromolecules as well as their degree of cell attachment depend primarily upon local micro-environmental conditions and/or self-organization rather than strictly cellular processes. The resulting extracellular matrix (ECM) serves as a time- and spatially-variable filter about each cell to afford a relatively consistent micro-environment for all similar cells, regardless of the more variable macro-environment. By insuring a consistent set of signals to the cell, the filter provides a non-genetic memory complementary to genetic memory. The half-lives of constituent molecules define the duration of the filter, allowing the filter to adapt to new environmental demands, yet to maintain a consistent milieu for the cell. The cell/matrix construct permits local, self-optimizing, non-deterministic tissue autonomy obviating the need to postulate certain intricate mechanisms coordinating spatial morphology and temporal behavior.

  3. Genetic Constructor: An Online DNA Design Platform.

    Science.gov (United States)

    Bates, Maxwell; Lachoff, Joe; Meech, Duncan; Zulkower, Valentin; Moisy, Anaïs; Luo, Yisha; Tekotte, Hille; Franziska Scheitz, Cornelia Johanna; Khilari, Rupal; Mazzoldi, Florencio; Chandran, Deepak; Groban, Eli

    2017-12-15

    Genetic Constructor is a cloud Computer Aided Design (CAD) application developed to support synthetic biologists from design intent through DNA fabrication and experiment iteration. The platform allows users to design, manage, and navigate complex DNA constructs and libraries, using a new visual language that focuses on functional parts abstracted from sequence. Features like combinatorial libraries and automated primer design allow the user to separate design from construction by focusing on functional intent, and design constraints aid iterative refinement of designs. A plugin architecture enables contributions from scientists and coders to leverage existing powerful software and connect to DNA foundries. The software is easily accessible and platform agnostic, free for academics, and available in an open-source community edition. Genetic Constructor seeks to democratize DNA design, manufacture, and access to tools and services from the synthetic biology community.

  4. Finding significantly connected voxels based on histograms of connection strengths

    DEFF Research Database (Denmark)

    Kasenburg, Niklas; Pedersen, Morten Vester; Darkner, Sune

    2016-01-01

    We explore a new approach for structural connectivity based segmentations of subcortical brain regions. Connectivity based segmentations are usually based on fibre connections from a seed region to predefined target regions. We present a method for finding significantly connected voxels based...... on the distribution of connection strengths. Paths from seed voxels to all voxels in a target region are obtained from a shortest-path tractography. For each seed voxel we approximate the distribution with a histogram of path scores. We hypothesise that the majority of estimated connections are false-positives...... and that their connection strength is distributed differently from true-positive connections. Therefore, an empirical null-distribution is defined for each target region as the average normalized histogram over all voxels in the seed region. Single histograms are then tested against the corresponding null...

  5. The Berry's connection

    International Nuclear Information System (INIS)

    Le Tourneux, J.

    1989-01-01

    A course on the Berry's connection is presented. The main steps leading to the Berry's discovery are reviewed and the obtained equations are examined. Some applications of Berry's formulation are presented. They include diatomic molecules, dipole-quadrupole interaction in spherical mucleus and diabolic pair transfer. The experimental results presented are the spectrum of the Na 3 molecule, the propagation of photons in an helical optical fiber and the neutron spin rotation. Non-abelian problems and the Aharonow-Anandan phase are discussed [fr

  6. The CONNECT project

    DEFF Research Database (Denmark)

    Assaf, Yaniv; Alexander, Daniel C; Jones, Derek K

    2013-01-01

    Of Neuroimagers for the Non-invasive Exploration of brain Connectivity and Tracts) project aimed to combine tractography and micro-structural measures of the living human brain in order to obtain a better estimate of the connectome, while also striving to extend validation of these measurements. This paper...... summarizes the project and describes the perspective of using micro-structural measures to study the connectome.......In recent years, diffusion MRI has become an extremely important tool for studying the morphology of living brain tissue, as it provides unique insights into both its macrostructure and microstructure. Recent applications of diffusion MRI aimed to characterize the structural connectome using...

  7. Skeletal muscle connective tissue

    DEFF Research Database (Denmark)

    Brüggemann, Dagmar Adeline

    in the structure of fibrous collagen and myofibers at high-resolution. The results demonstrate that the collagen composition in the extra cellular matrix of Gadus morhua fish muscle is much more complex than previously anticipated, as it contains type III, IV, V  and VI collagen in addition to type I. The vascular....... Consequently, functional structures, ensuring "tissue maintenance" must form a major role of connective tissue, in addition that is to the force transmitting structures one typically finds in muscle. Vascular structures have also been shown to change their mechanical properties with age and it has been shown...

  8. Conformally connected universes

    International Nuclear Information System (INIS)

    Cantor, M.; Piran, T.

    1983-01-01

    A well-known difficulty associated with the conformal method for the solution of the general relativistic Hamiltonian constraint is the appearance of an aphysical ''bag of gold'' singularity at the nodal surface of the conformal factor. This happens whenever the background Ricci scalar is too large. Using a simple model, it is demonstrated that some of these singular solutions do have a physical meaning, and that these can be considered as initial data for Universe containing black holes, which are connected, in a conformally nonsingular way with each other. The relation between the ADM mass and the horizon area in this solution supports the cosmic censorship conjecture. (author)

  9. Nanomechanical DNA Origami pH Sensors

    Directory of Open Access Journals (Sweden)

    Akinori Kuzuya

    2014-10-01

    Full Text Available Single-molecule pH sensors have been developed by utilizing molecular imaging of pH-responsive shape transition of nanomechanical DNA origami devices with atomic force microscopy (AFM. Short DNA fragments that can form i-motifs were introduced to nanomechanical DNA origami devices with pliers-like shape (DNA Origami Pliers, which consist of two levers of 170-nm long and 20-nm wide connected at a Holliday-junction fulcrum. DNA Origami Pliers can be observed as in three distinct forms; cross, antiparallel and parallel forms, and cross form is the dominant species when no additional interaction is introduced to DNA Origami Pliers. Introduction of nine pairs of 12-mer sequence (5'-AACCCCAACCCC-3', which dimerize into i-motif quadruplexes upon protonation of cytosine, drives transition of DNA Origami Pliers from open cross form into closed parallel form under acidic conditions. Such pH-dependent transition was clearly imaged on mica in molecular resolution by AFM, showing potential application of the system to single-molecular pH sensors.

  10. Nanomechanical DNA origami pH sensors.

    Science.gov (United States)

    Kuzuya, Akinori; Watanabe, Ryosuke; Yamanaka, Yusei; Tamaki, Takuya; Kaino, Masafumi; Ohya, Yuichi

    2014-10-16

    Single-molecule pH sensors have been developed by utilizing molecular imaging of pH-responsive shape transition of nanomechanical DNA origami devices with atomic force microscopy (AFM). Short DNA fragments that can form i-motifs were introduced to nanomechanical DNA origami devices with pliers-like shape (DNA Origami Pliers), which consist of two levers of 170-nm long and 20-nm wide connected at a Holliday-junction fulcrum. DNA Origami Pliers can be observed as in three distinct forms; cross, antiparallel and parallel forms, and cross form is the dominant species when no additional interaction is introduced to DNA Origami Pliers. Introduction of nine pairs of 12-mer sequence (5'-AACCCCAACCCC-3'), which dimerize into i-motif quadruplexes upon protonation of cytosine, drives transition of DNA Origami Pliers from open cross form into closed parallel form under acidic conditions. Such pH-dependent transition was clearly imaged on mica in molecular resolution by AFM, showing potential application of the system to single-molecular pH sensors.

  11. Heritable Disorders of Connective Tissue

    Science.gov (United States)

    ... Home Health Topics English Español Heritable Disorders of Connective Tissue Basics In-Depth Download Download EPUB Download PDF ... they? Points To Remember About Heritable Disorders of Connective Tissue There are more than 200 heritable disorders that ...

  12. Simulation of 125I-induced DNA strand breaks in a CAP-DNA complex

    International Nuclear Information System (INIS)

    Li, W.; Friedland, W.; Jacob, P.

    2000-01-01

    DNA strand breakage induced by decay of 125 I incorporated into the pyrimidine of a small piece of DNA with a specific base pair sequence has been investigated theoretically and experimentally (Lobachevsky and Martin 2000a, 2000b; Nikjoo et al., 1996; Pomplun and Terrissol, 1994; Charlton and Humm, 1988). Recently an attempt was made to analyse the DNA kinks in a CAP-DNA complex with 125 I induced DNA strand breakage (Karamychev et al., 1999). This method could be used as a so called radioprobing for such DNa distortions like other chemical and biological assays, provided that it has been tested and confirmed in a corresponding theoretical simulation. In the measurement, the distribution of the first breaks on the DNA strands starting from their labeled end can be determined. Based on such first breakage distributions, the simulation calculation could then be used to derive information on the structure of a given DNA-protein complex. The biophysical model PARTRAC has been applied successfully in simulating DNA damage induced by irradiation (Friedland et al., 1998; 1999). In the present study PARTRAC is adapted to a DNA-protein complex in which a specific sequence of 30 base pairs of DNA is connected with the catabolite gene activator protein (CAP). This report presents the first step of the analysis in which the CAP-DNA model used in NIH is overlaid with electron track structures in liquid water and the strand breaks due to direct ionization and due to radical attack are simulated. The second step will be to take into account the neutralization of the heavily charged tellurium and the protective effect of the CAP protein against radical attack. (orig.)

  13. LHCb connects its pipes

    CERN Multimedia

    2006-01-01

    Two weeks ago the first beryllium section of the LHCb beam vacuum chamber was installed. This three-day operation, after requiring lengthy preparation work, demanded patience and precision as the first of four sections of the beampipe was connected to the vertex locator (VeLo) vacuum vessel. The AT-VAC Group with the collaboration of PH/LBD, including Gloria Corti, Tatsuya Nakada, Patrice Mermet, Delios Ramos, Frans Mul, Bruno Versollato, Bernard Corajod, and Raymond Veness. (Not pictured: Adriana Rossi and Laurent Bouvet) This first installed section is composed of a nearly two-metre long conical tube of one-millimetre thick beryllium and of a thin spherical-shaped window, 800 millimeter diameter, made of an aluminum alloy, and has the appearance of a mushroom lying on its side. The window is connected to the conical part of the beampipe through an aluminum alloy bellow, which is needed to allow for mechanical alignment once the assembly is installed. Beryllium was chosen as the material for 12 m of the 19...

  14. Connective tissue activation. XVII

    International Nuclear Information System (INIS)

    Weiss, J.J.; Donakowski, C.; Anderson, B.; Meyers, S.; Castor, C.W.

    1980-01-01

    The platelet-derived connective tissue activating peptide (CTAP-III) has been shown to be an important factor stimulating the metabolism and proliferation of human connective tissue cell strains, including synovial tissue cells. The quantities of CTAP-III affecting the cellular changes and the amounts in various biologic fluids and tissues are small. The objectives of this study were to develop a radioimmunoassay (RIA) for CTAP-III and to ascertain the specificities of the anti-CTAP-III sera reagents. The antisera were shown not to cross-react with a number of polypeptide hormones. However, two other platelet proteins β-thromboglobulin and low affinity platelet factor-4, competed equally as well as CTAP-III for anti-CTAP-III antibodies in the RIA system. Thus, the three platelet proteins are similar or identical with respect to those portions of the molecules constituting the reactive antigenic determinants. The levels of material in normal human platelet-free plasma that inhibited anti-CTAP-III- 125 I-CTAP-III complex formation were determined to be 34+-13 (S.D.) ng/ml. (Auth.)

  15. Molecular mechanics of DNA bricks: in situ structure, mechanical properties and ionic conductivity

    International Nuclear Information System (INIS)

    Slone, Scott Michael; Li, Chen-Yu; Aksimentiev, Aleksei; Yoo, Jejoong

    2016-01-01

    The DNA bricks method exploits self-assembly of short DNA fragments to produce custom three-dimensional objects with subnanometer precision. In contrast to DNA origami, the DNA brick method permits a variety of different structures to be realized using the same library of DNA strands. As a consequence of their design, however, assembled DNA brick structures have fewer interhelical connections in comparison to equivalent DNA origami structures. Although the overall shape of the DNA brick objects has been characterized and found to conform to the features of the target designs, the microscopic properties of DNA brick objects remain yet to be determined. Here, we use the all-atom molecular dynamics method to directly compare the structure, mechanical properties and ionic conductivity of DNA brick and DNA origami structures different only by internal connectivity of their consistituent DNA strands. In comparison to equivalent DNA origami structures, the DNA brick structures are found to be less rigid and less dense and have a larger cross-section area normal to the DNA helix direction. At the microscopic level, the junction in the DNA brick structures are found to be right-handed, similar to the structure of individual Holliday junctions (HJ) in solution, which contrasts with the left-handed structure of HJ in DNA origami. Subject to external electric field, a DNA brick plate is more leaky to ions than an equivalent DNA origami plate because of its lower density and larger cross-section area. Overall, our results indicate that the structures produced by the DNA brick method are fairly similar in their overall appearance to those created by the DNA origami method but are more compliant when subject to external forces, which likely is a consequence of their single crossover design. (paper)

  16. Connectivity-oriented urban projects

    NARCIS (Netherlands)

    Philibert Petit, E.

    2006-01-01

    This thesis is about connections in the built environment, networked connections for the mobility of people at the smallest scale of the urban realm: the pedestrian scale. It deals with applications of the new science of networks as a tool for observation and assessment of connectivity in the urban

  17. Airport industry connectivity report: 2015

    NARCIS (Netherlands)

    Boonekamp, T.; Lieshout, R.; Burghouwt, G.

    2015-01-01

    This report is an update of the 'Airport Industry Connectivity Report 2004-2014'. It's focused on more recent developments and charting how Europe’s connectivity has evolved over the past 12 months. Airport connectivity is an increasingly discussed topic in European policy circles. With good reason.

  18. Connecting Architecture and Implementation

    Science.gov (United States)

    Buchgeher, Georg; Weinreich, Rainer

    Software architectures are still typically defined and described independently from implementation. To avoid architectural erosion and drift, architectural representation needs to be continuously updated and synchronized with system implementation. Existing approaches for architecture representation like informal architecture documentation, UML diagrams, and Architecture Description Languages (ADLs) provide only limited support for connecting architecture descriptions and implementations. Architecture management tools like Lattix, SonarJ, and Sotoarc and UML-tools tackle this problem by extracting architecture information directly from code. This approach works for low-level architectural abstractions like classes and interfaces in object-oriented systems but fails to support architectural abstractions not found in programming languages. In this paper we present an approach for linking and continuously synchronizing a formalized architecture representation to an implementation. The approach is a synthesis of functionality provided by code-centric architecture management and UML tools and higher-level architecture analysis approaches like ADLs.

  19. More features, greater connectivity.

    Science.gov (United States)

    Hunt, Sarah

    2015-09-01

    Changes in our political infrastructure, the continuing frailties of our economy, and a stark growth in population, have greatly impacted upon the perceived stability of the NHS. Healthcare teams have had to adapt to these changes, and so too have the technologies upon which they rely to deliver first-class patient care. Here Sarah Hunt, marketing co-ordinator at Aid Call, assesses how the changing healthcare environment has affected one of its fundamental technologies - the nurse call system, argues the case for wireless such systems in terms of what the company claims is greater adaptability to changing needs, and considers the ever-wider range of features and functions available from today's nurse call equipment, particularly via connectivity with both mobile devices, and ancillaries ranging from enuresis sensors to staff attack alert 'badges'.

  20. Practicing (Dis)connections

    DEFF Research Database (Denmark)

    The paper addresses the reciprocal notions of mobility and mobilisation in medical imaging practice, in view of the contingent and multiple character of the knowledge-practices involving such images – and their interpretation – within and across situated settings. Based on an ethnographically......’s development of in-house examination protocols as a consequence of its having replaced an older, pre-existing MRI scanner with a new model. This re-domestication of MRI as occasioned by the replacement scanner offers a range of sociomaterial and sociotechnical contingencies in the practice to come to light...... of the epistemic underpinnings which render, and condition, how connections are mediated across extended settings of practice (in the MRI unit, at interdisciplinary case conferences, and at other hospitals, etc.). This relational view allows for the heterogeneity entailed in the domestication of the MRI scanner...

  1. DNA preservation in silk.

    Science.gov (United States)

    Liu, Yawen; Zheng, Zhaozhu; Gong, He; Liu, Meng; Guo, Shaozhe; Li, Gang; Wang, Xiaoqin; Kaplan, David L

    2017-06-27

    The structure of DNA is susceptible to alterations at high temperature and on changing pH, irradiation and exposure to DNase. Options to protect and preserve DNA during storage are important for applications in genetic diagnosis, identity authentication, drug development and bioresearch. In the present study, the stability of total DNA purified from human dermal fibroblast cells, as well as that of plasmid DNA, was studied in silk protein materials. The DNA/silk mixtures were stabilized on filter paper (silk/DNA + filter) or filter paper pre-coated with silk and treated with methanol (silk/DNA + PT-filter) as a route to practical utility. After air-drying and water extraction, 50-70% of the DNA and silk could be retrieved and showed a single band on electrophoretic gels. 6% silk/DNA + PT-filter samples provided improved stability in comparison with 3% silk/DNA + filter samples and DNA + filter samples for DNA preservation, with ∼40% of the band intensity remaining at 37 °C after 40 days and ∼10% after exposure to UV light for 10 hours. Quantitative analysis using the PicoGreen assay confirmed the results. The use of Tris/borate/EDTA (TBE) buffer enhanced the preservation and/or extraction of the DNA. The DNA extracted after storage maintained integrity and function based on serving as a functional template for PCR amplification of the gene for zinc finger protein 750 (ZNF750) and for transgene expression of red fluorescence protein (dsRed) in HEK293 cells. The high molecular weight and high content of a crystalline beta-sheet structure formed on the coated surfaces likely accounted for the preservation effects observed for the silk/DNA + PT-filter samples. Although similar preservation effects were also obtained for lyophilized silk/DNA samples, the rapid and simple processing available with the silk-DNA-filter membrane system makes it appealing for future applications.

  2. Force induced DNA melting

    International Nuclear Information System (INIS)

    Santosh, Mogurampelly; Maiti, Prabal K

    2009-01-01

    When pulled along the axis, double-strand DNA undergoes a large conformational change and elongates by roughly twice its initial contour length at a pulling force of about 70 pN. The transition to this highly overstretched form of DNA is very cooperative. Applying a force perpendicular to the DNA axis (unzipping), double-strand DNA can also be separated into two single-stranded DNA, this being a fundamental process in DNA replication. We study the DNA overstretching and unzipping transition using fully atomistic molecular dynamics (MD) simulations and argue that the conformational changes of double-strand DNA associated with either of the above mentioned processes can be viewed as force induced DNA melting. As the force at one end of the DNA is increased the DNA starts melting abruptly/smoothly above a critical force depending on the pulling direction. The critical force f m , at which DNA melts completely decreases as the temperature of the system is increased. The melting force in the case of unzipping is smaller compared to the melting force when the DNA is pulled along the helical axis. In the case of melting through unzipping, the double-strand separation has jumps which correspond to the different energy minima arising due to sequence of different base pairs. The fraction of Watson-Crick base pair hydrogen bond breaking as a function of force does not show smooth and continuous behavior and consists of plateaus followed by sharp jumps.

  3. DNA damage and autophagy

    International Nuclear Information System (INIS)

    Rodriguez-Rocha, Humberto; Garcia-Garcia, Aracely; Panayiotidis, Mihalis I.; Franco, Rodrigo

    2011-01-01

    Both exogenous and endogenous agents are a threat to DNA integrity. Exogenous environmental agents such as ultraviolet (UV) and ionizing radiation, genotoxic chemicals and endogenous byproducts of metabolism including reactive oxygen species can cause alterations in DNA structure (DNA damage). Unrepaired DNA damage has been linked to a variety of human disorders including cancer and neurodegenerative disease. Thus, efficient mechanisms to detect DNA lesions, signal their presence and promote their repair have been evolved in cells. If DNA is effectively repaired, DNA damage response is inactivated and normal cell functioning resumes. In contrast, when DNA lesions cannot be removed, chronic DNA damage triggers specific cell responses such as cell death and senescence. Recently, DNA damage has been shown to induce autophagy, a cellular catabolic process that maintains a balance between synthesis, degradation, and recycling of cellular components. But the exact mechanisms by which DNA damage triggers autophagy are unclear. More importantly, the role of autophagy in the DNA damage response and cellular fate is unknown. In this review we analyze evidence that supports a role for autophagy as an integral part of the DNA damage response.

  4. DNA Open states and DNA hydratation

    International Nuclear Information System (INIS)

    Lema-Larre, B. de; Martin-Landrove, M

    1995-01-01

    It is a very well-known fact that an protonic exchange exists among natural DNA filaments and synthetic polynucleotides with the solvent (1--2). The existence of DNA open states, that is to say states for which the interior of the DNA molecule is exposed to the external environment, it has been demonstrated by means of proton-deuterium exchange (3). This work has carried out experiments measuring the dispersion of the traverse relaxation rate (4), as a pulsation rate function in a Carr-Purcell-Meiboom-Gill (CPMG) pulses sequence rate, to determine changes in the moist layer of the DNA molecule. The experiments were carried out under different experimental conditions in order to vary the probability that open states occurs, such as temperature or the exposure to electromagnetic fields. Some theoretical models were supposed to adjust the experimental results including those related to DNA non linear dynamic [es

  5. Immunoassay of DNA damage

    International Nuclear Information System (INIS)

    Gasparro, F.P.; Santella, R.M.

    1988-01-01

    The direct photomodification of DNA by ultraviolet light or the photo-induced addition of exogenous compounds to DNA components results in alterations of DNA structure ranging from subtle to profound. There are two consequences of these conformational changes. First, cells in which the DNA has been damaged are capable of executing repair steps. Second, the DNA which is usually of very low immunogenicity now becomes highly antigenic. This latter property has allowed the production of a series of monoclonal antibodies that recognize photo-induced DNA damage. Monoclonal antibodies have been generated that recognize the 4',5'-monoadduct and the crosslink of 8-methoxypsoralen in DNA. In addition, another antibody has been prepared which recognizes the furan-side monoadduct of 6,4,4'-trimethylangelicin in DNA. These monoclonal antibodies have been characterized as to sensitivity and specificity using non-competitive and competitive enzyme-linked-immunosorbent assays (ELISA). (author)

  6. Immunoassay of DNA damage

    Energy Technology Data Exchange (ETDEWEB)

    Gasparro, F P; Santella, R M

    1988-09-01

    The direct photomodification of DNA by ultraviolet light or the photo-induced addition of exogenous compounds to DNA components results in alterations of DNA structure ranging from subtle to profound. There are two consequences of these conformational changes. First, cells in which the DNA has been damaged are capable of executing repair steps. Second, the DNA which is usually of very low immunogenicity now becomes highly antigenic. This latter property has allowed the production of a series of monoclonal antibodies that recognize photo-induced DNA damage. Monoclonal antibodies have been generated that recognize the 4',5'-monoadduct and the crosslink of 8-methoxypsoralen in DNA. In addition, another antibody has been prepared which recognizes the furan-side monoadduct of 6,4,4'-trimethylangelicin in DNA. These monoclonal antibodies have been characterized as to sensitivity and specificity using non-competitive and competitive enzyme-linked-immunosorbent assays (ELISA).

  7. DNA computing models

    CERN Document Server

    Ignatova, Zoya; Zimmermann, Karl-Heinz

    2008-01-01

    In this excellent text, the reader is given a comprehensive introduction to the field of DNA computing. The book emphasizes computational methods to tackle central problems of DNA computing, such as controlling living cells, building patterns, and generating nanomachines.

  8. DNA tagged microparticles

    Science.gov (United States)

    Farquar, George Roy; Leif, Roald N; Wheeler, Elizabeth

    2015-05-05

    A simulant that includes a carrier and DNA encapsulated in the carrier. Also a method of making a simulant including the steps of providing a carrier and encapsulating DNA in the carrier to produce the simulant.

  9. Modeling DNA Replication.

    Science.gov (United States)

    Bennett, Joan

    1998-01-01

    Recommends the use of a model of DNA made out of Velcro to help students visualize the steps of DNA replication. Includes a materials list, construction directions, and details of the demonstration using the model parts. (DDR)

  10. DNA Duplex Length and Salt Concentration Dependence of Enthalpy−Entropy Compensation Parameters for DNA Melting

    KAUST Repository

    Starikov, E. B.

    2009-08-20

    Systematical differential calorimetry experiments on DNA oligomers with different lengths and placed in water solutions with various added salt concentrations may, in principle, unravel important information about the structure and dynamics of the DNA and their water-counterion surrounding. With this in mind, to reinterpret the most recent results of calorimetric experiments on DNA oligomers of such a kind, the recent enthalpy-entropy compensation theory has been used. It is demonstrated that the application of the latter could enable direct estimation of thermodynamic parameters of the microphase transitions connected to the changes in DNA dynamical regimes versus the length of the biopolymers and the ionic strengths of their water solutions, and this calls for much more systematical experimental and theoretical studies in this field. © 2009 American Chemical Society.

  11. Connection between Genetic and Clinical Data in Bipolar Disorder

    DEFF Research Database (Denmark)

    Mellerup, Erling; Andreassen, Ole; Bennike, Bente

    2012-01-01

    Complex diseases may be associated with combinations of changes in DNA, where the single change has little impact alone. In a previous study of patients with bipolar disorder and controls combinations of SNP genotypes were analyzed, and four large clusters of combinations were found to be signifi...... to be significantly associated with bipolar disorder. It has now been found that these clusters may be connected to clinical data....

  12. Mesoscale Connections Summer 2017

    Energy Technology Data Exchange (ETDEWEB)

    Kippen, Karen Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bourke, Mark Andrew M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-06-21

    Our challenge derives from the fact that in metals or explosives grains, interfaces and defects control engineering performance in ways that are neither amenable to continuum codes (which fail to rigorously describe the heterogeneities derived from microstructure) nor computationally tractable to first principles atomistic calculations. This is a region called the mesoscale, which stands at the frontier of our desire to translate fundamental science insights into confidence in aging system performance over the range of extreme conditions relevant in a nuclear weapon. For dynamic problems, the phenomena of interest can require extremely good temporal resolutions. A shock wave traveling at 1000 m/s (or 1 mm/μs) passes through a grain with a diameter of 1 micron in a nanosecond (10-9 sec). Thus, to observe the mesoscale phenomena—such as dislocations or phase transformations—as the shock passes, temporal resolution better than picoseconds (10-12 sec) may be needed. As we anticipate the science challenges over the next decade, experimental insights on material performance at the micron spatial scale with picosecond temporal resolution—at the mesoscale— are a clear challenge. This is a challenge fit for Los Alamos in partnership with our sister labs and academia. Mesoscale Connections will draw attention to our progress as we tackle the mesoscale challenge. We hope you like it and encourage suggestions of content you are interested in.

  13. DNA: Structure and function

    DEFF Research Database (Denmark)

    Sinden, Richard R.; E. Pearson, Christopher; N. Potaman, Vladimir

    1998-01-01

    This chapter discusses the structure and function of DNA. DNA occupies a critical role in cells, because it is the source of all intrinsic genetic information. Chemically, DNA is a very stable molecule, a characteristic important for a macromolecule that may have to persist in an intact form...

  14. Replicating animal mitochondrial DNA

    Directory of Open Access Journals (Sweden)

    Emily A. McKinney

    2013-01-01

    Full Text Available The field of mitochondrial DNA (mtDNA replication has been experiencing incredible progress in recent years, and yet little is certain about the mechanism(s used by animal cells to replicate this plasmid-like genome. The long-standing strand-displacement model of mammalian mtDNA replication (for which single-stranded DNA intermediates are a hallmark has been intensively challenged by a new set of data, which suggests that replication proceeds via coupled leading-and lagging-strand synthesis (resembling bacterial genome replication and/or via long stretches of RNA intermediates laid on the mtDNA lagging-strand (the so called RITOLS. The set of proteins required for mtDNA replication is small and includes the catalytic and accessory subunits of DNA polymerase y, the mtDNA helicase Twinkle, the mitochondrial single-stranded DNA-binding protein, and the mitochondrial RNA polymerase (which most likely functions as the mtDNA primase. Mutations in the genes coding for the first three proteins are associated with human diseases and premature aging, justifying the research interest in the genetic, biochemical and structural properties of the mtDNA replication machinery. Here we summarize these properties and discuss the current models of mtDNA replication in animal cells.

  15. Mutagenesis and repair of DNA

    International Nuclear Information System (INIS)

    Janion, C.; Grzesiuk, E.; Fabisiewicz, A.; Tudek, B.; Ciesla, J.; Graziewicz, M.; Wojcik, A.; Speina, E.

    1998-01-01

    Full text. The discovery that the mfd gene codes for a transcription-coupling repair factor (TRCF) prompted us to re-investigate the MFD (mutation frequency decline) phenomenon in E.coli K-12 strain when mutations were induced by ultraviolet light, halogen light or MMS-treatment. These studies revealed that: (i) the process of MFD involves the proofreading activity of DNA pol III and the mismatch repair system, as well as, TRCF and the UvrABC-excinuclease (ii) a semi-rich plate test may be replaced by a rich liquid medium, (iii) the T-T pyrimidine dimers are the lesions excised with the highest activity, and (iv) overproduction of UmuD(D'C) proteins leads to a great increase in mutant frequency in irradiated and MMS-treated cells. The role of mismatch repair (MR) in MMS-induced mutagenesis is obscured by the fact that the spectra of mutational specificity are different in bacteria proficient and deficient in MR. It has been found that transposons Tn10 (and Tn5) when inserted into chromosomal DNA of E. coli influence the phenotype lowering the survival and frequency of mutations induced by UV or halogen light irradiation. This is connected with a deficiency of UmuD(D') and UmuC proteins. Transformation of bacteria with plasmids bearing the umuD(D')C genes, suppresses the effects of the transposon insertion, a phenomenon which has not been described before. Single-stranded DNA of M13mp18 phage was oxidized in vitro by a hydroxyl radical generating system including hypoxanthine/xanthine oxidase/Fe3+/EDTA, and it was found that Fapy-Ade, Fapy-Gua, 8-oxyAde and thymine glycol were the main products formed. Replication of the oxidized template by T7 phage DNA polymerase, Klenow fragment of polymerase I, or polymerase beta from bovine thymus has revealed that oxidized pyrimidines are stronger blockers than oxidized purines for T7 phage and Klenow fragment polymerases and the blocking potency depends on the neighboring bases and on the type of polymerase. Studies of

  16. Transnational Connections and Multiple Belongings

    DEFF Research Database (Denmark)

    Galal, Lise Paulsen; Sparre, Sara Cathrine Lei

    With the purpose of presenting DIMECCE key findings, we in this paper present different aspects, potentials and challenges related to the Middle Eastern Christians transnational connections and multiple belonging. We distinguish between individual transnational connections and practices, such as ......, such as family relations, churches as transnational – or global – institutions, and other organisations and associations established to support politically, socially or culturally connections and development in the country or region of origin....

  17. Anonymous Connections and Onion Routing

    National Research Council Canada - National Science Library

    Syverson, Paul F; Goldschlag, David M; Reed, Michael G

    1997-01-01

    .... Unmodified Internet applications can use these anonymous connections by means of proxies. The proxies may also make communication anonymous by removing identifying information from the data stream...

  18. Interstate Connections - CEHC [ds619

    Data.gov (United States)

    California Natural Resource Agency — The California Department of Transportation (Caltrans) and California Department of Fish and Game (CDFG) commissioned the California Essential Habitat Connectivity...

  19. Family Connections: Building Connections among Home, School, and Community

    Science.gov (United States)

    Dikkers, Amy Garrett

    2013-01-01

    Recent research on parental involvement has explored connections between parental involvement in school and children's academic achievement. While many schools have active parent organizations and a base of parents who offer additional support, others struggle to make connections with their parents or community members. Even in places with active…

  20. Carl Sagan's Cosmic Connection

    Science.gov (United States)

    Sagan, Carl; Agel, Jerome

    2000-08-01

    Foreword Freeman Dyson; Personal reflections Ann Druyan; Preface; Part I. Cosmic Perspective: 1. A transitional animal; 2. The Unicorn of Cetus; 3. A message from earth; 4. A message to earth; 5. Experiments in utopias; 6. Chauvinism; 7. Space exploration as a human enterprise I. The scientific interest; 8. Space exploration as a human enterprise II. The public interest; 9. Space exploration as a human enterprise III. The historical interest; Part II. The Solar System: 10. On teaching the first grade; 11. 'The ancient and legendary Gods of old'; 12. The Venus detective story; 13. Venus is hell; 14. Science and 'intelligence'; 15. The moons of Barsoom; 16. The mountains of Mars I. Observations from earth; 17. The mountains of Mars II. Observations from space; 18. The canals of Mars; 19. The lost pictures of Mars; 20. The Ice Age and the cauldron; 21. Beginnings and ends of the Earth; 22. Terraforming the plants; 23. The exploration and utlization of the solar system; Part III. Beyond the Solar System: 24. Some of my best friends are dolphins; 25. 'Hello, central casting? Send me twenty extraterrestrials'; 26. The cosmic connection; 27. Extraterrestrial life: an idea whose time has come; 28. Has the Earth been visited?; 29. A search strategy for detecting extraterrestrial intelligence; 30. If we succeed 31. Cables, drums, and seashells; 32. The night freight to the stars; 33. Astroengineering; 34. Twenty questions: a classification of cosmic civilisations; 35. Galactic cultural exchanges; 36. A passage to elsewhere; 37. Starfolk I. A Fable; 38. Starfolk II. A future; 39. Starfolk III. The cosmic Cheshire cats; Epilog David Morrison; Index.

  1. Juno, The Cultural Connection

    Science.gov (United States)

    Clarke, Theodore

    2017-04-01

    After a 5 year journey and a billion miles cartwheeling through the vastness of space, the Juno spacecraft is in orbit about the planet Jupiter. With its suite of scientific instruments Juno scientists will catch a glimpse of the dawn of creation of our own solar system. Juno will address origins, asking for us all, Who am I? Where do I come from? But Juno is more than a space laboratory to study the planet Jupiter. Juno embodies the history of humankind's perception of the universe from Aristotle, Copernicus and Galileo, to the Juno spacecraft peering beneath the clouds of Jupiter. Juno embodies the literature of classical mythology and the timeless masterpieces of the Renaissance and Baroque periods in its very name. Juno carries to Jupiter small statuettes of the gods Jupiter and Juno and the scientist Galileo. Juno embodies cosmic visualization experiences through first ever movies of the moon occulting Earth (>2 million hits on YouTube) and the Galilean satellites orbiting about Jupiter (>1.8 million hits on You Tube). Juno embodies the stirring music of modern Greek composer Vangelis, the Orpheus of Juno, who provided the score for the movies of the moon occulting Earth and of the Galilean satellites orbiting Jupiter. Juno embodies down to Earth visualization experiences through trajectory models created of Juno's passage through the Earth-moon system and Juno's entire orbital mission at Jupiter. Juno is the embodiment of public engagement in its science in a fishbowl program. Indeed, because Juno is the embodiment of this remarkable union of science and technology, history and literature, music and art, and visualization and public engagement, Juno is truly an ambassador to the universe of a New Renaissance. In my paper, "Juno, the Cultural Connection," I will unveil a dimension of the Juno mission to the planet Jupiter that will appeal to a broad sector of the global public.

  2. Formation of primary pit connection during conchocelis phase of Porphyra yezoensis (Bangiophyceae, Rhodophyta)

    Science.gov (United States)

    Shual, Li; Jiang, Ming; Duan, Delin

    2006-09-01

    The formation of pit connection during conchocelis phase of Porphyra yezoensis Ueda was observed and examined with transmission electron microscope (TEM) and epifluorence microscope. It is indicated that the pit connection was formed in late stage of conchocelis phase and the early stages of conchosporangial cell development, and disappeared in bispore stage. The pit connection contained a thin membrane layer at outer pit plug. Stained with 4', 6'-diamidino-2-phenylidole dihydrochloride hydrate (DAPI), transferring of DNA or RNA between adjacent cells were observed in late stage of conchocelis development, it was deduced that pit connection might serve as a channel for signal transduction and genetic substance transportation in conchocelis phase.

  3. Fast phylogenetic DNA barcoding

    DEFF Research Database (Denmark)

    Terkelsen, Kasper Munch; Boomsma, Wouter Krogh; Willerslev, Eske

    2008-01-01

    We present a heuristic approach to the DNA assignment problem based on phylogenetic inferences using constrained neighbour joining and non-parametric bootstrapping. We show that this method performs as well as the more computationally intensive full Bayesian approach in an analysis of 500 insect...... DNA sequences obtained from GenBank. We also analyse a previously published dataset of environmental DNA sequences from soil from New Zealand and Siberia, and use these data to illustrate the fact that statistical approaches to the DNA assignment problem allow for more appropriate criteria...... for determining the taxonomic level at which a particular DNA sequence can be assigned....

  4. Radiation and DNA

    Energy Technology Data Exchange (ETDEWEB)

    Riabchenko, N I

    1979-01-01

    Consideration is given to the effects of ionizing radiation on the structure of DNA. Physical and chemical methods of determining radiation damage to the primary (polynucleotide chain and nitrogenous base) and secondary (helical) structure of DNA are discussed, and the effects of ionizing radiation on deoxyribonucleoprotein complexes are considered. The radiolysis of DNA in vitro and in bacterial and mammalian cells is examined and cellular mechanisms for the repair of radiation-damaged DNA are considered, taking into account single-strand and double-strand breaks, gamma-radiation damage and deoxyribonucleoprotein-membrane complex damage. Postradiation DNA degradation in bacteria and lymphatic cells is also discussed.

  5. DNA-Mediated Electrochemistry

    Science.gov (United States)

    Gorodetsky, Alon A.; Buzzeo, Marisa C.

    2009-01-01

    The base pair stack of DNA has been demonstrated as a medium for long range charge transport chemistry both in solution and at DNA-modified surfaces. This chemistry is exquisitely sensitive to structural perturbations in the base pair stack as occur with lesions, single base mismatches, and protein binding. We have exploited this sensitivity for the development of reliable electrochemical assays based on DNA charge transport at self-assembled DNA monolayers. Here we discuss the characteristic features, applications, and advantages of DNA-mediated electrochemistry. PMID:18980370

  6. Imaging of DNA Ultrafine Bridges in Budding Yeast

    DEFF Research Database (Denmark)

    Quevedo Rodriguez, Oliver; Lisby, Michael

    2018-01-01

    DNA ultrafine bridges (UFBs) are a type of chromatin-free DNA bridges that connect sister chromatids in anaphase and pose a threat to genome stability. However, little is known about the origin of these structures, and how they are sensed and resolved by the cell. In this chapter, we review tools...... and methods for studying UFBs by fluorescence microscopy including chemical and genetic approaches to induce UFBs in the model organism Saccharomyces cerevisiae....

  7. Imaging of DNA Ultrafine Bridges in Budding Yeast.

    Science.gov (United States)

    Quevedo, Oliver; Lisby, Michael

    2018-01-01

    DNA ultrafine bridges (UFBs) are a type of chromatin-free DNA bridges that connect sister chromatids in anaphase and pose a threat to genome stability. However, little is known about the origin of these structures, and how they are sensed and resolved by the cell. In this chapter, we review tools and methods for studying UFBs by fluorescence microscopy including chemical and genetic approaches to induce UFBs in the model organism Saccharomyces cerevisiae.

  8. DNA fragmentation in spermatozoa

    DEFF Research Database (Denmark)

    Rex, A S; Aagaard, J.; Fedder, J

    2017-01-01

    Sperm DNA Fragmentation has been extensively studied for more than a decade. In the 1940s the uniqueness of the spermatozoa protein complex which stabilizes the DNA was discovered. In the fifties and sixties, the association between unstable chromatin structure and subfertility was investigated....... In the seventies, the impact of induced DNA damage was investigated. In the 1980s the concept of sperm DNA fragmentation as related to infertility was introduced as well as the first DNA fragmentation test: the Sperm Chromatin Structure Assay (SCSA). The terminal deoxynucleotidyl transferase nick end labelling...... (TUNEL) test followed by others was introduced in the nineties. The association between DNA fragmentation in spermatozoa and pregnancy loss has been extensively investigated spurring the need for a therapeutic tool for these patients. This gave rise to an increased interest in the aetiology of DNA damage...

  9. Biophysics of DNA

    CERN Document Server

    Vologodskii, Alexander

    2015-01-01

    Surveying the last sixty years of research, this book describes the physical properties of DNA in the context of its biological functioning. It is designed to enable both students and researchers of molecular biology, biochemistry and physics to better understand the biophysics of DNA, addressing key questions and facilitating further research. The chapters integrate theoretical and experimental approaches, emphasising throughout the importance of a quantitative knowledge of physical properties in building and analysing models of DNA functioning. For example, the book shows how the relationship between DNA mechanical properties and the sequence specificity of DNA-protein binding can be analyzed quantitatively by using our current knowledge of the physical and structural properties of DNA. Theoretical models and experimental methods in the field are critically considered to enable the reader to engage effectively with the current scientific literature on the physical properties of DNA.

