WorldWideScience

Sample records for notch fatigue strength

  1. The effect of notches and pits on corrosion fatigue strength

    Science.gov (United States)

    Tatner, Ian

    An investigation has been undertaken to examine the fatigue behaviour of two martensitic steels in air and aggressive environments. The steels studied are, 18% Ni marageing steel and FV520B, the later being a stainless steel turbine blade material and the former being a marageing steel that suffers general corrosion in mild environments. Both steels were heat treated to give similar tensile strength.The design and manufacture of an autoclave allowed push-pull fatigue tests to be conducted in aggressive environments at elevated temperatures.Corrosion potential was monitored using a three electrode cell and was controlled during testing. Base-line fatigue tests were conducted with a range of constant corrosion potentials, using both notched and plain FV520B specimens. In addition fatigue tests with pulsed corrosion potential were performed to asses the effect of transient corrosion conditions on the corrosion fatigue strength. The pulsed tests were designed to simulate service transients in the oxygen content and general chemical hostility in the condensing steam environment during start-up and shut down of the steam turbine.Post test examination of fractured samples was performed using Scanning Electron Microscopy (SEM) and optical microscope techniques. The fractography results were used to quantify microstructural and fracture features of the steels.A model based on the size and geometry of the initial corrosion pitting has been proposed to asses the fatigue life of FV520B in an aggressive environment.The effect of pitting on the corrosion fatigue strength of FV520B has been modelled using linear elastic fracture mechanics (LEFM) type approach. The model has shown a good correlation between predicted fatigue lives with experimental results.The results suggest that the fatigue life is governed by the mechanical stress concentrating effect of the pits rather than the electrochemical damage caused by the environment.Finite Element Analysis (FEA) of the notch allowed

  2. Fatigue strength evaluation of friction stir welded aluminium joints using the nominal and notch stress concepts

    International Nuclear Information System (INIS)

    Barsoum, Z.; Khurshid, M.; Barsoum, I.

    2012-01-01

    Highlights: ► Fatigue testing and evaluation of friction stir welded butt and overlap joints. ► Evaluation based on nominal and effective notch stress concept. ► Comparison with different design recommendations and codes. ► Higher fatigue strength and SN-slopes is observed. ► New fatigue design recommendations proposed for FSW joints. -- Abstract: In this study the fatigue strength is investigated for Friction Stir Welded (FSW) overlap and butt welded joints in different thicknesses based on nominal and effective notch stress concepts. The fatigue test results are compared with fatigue strength recommendations according to EN 1999-1-3 and International Institute of Welding (IIW). The results are also compared with available published data and Finite Element Analysis (FEA) is carried out to investigate the effect of plate thickness and nugget size on the fatigue strength of overlap joints. 3–3 mm butt welded joints shows the highest fatigue strength in comparison with 3–5 mm butt welded and overlap joints. Slopes of the SN-curves for two different joint types differ from the slope recommended by IIW. A specific failure trend is observed in overlap FSW joints. However, the slopes of the SN-curves are in close agreement with slopes found in EN 1999-1-3. The slopes of various published results and test results presented in this study are in good agreement with each other. The suggested fatigue design curves for the nominal and effective notch stress concept have a higher slope than given for fusion welds by IIW.

  3. Potential fatigue strength improvement of AA 5083-H111 notched parts by wire brush hammering: Experimental analysis and numerical simulation

    International Nuclear Information System (INIS)

    Sidhom, Naziha; Moussa, Naoufel Ben; Janeb, Sameh; Braham, Chedly; Sidhom, Habib

    2014-01-01

    Highlights: • Wire brush hammering increases by 20% the AA 5083-H111 notched parts fatigue limit. • Improvement of fatigue strength is related to the fatigue cracks nucleation. • Fatigue strength prediction accounts for wire brush hammering effects. - Abstract: The effects of milling as machining process and a post-machining treatment by wire-brush hammering, on the near surface layer characteristics of AA 5083-H111 were investigated. Surface texture, work-hardening and residual stress profiles were determined by roughness measurement, scanning electron microscope (SEM) examinations, microhardness and X-ray diffraction (XRD) measurements. The effects of surface preparation on the fatigue strength were assessed by bending fatigue tests performed on notched samples for two loading stress ratios R 0.1 and R 0.5 . It is found that the bending fatigue limit at R 0.1 and 10 7 cycles is 20% increased, with respect to the machined surface, by wire-brush hammering. This improvement was discussed on the basis of the role of surface topography, stabilized residual stress and work-hardening on the fatigue-crack network nucleation and growth. The effects biaxial residual stress field and surface work-hardening were taken into account in the finite element model. A multi-axial fatigue criterion was proposed to predict the fatigue strength of aluminum alloy notched parts for both machined and treated states

  4. Experience with the Notch Stress Approach for Fatigue Assessment of Welded Joints

    DEFF Research Database (Denmark)

    Pedersen, Mikkel Melters; Mouritsen, Ole Ø.; Hansen, Michael Rygaard

    2010-01-01

    In this paper, fatigue assessment using the notch stress approach is discussed based on re-analysis of many fatigue test results and experience from practical application. Three topics are treated; evaluation of the fatigue strength for as-welded details (FAT225) in the notch stress system......, problems regarding assessment of mild-SCF details and a novel proposal for extension of the notch stress approach for use with post-weld treated details....

  5. Fatigue damage mechanism and strength of woven laminates

    International Nuclear Information System (INIS)

    Xiao, J.; Bathias, C.

    1993-01-01

    The apparent secant stiffness changes with the cyclic number for both unnotched and notched woven laminated specimens (two orthotropic and one quasi-isotropic) during tensile fatigue test at a fixed ratio of maximum fatigue load to UTS were observed. The observable damage initiation and evolution as a function of the cyclic number were directly measured at the notched specimen surface with a video-camera system. The fatigue strengths of the unnotched and notched specimens were determined. The results show that the normalized apparent secant stiffness change curves as a function of cyclic numbers can be divided into three stages. For the first and the second stages in notched specimens and for total life of unnotched specimens, the damage has not been evidently observed and certainly verified with the traditional experimental methods such as radiography and microscopy although many acoustic emission signals can be obtained. The last stage for the notched specimens (N/Nf>0.4, the secant stiffness decreases fast) corresponds to the initiation and evolution of the observable damages. The fatigue strength of these woven composite laminates is dominated by the third stage during which the observable damage develops along the specimen ligament until fracture. During the third stage, a critical dimension at the specimen ligament and a life threshold can be found beyond which a final catastrophic fracture will immediately occur. The quasi-isotropic laminate is of a fatigue strength lower than the two orthotropic laminates of which the fatigue strengths are approaching to each other. The fatigue life is also influenced by the stacking sequences. (orig.)

  6. Effect of notch dimension on the fatigue life of V-notched structure

    International Nuclear Information System (INIS)

    Cheng Changzheng; Naman, Recho; Niu Zhongrong; Zhou Huanlin

    2011-01-01

    Highlights: → A novel method is proposed to calculate the SIFs of crack at notch tip. → Effect of notch opening angle on the crack extension and propagation is studied. → Influence of notch depth on the crack extension and propagation is analyzed. → The fatigue life of a welded joint is analyzed by the present method. - Abstract: The stress singularity degree associated to a V-notch has a great influence on the fatigue life of V-notched structure. The growth rate of the crack initiated at the tip of a V-notch depends on the stress singularity of the V-notch. The fatigue life accompanying with this small crack will represent a large amount of the total fatigue life. In this work, boundary element method (BEM) is used to study the propagation of the crack emanating from a V-notch tip under fatigue loading. A comparison of the fatigue life between the crack initiated from V-notch tip and a lateral crack is done by a crack propagation law until these two cracks have the same stress intensity factors (SIFs). The effect of initial crack length, notch opening angle and notch depth on the crack extension and propagation is analyzed. As an example of engineering application, the fatigue life of a welded joint is investigated by the present method. The influence of weld toe angle and initial crack length on the fatigue life of the welded structure is studied. Some suggestions are given as an attempt to improve the fatigue life of welded structures at the end.

  7. Fatigue assessment of laserbeam welded PM steel components by the notch stress approach

    Energy Technology Data Exchange (ETDEWEB)

    Waterkotte, R. [Schaeffler Technologies GmbH and Co. KG, Herzogenaurach (Germany); Sonsino, C.M. [Fraunhofer Institute for Structural Durability and System Reliability LBF, Darmstadt (Germany); Baumgartner, J.

    2011-10-15

    The local fatigue strength of a laserbeam weld of a complex engine component, which joins a PM with a formed sheet component, was assessed by the notch stress concept with the fictitious reference radius of r{sub ref}= 0.05 mm. First, simplified specimens, following the main geometric dimensions of the parts, were manufactured. On these specimens the fatigue strength was identified by tests and the notch stresses calculated by finite element analysis. Based on these results a design SN-curve was derived to assess the fatigue strength of the engine component. The numerical assessment of the welded joint was verified by proof tests with the component. The assessment could be improved by considering statistical and stress gradient dependent size effects according to the concept of the highly stressed volume. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Study on Fatigue Characteristics of High-Strength Steel Welds

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Hong Suk; Yoo, Seung Won; Park, Jong Chan [Hyundai Motor Group, Seoul (Korea, Republic of)

    2015-03-15

    High-strength steel has replaced mild steel as the material of choice for truck decks or frames, owing to the growing demand for lightweight vehicles. Although studies on the weld fatigue characteristics of mild steel are available, studies on high-strength steels have been seldom conducted. In this study, firstly, we surveyed a chosen number of approaches and selected the Radaj method, which uses the notch factor approach, as the one suitable for evaluating the fatigue life of commercial vehicles. Secondly, we obtained the S-N curves of HARDOX and ATOS60 steel welds, and the F-N curves of the T-weld and overlapped-weld structures. Thirdly, we acquired a general S-N curve of welded structures made of high-strength steel from the F-N curve, using the notch factor approach. Fourthly, we extracted the weld fatigue characteristics of high-strength steel and incorporated the results in the database of a commercial fatigue program. Finally, we compared the results of the fatigue test and the CAE prediction of the example case, which demonstrated sufficiently good agreement.

  9. Fatigue limit prediction of ferritic-pearlitic ductile cast iron considering stress ratio and notch size

    Science.gov (United States)

    Deguchi, T.; Kim, H. J.; Ikeda, T.

    2017-05-01

    The mechanical behavior of ductile cast iron is governed by graphite particles and casting defects in the microstructures, which can significantly decrease the fatigue strength. In our previous study, the fatigue limit of ferritic-pearlitic ductile cast iron specimens with small defects ((\\sqrt{{area}}=80˜ 1500{{μ }}{{m}})) could successfully be predicted based on the \\sqrt{{area}} parameter model by using \\sqrt{{area}} as a geometrical parameter of defect as well as the tensile strength as a material parameter. In addition, the fatigue limit for larger defects could be predicted based on the conventional fracture mechanics approach. In this study, rotating bending and tension-compression fatigue tests with ferritic-pearlitic ductile cast iron containing circumferential sharp notches as well as smooth specimens were performed to investigate quantitatively the effects of defect. The notch depths ranged 10 ˜ 2500 μm and the notch root radii were 5 and 50 μm. The stress ratios were R = -1 and 0.1. The microscopic observation of crack propagation near fatigue limit revealed that the fatigue limit was determined by the threshold condition for propagation of a small crack emanating from graphite particles. The fatigue limit could be successfully predicted as a function of R using a method proposed in this study.

  10. Strength gradient enhances fatigue resistance of steels

    Science.gov (United States)

    Ma, Zhiwei; Liu, Jiabin; Wang, Gang; Wang, Hongtao; Wei, Yujie; Gao, Huajian

    2016-02-01

    Steels are heavily used in infrastructure and the transportation industry, and enhancing their fatigue resistance is a major challenge in materials engineering. In this study, by introducing a gradient microstructure into 304 austenitic steel, which is one of the most widely used types of stainless steel, we show that a strength gradient substantially enhances the fatigue life of the material. Pre-notched samples with negative strength gradients in front of the notch’s tip endure many more fatigue cycles than do samples with positive strength gradients during the crack initiation stage, and samples with either type of gradient perform better than do gradient-free samples with the same average yield strength. However, as a crack grows, samples with positive strength gradients exhibit better resistance to fatigue crack propagation than do samples with negative gradients or no gradient. This study demonstrates a simple and promising strategy for using gradient structures to enhance the fatigue resistance of materials and complements related studies of strength and ductility.

  11. Static and Fatigue Behavior Investigation of Artificial Notched Steel Reinforcement

    Directory of Open Access Journals (Sweden)

    Yafei Ma

    2017-05-01

    Full Text Available Pitting corrosion is one of the most common forms of localized corrosion. Corrosion pit results in a stress concentration and fatigue cracks usually initiate and propagate from these corrosion pits. Aging structures may fracture when the fatigue crack reaches a critical size. This paper experimentally simulates the effects of pitting morphologies on the static and fatigue behavior of steel bars. Four artificial notch shapes are considered: radial ellipse, axial ellipse, triangle and length-variable triangle. Each shape notch includes six sizes to simulate a variety of pitting corrosion morphologies. The stress-strain curves of steel bars with different notch shape and depth are obtained based on static tensile testing, and the stress concentration coefficients for various conditions are determined. It was determined that the triangular notch has the highest stress concentration coefficient, followed by length-variable triangle, radial ellipse and axial ellipse shaped notches. Subsequently, the effects of notch depth and notch aspect ratios on the fatigue life under three stress levels are investigated by fatigue testing, and the equations for stress range-fatigue life-notch depth are obtained. Several conclusions are drawn based on the proposed study. The established relationships provide an experimental reference for evaluating the fatigue life of concrete bridges.

  12. Use of Neuber's rule to estimate the fatigue life of notched specimens of ASME SA 106-B steel piping in 2880C air

    International Nuclear Information System (INIS)

    Terrell, J.B.

    1989-01-01

    Fatigue strain-life tests were conducted on notched specimens of ADMESA 106-B piping steel at PWR operating temperatures (288 0 C (550 0 F)), under completely reversed loading. Fatigue limits at 10 7 cycles were estimated for smooth specimens to be 185 M Pa (26.8 ksi) at 24 0 C and 232 MPa (33.7 ksi) at 288 0 C. The higher fatigue strength observed at the PWR temperature is postulated to be caused by dynamic strain aging processes. However, a reduction in fatigue strength in the low cycle fatigue regime was observed in 288 0 C air environment tests, which may indicate that the current ASME Section III design curve for carbon steels is nonconservative in its positioning. Notch strain histories were estimated for the notched specimen tests using various interpretations of Neuber's rule. It was concluded that the use of the fatigue notch concentration factor (K f ) in the Neuber relation in conjunction with the uniaxial cyclic stress-strain curve provided the best correlation of notched specimen fatigue data with results obtained from smooth specimen tests. The notched specimen strain-life results derived from the application of Neuber's rule alone proved to be conservative when compared with smooth specimen test results to such an extent that Neuber-generated notch stresses and strain amplitudes cannot accurately be compared with the mean data curves derived from the ASME Section III fatigue curves for carbon steels which are based on net section stress measurements. (author)

  13. Some considerations about improvement for fatigue strength of structures; Shatai kozobutsu no hiro kyodo kojo ni kansuru ichikosatsu

    Energy Technology Data Exchange (ETDEWEB)

    Kimoto, H; Toyama, K; Maruyama, H; Magara, S [Press Kogyo Co. Ltd., Kanagawa (Japan)

    1997-10-01

    To reduce weight, higher tensile strength and/or thinner plate are used or considered in vehicle structures. In general, welded or notch sections, fatigue strength decreases because of increasing concentrated stress or effect of notch sensitivity and so on. In this paper, some methods are studied to improve fatigue strength and obtain a long life. 2 refs., 11 figs., 5 tabs.

  14. Probabilistic fatigue life prediction methodology for notched components based on simple smooth fatigue tests

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Z. R.; Li, Z. X. [Dept.of Engineering Mechanics, Jiangsu Key Laboratory of Engineering Mechanics, Southeast University, Nanjing (China); Hu, X. T.; Xin, P. P.; Song, Y. D. [State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing (China)

    2017-01-15

    The methodology of probabilistic fatigue life prediction for notched components based on smooth specimens is presented. Weakestlink theory incorporating Walker strain model has been utilized in this approach. The effects of stress ratio and stress gradient have been considered. Weibull distribution and median rank estimator are used to describe fatigue statistics. Fatigue tests under different stress ratios were conducted on smooth and notched specimens of titanium alloy TC-1-1. The proposed procedures were checked against the test data of TC-1-1 notched specimens. Prediction results of 50 % survival rate are all within a factor of two scatter band of the test results.

  15. The effect of residual stresses induced by prestraining on fatigue life of notched specimens

    Science.gov (United States)

    Sadeler, R.; Ozel, A.; Kaymaz, I.; Totik, Y.

    2005-06-01

    The effect of tensile prestraining-induced residual stress on the fatigue life of notched steel parts was investigated. The study was performed on AISI 4140 steel. Rotating bending fatigue tests were carried out on semicircular notched specimens with different notch radii in the as-quenched and tempered conditions. Metallography of the specimens was performed by means of light optical microscopy. The finite-element method was used to evaluate the residual stress distribution near the notch region. Fatigue tests revealed fatigue life improvement for notched specimens, which changes depending on the notch radii and applied stress. Scanning electron microscopy was used to examine the fracture surfaces of the specimens.

  16. Evaluation of Variation in Residual Strength of Carbon Fiber Reinforced Plastic Plate with a Hole Subjected to Fatigue Load

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Young; Kang, Min Sung; Koo, Jae Mean; Seok, Chang Sung [Sungkyunkwan University, Seoul (Korea, Republic of)

    2010-10-15

    CFRP (Carbon Fiber Reinforced Plastic) has received considerable attention in various fields as a structural material, because of its high specific strength, high specific stiffness, excellent design flexibility, favorable chemical properties, etc. Most products consisting of several parts are generally assembled by mechanical joining methods (using rivets, bolts, pins, etc.). Holes must be drilled in the parts to be joined, and the strength of the components subjected to static and fatigue loads caused by stress concentration must be decreased. In this study, we experimentally evaluated the variation in the residual strength of a holenotched CFRP plate subjected to fatigue load. We repeatedly subjected the hole-notched specimen to fatigue load for a certain number of cycles, and then we investigated the residual strength of the hole-notched specimen by performing the fracture test. From the results of the test, we can observe the initiation of a directional crack caused by the applied fatigue load. Further, we observed that the residual strength increases with a decrease in the notch effect due to this crack. It was evaluated that the residual strength increases to a certain level and subsequently decreases. This variation in the residual strength was represented by a simple equation by using a model of the decrease in residual strength for plain plate, which was developed by Reifsnider and a stress redistribution model for hole-notched plate, which was developed by Yip.

  17. Prediction of multiaxial fatigue life for notched specimens of titanium alloy TC4

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Z. R.; Li, Z. X. [Southeast University, Nanjing (China); Hu, X. T.; Song, Y. D. [Nanjing University, Nanjing (China)

    2016-05-15

    Both the proportional and nonproportional multiaxial fatigue tests were conducted on two kinds of notched specimens of titanium alloy TC4. The multiaxial fatigue critical area of notched specimen is considered as the location experiencing the maximum damage. It is unsatisfactory to predict the multiaxial fatigue life with the local stress and strain in the fatigue critical area. The critical distance concepts are employed in the multiaxial life prediction method for notched specimens. The proposed method was checked by the test data of TC4 notched specimens. The prediction results are almost within a factor of three scatter band of the test results.

  18. Evaluation of notch effects in low cycle fatigue of alloy 718 using critical distances

    Directory of Open Access Journals (Sweden)

    Eriksson Robert

    2018-01-01

    Full Text Available Gas turbine disks contain many notch-like features acting as stress raisers. The fatigue life based on the notch root stress may be overly conservative as the steep stress gradient in front of the notch may give rise to so-called notch support. In the current work, the theory of critical distances was applied to the prediction of the total fatigue life of low cycle fatigued, notched specimens made from alloy 718. The fatigue tests were performed at 450 °C and 550 °C. It was found that, for lives shorter than 5000–10000 cycles, the notched specimens had longer lives than would have been expected based on the notch root strain. For lives longer than 5000–10000 cycles, there were no notch support. The life prediction for notched specimens could be significantly improved by basing the prediction on the strain chosen some distance from the notch (the critical distance. An expression for calculating the critical distance based on the notch root strain was suggested.

  19. Averaged strain energy density-based synthesis of crack initiation life in notched steel bars under torsional fatigue

    Directory of Open Access Journals (Sweden)

    Filippo Berto

    2016-10-01

    Full Text Available The torsional fatigue behaviour of circumferentially notched specimens made of austenitic stainless steel, SUS316L, and carbon steel, SGV410, characterized by different notch root radii has been recently investigated by Tanaka. In that contribution, it was observed that the total fatigue life of the austenitic stainless steel increases with increasing stress concentration factor for a given applied nominal shear stress amplitude. By using the electrical potential drop method, Tanaka observed that the crack nucleation life was reduced with increasing stress concentration, on the other hand the crack propagation life increased. The experimental fatigue results, originally expressed in terms of nominal shear stress amplitude, have been reanalysed by means of the local strain energy density (SED averaged over a control volume having radius R0 surrounding the notch tip. To exclude all extrinsic effects acting during the fatigue crack propagation phase, such as sliding contact and/or friction between fracture surfaces, crack initiation life has been considered in the present work. In the original paper, initiation life was defined in correspondence of a 0.1÷0.4-mm-deep crack. The control radius R0 for fatigue strength assessment of notched components, thought of as a material property, has been estimated by imposing the constancy of the averaged SED for both smooth and cracked specimens at NA = 2 million loading cycles

  20. An engineering method for estimating notch-size effect in fatigue tests on steel

    Science.gov (United States)

    Kuhn, Paul; Hardrath, Herbert F

    1952-01-01

    Neuber's proposed method of calculating a practical factor of stress concentration for parts containing notches of arbitrary size depends on the knowledge of a "new material constant" which can be established only indirectly. In this paper, the new constant has been evaluated for a large variety of steels from fatigue tests reported in the literature, attention being confined to stresses near the endurance limit. Reasonably satisfactory results were obtained with the assumption that the constant depends only on the tensile strength of the steel. Even in cases where the notches were cracks of which only the depth was known, reasonably satisfactory agreement was found between calculated and experimental factors. It is also shown that the material constant can be used in an empirical formula to estimate the size effect on unnotched specimens tested in bending fatigue.

  1. Fatigue Analysis of Notched Laminates: A Time-Efficient Macro-Mechanical Approach

    Science.gov (United States)

    Naghipour, P.; Pineda, E. J.; Bednarcyk, B. A.; Arnold, S. M.; Waas, A. M.

    2016-01-01

    A coupled transversely isotropic deformation and damage fatigue model is implemented within the finite element method and was utilized along with a static progressive damage model to predict the fatigue life, stiffness degradation as a function of number of cycles, and post-fatigue tension and compression response of notched, multidirectional laminates. Initially, the material parameters for the fatigue model were obtained utilizing micromechanics simulations and the provided [0], [90] and [plus or minus 45] experimental composite laminate S-N (stress-cycle) data. Within the fatigue damage model, the transverse and shear properties of the plies were degraded with an isotropic scalar damage variable. The damage in the longitudinal (fiber) ply direction was suppressed, and only the strength of the fiber was degraded as a function of fatigue cycles. A maximum strain criterion was used to capture the failure in each element, and once this criterion was satisfied, the longitudinal stiffness of the element was decreased by a factor of 10 (sup 4). The resulting, degraded properties were then used to calculate the new stress state. This procedure was repeated until final failure of the composite laminate was achieved or a specified number of cycles reached. For post-fatigue tension and compression behavior, four internal state variables were used to control the damage and failure. The predictive capability of the above-mentioned approach was assessed by performing blind predictions of the notched multidirectional IM7/977-3 composite laminates response under fatigue and post-fatigue tensile and compressive loading, followed by a recalibration phase. Although three different multidirectional laminates were analyzed in the course of this study, only detailed results (i.e., stiffness degradation and post-fatigue stress-train curves as well as damage evolution states for a single laminate ([30/60/90/minus 30/minus 60] (sub 2s)) are discussed in detail here.

  2. IIW guidelines on weld quality in relationship to fatigue strength

    CERN Document Server

    Jonsson, Bertil; Hobbacher, A F; Kassner, M; Marquis, G

    2016-01-01

    This book presents guidelines on quantitative and qualitative measures of the geometric features and imperfections of welds to ensure that it meets the fatigue strength requirements laid out in the recommendations of the IIW (International Institute of Welding). Welds that satisfy these quality criteria can be assessed in accordance with existing IIW recommendations based on nominal stress, structural stress, notch stress or linear fracture mechanics. Further, the book defines more restrictive acceptance criteria based on weld geometry features and imperfections with increased fatigue strength. Fatigue strength for these welds is defined as S-N curves expressed in terms of nominal applied stress or hot spot stress. Where appropriate, reference is made to existing quality systems for welds.In addition to the acceptance criteria and fatigue assessment curves, the book also provides guidance on their inspection and quality control. The successful implementation of these methods depends on adequate training for o...

  3. Fatigue crack growth from blunt notches

    International Nuclear Information System (INIS)

    Rhodes, D.

    1982-01-01

    A number of methods have been proposed, by which the formation and early growth of fatigue cracks at blunt notches may be predicted. In this report, four methods are compared - i.e. analysis of the crack tip plastic deformation, the cyclic contour integral, δJ, the strain in a critical volume of material, and the notch root plastic strain range. It is shown that these approaches have fundamental elements in common, and that all are compatable with linear elastic fracture mechanics. Early results from a continuing experimental programme are reported. (orig.) [de

  4. Factors Influencing Dwell Fatigue Cracking in Notches of Powder Metallurgy Superalloys

    Science.gov (United States)

    Gabb, T. P.; Telesman, J.; Ghosn, L.; Garg, A.; Gayda, J.

    2011-01-01

    The influences of heat treatment and cyclic dwells on the notch fatigue resistance of powder metallurgy disk superalloys were investigated for low solvus high refractory (LSHR) and ME3 disk alloys. Disks were processed to produce material conditions with varied microstructures and associated mechanical properties. Notched specimens were first subjected to baseline dwell fatigue cycles having a dwell at maximum load, as well as tensile, stress relaxation, creep rupture, and dwell fatigue crack growth tests at 704 C. Several material heat treatments displayed a bimodal distribution of fatigue life with the lives varying by two orders-of-magnitude, while others had more consistent fatigue lives. This response was compared to other mechanical properties, in search of correlations. The wide scatter in baseline dwell fatigue life was observed only for material conditions resistant to stress relaxation. For selected materials and conditions, additional tests were then performed with the dwells shifted in part or in total to minimum tensile load. The tests performed with dwells at minimum load exhibited lower fatigue lives than max dwell tests, and also exhibited early crack initiation and a substantial increase in the number of initiation sites. These results could be explained in part by modeling evolution of peak stresses in the notch with continued dwell fatigue cycling. Fatigue-environment interactions were determined to limit life for the fatigue cycles with dwells.

  5. Fatigue Strength of Weathering Steel

    Czech Academy of Sciences Publication Activity Database

    Kunz, Ludvík; Lukáš, Petr; Klusák, Jan

    2012-01-01

    Roč. 18, č. 1 (2012), s. 18-22 ISSN 1392-1320 Grant - others:GA MPO(CZ) FT/TA5/076 Institutional support: RVO:68081723 Keywords : fatigue of weathering steel * corrosion pits * fatigue notch factor Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 0.522, year: 2012

  6. Estimation of Low Cycle Fatigue Response of 316 LN Stainless Steel in the Presence of Notch

    Science.gov (United States)

    Agrawal, Richa; Veerababu, J.; Goyal, Sunil; Sandhya, R.; Uddanwadiker, Rashmi; Padole, Pramod

    2018-02-01

    Notches introduced in the plain specimen result in the multiaxial state of stress that exists in the actual components due to the presence of flaws and defects. In the present work, low cycle fatigue life estimation of plain and notched specimens of 316 LN stainless steel is carried out at room temperature and 823 K. The plain and notched specimens with different notch radii were subjected to varying strain amplitudes ranging from ± 0.25 to ± 1.0% at a strain rate of 3 × 10-3 s-1. The fatigue life decreased in the presence of notch for all strain amplitudes at both the temperatures. The decrease in fatigue life was found to be more at room temperature than at 823 K. The fatigue life of the notched specimen decreased by approximately 94.2% compared to plain specimen at room temperature. However, at 823 K the decrease in fatigue life for notched specimen was approximately 84.6%. Low cycle fatigue life of the plain and notched specimens was estimated by Neuber's rule and finite element analysis approach. Neuber's rule overestimated the fatigue life by maximum factor of 2.6 for specimens at room temperature and by maximum factor of 5 for specimens at 823 K. However, it gives closer approximation at higher strain amplitudes at 823 K. Life estimation by finite element analysis at room temperature was within a factor of 1.5 as compared to experimental life, whereas it underestimated the fatigue life within a factor of 6 at high temperature.

  7. Fatigue of non-welded pressure vessels made of high strength steel

    International Nuclear Information System (INIS)

    Rauscher, F.

    2003-01-01

    When using high strength steels for pressure vessels, cyclic fatigue requirements may become decisive for the design. Within a European research project, two typical non-welded types of vessels--gas cylinders as used for gas transportation and hydraulic accumulators with screwed in ends--were investigated. The results of the fatigue analyses and of the testing of these vessels are described here. Special attention is drawn to the evaluation of the stresses in the threads used for threaded in flat ends and rings, because the usual formulae for bolted connections cannot be used. In the case of sharp notches and of threads, the experiments showed that the fatigue calculation gave conservative results. The unexpected failure of the gas cylinders in the cylindrical part and at the onset of the end showed that the fatigue analyses according to prEN13445-3 clause 18 is non-conservative for these surfaces without mechanical preparation, and need special consideration. Based on the investigations, a stress concentration factor for small fabrication notches and a new surface finish factor is proposed

  8. Fatigue of non-welded pressure vessels made of high strength steel

    Energy Technology Data Exchange (ETDEWEB)

    Rauscher, F

    2003-03-01

    When using high strength steels for pressure vessels, cyclic fatigue requirements may become decisive for the design. Within a European research project, two typical non-welded types of vessels--gas cylinders as used for gas transportation and hydraulic accumulators with screwed in ends--were investigated. The results of the fatigue analyses and of the testing of these vessels are described here. Special attention is drawn to the evaluation of the stresses in the threads used for threaded in flat ends and rings, because the usual formulae for bolted connections cannot be used. In the case of sharp notches and of threads, the experiments showed that the fatigue calculation gave conservative results. The unexpected failure of the gas cylinders in the cylindrical part and at the onset of the end showed that the fatigue analyses according to prEN13445-3 clause 18 is non-conservative for these surfaces without mechanical preparation, and need special consideration. Based on the investigations, a stress concentration factor for small fabrication notches and a new surface finish factor is proposed.

  9. Comparison of Fatigue Properties and Fatigue Crack Growth Rates of Various Implantable Metals

    Science.gov (United States)

    Okazaki, Yoshimitsu

    2012-01-01

    The fatigue strength, effects of a notch on the fatigue strength, and fatigue crack growth rate of Ti-15Zr-4Nb-4Ta alloy were compared with those of other implantable metals. Zr, Nb, and Ta are important alloying elements for Ti alloys for attaining superior long-term corrosion resistance and biocompatibility. The highly biocompatible Ti-15Zr-4Nb-4Ta alloy exhibited an excellent balance between strength and ductility. Its notched tensile strength was much higher than that of a smooth specimen. The strength of 20% cold-worked commercially pure (C.P.) grade 4 Ti was close to that of Ti alloy. The tension-to-tension fatigue strength of an annealed Ti-15Zr-4Nb-4Ta rod at 107 cycles was approximately 740 MPa. The fatigue strength of this alloy was much improved by aging treatment after solution treatment. The fatigue strengths of C.P. grade 4 Ti and stainless steel were markedly improved by 20% cold working. The fatigue strength of Co-Cr-Mo alloy was markedly increased by hot forging. The notch fatigue strengths of 20% cold-worked C.P. grade 4 Ti, and annealed and aged Ti-15Zr-4Nb-4Ta, and annealed Ti-6Al-4V alloys were less than those of the smooth specimens. The fatigue crack growth rate of Ti-15Zr-4Nb-4Ta was the same as that of Ti-6Al-4V. The fatigue crack growth rate in 0.9% NaCl was the same as that in air. Stainless steel and Co-Cr-Mo-Ni-Fe alloy had a larger stress-intensity factor range (ΔK) than Ti alloy.

  10. Fatigue strength of Al2O3 and Si3N4 ceramics

    International Nuclear Information System (INIS)

    Sonsino, C.M.

    1992-01-01

    Various Al 2 O 3 ceramics and random samples of two Si 3 N 4 ceramics were examined, with all specimens differing in terms of material and manufacturing parameters. Of the Al 2 O 3 ceramics, randomly selected specimens were tested for their banding strength at room temperature, and three specifically selected specimens were tested for their compressive strength at room temperature, at 800 C and at 1200 C. A number of specimen variants were examined by cyclic fatigue tests at room temperature and 800 C, and at 1200 C in one case, the specimens used being slightly notched specimens (α n = 1,02 and 1,08), or more heavily notched speciments (α n = 1.77, 1.90 and 2.24), with bending loads being either cyclic or growing. The Si 3 N 4 specimens were randomly chosen for bending tests and cyclic fatigue tests, at room temperature. (orig./MM) [de

  11. Correlation of eddy current responses between fatigue cracks and electrical-discharge-machining notches

    Science.gov (United States)

    Seo, Sukho; Choi, Gyudong; Eom, Tae Jhoun; Lee, Bokwon; Lee, Soo Yeol

    2017-07-01

    The eddy current responses of Electrical Discharge Machining (EDM) notches and fatigue cracks are directly compared to verify the reliability of eddy current inspection. The fatigue crack growth tests using a constant load range control mode were conducted to obtain a variety of edge crack sizes, ranging from 0.9 to 6.6 mm for Al alloy and from 0.1 to 3 mm for Ti alloy. EDM notch specimens of Al and Ti alloys were accordingly prepared in lengths similar to that of the fatigued specimen. The crack length was determined by optical microscope and scanning electron microscope. The eddy current responses between the EDM and fatigued specimens with varying notch/crack length were examined using probe sensors at (100-500) kHz and (1-2) MHz for Al and Ti alloys, respectively. The results show a significant difference in the eddy current signal between the two specimens, based on the correlation between the eddy current response and notch/crack length. This suggests that eddy current inspection using the EDM reference specimen is inaccurate in determining the precise crack size, unless the eddy current response data base is obtained from a fatigue-cracked specimen.

  12. Effects of Range of Stress and of Special Notches on Fatigue Properties of Aluminum Alloys Suitable for Airplane Propellers

    Science.gov (United States)

    Dolan, Thomas J

    1942-01-01

    Laboratory tests were made to obtain information on the load-resisting properties of X76S-T aluminum alloy when subjected to static, impact, and repeated loads. Results are presented from static-load test of unnotched specimens in tension and in torsion and of notched specimens in tension. Charpy impact values obtained from bend tests on notched specimens and tension impact values for both notched and unnotched specimens tested at several different temperatures are included. The endurance limits obtained from repeated bending fatigue tests made on three different types of testing machine are given for unnotched polished specimens, and the endurance limits of notched specimens subjected to six different ranges of bending stress are also reported. The results indicated that: (a) polished rectangular specimens had an endurance limit about 30 percent less than that obtained for round specimens; (b) a comparison of endurance limits obtained from tests on three different types of machine indicated that there was no apparent effect of speed of testing on the endurance limit for the range of speeds used (1,750 to 13,000 rpm). (c) the fatigue strength (endurance limit) of the X76S-T alloy was greatly decreased by the presence of a notch in the specimens; (d) no complete fractures of the entire specimens occurred in notched fatigue specimens when subjected to stress cycles for which the mean stress at the notch during the cycle was a compressive stress; for this test condition a microscopic cracking occurred near the root of the notch and was used as a criterion of failure of the specimen. (e) as the mean stress at the notch was decreased from a tensile (+) stress to a compressive (-) stress, it was found that the alternating stress that could be superimposed on the mean stress in the cycle without causing failure of the specimens was increased.

  13. Notch size effects on high cycle fatigue limit stress of Udimet 720

    International Nuclear Information System (INIS)

    Ren Weiju; Nicholas, Theodore

    2003-01-01

    Notch size effects on the high cycle fatigue (HCF) limit stress of Ni-base superalloy Udimet 720 were investigated on cylindrical specimens with three notch sizes of the same stress concentration factor K t =2.74. The HCF limit stress corresponding to a life of 10 6 cycles was experimentally determined at a stress ratio of 0.1 and a frequency of 25 Hz at room temperature. The stresses were calculated using finite element analysis (FEA) and the specimens analyzed using scanning electron microscopy (SEM). Test results show that at the same K t value, notch size can slightly affect the HCF limit stress of U720 when notch root plasticity occurs. FEA and SEM results reveal that the notch size effects are influenced by a complicated combination of the stress and plastic strain fields at the notch tip, the nominal stress, and the effects of prior plastic deformation on fatigue crack initiation

  14. Theoretical modeling and experimental study on fatigue initiation life of 16MnR notched components

    International Nuclear Information System (INIS)

    Wang Xiaogui; Gao Zengliang; Qiu Baoxiang; Jiang Yanrao

    2010-01-01

    In order to investigate the effects of notch geometry and loading conditions on the fatigue initiation life and fatigue fracture life of 16MnR material, fatigue experiments were conducted for both smooth rod specimens and notched rod specimens. The detailed elastic-plastic stress and strain responses were computed by the finite element software (ABAQUS) incorporating a robust cyclic plasticity model via a user subroutine UMAT. The obtained stresses and strains were applied to the multiaxial fatigue damage criterion to compute the fatigue damage induced by a loading cycle on the critical material plane. The fatigue initiation life was then obtained by the proposed theoretical model. The well agreement between the predicted results and the experiment data indicated that the fatigue initiation of notched components in the multiaxial stress state related to all the nonzero stress and strain quantities. (authors)

  15. Notch Sensitivity of Fatigue Behavior of a Hi-Nicalon™/SiC-B4C Composite at 1,200 °C in Air and in Steam

    Science.gov (United States)

    Ruggles-Wrenn, M. B.; Kurtz, G.

    2013-10-01

    The effect of holes on the fatigue life of a non-oxide ceramic composite processed via chemical vapor infiltration (CVI) was examined at 1,200 °C in laboratory air and in steam. The effect of holes on tensile strength at 1,200 °C was also evaluated. The composite comprised laminated woven Hi-Nicalon™ fibers in an oxidation inhibited matrix, which consisted of alternating layers of silicon carbide and boron carbide. Fiber preforms had pyrolytic carbon fiber coating with boron carbon overlay applied. Unnotched specimens and specimens with a center hole having a radius to width ratio of 0.24 were tested in tension-tension fatigue at 0.1 Hz and at 1.0 Hz. The fatigue stresses ranged from 100 to 140 MPa in air and in steam. Fatigue run-out was defined as 105 cycles at 0.1 Hz and as 2 × 105 cycles at 1.0 Hz. The net-section strength was less than the unnotched ultimate tensile strength. Comparison of notched and unnotched data also revealed that the fatigue performance was notch insensitive in both air and steam environments. Composite microstructure, as well as damage and failure mechanisms were investigated.

  16. High Load Ratio Fatigue Strength and Mean Stress Evolution of Quenched and Tempered 42CrMo4 Steel

    Science.gov (United States)

    Bertini, Leonardo; Le Bone, Luca; Santus, Ciro; Chiesi, Francesco; Tognarelli, Leonardo

    2017-08-01

    The fatigue strength at a high number of cycles with initial elastic-plastic behavior was experimentally investigated on quenched and tempered 42CrMo4 steel. Fatigue tests on unnotched specimens were performed both under load and strain controls, by imposing various levels of amplitude and with several high load ratios. Different ratcheting and relaxation trends, with significant effects on fatigue, are observed and discussed, and then reported in the Haigh diagram, highlighting a clear correlation with the Smith-Watson-Topper model. High load ratio tests were also conducted on notched specimens with C (blunt) and V (sharp) geometries. A Chaboche model with three parameter couples was proposed by fitting plain specimen cyclic and relaxation tests, and then finite element analyses were performed to simulate the notched specimen test results. A significant stress relaxation at the notch root became clearly evident by reporting the numerical results in the Haigh diagram, thus explaining the low mean stress sensitivity of the notched specimens.

  17. Fatigue Assessment of High Strength Steel Welded Joints Under Bending Loading

    International Nuclear Information System (INIS)

    Lee, Myeong-Woo; Kim, Yun-Jae; Park, Jun-Hyub

    2014-01-01

    In this study, a fatigue assessment method for vehicle suspension systems having welded geometries was established under a bending loading condition. For the fatigue life estimation of the actual product s welded joints made of different steels, bending fatigue tests were performed on welded specimens with a simplified shape for obtaining the moment-fatigue-life plot. Further, geometry modeling of the simplified welded specimens was conducted. Results of finite element analysis were used to obtain the stress-fatigue-life plot. The analysis results were also used to calculate the stress concentration factors for notch-factor-based fatigue life estimation. The test results were compared with results of the general notch-factor-based fatigue life estimation for improving fatigue assessment. As a result, it was concluded that both the welded fatigue tests and the notch-factor-based fatigue life estimation are necessary for accurate fatigue assessment

  18. Crack initiation life in notched Ti-6Al-4V titanium bars under uniaxial and multiaxial fatigue: synthesis based on the averaged strain energy density approach

    Directory of Open Access Journals (Sweden)

    Giovanni Meneghetti

    2017-07-01

    Full Text Available The fatigue behaviour of circumferentially notched specimens made of titanium alloy, Ti-6Al-4V, has been analysed. To investigate the notch effect on the fatigue strength, pure bending, pure torsion and multiaxial bending-torsion fatigue tests have been carried out on specimens characterized by two different root radii, namely 0.1 and 4 mm. Crack nucleation and subsequent propagation have been accurately monitored by using the direct current potential drop (DCPD technique. Based on the results obtained from the potential drop technique, the crack initiation life has been defined in correspondence of a relative potential drop increase V/V0 equal to 1%, and it has been used as failure criterion. Doing so, the effect of extrinsic mechanisms operating during crack propagation phase, such as sliding contact, friction and meshing between fracture surfaces, is expected to be reduced. The experimental fatigue test results have been re-analysed by using the local strain energy density (SED averaged over a structural volume having radius R0 and surrounding the notch tip. Finally, the use of the local strain energy density parameter allowed us to properly correlate the crack initiation life of Ti-6Al-4V notched specimens, despite the different notch geometries and loading conditions involved in the tests

  19. Characterization and analysis of surface notches on Ti-alloy plates fabricated by additive manufacturing techniques

    Science.gov (United States)

    Chan, Kwai S.

    2015-12-01

    Rectangular plates of Ti-6Al-4V with extra low interstitial (ELI) were fabricated by layer-by-layer deposition techniques that included electron beam melting (EBM) and laser beam melting (LBM). The surface conditions of these plates were characterized using x-ray micro-computed tomography. The depth and radius of surface notch-like features on the LBM and EBM plates were measured from sectional images of individual virtual slices of the rectangular plates. The stress concentration factors of individual surface notches were computed and analyzed statistically to determine the appropriate distributions for the notch depth, notch radius, and stress concentration factor. These results were correlated with the fatigue life of the Ti-6Al-4V ELI alloys from an earlier investigation. A surface notch analysis was performed to assess the debit in the fatigue strength due to the surface notches. The assessment revealed that the fatigue lives of the additively manufactured plates with rough surface topographies and notch-like features are dominated by the fatigue crack growth of large cracks for both the LBM and EBM materials. The fatigue strength reduction due to the surface notches can be as large as 60%-75%. It is concluded that for better fatigue performance, the surface notches on EBM and LBM materials need to be removed by machining and the surface roughness be improved to a surface finish of about 1 μm.

  20. Characterization and analysis of surface notches on Ti-alloy plates fabricated by additive manufacturing techniques

    International Nuclear Information System (INIS)

    Chan, Kwai S.

    2015-01-01

    Rectangular plates of Ti–6Al–4V with extra low interstitial (ELI) were fabricated by layer-by-layer deposition techniques that included electron beam melting (EBM) and laser beam melting (LBM). The surface conditions of these plates were characterized using x-ray micro-computed tomography. The depth and radius of surface notch-like features on the LBM and EBM plates were measured from sectional images of individual virtual slices of the rectangular plates. The stress concentration factors of individual surface notches were computed and analyzed statistically to determine the appropriate distributions for the notch depth, notch radius, and stress concentration factor. These results were correlated with the fatigue life of the Ti–6Al–4V ELI alloys from an earlier investigation. A surface notch analysis was performed to assess the debit in the fatigue strength due to the surface notches. The assessment revealed that the fatigue lives of the additively manufactured plates with rough surface topographies and notch-like features are dominated by the fatigue crack growth of large cracks for both the LBM and EBM materials. The fatigue strength reduction due to the surface notches can be as large as 60%–75%. It is concluded that for better fatigue performance, the surface notches on EBM and LBM materials need to be removed by machining and the surface roughness be improved to a surface finish of about 1 μm. (paper)

  1. Dwell Notch Low Cycle Fatigue Behavior of a Powder Metallurgy Nickel Disk Alloy

    Science.gov (United States)

    Telesman, J.; Gabb, T. P.; Yamada, Y.; Ghosn, L. J.; Jayaraman, N.

    2012-01-01

    A study was conducted to determine the processes which govern dwell notch low cycle fatigue (NLCF) behavior of a powder metallurgy (P/M) ME3 disk superalloy. The emphasis was placed on the environmentally driven mechanisms which may embrittle the highly stressed notch surface regions and reduce NLCF life. In conjunction with the environmentally driven notch surface degradation processes, the visco-plastic driven mechanisms which can significantly change the notch root stresses were also considered. Dwell notch low cycle fatigue testing was performed in air and vacuum on a ME3 P/M disk alloy specimens heat treated using either a fast or a slow cooling rate from the solutioning treatment. It was shown that dwells at the minimum stress typically produced a greater life debit than the dwells applied at the maximum stress, especially for the slow cooled heat treatment. Two different environmentally driven failure mechanisms were identified as the root cause of early crack initiation in the min dwell tests. Both of these failure mechanisms produced mostly a transgranular crack initiation failure mode and yet still resulted in low NLCF fatigue lives. The lack of stress relaxation during the min dwell tests produced higher notch root stresses which caused early crack initiation and premature failure when combined with the environmentally driven surface degradation mechanisms. The importance of environmental degradation mechanisms was further highlighted by vacuum dwell NLCF tests which resulted in considerably longer NLCF lives, especially for the min dwell tests.

  2. Effect of vibration loading on the fatigue life of part-through notched pipe

    International Nuclear Information System (INIS)

    Mittal, Rahul; Singh, P.K.; Pukazhendi, D.M.; Bhasin, V.; Vaze, K.K.; Ghosh, A.K.

    2011-01-01

    A systematic experimental and analytical study has been carried out to investigate the effect of vibration loading on the fatigue life of the piping components. Three Point bend (TPB) specimens machined from the actual pipe have been used for the evaluation of Paris constants by carrying out the experiments under vibration + cyclic and cyclic loading as per the ASTM Standard E647. These constants have been used for the prediction of the fatigue life of the pipe having part-through notch of a/t = 0.25 and aspect ratio (2c/a) of 10. Predicted results have shown the reduction in fatigue life of the notched pipe subjected to vibration + cyclic loading by 50% compared to that of cyclic loading. Predicted results have been validated by carrying out the full-scale pipe (with part-through notch) tests. Notched pipes were subjected to loading conditions such that the initial stress-intensity factor remains same as that of TPB specimen. Experimental results of the full-scale pipe tests under vibration + cyclic loading has shown the reduction in fatigue life by 70% compared to that of cyclic loading. Fractographic examination of the fracture surface of the tested specimens subjected to vibration + cyclic loading have shown higher presence of brittle phases such as martensite (in the form of isolated planar facets) and secondary micro cracks. This could be the reason for the reduction of fatigue life in pipe subjected to vibration + cyclic loading. - Highlights: → Vibration loading affects fatigue crack growth rate. → Crack initiation life depends on crack tip radius. → Crack initiation life depends on the characteristic distance. → Characteristic distance depends on the loading conditions. → Vibration + cyclic load gives lower fatigue life.

  3. Effect of some types of machining processes on beryllium fatigue strength properties

    International Nuclear Information System (INIS)

    Armbruster, M.

    1977-01-01

    The aim of this work, which is sponsored by the French D.G.R.S.T., is to determine a machining process giving both the highest tensile strength and the highest fatigue limit to beryllium parts. A comparison is made of the effects of : mechanical machining, electro discharge machining, electro-chemical machining, electrolytical and chemical polishing, glass shot peening, on the mechanical strength and fatigue limits of samples taken from hot pressed and extruded rods and from cast ingot sheets, either notched or not as required. Complementary examinations are performed principally by fractographic study. The results show that for beryllium, electrochemical machining followed by glass shot peening gives the best results; however mechanical machining with electrolytical polishing followed by glass shot peening are also satisfactory. (author)

  4. Effect of Notches on Creep-Fatigue Behavior of a P/M Nickel-Based Superalloy

    Science.gov (United States)

    Telesman, Jack; Gabb, Timothy P.; Ghosn, Louis J.; Gayda, John, Jr.

    2015-01-01

    A study was performed to determine and model the effect of high temperature dwells on notched low cycle fatigue (NLCF) and notch stress rupture behavior of a fine grain LSHR powder metallurgy (PM) nickel-based superalloy. It was shown that a 90 second dwell applied at the minimum stress (min dwell) was considerably more detrimental to the NLCF lives than similar dwell applied at the maximum stress (max dwell). The short min dwell NLCF lives were shown to be caused by growth of small oxide blisters which caused preferential cracking when coupled with high concentrated notch root stresses. The cyclic max dwell notch tests failed mostly by a creep accumulation, not by fatigue, with the crack origin shifting internally to a substantial distance away from the notch root. The classical von Mises plastic flow model was unable to match the experimental results while the hydrostatic stress profile generated using the Drucker-Prager plasticity flow model was consistent with the experimental findings. The max dwell NLCF and notch stress rupture tests exhibited substantial creep notch strengthening. The triaxial Bridgman effective stress parameter was able to account for the notch strengthening by collapsing the notched and uniform gage geometry test data into a singular grouping.

  5. Advanced methods of fatigue assessment

    CERN Document Server

    Radaj, Dieter

    2013-01-01

    The book in hand presents advanced methods of brittle fracture and fatigue assessment. The Neuber concept of fictitious notch rounding is enhanced with regard to theory and application. The stress intensity factor concept for cracks is extended to pointed and rounded corner notches as well as to locally elastic-plastic material behaviour. The averaged strain energy density within a circular sector volume around the notch tip is shown to be suitable for strength-assessments. Finally, the various implications of cyclic plasticity on fatigue crack growth are explained with emphasis being laid on the DJ-integral approach.   This book continues the expositions of the authors’ well known reference work in German language ‘Ermüdungsfestigkeit – Grundlagen für Ingenieure’ (Fatigue strength – fundamentals for engineers).

  6. Thermally induced high frequency random amplitude fatigue damage at sharp notches

    International Nuclear Information System (INIS)

    Lewis, M.W.J.

    1992-01-01

    Experiments have been performed using the SUPERSOMITE facility to investigate the initiation and growth of fatigue cracks at the tips of sharp surface notches subjected to random thermally-induced stress. The experimental situation is complex involving plasticity, random amplitude loading and heat transfer medium/surface coupling. Crack initiation and growth prediction have been considered using the Creager and Neuber methods to compute the strain ranges in the vicinity of the notch root. Good agreement has been obtained between the experimental results and theoretical predictions. The paper reports the results of the analysis of the notch behavior

  7. Fatigue life evaluation based on welding residual stress relaxation and notch strain approach for cruciform welded joint

    International Nuclear Information System (INIS)

    Han, Jeong Woo; Han, Seung Ho; Shin, Byung Chun; Kim, Jae Hoon

    2003-01-01

    The fatigue strength of welded joint is influenced by the welding residual stress which is relaxed depending on local stress distributed in vicinity of stress raisers, eg. under cut, overlap and blow hole. To evaluate its fatigue life the geometry of the stress raisers and the welding residual stress should be taken into account. The several methods based on notch strain approach have been proposed in order to consider the two factors above mentioned. These methods, however, have shown considerable differences between analytical and experimental results. It is due to the fact that the amount of the relaxed welding residual stress evaluated by the cyclic stress-strain relationship do not correspond with that occurred in reality. In this paper the residual stress relaxation model based on experimental results was used in order to reduce the discrepancy of the estimated amount of the relaxed welding residual stress. Under an assumption of the superimposition of the relaxed welding residual stress and the local stress, a modified notch strain approach was proposed and verified to the cruciform welded joint

  8. Multiaxial fatigue assessment of welded joints using the notch stress approach

    DEFF Research Database (Denmark)

    Pedersen, Mikkel Melters

    2016-01-01

    This paper presents an evaluation of the safety involved when performing fatigue assessment of multiaxially loaded welded joints. The notch stress approach according to the IIW is used together with 8 different multiaxial criteria, including equivalent stress-, interaction equation- and critical...... plane approaches. The investigation is carried out by testing the criteria on a large amount of fatigue test results collected from the literature (351 specimens total). Subsequently, the probability of achieving a non-conservative fatigue assessment is calculated in order to evaluate the different...

  9. Effect of hot dip galvanization on the fatigue strength of steel bolted connections

    Directory of Open Access Journals (Sweden)

    S.M.J. Razavi

    2017-07-01

    Full Text Available Hot dip galvanized steel bolted joints has been tested under fatigue loading to evaluate the effect of galvanizing coating on the fatigue strength of S355 structural steel. The experimental results showed that the decrease of the fatigue life of coated specimens in comparison with that of uncoated joints is very limited and the results are in good agreement with Eurocode detail category, without substantial reductions. The procedure for coating and preparation of the bolted joints is described in detail in this paper providing a useful tool for engineers involved in similar practical applications. The experimental results are compared with the previously published data on central hole notched galvanized and not treated specimens characterized by the same geometry.

  10. The interaction between non-metallic inclusions and surface roughness in fatigue failure and their influence on fatigue strength

    International Nuclear Information System (INIS)

    Saberifar, S.; Mashreghi, A.R.; Mosalaeepur, M.; Ghasemi, S.S.

    2012-01-01

    Highlights: ► The fatigue strength of a tested steel was affected by inclusions and surface notches. ► Inclusions were the main fatigue crack sources even in rough specimens. ► The stress intensity factor represented the behavior of inclusions properly. ► In rough steels the effect of inclusions was intensified by surface roughness. ► The critical inclusion size increased when surface roughness was removed. -- Abstract: In this study, the influence of non-metallic inclusions on the fatigue behavior of 30MnVS6 steel containing different inclusion sizes and surface roughness has been investigated. Scanning electron microscope (SEM) was used to examine fatigue fracture origins. It was concluded that the non-metallic inclusions were dominant fatigue crack initiation sites in both smooth and rough specimens. This was justified by the calculation of stress intensity factor generated by both surface roughness and non-metallic inclusions, based on Murakami’s model. In addition, it was found that for a given stress, the critical inclusion size could be increased by eliminating the surface roughness.

  11. Notch fatigue crack propagation - A consistent concept for calculating flawed service life

    International Nuclear Information System (INIS)

    Dankert, M.

    1999-01-01

    The research report presents a consistent concept of elastic-plastic fatigue fracture mechanics, to be used for numerical description of crack initiation and propagation behaviour within and out of notched areas of circular notched specimens for Woehler tests, two-phase fatigue tests and tests under service conditions. It is shown that a fracture-mechanics approach yields results capable of describing the load history over the whole service life of a structural member. A J-integral-related crack propagation model is derived that takes into account the crack opening and closure behaviour. The model is based on specially developed formulas, algorithms and approximation formulas required for description of crack opening and closure behaviour as well as calculation of the stress intensity factor K and the J-integral of cracks at notches. The values relating to crack opening were compared with experimental data, and those describing the stress intensity factor K and the J-integrals with 2D and 3D elastic-plastic FE calculations. Good and very good agreement of results was achieved. (orig./CB) [de

  12. The effect of shot peening on notched low cycle fatigue

    International Nuclear Information System (INIS)

    Soady, K.A.; Mellor, B.G.; Shackleton, J.; Morris, A.; Reed, P.A.S.

    2011-01-01

    Highlights: → Shot peening improves notched component three point bend low cycle fatigue life. → Notch shape does not affect the efficacy of the peening process. → Strain hardening and residual stress effects need separate consideration. → Loading direction residual stresses do not relax under bend load. - Abstract: The improvement in low cycle fatigue life created by shot peening ferritic heat resistant steel was investigated in components of varying geometries based on those found in conventional power station steam turbine blades. It was found that the shape of the component did not affect the efficacy of the shot peening process, which was found to be beneficial even under the high stress amplitude three point bend loads applied. Furthermore, by varying the shot peening process parameters and considering fatigue life it has been shown that the three surface effects of shot peening; roughening, strain hardening and the generation of a compressive residual stress field must be included in remnant life models as physically separate entities. The compressive residual stress field during plane bending low cycle fatigue has been experimentally determined using X-ray diffraction at varying life fractions and found to be retained in a direction parallel to that of loading and to only relax to 80% of its original magnitude in a direction orthogonal to loading. This result, which contributes to the retention of fatigue life improvement in low cycle fatigue conditions, has been discussed in light of the specific stress distribution applied to the components. The ultimate aim of the research is to apply these results in a life assessment methodology which can be used to justify a reduction in the length of scheduled plant overhauls. This will result in significant cost savings for the generating utility.

  13. Fatigue Behavior under Multiaxial Stress States Including Notch Effects and Variable Amplitude Loading

    Science.gov (United States)

    Gates, Nicholas R.