  10. X-ray induced degradation of DNA in Aspergillus nidulans cells comparative analysis of UV- and X-ray induced DNA degradation

    International Nuclear Information System (INIS)

    Zinchenko, V.V.; Babykin, M.M.

    1980-01-01

    Irradiating cells of Aspergillus nidulans of the wild type in the logarythmical growth phase with X-rays leads to a certain retention in DNA synthesis. This period is characterized by an insignificant fermentative DNA degradation connected with a process of its repair. There is no direct dependence between the radiation dose and the level of DNA degradation. The investigation of X-ray induced DNA degradation in a number of UVS-mutants permits to show the existence of two branches of DNA degradation - dependent and independent of the exogenic energy source. The dependence of DNA degradation on albumen synthesis prior to irradiation and after it, is demonstrated. It is supposed that the level of X-ray induced DNA degradation is determined by two albumen systems, one of which initiates degradation and the other terminates it. The comparative analysis of UV and X-ray induced DNA degradation is carried out

  11. Limited genetic connectivity of Pavona gigantea in the Mexican Pacific

    Science.gov (United States)

    Saavedra-Sotelo, N. C.; Calderon-Aguilera, L. E.; Reyes-Bonilla, H.; López-Pérez, R. A.; Medina-Rosas, P.; Rocha-Olivares, A.

    2011-09-01

    Coral reefs are the most complex and diverse of aquatic ecosystems. Their vulnerability and deterioration in the face of anthropogenic disturbance require the adoption of conservation and restoration efforts to maintain their resilience, for which connectivity is of paramount importance. Dispersal of meroplanktonic larval stages drives the levels of connectivity among coral populations and is influenced by the local current regime, the synchronization of spawning events, and the capacity of larvae to reach recruitment sites. This research aims to quantify the levels of connectivity among Pavona gigantea populations in the Mexican Pacific, using two mitochondrial genes and a nuclear gene. Mitochondrial genes were insufficiently variable to test geographical heterogeneity, whereas the more variable ( h ≥ 0.86) nuclear rDNA indicated significant geographic differentiation ( Φ ST = 0.159, P consequence for the viability and vulnerability of local populations and should be considered in the management and conservation strategies in the region.

  12. The Always-Connected Generation

    Science.gov (United States)

    Bull, Glen

    2010-01-01

    The Pew Internet and American Life project characterizes the millennials--the first generation to come of age in the new millennium--as the first "always-connected" generation. Significant aspects of culture are changing as a result. A changing world where all students are connected all the time has substantial educational implications. Despite…

  13. Partitioning graphs into connected parts

    NARCIS (Netherlands)

    Hof, van 't P.; Paulusma, D.; Woeginger, G.J.; Frid, A.; Morozov, A.S.; Rybalchenko, A.; Wagner, K.W.

    2009-01-01

    The 2-DISJOINT CONNECTED SUBGRAPHS problem asks if a given graph has two vertex-disjoint connected subgraphs containing pre-specified sets of vertices. We show that this problem is NP-complete even if one of the sets has cardinality 2. The LONGEST PATH CONTRACTIBILITY problem asks for the largest

  14. Connections for Small Vertex Models

    Indian Academy of Sciences (India)

    This paper is a first attempt at calssifying connections on small vertex models i.e., commuting squares of the form displayed in (1.2) below. ... obtain necessary conditions for two such `model connections' in (2, ) to be ... Current Issue : Vol.

  15. Design and Assembly of DNA Nano-Objects and 2D DNA Origami Arrays

    Science.gov (United States)

    Liu, Wenyan

    DNA, which plays a central role in biology as the carrier of genetic information, is also an excellent candidate for structural nanotechnology. Researches have proven that a variety of complicated DNA assemblies, such as objects, 2D & 3D crystals, and nanomechanical devices, can be fabricated through the combination of robust branched DNA motifs and sticky ends. This dissertation focuses on the design and construction of DNA nano--objects and 2D DNA origami arrays. In this dissertation, we first describe the formation of a triangular species that has four strands per edge, held together by PX interactions. We demonstrate by nondenaturing gel electrophoresis and by atomic force microscopy (AFM) that we can combine a partial triangle with other strands to form a robust four--stranded molecule. By combining them with a novel three--domain molecule, we also demonstrate by AFM that these triangles can be self--assembled into a linear array. Second, we demonstrate our attempts to design and self--assemble 2D DNA origami arrays using several different strategies. Specifically, we introduce the self--assembly of 2D DNA origami lattices using a symmetric cross--like design. This design strategy resulted in a well--ordered woven latticework array with edge dimensions of 2--3 mum. This size is likely to be large enough to connect bottom-up methods of patterning with top--down approaches. Third, we illustrate the design and construction of DNA nano--objects for exploring the substrate preferences of topoisomerase (topo) II. We designed and fabricated four double rhombus--like DNA molecules, each of which contains a different conformation of crossover in the middle, as possible substrates to establish the structural preferences for topo II. We characterized the formation of each substrate molecule by gel electrophoresis. Finally, we study the effect of M13 DNA knotting on the formation of the DNA origami tiles. We demonstrate by atomic force microscopy (AFM) that knotted M13

  16. Privacy and the Connected Society

    DEFF Research Database (Denmark)

    Sørensen, Lene Tolstrup; Khajuria, Samant; Skouby, Knud Erik

    The Vision of the 5G enabled connected society is highly based on the evolution and implementation of Internet of Things. This involves, amongst others, a significant raise in devices, sensors and communication in pervasive interconnections as well as cooperation amongst devices and entities across...... the society. Enabling the vision of the connected society, researchers point in the direction of security and privacy as areas to challenge the vision. By use of the Internet of Things reference model as well as the vision of the connected society, this paper identifies privacy of the individual with respect...... to three selected areas: Shopping, connected cars and online gaming. The paper concludes that privacy is a complexity within the connected society vision and that thee is a need for more privacy use cases to shed light on the challenge....

  17. Beyond DNA repair: DNA-PK function in cancer

    OpenAIRE

    Goodwin, Jonathan F.; Knudsen, Karen E.

    2014-01-01

    The DNA-dependent protein kinase (DNA-PK) is a pivotal component of the DNA repair machinery that governs the response to DNA damage, serving to maintain genome integrity. However, the DNA-PK kinase component was initially isolated with transcriptional complexes, and recent findings have illuminated the impact of DNA-PK-mediated transcriptional regulation on tumor progression and therapeutic response. DNA-PK expression has also been correlated with poor outcome in selected tumor types, furthe...

  18. Molecular Dynamics Simulation of High Density DNA Arrays

    Directory of Open Access Journals (Sweden)

    Rudolf Podgornik

    2018-01-01

    Full Text Available Densely packed DNA arrays exhibit hexagonal and orthorhombic local packings, as well as a weakly first order transition between them. While we have some understanding of the interactions between DNA molecules in aqueous ionic solutions, the structural details of its ordered phases and the mechanism governing the respective phase transitions between them remains less well understood. Since at high DNA densities, i.e., small interaxial spacings, one can neither neglect the atomic details of the interacting macromolecular surfaces nor the atomic details of the intervening ionic solution, the atomistic resolution is a sine qua non to properly describe and analyze the interactions between DNA molecules. In fact, in order to properly understand the details of the observed osmotic equation of state, one needs to implement multiple levels of organization, spanning the range from the molecular order of DNA itself, the possible ordering of counterions, and then all the way to the induced molecular ordering of the aqueous solvent, all coupled together by electrostatic, steric, thermal and direct hydrogen-bonding interactions. Multiscale simulations therefore appear as singularly suited to connect the microscopic details of this system with its macroscopic thermodynamic behavior. We review the details of the simulation of dense atomistically resolved DNA arrays with different packing symmetries and the ensuing osmotic equation of state obtained by enclosing a DNA array in a monovalent salt and multivalent (spermidine counterions within a solvent permeable membrane, mimicking the behavior of DNA arrays subjected to external osmotic stress. By varying the DNA density, the local packing symmetry, and the counterion type, we are able to analyze the osmotic equation of state together with the full structural characterization of the DNA subphase, the counterion distribution and the solvent structural order in terms of its different order parameters and

  19. DNA topology and transcription

    Science.gov (United States)

    Kouzine, Fedor; Levens, David; Baranello, Laura

    2014-01-01

    Chromatin is a complex assembly that compacts DNA inside the nucleus while providing the necessary level of accessibility to regulatory factors conscripted by cellular signaling systems. In this superstructure, DNA is the subject of mechanical forces applied by variety of molecular motors. Rather than being a rigid stick, DNA possesses dynamic structural variability that could be harnessed during critical steps of genome functioning. The strong relationship between DNA structure and key genomic processes necessitates the study of physical constrains acting on the double helix. Here we provide insight into the source, dynamics, and biology of DNA topological domains in the eukaryotic cells and summarize their possible involvement in gene transcription. We emphasize recent studies that might inspire and impact future experiments on the involvement of DNA topology in cellular functions. PMID:24755522

  20. Eukaryotic DNA Replication Fork.

    Science.gov (United States)

    Burgers, Peter M J; Kunkel, Thomas A

    2017-06-20

    This review focuses on the biogenesis and composition of the eukaryotic DNA replication fork, with an emphasis on the enzymes that synthesize DNA and repair discontinuities on the lagging strand of the replication fork. Physical and genetic methodologies aimed at understanding these processes are discussed. The preponderance of evidence supports a model in which DNA polymerase ε (Pol ε) carries out the bulk of leading strand DNA synthesis at an undisturbed replication fork. DNA polymerases α and δ carry out the initiation of Okazaki fragment synthesis and its elongation and maturation, respectively. This review also discusses alternative proposals, including cellular processes during which alternative forks may be utilized, and new biochemical studies with purified proteins that are aimed at reconstituting leading and lagging strand DNA synthesis separately and as an integrated replication fork.

  1. Programmable molecular recognition based on the geometry of DNA nanostructures.

    Science.gov (United States)

    Woo, Sungwook; Rothemund, Paul W K

    2011-07-10

    From ligand-receptor binding to DNA hybridization, molecular recognition plays a central role in biology. Over the past several decades, chemists have successfully reproduced the exquisite specificity of biomolecular interactions. However, engineering multiple specific interactions in synthetic systems remains difficult. DNA retains its position as the best medium with which to create orthogonal, isoenergetic interactions, based on the complementarity of Watson-Crick binding. Here we show that DNA can be used to create diverse bonds using an entirely different principle: the geometric arrangement of blunt-end stacking interactions. We show that both binary codes and shape complementarity can serve as a basis for such stacking bonds, and explore their specificity, thermodynamics and binding rules. Orthogonal stacking bonds were used to connect five distinct DNA origami. This work, which demonstrates how a single attractive interaction can be developed to create diverse bonds, may guide strategies for molecular recognition in systems beyond DNA nanostructures.

  2. DNA-based machines.

    Science.gov (United States)

    Wang, Fuan; Willner, Bilha; Willner, Itamar

    2014-01-01

    The base sequence in nucleic acids encodes substantial structural and functional information into the biopolymer. This encoded information provides the basis for the tailoring and assembly of DNA machines. A DNA machine is defined as a molecular device that exhibits the following fundamental features. (1) It performs a fuel-driven mechanical process that mimics macroscopic machines. (2) The mechanical process requires an energy input, "fuel." (3) The mechanical operation is accompanied by an energy consumption process that leads to "waste products." (4) The cyclic operation of the DNA devices, involves the use of "fuel" and "anti-fuel" ingredients. A variety of DNA-based machines are described, including the construction of "tweezers," "walkers," "robots," "cranes," "transporters," "springs," "gears," and interlocked cyclic DNA structures acting as reconfigurable catenanes, rotaxanes, and rotors. Different "fuels", such as nucleic acid strands, pH (H⁺/OH⁻), metal ions, and light, are used to trigger the mechanical functions of the DNA devices. The operation of the devices in solution and on surfaces is described, and a variety of optical, electrical, and photoelectrochemical methods to follow the operations of the DNA machines are presented. We further address the possible applications of DNA machines and the future perspectives of molecular DNA devices. These include the application of DNA machines as functional structures for the construction of logic gates and computing, for the programmed organization of metallic nanoparticle structures and the control of plasmonic properties, and for controlling chemical transformations by DNA machines. We further discuss the future applications of DNA machines for intracellular sensing, controlling intracellular metabolic pathways, and the use of the functional nanostructures for drug delivery and medical applications.

  3. DNA repair and cancer

    International Nuclear Information System (INIS)

    Rathore, Shakuntla; Joshi, Pankaj Kumar; Gaur, Sudha

    2012-01-01

    DNA repair refers to a collection of processes by which a cell identifies and corrects damage to the DNA molecule that encode it's genome. In human cells, both normal metabolic activities and environmental factors such as UV light and radiation can cause DNA damage, resulting in as many one million individual molecular lesions per day. Many of these lesions cause structural damage to the DNA molecule and can alter or eliminate the cell's ability to transcribe the gene that the affected DNA encodes. Other lesions include potentially harmful mutation in cell's genome which affect the survival of it's daughter cells after it undergoes mitosis. As a consequence, the DNA repair process is constantly active as it responds to damage in the DNA structure. Inherited mutation that affect DNA repair genes are strongly associated with high cancer risks in humans. Hereditary non polyposis colorectal cancer (HNPCC) is strongly associated with specific mutation in the DNA mismatch repair pathway. BRCA1, BRCA2 two famous mutation conferring a hugely increased risk of breast cancer on carrier, are both associated with a large number of DNA repair pathway, especially NHEJ and homologous recombination. Cancer therapy procedures such as chemotherapy and radiotherapy work by overwhelming the capacity of the cell to repair DNA damage, resulting in cell death. Cells that are most rapidly dividing most typically cancer cells are preferentially affected. The side effect is that other non-cancerous but rapidly dividing cells such as stem cells in the bone marrow are also affected. Modern cancer treatment attempt to localize the DNA damage to cells and tissue only associated with cancer, either by physical means (concentrating the therapeutic agent in the region of the tumor) or by biochemical means (exploiting a feature unique to cancer cells in the body). (author)

  4. Nonisotopic DNA probe techniques

    National Research Council Canada - National Science Library

    Kricka, Larry J

    1992-01-01

    The objective of this book is to bring together descriptions of the principal nonisotopic methods for DNA hybridization assays, together with experimental details of the methods, including labelling...

  5. DNA replication and cancer

    DEFF Research Database (Denmark)

    Boyer, Anne-Sophie; Walter, David; Sørensen, Claus Storgaard

    2016-01-01

    A dividing cell has to duplicate its DNA precisely once during the cell cycle to preserve genome integrity avoiding the accumulation of genetic aberrations that promote diseases such as cancer. A large number of endogenous impacts can challenge DNA replication and cells harbor a battery of pathways...... causing DNA replication stress and genome instability. Further, we describe cellular and systemic responses to these insults with a focus on DNA replication restart pathways. Finally, we discuss the therapeutic potential of exploiting intrinsic replicative stress in cancer cells for targeted therapy....

  6. Forensic DNA testing.

    Science.gov (United States)

    Butler, John M

    2011-12-01

    Forensic DNA testing has a number of applications, including parentage testing, identifying human remains from natural or man-made disasters or terrorist attacks, and solving crimes. This article provides background information followed by an overview of the process of forensic DNA testing, including sample collection, DNA extraction, PCR amplification, short tandem repeat (STR) allele separation and sizing, typing and profile interpretation, statistical analysis, and quality assurance. The article concludes with discussions of possible problems with the data and other forensic DNA testing techniques.

  7. Structure of DNA toroids and electrostatic attraction of DNA duplexes

    International Nuclear Information System (INIS)

    Cherstvy, A G

    2005-01-01

    DNA-DNA electrostatic attraction is considered as the driving force for the formation of DNA toroids in the presence of DNA condensing cations. This attraction comes from the DNA helical charge distribution and favours hexagonal toroidal cross-sections. The latter is in agreement with recent cryo-electron microscopy studies on DNA condensed with cobalt hexammine. We treat the DNA-DNA interactions within the modern theory of electrostatic interaction between helical macromolecules. The size and thickness of the toroids is calculated within a simple model; other models of stability of DNA toroids are discussed and compared

  8. Mechanisms of DNA Packaging by Large Double-Stranded DNA Viruses

    Science.gov (United States)

    Rao, Venigalla B.; Feiss, Michael

    2016-01-01

    Translocation of viral double-stranded DNA (dsDNA) into the icosahedral prohead shell is catalyzed by TerL, a motor protein that has ATPase, endonuclease, and translocase activities. TerL, following endonucleolytic cleavage of immature viral DNA concatemer recognized by TerS, assembles into a pentameric ring motor on the prohead’s portal vertex and uses ATP hydrolysis energy for DNA translocation. TerL’s N-terminal ATPase is connected by a hinge to the C-terminal endonuclease. Inchworm models propose that modest domain motions accompanying ATP hydrolysis are amplified, through changes in electrostatic interactions, into larger movements of the C-terminal domain bound to DNA. In phage φ29, four of the five TerL subunits sequentially hydrolyze ATP, each powering translocation of 2.5 bp. After one viral genome is encapsidated, the internal pressure signals termination of packaging and ejection of the motor. Current focus is on the structures of packaging complexes and the dynamics of TerL during DNA packaging, endonuclease regulation, and motor mechanics. PMID:26958920

  9. Properly colored connectivity of graphs

    CERN Document Server

    Li, Xueliang; Qin, Zhongmei

    2018-01-01

    A comprehensive survey of proper connection of graphs is discussed in this book with real world applications in computer science and network security. Beginning with a brief introduction, comprising relevant definitions and preliminary results, this book moves on to consider a variety of properties of graphs that imply bounds on the proper connection number. Detailed proofs of significant advancements toward open problems and conjectures are presented with complete references. Researchers and graduate students with an interest in graph connectivity and colorings will find this book useful as it builds upon fundamental definitions towards modern innovations, strategies, and techniques. The detailed presentation lends to use as an introduction to proper connection of graphs for new and advanced researchers, a solid book for a graduate level topics course, or as a reference for those interested in expanding and further developing research in the area.

  10. Connected vehicle pilot deployment program.

    Science.gov (United States)

    2014-01-01

    The U.S. Department of Transportations (USDOTs) connected vehicle research : program is a multimodal initiative to enable safe, interoperable, networked wireless : communications among vehicles, infrastructure, and personal communications : dev...

  11. Cybersecurity for Connected Diabetes Devices.

    Science.gov (United States)

    Klonoff, David C

    2015-04-16

    Diabetes devices are increasingly connected wirelessly to each other and to data-displaying reader devices. Threats to the accurate flow of information and commands may compromise the function of these devices and put their users at risk of health complications. Sound cybersecurity of connected diabetes devices is necessary to maintain confidentiality, integrity, and availability of the data and commands. Diabetes devices can be hacked by unauthorized agents and also by patients themselves to extract data that are not automatically provided by product software. Unauthorized access to connected diabetes devices has been simulated and could happen in reality. A cybersecurity standard designed specifically for connected diabetes devices will improve the safety of these products and increase confidence of users that the products will be secure. © 2015 Diabetes Technology Society.

  12. Functional Connectivity of Human Chewing

    Science.gov (United States)

    Quintero, A.; Ichesco, E.; Schutt, R.; Myers, C.; Peltier, S.; Gerstner, G.E.

    2013-01-01

    Mastication is one of the most important orofacial functions. The neurobiological mechanisms of masticatory control have been investigated in animal models, but less so in humans. This project used functional connectivity magnetic resonance imaging (fcMRI) to assess the positive temporal correlations among activated brain areas during a gum-chewing task. Twenty-nine healthy young-adults underwent an fcMRI scanning protocol while they chewed gum. Seed-based fcMRI analyses were performed with the motor cortex and cerebellum as regions of interest. Both left and right motor cortices were reciprocally functionally connected and functionally connected with the post-central gyrus, cerebellum, cingulate cortex, and precuneus. The cerebellar seeds showed functional connections with the contralateral cerebellar hemispheres, bilateral sensorimotor cortices, left superior temporal gyrus, and left cingulate cortex. These results are the first to identify functional central networks engaged during mastication. PMID:23355525

  13. Connecting and Networking for Schools

    Science.gov (United States)

    Resources for connecting and networking for schools through e-newsletters, finding school IAQ Champions and other EPA school programs such as Asthma, Energy Star, Clean School Bus USA, School Flag, etc.

  14. Interplay between the bacterial nucleoid protein H-NS and macromolecular crowding in compacting DNA

    NARCIS (Netherlands)

    Wintraecken, C.H.J.M.

    2012-01-01

    In this dissertation we discuss H-NS and its connection to nucleoid compaction and organization. Nucleoid formation involves a dramatic reduction in coil volume of the genomic DNA. Four factors are thought to influence coil volume: supercoiling, DNA charge neutralization, macromolecular

  15. On the identification techniques for ionizing radiation structure breaks in the DNA molecule

    International Nuclear Information System (INIS)

    Kamluk, A.N.; Shirko, A.V.; Zhavarankau, I.S.

    2012-01-01

    In this paper, we propose a theoretical method for evaluation of the number and locations of single-strand breaks in DNA using a change in the passage of a longitudinal wave along the double helix. A linear chain of n interacting particles connected by a pair of springs is taken as a model of the DNA molecule. (authors)

  16. Functional DNA: Teaching Infinite Series through Genetic Analogy

    Science.gov (United States)

    Kowalski, R. Travis

    2011-01-01

    This article presents an extended analogy that connects infinite sequences and series to the science of genetics, by identifying power series as "DNA for a function." This analogy allows standard topics such as convergence tests or Taylor approximations to be recast in a "forensic" light as mathematical analogs of genetic concepts such as DNA…

  17. Extended DNA Tile Actuators

    DEFF Research Database (Denmark)

    Kristiansen, Martin; Kryger, Mille; Zhang, Zhao

    2012-01-01

    A dynamic linear DNA tile actuator is expanded to three new structures of higher complexity. The original DNA actuator was constructed from a central roller strand which hybridizes with two piston strands by forming two half-crossover junctions. A linear expansion of the actuator is obtained...

  18. Dna fingerprinting - review paper

    OpenAIRE

    Blundell, Renald

    2006-01-01

    Before the Polymerase Chain Reaction (PCR) was established, DNA fingerprinting technology has relied for years on Restriction Fragment Length Polymorphism (RFLP) and Variable Number of Tandom Repeats (VNTR) analysis, a very efficient technique but quite laborious and not suitable for high throughput mapping. Since its, development, PCR has provided a new and powerful tool for DNA fingerprinting.

  19. DNA Repair Systems

    Indian Academy of Sciences (India)

    Thanks to the pioneering research work of Lindahl, Sancar, Modrich and their colleagues, we now have an holistic awareness of how DNA damage occurs and how the damage is rectified in bacteria as well as in higher organisms including human beings. A comprehensive understanding of DNA repair has proven crucial ...

  20. DNA repair genes

    International Nuclear Information System (INIS)

    Morimyo, Mitsuoki

    1995-01-01

    Fission yeast S. pombe is assumed to be a good model for cloning of human DNA repair genes, because human gene is normally expressed in S. pombe and has a very similar protein sequence to yeast protein. We have tried to elucidate the DNA repair mechanisms of S. pombe as a model system for those of mammals. (J.P.N.)

  1. DNA-cell conjugates

    Science.gov (United States)

    Hsiao, Shih-Chia; Francis, Matthew B.; Bertozzi, Carolyn; Mathies, Richard; Chandra, Ravi; Douglas, Erik; Twite, Amy; Toriello, Nicholas; Onoe, Hiroaki

    2018-05-15

    The present invention provides conjugates of DNA and cells by linking the DNA to a native functional group on the cell surface. The cells can be without cell walls or can have cell walls. The modified cells can be linked to a substrate surface and used in assay or bioreactors.

  2. Characterization of muntjac DNA

    International Nuclear Information System (INIS)

    Davis, R.C.

    1981-01-01

    Sister chromatid exchange (SCE) in muntjac chromosomes is generally proportional to the chromosomal DNA content, but the SCE frequency is reduced in the heterochromatic neck region of the X chromosome. The physical properties of muntjac DNA and the kinetics of repair of UV damage in muntjac heterochromatin and euchromatin were examined and compared with the distribution of sister chromatid exchange

  3. DNA-cell conjugates

    Science.gov (United States)

    Hsiao, Shih-Chia; Francis, Matthew B.; Bertozzi, Carolyn; Mathies, Richard; Chandra, Ravi; Douglas, Erik; Twite, Amy; Toriello, Nicholas; Onoe, Hiroaki

    2016-05-03

    The present invention provides conjugates of DNA and cells by linking the DNA to a native functional group on the cell surface. The cells can be without cell walls or can have cell walls. The modified cells can be linked to a substrate surface and used in assay or bioreactors.

  4. Characterization of muntjac DNA

    Energy Technology Data Exchange (ETDEWEB)

    Davis, R.C.

    1981-05-27

    Sister chromatid exchange (SCE) in muntjac chromosomes is generally proportional to the chromosomal DNA content, but the SCE frequency is reduced in the heterochromatic neck region of the X chromosome. The physical properties of muntjac DNA and the kinetics of repair of UV damage in muntjac heterochromatin and euchromatin were examined and compared with the distribution of sister chromatid exchange.

  5. Whose DNA is this?

    DEFF Research Database (Denmark)

    Taroni, Franco; Biedermann, Alex; Vuille, Joëlle

    2013-01-01

    This communication seeks to draw the attention of researchers and practitioners dealing with forensic DNA profiling analyses to the following question: is a scientist's report, offering support to a hypothesis according to which a particular individual is the source of DNA detected during...... evoked during the international conference "The hidden side of DNA profiles. Artifacts, errors and uncertain evidence" held in Rome (April 27th to 28th, 2012). Indeed, despite the fact that this conference brought together some of the world's leading forensic DNA specialists, it appeared clearly...... talk considerably different languages. It thus is fundamental to address this issue of communication about results of forensic DNA analyses, and open a dialogue with practicing non-scientists at large who need to make meaningful use of scientific results to approach and help solve judicial cases...

  6. DNA repair protocols

    DEFF Research Database (Denmark)

    Bjergbæk, Lotte

    In its 3rd edition, this Methods in Molecular Biology(TM) book covers the eukaryotic response to genomic insult including advanced protocols and standard techniques in the field of DNA repair. Offers expert guidance for DNA repair, recombination, and replication. Current knowledge of the mechanisms...... that regulate DNA repair has grown significantly over the past years with technology advances such as RNA interference, advanced proteomics and microscopy as well as high throughput screens. The third edition of DNA Repair Protocols covers various aspects of the eukaryotic response to genomic insult including...... recent advanced protocols as well as standard techniques used in the field of DNA repair. Both mammalian and non-mammalian model organisms are covered in the book, and many of the techniques can be applied with only minor modifications to other systems than the one described. Written in the highly...

  7. Racemic DNA crystallography.

    Science.gov (United States)

    Mandal, Pradeep K; Collie, Gavin W; Kauffmann, Brice; Huc, Ivan

    2014-12-22

    Racemates increase the chances of crystallization by allowing molecular contacts to be formed in a greater number of ways. With the advent of protein synthesis, the production of protein racemates and racemic-protein crystallography are now possible. Curiously, racemic DNA crystallography had not been investigated despite the commercial availability of L- and D-deoxyribo-oligonucleotides. Here, we report a study into racemic DNA crystallography showing the strong propensity of racemic DNA mixtures to form racemic crystals. We describe racemic crystal structures of various DNA sequences and folded conformations, including duplexes, quadruplexes, and a four-way junction, showing that the advantages of racemic crystallography should extend to DNA. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. On the history of the connectivity index: from the connectivity index to the exact solution of the protein alignment problem.

    Science.gov (United States)

    Randić, M

    2015-01-01

    We briefly review the history of the connectivity index from 1975 to date. We hope to throw some light on why this unique, by its design, graph theoretical molecular descriptor continues to be of interest in QSAR, having wide use in applications in structure-property and structure-activity studies. We will elaborate on its generalizations and the insights it offered on applications in Multiple Regression Analysis (MRA). Going beyond the connectivity index we will outline several related developments in the development of molecular descriptors used in MRA, including molecular ID numbers (1986), the variable connectivity index (1991), orthogonal regression (1991), irrelevance of co-linearity of descriptors (1997), anti-connectivity (2006), and high discriminatory descriptors characterizing molecular similarity (2015). We will comment on beauty in QSAR and recent progress in searching for similarity of DNA, proteins and the proteome. This review reports on several results which are little known to the structure-property-activity community, the significance of which may surprise those unfamiliar with the application of discrete mathematics to chemistry. It tells the reader many unknown stories about the connectivity index, which may help the reader to better understand the meaning of this index. Readers are not required to be familiar with graph theory.

  9. Problems connected with the use of oligonucleotide probes with a high degree of degeneracy. Identification of mRNA and of cDNA clones corresponding to the gene of the. cap alpha. -subunit of Na/sup +/, K/sup +/-ATPase

    Energy Technology Data Exchange (ETDEWEB)

    Petrukhin, K.E.; Grishin, A.V.; Arsenyan, S.G.; Broude, N.E.; Grinkevich, V.A.; Filippova, L.Yu.; Severtsova, I.V.; Modyanov, N.N.

    1986-10-01

    To identify and search for nucleotide sequences containing the structural part of the gene of the ..cap alpha..-subunit of Na/sup +/, K/sup +/-ATPase, 17-membered oligonucleotide probes corresponding to the peptide Lys-Asp-Ala-Phe-Gln-Asn have been synthesized. It has been shown that, with a 64-fold degeneracyd, the 17-membered probe is suitable only for the identification of a specific sequence in mRNA. To search for clones containing cDNA fragments, preliminary fractionation of the probes with the aid of HPLC or the resynthesis of groups of oligonucleotides with a lower degeneracy is necessary.

  10. Visualizing neuronal network connectivity with connectivity pattern tables

    Directory of Open Access Journals (Sweden)

    Eilen Nordlie

    2010-01-01

    Full Text Available Complex ideas are best conveyed through well-designed illustrations. Up to now, computational neuroscientists have mostly relied on box-and-arrow diagrams of even complex neuronal networks, often using ad hoc notations with conflicting use of symbols from paper to paper. This significantly impedes the communication of ideas in neuronal network modeling. We present here Connectivity Pattern Tables (CPTs as a clutter-free visualization of connectivity in large neuronal networks containing two-dimensional populations of neurons. CPTs can be generated automatically from the same script code used to create the actual network in the NEST simulator. Through aggregation, CPTs can be viewed at different levels, providing either full detail or summary information. We also provide the open source ConnPlotter tool as a means to create connectivity pattern tables.

  11. Quantum entanglement and quantum information in biological systems (DNA)

    Science.gov (United States)

    Hubač, Ivan; Švec, Miloslav; Wilson, Stephen

    2017-12-01

    Recent studies of DNA show that the hydrogen bonds between given base pairs can be treated as diabatic systems with spin-orbit coupling. For solid state systems strong diabaticity and spin-orbit coupling the possibility of forming Majorana fermions has been discussed. We analyze the hydrogen bonds in the base pairs in DNA from this perspective. Our analysis is based on a quasiparticle supersymmetric transformation which couples electronic and vibrational motion and includes normal coordinates and the corresponding momenta. We define qubits formed by Majorana fermions in the hydrogen bonds and also discuss the entangled states in base pairs. Quantum information and quantum entropy are introduced. In addition to the well-known classical information connected with the DNA base pairs, we also consider quantum information and show that the classical and quantum information are closely connected.

  12. MedlinePlus Connect: How it Works

    Science.gov (United States)

    ... Connect → How it Works URL of this page: https://medlineplus.gov/connect/howitworks.html MedlinePlus Connect: How ... will change.) Old URLs New URLs Web Application https://apps.nlm.nih.gov/medlineplus/services/mpconnect.cfm? ...

  13. MedlinePlus Connect in Use

    Science.gov (United States)

    ... MedlinePlus Connect in Use URL of this page: https://medlineplus.gov/connect/users.html MedlinePlus Connect in ... will change.) Old URLs New URLs Web Application https://apps.nlm.nih.gov/medlineplus/services/mpconnect.cfm? ...

  14. Brain Connectivity and Visual Attention

    Science.gov (United States)

    Parks, Emily L.

    2013-01-01

    Abstract Emerging hypotheses suggest that efficient cognitive functioning requires the integration of separate, but interconnected cortical networks in the brain. Although task-related measures of brain activity suggest that a frontoparietal network is associated with the control of attention, little is known regarding how components within this distributed network act together or with other networks to achieve various attentional functions. This review considers both functional and structural studies of brain connectivity, as complemented by behavioral and task-related neuroimaging data. These studies show converging results: The frontal and parietal cortical regions are active together, over time, and identifiable frontoparietal networks are active in relation to specific task demands. However, the spontaneous, low-frequency fluctuations of brain activity that occur in the resting state, without specific task demands, also exhibit patterns of connectivity that closely resemble the task-related, frontoparietal attention networks. Both task-related and resting-state networks exhibit consistent relations to behavioral measures of attention. Further, anatomical structure, particularly white matter pathways as defined by diffusion tensor imaging, places constraints on intrinsic functional connectivity. Lastly, connectivity analyses applied to investigate cognitive differences across individuals in both healthy and diseased states suggest that disconnection of attentional networks is linked to deficits in cognitive functioning, and in extreme cases, to disorders of attention. Thus, comprehensive theories of visual attention and their clinical translation depend on the continued integration of behavioral, task-related neuroimaging, and brain connectivity measures. PMID:23597177

  15. Random Interchange of Magnetic Connectivity

    Science.gov (United States)

    Matthaeus, W. H.; Ruffolo, D. J.; Servidio, S.; Wan, M.; Rappazzo, A. F.

    2015-12-01

    Magnetic connectivity, the connection between two points along a magnetic field line, has a stochastic character associated with field lines random walking in space due to magnetic fluctuations, but connectivity can also change in time due to dynamical activity [1]. For fluctuations transverse to a strong mean field, this connectivity change be caused by stochastic interchange due to component reconnection. The process may be understood approximately by formulating a diffusion-like Fokker-Planck coefficient [2] that is asymptotically related to standard field line random walk. Quantitative estimates are provided, for transverse magnetic field models and anisotropic models such as reduced magnetohydrodynamics. In heliospheric applications, these estimates may be useful for understanding mixing between open and close field line regions near coronal hole boundaries, and large latitude excursions of connectivity associated with turbulence. [1] A. F. Rappazzo, W. H. Matthaeus, D. Ruffolo, S. Servidio & M. Velli, ApJL, 758, L14 (2012) [2] D. Ruffolo & W. Matthaeus, ApJ, 806, 233 (2015)

  16. Continuously Connected With Mobile IP

    Science.gov (United States)

    2002-01-01

    Cisco Systems developed Cisco Mobile Networks, making IP devices mobile. With this innovation, a Cisco router and its connected IP devices can roam across network boundaries and connection types. Because a mobile user is able to keep the same IP address while roaming, a live IP connection can be maintained without interruption. Glenn Research Center jointly tested the technology with Cisco, and is working to use it on low-earth-orbiting research craft. With Cisco's Mobile Networks functionality now available in Cisco IOS Software release 12.2(4)T, the commercial advantages and benefits are numerous. The technology can be applied to public safety, military/homeland security, emergency management services, railroad and shipping systems, and the automotive industry. It will allow ambulances, police, firemen, and the U.S. Coast Guard to stay connected to their networks while on the move. In the wireless battlefield, the technology will provide rapid infrastructure deployment for U.S. national defense. Airline, train, and cruise passengers utilizing Cisco Mobile Networks can fly all around the world with a continuous Internet connection. Cisco IOS(R) Software is a registered trademark of Cisco Systems.

  17. Nanostructures via DNA scaffold metallization

    OpenAIRE

    Ning, C.; Zinchenko, A.; Baigl, D.; Pyshkina, O.; Sergeyev, V.; Endo, Kazunaka; Yoshikawa, K.

    2005-01-01

    The critical role of polymers in process of noble metals nanostructures formation is well known, however, the use of DNA chain template in this process is yet largely unknown. In this study we demonstrate different ways of silver deposition on DNA template and report the influence of silver nanostructures formation on DNA conformational state. Metallization of DNA chain proceeds by two different scenarios depending on DNA conformation. If DNA chain is unfolded (elongated) chain, silver reduct...

  18. DNA damage and polyploidization.

    Science.gov (United States)

    Chow, Jeremy; Poon, Randy Y C

    2010-01-01

    A growing body of evidence indicates that polyploidization triggers chromosomal instability and contributes to tumorigenesis. DNA damage is increasingly being recognized for its roles in promoting polyploidization. Although elegant mechanisms known as the DNA damage checkpoints are responsible for halting the cell cycle after DNA damage, agents that uncouple the checkpoints can induce unscheduled entry into mitosis. Likewise, defects of the checkpoints in several disorders permit mitotic entry even in the presence of DNA damage. Forcing cells with damaged DNA into mitosis causes severe chromosome segregation defects, including lagging chromosomes, chromosomal fragments and chromosomal bridges. The presence of these lesions in the cleavage plane is believed to abort cytokinesis. It is postulated that if cytokinesis failure is coupled with defects of the p53-dependent postmitotic checkpoint pathway, cells can enter S phase and become polyploids. Progress in the past several years has unraveled some of the underlying principles of these pathways and underscored the important role of DNA damage in polyploidization. Furthermore, polyploidization per se may also be an important determinant of sensitivity to DNA damage, thereby may offer an opportunity for novel therapies.

  19. Quantitive DNA Fiber Mapping

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Chun-Mei; Wang, Mei; Greulich-Bode, Karin M.; Weier, Jingly F.; Weier, Heinz-Ulli G.

    2008-01-28

    Several hybridization-based methods used to delineate single copy or repeated DNA sequences in larger genomic intervals take advantage of the increased resolution and sensitivity of free chromatin, i.e., chromatin released from interphase cell nuclei. Quantitative DNA fiber mapping (QDFM) differs from the majority of these methods in that it applies FISH to purified, clonal DNA molecules which have been bound with at least one end to a solid substrate. The DNA molecules are then stretched by the action of a receding meniscus at the water-air interface resulting in DNA molecules stretched homogeneously to about 2.3 kb/{micro}m. When non-isotopically, multicolor-labeled probes are hybridized to these stretched DNA fibers, their respective binding sites are visualized in the fluorescence microscope, their relative distance can be measured and converted into kilobase pairs (kb). The QDFM technique has found useful applications ranging from the detection and delineation of deletions or overlap between linked clones to the construction of high-resolution physical maps to studies of stalled DNA replication and transcription.

  20. Regulating DNA Self-assembly by DNA-Surface Interactions.

    Science.gov (United States)

    Liu, Longfei; Li, Yulin; Wang, Yong; Zheng, Jianwei; Mao, Chengde

    2017-12-14

    DNA self-assembly provides a powerful approach for preparation of nanostructures. It is often studied in bulk solution and involves only DNA-DNA interactions. When confined to surfaces, DNA-surface interactions become an additional, important factor to DNA self-assembly. However, the way in which DNA-surface interactions influence DNA self-assembly is not well studied. In this study, we showed that weak DNA-DNA interactions could be stabilized by DNA-surface interactions to allow large DNA nanostructures to form. In addition, the assembly can be conducted isothermally at room temperature in as little as 5 seconds. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Chimeric proteins for detection and quantitation of DNA mutations, DNA sequence variations, DNA damage and DNA mismatches

    Science.gov (United States)

    McCutchen-Maloney, Sandra L.

    2002-01-01

    Chimeric proteins having both DNA mutation binding activity and nuclease activity are synthesized by recombinant technology. The proteins are of the general formula A-L-B and B-L-A where A is a peptide having DNA mutation binding activity, L is a linker and B is a peptide having nuclease activity. The chimeric proteins are useful for detection and identification of DNA sequence variations including DNA mutations (including DNA damage and mismatches) by binding to the DNA mutation and cutting the DNA once the DNA mutation is detected.

  2. Hitchin's connection in metaplectic quantization

    DEFF Research Database (Denmark)

    Andersen, Jørgen Ellegaard; Gammelgaard, Niels Leth; Lauridsen, Magnus Roed

    2012-01-01

    We give a differential geometric construction of a connection, which we call the Hitchin connection, in the bundle of quantum Hilbert spaces arising from metaplectically corrected geometric quantization of a prequantizable, symplectic manifold, endowed with a rigid family of Kähler structures, all...... manifold in question. Furthermore, when we are in a setting similar to the moduli space, we give an explicit formula and show that this connection agrees with previous constructions....... of which give vanishing first Dolbeault cohomology groups. This generalizes work of both Hitchin, Scheinost and Schottenloher, and Andersen, since our construction does not need that the first Chern class is proportional to the class of the symplectic form, nor do we need compactness of the symplectic...

  3. Review on Cold-Formed Steel Connections

    Science.gov (United States)

    Tan, Cher Siang; Mohammad, Shahrin; Md Tahir, Mahmood; Shek, Poi Ngian

    2014-01-01

    The concept of cold-formed light steel framing construction has been widespread after understanding its structural characteristics with massive research works over the years. Connection serves as one of the important elements for light steel framing in order to achieve its structural stability. Compared to hot-rolled steel sections, cold-formed steel connections perform dissimilarity due to the thin-walled behaviour. This paper aims to review current researches on cold-formed steel connections, particularly for screw connections, storage rack connections, welded connections, and bolted connections. The performance of these connections in the design of cold-formed steel structures is discussed. PMID:24688448

  4. Semantic connections: exploring and manipulating connections in smart spaces

    NARCIS (Netherlands)

    Vlist, van der B.J.J.; Niezen, G.; Hu, J.; Feijs, L.M.G.

    2010-01-01

    In envisioned smart environments, enabled by ubiquitous computing technologies, electronic objects will be able to interconnect and interoperate. How will users of such smart environments make sense of the connections that are made and the information that is exchanged? This Internet of Things could

  5. Whole-brain functional connectivity predicted by indirect structural connections

    DEFF Research Database (Denmark)

    Røge, Rasmus; Ambrosen, Karen Marie Sandø; Albers, Kristoffer Jon

    2017-01-01

    Modern functional and diffusion magnetic resonance imaging (fMRI and dMRI) provide data from which macro-scale networks of functional and structural whole brain connectivity can be estimated. Although networks derived from these two modalities describe different properties of the human brain, the...

  6. DNAAlignEditor: DNA alignment editor tool

    Directory of Open Access Journals (Sweden)

    Guill Katherine E

    2008-03-01

    Full Text Available Abstract Background With advances in DNA re-sequencing methods and Next-Generation parallel sequencing approaches, there has been a large increase in genomic efforts to define and analyze the sequence variability present among individuals within a species. For very polymorphic species such as maize, this has lead to a need for intuitive, user-friendly software that aids the biologist, often with naïve programming capability, in tracking, editing, displaying, and exporting multiple individual sequence alignments. To fill this need we have developed a novel DNA alignment editor. Results We have generated a nucleotide sequence alignment editor (DNAAlignEditor that provides an intuitive, user-friendly interface for manual editing of multiple sequence alignments with functions for input, editing, and output of sequence alignments. The color-coding of nucleotide identity and the display of associated quality score aids in the manual alignment editing process. DNAAlignEditor works as a client/server tool having two main components: a relational database that collects the processed alignments and a user interface connected to database through universal data access connectivity drivers. DNAAlignEditor can be used either as a stand-alone application or as a network application with multiple users concurrently connected. Conclusion We anticipate that this software will be of general interest to biologists and population genetics in editing DNA sequence alignments and analyzing natural sequence variation regardless of species, and will be particularly useful for manual alignment editing of sequences in species with high levels of polymorphism.

  7. "Artifactual" arsenate DNA

    DEFF Research Database (Denmark)

    Nielsen, Peter E

    2012-01-01

    The recent claim by Wolfe-Simon et al. that the Halomonas bacterial strain GFAJ-1 when grown in arsenate-containing medium with limiting phosphate is able to substitute phosphate with arsenate in biomolecules including nucleic acids and in particular DNA(1) arose much skepticism, primarily due...... to the very limited chemical stability of arsenate esters (see ref. 2 and references therein). A major part of the criticisms was concerned with the insufficient (bio)chemical evidence in the Wolfe-Simon study for the actual chemical incorporation of arsenate in DNA (and/or RNA). Redfield et al. now present...... evidence that the identification of arsenate DNA was artifactual....

  8. Formal connections in deformation quantization

    DEFF Research Database (Denmark)

    Masulli, Paolo

    The field of this thesis is deformation quantization, and we consider mainly symplectic manifolds equipped with a star product. After reviewing basics in complex geometry, we introduce quantization, focusing on geometric quantization and deformation quantization. The latter is defined as a star...... characteristic class, and that formal connections form an affine space over the derivations of the star products. Moreover, if the parameter space for the family of star products is contractible, we obtain that any two flat formal connections are gauge equivalent via a self-equivalence of the family of star...

  9. Developing a Connective Feminine Discourse

    DEFF Research Database (Denmark)

    Rahbek, Ulla

    2015-01-01

    This paper discusses the work of the Australian writer and historian Drusilla Modjeska through a focus on the intersections between women‟s lives, love and art, which constitute the central triptych of Modjeska‟s writing. It argues that Modjeska's oeuvre unfolds a connective feminine discourse...... through a development of what the paper calls hinging tropes, discursive connectors that join life, love and art, such as weaving, folding and talking. That connective feminine discourse is indeed central to Modjeska‟s personal and sometimes idiosyncratic feminism...

  10. C-connected frame congruences

    Directory of Open Access Journals (Sweden)

    Dharmanand Baboolal

    2017-01-01

    Full Text Available We discuss the congruences $theta$ that are connected as  elements of the (totally disconnected congruence frame $CF L$,  and show that they are in a one-to-one correspondence with the completely prime elements of $L$, giving an explicit formula. Then we investigate those frames $L$ with enough connected congruences to cover the whole of $CF L$. They are, among others, shown to be $T_D$-spatial;  characteristics for some special cases (Boolean, linear, scattered and Noetherian are presented.

  11. Ekspert i undervisning - IRIS Connect

    DEFF Research Database (Denmark)

    Wullum, Annemette Heine; Eriksen, Frits Hedegaard

    Ekspert i undervisning – IRIS Connect Credoet bag de seneste års mange læreruddannelsesreformer har været, at flere og dybere kundskaber vil styrke de studerendes forudsætninger for at løse opgaverne i pædagogisk praksis. Et forhold, som bliver overset i forbindelse med uddannelsesreformerne, er...... praksis, og hvad ”effektiv” undervisning er. Hovedantagelserne bag projektet er, at de studerendes personbundne kundskaber kan synliggøres, at deres lægmandsopfattelser af, hvad ”effektiv” undervisning er, kan udfordres gennem analyser og drøftelser, og at brugen af IRIS Connects dataindsamlings- og...

  12. Finite connectivity attractor neural networks

    International Nuclear Information System (INIS)

    Wemmenhove, B; Coolen, A C C

    2003-01-01

    We study a family of diluted attractor neural networks with a finite average number of (symmetric) connections per neuron. As in finite connectivity spin glasses, their equilibrium properties are described by order parameter functions, for which we derive an integral equation in replica symmetric approximation. A bifurcation analysis of this equation reveals the locations of the paramagnetic to recall and paramagnetic to spin-glass transition lines in the phase diagram. The line separating the retrieval phase from the spin-glass phase is calculated at zero temperature. All phase transitions are found to be continuous

  13. DNA from keratinous tissue

    DEFF Research Database (Denmark)

    Bengtsson, Camilla F.; Olsen, Maja E.; Brandt, Luise Ørsted

    2011-01-01

    Keratinous tissues such as nail, hair, horn, scales and feather have been used as a source of DNA for over 20 years. Particular benefits of such tissues include the ease with which they can be sampled, the relative stability of DNA in such tissues once sampled, and, in the context of ancient...... genetic analyses, the fact that sampling generally causes minimal visual damage to valuable specimens. Even when freshly sampled, however, the DNA quantity and quality in the fully keratinized parts of such tissues is extremely poor in comparison to other tissues such as blood and muscle – although little...... systematic research has been undertaken to characterize how such degradation may relate to sample source. In this review paper we present the current understanding of the quality and limitations of DNA in two key keratinous tissues, nail and hair. The findings indicate that although some fragments of nuclear...

  14. DNA fusion gene vaccines

    DEFF Research Database (Denmark)

    Holst, Peter Johannes; Bassi, Maria Rosaria; Thomsen, Allan Randrup

    2010-01-01

    DNA vaccines are versatile and safe, but limited immunogenicity has prevented their use in the clinical setting. Experimentally, immunogenicity may be enhanced by the use of new delivery technologies, by coadministration of cytokines and pathogen-associated molecular patterns, or by fusion...... of antigens into molecular domains that enhance antigen presentation. More specifically, the immunogenicity of DNA vaccines may benefit from increased protein synthesis, increased T-cell help and MHC class I presentation, and the addition of a range of specific cytokines and pathogen-associated molecular...... with viral-vectored vaccines, various synergistic components may need to be incorporated into DNA vaccines. From the perspective of the future clinical use of DNA vaccines, it has been suggested that antigen presentation should be improved and cytokine coadministration attempted. However, even...

  15. DNA Sampling Hook

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The DNA Sampling Hook is a significant improvement on a method of obtaining a tissue sample from a live fish in situ from an aquatic environment. A tissue sample...

  16. Retroviral DNA Integration

    Science.gov (United States)

    2016-01-01

    The integration of a DNA copy of the viral RNA genome into host chromatin is the defining step of retroviral replication. This enzymatic process is catalyzed by the virus-encoded integrase protein, which is conserved among retroviruses and LTR-retrotransposons. Retroviral integration proceeds via two integrase activities: 3′-processing of the viral DNA ends, followed by the strand transfer of the processed ends into host cell chromosomal DNA. Herein we review the molecular mechanism of retroviral DNA integration, with an emphasis on reaction chemistries and architectures of the nucleoprotein complexes involved. We additionally discuss the latest advances on anti-integrase drug development for the treatment of AIDS and the utility of integrating retroviral vectors in gene therapy applications. PMID:27198982

  17. DNA damage and carcinogenesis

    International Nuclear Information System (INIS)

    Stelow, R.B.

    1980-01-01

    Although cancer may arise as a result of many different types of molecular changes, there is little reason to doubt that changes to DNA are one of the more important ones in cancer initiation. Although DNA repair mechanisms seem able to eliminate a very large fraction of deleterious changes to DNA, we not only have little insight into the molecular mechanisms involved in such repair, but have a negligible amount of information to permit us to estimate the shape of dose response relations at low doses. The case of skin cancer is a special one, in that the average population is exposed to sufficient solar uv so that the effects of small increments in uv dose may be estimated. An approximate 85% reduction in DNA repair increases skin cancer incidence 10 4 fold

  18. DNA-Origami

    DEFF Research Database (Denmark)

    Voigt, Niels Vinther; Tørring, Thomas; Gothelf, Kurt Vesterager

    2010-01-01

    DNA-nanostrukturer giver nye muligheder for studier af individuelle molekyler. Ved at udnytte DNAs unikke selvsamlende egenskaber kan man designe systemer, hvorpå der kan studeres kemiske reaktioner, fluoroforer og biiomolekyler på enkeltmolekyle-niveau....

  19. DNA Microarray Technology

    Science.gov (United States)

    Skip to main content DNA Microarray Technology Enter Search Term(s): Español Research Funding An Overview Bioinformatics Current Grants Education and Training Funding Extramural Research News Features Funding Divisions Funding ...

  20. DNA sequencing conference, 2

    Energy Technology Data Exchange (ETDEWEB)

    Cook-Deegan, R.M. [Georgetown Univ., Kennedy Inst. of Ethics, Washington, DC (United States); Venter, J.C. [National Inst. of Neurological Disorders and Strokes, Bethesda, MD (United States); Gilbert, W. [Harvard Univ., Cambridge, MA (United States); Mulligan, J. [Stanford Univ., CA (United States); Mansfield, B.K. [Oak Ridge National Lab., TN (United States)

    1991-06-19

    This conference focused on DNA sequencing, genetic linkage mapping, physical mapping, informatics and bioethics. Several were used to study this sequencing and mapping. This article also discusses computer hardware and software aiding in the mapping of genes.

  1. Close encounters with DNA

    Science.gov (United States)

    Maffeo, C.; Yoo, J.; Comer, J.; Wells, D. B.; Luan, B.; Aksimentiev, A.

    2014-01-01

    Over the past ten years, the all-atom molecular dynamics method has grown in the scale of both systems and processes amenable to it and in its ability to make quantitative predictions about the behavior of experimental systems. The field of computational DNA research is no exception, witnessing a dramatic increase in the size of systems simulated with atomic resolution, the duration of individual simulations and the realism of the simulation outcomes. In this topical review, we describe the hallmark physical properties of DNA from the perspective of all-atom simulations. We demonstrate the amazing ability of such simulations to reveal the microscopic physical origins of experimentally observed phenomena and we review the frustrating limitations associated with imperfections of present atomic force fields and inadequate sampling. The review is focused on the following four physical properties of DNA: effective electric charge, response to an external mechanical force, interaction with other DNA molecules and behavior in an external electric field. PMID:25238560

  2. Gomphid DNA sequence data

    Data.gov (United States)

    U.S. Environmental Protection Agency — DNA sequence data for several genetic loci. This dataset is not publicly accessible because: It's already publicly available on GenBank. It can be accessed through...

  3. HPV DNA test

    Science.gov (United States)

    ... test; Cancer of cervix - HPV DNA test References Hacker NF. Cervical dysplasia and cancer. In: Hacker NF, Gambone JC, Hobel CJ, eds. Hacker and Moore's Essentials of Obstetrics and Gynecology . 6th ...

  4. Close encounters with DNA.

    Science.gov (United States)

    Maffeo, C; Yoo, J; Comer, J; Wells, D B; Luan, B; Aksimentiev, A

    2014-10-15

    Over the past ten years, the all-atom molecular dynamics method has grown in the scale of both systems and processes amenable to it and in its ability to make quantitative predictions about the behavior of experimental systems. The field of computational DNA research is no exception, witnessing a dramatic increase in the size of systems simulated with atomic resolution, the duration of individual simulations and the realism of the simulation outcomes. In this topical review, we describe the hallmark physical properties of DNA from the perspective of all-atom simulations. We demonstrate the amazing ability of such simulations to reveal the microscopic physical origins of experimentally observed phenomena. We also discuss the frustrating limitations associated with imperfections of present atomic force fields and inadequate sampling. The review is focused on the following four physical properties of DNA: effective electric charge, response to an external mechanical force, interaction with other DNA molecules and behavior in an external electric field.

  5. FBI's DNA analysis program

    Science.gov (United States)

    Brown, John R.

    1994-03-01

    Forensic DNA profiling technology is a significant law enforcement tool due to its superior discriminating power. Applying the principles of population genetics to the DNA profile obtained in violent crime investigations results in low frequency of occurrence estimates for the DNA profile. These estimates often range from a frequency of occurrence of 1 in 50 unrelated individuals to 1 in a million unrelated individuals or even smaller. It is this power to discriminate among individuals in the population that has propelled forensic DNA technology to the forefront of forensic testing in violent crime cases. Not only is the technology extremely powerful in including or excluding a criminal suspect as the perpetrator, but it also gives rise to the potential of identifying criminal suspects in cases where the investigators of unknown suspect cases have exhausted all other available leads.

  6. Making DNA Fingerprints.

    Science.gov (United States)

    Nunley, Kathie F.

    1996-01-01

    Presents an activity to simulate electrophoresis using everyday items. Uses adding machine paper to construct a set of DNA fingerprints that can be used to solve crime cases designed by students in any biology class. (JRH)

  7. Radiation damage in DNA

    International Nuclear Information System (INIS)

    Lafleur, V.

    1978-01-01

    A number of experiments are described with the purpose to obtain a better insight in the chemical nature and the biological significance of radiation-induced damage in DNA, with some emphasis on the significance of alkali-labile sites. It is shown that not only reactions of OH radicals but also of H radicals introduce breaks and other inactivating damage in single-standed phiX174 DNA. It is found that phosphate buffer is very suitable for the study of the reactions of H radicals with DNA, as the H 2 PO 4 - ions convert the hydrated electrons into H radicals. The hydrated electron, which does react with DNA, does not cause a detectable inactivation. (Auth.)

  8. DNA to DNA transcription might exist in eukaryotic cells

    OpenAIRE

    Li, Gao-De

    2016-01-01

    Till now, in biological sciences, the term, transcription, mainly refers to DNA to RNA transcription. But our recently published experimental findings obtained from Plasmodium falciparum strongly suggest the existence of DNA to DNA transcription in the genome of eukaryotic cells, which could shed some light on the functions of certain noncoding DNA in the human and other eukaryotic genomes.

  9. Patterning nanocrystals using DNA

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Shara Carol [Univ. of California, Berkeley, CA (United States)

    2003-01-01

    One of the goals of nanotechnology is to enable programmed self-assembly of patterns made of various materials with nanometer-sized control. This dissertation describes the results of experiments templating arrangements of gold and semiconductor nanocrystals using 2'-deoxyribonucleic acid (DNA). Previously, simple DNA-templated linear arrangements of two and three nanocrystals structures have been made.[1] Here, we have sought to assemble larger and more complex nanostructures. Gold-DNA conjugates with 50 to 100 bases self-assembled into planned arrangements using strands of DNA containing complementary base sequences. We used two methods to increase the complexity of the arrangements: using branched synthetic doublers within the DNA covalent backbone to create discrete nanocrystal groupings, and incorporating the nanocrystals into a previously developed DNA lattice structure [2][3] that self-assembles from tiles made of DNA double-crossover molecules to create ordered nanoparticle arrays. In the first project, the introduction of a covalently-branched synthetic doubler reagent into the backbone of DNA strands created a branched DNA ''trimer.'' This DNA trimer templated various structures that contained groupings of three and four gold nanoparticles, giving promising, but inconclusive transmission electron microscopy (TEM) results. Due to the presence of a variety of possible structures in the reaction mixtures, and due to the difficulty of isolating the desired structures, the TEM and gel electrophoresis results for larger structures having four particles, and for structures containing both 5 and 10 nm gold nanoparticles were inconclusive. Better results may come from using optical detection methods, or from improved sample preparation. In the second project, we worked toward making two-dimensional ordered arrays of nanocrystals. We replicated and improved upon previous results for making DNA lattices, increasing the size of the lattices

  10. Das DNA-Puzzle

    Science.gov (United States)

    Kirchner, Stefan

    Im Jahre 1953 wurde von James Watson und Francis Crick erstmalig der strukturelle Aufbau der sogenannten DNA (Desoxyribonukleinsäure) beschrieben, welche das Erbgut jedes Lebewesens enthält. Der wesentliche Teil des Erbguts wird dabei durch eine sehr lange Folge der vier Basen Adenin (A), Cytosin (C), Guanin (G) und Thymin (T) codiert. Seit einigen Jahren ist es möglich, die Folge der vier Basen zu einer gegebenen DNA zu bestimmen. Biologen bezeichnen diesen Vorgang als Sequenzierung.

  11. PDA: Pooled DNA analyzer

    Directory of Open Access Journals (Sweden)

    Lin Chin-Yu

    2006-04-01

    Full Text Available Abstract Background Association mapping using abundant single nucleotide polymorphisms is a powerful tool for identifying disease susceptibility genes for complex traits and exploring possible genetic diversity. Genotyping large numbers of SNPs individually is performed routinely but is cost prohibitive for large-scale genetic studies. DNA pooling is a reliable and cost-saving alternative genotyping method. However, no software has been developed for complete pooled-DNA analyses, including data standardization, allele frequency estimation, and single/multipoint DNA pooling association tests. This motivated the development of the software, 'PDA' (Pooled DNA Analyzer, to analyze pooled DNA data. Results We develop the software, PDA, for the analysis of pooled-DNA data. PDA is originally implemented with the MATLAB® language, but it can also be executed on a Windows system without installing the MATLAB®. PDA provides estimates of the coefficient of preferential amplification and allele frequency. PDA considers an extended single-point association test, which can compare allele frequencies between two DNA pools constructed under different experimental conditions. Moreover, PDA also provides novel chromosome-wide multipoint association tests based on p-value combinations and a sliding-window concept. This new multipoint testing procedure overcomes a computational bottleneck of conventional haplotype-oriented multipoint methods in DNA pooling analyses and can handle data sets having a large pool size and/or large numbers of polymorphic markers. All of the PDA functions are illustrated in the four bona fide examples. Conclusion PDA is simple to operate and does not require that users have a strong statistical background. The software is available at http://www.ibms.sinica.edu.tw/%7Ecsjfann/first%20flow/pda.htm.

  12. Racemic DNA Crystallography

    OpenAIRE

    Mandal , Pradeep K.; Collie , Gavin W.; Kauffmann , Brice; Huc , Ivan

    2014-01-01

    International audience; Racemates increase the chances of crystallization by allowing molecular contacts to be formed in a greater number of ways. With the advent of protein synthesis, the production of protein racemates and racemic-protein crystallography are now possible. Curiously, racemic DNA crystallography had not been investigated despite the commercial availability of Land D-deoxyribo-oligonucleotides. Here, we report a study into racemic DNA crystallography showing the strong propens...

  13. Celebrating DNA's Repair Crew.

    Science.gov (United States)

    Kunkel, Thomas A

    2015-12-03

    This year, the Nobel Prize in Chemistry has been awarded to Tomas Lindahl, Aziz Sancar, and Paul Modrich for their seminal studies of the mechanisms by which cells from bacteria to man repair DNA damage that is generated by normal cellular metabolism and stress from the environment. These studies beautifully illustrate the remarkable power of DNA repair to influence life from evolution through disease susceptibility. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Art and the Cosmic Connection

    Science.gov (United States)

    Cobb, Whitney H.; Aiello, Monica Petty; Macdonald, Reeves; Asplund, Shari

    2014-01-01

    The interdisciplinary unit described in this article utilizes "Art and the Cosmic Connection," a free program conceived of by artists Monica and Tyler Aiello and developed by the artists, scientists, and educators through NASA's Discovery and New Frontiers Programs, to inspire learners to explore mysterious worlds in our solar…

  15. Reduced prefrontal connectivity in psychopathy.

    Science.gov (United States)

    Motzkin, Julian C; Newman, Joseph P; Kiehl, Kent A; Koenigs, Michael

    2011-11-30

    Linking psychopathy to a specific brain abnormality could have significant clinical, legal, and scientific implications. Theories on the neurobiological basis of the disorder typically propose dysfunction in a circuit involving ventromedial prefrontal cortex (vmPFC). However, to date there is limited brain imaging data to directly test whether psychopathy may indeed be associated with any structural or functional abnormality within this brain area. In this study, we employ two complementary imaging techniques to assess the structural and functional connectivity of vmPFC in psychopathic and non-psychopathic criminals. Using diffusion tensor imaging, we show that psychopathy is associated with reduced structural integrity in the right uncinate fasciculus, the primary white matter connection between vmPFC and anterior temporal lobe. Using functional magnetic resonance imaging, we show that psychopathy is associated with reduced functional connectivity between vmPFC and amygdala as well as between vmPFC and medial parietal cortex. Together, these data converge to implicate diminished vmPFC connectivity as a characteristic neurobiological feature of psychopathy.

  16. Connections in wood and foliage

    Science.gov (United States)

    Kevin T. Smith

    2009-01-01

    Trees are networked systems that capture energy, move massive amounts of water and material, and provide the setting for human society and for the lives of many associated organisms. Tree survival depends on making and breaking the right connections within these networks.

  17. The Hanze-India Connection

    NARCIS (Netherlands)

    Velthuijsen, Hugo

    2010-01-01

    Hanze India connection. Presentatie gehouden op 09-06-2010. Bestaat uit foto's. Op uitnodiging van KPN, sponsor van het lectoraat New Business & ICT, bezocht Hugo Velthuijsen een aantal steden in India. Het doel was om ter plekke een beeld te krijgen van de mogelijkheden van IT en Business

  18. Grouted Connections with Shear Keys

    DEFF Research Database (Denmark)

    Pedersen, Ronnie; Jørgensen, M. B.; Damkilde, Lars

    2012-01-01

    This paper presents a finite element model in the software package ABAQUS in which a reliable analysis of grouted pile-to-sleeve connections with shear keys is the particular purpose. The model is calibrated to experimental results and a consistent set of input parameters is estimated so that dif...... that different structural problems can be reproduced successfully....

  19. Tilting-connected symmetric algebras

    OpenAIRE

    Aihara, Takuma

    2010-01-01

    The notion of silting mutation was introduced by Iyama and the author. In this paper we mainly study silting mutation for self-injective algebras and prove that any representation-finite symmetric algebra is tilting-connected. Moreover we give some sufficient conditions for a Bongartz-type Lemma to hold for silting objects.

  20. The Histogram-Area Connection

    Science.gov (United States)

    Gratzer, William; Carpenter, James E.

    2008-01-01

    This article demonstrates an alternative approach to the construction of histograms--one based on the notion of using area to represent relative density in intervals of unequal length. The resulting histograms illustrate the connection between the area of the rectangles associated with particular outcomes and the relative frequency (probability)…

  1. Connecting Slope, Steepness, and Angles

    Science.gov (United States)

    Nagle, Courtney R.; Moore-Russo, Deborah

    2013-01-01

    All teachers, especially high school teachers, face the challenge of ensuring that students have opportunities to relate and connect the various representations and notions of mathematics concepts developed over the course of the pre-K-12 mathematics curriculum. NCTM's (2000) Representation Standard emphasizes the importance of students being…

  2. Isolating highly connected induced subgraphs

    DEFF Research Database (Denmark)

    Penev, Irena; Thomasse, Stephan; Trotignon, Nicolas

    2016-01-01

    We prove that any graph G of minimum degree greater than 2k(2) - 1 has a (k + 1)-connected induced subgraph H such that the number of vertices of H that have neighbors outside of H is at most 2k(2) - 1. This generalizes a classical result of Mader, which states that a high minimum degree implies ...

  3. Elementary Algebra Connections to Precalculus

    Science.gov (United States)

    Lopez-Boada, Roberto; Daire, Sandra Arguelles

    2013-01-01

    This article examines the attitudes of some precalculus students to solve trigonometric and logarithmic equations and systems using the concepts of elementary algebra. With the goal of enticing the students to search for and use connections among mathematical topics, they are asked to solve equations or systems specifically designed to allow…

  4. Connected Firms and Investor Myopia

    NARCIS (Netherlands)

    Ginglinger, Edith; Hébert, Camille; Renneboog, Luc

    2017-01-01

    Conglomerates, multinational corporations and business groups are non-exclusive forms of complex firms. Often organized as corporate networks, complex firms control a myriad of firms connected through ownership links. We investigate whether parent-subsidiary links within corporate networks enhance

  5. Indicators of Malicious SSL Connections

    NARCIS (Netherlands)

    Bortolameotti, Riccardo; Peter, Andreas; Everts, Maarten Hinderik; Bolzoni, D.

    2015-01-01

    Internet applications use SSL to provide data confidential- ity to communicating entities. The use of encryption in SSL makes it impossible to distinguish between benign and malicious connections as the content cannot be inspected. Therefore, we propose and evaluate a set of indicators for malicious

  6. Indicators of malicious SSL connections

    NARCIS (Netherlands)

    Bortolameotti, R.; Peter, A.; Everts, M.H.; Bolzoni, D.

    2015-01-01

    Internet applications use SSL to provide data confidentiality to communicating entities. The use of encryption in SSL makes it impossible to distinguish between benign and malicious connections as the content cannot be inspected. Therefore, we propose and evaluate a set of indicators for malicious

  7. Microfabricated electrochemical sensor for the detection of radiation-induced DNA damage

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J.; Rivas, G.; Ozsoz, M.; Grant, D.H.; Cai, X.; Parrado, C. [New Mexico State Univ., Las Cruces, NM (United States)

    1997-04-01

    An electrochemical biosensor protocol for the detection of radiation-induced DNA damage is described. The procedure employs a dsDNA-coated screen-printed electrode and relies on changes in the guanine-DNA oxidation signal upon exposure to ultraviolet radiation. The decreased signal is ascribed primarily to conformational changes in the DNA and to the photoconversion of the guanine-DNA moiety to a nonelectroactive monomeric base product. Factors influencing the response of these microfabricated DNA sensors, such as irradiation time, wavelength, and distance, are explored, and future prospects are discussed. Similar results are given for the use of bare strip electrodes in connection with irradiated DNA solutions. 8 refs., 4 figs.

  8. Introduction to DNA methods

    International Nuclear Information System (INIS)

    Delincee, H.

    1991-01-01

    The purpose of this session is to discuss the various possibilities for detecting modifications in DNA after irradiation and whether these changes can be utilized as an indicator for the irradiation treatment of foods. The requirement to be fulfilled is that the method be able to distinguish irradiated food without the presence of a control sample, thus the measured response after irradiation must be large enough to supersede background levels from other treatments. Much work has been performed on the effects of radiation on DNA, particularly due to its importance in radiation biology. The main lesions of DNA as a result of irradiation are base damage, damage of the sugar moiety, single strand and double strand breaks. Crosslinking between bases also occurs, e.g. production of thymine dimers, or between DNA and protein. A valuable review on how to utilize these DNA changes for detection purposes has already appeared. Tables 1, 2 and 3 list the proposed methods of detecting changes in irradiated DNA, some identified products as examples for a possible irradiation indicator, in the case of immunoassay the substance used as antigen, and some selected literature references. In this short review, it is not intended to provide a complete literature survey

  9. Variations in brain DNA

    Directory of Open Access Journals (Sweden)

    Jesus eAvila

    2014-11-01

    Full Text Available It is assumed that DNA sequences are conserved in the diverse cell types present in a multicellular organism like the human being. Thus, in order to compare the sequences in the genome of DNA from different individuals, nucleic acid is commonly isolated from a single tissue. In this regard, blood cells are widely used for this purpose because of their availability. Thus blood DNA has been used to study genetic familiar diseases that affect other tissues and organs, such as the liver, heart, and brain. While this approach is valid for the identification of familial diseases in which mutations are present in parental germinal cells and, therefore, in all the cells of a given organism, it is not suitable to identify sporadic diseases in which mutations might occur in specific somatic cells. This review addresses somatic DNA variations in different tissues or cells (mainly in the brain of single individuals and discusses whether the dogma of DNA invariance between cell types is indeed correct. We will also discuss how single nucleotide somatic variations arise, focusing on the presence of specific DNA mutations in the brain.

  10. Connecting Leadership and Learning: Do Versatile Learners make Connective Leaders?

    OpenAIRE

    Jill L. Robinson

    2016-01-01

    Recent failures in leadership, suggest that creating better-quality leadership development programs is critical. In moving from theory to practice, this paper examined the relationship between learning style and leadership style which may enable us to move away from one-size-fits-all leadership development programs. Utilizing Kolb’s Experiential Learning Model and Connective Leadership theory, approximately 3600 college students were analyzed to discover whether versatility in learning styles...

  11. Connecting leadership and learning: Do versatile learners make connective leaders?

    OpenAIRE

    Robinson, Jill L.

    2016-01-01

    Recent failures in leadership, suggest that creating better-quality leadership development programs is critical. In moving from theory to practice, this paper examined the relationship between learning style and leadership style which may enable us to move away from one-size-fits-all leadership development programs. Utilizing Kolb’s Experiential Learning Model and Connective Leadership theory, approximately 3600 college students were analyzed to discover whether versatility in learning styles...

  12. Connecting Leadership and Learning: Do Versatile Learners make Connective Leaders?

    OpenAIRE

    Jill L. Robinson

    2016-01-01

    Abstract Recent failures in leadership, suggest that creating better-quality leadership development programs is critical. In moving from theory to practice, this paper examined the relationship between learning style and leadership style which may enable us to move away from one-size-fits-all leadership development programs. Utilizing Kolb’s Experiential Learning Model and Connective Leadership theory, approximately 3600 college students were analyzed to discover whether versatility in le...

  13. Nonrandom network connectivity comes in pairs

    Directory of Open Access Journals (Sweden)

    Felix Z. Hoffmann

    2017-02-01

    Full Text Available Overrepresentation of bidirectional connections in local cortical networks has been repeatedly reported and is a focus of the ongoing discussion of nonrandom connectivity. Here we show in a brief mathematical analysis that in a network in which connection probabilities are symmetric in pairs, Pij = Pji, the occurrences of bidirectional connections and nonrandom structures are inherently linked; an overabundance of reciprocally connected pairs emerges necessarily when some pairs of neurons are more likely to be connected than others. Our numerical results imply that such overrepresentation can also be sustained when connection probabilities are only approximately symmetric.

  14. Blood extracellular DNA after irradiation

    International Nuclear Information System (INIS)

    Vladimirov, V.G.; Tishchenko, L.I.; Surkova, E.A.; Vasil'eva, I.N.

    1993-01-01

    It has been shown that blood extracellular DNA of irradiated rats largely consists of the low-molecular DNA and its oligomers. Molecular masses of oligomers are multiple to molecular mass of monomer fragment with nucleosome size. The low-molecular DNA has linear form. The average content of GC-pairs in low-molecular DNA is higher than in total rat's DNA (48.5% against 41.5%). The low-molecular DNA is a part of complex containing RNA, acidic proteins and lipids. It is assumed that the formation of low-molecular DNA is a result of Ca/Mg - dependent nuclear endonuclease action

  15. DNA Knots: Theory and Experiments

    Science.gov (United States)

    Sumners, D. W.

    Cellular DNA is a long, thread-like molecule with remarkably complex topology. Enzymes that manipulate the geometry and topology of cellular DNA perform many vital cellular processes (including segregation of daughter chromosomes, gene regulation, DNA repair, and generation of antibody diversity). Some enzymes pass DNA through itself via enzyme-bridged transient breaks in the DNA; other enzymes break the DNA apart and reconnect it to different ends. In the topological approach to enzymology, circular DNA is incubated with an enzyme, producing an enzyme signature in the form of DNA knots and links. By observing the changes in DNA geometry (supercoiling) and topology (knotting and linking) due to enzyme action, the enzyme binding and mechanism can often be characterized. This paper will discuss some personal research history, and the tangle model for the analysis of site-specific recombination experiments on circular DNA.

  16. Slow elimination of DNA damaged bases in the liver of old gamma-irradiated mice

    Energy Technology Data Exchange (ETDEWEB)

    Gaziev, A I; Malakhova, L V; Fomenko, L A [AN SSSR, Pushchino-na-Oke. Inst. Biologicheskoj Fiziki

    1981-01-01

    Elimination of the DNA damaged bases in the liver of old and young mice after their gamma-irradiation is studied. It is established that the incision rate of DNA gamma-damaged bases in the liver of old mice is lower than in the liver of the young ones. It is supposed to be connected with the decrease of the activity of DNA reparation ferments or with the presence of limitations in chromatin for the access of these ferments to the damaged parts of DNA in the cells of old animals.

  17. Guiding the folding pathway of DNA origami.

    Science.gov (United States)

    Dunn, Katherine E; Dannenberg, Frits; Ouldridge, Thomas E; Kwiatkowska, Marta; Turberfield, Andrew J; Bath, Jonathan

    2015-09-03

    DNA origami is a robust assembly technique that folds a single-stranded DNA template into a target structure by annealing it with hundreds of short 'staple' strands. Its guiding design principle is that the target structure is the single most stable configuration. The folding transition is cooperative and, as in the case of proteins, is governed by information encoded in the polymer sequence. A typical origami folds primarily into the desired shape, but misfolded structures can kinetically trap the system and reduce the yield. Although adjusting assembly conditions or following empirical design rules can improve yield, well-folded origami often need to be separated from misfolded structures. The problem could in principle be avoided if assembly pathway and kinetics were fully understood and then rationally optimized. To this end, here we present a DNA origami system with the unusual property of being able to form a small set of distinguishable and well-folded shapes that represent discrete and approximately degenerate energy minima in a vast folding landscape, thus allowing us to probe the assembly process. The obtained high yield of well-folded origami structures confirms the existence of efficient folding pathways, while the shape distribution provides information about individual trajectories through the folding landscape. We find that, similarly to protein folding, the assembly of DNA origami is highly cooperative; that reversible bond formation is important in recovering from transient misfoldings; and that the early formation of long-range connections can very effectively enforce particular folds. We use these insights to inform the design of the system so as to steer assembly towards desired structures. Expanding the rational design process to include the assembly pathway should thus enable more reproducible synthesis, particularly when targeting more complex structures. We anticipate that this expansion will be essential if DNA origami is to continue its

  18. Transcription-induced DNA supercoiling: New roles of intranucleosomal DNA loops in DNA repair and transcription.

    Science.gov (United States)

    Gerasimova, N S; Pestov, N A; Kulaeva, O I; Clark, D J; Studitsky, V M

    2016-05-26

    RNA polymerase II (Pol II) transcription through chromatin is accompanied by formation of small intranucleosomal DNA loops. Pol II captured within a small loop drives accumulation of DNA supercoiling, facilitating further transcription. DNA breaks relieve supercoiling and induce Pol II arrest, allowing detection of DNA damage hidden in chromatin structure.

  19. Content, Context & Connectivity Persuasive Interplay

    DEFF Research Database (Denmark)

    Sørensen, Christian Grund

    2013-01-01

    -supported research project under EACEA). In the development of this project several categories of content have been implemented in technology enhanced learning tools. These have been designed to support learning in different contexts and eventually the role of the connectivity of these learning objects and tools......The aim of this paper is to discuss the relationship between content, context and connectivity and suggesting a model of Dynamic Interplay. This is done in relation to a specific learning environment concerning cultural mediation, in casu the Kaj Munk Case of the EuroPLOT-project (an EU...... is discussed. Focus is here on The Kaj Munk Study Edition, The Conceptual Pond, Immersive Layers Design, and Generative Learning Objects (GLOs) which are applications affiliated with the Munk case. This paper explores the persuasive potential of the interplay between the different applications for the benefit...

  20. A Building Connecting Separated Communities

    DEFF Research Database (Denmark)

    Axel, Erik

    Producing something for general use involves the designers' anticipation of the use of the object. Personal as well as professional experience is involved in the design anticipations of the process. Using an object means exploring it as a concrete arrangement for our everyday conduct of life....... in no systematic sequence. This, among other things, separates design and use, which is worth investigating in order to understand the problems involved in connecting the design of a house and analyzing the experience of a user. We undertook a preliminary investigation of how a dormitory for visiting students from...... with students from other dormitories, and connect with the Danes from other sections of the building isolating themselves. The janitor was surprised at the supposed function of the washing machines. Since other dormitories at the campus did not provide washing machines, the ones at the house investigated were...

  1. UNBIASED ESTIMATORS OF SPECIFIC CONNECTIVITY

    Directory of Open Access Journals (Sweden)

    Jean-Paul Jernot

    2011-05-01

    Full Text Available This paper deals with the estimation of the specific connectivity of a stationary random set in IRd. It turns out that the "natural" estimator is only asymptotically unbiased. The example of a boolean model of hypercubes illustrates the amplitude of the bias produced when the measurement field is relatively small with respect to the range of the random set. For that reason unbiased estimators are desired. Such an estimator can be found in the literature in the case where the measurement field is a right parallelotope. In this paper, this estimator is extended to apply to measurement fields of various shapes, and to possess a smaller variance. Finally an example from quantitative metallography (specific connectivity of a population of sintered bronze particles is given.

  2. The business case for connectivity

    Science.gov (United States)

    Adams, Dennis; Hirschheim, Rudy

    1991-01-01

    Information systems that provide competitive advantages to organizations can be broadly classified into those that improve the effectiveness of a business function and those that improve the reach of information in the organization. The latter, organizational connectivity systems, can be categorized as intraorganizational and interorganizational systems. Intraorganization systems provide connectivity to function areas within the business, while interorganizational systems support the exchange of business data between independent business units. These system are not confined to a single entity but span organizational boundaries which can be national or international in scope. A series of case studies was undertaken in an effort to better understand the issues and problems associated with providing an increased flow of information within and outside of an organization. Ten issues emerged from this study. In summary, it is necessary for firms to first consider how effective their internal communications systems are before launching projects that tie the organization to external systems.

  3. Eukaryotic DNA Replicases

    KAUST Repository

    Zaher, Manal S.; Oke, Muse; Hamdan, Samir

    2014-01-01

    The current model of the eukaryotic DNA replication fork includes three replicative DNA polymerases, polymerase α/primase complex (Pol α), polymerase δ (Pol δ), and polymerase ε (Pol ε). The primase synthesizes 8–12 nucleotide RNA primers that are extended by the DNA polymerization activity of Pol α into 30–35 nucleotide RNA-DNA primers. Replication factor C (RFC) opens the polymerase clamp-like processivity factor, proliferating cell nuclear antigen (PCNA), and loads it onto the primer-template. Pol δ utilizes PCNA to mediate highly processive DNA synthesis, while Pol ε has intrinsic high processivity that is modestly stimulated by PCNA. Pol ε replicates the leading strand and Pol δ replicates the lagging strand in a division of labor that is not strict. The three polymerases are comprised of multiple subunits and share unifying features in their large catalytic and B subunits. The remaining subunits are evolutionarily not related and perform diverse functions. The catalytic subunits are members of family B, which are distinguished by their larger sizes due to inserts in their N- and C-terminal regions. The sizes of these inserts vary among the three polymerases, and their functions remain largely unknown. Strikingly, the quaternary structures of Pol α, Pol δ, and Pol ε are arranged similarly. The catalytic subunits adopt a globular structure that is linked via its conserved C-terminal region to the B subunit. The remaining subunits are linked to the catalytic and B subunits in a highly flexible manner.