    The central objective of the research performed in this study was to be able to better understand and predict fatigue crack initiation and growth from stress concentrations subjected to complex service loading histories. As such, major areas of focus were related to the understanding and modeling of material deformation behavior, fatigue damage quantification, notch effects, cycle counting, damage accumulation, and crack growth behavior under multiaxial nominal loading conditions. To support the analytical work, a wide variety of deformation and fatigue tests were also performed using tubular and plate specimens made from 2024-T3 aluminum alloy, with and without the inclusion of a circular through-thickness hole. However, the analysis procedures implemented were meant to be general in nature, and applicable to a wide variety of materials and component geometries. As a result, experimental data from literature were also used, when appropriate, to supplement the findings of various analyses. Popular approaches currently used for multiaxial fatigue life analysis are based on the idea of computing an equivalent stress/strain quantity through the extension of static yield criteria. This equivalent stress/strain is then considered to be equal, in terms of fatigue damage, to a uniaxial loading of the same magnitude. However, it has often been shown, and was shown again in this study, that although equivalent stress- and strain-based analysis approaches may work well in certain situations, they lack a general robustness and offer little room for improvement. More advanced analysis techniques, on the other hand, provide an opportunity to more accurately account for various aspects of the fatigue failure process under both constant and variable amplitude loading conditions. As a result, such techniques were of primary interest in the investigations performed. By implementing more advanced life prediction methodologies, both the overall accuracy and the correlation of fatigue

  14. Assessment of the sulfide corrosion fatigue strength for a multi-pass welded A106 Gr B steel pipe below the low SSCC limit

    International Nuclear Information System (INIS)

    Lee, Gyu Young; Bae, Dong Ho

    2009-01-01

    In the area of heavy construction, welding processes are vital in the production and maintenance of pipelines and power plants. Welding processes happen to produce residual stresses and change the metal structure as a result of the large nonlinear thermal loading that is created by a moving heat source. The fusion welding process generates formidable welding residual stresses and metallurgical change, which increase the crack driving force and reduce the resistance to the brittle fracture as well as the environmental fracture. This is a serious problem with many alloys as well as the A106 Gr B steel pipe. This pipe that is used in petrochemical and heavy chemical plants either degrades due to corrosive environments, e.g., chlorides and sulfides, and/or become damaged during service due to the various corrosion damage mechanisms. Thus, in this study, after numerically and experimentally analyzing the welding residual stress of a multi-pass welded A106 Gr B steel pipe, the sulfide stress corrosion cracking (SSCC) characteristics were assessed in a 3.5 wt.% NaCl solution that was saturated with H 2 S gas at room temperature on the basis of NACE TM 0177-90. The specimens used are of two kinds: un-notched and notched. Then, the sulfide corrosion fatigue (SCF) strength for the un-notched specimen was assessed below the low SSCC limit that was previously obtained from the SSCC tests for the notched specimen. From the results, in terms of the SSCC and SCF, all the specimens failed at the heat-affected zone, where a high welding residual stress is distributed. It was found that the low SSCC limit of un-notched specimens (σSSCCun-notched) was 46% (230 MPa) of the ultimate tensile strength (σU=502 MPa) of a multi-pass welded A106 Gr B steel pipe, and the notched specimens (σSSCCnotched) had 40% (200 MPa) of the ultimate tensile strength. Thus, it was determined that σSSCCun-notched was 13% lower than σSSCCnotched. Further, the sulfide corrosion fatigue limit (σSCFun-notched

  15. Simulation of Fatigue Crack Initiation at Corrosion Pits With EDM Notches

    Science.gov (United States)

    Smith, Stephen W.; Newman, John A.; Piascik, Robert S.

    2003-01-01

    Uniaxial fatigue tests were conducted to compare the fatigue life of laboratory produced corrosion pits, similar to those observed in the shuttle main landing gear wheel bolt-hole, and an electro-discharged-machined (EDM) flaw. EDM Jaws are used to simulate corrosion pits during shuttle wheel (dynamometer) testing. The aluminum alloy, (AA 7050) laboratory fatigue tests were conducted to simulate the local stress level contained in the wheel bolt-hole. Under this high local stress condition, the EDM notch produced a fatigue life similar to test specimens containing corrosion pits of similar size. Based on the laboratory fatigue test results, the EDM Jaw (semi-circular disc shaped) produces a local stress state similar to corrosion pits and can be used to simulate a corrosion pit during the shuttle wheel dynamometer tests.

  16. Detection and closure measurement of short fatigue crack initiated at notch root

    International Nuclear Information System (INIS)

    Lee, Jong-Hyung; Kobayashi, Hideo

    1985-01-01

    Short fatigue cracks initiated at the notch root were successfully detected at a fairly high accuracy by the ultrasonic amplitude calibration method for the notched compact specimens of an A508-3 steel. Crack closure measurements by the ultrasonic and back-face strain compliance methods were also performed. Crack growth characteristics at the notch root are similar to those of delyed retardation caused by a single peak overload. Also, transitional behavior from short cracks to long cracks was interpreted in terms of effective stress intensity ΔKsub(eff). The relation between crack growth rate da/dN and ΔKsub(eff) for short cracks shows a fairly good agreement with those for long cracks. (author)

  17. Fatigue behaviour of friction welded medium carbon steel and austenitic stainless steel dissimilar joints

    International Nuclear Information System (INIS)

    Paventhan, R.; Lakshminarayanan, P.R.; Balasubramanian, V.

    2011-01-01

    Research highlights: → Fusion welding of dissimilar metals is a problem due to difference in properties. → Solid state welding process such as friction welding is a solution for the above problem. → Fatigue life of friction welded carbon steel and stainless steel joints are evaluated. → Effect of notch on the fatigue life of friction welded dissimilar joints is reported. → Formation of intermetallic is responsible for reduction in fatigue life of dissimilar joints. -- Abstract: This paper reports the fatigue behaviour of friction welded medium carbon steel-austenitic stainless steel (MCS-ASS) dissimilar joints. Commercial grade medium carbon steel rods of 12 mm diameter and AISI 304 grade austenitic stainless steel rods of 12 mm diameter were used to fabricate the joints. A constant speed, continuous drive friction welding machine was used to fabricate the joints. Fatigue life of the joints was evaluated conducting the experiments using rotary bending fatigue testing machine (R = -1). Applied stress vs. number of cycles to failure (S-N) curve was plotted for unnotched and notched specimens. Basquin constants, fatigue strength, fatigue notch factor and notch sensitivity factor were evaluated for the dissimilar joints. Fatigue strength of the joints is correlated with microstructure, microhardness and tensile properties of the joints.

  18. Notched Strength of Woven Fabric Kenaf Composites with Different Fiber Orientations

    Directory of Open Access Journals (Sweden)

    Ahmad Hilton

    2017-01-01

    Full Text Available The awareness of implementing sustainable materials in construction industry is gaining good attention among engineers worldwide. Kenaf fibers are local renewable materials to combine with epoxy polymers matrix in producing lightweight composite materials which may replace imported synthetic fiber composites especially in developing countries. Other benefits of using kenaf fiber composites are relatively cheap, less abrasive and less hazardous during fabrication handling. Current study investigates parametric study on notched strength of woven fabric kenaf composite plates with different fiber orientations and circular hole sizes. Stress concentration occurred at the notch edge promotes to micro-damage events such as matrix cracking and fiber fracture as remote tensile loading applied. Current study showed that 0° fiber orientation gives optimum notched strength, plates with larger fiber tilting than 0° are associated with further strength reduction. Kenaf fibers give an alternative to material designers to opt woven fabric kenaf composites in low and medium load bearing applications.

  19. Strength behaviour of sintered steel from the view of design-relevant material data

    International Nuclear Information System (INIS)

    Sonsino, C.M.; Esper, F.J.; Leuze, G.

    1982-01-01

    A reliable design of sintered components and an aimed material's selection requires the knowledge of designrelevant material data as Cyclic stress-strain-curves, crack propagation and fracture toughness properties as well as statistically evaluated S-N-curves, because conventional material data as tensile strength, monotonic yield strength, elongation, area reduction and impact strength can lead to a false estimation of the material's fatigue behaviour. For this reason the powder metallurgical industry began to determine design-relevant material data on the example of the porous Fe-Cu-C- and Fe-Cu-Ni-alloys. The fatigue tests with notched specimen and different modes of loading show that porous sintered parts having mechanical notches are less sensitive to external notches than wrought steel, because crack-propagation is delayed by pores. The possibility to manufacture cyclic hardening alloys, their relative notch-insensitivity and with wrought steel comparable scatter of fatigue properties show the importance of sintered alloys as alternative materials. (orig.) [de

  20. Response of notched AS4/PEEK laminates to tension/compression loading

    Science.gov (United States)

    Simonds, Robert A.; Stinchcomb, Wayne W.

    1989-01-01

    Fatigue life, damage-initiation and propagation, and residual strength data are presently examined to ascertain the response of notched AS4/PEEK specimens to fully reversed tension/compression loading. Stiffness measurements made during the low-level fatigue history show that compression stiffness and tension stiffness degrade throughout the fatigue life. Damage to specimens fatigued at higher cyclic stresses developed primarily in the direction perpendicular to the loading. As in the case of specimens fatigued at lower stress levels, residual compressive stress decreased with damage development.

  1. Application and validation of the notch master curve in medium and high strength structural steels

    Energy Technology Data Exchange (ETDEWEB)

    Cicero, Sergio; Garcia, Tiberio [Universidad de Cantabria, Santander (Spain); Madrazo, Virginia [PCTCAN, Santander (Spain)

    2015-10-15

    This paper applies and validates the Notch master curve in two ferritic steels with medium (steel S460M) and high (steel S690Q) strength. The Notch master curve is an engineering tool that allows the fracture resistance of notched ferritic steels operating within their corresponding ductile-to-brittle transition zone to be estimated. It combines the Master curve and the Theory of critical distances in order to take into account the temperature and the notch effect respectively, assuming that both effects are independent. The results, derived from 168 fracture tests on notched specimens, demonstrate the capability of the Notch master curve for the prediction of the fracture resistance of medium and high strength ferritic steels operating within their ductile-to-brittle transition zone and containing notches.

  2. A study on the notch effect on the low cycle fatigue of metals in creep-fatigue interacting conditions at elevated temperature

    International Nuclear Information System (INIS)

    Sakane, M.; Oknami, M.

    1983-01-01

    Frequency and hold-time effects on fatigue lives of cylindrical notched specimens of SUS 316 stainless steel were studied at 600 0 C in air. From the tests, the following conclusions were obtained: Neuber's rule, as used in the ASME N-47 Code, predicts very conservatively the life of notched specimens in tests without a hold-time. But it gives a nonconservative estimate for the reduction in the life of the material by the introduction of a hold-time. An empirical formula of a ''frequency-elastic stress concentration factor modified equation'' was obtained by analysing the experimental data. It predicts accurately the life of the notched specimen tested at different frequencies

  3. IIW recommendations for the HFMI treatment for improving the fatigue strength of welded joints

    CERN Document Server

    Marquis, Gary B

    2016-01-01

    This book of recommendations presents an overview of High Frequency Mechanical Impact (HFMI) techniques existing today in the market and their proper procedures, quality assurance measures and documentation. Due to differences in HFMI tools and the wide variety of potential applications, certain details of proper treatments and quantitative quality control measures are presented generally. An example of procedure specification as a quality assurance measure is given in the Appendix. Moreover, the book presents procedures for the fatigue life assessment of HFMI-improved welded joints based on nominal stress, structural hot spot stress and effective notch stress. It also considers the extra benefit that has been experimentally observed for HFMI-treated high-strength steels. The recommendations offer proposals on the effect of loading conditions like high mean stress fatigue cycles, variable amplitude loading and large amplitude/low cycle fatigue cycles. Special considerations for low stress concentration welded...

  4. Study on deformation behavior and life evaluation method for SUS304 notched plate under bending creep fatigue loading

    International Nuclear Information System (INIS)

    Fukuda, Yoshio; Satoh, Yoshimi; Nakamura, Kazuhiro; Takahashi, Yukio; Kuwabara, Kazuo.

    1990-01-01

    Creep-fatigue tests were carried out on notched plates under cyclic bending loads out of plane at 550degC, and the local strain at the notch-root and micro crack propagation behavior were measured. Then, inelastic analysis was performed for the experiment by using three kinds of constitutive models, such as kinematic hardening, ORNL and Ohno models. From the comparison of the experiment with the results of analysis, the following conclusions were obtained. (1) Creep strain caused at the notch-root during load holding was negligibly small compared with plastic strain, so that the neighborhood of the notch-root is subjected to constrained strain type damage. (2) The strain range at the notch-root can be calculated from the results of elastic-plastic analysis for monotonic loading independent of the constitutive models used, where the cyclic stress-strain relationship was used as the material monotonic deformation property. (3) The mean strain calculated was consistent with the experimental value in case of kinematic hardening or ORNL model, while not in case of Ohno model. (4) A method for predicting the crack initiation life of a notched plate has been proposed on the basis of micro-crack propagation behavior obtained by a fundamental creep-fatigue test. (author)

  5. Influence of specimen thickness on the fatigue behavior of notched steel plates subjected to laser shock peening

    Science.gov (United States)

    Granados-Alejo, V.; Rubio-González, C.; Vázquez-Jiménez, C. A.; Banderas, J. A.; Gómez-Rosas, G.

    2018-05-01

    The influence of specimen thickness on the fatigue crack initiation of 2205 duplex stainless steel notched specimens subjected to laser shock peening (LSP) was investigated. The purpose was to examine the effectiveness of LSP on flat components with different thicknesses. For the LSP treatment a Nd:YAG pulsed laser operating at 10 Hz with 1064 nm of wavelength was used; pulse density was 2500 pulses/cm2. The LSP setup was the waterjet arrangement without sample coating. Residual stress distribution as a function of depth was determined by the hole drilling method. Notched specimens 2, 3 and 4 mm thick were LSP treated on both faces and then fatigue loading was applied with R = 0.1. Experimental fatigue lives were compared with life predictions from finite element simulation. A good comparison of the predicted and experimental fatigue lives was observed. LSP finite element simulation helps in explaining the influence of thickness on fatigue lives in terms of equivalent plastic strain distribution variations associated with the change in thickness. It is demonstrated that specimen size effect is an important issue in applying LSP on real components. Reducing the specimen thickness, the fatigue life improvement induced by LSP is significantly increased. Fatigue life extension up to 300% is observed on thin specimens with LSP.

  6. Tensile strength and fatigue strength of 6061 aluminum alloy friction welded joints

    Energy Technology Data Exchange (ETDEWEB)

    Ochi, H.; Tsujino, R. [Osaka Inst. of Tech., Asahi-ku Osaka (Japan); Sawai, T. [Osaka Sangyo Univ., Daito (Japan); Yamamoto, Y. [Setsunan Univ., Neyagawa (Japan); Ogawa, K. [Osaka Prefecture Univ., Sakai (Japan); Suga, Y. [Keio Univ., Kohoku-ku, Yokohama (Japan)

    2002-07-01

    Friction welding of 6061 aluminum alloy was carried out in order to examine the relationship between deformation heat input in the upset stage and joint performance. The joint performance was evaluated by tensile testing and fatigue testing. Stabilized tensile strength was obtained when the deformation heat input in the upset stage exceeded 200 J/s. Weld condition at the weld interface and the width of softened area affected fatigue strength more than tensile strength. That is, when the weld condition at the weld interface is good and the softened area is wide, fatigue strength increases. On the other hand, when the weld condition at the weld interface is good and the softened area is narrow, and when the weld condition at the weld interface is somewhat poor in spite of the wide softened area, fatigue strength decreases. The fatigue limit obtained by the fatigue testing revealed that, when the deformation heat input in the upset stage exceeded a certain value, sound joints could be produced. (orig.)

  7. Fatigue strength of socket welded pipe joint

    International Nuclear Information System (INIS)

    Iida, K.; Matsuda, F.; Sato, M.; Higuchi, M.; Nakagawa, A.

    1994-01-01

    Fully reversed four point bending fatigue tests were carried out of small diameter socket welded joints made of carbon steels. Experimental parameters are pipe diameter, thickness of pipe and socket wall, throat depth and shape of fillet welds, slip-on and diametral gaps in the socket welding, lack of penetration at the root of fillet welds, and peening of fillet welds. In most cases a fatigue crack started from the root of the fillet, but in the case of higher stress amplitude, it tended to start from the toe of fillet. The standard socket welded joint of 50 mm diameter showed relatively low fatigue strength, 46 MPa in stress amplitude at the 10 7 cycles failure life. This value corresponds to about 1/5 of that of the smoothed base metal specimens in axial fatigue. The fatigue strength showed decrease with increasing pipe diameter, and increase with increasing the thickness of pipe and socket wall. The effects of throat depth and shape of fillet welds on fatigue strength were not significant. Contrary to the expectation, the fatigue strength of the socket welded joint without slip-on gap is higher than that of the joint with the normal gap. A lack of penetration at the root deleteriously reduced fatigue strength, showing 14 MPa in stress amplitude at the 10 7 cycles failure life for the 50 mm diameter socket joint. (orig.)

  8. Analysis of the Mechanical Behavior, Creep Resistance and Uniaxial Fatigue Strength of Martensitic Steel X46Cr13

    Science.gov (United States)

    Brnic, Josip; Krscanski, Sanjin; Lanc, Domagoj; Brcic, Marino; Turkalj, Goran; Canadija, Marko; Niu, Jitai

    2017-01-01

    The article deals with the analysis of the mechanical behavior at different temperatures, uniaxial creep and uniaxial fatigue of martensitic steel X46Cr13 (1.4034, AISI 420). For the purpose of considering the aforementioned mechanical behavior, as well as determining the appropriate resistance to creep and fatigue strength levels, numerous uniaxial tests were carried out. Tests related to mechanical properties performed at different temperatures are presented in the form of engineering stress-strain diagrams. Short-time creep tests performed at different temperatures and different stress levels are presented in the form of creep curves. Fatigue tests carried out at stress ratios R=0.25 and R=−1 are shown in the form of S–N (fatigue) diagrams. The finite fatigue regime for each of the mentioned stress ratios is modeled by an inclined log line, while the infinite fatigue regime is modeled by a horizontal line, which represents the fatigue limit of the material and previously was calculated by the modified staircase method. Finally, the fracture toughness has been calculated based on the Charpy V-notch impact energy. PMID:28772749

  9. Surface Studies of Ultra Strength Drilling Steel after Corrosion Fatigue in Simulated Sour Environment

    Energy Technology Data Exchange (ETDEWEB)

    M. Ziomek-Moroz; J.A. Hawk; R. Thodla; F. Gui

    2012-05-06

    The Unites States predicted 60% growth in energy demand by 2030 makes oil and natural gas primary target fuels for energy generation. The fact that the peak of oil production from shallow wells (< 5000 m) is about to be reached, thereby pushing the oil and natural gas industry into deeper wells. However, drilling to depths greater than 5000 m requires increasing the strength-to weight ratio of the drill pipe materials. Grade UD-165 is one of the ultra- high yield strength carbon steels developed for ultra deep drilling (UDD) activities. Drilling UDD wells exposes the drill pipes to Cl{sup -}, HCO{sub 3}{sup -}/CO{sub 3}{sup 2-}, and H{sub 2}S-containig corrosive environments (i.e., sour environments) at higher pressures and temperatures compared to those found in conventional wells. Because of the lack of synergism within the service environment, operational stresses can result in catastrophic brittle failures characteristic for environmentally assisted cracking (EAC). Approximately 75% of all drill string failures are caused by fatigue or corrosion fatigue. Since there is no literature data on the corrosion fatigue performance of UD-165 in sour environments, research was initiated to better clarify the fatigue crack growth (FCGR) behavior of this alloy in UDD environments. The FCGR behavior of ultra-strength carbon steel, grade UD-165, was investigated by monitoring crack growth rate in deaerated 5%NaCl solution buffered with NaHCO{sub 3}/Na{sub 2}CO{sub 3} and in contact with H{sub 2}S. The partial pressure of H{sub 2}S (p{sub H2S}) was 0.83 kPa and pH of the solution was adjusted by NaOH to 12. The fatigue experiments were performed at 20 and 85 C in an autoclave with surface investigations augmented by scanning electron microscopy (SEM) and energy dispersive x-ray (EDX) spectroscopy. In this study, research focused on surface analyses supported by the fatigue crack growth rate measurements. Fig. 1 shows an SEM micrograph of the crack that propagated from the

  10. Investigating the effect of clamping force on the fatigue life of bolted plates using volumetric approach

    International Nuclear Information System (INIS)

    Esmaeili, F.; Chakherlou, T. N.; Zehsaz, M.; Hasanifard, S.

    2013-01-01

    In this paper, the effects of bolt clamping force on the fatigue life for bolted plates made from Al7075-T6 have been studied on the values of notch strength reduction factor obtained by volumetric approach. To attain stress distribution around the notch (hole) which is required for volumetric approach, nonlinear finite element simulations were carried out. To estimate the fatigue life, the available smooth S-N curve of Al7075-T6 and the notch strength reduction factor obtained from volumetric method were used. The estimated fatigue life was compared with the available experimental test results. The investigation shows that there is a good agreement between the life predicted by the volumetric approach and the experimental results for various specimens with different amount of clamping forces. Volumetric approach and experimental results showed that the fatigue life of bolted plates improves because of the compressive stresses created around the plate hole due to clamping force.

  11. Corrosion fatigue of high strength fastener materials in seawater

    Science.gov (United States)

    Tipton, D. G.

    1983-12-01

    Environmental effects which significantly reduce the fatigue life of metals are discussed. Corrosion fatigue is a major concern in the engineering application of high strength fasteners in marine environments. The corrosion fatigue failure of an AISI 41L4O high strength steel blade to hub attachment bolt at the MOD-OA 200 kW wind turbine generator was investigated. The reduction of fatigue strength of AISI 41L4O in marine environments and to obtain similar corrosion fatigue data for candidate replacement materials was studied. The AISI 4140, PH 13-8Mo stainless steel, alloy 718 and alloy MP-35N were tested in axial fatigue at a frequency of 20 Hz in dry air and natural seawater. The fatigue data are fitted by regression equations to allow determination of fatigue strength for a given number of cycles to failure.

  12. Fatigue strength degradation of metals in corrosive environments

    Science.gov (United States)

    Adasooriya, N. D.; Hemmingsen, T.; Pavlou, D.

    2017-12-01

    Structures exposed to aggressive environmental conditions are often subjected to time-dependent loss of coating and loss of material due to corrosion; this causes reduction in the cross-sectional properties of the members, increased surface roughness, surface irregularities and corrosion pits, and degradation of material strengths. These effects have been identified and simulated in different research studies. However, time and corrosive media dependent fatigue strength curves for materials have not been discussed in the design or assessment guidelines for structures. This paper attempts to review the corrosion degradation process and available approaches/models used to determine the fatigue strength of corroded materials and to interpolate corrosion deterioration data. High cycle fatigue and full range fatigue life formulae for fatigue strength of corroded materials are proposed. The above formulae depend on the endurance limit of corroded material, in addition to the stress-life fatigue curve parameters of the uncorroded material. The endurance limit of corroded material can either be determined by a limited number of tests in the very high-cycle fatigue region or predicted by an analytical approach. Comparison with experimentally measured corrosion fatigue behavior of several materials is provided and discussed.

  13. A comparison of conventional local approach and the short crack approach to fatigue crack initiation at a notch

    Energy Technology Data Exchange (ETDEWEB)

    Ranganathan, Narayanaswami; Leroy, Rene; Tougui, Abdellah [Laboratoire de Mecanique et Rheologie, Universite Francois Rabelais de Tours, Polytech Tours, Departement Mecanique et Conception de Systemes, Tours (France)

    2009-09-15

    Methods to estimate fatigue crack initiation life at a notch tip are compared. The methods used determine the strain amplitudes at the notch tip using Neuber's or Glinka's approximation. In conventional approaches, equivalent-damage levels are determined, using appropriate strain-life relationships coupled with damage-summation models. In the short-crack approach, a crack-like defect is assumed to exist at the notch tip. It is shown that the short-crack concept can be successfully applied to predict crack-initiation behavior at a notch. Model predictions are compared with carefully designed experiments. It is shown that model predictions are very close to experimentally measured lives under an aircraft-wing loading spectrum. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  14. Flexural fracture and fatigue behavior of steel-fiber-reinforced concrete structures

    International Nuclear Information System (INIS)

    Chang, D.I.

    1995-01-01

    Fracture and fatigue tests were performed in order to investigate the fracture and fatigue behavior of steel-fibre-reinforced concrete (SFRC) structures. 33 SFRC beams were used in the fracture and fatigue tests. The relationship between loading, strain and midspan deflection of the beams was observed under the three-point loading system.From the test results, the effects of the fiber content, fiber aspect ratio and notch-to-depth ratio on the concrete fracture and fatigue behavior were studied, and the fatigue strengths of SFRC beams were calculated. According to the regression technique, some empirical formulae for predicting the fatigue strength of SFRC beams were also suggested. (orig.)

  15. Simplified elastoplastic methods of analysing fatigue in notches

    International Nuclear Information System (INIS)

    Autrusson, B.

    1993-01-01

    The aim of this study is to show the state of the art concerning methods of mechanical analysis available in the literature for evaluating notch root elastoplastic strain. The components of fast breeder reactors are subjected to numerous thermal transients, which can cause fatigue failure. To prevent this from happening, it is necessary to know the local strain range and to use it to estimate the number of cycles to crack initiation. Practical methods have been developed for the calculation of the local strain range, and have led to the drafting of design rules. Direct methods of determining the local strain range of the 'inelastic analysis' type have also been described. In conclusion a series of recommendations is made on the applicability and the conservatism of these methods

  16. Effect of strain rate and notch geometry on tensile properties and fracture mechanism of creep strength enhanced ferritic P91 steel

    Science.gov (United States)

    Pandey, Chandan; Mahapatra, M. M.; Kumar, Pradeep; Saini, N.

    2018-01-01

    Creep strength enhanced ferritic (CSEF) P91 steel were subjected to room temperature tensile test for quasi-static (less than 10-1/s) strain rate by using the Instron Vertical Tensile Testing Machine. Effect of different type of notch geometry, notch depth and angle on mechanical properties were also considered for different strain rate. In quasi-static rates, the P91 steel showed a positive strain rate sensitivity. On the basis of tensile data, fracture toughness of P91 steel was also calculated numerically. For 1 mm notch depth (constant strain rate), notch strength and fracture toughness were found to be increased with increase in notch angle from 45° to 60° while the maximum value attained in U-type notch. Notch angle and notch depth has found a minute effect on P91 steel strength and fracture toughness. The fracture surface morphology was studied by field emission scanning electron microscopy (FESEM).

  17. Three-point bending fatigue behavior of WC–Co cemented carbides

    International Nuclear Information System (INIS)

    Li, Anhai; Zhao, Jun; Wang, Dong; Gao, Xinliang; Tang, Hongwei

    2013-01-01

    Highlights: ► Mechanical fatigue tests were conducted on a specific designed jig. ► Three-point bending fatigue behavior of WC–Co cemented carbides was studied. ► Fatigue mechanisms of WC–Co cemented carbides with different WC grain sizes and Co binder contents were revealed. -- Abstract: WC–Co cemented carbides with different WC grain sizes and Co binder contents were sintered and fabricated. The three-point bending specimens with a single edge notch were prepared for tests. In the experiments, the mechanical properties of materials were investigated under static and cyclic loads (20 Hz) in air at room temperature. The fatigue behaviors of the materials under the same applied loading conditions are presented and discussed. Optical microscope and scanning electron microscopy were used to investigate the micro-mechanisms of damage during fatigue, and the results were used to correlate with the mechanical fatigue behavior of WC–Co cemented carbides. Experimental results indicated that the fatigue fracture surfaces exhibited more fracture origins and diversification of crack propagation paths than the static strength fracture surfaces. The fatigue fracture typically originates from inhomogeneities or defects such as micropores or aggregates of WC grains near the notch tip. Moreover, due to the diversity and complexity of the fatigue mechanisms, together with the evolution of the crack tip and the ductile deformation zone, the fatigue properties of WC–Co cemented carbides were largely relevant with the combination of transverse rupture strength and fracture toughness, rather than only one of them. Transverse rupture strength dominated the fatigue behavior of carbides with low Co content, whilst the fatigue behavior of carbides with high Co content was determined by fracture toughness.

  18. Fatigue Strength of Titanium Risers - Defect Sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Babalola, Olusegun Tunde

    2001-07-01

    This study is centred on assessment of the fatigue strength of titanium fusion welds for deep-water riser's applications. Deep-water risers are subjected to significant fatigue loading. Relevant fatigue data for titanium fusion welds are very scarce. Hence there is a need for fatigue data and life prediction models for such weldments. The study has covered three topics: Fatigue testing, Fractography and defect assessment, and Fracture Mechanics modelling of fatigue crack growth. Two series of welded grade of titanium consisting of 14 specimens in each series were fatigue tested under constant amplitude loading. Prior to fatigue testing, strain gauge measurements of some specimens was conducted to enable the definition of stress range in the fatigue assessment procedure. The results were compared with finite solid element analysis and related to fatigue stresses in a riser pipe wall. Distribution and geometry of internal and surface defects both in the as-welded and in the post-weld machined conditions were assessed using fractography. This served as a tool to determine the fatigue initiation point in the welds. Fracture mechanics was applied to model fatigue strength of titanium welds with initiation from weld defects. Two different stress intensity factor formulations for embedded eccentrically placed cracks were used for analysis of elliptical cracks with the major axis parallel and close to one of the free surfaces. The methods were combined to give a satisfactory model for crack growth analysis. The model analyses crack growth of elliptical and semi-elliptical cracks in two directions, with updating of the crack geometry. Fatigue strength assessment was conducted using two crack growth models, the Paris-Erdogan relation with no threshold and the Donahue et al. relation with an implied threshold. The model was validated against experimental data, with a discussion on the choice of crack growth model. (author)

  19. Fatigue strength depending on position of cracks for weldments

    International Nuclear Information System (INIS)

    Lee, Hae Woo; Park, Won Jo

    2006-01-01

    This is a study of fatigue strength of weld deposits with transverse cracks in plate up to 50 mm thick. It is concerned with the fatigue properties of welds already with transverse cracks. A previous study of transverse crack occurrence, location and microstructure in accordance with welding conditions was published in the Welding Journal (Lee et al., 1998). A fatigue crack develops as a result of stress concentration and extends with each load cycle until fatigue occurs, or until the cyclic loads are transferred to redundant members. The fatigue performance of a member is more dependent on the localized state of stress than the static strength of the base metal or the weld metal. Fatigue specimens were machined to have transverse cracks located on the surface and inside the specimen. Evaluation of fatigue strength depending on location of transverse cracks was then performed. When transverse cracks were propagated in a quarter-or half-circle shape, the specimen broke at low cycle in the presence of a surface crack. However, when the crack was inside the specimen, it propagated in a circular or elliptical shape and the specimen showed high fatigue strength, enough to reach the fatigue limit within tolerance of design stresses

  20. Rotating bending fatigue strength evaluation of ceramic materials

    International Nuclear Information System (INIS)

    Govila, R.K.; Swank, L.R.

    1995-01-01

    Cyclic fatigue under rotary bending tests were conducted on partially stabilized zirconia (PSZ) from NGK and Nilsen, and silicon nitride from NGK and Norton. Fractography was performed on the failed specimens to determine the fracture structure and morphology. The results showed that the cyclic fatigue fracture was the same as the fracture structure previously observed in bending tests. The cyclic fatigue data indicated that structural ceramic could function in fatigue stress levels at a higher percentage of their average fast fracture strength than the fifty percent of ultimate strength used for wrought steels

  1. Fatigue-creep life prediction for a notched specimen of 2[1]/[4]Cr-1Mo steel at 600 C

    International Nuclear Information System (INIS)

    Inoue, Tatsuo; Sakane, Masao; Fukuda, Yoshio; Igari, Toshihide; Miyahara, Mitsuo; Okazaki, Masakazu

    1994-01-01

    This paper presents the life prediction of 2[1]/[4]Cr-1Mo notched specimens subjected to fast-fast, slow-slow and hold-time loadings at 600 C. The crack initiation lives of notched specimens were estimated based on the local stress-strain calculated by inelastic finite element analyses. For the life prediction, combinations of seven different constitutive models and five fatigue-creep damage laws were used. The applicability of the constitutive model and damage law is discussed. The constitutive models predict similar stress-strain relations at the notch root, leading to similar predicted lives. The damage model, however, has a much larger influence on the life prediction. ((orig.))

  2. Re-analysis of fatigue data for welded joints using the notch stress approach

    DEFF Research Database (Denmark)

    Pedersen, Mikkel Melters; Mouritsen, Ole Ø.; Hansen, Michael Rygaard

    2010-01-01

    Experimental fatigue data for welded joints have been collected and subjected to re-analysis using the notch stress approach according to IIW recommendations. This leads to an overview regarding the reliability of the approach, based on a large number of results (767 specimens). Evidently......-welded joints agree quite well with the FAT 225 curve; however a reduction to FAT 200 is suggested in order to achieve approximately the same safety as observed in the nominal stress approach....

  3. Measurement of the yield and tensile strengths of neutron-irradiated and post-irradiation recovered vessel steels with notched specimens

    International Nuclear Information System (INIS)

    Valiente, A.

    1996-01-01

    Tensile circumferentially notched bars are examined as test specimens for measuring the yield and tensile strengths of nuclear pressure vessel steels under several conditions of irradiation and temperature that a vessel can experience during its service life, including recovery post-irradiation treatment. For all the vessel steels, notch geometries and conditions explored, it has been found that notched specimens fail by plastic collapse, and simple formulae have been derived that allow the yield and tensile strengths to be determined from the yielding and plastic collapse load of a notched specimen. Values measured in this way show good agreement with those measured by the standard tensile test method. (orig.)

  4. Small Crack Growth and Fatigue Life Predictions for High-Strength Aluminium Alloys. Part 1; Experimental and Fracture Mechanics Analysis

    Science.gov (United States)

    Wu, X. R.; Newman, J. C.; Zhao, W.; Swain, M. H.; Ding, C. F.; Phillips, E. P.

    1998-01-01

    The small crack effect was investigated in two high-strength aluminium alloys: 7075-T6 bare and LC9cs clad alloy. Both experimental and analytical investigations were conducted to study crack initiation and growth of small cracks. In the experimental program, fatigue tests, small crack and large crack tests A,ere conducted under constant amplitude and Mini-TWIST spectrum loading conditions. A pronounced small crack effect was observed in both materials, especially for the negative stress ratios. For all loading conditions, most of the fatigue life of the SENT specimens was shown to be crack propagation from initial material defects or from the cladding layer. In the analysis program, three-dimensional finite element and A weight function methods were used to determine stress intensity factors and to develop SIF equations for surface and corner cracks at the notch in the SENT specimens. A plastisity-induced crack-closure model was used to correlate small and large crack data, and to make fatigue life predictions, Predicted crack-growth rates and fatigue lives agreed well with experiments. A total fatigue life prediction method for the aluminum alloys was developed and demonstrated using the crack-closure model.

  5. On short cracks that depart from elastoplastic notch tips

    Directory of Open Access Journals (Sweden)

    Verônica Miquelin Machado

    2017-07-01

    Full Text Available The behavior of short cracks that depart from elastoplastic notch tips is modeled to estimate the stresses required to initiate and to propagate cracks in notched structural components, and to evaluate the size of tolerable crack-like defects under general loading conditions. This analysis can model both fatigue and environmentally assisted cracking problems; can evaluate notch sensitivity in both cases; and can as well be used to establish design or acceptance criteria for tolerable non-propagating crack-like defects in such cases. The growth of short cracks is assumed driven by the applied stresses and by the stress gradient ahead the notch tip, and supported by the material resistances to crack initiation and to long crack propagation by fatigue or EAC. In the elastoplastic case, the stress gradient ahead of the notch tip is quantified by a J-field to consider the short crack behavior. The tolerable short crack predictions made by this model are evaluated by suitable fatigue and EAC tests of notched specimens specially designed to start nonpropagating cracks from the notch tips, both under elastic and elastoplastic conditions.

  6. Notched Strength of Woven Fabric Kenaf Composite Plates with Different Stacking Sequences and Hole Sizes

    Directory of Open Access Journals (Sweden)

    Hans Romayne Anders

    2016-01-01

    Full Text Available Advantages of using kenaf fibres over synthetic fibres in composites manufacturing are relatively cheap, less abrasive and hazardous during handling, and renewable materials. Current work investigates parametric effects on notched strength of woven fabric kenaf polymer composites plates with variation of lay-up types, notch sizes and plate thickness. Testing coupons are prepared using hand lay-up technique and circular notch were drilled prior to mechanical testing. Stress concentration at the notch edge promotes micro-damage event as tensile loading was applied leading to crack initiation and propagations across the plate width. It is suggested that woven fabric kenaf polymer composites are potentially used in low and medium load bearing applications.

  7. The effect of electric discharge machined notches on the fracture toughness of several structural alloys

    International Nuclear Information System (INIS)

    Joyce, J.A.; Link, R.E.

    1993-09-01

    Recent computational studies of the stress and strain fields at the tip of very sharp notches have shown that the stress and strain fields are very weakly dependent on the initial geometry of the notch once the notch has been blunted to a radius that is 6 to 10 times the initial root radius. It follows that if the fracture toughness of a material is sufficiently high so that fracture initiation does not occur in a specimen until the crack-tip opening displacement (CTOD) reaches a value from 6 to 10 times the size of the initial notch tip diameter, then the fracture toughness will be independent of whether a fatigue crack or a machined notch served as the initial crack. In this experimental program the fracture toughness (J Ic and J resistance (J-R) curve, and CTOD) for several structure alloys was measured using specimens with conventional fatigue cracks and with EDM machined notches. The results of this program have shown, in fact, that most structural materials do not achieve initiation CTOD values on the order of 6 to 10 times the radius of even the smallest EDM notch tip presently achievable. It is found furthermore that tougher materials do not seem to be less dependent on the type of notch tip present. Some materials are shown to be much more dependent on the type of notch tip used, but no simple pattern is found that relates this observed dependence to the material strength toughness, or strain hardening rate

  8. Fatigue damage mechanics of notched graphite-epoxy laminates

    Science.gov (United States)

    Spearing, Mark; Beaumont, Peter W. R.; Ashby, Michael F.

    A modeling approach is presented that recognizes that the residual properties of composite laminates after any form of loading depend on the damage state. Therefore, in the case of cyclic loading, it is necessary to first derive a damage growth law and then relate the residual properties to the accumulated damage. The propagation of fatigue damage in notched laminates is investigated. A power law relationship between damage growth and the strain energy release rate is developed. The material constants used in the model have been determined in independent experiments and are invariant for all the layups investigated. The strain energy release rates are calculated using a simple finite element representation of the damaged specimen. The model is used to predict the effect of tension-tension cyclic loading on laminates of the T300/914C carbon-fiber epoxy system. The extent of damage propagation is successfully predicted in a number of cross-ply laminates.

  9. Fatigue strength of repaired cracks in welded connections made of very high strength steels

    NARCIS (Netherlands)

    Akyel, A.

    2017-01-01

    For cyclically loaded structures, fatigue design becomes one of the important design criteria. The state of art shows that with modification of the conventional structural design methodology, the use of very high strength steels may have a positive effect on fatigue strength of welded connections.

  10. Review on fatigue behavior of high-strength concrete after high temperature

    Science.gov (United States)

    Zhao, Dongfu; Jia, Penghe; Gao, Haijing

    2017-06-01

    The fatigue of high-strength concrete after high temperature has begun to attract attention. But so far the researches work about the fatigue of high-strength concrete after high temperature have not been reported. This article based on a large number of literature. The research work about the fatigue of high-strength concrete after high temperature are reviewed, analysed and expected, which can provide some reference for the experimental study of fatigue damage analysis.

  11. Comparative study on the welded structure fatigue strength assessment method

    Science.gov (United States)

    Hu, Tao

    2018-04-01

    Due to the welding structure is widely applied in various industries, especially the pressure container, motorcycle, automobile, aviation, ship industry, such as large crane steel structure, so for welded structure fatigue strength evaluation is particularly important. For welded structure fatigue strength evaluation method mainly has four kinds of, the more from the use of two kinds of welded structure fatigue strength evaluation method, namely the nominal stress method and the hot spot stress evaluation method, comparing from its principle, calculation method for the process analysis and research, compare the similarities and the advantages and disadvantages, the analysis of practical engineering problems to provide the reference for every profession and trade, as well as the future welded structure fatigue strength and life evaluation method put forward outlook.

  12. Strength of interface in stainless clad steels

    International Nuclear Information System (INIS)

    Ohji, Kiyotsugu; Nakai, Yoshikazu; Hashimoto, Shinji

    1990-01-01

    Mechanical tests were conducted on four kinds of stainless clad steels to establish test methods for determining crack growth resistance of bimaterial interface. In tension tests, smooth specimens and shallow notched specimens were employed. In these tests, all of the smooth specimens were broken in carbon steel, not along the bimaterial interface. On the other hand, most of the shallow notched specimens were broken along the interface, when the notch root was located at the interface. Therefore, the shallow notched specimens were suitable for estimating the strength of the interface in tension tests. For fracture toughness tests, chevron notched specimens are recommended, since pre-fatigue cracks were susceptible to initiate and grow in carbon steel for conventional straight notched specimens. In fatigue crack growth tests, side-grooved and non-side-grooved specimens were employed. Although the side-grooves were machined so that the minimum cross-sectional plane of the specimens coincided with the plane of the bimaterial interface, cracks did not always propagate along the interface. Therefore, the side-grooves were judged not to be effective for cracks to propagate along the bimaterial interface. Both in fracture toughness tests and fatigue tests, the crack growth resistance along bimaterial interface was much lower than the resistance of matrix steels. In all of the mechanical tests conducted, the crack growth resistance along the interface was higher for the normalized material than that for the as-rolled material. The nickel foil inserted between carbon steel and stainless steel improved the growth resistance of interfacial cracks. (author)

  13. Fatigue life of high strength steel for cold forming

    Directory of Open Access Journals (Sweden)

    R. Ulewicz

    2017-01-01

    Full Text Available The article presents the results of fatigue tests carried out on STRENX-type high-strength cold forming steel. For high-cycle fatigue tests carried out using low cycle loading frequencies of around 30 Hz, a ROTOFLEX machine was used. For ultra high-cycle tests, a KAUP-ZU testing machine was employed, which enables fatigue tests to be performed with symetric specimen loading (R = -1 and at a frequency of f ≈ 20 kHz. The relationships σa = f(N were determined experimentally in the high and ultra high-cycle region for STRENX high-strength steel. To determine the fatigue crack initiation mechanism, the fractographic analysis of fatigue fractures was made.

  14. A study on damage and fatigue characteristics of plain woven carbon fiber reinforced composite material(I)

    International Nuclear Information System (INIS)

    Kim, Kwang Soo; Kim, Sang Tae

    1993-01-01

    The characteristics of damage and fatigue subjected to tensile fatigue loading in plain woven carbon fiber reinforced composite material were studied. Constant amplitude load of 90% stress of notch strength was applied to each specimen, which had different initial notch length, and crack dectectvie compliance curve was determined form load-displacement data. The effective crack length(a eff ) was obtained form this compliance curve and the effective crack growth could be divided to three-steps and explained separately. After cycling the shape of fatigue crack was observed by S.E.M.. Change of elastic modulus(E N ) during fatigue cycle was explained by repeated sudden-death medel. The material constant determined by Jen-Hsu model was more useful to evaluate damage than Wang-Chim model. (Author)

  15. Corrosion fatigue of steels

    International Nuclear Information System (INIS)

    Spaehn, H.; Wagner, G.H.

    1976-01-01

    Corrosion fatigue phenomena can be classified into two main groups according to the electrochemical state of the metal surface in the presence of electrolytes: the active and the passive state with an important sub-group of corrosion fatigue in the unstable passive state. The allowable stress for structures exposed to the conjoint action of corrosion and fatigue is influenced by many factors: kind of media, number of cycles, frequency, mean stress, size, notches, loading mode, alloy composition and mechanical strength. A critical literature review shows contradictory results if a classification by the electrochemical surface state is not applied. Case histories and counter measures illustrate the practical importance of corrosion fatigue in many branches of industry as well as the urgent need for a better knowledge about the mutual influence of the phenomena to get rules by which the engineer can appraise the risk of corrosion fatigue. (orig.) [de

  16. Effects of small defects and nonmetallic inclusions on the fatigue strength of metals

    International Nuclear Information System (INIS)

    Murakami, Y.

    1991-01-01

    The equation for predicting the effects of artificial small defects on the fatigue strength of metals is introduced, and it is applied to the quantitative evaluation of the effects of nonmetallic inclusions on the fatigue strength of high-strength steels. The importance of the concept that nonmetallic inclusions are virtually equivalent to defects, from the viewpoint of fatigue strength and, more practically, are equivalent to small cracks is emphasized. It is shown that nonmetallic inclusions cause relatively low-fatigue strength and large scatter of the fatigue strength of steels with high static strength or high hardness. The statistics of extreme values is used to estimate the expected maximum size of nonmetallic inclusions contained in a definite number of specimens. The lower limit of scatter in the fatigue strength of a high-strength steel is obtained by using the prediction equation for small defects together with the expected maximum size of nonmetallic inclusions

  17. IMPROVEMENT OF FATIGUE STRENGTH OF TIN BABBITT BY REINFORCING WITH NANO ILMENITE

    Directory of Open Access Journals (Sweden)

    M. V. S. BABU

    2017-08-01

    Full Text Available Tin Babbitt is an idle journal bearing material, its fatigue strength limits and its usage. To enhance its fatigue strength, in this paper a Tin Babbitt metal matrix is reinforced with nano Ilmenite. The metal matrix nanocomposite was fabricated by using ultrasonic assisted stir casting technique. ASTM standards in statistical planning for fatigue testing were employed in planning the fatigue tests. Fatigue tests were conducted at three stress levels, i.e., 0.9 UTS, 0.7 UTS and 0.5 UTS. Tests were conducted on a rotating-beam type fatigue testing machine. It was observed that the nano Ilmenite reinforcement enhanced the fatigue strength of Tin Babbitt.

  18. Small fatigue cracks; Proceedings of the Second International Conference/Workshop, Santa Barbara, CA, Jan. 5-10, 1986

    Energy Technology Data Exchange (ETDEWEB)

    Ritchie, R.O.; Lankford, J.

    1986-01-01

    Topics discussed in this volume include crack initiation and stage I growth, microstructure effects, crack closure, environment effects, the role of notches, analytical modeling, fracture mechanics characterization, experimental techniques, and engineering applications. Papers are presented on fatigue crack initiation along slip bands, the effect of microplastic surface deformation on the growth of small cracks, short fatigue crack behavior in relation to three-dimensional aspects and the crack closure effect, the influence of crack depth on crack electrochemistry and fatigue crack growth, and nondamaging notches in fatigue. Consideration is also given to models of small fatigue cracks, short crack theory, assessment of the growth of small flaws from residual strength data, the relevance of short crack behavior to the integrity of major rotating aero engine components, and the relevance of short fatigue crack growth data to the durability and damage tolerance analyses of aircraft.

  19. Fatigue in Welded High-Strength Steel Plate Elements under Stochastic Loading

    DEFF Research Database (Denmark)

    Agerskov, Henning; Petersen, R.I.; Martinez, L. Lopez

    1999-01-01

    The present project is a part of an investigation on fatigue in offshore structures in high-strength steel. The fatigue life of plate elements with welded attachments is studied. The material used has a yield stress of ~ 810-840 MPa, and high weldability and toughness properties. Fatigue test...... series with constant amplitude loading and with various types of stochastic loading have been carried through on test specimens in high-strength steel, and - for a comparison - on test specimens in conventional offshore structural steel with a yield stress of ~ 400-410 MPa.A comparison between constant...... amplitude and variable amplitude fatigue test results shows shorter fatigue lives in variable amplitude loading than should be expected from the linear fatigue damage accumulation formula. Furthermore, in general longer fatigue lives were obtained for the test specimens in high-strength steel than those...

  20. The Effect of Numerical 2D and 3D Fem Element Modelling on Strain and Stress Distributions at Laser Weld Notches in Steel Sandwich Type Panels

    Directory of Open Access Journals (Sweden)

    Niklas Karol

    2018-03-01

    Full Text Available Like other means of transport, merchant ships face the problem of increasing requirements concerning the environment protection, which, among other issues, implies the reduction of fuel consumption by the ship. Here, the conventional approach which consists in making use of higher strength steels to decrease the mass of the ship hull can be complemented by the use of new steel structures of sandwich panel type. However, the lack of knowledge and experience concerning, among other issues, fatigue strength assessment of thin-walled sandwich structures makes their use limited. Untypical welds imply the need for individual approach to the fatigue analysis. The article presents the effect of numerical FEM modelling with the aid of two-dimensional (2D and three-dimensional (3D elements on the results of strain and stress distributions in the areas of toe and root notches of the analysed laser weld. The presented results of computer simulation reveal that modelling of strain and stress states in 2D (instead of full 3D affects only the results in close vicinity of the notch, and the observed differences rapidly disappear at a distance of 0.05 mm from the bottom of the notch. The obtained results confirm the possibility of use of numerically effective 2D strain and stress state models for analysing the fatigue strength of laser weld according to local approach.

  1. Eddy current standards - Cracks versus notches

    Science.gov (United States)

    Hagemaier, D. J.; Collingwood, M. R.; Nguyen, K. H.

    1992-10-01

    Eddy current tests aimed at evaluating cracks and electron-discharge machined (EDM) notches in 7075-T6 aluminum specimens are described. A comparison of the shape and amplitude of recordings made from both transverse and longitudinal scans of small EDM notches and fatigue cracks showd almost identical results. The signal amplitude and phase angle increased with an increase of EDM notch and crak size. It is concluded that equivalent eddy current results obtained from similar-size surface cracks and notches in aluminum can be used to establish a desired sensitivity level for inspection.

  2. Microstructure, Mechanical, and Fatigue Strength of Ti-54M Processed by Rotary Swaging

    Science.gov (United States)

    Al-Khazraji, Hasan; El-Danaf, Ehab; Wollmann, Manfred; Wagner, Lothar

    2015-05-01

    TIMETAL 54M is a newly developed (α + β) titanium alloy with nominal composition Ti-5Al-4V-0.6Mo-0.4Fe. The alloy can provide a cost benefit over Ti-6Al-4V due to improved machinability and formability. In the present work, evolution of mechanical properties in terms of tensile and hardness values is investigated as a function of deformation degrees imposed via rotary swaging (RS). Microstructure, mechanical properties, and fatigue performance of Ti-54M are investigated after severe plastic deformation by RS conducted at 850 °C and after being subjected to two different post-swaging annealing conditions. Optical microscopy and scanning electron microscopy using electron back scatter diffraction were utilized to document the evolution of the microstructure. Tensile tests were conducted to characterize mechanical properties. RS, to a true strain of 3.0, is found to lead to a marked ultrafine-grained structure of about 1 μm grain size with low content of high angle grain boundaries (HAGBs). Post-swaging heat treatment at 800 °C followed by air cooling did not change the grain size but exhibited high content of HAGBs. Post-swaging heat treatment at 940 °C followed by furnace cooling resulted in a grain size of about 5 μm and enhanced work-hardening capability and ductility, which resulted in less fatigue notch sensitivity, but at the same time lower fatigue strength at 107 cycles.

  3. Fatigue Strength Estimation Based on Local Mechanical Properties for Aluminum Alloy FSW Joints

    Directory of Open Access Journals (Sweden)

    Kittima Sillapasa

    2017-02-01

    Full Text Available Overall fatigue strengths and hardness distributions of the aluminum alloy similar and dissimilar friction stir welding (FSW joints were determined. The local fatigue strengths as well as local tensile strengths were also obtained by using small round bar specimens extracted from specific locations, such as the stir zone, heat affected zone, and base metal. It was found from the results that fatigue fracture of the FSW joint plate specimen occurred at the location of the lowest local fatigue strength as well as the lowest hardness, regardless of microstructural evolution. To estimate the fatigue strengths of aluminum alloy FSW joints from the hardness measurements, the relationship between fatigue strength and hardness for aluminum alloys was investigated based on the present experimental results and the available wide range of data from the references. It was found as: σa (R = −1 = 1.68 HV (σa is in MPa and HV has no unit. It was also confirmed that the estimated fatigue strengths were in good agreement with the experimental results for aluminum alloy FSW joints.

  4. Design rule for fatigue of welded joints in elevated-temperature nuclear components

    International Nuclear Information System (INIS)

    O'Connor, D.G.; Corum, J.M.

    1986-01-01

    Elevated-temperature weldment fatigue failures have occurred in several operating liquid-metal reactor plants. Yet, ASME Code Case N-47, which governs the design of such plants in the United States, does not currently address the Code Subgroup on Elevated Temperature Design recently proposed a fatigue strength reduction factor for austenitic and ferritic steel weldments. The factor is based on a variety of weld metal and weldment fatigue data generated in the United States, Europe, and Japan. This paper describes the factor and its bases, and it presents the results of confirmatory fatigue tests conducted at Oak Ridge National Laboratory on 316 stainless steel tubes with axial and circumferential welds of 16-8-2 filler metal. These test results confirm the suitability of the design factor, and they support the premise that the metallurgical notch effect produced by yield strength variations across a weldment is largely responsible for the observed elevated-temperature fatigue strength reduction

  5. An investigation on fatigue in high-strength steel offshore structures

    DEFF Research Database (Denmark)

    Agerskov, Henning; Petersen, R.I.; Martinez, L. Lopez

    1998-01-01

    of the investigation, fatigue test series were carried out on both full scale tubular joints and smaller welded plate test specimens in high-strength steel as well as in conventional offshore structural steel. This paper gives a summary of the main results presented in two recent research reports [15, 16], from...... these investigations. A comparison between constant amplitude and variable amplitude fatigue test results shows shorter fatigue lives in variable amplitude loading than should be expected from the linear fatigue damage accumulation formula.Furthermore, in general longer fatigue lives were obtained for the test...... specimens in high-strength steel than those obtained in corresponding tests on joints in conventional offshore structural steel....

  6. DOL behaviour of end-notched beams

    DEFF Research Database (Denmark)

    Gustafsson, P.J.; Hoffmeyer, Preben; Valentin, G.

    1998-01-01

    The long-term loading strength of end-notched beams made of glulam and LVL was tested. The beams were of various sizes, with and without a moisture sealing at the notch. Tests were conducted in open shelter climates, and at constant and cyclic relative humidity. The short-term strength was tested...... beams with a moisture sealing at the notch...

  7. Oxidation and the Effects of High Temperature Exposures on Notched Fatigue Life of an Advanced Powder Metallurgy Disk Superalloy

    Science.gov (United States)

    Sudbrack, Chantal K.; Draper, Susan L.; Gorman, Timothy T.; Telesman, Jack; Gab, Timothy P.; Hull, David R.

    2012-01-01

    Oxidation and the effects of high temperature exposures on notched fatigue life were considered for a powder metallurgy processed supersolvus heat-treated ME3 disk superalloy. The isothermal static oxidation response at 704 C, 760 C, and 815 C was consistent with other chromia forming nickel-based superalloys: a TiO2-Cr2O3 external oxide formed with a branched Al2O3 internal subscale that extended into a recrystallized - dissolution layer. These surface changes can potentially impact disk durability, making layer growth rates important. Growth of the external scales and dissolution layers followed a cubic rate law, while Al2O3 subscales followed a parabolic rate law. Cr- rich M23C6 carbides at the grain boundaries dissolved to help sustain Cr2O3 growth to depths about 12 times thicker than the scale. The effect of prior exposures was examined through notched low cycle fatigue tests performed to failure in air at 704 C. Prior exposures led to pronounced debits of up to 99 % in fatigue life, where fatigue life decreased inversely with exposure time. Exposures that produced roughly equivalent 1 m thick external scales at the various isotherms showed statistically equivalent fatigue lives, establishing that surface damage drives fatigue debit, not exposure temperature. Fractographic evaluation indicated the failure mode for the pre-exposed specimens involved surface crack initiations that shifted with exposure from predominately single intergranular initiations with transgranular propagation to multi-initiations from the cracked external oxide with intergranular propagation. Weakened grain boundaries at the surface resulting from the M23C6 carbide dissolution are partially responsible for the intergranular cracking. Removing the scale and subscale while leaving a layer where M23C6 carbides were dissolved did not lead to a significant fatigue life improvement, however, also removing the M23C6 carbide dissolution layer led to nearly full recovery of life, with a

  8. Fatigue of coated and laser hardened steels

    International Nuclear Information System (INIS)

    La Cruz, P. de.

    1990-01-01

    In the present work the effect of ion nitriding, laser hardening and hot dip galvanizing upon the fatigue limit and notch sensitivity of a B-Mn Swedish steel SS 2131 have been investigated. The fatigue tests were performed in plane reverse bending fatigue (R=1). The quenched and tempered condition was taken as the reference condition. The microstructure, microhardness, fracture surface and coating appearance of the fatigue surface treated specimens were studied. Residual stress and retained austenite measurements were also carried out. It was found that ion nitriding improves the fatigue limit by 53 % for smooth specimens and by 115 % for notched specimens. Laser hardening improves the fatigue limit by 18 % and 56 % for smooth and notched specimen respectively. Hot dip galvanizing gives a slight deterioration of the fatigue limit (9 % and 10 % for smooth and notched specimen respectively). Ion nitriding and laser hardening decrease the value of the notch sensitivity factor q by 78 % and 65 % respectively. Hot dip galvanizing does not modify it. A simple schematic model based on a residual stress distribution, has been used to explain the different effects. It seems that the presence of the higher compressive residual stresses and the higher uniformity of the microstructure may be the causes of the better fatigue performance of ion nitrided specimens. (119 refs.) (author)

  9. An Investigation on Fatigue in High-Strength Steel Offshore Structures

    DEFF Research Database (Denmark)

    Agerskov, Henning; Petersen, R.I.; Lopez Martinez, L.

    1997-01-01

    . In the experimental part of the investigation, fatigue test series have been carried through on both full-scale tubular joints and smaller welded plate test specimens, in high-strength steel as well as in conventional offshore structural steel. The present document gives a summary of the main results presented in two...... recent research reports, Refs. 15 and 16, from these investigations.A comparison between constant amplitude and variable amplitude fatigue test results shows shorter fatigue lives in variable amplitude loading than should be expected from the linear fatigue damage accumulation formula. Furthermore......, in general longer fatigue lives were obtained for the test specimens in high-strength steel than those obtained in corresponding tests on joints in conventional offshore structural steel....

  10. Fatigue strength of laser welded joint sheet; Laser yosetsu tsugite no hiro kyodo

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, A; Yoshimura, T; Tsuboi, M; Takasago, T; Nishio, T [Toyota Motor Corp., Aichi (Japan)

    1997-10-01

    In this paper, fatigue strength of laser welded butt joint has been investigated. In order to obtain the influence of underfill and pitting, fatigue test was conducted with different sheet thickness and mechanical properties. Fatigue crack initiated at underfill and pitting in the weld metal. Stress concentration factor and hardness of the weld metal were considered to estimate fatigue limit. However, hardness of the weld metal has no significant effect on fatigue strength. As a result, fatigue strength was well estimated by hardness of base metal and stress concentration factor calculated from the shape of underflll and pitting. 7 refs., 9 figs., 5 tabs.

  11. Localized bending fatigue behavior of high-strength steel monostrands

    DEFF Research Database (Denmark)

    Winkler, Jan; Fischer, Gregor; Georgakis, Christos T.