  4. Eukaryotic DNA Replicases

    KAUST Repository

    Zaher, Manal S.

    2014-11-21

    The current model of the eukaryotic DNA replication fork includes three replicative DNA polymerases, polymerase α/primase complex (Pol α), polymerase δ (Pol δ), and polymerase ε (Pol ε). The primase synthesizes 8–12 nucleotide RNA primers that are extended by the DNA polymerization activity of Pol α into 30–35 nucleotide RNA-DNA primers. Replication factor C (RFC) opens the polymerase clamp-like processivity factor, proliferating cell nuclear antigen (PCNA), and loads it onto the primer-template. Pol δ utilizes PCNA to mediate highly processive DNA synthesis, while Pol ε has intrinsic high processivity that is modestly stimulated by PCNA. Pol ε replicates the leading strand and Pol δ replicates the lagging strand in a division of labor that is not strict. The three polymerases are comprised of multiple subunits and share unifying features in their large catalytic and B subunits. The remaining subunits are evolutionarily not related and perform diverse functions. The catalytic subunits are members of family B, which are distinguished by their larger sizes due to inserts in their N- and C-terminal regions. The sizes of these inserts vary among the three polymerases, and their functions remain largely unknown. Strikingly, the quaternary structures of Pol α, Pol δ, and Pol ε are arranged similarly. The catalytic subunits adopt a globular structure that is linked via its conserved C-terminal region to the B subunit. The remaining subunits are linked to the catalytic and B subunits in a highly flexible manner.

  5. Ongoing Space Physics - Astrophysics Connections

    OpenAIRE

    Eichler, David

    2005-01-01

    I review several ongoing connections between space physics and astrophysics: a) Measurements of energetic particle spectra have confirmed theoretical prediction of the highest energy to which shocks can accelerate particles, and this has direct bearing on the origin of the highest energy cosmic rays. b) Mass ejection in solar flares may help us understand photon ejection in the giant flares of magnetar outbursts. c) Measurements of electron heat fluxes in the solar wind can help us understand...

  6. Connecting Remote Clusters with ATM

    Energy Technology Data Exchange (ETDEWEB)

    Hu, T.C.; Wyckoff, P.S.

    1998-10-01

    Sandia's entry into utilizing clusters of networked workstations is called Computational Plant or CPlant for short. The design of CPlant uses Ethernet to boot the individual nodes, Myrinet to communicate within a node cluster, and ATM to connect between remote clusters. This SAND document covers the work done to enable the use of ATM on the CPlant nodes in the Fall of 1997.

  7. Regional connectivity in continental ASEAN

    OpenAIRE

    Taguchi, Hiroyuki; Nozaki, Kenji

    2014-01-01

    This chapter examines the issue on Mekong region’s connectivity on quantitative base through the analysis of the gravity trade model and its modified fragmentation model. The main findings are as follows: First, the evolution of international production networks (IPNs) between Thailand and Vietnam as well as the other advanced ASEAN could be identified in terms of their two-way trade integration of machinery parts and components beyond the gravity trade standard. Second, the trade intensity o...

  8. Collective action, clientelism and connectivity

    DEFF Research Database (Denmark)

    Shami, Mahvish

    that the unequal relationship between landlords and peasants does not, in and by itself, block peasant collective action. Rather, it is the interaction between clientelism and isolation that allow patrons to block community based projects. Despite still relying on powerful landlords, peasants in connected villages...... face no such constraints. On the contrary, their patrons assisted them in their collective endeavours, making the hierarchical network an added resource for peasants to rely upon....

  9. Altered Insula Connectivity under MDMA.

    Science.gov (United States)

    Walpola, Ishan C; Nest, Timothy; Roseman, Leor; Erritzoe, David; Feilding, Amanda; Nutt, David J; Carhart-Harris, Robin L

    2017-10-01

    Recent work with noninvasive human brain imaging has started to investigate the effects of 3,4-methylenedioxymethamphetamine (MDMA) on large-scale patterns of brain activity. MDMA, a potent monoamine-releaser with particularly pronounced serotonin- releasing properties, has unique subjective effects that include: marked positive mood, pleasant/unusual bodily sensations and pro-social, empathic feelings. However, the neurobiological basis for these effects is not properly understood, and the present analysis sought to address this knowledge gap. To do this, we administered MDMA-HCl (100 mg p.o.) and, separately, placebo (ascorbic acid) in a randomized, double-blind, repeated-measures design with twenty-five healthy volunteers undergoing fMRI scanning. We then employed a measure of global resting-state functional brain connectivity and follow-up seed-to-voxel analysis to the fMRI data we acquired. Results revealed decreased right insula/salience network functional connectivity under MDMA. Furthermore, these decreases in right insula/salience network connectivity correlated with baseline trait anxiety and acute experiences of altered bodily sensations under MDMA. The present findings highlight insular disintegration (ie, compromised salience network membership) as a neurobiological signature of the MDMA experience, and relate this brain effect to trait anxiety and acutely altered bodily sensations-both of which are known to be associated with insular functioning.

  10. DNA replication stress restricts ribosomal DNA copy number

    Science.gov (United States)

    Salim, Devika; Bradford, William D.; Freeland, Amy; Cady, Gillian; Wang, Jianmin

    2017-01-01

    Ribosomal RNAs (rRNAs) in budding yeast are encoded by ~100–200 repeats of a 9.1kb sequence arranged in tandem on chromosome XII, the ribosomal DNA (rDNA) locus. Copy number of rDNA repeat units in eukaryotic cells is maintained far in excess of the requirement for ribosome biogenesis. Despite the importance of the repeats for both ribosomal and non-ribosomal functions, it is currently not known how “normal” copy number is determined or maintained. To identify essential genes involved in the maintenance of rDNA copy number, we developed a droplet digital PCR based assay to measure rDNA copy number in yeast and used it to screen a yeast conditional temperature-sensitive mutant collection of essential genes. Our screen revealed that low rDNA copy number is associated with compromised DNA replication. Further, subculturing yeast under two separate conditions of DNA replication stress selected for a contraction of the rDNA array independent of the replication fork blocking protein, Fob1. Interestingly, cells with a contracted array grew better than their counterparts with normal copy number under conditions of DNA replication stress. Our data indicate that DNA replication stresses select for a smaller rDNA array. We speculate that this liberates scarce replication factors for use by the rest of the genome, which in turn helps cells complete DNA replication and continue to propagate. Interestingly, tumors from mini chromosome maintenance 2 (MCM2)-deficient mice also show a loss of rDNA repeats. Our data suggest that a reduction in rDNA copy number may indicate a history of DNA replication stress, and that rDNA array size could serve as a diagnostic marker for replication stress. Taken together, these data begin to suggest the selective pressures that combine to yield a “normal” rDNA copy number. PMID:28915237

  11. DNA replication stress restricts ribosomal DNA copy number.

    Science.gov (United States)

    Salim, Devika; Bradford, William D; Freeland, Amy; Cady, Gillian; Wang, Jianmin; Pruitt, Steven C; Gerton, Jennifer L

    2017-09-01

    Ribosomal RNAs (rRNAs) in budding yeast are encoded by ~100-200 repeats of a 9.1kb sequence arranged in tandem on chromosome XII, the ribosomal DNA (rDNA) locus. Copy number of rDNA repeat units in eukaryotic cells is maintained far in excess of the requirement for ribosome biogenesis. Despite the importance of the repeats for both ribosomal and non-ribosomal functions, it is currently not known how "normal" copy number is determined or maintained. To identify essential genes involved in the maintenance of rDNA copy number, we developed a droplet digital PCR based assay to measure rDNA copy number in yeast and used it to screen a yeast conditional temperature-sensitive mutant collection of essential genes. Our screen revealed that low rDNA copy number is associated with compromised DNA replication. Further, subculturing yeast under two separate conditions of DNA replication stress selected for a contraction of the rDNA array independent of the replication fork blocking protein, Fob1. Interestingly, cells with a contracted array grew better than their counterparts with normal copy number under conditions of DNA replication stress. Our data indicate that DNA replication stresses select for a smaller rDNA array. We speculate that this liberates scarce replication factors for use by the rest of the genome, which in turn helps cells complete DNA replication and continue to propagate. Interestingly, tumors from mini chromosome maintenance 2 (MCM2)-deficient mice also show a loss of rDNA repeats. Our data suggest that a reduction in rDNA copy number may indicate a history of DNA replication stress, and that rDNA array size could serve as a diagnostic marker for replication stress. Taken together, these data begin to suggest the selective pressures that combine to yield a "normal" rDNA copy number.

  12. DNA replication stress restricts ribosomal DNA copy number.

    Directory of Open Access Journals (Sweden)

    Devika Salim

    2017-09-01

    Full Text Available Ribosomal RNAs (rRNAs in budding yeast are encoded by ~100-200 repeats of a 9.1kb sequence arranged in tandem on chromosome XII, the ribosomal DNA (rDNA locus. Copy number of rDNA repeat units in eukaryotic cells is maintained far in excess of the requirement for ribosome biogenesis. Despite the importance of the repeats for both ribosomal and non-ribosomal functions, it is currently not known how "normal" copy number is determined or maintained. To identify essential genes involved in the maintenance of rDNA copy number, we developed a droplet digital PCR based assay to measure rDNA copy number in yeast and used it to screen a yeast conditional temperature-sensitive mutant collection of essential genes. Our screen revealed that low rDNA copy number is associated with compromised DNA replication. Further, subculturing yeast under two separate conditions of DNA replication stress selected for a contraction of the rDNA array independent of the replication fork blocking protein, Fob1. Interestingly, cells with a contracted array grew better than their counterparts with normal copy number under conditions of DNA replication stress. Our data indicate that DNA replication stresses select for a smaller rDNA array. We speculate that this liberates scarce replication factors for use by the rest of the genome, which in turn helps cells complete DNA replication and continue to propagate. Interestingly, tumors from mini chromosome maintenance 2 (MCM2-deficient mice also show a loss of rDNA repeats. Our data suggest that a reduction in rDNA copy number may indicate a history of DNA replication stress, and that rDNA array size could serve as a diagnostic marker for replication stress. Taken together, these data begin to suggest the selective pressures that combine to yield a "normal" rDNA copy number.

  13. DNA repair synthesis in human fibroblasts requires DNA polymerase delta

    International Nuclear Information System (INIS)

    Nishida, C.; Reinhard, P.; Linn, S.

    1988-01-01

    When UV-irradiated cultured diploid human fibroblasts were permeabilized with Brij-58 then separated from soluble material by centrifugation, conservative DNA repair synthesis could be restored by a soluble factor obtained from the supernatant of similarly treated HeLa cells. Extensive purification of this factor yielded a 10.2 S, 220,000-dalton polypeptide with the DNA polymerase and 3'- to 5'-exonuclease activities reported for DNA polymerase delta II. Monoclonal antibody to KB cell DNA polymerase alpha, while binding to HeLa DNA polymerase alpha, did not bind to the HeLa DNA polymerase delta. Moreover, at micromolar concentrations N2-(p-n-butylphenyl)-2'-deoxyguanosine 5'-triphosphate (BuPdGTP) and 2-(p-n-butylanilino)-2'-deoxyadenosine 5'-triphosphate (BuAdATP) were potent inhibitors of DNA polymerase alpha, but did not inhibit the DNA polymerase delta. Neither purified DNA polymerase alpha nor beta could promote repair DNA synthesis in the permeabilized cells. Furthermore, under conditions which inhibited purified DNA polymerase alpha by greater than 90%, neither monoclonal antibodies to DNA polymerase alpha, BuPdGTP, nor BuAdATP was able to inhibit significantly the DNA repair synthesis mediated by the DNA polymerase delta. Thus, it appears that a major portion of DNA repair synthesis induced by UV irradiation might be catalyzed by DNA polymerase delta. When xeroderma pigmentosum human diploid fibroblasts were utilized, DNA repair synthesis dependent upon ultraviolet light could be restored by addition of both T4 endonuclease V and DNA polymerase delta, but not by addition of either one alone

  14. Principles of DNA architectonics: design of DNA-based nanoobjects

    International Nuclear Information System (INIS)

    Vinogradova, O A; Pyshnyi, D V

    2012-01-01

    The methods of preparation of monomeric DNA blocks that serve as key building units for the construction of complex DNA objects are described. Examples are given of the formation of DNA blocks based on native and modified oligonucleotide components using hydrogen bonding and nucleic acid-specific types of bonding and also some affinity interactions with RNA, proteins, ligands. The static discrete and periodic two- and three-dimensional DNA objects reported to date are described systematically. Methods used to prove the structures of DNA objects and the prospects for practical application of nanostructures based on DNA and its analogues in biology, medicine and biophysics are considered. The bibliography includes 195 references.

  15. DNA Topoisomerases in Transcription

    DEFF Research Database (Denmark)

    Rødgaard, Morten Terpager

    2015-01-01

    This Ph.D. thesis summarizes the main results of my studies on the interplay between DNA topoisomerases and transcription. The work was performed from 2011 to 2015 at Aarhus University in the Laboratory of Genome Research, and was supervised by associate professor Anni H. Andersen. Most of the ex......This Ph.D. thesis summarizes the main results of my studies on the interplay between DNA topoisomerases and transcription. The work was performed from 2011 to 2015 at Aarhus University in the Laboratory of Genome Research, and was supervised by associate professor Anni H. Andersen. Most...... topoisomerase-DNA cleavage complex. The second study is an investigation of how topoisomerases influence gene regulation by keeping the genome in an optimal topological state....

  16. Duplication in DNA Sequences

    Science.gov (United States)

    Ito, Masami; Kari, Lila; Kincaid, Zachary; Seki, Shinnosuke

    The duplication and repeat-deletion operations are the basis of a formal language theoretic model of errors that can occur during DNA replication. During DNA replication, subsequences of a strand of DNA may be copied several times (resulting in duplications) or skipped (resulting in repeat-deletions). As formal language operations, iterated duplication and repeat-deletion of words and languages have been well studied in the literature. However, little is known about single-step duplications and repeat-deletions. In this paper, we investigate several properties of these operations, including closure properties of language families in the Chomsky hierarchy and equations involving these operations. We also make progress toward a characterization of regular languages that are generated by duplicating a regular language.

  17. Multiple regulatory systems coordinate DNA replication with cell growth in Bacillus subtilis.

    Directory of Open Access Journals (Sweden)

    Heath Murray

    2014-10-01

    Full Text Available In many bacteria the rate of DNA replication is linked with cellular physiology to ensure that genome duplication is coordinated with growth. Nutrient-mediated growth rate control of DNA replication initiation has been appreciated for decades, however the mechanism(s that connects these cell cycle activities has eluded understanding. In order to help address this fundamental question we have investigated regulation of DNA replication in the model organism Bacillus subtilis. Contrary to the prevailing view we find that changes in DnaA protein level are not sufficient to account for nutrient-mediated growth rate control of DNA replication initiation, although this regulation does require both DnaA and the endogenous replication origin. We go on to report connections between DNA replication and several essential cellular activities required for rapid bacterial growth, including respiration, central carbon metabolism, fatty acid synthesis, phospholipid synthesis, and protein synthesis. Unexpectedly, the results indicate that multiple regulatory systems are involved in coordinating DNA replication with cell physiology, with some of the regulatory systems targeting oriC while others act in a oriC-independent manner. We propose that distinct regulatory systems are utilized to control DNA replication in response to diverse physiological and chemical changes.

  18. Multiple regulatory systems coordinate DNA replication with cell growth in Bacillus subtilis.

    Science.gov (United States)

    Murray, Heath; Koh, Alan

    2014-10-01

    In many bacteria the rate of DNA replication is linked with cellular physiology to ensure that genome duplication is coordinated with growth. Nutrient-mediated growth rate control of DNA replication initiation has been appreciated for decades, however the mechanism(s) that connects these cell cycle activities has eluded understanding. In order to help address this fundamental question we have investigated regulation of DNA replication in the model organism Bacillus subtilis. Contrary to the prevailing view we find that changes in DnaA protein level are not sufficient to account for nutrient-mediated growth rate control of DNA replication initiation, although this regulation does require both DnaA and the endogenous replication origin. We go on to report connections between DNA replication and several essential cellular activities required for rapid bacterial growth, including respiration, central carbon metabolism, fatty acid synthesis, phospholipid synthesis, and protein synthesis. Unexpectedly, the results indicate that multiple regulatory systems are involved in coordinating DNA replication with cell physiology, with some of the regulatory systems targeting oriC while others act in a oriC-independent manner. We propose that distinct regulatory systems are utilized to control DNA replication in response to diverse physiological and chemical changes.

  19. Multiple Regulatory Systems Coordinate DNA Replication with Cell Growth in Bacillus subtilis

    Science.gov (United States)

    Murray, Heath; Koh, Alan

    2014-01-01

    In many bacteria the rate of DNA replication is linked with cellular physiology to ensure that genome duplication is coordinated with growth. Nutrient-mediated growth rate control of DNA replication initiation has been appreciated for decades, however the mechanism(s) that connects these cell cycle activities has eluded understanding. In order to help address this fundamental question we have investigated regulation of DNA replication in the model organism Bacillus subtilis. Contrary to the prevailing view we find that changes in DnaA protein level are not sufficient to account for nutrient-mediated growth rate control of DNA replication initiation, although this regulation does require both DnaA and the endogenous replication origin. We go on to report connections between DNA replication and several essential cellular activities required for rapid bacterial growth, including respiration, central carbon metabolism, fatty acid synthesis, phospholipid synthesis, and protein synthesis. Unexpectedly, the results indicate that multiple regulatory systems are involved in coordinating DNA replication with cell physiology, with some of the regulatory systems targeting oriC while others act in a oriC-independent manner. We propose that distinct regulatory systems are utilized to control DNA replication in response to diverse physiological and chemical changes. PMID:25340815

  20. Repeated DNA sequences in fungi

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, S K

    1974-11-01

    Several fungal species, representatives of all broad groups like basidiomycetes, ascomycetes and phycomycetes, were examined for the nature of repeated DNA sequences by DNA:DNA reassociation studies using hydroxyapatite chromatography. All of the fungal species tested contained 10 to 20 percent repeated DNA sequences. There are approximately 100 to 110 copies of repeated DNA sequences of approximately 4 x 10/sup 7/ daltons piece size of each. Repeated DNA sequence homoduplexes showed on average 5/sup 0/C difference of T/sub e/50 (temperature at which 50 percent duplexes dissociate) values from the corresponding homoduplexes of unfractionated whole DNA. It is suggested that a part of repetitive sequences in fungi constitutes mitochondrial DNA and a part of it constitutes nuclear DNA. (auth)

  1. Cascade of chromosomal rearrangements caused by a heterogeneous T-DNA integration supports the double-stranded break repair model for T-DNA integration.

    Science.gov (United States)

    Hu, Yufei; Chen, Zhiyu; Zhuang, Chuxiong; Huang, Jilei

    2017-06-01

    Transferred DNA (T-DNA) from Agrobacterium tumefaciens can be integrated into the plant genome. The double-stranded break repair (DSBR) pathway is a major model for T-DNA integration. From this model, we expect that two ends of a T-DNA molecule would invade into a single DNA double-stranded break (DSB) or independent DSBs in the plant genome. We call the later phenomenon a heterogeneous T-DNA integration, which has never been observed. In this work, we demonstrated it in an Arabidopsis T-DNA insertion mutant seb19. To resolve the chromosomal structural changes caused by T-DNA integration at both the nucleotide and chromosome levels, we performed inverse PCR, genome resequencing, fluorescence in situ hybridization and linkage analysis. We found, in seb19, a single T-DNA connected two different chromosomal loci and caused complex chromosomal rearrangements. The specific break-junction pattern in seb19 is consistent with the result of heterogeneous T-DNA integration but not of recombination between two T-DNA insertions. We demonstrated that, in seb19, heterogeneous T-DNA integration evoked a cascade of incorrect repair of seven DSBs on chromosomes 4 and 5, and then produced translocation, inversion, duplication and deletion. Heterogeneous T-DNA integration supports the DSBR model and suggests that two ends of a T-DNA molecule could be integrated into the plant genome independently. Our results also show a new origin of chromosomal abnormalities. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  2. DNA Nanotechnology for Cancer Therapy

    Science.gov (United States)

    Kumar, Vinit; Palazzolo, Stefano; Bayda, Samer; Corona, Giuseppe; Toffoli, Giuseppe; Rizzolio, Flavio

    2016-01-01

    DNA nanotechnology is an emerging and exciting field, and represents a forefront frontier for the biomedical field. The specificity of the interactions between complementary base pairs makes DNA an incredible building material for programmable and very versatile two- and three-dimensional nanostructures called DNA origami. Here, we analyze the DNA origami and DNA-based nanostructures as a drug delivery system. Besides their physical-chemical nature, we dissect the critical factors such as stability, loading capability, release and immunocompatibility, which mainly limit in vivo applications. Special attention was dedicated to highlighting the boundaries to be overcome to bring DNA nanostructures closer to the bedside of patients. PMID:27022418

  3. A microfabricated hybrid device for DNA sequencing.

    Science.gov (United States)

    Liu, Shaorong

    2003-11-01

    We have created a hybrid device of a microfabricated round-channel twin-T injector incorporated with a separation capillary in order to extend the straight separation distance for high speed and long readlength DNA sequencing. Semicircular grooves on glass wafers are obtained using a photomask with a narrow line-width and a standard isotropic photolithographic etching process. Round channels are made when two etched wafers are face-to-face aligned and bonded. A two-mask fabrication process has been developed to make channels of two different diameters. The twin-T injector is formed by the smaller channels whose diameter matches the bore of the separation capillary, and the "usual" separation channel, now called the connection channel, is formed by the larger ones whose diameter matches the outer diameter of the separation capillary. The separation capillary is inserted through the connection channel all the way to the twin-T injector to allow the capillary bore flush with the twin-T injector channels. The total dead-volume of the connection is estimated to be approximately 5 pL. To demonstrate the efficiency of this hybrid device, we have performed four-color DNA sequencing on it. Using a 200 microm twin-T injector coupled with a separation capillary of 20 cm effective separation distance, we have obtained readlengths of 800 plus bases at an accuracy of 98.5% in 56 min, compared to about 650 bases in 100 min on a conventional 40 cm long capillary sequencing machine under similar conditions. At an increased separation field strength and using a diluted sieving matrix, the separation time has been reduced to 20 min with a readlength of 700 bases at 98.5% base-calling accuracy.

  4. DNA profiling of trace DNA recovered from bedding.

    Science.gov (United States)

    Petricevic, Susan F; Bright, Jo-Anne; Cockerton, Sarah L

    2006-05-25

    Trace DNA is often detected on handled items and worn clothing examined in forensic laboratories. In this study, the potential transfer of trace DNA to bedding by normal contact, when an individual sleeps in a bed, is examined. Volunteers slept one night on a new, lower bed sheet in their own bed and one night in a bed foreign to them. Samples from the sheets were collected and analysed by DNA profiling. The results indicate that the DNA profile of an individual can be obtained from bedding after one night of sleeping in a bed. The DNA profile of the owner of the bed could also be detected in the foreign bed experiments. Since mixed DNA profiles can be obtained from trace DNA on bedding, caution should be exercised when drawing conclusions from DNA profiling results obtained from such samples. This transfer may have important repercussions in sexual assault investigations.

  5. The smart/connected city and its implications for connected transportation.

    Science.gov (United States)

    2014-10-14

    This white paper outlines the potential for the emerging connected transportation system to interface with smart/connected cities. Its aim is to lay the foundation for defining steps that the U.S. Department of Transportation (USDOT) Connected Vehicl...

  6. Geographic differences in vertical connectivity in the Caribbean coral Montastraea cavernosa despite high levels of horizontal connectivity at shallow depths.

    Science.gov (United States)

    Serrano, X; Baums, I B; O'Reilly, K; Smith, T B; Jones, R J; Shearer, T L; Nunes, F L D; Baker, A C

    2014-09-01

    The deep reef refugia hypothesis proposes that deep reefs can act as local recruitment sources for shallow reefs following disturbance. To test this hypothesis, nine polymorphic DNA microsatellite loci were developed and used to assess vertical connectivity in 583 coral colonies of the Caribbean depth-generalist coral Montastraea cavernosa. Samples were collected from three depth zones (≤10, 15-20 and ≥25 m) at sites in Florida (within the Upper Keys, Lower Keys and Dry Tortugas), Bermuda, and the U.S. Virgin Islands. Migration rates were estimated to determine the probability of coral larval migration from shallow to deep and from deep to shallow. Finally, algal symbiont (Symbiodinium spp.) diversity and distribution were assessed in a subset of corals to test whether symbiont depth zonation might indicate limited vertical connectivity. Overall, analyses revealed significant genetic differentiation by depth in Florida, but not in Bermuda or the U.S. Virgin Islands, despite high levels of horizontal connectivity between these geographic locations at shallow depths. Within Florida, greater vertical connectivity was observed in the Dry Tortugas compared to the Lower or Upper Keys. However, at all sites, and regardless of the extent of vertical connectivity, migration occurred asymmetrically, with greater likelihood of migration from shallow to intermediate/deep habitats. Finally, most colonies hosted a single Symbiodinium type (C3), ruling out symbiont depth zonation of the dominant symbiont type as a structuring factor. Together, these findings suggest that the potential for shallow reefs to recover from deep-water refugia in M. cavernosa is location-specific, varying among and within geographic locations likely as a consequence of local hydrology. © 2014 John Wiley & Sons Ltd.

  7. Study of rectenna array connection

    Energy Technology Data Exchange (ETDEWEB)

    Miura, T.; Shinohara, N.; Matsumoto, H. [Kyoto Univ., Uji (Japan). Engineering Research Inst.

    1997-11-01

    A study was conducted in which a new rectenna working at 2.45 GHz microwave was developed for ground-to-ground microwave power transmission. The new rectenna consists of an antenna section and a rectifying section. The new design is simple and therefore more accurate than a micro-strip type patch antenna. The efficiency of conversion of microwave power to direct current depends on the mutual dependence of antenna elements and circuit conditions of rectifying sections. A series of experiments were conducted to analyze the rectenna characteristics and a method for efficiently connecting rectenna arrays was proposed. 3 refs., 2 tabs., 15 figs.

  8. CODAC systems arrangement and connectivity

    Energy Technology Data Exchange (ETDEWEB)

    Gulati, Hitesh Kumar, E-mail: hkgulati@gmail.com; Beltran, David; Kuehn, Ingo; Kotamaki, Miikka; Makijarvi, Petri; Wallander, Anders

    2013-10-15

    Highlights: •The CODAC system is a distributed system and scattered in many buildings connected with cables. Building construction for ITER project is just started so volume reservation for different CODAC component is done based on the content of this paper. •The 2-D and 3-D diagrams have been prepared which are showing the location of different CODAC equipment and their connectivity. •The different requirements regarding raised access (false) floor, power requirements, heat load, installation, maintenance, redundancy, and segregation etc. have been considered. -- Abstract: The CODAC system is responsible for integrating all ITER plant system Instrumentation and Control systems and enabling operation of ITER machine as a single integrated facility. The different ITER plant systems and their Instrumentation and Control systems are distributed in several ITER buildings on the ITER platform. The CODAC systems have to interface with all these distributed plant system I and C systems. CODAC systems will be composed of several physical systems or components like networks, servers, workstations (terminals), large displays, PSH, storage systems etc. Several rooms in different buildings have been defined to house all above equipment. The site-wide CODAC network infrastructure will be based on a dual (redundant) star topology. The two redundant star points will house the core networking switches. These redundant core switches will be installed in different buildings. Cubicles used for network infrastructure are distributed among “hutches,” where a CODAC hutch is a room or area equipped with appropriate heating, ventilation, air conditioning and uninterruptible power which will be directly connected through two star points. The responsibility of CODAC infrastructure ends up to the plant system I and C cubicles so several passive CODAC network panels have identified in all I and C rooms of different plant buildings. This CODAC Network Panel will be the physical

  9. Recreating Intimacy With Connected Consumers

    Directory of Open Access Journals (Sweden)

    Stephen Andrew

    2017-11-01

    Full Text Available In the good old times shop manager knew their customers personally and were able to tailor offerings to their needs and desires. But how can we create meaningful moments for connected consumers in global markets? Yasmeen Ahmad explains how in digital times data fill in. Smart algorithms help generate insights and enable real time action to provide the right product and service to the right customer at the right time. Companies that don’t want to be left behind a digital elite need to remain close to their customers across multiple digital touchpoints. Being capable of reading, interpreting and acting upon consumers` traces is a prerequisite.

  10. DNA tagged microparticles

    Science.gov (United States)

    Farquar, George R.; Leif, Roald N.; Wheeler, Elizabeth

    2016-03-22

    In one embodiment, a product includes a plurality of particles, each particle including: a carrier that includes a non-toxic material; and at least one DNA barcode coupled to the carrier, where the particles each have a diameter in a range from about 1 nanometer to about 100 microns.

  11. Nanomechanical DNA origami 'single-molecule beacons' directly imaged by atomic force microscopy

    Science.gov (United States)

    Kuzuya, Akinori; Sakai, Yusuke; Yamazaki, Takahiro; Xu, Yan; Komiyama, Makoto

    2011-01-01

    DNA origami involves the folding of long single-stranded DNA into designed structures with the aid of short staple strands; such structures may enable the development of useful nanomechanical DNA devices. Here we develop versatile sensing systems for a variety of chemical and biological targets at molecular resolution. We have designed functional nanomechanical DNA origami devices that can be used as 'single-molecule beacons', and function as pinching devices. Using 'DNA origami pliers' and 'DNA origami forceps', which consist of two levers ~170 nm long connected at a fulcrum, various single-molecule inorganic and organic targets ranging from metal ions to proteins can be visually detected using atomic force microscopy by a shape transition of the origami devices. Any detection mechanism suitable for the target of interest, pinching, zipping or unzipping, can be chosen and used orthogonally with differently shaped origami devices in the same mixture using a single platform. PMID:21863016

  12. Structural basis for sequence-specific recognition of DNA by TAL effectors

    KAUST Repository

    Deng, Dong

    2012-01-05

    TAL (transcription activator-like) effectors, secreted by phytopathogenic bacteria, recognize host DNA sequences through a central domain of tandem repeats. Each repeat comprises 33 to 35 conserved amino acids and targets a specific base pair by using two hypervariable residues [known as repeat variable diresidues (RVDs)] at positions 12 and 13. Here, we report the crystal structures of an 11.5-repeat TAL effector in both DNA-free and DNA-bound states. Each TAL repeat comprises two helices connected by a short RVD-containing loop. The 11.5 repeats form a right-handed, superhelical structure that tracks along the sense strand of DNA duplex, with RVDs contacting the major groove. The 12th residue stabilizes the RVD loop, whereas the 13th residue makes a base-specific contact. Understanding DNA recognition by TAL effectors may facilitate rational design of DNA-binding proteins with biotechnological applications.

  13. The dynamic interplay between DNA topoisomerases and DNA topology.

    Science.gov (United States)

    Seol, Yeonee; Neuman, Keir C

    2016-11-01

    Topological properties of DNA influence its structure and biochemical interactions. Within the cell, DNA topology is constantly in flux. Transcription and other essential processes, including DNA replication and repair, not only alter the topology of the genome but also introduce additional complications associated with DNA knotting and catenation. These topological perturbations are counteracted by the action of topoisomerases, a specialized class of highly conserved and essential enzymes that actively regulate the topological state of the genome. This dynamic interplay among DNA topology, DNA processing enzymes, and DNA topoisomerases is a pervasive factor that influences DNA metabolism in vivo. Building on the extensive structural and biochemical characterization over the past four decades that has established the fundamental mechanistic basis of topoisomerase activity, scientists have begun to explore the unique roles played by DNA topology in modulating and influencing the activity of topoisomerases. In this review we survey established and emerging DNA topology-dependent protein-DNA interactions with a focus on in vitro measurements of the dynamic interplay between DNA topology and topoisomerase activity.

  14. Battery impedance spectroscopy using bidirectional grid connected

    Indian Academy of Sciences (India)

    Keywords. Impedance spectroscopy; grid connection; battery converter; state of charge; health monitoring ... The converter is grid connected and controlled to operate at unity power factor. Additional ... Sadhana. Current Issue : Vol. 43, Issue 6.

  15. Connecting Related Rates and Differential Equations

    Science.gov (United States)

    Brandt, Keith

    2012-01-01

    This article points out a simple connection between related rates and differential equations. The connection can be used for in-class examples or homework exercises, and it is accessible to students who are familiar with separation of variables.

  16. National connected vehicle field infrastructure footprint analysis.

    Science.gov (United States)

    2014-06-01

    The fundamental premise of the connected vehicle initiative is that enabling wireless connectivity among vehicles, the infrastructure, and mobile devices will bring about transformative changes in safety, mobility, and the environmental impacts in th...

  17. Connected and autonomous vehicles 2040 vision.

    Science.gov (United States)

    2014-07-01

    The Pennsylvania Department of Transportation (PennDOT) commissioned a one-year project, Connected and Autonomous : Vehicles 2040 Vision, with researchers at Carnegie Mellon University (CMU) to assess the implications of connected and : autonomous ve...

  18. Connectivity editing for quadrilateral meshes

    KAUST Repository

    Peng, Chihan; Zhang, Eugene; Kobayashi, Yoshihiro; Wonka, Peter

    2011-01-01

    We propose new connectivity editing operations for quadrilateral meshes with the unique ability to explicitly control the location, orientation, type, and number of the irregular vertices (valence not equal to four) in the mesh while preserving sharp edges. We provide theoretical analysis on what editing operations are possible and impossible and introduce three fundamental operations to move and re-orient a pair of irregular vertices. We argue that our editing operations are fundamental, because they only change the quad mesh in the smallest possible region and involve the fewest irregular vertices (i.e., two). The irregular vertex movement operations are supplemented by operations for the splitting, merging, canceling, and aligning of irregular vertices. We explain how the proposed highlevel operations are realized through graph-level editing operations such as quad collapses, edge flips, and edge splits. The utility of these mesh editing operations are demonstrated by improving the connectivity of quad meshes generated from state-of-art quadrangulation techniques. © 2011 ACM.

  19. Connectivity editing for quadrilateral meshes

    KAUST Repository

    Peng, Chihan

    2011-12-12

    We propose new connectivity editing operations for quadrilateral meshes with the unique ability to explicitly control the location, orientation, type, and number of the irregular vertices (valence not equal to four) in the mesh while preserving sharp edges. We provide theoretical analysis on what editing operations are possible and impossible and introduce three fundamental operations to move and re-orient a pair of irregular vertices. We argue that our editing operations are fundamental, because they only change the quad mesh in the smallest possible region and involve the fewest irregular vertices (i.e., two). The irregular vertex movement operations are supplemented by operations for the splitting, merging, canceling, and aligning of irregular vertices. We explain how the proposed highlevel operations are realized through graph-level editing operations such as quad collapses, edge flips, and edge splits. The utility of these mesh editing operations are demonstrated by improving the connectivity of quad meshes generated from state-of-art quadrangulation techniques. © 2011 ACM.

  20. Astrophysicists' conversational connections on Twitter.

    Directory of Open Access Journals (Sweden)

    Kim Holmberg

    Full Text Available Because Twitter and other social media are increasingly used for analyses based on altmetrics, this research sought to understand what contexts, affordance use, and social activities influence the tweeting behavior of astrophysicists. Thus, the presented study has been guided by three research questions that consider the influence of astrophysicists' activities (i.e., publishing and tweeting frequency and of their tweet construction and affordance use (i.e. use of hashtags, language, and emotions on the conversational connections they have on Twitter. We found that astrophysicists communicate with a variety of user types (e.g. colleagues, science communicators, other researchers, and educators and that in the ego networks of the astrophysicists clear groups consisting of users with different professional roles can be distinguished. Interestingly, the analysis of noun phrases and hashtags showed that when the astrophysicists address the different groups of very different professional composition they use very similar terminology, but that they do not talk to each other (i.e. mentioning other user names in tweets. The results also showed that in those areas of the ego networks that tweeted more the sentiment of the tweets tended to be closer to neutral, connecting frequent tweeting with information sharing activities rather than conversations or expressing opinions.

  1. Embedded adhesive connection for laminated glass plates

    DEFF Research Database (Denmark)

    Hansen, Jens Zangenberg; Poulsen, S.H.; Bagger, A.

    2012-01-01

    The structural behavior of a new connection design, the embedded adhesive connection, used for laminated glass plates is investigated. The connection consists of an aluminum plate encapsulated in-between two adjacent triple layered laminated glass plates. Fastening between glass and aluminum...... usage in a design situation. The embedded connection shows promising potential as a future fastening system for load-carrying laminated glass plates....

  2. Conformation-dependent DNA attraction

    Science.gov (United States)

    Li, Weifeng; Nordenskiöld, Lars; Zhou, Ruhong; Mu, Yuguang

    2014-05-01

    Understanding how DNA molecules interact with other biomolecules is related to how they utilize their functions and is therefore critical for understanding their structure-function relationships. For a long time, the existence of Z-form DNA (a left-handed double helical version of DNA, instead of the common right-handed B-form) has puzzled the scientists, and the definitive biological significance of Z-DNA has not yet been clarified. In this study, the effects of DNA conformation in DNA-DNA interactions are explored by molecular dynamics simulations. Using umbrella sampling, we find that for both B- and Z-form DNA, surrounding Mg2+ ions always exert themselves to screen the Coulomb repulsion between DNA phosphates, resulting in very weak attractive force. On the contrary, a tight and stable bound state is discovered for Z-DNA in the presence of Mg2+ or Na+, benefiting from their hydrophobic nature. Based on the contact surface and a dewetting process analysis, a two-stage binding process of Z-DNA is outlined: two Z-DNA first attract each other through charge screening and Mg2+ bridges to phosphate groups in the same way as that of B-DNA, after which hydrophobic contacts of the deoxyribose groups are formed via a dewetting effect, resulting in stable attraction between two Z-DNA molecules. The highlighted hydrophobic nature of Z-DNA interaction from the current study may help to understand the biological functions of Z-DNA in gene transcription.Understanding how DNA molecules interact with other biomolecules is related to how they utilize their functions and is therefore critical for understanding their structure-function relationships. For a long time, the existence of Z-form DNA (a left-handed double helical version of DNA, instead of the common right-handed B-form) has puzzled the scientists, and the definitive biological significance of Z-DNA has not yet been clarified. In this study, the effects of DNA conformation in DNA-DNA interactions are explored by

  3. Melting curves of gammairradiated DNA

    International Nuclear Information System (INIS)

    Hofer, H.; Altmann, H.; Kehrer, M.

    1978-08-01

    Melting curves of gammairradiated DNA and data derived of them, are reported. The diminished stability is explained by basedestruction. DNA denatures completely at room temperature, if at least every fifth basepair is broken or weakened by irradiation. (author)

  4. An Introduction to DNA Fingerprinting.

    Science.gov (United States)

    Hepfer, Carol Ely; And Others

    1993-01-01

    Provides background information on DNA fingerprinting, and describes exercises for introducing general biology students at the high school or college level to the methodology and applications of DNA fingerprinting. (PR)

  5. Esitleti kakskeelset luulekogu "Luule DNA"

    Index Scriptorium Estoniae

    2007-01-01

    Magrelli, Valerio. Luule DNA = Il DNA della poesia / tõlkinud [ja saatesõna:] Maarja Kangro ja Kalju Kruusa. Tallinn : Koma, 2006. Sisaldab autori teksti. Esitlus 24. jaan. Kirjanike majas Tallinnas

  6. Coupling DNA nano-breadboards to solid state conductors

    International Nuclear Information System (INIS)

    Wang, Liqian; Morales, Piero; Dalmastri, Claudia; Rapone, Bruno; Gothelf, Kurt; Krissanaprasit, Abhichart; Rettere, Scott

    2015-01-01

    DNA is not only a most extraordinary information storage medium: the programmable pairing of DNA single strands into precisely engineered, connecting double helices make it an extremely appealing material for assemblage of nanoscale architectures. This is the basis of DNA nanotechnology, and designing almost any structure made of DNA at the nanometer scale, decorating it with a variety of functional molecules, and accomplishing it by virtually inexpensive self-assembly, is already a reality in many research laboratories in the world. But can we extend the range of applications of this technology by coupling DNA grafted molecular electronic nano circuitry to solid state devices, and interface molecular smart functions to our senses? This challenging research is addressed by a collaborative research among ENEA, the Universities of Roma 'Tor Vergata' and 'Aarhus', and the CNMS of the Oak Ridge National Laboratory. The first results obtained by our consortium pave the way to the technological ability to interface and use completely self-assembled, DNA-based electronic nano-breadboards, endowed with ultra-high-density functional organic components [it

  7. Avatar DNA Nanohybrid System in Chip-on-a-Phone

    Science.gov (United States)

    Park, Dae-Hwan; Han, Chang Jo; Shul, Yong-Gun; Choy, Jin-Ho

    2014-05-01

    Long admired for informational role and recognition function in multidisciplinary science, DNA nanohybrids have been emerging as ideal materials for molecular nanotechnology and genetic information code. Here, we designed an optical machine-readable DNA icon on microarray, Avatar DNA, for automatic identification and data capture such as Quick Response and ColorZip codes. Avatar icon is made of telepathic DNA-DNA hybrids inscribed on chips, which can be identified by camera of smartphone with application software. Information encoded in base-sequences can be accessed by connecting an off-line icon to an on-line web-server network to provide message, index, or URL from database library. Avatar DNA is then converged with nano-bio-info-cogno science: each building block stands for inorganic nanosheets, nucleotides, digits, and pixels. This convergence could address item-level identification that strengthens supply-chain security for drug counterfeits. It can, therefore, provide molecular-level vision through mobile network to coordinate and integrate data management channels for visual detection and recording.