    2012-01-01

    In this paper, the localized bending fatigue behavior of pretensioned high strength steel monostrands is investigated. Furthermore, a new methodology using an optical photogrammetry system, which can quantify surface deformations on the strand is presented. The system allows measurement of the st......In this paper, the localized bending fatigue behavior of pretensioned high strength steel monostrands is investigated. Furthermore, a new methodology using an optical photogrammetry system, which can quantify surface deformations on the strand is presented. The system allows measurement...... displacement (opening/closing and sliding) of the helically wound wires. Moreover, the results are a step towards understanding the bending fatigue damage mechanisms of monostrand cables....

  12. Experimental Studies on Strength Behaviour of Notched Glass/Epoxy Laminated Composites under Uni-axial and Bi-axial Loading

    Science.gov (United States)

    Guptha, V. L. Jagannatha; Sharma, Ramesh S.

    2017-11-01

    The use of FRP composite materials in aerospace, aviation, marine, automotive and civil engineering industry has increased rapidly in recent years due to their high specific strength and stiffness properties. The structural members contrived from such composite materials are generally subjected to complex loading conditions and leads to multi-axial stress conditions at critical surface localities. Presence of notches, much required for joining process of composites, makes it further significant. The current practice of using uni-axial test data alone to validate proposed material models is inadequate leading to evaluation and consideration of bi-axial test data. In order to correlate the bi-axial strengths with the uni-axial strengths of GFRP composite laminates in the presence of a circular notch, bi-axial tests using four servo-hydraulic actuators with four load cells were carried out. To determine the in-plane strength parameters, bi-axial cruciform test specimen model was considered. Three different fibre orientations, namely, 0°, 45°, and 90° are considered with a central circular notch of 10 mm diameter in the present investigation. From the results obtained, it is observed that there is a reduction in strength of 5.36, 2.41 and 13.92% in 0°, 45°, and 90° fibre orientation, respectively, under bi-axial loading condition as compared to that of uni-axial loading in laminated composite.

  13. Fatigue Strength of Reinforced Concrete Flexural Members | Kuryllo ...

    African Journals Online (AJOL)

    It is well known that reinforced concrete flexural members subjected to cyclic loads behave differently compared with static bending and can collapse due to the fatigue of concrete, reinforcement or both when maximum fatigue stresses of concrete and steel are well below the corresponding static strengths. But up till now ...

  14. Impaired muscle strength may contribute to fatigue in patients with aneurysmal subarachnoid hemorrhage.

    Science.gov (United States)

    Harmsen, Wouter J; Ribbers, Gerard M; Zegers, Bart; Sneekes, Emiel M; Praet, Stephan F E; Heijenbrok-Kal, Majanka H; Khajeh, Ladbon; van Kooten, Fop; Neggers, Sebastiaan J C M M; van den Berg-Emons, Rita J

    2017-03-01

    Patients with aneurysmal subarachnoid hemorrhage (a-SAH) show long-term fatigue and face difficulties in resuming daily physical activities. Impaired muscle strength, especially of the lower extremity, impacts the performance of daily activities and may trigger the onset of fatigue complaints. The present study evaluated knee muscle strength and fatigue in patients with a-SAH. This study included 33 patients, 6 months after a-SAH, and 33 sex-matched and age-matched healthy controls. Isokinetic muscle strength of the knee extensors and flexors was measured at 60 and 180°/s. Maximal voluntary muscle strength was defined as peak torque and measured in Newton-meter. Fatigue was examined using the Fatigue Severity Scale. In patients with a-SAH, the maximal knee extension was 22% (60°/s) and 25% (180°/s) lower and maximal knee flexion was 33% (60°/s) and 36% (180°/s) lower compared with that of matched controls (P≤0.001). The Fatigue Severity Scale score was related to maximal knee extension (60°/s: r=-0.426, P=0.015; 180°/s: r=-0.376, P=0.034) and flexion (60°/s: r=-0.482, P=0.005; 180°/s: r=-0.344, P=0.083). The knee muscle strength was 28-47% lower in fatigued (n=13) and 11-32% lower in nonfatigued (n=20) patients; deficits were larger in fatigued patients (P<0.05), particularly when the muscle strength (peak torque) was measured at 60°/s. The present results indicate that patients with a-SAH have considerably impaired knee muscle strength, which is related to more severe fatigue. The present findings are exploratory, but showed that knee muscle strength may play a role in the severity of fatigue complaints, or vice versa. Interventions targeting fatigue after a-SAH seem necessary and may consider strengthening exercise training in order to treat a debilitating condition.

  15. Estimation of fatigue strength enhancement for carburized and shot-peened gears

    Science.gov (United States)

    Inoue, Katsumi; Kato, Masana

    1994-05-01

    An experimental formula has been proposed to estimate the bending fatigue strength of carburized gears from the hardness and the residual stress. The derivation of the formula is briefly reviewed, and the effectiveness of the formula is demonstrated in this article. The comparison with many test results for carburized and shot-peened gears verifies that the formula is effective for the approximate estimation of the fatigue strength. The formula quantitatively shows a way of enhancing fatigue strength, i.e., the increase of hardness and residual stress at the fillet. The strength is enhanced about 300 MPa by an appropriate shot peening, and it can be improved still more by the surface removal by electropolishing.

  16. Thermal fatigue strength estimation of 2.25Cr-1Mo steel under creep-fatigue interaction

    International Nuclear Information System (INIS)

    Kuwahara, Kazuo; Nitta, Akihito; Kitamura, Takayuki

    1980-01-01

    A 2-1/4Cr-1Mo steel is one of principal materials for high temperature equipments in nuclear and thermal power plants. The authors experimentally analyzed the high temperature fatigue strength and creep strength of a 2-1/4 Cr-1Mo steel main steam pipe which had been used in a thermal plant for operation up to 130,000 hours, and pointed out that the strain-range vs. life curves crossed each other due to the difference of temperature-strain phase in thermal fatigue. This suggests that it is difficult to estimate thermal fatigue life of steel materials having been subjected to different temperature-strain phase on the basis of isothermal low-cycle fatigue life at the upper limit temperature of thermal fatigue, and that it is urgently required to establish an appropriate method of evaluating thermal fatigue life. The authors attempted to prove that the strain range partitioning method used for the evaluation of thermal fatigue life in SUS 304 steels is applicable to this 2-1/4Cr-1Mo steel. Consequently, it was found that the thermal fatigue life could be estimated within a factor of 2.5 by the application of this method. (author)

  17. Change of notch impact strength depending on radiation dose and test temperature

    Directory of Open Access Journals (Sweden)

    Martin Bednarik

    2017-01-01

    Full Text Available The main purpose of this paper has been determine the effect of radiation crosslinking on the notch impact strength of polyamides filled with fiberglass. These properties were examined in dependence on the dosage of the ionizing beta radiation (non-irradiated samples and those irradiated by dosage 66 and 132 kGy were compared and on the test temperature (23–150 °C.

  18. Microstructure, Tensile Strength and Probabilistic Fatigue Life Evaluation of Gray Cast Iron

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Yong Hyeon; Han, Seung-Wook; Choi, Nak-Sam [Hanyang Univ., Seoul (Korea, Republic of)

    2017-08-15

    High-grade gray cast iron (HCI350) was prepared by adding Cr, Mo and Cu to the gray cast iron (GC300). Their microstructure, mechanical properties and fatigue strength were studied. Cast iron was made from round bar and plate-type castings, and was cut and polished to measure the percentage of each microstructure. The size of flake graphite decreased due to additives, while the structure of high density pearlite increased in volume percentage improving the tensile strength and fatigue strength. Based on the fatigue life data obtained from the fatigue test results, the probability - stress - life (P-S-N) curve was calculated using the 2-parameter Weibull distribution to which the maximum likelihood method was applied. The P-S-N curve showed that the fatigue strength of HCI350 was significantly improved and the dispersion of life data was lower than that of GC300. However, the fatigue life according to fatigue stress alleviation increased further. Data for reliability life design was presented by quantitatively showing the allowable stress value for the required life cycle number using the calculated P-S-N curve.

  19. Crack growth and fracture in fiber reinforced concrete beams under static and fatigue loading

    International Nuclear Information System (INIS)

    Jeanfreau, J.; Arockiasamy, M.; Reddy, D.V.

    1987-01-01

    The paper presents the results of a two-phase experimental investigation on the fatigue and fracture of six different types of concrete: plain, 0.5%, 1.0%, 1.5%, and 2.0% steel fibers and 0.5% kevlar fibers. In the first phase the J-integral was evaluated for different types of concrete from load-displacement curves. The value shows a marked increase in the energy required to fracture concrete when fibers are added. The values did not vary substantially for different notch depths. In the second phase concrete beams were subjected to fatigue by applying a pure bending on the notch. The effect of fiber addition was examined with emphasis on the crack propagation and the increase in the fatigue strength. The crack pattern was mainly influenced by the presence, amount, and the distribution of the fibers in the concrete. (orig./HP)

  20. Influence of laser hardening with weld penetration onto mechanical and fatigue properties of 40H steel

    International Nuclear Information System (INIS)

    Napadlek, W.; Przetakiewicz, W.

    2003-01-01

    In the article were described investigations results of mechanical properties (hardness, R 0.2 , R m , A 5 , Z) and fatigue properties (rotary bending) of the 40H steel samples, being quenched and tempered, induction and laser hardened. In the laser hardened samples with weld penetration of top layer cracking process in fatigue strength is started mainly in weld penetration area as structural notch. (author)

  1. Nanoscale and submicron fatigue crack growth in nickel microbeams

    International Nuclear Information System (INIS)

    Yang, Y.; Yao, N.; Imasogie, B.; Soboyejo, W.O.

    2007-01-01

    This paper presents a novel edge-notched microbeam technique for the study of short fatigue crack growth. The technique is used to study submicron and nanoscale fatigue in LIGA Ni thin films with columnar microstructures. The edge-notched microbeams were fabricated within LIGA Ni thin films, using focused ion beam (FIB) techniques. The microbeams were then cyclically deformed to failure at a stress ratio of 0.1. Different slip-band structures were observed below the nanoscale notches. Cyclic deformation resulted in the formation of primary slip bands below the notch. Subsequent crack growth then occurred by the unzipping of fatigue cracks along intersecting slip bands. The effects of the primary slip bands were idealized using dislocation-based models. These were used to estimate the intrinsic fatigue threshold and the fatigue endurance limit. The estimates from the model are shown to be consistent with experimental data from prior stress-life experiments and current/prior fatigue threshold estimates

  2. Cyclic fatigue of a high-strength corrosion-resistant sheet TRIP steel

    Science.gov (United States)

    Terent'ev, V. F.; Alekseeva, L. E.; Korableva, S. A.; Prosvirnin, D. V.; Pankova, M. N.; Filippov, G. A.

    2014-04-01

    The mechanical properties of 0.3- and 0.8-mm-thick high-strength corrosion-resistant TRIP steel having various levels of strength properties are studied during static and cyclic loading in the high-cycle fatigue range. The fatigue fracture surface is analyzed by fractography, and the obtained results demonstrate ductile and quasi-brittle fracture mechanisms of this steel depending on the strength properties of the steel and the content of deformation martensite in it.

  3. Strength and fatigue of an ultrafine-grained Al-Cu-Mg alloy

    Directory of Open Access Journals (Sweden)

    Khafizova Elvira

    2017-01-01

    Full Text Available The dependence of strength and fatigue on microstructure of the Al-Cu-Mg alloy has been investigated. Various microstructures of the alloy were produced: the one with a coarse-grained (CG structure after T6 heat treatment; the one with a homogeneous ultrafine-grained (UFG structure and the one with a bimodal (mixed structure, both processed by equal-channel angular pressing (ECAP. The mean grain size and morphology of precipitates were studied by transmission electron microscopy. The ultimate tensile strength and the fatigue endurance limit were determined using the tensile and fatigue tests of standard specimens. It is established that the formation of a homogeneous UFG structure and of a bimodal (mixed structure alloy contributes to a significant increase in microhardness by 16% and 60%, and an increase of the ultimate tensile strength by 20 and 52%, respectively, as compared to the samples subjected to T6 heat treatment. Fatigue tests show that the alloy with a bimodal (mixed structure has the highest fatigue endurance limit, 45% higher than in the sample subjected to T6 heat treatment. In contrast, the formation of a homogeneous UFG structure enables increasing the fatigue endurance limit by 15% only.

  4. High-cycle notch sensitivity of alloy steel ASTM A743 CA6NM used in hydrogenator turbine components

    Directory of Open Access Journals (Sweden)

    José Alexander Araújo

    2010-10-01

    Full Text Available The presence of notches and other stress concentrations in turbine blades and other notch hydraulic components is a current problem in engineering. It causes a reduction of endurance limit of material. In that sense, specimens of the ASTM A743 CA6NM alloy steel using in several hydrogenator turbine components was tested. The specimens were tested under uniaxial fatigue loading with a load ratio equal to -1, and the considered stress concentration factors, Kt, values, calculated with respect to net area, were 1.55, 2.04 and 2.42. In order to determine the fatigue limit for such notch type, a reduction data method by Dixon and Mood, Staircase method was used. This approach is based on the assumed target distribution of the fatigue limit. For such geometry at least 8 specimens were tested. In addition, the Peterson and Neuber’s notch fatigue factor were compared through fatigue notch reduction factor, Kf, obtained from experimental data. According to results obtained it was possible to conclude that the tested material is less sensitive to notches than the prediction of the Peterson and Neuber’s empirical models.

  5. Modal characteristics and fatigue strength of compressor blades

    International Nuclear Information System (INIS)

    Kim, Kyung Kook; Lee, Young Shin

    2014-01-01

    High-cycle fatigue (HCF) has been identified as one of the primary causes of gas turbine engine failure. The modal characteristics and endurance strength of a 5 MW gas turbine engine blade developed by Doosan Heavy Industries and Construction Co., Ltd. in HCF fracture were verified through analysis and tests to determine the reliability of the compressor blade. A compressor blade design procedure that considers HCF life was performed in the following order: airfoil and blade profile design, modal analysis, stress distribution test, stress endurance limit test, and fatigue life verification. This study analyzed the Campbell diagram and estimated resonance risk on the basis of the natural frequency analysis and modal test of the compressor blade to guarantee safe and operational reliability. In addition, the maximum stress point of the compressor blade was determined through stress distribution analysis and test. The bonding point of the strain gage was determined by using fatigue test. Stress endurance limit test was performed based on the results of these tests. This research compared and verified the modal characteristics and endurance strengths of the compressor blades to prevent HCF fracture, which is among the major causes of gas turbine engine damage. A fatigue life design procedure of compressor blades was established. The 5 MW class gas turbine compressor blade is well designed in terms of resonance stability and fatigue endurance limit.

  6. Modal characteristics and fatigue strength of compressor blades

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung Kook [Doosan Heavy Industries and Construction, Changwon (Korea, Republic of); Lee, Young Shin [Chungnam National University, Daejeon (Korea, Republic of)

    2014-04-15

    High-cycle fatigue (HCF) has been identified as one of the primary causes of gas turbine engine failure. The modal characteristics and endurance strength of a 5 MW gas turbine engine blade developed by Doosan Heavy Industries and Construction Co., Ltd. in HCF fracture were verified through analysis and tests to determine the reliability of the compressor blade. A compressor blade design procedure that considers HCF life was performed in the following order: airfoil and blade profile design, modal analysis, stress distribution test, stress endurance limit test, and fatigue life verification. This study analyzed the Campbell diagram and estimated resonance risk on the basis of the natural frequency analysis and modal test of the compressor blade to guarantee safe and operational reliability. In addition, the maximum stress point of the compressor blade was determined through stress distribution analysis and test. The bonding point of the strain gage was determined by using fatigue test. Stress endurance limit test was performed based on the results of these tests. This research compared and verified the modal characteristics and endurance strengths of the compressor blades to prevent HCF fracture, which is among the major causes of gas turbine engine damage. A fatigue life design procedure of compressor blades was established. The 5 MW class gas turbine compressor blade is well designed in terms of resonance stability and fatigue endurance limit.

  7. Notch-strengthening in two-dimensional foams

    NARCIS (Netherlands)

    Onck, P.R.

    Metallic foams show notch-strengthening behavior when analyzing double-edge notched specimen in compression and tension. A discrete microstructural model has been used to simulate the effect of notch depth and specimen size on the net-section-strength. The non-uniform deformation behavior is

  8. Mobility-Related Fatigue, Walking Speed, and Muscle Strength in Older People

    DEFF Research Database (Denmark)

    Mänty, Minna; Mendes de Leon, Carlos F.; Rantanen, Taina

    2012-01-01

    history, as well as performance-based assessment of walking speed and maximal isometric strength of knee extension, body extension, and handgrip. Results. In the cross-sectional baseline analysis, one unit increase in fatigue score was associated with 0.03 m/s (b = −.03, p ... the degree to which muscle strength accounts for this association. Methods. The study is based on baseline (n = 523) and 5-year follow-up data (n = 292) from a cohort of 75-year-old persons. Standardized assessments include self-report measures of mobility-related fatigue (score range 0–6) and medical......, p strength accounted up to 21% and among men up to 24% for the association. In the prospective analysis, fatigue at baseline was predictive of change in walking speed...

  9. On cyclic yield strength in definition of limits for characterisation of fatigue and creep behaviour

    Science.gov (United States)

    Gorash, Yevgen; MacKenzie, Donald

    2017-06-01

    This study proposes cyclic yield strength as a potential characteristic of safe design for structures operating under fatigue and creep conditions. Cyclic yield strength is defined on a cyclic stress-strain curve, while monotonic yield strength is defined on a monotonic curve. Both values of strengths are identified using a two-step procedure of the experimental stress-strain curves fitting with application of Ramberg-Osgood and Chaboche material models. A typical S-N curve in stress-life approach for fatigue analysis has a distinctive minimum stress lower bound, the fatigue endurance limit. Comparison of cyclic strength and fatigue limit reveals that they are approximately equal. Thus, safe fatigue design is guaranteed in the purely elastic domain defined by the cyclic yielding. A typical long-term strength curve in time-to-failure approach for creep analysis has two inflections corresponding to the cyclic and monotonic strengths. These inflections separate three domains on the long-term strength curve, which are characterised by different creep fracture modes and creep deformation mechanisms. Therefore, safe creep design is guaranteed in the linear creep domain with brittle failure mode defined by the cyclic yielding. These assumptions are confirmed using three structural steels for normal and high-temperature applications. The advantage of using cyclic yield strength for characterisation of fatigue and creep strength is a relatively quick experimental identification. The total duration of cyclic tests for a cyclic stress-strain curve identification is much less than the typical durations of fatigue and creep rupture tests at the stress levels around the cyclic yield strength.

  10. Spot weld arrangement effects on the fatigue behavior of multi-spot welded joints

    International Nuclear Information System (INIS)

    Hassanifard, Soran; Zehsaz, Mohammad; Esmaeili, Firooz

    2011-01-01

    In the present study, the effects of spot weld arrangements in multi-spot welded joints on the fatigue behavior of the joints are studied. Three different four-spot welded joints are considered: one-row four-spot parallel to the loading direction, one-row four-spot perpendicular to the loading direction and two-row four-spot weld specimens. The experimental fatigue test results reveal that the differences between the fatigue lives of three spot welded types in the low cycle regime are more considerable than those in the high cycle regime. However, all kinds of spot weld specimens have similar fatigue strength when approaching a million cycles. A non-linear finite element analysis is performed to obtain the relative stress gradients, effective distances and notch strength reduction factors based on the volumetric approach. The work here shows that the volumetric approach does a very good job in predicting the fatigue life of the multi-spot welded joints

  11. Effects of residual stress on fatigue strength of small diameter welded pipe joint

    International Nuclear Information System (INIS)

    Yamashita, Tetsuo; Hattori, Takahiro; Nomoto, Toshiharu; Iida, Kunihiro; Sato, Masanobu

    1996-01-01

    A power plant consists of many welded components, therefore, it is essential in establishing the reliability of the power plant to maintain the reliability of all welded components. The fatigue failure caused by mechanical vibrations of small diameter welded joints, which is represented by socket welded joints, is one of the major causes of trouble for the welded parts of the power plant. Here, bending fatigue tests were conducted to investigate the fatigue strength of small diameter socket welded pipe joints. In the most cases of large diameter socket joints, a fatigue crack started from the root of the fillet weld though the stress amplitude at the root was smaller than that at the toe of fillet weld. Additionally, the fatigue strength was affected by the weld bead sequence. The residual stress was considered to be one of the important parameters governing fatigue strength, therefore, its effects were investigated. In several types of pipe joints, the local stress and residual stress distributions were calculated by finite element analysis. The residual stresses were compressive at the toe and tensile at the root of the socket welded joints. Based on these results, the effects of residual stresses on the fatigue strength are discussed for small diameter welded pipe joints in the present work

  12. Probabilistic Material Strength Degradation Model for Inconel 718 Components Subjected to High Temperature, Mechanical Fatigue, Creep and Thermal Fatigue Effects

    Science.gov (United States)

    Bast, Callie Corinne Scheidt

    1994-01-01

    This thesis presents the on-going development of methodology for a probabilistic material strength degradation model. The probabilistic model, in the form of a postulated randomized multifactor equation, provides for quantification of uncertainty in the lifetime material strength of aerospace propulsion system components subjected to a number of diverse random effects. This model is embodied in the computer program entitled PROMISS, which can include up to eighteen different effects. Presently, the model includes four effects that typically reduce lifetime strength: high temperature, mechanical fatigue, creep, and thermal fatigue. Statistical analysis was conducted on experimental Inconel 718 data obtained from the open literature. This analysis provided regression parameters for use as the model's empirical material constants, thus calibrating the model specifically for Inconel 718. Model calibration was carried out for four variables, namely, high temperature, mechanical fatigue, creep, and thermal fatigue. Methodology to estimate standard deviations of these material constants for input into the probabilistic material strength model was developed. Using the current version of PROMISS, entitled PROMISS93, a sensitivity study for the combined effects of mechanical fatigue, creep, and thermal fatigue was performed. Results, in the form of cumulative distribution functions, illustrated the sensitivity of lifetime strength to any current value of an effect. In addition, verification studies comparing a combination of mechanical fatigue and high temperature effects by model to the combination by experiment were conducted. Thus, for Inconel 718, the basic model assumption of independence between effects was evaluated. Results from this limited verification study strongly supported this assumption.

  13. Influence of circumferential notch and fatigue crack on the mechanical integrity of biodegradable magnesium-based alloy in simulated body fluid.

    Science.gov (United States)

    Bobby Kannan, M; Singh Raman, R K; Witte, F; Blawert, C; Dietzel, W

    2011-02-01

    Applications of magnesium alloys as biodegradable orthopaedic implants are critically dependent on the mechanical integrity of the implant during service. In this study, the mechanical integrity of an AZ91 magnesium alloy was studied using a constant extension rate tensile (CERT) method. The samples in two different geometries that is, circumferentially notched (CN), and circumferentially notched and fatigue cracked (CNFC), were tested in air and in simulated body fluid (SBF). The test results show that the mechanical integrity of the AZ91 magnesium alloy decreased substantially (∼50%) in both the CN and CNFC samples exposed to SBF. Fracture surface analysis revealed secondary cracks suggesting stress corrosion cracking susceptibility of the alloy in SBF. Copyright © 2010 Wiley Periodicals, Inc.

  14. Influence of surface finish on fatigue properties of metallic materials: a bibliographic study

    International Nuclear Information System (INIS)

    Akamatsu, M.

    1997-01-01

    The investigation of a fatigue failed component very often shows that cracks initiated at the surface. It is actually well known that the surface finish notably influences the fatigue strength of a component. We have carried out a bibliographic study in order to clarify the influence of the different surface parameters. The analysis of the literature has shown that most of the data concerns high cycle fatigue. Three aspects of the surface finish have been examined: geometry (roughness), residual stresses and microstructure. In a general way, the influence of geometrical surface finish is tackled either empirically, with a factor assessing the fatigue limit decrease when the roughness and the tensile strength increase, or theoretically, with approaches modelling geometrical irregularities as notches or cracks. In all cases, the effect of roughness on fatigue strength depends on the material, through mechanical properties or microstructural features. The theoretical approaches seem particularly interesting, but their use is not straightforward and requires further development. The creation of residual stresses at the surface of a component can just as well reduce as improve its fatigue strength. In a first approach, these stresses can be regarded as a mean service stress. In fact, mechanical and metallurgical gradients near the surface have to be taken into account, which affect the relaxation of residual stresses during fatigue cycling. Actually, the effect of residual stresses can hardly be isolated, because these stresses are associated with geometrical and microstructural modifications. Microstructural features (metallurgical structure, grain size, inclusions, strain hardening) have an undoubted influence on fatigue strength, but the quantification of the effects remains tricky. The influence of the microstructure of surface layers on fatigue strength generally depends on the mechanical properties of materials. In short, fatigue strength predictions through a

  15. Smoking impact on grip strength and fatigue resistance: implications for exercise and hand therapy practice.

    Science.gov (United States)

    Al-Obaidi, Saud; Al-Sayegh, Nowall; Nadar, Mohammed

    2014-07-01

    Grip strength assessment reflects on overall health of the musculoskeletal system and is a predictor of functional prognosis and mortality. The purpose of this study was: examine whether grip-strength and fatigue resistance are impaired in smokers, determine if smoking-related impairments (fatigue-index) can be predicted by demographic data, duration of smoking, packets smoked-per-day, and physical activity. Maximum isometric grip strength (MIGS) of male smokers (n = 111) and nonsmokers (n = 66) was measured before/after induced fatigue using Jamar dynamometer at 5-handle positions. Fatigue index was calculated based on percentage change in MIGS initially and after induced fatigue. Number of repetitions to squeeze the soft rubber ball to induce fatigue was significantly lower in smokers compared with nonsmokers (t = 10.6, P smoking status on MIGS scores was significantly different between smokers and nonsmokers after induced fatigue (β = -3.98, standard error = 0.59, P Smoking status was the strongest significant independent predictor of the fatigue-index. Smokers demonstrated reduced grip strength and fast fatigability in comparison with nonsmokers.

  16. Nonlinear Fatigue Damage Model Based on the Residual Strength Degradation Law

    Science.gov (United States)

    Yongyi, Gao; Zhixiao, Su

    In this paper, a logarithmic expression to describe the residual strength degradation process is developed in order to fatigue test results for normalized carbon steel. The definition and expression of fatigue damage due to symmetrical stress with a constant amplitude are also given. The expression of fatigue damage can also explain the nonlinear properties of fatigue damage. Furthermore, the fatigue damage of structures under random stress is analyzed, and an iterative formula to describe the fatigue damage process is deduced. Finally, an approximate method for evaluating the fatigue life of structures under repeated random stress blocking is presented through various calculation examples.

  17. Fatigue Life of High-Strength Steel Offshore Tubular Joints

    DEFF Research Database (Denmark)

    Petersen, Rasmus Ingomar; Agerskov, Henning; Lopez Martinez, Luis

    1996-01-01

    In the present investigation, the fatigue life of tubular joints in offshore steel structures is studied. Two test series on full-scale tubular joints have been carried through. One series was on joints in conventional offshore structural steel, and the other series was on joints in high-strength......In the present investigation, the fatigue life of tubular joints in offshore steel structures is studied. Two test series on full-scale tubular joints have been carried through. One series was on joints in conventional offshore structural steel, and the other series was on joints in high......-strength steel with a yield stress of 820-830 MPa and with high weldability and toughness properties. The test specimens of both series had the same geometry. The present report concentrates on the results obtained in the investigation on the high-strength steel tubular joints.The test specimens were fabricated...... from Ø 324-610 mm tubes, and the joints were loaded in in-plane bending. Both fatigue tests under constant amplitude loading and tests with a stochastic loading that is realistic in relation to offshore structures, are included in the investigation.A comparison between constant amplitude and variable...

  18. Strength training improves fatigue resistance and self-rated health in workers with chronic pain

    DEFF Research Database (Denmark)

    Sundstrup, Emil; Jakobsen, Markus Due; Brandt, Mikkel

    2016-01-01

    of a randomized controlled trial investigates the effect of strength training on muscular fatigue resistance and self-rated health among workers with chronic pain. Sixty-six slaughterhouse workers with chronic upper limb pain and work disability were randomly allocated to 10 weeks of strength training or usual...... (Spearman's rho = -0.40; P = 0.01). In conclusion, specific strength training improves muscular fatigue resistance and self-rated health and reduces pain of the hand/wrist in manual workers with chronic upper limb pain. This trial is registered with ClinicalTrials.gov NCT01671267.......-rated health and pain. Time to fatigue, muscle strength, hand/wrist pain, and self-rated health improved significantly more following strength training than usual care (all P

  19. An Investigation on the Wear Resistance and Fatigue Behaviour of Ti-6Al-4V Notched Members Coated with Hydroxyapatite Coatings

    Directory of Open Access Journals (Sweden)

    Reza H Oskouei

    2016-02-01

    Full Text Available In this study, surface properties of Ti-6Al-4V alloy coated with hydroxyapatite coatings were investigated. Wear resistance and fatigue behaviour of samples with coating thicknesses of 10 and 50 µm as well as uncoated samples were examined. Wear experiments demonstrated that the friction factor of the uncoated titanium decreased from 0.31 to 0.06, through a fluctuating trend, after 50 cycles of wear tests. However, the friction factor of both the coated samples (10 and 50 µm gradually decreased from 0.20 to 0.12 after 50 cycles. At the end of the 50th cycle, the penetration depth of the 10 and 50 µm coated samples were 7.69 and 6.06 µm, respectively. Fatigue tests showed that hydroxyapatite coatings could improve fatigue life of a notched Ti-6Al-4V member in both low and high cycle fatigue zones. It was understood, from fractography of the fracture surfaces, that the fatigue zone of the uncoated specimens was generally smaller in comparison with that of the coated specimens. No significant difference was observed between the fatigue life of coated specimens with 10 and 50 µm thicknesses.

  20. Fatigue crack Behaviour in a High Strength Tool Steel

    DEFF Research Database (Denmark)

    Højerslev, Christian; Carstensen, Jesper V.; Brøndsted, Povl

    2002-01-01

    The influence of microstructure on fatigue crack initiation and crack growth of a hardened and tempered high speed steel was investigated. The evolution of fatigue cracks was followed in four point bending at room temperature. It was found that a carbide damage zone exists above a threshold load...... value of maximally 80% of the yield strength of the steel. The size of this carbide damage zone increases with increasing load amplitude, and the zone is apparently associated with crack nucleation. On fatigue crack propagation plastic deformation of the matrix occurs in a radius of approximately 4...... microns in front of the fatigue crack tip, which is comparable with the relevant mean free carbide spacing....

  1. The effects of isothermal transformation on the fatigue strength of ...

    African Journals Online (AJOL)

    Increasing the austenitising temperature to 950°C while maintaining the austempering temperature at 3500C, the fatigue limits of both medium silicon and high silicon alloys increased. The highest fatigue strength 450Nmm-2 was obtained from alloy austenitised at 950°C and austempered at 350°C for 90 minutes.

  2. Quantitative x-ray fractographic analysis of fatigue fractures

    International Nuclear Information System (INIS)

    Saprykin, Yu.V.

    1983-01-01

    The study deals with quantitative X-ray fractographic investigation of fatigue fractures of samples with sharp notches tested at various stresses and temperatures with the purpose of establishing a connection between material crack resistance parameters and local plastic instability zones restraining and controlling the crack growth. At fatigue fractures of notched Kh18N9T steel samples tested at +20 and -196 deg C a zone of sharp ring notch effect being analogous to the zone in which crack growth rate is controlled by the microshifting mechanisms is singled out. The size of the notched effect zone in the investigate steel is unambiguosly bound to to the stress amplitude. This provides the possibility to determine the stress value by the results of quantitative fractographic analysis of notched sample fractures. A possibility of determining one of the threshold values of cyclic material fracture toughness by the results of fatigue testing and fractography of notched sample fractures is shown. Correlation between the size of the hsub(s) crack effect zone in the notched sample, delta material yield limit and characteristic of cyclic Ksub(s) fracture toughness has been found. Such correlation widens the possibilities of quantitative diagnostics of fractures by the methods of X-ray fractography

  3. Fatigue strength degradation of metals in corrosive environments

    OpenAIRE

    Adasooriya, Mudiyan Nirosha Damayanthi; Hemmingsen, Tor; Pavlou, Dimitrios

    2017-01-01

    Structures exposed to aggressive environmental conditions are often subjected to time-dependent loss of coating and loss of material due to corrosion; this causes reduction in the cross-sectional properties of the members, increased surface roughness, surface irregularities and corrosion pits, and degradation of material strengths. These effects have been identified and simulated in different research studies. However, time and corrosive media dependent fatigue strength curves for materials h...

  4. Improvement of the fatigue strength of AISI 4140 steel by an ion nitriding process

    Energy Technology Data Exchange (ETDEWEB)

    Celik, A. [Atatuerk Univ., Erzurum (Turkey). Dept. of Mech. Eng.; Karadeniz, S. [Dokuz Eyluel Univ., Izmir (Turkey). Dept. of Mech. Eng.

    1995-06-01

    The influence of plasma nitriding on the fatigue behaviour of AISI 4140 low-alloy steel was investigated under varying process conditions of temperature (500-600 C), time (1-12 h), heat treatment before ion nitriding (quenched and tempered, normalized) and gas mixture (50% H{sub 2}-50% N{sub 2}). A rotating bending fatigue machine was used to determine the fatigue strength. It was found that the plasma nitriding improves the fatigue strength and increases the fatigue limit depending on the surface hardness of the case depth. The microstructure of surface and diffusion layers was examined by optical microscopy. The fracture surface of specimens and the origin of fatigue cracks were observed by scanning electron microscopy.

  5. Effects of structure and defect on fatigue limit in high strength ductile irons

    International Nuclear Information System (INIS)

    Kim, Jin Hak; Kim, Min Gun

    2000-01-01

    In this paper, the influence of several factors such as hardness, internal defect and non-propagating crack on fatigue limits was investigated with three kinds of ductile iron specimens. From the experimental results the fatigue limits were examined in relation with hardness and tensile strength in case of high strength specimens under austempering treatment; in consequence the marked improvement of fatigue limits were not showed. The maximum defect size was an important factor to predict and to evaluate the fatigue limits of ductile irons. And, the quantitative relationship between the fatigue limits(σ ω ) and the maximum defect size(√area max ) was expressed as σ ω n · √area max =C 2 . Also, it was possible to explain the difference for the fatigue limits in three ductile irons by introduction of the non-propagating crack rates

  6. Surface-finish effects on the high-cycle fatigue of Alloy 718

    International Nuclear Information System (INIS)

    Korth, G.E.

    1981-06-01

    Alloy 718 us a precipitation-hardening nickel-base superalloy that is being specified for various components for liquid-meal fast breeder reactors (LMFBRs). This alloy maintains high strength at elevated temperatures making it a desirable structural material. But the property that justifies most LMFBR applications is the alloy's resistance to thermal striping damage due to its high fatigue endurance strength. Thermal striping is a high-cycle fatigue phenomenon caused by thermal stresses from the fluctuating mixing action of sodium streams of differing temperatures impinging on the metal surfaces. Most of the design data is generated from laboratory fatigue specimens with carefully controlled surface finishes prepared with a low-stress grind and buffed to a surface finish 8--12 in. Since Alloy 718 has been shown to be quite notch sensitive under cyclic loading, the detrimental effect on the high-cycle fatigue properties caused by shop surface finishes of actual components has been questioned. This report examines some of the surface finishes that could be produced in a commercial shop on an actual component

  7. Effect of adding support structures for overhanging part on fatigue strength in selective laser melting.

    Science.gov (United States)

    Kajima, Yuka; Takaichi, Atsushi; Nakamoto, Takayuki; Kimura, Takahiro; Kittikundecha, Nuttaphon; Tsutsumi, Yusuke; Nomura, Naoyuki; Kawasaki, Akira; Takahashi, Hidekazu; Hanawa, Takao; Wakabayashi, Noriyuki

    2018-02-01

    Selective laser melting (SLM) technology was recently introduced to fabricate dental prostheses. However, the fatigue strength of clasps in removable partial dentures prepared by SLM still requires improvement. In this study, we attempted to improve the fatigue strength of clasps by adding support structures for overhanging parts, which can generally be manufactured at an angle to be self-supporting. The results show that the fatigue strength of the supported specimens was more than twice that of unsupported specimens. Electron back-scattered diffraction analysis revealed that the supported specimens exhibited lower kernel average misorientation values than the unsupported specimens, which suggested that the support structure reduced the residual strain during the SLM process and helped to prevent micro-cracks led by thermal distortion. In addition, the supported specimens cooled more rapidly, thereby forming a finer grain size compared to that of the unsupported specimens, which contributed to improving the fatigue strength. The results of this study suggest that the fatigue strength of overhanging parts can be improved by intentionally adding support structures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Fatigue strength of a hybrid joint formed between a PA6-GF60 polymer matrix and a S420MC steel insert

    International Nuclear Information System (INIS)

    Miklavec, M.; Klemenc, J.; Kostanjevec, A.; Fajdiga, M.

    2013-01-01

    Highlights: • Presented is an innovative polymer-metal hybrid joint. • Durability curves and their scatter were calculated using the DASA procedure. • Specimens with the embossed steel insert outperformed in static and dynamic tests. - Abstract: A vehicle’s brake pedal is considered to be one of its most important safety components. In the past, vehicle weight-reduction initiatives resulted in a highly optimized design of steel brake pedal with an increased strength-to-weight ratio. However, any further reduction in the weight of the brake pedal is only possible by using combined, i.e., hybrid, materials. In this case the joint between the two different materials in the hybrid arrangement must be as strong as possible. Many methods for improving the joint between two highly dissimilar materials are known from the literature, but conventional joining techniques lack either the fatigue resistance, because of a poor notch-effect design (shape-based joints), or are unsuitable for low-cost serial production (material-based joints). This article presents an innovative approach to joining the reinforcing insert with a glass-fiber-reinforced polyamide 6 (PA6-GF) base structure, where the reinforcing insert is molded into the PA6-GF. The improved shape of the reinforcing insert contributes the required strength, while the PA6-GF base structure provides the final form of the specimen/product. The innovative shape of the metal insert not only provides the strength of the component; it also ensures the proper joint between the two dissimilar materials. For different types of reinforcing inserts static durability tests as well as fatigue-life tests of the insert-PA6-GF-matrix joints were performed. Our experimental research shows that the most promising shape-based hybrid joints reported in the literature are not the best solution when the hybrid joint’s fatigue life is the decisive criterion for a product’s durability

  9. A two-parameter model to predict fatigue life of high-strength steels in a very high cycle fatigue regime

    Science.gov (United States)

    Sun, Chengqi; Liu, Xiaolong; Hong, Youshi

    2015-06-01

    In this paper, ultrasonic (20 kHz) fatigue tests were performed on specimens of a high-strength steel in very high cycle fatigue (VHCF) regime. Experimental results showed that for most tested specimens failed in a VHCF regime, a fatigue crack originated from the interior of specimen with a fish-eye pattern, which contained a fine granular area (FGA) centered by an inclusion as the crack origin. Then, a two-parameter model is proposed to predict the fatigue life of high-strength steels with fish-eye mode failure in a VHCF regime, which takes into account the inclusion size and the FGA size. The model was verified by the data of present experiments and those in the literature. Furthermore, an analytic formula was obtained for estimating the equivalent crack growth rate within the FGA. The results also indicated that the stress intensity factor range at the front of the FGA varies within a small range, which is irrespective of stress amplitude and fatigue life.

  10. Influence of Casting Section Thickness on Fatigue Strength of Austempered Ductile Iron

    Science.gov (United States)

    Olawale, J. O.; Ibitoye, S. A.

    2017-10-01

    The influence of casting section thickness on fatigue strength of austempered ductile iron was investigated in this study. ASTM A536 65-45-12 grade of ductile iron was produced, machined into round samples of 10, 15, 20 and 25 mm diameter, austenitized at a temperature of 820 °C, quenched into an austempering temperature (TA) of 300 and 375 °C and allowed to be isothermally transformed at these temperatures for a fixed period of 2 h. From the samples, fatigue test specimens were machined to conform to ASTM E-466. Scanning electron microscopy (SEM) and x-ray diffraction (XRD) methods were used to characterize microstructural morphology and phase distribution of heat-treated samples. The fatigue strength decreases as the section thickness increases. The SEM image and XRD patterns show a matrix of acicular ferrite and carbon-stabilized austenite with ferrite coarsening and volume fraction of austenite reducing as the section thickness increases. The study concluded that the higher the value of carbon-stabilized austenite the higher the fatigue strength while it decreases as the ausferrite structure becomes coarse.

  11. Fatigue behavior of niobium--hydrogen alloys

    International Nuclear Information System (INIS)

    Chung, D.W.; Stoloff, N.S.

    1978-01-01

    The effects of hydrogen on room temperature fatigue behavior of niobium were investigated under both high frequency stress control and low frequency strain control conditions, in air. Hydrogen markedly improved the fatigue life in high frequency tests, while low frequency tests resulted in decreased fatigue life with increasing hydrogen content. Notches in hydrogen-charged alloys reduced high cycle life significantly but had little effect on low cycle tests. Fracture surfaces of annealed niobium mainly exhibited striations, with numerous cracks originating at troughs of striated bands in both stress and strain control tests. The fracture mode for alloys with hydrogen in solution was mixed, with striations interspersed with cleavage facets at high frequencies but generally cleavage steps at low frequencies. For the hydrided alloys, distinctive steps of mixed ductile-brittle appearance were revealed under high frequency conditions, but large cleavage facets only were observed for low frequency tests. The results are discussed in terms of the effects of hydrogen on the cyclic strain hardening rate, as well as on fatigue strength and ductility of niobium

  12. Fatigue properties of high-strength materials used in cold-forging tools

    DEFF Research Database (Denmark)

    Brøndsted, P.; Skov-Hansen, P.

    1998-01-01

    In the present work classical analytical models are used to describe the static stress–strain curves, low-cycle fatigue properties and fatigue crack growth behaviour of high-strength materials for use in tools for metal-forming processes such as cold forging and extrusion. The paper describes the...

  13. Fatigue life evaluation of 42CrMo4 nitrided steel by local approach: Equivalent strain-life-time

    International Nuclear Information System (INIS)

    Terres, Mohamed Ali; Sidhom, Habib

    2012-01-01

    Highlights: → Ion nitriding treatment of 42CrMo4 steel improves their fatigue strength by 32% as compared with the untreated state. → This improvement is the result of the beneficial effects of the superficial work- hardening and of the stabilized compressive residual stress. → The notch region is found to be the fatigue crack nucleation site resulting from a stress concentration (Kt = 1.6). → The local equivalent strain-fatigue life method was found to be an interesting predictive fatigue life method for nitrided parts. -- Abstract: In this paper, the fatigue resistance of 42CrMo4 steel in his untreated and nitrided state was evaluated, using both experimental and numerical approaches. The experimental assessment was conducted using three points fatigue flexion tests on notched specimens at R = 0.1. Microstructure analysis, micro-Vickers hardness test, and scanning electron microscope observation were carried out for evaluating experiments. In results, the fatigue cracks of nitrided specimens were initiated at the surface. The fatigue life of nitrided specimens was prolonged compared to that of the untreated. The numerical method used in this study to predict the nucleation fatigue life was developed on the basis of a local approach, which took into account the applied stresses and stabilized residual stresses during the cyclic loading and the low cyclic fatigue characteristics. The propagation fatigue life was calculated using fracture mechanics concepts. It was found that the numerical results were well correlated with the experimental ones.

  14. Effect of notch and alloying on steel properties during extension

    International Nuclear Information System (INIS)

    Vinokur, B.B.; Pilyushenko, U.L.; Kasatkin, O.G.

    1985-01-01

    A study was made on change of strength and plastic characteristics during extension of notched steel samples of 15 compositions containing often-used alloying elements in various amounts and combinations. The notch causes increase of strength and decrease of plastic properties of structural steels during extension. The most pronounced change of properties takes place for the notched sample with expansion angle close to 180 deg. Reduction of notch expansion angle below 150 deg causes slower decrease of the rate of property change. Nickel alloying and vanadium, titanium microalloying assist the improvement of steel plasticity despite the increase of strength properties. Introduction of these elements in steel compensate partially for the negative notch effect. Alloying by silicon, molybdenum and tungsten results in steel strengthening and chromium alloying causes some loss of strength. Manse, chromium, silicon, molybdenum and tungsten cause decrease of plasticity, which intensifies the negative notch effect. When determining concentration ranges of carbon and alloying elements within the limits of quality composition it is necessary to consider both technology and possibility of sufficient change of properties especially in the case of stress concentrator presence in structures

  15. Damage formation, fatigue behavior and strength properties of ZrO_2-based ceramics

    International Nuclear Information System (INIS)

    Kozulin, A. A.; Kulkov, S. S.; Narikovich, A. S.; Leitsin, V. N.; Kulkov, S. N.

    2016-01-01

    It is suggested that a non-destructive testing technique using a three-dimensional X-ray tomography be applied to detecting internal structural defects and monitoring damage formation in a ceramic composite structure subjected to a bending load. Three-point bending tests are used to investigate the fatigue behavior and mechanical and physical properties of medical-grade ZrO_2-based ceramics. The bending strength and flexural modulus are derived under static conditions at a loading rate of 2 mm/min. The fatigue strength and fatigue limit under dynamic loading are investigated at a frequency of 10 Hz in three stress ranges: 0.91–0.98, 0.8–0.83, and 0.73–0.77 MPa of the static bending strength. The average values of the bending strength and flexural modulus of sintered specimens are 43 MPa and 22 GPa, respectively. The mechanical properties of the ceramics are found to be similar to those of bone tissues. The testing results lead us to conclude that the fatigue limit obtained from 10"5 stress cycles is in the range 33–34 MPa, i.e. it accounts for about 75% of the static bending strength for the test material.

  16. Low cycle fatigue strength of some austenitic stainless steels at room temperature and elevated temperatures

    International Nuclear Information System (INIS)

    Type 304, 316, and 316L stainless steels were tested from room temperature to 650 0 C using two kinds of bending test specimens. Particularly, Type 304 was tested at several cyclic rates and 550 0 and 650 0 C, and the effect of cyclic rate on its fatigue strength was investigated. Test results are summarized as follows: (1) The bending fatigue strength at room temperature test shows good agreement with the axial fatigue one, (2) Manson--Coffin's fatigue equation can be applied to the results, (3) the ratio of crack initiation to failure life becomes larger at higher stress level, and (4) the relation between crack propagation life and total strain range or elastic strain range are linear in log-log scale. This relation also agrees with the equations which were derived from some crack propagation laws. It was also observed at the elevated temperature test: (1) The reduction of fatigue strength is not noticeable below 500 0 C, but it is noted at higher temperature. (2) The cycle rate does not affect on fatigue strength in faster cyclic rate than 20 cpm and below 100,000 cycles life range. (3) Type 316 stainless steel shows better fatigue property than type 304 and 316L stainless steels. 30 figures

  17. Maintained ship hull girder ultimate strength reliability considering corrosion and fatigue

    DEFF Research Database (Denmark)

    Hu, Yong; Cui, W.; Pedersen, Preben Terndrup

    2004-01-01

    The prupose of this paper is to propose a methodology to assess the time-variant ultimate strength of ship hull girder under the degradations of corrosion and fatigue. The effects of fatigue cracks on the tensile and compressive residual ultimate strength of stiffened panels and unstiffened plates......, webs and flanges, respectively. The effects of inspections and repair are taken into account. A minimum net thickness rule is used to determine repair policies. A procedure is proposed to determine the maximum allowable corrosion thickness of different parts of the hull cross section. The procedure...

  18. Prediction of fretting fatigue behavior under elastic-plastic conditions

    International Nuclear Information System (INIS)

    Shin, Ki Su

    2009-01-01

    Fretting fatigue generally leads to the degradation of the fatigue strength of a material due to cyclic micro-slip between two contacting materials. Fretting fatigue is regarded as an important issue in designing aerospace structures. While many studies have evaluated fretting fatigue behavior under elastic deformation conditions, few have focused on fretting fatigue behavior under elastic-plastic deformation conditions, especially the crack orientation and fatigue life prediction for Ti-6Al-4V. The primary goal of this study was to characterize the fretting fatigue crack initiation behavior in the presence of plasticity. Experimental tests were performed using pad configurations involving elastic-plastic deformations. To calculate stress distributions under elastic-plastic fretting fatigue conditions, FEA was also performed. Several parametric approaches were used to predict fretting fatigue life along with stress distribution resulting from FEA. However, those parameters using surface stresses were unable to establish an equivalence between elastic fretting fatigue data and elastic-plastic fretting fatigue data. Based on this observation, the critical distance methods, which are commonly used in notch analysis, were applied to the fretting fatigue problem. In conclusion, the effective strain range method when used in conjunction with the SMSSR parameter showed a good correlation of data points between the pad configurations involving elastic and elastic plastic deformations

  19. Conditions for crack initiation in an orthotropic bi-material notch

    Czech Academy of Sciences Publication Activity Database

    Klusák, Jan; Profant, T.; Kotoul, M.

    2012-01-01

    Roč. 19, č. 4 (2012), s. 302-307 ISSN 1537-6494 R&D Projects: GA ČR GA101/08/0994; GA ČR GAP108/10/2049 Institutional support: RVO:68081723 Keywords : General singular stress concentrators * Fracture mechanics * Notch es * Bi-material notch es * Fracture mechanics Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 0.701, year: 2012

  20. The Influence of Wagon Structure Part Shape Optimization on Ultimate Fatigue Strength

    OpenAIRE

    Milovanović, Vladimir; Živković, Miroslav; Jovičić, Gordana; Živković, Jelena; Kozak, Dražan

    2016-01-01

    This study investigates how shape optimisation affects the ultimate fatigue strength of a mechanical part. The mechanical part chosen for this investigation is an axle guard of running gear elements of the Hccrrs 2x2 axle car-carrying wagon. The static and fatigue strength analysis procedure according to the UIC 517 standard and numerical methods have been applied. Material properties were determined experimentally and the necessary numerical calculations were performed by using the finite el...

  1. Fatigue of Austempered Ductile Iron with Two Strength Grades in Very High Cycle Regime

    Science.gov (United States)

    Zhang, Jiwang; Li, Wei; Song, Qingpeng; Zhang, Ning; Lu, Liantao

    2016-03-01

    In this study, Austempered ductile irons (ADIs) with two different strength grades were produced and the fatigue properties were measured at 109 cycles. The results show that the S-N curves give a typical step-wise shape and there is no fatigue limit in the very high cycle fatigue regime. The two grades ADI have the similar fracture behaviors and fatigue failure can initiate from defects at specimen surface and subsurface zone. On the fracture surfaces of some specimens, the `granular-bright-facet' area with rich carbon distribution is observed in the vicinity of the defect. The microstructure affects the crack behaviors at the early propagation stage. The ADI with upper and lower bainite shows higher fatigue strength compared with the ADI with coarse upper bainite.

  2. Notch sensitivity of ductile metallic foams : A computational study

    NARCIS (Netherlands)

    Mangipudi, K. R.; Onck, P. R.

    2011-01-01

    The role of notches in the fracture strength of metal foams has been studied using a multiscale model based on a two-dimensional Voronoi representation of the cellular architecture. The effect of the crack length to the specimen width ratio on the net section strength of double edge notch (DEN)

  3. Transitional behaviour of thickness effects in shipbuilding materials (MS plate)

    Science.gov (United States)

    Mahmud, S. M. Ikhtiar; Razib, Amirul Hasan; Rahman, Md. Rabab Raiyatur

    2017-12-01

    Majority of the crack propagation in ships and offshore structures are caused due to fatigue. Previously, it was known that fatigue strength of notched specimen is dependent on size, but recently it came to light that fatigue strength of some welded joints depends on the thickness. Much investigation is done on the fatigue growth of welded joints. Fatigue often results in fracture accidents, which starts from the sites of structural discontinuities because of the reason that they may induce local stress concentrations. Structural discontinuities include notches, holes, sharp corners, and weld defects. Weld defects include undercut, porosity, lack of fusion, slag inclusion, incomplete weld root penetration, and misalignments. In order to investigate the effects of plate thickness on fatigue strength, semi-elliptical side notches (U and V shaped) in plates are studied in the present research. First consider a simple problem of crack emanating from notches in plates where the solution of stress intensity factor is given by an empirical formula so that the thickness effect on fatigue strength can easily be investigated for a variety of geometrical parameters. The present study aims to investigate the transitional behaviour of thickness effect in plates on fatigue strength. In order to calculate the stress, finite element analysis is carried by using ANSYS.

  4. Damage formation, fatigue behavior and strength properties of ZrO{sub 2}-based ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Kozulin, A. A., E-mail: kozulyn@ftf.tsu.ru; Kulkov, S. S. [Tomsk State University, Tomsk, 634050 (Russian Federation); Narikovich, A. S.; Leitsin, V. N. [Immanuel Kant Baltic Federal University, Kaliningrad, 236041 (Russian Federation); Kulkov, S. N., E-mail: kulkov@ispms.ru [Tomsk State University, Tomsk, 634050 (Russian Federation); Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation)

    2016-08-02

    It is suggested that a non-destructive testing technique using a three-dimensional X-ray tomography be applied to detecting internal structural defects and monitoring damage formation in a ceramic composite structure subjected to a bending load. Three-point bending tests are used to investigate the fatigue behavior and mechanical and physical properties of medical-grade ZrO{sub 2}-based ceramics. The bending strength and flexural modulus are derived under static conditions at a loading rate of 2 mm/min. The fatigue strength and fatigue limit under dynamic loading are investigated at a frequency of 10 Hz in three stress ranges: 0.91–0.98, 0.8–0.83, and 0.73–0.77 MPa of the static bending strength. The average values of the bending strength and flexural modulus of sintered specimens are 43 MPa and 22 GPa, respectively. The mechanical properties of the ceramics are found to be similar to those of bone tissues. The testing results lead us to conclude that the fatigue limit obtained from 10{sup 5} stress cycles is in the range 33–34 MPa, i.e. it accounts for about 75% of the static bending strength for the test material.

  5. Tensile behavior of unnotched and notched tungsten--copper laminar composites

    International Nuclear Information System (INIS)

    Hoffman, C.A.

    1976-06-01

    Relations were studied between the tensile strengths of unnotched and of notched, and elastic moduli of unnotched laminar sheet or foil composites and the amounts of reinforcement. Tungsten was used as the reinforcement and copper as the matrix, and the tests were run at room temperature. Three thicknesses of tungsten (i.e., 0.00254, 0.0127, and 0.0254 cm (0.001, 0.005, and 0.010 in) were used, and the nominal volume fraction of tungsten was varied from about 0.05 to 0.95. It was found that the tensile strength of the unnotched specimens could be related to the amount of reinforcement, as could the elastic moduli, and that these values could be predicted by use of the rule of mixtures. The tensile strengths of the notched laminar composites could be predicted by use of the rule of mixtures using strengths for notched constituents, provided notch effects did not predominate. (Author)

  6. Fatigue testing of weldable high strength steels under simulated service conditions

    Science.gov (United States)

    Tantbirojn, Natee

    There have been concerns over the effect of Cathodic Protection (CP) on weldable high strength steels employed in Jack-up production platform. The guidance provided by the Department of Energy HSE on higher strength steels, based on previous work, was to avoid overprotection as this could cause hydrogen embrittlement. However, the tests conducted so far at UCL for the SE702 type high strength steels (yields strength around 690 MPa) have shown that the effect of over protection on high strength steels may not be as severe as previously thought. For this thesis, SE702 high strength steels have been investigated in more detail. Thick (85mm) parent and ground welded plates were tested under constant amplitude in air and seawater with CP. Tests were also conducted on Thick (40mm) T-butt welded plates under variable amplitude loading in air and seawater with two CP levels (-800mV and -1050mV). Different backing materials (ceramic and metallic) for the welding process of the T-butt plates were also investigated. The variable amplitude sequences employed were generated using the Jack-up Offshore Standard load History (JOSH). The fatigue results are presented as crack growth and S/N curves. They were compared to the conventional offshore steel (BS 4360 50D). The results suggested that the fatigue life of the high strength steels was comparable to the BS 4360 50D steels. The effect of increasing the CP was found to be detrimental to the fatigue life but the effect was not large. The effect of CP was less noticeable in T-butt welded plates. However, in general, the effect of overprotection is not as detrimental to the Jack-up steels as previously thought. The load histories generated by JOSH were found to have some unfavourable characteristics. The framework is based on Markov Chain method and pseudo-random number generator for selecting sea-states. A study was carried out on the sequence generated by JOSH. The generated sequences were analysed for their validity for fatigue

  7. Designing aluminium friction stir welded joints against multiaxial fatigue

    Directory of Open Access Journals (Sweden)

    L. Susmel

    2016-07-01

    Full Text Available The present paper investigates the accuracy of the Modified Wöhler Curve Method (MWCM in estimating multiaxial fatigue strength of aluminium friction stir (FS welded joints. Having developed a bespoke joining technology, circumferentially FS welded tubular specimens of Al 6082-T6 were tested under proportional and non-proportional tension and torsion, the effect of non-zero mean stresses being also investigated. The validation exercise carried out using the experimental results have demonstrated that the MWCM applied in terms of nominal stresses, notch stresses, and also the Point Method is accurate in predicting the fatigue lifetime of the tested FS welded joints, with its use resulting in life estimates that fall within the uniaxial and torsional calibration scatter bands.

  8. Fatigue strength of a single lap joint SPR-bonded

    International Nuclear Information System (INIS)

    Di Franco, G.; Fratini, L.; Pasta, A.

    2011-01-01

    In the last years, hybrid joints, meaning with this the joints which consist in combining a traditional mechanical joint to a layer of adhesive, are gradually attracting the attention of various sectors of the construction of vehicles and transportation industries, for their better performance compared to just mechanical joints (self-piercing riveting SPR, riveting, and so on) or just to bonded joints.The paper investigates the fatigue behavior of a single lap joint self-piercing riveted (SPR) and bonded throughout fatigue tests. The considered geometric configuration allowed the use of two rivets placed longitudinally; an epoxy resin was used as adhesive. In the first part of the work static characterization of the joints was carried out through tensile tests. Then fatigue tests were made with the application of different levels of load. The fatigue curves were also obtained at the varying the distance between the two rivets in order to better assess the joint strength for a given length of overlap.

  9. Influence of laser cutting on the fatigue limit of two high strength steels

    International Nuclear Information System (INIS)

    Mateo, Antonio; Fargas, Gemma; Calvo, Jessica; Roa, Joan Josep

    2015-01-01

    Laser cutting is widely used in the metal industry, particularly when components of high strength steel sheets are produced. However, the roughness of cut edges produced by laser differs from that obtained by other methods, such as mechanical blanking, and this fact influences the fatigue performance. In the present investigation, specimens of two grades of high strength austenitic steels, i.e. AISI 301LN and TWIP17Mn, were cut by laser and tested in the high cycle fatigue regime to determine their corresponding fatigue limits. A series of fatigue specimens were tested without polishing and other series after a careful polishing of the cut edges, in order to assess the influence of the cut edges condition. Results indicate a significant influence of the edge roughness, more distinctive for AISI 301LN than for TWIP steel.

  10. Influence of laser cutting on the fatigue limit of two high strength steels

    Energy Technology Data Exchange (ETDEWEB)

    Mateo, Antonio; Fargas, Gemma; Calvo, Jessica; Roa, Joan Josep [Univ. Politecnica de Catalunya, Barcelona (Spain). Dept. of Materials Science and Metallurgical Engineering

    2015-02-01

    Laser cutting is widely used in the metal industry, particularly when components of high strength steel sheets are produced. However, the roughness of cut edges produced by laser differs from that obtained by other methods, such as mechanical blanking, and this fact influences the fatigue performance. In the present investigation, specimens of two grades of high strength austenitic steels, i.e. AISI 301LN and TWIP17Mn, were cut by laser and tested in the high cycle fatigue regime to determine their corresponding fatigue limits. A series of fatigue specimens were tested without polishing and other series after a careful polishing of the cut edges, in order to assess the influence of the cut edges condition. Results indicate a significant influence of the edge roughness, more distinctive for AISI 301LN than for TWIP steel.

  11. Fretting fatigue behavior of high-strength steel monostrands under bending load

    DEFF Research Database (Denmark)

    Winkler, Jan; Georgakis, Christos T.; Fischer, Gregor

    2015-01-01

    In this paper, the fretting fatigue behavior of pretensioned high-strength steel monostrands is investigated. To measure the local deformations on the strands, a novel method based on the digital image correlation (DIC) technique was used to quantify the relative movement between individual wires...... along the length of the monostrand. Information about the monostrand bending stiffness and the extent of relative displacement between core and outer wires of a monostrand undergoing flexural deformations is provided. From the series of dynamic fatigue tests, a fretting fatigue spectrum is derived...

  12. Muscle Fiber Type Composition and Knee Extension Isometric Strength Fatigue Patterns in Power- and Endurance-Trained Males.

    Science.gov (United States)

    Kroll, Walter; And Others

    1980-01-01

    There is a degree of uniqueness in fatigue patterns, particularly between different levels of absolute maximum strength. Caution should be used when analyzing fatigue curves among subjects with unspecified strength levels. (CJ)

  13. Fatigue strength of Co-Cr-Mo alloy clasps prepared by selective laser melting.

    Science.gov (United States)

    Kajima, Yuka; Takaichi, Atsushi; Nakamoto, Takayuki; Kimura, Takahiro; Yogo, Yoshiaki; Ashida, Maki; Doi, Hisashi; Nomura, Naoyuki; Takahashi, Hidekazu; Hanawa, Takao; Wakabayashi, Noriyuki

    2016-06-01

    We aimed to investigate the fatigue strength of Co-Cr-Mo clasps for removable partial dentures prepared by selective laser melting (SLM). The Co-Cr-Mo alloy specimens for tensile tests (dumbbell specimens) and fatigue tests (clasp specimens) were prepared by SLM with varying angles between the building and longitudinal directions (i.e., 0° (TL0, FL0), 45° (TL45, FL45), and 90° (TL90, FL90)). The clasp specimens were subjected to cyclic deformations of 0.25mm and 0.50mm for 10(6) cycles. The SLM specimens showed no obvious mechanical anisotropy in tensile tests and exhibited significantly higher yield strength and ultimate tensile strength than the cast specimens under all conditions. In contrast, a high degree of anisotropy in fatigue performance associated with the build orientation was found. For specimens under the 0.50mm deflection, FL90 exhibited significantly longer fatigue life (205,418 cycles) than the cast specimens (112,770 cycles). In contrast, the fatigue lives of FL0 (28,484 cycles) and FL45 (43,465 cycles) were significantly shorter. The surface roughnesses of FL0 and FL45 were considerably higher than those of the cast specimens, whereas there were no significant differences between FL90 and the cast specimens. Electron backscatter diffraction (EBSD) analysis indicated the grains of FL0 showed preferential close to orientation of the γ phase along the normal direction to the fracture surface. In contrast, the FL45 and FL90 grains showed no significant preferential orientation. Fatigue strength may therefore be affected by a number of factors, including surface roughness and crystal orientation. The SLM process is a promising candidate for preparing tough removable partial denture frameworks, as long as the appropriate build direction is adopted. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Influence of non-metallic second phases on fatigue behaviour of high strength steel components

    International Nuclear Information System (INIS)

    Gonzalez, L.; Elvira, R.; Garcia de Andoin, A.; Pizarro, R.; Bertrand, C.

    2005-01-01

    To assess the real effect of the inclusion type on fatigue life of ultra clean high strength steels mechanical components made of 100Cr6 steel were fatigue tested and fracture surfaces analysed to determine the origin of fatigue cracks.Two heats proceedings from different steelmaking routes were taken for the tests. The material were forged into ring shape components which were fatigue tested under compression-compression loads. Failures were analysed by SFEM (Scanning field Emission Microscopy), proving that most of failures at high loads were originated by manganese sulphides of small size (10-70 micros), while less than 40% of all fatigue cracks due to inclusions were caused by titanium carbonitrides and hard oxides. It has been demonstrated that once number and size of hard inclusions have been reduced, the hazardous effect of oxides and carbonitrides on the fatigue life decreases also. However, softer inclusions as manganese sulphides, currently considered as less hazardous, play a more relevant role as direct cause of fatigue failure and they should be taken into account in a deeper way in order to balance both machinability and fatigue life requirements in high strength steel components. (Author) 11 refs

  15. Effect of Stress Ratio on Fatigue Crack Growth Rate at Notched Hole in 7075-T6 Aluminum Alloy Under Biaxial Fatigue

    Science.gov (United States)

    2016-08-18

    Berezhnitski, L.T., and R.S. Gromyak. “Evaluation of Limiting State of Matrix in Vicinity of Sharp-Edge Rigid Inclusion.” Material Science, Volume 13...Effect of Surface Enhancement on the Corrosion Properties, Fatigue Strength, and Degradation Of Aircraft Aluminum.” Lambda Research, 2010. [38

  16. Effect of Grinding and Multi-Stimuli Aging on the Fatigue Strength of a Y-TZP Ceramic.

    Science.gov (United States)

    Silvestri, Tais; Pereira, Gabriel Kalil Rocha; Guilardi, Luis Felipe; Rippe, Marilia Pivetta; Valandro, Luiz Felipe

    2018-01-01

    This study aimed to investigate the effect of grinding and multi-stimuli aging on the fatigue strength, surface topography and the phase transformation of Y-TZP ceramic. Discs were manufactured according to ISO-6872:2008 for biaxial flexure testing (diameter: 15 mm; thickness: 1.2 mm) and randomly assigned considering two factors "grinding" and "aging": C- control (as-sintered); CA- control + aging; G- ground; GA- ground + aging. Grinding was carried out with coarse diamond burs under water-cooling. Aging protocols consisted of: autoclave (134°C, 2 bars pressure, 20 hours), followed by storage for 365 days (samples were kept untouched at room temperature), and by mechanical cycling (106 cycles by 20 Hz under a load of 50% from the biaxial flexure monotonic tests). Flexural fatigue strengths (20,000 cycles; 6 Hz) were determined under sinusoidal cyclic loading using staircase approach. Additionally, surface topography analysis by FE-SEM and phase transformation analysis by X-ray Diffractometry were performed. Dixon and Mood methodology was used to analyze the fatigue strength data. Grinding promotes alterations of topographical pattern, while aging apparently did not alter it. Grinding triggered t-m phase transformation without impacting the fatigue strength of the Y-TZP ceramic; and aging promoted an intense t-m transformation that resulted in a toughening mechanism leading to higher fatigue strength for as-sintered condition, and a tendency of increase for ground condition (C grinding and aging procedures did not affect deleteriously the fatigue strength of the evaluated Y-TZP ceramic, although, it promotes surface topography alterations, except to aging, and t-m phase transformation.

  17. Mechanical properties and fatigue strength of high manganese non-magnetic steel/carbon steel welded joints

    International Nuclear Information System (INIS)

    Nakaji, Eiji; Ikeda, Soichi; Kim, You-Chul; Nakatsuji, Yoshihiro; Horikawa, Kosuke.

    1997-01-01

    The dissimilar materials welded joints of high manganese non-magnetic steel/carbon steel (hereafter referred to as DMW joints), in which weld defects such as hot crack or blowhole are not found, were the good quality. Tensile strength of DMW joints was 10% higher than that of the base metal of carbon steel. In the bend tests, the DMW joints showed the good ductility without crack. Charpy absorbed energy at 0(degC) of the DMW joints was over 120(J) in the bond where it seems to be the lowest. Large hardening or softening was not detected in the heat affected zone. Fatigue strength of the DMW joints is almost the same with that of the welded joints of carbon steel/carbon steel. As the fatigue strength of the DMW joints exceeds the fatigue design standard curve of JSSC for carbon steel welded joints, the DMW joints can be treated the same as the welded joints of carbon steel/carbon steel of which strength is lower than that of high manganese non-magnetic steel, from the viewpoint of the fatigue design. (author)

  18. Fatigue Behavior of Steel Fiber Reinforced High-Strength Concrete under Different Stress Levels

    Science.gov (United States)

    Zhang, Chong; Gao, Danying; Gu, Zhiqiang

    2017-12-01

    The investigation was conducted to study the fatigue behavior of steel fiber reinforced high-strength concrete (SFRHSC) beams. A series of 5 SFRHSC beams was conducted flexural fatigue tests at different stress level S of 0.5, 0.55, 0.6, 0.7 and 0.8 respectively. Static test was conducted to determine the ultimate static capacity prior to fatigue tests. Fatigue modes and S-N curves were analyzed. Besides, two fatige life prediction model were analyzed and compared. It was found that stress level S significantly influenced the fatigue life of SFRHSC beams and the fatigue behavior of SFRHSC beams was mainly determined by the tensile reinforcement.

  19. Void coalescence and fracture behavior of notched and un-notched tensile tested specimens in fine grain dual phase steel

    Energy Technology Data Exchange (ETDEWEB)

    Saeidi, N., E-mail: navidsae@gmail.com [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Ashrafizadeh, F.; Niroumand, B. [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Forouzan, M.R.; Mohseni mofidi, S. [Department of Mechanical Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Barlat, F. [Materials Mechanics Laboratory (MML), Graduate Institute of Ferrous Technology (GIFT), Pohang University of Science and Technology POSTECH, San 31 Hyoja-dong, Nam-gu, Pohang, Gyeongbuk 790-784 (Korea, Republic of)

    2015-09-17

    Due to growing global concern about the environmental issues, steel developers have been forced by automobile makers to produce more efficient steel grades with high strength to weight ratios along with high crashworthiness performance. In order to find deficiencies of the existing steels and develop superior steel products, detailed understanding of deformation and damage behavior in the existing steels is needed. In the present research, deformation and damage evolution during room temperature uniaxial tensile test of a modern high strength Dual Phase Steel, i.e. DP780, were studied. Detailed scanning electron microscopy (SEM) examination of the microstructures of notched and un-notched tensile fractured specimens revealed that in notched specimen, plastic deformation was concentrated more within the notched region. Therefore, much higher reduction in thickness with a high reduction gradient occurred in this region, In the un-notched specimen, however, plastic deformation was more uniformly distributed in larger parts of the gauge length, and therefore, thickness reduction happened with a lower gradient. Although geometric notch on the specimen did not change the void nucleation and growth mechanisms, the kinetics of these phenomena was influenced. On the other hand, voids linkage mechanism tended to change from void coalescence in the un-notched specimen to void sheeting in the notched specimen. Moreover, three different models developed by Brown & Embury (BM), Thomason and Pardoen were employed to predict the final fracture strain. It was revealed that, BM model showed much more accurate predictions for the studied DP steel in comparison with those of Thomason and Pardoens’ models.

  20. Void coalescence and fracture behavior of notched and un-notched tensile tested specimens in fine grain dual phase steel

    International Nuclear Information System (INIS)

    Saeidi, N.; Ashrafizadeh, F.; Niroumand, B.; Forouzan, M.R.; Mohseni mofidi, S.; Barlat, F.

    2015-01-01

    Due to growing global concern about the environmental issues, steel developers have been forced by automobile makers to produce more efficient steel grades with high strength to weight ratios along with high crashworthiness performance. In order to find deficiencies of the existing steels and develop superior steel products, detailed understanding of deformation and damage behavior in the existing steels is needed. In the present research, deformation and damage evolution during room temperature uniaxial tensile test of a modern high strength Dual Phase Steel, i.e. DP780, were studied. Detailed scanning electron microscopy (SEM) examination of the microstructures of notched and un-notched tensile fractured specimens revealed that in notched specimen, plastic deformation was concentrated more within the notched region. Therefore, much higher reduction in thickness with a high reduction gradient occurred in this region, In the un-notched specimen, however, plastic deformation was more uniformly distributed in larger parts of the gauge length, and therefore, thickness reduction happened with a lower gradient. Although geometric notch on the specimen did not change the void nucleation and growth mechanisms, the kinetics of these phenomena was influenced. On the other hand, voids linkage mechanism tended to change from void coalescence in the un-notched specimen to void sheeting in the notched specimen. Moreover, three different models developed by Brown & Embury (BM), Thomason and Pardoen were employed to predict the final fracture strain. It was revealed that, BM model showed much more accurate predictions for the studied DP steel in comparison with those of Thomason and Pardoens’ models

  1. Isometric arm strength and subjective rating of upper limb fatigue in two-handed carrying tasks.

    Science.gov (United States)

    Li, Kai Way; Chiu, Wen-Sheng

    2015-01-01

    Sustained carrying could result in muscular fatigue of the upper limb. Ten male and ten female subjects were recruited for measurements of isometric arm strength before and during carrying a load for a period of 4 minutes. Two levels of load of carrying were tested for each of the male and female subjects. Exponential function based predictive equations for the isometric arm strength were established. The mean absolute deviations of these models in predicting the isometric arm strength were in the range of 3.24 to 17.34 N. Regression analyses between the subjective ratings of upper limb fatigue and force change index (FCI) for the carrying were also performed. The results indicated that the subjective rating of muscular fatigue may be estimated by multiplying the FCI with a constant. The FCI may, therefore, be adopted as an index to assess muscular fatigue for two-handed carrying tasks.

  2. Effects of fatigue and environment on residual strengths of center-cracked graphite/epoxy buffer strip panels

    Science.gov (United States)

    Bigelow, Catherine A.

    1989-01-01

    The effects of fatigue, moisture conditioning, and heating on the residual tension strengths of center-cracked graphite/epoxy buffer strip panels were evaluated using specimens made with T300/5208 graphite epoxy in a 16-ply quasi-isotropic layup, with two different buffer strip materials, Kevlar-49 or S-glass. It was found that, for panels subjected to fatigue loading, the residual strengths were not significantly affected by the fatigue loading, the number of repetitions of the loading spectrum, or the maximum strain level. The moisture conditioning reduced the residual strengths of the S-glass buffer strip panels by 10 to 15 percent below the ambient results, but increased the residual strengths of the Kevlar-49 buffer strip panels slightly. For both buffer strip materials, the heat increased the residual strengths of the buffer strip panels slightly over the ambient results.

  3. Fracture mechanics of ceramics. Vol. 8. Microstructure, methods, design, and fatigue

    International Nuclear Information System (INIS)

    Bradt, R.C.; Evans, A.G.; Hasselman, D.P.H.; Lange, F.F.

    1986-01-01

    This paper presents information on the following topics: fracture mechanics and microstructures; non-lubricated sliding wear of Al 2 O 3 , PSZ and SiC; mixed-mode fracture of ceramics; some fracture properties of alumina-containing electrical porcelains; transformation toughening in the Al 2 O 3 -Cr 2 O 3 /ZrO 2 -HfO 2 system; strength toughness relationships for transformation toughened ceramics; tensile strength and notch sensitivity of Mg-PSZ; fracture mechanisms in lead zirconate titanate ceramics; loading-unloading techniques for determining fracture parameters of brittle materials utilizing four-point bend, chevron-notched specimens; application of the potential drop technique to the fracture mechanics of ceramics; ceramics-to-metal bonding from a fracture mechanics perspective; observed changes in fracture strength following laser irradiation and ion beam mixing of Ni overlayers on sintered alpha-SiC; crack growth in single-crystal silicon; a fracture mechanics and non-destructive evaluation investigation of the subcritical-fracture process in rock; slow crack growth in sintered silicon nitride; uniaxial tensile fatigue testing of sintered silicon carbide under cyclic temperature change; and effect of surface corrosion on glass fracture

  4. Effect of tooth whitening strips on fatigue resistance and flexural strength of bovine dentin in vitro.

    Directory of Open Access Journals (Sweden)

    Laura E Tam

    Full Text Available To determine the effects of whitening strips on bovine dentin fatigue resistance and flexural strength in vitro.A total of eighty bovine dentin specimens (2x2x17mm were treated with either: control glycerine gel on plastic film wrap or whitening strips containing 9.5% hydrogen peroxide. Treatment was applied for 30 minutes, twice a day, for 1- or 4-weeks. After the last treatment, ten specimens per group were randomly selected to undergo fatigue testing (106 cycles, 3Hz, 20N while the other ten were subjected to flexural strength testing after ten days of storage in artificial saliva. Kaplan-Meier method with a log rank test, Wilcoxon test and Cox regression were used to assess fatigue test results (p<0.05. One-way ANOVA and Tukey's tests were used to compare the flexural strength results (p<0.05.There were significant differences in survival during the fatigue test among the groups (p<0.001. Treatment (control or bleach was a significant factor for specimen survival (p<0.001, Exp(B = 33.45. There were significant differences in mean flexural strength (p<0.001. No significant difference was found between "1-wk control" and "4-wk control". The mean flexural strength and fatigue resistance of the "4-wk bleach" were significantly lower than all the other groups.The use of whitening strips reduced the fatigue resistance and flexural strength of bovine dentin in vitro. Until the effect of whitening strips on mechanical properties of human dentin is fully elucidated, it remains prudent to advise patients to avoid excessive direct use of whitening strips on dentin.

  5. Comparison of Post Weld Treatment of High Strength Steel Welded Joints in Medium Cycle Fatigue

    DEFF Research Database (Denmark)

    Pedersen, Mikkel Melters; Mouritsen, Ole Ø.; Hansen, Michael Rygaard

    2010-01-01

    This paper presents a comparison of three post-weld treatments for fatigue life improvement of welded joints. The objective is to determine the most suitable post-weld treatment for implementation in mass production of certain crane components manufactured from very high-strength steel...... the stress range can exceed the yield-strength of ordinary structural steel, especially when considering positive stress ratios (R > 0). Fatigue experiments and qualitative evaluation of the different post-weld treatments leads to the selection of TIG dressing. The process of implementing TIG dressing...... in mass production and some inherent initial problems are discussed. The treatment of a few critical welds leads to a significant increase in fatigue performance of the entire structure and the possibility for better utilization of very high-strength steel....

  6. Determination of the threshold values of orthotropic bi-material notches

    Czech Academy of Sciences Publication Activity Database

    Klusák, Jan; Profant, T.; Kotoul, M.

    2010-01-01

    Roč. 2, č. 1 (2010), s. 1635-1642 E-ISSN 1877-7058. [Fatigue 2010. Praha, 06.06.2010-11.06.2010] R&D Projects: GA ČR GA101/08/0994; GA ČR GAP108/10/2049 Institutional research plan: CEZ:AV0Z20410507 Keywords : Bi-material notch es * Generalized singular stress concentrators * Stability criterion * Orthotropic materials Subject RIV: JL - Materials Fatigue, Friction Mechanics

  7. Effects of foreign object damage from small hard particles on the high-cycle fatigue life of titanium-(6)aluminum-(4)vanadium

    Science.gov (United States)

    Hamrick, Joseph L., II

    Thin rectangular samples of Ti-6Al-4V were damaged by four methods to represent foreign object damage found in turbine engine blades: (1) impact with 2 mm. and 5 mm diameter glass spheres at 305 m/s, (2) impact with 2 mm and 4 mm diameter steel spheres at 305 m/s, (3) quasi-static displacement controlled indentation using steel chisels with 1 mm, 2 nun and 5 mm diameter tips and (4) shearing notches with a 2 mm. diameter chisel point under a quasi-static loading condition. Finite element analysis was used to study the relationship between the stress state created by the plastic damage and the fatigue strength. A new method of quantifying the amount of plastic damage from multiple methods was developed. The fatigue strength required for crack initiation at 10E7 cycles was found to be a function of the total depth from the edge of the undeformed specimen up to the end of the plastically deformed zone. For damage depths less than 1750 mum, the reduction in fatigue strength is proportional to the depth of total damage. For depths > 1750 mum, there appears to be a threshold value of fatigue strength.

  8. Restraint of fatigue crack growth by wedge effects of fine particles

    CERN Document Server

    Takahashi, I; Kotani, N

    2000-01-01

    Presents some experimental results which demonstrate restraint of fatigue crack growth in an Al-Mg alloy by wedge effects of fine particles. Fatigue test specimens were machined from a JIS A5083P-O Al-Mg alloy plate of 5 mm thickness and an EDM starter notch was introduced to each specimen. Three kinds of fine particles were prepared as the materials to be wedged into the fatigue cracks, i.e. magnetic particles and two kinds of alumina particles having different mean particle sizes of 47.3 mu m and 15.2 mu m. Particles of each kind were suspended in an oil to form a paste, which was applied on the specimen surface covering the notch zone prior to the fatigue tests. In order to make some fracture mechanics approaches, in situ observations of fatigue cracks were performed for the two cases using a CCD microscope, with a magnification of *1000. The crack length and the crack opening displacement (COD) at the notch root, delta , were measured. The crack retardation effect continues almost through the entire lifet...

  9. Indoor mobility-related fatigue and muscle strength in nonagenarians

    DEFF Research Database (Denmark)

    Mänty, Minna; Ekmann, Anette; Thinggaard, Mikael

    2014-01-01

    needs to be considered when interpreting the results. Accordingly, participants without fatigue had significantly higher chances of being alive and having muscle strength above gender-specific median at first (RR 1.32, 95 % CI 1.07-1.58), second (RR 1.51, 1.06-1.96) and third (RR 1.39, 1...

  10. The role of pores and microstructural heterogeneity on the tooth root fatigue strength of sintered spur gears

    Directory of Open Access Journals (Sweden)

    Benedetti Matteo

    2018-01-01

    Full Text Available The automotive industry employs a considerable amount of sintered parts, mainly as transmission and engine components. Gears are the parts that mostly benefit, in terms of cost saving, from the near net shape P/M technology. However, the porosity along with the heterogeneous microstructure can detrimentally affect the mechanical behaviour, especially the fatigue strength. The possibility of increasing sintered density up to 90% and more, the use of high strength alloys, as well as post sintering treatments have been extensively investigated obtaining consistent increases in the fatigue strength. The present study focuses on the effects of porosity and microstructure on tooth root bending fatigue of small module spur gears. The aim is to investigate the synergistic contribution of pore morphology and microstructure heterogeneity to the initiation of fatigue cracks and to the following crack paths. High density parts produced by high strength pre-alloyed powders were studied. Part of the specimens was case-hardened to obtain a martensitic/bainitic microstructure in the surface layer. Bending fatigue tests up to a fatigue endurance of three million cycles were performed. A careful fractographic analysis was conducted. The obtained results were discussed using the fracture mechanics approach of Murakami, considering the pores as pre-existing defects, whose propagation strongly depends on the microstructural heterogeneity.

  11. Fracture and fatigue of high strength filaments. Final report, September 25, 1974--August 30, 1975

    International Nuclear Information System (INIS)

    Holt, N.L.; Finnie, I.

    1975-01-01

    The history of high strength filamentary materials is traced and it is seen that their use has been widespread. It is shown that today's demands upon these materials require a better understanding of their behavior than is presently available. Current theories for both the static and fatigue strength of filamentary materials are reviewed. An analysis of static strength tests on short filaments is presented that explains seemingly anomalous test behavior which has been reported in the literature. The proposed approach is supported by experiments and computer analysis. A new machine for the fatigue testing of filaments or wires was designed and is described in detail. Results are presented for fatigue tests on tungsten wire, graphite filaments and glass filaments. Graphite filaments showed an unexpected deterioration in strength after very many cycles (10 8 ). An explanation of this effect is offered and supported by scanning electron microscope observations. The work concludes with some suggestions for further research

  12. Corrosion fatigue behavior of high strength brass in aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, A.S.; Kassem, M.A.; Ramadan, R.M.; El-Zeky, M.A. [Suez Canal Univ., Dept. of Metallurgy and Materials Engineering (Egypt)

    2000-07-01

    Corrosion fatigue behavior of British Standard high strength brass, CZ 127 has been studied in various environments, 3.5%NaC1 solution and 3.5%NaC1 containing 1000ppm ammonia by applying the reverse bending technique, strain-controlled cyclic, at 67 cycles/min. Characteristics of the produced alloy were studied using differential thermal analysis with applying its results in heat treating of the alloy; metallographic examinations; hardness measurements; X-ray; and electrochemical behavior of the unstressed alloy. CZ 127 was fatigued at three different conditions, solution treated, peak aged, and over aged at a fixed strain amplitude, 0.03 5. Solution treated alloy gave the best fatigue properties in all environments tested among the other materials. Results of the alloy studied were compared with that obtained of 70/30 {alpha}-brass. Fracture surface of the fatigued alloy was examined using optical microscope and scanning electron microscope equipped with EDX. (author)

  13. Corrosion fatigue behavior of high strength brass in aqueous solutions

    International Nuclear Information System (INIS)

    Hamada, A.S.; Kassem, M.A.; Ramadan, R.M.; El-Zeky, M.A.

    2000-01-01

    Corrosion fatigue behavior of British Standard high strength brass, CZ 127 has been studied in various environments, 3.5%NaC1 solution and 3.5%NaC1 containing 1000ppm ammonia by applying the reverse bending technique, strain-controlled cyclic, at 67 cycles/min. Characteristics of the produced alloy were studied using differential thermal analysis with applying its results in heat treating of the alloy; metallographic examinations; hardness measurements; X-ray; and electrochemical behavior of the unstressed alloy. CZ 127 was fatigued at three different conditions, solution treated, peak aged, and over aged at a fixed strain amplitude, 0.03 5. Solution treated alloy gave the best fatigue properties in all environments tested among the other materials. Results of the alloy studied were compared with that obtained of 70/30 α-brass. Fracture surface of the fatigued alloy was examined using optical microscope and scanning electron microscope equipped with EDX. (author)

  14. The effect of microstructure and geometry on the fatigue behaviour of bundle assembly welds

    International Nuclear Information System (INIS)

    Surette, B.A.; Gabbani, M.

    1997-01-01

    Cracking of end plates, in the Darlington NGS, was attributed to high-cycle fatigue resulting from flow-induced vibrations. Because the cracks were predominantly associated with the bundle assembly welds and with certain element positions, a program was initiated to study whether the microstructure and geometry of the weld zone affected the fatigue behaviour of the assembly welds. Assembly weld samples were subjected to different heat treatments, resulting in different microstructures of the weld zone. Results of fatigue testing suggest that heat treatment of the welds (i.e., microstructure) had little effect on the fatigue life. Assembly welds were also produced with different weld notch geometries, and compared with samples having notches produced by machining (instead of welding). The results of these tests showed that geometry of the weld had a significant effect on fatigue life. However, the geometry of the weld notch required to significantly improve fatigue life is not achievable using the current assembly welding process. A small improvement in fatigue life of welded samples appears possible by increasing the weld diameter. (author)

  15. The Static and Fatigue Behavior of AlSiMg Alloy Plain, Notched, and Diamond Lattice Specimens Fabricated by Laser Powder Bed Fusion

    Directory of Open Access Journals (Sweden)

    Hugo Soul

    2018-04-01

    Full Text Available The fabrication of engineered lattice structures has recently gained momentum due to the development of novel additive manufacturing techniques. Interest in lattice structures resides not only in the possibility of obtaining efficient lightweight materials, but also in the functionality of pre-designed architectured structures for specific applications, such as biomimetic implants, chemical catalyzers, and heat transfer devices. The mechanical behaviour of lattice structures depends not only the composition of the base material, but also on the type and size of the unit cells, as well as on the material microstructure resulting from a specific fabrication procedure. The present work focuses on the static and fatigue behavior of diamond cell lattice structures fabricated from an AlSiMg alloy by laser powder bed fusion technology. In particular, the specimens were fabricated with three different orientations of lattice cells—[001], [011], [111]—and subjected to static tensile testing and force-controlled pull–pull fatigue testing up to 1 × 107 cycles. In parallel, the mechanical behavior of dense tensile plain and notched specimens was also studied and compared to that of their lattice counterparts. Results showed a significant effect of the cell orientation on the fatigue lives: specimens oriented at [001] were ~30% more fatigue-resistant than specimens oriented at [011] and [111].

  16. Provision of wear resistance and fatigue strength of surfaces during electroerosive processing

    Science.gov (United States)

    Fedonin, O. N.; Syanov, S. Yu; Papikyan, A. M.

    2018-03-01

    This article is a generalization of the results of theoretical studies of the effect of erosion control regimes on the operational properties of mold-forming parts of molds. The main problem is the provision of wear resistance and fatigue strength in the electroerosion processing of these types of products. The analysis showed that the fatigue strength is affected by the processing regimes and the coefficient after the erosion treatment. The index of wear resistance is determined both by the treatment modes and by the physical-mechanical properties of the billet materials. To ensure the operational performance of products, it is necessary to establish the physical picture of the processing of complex profile parts by finding the optimum eroding regime.

  17. Experimental evaluation of torsional fatigue strength of welded bellows and application to design of fusion device

    International Nuclear Information System (INIS)

    Takatsu, Hideyuki; Yamamoto, Masahiro; Shimizu, Masatsugu; Suzuki, Kazuo; Sonobe, Tadashi; Hayashi, Yuzo; Mizuno, Gen-ichiro.

    1984-01-01

    Torsional fatigue strength of the welded bellows was evaluated experimentally, aiming the application to a port of a fusion device. The welded bellows revealed elastic torsional buckling and spiral distorsion even under a small angle of torsion. Twisting load never leads the welded bellows to fracture easily so far as the angle of torsion is not excessively large, and the welded bellows has the torsional fatigue strength much larger than that expected so far. Two formulae were proposed to evaluate the stress of the welded bellows under the forced angle of torsion; shearing stress evaluation formula in the case that torsional buckling does not occur and the axial bending stress evaluation formula in the case that torsional buckling occurs. And the results of the torsional fatigue experiments showed that the former is reasonably conservative and simulates the actual behavior of the welded bellows better than the latter in the high cycle fatigue region and vice versa in the low cycle fatigue region from the viewpoint of the mechanical design. The present evaluation method of the torsional fatigue strength was applied to the welded bellows for the port of the JT-60 vacuum vessel and its structural integrity was confirmed under the design load condition. (author)

  18. Effect of test temperature on the fatigue strength of the 12GN2MFAYu tempered steel

    International Nuclear Information System (INIS)

    Goritskij, V.M.; Terent'ev, V.F.; Bobyleva, L.A.

    1979-01-01

    The cyclic strength, variation of dislocation structure and fractography of specimen fractures were investigated depending on testing temperature. The specimens were tested at temperatures of 20, 350, 450, 550 deg C. The increase of testing temperature, according to the experimental data obtained, is accompanied by an insignificant reduction of fatigue strength. The testing temperature in the range from 350 to 550 deg C has a weak effect on the fatigue strength of the quenched and tempered steel. A change in the dislocation structure occurs under all tested temperatures in the 12 GN2MFAYu steel during fatigue. The intensity of the rearrangement of dislocation structure increases as the testing temperature increases to 550 deg C causing a decrease of the limited life-time at increased stress amplitudes

  19. Associations of Midlife to Late Life Fatigue With Physical Performance and Strength in Early Old Age

    DEFF Research Database (Denmark)

    Mänty, Minna Regina; Kuh, Diana; Cooper, Rachel

    2015-01-01

    OBJECTIVES: To examine associations of fatigue in midlife and later life with physical performance and strength in early old age. METHODS: Data on approximately 1800 men and women from the UK Medical Research Council National Survey of Health and Development with data on fatigue at ages 43 and 60...... points. These associations were robust and were maintained after adjustment for a range of covariates including physical activity and health status. CONCLUSIONS: Reports of frequent fatigue were associated with poorer physical performance in early old age, especially if sustained from midlife to later...... to 64 years were used. Fatigue was defined as perceived tiredness and was assessed prospectively at ages 43 and 60 to 64 years. At both ages, participants were categorized as having no, occasional, or frequent fatigue. Physical performance and strength were measured at age 60 to 64 years using four...

  20. CORRELATIONS BETWEEN MUSCLE MASS, MUSCLE STRENGTH, PHYSICAL PERFORMANCE, AND MUSCLE FATIGUE RESISTANCE IN COMMUNITY-DWELLING ELDERLY SUBJECTS

    Directory of Open Access Journals (Sweden)

    Elizabeth

    2016-03-01

    Full Text Available Objective: To determine the correlations between muscle mass, muscle strength, physical performance, and muscle fatigue resistance in community-dwelling elderly people in order to elucidate factors which contribute to elderly’s performance of daily activities. Methods: A cross-sectional study was conducted on community-dwelling elderly in Bandung from September to December 2014. One hundred and thirty elderly, 60 years old or above, were evaluated using bioelectrical impedance analysis to measure muscle mass; grip strength to measure muscle strength and muscle fatigue resistance; habitual gait speed to measure physical performance; and Global Physical Activity Questionnaire (GPAQ to assess physical activity. Results: There were significant positive correlations between muscle mass (r=0,27, p=0,0019, muscle strength (r=0,26, p=0,0024, and physical performance (r=0,32, p=0,0002 with muscle fatigue resistance. Physical performance has the highest correlation based on multiple regression test (p=0,0025. In association with muscle mass, the physical activity showed a significant positive correlation (r=0,42, p=0,0000. Sarcopenia was identified in 19 (14.61% of 130 subjects. Conclusions: It is suggested that muscle mass, muscle strength, and physical performance influence muscle fatigue resistance.

  1. Evaluation of weldment creep and fatigue strength-reduction factors for elevated-temperature design

    International Nuclear Information System (INIS)

    Corum, J.M.

    1989-01-01

    New explicit weldment strength criteria in the form of creep and fatigue strength-reduction factors were recently introduced into the American Society of Mechanical Engineers Code Case N-47, which governs the design of elevated-temperature nuclear plants components in the United States. This paper provides some of the background and logic for these factors and their use, and it describes the results of a series of long-term, confirmatory, creep-rupture and fatigue tests of simple welded structures. The structures (welded plates and tubes) were made of 316 stainless steel base metal and 16-8-2 weld filler metal. Overall, the results provide further substantiation of the validity of the strength-reduction factor approach for ensuring adequate life in elevated-temperature nuclear component weldments. 16 refs., 7 figs

  2. Thermographic Inspection of Fatigue Crack by Using Contact Thermal Resistance

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Seung Yong; Kim, No Hyu [Korean University of Technology and Education, Cheonan (Korea, Republic of)

    2013-04-15

    Fatigue crack was detected from a temperature change around surface crack using the thermographic technique. Thermal gradient across the crack decreased very much due to thermal resistance of contact surface in the crack. Heat diffusion flow passing through the discontinuity was visualized in temperature by infrared camera to find and locate the crack. A fatigue crack specimen(SM-45C), which was prepared according to KS specification and notched in its center to initiate fatigue crack from the notch tip, was heated by halogen lamp at the end of one side to generate a heat diffusion flow in lateral direction. A abrupt jump in temperature across the fatigue crack was observed in thermographic image, by which the crack could be located and sized from temperature distribution.

  3. Thermographic Inspection of Fatigue Crack by Using Contact Thermal Resistance

    International Nuclear Information System (INIS)

    Yang, Seung Yong; Kim, No Hyu

    2013-01-01

    Fatigue crack was detected from a temperature change around surface crack using the thermographic technique. Thermal gradient across the crack decreased very much due to thermal resistance of contact surface in the crack. Heat diffusion flow passing through the discontinuity was visualized in temperature by infrared camera to find and locate the crack. A fatigue crack specimen(SM-45C), which was prepared according to KS specification and notched in its center to initiate fatigue crack from the notch tip, was heated by halogen lamp at the end of one side to generate a heat diffusion flow in lateral direction. A abrupt jump in temperature across the fatigue crack was observed in thermographic image, by which the crack could be located and sized from temperature distribution.

  4. Plasma immersion ion implantation on 15-5PH stainless steel: influence on fatigue strength and wear resistance

    Science.gov (United States)

    Bonora, R.; Cioffi, M. O. H.; Voorwald, H. J. C.

    2017-05-01

    Surface improvement in steels is of great interest for applications in industry. The aim of this investigation is to study the effect of nitrogen ion implantation on the axial fatigue strength and wear resistance of 15-5 PH stainless steel. It is well know that electroplated coatings, which are used to improve abrasive wear and corrosion properties, affects negatively the fatigue strength. It is also important to consider requirements to reduce the use of coated materials with electroplated chromium and cadmium, that produce waste, which is harmful to health and environment. The HVOF (High velocity oxygen fuel) process provides hardness, wear strength and higher fatigue resistance in comparison to electroplated chromium. Plasma immersion ion implantation has been used to enhance the hardness, wear, fatigue and corrosion properties of metals and alloys. In the present research the fatigue life increased twice for 15-5 PH three hours PIII treated in comparison to base material. From the abrasive wear tests a lower pin mass reduction was observed, associated to the superficial treatments. The improvement of fatigue and mechanical performance is attributed to a combination of nitrides phase structure and compressive residual stresses during the PIII treatment.

  5. Plasma immersion ion implantation on 15-5PH stainless steel: influence on fatigue strength and wear resistance

    International Nuclear Information System (INIS)

    Bonora, R; Cioffi, M O H; Voorwald, H J C

    2017-01-01

    Surface improvement in steels is of great interest for applications in industry. The aim of this investigation is to study the effect of nitrogen ion implantation on the axial fatigue strength and wear resistance of 15-5 PH stainless steel. It is well know that electroplated coatings, which are used to improve abrasive wear and corrosion properties, affects negatively the fatigue strength. It is also important to consider requirements to reduce the use of coated materials with electroplated chromium and cadmium, that produce waste, which is harmful to health and environment. The HVOF (High velocity oxygen fuel) process provides hardness, wear strength and higher fatigue resistance in comparison to electroplated chromium. Plasma immersion ion implantation has been used to enhance the hardness, wear, fatigue and corrosion properties of metals and alloys. In the present research the fatigue life increased twice for 15-5 PH three hours PIII treated in comparison to base material. From the abrasive wear tests a lower pin mass reduction was observed, associated to the superficial treatments. The improvement of fatigue and mechanical performance is attributed to a combination of nitrides phase structure and compressive residual stresses during the PIII treatment. (paper)

  6. Mechano sorptive behaviour of notched beams in bending

    DEFF Research Database (Denmark)

    Jensen, Signe Kamp; Hoffmeyer, Preben

    1996-01-01

    Short term bending tests with end-notched beams at constant or varying moisture content have shown an apparent contradictory dependency between moisture content and strength. The higher the moisture content the higher the strength. Varying moisture results in particularly significant differences...... and by neglecting deformation due to shear. Compression stresses perpendicular to grain in excess of 6 MPa were found in the vicinity of the notch following a period of adsorption. Similarly, small tension stresses of the order 1 MPa were registered in this area when the specimens were at their most dry condition...

  7. Fatigue crack growth in austenitic stainless steel piping

    International Nuclear Information System (INIS)

    Bethmont, M.; Cheissoux, J.L.; Lebey, J.

    1981-04-01

    The study presented in this paper is being carried out with a view to substantiating the calculations of the fatigue crack growth in pipes made of 316 L stainless steel. The results obtained may be applied to P.W.R. primary piping. It is divided into two parts. First, fatigue tests (cyclic pressure) are carried out under hot and cold conditions with straight pipes machined with notches of various dimensions. The crack propagation and the fatigue crack growth rate are measured here. Second, calculations are made in order to interpret experimental results. From elastic calculations the stress intensity factor is assessed to predict the crack growth rate. The results obtained until now and presented in this paper relate to longitudinal notches

  8. Experimental analysis of compressive notch strengthening in closed-cell aluminum alloy foam

    NARCIS (Netherlands)

    Antoniou, A; Onck, PR; Bastawros, Ashraf F.

    2004-01-01

    The notch strengthening effect is studied experimentally in closed cell aluminum foams. The limit loads, net section strength were found for a set of double-edge-notched (DEN) and single-edge-notched (SEN) specimens loaded in compression. In addition, the evolution of the deformation is monitored

  9. Low-Cycle Fatigue Behavior of 10CrNi3MoV High Strength Steel and Its Undermatched Welds.

    Science.gov (United States)

    Song, Wei; Liu, Xuesong; Berto, Filippo; Razavi, S M J

    2018-04-24

    The use of high strength steel allows the design of lighter, more slender and simpler structures due to high strength and favorable ductility. Nevertheless, the increase of yield strength does not guarantee the corresponding improvement of fatigue resistance, which becomes a major concern for engineering structure design, especially for the welded joints. The paper presents a comparison of the low cycle fatigue behaviors between 10CrNi3MoV high strength steel and its undermatched weldments. Uniaxial tension tests, Push-pull, strain-controlled fatigue tests were conducted on base metal and weldments in the strain range of 0.2⁻1.2%. The monotonic and cyclic stress-strain curves, stress-life, strain-life and energy-life in terms of these materials were analyzed for fatigue assessment of materials discrepancy. The stress-life results of base metal and undermatched weld metal exhibit cyclic softening behaviors. Furthermore, the shapes of 10CrNi3MoV steel hysteresis loops show a satisfactory Masing-type behavior, while the weld metal shows a non-Masing type behavior. Strain, plastic and total strain energy density amplitudes against the number of reversals to failure results demonstrate that the undermatched weld metal presents a higher resistance to fatigue crack initiation than 10CrNi3MoV high strength steel. Finally, fatigue fracture surfaces of specimens were compared by scanning electron microscopy to identify the differences of crack initiation and the propagation between them.

  10. Low-Cycle Fatigue Behavior of 10CrNi3MoV High Strength Steel and Its Undermatched Welds

    Directory of Open Access Journals (Sweden)

    Wei Song

    2018-04-01

    Full Text Available The use of high strength steel allows the design of lighter, more slender and simpler structures due to high strength and favorable ductility. Nevertheless, the increase of yield strength does not guarantee the corresponding improvement of fatigue resistance, which becomes a major concern for engineering structure design, especially for the welded joints. The paper presents a comparison of the low cycle fatigue behaviors between 10CrNi3MoV high strength steel and its undermatched weldments. Uniaxial tension tests, Push-pull, strain-controlled fatigue tests were conducted on base metal and weldments in the strain range of 0.2–1.2%. The monotonic and cyclic stress-strain curves, stress-life, strain-life and energy-life in terms of these materials were analyzed for fatigue assessment of materials discrepancy. The stress-life results of base metal and undermatched weld metal exhibit cyclic softening behaviors. Furthermore, the shapes of 10CrNi3MoV steel hysteresis loops show a satisfactory Masing-type behavior, while the weld metal shows a non-Masing type behavior. Strain, plastic and total strain energy density amplitudes against the number of reversals to failure results demonstrate that the undermatched weld metal presents a higher resistance to fatigue crack initiation than 10CrNi3MoV high strength steel. Finally, fatigue fracture surfaces of specimens were compared by scanning electron microscopy to identify the differences of crack initiation and the propagation between them.

  11. Local strain energy density for the fatigue assessment of hot dip galvanized welded joints: some recent outcomes

    Directory of Open Access Journals (Sweden)

    M. Peron

    2017-10-01

    Full Text Available Since in literature only data about the effect of the hot-dip galvanizing coating on fatigue behavior of unnotched specimens are available, whereas very few for notched components and none for welded joints, the aim of this paper is to partially fill this lack of knowledge comparing fatigue strength of uncoated and hot-dip galvanized fillet welded cruciform joints made of structural steel S355 welded joints, subjected to a load cycle R = 0. 34. The results are shown in terms of stress range ?s and of the averaged strain energy density range DW in a control volume of radius R0 = 0.28 mm

  12. Microstructural influence on fatigue properties of a high-strength spring steel

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C.S.; Lee, K.A.; Li, D.M. [Pohang Univ. of Sci. and Technol. (Korea, Republic of). Center for Adv. Aerospace Mater.; Yoo, S.J.; Nam, W.J. [Technical Research Laboratory, Pohang Iron and Steel Co. Ltd, Pohang 790-785 (Korea, Republic of)

    1998-01-30

    A study has been made to investigate the fatigue properties of a high-strength spring steel in relation to the microstructural variation via different heat treatments. Rotating-bending fatigue and fatigue crack growth (FCG) tests were conducted to evaluate the fatigue properties, and a transmission electron microscope (TEM) equipped with an energy dispersive X-ray (EDX) unit was used to characterize the tempered microstructure. The results indicate that the fatigue endurance {sigma}{sub f} increases with increasing tempering temperature, reaching a maximum at 450 C, then decreases. The increase of {sigma}{sub f} is mainly attributed to the refined distribution of precipitation, together with the structural uniformity of tempered martensite. The softening of tempered martensite due to excessive precipitation accounts for the decrease of {sigma}{sub f}. By contrast, the FCG results show an insensitivity of the stage-II growth behavior to the microstructural changes for the whole range of tempering temperature tested. The insensitivity is interpreted in terms of the counterbalancing microstructure-dependent contributions to the FCG behavior. (orig.) 30 refs.

  13. Fracture strength and fatigue resistance of dental resin-based composites

    NARCIS (Netherlands)

    Keulemans, F.; Palav, P.; Aboushelib, M.M.N.; van Dalen, A.; Kleverlaan, C.J.; Feilzer, A.J.

    2009-01-01

    Objectives: The aim of this study was to evaluate in vitro the influence of fiber-reinforcement on the fracture strength and fatigue resistance of resin-based composites. Methods: One hundred rectangular bar-shaped specimens (2 mm × 2 mm × 25 mm) made of resin-based composite were prepared in a

  14. Effect of residual stresses on fatigue strength of plasma nitrided 4140 steel

    International Nuclear Information System (INIS)

    Aghazadeh, J.; Amidi, M.R.

    2004-01-01

    Almost every method that has been presented to determine residual stress has some limitation and complexities. The aim of this work is to present a new, yet simple method so called strain indentation for measuring the residual stresses particularly in thin layers. In this method in addition to the precision measurements, components of residual stress at different directions may be determined. AISI 4140 steel specimens nitrided at 350 d ig C , 450 d ig C and 550 d ig C for 5 hours in the mixture of 75% nitrogen- 25% hydrogen gas. The, components of residual stress in the radials axial and hoop directions in the nitrided layer were determined considering the elastic strain recovery after removal of residual stress inducer(i.e. the nitrided layer). Fatigue strength of the nitrided specimens was obtained by plotting the S-N curves and fractographic studies carried out on the fracture surface of the specimens. The effect of residual stress on the stress pattern was simulated. The calculated residual stress components were in the range of 40-210 Mpa and the radial components of residual stress were more than the other two directions. Maximum fatigue strength improvement of up to 110% was observed in the plasma nitrided specimens at 550 d ig C and also 40% improvement in fatigue strength was detected by increasing the nitriding temperature from 350 d ig C to 550 d ig C . This was due to 100% increase in residual stress. Fatigue crack growth velocity in the hoop direction was more than that of radial direction. This seems to be due to higher radial residual stress component compared with the hoop stress component in the sub layer

  15. Fracture probability properties of pure and cantilever bending fatigue of STS304 steel

    International Nuclear Information System (INIS)

    Roh, Sung Kuk; Park, Dae Hyun; Jeong, Soon Uk

    2001-01-01

    Big accidents of flyings, vessel, subways, gas equipments, buildings and bridge happens frequently. Therefore many people are suffering harm of property. The destruction cause of marcaine components is almost accused by fatigue. This study is test for STS304 specimen using pure and cantilever bending state. Rounded and notched specimen including fracture surface investigation was comparatively experimented, fatigue life according to degree of surface finishing was examined. Fatigue fracture probability of notched canilever specimens were predicted by P-S-N curve, median rank and Weibull distribution. And at the relation with the rotational speed and stress, the fatigue life of the test specimen was higher at high speed than low speed

  16. Determination of muscle fatigue index for strength training in patients with Duchenne dystrophy

    Directory of Open Access Journals (Sweden)

    Adriano Rodrigues Oliveira

    Full Text Available INTRODUCTION: Muscle weakness is the most prominent impairment in Duchenne muscular dystrophy (DMD and often involves the loss of functional ability as well as other limitations related to daily living. Thus, there is a need to maintain muscle strength in large muscle groups, such as the femoral quadriceps, which is responsible for diverse functional abilities. However, the load and duration of training for such rehabilitation has proven to be a great unknown, mainly due to the undesired appearance of muscle fatigue, which is a severe factor for the injury of muscle fibers. OBJECTIVES: The aim of the present study was to determine a fatigue index by means of surface electromyography (EMG for the parameterization of muscle strengthening physiotherapy training. METHODS: A cross-sectional study (case series was carried out involving four patients with DMD. Three pairs of surface electrodes were placed on the motor point of the Rectus femoris, Vastus lateralis and Vastus medialis of the dominant limb, maintaining the knee at 60º of flexion. The participants were instructed to perform the extension movement of this joint at four strength levels (100%, 80%, 60% and 40% of maximal voluntary isometric contraction. RESULTS: The slope of the linear regression line was used for the determination of the fatigue index, performed by Pearson's test on the median frequency of each strength level. CONCLUSION: Electromyographic measurements of the strength index for muscle training proved to be a simple accessible assessment method, as well as an extremely valuable tool, allowing the design of a muscle strength training program with an individualized load threshold.

  17. Influence of the number of cycles on shear fatigue strength of resin composite bonded to enamel and dentin using dental adhesives in self-etching mode.

    Science.gov (United States)

    Tsujimoto, Akimasa; Barkmeier, Wayne W; Erickson, Robert L; Takamizawa, Toshiki; Latta, Mark A; Miyazaki, Masashi

    2018-01-30

    The influence of the number of cycles on shear fatigue strength to enamel and dentin using dental adhesives in self-etch mode was investigated. A two-step self-etch adhesive and two universal adhesives were used to bond to enamel and dentin in self-etch mode. Initial shear bond strength and shear fatigue strength to enamel and dentin using the adhesive in self-etch mode were determined. Fatigue testing was used with 20 Hz frequency and cycling periods of 50,000, 100,000 and 1,000,000 cycles, or until failure occurred. For each of the cycling periods, there was no significant difference in shear fatigue strength across the cycling periods for the individual adhesives. Differences in shear fatigue strength were found between the adhesives within the cycling periods. Regardless of the adhesive used in self-etch mode for bonding to enamel or dentin, shear fatigue strength was not influenced by the number of cycles used for shear fatigue strength testing.

  18. Improved methods for testing bond and intrinsic strength and fatigue of thermally sprayed metallic and ceramic coatings

    International Nuclear Information System (INIS)

    Schweitzer, K.K.; Ziehl, M.H.; Schwaminger, C.

    1991-01-01

    Conventional bond strength tests for thermally sprayed coatings represent only a rough means of obtaining overall strength values, with no differentiation between adhesion at the interface and intrinsic coating properties. In order to obtain information about the influence of substrate surface preparation on the adhesion of a Tribaloy T700 coating, tensile bond strength and modified crack-opening displacement (COD) specimens were tested by deliberate crack initiation at the interface. Crack initiation was achieved by weakening of the interface at the outer diameter in the case of bond strength specimens or at the notch root in the case of COD specimens. This made it possible to look at the influence of surface roughness and grit contamination on the coating adhesion separately. Modified COD specimens with the notch in the centre of the coating were used to determine crack-opening energies and critical stress intensity factors of atmospheric plasma-sprayed NiAl and low pressure plasma-sprayed CoNiCrAlY bond coatings and a ZrO 2 7Y 2 O 3 thermal barrier coating (TBC). Additionally, bond strength specimens were stressed dynamically, and it could be demonstrated that Woehler (S/N) diagrams can be established for a metallic NiAl bond coating and even for a ceramic ZrO 2 7Y 2 O 3 TBC. (orig.)

  19. Decrements in knee extensor and flexor strength are associated with performance fatigue during simulated basketball game-play in adolescent, male players.

    Science.gov (United States)

    Scanlan, Aaron T; Fox, Jordan L; Borges, Nattai R; Delextrat, Anne; Spiteri, Tania; Dalbo, Vincent J; Stanton, Robert; Kean, Crystal O

    2018-04-01

    This study quantified lower-limb strength decrements and assessed the relationships between strength decrements and performance fatigue during simulated basketball. Ten adolescent, male basketball players completed a circuit-based, basketball simulation. Sprint and jump performance were assessed during each circuit, with knee flexion and extension peak concentric torques measured at baseline, half-time, and full-time. Decrement scores were calculated for all measures. Mean knee flexor strength decrement was significantly (P jump fatigue during the entire game. Lower-limb strength decrements may exert an important influence on performance fatigue during basketball activity in adolescent, male players. Consequently, training plans should aim to mitigate lower-limb fatigue to optimise sprint and jump performance during game-play.

  20. Evaluation of shot peening on the fatigue strength of anodized Ti-6Al-4V alloy

    Directory of Open Access Journals (Sweden)

    Costa Midori Yoshikawa Pitanga

    2006-01-01

    Full Text Available The increasingly design requirements for modern engineering applications resulted in the development of new materials with improved mechanical properties. Low density, combined with excellent weight/strength ratio as well as corrosion resistance, make the titanium attractive for application in landing gears. Fatigue control is a fundamental parameter to be considered in the development of mechanical components. The aim of this research is to analyze the fatigue behavior of anodized Ti-6Al-4V alloy and the influence of shot peening pre treatment on the experimental data. Axial fatigue tests (R = 0.1 were performed, and a significant reduction in the fatigue strength of anodized Ti-6Al-4V was observed. The shot peening superficial treatment, which objective is to create a compressive residual stress field in the surface layers, showed efficiency to increase the fatigue life of anodized material. Experimental data were represented by S-N curves. Scanning electron microscopy technique (SEM was used to observe crack origin sites.

  1. Influence of Fatigue on Tackling Ability in Rugby League Players: Role of Muscular Strength, Endurance, and Aerobic Qualities.

    Directory of Open Access Journals (Sweden)

    Tim J Gabbett

    Full Text Available This study investigated the influence of repeated high-intensity effort exercise on tackling ability in rugby league players, and determined the relationship between physical qualities and tackling ability under fatigued conditions in these athletes. Eleven semi-professional rugby league players underwent measurements of speed (10 m and 40 m sprint, upper-body strength (4 repetition maximum [RM] bench press and weighted chin-up, upper-body muscular endurance (body mass maximum repetition chin-up, body mass maximum repetition dips, lower-body strength (4RM squat, and estimated maximal aerobic power (multi-stage fitness test. Tackling ability was assessed using a standardized one-on-one tackling test, before, during, and following four bouts of repeated high-intensity effort (RHIE exercise. The relationship between physical qualities and fatigue-induced decrements in tackling ability were determined using Pearson product moment correlation coefficients. Each cycle of the RHIE protocol induced progressive reductions in tackling ability. A moderate reduction (Effect Size = ~-1.17 ± 0.60, -34.1 ± 24.3% in tackling ability occurred after the fourth cycle of the RHIE protocol. Players with greater relative lower-body strength (i.e. 4RM squat/kg had the best tackling ability under fatigued conditions (r = 0.72, p = 0.013. There were no significant relationships between tackling ability under fatigued conditions and any other physical quality. These findings suggest that lower-body strength protects against fatigue-induced decrements in tackling ability. The development of lower-body strength should be a priority to facilitate the development of robust tackling skills that are maintained under fatigue.

  2. Influence of mechanical stress level in preliminary stress-corrosion testing on fatigue strength of a low-carbon steel

    International Nuclear Information System (INIS)

    Aleskerova, S.A.; Pakharyan, V.A.

    1978-01-01

    Effect of corrosion and mechanical factors of preliminary stress corrosion of a metal in its fatigue strength, has been investigated. Smooth cylindrical samples of 20 steel have been tested. Preliminary corrosion under stress has been carried out under natural sea conditions. It is shown that mechanical stresses in the case of preliminary corrosion affect fatigue strength of low-carbon steels, decreasing the range of limited durability and fatigue limit. This effect increases with the increase of stress level and agressivity of corrosive medium

  3. Influence of frequency on shear fatigue strength of resin composite to enamel bonds using self-etch adhesives.

    Science.gov (United States)

    Takamizawa, Toshiki; Scheidel, Donal D; Barkmeier, Wayne W; Erickson, Robert L; Tsujimoto, Akimasa; Latta, Mark A; Miyazaki, Masashi

    2016-09-01

    The purpose of this study was to determine the influence of different frequency rates on of bond durability of self-etch adhesives to enamel using shear fatigue strength (SFS) testing. A two-step self-etch adhesive (OX, OptiBond XTR), and two single step self-etch adhesives (GB, G-ӕnial Bond and SU, Scotchbond Universal) were used in this study. The shear fatigue strength (SFS) to enamel was obtained. A staircase method was used to determine the SFS values with 50,000 cycles or until failure occurred. Fatigue testing was performed at frequencies of 5Hz, 10Hz, and 20Hz. For each test condition, 30 specimens were prepared for the SFS testing. Regardless of the bond strength test method, OX showed significantly higher SFS values than the two single-step self-etch adhesives. For each of the three individual self-etch adhesives, there was no significant difference in SFS depending on the frequency rate, although 20Hz results tended to be higher. Regardless of the self-etch adhesive system, frequencies of 5Hz, 10Hz, and 20Hz produced similar results in fatigue strength of resin composite bonded to enamel using 50,000 cycles or until bond failure. Accelerated fatigue testing provides valuable information regarding the long term durability of resin composite to enamel bonding using self-etch adhesive system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Cancer survivors exhibit a different relationship between muscle strength and health-related quality of life/fatigue compared to healthy subjects.