  8. Clustered DNA damage induced by proton and heavy ion irradiation

    International Nuclear Information System (INIS)

    Davidkova, M.; Pachnerova Brabcova, K; Stepan, V.; Vysin, L.; Sihver, L.; Incerti, S.

    2014-01-01

    Ionizing radiation induces in DNA strand breaks, damaged bases and modified sugars, which accumulate with increasing density of ionizations in charged particle tracks. Compared to isolated DNA damage sites, the biological toxicity of damage clusters can be for living cells more severe. We investigated the clustered DNA damage induced by protons (30 MeV) and high LET radiation (C 290 MeV/u and Fe 500 MeV/u) in pBR322 plasmid DNA. To distinguish between direct and indirect pathways of radiation damage, the plasmid was irradiated in pure water or in aqueous solution of one of the three scavengers (coumarin-3-carboxylic acid, dimethylsulfoxide, and glycylglycine). The goal of the contribution is the analysis of determined types of DNA damage in dependence on radiation quality and related contribution of direct and indirect radiation effects. The yield of double strand breaks (DSB) induced in the DNA plasmid-scavenger system by heavy ion radiation was found to decrease with increasing scavenging capacity due to reaction with hydroxyl radical, linearly with high correlation coefficients. The yield of non-DSB clusters was found to occur twice as much as the DSB. Their decrease with increasing scavenging capacity had lower linear correlation coefficients. This indicates that the yield of non-DSB clusters depends on more factors, which are likely connected to the chemical properties of individual scavengers. (authors)

  9. Intermodal connectivity in Europe, an empirical exploration

    NARCIS (Netherlands)

    de Langen, P.W.; Lases Figueroa, D.M.; van Donselaar, K.H.; Bozuwa, J.

    2017-01-01

    In this paper we analyse the intermodal connectivity in Europe. The empirical analysis is to our knowledge the first empirical analysis of intermodal connections, and is based on a comprehensive database of intermodal connections in Europe. The paper focuses on rail and barge services, as they are

  10. Airport industry connectivity report: 2004-2014

    NARCIS (Netherlands)

    Burghouwt, G.; Lieshout, R.

    2014-01-01

    Airport connectivity is an increasingly discussed topic in European policy circles. With good reason. Connectivity is closely connected with productivity, economic growth and international trade. And with the centre of global economic activity shifting eastward, it is essential that Europe remains

  11. MedlinePlus Connect: Web Service

    Science.gov (United States)

    ... MedlinePlus Connect → Web Service URL of this page: https://medlineplus.gov/connect/service.html MedlinePlus Connect: Web ... will change.) Old URLs New URLs Web Application https://apps.nlm.nih.gov/medlineplus/services/mpconnect.cfm? ...

  12. MedlinePlus Connect: Web Application

    Science.gov (United States)

    ... MedlinePlus Connect → Web Application URL of this page: https://medlineplus.gov/connect/application.html MedlinePlus Connect: Web ... will change.) Old URLs New URLs Web Application https://apps.nlm.nih.gov/medlineplus/services/mpconnect.cfm? ...

  13. MedlinePlus Connect: Technical Information

    Science.gov (United States)

    ... MedlinePlus Connect → Technical Information URL of this page: https://medlineplus.gov/connect/technical.html MedlinePlus Connect: Technical ... will change.) Old URLs New URLs Web Application https://apps.nlm.nih.gov/medlineplus/services/mpconnect.cfm? ...

  14. MedlinePlus Connect: Email List

    Science.gov (United States)

    ... MedlinePlus Connect → Email List URL of this page: https://medlineplus.gov/connect/emaillist.html MedlinePlus Connect: Email ... will change.) Old URLs New URLs Web Application https://apps.nlm.nih.gov/medlineplus/services/mpconnect.cfm? ...

  15. Conformation-dependent DNA attraction.

    Science.gov (United States)

    Li, Weifeng; Nordenskiöld, Lars; Zhou, Ruhong; Mu, Yuguang

    2014-06-21

    Understanding how DNA molecules interact with other biomolecules is related to how they utilize their functions and is therefore critical for understanding their structure-function relationships. For a long time, the existence of Z-form DNA (a left-handed double helical version of DNA, instead of the common right-handed B-form) has puzzled the scientists, and the definitive biological significance of Z-DNA has not yet been clarified. In this study, the effects of DNA conformation in DNA-DNA interactions are explored by molecular dynamics simulations. Using umbrella sampling, we find that for both B- and Z-form DNA, surrounding Mg(2+) ions always exert themselves to screen the Coulomb repulsion between DNA phosphates, resulting in very weak attractive force. On the contrary, a tight and stable bound state is discovered for Z-DNA in the presence of Mg(2+) or Na(+), benefiting from their hydrophobic nature. Based on the contact surface and a dewetting process analysis, a two-stage binding process of Z-DNA is outlined: two Z-DNA first attract each other through charge screening and Mg(2+) bridges to phosphate groups in the same way as that of B-DNA, after which hydrophobic contacts of the deoxyribose groups are formed via a dewetting effect, resulting in stable attraction between two Z-DNA molecules. The highlighted hydrophobic nature of Z-DNA interaction from the current study may help to understand the biological functions of Z-DNA in gene transcription.

  16. Alterations of ultraviolet irradiated DNA

    International Nuclear Information System (INIS)

    Davila, C.; Garces, F.

    1980-01-01

    Thymine dimers production has been studied in several DNA- 3 H irradiated at various wave lenght of U.V. Light. The influence of dimers on the hydrodynamic and optic properties, thermal structural stability and transformant capacity of DNA have been studied too. At last the recognition and excision of dimers by the DNA-UV-Endonuclease and DNA-Polimerase-I was also studied. (author)

  17. Interfacing DNA nanodevices with biology

    DEFF Research Database (Denmark)

    Vinther, Mathias; Kjems, Jørgen

    2016-01-01

    in biology and biomedicine acting as a molecular ‘nanorobot’ or smart drug interacting with the cellular machinery. In this review, we will explore and examine the perspective of DNA nanotechnology for such use. We summarize which requirements DNA nanostructures must fulfil to function in cellular...... environments and inside living organisms. In addition, we highlight recent advances in interfacing DNA nanostructures with biology....

  18. Human Genome Research: Decoding DNA

    Science.gov (United States)

    dropdown arrow Site Map A-Z Index Menu Synopsis Human Genome Research: Decoding DNA Resources with of the DNA double helix during April 2003. James D. Watson, Francis Crick, and Maurice Wilkins were company Celera announced the completion of a "working draft" reference DNA sequence of the human

  19. My journey to DNA repair.

    Science.gov (United States)

    Lindahl, Tomas

    2013-02-01

    I completed my medical studies at the Karolinska Institute in Stockholm but have always been devoted to basic research. My longstanding interest is to understand fundamental DNA repair mechanisms in the fields of cancer therapy, inherited human genetic disorders and ancient DNA. I initially measured DNA decay, including rates of base loss and cytosine deamination. I have discovered several important DNA repair proteins and determined their mechanisms of action. The discovery of uracil-DNA glycosylase defined a new category of repair enzymes with each specialized for different types of DNA damage. The base excision repair pathway was first reconstituted with human proteins in my group. Cell-free analysis for mammalian nucleotide excision repair of DNA was also developed in my laboratory. I found multiple distinct DNA ligases in mammalian cells, and led the first genetic and biochemical work on DNA ligases I, III and IV. I discovered the mammalian exonucleases DNase III (TREX1) and IV (FEN1). Interestingly, expression of TREX1 was altered in some human autoimmune diseases. I also showed that the mutagenic DNA adduct O(6)-methylguanine (O(6)mG) is repaired without removing the guanine from DNA, identifying a surprising mechanism by which the methyl group is transferred to a residue in the repair protein itself. A further novel process of DNA repair discovered by my research group is the action of AlkB as an iron-dependent enzyme carrying out oxidative demethylation. Copyright © 2013. Production and hosting by Elsevier Ltd.

  20. Connecting multimodality in human communication.

    Science.gov (United States)

    Regenbogen, Christina; Habel, Ute; Kellermann, Thilo

    2013-01-01

    A successful reciprocal evaluation of social signals serves as a prerequisite for social coherence and empathy. In a previous fMRI study we studied naturalistic communication situations by presenting video clips to our participants and recording their behavioral responses regarding empathy and its components. In two conditions, all three channels transported congruent emotional or neutral information, respectively. Three conditions selectively presented two emotional channels and one neutral channel and were thus bimodally emotional. We reported channel-specific emotional contributions in modality-related areas, elicited by dynamic video clips with varying combinations of emotionality in facial expressions, prosody, and speech content. However, to better understand the underlying mechanisms accompanying a naturalistically displayed human social interaction in some key regions that presumably serve as specific processing hubs for facial expressions, prosody, and speech content, we pursued a reanalysis of the data. Here, we focused on two different descriptions of temporal characteristics within these three modality-related regions [right fusiform gyrus (FFG), left auditory cortex (AC), left angular gyrus (AG) and left dorsomedial prefrontal cortex (dmPFC)]. By means of a finite impulse response (FIR) analysis within each of the three regions we examined the post-stimulus time-courses as a description of the temporal characteristics of the BOLD response during the video clips. Second, effective connectivity between these areas and the left dmPFC was analyzed using dynamic causal modeling (DCM) in order to describe condition-related modulatory influences on the coupling between these regions. The FIR analysis showed initially diminished activation in bimodally emotional conditions but stronger activation than that observed in neutral videos toward the end of the stimuli, possibly by bottom-up processes in order to compensate for a lack of emotional information. The

  1. DNA Origami-Graphene Hybrid Nanopore for DNA Detection.

    Science.gov (United States)

    Barati Farimani, Amir; Dibaeinia, Payam; Aluru, Narayana R

    2017-01-11

    DNA origami nanostructures can be used to functionalize solid-state nanopores for single molecule studies. In this study, we characterized a nanopore in a DNA origami-graphene heterostructure for DNA detection. The DNA origami nanopore is functionalized with a specific nucleotide type at the edge of the pore. Using extensive molecular dynamics (MD) simulations, we computed and analyzed the ionic conductivity of nanopores in heterostructures carpeted with one or two layers of DNA origami on graphene. We demonstrate that a nanopore in DNA origami-graphene gives rise to distinguishable dwell times for the four DNA base types, whereas for a nanopore in bare graphene, the dwell time is almost the same for all types of bases. The specific interactions (hydrogen bonds) between DNA origami and the translocating DNA strand yield different residence times and ionic currents. We also conclude that the speed of DNA translocation decreases due to the friction between the dangling bases at the pore mouth and the sequencing DNA strands.

  2. Efficient Sleeping Beauty DNA Transposition From DNA Minicircles

    Directory of Open Access Journals (Sweden)

    Nynne Sharma

    2013-01-01

    Full Text Available DNA transposon-based vectors have emerged as new potential delivery tools in therapeutic gene transfer. Such vectors are now showing promise in hematopoietic stem cells and primary human T cells, and clinical trials with transposon-engineered cells are on the way. However, the use of plasmid DNA as a carrier of the vector raises safety concerns due to the undesirable administration of bacterial sequences. To optimize vectors based on the Sleeping Beauty (SB DNA transposon for clinical use, we examine here SB transposition from DNA minicircles (MCs devoid of the bacterial plasmid backbone. Potent DNA transposition, directed by the hyperactive SB100X transposase, is demonstrated from MC donors, and the stable transfection rate is significantly enhanced by expressing the SB100X transposase from MCs. The stable transfection rate is inversely related to the size of circular donor, suggesting that a MC-based SB transposition system benefits primarily from an increased cellular uptake and/or enhanced expression which can be observed with DNA MCs. DNA transposon and transposase MCs are easily produced, are favorable in size, do not carry irrelevant DNA, and are robust substrates for DNA transposition. In accordance, DNA MCs should become a standard source of DNA transposons not only in therapeutic settings but also in the daily use of the SB system.

  3. Application of DNA barcodes in wildlife conservation in Tropical East Asia.

    Science.gov (United States)

    Wilson, John-James; Sing, Kong-Wah; Lee, Ping-Shin; Wee, Alison K S

    2016-10-01

    Over the past 50 years, Tropical East Asia has lost more biodiversity than any tropical region. Tropical East Asia is a megadiverse region with an acute taxonomic impediment. DNA barcodes are short standardized DNA sequences used for taxonomic purposes and have the potential to lessen the challenges of biodiversity inventory and assessments in regions where they are most needed. We reviewed DNA barcoding efforts in Tropical East Asia relative to other tropical regions. We suggest DNA barcodes (or metabarcodes from next-generation sequencers) may be especially useful for characterizing and connecting species-level biodiversity units in inventories encompassing taxa lacking formal description (particularly arthropods) and in large-scale, minimal-impact approaches to vertebrate monitoring and population assessments through secondary sources of DNA (invertebrate derived DNA and environmental DNA). We suggest interest and capacity for DNA barcoding are slowly growing in Tropical East Asia, particularly among the younger generation of researchers who can connect with the barcoding analogy and understand the need for new approaches to the conservation challenges being faced. © 2016 Society for Conservation Biology.

  4. DNA-DNA hybridization determined in micro-wells using covalent attachment of DNA

    DEFF Research Database (Denmark)

    Christensen, H.; Angen, Øystein; Mutters, R.

    2000-01-01

    The present study was aimed at reducing the time and labour used to perform DNA-DNA hybridizations for classification of bacteria at the species level. A micro-well-format DNA hybridization method was developed and validated. DNA extractions were performed by a small-scale method and DNA...... was sheared mechanically into fragments of between 400 and 700 bases. The hybridization conditions were calibrated according to DNA similarities obtained by the spectrophotometric method using strains within the family Pasteurellaceae, Optimal conditions were obtained with 300 ng DNA added per well and bound...... by covalent attachment to NucleoLink. Hybridization was performed with 500 ng DNA, 5% (w/w) of which was labelled with photo-activatable biotin (competitive hybridization) for 2.5 h at 65 degrees C in 2 x SSC followed by stringent washing with 2 x SSC at the same temperature. The criteria for acceptance...

  5. Network clustering coefficient approach to DNA sequence analysis

    Energy Technology Data Exchange (ETDEWEB)

    Gerhardt, Guenther J.L. [Universidade Federal do Rio Grande do Sul-Hospital de Clinicas de Porto Alegre, Rua Ramiro Barcelos 2350/sala 2040/90035-003 Porto Alegre (Brazil); Departamento de Fisica e Quimica da Universidade de Caxias do Sul, Rua Francisco Getulio Vargas 1130, 95001-970 Caxias do Sul (Brazil); Lemke, Ney [Programa Interdisciplinar em Computacao Aplicada, Unisinos, Av. Unisinos, 950, 93022-000 Sao Leopoldo, RS (Brazil); Corso, Gilberto [Departamento de Biofisica e Farmacologia, Centro de Biociencias, Universidade Federal do Rio Grande do Norte, Campus Universitario, 59072 970 Natal, RN (Brazil)]. E-mail: corso@dfte.ufrn.br

    2006-05-15

    In this work we propose an alternative DNA sequence analysis tool based on graph theoretical concepts. The methodology investigates the path topology of an organism genome through a triplet network. In this network, triplets in DNA sequence are vertices and two vertices are connected if they occur juxtaposed on the genome. We characterize this network topology by measuring the clustering coefficient. We test our methodology against two main bias: the guanine-cytosine (GC) content and 3-bp (base pairs) periodicity of DNA sequence. We perform the test constructing random networks with variable GC content and imposed 3-bp periodicity. A test group of some organisms is constructed and we investigate the methodology in the light of the constructed random networks. We conclude that the clustering coefficient is a valuable tool since it gives information that is not trivially contained in 3-bp periodicity neither in the variable GC content.

  6. Behavior of concentrically loaded CFT braces connections

    Directory of Open Access Journals (Sweden)

    Maha M. Hassan

    2014-03-01

    Full Text Available Concrete filled tubes (CFTs composite columns have many economical and esthetic advantages, but the behavior of their connections is complicated. Through this study, it is aimed to investigate the performance and behavior of different connection configurations between concrete filled steel tube columns and bracing diagonals through an experimental program. The study included 12 connection subassemblies consisting of a fixed length steel tube and gusset plate connected to the tube end with different details tested under half cyclic loading. A notable effect was observed on the behavior of the connections due to its detailing changes with respect to capacity, failure mode, ductility, and stress distribution.

  7. Are PES connection costs too high?

    International Nuclear Information System (INIS)

    Scott, N.

    1998-01-01

    Windfarm developers often have good reason to question the costs they are quoted by their local distribution company for connection to the system, and these costs can now be challenged under the 'Competition in Connection' initiative. Econnect Ltd specialise in electrical connections for renewable generation throughout the UK and Europe, and have worked on many projects where alternative connections have been designed at more competitive prices. This paper provides some examples which illustrate the importance of acquiring a thorough understanding of all power system issues and PES concerns if the most cost-effective connection is to be realised. (Author)

  8. Twistor connection and the Palatini method

    International Nuclear Information System (INIS)

    Merkulov, S.A.

    1988-01-01

    For the Yang-Mills Lagrangian of the twistor connection, an analog of the Palatini variational method is considered, in which the variations of the twistor connection A m and metric g ab are taken to be independent. It is shown that varying the Lagrangian with respect to the connection establishes a relation between A m and g ab (i.e., defines a standard twistor connection, postulated earlier), while varying with respect to the metric with a subsequent substitution of explicit expressions of the standard twistor connection leads to the Bach vacuum equations, describing the dynamics of conformal gravity

  9. Unity connecting module in SSPF

    Science.gov (United States)

    1998-01-01

    In the Space Station Processing Facility, the Unity connecting module, part of the International Space Station, is shown with Pressurized Mating Adapters 1 (left) and 2 (right) attached. Unity is scheduled to undergo testing of the common berthing mechanism to which other space station elements will dock. Unity is the primary payload on mission STS-88, targeted to launch Dec. 3, 1998. Other testing includes the Pad Demonstration Test to verify the compatibility of the module with the Space Shuttle as well as the ability of the astronauts to send and receive commands to Unity from the flight deck of the orbiter. Unity is expected to be ready for installation into the payload canister on Oct. 25, and transported to Launch Pad 39-A on Oct. 27. The Unity will be mated to the Russian-built Zarya control module which should already be in orbit at that time.

  10. Sprays and Cartan projective connections

    Science.gov (United States)

    Saunders, D. J.

    2004-10-01

    Around 80 years ago, several authors (for instance H. Weyl, T.Y. Thomas, J. Douglas and J.H.C. Whitehead) studied the projective geometry of paths, using the methods of tensor calculus. The principal object of study was a spray, namely a homogeneous second-order differential equation, or more generally a projective equivalence class of sprays. At around the same time, E. Cartan studied the same topic from a different point of view, by imagining a projective space attached to a manifold, or, more generally, attached to a `manifold of elements'; the infinitesimal `glue' may be interpreted in modern language as a Cartan projective connection on a principal bundle. This paper describes the geometrical relationship between these two points of view.

  11. Ultraviolet injury of connective tissue

    International Nuclear Information System (INIS)

    Sengupta, K.P.; Sanyal, Sabitri; Biswas, S.K.; Pal, N.C.

    1975-01-01

    Changes induced by UV irradiation of rat skin could be divided morphologically into prenecrotic, necrotic and regenerating phases. During prenecrotic and necrotic phases, decrease in water content, collagenous protein, citrate buffer soluble fraction, elastin and total lipid and its fractions, and increase in noncollagenous protein nitrogen and fucoglycoprotein were observed. Increase in serum and urinary hydroxyproline and hexosamine, and serum sialic acid and fucose revealed the complicated nature of intrinsic changes occurring systemically. The study revealed that the ground substance was more easily affected while collagen, elastin and fat appeared to be more resistant to injury. This could be due to superficial action of radiation of short duration (30 min) on the dermal connective tissue. (author)

  12. Method for hermetic electrical connections

    Science.gov (United States)

    Monroe, Saundra L [Tijeras, NM; Glass, S Jill [Albuquerque, NM; Stone, Ronnie G [Albuquerque, NM; Bond, Jamey T [Albuquerque, NM; Susan, Donald F [Albuquerque, NM

    2011-12-27

    A method of providing a hermetic, electrical connection between two electrical components by mating at least one metal pin in a glass-ceramic to metal seal connector to two electrical components, wherein the glass-ceramic to metal seal connector incorporates at least one metal pin encased (sealed) in a glass-ceramic material inside of a metal housing, with the glass-ceramic material made from 65-80% SiO.sub.2, 8-16% Li.sub.2O, 2-8% Al.sub.2O.sub.3, 1-5% P.sub.2O.sub.5, 1-8% K.sub.2O, 0.5-7% B.sub.2O.sub.3, and 0-5% ZnO. The connector retains hermeticity at temperatures as high as 700.degree. C. and pressures as high as 500 psi.

  13. Connecting cognition and consumer choice.

    Science.gov (United States)

    Bartels, Daniel M; Johnson, Eric J

    2015-02-01

    We describe what can be gained from connecting cognition and consumer choice by discussing two contexts ripe for interaction between the two fields. The first-context effects on choice-has already been addressed by cognitive science yielding insights about cognitive process but there is promise for more interaction. The second is learning and representation in choice where relevant theories in cognitive science could be informed by consumer choice, and in return, could pose and answer new questions. We conclude by discussing how these two fields of research stand to benefit from more interaction, citing examples of how interfaces of cognitive science with other fields have been illuminating for theories of cognition. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Connected health and multiple sclerosis.

    Science.gov (United States)

    Cohen, M

    2018-04-18

    There is as yet no consensual definition of "connected health". In general, the term refers to the growing use of technology and, in particular, mobile technology in medicine. Over the past 10 years, there have been an increasing number of published reports on the wide-ranging and heterogeneous fields involving the application of technology in medicine, ranging from telemedicine to tools to improve patients' evaluation and monitoring by physicians, as well as a multitude of patient-centered applications. They also represent promising tools in the field of clinical research. This report is a review of the importance of using this technology in the management of multiple sclerosis patients. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  15. Dine marker har DNA

    DEFF Research Database (Denmark)

    Eckholdt, Annette; Winding, Anne; Krogh, Paul Henning

    2017-01-01

    Ordet "biodiversitet" og at det er noget, vi skal have mere af, nævnes hyppigt. Men hvad er biodiversitet, og hvordan måles det? Agrologisk har bedt et par eksperter fra Aarhus Universitet forklare, hvordan et DNA-aftryk af jord og vand kan erstatte optællinger i felten og sige noget om biodivers......Ordet "biodiversitet" og at det er noget, vi skal have mere af, nævnes hyppigt. Men hvad er biodiversitet, og hvordan måles det? Agrologisk har bedt et par eksperter fra Aarhus Universitet forklare, hvordan et DNA-aftryk af jord og vand kan erstatte optællinger i felten og sige noget om...

  16. Fleet DNA (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Walkokwicz, K.; Duran, A.

    2014-06-01

    The Fleet DNA project objectives include capturing and quantifying drive cycle and technology variation for the multitude of medium- and heavy-duty vocations; providing a common data storage warehouse for medium- and heavy-duty vehicle fleet data across DOE activities and laboratories; and integrating existing DOE tools, models, and analyses to provide data-driven decision making capabilities. Fleet DNA advantages include: for Government - providing in-use data for standard drive cycle development, R&D, tech targets, and rule making; for OEMs - real-world usage datasets provide concrete examples of customer use profiles; for fleets - vocational datasets help illustrate how to maximize return on technology investments; for Funding Agencies - ways are revealed to optimize the impact of financial incentive offers; and for researchers -a data source is provided for modeling and simulation.

  17. Repulsive DNA-DNA interactions accelerate viral DNA packaging in phage Phi29.

    Science.gov (United States)

    Keller, Nicholas; delToro, Damian; Grimes, Shelley; Jardine, Paul J; Smith, Douglas E

    2014-06-20

    We use optical tweezers to study the effect of attractive versus repulsive DNA-DNA interactions on motor-driven viral packaging. Screening of repulsive interactions accelerates packaging, but induction of attractive interactions by spermidine(3+) causes heterogeneous dynamics. Acceleration is observed in a fraction of complexes, but most exhibit slowing and stalling, suggesting that attractive interactions promote nonequilibrium DNA conformations that impede the motor. Thus, repulsive interactions facilitate packaging despite increasing the energy of the theoretical optimum spooled DNA conformation.

  18. Radiobiology with DNA ligands

    International Nuclear Information System (INIS)

    Weinreich, R.; Argentini, M.; Guenther, I.; Koziorowski, J.; Larsson, B.; Nievergelt-Egido, M.C.; Salt, C.; Wyer, L.; Dos Santos, D.F.; Hansen, H.J.

    1997-01-01

    The paper deals with the following topics: labelling of DNA ligands and other tumour-affinic compounds with 4.15-d 124 I, radiotoxicity of Hoechst 33258 and 33342 and of iodinated Hoechst 33258 in cell cultures, preparation of 76 Br-, 123 I-, and 221 At-labelled 5-halo-2'-deoxyuridine, chemical syntheses of boron derivatives of Hoechst 33258.III., Gadolinium neutron capture therapy

  19. Investigation into Methods for Predicting Connection Temperatures

    Directory of Open Access Journals (Sweden)

    K. Anderson

    2009-01-01

    Full Text Available The mechanical response of connections in fire is largely based on material strength degradation and the interactions between the various components of the connection. In order to predict connection performance in fire, temperature profiles must initially be established in order to evaluate the material strength degradation over time. This paper examines two current methods for predicting connection temperatures: The percentage method, where connection temperatures are calculated as a percentage of the adjacent beam lower-flange, mid-span temperatures; and the lumped capacitance method, based on the lumped mass of the connection. Results from the percentage method do not correlate well with experimental results, whereas the lumped capacitance method shows much better agreement with average connection temperatures. A 3D finite element heat transfer model was also created in Abaqus, and showed good correlation with experimental results. 

  20. Hematopoietic stem cell origin of connective tissues.

    Science.gov (United States)

    Ogawa, Makio; Larue, Amanda C; Watson, Patricia M; Watson, Dennis K

    2010-07-01

    Connective tissue consists of "connective tissue proper," which is further divided into loose and dense (fibrous) connective tissues and "specialized connective tissues." Specialized connective tissues consist of blood, adipose tissue, cartilage, and bone. In both loose and dense connective tissues, the principal cellular element is fibroblasts. It has been generally believed that all cellular elements of connective tissue, including fibroblasts, adipocytes, chondrocytes, and bone cells, are generated solely by mesenchymal stem cells. Recently, a number of studies, including those from our laboratory based on transplantation of single hematopoietic stem cells, strongly suggested a hematopoietic stem cell origin of these adult mesenchymal tissues. This review summarizes the experimental evidence for this new paradigm and discusses its translational implications. Copyright 2010 ISEH - Society for Hematology and Stem Cells. All rights reserved.

  1. Radiotherapy in patients with connective tissue diseases.

    Science.gov (United States)

    Giaj-Levra, Niccolò; Sciascia, Savino; Fiorentino, Alba; Fersino, Sergio; Mazzola, Rosario; Ricchetti, Francesco; Roccatello, Dario; Alongi, Filippo

    2016-03-01

    The decision to offer radiotherapy in patients with connective tissue diseases continues to be challenging. Radiotherapy might trigger the onset of connective tissue diseases by increasing the expression of self-antigens, diminishing regulatory T-cell activity, and activating effectors of innate immunity (dendritic cells) through Toll-like receptor-dependent mechanisms, all of which could potentially lead to breaks of immune tolerance. This potential risk has raised some debate among radiation oncologists about whether patients with connective tissue diseases can tolerate radiation as well as people without connective tissue diseases. Because the number of patients with cancer and connective tissue diseases needing radiotherapy will probably increase due to improvements in medical treatment and longer life expectancy, the issue of interactions between radiotherapy and connective tissue diseases needs to be clearer. In this Review, we discuss available data and evidence for patients with connective tissue diseases treated with radiotherapy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Random geometric graphs with general connection functions

    Science.gov (United States)

    Dettmann, Carl P.; Georgiou, Orestis

    2016-03-01

    In the original (1961) Gilbert model of random geometric graphs, nodes are placed according to a Poisson point process, and links formed between those within a fixed range. Motivated by wireless ad hoc networks "soft" or "probabilistic" connection models have recently been introduced, involving a "connection function" H (r ) that gives the probability that two nodes at distance r are linked (directly connect). In many applications (not only wireless networks), it is desirable that the graph is connected; that is, every node is linked to every other node in a multihop fashion. Here the connection probability of a dense network in a convex domain in two or three dimensions is expressed in terms of contributions from boundary components for a very general class of connection functions. It turns out that only a few quantities such as moments of the connection function appear. Good agreement is found with special cases from previous studies and with numerical simulations.

  3. A Novel Computational Method for Detecting DNA Methylation Sites with DNA Sequence Information and Physicochemical Properties.

    Science.gov (United States)

    Pan, Gaofeng; Jiang, Limin; Tang, Jijun; Guo, Fei

    2018-02-08

    DNA methylation is an important biochemical process, and it has a close connection with many types of cancer. Research about DNA methylation can help us to understand the regulation mechanism and epigenetic reprogramming. Therefore, it becomes very important to recognize the methylation sites in the DNA sequence. In the past several decades, many computational methods-especially machine learning methods-have been developed since the high-throughout sequencing technology became widely used in research and industry. In order to accurately identify whether or not a nucleotide residue is methylated under the specific DNA sequence context, we propose a novel method that overcomes the shortcomings of previous methods for predicting methylation sites. We use k -gram, multivariate mutual information, discrete wavelet transform, and pseudo amino acid composition to extract features, and train a sparse Bayesian learning model to do DNA methylation prediction. Five criteria-area under the receiver operating characteristic curve (AUC), Matthew's correlation coefficient (MCC), accuracy (ACC), sensitivity (SN), and specificity-are used to evaluate the prediction results of our method. On the benchmark dataset, we could reach 0.8632 on AUC, 0.8017 on ACC, 0.5558 on MCC, and 0.7268 on SN. Additionally, the best results on two scBS-seq profiled mouse embryonic stem cells datasets were 0.8896 and 0.9511 by AUC, respectively. When compared with other outstanding methods, our method surpassed them on the accuracy of prediction. The improvement of AUC by our method compared to other methods was at least 0.0399 . For the convenience of other researchers, our code has been uploaded to a file hosting service, and can be downloaded from: https://figshare.com/s/0697b692d802861282d3.

  4. A Novel Computational Method for Detecting DNA Methylation Sites with DNA Sequence Information and Physicochemical Properties

    Directory of Open Access Journals (Sweden)

    Gaofeng Pan

    2018-02-01

    Full Text Available DNA methylation is an important biochemical process, and it has a close connection with many types of cancer. Research about DNA methylation can help us to understand the regulation mechanism and epigenetic reprogramming. Therefore, it becomes very important to recognize the methylation sites in the DNA sequence. In the past several decades, many computational methods—especially machine learning methods—have been developed since the high-throughout sequencing technology became widely used in research and industry. In order to accurately identify whether or not a nucleotide residue is methylated under the specific DNA sequence context, we propose a novel method that overcomes the shortcomings of previous methods for predicting methylation sites. We use k-gram, multivariate mutual information, discrete wavelet transform, and pseudo amino acid composition to extract features, and train a sparse Bayesian learning model to do DNA methylation prediction. Five criteria—area under the receiver operating characteristic curve (AUC, Matthew’s correlation coefficient (MCC, accuracy (ACC, sensitivity (SN, and specificity—are used to evaluate the prediction results of our method. On the benchmark dataset, we could reach 0.8632 on AUC, 0.8017 on ACC, 0.5558 on MCC, and 0.7268 on SN. Additionally, the best results on two scBS-seq profiled mouse embryonic stem cells datasets were 0.8896 and 0.9511 by AUC, respectively. When compared with other outstanding methods, our method surpassed them on the accuracy of prediction. The improvement of AUC by our method compared to other methods was at least 0.0399 . For the convenience of other researchers, our code has been uploaded to a file hosting service, and can be downloaded from: https://figshare.com/s/0697b692d802861282d3.

  5. DNA nanotechnology and fluorescence applications.

    Science.gov (United States)

    Schlichthaerle, Thomas; Strauss, Maximilian T; Schueder, Florian; Woehrstein, Johannes B; Jungmann, Ralf

    2016-06-01

    Structural DNA nanotechnology allow researchers to use the unique molecular recognition properties of DNA strands to construct nanoscale objects with almost arbitrary complexity in two and three dimensions. Abstracted as molecular breadboards, DNA nanostructures enable nanometer-precise placement of guest molecules such as proteins, fluorophores, or nanoparticles. These assemblies can be used to study biological phenomena with unprecedented control over number, spacing, and molecular identity. Here, we give a general introduction to structural DNA nanotechnology and more specifically discuss applications of DNA nanostructures in the field of fluorescence and plasmonics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Next generation DNA led technologies

    CERN Document Server

    Jyothsna, G; Kashyap, Amita

    2016-01-01

    This brief highlights advances in DNA technologies and their wider applications. DNA is the source of life and has been studied since a generation, but very little is known as yet. Several sophisticated technologies of the current era have laid their foundations on the principle of DNA based mechanisms. DNA based technologies are bringing a new revolution of Advanced Science and Technology. Forensic Investigation, Medical Diagnosis, Paternity Disputes, Individual Identity, Health insurance, Motor Insurance have incorporated the DNA testing and profiling technologies for settling the issues.

  7. DNA AND ITS METAPHORES

    Directory of Open Access Journals (Sweden)

    Jan Domaradzki

    2015-04-01

    Full Text Available The aim of the present paper is to describe the main metaphors presented in genetic discourse: DNA as text, information, language, book, code, project/blueprint, map, computer, music, and cooking. It also analyses the social implication of these metaphors. The author of this article argues that metaphors are double-edged swords: while they brighten difficult and abstract genetic concepts, they also lead to the misunderstanding and misinterpretation of the reality. The reason for this is that most of these metaphors are of deterministic, reductionist, and fatalistic character. Consequently, they shift the attention from complexity of genetic processes. Moreover, as they appeal to emotions, ascetics, and morality they may involve exaggeration: while they bring hope, they also create an atmosphere of fear over the misuse of genetic knowledge. The author of this article states that the genetic metaphors do not simply reflect the social ideas on DNA, but also shape our understanding of genetics and imagination on the social application of genetic knowledge. Due to this reason, DNA should be understood not only as a biological code, but as a cultural as well.

  8. Cell density signal protein suitable for treatment of connective tissue injuries and defects

    Science.gov (United States)

    Schwarz, Richard I.

    2002-08-13

    Identification, isolation and partial sequencing of a cell density protein produced by fibroblastic cells. The cell density signal protein comprising a 14 amino acid peptide or a fragment, variant, mutant or analog thereof, the deduced cDNA sequence from the 14 amino acid peptide, a recombinant protein, protein and peptide-specific antibodies, and the use of the peptide and peptide-specific antibodies as therapeutic agents for regulation of cell differentiation and proliferation. A method for treatment and repair of connective tissue and tendon injuries, collagen deficiency, and connective tissue defects.

  9. DNA adducts-chemical addons

    Directory of Open Access Journals (Sweden)

    T R Rajalakshmi

    2015-01-01

    Full Text Available DNA adduct is a piece of DNA covalently bond to a chemical (safrole, benzopyrenediol epoxide, acetaldehyde. This process could be the start of a cancerous cell. When a chemical binds to DNA, it gets damaged resulting in abnormal replication. This could be the start of a mutation and without proper DNA repair, this can lead to cancer. It is this chemical that binds with the DNA is our prime area of concern. Instead of performing the whole body analysis for diagnosing cancer, this test could be carried out for early detection of cancer. When scanning tunneling microscope is used, the DNA results can be obtained earlier. DNA adducts in scientific experiments are used as biomarkers.

  10. Mitochondrial DNA repair and aging

    International Nuclear Information System (INIS)

    Mandavilli, Bhaskar S.; Santos, Janine H.; Van Houten, Bennett

    2002-01-01

    The mitochondrial electron transport chain plays an important role in energy production in aerobic organisms and is also a significant source of reactive oxygen species that damage DNA, RNA and proteins in the cell. Oxidative damage to the mitochondrial DNA is implicated in various degenerative diseases, cancer and aging. The importance of mitochondrial ROS in age-related degenerative diseases is further strengthened by studies using animal models, Caenorhabditis elegans, Drosophila and yeast. Research in the last several years shows that mitochondrial DNA is more susceptible to various carcinogens and ROS when compared to nuclear DNA. DNA damage in mammalian mitochondria is repaired by base excision repair (BER). Studies have shown that mitochondria contain all the enzymes required for BER. Mitochondrial DNA damage, if not repaired, leads to disruption of electron transport chain and production of more ROS. This vicious cycle of ROS production and mtDNA damage ultimately leads to energy depletion in the cell and apoptosis

  11. Mitochondrial DNA repair and aging

    Energy Technology Data Exchange (ETDEWEB)

    Mandavilli, Bhaskar S.; Santos, Janine H.; Van Houten, Bennett

    2002-11-30

    The mitochondrial electron transport chain plays an important role in energy production in aerobic organisms and is also a significant source of reactive oxygen species that damage DNA, RNA and proteins in the cell. Oxidative damage to the mitochondrial DNA is implicated in various degenerative diseases, cancer and aging. The importance of mitochondrial ROS in age-related degenerative diseases is further strengthened by studies using animal models, Caenorhabditis elegans, Drosophila and yeast. Research in the last several years shows that mitochondrial DNA is more susceptible to various carcinogens and ROS when compared to nuclear DNA. DNA damage in mammalian mitochondria is repaired by base excision repair (BER). Studies have shown that mitochondria contain all the enzymes required for BER. Mitochondrial DNA damage, if not repaired, leads to disruption of electron transport chain and production of more ROS. This vicious cycle of ROS production and mtDNA damage ultimately leads to energy depletion in the cell and apoptosis.

  12. Connecting Leadership and Learning: Do Versatile Learners make Connective Leaders?

    Directory of Open Access Journals (Sweden)

    Jill L. Robinson

    2016-03-01

    Full Text Available Abstract Recent failures in leadership, suggest that creating better-quality leadership development programs is critical. In moving from theory to practice, this paper examined the relationship between learning style and leadership style which may enable us to move away from one-size-fits-all leadership development programs. Utilizing Kolb’s Experiential Learning Model and Connective Leadership theory, approximately 3600 college students were analyzed to discover whether versatility in learning styles translates into versatility in leadership styles. One group of versatile learners reported using a wider range of leadership styles suggesting that learning flexibility may transfer to leadership flexibility. Surprisingly, learners of all types reported utilizing Power and Intrinsic styles of leadership above all others. Implications for leadership development include considering individual differences when crafting leadership programs, matching learning styles to leader training, and the need to move beyond one set of leadership behaviors to increase flexibility in dealing with complex situations. Using a large sample rarely seen in management studies, this paper makes key contributions to the literature. 

  13. Radiation damage of DNA. Model for direct ionization of DNA

    International Nuclear Information System (INIS)

    Kobayashi, Kazuo; Tagawa, Seiichi

    2004-01-01

    Current aspects of radiation damage of DNA, particularly induced by the direct effect of radiation, and author's method of pulse radiolysis are described in relation to behavior of ions formed by radiation and active principles to induce the strand break. In irradiation of DNA solution in water, the direct effect of radiation is derived from ionization of DNA itself and indirect one, from the reaction between DNA and radicals generated from water molecules and the former direct one has been scarcely investigated due to difficulty of experimental approach. Radicals generated in sugar moiety of DNA are shown important in the strand break by recent studies on crystalline DNA irradiated by X-ray, DNA solution by electron and photon beams, hydrated DNA by γ-ray and by high linear energy transfer (LET) ion. Author's pulse radiolysis studies have revealed behaviors of guanine and adenine radical cations in dynamics of DNA oxidation. Since reactions described are the model, the experimental approach is thought necessary for elucidation of the actually occurring DNA damage in living cells. (N.I.)