    Science.gov (United States)

    Morishita, S; Tsubaki, A; Fu, J B; Mitobe, Y; Onishi, H; Tsuji, T

    2018-05-16

    We investigated the difference in relationship between muscle strength and quality of life (QOL)/fatigue in long-term cancer survivors and healthy subjects. Thirty-six cancer survivors and 29 healthy subjects were assessed for body composition and bone status at the calcaneus using the Osteo Sono Assessment Index. Muscle strength was evaluated via handgrip and knee extensor strength. Health-related QOL was assessed using the Medical Outcome Study 36-item Short-Form Health Survey. Fatigue was measured using the brief fatigue inventory. Cancer survivors exhibited lower QOL scores in the physical functioning, physical role function, bodily pain and general health domains (p < .05). Grip and knee extension muscle strength in cancer survivors was positively correlated with the physical function and bodily pain of QOL (p < .05). The usual fatigue subscale score was only significantly higher in cancer survivors than in healthy subjects (p < .05). However, there were no correlations between muscle strength and fatigue in cancer survivors. Our results showed that muscle strength was an important factor for improving QOL in cancer survivors. We believe that the findings of this study will be relevant in the context of planning rehabilitation for cancer survivors. © 2018 John Wiley & Sons Ltd.

  5. Effect of Shot Peening on the Fatigue Strength of Automotive Tubular Stabilizer Bars DC 218

    Directory of Open Access Journals (Sweden)

    Wittek A.M.

    2016-12-01

    Full Text Available This paper concerns issues related to the development of designs of stabilizer bars for new motor vehicle models. It involves not only the designing of a stabilizer bar with the shape required by the manufacturer, but also the preparation of bending and heat treatment processes as well as the performance of strength and fatigue tests. In the prototype development phase, the simulations techniques (FEM may be used to assess the design. The article contains a detailed analysis of a stabilizer bar designated with the DC 218 VA symbol. Performed numerical strength and fatigue calculations showed that the developed stabilizer bar design with the desired shape did not achieve the required number of fatigue cycles. It was also proven at the test stand by testing a prototype stabilizer bar. Therefore, it was suggested to supplement the technological process with an additional shot peening operation whose main aim was to reduce the length of microcracks on the stabilizer bar’s surface. This effect was confirmed during comparative metallographic tests of not shot – peened and shot – peened stabilizer bars. After shot peening, the analysed stabilizer bar reached a fatigue strength which exceeded the limits set by the manufacturer.

  6. The theory of critical distances applied to problems in fracture and fatigue of bone

    Directory of Open Access Journals (Sweden)

    Emma Brazel

    2009-10-01

    Full Text Available The theory of critical distances (TCD has been applied to predict notch-based fracture and fatigue in a wide range of materials and components. The present paper describes a series of projects in which we applied this approach to human bone. Using experimental data from the literature, combined with finite element analysis, we showed that the TCD was able to predict the effect of notches and holes on the strength of bone failing in brittle fracture due to monotonic loading, in different loading regimes. Bone also displays short crack effects, leading to R-curve data for both fracture toughness and fatigue crack propagation thresholds; we showed that the TCD could predict this data. This analysis raised a number of questions for discussion, such as the significance of the L value itself in this and other materials. Finally, we applied the TCD to a practical problem in orthopaedic surgery: the management of bone defects, showing that predictions could be made which would enable surgeons to decide on whether a bone graft material would be needed to repair a defect, and to specify what mechanical properties this material should have.

  7. Acute Effects of Static vs. Ballistic Stretching on Strength and Muscular Fatigue Between Ballet Dancers and Resistance-Trained Women.

    Science.gov (United States)

    Lima, Camila D; Brown, Lee E; Wong, Megan A; Leyva, Whitney D; Pinto, Ronei S; Cadore, Eduardo L; Ruas, Cassio V

    2016-11-01

    Lima, CD, Brown, LE, Wong, MA, Leyva, WD, Pinto, RS, Cadore, EL, and Ruas, CV. Acute effects of static vs. ballistic stretching on strength and muscular fatigue between ballet dancers and resistance-trained women. J Strength Cond Res 30(11): 3220-3227, 2016-Stretching is used to increase joint range of motion, but the acute effects can decrease muscle strength. However, this may depend on the population or mode of stretching. The purpose of this study was to compare the acute effects of static vs. ballistic stretching on strength and muscular fatigue between ballet dancers and resistance-trained women. Fifteen resistance-trained women (age 23.8 ± 1.80 years, mass 67.47 ± 7.77 kg, height 168.30 ± 5.53 cm) and 12 ballet dancers (age 22.8 ± 3.04 years, mass 58.67 ± 5.65 kg, height 168.00 ± 7.69 cm) performed 5 days of testing. The first day was control (no stretching), whereas the other 4 days were static or ballistic stretching in a counterbalanced order. Range of motion, strength, and fatigue tests were also performed. Both groups demonstrated a significant decrease in hamstrings strength after static (102.71 ± 2.67 N·m) and ballistic stretching (99.49 ± 2.61 N·m) compared with control (113.059 ± 3.25 N·m), with no changes in quadriceps strength. For fatigue, only ballet dancers demonstrated a decrease from control (71.79 ± 4.88%) to ballistic (65.65 ± 8.19%), but no difference with static (65.01 ± 12.29%). These findings suggest that stretching decreases hamstrings strength similarly in ballet dancers and resistance-trained women, with no differences between modes of stretching. However, ballistic stretching only decreased muscular fatigue in ballet dancers, but not in resistance-trained women. Therefore, no stretching should be performed before strength performance. However, ballistic stretching may decrease acute muscular fatigue in ballet dancers.

  8. Influence of surface treatment of yttria-stabilized tetragonal zirconia polycrystal with hot isostatic pressing on cyclic fatigue strength.

    Science.gov (United States)

    Iijima, Toshihiko; Homma, Shinya; Sekine, Hideshi; Sasaki, Hodaka; Yajima, Yasutomo; Yoshinari, Masao

    2013-01-01

    Hot isostatic pressing processed yttria-stabilized tetragonal zirconia polycrystal (HIP Y-TZP) has the potential for application to implants due to its high mechanical performance. The aim of this study was to investigate the influence of surface treatment of HIP Y-TZP on cyclic fatigue strength. HIP Y-TZP specimens were subjected to different surface treatments. Biaxial flexural strength was determined by both static and cyclic fatigue testing. In the cyclic fatigue test, the load was applied at a frequency of 10 Hz for 10(6) cycles in distilled water at 37°C. The surface morphology, roughness, and crystal phase of the surfaces were also evaluated. The cyclic fatigue strength (888 MPa) of HIP Y-TZP with sandblasting and acid-etching was more than twice that of Y-TZP as specified in ISO 13356 for surgical implants (320 MPa), indicating the clinical potential of this material.

  9. Tensile and fatigue strength properties of Kevlar 29 aramid/epoxy unidirectional composites

    Energy Technology Data Exchange (ETDEWEB)

    Zweben, C.

    1981-07-22

    Static and fatigue tensile strength properties of filament wound undirectional Kevlar 29/epoxy, typical of filament wound material used in flywheel rotors, were studied. Machining techniques were developed to minimize fiber fuzzing on edges. The static modulus, normalized to 70% fiber volume fraction is 8.87 x 10/sup 6/ psi. The major Poisson's ratio is 0.37. The static composite tensile strength, normalized to 70% fiber volume fraction is 200 x 10/sup 3/ psi, corresponding to a fiber stress at failure of 286 x 10/sup 3/ psi, which is good for materials having a very high fiber volume fraction. The S-N curve for R = 0.7 was found to be quite flat. Although the techniques used in this program had previously been employed successfully to study the fatigue behavior of Kevlar 29/epoxy and Kevlar 49/epoxy unidirectional materials, we were unable to overcome the persistent problem of cohesive material failure in the tab regions. The apparent reason for this is the very low interlaminar shear strength of the filament wound material. 16 figures.

  10. Influence of non-metallic inclusions on fatigue strength of high manganese steel

    International Nuclear Information System (INIS)

    Maekawa, I.; Shibata, H.; Lee, J.H.; Nishida, Shin-ichi

    1991-01-01

    Six series of high manganese austenitic steel, which contain different inclusion quantity, were prepared. Fatigue experiments, tensile tests and Charpy tests were carried out. Influence of non-metallic inclusion and of temperature on the stress intensity threshold, fatigue crack propagation behavior, elastic-plastic fracture toughness and Charpy value were studied at room temperature and low temperature. In general, strength of this high manganese steel was reduced with increase of inclusion content. Influences of the direction of elongated inclusion with regard to the rolling direction on their strengths were also discussed based on SEM observation and numerical analysis for the stress concentration at a crack tip when an inclusion was near by the tip. According to these results, an inclusion acted as an obstacle to crack propagation for LT specimen. The roughness of fracture surface of ST specimen was larger than that of SL specimen, and the crack growth rate of the former was less than that of the latter. Fatigue life was increased with decrease of temperature, and mechanical parameters such as ΔK th and J 1c were decreased with increase of temperature. The Charpy value decreased clearly with decrease of temperature

  11. Experimental evaluation of the fretting fatigue behavior of high-strength steel monostrands

    DEFF Research Database (Denmark)

    Winkler, Jan; Fischer, Gregor; Georgakis, Christos T.

    2013-01-01

    In this paper, the fretting fatigue behavior of pretensioned high-strength steel monostrands is investigated. A method based on the digital image correlation (DIC) technique was used to quantify the relative movement between individual wires along the length of the monostrand. The experimental data....... Moreover, the paper provides relevant information about the monostrand bending stiffness and the extent of relative displacement between core and outer wires of the monostrand undergoing flexural deformations. The results presented herein are of special interest for the fatigue analysis of modern stay...

  12. An energetic criterion for a micro-crack of finite length initiated in orthotropic bi-material notches

    Czech Academy of Sciences Publication Activity Database

    Profant, T.; Klusák, Jan; Ševeček, O.; Hrstka, M.; Kotoul, M.

    2013-01-01

    Roč. 110, SEP (2013), s. 396-409 ISSN 0013-7944 R&D Projects: GA ČR(CZ) GAP108/10/2049; GA ČR(CZ) GA101/09/1821 Institutional support: RVO:68081723 Keywords : crack initiation * bi-material notch * orthotropic bi-material notch * singular stress concentrator Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 1.662, year: 2013

  13. Micro-computed tomography of fatigue microdamage in cortical bone using a barium sulfate contrast agent.

    Science.gov (United States)

    Leng, Huijie; Wang, Xiang; Ross, Ryan D; Niebur, Glen L; Roeder, Ryan K

    2008-01-01

    Accumulation of microdamage during fatigue can lead to increased fracture susceptibility in bone. Current techniques for imaging microdamage in bone are inherently destructive and two-dimensional. Therefore, the objective of this study was to image the accumulation of fatigue microdamage in cortical bone using micro-computed tomography (micro-CT) with a barium sulfate (BaSO(4)) contrast agent. Two symmetric notches were machined on the tensile surface of bovine cortical bone beams in order to generate damage ahead of the stress concentrations during four-point bending fatigue. Specimens were loaded to a specified number of cycles or until one notch fractured, such that the other notch exhibited the accumulation of microdamage prior to fracture. Microdamage ahead of the notch was stained in vitro by precipitation of BaSO(4) and imaged using micro-CT. Reconstructed images showed a distinct region of bright voxels around the notch tip or along propagating cracks due to the presence of BaSO(4), which was verified by backscattered electron imaging and energy dispersive spectroscopy. The shape of the stained region ahead of the notch tip was consistent with principal strain contours calculated by finite element analysis. The relative volume of the stained region was correlated with the number of loading cycles by non-linear regression using a power-law. This study demonstrates new methods for the non-destructive and three-dimensional detection of fatigue microdamage accumulation in cortical bone in vitro, which may be useful to gain further understanding into the role of microdamage in bone fragility.

  14. Improved Fatigue Performance of Threaded Drillstring Connections by Cold Rolling

    Energy Technology Data Exchange (ETDEWEB)

    Kristoffersen, Steinar

    2002-01-01

    The research work presented in this thesis is concerned with analytical, numerical and experimental studies of the effect of cold rolling on the fatigue behaviour of threaded drillstring connections. A comprehensive literature study is made of the various effects on the fatigue behaviour of residual stresses introduced by mechanical deformation of notched components. Some of the effects studied are cyclic hardening behaviour after prestraining, cyclic creep, fatigue initiation in prestrained materials, short cracks and crack growth models including crack closure. Residual stresses were introduced in the surface of a smooth pipe by a rolling device to simulate a cold rolling process and verify the calculated residual stresses by measurements. Strain hardening and contact algorithm of the two bodies were incorporated in the FE analyses. Two significant errors were found in the commercial software package for residual stress evaluation, Restran v. 3.3.2a also called SINT, when using the Schajer method. The Schajer algorithm is the only hole-drilling algorithm without theoretical shortcomings, and is recommended when measuring large residual stress gradients in the depth direction. Using the Schajer method solved by in-house Matlab-routines good agreement between measured residual stress gradients and residual stress gradients from FE analyses was found. Full scale fatigue tests were performed on pipes cut from used drillstrings with notches of similar geometry as threads used in drillstring connections. The simulated threads consisted of four full depth helix notches with runouts at the surface. The pipe threads were cold rolled and fatigue tested in a full-scale four-point rotating bending fatigue testing rig. The test results showed that cold rolling had an effect on the crack initiation period. A major part of the fatigue life was with cracks observed at the notch root, but due to the increased fatigue crack propagation resistance the final fracture initiated at

  15. Residual strength and crack propagation tests on C-130 airplane center wings with service-imposed fatigue damage

    Science.gov (United States)

    Snider, H. L.; Reeder, F. L.; Dirkin, W. J.

    1972-01-01

    Fourteen C-130 airplane center wings, each containing service-imposed fatigue damage resulting from 4000 to 13,000 accumulated flight hours, were tested to determine their fatigue crack propagation and static residual strength characteristics. Eight wings were subjected to a two-step constant amplitude fatigue test prior to static testing. Cracks up to 30 inches long were generated in these tests. Residual static strengths of these wings ranged from 56 to 87 percent of limit load. The remaining six wings containing cracks up to 4 inches long were statically tested as received from field service. Residual static strengths of these wings ranged from 98 to 117 percent of limit load. Damage-tolerant structural design features such as fastener holes, stringers, doublers around door cutouts, and spanwise panel splices proved to be effective in retarding crack propagation.

  16. The influence of the shape of a saw-cut notch in quasi-brittle 3PB specimens on the critical applied force

    Czech Academy of Sciences Publication Activity Database

    Seitl, Stanislav; Řoutil, L.; Klusák, Jan; Veselý, V.

    2008-01-01

    Roč. 2, č. 1 (2008), s. 123-132 ISSN 1802-680X Institutional research plan: CEZ:AV0Z20410507 Keywords : three point bending specimens * cement based composites * fracture parameters * notch geometry * notch width Subject RIV: JL - Materials Fatigue, Friction Mechanics

  17. Effect of the Machining Processes on Low Cycle Fatigue Behavior of a Powder Metallurgy Disk

    Science.gov (United States)

    Telesman, J.; Kantzos, P.; Gabb, T. P.; Ghosn, L. J.

    2010-01-01

    A study has been performed to investigate the effect of various machining processes on fatigue life of configured low cycle fatigue specimens machined out of a NASA developed LSHR P/M nickel based disk alloy. Two types of configured specimen geometries were employed in the study. To evaluate a broach machining processes a double notch geometry was used with both notches machined using broach tooling. EDM machined notched specimens of the same configuration were tested for comparison purposes. Honing finishing process was evaluated by using a center hole specimen geometry. Comparison testing was again done using EDM machined specimens of the same geometry. The effect of these machining processes on the resulting surface roughness, residual stress distribution and microstructural damage were characterized and used in attempt to explain the low cycle fatigue results.

  18. Fatigue strength of a magnesium MA2-1 alloy after equal-channel angular pressing

    Science.gov (United States)

    Terent'ev, V. F.; Dobatkin, S. V.; Prosvirnin, D. V.; Bannykh, I. O.; Kopylov, V. I.; Serebryany, V. N.

    2010-09-01

    The fatigue strength of a magnesium MA2-1 alloy is studied after annealing and equal-channel angular pressing (ECAP). The ultrafine-grained structure formed upon ECAP is shown to increase the plasticity of the material during static tension, to decrease the cyclic life to failure, and not to decrease the fatigue limit. The mechanisms of crack nucleation and growth during cyclic deformation are investigated.

  19. Fatigue Strength Assessment of Welded Mild Steel Joints Containing Bulk Imperfections

    Directory of Open Access Journals (Sweden)

    Martin Leitner

    2018-04-01

    Full Text Available This work investigates the effect of gas pores, as bulk imperfections, on the fatigue strength of welded mild steel joints. Two test series containing different butt joint geometries and weld process parameters are included in order to achieve two variable types of pore sizes. Based on the √area-parameter by Murakami, the test series can be grouped into imperfections exhibiting √area < 1000 µm and √area > 1000 µm. Fatigue tests at a load stress ratio of R = 0.1 are performed, which act as comparison for the subsequent fatigue estimation. To assess the fatigue resistance, the approaches by Murakami, De Kazinczy, and Mitchell are utilized, which highlight certain differences in the applicability depending on the imperfection size. It is found that, on one hand, Murakami’s approach is well suitable for both small and large gas pores depending on the applied model parameters. On the other hand, the fatigue concepts by De Kazinczy and Mitchell are preferably practicable for large defects with √area > 1000 µm. In addition, the method by Mitchell incorporates the stress concentration factor of the imperfection, which can be numerically computed considering the size, shape, and location of the gas pore, as presented in this paper.

  20. The Development of Confidence Limits for Fatigue Strength Data

    International Nuclear Information System (INIS)

    SUTHERLAND, HERBERT J.; VEERS, PAUL S.

    1999-01-01

    Over the past several years, extensive databases have been developed for the S-N behavior of various materials used in wind turbine blades, primarily fiberglass composites. These data are typically presented both in their raw form and curve fit to define their average properties. For design, confidence limits must be placed on these descriptions. In particular, most designs call for the 95/95 design values; namely, with a 95% level of confidence, the designer is assured that 95% of the material will meet or exceed the design value. For such material properties as the ultimate strength, the procedures for estimating its value at a particular confidence level is well defined if the measured values follow a normal or a log-normal distribution. Namely, based upon the number of sample points and their standard deviation, a commonly-found table may be used to determine the survival percentage at a particular confidence level with respect to its mean value. The same is true for fatigue data at a constant stress level (the number of cycles to failure N at stress level S(sub 1)). However, when the stress level is allowed to vary, as with a typical S-N fatigue curve, the procedures for determining confidence limits are not as well defined. This paper outlines techniques for determining confidence limits of fatigue data. Different approaches to estimating the 95/95 level are compared. Data from the MSU/DOE and the FACT fatigue databases are used to illustrate typical results

  1. Effects of hydrogen on fatigue of vanadium and niobium. Annual report

    International Nuclear Information System (INIS)

    Stoloff, N.S.; Chung, D.W.

    1977-01-01

    The fatigue behavior of unalloyed vanadium and niobium as well as their alloys with hydrogen is described. The response of vanadium-hydrogen alloys to cyclic loading is shown to depend markedly upon the presence or absence of notches, the hydrogen level, method of test, and frequency. In general, hydrides improve high cycle life of unnotched alloys, but are detrimental in the presence of a notch. Low test frequencies also lead to reduced fatigue lives. Stress-assisted hydride growth in previously hydrided alloys has been noted both in fatigue and in delayed failure experiments. Unalloyed vanadium and solid solution vanadium-hydrogen alloys do not undergo delayed failure. Preliminary tests on unalloyed niobium and several niobium-vanadium alloys reveal improvements in stress-controlled fatigue life and decreased low cycle life, in agreement with previous observations on vanadium-hydrogen alloys

  2. Corrosion and Fatigue Behavior of High-Strength Steel Treated with a Zn-Alloy Thermo-diffusion Coating

    Science.gov (United States)

    Mulligan, C. P.; Vigilante, G. N.; Cannon, J. J.

    2017-11-01

    High and low cycle fatigue tests were conducted on high-strength steel using four-point bending. The materials tested were ASTM A723 steel in the as-machined condition, grit-blasted condition, MIL-DTL-16232 heavy manganese phosphate-coated condition, and ASTM A1059 Zn-alloy thermo-diffusion coated (Zn-TDC). The ASTM A723 steel base material exhibits a yield strength of 1000 MPa. The effects of the surface treatments versus uncoated steel were examined. The fatigue life of the Zn-TDC specimens was generally reduced on as-coated specimens versus uncoated or phosphate-coated specimens. Several mechanisms are examined including the role of compressive residual stress relief with the Zn-TDC process as well as fatigue crack initiation from the hardened Zn-Fe alloy surface layer produced in the gas-metal reaction. Additionally, the effects of corrosion pitting on the fatigue life of coated specimens are explored as the Zn-TDC specimens exhibit significantly improved corrosion resistance over phosphate-coated and oiled specimens.

  3. Notch sensitivity of cast AZ31 magnesium alloy

    Czech Academy of Sciences Publication Activity Database

    Kunz, Ludvík; Lukáš, Petr; Estrin, Y.; Zúberová, Z.

    2005-01-01

    Roč. 12, č. 3 (2005), s. 88-91 ISSN 1335-0803. [Degradácia konštrukčných materiálov 2005. Terchová - Biely Potok, 05.09.2005-07.09.2005] R&D Projects: GA MŠk(CZ) 1P05ME804 Institutional research plan: CEZ:AV0Z20410507 Keywords : notch sensitivity * magnesium alloy * fatigue lifetime Subject RIV: JG - Metallurgy

  4. The assessment of fatigue: Psychometric qualities and norms for the Checklist individual strength.

    Science.gov (United States)

    Worm-Smeitink, M; Gielissen, M; Bloot, L; van Laarhoven, H W M; van Engelen, B G M; van Riel, P; Bleijenberg, G; Nikolaus, S; Knoop, H

    2017-07-01

    The Checklist Individual Strength (CIS) measures four dimensions of fatigue: Fatigue severity, concentration problems, reduced motivation and activity. On the fatigue severity subscale, a cut-off score of 35 is used. This study 1) investigated the psychometric qualities of the CIS; 2) validated the cut-off score for severe fatigue and 3) provided norms. Representatives of the Dutch general population (n=2288) completed the CIS. The factor structure was investigated using an exploratory factor analysis. Internal consistency and test-retest reliability were determined. Concurrent validity was assessed in two additional samples by correlating the CIS with other fatigue scales (Chalder Fatigue Questionnaire, MOS Short form-36 Vitality subscale, EORTC QLQ-C30 fatigue subscale). To validate the fatigue severity cut-off score, a Receiver Operating Characteristics analysis was performed with patients referred to a chronic fatigue treatment centre (n=5243) and a healthy group (n=1906). Norm scores for CIS subscales were calculated for the general population, patients with chronic fatigue syndrome (CFS; n=1407) and eight groups with other medical conditions (n=1411). The original four-factor structure of the CIS was replicated. Internal consistency (α=0.84-0.95) and test-retest reliability (r=0.74-0.86) of the subscales were high. Correlations with other fatigue scales were moderate to high. The 35 points cut-off score for severe fatigue is appropriate, but, given the 17% false positive rate, should be adjusted to 40 for research in CFS. The CIS is a valid and reliable tool for the assessment of fatigue, with a validated cut-off score for severe fatigue that can be used in clinical practice. Copyright © 2017. Published by Elsevier Inc.

  5. How severe plastic deformation at cryogenic temperature affects strength, fatigue, and impact behaviour of grade 2 titanium

    International Nuclear Information System (INIS)

    Mendes, Anibal; Kliauga, Andrea M; Ferrante, Maurizio; Sordi, Vitor L

    2014-01-01

    Samples of grade 2 Ti were processed by Equal Channel Angular Pressing (ECAP), either isolated or followed by further deformation by rolling at room temperature and at 170 K. The main interest of the present work was the evaluation of the effect of cryogenic rolling on tensile strength, fatigue limit and Charpy impact absorbed energy. Results show a progressive improvement of strength and endurance limit in the following order: ECAP; ECAP followed by room temperature rolling and ECAP followed by cryogenic rolling. From the examination of the fatigued samples a ductile fracture mode was inferred in all cases; also, the sample processed by cryogenic rolling showed very small and shallow dimples and a small fracture zone, confirming the agency of strength on the fatigue behaviour. The Charpy impact energy followed a similar pattern, with the exception that ECAP produced only a small improvement over the coarse-grained material. Motives for the efficiency of cryogenic deformation by rolling are the reduced grain size and the association of strength and ductility. The production of favourable deformation textures must also be considered

  6. How severe plastic deformation at cryogenic temperature affects strength, fatigue, and impact behaviour of grade 2 titanium

    Science.gov (United States)

    Mendes, Anibal; Kliauga, Andrea M.; Ferrante, Maurizio; Sordi, Vitor L.

    2014-08-01

    Samples of grade 2 Ti were processed by Equal Channel Angular Pressing (ECAP), either isolated or followed by further deformation by rolling at room temperature and at 170 K. The main interest of the present work was the evaluation of the effect of cryogenic rolling on tensile strength, fatigue limit and Charpy impact absorbed energy. Results show a progressive improvement of strength and endurance limit in the following order: ECAP; ECAP followed by room temperature rolling and ECAP followed by cryogenic rolling. From the examination of the fatigued samples a ductile fracture mode was inferred in all cases; also, the sample processed by cryogenic rolling showed very small and shallow dimples and a small fracture zone, confirming the agency of strength on the fatigue behaviour. The Charpy impact energy followed a similar pattern, with the exception that ECAP produced only a small improvement over the coarse-grained material. Motives for the efficiency of cryogenic deformation by rolling are the reduced grain size and the association of strength and ductility. The production of favourable deformation textures must also be considered.

  7. Degradation in the fatigue strength of dentin by diamond bur preparations: Importance of cutting direction.

    Science.gov (United States)

    Majd, B; Majd, H; Porter, J A; Romberg, E; Arola, D

    2016-01-01

    The objectives of this investigation were to evaluate the degradation in fatigue strength of dentin by diamond bur preparations and to identify the importance of cutting direction. Three groups of coronal dentin specimens were prepared from unrestored third molars, including a flaw free "control," and two groups that received a diamond bur cutting treatment performed parallel or perpendicular to the specimen length. The specimens were subjected to static or cyclic flexural loading to failure and the results were compared with data for carbide bur cutting. Under static loading diamond bur cutting resulted in significantly lower flexure strength (p ≤ 0.05) than the control for both cutting directions (from 154 to ∼124 MPa). However, there was no significant difference in the strength between the control and carbide bur treated specimens. Similarly, the fatigue strength of the diamond bur treated specimens was significantly lower (p ≤ 0.0001) than that of the control for both cutting directions. Cutting in the perpendicular direction resulted in nearly 60% reduction to the endurance limit (from 44 to 19 MPa). Based on the results, diamond bur cutting of cavity preparations causes a reduction in the fatigue strength of dentin, regardless of the cutting direction. To maintain the durability of dentin, cavity preparations introduced using diamond burs must be performed with appropriate cutting direction and followed by a finishing pass. © 2014 Wiley Periodicals, Inc.

  8. Welding simulation and fatigue assessment of tubular K-joints in high-strength steel

    International Nuclear Information System (INIS)

    Zamiri Akhlaghi, F.

    2014-01-01

    Application of newly developed high strength steel hollow sections is increasing in construction industry – especially for bridge structures – due to their satisfactory material properties and fabrication advantages. These sections allow for longer spans, more slender structures. Savings in weight and volume of material compared to traditional steel grades increase sustainability of construction and compensate for part of higher unit cost of material. Nevertheless, use of high strength steels cannot be promoted unless potential fatigue issues are properly addressed. Two fabrication methods are currently available for the planar Warren trusses made of circular hollow sections (CHS): welding the tubes together, or using cast steel nodes and connecting truss members to them by girth welds. Previous research on tubular bridge trusses indicates that the problematic fatigue cracking sites for the first fabrication method are located at weld toes in the gap region of the truss joints. For the second method, cracking occurs at the root of CHS–cast butt welds. Fatigue performance of these two methods were investigated by constant amplitude fatigue testing of two full scale trusses made of steel grade S690QH and with a geometry similar to previous S355J2H investigation. Fatigue lives of K-joints were in agreement with current recommended code values. For CHS–cast welded connections, no visible cracking was observed up to 2£10"6 cycles. Due to the effect of residual stresses, fatigue cracking was observed in compressive joints as well as tensile joints. Indeed, tensile welding residual stresses keep the crack open during all or part of the compressive load cycle. Their distribution and impact on fatigue life of tubular joints has not been fully investigated before for a complex detail such as Tubular K-joint made of high strength steel. Experimental and numerical methods were utilized for assessment of welding residual stresses. Neutron diffraction experiments were

  9. Relationship between microhardness and fatigue strength after glass micro-bead peening and ion implantation

    International Nuclear Information System (INIS)

    Lunarski, J.; Zielecki, M.

    1989-01-01

    Results of tests on fatigue strength and condition of the surface layer, produced by ion implantation or/and glass micro-bead peening for E1961Sz and 12H2N4MAZ steels and WT3-1 titanium alloy are reported. In the tests the following characteristics are measured: Knoop hardness, residual stresses (by etching method), surface roughness, and oscillatory bending fatigue limit at the resonance frequency of the specimen. The test results indicate that for the examined steels there is a strong correlation between surface microhardness and fatigue limit, in spite of various surface treatments. This fact enables to predict changes in the fatigue limit, basing on the results of surface microhardness measurements, which are inexpensive and easy to perform. (author)

  10. The Potential of Self-Tempered Martensite and Bainite in Improving the Fatigue Strength of Thermomechanically Processed Steels

    Directory of Open Access Journals (Sweden)

    Krupp Ulrich

    2018-01-01

    Full Text Available In contrast to a two-stage hardening and tempering process, the definition of optimized cooling routes after hot working of low-alloy Cr steel allows the adjustments of high-strength microstructures with a sufficient degree of ductility at the same time without any additional heat-treatment. While compressed air cooling after hot forging of micro-alloyed steel grades leads to the formation of lower bainite with finedispersed cementite platelets, quenching by water spray down to the martensite start temperature results in the formation of martensite, that is self-tempered during the subsequent slow-cooling in air. The precipitation of nano-sized cementite precipitates result in superior mechanical properties with respect to impact and tensile testing. Cyclic deformation and crack propagation tests being carried out using resonance testing (100Hz and ultrasonic fatigue testing (20kHz systems revealed a pronounced increase in fatigue strength by about 150MPa of the self-tempered martensite condition as compared to the bainitic modification. For the latter one, a steady decrease of the fatigue strength is observed rather than the existence of a real fatigue limit.

  11. Case Study of Crack Initiation from Bi-material Notches

    Czech Academy of Sciences Publication Activity Database

    Klusák, Jan; Knésl, Zdeněk

    2011-01-01

    Roč. 452-453, - (2011), s. 449-452 ISSN 1013-9826. [Fracture and Damage Mechanics /9./. Nagasaki, 20.09.2010-22.09.2010] R&D Projects: GA ČR GAP108/10/2049; GA ČR GA101/08/0994 Institutional research plan: CEZ:AV0Z20410507 Keywords : Crack initiation * bi-material notch * fracture mechanics Subject RIV: JL - Materials Fatigue, Friction Mechanics

  12. Effect of Reduced Phosphoric Acid Pre-etching Times 
on Enamel Surface Characteristics and Shear Fatigue Strength Using Universal Adhesives.

    Science.gov (United States)

    Tsujimoto, Akimasa; Fischer, Nicholas; Barkmeier, Wayne; Baruth, Andrew; Takamizawa, Toshiki; Latta, Mark; Miyazaki, Masashi

    2017-01-01

    To examine the effect of reduced phosphoric acid pre-etching times on enamel fatigue bond strength of universal adhesives and surface characteristics by using atomic force microscopy (AFM). Three universal adhesives were used in this study (Clearfil Universal Bond [C], G-Premio Bond [GP], Scotchbond Universal Adhesive [SU]). Four pre-etching groups were employed: enamel pre-etched with phosphoric acid and immediately rinsed with an air-water spray, and enamel pre-etched with phosphoric acid for 5, 10, or 15 s. Ground enamel was used as the control group. For the initial bond strength test, 15 specimens per etching group for each adhesive were used. For the shear fatigue test, 20 specimens per etching group for each adhesive were loaded using a sine wave at a frequency of 20 Hz for 50,000 cycles or until failure occurred. Initial shear bond strengths and fatigue shear strengths of composite adhesively bonded to ground and pre-etched enamel were determined. AFM observations of ground and pre-etched enamel were also conducted, and surface roughness as well as surface area were evaluated. The initial shear bond strengths and fatigue shear strengths of the universal adhesives in the pre-etched groups were significantly higher than those of the control group, and were not influenced by the pre-etching time. Significantly higher surface roughness and surface area of enamel surfaces in pre-etched groups were observed compared with those in the control group. While the surface area was not significantly influenced by etching time, surface roughness of the enamel surfaces in the pre-etched groups significantly increased with pre-etching time. The results of this in vitro study suggest that reduced phosphoric acid pre-etching times do not impair the fatigue bond strength of universal adhesives. Although fatigue bond strength and surface area were not influenced by phosphoric-acid etching times, surface roughness increased with increasing etching time.

  13. Fatigue life prediction of oil ducts under service loads

    Energy Technology Data Exchange (ETDEWEB)

    Meggiolaro, Marco A.; Castro, Jaime T.P. [Pontificia Univ. Catolica do Rio de Janeiro, RJ (Brazil)

    2003-07-01

    A methodology to calculate the residual initiation and propagation lives of fatigue cracks in oil pipelines with corrosion-like defects is proposed and applied to predict the residual life of an old duct made of API 5L Gr. B steel, in service for more than 40 years. Since its inauguration, this pipeline has carried several heated products under variable temperatures and pressures. The calculated (nominal) service stresses are very high, due to thermal loads that induce significant bending in curved parts of the duct, with peaks close to the yield strength of the steel. The elastic- plastic fatigue damage at a notch or a corrosion pit root is calculated using the {epsilon}N method, and the effects of surface semi-elliptical cracks in its internal (or external) wall is studied considering appropriate stress intensity factor expressions and the actual service loads. In the presence of surface flaws associated to stress concentration factors of the order of three, a fatigue crack likely will initiate in the pipeline. However, if these surface cracks are small compared to the duct wall thickness, their predicted propagation rates are very low. (author)

  14. Rupture Predictions of Notched Ti-6Al-4V Using Local Approaches

    Directory of Open Access Journals (Sweden)

    Mirco Peron

    2018-04-01

    Full Text Available Ti-6Al-4V has been extensively used in structural applications in various engineering fields, from naval to automotive and from aerospace to biomedical. Structural applications are characterized by geometrical discontinuities such as notches, which are widely known to harmfully affect their tensile strength. In recent years, many attempts have been done to define solid criteria with which to reliably predict the tensile strength of materials. Among these criteria, two local approaches are worth mentioning due to the accuracy of their predictions, i.e., the strain energy density (SED approach and the theory of critical distance (TCD method. In this manuscript, the robustness of these two methods in predicting the tensile behavior of notched Ti-6Al-4V specimens has been compared. To this aim, two very dissimilar notch geometries have been tested, i.e., semi-circular and blunt V-notch with a notch root radius equal to 1 mm, and the experimental results have been compared with those predicted by the two models. The experimental values have been estimated with low discrepancies by either the SED approach and the TCD method, but the former results in better predictions. The deviations for the SED are in fact lower than 1.3%, while the TCD provides predictions with errors almost up to 8.5%. Finally, the weaknesses and the strengths of the two models have been reported.

  15. Effects of Specimen Diameters on the Distribution of Corrosion Fatigue Cracks

    OpenAIRE

    石原, 外美; 塩澤, 和章; 宮尾, 嘉寿

    1988-01-01

    The distribution of corrosion fatigue cracks observed on the un-notched round specimen surface differs with specimen diameter, especially in the low stress amplitude region. At a constant fatigue life ratio, many long cracks are initiated on the larger specimen, 12 mm (diameter), in comparison with the smaller specimen, 6 mm (diameter). On the other hand, in the high stress amplitude region of corrosion fatigue and fatigue in laboratory air, the distribution of cracks during the fatigue proce...

  16. Identification of low cycle fatigue parameters of high strength low-alloy (HSLA steel at room temperature

    Directory of Open Access Journals (Sweden)

    S. Bulatović

    2014-10-01

    Full Text Available Low cycle fatigue test was performed in ambient atmosphere at room temperature. Cycle loading of material, in case of High strength low-alloy steel, entails modifications of its properties and in this paper is therefore shown behavior of fatigue life using low cycle fatigue parameters. More precisely, crack initiation life of tested specimens was computed using theory of Coffin-Manson relation during the fatigue loading. The geometry of the stabilized hysteresis loop of welded joint HSLA steel, marked as Nionikral 70, is also analyzed. This stabilized hysteresis loop is very important for determination of materials properties.

  17. Clarification of strain limits considering the ratcheting fatigue strength of 316FR steel

    International Nuclear Information System (INIS)

    Isobe, Nobuhiro; Sukekawa, Masayuki; Nakayama, Yasunari; Date, Shingo; Ohtani, Tomomi; Takahashi, Yukio; Kasahara, Naoto; Shibamoto, Hiroshi; Nagashima, Hideaki; Inoue, Kazuhiko

    2008-01-01

    The effect of ratcheting on fatigue strength was investigated in order to rationalize the strain limit as a design criterion of commercialized fast reactor systems. Ratcheting fatigue tests were conducted at 550 deg. Duration of the ratchet straining was set for a certain number of strain cycles taking the loading condition of fast reactors into account, and the number of cycles for strain accumulation was defined as the ratchet-expired cycle. Fatigue lives decrease as the accumulated strain by ratcheting increases. Mean stress increased during the ratcheting cycle and its maximum value depended on the accumulated strain and the ratchet-expired cycle. Fatigue life reduction was negligible when the maximum mean stress was less than 25 MPa, corresponding to an accumulated strain of 2.2%. Accumulated strain is limited to 2% in the present design guidelines and this strain limit is considered effective to avoid reducing fatigue life by ratcheting. Microcrack growth behaviors were also investigated in these tests in order to discuss the life reduction mechanisms in ratcheting conditions

  18. Joined application of a multiaxial critical plane criterion and a strain energy density criterion in low-cycle fatigue

    Directory of Open Access Journals (Sweden)

    Andrea Carpinteri

    2017-07-01

    Full Text Available In the present paper, the multiaxial fatigue life assessment of notched structural components is performed by employing a strain-based multiaxial fatigue criterion. Such a criterion, depending on the critical plane concept, is extended by implementing the control volume concept reated to the Strain Energy Density (SED approach: a material point located at a certain distance from the notch tip is assumed to be the verification point where to perform the above assessment. Such a distance, measured along the notch bisector, is a function of both the biaxiality ratio (defined as the ratio between the applied shear stress amplitude and the normal stress amplitude and the control volume radii under Mode I and Mode III. Once the position of the verification point is determined, the fatigue lifetime is assessed through an equivalent strain amplitude, acting on the critical plane, together with a unique material reference curve (i.e. the Manson-Coffin curve. Some uniaxial and multiaxial fatigue data related to V-notched round bars made of titanium grade 5 alloy (Ti-6Al-4V are examined to validate the present criterion.

  19. Accelerated Comparative Fatigue Strength Testing of Belt Adhesive Joints

    Science.gov (United States)

    Bajda, Miroslaw; Blazej, Ryszard; Jurdziak, Leszek

    2017-12-01

    Belt joints are the weakest link in the serial structure that creates an endless loop of spliced belt segments. This affects not only the lower strength of adhesive joints of textile belts in comparison to vulcanized splices, but also the replacement of traditional glues to more ecological but with other strength parameters. This is reflected in the lowered durability of adhesive joints, which in underground coal mines is nearly twice shorter than the operating time of belts. Vulcanized splices require high precision in performance, they need long time to achieve cross-linking of the friction mixture and, above all, they require specialized equipment (vulcanization press) which is not readily available and often takes much time to be delivered down, which means reduced mining output or even downtime. All this reduces the reliability and durability of adhesive joints. In addition, due to the consolidation on the Polish coal market, mines are joined into large economic units serviced by a smaller number of processing plants. The consequence is to extend the transport routes downstream and increase reliability requirements. The greater number of conveyors in the chain reduces reliability of supply and increases production losses. With high fixed costs of underground mines, the reduction in mining output is reflected in the increase in unit costs, and this at low coal prices on the market can mean substantial losses for mines. The paper describes the comparative study of fatigue strength of shortened samples of adhesive joints conducted to compare many different variants of joints (various adhesives and materials). Shortened samples were exposed to accelerated fatigue in the usually long-lasting dynamic studies, allowing more variants to be tested at the same time. High correlation between the results obtained for shortened (100 mm) and traditional full-length (3×250 mm) samples renders accelerated tests possible.

  20. The role of elevated temperature exposure on structural evolution and fatigue strength of eutectic AlSi12 alloys

    Czech Academy of Sciences Publication Activity Database

    Konečná, R.; Nicoletto, G.; Kunz, Ludvík; Riva, E.

    2016-01-01

    Roč. 83, č. 1 (2016), s. 24-35 ISSN 0142-1123 Institutional support: RVO:68081723 Keywords : Piston * Al-Si alloy * Elevated temperature * Fatigue strength Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 2.899, year: 2016

  1. Mechanism of electric fatigue crack growth in lead zirconate titanate

    International Nuclear Information System (INIS)

    Westram, Ilona; Oates, William S.; Lupascu, Doru C.; Roedel, Juergen; Lynch, Christopher S.

    2007-01-01

    A series of experiments was performed with through-thickness cracks in ferroelectric double cantilever beam (DCB) specimens. Cyclic electric fields of different amplitudes were applied which resulted in cyclic crack propagation perpendicular to the electric field direction. Crack propagation was observed optically and three regimes were identified: a pop-in from a notch, steady-state crack growth and a decrease of the crack growth rate with increasing cycle number. Crack growth only occurred if the applied field exceeded the coercive field strength of the material. Furthermore, the crack extended during each field reversal and the crack growth rate increased with increasing field. Based on the experimental observations, a mechanistic understanding was developed and contrasted with a nonlinear finite element analysis which quantified the stress intensity in the DCB specimens. The driving forces for crack formation at the notch and subsequent fatigue crack growth were computed based on the distribution of residual stresses due to ferroelectric switching. The finite element results are in good agreement with the experimental observations and support the proposed mechanism

  2. Oncogenic programmes and Notch activity: an 'organized crime'?

    Science.gov (United States)

    Dominguez, Maria

    2014-04-01

    The inappropriate Notch signalling can influence virtually all aspect of cancer, including tumour-cell growth, survival, apoptosis, angiogenesis, invasion and metastasis, although it does not do this alone. Hence, elucidating the partners of Notch that are active in cancer is now the focus of much intense research activity. The genetic toolkits available, coupled to the small size and short life of the fruit fly Drosophila melanogaster, makes this an inexpensive and effective animal model, suited to large-scale cancer gene discovery studies. The fly eye is not only a non-vital organ but its stereotyped size and disposition also means it is easy to screen for mutations that cause tumours and metastases and provides ample opportunities to test cancer theories and to unravel unanticipated nexus between Notch and other cancer genes, or to discover unforeseen Notch's partners in cancer. These studies suggest that Notch's oncogenic capacity is brought about not simply by increasing signal strength but through partnerships, whereby oncogenes gain more by cooperating than acting individually, as in a ring 'organized crime'. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. On residual stresses and fatigue of laser hardened steels

    International Nuclear Information System (INIS)

    Lin, Ru.

    1992-01-01

    This thesis deals with studies on residual stresses and fatigue properties of laser-transformation hardened steels. Two types of specimens, cylinders and fatigue specimens were used in the studies. The cylinders, made of Swedish steels SS 2244 and SS 2258 which correspond to AISI 4140 and AISI 52100 respectively, were locally hardened by a single scan of laser beam in the longitudinal direction, with various laser parameters. Residual stress distributions across the hardened tracks were measured by means of X-ray diffraction. The origins of residual stresses were investigated and discussed. For the fatigue specimens, including smooth and notched types made of Swedish steels SS 2244, SS 2225 and SS 1572 (similar to AISI 4140, AISI 4130 and AISI 1035, respectively), laser hardening was carried out in the gauge section. The residual stress field induced by the hardening process and the fatigue properties by plane bending fatigue test were studied. In order to investigate the stability of the residual stress field, stress measurements were also made on specimens being loaded near the fatigue limits for over 10 7 cycles. Further the concept of local fatigue strength was employed to correlate quantitatively the effect of hardness and residual stress field on the fatigue limits. In addition a group of smooth specimens of SS 2244 was induction hardened and the hardening results were compared with the corresponding laser hardened ones in terms of residual stress and fatigue behaviour. It has been found that compressive stresses exist in the hardened zone of all the specimens studied. The laser hardening condition, the specimen and how the hardening is carried out can significantly affect the residual stress field. Laser hardening can greatly improve the fatigue properties by inducing a hardened and compressed surface layer. (112 refs.)(au)

  4. On residual stresses and fatigue of laser hardened steels

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Ru.

    1992-01-01

    This thesis deals with studies on residual stresses and fatigue properties of laser-transformation hardened steels. Two types of specimens, cylinders and fatigue specimens were used in the studies. The cylinders, made of Swedish steels SS 2244 and SS 2258 which correspond to AISI 4140 and AISI 52100 respectively, were locally hardened by a single scan of laser beam in the longitudinal direction, with various laser parameters. Residual stress distributions across the hardened tracks were measured by means of X-ray diffraction. The origins of residual stresses were investigated and discussed. For the fatigue specimens, including smooth and notched types made of Swedish steels SS 2244, SS 2225 and SS 1572 (similar to AISI 4140, AISI 4130 and AISI 1035, respectively), laser hardening was carried out in the gauge section. The residual stress field induced by the hardening process and the fatigue properties by plane bending fatigue test were studied. In order to investigate the stability of the residual stress field, stress measurements were also made on specimens being loaded near the fatigue limits for over 10[sup 7] cycles. Further the concept of local fatigue strength was employed to correlate quantitatively the effect of hardness and residual stress field on the fatigue limits. In addition a group of smooth specimens of SS 2244 was induction hardened and the hardening results were compared with the corresponding laser hardened ones in terms of residual stress and fatigue behaviour. It has been found that compressive stresses exist in the hardened zone of all the specimens studied. The laser hardening condition, the specimen and how the hardening is carried out can significantly affect the residual stress field. Laser hardening can greatly improve the fatigue properties by inducing a hardened and compressed surface layer. (112 refs.)(au).

  5. Static and fatigue mechanical behavior of three dental CAD/CAM ceramics.

    Science.gov (United States)

    Homaei, Ehsan; Farhangdoost, Khalil; Tsoi, James Kit Hon; Matinlinna, Jukka Pekka; Pow, Edmond Ho Nang

    2016-06-01

    The aim of this study was to measure the mechanical properties and fatigue behavior of three contemporary used dental ceramics, zirconia Cercon(®) (ZC), lithium disilicate e.max(®) CAD (LD), and polymer-infiltrated ceramic Enamic(®) (PIC). Flexural strength of each CAD/CAM ceramic was measured by three point bending (n=15) followed by Weibull analysis. Elastic modulus was calculated from the load-displacement curve. For cyclic fatigue loading, sinusoidal loading with a frequency of 8Hz with minimum load 3N were applied to these ceramics (n=24) using three point bending from 10(3) to 10(6) cycles. Fatigue limits of these ceramics were predicted with S-N fatigue diagram. Fracture toughness and Vickers hardness of the ceramics were measured respectively by single edge V-notch beam (SEVNB) and microindentation (Hv 0.2) methods. Chemical compositions of the materials׳ surfaces were analyzed by EDS, and microstructural analysis was conducted on the fracture surfaces by SEM. One-way ANOVA was performed and the level of significance was set at 0.05 to analyze the numerical results. The mean flexural strength of ZC, LD, and PIC was respectively 886.9, 356.7, and 135.8MPa. However, the highest Weibull modulus belonged to PIC with 19.7 and the lowest was found in LD with 7.0. The fatigue limit of maximum load for one million cycles of ZC, LD, and PIC was estimated to be 500.1, 168.4, and 73.8GPa. The mean fracture toughness of ZC, LD, and PIC was found to be respectively 6.6, 2.8, and 1.4MPam(1/2), while the mean Vickers hardness was 1641.7, 676.7, and 261.7Hv. Fracture surfaces followed fatigue loading appeared to be smoother than that after monotonic loading. Mechanical properties of ZC were substantially superior to the two other tested ceramics, but the scattering of data was the least in PIC. The fatigue limit was found to be approximately half of the mean flexural strength for all tested ceramics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. On the Crack Initiated From the Bi-material Notch Tip

    Czech Academy of Sciences Publication Activity Database

    Profant, T.; Klusák, Jan; Kotoul, M.

    452-453, - (2011), s. 441-444 ISSN 1013-9826. [Fracture and Damage Mechanics. Nagasaki, 20.09.2010-22.09.2010] R&D Projects: GA ČR GAP108/10/2049; GA ČR GA101/08/0994 Institutional research plan: CEZ:AV0Z20410507 Keywords : orthotropic bi-material notch * crack initiation * Matched asymptotic procedure Subject RIV: JL - Materials Fatigue, Friction Mechanics

  7. A study on the fatigue strength characteristics of ship structural steel with gusset welds

    Directory of Open Access Journals (Sweden)

    Sung-Jo Park

    2012-06-01

    Full Text Available This study aims to assess fatigue property by the static overload and average load in the fillet welded joints which is on the ship structural steel having gusset welds. To this end, a small specimen was made, to which the same welding condition for the actual ship structure was applied, to perform fatigue tests. In this study, a method to simply assess changes in welding residual stress according to different static overload was suggested. By measuring actual strain at the weld toe, the weld stress concentration factor and property which is determined by recrystallization in the process of welding were estimated to investigate the relation between overload and fatigue strength.

  8. Effect of pulsed current welding on fatigue behaviour of high strength aluminium alloy joints

    International Nuclear Information System (INIS)

    Balasubramanian, V.; Ravisankar, V.; Madhusudhan Reddy, G.

    2008-01-01

    High strength aluminium alloys (Al-Zn-Mg-Cu alloys) have gathered wide acceptance in the fabrication of light weight structures requiring high strength-to weight ratio, such as transportable bridge girders, military vehicles, road tankers and railway transport systems. The preferred welding processes of high strength aluminium alloy are frequently gas tungsten arc welding (GTAW) process and gas metal arc welding (GMAW) process due to their comparatively easier applicability and better economy. Weld fusion zones typically exhibit coarse columnar grains because of the prevailing thermal conditions during weld metal solidification. This often results inferior weld mechanical properties and poor resistance to hot cracking. In this investigation, an attempt has been made to refine the fusion zone grains by applying pulsed current welding technique. Rolled plates of 6 mm thickness have been used as the base material for preparing single pass welded joints. Single V butt joint configuration has been prepared for joining the plates. The filler metal used for joining the plates is AA 5356 (Al-5Mg (wt%)) grade aluminium alloy. Four different welding techniques have been used to fabricate the joints and they are: (i) continuous current GTAW (CCGTAW), (ii) pulsed current GTAW (PCGTAW), (iii) continuous current GMAW (CCGMAW) and (iv) pulsed current GMAW (PCGMAW) processes. Argon (99.99% pure) has been used as the shielding gas. Fatigue properties of the welded joints have been evaluated by conducting fatigue test using rotary bending fatigue testing machine. Current pulsing leads to relatively finer and more equi-axed grain structure in gas tungsten arc (GTA) and gas metal arc (GMA) welds. In contrast, conventional continuous current welding resulted in predominantly columnar grain structures. Grain refinement is accompanied by an increase in fatigue life and endurance limit

  9. Evaluation of Bending Strength of Carburized Gears Based on Inferential Identification of Principal Surface Layer Defects

    Science.gov (United States)

    Masuyama, Tomoya; Inoue, Katsumi; Yamanaka, Masashi; Kitamura, Kenichi; Saito, Tomoyuki

    High load capacity of carburized gears originates mainly from the hardened layer and induced residual stress. On the other hand, surface decarburization, which causes a nonmartensitic layer, and inclusions such as oxides and segregation act as latent defects which considerably reduce fatigue strength. In this connection, the authors have proposed a formula of strength evaluation by separately quantifying defect influence. However, the principal defect which limits strength of gears with several different defects remains unclarified. This study presents a method of inferential identification of principal defects based on test results of carburized gears made of SCM420 clean steel, gears with both an artificial notch and nonmartensitic layer at the tooth fillet, and so forth. It clarifies practical uses of presented methods, and strength of carburized gears can be evaluated by focusing on principal defect size.

  10. Reduction factors for creep strength and fatigue life of modified 9 Cr-1 Mo steel weldments

    International Nuclear Information System (INIS)

    Blass, J.J.; Battiste, R.L.; O'Connor, D.G.

    1991-01-01

    The provisions of ASME B ampersand PV Code Case N-47 currently include reduction factors for creep strength and fatigue life of weldments. To provide experimental confirmation of such factors for modified 9 Cr-1 Mo steel, tests of tubular specimens were conducted at 538 degree C (1000 degree F). Three creep-rupture specimens with longitudinal welds were tested in tension; and, of three with circumferential welds, two were tested in tension and one in torsion. In each specimen with a circumferential weld, a nonuniform axial distribution of strain was easily visible. The test results were compared to an existing empirical model of creep-rupture life. For the torsion test, the comparison was based on a definition of equivalent normal stress recently adopted in Code Case N-47. Some 27 fatigue specimens, with longitudinal, circumferential, or no welds, were tested under axial or torsional strain control. In specimens with welds, fatigue cracking initiated at fusion lines. In axial tests cracks grew in the circumferential direction, and in torsional tests cracks grew along fusion lines. The test results were compared to empirical models of fatigue life based on two definition of equivalent normal strain range. The results have provided some needed confirmation of the reduction factors for creep strength and fatigue life of modified 9 Cr-1 Mo steel weldments currently under consideration by ASME Code committees. 8 refs., 5 figs

  11. Fatigue Fracture Strength of Implant-Supported Full Contour Zirconia and Metal Ceramic Fixed Partial Dentures

    Directory of Open Access Journals (Sweden)

    Fariborz Vafaee

    2017-10-01

    Full Text Available Objectives: Zirconia restorations have been suggested as a more durable and more appealing alternative to metal restorations. However, their mechanical properties may be negatively affected by fatigue due to superficial stresses or low temperature degradation. This study aimed to assess the fatigue fracture strength of three-unit implant-supported full contour zirconia and pre-sintered cobalt-chromium (Co-Cr alloy posterior fixed partial dentures (FPDs.Materials and Methods: In this in-vitro experimental study, 28 posterior three-unit implant-supported FPDs were fabricated of full contour zirconia and pre-sintered Co-Cr alloy, and were cemented on implant abutments. To simulate the oral environment, FPDs were subjected to 10,000 thermal cycles between 5-55°C for 30 seconds, and were then transferred to a chewing simulator (100,000 cycles, 50 N, 0.5 Hz. Afterwards, fatigue fracture strength was measured using a universal testing machine. Data were analyzed by Mann-Whitney U test.Results: The mean and standard deviation of fracture strength were 2108.6±440.1 N in full contour zirconia, and 3499.9±1106.5 N in pre-sintered Co-Cr alloy. According to Mann- Whitney U test, the difference in this respect was statistically significant between the two groups (P=0.007.Conclusions: Since the fracture strength values obtained in the two groups were significantly higher than the maximum mean masticatory load in the oral environment, both materials can be used for fabrication of posterior three-unit FPDs, depending on the esthetic demands of patients.

  12. Effects of stress concentrations on the fatigue life of a gamma based titanium aluminide

    International Nuclear Information System (INIS)

    Trail, S.J.; Bowen, P.

    1995-01-01

    S-N curves for a gamma based titanium aluminide alloy of composition Ti-47.2Al-2.1Mn-1.9Nb(at.%)+2TiB 2 (wt.%) have been used to define fatigue life. Effects of residual stress, stressed volume, loading ratio, loading mode, elevated temperature and surface roughness have been considered. Residual tensile stresses and micro-cracking are introduced by Electro Discharge Machining and the fatigue life is reduced slightly compared with polished samples. Notched fatigue tests show a significant notch strengthening effect which increases with increasing stress concentration factor. The fracture surfaces of specimens tested at room temperature reveal fully brittle failure mechanisms and no evidence of stable crack growth is observed. The fatigue life appears, therefore, to be determined predominantly by the number of cycles to crack initiation. At the elevated temperature of 830 C, evidence for some stable fatigue crack growth has been found. Probable sites for crack initiation are addressed

  13. Fatigue behaviour of NiTi shape memory alloy scaffolds produced by SLM, a unit cell design comparison.

    Science.gov (United States)

    Speirs, M; Van Hooreweder, B; Van Humbeeck, J; Kruth, J-P

    2017-06-01

    Selective laser melting (SLM) is an additive manufacturing technique able to produce complex functional parts via successively melting layers of metal powder. This process grants the freedom to design highly complex scaffold components to allow bone ingrowth and aid mechanical anchorage. This paper investigates the compression fatigue behaviour of three different unit cells (octahedron, cellular gyroid and sheet gyroid) of SLM nitinol scaffolds. It was found that triply periodic minimal surfaces display superior static mechanical properties in comparison to conventional octahedron beam lattice structures at identical volume fractions. Fatigue resistance was also found to be highly geometry dependent due to the effects of AM processing techniques on the surface topography and notch sensitivity. Geometries minimising nodal points and the staircase effect displayed the greatest fatigue resistance when normalized to yield strength. Furthermore oxygen analysis showed a large oxygen uptake during SLM processing which must be altered to meet ASTM medical grade standards and may significantly reduce fatigue life. These achieved fatigue properties indicate that NiTi scaffolds produced via SLM can provide sufficient mechanical support over an implants lifetime within stress range values experienced in real life. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Case Criterion of Crack Onset in Orthotropic Bi-material Notches

    Czech Academy of Sciences Publication Activity Database

    Profant, T.; Klusák, Jan; Kotoul, M.

    2011-01-01

    Roč. 465, - (2011), s. 157-160 ISSN 1013-9826. [Materials Structure and Micromechanics of Fracture. Brno, 28.06.2010-30.06.2010] R&D Projects: GA ČR GA101/08/0994; GA ČR GAP108/10/2049 Institutional research plan: CEZ:AV0Z20410507 Keywords : orthotropic bi-material notch * crack initiation * matched asymptotic procedure Subject RIV: JL - Materials Fatigue, Friction Mechanics

  15. Crack propagation from bi-material notches – matched asymptotic procedure

    Czech Academy of Sciences Publication Activity Database

    Klusák, Jan; Profant, T.; Ševeček, O.; Kotoul, M.

    488-489, - (2012), s. 416-419 ISSN 1013-9826. [International Conference on Fracture and Damage Mechanics - FDM 2011 /10./. Dubrovník, 19.09.2011-21.09.2011] R&D Projects: GA ČR GAP108/10/2049 Institutional research plan: CEZ:AV0Z20410507 Keywords : Orthotropic bi-material notch * two-state integral * matched asymptotic expansion Subject RIV: JL - Materials Fatigue, Friction Mechanics

  16. Evaluation of Fatigue Strength Improvement by CFRP Laminates and Shot Peening onto the Tension Flanges Joining Corrugated SteelWebs

    Directory of Open Access Journals (Sweden)

    Zhi-Yu Wang

    2015-08-01

    Full Text Available Corrugated steel web with inherent high out-of-plane stiffness has a promising application in configuring large span highway bridge girders. Due to the irregularity of the configuration details, the local stress concentration poses a major fatigue problem for the welded flange plates of high strength low alloy structural steels. In this work, the methods of applying CFRP laminate and shot peening onto the surfaces of the tension flanges were employed with the purpose of improving the fatigue strength of such configuration details. The effectiveness of this method in the improvement of fatigue strength has been examined experimentally. Test results show that the shot peening significantly increases hardness and roughness in contrast to these without treatment. Also, it has beneficial effects on the fatigue strength enhancement when compared against the test data of the joints with CFRP strengthening. The stiffness degradation during the loading progress is compared with each treatment. Incorporating the stress acting on the constituent parts of the CFRP laminates, a discussion is made regarding the mechanism of the retrofit and related influencing factors such as corrosion and economic cost. This work could enhance the understanding of the CFRP and shot peening in repairing such welded details and shed light on the reinforcement design of welded joints between corrugated steel webs and flange plates.

  17. Strength and fatigue life evaluation of composite laminate with embedded sensors

    Science.gov (United States)

    Rathod, Vivek T.; Hiremath, S. R.; Roy Mahapatra, D.

    2014-04-01

    Prognosis regarding durability of composite structures using various Structural Health Monitoring (SHM) techniques is an important and challenging topic of research. Ultrasonic SHM systems with embedded transducers have potential application here due to their instant monitoring capability, compact packaging potential toward unobtrusiveness and noninvasiveness as compared to non-contact ultrasonic and eddy current techniques which require disassembly of the structure. However, embedded sensors pose a risk to the structure by acting as a flaw thereby reducing life. The present paper focuses on the determination of strength and fatigue life of the composite laminate with embedded film sensors like CNT nanocomposite, PVDF thin films and piezoceramic films. First, the techniques of embedding these sensors in composite laminates is described followed by the determination of static strength and fatigue life at coupon level testing in Universal Testing Machine (UTM). Failure mechanisms of the composite laminate with embedded sensors are studied for static and dynamic loading cases. The coupons are monitored for loading and failure using the embedded sensors. A comparison of the performance of these three types of embedded sensors is made to study their suitability in various applications. These three types of embedded sensors cover a wide variety of applications, and prove to be viable in embedded sensor based SHM of composite structures.

  18. The direct-stress fatigue strength of 17S-T aluminum alloy throughout the range from 1/2 to 500,000,000 cycles of stress

    Science.gov (United States)

    Hartmann, E C; Stickley, G W

    1942-01-01

    Fatigue-test were conducted on six specimens made from 3/4-inch-diameter 17S-T rolled-and-drawn rod for the purpose of obtaining additional data on the fatigue life of the material at stresses up to the static strength. The specimens were tested in direct tension using a stress range from zero to a maximum in tension. A static testing machine was used to apply repeated loads in the case of the first three specimens; the other three specimens were tested in a direct tension-compression fatigue machine. The direct-stress fatigue curve obtained for the material indicates that, in the range of stresses above about two-thirds the tensile strength, the fatigue strength is higher than might be expected by simply extrapolating the ordinary curve of stress plotted against the number of cycles determined at lower stresses.

  19. An experimental study on the effects of compressive stress on the fatigue crack growth of low-alloy steel

    International Nuclear Information System (INIS)

    Jones, D.P.; Hoppe, R.G.; James, B.A.

    1993-01-01

    A series of fatigue crack growth rate tests was conducted in order to study effects of negative stress ratio on fatigue crack growth rate of low-alloy steel in air. Four-point bend specimens were used to simulate linear stress distributions typical of pressure vessel applications. This type of testing adds to knowledge on negative stress ratio effects for low-alloy steels obtained in the past from uniform tension-compression tests. Applied bending stress range was varied over twice the yield strength. Load control was used for tests for which the stress range was less than twice the yield strength and deflection control was used for the higher stress range tests. Crack geometries were both short and long fatigue cracks started at notches and tight fatigue cracks for which crack closure could occur over the full crack face. Results are presented in terms of the stress intensity factor ratio R = K MIN /K MAX . The negative R-ratio test results were correlated to an equation of the form da/dN = C[ΔK/(A-R)] n , where A, C, and n are curve fitting parameters. It was found that effects of negative R-ratio on fatigue crack growth rates for even the high stress range tests could be bounded by correlating the above equation to only positive R-ratio test results and extending the resulting equation into the negative R-ratio regime

  20. Microstructure and toughness of structural steels

    International Nuclear Information System (INIS)

    Chipperfield, C.G.; Knott, J.F.

    1975-01-01

    The effects of notch acuity, inclusion content, and strength level on the toughness of a variety of ductile steels have been investigated in fully plastic single edge notched bend testpieces. Results for specimens containing fatigue precracks and sharp notches indicate that accurate predictions of a material's resistance to the initiation of fibrous fracture ahead of a fatigue crack may be inferred from tests on notched testpieces and from a knowledge of the microstructure of the material; an experimental procedure has been proposed whereby this may be achieved for quality control and material evaluation purposes. The spacing of optically visible inclusions is found essentially to define both the unit of ductile crack extension and, for low-strength steels, the limiting lateral dimensions of the high-strain field ahead of the crack tip. As a consequence, the notch-tip ductility is found to be invariant with the changes in notch acuity for sharp stress concentrators. The effect of increasing the purity and/or strength level is to alter the mechanism of fibrous fracture from one involving void growth and coalescence to one of predominantly shear character. (author)

  1. Effect of tensile overloads on fatigue crack growth of high strength steel wires

    International Nuclear Information System (INIS)

    Haag, J.; Reguly, A.; Strohaecker, T.R.

    2013-01-01

    Highlights: • A proof load process may be an option to increase the fatigue life of flexible pipelines. • There is possibility to produce plastic deformation at crack tip of tensile armor wires. • Controlled overloads provide effective crack growth retardation. • Crack growth retardation is also evident at higher stress ratios. - Abstract: Fatigue of the tensile armor wires is the main failure mode of flexible risers. Techniques to increase the life of these components are required to improve the processes safety on oil exploration. This work evaluates the crack growth retardation of high strength steel wires used in flexible pipelines. Fracture toughness tests were performed to establish the level of stress intensity factor wherein the wires present significant plastic deformation at the crack tip. The effect of tensile overload on fatigue behavior was assessed by fatigue crack growth testing under constant ΔK control and different overload ratios with two different load ratios. The outcomes show that the application of controlled overloads provides crack retardation and increases the fatigue life of the wires more than 31%. This behavior is also evident at stress ratio of 0.5, in spite of the crack closure effect being minimized by increasing the applied mean stress

  2. Notching on cancer’s door: Notch signaling in brain tumors

    Directory of Open Access Journals (Sweden)

    Marcin eTeodorczyk

    2015-01-01

    Full Text Available Notch receptors play an essential role in the regulation of central cellular processes during embryonic and postnatal development. The mammalian genome encodes for four Notch paralogs (Notch 1-4, which are activated by three Delta-like (Dll1/3/4 and two Serrate-like (Jagged1/2 ligands. Further, non-canonical Notch ligands such as EGFL7 have been identified and serve mostly as antagonists of Notch signaling. The Notch pathway prevents neuronal differentiation in the central nervous system by driving neural stem cell maintenance and commitment of neural progenitor cells into the glial lineage. Notch is therefore often implicated in the development of brain tumors, as tumor cells share various characteristics with neural stem and progenitor cells. Notch receptors are overexpressed in gliomas and their oncogenicity has been confirmed by gain- and loss-of-function studies in vitro and in vivo. To this end, special attention is paid to the impact of Notch signaling on stem-like brain tumor-propagating cells as these cells contribute to growth, survival, invasion and recurrence of brain tumors. Based on the outcome of ongoing studies in vivo, Notch-directed therapies such as γ secretase inhibitors and blocking antibodies have entered and completed various clinical trials. This review summarizes the current knowledge on Notch signaling in brain tumor formation and therapy.

  3. The effect of a free surface on fatigue crack behaviour

    Czech Academy of Sciences Publication Activity Database

    Hutař, Pavel; Náhlík, Luboš; Knésl, Zdeněk

    2010-01-01

    Roč. 32, č. 8 (2010), s. 1265-1269 ISSN 0142-1123 R&D Projects: GA ČR GA106/09/1954; GA ČR GA101/09/0867 Institutional research plan: CEZ:AV0Z20410507 Keywords : Vertex singularity * Generalized stress intenzity factor * Stress singularity * Fatigue crack * V- notch Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 1.799, year: 2010

  4. Fatigue Analysis of a Mono-Tower Platform

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Sørensen, John Dalsgaard; Brincker, Rune

    In this paper, a fatigue reliability analysis of a Mono-tower platform is presented. The failure mode, fatigue failure in the butt welds, is investigated with two different models. The one with the fatigue strength expressed through SN relations, the other with the fatigue strength expressed thro...... of the natural period, damping ratio, current, stress Spectrum and parameters describing the fatigue strength. Further, soil damping is shown to be significant for the Mono-tower.......In this paper, a fatigue reliability analysis of a Mono-tower platform is presented. The failure mode, fatigue failure in the butt welds, is investigated with two different models. The one with the fatigue strength expressed through SN relations, the other with the fatigue strength expressed...... through linear-elastic fracture mechanics (LEFM). In determining the cumulative fatigue damage, Palmgren-Miner's rule is applied. Element reliability as well as systems reliability is estimated using first-order reliability methods (FORM). The sensitivity of the systems reliability to various parameters...

  5. In situ observation of fatigue crack initiation and propagation behavior of a high-Nb TiAl alloy at 750 °C

    Energy Technology Data Exchange (ETDEWEB)

    Min, Zhang [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Xi-ping, Song, E-mail: xpsong@skl.ustb.edu.cn [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Long, Yu; Hong-liang, Li [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Ze-hui, Jiao; Hui-chen, Yu [National Key Laboratory of Science and Technology on Advanced High Temperature Structural Materials, Beijing Institute of Aeronautical Materials, Beijing 100095 (China)

    2015-01-12

    In this paper, the fatigue crack initiation and propagation behavior of a high-Nb TiAl alloy with nearly lamellar microstructure was studied by in situ scanning electron microscope observation at 750 °C. Dog-bone shaped specimens with a single-edge notch were used in the test. The results showed that the fatigue crack initiated first at the central portion of the notch, and then shifted to the edge portion. As the cycle numbers went on increasing, these cracks joined together and formed a main fatigue crack, which could propagate along the surface of the specimen. During the fatigue crack propagation two or three propagation stages were found depending on the microstructure of the crack tip. When the fatigue crack was parallel to the lamellar laths, it exhibited the rapid, steady and accelerated propagation stages successively, while when the fatigue crack was perpendicular to the lamellar laths, it exhibited only the steady and accelerated propagation stages, with no rapid propagation stage being found. In these different propagation stages the fatigue crack propagation rates were different and depended intensively on the lamellar laths orientation, lamellar colony size, equiaxed gamma grains and peak stress intensity factor K{sub max}. Based on the experimental data it was concluded that the fatigue crack initiation lifetime was much longer than the propagation lifetime for the single-edge notched specimens at 750 °C.

  6. In situ observation of fatigue crack initiation and propagation behavior of a high-Nb TiAl alloy at 750 °C

    International Nuclear Information System (INIS)

    Min, Zhang; Xi-ping, Song; Long, Yu; Hong-liang, Li; Ze-hui, Jiao; Hui-chen, Yu

    2015-01-01

    In this paper, the fatigue crack initiation and propagation behavior of a high-Nb TiAl alloy with nearly lamellar microstructure was studied by in situ scanning electron microscope observation at 750 °C. Dog-bone shaped specimens with a single-edge notch were used in the test. The results showed that the fatigue crack initiated first at the central portion of the notch, and then shifted to the edge portion. As the cycle numbers went on increasing, these cracks joined together and formed a main fatigue crack, which could propagate along the surface of the specimen. During the fatigue crack propagation two or three propagation stages were found depending on the microstructure of the crack tip. When the fatigue crack was parallel to the lamellar laths, it exhibited the rapid, steady and accelerated propagation stages successively, while when the fatigue crack was perpendicular to the lamellar laths, it exhibited only the steady and accelerated propagation stages, with no rapid propagation stage being found. In these different propagation stages the fatigue crack propagation rates were different and depended intensively on the lamellar laths orientation, lamellar colony size, equiaxed gamma grains and peak stress intensity factor K max . Based on the experimental data it was concluded that the fatigue crack initiation lifetime was much longer than the propagation lifetime for the single-edge notched specimens at 750 °C

  7. Comparison of Open-Hole Compression Strength and Compression After Impact Strength on Carbon Fiber/Epoxy Laminates for the Ares I Composite Interstage

    Science.gov (United States)

    Hodge, Andrew J.; Nettles, Alan T.; Jackson, Justin R.

    2011-01-01

    Notched (open hole) composite laminates were tested in compression. The effect on strength of various sizes of through holes was examined. Results were compared to the average stress criterion model. Additionally, laminated sandwich structures were damaged from low-velocity impact with various impact energy levels and different impactor geometries. The compression strength relative to damage size was compared to the notched compression result strength. Open-hole compression strength was found to provide a reasonable bound on compression after impact.

  8. In-situ tensile testing of notched poly- and oligocrystalline 316L wires

    Energy Technology Data Exchange (ETDEWEB)

    Mitevski, Bojan [Materials Science and Engineering (ITM), Duisburg (Germany); Weiss, Sabine [Brandenburg Technical Univ., Cottbus-Senftenberg (Germany). Chair of Physical Metallurgy and Materials Science.; Fischer, Alfons [Duisburg-Essen Univ. (Germany). Materials Science and Engineering; Rush Univ. Medical Center, Chicago, IL (United States). Dept. of Orthopedics

    2017-03-01

    In-situ testing inside a scanning electron microscope is a helpful tool for detailed analyses of small sized specimens with respect to their mechanical properties and the correlated microstructural alterations. Thus, this test method is used to analyze the tensional properties of thin 316L (1.4441) wires used for microscale components, e.g., like coronary artery stents. Tensile tests were conducted on unnotched and circularly notched 316L wires (oe 0.95 mm) with a special focus on the number of grains within the cross section as well as the notch geometry. Four combinations of notch width (2 and 4 mm) and notch depth (diameter at notch root: 0.5 and 0.75 mm) were chosen. Notch depth and notch shape were adjusted by means of electrochemical polishing. Previous investigations showed, that oligocrystalline structures exhibit a different mechanical behavior compared to polycrystalline ones or single crystals. There are only a few data available on mechanical testing of oligocrystalline structures with respect to varying notch geometries. Depending on the notch geometry, grain size and, therefore, the number of grains within the notch cross section widely scattering yield- and tensile strength as well as failure elongation values were measured. However, the transition criterion between poly- and oligocrystalline behavior could be quantified to be 6 to 7 grains within the cross section.

  9. Damage and fatigue crack growth of Eurofer steel first wall mock-up under cyclic heat flux loads. Part 1: Electron beam irradiation tests

    Energy Technology Data Exchange (ETDEWEB)

    You, J.H., E-mail: you@ipp.mpg.de [Max-Planck-Institut für Plasmaphysik, Euratom Association, Boltzmannstr. 2, 85748 Garching (Germany); Höschen, T. [Max-Planck-Institut für Plasmaphysik, Euratom Association, Boltzmannstr. 2, 85748 Garching (Germany); Pintsuk, G. [Forschungszentrum Jülich GmbH, IEK2, Euratom Association, 52425 Jülich (Germany)

    2014-04-15

    Highlights: • Clear evidence of microscopic damage and crack formation at the notch root in the early stage of the fatigue loading (50–100 load cycles). • Propagation of fatigue crack at the notch root in the course of subsequent cyclic heat-flux loading followed by saturation after roughly 600 load cycles. • No sign of damage on the notch-free surface up to 800 load cycles. • No obvious effect of the pulse time duration on the crack extension. • Slight change in the grain microstructure due to the formation of sub-grain boundaries by plastic deformation. - Abstract: Recently, the idea of bare steel first wall (FW) is drawing attention, where the surface of the steel is to be directly exposed to high heat flux loads. Hence, the thermo-mechanical impacts on the bare steel FW will be different from those of the tungsten-coated one. There are several previous works on the thermal fatigue tests of bare steel FW made of austenitic steel with regard to the ITER application. In the case of reduced-activation steel Eurofer97, a candidate structural material for the DEMO FW, there is no report on high heat flux tests yet. The aim of the present study is to investigate the thermal fatigue behavior of the Eurofer-based bare steel FW under cyclic heat flux loads relevant to DEMO operation. To this end, we conducted a series of electron beam irradiation tests with heat flux load of 3.5 MW/m{sup 2} on water-cooled mock-ups with an engraved thin notch on the surface. It was found that the notch root region exhibited a marked development of damage and fatigue cracks whereas the notch-free surface manifested no sign of crack formation up to 800 load cycles. Results of extensive microscopic investigation are reported.

  10. Low cycle fatigue of irradiated LMFBR materials

    International Nuclear Information System (INIS)

    Blackburn, L.D.

    1976-01-01

    A review of low cycle fatigue data on irradiated LMFBR materials was conducted and extensive graphical representations of available data are presented. Representative postirradiation tensile properties of annealed 304 and 316 SS are selected and employed in several predictive methods to estimate irradiated material fatigue curves. Experimental fatigue data confirm the use of predictive methods for establishing conservative design curves over the range of service conditions relevant to such CRBRP components as core former, fixed radial shielding, core barrel, lower inlet module and upper internals structures. New experimental data on fatigue curves and creep-fatigue interaction in irradiated 20 percent cold worked (CW) 316 SS and Alloy 718 would support the design of removable radial shielding and upper internals in CRBRP. New experimental information on notched fatigue behavior and cyclic stress-strain curves of all these materials in the irradiated condition could provide significant design data

  11. Reliability assessment of a bi-material notch: Strain energy density factor approach

    Czech Academy of Sciences Publication Activity Database

    Klusák, Jan; Knésl, Zdeněk

    2010-01-01

    Roč. 53, č. 2 (2010), s. 89-93 ISSN 0167-8442 R&D Projects: GA ČR GAP108/10/2049; GA ČR GA101/08/0994 Institutional research plan: CEZ:AV0Z20410507 Keywords : crack initiation * bi-material notch * strain energy density factor Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 1.073, year: 2010

  12. Calculation of low-cycle fatigue in accordance with the national standard and strength codes

    Science.gov (United States)

    Kontorovich, T. S.; Radin, Yu. A.

    2017-08-01

    Over the most recent 15 years, the Russian power industry has largely relied on imported equipment manufactured in compliance with foreign standards and procedures. This inevitably necessitates their harmonization with the regulatory documents of the Russian Federation, which include calculations of strength, low cycle fatigue, and assessment of the equipment service life. An important regulatory document providing the engineering foundation for cyclic strength and life assessment for high-load components of the boiler and steamline of a water/steam circuit is RD 10-249-98:2000: Standard Method of Strength Estimation in Stationary Boilers and Steam and Water Piping. In January 2015, the National Standard of the Russian Federation 12952-3:2001 was introduced regulating the issues of design and calculation of the pressure parts of water-tube boilers and auxiliary installations. Thus, there appeared to be two documents simultaneously valid in the same energy field and using different methods for calculating the low-cycle fatigue strength, which leads to different results. In this connection, the current situation can lead to incorrect ideas about the cyclic strength and the service life of high-temperature boiler parts. The article shows that the results of calculations performed in accordance with GOST R 55682.3-2013/EN 12952-3: 2001 are less conservative than the results of the standard RD 10-249-98. Since the calculation of the expected service life of boiler parts should use GOST R 55682.3-2013/EN 12952-3: 2001, it becomes necessary to establish the applicability scope of each of the above documents.

  13. Crack initiation life analysis in notched pipe under cyclic bending loads

    International Nuclear Information System (INIS)

    Goak, S. R.; Kim, Y. J.; Lee, J. S.; Park, Y. W.

    2000-01-01

    In order to improve LBB(Leak-Before-Break) methodology, more precisely the crack growth evaluation, a benchmark problem was proposed by the CEA Saclay. The aim of this benchmark analysis was to evaluate the crack growth in a notched pipe under cyclic bending loads. The proposed benchmark analysis is composed of three main topic; fatigue crack initiation, crack propagation and crack penetration. This paper deals with the first topic, crack initiation in a notched pipe under four point bending. Both elastic-plastic finite element analysis and Neuber's rule were used to estimate the crack initiation life and the finite element models were verified by mesh-refinement, stress distribution and global deflection. In elastic-plastic finite element analysis, crack initiation life was determined by strain amplitude at the notch tip and strain-life curve of the material. In the analytical method, Neuber's rule with the consideration of load history and mean stress effect, was used for the life estimation. The effect of notch tip radius, strain range, cyclic hardening rule were examined in this study. When these results were compared with the experimental ones, the global deformation was a good agreement but the crack initiation cycle was higher than the experimental result

  14. Notch Effect on Tensile Deformation Behavior of 304L and 316L Steels in Liquid Helium and Hydrogen

    International Nuclear Information System (INIS)

    Shibata, K.; Fujii, H.

    2004-01-01

    Tensile tests of type 304L and 316L steels were carried out using round bar specimens with a notch in liquid helium, hydrogen, liquid nitrogen and at ambient temperature. The obtained tensile strengths were compared with the tensile strengths of smooth specimens. For smooth specimens, tensile strength increased with a decrease in temperature and the strengths in liquid helium and hydrogen show similar values in both steels. For notched specimen of 304L steel, tensile strength (including fracture strength) increased noticeably from ambient to liquid nitrogen temperature but showed a large decrease in liquid helium and hydrogen. In liquid hydrogen and helium, the tensile strength is a little lower in liquid hydrogen than in liquid helium and both strengths are lower than tensile strengths of smooth specimens. For notched specimen of 316L steel, an increase in tensile strength from ambient to liquid nitrogen temperature was not so large and a decrease from liquid nitrogen to liquid hydrogen was small. The tensile strengths in liquid helium and hydrogen were nearly same and higher than those of smooth specimens. Different behavior of serration was observed between liquid helium and hydrogen, and between 304L and 316L steels. The reasons for these differences were discussed using computer simulation

  15. Experimental research into operating strength and fatigue life of bodywork of buses and trolleybuses

    International Nuclear Information System (INIS)

    Dolhof, V.; Kepka, M.; Rehor, P.; Horak, V.; Sima, J.

    1992-01-01

    Operational strength and fatigue life reliability of trolleybus and bus bodies are usually assessed by computational methods in combination with selected tests. The latter include test runs of vehicles on real routes or on specially designed tracks, tests on complete vehicles under model test conditions and laboratory tests on selected materials, parts and subassemblies. This paper describes a method of experimental investigation of operational strength and reliability developed and applied at the Central Research Institute Skoda for public-transport road vehicles made in Czechoslovakia. (orig.)

  16. Analysis of the Charpy V-notch test for welds

    DEFF Research Database (Denmark)

    Tvergaard, Viggo; Needleman, A.

    2000-01-01

    The ductile-brittle transition for a weld is investigated by numerical analyses of Charpy impact specimens. The material response is characterized by an elastic-viscoplastic constitutive relation for a porous plastic solid, with adiabatic heating due to plastic dissipation and the resulting thermal...... softening accounted for. The onset of cleavage is taken to occur when a critical value of the maximum principal stress is attained. The effect of weld strength undermatch or overmatch is investigated for a comparison material, and analyses are also carried out based on experimentally determined flow...... strength variations in a weldment in a HY100 steel. The predicted work to fracture shows a strong sensitivity to the location of the notch relative to the weld, with the most brittle behavior for a notch close to the narrow heat affected zone. The analyses illustrate the strong dependence of the transition...

  17. Fatigue life response of ASME SA 106-B steel in pressurized water reactor environments

    International Nuclear Information System (INIS)

    Terrell, J.B.

    1989-01-01

    Fatigue strain-life tests were conducted on ASMESA 106-B piping steel base metal and weld metal specimens in 288 0 C (550 0 F) pressurized water reactor (PWR) environments as a function of strain amplitude, strain ratio, notch acuity, and cyclic frequency. Notched base metal specimens tested at 0.017 Hz in 0.001 part per million (ppm) dissolved oxygen environments nearly completely used up the margins of safety of 2 on stress and 20 on cycles incorporated into the ASMA Section III design curve for carbon steels. Tests conducted with smooth base metal and weld metal specimens at 1.0 Hz showed virtually no degradation in cycles to failure when compared to 288 0 C air test results. In all cases, however, the effect of temperature alone reduced the margin of safety offered by the design curve in the low cycle regime for the test specimens. Comparison between the fatigue life results of smooth and notched specimens suggests that fatigue crack initiation is not significantly affected by 0.001 ppm dissolved oxygen, and that most of the observed degradation may be attributed to crack growth acceleration. These results suggest that the ASMA Section III methodology should be reviewed, taking into account the PWR environment variables which degrade the fatigue life of pressure-retaining components. (author)

  18. Fatigue life response of ASME SA 106-B steel in pressurized water reactor environments

    Energy Technology Data Exchange (ETDEWEB)

    Terrell, J B [Materials Engineering Associates, Inc., Lanham, MD (USA)

    1989-01-01

    Fatigue strain-life tests were conducted on ASMESA 106-B piping steel base metal and weld metal specimens in 288{sup 0}C (550{sup 0}F) pressurized water reactor (PWR) environments as a function of strain amplitude, strain ratio, notch acuity, and cyclic frequency. Notched base metal specimens tested at 0.017 Hz in 0.001 part per million (ppm) dissolved oxygen environments nearly completely used up the margins of safety of 2 on stress and 20 on cycles incorporated into the ASMA Section III design curve for carbon steels. Tests conducted with smooth base metal and weld metal specimens at 1.0 Hz showed virtually no degradation in cycles to failure when compared to 288{sup 0}C air test results. In all cases, however, the effect of temperature alone reduced the margin of safety offered by the design curve in the low cycle regime for the test specimens. Comparison between the fatigue life results of smooth and notched specimens suggests that fatigue crack initiation is not significantly affected by 0.001 ppm dissolved oxygen, and that most of the observed degradation may be attributed to crack growth acceleration. These results suggest that the ASMA Section III methodology should be reviewed, taking into account the PWR environment variables which degrade the fatigue life of pressure-retaining components. (author).

  19. Evaluation of fatigue crack growth and fracture resistance of SA350 LF2 material

    International Nuclear Information System (INIS)

    Singh, P.K.; Dubey, J.S.; Chakrabarty, J.K.; Vaze, K.K.; Kushwaha, H.S.

    2003-01-01

    The aim of the present paper is to evaluate the tensile and fracture mechanics properties of the SA350 LF2 carbon steel material used as the Header material in the primary heat transport (PHT) system piping of the Indian pressurized heavy water reactors (PHWR). Tensile, fatigue crack growth rate and fracture toughness tests have been carried out on specimens machined from the Header of the actual PHT pipes. The effect of temperature on tensile properties has been discussed. The effect of temperature and notch orientation on fracture resistance behavior of the material and fatigue crack growth rate dependence on the notch orientation and stress ratio has also been discussed. (author)

  20. Residual stress and microstructural behaviour of a shot peened steel in fatigue. An X-ray diffraction study

    Energy Technology Data Exchange (ETDEWEB)

    Bergstroem, J.

    1986-01-01

    The surface residual stress behaviour during fatigue of the quenched and tempered medium strength low-alloyed steel SS 2244-05, equivalent to AISI 4140, has been investigated. Notched specimens of shot peened and ground surface conditions were used. The residual stresses were measured by the X-ray diffraction sin/sup 2/psi-method at intervals in the fatigue tests. Fatigue testing was performed with constant load amplitude at nominal pull-push and pull-pull cycling. The effects of peak-load and variable amplitude were also examined. It was found that the residual stress relaxation could be linked to a total mean stress relaxation towards zero, to an extent which is ruled by a softening criteria. Fatigue test data of the shot peened and ground surface conditions are also given. An X-ray diffraction line broadening analysis was undertaken to examine the microstructural behaviour due to fatigue loading and its correlation to the residual stress behaviour. Single-peak analysis with a Voigt-function method was used to estimate the microstructural parameters, domain size and microstrain. Multiple-peak analysis according to the Warren-Averbach method was used to verify the single-peak analysis. The dislocation density was found to decrease depending on the load amplitude, while the dislocation arrangement follows a pattern depending on yield history.

  1. On the notch ductility of a magnesium-rare earth alloy

    Energy Technology Data Exchange (ETDEWEB)

    Kondori, B., E-mail: bkondori.13034@tamu.edu [Department of Materials Science & Engineering, Texas A& M University, College Station, TX 77843 (United States); Benzerga, A.A. [Department of Materials Science & Engineering, Texas A& M University, College Station, TX 77843 (United States); Department of Aerospace Engineering, Texas A& M University, College Station, TX 77843 (United States)

    2015-10-28

    The room-temperature notch ductility of magnesium-rare earth alloy WE43 is investigated for two loading orientations. This material is endowed with quasi-isotropic plastic flow properties, higher strength and similar uniaxial ductility in comparison with other commercially available Mg alloys. The authors have recently shown that the notch ductility of a Mg–Al–Zn alloy is greater than its uniaxial ductility over a wide range of notch geometries. This paper investigates whether the same trends hold for WE43, discusses the orientation dependence of ductility and the propensity for intergranular fracture at high levels of hydrostatic tension. The latter mode of fracture is analyzed by means of detailed fractography in order to elucidate the role of grain-boundary particles and precipitates in the fracture process.

  2. Fatigue strength of nodular cast iron with regard to heavy-wall applications

    Energy Technology Data Exchange (ETDEWEB)

    Bleicher, Christoph; Wagener, Rainer; Kaufmann, Heinz [Fraunhofer-Institut fuer Betriebsfestigkeit und Systemzuverlaessigkeit LBF, Darmstadt (Germany); Melz, Tobias [Fraunhofer-Institut fuer Betriebsfestigkeit und Systemzuverlaessigkeit LBF, Darmstadt (Germany); TU Darmstadt (Germany). Faculty of Mechanical Engineering

    2015-11-01

    For a proper estimation of the fatigue life of a heavy-walled cast component made of nodular cast iron, sufficient knowledge regarding the cyclic properties of the material is necessary. Based on the material parameters at hand for component design, different fatigue analysis procedures can be used. Elastic and elastic-plastic approaches can be adopted, with the latter being reserved only for local approaches. The present publication summarizes the cyclic material parameters gained during a research project by extensive material tests under stress and strain controlled cyclic loading at different load ratios for three nodular cast iron grades. In addition to an improved knowledge of the cyclic material behavior, the notch, the size effects and the mean stress sensitivity were of special concern during the investigations in order to provide an entire overview of the tested materials and thus input information for both stress and strain based design approaches. Tests were performed for specimens taken from large cast blocks of the nodular cast iron grades EN-GJS-400-18U-LT and EN-GJS-450-18, both with ferritic matrices, and EN-GJS-700-2 with a pearlitic matrix. For some of these materials, mean stress sensitivities above 0.5 were obtained during the investigations. These values are not covered by the common standards, which calculate lower values for the mean stress sensitivity. Cyclic material parameters for stress and strain controlled tests are given in this paper as well as values for the size effect, based on the concept of the highly stressed volume. The effect of different specimen sizes could be shown not only by stress but also by strain controlled tests.

  3. Fatigue Reliability Analysis of a Mono-Tower Platform

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Sørensen, John Dalsgaard; Brincker, Rune

    1991-01-01

    In this paper, a fatigue reliability analysis of a Mono-tower platform is presented. The failure mode, fatigue failure in the butt welds, is investigated with two different models. The one with the fatigue strength expressed through SN relations, the other with the fatigue strength expressed thro...... of the natural period, damping ratio, current, stress spectrum and parameters describing the fatigue strength. Further, soil damping is shown to be significant for the Mono-tower.......In this paper, a fatigue reliability analysis of a Mono-tower platform is presented. The failure mode, fatigue failure in the butt welds, is investigated with two different models. The one with the fatigue strength expressed through SN relations, the other with the fatigue strength expressed...... through linear-elastic fracture mechanics (LEFM). In determining the cumulative fatigue damage, Palmgren-Miner's rule is applied. Element reliability, as well as systems reliability, is estimated using first-order reliability methods (FORM). The sensitivity of the systems reliability to various parameters...

  4. Fatigue strength ofcomposite wind turbine blade structures

    DEFF Research Database (Denmark)

    Ardila, Oscar Gerardo Castro

    Wind turbines are normally designed to withstand 20-30 years of life. During this period, the blades, which are the main rotating structures of a wind turbine, are subjected to high fluctuating load conditions as a result of a combination of gravity, inertia, and aeroelastic forces. For this reason......, fatigue is one of the foremost concerns during the design of these structures. However, current standard fatigue methods used for designing wind turbine blades seem not to be completely appropriate for these structures because they are still based on methods developed for metals and not for composite...... materials from which the blades are made. In this sense, the aim of this work is to develop more accurate and reliable fatigue-life prediction models for composite wind turbine blades. In this project, two types of fatigue models are implemented: fatigue-life models and damage mechanics models. In the first...

  5. Fatigue mechanics - An assessment of a unified approach to life prediction

    International Nuclear Information System (INIS)

    Newman, J.C. Jr.; Phillips, E.P.; Swain, M.H.; Everett, R.A. Jr.

    1992-01-01

    Consideration is given to the development of a total-life prediction methodology for aerospace structures based solely on crack propagation from a microstructural defect at stress concentrations. Crack-growth lives were calculated for a given loading condition by integrating the crack-growth-rate-against-delta K relationships for crack growth from a microstructural defect size to failure. Both small- and large-crack growth rate data were used. The assessment was based on data on 2024-T3 aluminum alloy, 2090-T8E41 aluminum-lithium alloy, annealed Ti-6Al-4V titanium alloy, and high-strength 4340 steel under either constant-amplitude or spectrum loading. Good agreement was found between fatigue lives measured on notched specimens with those computed from the total-life analysis. 29 refs

  6. Isometric quadriceps strength determines sailing performance and neuromuscular fatigue during an upwind sailing emulation.

    Science.gov (United States)

    Bourgois, Jan G; Callewaert, Margot; Celie, Bert; De Clercq, Dirk; Boone, Jan

    2016-01-01

    This study investigates the physiological responses to upwind sailing on a laser emulation ergometer and analyses the components of the physical profile that determine the physiological responses related to sailing level. Ten male high-level laser sailors performed an upwind sailing test, incremental cycling test and quadriceps strength test. During the upwind sailing test, heart rate (HR), oxygen uptake, ventilation, respiratory exchange ratio, rating of perceived exertion (RPE) and lactate concentration were measured, combined with near-infrared spectroscopy (NIRS) and electromyography (EMG) registration of the M. Vastus lateralis. Repeated measures ANOVA showed for the cardio-respiratory, metabolic and muscles responses (mean power frequency [MPF], root mean square [RMS], deoxy[Hb+Mb]) during the upwind sailing test an initial significant increase followed by a stabilisation, despite a constant increase in RPE. Stepwise regression analysis showed that better sailing level was for 46.5% predicted by lower MPF decrease. Lower MPF decrease was for 57.8% predicted by a higher maximal isometric quadriceps strength. In conclusion, this study indicates that higher sailing level was mainly determined by a lower rate of neuromuscular fatigue during the upwind sailing test (as indicated by MPF decrease). Additionally, the level of neuromuscular fatigue was mainly determined by higher maximal isometric quadriceps strength stressing the importance of resistance training in the planning of training.

  7. Effects of short fiber reinforcement and mean stress on tensile fatigue strength characteristics of polyethersulfone; Tansen`i kyoka porieterusaruhon no hippari hiro tokusei ni oyobosu heikin oryoku no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Furue, H.; Nonaka, K. [Mechanical Engineering Lab., Tsukuba, Ibaraki (Japan)

    1996-01-15

    Thermoplastics are often reinforced with short fibers with aims of improvement of their strengths, rigidities and hardness or maintenance of their dimensional stabilities. Such short fiber reinforced plastic materials have more expectation for high performance plastics. Authors already examined of some effects of reinforced fiber and of orientation in injection molding on flexural fatigue characteristics of the injection-molded high performance thermoplastic materials. However, the examination of short fiber reinforced effects on fatigue strength characteristics was not always sufficient. In this study, in order to obtain a guiding principle for fatigue resistant design of the short fiber reinforced injection molding materials, polyethersulfones (PES) was examined on its tensile fatigue strength and an effect of short fiber reinforcement for improvement of its fundamental dynamic properties on its fatigue characteristics. Especially, its fatigue life characteristics was elucidated mainly on relationship of mean stress, stress amplitude and number of repeating fracture in tensile fatigue behavior. 10 refs., 15 figs., 2 tabs.

  8. Study of the stress distribution around an orthotropic bi-material notch tip

    Czech Academy of Sciences Publication Activity Database

    Klusák, Jan; Profant, T.; Kotoul, M.

    417-418, - (2010), s. 385-388 ISSN 1013-9826. [International Conference on Fracture and Damage Mechanics /8./. Malta, 08.09.2009-10.09.2009] R&D Projects: GA ČR GA101/08/0994; GA AV ČR 1QS200410502 Institutional research plan: CEZ:AV0Z20410507 Keywords : Generalized fracture mechanics * Singular stress distribution * Orthotropic bimaterial notch Subject RIV: JL - Materials Fatigue, Friction Mechanics www.scientific.net

  9. The adhesion force of Notch with Delta and the rate of Notch signaling.

    Science.gov (United States)

    Ahimou, Francois; Mok, Lee-Peng; Bardot, Boris; Wesley, Cedric

    2004-12-20

    Notch signaling is repeatedly used during animal development to specify cell fates. Using atomic force microscopy on live cells, chemical inhibitors, and conventional analyses, we show that the rate of Notch signaling is linked to the adhesion force between cells expressing Notch receptors and Delta ligand. Both the Notch extracellular and intracellular domains are required for the high adhesion force with Delta. This high adhesion force is lost within minutes, primarily due to the action of Presenilin on Notch. Reduced turnover or Delta pulling accelerate this loss. These data suggest that strong adhesion between Notch and Delta might serve as a booster for initiating Notch signaling at a high rate.

  10. A proposal of parameter determination method in the residual strength degradation model for the prediction of fatigue life (I)

    International Nuclear Information System (INIS)

    Kim, Sang Tae; Jang, Seong Soo

    2001-01-01

    The static and fatigue tests have been carried out to verify the validity of a generalized residual strength degradation model. And a new method of parameter determination in the model is verified experimentally to account for the effect of tension-compression fatigue loading of spheroidal graphite cast iron. It is shown that the correlation between the experimental results and the theoretical prediction on the statistical distribution of fatigue life by using the proposed method is very reasonable. Furthermore, it is found that the correlation between the theoretical prediction and the experimental results of fatigue life in case of tension-tension fatigue data in composite material appears to be reasonable. Therefore, the proposed method is more adjustable in the determination of the parameter than maximum likelihood method and minimization technique

  11. Effects of Accumulating Work Shifts on Performance-Based Fatigue Using Multiple Strength Measurements in Day and Night Shift Nurses and Aides.

    Science.gov (United States)

    Thompson, Brennan J; Stock, Matt S; Banuelas, Victoria K

    2017-05-01

    Objective This study aimed to examine the effects of accumulating nursing work on maximal and rapid strength characteristics in female nurses and compare these effects in day versus night shift workers. Background Nurses exhibit among the highest nonfatal injury rates of all occupations, which may be a consequence of long, cumulative work shift schedules. Fatigue may accumulate across multiple shifts and lead to performance impairments, which in turn may be linked to injury risks. Method Thirty-seven nurses and aides performed isometric strength-based performance testing of three muscle groups, including the knee extensors, knee flexors, and wrist flexors (hand grip), as well as countermovement jumps, at baseline and following exposure to three 12-hour work shifts in a four-day period. Variables included peak torque (PT) and rate of torque development (RTD) from isometric strength testing and jump height and power output. Results The rigorous work period resulted in significant decreases (-7.2% to -19.2%) in a large majority (8/9) of the isometric strength-based measurements. No differences were noted for the day versus night shift workers except for the RTD at 200 millisecond variable, for which the night shift had greater work-induced decreases than the day shift workers. No changes were observed for jump height or power output. Conclusions A compressed nursing work schedule resulted in decreases in strength-based performance abilities, being indicative of performance fatigue. Application Compressed work schedules involving long shifts lead to functional declines in nurse performance capacities that may pose risks for both the nurse and patient quality of care. Fatigue management plans are needed to monitor and regulate increased levels of fatigue.

  12. Static, Fire and Fatigue Tests of Ultra High-Strength Fibre Reinforced Concrete and Ribbed Bars

    DEFF Research Database (Denmark)

    Hansen, Lars Pilegaard; Heshe, Gert

    2001-01-01

    A new building system has been developed during the last 10 years. This new system consists of a column / slab system with 6 x 6 m distance between the columns. The slabs are precast concrete elements of size 2.9 x 5.9 m connected through joints of ultra high strength fibre reinforced concrete...... - Densit Joint Cast ®. Also the connections between the columns and the slabs are made of this very strong concrete material. The paper describes some of the static tests carried out as well as some fire tests. Further, 2 chapters deal with some fatigue tests of the reinforcing bars as well as some fatigue...

  13. Geometrical size effect in high cycle fatigue strength of heavy-walled Ductile Cast Iron GJS400: Weakest link vs. defect-based approach

    Directory of Open Access Journals (Sweden)

    Cova Matteo

    2014-06-01

    Full Text Available Fatigue strength is known to decrease with increasing dimension of the component. This is due to a technological size effect, related to the production process, and to a geometrical size effect, due to a higher probability of finding a large defect. To investigate the latter, an heavy-walled component made of Ductile Cast Iron (DCI has been trepanned and a fatigue test plan has been carried out using 4 different specimen geometries. An attempt has been made to relate the resulting fatigue strength using a weakest-link approach based on the effective volumes and surfaces. This approach seems to work well only in cases of different specimen's lengths. Some of the fracture surfaces were analyzed by means of SEM and the initiating defects were identified and measured. An approach in which the defects population can be randomly distributed in the specimen has been tried. Virtual fatigue tests have been carried out by considering pure propagation of the worst defect. The resulting fatigue curves showed that this approach is promising but needs further description of the initiation phase.

  14. Thermomechanical fatigue life prediction of high temperature components

    Energy Technology Data Exchange (ETDEWEB)

    Seifert, Thomas; Hartrott, Philipp von; Riedel, Hermann; Siegele, Dieter [Fraunhofer-Inst. fuer Werkstoffmechanik (IWM), Freiburg (Germany)

    2009-07-01

    The aim of the work described in this paper is to provide a computational method for fatigue life prediction of high temperature components, in which the time and temperature dependent fatigue crack growth is a relevant damage mechanism. The fatigue life prediction is based on a law for microcrack growth and a fracture mechanics estimate of the cyclic crack tip opening displacement. In addition, a powerful model for nonisothermal cyclic plasticity is employed, and an efficient laboratory test procedure is proposed for the determination of the model parameters. The models are efficiently implemented into finite element programs and are used to predict the fatigue life of a cast iron exhaust manifold and a notch in the perimeter of a turbine rotor made of a ferritic/martensitic 10%-chromium steel. (orig.)

  15. fatigue strength of reinforced concrete flexural members

    African Journals Online (AJOL)

    Dr Obe

    1980-03-01

    Mar 1, 1980 ... cyclic loads behave differently compared with static bending and can collapse due to the fatigue of concrete, reinforcement or both when maximum fatigue stresses of ... under low and medium load levels, than under high load ...

  16. Influence of hydrogen on high cycle fatigue of polycrystalline vanadium

    International Nuclear Information System (INIS)

    Chung, D.W.; Lee, K.S.; Stoloff, N.S.

    1977-02-01

    The room temperature fatigue behavior of several polycrystalline V-H 2 alloys is described. Hydrogen extends the life of unnotched vanadium but has a deleterious effect in notched materials. Crack propagation data are correlated with tensile yield stress and cyclic strain hardening data

  17. Fatigue and creep-fatigue strength of 304 steel under biaxial strain conditions

    International Nuclear Information System (INIS)

    Asayama, Tai; Aoto, Kazumi; Wada, Yusaku

    1990-01-01

    A series of fatigue and creep-fatigue tests were conducted with 304 stainless steel at 550degC under a variety of biaxial strain conditions. Fatigue life under nonproportional loading conditions showed a significant life reduction compared with that of proportional loading, and this life reduction was reasonably estimated by taking into account the strain paths along which the strain history is imposed. Furthermore, a marked life reduction was shown to occur under nonproportional loading by imposing a strain hold period at a peak tensile strain. This life reduction was evaluated by the linear damage rule. It was shown to be possible to estimate the fatigue damage and the creep damage under nonproportional loading by a linear damage rule by estimating a stress relaxation behavior by Mises-type equivalent stress or Huddleston-type equivalent stress. (author)

  18. Incubating Isolated Mouse EDL Muscles with Creatine Improves Force Production and Twitch Kinetics in Fatigue Due to Reduction in Ionic Strength

    Science.gov (United States)

    Head, Stewart I.; Greenaway, Bronwen; Chan, Stephen

    2011-01-01

    Background Creatine supplementation can improve performance during high intensity exercise in humans and improve muscle strength in certain myopathies. In this present study, we investigated the direct effects of acute creatine incubation on isolated mouse fast-twitch EDL muscles, and examined how these effects change with fatigue. Methods and Results The extensor digitorum longus muscle from mice aged 12–14 weeks was isolated and stimulated with field electrodes to measure force characteristics in 3 different states: (i) before fatigue; (ii) immediately after a fatigue protocol; and (iii) after recovery. These served as the control measurements for the muscle. The muscle was then incubated in a creatine solution and washed. The measurement of force characteristics in the 3 different states was then repeated. In un-fatigued muscle, creatine incubation increased the maximal tetanic force. In fatigued muscle, creatine treatment increased the force produced at all frequencies of stimulation. Incubation also increased the rate of twitch relaxation and twitch contraction in fatigued muscle. During repetitive fatiguing stimulation, creatine-treated muscles took 55.1±9.5% longer than control muscles to lose half of their original force. Measurement of weight changes showed that creatine incubation increased EDL muscle mass by 7%. Conclusion Acute creatine application improves force production in isolated fast-twitch EDL muscle, and these improvements are particularly apparent when the muscle is fatigued. One likely mechanism for this improvement is an increase in Ca2+ sensitivity of contractile proteins as a result of ionic strength decreases following creatine incubation. PMID:21850234

  19. Incubating isolated mouse EDL muscles with creatine improves force production and twitch kinetics in fatigue due to reduction in ionic strength.

    Directory of Open Access Journals (Sweden)

    Stewart I Head

    Full Text Available BACKGROUND: Creatine supplementation can improve performance during high intensity exercise in humans and improve muscle strength in certain myopathies. In this present study, we investigated the direct effects of acute creatine incubation on isolated mouse fast-twitch EDL muscles, and examined how these effects change with fatigue. METHODS AND RESULTS: The extensor digitorum longus muscle from mice aged 12-14 weeks was isolated and stimulated with field electrodes to measure force characteristics in 3 different states: (i before fatigue; (ii immediately after a fatigue protocol; and (iii after recovery. These served as the control measurements for the muscle. The muscle was then incubated in a creatine solution and washed. The measurement of force characteristics in the 3 different states was then repeated. In un-fatigued muscle, creatine incubation increased the maximal tetanic force. In fatigued muscle, creatine treatment increased the force produced at all frequencies of stimulation. Incubation also increased the rate of twitch relaxation and twitch contraction in fatigued muscle. During repetitive fatiguing stimulation, creatine-treated muscles took 55.1±9.5% longer than control muscles to lose half of their original force. Measurement of weight changes showed that creatine incubation increased EDL muscle mass by 7%. CONCLUSION: Acute creatine application improves force production in isolated fast-twitch EDL muscle, and these improvements are particularly apparent when the muscle is fatigued. One likely mechanism for this improvement is an increase in Ca(2+ sensitivity of contractile proteins as a result of ionic strength decreases following creatine incubation.

  20. Influence of rivet to sheet edge distance on fatigue strength of self-piercing riveted aluminium joints

    OpenAIRE

    Li, Dezhi; Han, Li; Thornton, Martin; Shergold, Mike

    2012-01-01

    Self-piercing riveting (SPR) is one of the main joining methods for lightweight aluminium automotive body structures due to its advantages. In order to further optimise the structure design and reduce the weight but without compromising strength, reduction of redundant materials in the joint flange area can be considered. For this reason, the influence of rivet to sheet edge distance on the fatigue strengths of self-piercing riveted joints was studied. Five edge distances, 5 mm, 6 mm, 8 mm, 1...

  1. Influence of mean stress on fatigue strength of ferritic-pearlite ductile cast iron with small defects

    Science.gov (United States)

    Deguchi, T.; Kim, H. J.; Ikeda, T.; Yanase, K.

    2017-05-01

    Because of their excellent mechanical properties, low cost and good workability, the application of ductile cast iron has been increased in various industries such as the automotive, construction and rail industries. For safety designing of the ductile cast iron component, it is necessary to understand the effect of stress ratio, R, on fatigue limit of ductile cast iron in the presence of small defects. Correspondingly in this study, rotating bending fatigue tests at R = -1 and tension-compression fatigue tests at R = -1 and 0.1 were performed by using a ferritic-pearlitic ductile cast iron. To study the effects of small defects, we introduced a small drilled hole at surface of a specimen. The diameter and depth of a drilled hole were 50, 200 and 500 μm, respectively. The non-propagating cracks emanating from graphite particles and holes edge were observed at fatigue limit, irrespective of the value of stress ratio. From the microscopic observation of crack propagation behavior, it can be concluded that the fatigue limit is determined by the threshold condition for propagation of a small crack. It was found that the effect of stress ratio on the fatigue limit of ductile cast iron with small defects can be successfully predicted based on \\sqrt {area} parameter model. Furthermore, a use of the tensile strength, σ B, instead of the Vickers hardness, HV, is effective for fatigue limit prediction.

  2. Evaluation of Strain-Life Fatigue Curve Estimation Methods and Their Application to a Direct-Quenched High-Strength Steel

    Science.gov (United States)

    Dabiri, M.; Ghafouri, M.; Rohani Raftar, H. R.; Björk, T.

    2018-03-01

    Methods to estimate the strain-life curve, which were divided into three categories: simple approximations, artificial neural network-based approaches and continuum damage mechanics models, were examined, and their accuracy was assessed in strain-life evaluation of a direct-quenched high-strength steel. All the prediction methods claim to be able to perform low-cycle fatigue analysis using available or easily obtainable material properties, thus eliminating the need for costly and time-consuming fatigue tests. Simple approximations were able to estimate the strain-life curve with satisfactory accuracy using only monotonic properties. The tested neural network-based model, although yielding acceptable results for the material in question, was found to be overly sensitive to the data sets used for training and showed an inconsistency in estimation of the fatigue life and fatigue properties. The studied continuum damage-based model was able to produce a curve detecting early stages of crack initiation. This model requires more experimental data for calibration than approaches using simple approximations. As a result of the different theories underlying the analyzed methods, the different approaches have different strengths and weaknesses. However, it was found that the group of parametric equations categorized as simple approximations are the easiest for practical use, with their applicability having already been verified for a broad range of materials.

  3. Influence of defects on axial fatigue strength of maraging steel specimens produced by additive manufacturing

    Directory of Open Access Journals (Sweden)

    Rigon Daniele

    2018-01-01

    Full Text Available Nowadays many materials such as steels, aluminium and titanium alloys can be realised by powder bed solutions melting subsequently powder layers by means of a laser or electron beam (Laser Beam Melting – LBM and Electron Beam Melting – EBM. The microstructure realised by layer-by-layer solidification having high cooling rate cannot be considered isotropic. Therefore, the mechanical properties could be influenced by the building direction. Regarding maraging steel, the study of the influence of the building direction and the heat treatment on the static and axial fatigue strength has been investigated in a previous contribution. A large scatter of the fatigue test results was found because of the presence of detrimental surface and subsurface defects. The aim of this contribution is to present additional axial fatigue test results of maraging steel characterized by different build orientation and providing an analysis of the defects observed at the crack initiation area of the fracture surface.

  4. An Experimental Evaluation of the Effect of Hole Fabrication/Treatment Techniques on Residual Strength and Fatigue Life of Polycarbonate Specimens with Holes

    Science.gov (United States)

    1993-08-01

    34The Effect of Dimpling on the Fatigue Strength of Loaded Holes in a Corrosive Environment," Experimental Techniques, Vol. 9, September 1985, 33-36. 34...Expansion on the Fatigue Behavior of 7079-T652 Alluminium [sic] Alloy," NLR TR 74016 U, National Aerospace Laboratory (NLR), Amsterdam, The

  5. Influence of different etching modes on bond strength and fatigue strength to dentin using universal adhesive systems.

    Science.gov (United States)

    Takamizawa, Toshiki; Barkmeier, Wayne W; Tsujimoto, Akimasa; Berry, Thomas P; Watanabe, Hedehiko; Erickson, Robert L; Latta, Mark A; Miyazaki, Masashi

    2016-02-01

    The purpose of this study was to determine the dentin bonding ability of three new universal adhesive systems under different etching modes using fatigue testing. Prime & Bond elect [PE] (DENTSPLY Caulk), Scotchbond Universal [SU] (3M ESPE), and All Bond Universal [AU] (Bisco) were used in this study. A conventional single-step self-etch adhesive, Clearfil Bond SE ONE [CS] (Kuraray Noritake Dental) was also included as a control. Shear bond strengths (SBS) and shear fatigue strength (SFS) to human dentin were obtained in the total-etch mode and self-etch modes. For each test condition, 15 specimens were prepared for the SBS and 30 specimens for SFS. SEM was used to examine representative de-bonded specimens, treated dentin surfaces and the resin/dentin interface for each test condition. Among the universal adhesives, PE in total-etch mode showed significantly higher SBS and SFS values than in self-etch mode. SU and AU did not show any significant difference in SBS and SFS between the total-etch mode and self-etch mode. However, the single-step self-etch adhesive CS showed significantly lower SBS and SFS values in the etch-and-rinse mode when compared to the self-etch mode. Examining the ratio of SFS/SBS, for PE and AU, the etch-and-rinse mode groups showed higher ratios than the self-etch mode groups. The influence of different etching modes on dentin bond quality of universal adhesives was dependent on the adhesive material. However, for the universal adhesives, using the total-etch mode did not have a negative impact on dentin bond quality. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  6. Fatigue Strength Prediction for Titanium Alloy TiAl6V4 Manufactured by Selective Laser Melting

    Science.gov (United States)

    Leuders, Stefan; Vollmer, Malte; Brenne, Florian; Tröster, Thomas; Niendorf, Thomas

    2015-09-01

    Selective laser melting (SLM), as a metalworking additive manufacturing technique, received considerable attention from industry and academia due to unprecedented design freedom and overall balanced material properties. However, the fatigue behavior of SLM-processed materials often suffers from local imperfections such as micron-sized pores. In order to enable robust designs of SLM components used in an industrial environment, further research regarding process-induced porosity and its impact on the fatigue behavior is required. Hence, this study aims at a transfer of fatigue prediction models, established for conventional process-routes, to the field of SLM materials. By using high-resolution computed tomography, load increase tests, and electron microscopy, it is shown that pore-based fatigue strength predictions for a titanium alloy TiAl6V4 have become feasible. However, the obtained accuracies are subjected to scatter, which is probably caused by the high defect density even present in SLM materials manufactured following optimized processing routes. Based on thorough examination of crack surfaces and crack initiation sites, respectively, implications for optimization of prediction accuracy of the models in focus are deduced.

  7. Mean Stress Effect on the Axial Fatigue Strength of DIN 34CrNiMo6 Quenched and Tempered Steel

    Directory of Open Access Journals (Sweden)

    Luis Pallarés-Santasmartas

    2018-03-01

    Full Text Available The present study consists of a theoretical and experimental investigation of the effect of axial mean stresses on the high cycle fatigue behaviour of DIN 34CrNiMo6 high strength steel in quenched and tempered conditions. The axial S-N curves under 4 different stresses ratios were obtained. Experimental results show that increasing the value of the tension mean stresses gradually reduces the axial stress amplitude the material can withstand without failure. Moreover, the compressive mean stresses show a beneficial effect in terms of the axial fatigue strength, resulting in a non-symmetrical Haigh diagram. A historic review of the axial mean stress effect is presented, showing the shape of the Haigh diagrams for ductile metals and presenting the most-known empirical and physical theories. The results for this steel are compared with the physical theories of Findley based on the critical plane; the Froustey’s and Marin’s methods, based on energetic theories; and the Crossland invariants method based on the Gough’s theory of fatigue damage. Taking into account the experimental results, a physical fatigue function based on energetic considerations is proposed. Its application to the fatigue case with mean stresses can be interpreted in terms of a balance of elastic energies of distortion and volume change. Macro-analyses of specimen fracture appearance were conducted in order to obtain the fracture characteristics for different mean stress values.

  8. The common oncogenomic program of NOTCH1 and NOTCH3 signaling in T-cell acute lymphoblastic leukemia.

    Directory of Open Access Journals (Sweden)

    Sung Hee Choi

    Full Text Available Notch is a major oncogenic driver in T cell acute lymphoblastic leukemia (T-ALL, in part because it binds to an enhancer that increases expression of MYC. Here, we exploit the capacity of activated NOTCH1 and NOTCH3 to induce T-ALL, despite substantial divergence in their intracellular regions, as a means to elucidate a broad, common Notch-dependent oncogenomic program through systematic comparison of the transcriptomes and Notch-bound genomic regulatory elements of NOTCH1- and NOTCH3-dependent T-ALL cells. ChIP-seq studies show a high concordance of functional NOTCH1 and NOTCH3 genomic binding sites that are enriched in binding motifs for RBPJ, the transcription factor that recruits activated Notch to DNA. The interchangeability of NOTCH1 and NOTCH3 was confirmed by rescue of NOTCH1-dependent T-ALL cells with activated NOTCH3 and vice versa. Despite remarkable overall similarity, there are nuanced differences in chromatin landscapes near critical common Notch target genes, most notably at a Notch-dependent enhancer that regulates MYC, which correlates with responsiveness to Notch pathway inhibitors. Overall, a common oncogenomic program driven by binding of either Notch is sufficient to maintain T-ALL cell growth, whereas cell-context specific differences appear to influence the response of T-ALL cells to Notch inhibition.