  14. Distinct co-evolution patterns of genes associated to DNA polymerase III DnaE and PolC

    Directory of Open Access Journals (Sweden)

    Engelen Stefan

    2012-02-01

    Full Text Available Abstract Background Bacterial genomes displaying a strong bias between the leading and the lagging strand of DNA replication encode two DNA polymerases III, DnaE and PolC, rather than a single one. Replication is a highly unsymmetrical process, and the presence of two polymerases is therefore not unexpected. Using comparative genomics, we explored whether other processes have evolved in parallel with each polymerase. Results Extending previous in silico heuristics for the analysis of gene co-evolution, we analyzed the function of genes clustering with dnaE and polC. Clusters were highly informative. DnaE co-evolves with the ribosome, the transcription machinery, the core of intermediary metabolism enzymes. It is also connected to the energy-saving enzyme necessary for RNA degradation, polynucleotide phosphorylase. Most of the proteins of this co-evolving set belong to the persistent set in bacterial proteomes, that is fairly ubiquitously distributed. In contrast, PolC co-evolves with RNA degradation enzymes that are present only in the A+T-rich Firmicutes clade, suggesting at least two origins for the degradosome. Conclusion DNA replication involves two machineries, DnaE and PolC. DnaE co-evolves with the core functions of bacterial life. In contrast PolC co-evolves with a set of RNA degradation enzymes that does not derive from the degradosome identified in gamma-Proteobacteria. This suggests that at least two independent RNA degradation pathways existed in the progenote community at the end of the RNA genome world.

  15. Structural Connectivity of the Developing Human Amygdala

    Science.gov (United States)

    Saygin, Zeynep M.; Osher, David E.; Koldewyn, Kami; Martin, Rebecca E.; Finn, Amy; Saxe, Rebecca; Gabrieli, John D.E.; Sheridan, Margaret

    2015-01-01

    A large corpus of research suggests that there are changes in the manner and degree to which the amygdala supports cognitive and emotional function across development. One possible basis for these developmental differences could be the maturation of amygdalar connections with the rest of the brain. Recent functional connectivity studies support this conclusion, but the structural connectivity of the developing amygdala and its different nuclei remains largely unstudied. We examined age related changes in the DWI connectivity fingerprints of the amygdala to the rest of the brain in 166 individuals of ages 5-30. We also developed a model to predict age based on individual-subject amygdala connectivity, and identified the connections that were most predictive of age. Finally, we segmented the amygdala into its four main nucleus groups, and examined the developmental changes in connectivity for each nucleus. We observed that with age, amygdalar connectivity becomes increasingly sparse and localized. Age related changes were largely localized to the subregions of the amygdala that are implicated in social inference and contextual memory (the basal and lateral nuclei). The central nucleus’ connectivity also showed differences with age but these differences affected fewer target regions than the basal and lateral nuclei. The medial nucleus did not exhibit any age related changes. These findings demonstrate increasing specificity in the connectivity patterns of amygdalar nuclei across age. PMID:25875758

  16. DNA stable-isotope probing (DNA-SIP).

    Science.gov (United States)

    Dunford, Eric A; Neufeld, Josh D

    2010-08-02

    DNA stable-isotope probing (DNA-SIP) is a powerful technique for identifying active microorganisms that assimilate particular carbon substrates and nutrients into cellular biomass. As such, this cultivation-independent technique has been an important methodology for assigning metabolic function to the diverse communities inhabiting a wide range of terrestrial and aquatic environments. Following the incubation of an environmental sample with stable-isotope labelled compounds, extracted nucleic acid is subjected to density gradient ultracentrifugation and subsequent gradient fractionation to separate nucleic acids of differing densities. Purification of DNA from cesium chloride retrieves labelled and unlabelled DNA for subsequent molecular characterization (e.g. fingerprinting, microarrays, clone libraries, metagenomics). This JoVE video protocol provides visual step-by-step explanations of the protocol for density gradient ultracentrifugation, gradient fractionation and recovery of labelled DNA. The protocol also includes sample SIP data and highlights important tips and cautions that must be considered to ensure a successful DNA-SIP analysis.

  17. Dynamics of DNA conformations and DNA-protein interaction

    DEFF Research Database (Denmark)

    Metzler, R.; Ambjörnsson, T.; Lomholt, Michael Andersen

    2005-01-01

    Optical tweezers, atomic force microscopes, patch clamping, or fluorescence techniques make it possible to study both the equilibrium conformations and dynamics of single DNA molecules as well as their interaction with binding proteins. In this paper we address the dynamics of local DNA...... denaturation (bubble breathing), deriving its dynamic response to external physical parameters and the DNA sequence in terms of the bubble relaxation time spectrum and the autocorrelation function of bubble breathing. The interaction with binding proteins that selectively bind to the DNA single strand exposed...... in a denaturation bubble are shown to involve an interesting competition of time scales, varying between kinetic blocking of protein binding up to full binding protein-induced denaturation of the DNA. We will also address the potential to use DNA physics for the design of nanosensors. Finally, we report recent...

  18. Ineffectiveness of rat liver tissues in the screening of connective tissue disease

    International Nuclear Information System (INIS)

    Aziz, Khalil A.

    2004-01-01

    To assess the effectiveness of using rat liver tissue (RLT) for the screening of connective tissue disease (CTD). Results of patient samples submitted to the Clinical Immunology Laboratory, Brimingham Heartlands Hospital, Bordsley Green East, Brimingham, United Kingdom for the investigation of CTD between 2001 and 2002 were analyzed. Positive results for anti-double stranded DNA (dsDNA) antibodies and anti-extractable nuclear antigen (ENA) antibodies were correlated with the results of the corresponding antinuclear antibodies (ANA), obtained by indirect immunofluorescence (IIF) using RLT. In the second part of study samples that were previously tested positive for anti-ENA or anti-dsDNA antibodies were investigated prospectively for ANA using both RLTand human epithelial (Hep-2) cell line. The IIF method employing RLT for screening of CTD, failed to detect ANA patterns from 45% and 25%of patients sample know to contain antibodies to dsDNA and ENA.The anti -dsDNA antibodies that failed to be detected by the RLTwere of low avidity and their clinical significance is unknown. In contrast the antibodies to ENAwere mostly directed against the Ro antigen.In cotrast and like RLT, Hep-2 cell line failed to detect the low avidity anti-dsDNA antibdies.The present study has clearly shown that RLT are ineffective for screening of CTD. It is recommended that laboratories which ars still using these tissues should consider replacing them with the Hep-2 cell line. (author)

  19. DNA adducts as molecular dosimeters

    International Nuclear Information System (INIS)

    Lucier, G.W.

    1990-01-01

    There is compelling evidence that DNA adducts play an important role in the actions of many pulmonary carcinogens. During the last ten years sensitive methods (antibodies and 32 P-postlabeling) have been developed that permit detection of DNA adducts in tissues of animals or humans exposed to low levels of some genotoxic carcinogens. This capability has led to approaches designed to more reliably estimate the shape of the dose-response curve in the low dose region for a few carcinogens. Moreover, dosimetry comparisions can, in some cases, be made between animals and humans which help in judging the adequacy of animal models for human risk assessments. There are several points that need to be considered in the evaluation of DNA adducts as a molecular dosimeter. For example, DNA adduct formation is only one of many events that are needed for tumor development and some potent carcinogens do not form DNA adducts; i.e., TCDD. Other issues that need to be considered are DNA adduct heterogeneity, DNA repair, relationship of DNA adducts to somatic mutation and cell specificity in DNA adduct formation and persistence. Molecular epidemiology studies often require quantitation of adducts in cells such as lymphocytes which may or may not be reliable surrogates for adduct concentrations in target issues. In summary, accurate quantitation of low levels of DNA adducts may provide data useful in species to species extrapolation of risk including the development of more meaningful human monitoring programs

  20. Influence of DNA isolation from historical otoliths on nuclear-mitochondrial marker amplification and age determination in an overexploited fish, the common sole (Solea solea L.)

    NARCIS (Netherlands)

    Cuveliers, E.L.; Bolle, L.J.; Volckaert, F.A.M.; Maes, G.E.

    2009-01-01

    Historical otolith collections are crucial in assessing the evolutionary consequences of natural and anthropogenic changes on the demography and connectivity of commercially important fish species. Hence, it is important to define optimal protocols for purifying DNA from such valuable information

  1. Mechanisms of population heterogeneity among molting common mergansers on Kodiak Island, Alaska: Implications for genetic assessments of migratory connectivity

    Science.gov (United States)

    Pearce, John M.; Zwiefelhofer, Denny; Maryanski, Nate

    2009-01-01

    Quantifying population genetic heterogeneity within nonbreeding aggregations can inform our understanding of patterns of site fidelity, migratory connectivity, and gene flow between breeding and nonbreeding areas. However, characterizing mechanisms that contribute to heterogeneity, such as migration and dispersal, is required before site fidelity and migratory connectivity can be assessed accurately. We studied nonbreeding groups of Common Mergansers (Mergus merganser) molting on Kodiak Island, Alaska, from 2005 to 2007, using banding data to assess rates of recapture, mitochondrial (mt) DNA to determine natal area, and nuclear microsatellite genotypes to assess dispersal. Using baseline information from differentiated mtDNA haplogroups across North America, we were able to assign individuals to natal regions and document population genetic heterogeneity within and among molting groups. Band-recovery and DNA data suggest that both migration from and dispersal among natal areas contribute to admixed groups of males molting on Kodiak Island. A lack of differentiation in the Common Merganser's nuclear, bi-parentally inherited DNA, observed across North America, implies that dispersal can mislead genetic assessments of migratory connectivity and assignments of nonbreeding individuals to breeding areas. Thus multiple and independent data types are required to account for such behaviors before accurate assessments of migratory connectivity can be made.

  2. DNA-based watermarks using the DNA-Crypt algorithm

    Science.gov (United States)

    Heider, Dominik; Barnekow, Angelika

    2007-01-01

    Background The aim of this paper is to demonstrate the application of watermarks based on DNA sequences to identify the unauthorized use of genetically modified organisms (GMOs) protected by patents. Predicted mutations in the genome can be corrected by the DNA-Crypt program leaving the encrypted information intact. Existing DNA cryptographic and steganographic algorithms use synthetic DNA sequences to store binary information however, although these sequences can be used for authentication, they may change the target DNA sequence when introduced into living organisms. Results The DNA-Crypt algorithm and image steganography are based on the same watermark-hiding principle, namely using the least significant base in case of DNA-Crypt and the least significant bit in case of the image steganography. It can be combined with binary encryption algorithms like AES, RSA or Blowfish. DNA-Crypt is able to correct mutations in the target DNA with several mutation correction codes such as the Hamming-code or the WDH-code. Mutations which can occur infrequently may destroy the encrypted information, however an integrated fuzzy controller decides on a set of heuristics based on three input dimensions, and recommends whether or not to use a correction code. These three input dimensions are the length of the sequence, the individual mutation rate and the stability over time, which is represented by the number of generations. In silico experiments using the Ypt7 in Saccharomyces cerevisiae shows that the DNA watermarks produced by DNA-Crypt do not alter the translation of mRNA into protein. Conclusion The program is able to store watermarks in living organisms and can maintain the original information by correcting mutations itself. Pairwise or multiple sequence alignments show that DNA-Crypt produces few mismatches between the sequences similar to all steganographic algorithms. PMID:17535434

  3. Superimposed Code Theorectic Analysis of DNA Codes and DNA Computing

    Science.gov (United States)

    2010-03-01

    that the hybridization that occurs between a DNA strand and its Watson - Crick complement can be used to perform mathematical computation. This research...ssDNA single stranded DNA WC Watson – Crick A Adenine C Cytosine G Guanine T Thymine ... Watson - Crick (WC) duplex, e.g., TCGCA TCGCA . Note that non-WC duplexes can form and such a formation is called a cross-hybridization. Cross

  4. DNA-based watermarks using the DNA-Crypt algorithm

    Directory of Open Access Journals (Sweden)

    Barnekow Angelika

    2007-05-01

    Full Text Available Abstract Background The aim of this paper is to demonstrate the application of watermarks based on DNA sequences to identify the unauthorized use of genetically modified organisms (GMOs protected by patents. Predicted mutations in the genome can be corrected by the DNA-Crypt program leaving the encrypted information intact. Existing DNA cryptographic and steganographic algorithms use synthetic DNA sequences to store binary information however, although these sequences can be used for authentication, they may change the target DNA sequence when introduced into living organisms. Results The DNA-Crypt algorithm and image steganography are based on the same watermark-hiding principle, namely using the least significant base in case of DNA-Crypt and the least significant bit in case of the image steganography. It can be combined with binary encryption algorithms like AES, RSA or Blowfish. DNA-Crypt is able to correct mutations in the target DNA with several mutation correction codes such as the Hamming-code or the WDH-code. Mutations which can occur infrequently may destroy the encrypted information, however an integrated fuzzy controller decides on a set of heuristics based on three input dimensions, and recommends whether or not to use a correction code. These three input dimensions are the length of the sequence, the individual mutation rate and the stability over time, which is represented by the number of generations. In silico experiments using the Ypt7 in Saccharomyces cerevisiae shows that the DNA watermarks produced by DNA-Crypt do not alter the translation of mRNA into protein. Conclusion The program is able to store watermarks in living organisms and can maintain the original information by correcting mutations itself. Pairwise or multiple sequence alignments show that DNA-Crypt produces few mismatches between the sequences similar to all steganographic algorithms.

  5. DNA-based watermarks using the DNA-Crypt algorithm.

    Science.gov (United States)

    Heider, Dominik; Barnekow, Angelika

    2007-05-29

    The aim of this paper is to demonstrate the application of watermarks based on DNA sequences to identify the unauthorized use of genetically modified organisms (GMOs) protected by patents. Predicted mutations in the genome can be corrected by the DNA-Crypt program leaving the encrypted information intact. Existing DNA cryptographic and steganographic algorithms use synthetic DNA sequences to store binary information however, although these sequences can be used for authentication, they may change the target DNA sequence when introduced into living organisms. The DNA-Crypt algorithm and image steganography are based on the same watermark-hiding principle, namely using the least significant base in case of DNA-Crypt and the least significant bit in case of the image steganography. It can be combined with binary encryption algorithms like AES, RSA or Blowfish. DNA-Crypt is able to correct mutations in the target DNA with several mutation correction codes such as the Hamming-code or the WDH-code. Mutations which can occur infrequently may destroy the encrypted information, however an integrated fuzzy controller decides on a set of heuristics based on three input dimensions, and recommends whether or not to use a correction code. These three input dimensions are the length of the sequence, the individual mutation rate and the stability over time, which is represented by the number of generations. In silico experiments using the Ypt7 in Saccharomyces cerevisiae shows that the DNA watermarks produced by DNA-Crypt do not alter the translation of mRNA into protein. The program is able to store watermarks in living organisms and can maintain the original information by correcting mutations itself. Pairwise or multiple sequence alignments show that DNA-Crypt produces few mismatches between the sequences similar to all steganographic algorithms.

  6. The DNA Files

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-06-09

    The DNA Files is a radio documentary which disseminates genetics information over public radio. The documentaries explore subjects which include the following: How genetics affects society. How human life began and how it evolved. Could new prenatal genetic tests hold the key to disease prevention later in life? Would a national genetic data base sacrifice individual privacy? and Should genes that may lead to the cure for cancer be privately owned? This report serves as a project update for the second quarter of 1998. It includes the spring/summer 1998 newsletter, the winter 1998 newsletter, the program clock, and the latest flyer.

  7. [Cleavage of DNA fragments induced by UV nanosecond laser excitation at 193 nm].

    Science.gov (United States)

    Vtiurina, N N; Grokhovskiĭ, S L; Filimonov, I V; Medvedkov, O I; Nechipurenko, D Iu; Vasil'ev, S A; Nechipurenko, Iu D

    2011-01-01

    The cleavage of dsDNA fragments in aqueous solution after irradiation with UV laser pulses at 193 nm has been studied. Samples were investigated using polyacrylamide gel electrophoresis. The intensity of damage of particular phosphodiester bond after hot alkali treatment was shown to depend on the base pair sequence. It was established that the probability of cleavage is twice higher for sites of DNA containing two or more successively running guanine residues. A possible mechanism of damage to the DNA molecule connected with the migration of holes along the helix is discussed.

  8. Towards a DNA Nanoprocessor: Reusable Tile-Integrated DNA Circuits.

    Science.gov (United States)

    Gerasimova, Yulia V; Kolpashchikov, Dmitry M

    2016-08-22

    Modern electronic microprocessors use semiconductor logic gates organized on a silicon chip to enable efficient inter-gate communication. Here, arrays of communicating DNA logic gates integrated on a single DNA tile were designed and used to process nucleic acid inputs in a reusable format. Our results lay the foundation for the development of a DNA nanoprocessor, a small and biocompatible device capable of performing complex analyses of DNA and RNA inputs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. DNA-Conjugated Organic Chromophores in DNA Stacking Interactions

    DEFF Research Database (Denmark)

    Filichev, Vyacheslav V.; Pedersen, Erik Bjerregaard

    2009-01-01

    Since the discovery of the intercalation of acridine derivatives into DNA (1961), chemists have synthesized many intercalators tethered to DNA. Advances in the chemical synthesis of modified nucleosides along with progress in oligonucleotide synthesis have made it possible to introduce organic ch...... review presents those efforts in the design of intercalators/organic chromophores as oligonucleotide conjugates that form a foundation for the generation of novel nucleic acid architectures......Since the discovery of the intercalation of acridine derivatives into DNA (1961), chemists have synthesized many intercalators tethered to DNA. Advances in the chemical synthesis of modified nucleosides along with progress in oligonucleotide synthesis have made it possible to introduce organic...

  10. AFM Imaging of Hybridization Chain Reaction-Mediated Signal Transmission Between two DNA Origami Structures

    DEFF Research Database (Denmark)

    Helmig, Sarah Wendelbo; Gothelf, Kurt Vesterager

    2017-01-01

    transfer between two connected DNA nanostructures, using the hybridization chain reaction (HCR). Two sets of metastable DNA hairpins - of which one is immobilized in specific points along tracks on DNA origami structures - are polymerized to form a continuous DNA duplex, which is visible using atomic force...... microscopy (AFM). Upon addition of a designed initiator, the initiation signal is efficiently transferred >200 nm from a specific location on one origami structure to an end point on another origami structure. The system shows no significant loss of signal when crossing from one nanostructure to another...

  11. Courant algebroid connections and string effective actions

    OpenAIRE

    Jurčo, B.

    2017-01-01

    Courant algebroids are a natural generalization of quadratic Lie algebras, appearing in various contexts in mathematical physics. A connection on a Courant algebroid gives an analogue of a covariant derivative compatible with a given fiber-wise metric. Imposing further conditions resembling standard Levi-Civita connections, one obtains a class of connections whose curvature tensor in certain cases gives a new geometrical description of equations of motion of low energy effective action of str...

  12. Robust motion estimation using connected operators

    OpenAIRE

    Salembier Clairon, Philippe Jean; Sanson, H

    1997-01-01

    This paper discusses the use of connected operators for robust motion estimation The proposed strategy involves a motion estimation step extracting the dominant motion and a ltering step relying on connected operators that remove objects that do not fol low the dominant motion. These two steps are iterated in order to obtain an accurate motion estimation and a precise de nition of the objects fol lowing this motion This strategy can be applied on the entire frame or on individual connected c...

  13. Projective Connections and the Algebra of Densities

    International Nuclear Information System (INIS)

    George, Jacob

    2008-01-01

    Projective connections first appeared in Cartan's papers in the 1920's. Since then they have resurfaced periodically in, for example, integrable systems and perhaps most recently in the context of so called projectively equivariant quantisation. We recall the notion of projective connection and describe its relation with the algebra of densities on a manifold. In particular, we construct a Laplace-type operator on functions using a Thomas projective connection and a symmetric contravariant tensor of rank 2 ('upper metric').

  14. Structural Connectivity Asymmetry in the Neonatal Brain

    OpenAIRE

    Ratnarajah, Nagulan; Rifkin-Graboi, Anne; Fortier, Marielle V.; Chong, Yap Seng; Kwek, Kenneth; Saw, Seang-Mei; Godfrey, Keith M; Gluckman, Peter D.; Meaney, Michael J.; Qiu, Anqi

    2013-01-01

    Asymmetry of the neonatal brain is not yet understood at the level of structural connectivity. We utilized DTI deterministic tractography and structural network analysis based on graph theory to determine the pattern of structural connectivity asymmetry in 124 normal neonates. We tracted white matter axonal pathways characterizing interregional connections among brain regions and inferred asymmetry in left and right anatomical network properties. Our findings revealed that in neonates, small-...

  15. Tilted hexagonal post arrays: DNA electrophoresis in anisotropic media.

    Science.gov (United States)

    Chen, Zhen; Dorfman, Kevin D

    2014-02-01

    Using Brownian dynamics simulations, we show that DNA electrophoresis in a hexagonal array of micron-sized posts changes qualitatively when the applied electric field vector is not coincident with the lattice vectors of the array. DNA electrophoresis in such "tilted" post arrays is superior to the standard "un-tilted" approach; while the time required to achieve a resolution of unity in a tilted post array is similar to an un-tilted array at a low-electric field strengths, this time (i) decreases exponentially with electric field strength in a tilted array and (ii) increases exponentially with electric field strength in an un-tilted array. Although the DNA dynamics in a post array are complicated, the electrophoretic mobility results indicate that the "free path," i.e. the average distance of ballistic trajectories of point-sized particles launched from random positions in the unit cell until they intersect the next post, is a useful proxy for the detailed DNA trajectories. The analysis of the free path reveals a fundamental connection between anisotropy of the medium and DNA transport therein that goes beyond simply improving the separation device. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. DNA dosimetry applied to problems in genetic toxicology

    International Nuclear Information System (INIS)

    Rahn, R.O.; Sellin, H.

    1984-01-01

    Studies have been conducted using uv, metal ions, and polyaromatic hydrocarbons as DNA damaging agents. A method has been devised for removing Pt-base adducts from DNA and for separating these adducts chromatographically. This method has been applied to DNA isolated from tissue culture cells treated with cisplatin. The results indicate that a significant (approx. 35%) portion of the cisplatin binds in a form which is the same as that found in DNA treated in vitro. This adduct consists of two guanine molecules connected by a platinum atom. A very useful tool in photobiological research has been the substitution of BrdUrd for Thd in DNA. Following radiation, debromination and damage to the sugar phosphate backbone results. However, the actual chemical event responsible for the observed enhanced cell killing is not known. Attempts to answer this question have employed the use of IdUrd instead of BrdUrd, because of certain spectroscopic and chemical advantages. Current research deals with the mechanisms by which the uracil radical formed upon dehalogenation reacts with its environment to pick up a hydrogen atom and form uracil

  17. Synchronization from Second Order Network Connectivity Statistics

    Science.gov (United States)

    Zhao, Liqiong; Beverlin, Bryce; Netoff, Theoden; Nykamp, Duane Q.

    2011-01-01

    We investigate how network structure can influence the tendency for a neuronal network to synchronize, or its synchronizability, independent of the dynamical model for each neuron. The synchrony analysis takes advantage of the framework of second order networks, which defines four second order connectivity statistics based on the relative frequency of two-connection network motifs. The analysis identifies two of these statistics, convergent connections, and chain connections, as highly influencing the synchrony. Simulations verify that synchrony decreases with the frequency of convergent connections and increases with the frequency of chain connections. These trends persist with simulations of multiple models for the neuron dynamics and for different types of networks. Surprisingly, divergent connections, which determine the fraction of shared inputs, do not strongly influence the synchrony. The critical role of chains, rather than divergent connections, in influencing synchrony can be explained by their increasing the effective coupling strength. The decrease of synchrony with convergent connections is primarily due to the resulting heterogeneity in firing rates. PMID:21779239

  18. Synchronization from second order network connectivity statistics

    Directory of Open Access Journals (Sweden)

    Liqiong eZhao

    2011-07-01

    Full Text Available We investigate how network structure can influence the tendency for a neuronal network to synchronize, or its synchronizability, independent of the dynamical model for each neuron. The synchrony analysis takes advantage of the framework of second order networks (SONETs, which defines four second order connectivity statistics based on the relative frequency of two-connection network motifs. The analysis identifies two of these statistics, convergent connections and chain connections, as highly influencing the synchrony. Simulations verify that synchrony decreases with the frequency of convergent connections and increases with the frequency of chain connections. These trends persist with simulations of multiple models for the neuron dynamics and for different types of networks. Surprisingly, divergent connections, which determine the fraction of shared inputs, do not strongly influence the synchrony. The critical role of chains, rather than divergent connections, in influencing synchrony can be explained by a pool and redistribute mechanism. The pooling of many inputs averages out independent fluctuations, amplifying weak correlations in the inputs. With increased chain connections, neurons with many inputs tend to have many outputs. Hence, chains ensure that the amplified correlations in the neurons with many inputs are redistributed throughout the network, enhancing the development of synchrony across the network.

  19. Effect of ionizing radiations on connective tissue

    International Nuclear Information System (INIS)

    Altman, K.I.; Gerber, G.B.

    1980-01-01

    The effects of ionizing radiations on connective tissue in lung, heart, vasculature, kidney, skin, and skeletal tissues are reviewed. Special emphasis is given to the effect of ionizing radiations on vasculo-connective tissue and fibrotic changes following radiation-induced injury to organs and tissues. In order to put the subject matter in proper prospective, the general biochemistry, physiology, and pathology of connective tissue is reviewed briefly together with the participation of connective tissue in disease. The review closes with an assessment of future problems and an enumeration and discussion of important, as yet unanswered questions

  20. Design of Steel Beam-Column Connections

    Directory of Open Access Journals (Sweden)

    Bogatinoski Z.

    2014-05-01

    Full Text Available In this paper a theoretical and experimental research of the steel beam-column connections is presented. Eight types of specimens were being researched, composed of rigid and semi-rigid connections from which 4 connections are with IPE - profile and 4 connections with tube's section for the beam. From the numerical analysis of the researched models, and especially from the experimental research at the Laboratory for Structures in the Faculty of Mechanical Engineering - Skopje, specific conclusions were received that ought to have theoretical and practical usage for researchers in this area of interest.

  1. Essential Connectivity Areas - CEHC, (Raster) [ds620

    Data.gov (United States)

    California Natural Resource Agency — The California Department of Transportation (Caltrans) and California Department of Fish and Game (CDFG) commissioned the California Essential Habitat Connectivity...

  2. WE-DE-202-00: Connecting Radiation Physics with Computational Biology

    International Nuclear Information System (INIS)

    2016-01-01

    Radiation therapy for the treatment of cancer has been established as a highly precise and effective way to eradicate a localized region of diseased tissue. To achieve further significant gains in the therapeutic ratio, we need to move towards biologically optimized treatment planning. To achieve this goal, we need to understand how the radiation-type dependent patterns of induced energy depositions within the cell (physics) connect via molecular, cellular and tissue reactions to treatment outcome such as tumor control and undesirable effects on normal tissue. Several computational biology approaches have been developed connecting physics to biology. Monte Carlo simulations are the most accurate method to calculate physical dose distributions at the nanometer scale, however simulations at the DNA scale are slow and repair processes are generally not simulated. Alternative models that rely on the random formation of individual DNA lesions within one or two turns of the DNA have been shown to reproduce the clusters of DNA lesions, including single strand breaks (SSBs), double strand breaks (DSBs) without the need for detailed track structure simulations. Efficient computational simulations of initial DNA damage induction facilitate computational modeling of DNA repair and other molecular and cellular processes. Mechanistic, multiscale models provide a useful conceptual framework to test biological hypotheses and help connect fundamental information about track structure and dosimetry at the sub-cellular level to dose-response effects on larger scales. In this symposium we will learn about the current state of the art of computational approaches estimating radiation damage at the cellular and sub-cellular scale. How can understanding the physics interactions at the DNA level be used to predict biological outcome? We will discuss if and how such calculations are relevant to advance our understanding of radiation damage and its repair, or, if the underlying biological

  3. WE-DE-202-00: Connecting Radiation Physics with Computational Biology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-06-15

    Radiation therapy for the treatment of cancer has been established as a highly precise and effective way to eradicate a localized region of diseased tissue. To achieve further significant gains in the therapeutic ratio, we need to move towards biologically optimized treatment planning. To achieve this goal, we need to understand how the radiation-type dependent patterns of induced energy depositions within the cell (physics) connect via molecular, cellular and tissue reactions to treatment outcome such as tumor control and undesirable effects on normal tissue. Several computational biology approaches have been developed connecting physics to biology. Monte Carlo simulations are the most accurate method to calculate physical dose distributions at the nanometer scale, however simulations at the DNA scale are slow and repair processes are generally not simulated. Alternative models that rely on the random formation of individual DNA lesions within one or two turns of the DNA have been shown to reproduce the clusters of DNA lesions, including single strand breaks (SSBs), double strand breaks (DSBs) without the need for detailed track structure simulations. Efficient computational simulations of initial DNA damage induction facilitate computational modeling of DNA repair and other molecular and cellular processes. Mechanistic, multiscale models provide a useful conceptual framework to test biological hypotheses and help connect fundamental information about track structure and dosimetry at the sub-cellular level to dose-response effects on larger scales. In this symposium we will learn about the current state of the art of computational approaches estimating radiation damage at the cellular and sub-cellular scale. How can understanding the physics interactions at the DNA level be used to predict biological outcome? We will discuss if and how such calculations are relevant to advance our understanding of radiation damage and its repair, or, if the underlying biological

  4. DNA Assembly in 3D Printed Fluidics.

    Directory of Open Access Journals (Sweden)

    William G Patrick

    Full Text Available The process of connecting genetic parts-DNA assembly-is a foundational technology for synthetic biology. Microfluidics present an attractive solution for minimizing use of costly reagents, enabling multiplexed reactions, and automating protocols by integrating multiple protocol steps. However, microfluidics fabrication and operation can be expensive and requires expertise, limiting access to the technology. With advances in commodity digital fabrication tools, it is now possible to directly print fluidic devices and supporting hardware. 3D printed micro- and millifluidic devices are inexpensive, easy to make and quick to produce. We demonstrate Golden Gate DNA assembly in 3D-printed fluidics with reaction volumes as small as 490 nL, channel widths as fine as 220 microns, and per unit part costs ranging from $0.61 to $5.71. A 3D-printed syringe pump with an accompanying programmable software interface was designed and fabricated to operate the devices. Quick turnaround and inexpensive materials allowed for rapid exploration of device parameters, demonstrating a manufacturing paradigm for designing and fabricating hardware for synthetic biology.

  5. DNA methylation and memory formation.

    Science.gov (United States)

    Day, Jeremy J; Sweatt, J David

    2010-11-01

    Memory formation and storage require long-lasting changes in memory-related neuronal circuits. Recent evidence indicates that DNA methylation may serve as a contributing mechanism in memory formation and storage. These emerging findings suggest a role for an epigenetic mechanism in learning and long-term memory maintenance and raise apparent conundrums and questions. For example, it is unclear how DNA methylation might be reversed during the formation of a memory, how changes in DNA methylation alter neuronal function to promote memory formation, and how DNA methylation patterns differ between neuronal structures to enable both consolidation and storage of memories. Here we evaluate the existing evidence supporting a role for DNA methylation in memory, discuss how DNA methylation may affect genetic and neuronal function to contribute to behavior, propose several future directions for the emerging subfield of neuroepigenetics, and begin to address some of the broader implications of this work.

  6. Monitoring Biodiversity using Environmental DNA

    DEFF Research Database (Denmark)

    Thomsen, Philip Francis

    DNA). Especially the advance in DNA sequencing technology has revolutionized this field and opened new frontiers in ecology, evolution and environmental sciences. Also, it is becoming a powerful tool for field biologist, with new and efficient methods for monitoring biodiversity. This thesis focuses on the use...... of eDNA in monitoring of biodiversity in different settings. First, it is shown that a diversity of rare freshwater animals – representing amphibians, fish, mammals, insects and crustaceans – can be detected based on eDNA obtained directly from 15 ml water samples of lakes, ponds and streams...... setting, showing that eDNA obtained directly from ½ l seawater samples can account for marine fish biodiversity using NGS. Promisingly, eDNA covered the fish diversity better than any of 9 methods, conventionally used in marine fish surveys. Additionally, it is shown that even short 100-bp. fish e...

  7. Population connectivity and the effectiveness of marine protected areas to protect vulnerable, exploited and endemic coral reef fishes at an endemic hotspot

    KAUST Repository

    Van Der Meer, Martin H.

    2014-12-23

    Marine protected areas (MPAs) aim to mitigate anthropogenic impacts by conserving biodiversity and preventing overfishing. The effectiveness of MPAs depends on population connectivity patterns between protected and non-protected areas. Remote islands are endemism hotspots for coral reef fishes and provide rare examples of coral reefs with limited fishing pressure. This study explored population genetic connectivity across a network of protected and non-protected areas for the endemic wrasse, Coris bulbifrons, which is listed as “vulnerable” by the IUCN due to its small, decreasing geographic range and declining abundance. Mitochondrial DNA (mtDNA) and microsatellite DNA (msatDNA) markers were used to estimate historic and contemporary gene flow to determine the level of population self-replenishment and to measure genetic and genotypic diversity among all four locations in the species range (south-west Pacific Ocean)—Middleton Reef (MR), Elizabeth Reef (ER), Lord Howe Island (LHI) and Norfolk Island (NI). MPAs exist at MR and LHI and are limited or non-existent at ER and NI, respectively. There was no obvious differentiation in mtDNA among locations, however, msatDNA revealed differentiation between the most peripheral (NI) and all remaining locations (MR, ER and LHI). Despite high mtDNA connectivity (M = 259–1,144), msatDNA connectivity was limited (M = 3–9) with high self-replenishment (68–93 %) at all locations. NI is the least connected and heavily reliant on self-replenishment, and the absence of MPAs at NI needs to be rectified to ensure the persistence of endemic species at this location. Other endemic fishes exhibit similar patterns of high self-replenishment across the four locations, indicating that a single spatial management approach consisting of a MPA network protecting part of each location could provide reasonable protection for these species. Thus, the existing network of MPAs at this endemic hotspot appears adequate at some locations

  8. Population connectivity and the effectiveness of marine protected areas to protect vulnerable, exploited and endemic coral reef fishes at an endemic hotspot

    Science.gov (United States)

    van der Meer, M. H.; Berumen, M. L.; Hobbs, J.-P. A.; van Herwerden, L.

    2015-06-01

    Marine protected areas (MPAs) aim to mitigate anthropogenic impacts by conserving biodiversity and preventing overfishing. The effectiveness of MPAs depends on population connectivity patterns between protected and non-protected areas. Remote islands are endemism hotspots for coral reef fishes and provide rare examples of coral reefs with limited fishing pressure. This study explored population genetic connectivity across a network of protected and non-protected areas for the endemic wrasse, Coris bulbifrons, which is listed as "vulnerable" by the IUCN due to its small, decreasing geographic range and declining abundance. Mitochondrial DNA (mtDNA) and microsatellite DNA (msatDNA) markers were used to estimate historic and contemporary gene flow to determine the level of population self-replenishment and to measure genetic and genotypic diversity among all four locations in the species range (south-west Pacific Ocean)—Middleton Reef (MR), Elizabeth Reef (ER), Lord Howe Island (LHI) and Norfolk Island (NI). MPAs exist at MR and LHI and are limited or non-existent at ER and NI, respectively. There was no obvious differentiation in mtDNA among locations, however, msatDNA revealed differentiation between the most peripheral (NI) and all remaining locations (MR, ER and LHI). Despite high mtDNA connectivity ( M = 259-1,144), msatDNA connectivity was limited ( M = 3-9) with high self-replenishment (68-93 %) at all locations. NI is the least connected and heavily reliant on self-replenishment, and the absence of MPAs at NI needs to be rectified to ensure the persistence of endemic species at this location. Other endemic fishes exhibit similar patterns of high self-replenishment across the four locations, indicating that a single spatial management approach consisting of a MPA network protecting part of each location could provide reasonable protection for these species. Thus, the existing network of MPAs at this endemic hotspot appears adequate at some locations, but not

  9. Damage of DNA and plasma membranes in murine lymphoma cells irradiated under aerobic or hypoxic conditions

    International Nuclear Information System (INIS)

    Wlodek, D.

    1983-01-01

    A review of the knowledge of radiation effects on cell membranes and DNA and of repair mechanisms of radiation lesions is given. Investigations of properties of plasma membranes in L5178Y-S and L5178Y-R cells (surface charge, fluidity, transport of amino acids) indicate that there is no direct connection between membrane lesions and reproductive death. It was also found that in irradiated cells of both L5178Y-strains the rate of DNA chain elongation is the same, similarly as the amount of the initial DNA lesions and the rate of repair processes. Difference in the level of DNA synthesis inhibition is not proportional to the lethal effect. The results are also reported point to the difference between L5178Y-S and L5178Y-R cells in susceptibility of post-irradiation DNA synthesis to factors modifying chromatin conformation, such as inhibitors of (ADP-ribose) n polymerase. 221 refs. (author)

  10. Loss of maintenance DNA methylation results in abnormal DNA origin firing during DNA replication

    Energy Technology Data Exchange (ETDEWEB)

    Haruta, Mayumi [Department of Cell Biology, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Shimada, Midori, E-mail: midorism@med.nagoya-cu.ac.jp [Department of Cell Biology, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Nishiyama, Atsuya; Johmura, Yoshikazu [Department of Cell Biology, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Le Tallec, Benoît; Debatisse, Michelle [Institut Curie, Centre de Recherche, 26 rue d’Ulm, CNRS UMR 3244, 75248 ParisCedex 05 (France); Nakanishi, Makoto, E-mail: mkt-naka@med.nagoya-cu.ac.jp [Department of Cell Biology, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan)

    2016-01-22

    The mammalian maintenance methyltransferase DNMT1 [DNA (cytosine-5-)-methyltransferase 1] mediates the inheritance of the DNA methylation pattern during replication. Previous studies have shown that depletion of DNMT1 causes a severe growth defect and apoptosis in differentiated cells. However, the detailed mechanisms behind this phenomenon remain poorly understood. Here we show that conditional ablation of Dnmt1 in murine embryonic fibroblasts (MEFs) resulted in an aberrant DNA replication program showing an accumulation of late-S phase replication and causing severely defective growth. Furthermore, we found that the catalytic activity and replication focus targeting sequence of DNMT1 are required for a proper DNA replication program. Taken together, our findings suggest that the maintenance of DNA methylation by DNMT1 plays a critical role in proper regulation of DNA replication in mammalian cells. - Highlights: • DNMT1 depletion results in an abnormal DNA replication program. • Aberrant DNA replication is independent of the DNA damage checkpoint in DNMT1cKO. • DNMT1 catalytic activity and RFT domain are required for proper DNA replication. • DNMT1 catalytic activity and RFT domain are required for cell proliferation.

  11. Human DNA ligase III bridges two DNA ends to promote specific intermolecular DNA end joining

    Science.gov (United States)

    Kukshal, Vandna; Kim, In-Kwon; Hura, Gregory L.; Tomkinson, Alan E.; Tainer, John A.; Ellenberger, Tom

    2015-01-01

    Mammalian DNA ligase III (LigIII) functions in both nuclear and mitochondrial DNA metabolism. In the nucleus, LigIII has functional redundancy with DNA ligase I whereas LigIII is the only mitochondrial DNA ligase and is essential for the survival of cells dependent upon oxidative respiration. The unique LigIII zinc finger (ZnF) domain is not required for catalytic activity but senses DNA strand breaks and stimulates intermolecular ligation of two DNAs by an unknown mechanism. Consistent with this activity, LigIII acts in an alternative pathway of DNA double strand break repair that buttresses canonical non-homologous end joining (NHEJ) and is manifest in NHEJ-defective cancer cells, but how LigIII acts in joining intermolecular DNA ends versus nick ligation is unclear. To investigate how LigIII efficiently joins two DNAs, we developed a real-time, fluorescence-based assay of DNA bridging suitable for high-throughput screening. On a nicked duplex DNA substrate, the results reveal binding competition between the ZnF and the oligonucleotide/oligosaccharide-binding domain, one of three domains constituting the LigIII catalytic core. In contrast, these domains collaborate and are essential for formation of a DNA-bridging intermediate by adenylated LigIII that positions a pair of blunt-ended duplex DNAs for efficient and specific intermolecular ligation. PMID:26130724

  12. Loss of maintenance DNA methylation results in abnormal DNA origin firing during DNA replication

    International Nuclear Information System (INIS)

    Haruta, Mayumi; Shimada, Midori; Nishiyama, Atsuya; Johmura, Yoshikazu; Le Tallec, Benoît; Debatisse, Michelle; Nakanishi, Makoto

    2016-01-01

    The mammalian maintenance methyltransferase DNMT1 [DNA (cytosine-5-)-methyltransferase 1] mediates the inheritance of the DNA methylation pattern during replication. Previous studies have shown that depletion of DNMT1 causes a severe growth defect and apoptosis in differentiated cells. However, the detailed mechanisms behind this phenomenon remain poorly understood. Here we show that conditional ablation of Dnmt1 in murine embryonic fibroblasts (MEFs) resulted in an aberrant DNA replication program showing an accumulation of late-S phase replication and causing severely defective growth. Furthermore, we found that the catalytic activity and replication focus targeting sequence of DNMT1 are required for a proper DNA replication program. Taken together, our findings suggest that the maintenance of DNA methylation by DNMT1 plays a critical role in proper regulation of DNA replication in mammalian cells. - Highlights: • DNMT1 depletion results in an abnormal DNA replication program. • Aberrant DNA replication is independent of the DNA damage checkpoint in DNMT1cKO. • DNMT1 catalytic activity and RFT domain are required for proper DNA replication. • DNMT1 catalytic activity and RFT domain are required for cell proliferation.

  13. Connecting multimodality in human communication

    Directory of Open Access Journals (Sweden)

    Christina eRegenbogen

    2013-11-01

    Full Text Available A successful reciprocal evaluation of social signals serves as a prerequisite for social coherence and empathy. In a previous fMRI study we studied naturalistic communication situations by presenting video clips to our participants and recording their behavioral responses regarding empathy and its components. In two conditions, all three channels transported congruent emotional or neutral information, respectively. Three conditions selectively presented two emotional channels and one neutral channel and were thus bimodally emotional. We reported channel-specific emotional contributions in modality-related areas, elicited by dynamic video clips with varying combinations of emotionality in facial expressions, prosody, and speech content. However, to better understand the underlying mechanisms accompanying a naturalistically displayed human social interaction in some key regions that presumably serve as specific processing hubs for facial expressions, prosody, and speech content, we pursued a reanalysis of the data. In addition to this specificity of these regions to information channels we demonstrated that they were also sensitive to variations of the respective emotional content.Here, we focused on two different descriptions of temporal characteristics within these three modality-related regions (right fusiform gyrus (FFG, left auditory cortex (AC, left angular gyrus (AG and left dorsomedial prefrontal cortex (dmPFC. By means of a finite impulse response (FIR analysis within each of the three regions we examined the post-stimulus time-courses as a description of the temporal characteristics of the BOLD response during the video clips. Second, effective connectivity between these areas and the left dmPFC was analyzed using dynamic causal modeling (DCM in order to describe condition-related modulatory influences on the coupling between these regions. The FIR analysis showed initially diminished activation in bimodally emotional conditions but

  14. Connecting the dots: chromatin and alternative splicing in EMT.

    Science.gov (United States)

    Warns, Jessica A; Davie, James R; Dhasarathy, Archana

    2016-02-01

    Nature has devised sophisticated cellular machinery to process mRNA transcripts produced by RNA Polymerase II, removing intronic regions and connecting exons together, to produce mature RNAs. This process, known as splicing, is very closely linked to transcription. Alternative splicing, or the ability to produce different combinations of exons that are spliced together from the same genomic template, is a fundamental means of regulating protein complexity. Similar to transcription, both constitutive and alternative splicing can be regulated by chromatin and its associated factors in response to various signal transduction pathways activated by external stimuli. This regulation can vary between different cell types, and interference with these pathways can lead to changes in splicing, often resulting in aberrant cellular states and disease. The epithelial to mesenchymal transition (EMT), which leads to cancer metastasis, is influenced by alternative splicing events of chromatin remodelers and epigenetic factors such as DNA methylation and non-coding RNAs. In this review, we will discuss the role of epigenetic factors including chromatin, chromatin remodelers, DNA methyltransferases, and microRNAs in the context of alternative splicing, and discuss their potential involvement in alternative splicing during the EMT process.

  15. Mitochondrial DNA structure in the Arabian Peninsula

    Directory of Open Access Journals (Sweden)

    Cabrera Vicente M

    2008-02-01

    Full Text Available Abstract Background Two potential migratory routes followed by modern humans to colonize Eurasia from Africa have been proposed. These are the two natural passageways that connect both continents: the northern route through the Sinai Peninsula and the southern route across the Bab al Mandab strait. Recent archaeological and genetic evidence have favored a unique southern coastal route. Under this scenario, the study of the population genetic structure of the Arabian Peninsula, the first step out of Africa, to search for primary genetic links between Africa and Eurasia, is crucial. The haploid and maternally inherited mitochondrial DNA (mtDNA molecule has been the most used genetic marker to identify and to relate lineages with clear geographic origins, as the African Ls and the Eurasian M and N that have a common root with the Africans L3. Results To assess the role of the Arabian Peninsula in the southern route, we genetically analyzed 553 Saudi Arabs using partial (546 and complete mtDNA (7 sequencing, and compared the lineages obtained with those present in Africa, the Near East, central, east and southeast Asia and Australasia. The results showed that the Arabian Peninsula has received substantial gene flow from Africa (20%, detected by the presence of L, M1 and U6 lineages; that an 18% of the Arabian Peninsula lineages have a clear eastern provenance, mainly represented by U lineages; but also by Indian M lineages and rare M links with Central Asia, Indonesia and even Australia. However, the bulk (62% of the Arabian lineages has a Northern source. Conclusion Although there is evidence of Neolithic and more recent expansions in the Arabian Peninsula, mainly detected by (preHV1 and J1b lineages, the lack of primitive autochthonous M and N sequences, suggests that this area has been more a receptor of human migrations, including historic ones, from Africa, India, Indonesia and even Australia, than a demographic expansion center along the

  16. DNA controlled assembly of liposomes

    DEFF Research Database (Denmark)

    Vogel, Stefan; Jakobsen, Ulla; Simonsen, Adam Cohen

    2009-01-01

    DNA-encoding of solid nanoparticles requires surfacechemistry, which is often tedious and not generally applicable. In the present study non-covalently attached DNA are used to assemble soft nanoparticles (liposomes) in solution. This process displays remarkably sharp thermal transitions from...... assembled to disassembled state for which reason this method allows easy and fast detection of polynucleotides (e.g. DNA or RNA), including single nucleotide polymorphisms as well as insertions and deletions....

  17. Biosensors for DNA sequence detection

    Science.gov (United States)

    Vercoutere, Wenonah; Akeson, Mark

    2002-01-01

    DNA biosensors are being developed as alternatives to conventional DNA microarrays. These devices couple signal transduction directly to sequence recognition. Some of the most sensitive and functional technologies use fibre optics or electrochemical sensors in combination with DNA hybridization. In a shift from sequence recognition by hybridization, two emerging single-molecule techniques read sequence composition using zero-mode waveguides or electrical impedance in nanoscale pores.

  18. DNA damage, homology-directed repair, and DNA methylation.

    Directory of Open Access Journals (Sweden)

    Concetta Cuozzo

    2007-07-01

    Full Text Available To explore the link between DNA damage and gene silencing, we induced a DNA double-strand break in the genome of Hela or mouse embryonic stem (ES cells using I-SceI restriction endonuclease. The I-SceI site lies within one copy of two inactivated tandem repeated green fluorescent protein (GFP genes (DR-GFP. A total of 2%-4% of the cells generated a functional GFP by homology-directed repair (HR and gene conversion. However, approximately 50% of these recombinants expressed GFP poorly. Silencing was rapid and associated with HR and DNA methylation of the recombinant gene, since it was prevented in Hela cells by 5-aza-2'-deoxycytidine. ES cells deficient in DNA methyl transferase 1 yielded as many recombinants as wild-type cells, but most of these recombinants expressed GFP robustly. Half of the HR DNA molecules were de novo methylated, principally downstream to the double-strand break, and half were undermethylated relative to the uncut DNA. Methylation of the repaired gene was independent of the methylation status of the converting template. The methylation pattern of recombinant molecules derived from pools of cells carrying DR-GFP at different loci, or from an individual clone carrying DR-GFP at a single locus, was comparable. ClustalW analysis of the sequenced GFP molecules in Hela and ES cells distinguished recombinant and nonrecombinant DNA solely on the basis of their methylation profile and indicated that HR superimposed novel methylation profiles on top of the old patterns. Chromatin immunoprecipitation and RNA analysis revealed that DNA methyl transferase 1 was bound specifically to HR GFP DNA and that methylation of the repaired segment contributed to the silencing of GFP expression. Taken together, our data support a mechanistic link between HR and DNA methylation and suggest that DNA methylation in eukaryotes marks homologous recombined segments.

  19. Fluorescence Microscopy of Nanochannel-Confined DNA.

    Science.gov (United States)

    Westerlund, Fredrik; Persson, Fredrik; Fritzsche, Joachim; Beech, Jason P; Tegenfeldt, Jonas O

    2018-01-01

    Stretching of DNA in nanoscale confinement allows for several important studies. The genetic contents of the DNA can be visualized on the single DNA molecule level and both the polymer physics of confined DNA and also DNA/protein and other DNA/DNA-binding molecule interactions can be explored. This chapter describes the basic steps to fabricate the nanostructures, perform the experiments and analyze the data.

  20. Aging and DNA repair capability. [Review

    Energy Technology Data Exchange (ETDEWEB)

    Tice, R R

    1977-01-01

    A review of the literature on DNA repair processes in relation to aging is presented under the following headings: DNA repair processes; age-related occurrence of unrepaired DNA lesions; DNA repair capability as a function of age; tissue-specific DNA repair capability; acceleration of the aging process by exposure to DNA damaging agents; human genetic syndromes; and longevity and DNA repair processes. (HLW)

  1. DNA modification by alkylating compounds

    Energy Technology Data Exchange (ETDEWEB)

    Kruglyakova, E.E.

    1985-09-01

    Results are given for research on the physico-chemical properties of alkylating compounds - nitroso alkyl ureas (NAU) which possess a broad spectrum of biological activity, such as mutagenic, carcinogenic, and anti-tumor action that is due to the alkylation and carbamoylation of DNA as well as other cellular components. Identified chemical products of NAU interaction with DNA and its components are cited. Structural conversions of a DNA macromolecule resulting from its chemical modification are examined. NAU are used to discuss possible biological consequences of DNA modification. 148 references.

  2. Supercoil Formation During DNA Melting

    Science.gov (United States)

    Sayar, Mehmet; Avsaroglu, Baris; Kabakcioglu, Alkan

    2009-03-01

    Supercoil formation plays a key role in determining the structure-function relationship in DNA. Biological and technological processes, such as protein synthesis, polymerase chain reaction, and microarrays relys on separation of the two strands in DNA, which is coupled to the unwinding of the supercoiled structure. This problem has been studied theoretically via Peyrard-Bishop and Poland-Scheraga type models, which include a simple representation of the DNA structural properties. In recent years, computational models, which provide a more realtistic representaion of DNA molecule, have been used to study the melting behavior of short DNA chains. Here, we will present a new coarse-grained model of DNA which is capable of simulating sufficiently long DNA chains for studying the supercoil formation during melting, without sacrificing the local structural properties. Our coarse-grained model successfully reproduces the local geometry of the DNA molecule, such as the 3'-5' directionality, major-minor groove structure, and the helical pitch. We will present our initial results on the dynamics of supercoiling during DNA melting.

  3. Monogenic diseases of DNA repair

    DEFF Research Database (Denmark)

    Keijzers, Guido; Bakula, Daniela; Scheibye-Knudsen, Morten

    2017-01-01

    Maintaining the stability of the genome is essential for all organisms, and it is not surprising that damage to DNA has been proposed as an explanation for multiple chronic diseases.1-5 Conserving a pristine genome is therefore of central importance to our health. To overcome the genotoxic stress...... of a growing number of human diseases. Notably, many of these monogenic DNA-repair disorders display features of accelerated aging, supporting the notion that genome maintenance is a key factor for organismal longevity. This review focuses on the physiological consequences of loss of DNA repair, particularly...... in the context of monogenic DNA-repair diseases....

  4. DNA nanotechnology-enabled biosensors.

    Science.gov (United States)

    Chao, Jie; Zhu, Dan; Zhang, Yinan; Wang, Lianhui; Fan, Chunhai

    2016-02-15

    Biosensors employ biological molecules to recognize the target and utilize output elements which can translate the biorecognition event into electrical, optical or mass-sensitive signals to determine the quantities of the target. DNA-based biosensors, as a sub-field to biosensor, utilize DNA strands with short oligonucleotides as probes for target recognition. Although DNA-based biosensors have offered a promising alternative for fast, simple and cheap detection of target molecules, there still exist key challenges including poor stability and reproducibility that hinder their competition with the current gold standard for DNA assays. By exploiting the self-recognition properties of DNA molecules, researchers have dedicated to make versatile DNA nanostructures in a highly rigid, controllable and functionalized manner, which offers unprecedented opportunities for developing DNA-based biosensors. In this review, we will briefly introduce the recent advances on design and fabrication of static and dynamic DNA nanostructures, and summarize their applications for fabrication and functionalization of DNA-based biosensors. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Statistical Approaches for DNA Barcoding

    DEFF Research Database (Denmark)

    Nielsen, Rasmus; Matz, M.

    2006-01-01

    The use of DNA as a tool for species identification has become known as "DNA barcoding" (Floyd et al., 2002; Hebert et al., 2003; Remigio and Hebert, 2003). The basic idea is straightforward: a small amount of DNA is extracted from the specimen, amplified and sequenced. The gene region sequenced...... is chosen so that it is nearly identical among individuals of the same species, but different between species, and therefore its sequence, can serve as an identification tag for the species ("DNA barcode"). By matching the sequence obtained from an unidentified specimen ("query" sequence) to the database...

  6. Radiobiological significance of DNA repair

    International Nuclear Information System (INIS)

    Kuzin, A.M.

    1978-01-01

    A short outline is given on the history of the problem relating to the repair of radiation injuries, specifically its molecular mechanisms. The most urgent problems which currently confront the researchers are noted. This is a further study on the role of DNA repair in post-radiation recovery, search for ways to activate and suppress DNA repair, investigations into the activity balance of various repair enzymes as well as the problem of errors in the structure of repairing DNA. An important role is attached to the investigations of DNA repair in solving a number of practical problems

  7. DNA repair: keeping it together

    DEFF Research Database (Denmark)

    Lisby, Michael; Rothstein, Rodney

    2004-01-01

    A protein scaffold has been identified that holds a chromosome together in the event of a DNA double-strand break. This scaffold is dependent on Rad52 and the Rad50-Mre11-Xrs2 complex and withstands the pulling forces of the mitotic spindle during DNA damage checkpoint arrest.......A protein scaffold has been identified that holds a chromosome together in the event of a DNA double-strand break. This scaffold is dependent on Rad52 and the Rad50-Mre11-Xrs2 complex and withstands the pulling forces of the mitotic spindle during DNA damage checkpoint arrest....

  8. Resistance to DNA denaturation in irradiated Chinese hamster V79 fibroblasts is linked to cell shape

    International Nuclear Information System (INIS)

    Olive, P.L.; Vanderbyl, S.; MacPhail, S.H.

    1991-01-01

    Exponentially growing Chinese hamster V79-171b lung fibroblasts seeded at high density on plastic (approximately 7 x 10(3) cells/cm2) flatten, elongate, and produce significant amounts of extracellular fibronectin. When lysed in weak alkali/high salt, the rate of DNA denaturation following exposure to ionizing radiation is exponential. Conversely, cells plated at low density (approximately 7 x 10(2) cells/cm2) on plastic are more rounded 24 h later, produce little extracellular fibronectin, and display unusual DNA denaturation kinetics after X-irradiation. DNA in these cells resists denaturation, as though constraints to DNA unwinding have developed. Cell doubling time and distribution of cells in the growth cycle are identical for both high and low density cultures as is cell survival in response to radiation damage. The connection between DNA conformation and cell shape was examined further in low density cultures grown in conditioned medium. Under these conditions, cells at low density were able to elongate, and DNA denaturation of low density cultures was identical to that of high density cultures. Conversely, cytochalasin D, which interferes with actin polymerization causing cells to round up and release fibronectin, allowed development of constraints in high density cultures. These results suggest that DNA conformation is sensitive to changes in cell shape which result when cells are grown in different environments. However, these changes in DNA conformation detected by the DNA unwinding assay do not appear to play a direct role in radiation-induced cell killing

  9. Formation of DNA-network embedding ferromagnetic Cobalt nano-particles

    Science.gov (United States)

    Kanki, Teruo; Tanaka, Hidekazu; Shirakawa, Hideaki; Sacho, Yu; Taniguchi, Masateru; Lee, Hea-Yeon; Kawai, Tomoji; Kang, Nam-Jung; Chen, Jinwoo

    2002-03-01

    Formation of DNA-network embedding ferromagnetic Cobalt nano-particles T. Kanki, Hidekazu. Tanaka, H. Shirakawa, Y. Sacho, M. Taniguchi, H. Lee, T. Kawai The Institute of Scientific and Industrial Research, Osaka University, Japan and Nam-Jung Kang, Jinwoo Chen Korea Advanced Institute of Science and Technology (KAIST), Korea DNA can be regarded as a naturally occurring and highly specific functional biopolymer and as a fine nano-wire. Moreover, it was found that large-scale DNA networks can be fabricated on mica surfaces. By using this network structure, we can expect to construct nano-scale assembly of functional nano particle, for example ferromagnetic Co nano particles, toward nano scale spin-electronics based on DNA circuits. When we formed DNA network by 250mg/ml DNA solution of poly(dG)-poly(dC) including ferromagnetic Co nano particles (diameter of 12nm), we have conformed the DNA network structure embedding Co nano-particles (height of about 12nm) by atomic force microscopy. On the other hand, we used 100mg/ml DNA solution, DNA can not connect each other, and many Co nano-particles exist without being embedded.

  10. Transcription of hepatitis B virus covalently closed circular DNA is regulated by CpG methylation during chronic infection.

    Directory of Open Access Journals (Sweden)

    Yongmei Zhang

    Full Text Available The persistence of hepatitis B virus (HBV infection is maintained by the nuclear viral covalently closed circular DNA (cccDNA, which serves as transcription template for viral mRNAs. Previous studies suggested that cccDNA contains methylation-prone CpG islands, and that the minichromosome structure of cccDNA is epigenetically regulated by DNA methylation. However, the regulatory effect of each CpG island methylation on cccDNA activity remains elusive. In the present study, we analyzed the distribution of CpG methylation within cccDNA in patient samples and investigated the impact of CpG island methylation on cccDNA-driven virus replication. Our study revealed the following observations: 1 Bisulfite sequencing of cccDNA from chronic hepatitis B patients indicated that CpG island I was seldom methylated, 2 CpG island II methylation was correlated to the low level of serum HBV DNA in patients, and in vitro methylation studies confirmed that CpG island II methylation markedly reduced cccDNA transcription and subsequent viral core DNA replication, 3 CpG island III methylation was associated with low serum HBsAg titers, and 4 Furthermore, we found that HBV genotype, HBeAg positivity, and patient age and liver fibrosis stage were also relevant to cccDNA CpG methylation status. Therefore, we clearly demonstrated that the status of cccDNA methylation is connected to the biological behavior of HBV. Taken together, our study provides a complete profile of CpG island methylation within HBV cccDNA and new insights for the function of CpG methylation in regulating HBV cccDNA transcription.

  11. Loss of maintenance DNA methylation results in abnormal DNA origin firing during DNA replication.

    Science.gov (United States)

    Haruta, Mayumi; Shimada, Midori; Nishiyama, Atsuya; Johmura, Yoshikazu; Le Tallec, Benoît; Debatisse, Michelle; Nakanishi, Makoto

    2016-01-22

    The mammalian maintenance methyltransferase DNMT1 [DNA (cytosine-5-)-methyltransferase 1] mediates the inheritance of the DNA methylation pattern during replication. Previous studies have shown that depletion of DNMT1 causes a severe growth defect and apoptosis in differentiated cells. However, the detailed mechanisms behind this phenomenon remain poorly understood. Here we show that conditional ablation of Dnmt1 in murine embryonic fibroblasts (MEFs) resulted in an aberrant DNA replication program showing an accumulation of late-S phase replication and causing severely defective growth. Furthermore, we found that the catalytic activity and replication focus targeting sequence of DNMT1 are required for a proper DNA replication program. Taken together, our findings suggest that the maintenance of DNA methylation by DNMT1 plays a critical role in proper regulation of DNA replication in mammalian cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Clinical strains of acinetobacter classified by DNA-DNA hybridization

    International Nuclear Information System (INIS)

    Tjernberg, I.; Ursing, J.

    1989-01-01

    A collection of Acinetobacter strains consisting of 168 consecutive clinical strains and 30 type and reference strains was studied by DNA-DNA hybridization and a few phenotypic tests. The field strains could be allotted to 13 DNA groups. By means of reference strains ten of these could be identified with groups described by Bouvet and Grimont (1986), while three groups were new; they were given the numbers 13-15. The type strain of A. radioresistens- recently described by Nishimura et al. (1988) - was shown to be a member of DNA group 12, which comprised 31 clinical isolates. Of the 19 strains of A. junii, eight showed hemolytic acitivity on sheep and human blood agar and an additional four strains on human blood agar only. Strains of this species have previously been regarded as non-hemolytic. Reciprocal DNA pairing data for the reference strains of the DNA gropus were treated by UPGMA clustering. The reference strains for A. calcoaceticus, A. baumannii and DNA groups 3 and 13 formed a cluster with about 70% relatedness within the cluster. Other DNA groups joined at levels below 60%. (author)

  13. Clinical strains of acinetobacter classified by DNA-DNA hybridization

    Energy Technology Data Exchange (ETDEWEB)

    Tjernberg, I; Ursing, J [Department of Medical Microbiology, University of Lund, Malmoe General Hospital, Malmoe (Sweden)

    1989-01-01

    A collection of Acinetobacter strains consisting of 168 consecutive clinical strains and 30 type and reference strains was studied by DNA-DNA hybridization and a few phenotypic tests. The field strains could be allotted to 13 DNA groups. By means of reference strains ten of these could be identified with groups described by Bouvet and Grimont (1986), while three groups were new; they were given the numbers 13-15. The type strain of A. radioresistens- recently described by Nishimura et al. (1988) - was shown to be a member of DNA group 12, which comprised 31 clinical isolates. Of the 19 strains of A. junii, eight showed hemolytic acitivity on sheep and human blood agar and an additional four strains on human blood agar only. Strains of this species have previously been regarded as non-hemolytic. Reciprocal DNA pairing data for the reference strains of the DNA gropus were treated by UPGMA clustering. The reference strains for A. calcoaceticus, A. baumannii and DNA groups 3 and 13 formed a cluster with about 70% relatedness within the cluster. Other DNA groups joined at levels below 60%. (author).

  14. 47 CFR 54.506 - Internal connections.

    Science.gov (United States)

    2010-10-01

    ... instructional building of a school or to a non-administrative building of a library. Internal connections do not... SERVICE Universal Service Support for Schools and Libraries § 54.506 Internal connections. (a) A service... necessary to transport information within one or more instructional buildings of a single school campus or...

  15. Aberrant orbitofrontal connectivity in marijuana smoking adolescents

    Directory of Open Access Journals (Sweden)

    Melissa Patricia Lopez-Larson

    2015-12-01

    Discussion: Findings indicate atypical OFC functional connectivity patterns in attentional/executive, motor and reward networks in adolescents with heavy MJ use. These anomalies may be related to suboptimal decision making capacities and increased impulsivity. Results also suggest different OFC connectivity patterns may be present in adolescents with early onset of MJ use and high lifetime exposure to MJ.

  16. Centrifugal separator cascade connected in zigzag manner

    International Nuclear Information System (INIS)

    Kai, Tsunetoshi; Inoue, Yoshiya; Oya, Akio; Nagakura, Masaaki.

    1974-01-01

    Object: To effectively accommodate centrifugal separators of the entire cascade within the available space in a plant by freely selecting perpendicular direction of connection of the centrifugal separator. Structure: Centrifugal separators are connected in zigzag fashion by using a single header for each stage so that in a rectangular shape the entire cascade is arranged. (Kamimura, M.)

  17. Are we connected? : Ports in Global Networks

    NARCIS (Netherlands)

    R.A. Zuidwijk (Rob)

    2015-01-01

    markdownabstractAbstract Global supply chains are built on organizational, information, and logistics networks. Ports are connected via these networks and also need to connect these networks. Synchromodality is an innovative concept for container transportation, and the port plays an important

  18. Connections between quantum chromodynamics and condensed

    Indian Academy of Sciences (India)

    Using examples we discuss some of the connections between the two fields and show how progress can be made by exploiting this connection. Some of the challenges that remain in ... Current Issue : Vol. 90, Issue 6. Current Issue Volume 90 ...

  19. Countering oversegmentation in partitioning-based connectivities

    NARCIS (Netherlands)

    Ouzounis, Georgios K.; Wilkinson, Michael H.F.

    2005-01-01

    A new theoretical development is presented for handling the over-segmentation problem in partitioning-based connected openings. The definition we propose treats singletons generated with the earlier method, as elements of a larger connected component. Unlike the existing formalism, this new method

  20. Connecting Representations: Using Predict, Check, Explain

    Science.gov (United States)

    Roy, George J.; Fueyo, Vivian; Vahey, Philip; Knudsen, Jennifer; Rafanan, Ken; Lara-Meloy, Teresa

    2016-01-01

    Although educators agree that making connections with the real world, as advocated by "Principles to Actions: Ensuring Mathematical Success for All" (NCTM 2014), is important, making such connections while addressing important mathematics is elusive. The authors have found that math content coupled with the instructional strategy of…

  1. Voltage Quality of Grid Connected Wind Turbines

    DEFF Research Database (Denmark)

    Chen, Zhe; Blaabjerg, Frede; Sun, Tao

    2004-01-01

    Grid connected wind turbines may cause quality problems, such as voltage variation and flicker. This paper discusses the voltage variation and flicker emission of grid connected wind turbines with doubly-fed induction generators. A method to compensate flicker by using a voltage source converter...

  2. Simple clamped connection for bamboo truss systems

    NARCIS (Netherlands)

    Blok, R.

    2016-01-01

    “How to make fast and simple tension connections for truss systems?” The Solution: The innovation is a connection that uses only widely available base components (boltsand threaded steel bars) and simple hand tools to install it. With a handsaw and aspanner, the bamboo stems can be combined into to

  3. IDRC Connect | IDRC - International Development Research Centre

    International Development Research Centre (IDRC) Digital Library (Canada)

    2015-07-20

    All IDRC-funded researchers have access to IDRC Connect, our project portal and collaborative workspace. For projects approved after July 20, 2015, IDRC Connect must be used to submit technical reports project outputs funding requests for open access journal publishing charges You need a password to access IDRC ...

  4. Connecting Functions in Geometry and Algebra

    Science.gov (United States)

    Steketee, Scott; Scher, Daniel

    2016-01-01

    One goal of a mathematics education is that students make significant connections among different branches of mathematics. Connections--such as those between arithmetic and algebra, between two-dimensional and three-dimensional geometry, between compass-and-straight-edge constructions and transformations, and between calculus and analytic…

  5. Natural Connections on Riemannian Product Manifolds

    OpenAIRE

    Gribacheva, Dobrinka

    2011-01-01

    A Riemannian almost product manifold with integrable almost product structure is called a Riemannian product manifold. In the present paper the natural connections on such manifolds are studied, i.e. the linear connections preserving the almost product structure and the Riemannian metric.

  6. Limited Genetic Connectivity between Gorgonian Morphotypes along a Depth Gradient.

    Directory of Open Access Journals (Sweden)

    Federica Costantini

    Full Text Available Gorgonian species show a high morphological variability in relation to the environment in which they live. In coastal areas, parameters such as temperature, light, currents, and food availability vary significantly with depth, potentially affecting morphology of the colonies and the structure of the populations, as well as their connectivity patterns. In tropical seas, the existence of connectivity between shallow and deep populations supported the hypothesis that the deep coral reefs could potentially act as (reproductive refugia fostering re-colonization of shallow areas after mortality events. Moreover, this hypothesis is not so clear accepted in temperate seas. Eunicella singularis is one of the most common gorgonian species in Northwestern Mediterranean Sea, playing an important role as ecosystem engineer by providing biomass and complexity to the coralligenous habitats. It has a wide bathymetric distribution ranging from about 10 m to 100 m. Two depth-related morphotypes have been identified, differing in colony morphology, sclerite size and shape, and occurrence of symbiotic algae, but not in mitochondrial DNA haplotypes. In the present study the genetic structure of E. singularis populations along a horizontal and bathymetric gradient was assessed using microsatellites and ITS1 sequences. Restricted gene flow was found at 30-40 m depth between the two Eunicella morphotypes. Conversely, no genetic structuring has been found among shallow water populations within a spatial scale of ten kilometers. The break in gene flow between shallow and deep populations contributes to explain the morphological variability observed at different depths. Moreover, the limited vertical connectivity hinted that the refugia hypothesis does not apply to E. singularis. Re-colonization of shallow water populations, occasionally affected by mass mortality events, should then be mainly fueled by larvae from other shallow water populations.

  7. Repulsive DNA-DNA interactions accelerate viral DNA packaging in phage phi29

    OpenAIRE

    Keller, Nicholas; delToro, Damian; Grimes, Shelley; Jardine, Paul J.; Smith, Douglas E.

    2014-01-01

    We use optical tweezers to study the effect of attractive versus repulsive DNA-DNA interactions on motor-driven viral packaging. Screening of repulsive interactions accelerates packaging, but induction of attractive interactions by spermidine3+ causes heterogeneous dynamics. Acceleration is observed in a fraction of complexes, but most exhibit slowing and stalling, suggesting that attractive interactions promote nonequilibrium DNA conformations that impede the motor. Thus, repulsive interacti...

  8. Master equation approach to DNA breathing in heteropolymer DNA

    DEFF Research Database (Denmark)

    Ambjörnsson, Tobias; Banik, Suman K; Lomholt, Michael A

    2007-01-01

    After crossing an initial barrier to break the first base-pair (bp) in double-stranded DNA, the disruption of further bps is characterized by free energies up to a few k(B)T. Thermal motion within the DNA double strand therefore causes the opening of intermittent single-stranded denaturation zones......, the DNA bubbles. The unzipping and zipping dynamics of bps at the two zipper forks of a bubble, where the single strand of the denatured zone joins the still intact double strand, can be monitored by single molecule fluorescence or NMR methods. We here establish a dynamic description of this DNA breathing...... in a heteropolymer DNA with given sequence in terms of a master equation that governs the time evolution of the joint probability distribution for the bubble size and position along the sequence. The transfer coefficients are based on the Poland-Scheraga free energy model. We derive the autocorrelation function...

  9. Connectivity: Performance Portable Algorithms for graph connectivity v. 0.1

    Energy Technology Data Exchange (ETDEWEB)

    2017-09-21

    Graphs occur in several places in real world from road networks, social networks and scientific simulations. Connectivity is a graph analysis software to graph connectivity in modern architectures like multicore CPUs, Xeon Phi and GPUs.

  10. DNA damage in neurodegenerative diseases

    Energy Technology Data Exchange (ETDEWEB)

    Coppedè, Fabio, E-mail: fabio.coppede@med.unipi.it; Migliore, Lucia, E-mail: lucia.migliore@med.unipi.it

    2015-06-15

    Highlights: • Oxidative DNA damage is one of the earliest detectable events in the neurodegenerative process. • The mitochondrial DNA is more vulnerable to oxidative attack than the nuclear DNA. • Cytogenetic damage has been largely documented in Alzheimer's disease patients. • The question of whether DNA damage is cause or consequence of neurodegeneration is still open. • Increasing evidence links DNA damage and repair with epigenetic phenomena. - Abstract: Following the observation of increased oxidative DNA damage in nuclear and mitochondrial DNA extracted from post-mortem brain regions of patients affected by neurodegenerative diseases, the last years of the previous century and the first decade of the present one have been largely dedicated to the search of markers of DNA damage in neuronal samples and peripheral tissues of patients in early, intermediate or late stages of neurodegeneration. Those studies allowed to demonstrate that oxidative DNA damage is one of the earliest detectable events in neurodegeneration, but also revealed cytogenetic damage in neurodegenerative conditions, such as for example a tendency towards chromosome 21 malsegregation in Alzheimer's disease. As it happens for many neurodegenerative risk factors the question of whether DNA damage is cause or consequence of the neurodegenerative process is still open, and probably both is true. The research interest in markers of oxidative stress was shifted, in recent years, towards the search of epigenetic biomarkers of neurodegenerative disorders, following the accumulating evidence of a substantial contribution of epigenetic mechanisms to learning, memory processes, behavioural disorders and neurodegeneration. Increasing evidence is however linking DNA damage and repair with epigenetic phenomena, thereby opening the way to a very attractive and timely research topic in neurodegenerative diseases. We will address those issues in the context of Alzheimer's disease

  11. Authentication of forensic DNA samples.

    Science.gov (United States)

    Frumkin, Dan; Wasserstrom, Adam; Davidson, Ariane; Grafit, Arnon

    2010-02-01

    Over the past twenty years, DNA analysis has revolutionized forensic science, and has become a dominant tool in law enforcement. Today, DNA evidence is key to the conviction or exoneration of suspects of various types of crime, from theft to rape and murder. However, the disturbing possibility that DNA evidence can be faked has been overlooked. It turns out that standard molecular biology techniques such as PCR, molecular cloning, and recently developed whole genome amplification (WGA), enable anyone with basic equipment and know-how to produce practically unlimited amounts of in vitro synthesized (artificial) DNA with any desired genetic profile. This artificial DNA can then be applied to surfaces of objects or incorporated into genuine human tissues and planted in crime scenes. Here we show that the current forensic procedure fails to distinguish between such samples of blood, saliva, and touched surfaces with artificial DNA, and corresponding samples with in vivo generated (natural) DNA. Furthermore, genotyping of both artificial and natural samples with Profiler Plus((R)) yielded full profiles with no anomalies. In order to effectively deal with this problem, we developed an authentication assay, which distinguishes between natural and artificial DNA based on methylation analysis of a set of genomic loci: in natural DNA, some loci are methylated and others are unmethylated, while in artificial DNA all loci are unmethylated. The assay was tested on natural and artificial samples of blood, saliva, and touched surfaces, with complete success. Adopting an authentication assay for casework samples as part of the forensic procedure is necessary for maintaining the high credibility of DNA evidence in the judiciary system.

  12. Effects of radiation on DNA

    International Nuclear Information System (INIS)

    Medina, V.F.O.

    1978-01-01

    Irradiation has been shown to depress DNA (deoxyribonucleic acid) synthesis resulting in deficient DNA synthesis. In one experiment, Hela S 3 cells completed the next division after a dose of 500 rads to 200 kw X-rays. Another experiment showed that the amount of DNA synthesized was dependent on the stage in the generation cycle at which the cells are irradiated (Giffites and Tolmach, 1975). DNA synthesis was measured by radioactive thymidine incorporation. The smallest deficiency (20-35%) after a dose of 500 rad X-ray was observed in Hela S 3 cells irradiated in early G 1 or early G 2 , while the greatest deficiency (55-70*) after 500 rad X-ray was found in cells irradiated at mitosis or at the Gsub(1)/S transition. Using velocity sedimentation in alkaline gradients of the DNA from hamster, Elkind, et al 1972, studied repair processes as a function of X-ray dose. DNA containing material released by alkaline lysis was found initially contained in a complex-containing lipid, the sedimentation of which was anomalous relative to denatured RNA from unirradated cells. Doses of X-rays small enough to be in the range that permits high survival (100-800 rads) speed the resolution of single-stranded DNA from this DNA complex, giving rise to a species having a number average molecular weight of 2 x 10 8 daltons. Larger doses greater than 1000 to 2000 rads resulted in a degradation of these DNA strands. Incubation after irradiation resulted in the rapid repair of damage, although the rate of repair of damage to the complex resulted in a reassociation of lipid and DNA. This evidence supports the possibility that a large DNA-membrane structure is a principal target of radiation

  13. DNA damage in neurodegenerative diseases

    International Nuclear Information System (INIS)

    Coppedè, Fabio; Migliore, Lucia

    2015-01-01

    Highlights: • Oxidative DNA damage is one of the earliest detectable events in the neurodegenerative process. • The mitochondrial DNA is more vulnerable to oxidative attack than the nuclear DNA. • Cytogenetic damage has been largely documented in Alzheimer's disease patients. • The question of whether DNA damage is cause or consequence of neurodegeneration is still open. • Increasing evidence links DNA damage and repair with epigenetic phenomena. - Abstract: Following the observation of increased oxidative DNA damage in nuclear and mitochondrial DNA extracted from post-mortem brain regions of patients affected by neurodegenerative diseases, the last years of the previous century and the first decade of the present one have been largely dedicated to the search of markers of DNA damage in neuronal samples and peripheral tissues of patients in early, intermediate or late stages of neurodegeneration. Those studies allowed to demonstrate that oxidative DNA damage is one of the earliest detectable events in neurodegeneration, but also revealed cytogenetic damage in neurodegenerative conditions, such as for example a tendency towards chromosome 21 malsegregation in Alzheimer's disease. As it happens for many neurodegenerative risk factors the question of whether DNA damage is cause or consequence of the neurodegenerative process is still open, and probably both is true. The research interest in markers of oxidative stress was shifted, in recent years, towards the search of epigenetic biomarkers of neurodegenerative disorders, following the accumulating evidence of a substantial contribution of epigenetic mechanisms to learning, memory processes, behavioural disorders and neurodegeneration. Increasing evidence is however linking DNA damage and repair with epigenetic phenomena, thereby opening the way to a very attractive and timely research topic in neurodegenerative diseases. We will address those issues in the context of Alzheimer's disease

  14. Directional connectivity in hydrology and ecology

    Science.gov (United States)

    Larsen, Laurel G.; Choi, Jungyill; Nungesser, Martha K.; Harvey, Judson W.

    2012-01-01

    Quantifying hydrologic and ecological connectivity has contributed to understanding transport and dispersal processes and assessing ecosystem degradation or restoration potential. However, there has been little synthesis across disciplines. The growing field of ecohydrology and recent recognition that loss of hydrologic connectivity is leading to a global decline in biodiversity underscore the need for a unified connectivity concept. One outstanding need is a way to quantify directional connectivity that is consistent, robust to variations in sampling, and transferable across scales or environmental settings. Understanding connectivity in a particular direction (e.g., streamwise, along or across gradient, between sources and sinks, along cardinal directions) provides critical information for predicting contaminant transport, planning conservation corridor design, and understanding how landscapes or hydroscapes respond to directional forces like wind or water flow. Here we synthesize progress on quantifying connectivity and develop a new strategy for evaluating directional connectivity that benefits from use of graph theory in ecology and percolation theory in hydrology. The directional connectivity index (DCI) is a graph-theory based, multiscale metric that is generalizable to a range of different structural and functional connectivity applications. It exhibits minimal sensitivity to image rotation or resolution within a given range and responds intuitively to progressive, unidirectional change. Further, it is linearly related to the integral connectivity scale length—a metric common in hydrology that correlates well with actual fluxes—but is less computationally challenging and more readily comparable across different landscapes. Connectivity-orientation curves (i.e., directional connectivity computed over a range of headings) provide a quantitative, information-dense representation of environmental structure that can be used for comparison or detection of

  15. Directional connectivity in hydrology and ecology.

    Science.gov (United States)

    Larsen, Laurel G; Choi, Jungyill; Nungesser, Martha K; Harvey, Judson W

    2012-12-01

    Quantifying hydrologic and ecological connectivity has contributed to understanding transport and dispersal processes and assessing ecosystem degradation or restoration potential. However, there has been little synthesis across disciplines. The growing field of ecohydrology and recent recognition that loss of hydrologic connectivity is leading to a global decline in biodiversity underscore the need for a unified connectivity concept. One outstanding need is a way to quantify directional connectivity that is consistent, robust to variations in sampling, and transferable across scales or environmental settings. Understanding connectivity in a particular direction (e.g., streamwise, along or across gradient, between sources and sinks, along cardinal directions) provides critical information for predicting contaminant transport, planning conservation corridor design, and understanding how landscapes or hydroscapes respond to directional forces like wind or water flow. Here we synthesize progress on quantifying connectivity and develop a new strategy for evaluating directional connectivity that benefits from use of graph theory in ecology and percolation theory in hydrology. The directional connectivity index (DCI) is a graph-theory based, multiscale metric that is generalizable to a range of different structural and functional connectivity applications. It exhibits minimal sensitivity to image rotation or resolution within a given range and responds intuitively to progressive, unidirectional change. Further, it is linearly related to the integral connectivity scale length--a metric common in hydrology that correlates well with actual fluxes--but is less computationally challenging and more readily comparable across different landscapes. Connectivity-orientation curves (i.e., directional connectivity computed over a range of headings) provide a quantitative, information-dense representation of environmental structure that can be used for comparison or detection of

  16. The TANF/SSI connection.

    Science.gov (United States)

    Wamhoff, Steve; Wiseman, Michael

    Interactions and overlap of social assistance programs across clients interest policymakers because such interactions affect both the clients' well-being and the programs' efficiency. This article investigates the connections between Supplemental Security Income (SSI) and Temporary Assistance for Needy Families (TANF) and TANF's predecessor, the Aid to Families with Dependent Children (AFDC) program. Connections between receipt of TANF and SSI are widely discussed in both disability policy and poverty research literatures because many families receiving TANF report disabilities. For both states and the individuals involved, it is generally financially advantageous for adults and children with disabilities to transfer from TANF to SSI. States gain because the federal government pays for the SSI benefit, and states can then use the TANF savings for other purposes. The families gain because the SSI benefits they acquire are greater than the TANF benefits they lose. The payoff to states from transferring welfare recipients to SSI was substantially increased when Congress replaced AFDC with TANF in 1996. States retained less than half of any savings achieved through such transfers under AFDC, but they retain all of the savings under TANF. Also, the work participation requirements under TANF have obligated states to address the work support needs of adults with disabilities who remain in TANF, and states can avoid these costs if adults have disabilities that satisfy SSI eligibility requirements. The incentive for TANF recipients to apply for SSI has increased over time as inflation has caused real TANF benefits to fall relative to payments received by SSI recipients. Trends in the financial incentives for transfer to SSI have not been studied in detail, and reliable general data on the extent of the interaction between TANF and SSI are scarce. In addition, some estimates of the prevalence of TANF receipt among SSI awardees are flawed because they fail to include adults

  17. Social media and (dis)connectivity

    DEFF Research Database (Denmark)

    Tække, Jesper

    The paper discuss the relation between media of communication and societal (dis)connectivity. The question is how communication media provide society with different possibilities for (dis)connectivity in different historical media societies. The paper draws on Luhmann’s theory of social systems...... for social systems to develop structures with new forms of communicative connections. Even though society only is possible because of communication media and gets new possibilities for the formation of new structures providing it with new connection possibilities, in the beginning a new communication medium....... In the present society we also see signs of new dis-connectivity, i.e. fake news, political polarization, and economic and democratic inequality. In the final section the paper analyse such problems triggered by digital media. Also the paper point out some new possibilities triggered by the acquisition of social...