  9. Fatigue crack propagation under elastic plastic medium at elevated temperature

    International Nuclear Information System (INIS)

    Asada, Y.; Yuuki, R.; Sakon, T.; Sunamoto, D.; Tokimasa, K.; Makino, Y.; Kitagawa, M; Shingai, K.

    1980-01-01

    The purposes of the present study are to establish the testing method to obtain compatible data on the low cycle fatigue crack propagation at elevated temperature, and to investigate the parameter controlling the crack propagation rate. In the present study, the preliminary experiments have been carried out on low cycle fatigue crack propagation behaviour in type 304 stainless steel in air at 550 0 C, using two types of specimen with a through thickness notch. Both strain controlled and stress controlled fatigue tests have been done under a fully reversed strain or stress cycling. The data obtained are correlated with some fracture mechanics parameters and are discussed with the appropriate parameter for evaluating the low cycle fatigue crack propagation behaviour at elevated temperature. (author)

  10. Fatigue Lifetime of ADI from Ultimate Tensile Strength to Permanent Fatigue Limit

    Czech Academy of Sciences Publication Activity Database

    Zapletal, J.; Věchet, S.; Kohout, J.; Obrtlík, Karel

    -, č. 1 (2008), s. 40-43 ISSN 0556-171X. [MSMF /5./. Brno, 27.06.2007-29.06.2007] R&D Projects: GA ČR GA106/03/1265 Institutional research plan: CEZ:AV0Z20410507 Keywords : austempered ductile iron * fatigue behaviour * S N curve Subject RIV: JL - Materials Fatigue , Friction Mechanics

  11. Experimental and Numerical Analysis of Notched Composites Under Tension Loading

    Science.gov (United States)

    Aidi, Bilel; Case, Scott W.

    2015-12-01

    Experimental quasi-static tests were performed on center notched carbon fiber reinforced polymer (CFRP) composites having different stacking sequences made of G40-600/5245C prepreg. The three-dimensional Digital Image Correlation (DIC) technique was used during quasi-static tests conducted on quasi-isotropic notched samples to obtain the distribution of strains as a function of applied stress. A finite element model was built within Abaqus to predict the notched strength and the strain profiles for comparison with measured results. A user-material subroutine using the multi-continuum theory (MCT) as a failure initiation criterion and an energy-based damage evolution law as implemented by Autodesk Simulation Composite Analysis (ASCA) was used to conduct a quantitative comparison of strain components predicted by the analysis and obtained in the experiments. Good agreement between experimental data and numerical analyses results are observed. Modal analysis was carried out to investigate the effect of static damage on the dominant frequencies of the notched structure using the resulted degraded material elements. The first in-plane mode was found to be a good candidate for tracking the level of damage.

  12. Notch root strain measurement of WE43-T6 magnesium alloy using electronic speckle pattern interferometry

    International Nuclear Information System (INIS)

    Liew, H.L.; Ahmad, A.; Ramesh, S.; Purbolaksono, J.

    2013-01-01

    Highlights: • The use of ESPI for measuring total strains at the notch root of specimens. • Fine meshing in micron scale at the notch root regions. • The maximum elastic strain is shifted to be further away from the notch root tip. - Abstract: The notch root elasto-plastic strains of circumferentially grooved round specimen of cast magnesium WE43-T6 were experimentally measured using the electronic speckle pattern interferometry (ESPI) and numerically evaluated using the finite element analysis (FEA). The specimens have notch radii of 1.6 mm and 0.8 mm and an opening angle of 60°. The technique of ESPI showed its accuracy in measuring three-dimensional surface deformations on large negatively curved manifolds. The measured nominal stress for rupture is well beyond the ultimate strength, suggesting the existence of significant biaxial stress at the notch root region. The ESPI-based strains on the notch tips were shown to be in agreement with those evaluated by the FEA. The FEA also showed that the maximum elastic strain is shifted away from the notch root surface as the plastic strain is predominant

  13. Spectrum Fatigue Lifetime and Residual Strength for Fiberglass Laminates; TOPICAL

    International Nuclear Information System (INIS)

    WAHL, NEIL K.; MANDELL, JOHN F.; SAMBORSKY, DANIEL D.

    2002-01-01

    This report addresses the effects of spectrum loading on lifetime and residual strength of a typical fiberglass laminate configuration used in wind turbine blade construction. Over 1100 tests have been run on laboratory specimens under a variety of load sequences. Repeated block loading at two or more load levels, either tensile-tensile, compressive-compressive, or reversing, as well as more random standard spectra have been studied. Data have been obtained for residual strength at various stages of the lifetime. Several lifetime prediction theories have been applied to the results. The repeated block loading data show lifetimes that are usually shorter than predicted by the most widely used linear damage accumulation theory, Miner's sum. Actual lifetimes are in the range of 10 to 20 percent of predicted lifetime in many cases. Linear and nonlinear residual strength models tend to fit the data better than Miner's sum, with the nonlinear providing a better fit of the two. Direct tests of residual strength at various fractions of the lifetime are consistent with the residual strength models. Load sequencing effects are found to be insignificant. The more a spectrum deviates from constant amplitude, the more sensitive predictions are to the damage law used. The nonlinear model provided improved correlation with test data for a modified standard wind turbine spectrum. When a single, relatively high load cycle was removed, all models provided similar, though somewhat non-conservative correlation with the experimental results. Predictions for the full spectrum, including tensile and compressive loads were slightly non-conservative relative to the experimental data, and accurately captured the trend with varying maximum load. The nonlinear residual strength based prediction with a power law S-N curve extrapolation provided the best fit to the data in most cases. The selection of the constant amplitude fatigue regression model becomes important at the lower stress, higher

  14. Fatigue in cold-forging dies: Tool life analysis

    DEFF Research Database (Denmark)

    Skov-Hansen, P.; Bay, Niels; Grønbæk, J.

    1999-01-01

    In the present investigation it is shown how the tool life of heavily loaded cold-forging dies can be predicted. Low-cycle fatigue and fatigue crack growth testing of the tool materials are used in combination with finite element modelling to obtain predictions of tool lives. In the models...... the number of forming cycles is calculated first to crack initiation and then during crack growth to fatal failure. An investigation of a critical die insert in an industrial cold-forging tool as regards the influence of notch radius, the amount and method of pre-stressing and the selected tool material...

  15. Crack initiation life analysis in notched pipe under cyclic bending loads

    International Nuclear Information System (INIS)

    Lee, Joon Seong; Kwak, Sang Log; Kim, Young Jin; Park, Youn Won

    2001-01-01

    In order to improve leak-before-break methodology, more precisely the crack growth evaluation, a round robin analysis was proposed by the CEA Saclay. The aim of this analysis was to evaluate the crack initiation life, penetration life and shape of through wall crack under cyclic bending loads. The proposed round robin analysis is composed of three main topic; fatigue crack initiation, crack propagation and crack penetration. This paper deals with the first topic, crack initiation in a notched pipe under four point bending. Both elastic-plastic finite element analysis and Neuber's rule were used to estimate the crack initiation life and the finite element models were verified by mesh-refinement, stress distribution and global deflection. In elastic-plastic finite element analysis, crack initiation life was determined by strain amplitude at the notch tip and strain-life curve of the material. In the analytical method, Neuber's rule with the consideration of load history and mean stress effect, was used for the life estimation. The effect of notch tip radius, strain range, cyclic hardening rule were examined in this study. When these results were compared with the experimental ones, the global deformation was a good agreement but crack initiation cycle was higher than the experimental result

  16. Development and characterization of fatigue resistant aramid reinforced aluminium laminates (ARALL) for fatigue critical aircraft components

    International Nuclear Information System (INIS)

    Qaiser, M. H.; Umar, S.; Nauman, S.

    2013-01-01

    The structural weight of an aircraft has always been a controlling parameter that governs its fuel efficiency and transport capacity. In pursuit of achieving light-weight aircraft structures, high design stress levels have to be adopted and materials with high specific strength such as Aluminum etc. are to be deployed. However, an extensive spectrum of fatigue load exists at the aircraft wings and other aerodynamic components that may cause initiation and propagation of fatigue cracks and concludes in a catastrophic rupture. Fatigue is therefore the limiting design parameter in such cases and materials with high fatigue resistance are then required. A major improvement in the fatigue behavior was observed by laminating Kevlar fibers with Aluminum using epoxy. ARALL (Aramid Reinforced Aluminum Laminates) is a fatigue resistant hybrid composite that consists of layers of thin high strength aluminum alloy sheets surface bonded with aramid fibers. The intact aramid fibers tie up the fatigue cracks, thus reducing the stress intensity factor at the crack tip as a result of which the fatigue properties of can be enhanced with orders of magnitude as compared to monolithic high strength Aluminum alloy sheets. Significant amount of weight savings can be achieved in fatigue critical components in comparison with the traditional materials used in aircraft. (author)

  17. Development and characterization of fatigue resistant Aramid reinforced aluminium laminates (ARALL) for fatigue Critical aircraft components

    Science.gov (United States)

    Qaiser, M. H.; Umar, S.; Nauman, S.

    2014-06-01

    The structural weight of an aircraft has always been a controlling parameter that governs its fuel efficiency and transport capacity. In pursuit of achieving light-weight aircraft structures, high design stress levels have to be adopted and materials with high specific strength such as Aluminum etc. are to be deployed. However, an extensive spectrum of fatigue load exists at the aircraft wings and other aerodynamic components that may cause initiation and propagation of fatigue cracks and concludes in a catastrophic rupture. Fatigue is therefore the limiting design parameter in such cases and materials with high fatigue resistance are then required. A major improvement in the fatigue behavior was observed by laminating Kevlar fibers with Aluminum using epoxy. ARALL (Aramid Reinforced ALuminum Laminates) is a fatigue resistant hybrid composite that consists of layers of thin high strength aluminum alloy sheets surface bonded with aramid fibers. The intact aramid fibers tie up the fatigue cracks, thus reducing the stress intensity factor at the crack tip as a result of which the fatigue properties of can be enhanced with orders of magnitude as compared to monolithic high strength Aluminum alloy sheets. Significant amount of weight savings can be achieved in fatigue critical components in comparison with the traditional materials used in aircraft.

  18. Development and characterization of fatigue resistant Aramid reinforced aluminium laminates (ARALL) for fatigue Critical aircraft components

    International Nuclear Information System (INIS)

    Qaiser, M H; Umar, S; Nauman, S

    2014-01-01

    The structural weight of an aircraft has always been a controlling parameter that governs its fuel efficiency and transport capacity. In pursuit of achieving light-weight aircraft structures, high design stress levels have to be adopted and materials with high specific strength such as Aluminum etc. are to be deployed. However, an extensive spectrum of fatigue load exists at the aircraft wings and other aerodynamic components that may cause initiation and propagation of fatigue cracks and concludes in a catastrophic rupture. Fatigue is therefore the limiting design parameter in such cases and materials with high fatigue resistance are then required. A major improvement in the fatigue behavior was observed by laminating Kevlar fibers with Aluminum using epoxy. ARALL (Aramid Reinforced ALuminum Laminates) is a fatigue resistant hybrid composite that consists of layers of thin high strength aluminum alloy sheets surface bonded with aramid fibers. The intact aramid fibers tie up the fatigue cracks, thus reducing the stress intensity factor at the crack tip as a result of which the fatigue properties of can be enhanced with orders of magnitude as compared to monolithic high strength Aluminum alloy sheets. Significant amount of weight savings can be achieved in fatigue critical components in comparison with the traditional materials used in aircraft

  19. Temperature effect on corrosion fatigue strength of coated ship structural steel; Zosen`yoko tosozai no fushoku hiro kyodo ni okeru ondo no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Takanashi, M.; Fuji, A.; Kojima, M.; Kitagawa, M. [Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan); Kobayashi, Y. [Ship Research Inst., Tokyo (Japan); Kumakura, Y.

    1997-08-01

    The corrosion fatigue life was obtained using uncoated and tar epoxy resin specimens to clarify the temperature effect. The life curve for corrosion fatigue of machined and uncoated steel in the air and sea was obtained. The fatigue strength of uncoated steel largely decreases in the sea and breaks even in the nominal stress range of less than 1/2 of the fatigue limit in the air. The effect of temperature on the coated steel is represented by a corrosion coefficient. The steel coated at 25{degree}C is 1/1.03 to 1/1.13 at 40 to 60{degree}C. This showed that the fatigue strength decreases when the temperature exceeds 25{degree}C. However, it has not such tendency and significance that are represented quantitatively. There is a slight difference in the short-life area between the crack generation life and breaking life. However, the long-life area has no significance that influences the whole evaluation. In the long-life corrosion fatigue, the crack occurs from the corrosion pit due to the exposure below the coated film and progresses in the base material before the coated film is destroyed. The effect of the corrosion pit remarkably appears at a low-stress level. 14 refs., 14 figs., 4 tabs.

  20. Evaluation of Ratnaprash for its effect on strength, stamina and fatigue using swim endurance test and biochemical estimation in swiss albino mice

    Science.gov (United States)

    Gupta, Arun; Kumar, Satyendra; Rajput, Rashmi; Srivastava, Ruchi; Rai, Rajiv K.; Sastry, J. L. N.

    2015-01-01

    Context: Traditional medicines have been considered as important resources for postponing fatigue, accelerating elimination of fatigue related metabolites and improving physical ability. Rasāyanās or rejuvenative therapies are mentioned as one of the eight clinical specialties in Ayurveda for attaining longevity, healthy life and regulation of bodily balance. Eventhough more detailed studies are needed to confirm the claims of benefits in the light of evidence based research, Ratnaprash, a herbo-mineral rasāyana formulation, is proposed here to be an antifatigue supplement that is good in promoting strength and stamina. Materials and Methods: In the present study, anti fatigue, strength and stamina enhancing properties of Ratnaprash were examined based on swim endurance capacity and the change in biochemical parameters in Swiss Albino mice. Treatment groups were orally administered Ratnaprash at various test doses (500, 1000, 2000 mg/Kg per day), while the control group received distilled water at similar dose volumes. Effect of therapy was evaluated after 28 days of treatment. Results: At the end of study period, the swimming times to exhaustion were longer in the treated groups than in the control group. Plasma lactate levels of treated groups were lower than those of the control group (P increased tissue ATP levels in preclinical models in comparison to vehicle control, exhibiting possible role in increasing strength and stamina and contributing anti-fatigue activity. PMID:26600664

  1. The effect of residual thermal stresses on the fatigue crack growth of laser-surface-annealed AISI 304 stainless steel Part I: computer simulation

    International Nuclear Information System (INIS)

    Shiue, R.K.; Chang, C.T.; Young, M.C.; Tsay, L.W.

    2004-01-01

    The effect of residual thermal stresses on the fatigue crack growth of the laser-surface-annealed AISI 304 stainless steel, especially the effect of stress redistribution ahead of the crack tip was extensively evaluated in the study. Based on the finite element simulation, the longitudinal residual tensile stress field has a width of roughly 20 mm on the laser-irradiated surface and was symmetric with respect to the centerline of the laser-annealed zone (LAZ). Meanwhile, residual compressive stresses distributed over a wide region away from the LAZ. After introducing a notch perpendicular to the LAZ, the distribution of longitudinal residual stresses became unsymmetrical about the centerline of LAZ. High residual compressive stresses exist within a narrow range ahead of notch tip. The improved crack growth resistance of the laser-annealed specimen might be attributed to those induced compressive stresses. As the notch tip passed through the centerline of the LAZ, the residual stress ahead of the notch tip was completely reverted into residual tensile stresses. The existence of unanimous residual tensile stresses ahead of the notch tip was maintained, even if the notch tip extended deeply into the LAZ. Additionally, the presence of the residual tensile stress ahead of the notch tip did not accelerate the fatigue crack growth rate in the compact tension specimen

  2. Endosomal sorting of Notch receptors through COMMD9-dependent pathways modulates Notch signaling

    NARCIS (Netherlands)

    Li, Haiying; Koo, Yeon; Mao, Xicheng; Sifuentes-Dominguez, Luis; Morris, Lindsey L.; Jia, Da; Miyata, Naoteru; Faulkner, Rebecca A.; van Deursen, Jan M.; Vooijs, Marc; Billadeau, Daniel D.; van de Sluis, Bart; Cleaver, Orane; Burstein, Ezra

    2015-01-01

    Notch family members are transmembrane receptors that mediate essential developmental programs. Upon ligand binding, a proteolytic event releases the intracellular domain of Notch, which translocates to the nucleus to regulate gene transcription. In addition, Notch trafficking across the

  3. Viscoelastic behaviour and static fatigue strength of glass/epoxy composites. Influence of hydrothermal ageing

    International Nuclear Information System (INIS)

    Chateauminois, Antoine

    1991-01-01

    As ageing strength of composites appears to be one of the main criteria of their durability, this research thesis addresses the hydrothermal ageing of unidirectional glass/epoxy composites used for load-bearing structures. After having presented the used materials (epoxy matrix, reinforcement, composite elaboration), the author present the experimental techniques: viscoelastic analysis, three-point bend static fatigue test, coupled gravimetry and calorimetry, and thermogravimetry. In the next parts, the author reports the study of water sorption processes (bibliographical study, experimental study of water sorption kinetics, experimental study of interfacial diffusion within the composite), the study of plasticizing phenomena (methodology of study of plasticizing phenomena, study of the modifications of the linear viscoelastic behaviour in the glass transition region and at room temperature, relationship between plasticizing and fatigue mechanical properties by fracture studies), and the study of irreversible degradation and damage mechanisms

  4. The significance of ultrafine film-like retained austenite in governing very high cycle fatigue behavior in an ultrahigh-strength MN–SI–Cr–C steel

    International Nuclear Information System (INIS)

    Zhao, P.; Zhang, B.; Cheng, C.; Misra, R.D K.; Gao, G.; Bai, B.; Weng, Y.

    2015-01-01

    We elucidate here the very high cycle fatigue (VHCF) behavior of an ultrahigh-strength medium carbon Mn–Si–Cr–C steel processed using the approach of bainite-based quenching and partitioning (BQ&P). The microstructure of BQ&P process comprised of bainite, carbon-depleted martensite, retained austenite (RA) and small amount of martensite/austenite island (M/A). The tensile strength (R m ) and fatigue limit strength after 10 9 cycles (σ w9 ) and in the non-failed condition were 1688 MPa and 875 MPa, respectively such that σ w9 /R m exceeded conventional steels and was 0.52. Two types of failure modes were observed depending on the surface and microstructure, notably surface-induced failure and non-inclusion-induced failure, where the non-inclusion-induced failure was influenced by the microstructure. Inclusion-induced failure was absent. The study underscores that film-like retained austenite was the underlying reason for superior fatigue properties, hitherto not previously obtained

  5. Suppression of Fatigue Crack Propagation of Duralumin by Cavitation Peening

    Directory of Open Access Journals (Sweden)

    Hitoshi Soyama

    2015-08-01

    Full Text Available It was demonstrated in the present paper that cavitation peening which is one of the mechanical surface modification technique can suppress fatigue crack propagation in duralumin. The impacts produced when cavitation bubble collapses can be utilised for the mechanical surface modification technique in the same way as laser peening and shot peening, which is called “cavitation peening”. Cavitation peening employing a cavitating jet in water was used to treat the specimen made of duralumin Japanese Industrial Standards JIS A2017-T3. After introducing a notch, fatigue test was conducted by a load-controlled plate bending fatigue tester, which has been originally developed. The fatigue crack propagation behavior was evaluated and the relationship between the fatigue crack propagation rate versus stress intensity factor range was obtained. From the results, the fatigue crack propagation rate was drastically reduced by cavitation peening and the fatigue life of duralumin plate was extended 4.2 times by cavitation peening. In addition, the fatigue crack propagation can be suppressed by 88% in the stable crack propagation stage by cavitation peening.

  6. Fatigue strength reduction factors for welds based on nondestructive examination

    International Nuclear Information System (INIS)

    Hechmer, J.L.; Kuhn, E.J. III

    1999-01-01

    Based on the author's hypothesis that nondestructive examination (NDE) has a major role in predicting the fatigue life of pressure vessels, a project was initiated to develop a defined relationship between NDE and fatigue strength reduction factors (FSRF). Even though a relationship should apply to both base metal and weld metal, the project was limited to weld metal because NDE for base metal is reasonably well established, whereas NDE for weld metal is more variable, depending on application. A matrix of FSRF was developed based on weld type (full penetration, partial penetration, and fillet weld) versus the NDE that is applied. The NDE methods that are included are radiographic testing (RT), ultrasonic testing (UT), magnetic particle testing (MT), dye penetrant testing (PT), and visual testing (VT). The first two methods (RT and UT) are volumetric examinations, and the remaining three are surface examinations. Seven combinations of volumetric and surface examinations were defined; thus, seven levels of FSRF are defined. Following the initial development of the project, a PVRC (Pressure Vessel Research Council) grant was obtained for the purpose of having a broad review. The report (Hechmer, 1998) has been accepted by PVRC. This paper presents the final matrix, the basis for the FSRF, and key definitions for accurate application of the FSRF matrix. A substantial amount of additional information is presented in the PVRC report (Hechmer, 1998)

  7. Effects of Notch Misalignment and Tip Radius on Displacement Field in V-Notch Rail Shear Test as Determined by Photogrammetry

    Science.gov (United States)

    Hill, Charles S.; Oliveras, Ovidio M.

    2011-01-01

    Evolution of the 3D strain field during ASTM-D-7078 v-notch rail shear tests on 8-ply quasi-isotropic carbon fiber/epoxy laminates was determined by optical photogrammetry using an ARAMIS system. Specimens having non-optimal geometry and minor discrepancies in dimensional tolerances were shown to display non-symmetry and/or stress concentration in the vicinity of the notch relative to a specimen meeting the requirements of the standard, but resulting shear strength and modulus values remained within acceptable bounds of standard deviation. Based on these results, and reported difficulty machining specimens to the required tolerances using available methods, it is suggested that a parametric study combining analytical methods and experiment may provide rationale to increase the tolerances on some specimen dimensions, reducing machining costs, increasing the proportion of acceptable results, and enabling a wider adoption of the test method.

  8. New And Existing Bridge Constructions - Increase of Fatigue Strength of Welded Joints by High Frequency Mechanical Impact Treatment

    Directory of Open Access Journals (Sweden)

    Ummenhofer Thomas

    2013-07-01

    Full Text Available Numerous studies at KIT prove that high frequency mechanical impact (HFMI treatment is an efficient method for increasing the fatigue strength of welded steel structures. Within different research projects it was found that HFMI-methods can be used successfully for new and existing structures in order to extend the fatigue life. This paper gives an overview of the current status of existing steel bridges in Germany regarding aspects like bridge age distributions and traffic loads. Based on that overview welded joints susceptible to fatigue failure are identified. Using component-like small scale specimens, HFMI-methods were investigated within the objective of implementing an effective application for new and existing structures. Applying the fatigue test data observed, existing design proposals are evaluated and design recommendations for HFMI-treated joints are given. As a result of the research work, a transfer into practice has been realized and different applications are illustrated using the example of bridge constructions made of steel.

  9. Environmental-assisted fatigue in austenitic stainless steels under light water reactor conditions

    International Nuclear Information System (INIS)

    Seifert, H.P.; Ritter, S.; Spaetig, P.

    2015-01-01

    The environmental-assisted fatigue (EAF) initiation and subsequent short crack growth behaviour of different austenitic stainless steels were characterised under simulated BWR/HWC and primary PWR conditions by cyclic fatigue tests with sharply notched fracture mechanics specimens. After a brief summary overview on the previous PSI observations, an update with new and preliminary results about the effect of pH, dissolved hydrogen, load ratio/mean stress, long static load hold times and load sequences is given in this paper. At low electrochemical corrosion potentials (ECP), the physical EAF initiation life moderately decreases with increasing dissolved hydrogen content and decreasing pH. Both parameters have little effect on the subsequent short EAF crack growth within the investigated range. Notch strain amplitude thresholds for environmental effects on physical EAF crack initiation decrease with increasing load ratio and mean stress. At small notch strain amplitudes, the effect of mean stress is more pronounced in BWR/HWC environment than in air and predicted by typical fatigue life mean stress corrections. Under certain loading conditions, long static load hold times result in an increase of the physical EAF initiation life, which saturates for very long hold times. On the other hand, little effect of hold times on subsequent stationary short EAF crack growth rates is observed. The physical EAF initiation life under load sequence loading in high-temperature water may be moderately shorter or significantly longer than predicted by a linear damage accumulation rule and corresponding constant load amplitude tests depending on the load history. (authors)

  10. The adhesion force of Notch with Delta and the rate of Notch signaling

    OpenAIRE

    Ahimou, Francois; Mok, Lee-Peng; Bardot, Boris; Wesley, Cedric

    2004-01-01

    Notch signaling is repeatedly used during animal development to specify cell fates. Using atomic force microscopy on live cells, chemical inhibitors, and conventional analyses, we show that the rate of Notch signaling is linked to the adhesion force between cells expressing Notch receptors and Delta ligand. Both the Notch extracellular and intracellular domains are required for the high adhesion force with Delta. This high adhesion force is lost within minutes, primarily due to the action of ...

  11. Fatigue in Breakwater Concrete Armour Units

    DEFF Research Database (Denmark)

    Burcharth, Hans F.

    The reliability of rubble mound breakwaters depends on the hydraulic stability and the mechanical strength of the armour units. The paper deals with the important aspect of fatigue related to the strength of concrete armour units.......The reliability of rubble mound breakwaters depends on the hydraulic stability and the mechanical strength of the armour units. The paper deals with the important aspect of fatigue related to the strength of concrete armour units....

  12. Fatigue studies of superalloys in Japan

    International Nuclear Information System (INIS)

    Kitagawa, Masaki

    1985-01-01

    In the past 15 years, several national projects were advanced to develop high temperature machinery, such as high temperature gas-cooled reactors, gas turbines and fusion reactors. Before, the studies on the strength of superalloys were rarely carried out, however, by the above research works, superalloys are in rapid progress. Because these machinery are subjected to temperature cycles and vibration stress, the fatigue failure is the main concern in the safety analysis of the components. The purpose of this paper is to summarize the present status of the fatigue research on the alloys for high temperature use in Japan. The superalloys used for gas turbine and HTGR components are listed, and the materials tested were mostly the alloys of nickel base, cobalt base or iron base. In the above national projects, the main purpose was to clarify the high temperature properties including fatigue properties, to develop the method of forecasting the life span and to develop better materials. As the topics about the fatigue research on superalloys, the development of the method for forecasting the life span, the effect of directional solidification, coating and HIP process on the fatigue strength of gas turbine materials, the effect of helium and aging on the fatigue strength of HTGR materials, the fatigue strength of weldment of HTGR materials and others are reported. (Kako, I.)

  13. Fatigue in Breakwater Concrete Armour Units

    DEFF Research Database (Denmark)

    Burcharth, Hans F.

    1985-01-01

    The reliability of rubble mound breakwaters depends on the hydraulic stability and the mechanical strength of the armour units. The paper deals with the important aspect of fatigue related to the strength of concrete armour units. Results showing significant fatigue from impact tests with Dolosse...... made of unreinforced and steel fibre reinforced flyash concrete are presented. Moreover universal graphs for fatigue in armour units made of conventional unreinforced concrete exposed to impact load and pulsating load are presented. The effect of fibre reinforcement and the implementation of fatigue...

  14. Impact of Selected Parameters on the Fatigue Strength of Splices on Multiply Textile Conveyor Belts

    Science.gov (United States)

    Bajda, Mirosław; Błażej, Ryszard; Hardygóra, Monika

    2016-10-01

    Splices are the weakest points in the conveyor belt loop. The strength of these joints, and thus their design as well as the method and quality of splicing, determine the strength of the whole conveyor belt loop. A special zone in a splice exists, where the stresses in the adjacent plies or cables differ considerably from each other. This results in differences in the elongation of these elements and in additional shearing stresses in the rubber layer. The strength of the joints depends on several factors, among others on the parameters of the joined belt, on the connecting layer and the technology of joining, as well as on the materials used to make the joint. The strength of the joint constitutes a criterion for the selection of a belt suitable for the operating conditions, and therefore methods of testing such joints are of great importance. This paper presents the method of testing fatigue strength of splices made on multi-ply textile conveyor belts and the results of these studies.

  15. Characterization of Notch1 antibodies that inhibit signaling of both normal and mutated Notch1 receptors.

    Directory of Open Access Journals (Sweden)

    Miguel Aste-Amézaga

    2010-02-01

    Full Text Available Notch receptors normally play a key role in guiding a variety of cell fate decisions during development and differentiation of metazoan organisms. On the other hand, dysregulation of Notch1 signaling is associated with many different types of cancer as well as tumor angiogenesis, making Notch1 a potential therapeutic target.Here we report the in vitro activities of inhibitory Notch1 monoclonal antibodies derived from cell-based and solid-phase screening of a phage display library. Two classes of antibodies were found, one directed against the EGF-repeat region that encompasses the ligand-binding domain (LBD, and the second directed against the activation switch of the receptor, the Notch negative regulatory region (NRR. The antibodies are selective for Notch1, inhibiting Jag2-dependent signaling by Notch1 but not by Notch 2 and 3 in reporter gene assays, with EC(50 values as low as 5+/-3 nM and 0.13+/-0.09 nM for the LBD and NRR antibodies, respectively, and fail to recognize Notch4. While more potent, NRR antibodies are incomplete antagonists of Notch1 signaling. The antagonistic activity of LBD, but not NRR, antibodies is strongly dependent on the activating ligand. Both LBD and NRR antibodies bind to Notch1 on human tumor cell lines and inhibit the expression of sentinel Notch target genes, including HES1, HES5, and DTX1. NRR antibodies also strongly inhibit ligand-independent signaling in heterologous cells transiently expressing Notch1 receptors with diverse NRR "class I" point mutations, the most common type of mutation found in human T-cell acute lymphoblastic leukemia (T-ALL. In contrast, NRR antibodies failed to antagonize Notch1 receptors bearing rare "class II" or "class III" mutations, in which amino acid insertions generate a duplicated or constitutively sensitive metalloprotease cleavage site. Signaling in T-ALL cell lines bearing class I mutations is partially refractory to inhibitory antibodies as compared to cell

  16. Fatigue failure analysis of V-4Ti-4Cr alloy

    International Nuclear Information System (INIS)

    Aglan, H.; Gan, Y.X.; Grossbeck, M.

    1999-01-01

    In the present work, the fatigue fracture and failure behavior of a V-4Ti-4Cr has been studied. Static tests were conducted to study the overloading behavior and to select the magnitude of the stress level for the fatigue studies. Fatigue tests were performed using single edge notched (SEN) specimens under tension-tension load control conditions. Fatigue crack propagation (FCP) data such as the crack length, number of cycles, and hysteresis loops were recorded to calculate the crack speed, the energy release rate, and the change in work expended on damage formation and dissipative processes within the material. Parameters characterizing the fatigue fracture resistance of V-4Ti-4Cr alloy, namely the specific energy of damage (γ'), and the dissipative coefficient (β'), were determined from the fatigue data using the modified crack layer (MCL) theory. Fracture surface examination using scanning electron microscopy (SEM) revealed ductile failure mechanisms under tensile overloading conditions. The fatigue fracture surface of the V-4Ti-4Cr consists of three distinct regions, corresponding to the threshold, stable and unstable crack propagation stages. (orig.)

  17. Fatigue in Breakwater Concrete Armour Units

    OpenAIRE

    Burcharth, Hans F.

    1984-01-01

    The reliability of rubble mound breakwaters depends on the hydraulic stability and the mechanical strength of the armour units. The paper deals with the important aspect of fatigue related to the strength of concrete armour units. Results showing significant fatigue from impact tests with Dolosse made of unreinforced and steel fibre reinforced flyash concrete are presented. Moreover universal graphs for fatigue in armour units made of conventional unreinforced concrete exposed to impact load ...

  18. Fatigue Reliability under Multiple-Amplitude Loads

    DEFF Research Database (Denmark)

    Talreja, R.

    1979-01-01

    for the initial tensile strength and the fatigue life, the probability distributions for the residual tensile strength in both the crack initiation and the crack propagation stages of fatigue are determined. The method is illustrated for two-amplitude loads by means of experimental results obtained by testing...

  19. Fatigue characteristics of high strength fire resistance steel for frame structure and time-frequency analysis its acoustic emission signal

    International Nuclear Information System (INIS)

    Kim, Hyun Soo; Nam, Ki Woo; Kang, Chang Young

    2000-01-01

    Demand for now nondestructive evaluation are growing to detect fatigue crack growth behavior to predict long term performance of materials and structure in aggressive environments, especially when they are in non-visible area. Acoustic emission technique is well suited to these problems and has drawn a keen interests because of its dynamic detection ability, extreme sensitivity and location of growing defects. In this study, we analysed acoustic emission signals obtained in fatigue and tensile test of high strength fire resistance steel for frame structure with time-frequency analysis methods. The main frequency range is different in the noise and the fatigue crack propagation. It could be classified that it were also generated by composite fracture mechanics of cleavage, dimple, inclusion separation etc

  20. Damage and fatigue crack growth of Eurofer steel first wall mock-up under cyclic heat flux loads. Part 2: Finite element analysis of damage evolution

    International Nuclear Information System (INIS)

    You, Jeong-Ha

    2014-01-01

    Highlights: • The surface heat flux load of 3.5 MW/m 2 produced substantial stresses and inelastic strains in the heat-loaded surface region, especially at the notch root. • The notch root exhibited a typical notch effect such as stress concentration and localized inelastic yield leading to a preferred damage development. • The predicted damage evolution feature agrees well with the experimental observation. • The smooth surface also experiences considerable stresses and inelastic strains. However, the stress intensity and the amount of inelastic deformation are not high enough to cause any serious damage. • The level of maximum inelastic strain is higher at the notch root than at the smooth surface. On the other hand, the amplitude of inelastic strain variation is comparable at both positions. • The amount of inelastic deformation is significantly affected by the length of pulse duration time indicating the important role of creep. - Abstract: In the preceding companion article (part 1), the experimental results of the high-heat-flux (3.5 MW/m 2 ) fatigue tests of a Eurofer bare steel first wall mock-up was presented. The aim was to investigate the damage evolution and crack initiation feature. The mock-up used there was a simplified model having only basic and generic structural feature of an actively cooled steel FW component for DEMO reactor. In that study, it was found that microscopic damage was formed at the notch root already in the early stage of the fatigue loading. On the contrary, the heat-loaded smooth surface exhibited no damage up to 800 load cycles. In this paper, the high-heat-flux fatigue behavior is investigated with a finite element analysis to provide a theoretical interpretation. The thermal fatigue test was simulated using the coupled damage-viscoplastic constitutive model developed by Aktaa. The stresses, inelastic deformation and damage evolution at the notch groove and at the smooth surface are compared. The different damage

  1. Fatigue strength of the joint between diaphragms and longitudinal ribs in box section girders; Hako danmen keta no diaphragm to shita flange tateribu no kosabu no hiro kyodo

    Energy Technology Data Exchange (ETDEWEB)

    Miki, C.; Shiozaki, M.; Takeishi, K. [Tokyo Institute of Technology, Tokyo (Japan). Faculty of Engineering; Ohashi, H. [Honshu-Shikoku Bridge Authority, Tokyo (Japan)

    1997-04-21

    Discussions were given on crossing joints of diaphragms on hanger fixing sections and U-ribs on lower flanges in reinforcing box girders of a suspension bridge, as to their local stress generating behavior and effects of cope holes on fatigue strength. The test pieces have dimensions and shapes modeling the crossing joints, and the steel materials are SM490YA for upper and lower flanges and webs, and SS400 for U-ribs. The loading test was performed with four-point bending and at loading amplitudes of 30 to 45 tf. Furthermore, stress analysis was conducted by using the finite element method. The following conclusions were obtained as a result: local stress at cope hole tips decreases and fatigue strength increases with the smaller the cope hole diameter; when the cope holes are back-filled completely, deformation is concentrated on welds of the U-ribs and the flanges, generating high local stress; this reduces significantly the fatigue strength of details having no cope holes; and no particular differences are found on effects of boxing of the cope hole tips on the fatigue strength. 7 refs., 10 figs., 3 tabs.

  2. A study of microstructure, quasi-static response, fatigue, deformation and fracture behavior of high strength alloy steels

    Science.gov (United States)

    Kannan, Manigandan

    The history of steel dates back to the 17th century and has been instrumental in the betterment of every aspect of our lives ever since, from the pin that holds the paper together to the Automobile that takes us to our destination steel touches everyone every day. Path breaking improvements in manufacturing techniques, access to advanced machinery and understanding of factors like heat treatment, corrosion resistance have aided in the advancement in the properties of steel in the last few years. In this dissertation document, the results of a study aimed at the influence of alloy chemistry, processing and influence of the quasi static and fatigue behavior of seven alloy steels is discussed. The microstructure of the as-received steel was examined and characterized for the nature and morphology of the grains and the presence of other intrinsic features in the microstructure. The tensile, cyclic fatigue and bending fatigue tests were done on a fully automated closed-loop servo-hydraulic test machine at room temperature. The failed samples of high strength steels were examined in a scanning electron microscope for understanding the fracture behavior, especially the nature of loading be it quasi static, cyclic fatigue or bending fatigue . The quasi static and cyclic fatigue fracture behavior of the steels examined coupled with various factors contributing to failure are briefly discussed in light of the conjoint and mutually interactive influences of intrinsic microstructural effects, nature of loading, and stress (load)-deformation-microstructural interactions.

  3. Effect of ratchet strain on fatigue and creep–fatigue strength of Mod.9Cr–1Mo steel

    International Nuclear Information System (INIS)

    Ando, Masanori; Isobe, Nobuhiro; Kikuchi, Koichi; Enuma, Yasuhiro

    2012-01-01

    Highlights: ► Uniaxial fatigue and creep–fatigue tests with superimposed strain were performed. ► Variety of superimposed strain were applied as ratchet strain in the tests. ► Effect of superimposed strain on fatigue and creep–fatigue life is negligible. ► A cyclic softening character reducing the effect of superimposed strain. - Abstract: The effect of ratcheting deformation on fatigue and creep–fatigue life in Mod.9Cr–1Mo steel was investigated. Uniaxial fatigue and creep–fatigue testing with superimposed strain were performed to evaluate the effect of ratcheting deformation on the failure cycle. In a series of tests, a specific amount of superimposed strain was accumulated in each cycle. The accumulated strain as ratcheting deformation, cycles to reach the accumulated strain, and test temperatures were varied in the tests. In the fatigue tests with superimposed strain at 550 °C, slight reductions of failure lives were observed. All of the numbers of cycles to failure in the fatigue tests with superimposed strain were within a factor of 1.5 of that of the fatigue test without superimposed strain at 550 °C. The apparent relationship between failure cycles and testing parameters was not observed. In fatigue tests with superimposed strain at 550 °C, maximum mean stress was insignificant and generated in early cycles because Mod.9Cr–1Mo steel exhibits cyclic softening characteristics. It was assumed that suppression of mean stress generation by cyclic softening reduces the effect of ratcheting strain. Conversely, failure lives were increased by accumulated strain in the test conducted at 450 °C because of stress–strain hysteresis loop shrinkage caused by cyclic softening induced by the accumulated strain. In the creep–fatigue tests with superimposed strain, test results indicated that the accumulated stain was negligible. It was concluded that the effect of ratcheting deformation on fatigue and creep–fatigue life is negligible as long

  4. The effect of post material on the characteristic strength of fatigued endodontically treated teeth.

    Science.gov (United States)

    Pereira, Jefferson Ricardo; do Valle, Accácio Lins; Shiratori, Fabio Kenji; Ghizoni, Janaina Salomon; Bonfante, Estevam Augusto

    2014-11-01

    The biomechanical properties of post systems may become more important as the amount of remaining tooth structure decreases, thus different materials may influence the characteristic strength of fatigued endodontically treated teeth. The purpose of this study was to assess the characteristic strength and probability of survival of endodontically treated teeth restored with different intraradicular post systems. Forty human maxillary canines with similar root lengths were randomly divided into 4 groups (n=10): cast post and core, stainless-steel prefabricated post, carbon-fiber post, and glass-fiber post. Cores and metallic crowns were fabricated for all specimens. Restored teeth were exposed to mechanical fatigue (250,000 cycles) in a controlled chewing simulator. Each intact specimen was mounted in a special device and aligned at a 45-degree angle to the long axis of the tooth. A universal testing machine was used to apply a static load at a crosshead speed of 0.5 mm/min until specimen failure. The maximum value was recorded in newtons (N). Probability Weibull curves (2-sided 90% confidence bounds) were calculated for each group, and a probability of survival as a function of load at failure was plotted for the groups. A significantly higher characteristic strength was observed for groups carbon-fiber post (755.82 N) and cast post and core (750.6 N) (P<.05) compared with glass-fiber post (461.35 N) and stainless-steel prefabricated post (524.78 N) groups. All the roots in the cast post and core group demonstrated catastrophic fracture, whereas the remaining groups had no root fractures. Prefabricated posts made of glass fiber and stainless steel showed significantly lower characteristic strength and probability of survival than cast post and core, whereas crowns with carbon-fiber posts presented a single load similar to the fracture values of cast posts. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All

  5. Fracture toughness evaluation of small notched specimen in consideration of notch effect and loading rate

    International Nuclear Information System (INIS)

    Lee, Baik Woo; Kwon, Dong Il; Jang, Jae Il

    2000-01-01

    Notch effect and loading rate dependency on fracture toughness were considered when evaluating fracture toughness of small notched specimens using the instrumented impact test. Notch effect was analyzed into stress redistribution effect and stress relaxation with a viewpoint of stress triaxiality. Stress redistribution effect was corrected by introducing effective crack length, which was the sum of actual crack length and plastic zone size. Stress relaxation effect was also corrected using elastic stress concentration factor, which would decrease if plastic deformation occurred. As a result, corrected fracture toughness of the notched specimen was very consistent with the reference fracture toughness obtained using precracked specimen. In addition, limiting notch root radius, below which fracture toughness was independent of notch radius, was observed and discussed. Loading rate dependency on fracture toughness, which was obtained from the static three point bending test and the instrumented impact test, was also discussed with stress field in plastic zone ahead of a notch and fracture based on stress control mechanism. (author)

  6. Impact of choice of stabilized hysteresis loop on the end result of investigation of high-strength low-alloy (HSLA steel on low cycle fatigue

    Directory of Open Access Journals (Sweden)

    S. Bulatović

    2014-10-01

    Full Text Available High strength low-alloy steel under low cycle fatigue at a certain level of strain controlled achieve stabilized condition. During the fatigue loading stabilized hysteresis loop is determined, which typical cycle of stabilization is calculated as half number of cycles to failure. Stabilized hysteresis loop is a representative of all hysteresis and it’s used to determine all of the parameters for the assessment of low cycle fatigue. This paper shows comparison of complete strain-life curves of low cycle fatigue for two chosen stabilized hysteresis loop cycles of base metal HSLA steel marked as Nionikral 70.

  7. Effects of friction and high torque on fatigue crack propagation in mode III

    International Nuclear Information System (INIS)

    Nayeb-Hashemi, H.; McClintock, F.A.; Ritchie, R.O.

    1982-01-01

    Turbo-generator and automotive shafts are often subjected to complex histories of high torques. To provide a basis for fatigue life estimation in such components, a study of fatigue crack propagation in Mode III (anti-plane shear) for a mill-annealed AISI 4140 steel (R /SUB B/ 88, 590 MN/m 2 tensile strength) has been undertaken, using torsionally-loaded, circumferentially-notched cylindrical specimens. As demonstrated previously for higher strength AISI 4340 steel, Mode III cyclic crack growth rates (dc/dN) /SUB III/ can be related to the alternating stress intensity factor ΔK /SUB III/ for conditions of small-scale yielding. However, to describe crack propagation behavior over an extended range of crack growth rates (about 10 -6 to 10 -2 mm per cycle), where crack growth proceeds under elastic-plastic and full plastic conditions, no correlation between (dc/dN) /SUB III/ and ΔK /SUB III/ is possible. Accordingly, a new parameter for torsional crack growth, termed the plastic strain intensity GAMMA /SUB III/, is introduced and is shown to provide a unique description of Mode III crack growth behavior for a wide range of testing conditions, provided a mean load reduces friction, abrasion, and interlocking between mating fracture surfaces A micro-mechanical model for the main radial Mode III growth is extended to high nominal stress levels, and predicts that Mode III fatigue crack propagation rates should be proportional to the range of plastic strain intensity (ΔGAMMA /SUB III/) if local Mode II growth rates are proportional to the displacements. Such predictions are shown to be in agreement with measured growth rates in AISI 4140 steel from 10 -6 to 10 -2 mm per cycle

  8. Influence of casting defects on fatigue strength of an investment cast Ti-6Al-4V alloy

    Directory of Open Access Journals (Sweden)

    Léopold Gaëlle

    2014-06-01

    Full Text Available The influence of casting defects on fatigue strength of an investment cast Ti-6Al-4V alloy is investigated. The most common of these defects are: pinhole, linear defect and inclusion. Each of them is currently defined by its size, morphology and position from the surface but is different from each other for a same type. An experimental campaign is defined with different types of defect. The first part of the campaign is focused on the influence of an artificial and spherical defect, considering two different surface conditions. It is shown that fatigue behaviour of this alloy is very sensitive to the surface condition of this artificial defect despite stress concentrations at the tip of the defect. The second part of the campaign is focused on casting defects: reduction of fatigue life is quantified and it is shown that an electro-discharge machined defect cannot be representative of pinhole.

  9. Fatigue crack growth in fiber-metal laminates

    Science.gov (United States)

    Ma, YuE; Xia, ZhongChun; Xiong, XiaoFeng

    2014-01-01

    Fiber-metal laminates (FMLs) consist of three layers of aluminum alloy 2024-T3 and two layers of glass/epoxy prepreg, and it (it means FMLs) is laminated by Al alloy and fiber alternatively. Fatigue crack growth rates in notched fiber-metal laminates under constant amplitude fatigue loading were studied experimentally and numerically and were compared with them in monolithic 2024-T3 Al alloy plates. It is shown that the fatigue life of FMLs is about 17 times longer than monolithic 2024-T3 Al alloy plate; and crack growth rates in FMLs panels remain constant mostly even when the crack is long, unlike in the monolithic 2024-T3 Al alloy plates. The formula to calculate bridge stress profiles of FMLs was derived based on the fracture theory. A program by Matlab was developed to calculate the distribution of bridge stress in FMLs, and then fatigue growth lives were obtained. Finite element models of FMLs were built and meshed finely to analyze the stress distributions. Both results were compared with the experimental results. They agree well with each other.

  10. Reduction factors for creep strength and fatigue life of modified 9Cr-1 Mo steel weldments

    International Nuclear Information System (INIS)

    Blass, J.J.; Battiste, R.L.; O'Connor, D.G.

    1991-01-01

    This paper reports on the provisions of ASME B and PV code Case N-47 currently include reduction factors for creep strength and fatigue life of weldments. To provide experimental confirmation of such factors for modified 9 Cr-1 Mo steel, tests of tubular specimens were conducted at 538 degrees C (1000 degrees F). Three creep-rupture specimens with longitudinal welds were tested in tension; and, of three with circumferential welds, two were tested in tension and one in torsion. In each specimen with a circumferential weld, a nonuniform axial distribution of strain was easily visible. The test results were compared to an existing empirical model of creep-rupture life. For the torsion test, the comparison was based on a definition of equivalent normal stress recently adopted in code Case N-47. some 27 fatigue specimens, with longitudinal, circumferential, or no welds, were tested under axial or torsional strain control. In specimens with welds, fatigue cracking initiated at fusion lines. In axial tests cracks grew in the circumferential direction, and in torsional tests cracks grew along fusion lines

  11. A novel reformulation of the Theory of Critical Distances to design notched metals against dynamic loading

    International Nuclear Information System (INIS)

    Yin, T.; Tyas, A.; Plekhov, O.; Terekhina, A.; Susmel, L.

    2015-01-01

    Highlights: • The proposed method is successful in estimating dynamic strength of metals. • The critical distance varies as the loading/strain/displacement rate increases. • The reference strength varies as the loading/strain/displacement rate increases. • This method is recommended to be used with safety factors larger than 1.25. - Abstract: In the present study the linear-elastic Theory of Critical Distances (TCD) is reformulated to make it suitable for predicting the strength of notched metallic materials subjected to dynamic loading. The accuracy and reliability of the proposed reformulation of the TCD was checked against a number of experimental results generated by testing, under different loading/strain rates, notched cylindrical samples of aluminium alloy 6063-T5, titanium alloy Ti–6Al–4V, aluminium alloy AlMg6, and an AlMn alloy. To further validate the proposed design method also different data sets taken from the literature were considered. Such an extensive validation exercise allowed us to prove that the proposed reformulation of the TCD is successful in predicting the dynamic strength of notched metallic materials, this approach proving to be capable of estimates falling within an error interval of ±20%. Such a high level of accuracy is certainly remarkable, especially in light of the fact that it was reached without the need for explicitly modelling the stress vs. strain dynamic behaviour of the investigated ductile metals

  12. Assessment of correlation between knee notch width index and the three-dimensional notch volume

    NARCIS (Netherlands)

    van Eck, C.F.; Martins, C.A.Q.; Lorenz, S.G.F.; Fu, F.H.; Smolinski, P.

    2010-01-01

    This study was done to determine whether there is a correlation between the notch volume and the notch width index (NWI) as measured on the three most frequently used radiographic views: the Holmblad 45A degrees, Holmblad 70A degrees, and Rosenberg view. The notch volume of 20 cadaveric knees was

  13. Fatigue of weld ends under combined in- and out-of-phase multiaxial loading

    Directory of Open Access Journals (Sweden)

    E. Shams

    2016-10-01

    Full Text Available Weld start and end points are fatigue failure sensitive locations. Their fatigue behaviour especially in thin sheet structures under multiaxial load conditions is not sufficiently explored so far. Therefore, a research project was initiated to increase the knowledge concerning this topic, which is of special interest in the automotive industry. In the present study, fatigue tests on welded joints were conducted. In the numerical part of the study, notch stresses were calculated with an idealised weld end model. A numerical method which combines the geometrical and statistical size effect to an integrated approach was used, in order to consider the size effects

  14. Evaluation of Ratnaprash for its effect on strength, stamina and fatigue using swim endurance test and biochemical estimation in swiss albino mice.

    Science.gov (United States)

    Gupta, Arun; Kumar, Satyendra; Rajput, Rashmi; Srivastava, Ruchi; Rai, Rajiv K; Sastry, J L N

    2015-01-01

    Traditional medicines have been considered as important resources for postponing fatigue, accelerating elimination of fatigue related metabolites and improving physical ability. Rasāyanās or rejuvenative therapies are mentioned as one of the eight clinical specialties in Ayurveda for attaining longevity, healthy life and regulation of bodily balance. Eventhough more detailed studies are needed to confirm the claims of benefits in the light of evidence based research, Ratnaprash, a herbo-mineral rasāyana formulation, is proposed here to be an antifatigue supplement that is good in promoting strength and stamina. In the present study, anti fatigue, strength and stamina enhancing properties of Ratnaprash were examined based on swim endurance capacity and the change in biochemical parameters in Swiss Albino mice. Treatment groups were orally administered Ratnaprash at various test doses (500, 1000, 2000 mg/Kg per day), while the control group received distilled water at similar dose volumes. Effect of therapy was evaluated after 28 days of treatment. At the end of study period, the swimming times to exhaustion were longer in the treated groups than in the control group. Plasma lactate levels of treated groups were lower than those of the control group (P stamina and contributing anti-fatigue activity.

  15. Notch sensitivity of aliphatic polyketone terpolymers

    NARCIS (Netherlands)

    Zuiderduin, W.C.J.; Huetink, Han; Gaymans, R.J.

    2004-01-01

    The notch sensitivity of aliphatic polyketone (PK) terpolymers was investigated in this article. The notch-tip radius was varied between the size of an actual propagating crack tip of 1-2 m and the largest notch tip of 1000 m radius. The larger notch-tip radii (1000-15 m) were milled into the

  16. Glioma cell fate decisions mediated by Dll1-Jag1-Fringe in Notch1 signaling pathway.

    Science.gov (United States)

    Shi, Xiaofei; Wang, Ruiqi

    2017-09-21

    The Notch family of proteins plays a vital role in determining cell fates, such as proliferation, differentiation, and apoptosis. It has been shown that Notch1 and its ligands, Dll1 and Jag1, are overexpressed in many glioma cell lines and primary human gliomas. The roles of Notch1 in some cancers have been firmly established, and recent data implicate that it plays important roles in glioma cell fate decisions. This paper focuses on devising a specific theoretical framework that incorporates Dll1, Jag1, and Fringe in Notch1 signaling pathway to explore their functional roles of these proteins in glioma cells in the tumorigenesis and progression of human gliomas, and to study how glioma cell fate decisions are modulated by both trans-activation and cis-inhibition. This paper presents a computational model for Notch1 signaling pathway in glioma cells. Based on the bifurcation analysis of the model, we show that how the glioma cell fate decisions are modulated by both trans-activation and cis-inhibition mediated by the Fringe protein, providing insight into the design and control principles of the Notch signaling system and the gliomas. This paper presents a computational model for Notch1 signaling pathway in glioma cells based on intertwined dynamics with cis-inhibition and trans-activation involving the proteins Notch1, Dll1, Jag1, and Fringe. The results show that how the glioma cell fate transitions are performed by the Notch1 signaling. Transition from grade III ∼ IV with significantly high Notch1 to grade I ∼ II with high Notch1, and then to normal cells by repressing the Fringe levels or decreasing the strength of enhancement induced by Fringe.

  17. Short fatigue cracks growth and closure behavior in an austenitic stainless steel at 600 C and 650 C

    International Nuclear Information System (INIS)

    Polvora, J.P.; Laiarinandrasana, L.; Drubay, B.; Piques, R.; Martelet, B.

    1995-01-01

    In this work, following fatigue crack growth tests carried out at the CEN-SACLAY (AMORFIS program) by Laiarinandrasana (1994) on 316 L(N) CT specimens at 650 0 C and 600 0 C, short crack behavior of cracks emanating from machined notches is investigated. Experimental results are presented and discussions are directed to notch plasticity effect in relation with variations in crack opening stress intensity factor, K op , with crack lenght (author). 12 refs., 5 figs., 2 tab

  18. Incorporating mesh-insensitive structural stress into the fatigue assessment procedure of common structural rules for bulk carriers

    Directory of Open Access Journals (Sweden)

    Seong-Min Kim

    2015-01-01

    Full Text Available This study introduces a fatigue assessment procedure using mesh-insensitive structural stress method based on the Common Structural Rules for Bulk Carriers by considering important factors, such as mean stress and thickness effects. The fatigue assessment result of mesh-insensitive structural stress method have been compared with CSR procedure based on equivalent notch stress at major hot spot points in the area near the ballast hold for a 180 K bulk carrier. The possibility of implementing mesh-insensitive structural stress method in the fatigue assessment procedure for ship structures is discussed.

  19. Perilaku kekuatan fatigue paduan aluminium seri 2014 akibat proses termomekanikal aging

    Directory of Open Access Journals (Sweden)

    Sujita -

    2012-11-01

    Full Text Available Aluminium alloy seri 2014 is material which is often used in industry. Because excellence of mechanic properties. But also have the weakness at properties of strength fatigue. Though fatigue strength is important parameter in desain, especially if application at condition of dinamic loading, so that need the treatment to improve it. Fatigue strength go together the micro structure and mode of failure of failure of effect of stress concentration. Aging treatment ordinary done not yet given the influence which even on the contrary. Inconsistence of fatigue strength alluminium alloy show the phenomenon which must be research instructing at repair of fatigue strength , so that need the advanced treatment in the form of termomechanical aging. The research conducted by using alluminium alloy series 2014 formed by specimen fatigue test of the size diameter 8 mm and long 87 mm relate at standart (ASTM E 513, continued treatment of termomechanical aging, tested the fatigue, and monitoring microstructure of change. By structure micro, the treatmentTMA have the effect which sicnificant to improvement of Alluminium alloy series 2104 fatigue strength. Generally entire process TMA improve of limit fatigue from specimen at condition early of limit fatigue 48.3 N / mm2 (48.3 MPA, mounting to become 50 until MPA, or mount 3.4 % until 44.9%. With the process of termomechanical aging TMA I, happened the increasing of cycle number equal to, 26.3 %, at treatment of TMA II go up equal to 62 % and 89.8% at process of TMA III, at maximal loading (180 Mpa.

  20. Corrosion fatigue behaviour of ion nitrided AISI 4140 steel

    Energy Technology Data Exchange (ETDEWEB)

    Genel, K. [Sakarya Univ., Adapazari (Turkey). Mech. Eng. Dept.; Demirkol, M.; Guelmez, T. [Faculty of Mechanical Engineering, Istanbul Technical University, Guemuessuyu, 80191, Istanbul (Turkey)

    2000-08-31

    Machine components suffer from corrosion degradation of fatigue characteristics and improvement can be attained by the application of a nitriding treatment, particularly to low alloy steels. In the present study, the effect of ion nitriding on corrosion fatigue performance of AISI 4140 steel has been investigated by conducting a series of rotary bending corrosion fatigue tests at 95 Hz, in 3% NaCl aqueous solution. Hourglass shaped, 4 mm diameter fatigue specimens were ion nitrided at 748 K for 1, 3, 8 and 16 h prior to the tests. It was observed that distinct fatigue limit behaviour of ion nitrided steel in air completely disappeared in corrosive environment besides severe degradation in fatigue characteristics. An improvement reaching to 60% in corrosion fatigue strength can be attained by successive ion nitriding practice based on a fatigue life of 10{sup 7} cycles. An attempt was made to establish an empirical relationship between corrosion fatigue strength and relative case depth, which considers the size of the ion nitrided specimen. It was also determined that a power relationship holds between corrosion fatigue strength and fatigue life of ion nitrided steel. The presence of white layer has resulted in additional improvement in corrosion fatigue resistance, and it was observed that corrosion fatigue cracks were initiated dominantly under the white layer by pit formation mechanism. (orig.)

  1. Corrosion fatigue behaviour of ion nitrided AISI 4140 steel

    International Nuclear Information System (INIS)

    Genel, K.

    2000-01-01

    Machine components suffer from corrosion degradation of fatigue characteristics and improvement can be attained by the application of a nitriding treatment, particularly to low alloy steels. In the present study, the effect of ion nitriding on corrosion fatigue performance of AISI 4140 steel has been investigated by conducting a series of rotary bending corrosion fatigue tests at 95 Hz, in 3% NaCl aqueous solution. Hourglass shaped, 4 mm diameter fatigue specimens were ion nitrided at 748 K for 1, 3, 8 and 16 h prior to the tests. It was observed that distinct fatigue limit behaviour of ion nitrided steel in air completely disappeared in corrosive environment besides severe degradation in fatigue characteristics. An improvement reaching to 60% in corrosion fatigue strength can be attained by successive ion nitriding practice based on a fatigue life of 10 7 cycles. An attempt was made to establish an empirical relationship between corrosion fatigue strength and relative case depth, which considers the size of the ion nitrided specimen. It was also determined that a power relationship holds between corrosion fatigue strength and fatigue life of ion nitrided steel. The presence of white layer has resulted in additional improvement in corrosion fatigue resistance, and it was observed that corrosion fatigue cracks were initiated dominantly under the white layer by pit formation mechanism. (orig.)