  18. Study on the Connecting Length of CFRP

    Science.gov (United States)

    Liu, Xiongfei; Li, Yue; Li, Zhanguo

    2018-05-01

    The paper studied the varying mode of shear stress in the connecting zone of CFRP. Using epoxy resin (EP) as bond material, performance of specimens with different connecting length of CFRP was tested to obtain the conclusion. CFRP-confined concrete column was tested subsequently to verify the conclusion. The results show that: (1) The binding properties of modified epoxy resin with CFRP is good; (2) As the connecting length increased, the ultimate tensile strength of CFRP increased as well in the range of the experiment parameters; (3) Tensile strength of CFRP can reach the ultimate strength when the connecting length is 90mm;(4) The connecting length of 90mm of CFRP meet the reinforcement requirements.

  19. DNA Movies and Panspermia

    Directory of Open Access Journals (Sweden)

    Victor Norris

    2011-10-01

    Full Text Available There are several ways that our species might try to send a message to another species separated from us by space and/or time. Synthetic biology might be used to write an epitaph to our species, or simply “Kilroy was here”, in the genome of a bacterium via the patterns of either (1 the codons to exploit Life's non-equilibrium character or (2 the bases themselves to exploit Life's quasi-equilibrium character. We suggest here how DNA movies might be designed using such patterns. We also suggest that a search for mechanisms to create and preserve such patterns might lead to a better understanding of modern cells. Finally, we argue that the cutting-edge microbiology and synthetic biology needed for the Kilroy project would put origin-of-life studies in the vanguard of research.

  20. DNA: Polymer and molecular code

    Science.gov (United States)

    Shivashankar, G. V.

    1999-10-01

    The thesis work focusses upon two aspects of DNA, the polymer and the molecular code. Our approach was to bring single molecule micromanipulation methods to the study of DNA. It included a home built optical microscope combined with an atomic force microscope and an optical tweezer. This combined approach led to a novel method to graft a single DNA molecule onto a force cantilever using the optical tweezer and local heating. With this method, a force versus extension assay of double stranded DNA was realized. The resolution was about 10 picoN. To improve on this force measurement resolution, a simple light backscattering technique was developed and used to probe the DNA polymer flexibility and its fluctuations. It combined the optical tweezer to trap a DNA tethered bead and the laser backscattering to detect the beads Brownian fluctuations. With this technique the resolution was about 0.1 picoN with a millisecond access time, and the whole entropic part of the DNA force-extension was measured. With this experimental strategy, we measured the polymerization of the protein RecA on an isolated double stranded DNA. We observed the progressive decoration of RecA on the l DNA molecule, which results in the extension of l , due to unwinding of the double helix. The dynamics of polymerization, the resulting change in the DNA entropic elasticity and the role of ATP hydrolysis were the main parts of the study. A simple model for RecA assembly on DNA was proposed. This work presents a first step in the study of genetic recombination. Recently we have started a study of equilibrium binding which utilizes fluorescence polarization methods to probe the polymerization of RecA on single stranded DNA. In addition to the study of material properties of DNA and DNA-RecA, we have developed experiments for which the code of the DNA is central. We studied one aspect of DNA as a molecular code, using different techniques. In particular the programmatic use of template specificity makes

  1. Ecological connectivity networks in rapidly expanding cities.

    Science.gov (United States)

    Nor, Amal Najihah M; Corstanje, Ron; Harris, Jim A; Grafius, Darren R; Siriwardena, Gavin M

    2017-06-01

    Urban expansion increases fragmentation of the landscape. In effect, fragmentation decreases connectivity, causes green space loss and impacts upon the ecology and function of green space. Restoration of the functionality of green space often requires restoring the ecological connectivity of this green space within the city matrix. However, identifying ecological corridors that integrate different structural and functional connectivity of green space remains vague. Assessing connectivity for developing an ecological network by using efficient models is essential to improve these networks under rapid urban expansion. This paper presents a novel methodological approach to assess and model connectivity for the Eurasian tree sparrow ( Passer montanus ) and Yellow-vented bulbul ( Pycnonotus goiavier ) in three cities (Kuala Lumpur, Malaysia; Jakarta, Indonesia and Metro Manila, Philippines). The approach identifies potential priority corridors for ecological connectivity networks. The study combined circuit models, connectivity analysis and least-cost models to identify potential corridors by integrating structure and function of green space patches to provide reliable ecological connectivity network models in the cities. Relevant parameters such as landscape resistance and green space structure (vegetation density, patch size and patch distance) were derived from an expert and literature-based approach based on the preference of bird behaviour. The integrated models allowed the assessment of connectivity for both species using different measures of green space structure revealing the potential corridors and least-cost pathways for both bird species at the patch sites. The implementation of improvements to the identified corridors could increase the connectivity of green space. This study provides examples of how combining models can contribute to the improvement of ecological networks in rapidly expanding cities and demonstrates the usefulness of such models for

  2. Ecological connectivity networks in rapidly expanding cities

    Directory of Open Access Journals (Sweden)

    Amal Najihah M. Nor

    2017-06-01

    Full Text Available Urban expansion increases fragmentation of the landscape. In effect, fragmentation decreases connectivity, causes green space loss and impacts upon the ecology and function of green space. Restoration of the functionality of green space often requires restoring the ecological connectivity of this green space within the city matrix. However, identifying ecological corridors that integrate different structural and functional connectivity of green space remains vague. Assessing connectivity for developing an ecological network by using efficient models is essential to improve these networks under rapid urban expansion. This paper presents a novel methodological approach to assess and model connectivity for the Eurasian tree sparrow (Passer montanus and Yellow-vented bulbul (Pycnonotus goiavier in three cities (Kuala Lumpur, Malaysia; Jakarta, Indonesia and Metro Manila, Philippines. The approach identifies potential priority corridors for ecological connectivity networks. The study combined circuit models, connectivity analysis and least-cost models to identify potential corridors by integrating structure and function of green space patches to provide reliable ecological connectivity network models in the cities. Relevant parameters such as landscape resistance and green space structure (vegetation density, patch size and patch distance were derived from an expert and literature-based approach based on the preference of bird behaviour. The integrated models allowed the assessment of connectivity for both species using different measures of green space structure revealing the potential corridors and least-cost pathways for both bird species at the patch sites. The implementation of improvements to the identified corridors could increase the connectivity of green space. This study provides examples of how combining models can contribute to the improvement of ecological networks in rapidly expanding cities and demonstrates the usefulness of such

  3. DNA Extraction Techniques for Use in Education

    Science.gov (United States)

    Hearn, R. P.; Arblaster, K. E.

    2010-01-01

    DNA extraction provides a hands-on introduction to DNA and enables students to gain real life experience and practical knowledge of DNA. Students gain a sense of ownership and are more enthusiastic when they use their own DNA. A cost effective, simple protocol for DNA extraction and visualization was devised. Buccal mucosal epithelia provide a…

  4. Cisplatin- and UV-damaged DNA lure the basal transcription factor TFIID/TBP.

    NARCIS (Netherlands)

    P. Vichi; F. Coin (Frédéric); J-P. Renaud (Jean-Paul); W. Vermeulen (Wim); J.H.J. Hoeijmakers (Jan); D. Moras; J-M. Egly (Jean-Marc)

    1997-01-01

    textabstractA connection between transcription and DNA repair was demonstrated previously through the characterization of TFIIH. Using filter binding as well as in vitro transcription challenge competition assays, we now show that the promoter recognition factor TATA box-binding protein (TBP)/TFIID

  5. Forensic trace DNA: A review

    NARCIS (Netherlands)

    R.A.H. van Oorschot (Roland ); K. Ballantyne (Kaye); R.J. Mitchell (R. John)

    2010-01-01

    textabstractDNA analysis is frequently used to acquire information from biological material to aid enquiries associated with criminal offences, disaster victim identification and missing persons investigations. As the relevance and value of DNA profiling to forensic investigations has increased, so

  6. Aktionslæringens DNA

    DEFF Research Database (Denmark)

    Madsen, Benedicte

    Aktionslæringen DNA giver en række redskaber til læring i fællesskaber, uanset om der arbejdes med individuelle eller kollektive projekter i offentlig eller privat regi. Metoden danner modvægt til de mere individuelistiske traditioner inden for voksenpædagogikken. DNA-metaforen bruges bogen igennem...

  7. LEGO-like DNA Structures

    DEFF Research Database (Denmark)

    Gothelf, Kurt Vesterager

    2012-01-01

    -dimensional (3D) DNA structures by self-assembly of single-stranded DNA “bricks.” The method opens a new route to complex self-assembled (3D) nanostructures that may serve as addressable templates for placing guest molecules with high precision, with possible applications in biophysics, medicine...

  8. Replication of bacteriophage lambda DNA

    International Nuclear Information System (INIS)

    Tsurimoto, T.; Matsubara, K.

    1983-01-01

    In this paper results of studies on the mechanism of bacteriophage lambda replication using molecular biological and biochemical approaches are reported. The purification of the initiator proteins, O and P, and the role of the O and P proteins in the initiation of lambda DNA replication through interactions with specific DNA sequences are described. 47 references, 15 figures

  9. DNA adducts in senescent cells

    International Nuclear Information System (INIS)

    Gaubatz, J.W.

    1987-01-01

    Perturbations in DNA repair and other metabolic processes during development and aging might affect the steady-state level of genomic damage. The persistence or accumulation of DNA lesions in postmitotic cells could have a significant impact on proper cellular function, interfering with gene regulation for example. To test the notion that DNA damage increases as a function of age in non-dividing cells, DNA was purified from heart tissue of C57BL/6Nia mice at different ages and analyzed by post labeling techniques to detect DNA adducts. In the present experiments, four-dimensional, thin-layer chromatography was used to isolate aromatic adducts that were labeled with carrier-free (γ- 32 P) ATP under DNA-P excess conditions. The complexity and frequency of aromatic adducts varied between DNA samples. Several adducts were present in all preparations and were clearly more abundant in nucleotide maps of mature and old heart DNA. However, a direct correlation with age was not observed. In contrast, experiments in which aromatic adducts were first isolated by phase-transfer to 1-butanol, then labeled with excess (γ- 32 P)ATP indicated that there was an age-related increase in these adducts. The results are consistent with their earlier studies that showed alkyl adducts increased during aging of mouse myocardium and suggest that a common repair pathway might be involved

  10. Authenticity in ancient DNA studies

    DEFF Research Database (Denmark)

    Gilbert, M Thomas P; Willerslev, Eske

    2006-01-01

    Ancient DNA studies represent a powerful tool that can be used to obtain genetic insights into the past. However, despite the publication of large numbers of apparently successful ancient DNA studies, a number of problems exist with the field that are often ignored. Therefore, questions exist as ...

  11. Bubble coalescence in breathing DNA

    DEFF Research Database (Denmark)

    Novotný, Tomas; Pedersen, Jonas Nyvold; Ambjörnsson, Tobias

    2007-01-01

    We investigate the coalescence of two DNA bubbles initially located at weak segments and separated by a more stable barrier region in a designed construct of double-stranded DNA. The characteristic time for bubble coalescence and the corresponding distribution are derived, as well as the distribu...... vicious walkers in opposite potentials....

  12. DNA nanotechnology: a future perspective

    Science.gov (United States)

    2013-01-01

    In addition to its genetic function, DNA is one of the most distinct and smart self-assembling nanomaterials. DNA nanotechnology exploits the predictable self-assembly of DNA oligonucleotides to design and assemble innovative and highly discrete nanostructures. Highly ordered DNA motifs are capable of providing an ultra-fine framework for the next generation of nanofabrications. The majority of these applications are based upon the complementarity of DNA base pairing: adenine with thymine, and guanine with cytosine. DNA provides an intelligent route for the creation of nanoarchitectures with programmable and predictable patterns. DNA strands twist along one helix for a number of bases before switching to the other helix by passing through a crossover junction. The association of two crossovers keeps the helices parallel and holds them tightly together, allowing the assembly of bigger structures. Because of the DNA molecule's unique and novel characteristics, it can easily be applied in a vast variety of multidisciplinary research areas like biomedicine, computer science, nano/optoelectronics, and bionanotechnology. PMID:23497147

  13. Multiscale modelling of DNA mechanics

    Czech Academy of Sciences Publication Activity Database

    Dršata, Tomáš; Lankaš, Filip

    2015-01-01

    Roč. 27, č. 32 (2015), 323102/1-323102/12 ISSN 0953-8984 R&D Projects: GA ČR(CZ) GA14-21893S Institutional support: RVO:61388963 Keywords : DNA elasticity * DNA coarse-grained models * molecular dynamics simulations Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.209, year: 2015

  14. DNA damage by Auger emitters

    International Nuclear Information System (INIS)

    Martin, R.F.; d'Cunha, Glenn; Gibbs, Richard; Murray, Vincent; Pardee, Marshall; Allen, B.J.

    1988-01-01

    125 I atoms can be introduced at specific locations along a defined DNA target molecule, either by site-directed incorporation of an 125 I-labelled deoxynucleotide or by binding of an 125 I-labelled sequence-selective DNA ligand. After allowing accumulation of 125 I decay-induced damage to the DNA, application of DNA sequencing techniques enables positions of strand breaks to be located relative to the site of decay, at a resolution corresponding to the distance between adjacent nucleotides [0.34 nm]. Thus, DNA provides a molecular framework to analyse the extent of damage following [averaged] individual decay events. Results can be compared with energy deposition data generated by computer-simulation methods developed by Charlton et al. The DNA sequencing technique also provides information about the chemical nature of the termini of the DNA chains produced following Auger decay-induced damage. In addition to reviewing the application of this approach to the analysis of 125 I decay induced DNA damage, some more recent results obtained by using 67 Ga are also presented. (author)

  15. DNA-extractie zonder remming

    NARCIS (Netherlands)

    Bonants, P.J.M.; Lee, van der T.A.J.

    2011-01-01

    Moleculaire technieken voor de detectie en identificatie van plantenpathogenen maken gebruik van het DNA of RNA van de ziekteverwekker. Voor een aantal substraten, zoals grond, is de extractie van amplificeerbaar nucleïnezuur een probleem. Tijdens de DNA-extractie uit sommige moeilijke substraten

  16. The journey of DNA repair.

    Science.gov (United States)

    Saini, Natalie

    2015-12-01

    21 years ago, the DNA Repair Enzyme was declared "Molecule of the Year". Today, we are celebrating another "year of repair", with the 2015 Nobel Prize in Chemistry being awarded to Aziz Sancar, Tomas Lindahl and Paul Modrich for their collective work on the different DNA repair pathways.

  17. The DnaA Tale

    DEFF Research Database (Denmark)

    Hansen, Flemming G.; Atlung, Tove

    2018-01-01

    , and translation efficiency, as well as, the DnaA protein, its concentration, its binding to DnaA-boxes, and its binding of ATP or ADP. Furthermore, we will discuss the different models for regulation of initiation which have been proposed over the years, with particular emphasis on the Initiator Titration Model....

  18. Effects of radiation on DNA

    International Nuclear Information System (INIS)

    Braddock, M.

    1985-07-01

    The hydroxyl radical (OH radical) is the most damaging radical produced by the effect of ionizing radiation in water. The rate of reaction of the OH radical with purified, native and isodisperse DNA has been determined as compared with calf thymus DNA. This has been achieved by direct observation of the rate of formation of the DNA-OH radical adduct, and by competition with SCN - . Results obtained from direct observation are consistent with calculations which have been performed using the encounter frequency model of Braams and Ebert. However, results obtained for OH radical with DNA derived from competition plots suggest a rate constant somewhat lower than that obtained from direct observation. The relative merits of both techniques are discussed. In order to study the effect of energy deposited directly in the DNA, dry films of purified plasmid DNA have been irradiated in a system where the indirect effects of radical interaction have been minimized. The present results indicate that with different molecular lengths of plasmid DNA, non-random breakage may occur, and that additional damage may be brought about at sites of previously existing damage. Differences in the sensitivity of plasmid DNA molecules of varying lengths to radiation induced double strand breaks have been demonstrated. (author)

  19. The journey of DNA repair

    OpenAIRE

    Saini, Natalie

    2015-01-01

    21 years ago, the DNA Repair Enzyme was declared “Molecule of the Year”. Today, we are celebrating another “year of repair”, with the 2015 Nobel Prize in Chemistry being awarded to Aziz Sancar, Tomas Lindahl and Paul Modrich for their collective work on the different DNA repair pathways.

  20. Drug Addiction and DNA Modifications.

    Science.gov (United States)

    Brown, Amber N; Feng, Jian

    2017-01-01

    Drug addiction is a complex disorder which can be influenced by both genetic and environmental factors. Research has shown that epigenetic modifications can translate environmental signals into changes in gene expression, suggesting that epigenetic changes may underlie the causes and possibly treatment of substance use disorders. This chapter will focus on epigenetic modifications to DNA, which include DNA methylation and several recently defined additional DNA epigenetic changes. We will discuss the functions of DNA modifications and methods for detecting them, followed by a description of the research investigating the function and consequences of drug-induced changes in DNA methylation patterns. Understanding these epigenetic changes may provide us translational tools for the diagnosis and treatment of addiction in the future.

  1. DNA methylation in metabolic disorders

    DEFF Research Database (Denmark)

    Barres, Romain; Zierath, Juleen R

    2011-01-01

    DNA methylation is a major epigenetic modification that controls gene expression in physiologic and pathologic states. Metabolic diseases such as diabetes and obesity are associated with profound alterations in gene expression that are caused by genetic and environmental factors. Recent reports...... have provided evidence that environmental factors at all ages could modify DNA methylation in somatic tissues, which suggests that DNA methylation is a more dynamic process than previously appreciated. Because of the importance of lifestyle factors in metabolic disorders, DNA methylation provides...... a mechanism by which environmental factors, including diet and exercise, can modify genetic predisposition to disease. This article considers the current evidence that defines a role for DNA methylation in metabolic disorders....

  2. Ancient DNA from marine mammals

    DEFF Research Database (Denmark)

    Foote, Andrew David; Hofreiter, Michael; Morin, Philip A.

    2012-01-01

    such as bone, tooth, baleen, skin, fur, whiskers and scrimshaw using ancient DNA (aDNA) approaches provide an oppor- tunity for investigating such changes over evolutionary and ecological timescales. Here, we review the application of aDNA techniques to the study of marine mammals. Most of the studies have...... focused on detecting changes in genetic diversity following periods of exploitation and environmental change. To date, these studies have shown that even small sample sizes can provide useful information on historical genetic diversity. Ancient DNA has also been used in investigations of changes...... in distribution and range of marine mammal species; we review these studies and discuss the limitations of such ‘presence only’ studies. Combining aDNA data with stable isotopes can provide further insights into changes in ecology and we review past studies and suggest future potential applications. We also...

  3. DNA typing by capillary electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, N.

    1997-10-08

    Capillary electrophoresis is becoming more and more important in nucleic acid analysis including DNA sequencing, typing and disease gene measurements. This work summarized the background of DNA typing. The recent development of capillary electrophoresis was also discussed. The second part of the thesis showed the principle of DNA typing based on using the allelic ladder as the absolute standard ladder in capillary electrophoresis system. Future work will be focused on demonstrating DNA typing on multiplex loci and examples of disease diagnosis in the on-line format of PCR-CE. Also capillary array electrophoresis system should allow high throughput, fast speed DNA typing. Only the introduction and conclusions for this report are available here. A reprint was removed for separate processing.

  4. Multiscale modelling of DNA mechanics

    International Nuclear Information System (INIS)

    Dršata, Tomáš; Lankaš, Filip

    2015-01-01

    Mechanical properties of DNA are important not only in a wide range of biological processes but also in the emerging field of DNA nanotechnology. We review some of the recent developments in modeling these properties, emphasizing the multiscale nature of the problem. Modern atomic resolution, explicit solvent molecular dynamics simulations have contributed to our understanding of DNA fine structure and conformational polymorphism. These simulations may serve as data sources to parameterize rigid base models which themselves have undergone major development. A consistent buildup of larger entities involving multiple rigid bases enables us to describe DNA at more global scales. Free energy methods to impose large strains on DNA, as well as bead models and other approaches, are also briefly discussed. (topical review)

  5. Molecular mechanisms of DNA photodamage

    Energy Technology Data Exchange (ETDEWEB)

    Starrs, S.M

    2000-05-01

    Photodamage in DNA, caused by ultraviolet (UV) light, can occur by direct excitation of the nucleobases or indirectly via the action of photosensitisers. Such, DNA photodamage can be potentially mutagenic or lethal. Among the methods available for detecting UV-induced DNA damage, gel sequencing protocols, utilising synthetic oligodeoxyribonucleotides as targets for UV radiation, allow photolesions to be mapped at nucleotide resolution. This approach has been applied to investigate both DNA damage mechanisms. Following a general overview of DNA photoreactivity, and a description of the main experimental procedures, Chapter 3 identifies the origin of an anomalous mobility shift observed in purine chemical sequence ladders that can confuse the interpretation of DNA cleavage results; measures to abolish this shift are also described. Chapters 4 and 5 examine the alkali-labile DNA damage photosensitised by representative nonsteroidal antiinflammatory drugs (NSAIDs) and the fluoroquinolone antibiotics. Suprofen was the most photoactive NSAID studied, producing different patterns of guanine-specific damage in single-stranded and duplex DNA. Uniform modification of guanine bases, typifying attack by singlet oxygen, was observed in single-stranded oligodeoxyribonucleotides. In duplex molecules, modification was limited to the 5'-G of GG doublets, which is indicative of an electron transfer. The effect of quenchers and photoproduct analysis substantiated these findings. The quinolone, nalidixic acid, behaves similarly. The random base cleavage photosensitised by the fluoroquinolones, has been attributed to free radicals produced during their photodecomposition. Chapter 6 addresses the photoreactivity of purines within unusual DNA structures formed by the repeat sequences (GGA){sub n} and (GA){sub n}, and a minihairpin. There was no definitive evidence for enhanced purine reactivity caused by direct excitation. Finally, Chapter 7 investigates the mutagenic potential of a

  6. Molecular mechanisms of DNA photodamage

    International Nuclear Information System (INIS)

    Starrs, S.M.

    2000-05-01

    Photodamage in DNA, caused by ultraviolet (UV) light, can occur by direct excitation of the nucleobases or indirectly via the action of photosensitisers. Such, DNA photodamage can be potentially mutagenic or lethal. Among the methods available for detecting UV-induced DNA damage, gel sequencing protocols, utilising synthetic oligodeoxyribonucleotides as targets for UV radiation, allow photolesions to be mapped at nucleotide resolution. This approach has been applied to investigate both DNA damage mechanisms. Following a general overview of DNA photoreactivity, and a description of the main experimental procedures, Chapter 3 identifies the origin of an anomalous mobility shift observed in purine chemical sequence ladders that can confuse the interpretation of DNA cleavage results; measures to abolish this shift are also described. Chapters 4 and 5 examine the alkali-labile DNA damage photosensitised by representative nonsteroidal antiinflammatory drugs (NSAIDs) and the fluoroquinolone antibiotics. Suprofen was the most photoactive NSAID studied, producing different patterns of guanine-specific damage in single-stranded and duplex DNA. Uniform modification of guanine bases, typifying attack by singlet oxygen, was observed in single-stranded oligodeoxyribonucleotides. In duplex molecules, modification was limited to the 5'-G of GG doublets, which is indicative of an electron transfer. The effect of quenchers and photoproduct analysis substantiated these findings. The quinolone, nalidixic acid, behaves similarly. The random base cleavage photosensitised by the fluoroquinolones, has been attributed to free radicals produced during their photodecomposition. Chapter 6 addresses the photoreactivity of purines within unusual DNA structures formed by the repeat sequences (GGA) n and (GA) n , and a minihairpin. There was no definitive evidence for enhanced purine reactivity caused by direct excitation. Finally, Chapter 7 investigates the mutagenic potential of a dimeric

  7. RAD51 interconnects between DNA replication, DNA repair and immunity.

    Science.gov (United States)

    Bhattacharya, Souparno; Srinivasan, Kalayarasan; Abdisalaam, Salim; Su, Fengtao; Raj, Prithvi; Dozmorov, Igor; Mishra, Ritu; Wakeland, Edward K; Ghose, Subroto; Mukherjee, Shibani; Asaithamby, Aroumougame

    2017-05-05

    RAD51, a multifunctional protein, plays a central role in DNA replication and homologous recombination repair, and is known to be involved in cancer development. We identified a novel role for RAD51 in innate immune response signaling. Defects in RAD51 lead to the accumulation of self-DNA in the cytoplasm, triggering a STING-mediated innate immune response after replication stress and DNA damage. In the absence of RAD51, the unprotected newly replicated genome is degraded by the exonuclease activity of MRE11, and the fragmented nascent DNA accumulates in the cytosol, initiating an innate immune response. Our data suggest that in addition to playing roles in homologous recombination-mediated DNA double-strand break repair and replication fork processing, RAD51 is also implicated in the suppression of innate immunity. Thus, our study reveals a previously uncharacterized role of RAD51 in initiating immune signaling, placing it at the hub of new interconnections between DNA replication, DNA repair, and immunity. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  8. Abnormal interhemispheric connectivity in male psychopathic offenders.

    Science.gov (United States)

    Hoppenbrouwers, Sylco S; De Jesus, Danilo R; Sun, Yinming; Stirpe, Tania; Hofman, Dennis; McMaster, Jeff; Hughes, Ginny; Daskalakis, Zafiris J; Schutter, Dennis J L G

    2014-01-01

    Psychopathic offenders inevitably violate interpersonal norms and frequently resort to aggressive and criminal behaviour. The affective and cognitive deficits underlying these behaviours have been linked to abnormalities in functional interhemispheric connectivity. However, direct neurophysiological evidence for dysfunctional connectivity in psychopathic offenders is lacking. We used transcranial magnetic stimulation combined with electroencephalography to examine interhemispheric connectivity in the dorsolateral and motor cortex in a sample of psychopathic offenders and healthy controls. We also measured intracortical inhibition and facilitation over the left and right motor cortex to investigate the effects of local cortical processes on interhemispheric connectivity. We enrolled 17 psychopathic offenders and 14 controls in our study. Global abnormalities in right to left functional connectivity were observed in psychopathic offenders compared with controls. Furthermore, in contrast to controls, psychopathic offenders showed increased intracortical inhibition in the right, but not the left, hemisphere. The relatively small sample size limited the sensitivity to show that the abnormalities in interhemispheric connectivity were specifically related to the dorsolateral prefrontal cortex in psychopathic offenders. To our knowledge, this study provides the first neurophysiological evidence for abnormal interhemispheric connectivity in psychopathic offenders and may further our understanding of the disruptive antisocial behaviour of these offenders.

  9. Structural and effective connectivity in focal epilepsy

    Directory of Open Access Journals (Sweden)

    Christopher S. Parker

    2018-01-01

    Full Text Available Patients with medically-refractory focal epilepsy may be candidates for neurosurgery and some may require placement of intracranial EEG electrodes to localise seizure onset. Assessing cerebral responses to single pulse electrical stimulation (SPES may give diagnostically useful data. SPES produces cortico-cortical evoked potentials (CCEPs, which infer effective brain connectivity. Diffusion-weighted images and tractography may be used to estimate structural brain connectivity. This combination provides the opportunity to observe seizure onset and its propagation throughout the brain, spreading contiguously along the cortex explored with electrodes, or non-contiguously. We analysed CCEPs and diffusion tractography in seven focal epilepsy patients and reconstructed the effective and structural brain networks. We aimed to assess the inter-modal similarity of the networks at a large scale across the cortex, the effective and structural connectivity of the ictal-onset zone, and investigate potential mechanisms of non-contiguous seizure spread. We found a significant overlap between structural and effective networks. Effective network CCEP amplitude, baseline variation, and outward connectivity was higher at ictal-onset zones, while structural connection strength within the ictal-onset zone tended to be higher. These findings support the concept of hyperexcitable cortex being associated with seizure generation. The high prevalence of structural and effective connections from the ictal-onset zone to sites of non-contiguous spread suggests that macroscopic structural and effective connections are plausible routes for non-contiguous seizure spread.

  10. DNA Topology and the Initiation of Virus DNA Packaging.

    Directory of Open Access Journals (Sweden)

    Choon Seok Oh

    Full Text Available During progeny assembly, viruses selectively package virion genomes from a nucleic acid pool that includes host nucleic acids. For large dsDNA viruses, including tailed bacteriophages and herpesviruses, immature viral DNA is recognized and translocated into a preformed icosahedral shell, the prohead. Recognition involves specific interactions between the viral packaging enzyme, terminase, and viral DNA recognition sites. Generally, viral DNA is recognized by terminase's small subunit (TerS. The large terminase subunit (TerL contains translocation ATPase and endonuclease domains. In phage lambda, TerS binds a sequence repeated three times in cosB, the recognition site. TerS binding to cosB positions TerL to cut the concatemeric DNA at the adjacent nicking site, cosN. TerL introduces staggered nicks in cosN, generating twelve bp cohesive ends. Terminase separates the cohesive ends and remains bound to the cosB-containing end, in a nucleoprotein structure called Complex I. Complex I docks on the prohead's portal vertex and translocation ensues. DNA topology plays a role in the TerSλ-cosBλ interaction. Here we show that a site, I2, located between cosN and cosB, is critically important for an early DNA packaging step. I2 contains a complex static bend. I2 mutations block DNA packaging. I2 mutant DNA is cut by terminase at cosN in vitro, but in vivo, no cos cleavage is detected, nor is there evidence for Complex I. Models for what packaging step might be blocked by I2 mutations are presented.

  11. Altered thalamic functional connectivity in multiple sclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yaou; Liang, Peipeng; Duan, Yunyun; Huang, Jing; Ren, Zhuoqiong; Jia, Xiuqin [Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China); Dong, Huiqing; Ye, Jing [Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China); Shi, Fu-Dong [Department of Neurology and Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052 (China); Butzkueven, Helmut [Department of Medicine, University of Melbourne, Parkville 3010 (Australia); Li, Kuncheng, E-mail: kunchengli55@gmail.com [Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China)

    2015-04-15

    Highlights: •We demonstrated decreased connectivity between thalamus and cortical regions in MS. •Increased intra- and inter-thalamic connectivity was also observed in MS. •The increased functional connectivity is attenuated by increasing disease duration. -- Abstract: Objective: To compare thalamic functional connectivity (FC) in patients with multiple sclerosis (MS) and healthy controls (HC), and correlate these connectivity measures with other MRI and clinical variables. Methods: We employed resting-state functional MRI (fMRI) to examine changes in thalamic connectivity by comparing thirty-five patients with MS and 35 age- and sex-matched HC. Thalamic FC was investigated by correlating low frequency fMRI signal fluctuations in thalamic voxels with voxels in all other brain regions. Additionally thalamic volume fraction (TF), T2 lesion volume (T2LV), EDSS and disease duration were recorded and correlated with the FC changes. Results: MS patients were found to have a significantly lower TF than HC in bilateral thalami. Compared to HC, the MS group showed significantly decreased FC between thalamus and several brain regions including right middle frontal and parahippocampal gyri, and the left inferior parietal lobule. Increased intra- and inter-thalamic FC was observed in the MS group compared to HC. These FC alterations were not correlated with T2LV, thalamic volume or lesions. In the MS group, however, there was a negative correlation between disease duration and inter-thalamic connectivity (r = −0.59, p < 0.001). Conclusion: We demonstrated decreased FC between thalamus and several cortical regions, while increased intra- and inter-thalamic connectivity in MS patients. These complex functional changes reflect impairments and/or adaptations that are independent of T2LV, thalamic volume or presence of thalamic lesions. The negative correlation between disease duration and inter-thalamic connectivity could indicate an adaptive role of thalamus that is

  12. Depression: a psychiatric nursing theory of connectivity.

    Science.gov (United States)

    Feely, M; Long, A

    2009-10-01

    This paper presents a theory of connectivity, which was formulated from the findings of a Classical Grounded Theory study that was designed to capture a sample of people's perceptions of living with depression or caring for individuals with depression. Data were collected from: (1) a focus group consisting of people with depression (n = 7), of which five were patients in the community and two were nurses; (2) one-to-one interviews with patients in the community (n = 5) and nurses (n = 5), three of whom had experienced depression from both sides of the caring process; and (3) two 'happy accident' focus groups (n = 25; n = 18) comprising of healthcare workers with a shared understanding of depression. Purposeful sampling was used initially. Thereafter, in keeping with one of the key tenets of grounded theory, theoretical sampling was used until theoretical saturation occurred. Data were analysed using the constant comparative approach together with the NVivo qualitative analysis software package. The core category that emerged was 'connectivity' relating to the connections and disconnections, which people make in their lives. Six key categories emerged all of which were integrated with the core category. Hence, connectivity provided a significant platform for understanding and responding to the life experience of depression. They were: (1) life encounters on the journey to naming; (2) depression: What's in a name? The silent thief; (3) tentative steps to health care; (4) connective encounters and challenges; (5) connecting with self; and (6) self-connection maintenance. Subsequently, a theory, 'Depression: a psychiatric nursing theory of connectivity', surfaced from the overall findings. We argue that this theory of connectivity provides a framework that people working in the field of holistic treatment and care could use to better understand and respond to the life experience of people living with depression.

  13. The role of DNA dependent protein kinase in synapsis of DNA ends

    NARCIS (Netherlands)

    E.P.W.C. Weterings (Eric); N.S. Verkaik (Nicole); H.T. Brüggenwirth (Hennie); D.C. van Gent (Dik); J.H.J. Hoeijmakers (Jan)

    2003-01-01

    textabstractDNA dependent protein kinase (DNA-PK) plays a central role in the non-homologous end-joining pathway of DNA double strand break repair. Its catalytic subunit (DNA-PK(CS)) functions as a serine/threonine protein kinase. We show that DNA-PK forms a stable complex at DNA termini that blocks

  14. Human mitochondrial DNA (mtDNA) types in Malaysia

    International Nuclear Information System (INIS)

    Lian, L.H.; Koh, C.L.; Lim, M.E.

    2000-01-01

    Each human cell contains hundreds of mitochondria and thousands of double-stranded circular mtDNA. The delineation of human mtDNA variation and genetics over the past decade has provided unique and often startling insights into human evolution, degenerative diseases, and aging. Each mtDNA of 16,569 base pairs, encodes 13 polypeptides essential to the enzymes of the mitochondrial energy generating pathway, plus the necessary tRNAs and rRNAs. The highly polymorphic noncoding D-(displacement) loop region, also called the control region, is approximately 1.2 kb long. It contains two well-characterized hypervariable (HV-) regions, HV1 and HV2. MtDNA identification is usually based on these sequence differences. According to the TWTGDAM (Technical Working Group for DNA Analysis Methods), the minimum requirement for a mtDNA database for HV1 is from positions 16024 to 16365 and for HV2, from positions 00073 to 00340. The targeted Malaysian population subgroups for this study were mainly the Malays, Chinese, Indians, and indigenous Ibans, Bidayuhs, Kadazan-Dusuns, and Bajaus. Research methodologies undertaken included DNA extraction of samples from unrelated individuals, amplification of the specific regions via the polymerase chain reaction (PCR), and preparation of template DNA for sequencing by using an automated DNA sequencer. Sufficient nucleotide sequence data were generated from the mtDNA analysis. When the sequences were analyzed, sequence variations were found to be caused by nucleotide substitutions, insertions, and deletions. Of the three causes of the sequence variations, nucleotide substitutions (86.1%) accounted for the vast majority of polymorphism. It is noted that transitions (83.5%) were predominant when compared to the significantly lower frequencies of transversions (2.6%). Insertions (0.9%) and deletions (13.0%) were rather rare and found only in HV2. The data generated will also form the basis of a Malaysian DNA sequence database of mtDNA D

  15. DNA Replication Profiling Using Deep Sequencing.

    Science.gov (United States)

    Saayman, Xanita; Ramos-Pérez, Cristina; Brown, Grant W

    2018-01-01

    Profiling of DNA replication during progression through S phase allows a quantitative snap-shot of replication origin usage and DNA replication fork progression. We present a method for using deep sequencing data to profile DNA replication in S. cerevisiae.

  16. Programme DNA Lattices: Design, Synthesis and Applications

    National Research Council Canada - National Science Library

    Reif, John

    2006-01-01

    .... Self-assembled DNA nanostructures provide a methodology for bottom-up nanoscale construction of highly patterned systems, utilizing macromolecular DNA tiles" composed of branched DNA, self-assembled...

  17. Single gene retrieval from thermally degraded DNA

    Indian Academy of Sciences (India)

    Unknown

    DNA thermal degradation was shown to occur via a singlet oxygen pathway. A comparative study of the ther- mal degradation of cellular DNA and isolated DNA showed that cellular ..... definite level of energy (e.g. depurination active energy,.

  18. Detecting Functional Connectivity During Audiovisual Integration with MEG: A Comparison of Connectivity Metrics.

    Science.gov (United States)

    Ard, Tyler; Carver, Frederick W; Holroyd, Tom; Horwitz, Barry; Coppola, Richard

    2015-08-01

    In typical magnetoencephalography and/or electroencephalography functional connectivity analysis, researchers select one of several methods that measure a relationship between regions to determine connectivity, such as coherence, power correlations, and others. However, it is largely unknown if some are more suited than others for various types of investigations. In this study, the authors investigate seven connectivity metrics to evaluate which, if any, are sensitive to audiovisual integration by contrasting connectivity when tracking an audiovisual object versus connectivity when tracking a visual object uncorrelated with the auditory stimulus. The authors are able to assess the metrics' performances at detecting audiovisual integration by investigating connectivity between auditory and visual areas. Critically, the authors perform their investigation on a whole-cortex all-to-all mapping, avoiding confounds introduced in seed selection. The authors find that amplitude-based connectivity measures in the beta band detect strong connections between visual and auditory areas during audiovisual integration, specifically between V4/V5 and auditory cortices in the right hemisphere. Conversely, phase-based connectivity measures in the beta band as well as phase and power measures in alpha, gamma, and theta do not show connectivity between audiovisual areas. The authors postulate that while beta power correlations detect audiovisual integration in the current experimental context, it may not always be the best measure to detect connectivity. Instead, it is likely that the brain utilizes a variety of mechanisms in neuronal communication that may produce differential types of temporal relationships.

  19. Are people more connective than political actions?

    DEFF Research Database (Denmark)

    Shehata, Mostafa

    2017-01-01

    The recent wave of Internet-based social movements in the Arab Spring countries and elsewhere has considerably changed the organizational structure of contentious action. One of the current and most significant theories that has handled this change is the logic of connective action, which...... distinguishes between two major types of contentious action: collective and connective. In the context of this theory, this article puts forward a new conception of political action participants and attempts to classify them along the categories of collective or connective. This conception, which consists...

  20. Molecular biological mechanisms I. DNA repair

    International Nuclear Information System (INIS)

    Friedl, A.A.

    2000-01-01

    Cells of all living systems possess a variety of mechanisms that allow to repair spontaneous and exogeneously induced DNA damage. DNA repair deficiencies may invoke enhanced sensitivity towards DNA-damaging agents such as ionizing radiation. They may also enhance the risk of cancer development, both spontaneously or after induction. This article reviews several DNA repair mechanisms, especially those dealing with DNA double-strand breaks, and describes hereditary diseases associated with DNA repair defects. (orig.) [de