  2. Tyrosine phosphorylation and proteolytic cleavage of Notch are required for non-canonical Notch/Abl signaling in Drosophila axon guidance.

    Science.gov (United States)

    Kannan, Ramakrishnan; Cox, Eric; Wang, Lei; Kuzina, Irina; Gu, Qun; Giniger, Edward

    2018-01-17

    Notch signaling is required for the development and physiology of nearly every tissue in metazoans. Much of Notch signaling is mediated by transcriptional regulation of downstream target genes, but Notch controls axon patterning in Drosophila by local modulation of Abl tyrosine kinase signaling, via direct interactions with the Abl co-factors Disabled and Trio. Here, we show that Notch-Abl axonal signaling requires both of the proteolytic cleavage events that initiate canonical Notch signaling. We further show that some Notch protein is tyrosine phosphorylated in Drosophila , that this form of the protein is selectively associated with Disabled and Trio, and that relevant tyrosines are essential for Notch-dependent axon patterning but not for canonical Notch-dependent regulation of cell fate. Based on these data, we propose a model for the molecular mechanism by which Notch controls Abl signaling in Drosophila axons. © 2018. Published by The Company of Biologists Ltd.

  3. Role of microstructure in the mean stress dependence of fatigue strength in Ti-6Al-4V alloy

    Energy Technology Data Exchange (ETDEWEB)

    Ivanova, S.G.; Cohen, F.S.; Biederman, R.R.; Sisson, R.D. Jr.

    1999-07-01

    The high cycle fatigue properties of Ti-6Al-4V alloy with six different microstructure/texture combinations were investigated. Only materials with lamellar and fine bimodal microstructures exhibited linear Goodman relationship on the constant fatigue life diagram. Materials with coarse bimodal and equiaxed microstructures had anomalous mean stress dependency, with HCF strength at intermediate mean stresses being significantly lower than predicted by Goodman relationship, regardless of whether material was forged or cross-rolled. The role of microstructure in mean stress sensitivity behavior of Ti-6Al-4V is studied. Cyclic strain tests were conducted for all microstructures, and the results of strain-controlled and stress-controlled cyclic tests are compared and discussed.

  4. Band-notched spiral antenna

    Science.gov (United States)

    Jeon, Jae; Chang, John

    2018-03-13

    A band-notched spiral antenna having one or more spiral arms extending from a radially inner end to a radially outer end for transmitting or receiving electromagnetic radiation over a frequency range, and one or more resonance structures positioned adjacent one or more segments of the spiral arm associated with a notch frequency band or bands of the frequency range so as to resonate and suppress the transmission or reception of electromagnetic radiation over said notch frequency band or bands.

  5. Self-reported fatigue and physical function in late mid-life

    DEFF Research Database (Denmark)

    Boter, Han; Mänty, Minna; Hansen, Åse Marie

    2014-01-01

    Objective: To determine the association between the 5 subscales of the Multidimensional Fatigue Inventory (MFI-20) and physical function in late mid-life. Design: Cross-sectional study. Subjects: A population-based sample of adults who participated in the Copenhagen Aging and Midlife Biobank...... population cohort (n = 4,964; age 49-63 years). Methods: Self-reported fatigue was measured using the MFI-20 comprising: general fatigue, physical fatigue, reduced activity, reduced motivation, and mental fatigue. Handgrip strength and chair rise tests were used as measures of physical function. Multiple...... logistic regression analyses were used to determine the associations between handgrip strength and the chair rise test with the MFI-20 subscales, adjusted for potential confounders. Results: After adjustments for potential confounders, handgrip strength was associated with physical fatigue (adjusted odds...

  6. Study on the effect of prior fatigue and creep-fatigue damage on the fatigue and creep characteristics of 316 FR stainless steel. 2nd report. The effect of prior creep-fatigue damage on the creep and fatigue characteristics

    International Nuclear Information System (INIS)

    Yamauchi, Masafumi; Chuman, Yasuharu; Otani, Tomomi; Takahashi, Yukio

    2001-01-01

    The effect of prior creep-fatigue damage on the creep and the fatigue characteristics was studied to investigate the creep-fatigue life evaluation procedure of 316FR stainless steel. Creep and fatigue tests were conducted at 550degC by using the specimen exposed to prior creep-fatigue cycles at the same temperature and interrupted at 1/4 Nf, 1/2 Nf and 3/4 Nf cycle. The creep and fatigue strength of the pre-damaged material showed monotonic reduction with the prior creep-fatigue damage compared with the virgin material. The creep ductility also showed monotonic reduction with the prior creep-fatigue damage. These results were evaluated by the stress-based Time Fraction Rule and the strain-based Ductility Exhaustion Method. The result showed that the application of the Ductility Exhaustion Method to the creep-fatigue damage evaluation is more promising than the Time Fraction Rule. (author)

  7. A preliminary bending fatigue spectrum for steel monostrand cables

    DEFF Research Database (Denmark)

    Winkler, Jan; Fischer, Gregor; Georgakis, Christos T.

    2011-01-01

    This paper presents the results of the experimental study on the bending fatigue resistance of high-strength steel monostrand cables. From the conducted fatigue tests in the high-stress, low-cycle region, a preliminary bending fatigue spectrum is derived for the estimation of monostrand cable...... service life expectancy. The presented preliminary bending fatigue spectrum of high-strength monostrands is currently unavailable in the published literature. The presented results provide relevant information on the bending mechanism and fatigue characteristics of monostrand steel cables in tension...... and flexure and show that localized cable bending has a pronounced influence on the fatigue resistance of cables under dynamic excitations....

  8. Effects of HTGR helium on the high cycle fatigue of structural materials

    International Nuclear Information System (INIS)

    Soo, P.; Sabatini, R.L.; Gerlach, L.

    1982-01-01

    High cycle fatigue tests have been conducted on Incoloy 800H and Hastelloy X in air and in HTGR helium environments containing low and high levels of moisture. For the helium environments, a higher mositure level usually gives a lower fatigue strength. For air, however, the strength is usually much lower than those for helium. For long test times at higher test temperatures, the fatigue strengths for Incoloy 800H often show a large decrease, and the fatigue limits are much lower than those anticipated from low cycle tests. Optical and scanning electron microscope observations were made to correlate fatigue life with surface and bulk microstructural changes in the material during test. Oxide scale cracking and spallation, surface recrystallization and intergranular attack appear to contribute to losses in fatigue strength

  9. Short fatigue cracks growth and closure behavior in an austenitic stainless steel at 600 C and 650 C

    Energy Technology Data Exchange (ETDEWEB)

    Polvora, J.P.; Laiarinandrasana, L.; Drubay, B.; Piques, R.; Martelet, B. [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)

    1995-12-31

    In this work, following fatigue crack growth tests carried out at the CEN-SACLAY (AMORFIS program) by Laiarinandrasana (1994) on 316 L(N) CT specimens at 650{sup 0}C and 600{sup 0}C, short crack behavior of cracks emanating from machined notches is investigated. Experimental results are presented and discussions are directed to notch plasticity effect in relation with variations in crack opening stress intensity factor, K{sub op}, with crack lenght (author). 12 refs., 5 figs., 2 tab.

  10. Creep-fatigue life prediction method using Diercks equation for Cr-Mo steel

    International Nuclear Information System (INIS)

    Sonoya, Keiji; Nonaka, Isamu; Kitagawa, Masaki

    1990-01-01

    For dealing with the situation that creep-fatigue life properties of materials do not exist, a development of the simple method to predict creep-fatigue life properties is necessary. A method to predict the creep-fatigue life properties of Cr-Mo steels is proposed on the basis of D. Diercks equation which correlates the creep-fatigue lifes of SUS 304 steels under various temperatures, strain ranges, strain rates and hold times. The accuracy of the proposed method was compared with that of the existing methods. The following results were obtained. (1) Fatigue strength and creep rupture strength of Cr-Mo steel are different from those of SUS 304 steel. Therefore in order to apply Diercks equation to creep-fatigue prediction for Cr-Mo steel, the difference of fatigue strength was found to be corrected by fatigue life ratio of both steels and the difference of creep rupture strength was found to be corrected by the equivalent temperature corresponding to equal strength of both steels. (2) Creep-fatigue life can be predicted by the modified Diercks equation within a factor of 2 which is nearly as precise as the accuracy of strain range partitioning method. Required test and analysis procedure of this method are not so complicated as strain range partitioning method. (author)

  11. The effect of aging treatment on the high temperature fatigue strength and fatigue fracture behaviour of friction welded domestic heat resisting steels (SUH3-SUS303)

    International Nuclear Information System (INIS)

    Lee, K.Y.; Oh, S.K.; Kim, H.J.

    1981-01-01

    In this study the experiment was carried out as the high temperature rotary bending fatigue testing under the condition of 700 0 C high temperature to the friction welded domestic heat resisting steels, SUH3-SUS303, which were 10 hr., 100 hr. aging heat treated at 700 0 C after solution treatment 1 hr. at 1060 0 C for the purpose of observing the effects of the high temperature fatigue strength and fatigue fracture behaviours as well as with various mechanical properties of welded joints. The results obtained are summarized as follows: 1) Through mechanical tests and microstructural examinations, the determined optimum welding conditions, rotating speed 2420 rpm, heating pressure 8 kg/mm 2 , upsetting pressure 22 kg/mm 2 , the amount of total upset 7 mm (heating time 3 sec and upsetting time 2 sec) were satisfied. 2) The solution treated material SUH3, SUS303 and SUH3-SUS303, have the highest inclination gradiant on S-N curve due to the high temperature fatigue testing for long time at 700 0 C. 3) The optimum aging time of friction welded SUH3-SUS303, has been recognized near the 10 hr. at 700 0 C after the solution treatment of 1 hr. at 1060 0 C. 4) The high temperature fatigue limits of aging treated materials were compared with those of raw material according to the extender of aging time, on 10 hr. aging, fatigue limits were increased by SUH3 75.4%, SUS303 28.5%, friction welded joints SUH3-SUS303 44.2% and 100 hr. aging the rate were 64.9%, 30.4% and 36.6% respectively. 5) The fatigue fractures occurred at the side of the base metal SUS303 of the friction welded joints SUH3-SUS303 and it is difficult to find out fractures at the friction welding interfaces. 6) The cracking mode of SUS303, SUH3-SUS303 is intergranular in any case, but SUH3 is fractured by transgranular cracking. (author)

  12. 組合せ応力をうける平滑材および切欠き材の疲労限のクライテリオンの検討

    OpenAIRE

    眞武, 友一; 今井, 康文

    1980-01-01

    In the previous works, the criterion for the fatigue strength of unnotched specimens under combined stress was proposed and treated separately from that of notched specimens, but it has been found that the former criterion is a special case of the latter. It has been also found that as long as the torsional fatigue strength is determined carefully, the same criterion can be applied to the results of both fracture and nonfracture tests, although the criterion was originally proposed for the ca...

  13. On the Eigenstrain Application of Shot-Peened Residual Stresses Within a Crystal Plasticity Framework: Application to Ni-Base Superalloy Specimens (Postprint)

    Science.gov (United States)

    2016-01-06

    alloys : a review,. Int J Fatigue 2002;24(10):1021–36. [4] Peyre P, Fabbro R, Merrien P, Lieurade HP. Laser shock processing of aluminium alloys ...Benedetti M, Fontanari V, Santus C, Bandini M. Notch fatigue behaviour of shot peened high-strength aluminium alloys : experiments and predictions...crack growth behaviour of aluminium alloy 2024-T351. Int J Fatigue 2009;31 (6):1081–8. [66] Korsunsky AM, Regino GM, Nowell D. Variational eigenstrain

  14. Soil Fatigue Due To Cyclically Loaded Foundations

    OpenAIRE

    Pytlik, Robert Stanislaw

    2016-01-01

    Cyclic loading on civil structures can lead to a reduction of strength of the used materials. A literature study showed that, in contrast to steel structures and material engineering, there are no design codes or standards for fatigue of foundations and the surrounding ground masses in terms of shear strength reduction. Scientific efforts to study the fatigue behaviour of geomaterials are mainly focused on strain accumulation, while the reduction of shear strength of geomaterials has not been...

  15. Effect of laser shock peening on residual stress and fatigue life of clad 2024 aluminium sheet containing scribe defects

    International Nuclear Information System (INIS)

    Dorman, M.; Toparli, M.B.; Smyth, N.; Cini, A.; Fitzpatrick, M.E.; Irving, P.E.

    2012-01-01

    Highlights: ► Effect of laser peen intensity on local residual stress fields in 2024 aluminium. ► Peening induces significant changes in surface topography and local hardness. ► Residual stress at peen spot centre in tension, spot overlap in compression. ► Notched fatigue lives increased; crack morphology correlated to residual stress field. ► Large peening power densities can cause fatigue life reduction in notched samples. - Abstract: Laser peening at a range of power densities has been applied to 2 mm-thick sheets of 2024 T351 aluminium. The induced residual stress field was measured using incremental hole drilling and synchrotron X-ray diffraction techniques. Fatigue samples were subjected to identical laser peening treatments followed by scribing at the peen location to introduce stress concentrations, after which they were fatigue tested. The residual stresses were found to be non-biaxial: orthogonal to the peen line they were tensile at the surface, moving into the desired compression with increased depth. Regions of peen spot overlap were associated with large compression strains; the centre of the peen spot remaining tensile. Fatigue lives showed moderate improvement over the life of unpeened samples for 50 μm deep scribes, and slight improvement for samples with 150 μm scribes. Use of the residual stress intensity K resid approach to calculate fatigue life improvement arising from peening was unsuccessful at predicting the relative effects of the different peening treatments. Possible reasons for this are explored.

  16. Fatigue characteristics of dual-phase steel sheets

    Energy Technology Data Exchange (ETDEWEB)

    Onn, Irwan Herman; Ahmad, Norhayati; Tamin, Mohd Nasir [Universiti Teknologi Malaysia, Skudai (Malaysia)

    2015-01-15

    Fatigue characteristics of dual-phase steel sheets, commonly used in automobile body construction were established. For this purpose, a series of fatigue tests, each at constant stress amplitude were conducted on 1.2 mm-thick, dual-phase DP600 steel sheet specimens with two different load ratios of minimum-to-maximum stress, R = 0.1 and -1. The resulting fatigue behavior is expressed in terms of fatigue strength-life (S-N) curves. Fatigue behavior of the steel sheets in the high-cycle fatigue region can be represented by Basquin's equation with coefficient and exponent value of 921.2 and 0.093, respectively. An endurance limit of 255 MPa is observed. In addition, fatigue strengths of the dual-phase steel sheets display lower magnitude than their bulk counterparts. Effect of mean stress on fatigue behavior of the steel sheets is well predicted by Walker's model. Exponential calibration factor is introduced to the models by SWT, Goodman and Morrow with comparable prediction to the Walker's model.

  17. Deformation and fatigue of tough 3D printed elastomer scaffolds processed by fused deposition modeling and continuous liquid interface production.

    Science.gov (United States)

    Miller, Andrew T; Safranski, David L; Wood, Catherine; Guldberg, Robert E; Gall, Ken

    2017-11-01

    Polyurethane (PU) based elastomers continue to gain popularity in a variety of biomedical applications as compliant implant materials. In parallel, advancements in additive manufacturing continue to provide new opportunities for biomedical applications by enabling the creation of more complex architectures for tissue scaffolding and patient specific implants. The purpose of this study was to examine the effects of printed architecture on the monotonic and cyclic mechanical behavior of elastomeric PUs and to compare the structure-property relationship across two different printing approaches. We examined the tensile fatigue of notched specimens, 3D crosshatch scaffolds, and two 3D spherical pore architectures in a physically crosslinked polycarbonate urethane (PCU) printed via fused deposition modeling (FDM) as well as a photo-cured, chemically-crosslinked, elastomeric PU printed via continuous liquid interface production (CLIP). Both elastomers were relatively tolerant of 3D geometrical features as compared to stiffer synthetic implant materials such as PEEK and titanium. PCU and crosslinked PU samples with 3D porous structures demonstrated a reduced tensile failure stress as expected without a significant effect on tensile failure strain. PCU crosshatch samples demonstrated similar performance in strain-based tensile fatigue as solid controls; however, when plotted against stress amplitude and adjusted by porosity, it was clear that the architecture had an impact on performance. Square shaped notches or pores in crosslinked PU appeared to have a modest effect on strain-based tensile fatigue while circular shaped notches and pores had little impact relative to smooth samples. When plotted against stress amplitude, any differences in fatigue performance were small or not statistically significant for crosslinked PU samples. Despite the slight difference in local architecture and tolerances, crosslinked PU solid samples were found to perform on par with PCU solid

  18. High-temperature reverse-bend fatigue strength of Inconel Alloy 625

    International Nuclear Information System (INIS)

    Purohit, A.; Greenfield, I.G.; Park, K.B.

    1983-06-01

    Inconel 625 has been selected as the clad material for Upgraded Transient Reactor Test Facility (TREAT Upgrade or TU) fuel assemblies. The range of temperatures investigated is 900 to 1100 0 C. A reverse-bend fatigue test program was selected as the most-effective method of determining the fatigue characteristics of Inconel alloy 625 sheet metal. The paper describes the reverse bend fatigue experiments, the results obtained, and the analysis of data

  19. Notch Inhibits Osteoblast Differentiation and Causes Osteopenia

    Science.gov (United States)

    Zanotti, Stefano; Smerdel-Ramoya, Anna; Stadmeyer, Lisa; Durant, Deena; Radtke, Freddy; Canalis, Ernesto

    2008-01-01

    Notch receptors are determinants of cell fate decisions. To define the role of Notch in the adult skeleton, we created transgenic mice overexpressing the Notch intracellular domain (NICD) under the control of the type I collagen promoter. First-generation transgenics were small and osteopenic. Bone histomorphometry revealed that NICD caused a decrease in bone volume, secondary to a reduction in trabecular number; osteoblast and osteoclast number were decreased. Low fertility of founder mice and lethality of young pups did not allow the complete establishment of transgenic lines. To characterize the effect of Notch overexpression in vitro, NICD was induced in osteoblasts and stromal cells from Rosanotch mice, in which a STOP cassette flanked by loxP sites is upstream of NICD, by transduction with an adenoviral vector expressing Cre recombinase (Cre) under the control of the cytomegalovirus (CMV) promoter (Ad-CMV-Cre). NICD impaired osteoblastogenesis and inhibited Wnt/β-catenin signaling. To determine the effects of notch1 deletion in vivo, mice in which notch1 was flanked by loxP sequences (notch1loxP/loxP) were mated with mice expressing Cre recombinase under the control of the osteocalcin promoter. Conditional null notch1 mice had no obvious skeletal phenotype, possibly because of rescue by notch2; however, 1-month-old females exhibited a modest increase in osteoclast surface and eroded surface. Osteoblasts from notch1loxP/loxP mice, transduced with Ad-CMV-Cre and transfected with Notch2 small interfering RNA, displayed increased alkaline phosphatase activity. In conclusion, Notch signaling in osteoblasts causes osteopenia and impairs osteo-blastogenesis by inhibiting the Wnt/β-catenin pathway. PMID:18420737

  20. Shear strength of the ASDEX upgrade TF coil insulation: Rupture, fatigue and creep behaviour

    International Nuclear Information System (INIS)

    Streibl, B.; Maier, E.A.; Perchermeier, J.; Cimbrico, P.L.; Varni, G.; Pisani, D.; Deska, R.; Endreat, J.

    1987-03-01

    This report is concerned with the interlaminar shear strength of the insulation system for the 16 toroidal field (TF) coils of ASDEX upgrade. The interlaminar shear properties of the glass-epoxy insulation are primarily determined by the resin system (ARALDIT-F, HT 907, DZ 40) and its curing procedure. The pure resin was therefore tested first in tension. The results were taken into account for setting up the method of curing the TF coils. Shear tests of the complete glass-epopxy system were then conducted with tubular torque specimens providing a nearly homogeneous stress distribution. In particular, the influence of the amount of flexibilizer (5, 10, 15 parts of resin weight = PoW) on the rupture and fatigue strengths was assessed at a temperature T=60 C, as also was the temperature dependence of the creep rate (40 C, 60 C, 80 C). The results obtained are not based on safe statistics. Nevertheless, they show clear trends. (orig.)

  1. On the influence of the environment on modeling the fatigue crack growth process

    International Nuclear Information System (INIS)

    Mc Evily, A.J.

    1987-01-01

    The effect of the environment at room and elevated temperature were considered with respect to the influence exerted on the basic mechanical aspects of the fatigue crack growth process. An experimental assessment of this influence was obtained by conducting fatigue crack growth tests both in air and vacuum and the results of such experiments are given. Topics considered include crack closure, short crack growth in notched and unnotched specimens, Mode II crack growth, and the effects of oxidation at elevated temperatures. It is shown that the basic mechanisms of fatigue crack growth can be greatly altered by the presence of oxide films at the fatigue crack tip. Modeling the mechanical aspects of the crack growth process is by itself a challenging task. In addition, the environmental considerations adds to the complexity of the modeling process. (Author)

  2. Compressive Fatigue in Wood

    DEFF Research Database (Denmark)

    Clorius, Christian Odin; Pedersen, Martin Bo Uhre; Hoffmeyer, Preben

    1999-01-01

    An investigation of fatigue failure in wood subjected to load cycles in compression parallel to grain is presented. Small clear specimens of spruce are taken to failure in square wave formed fatigue loading at a stress excitation level corresponding to 80% of the short term strength. Four...... frequencies ranging from 0.01 Hz to 10 Hz are used. The number of cycles to failure is found to be a poor measure of the fatigue performance of wood. Creep, maximum strain, stiffness and work are monitored throughout the fatigue tests. Accumulated creep is suggested identified with damage and a correlation...

  3. Influence of Exergaming on the Perception of Cancer-Related Fatigue.

    Science.gov (United States)

    da Silva Alves, Ricardo; Iunes, Denise Hollanda; Pereira, Isabela Carvalho; Borges, Juliana Bassalobre Carvalho; Nogueira, Denismar Alves; Silva, Andreia Maria; Lobato, Daniel Ferreira Moreira; Carvalho, Leonardo Cesar

    2017-04-01

    Exercise is recommended for cancer patients to reduce fatigue and improve quality of life. This study's aim is to evaluate the influence of an exergaming protocol on cancer-related fatigue, muscle fatigue, and muscle strength in cancer patients. We conducted a quasi-experimental control study using exergaming in all groups through an Xbox360 Kinect™ console, two to three times per week, for 20 sessions. Three groups were created: cancer patients in chemotherapy and/or radiotherapy group (CRG; n:15), cancer patients after chemotherapy and/or radiotherapy (CAG; n:15), and a control group (CG; n:15). They were assessed for cancer-related fatigue using the fatigue subscale of the Functional Assessment of Chronic Illness Therapy-Fatigue (FACIT-F) questionnaire. To assess dorsiflexor and plantar flexor muscle functioning, we used median frequency (MDF) of the surface electromyography and muscle strength using a dynamometer. The assessments were performed preintervention (EV0), after 10 sessions (EV1), and after 20 sessions (EV2). With an exergaming protocol, CRG and CAG showed a reduction in related fatigue compared with CG (P fatigue, including muscle fatigue, and increasing muscle strength in patients' legs.

  4. Fatigue crack retardation of high strength steel in saltwater

    International Nuclear Information System (INIS)

    Tokaji, K.; Ando, Z.; Imai, T.; Kojima, T.

    1983-01-01

    A high strength steel was studied in 3 percent saltwater to investigate the effects of a corrosive environment and sheer thickness on fatigue crack propagation behavior following the application of a single tensile overload. Experiments were carried out under sinusoidally varying loads at a load ratio of 0 and frequency of 10 H /SUB z/ . A single tensile overload was found to cause delayed retardation, and the crack propagation rate at first increased, followed by fairly rapid decrease to a minimum value and then increased gradually to its steady-state value, just as it did in air. The overload affected zone size and the retardation cycles increased with decreasing sheet thickness, just as they did in air. However, the zone size and the cycles were larger in 3 percent saltwater than in air. Since the crack propagation rates through the overload affected zone were not affected by the test environment, the longer retardation cycles in 3 percent saltwater were attributed to an enlargement of the overload affected zone size. The crack propagation behavior following the application of a single tensile overload in 3 percent saltwater was well explained by the crack closure concept

  5. Influence of non-metallic second phases on fatigue behaviour of high strength steel components; Efecto de segundas fases no metalicas sobre el comportamiento a fatiga de componentes de acero con elevadas solicitaciones

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, L.; Elvira, R.; Garcia de Andoin, A.; Pizarro, R.; Bertrand, C.

    2005-07-01

    To assess the real effect of the inclusion type on fatigue life of ultra clean high strength steels mechanical components made of 100Cr6 steel were fatigue tested and fracture surfaces analysed to determine the origin of fatigue cracks.Two heats proceedings from different steelmaking routes were taken for the tests. The material were forged into ring shape components which were fatigue tested under compression-compression loads. Failures were analysed by SFEM (Scanning field Emission Microscopy), proving that most of failures at high loads were originated by manganese sulphides of small size (10-70 micros), while less than 40% of all fatigue cracks due to inclusions were caused by titanium carbonitrides and hard oxides. It has been demonstrated that once number and size of hard inclusions have been reduced, the hazardous effect of oxides and carbonitrides on the fatigue life decreases also. However, softer inclusions as manganese sulphides, currently considered as less hazardous, play a more relevant role as direct cause of fatigue failure and they should be taken into account in a deeper way in order to balance both machinability and fatigue life requirements in high strength steel components. (Author) 11 refs.

  6. Fracture Toughness and Fatigue Crack Growth Behavior of As-Cast High-Entropy Alloys

    Science.gov (United States)

    Seifi, Mohsen; Li, Dongyue; Yong, Zhang; Liaw, Peter K.; Lewandowski, John J.

    2015-08-01

    The fracture toughness and fatigue crack growth behavior of two as-vacuum arc cast high-entropy alloys (HEAs) (Al0.2CrFeNiTi0.2 and AlCrFeNi2Cu) were determined. A microstructure examination of both HEA alloys revealed a two-phase structure consisting of body-centered cubic (bcc) and face-centered cubic (fcc) phases. The notched and fatigue precracked toughness values were in the range of those reported in the literature for two-phase alloys but significantly less than recent reports on a single phase fcc-HEA that was deformation processed. Fatigue crack growth experiments revealed high fatigue thresholds that decreased significantly with an increase in load ratio, while Paris law slopes exhibited metallic-like behavior at low R with significant increases at high R. Fracture surface examinations revealed combinations of brittle and ductile/dimpled regions at overload, with some evidence of fatigue striations in the Paris law regime.

  7. Prediction of fatigue life under service loading using the relative method

    International Nuclear Information System (INIS)

    Buch, A.

    1982-01-01

    Fatigue life estimates obtained with the local strain approach (LSA) and with the conventional nominal stress approach (NSA) were compared with experimental results obtained on notched AlCuMg2 aircraft material specimens with flight simulation random tensile loading. The effect of change of the reference stress, of the loading program and of some changes in the loading frequency distribution, on the ratio Nsub(exp)/Nsub(pred) was investigated. A material strain-life curve, a cyclic stress-strain curve. The Neuber-Topper rule Ksub(sigma) x Ksub(epsilon) = K 2 = const. and a K value estimated with an exact two-parameter notch factor formula for the case R = 0, N = 10 7 were used for life predictions. (orig./RW) [de

  8. PKCζ regulates Notch receptor routing and activity in a Notch signaling-dependent manner

    NARCIS (Netherlands)

    Sjöqvist, M.; Antfolk, D.; Ferraris, S.; Rraklli, V.; Haga, C.; Antila, C.; Mutvei, A.; Imanishi, S.Y.; Holmberg, J.; Jin, S.; Eriksson, J.E.; Lendahl, U.; Sahlgren, C.M.

    Activation of Notch signaling requires intracellular routing of the receptor, but the mechanisms controlling the distinct steps in the routing process is poorly understood. We identify PKCζ as a key regulator of Notch receptor intracellular routing. When PKCζ was inhibited in the developing chick

  9. Standard test method for plane-strain (Chevron-Notch) fracture toughness of metallic materials

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1997-01-01

    1.1 This test method covers the determination of plane-strain (chevron-notch) fracture toughnesses, KIv or KIvM, of metallic materials. Fracture toughness by this method is relative to a slowly advancing steady state crack initiated at a chevron-shaped notch, and propagating in a chevron-shaped ligament (Fig. 1). Some metallic materials, when tested by this method, exhibit a sporadic crack growth in which the crack front remains nearly stationary until a critical load is reached. The crack then becomes unstable and suddenly advances at high speed to the next arrest point. For these materials, this test method covers the determination of the plane-strain fracture toughness, KIvj or KIvM, relative to the crack at the points of instability. Note 1—One difference between this test method and Test Method E 399 (which measures KIc) is that Test Method E 399 centers attention on the start of crack extension from a fatigue precrack. This test method makes use of either a steady state slowly propagating crack, or a...

  10. Notch filters for port-Hamiltonian systems

    NARCIS (Netherlands)

    Dirksz, D.A.; Scherpen, J.M.A.; van der Schaft, A.J.; Steinbuch, M.

    2012-01-01

    In this paper a standard notch filter is modeled in the port-Hamiltonian framework. By having such a port-Hamiltonian description it is proven that the notch filter is a passive system. The notch filter can then be interconnected with another (nonlinear) port-Hamiltonian system, while preserving the

  11. Heterogeneity of breast cancer stem cells as evidenced with Notch-dependent and Notch-independent populations

    International Nuclear Information System (INIS)

    Wong, Nelson K Y; Fuller, Megan; Sung, Sandy; Wong, Fred; Karsan, Aly

    2012-01-01

    Studies have suggested the potential importance of Notch signaling to the cancer stem cell population in some tumors, but it is not known whether all cells in the cancer stem cell fraction require Notch activity. To address this issue, we blocked Notch activity in MCF-7 cells by expressing a dominant-negative MAML-GFP (dnMAML) construct, which inhibits signaling through all Notch receptors, and quantified the effect on tumor-initiating activity. Inhibition of Notch signaling reduced primary tumor sphere formation and side population. Functional quantification of tumor-initiating cell numbers in vivo showed a significant decrease, but not a complete abrogation, of these cells in dnMAML-expressing cells. Interestingly, when assessed in secondary assays in vitro or in vivo, there was no difference in tumor-initiating activity between the dnMAML-expressing cells and control cells. The fact that a subpopulation of dnMAML-expressing cells was capable of forming primary and secondary tumors indicates that there are Notch-independent tumor-initiating cells in the breast cancer cell line MCF-7. Our findings thus provide direct evidence for a heterogeneous cancer stem cell pool, which will require combination therapies against multiple oncogenic pathways to eliminate the tumor-initiating cell population

  12. Perilaku kekuatan fatigue paduan aluminium seri 2014 akibat proses termomekanikal aging

    OpenAIRE

    Sujita -

    2012-01-01

    Aluminium alloy seri 2014 is material which is often used in industry. Because excellence of mechanic properties. But also have the weakness at properties of strength fatigue. Though fatigue strength is important parameter in desain, especially if application at condition of dinamic loading, so that need the treatment to improve it. Fatigue strength go together the micro structure and mode of failure of failure of effect of stress concentration. Aging treatment ordinary done not yet given the...

  13. a Study on the Fretting Fatigue Life of Zircaloy Alloys

    Science.gov (United States)

    Kwon, Jae-Do; Park, Dae-Kyu; Woo, Seung-Wan; Chai, Young-Suck

    Studies on the strength and fatigue life of machines and structures have been conducted in accordance with the development of modern industries. In particular, fine and repetitive cyclic damage occurring in contact regions has been known to have an impact on fretting fatigue fractures. The main component of zircaloy alloy is Zr, and it possesses good mechanical characteristics at high temperatures. This alloy is used in the fuel rod material of nuclear power plants because of its excellent resistance. In this paper, the effect of the fretting damage on the fatigue behavior of the zircaloy alloy is studied. Further, various types of mechanical tests such as tension and plain fatigue tests are performed. Fretting fatigue tests are performed with a flat-flat contact configuration using a bridge-type contact pad and plate-type specimen. Through these experiments, it is found that the fretting fatigue strength decreases by about 80% as compared to the plain fatigue strength. Oblique cracks are observed in the initial stage of the fretting fatigue, in which damaged areas are found. These results can be used as the basic data for the structural integrity evaluation of corrosion-resisting alloys considering the fretting damages.

  14. Characterization of activating mutations of NOTCH3 in T-cell acute lymphoblastic leukemia and anti-leukemic activity of NOTCH3 inhibitory antibodies.

    Science.gov (United States)

    Bernasconi-Elias, P; Hu, T; Jenkins, D; Firestone, B; Gans, S; Kurth, E; Capodieci, P; Deplazes-Lauber, J; Petropoulos, K; Thiel, P; Ponsel, D; Hee Choi, S; LeMotte, P; London, A; Goetcshkes, M; Nolin, E; Jones, M D; Slocum, K; Kluk, M J; Weinstock, D M; Christodoulou, A; Weinberg, O; Jaehrling, J; Ettenberg, S A; Buckler, A; Blacklow, S C; Aster, J C; Fryer, C J

    2016-11-24

    Notch receptors have been implicated as oncogenic drivers in several cancers, the most notable example being NOTCH1 in T-cell acute lymphoblastic leukemia (T-ALL). To characterize the role of activated NOTCH3 in cancer, we generated an antibody that detects the neo-epitope created upon gamma-secretase cleavage of NOTCH3 to release its intracellular domain (ICD3), and sequenced the negative regulatory region (NRR) and PEST (proline, glutamate, serine, threonine) domain coding regions of NOTCH3 in a panel of cell lines. We also characterize NOTCH3 tumor-associated mutations that result in activation of signaling and report new inhibitory antibodies. We determined the structural basis for receptor inhibition by obtaining the first co-crystal structure of a NOTCH3 antibody with the NRR protein and defined two distinct epitopes for NRR antibodies. The antibodies exhibit potent anti-leukemic activity in cell lines and tumor xenografts harboring NOTCH3 activating mutations. Screening of primary T-ALL samples reveals that 2 of 40 tumors examined show active NOTCH3 signaling. We also identified evidence of NOTCH3 activation in 12 of 24 patient-derived orthotopic xenograft models, 2 of which exhibit activation of NOTCH3 without activation of NOTCH1. Our studies provide additional insights into NOTCH3 activation and offer a path forward for identification of cancers that are likely to respond to therapy with NOTCH3 selective inhibitory antibodies.

  15. High speed rails. Fatigue behaviour

    International Nuclear Information System (INIS)

    Duart, J. M.; Pero-Sanz, J. A.; Verdeja, J. I.

    2005-01-01

    In recent years, passenger train speed and freight train load have increased to enhance efficiency of rail road transportation. These trends have increased the severity of rail service conditions, calling for rails with greater wear resistance, strength and fatigue behaviour. In the United Stated and Europe, track site weld rails are made entirely by aluminothermic process. This work describes the results of experimental study conducted on bending fatigue strength of plain rails and aluminothermic welded rails with preheating procedures (oxipropane and air-induced propane) approved by railways authorities. Compliance with the required fatigue strength shall be ascertained by 4 point pulsating bending test in accordance with European standards by aluminothermic welding in rails. The locati method, based in the empirical Miner's law about the cumulative damage on a fatigue tested material, allows, once known the Wohler curve of the welding process in use to settle the fatigue tensile limit at 50% with only one test. The values obtained at 2.10''6 cycles for plain rails (S f =353 MPa), oxipropane preheated aluminothermic weld rails (S f =225 MPa), and propane-air induced aluminothermic weld rails (S f =210 MPa) are very similar to those resulting from test method stated in the European Standard. From our point of view and due to its ease, speediness and savings, this is the most suitable test to check the quality and compare the aluminothermic processes in use. (Author) 15 refs

  16. On the direction of a crack initiated from an orthotropic bi-material notch composed of materials with non-uniform fracture mechanics properties

    Czech Academy of Sciences Publication Activity Database

    Profant, T.; Klusák, Jan; Ševeček, O.; Kotoul, M.

    525-526, č. 1 (2013), s. 545-548 ISSN 1013-9826. [Fracture and Damage Mechanics /11./. Xi'an, 18.09.2012-21.09.2012] R&D Projects: GA ČR GA101/09/1821; GA ČR GAP108/10/2049 Institutional support: RVO:68081723 Keywords : Orthotropic bi-material notch * generalized stress intensity factor * complex potentials Subject RIV: JL - Materials Fatigue, Friction Mechanics

  17. Weld investigations by 3D analyses of Charpy V-notch specimens

    DEFF Research Database (Denmark)

    Tvergaard, Viggo; Needleman, Allan

    2005-01-01

    The Charpy impact test is a standard procedure for determining the ductile-brittle transition in welds. The predictions of such tests have been investigated by full three dimensional transient analyses of Charpy V-notch specimens. The material response is characterised by an elastic...... parameters in the weld material differ from those in the base material, and the heat a®ected zone (HAZ) tends to be more brittle than the other material regions. The effect of weld strength undermatch or overmatch is an important issue. Some specimens, for which the notched surface is rotated relative...... to the surface of the test piece, have so complex geometry that only a full 3D analysis is able to account for the interaction of failure in the three different material regions, whereas ther specimens can be approximated in terms of a planar analysis....

  18. Evaluation of the MMCLIFE 3.0 code in predicting crack growth in titanium aluminide composites

    International Nuclear Information System (INIS)

    Harmon, D.; Larsen, J.M.

    1999-01-01

    Crack growth and fatigue life predictions made with the MMCLIFE 3.0 code are compared to test data for unidirectional, continuously reinforced SCS-6/Ti-14Al-21Nb (wt pct) composite laminates. The MMCLIFE 3.0 analysis package is a design tool capable of predicting strength and fatigue performance in metal matrix composite (MMC) laminates. The code uses a combination of micromechanic lamina and macromechanic laminate analyses to predict stresses and uses linear elastic fracture mechanics to predict crack growth. The crack growth analysis includes a fiber bridging model to predict the growth of matrix flaws in 0 degree laminates and is capable of predicting the effects of interfacial shear stress and thermal residual stresses. The code has also been modified to include edge-notch flaws in addition to center-notch flaws. The model was correlated with constant amplitude, isothermal data from crack growth tests conducted on 0- and 90 degree SCS-6/Ti-14-21 laminates. Spectrum fatigue tests were conducted, which included dwell times and frequency effects. Strengths and areas for improvement for the analysis are discussed

  19. Strength Training Following Hematopoietic Stem Cell Transplantation

    Science.gov (United States)

    Hacker, Eileen Danaher; Larson, Janet; Kujath, Amber; Peace, David; Rondelli, Damiano; Gaston, Lisa

    2010-01-01

    Background Patients receiving high-dose chemotherapy and hematopoietic stem cell transplantation (HSCT) experience considerable reductions in physical activity and deterioration of their health status. Objective The purpose of this pilot study was to test the effects of strength training compared to usual activity on physical activity, muscle strength, fatigue, health status perceptions, and quality of life following HSCT. Interventions/Methods Nineteen subjects were randomized to the exercise or control group. Moderate intensity strength training began following discharge from the hospital. Dependent variables included physical activity, muscle strength, fatigue, health status perceptions and quality of life. Variables were measured prior to admission to the hospital for HSCT, day 8 following HSCT, and six weeks following discharge from the hospital. Results Significant time effects were noted for many variables with anticipated declines in physical activity, muscle strength, fatigue, and health status perceptions immediately after HSCT with subsequent improvements six weeks following hospital discharge. One group effect was noted with subjects in the exercise group reporting less fatigue than subjects in the control group. Although no significant interactions were detected, the trends suggest that the exercise group may be more physically active following the intervention compared to the usual activity group. Conclusions This study demonstrates the potential positive effects of strength training on physical activity, fatigue, and quality of life in people receiving high-dose chemotherapy and HSCT. Implications for Practice Preliminary evidence is provided for using strength training to enhance early recovery following HSCT. Elastic resistance bands are easy to use and relatively inexpensive. PMID:21116175

  20. Corrosion fatigue initiation and short crack growth behaviour of austenitic stainless steels under light water reactor conditions

    International Nuclear Information System (INIS)

    Seifert, H.P.; Ritter, S.; Leber, H.J.

    2012-01-01

    Highlights: ► Corrosion fatigue in austenitic stainless steels under light water reactor conditions. ► Identification of major parameters of influence on initiation and short crack growth. ► Critical system conditions for environmental reduction of fatigue initiation life. ► Comparison with the environmental factor (F env ) approach. - Abstract: The corrosion fatigue initiation and short crack growth behaviour of different wrought low-carbon and stabilised austenitic stainless steels was characterised under simulated boiling water reactor and pressurised water reactor primary water conditions by cyclic fatigue tests with sharply notched fracture mechanics specimens. The special emphasis was placed to the behaviour at low corrosion potentials and, in particular, to hydrogen water chemistry conditions. The major parameter effects and critical conjoint threshold conditions, which result in relevant environmental reduction and acceleration of fatigue initiation life and subsequent short crack growth, respectively, are discussed and summarised. The observed corrosion fatigue behaviour is compared with the fatigue evaluation procedures in codes and regulatory guidelines.

  1. Fatigue properties for the fracture strength of columnar accessory minerals embedded within metamorphic tectonites: implications for stress magnitude in continental crust at the depth of the brittle-plastic transition zone

    Science.gov (United States)

    Kimura, N.; Iwashita, N.; Masuda, T.

    2009-04-01

    1. Introduction Previous studies have compiled yield-strength profiles of continental lithosphere based on the results of laboratory measurements and numerical calculations; however, yield-strength values remain poorly constrained, especially at depths below the brittle-plastic transition zone. Recent studies by the authors have refined the microboudin technique for estimating palaeostress magnitude in the deep crust (> 10 km depth). This technique has the potential to provide important information on stress levels in the deep continental crust, an environment to which available in situ stress measurements and palaeopiezometric methods cannot be applied. In applying the microboudinage technique, obtaining an estimate of the palaeostress magnitude requires knowledge of the fracture strength of columnar accessory minerals (e.g., tourmaline, amphibole, and epidote) that are subjected to brittle fracturing during plastic deformation of the surrounding matrix minerals. The absolute magnitude of fracture strength is known to show a marked reduction in the case of fatigue fracture. Fatigue fracture falls into two categories: static fatigue and cyclic fatigue. In the field of experimental rock deformation, stress corrosion by water molecules (static fatigue) is commonly invoked as the mechanism of fatigue fracture; however, evidence of both static and cyclic fatigue has been reported from studies of natural geological samples. The present study focused on the fatigue properties of columnar accessory minerals at high temperatures, with the aim of improving the accuracy of estimates of natural palaeostress magnitude at depth in the crust. 2. Constant stress-rate test A constant stress-rate test was performed to determine the influence of static fatigue on the strength of columnar accessory minerals. The test was conducted under three-point bending with a span distance of 10 mm. Temperature conditions and the crosshead speed were set in the ranges of ambient to 600°C, and 0

  2. Investigation of fatigue strength of tool steels in sheet-bulk metal forming

    Science.gov (United States)

    Pilz, F.; Gröbel, D.; Merklein, M.

    2018-05-01

    To encounter trends regarding an efficient production of complex functional components in forming technology, the process class of sheet-bulk metal forming (SBMF) can be applied. SBMF is characterized by the application of bulk forming operations on sheet metal, often in combination with sheet forming operations [1]. The combination of these conventional process classes leads to locally varying load conditions. The resulting load conditions cause high tool loads, which lead to a reduced tool life, and an uncontrolled material flow. Several studies have shown that locally modified tool surfaces, so-called tailored surfaces, have the potential to control the material flow and thus to increase the die filling of functional elements [2]. A combination of these modified tool surfaces and high tool loads in SBMF is furthermore critical for the tool life and leads to fatigue. Tool fatigue is hardly predictable and due to a lack of data [3], a challenge in tool design. Thus, it is necessary to provide such data for tool steels used in SBMF. The aim of this study is the investigation of the influence of tailored surfaces on the fatigue strength of the powder metallurgical tool steel ASP2023 (1.3344, AISI M3:2), which is typically used in cold forging applications, with a hardness 60 HRC ± 1 HRC. To conduct this investigation, the rotating bending test is chosen. As tailored surfaces, a DLC-coating and a surface manufactured by a high-feed-milling process are chosen. As reference a polished surface which is typical for cold forging tools is used. Before the rotating bending test, the surface integrity is characterized by measuring topography and residual stresses. After testing, the determined values of the surface integrity are correlated with the reached fracture load cycle to derive functional relations. Based on the gained results the investigated tailored surfaces are evaluated regarding their feasibility to modify tool surfaces within SBMF.

  3. Effects of mental fatigue on the development of physical fatigue: a neuroergonomic approach.

    Science.gov (United States)

    Mehta, Ranjana K; Parasuraman, Raja

    2014-06-01

    The present study used a neuroergonomic approach to examine the interaction of mental and physical fatigue by assessing prefrontal cortex activation during submaximal fatiguing handgrip exercises. Mental fatigue is known to influence muscle function and motor performance, but its contribution to the development of voluntary physical fatigue is not well understood. A total of 12 participants performed separate physical (control) and physical and mental fatigue (concurrent) conditions at 30% of their maximal handgrip strength until exhaustion. Functional near infrared spectroscopy was employed to measure prefrontal cortex activation, whereas electromyography and joint steadiness were used simultaneously to quantify muscular effort. Compared to the control condition, blood oxygenation in the bilateral prefrontal cortex was significantly lower during submaximal fatiguing contractions associated with mental fatigue at exhaustion, despite comparable muscular responses. The findings suggest that interference in the prefrontal cortex may influence motor output during tasks that require both physical and cognitive processing. A neuroergonomic approach involving simultaneous monitoring of brain and body functions can provide critical information on fatigue development that may be overlooked during traditional fatigue assessments.

  4. Biochemical characterization and cellular effects of CADASIL mutants of NOTCH3.

    Directory of Open Access Journals (Sweden)

    He Meng

    Full Text Available Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL is the best understood cause of dominantly inherited stroke and results from NOTCH3 mutations that lead to NOTCH3 protein accumulation and selective arterial smooth muscle degeneration. Previous studies show that NOTCH3 protein forms multimers. Here, we investigate protein interactions between NOTCH3 and other vascular Notch isoforms and characterize the effects of elevated NOTCH3 on smooth muscle gene regulation. We demonstrate that NOTCH3 forms heterodimers with NOTCH1, NOTCH3, and NOTCH4. R90C and C49Y mutant NOTCH3 form complexes which are more resistant to detergents than wild type NOTCH3 complexes. Using quantitative NOTCH3-luciferase clearance assays, we found significant inhibition of mutant NOTCH3 clearance. In coculture assays of NOTCH function, overexpressed wild type and mutant NOTCH3 significantly repressed NOTCH-regulated smooth muscle transcripts and potently impaired the activity of three independent smooth muscle promoters. Wildtype and R90C recombinant NOTCH3 proteins applied to cell cultures also blocked canonical Notch fuction. We conclude that CADASIL mutants of NOTCH3 complex with NOTCH1, 3, and 4, slow NOTCH3 clearance, and that overexpressed wild type and mutant NOTCH3 protein interfere with key NOTCH-mediated functions in smooth muscle cells.

  5. Analysis list: NOTCH1 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NOTCH1 Blood + hg19 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/target/NOTCH1.1....tsv http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/target/NOTCH1.5.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/target/NOTC...H1.10.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/colo/NOTCH1.Blood.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/colo/Blood.gml ...

  6. A fatigue initiation parameter for gas pipe steel submitted to hydrogen absorption

    Energy Technology Data Exchange (ETDEWEB)

    Capelle, J; Gilgert, J; Pluvinage, G [LaBPS - Ecole Nationale d' Ingenieurs de Metz et Universite Paul Verlaine Metz, Ile du Saulcy, 57045 Metz (France)

    2010-01-15

    Fatigue initiation resistance has been determined on API 5L X52 gas pipe steel. Tests have been performed on Roman Tile (RT) specimen and fatigue initiation was detected by acoustic emission. A comparison between specimens electrolytically charged with hydrogen and specimens without hydrogen absorption were made and it has been noted that fatigue initiation time is reduced of about 3 times when hydrogen embrittlement occurs. It has been proposed to use the concept of Notch Stress Intensity Factor as parameter to describe the fatigue initiation process. Due to the fact that hydrogen is localised in area with high hydrostatic pressure, definitions of local effective stress and distance have been modified when hydrogen is absorbed. This modification can be explained by existence of a ductile-brittle transition with hydrogen concentration. The fatigue initiation resistance curve allows that to determine a threshold for large number of cycles of fatigue non initiation. This parameter introduced in a Failure Assessment Diagram (FAD) provides supplementary information about defect nocivity in gas pipes: a non-critical defect can be detected as dormant or not dormant defect i.e., as non propagating defect. (author)

  7. A randomized controlled trial on the effects of combined aerobic-resistance exercise on muscle strength and fatigue, glycemic control and health-related quality of life of type 2 diabetes patients.

    Science.gov (United States)

    Tomas-Carus, Pablo; Ortega-Alonso, Alfredo; Pietilainen, Kirsi H; Santos, Vitoria; Goncalves, Helena; Ramos, Jorge; Raimundo, Armando

    2016-05-01

    The aim of this paper was to evaluate the effects of a 12-weeks combined aerobic-resistance exercise therapy on fatigue and isokinetic muscle strength, glycemic control and health-related quality of life (HRQoL) in moderately affected type 2 diabetes (T2DM) patients. A randomized controlled trial design was employed. Forty-three T2DM patients were assigned to an exercise group (N.=22), performing 3 weekly sessions of 60 minutes of combined aerobic-resistance exercise for 12-weeks; or a no exercise control group (N.=21). Both groups were evaluated at a baseline and after 12-weeks of exercise therapy for: 1) muscle strength and fatigue by isokinetic dynamometry; 2) plasma glycated hemoglobin A1C (HbA1C); and 3) HRQoL utilizing the SF-36 questionnaire. The exercise therapy led to improvements in muscle fatigue in knee extensors (-55%) and increased muscle strength in knee flexors and extensors (+15 to +30%), while HbA1C decreased (-18%). In addition, the exercising patients showed sizeable improvements in HRQoL: physical function (+53%), vitality (+21%) and mental health (+40%). Twelve-weeks of combined aerobic-resistance exercise was highly effective to improve muscle strength and fatigue, glycemic control and several aspects of HRQoL in T2DM patients. These data encourage the use of aerobic and resistance exercise in the good clinical care of T2DM.

  8. TIG-dressing of High Strength Butt Welded Connection. Part 2 : Physical Testing and Modelling

    NARCIS (Netherlands)

    Van Es, S.H.J.; Kolstein, M.H.; Pijpers, R.J.M.; Bijlaard, F.S.K.

    2014-01-01

    Weld improvement techniques are aimed at reducing the notch effects of welds and generally focus on two aspects: a change of geometry of the weld toe and a change of the weld residual stresses. In this paper, fatigue tests are discussed, performed on butt welded specimens in steel grades ranging

  9. TIG-dressing of high strength butt welded connection - Part 2: physical testing and modelling

    NARCIS (Netherlands)

    Es, S.H.J. van; Kolstein, M.H.; Pijpers, R.J.M.; Bijlaard, F.S.K.

    2013-01-01

    Weld improvement techniques are aimed at reducing the notch effects of welds and generally focus on two aspects: a change of geometry of the weld toe and a change of the weld residual stresses. In this paper, fatigue tests are discussed, performed on butt welded specimens in steel grades ranging

  10. Cumulative fatigue and creep-fatigue damage at 3500C on recrystallized zircaloy 4

    International Nuclear Information System (INIS)

    Brun, G.; Pelchat, J.; Floze, J.C.; Galimberti, M.

    1985-06-01

    An experimental programme undertaken by C.E.A., E.D.F. and FRAGEMA with the aim of characterizing the fatigue and creep fatigue behaviour of zircaloy-4 following annealing treatments (recrystallized, stress-delived) is in progress. The results given below concern only recrystallized material. Cyclic properties, low-cycle fatigue curves and creep behaviour laws under stresses have been established. Sequential tests of pure fatigue and creep-fatigue were performed. The cumulative life fractions at fracture depend on the sequence of leading, stress history and number of cycles of prestressing. The MINER's rule appears to be conservative with regard to a low-high loading sequence whereas it is not for the reverse high-low loading sequences. Fatigue and creep damage are not interchangeable. Pre-creep improves the fatigue resistance. Pre-fatigue improves the creep strength as long as the beneficial effect of cyclic hardening overcomes the damaging effect of surface cracking. The introduction of a tension hold time into the fatigue cycle slightly increases cyclic hardening and reduces the number of cycles to failure. For hold times of less than one hour, the sum of fatigue and creep life fractions is closed to one

  11. Low cycle fatigue behavior of titanium carbide coated molybdenum

    International Nuclear Information System (INIS)

    Nishi, Hiroshi; Oku, Tatsuo; Kodaira, Tsuneo; Kikuyama, Toshihiko

    1985-09-01

    Sintered molybdenum coated by TiC is used for the first wall such as a troidal fixed limiter and a magnetic limiter plate in JT-60, that is being operated at JAERI presently. This report describes the low cycle fatigue behavior of sintered molybdenum and the influence of TiC coating on fatigue strength. The low cycle fatigue test was conducted at room temperature and 500 0 C. The test results was also analyzed by fractographic observation, metallography and element analysis using EPMA. The low cycle fatigue strength of the molybdenum coated by TiC at 500 0 C is decreased compared with the one at room temperature. (author)

  12. Effects of pulse current stimulation on the thermal fatigue crack propagation behavior of CHWD steel

    International Nuclear Information System (INIS)

    Lin, H.Q.; Zhao, Y.G.; Gao, Z.M.; Han, L.G.

    2008-01-01

    The fatigue crack propagating behaviors of cast hot working die (CHWD) steel untreated and treated by an electric current in the intermediate stage of thermal fatigue were investigated in the present study. The circle/elliptical heating affected zone (HAZ) was formed ahead of the notch tip on the fatigued specimens after pulse electric current stimulation. Both SEM observation and X-ray diffraction analysis revealed that pulse electric current stimulation refined grains/subgrains in the HAZs. With the prolonging of discharging duration, the grains/subgrains decreased in size and the dislocation density and microhardness increased gradually. The grain refinement and dislocation density increase played an important role in the material strengthening, which inevitably enhanced the propagation resistance and delayed the propagation of thermal fatigue cracks. Therefore, the pulse electric current stimulation was an effective method to improve the service lifetime of die material

  13. Loss of PTB or negative regulation of Notch mRNA reveals distinct zones of Notch and actin protein accumulation in Drosophila embryo.

    Directory of Open Access Journals (Sweden)

    Cedric S Wesley

    Full Text Available Polypyrimidine Tract Binding (PTB protein is a regulator of mRNA processing and translation. Genetic screens and studies of wing and bristle development during the post-embryonic stages of Drosophila suggest that it is a negative regulator of the Notch pathway. How PTB regulates the Notch pathway is unknown. Our studies of Drosophila embryogenesis indicate that (1 the Notch mRNA is a potential target of PTB, (2 PTB and Notch functions in the dorso-lateral regions of the Drosophila embryo are linked to actin regulation but not their functions in the ventral region, and (3 the actin-related Notch activity in the dorso-lateral regions might require a Notch activity at or near the cell surface that is different from the nuclear Notch activity involved in cell fate specification in the ventral region. These data raise the possibility that the Drosophila embryo is divided into zones of different PTB and Notch activities based on whether or not they are linked to actin regulation. They also provide clues to the almost forgotten role of Notch in cell adhesion and reveal a role for the Notch pathway in cell fusions.

  14. Loss of PTB or Negative Regulation of Notch mRNA Reveals Distinct Zones of Notch and Actin Protein Accumulation in Drosophila Embryo

    Science.gov (United States)

    Wesley, Cedric S.; Guo, Heng; Chaudhry, Kanita A.; Thali, Markus J.; Yin, Jerry C.; Clason, Todd; Wesley, Umadevi V.

    2011-01-01

    Polypyrimidine Tract Binding (PTB) protein is a regulator of mRNA processing and translation. Genetic screens and studies of wing and bristle development during the post-embryonic stages of Drosophila suggest that it is a negative regulator of the Notch pathway. How PTB regulates the Notch pathway is unknown. Our studies of Drosophila embryogenesis indicate that (1) the Notch mRNA is a potential target of PTB, (2) PTB and Notch functions in the dorso-lateral regions of the Drosophila embryo are linked to actin regulation but not their functions in the ventral region, and (3) the actin-related Notch activity in the dorso-lateral regions might require a Notch activity at or near the cell surface that is different from the nuclear Notch activity involved in cell fate specification in the ventral region. These data raise the possibility that the Drosophila embryo is divided into zones of different PTB and Notch activities based on whether or not they are linked to actin regulation. They also provide clues to the almost forgotten role of Notch in cell adhesion and reveal a role for the Notch pathway in cell fusions. PMID:21750738

  15. Notch Signaling: Piercing a Harness of Simplicity

    NARCIS (Netherlands)

    Helbig, Christina; Amsen, Derk

    2015-01-01

    The Notch pathway is an attractive therapeutic target for treatment of cancer and T cell-mediated pathology, but Notch inhibition leads to many side effects. Pinnell et al. (2015) demonstrate that oncogenic functions can be separated biochemically from other functions of Notch, opening new options

  16. A biomechanical evaluation of magnetic resonance imaging-compatible wire in cervical spine fixation.

    Science.gov (United States)

    Scuderi, G J; Greenberg, S S; Cohen, D S; Latta, L L; Eismont, F J

    1993-10-15

    In a bovine cervical spine model, the ultimate and fatigue strengths as well as relative magnetic resonance imaging artifact produced by titanium, cobalt chrome, and stainless-steel wires in various gauges were assessed. Single-cycle and fatigue strength of wire constructs were measured. Although larger wires generally had greater static strength, fatigue strength was mixed. Sixteen-gauge titanium, and all stainless-steel models (22-gauge braided, 18-gauge, and Songer cable) withstood 10,000 cycles without failure, whereas all other constructs rarely could withstand a similar 10,000 cycles. Magnetic resonance imaging was performed on calf cervical spines instrumented with the various materials. Titanium exhibited the least artifact, stainless-steel showed the greatest artifact, and cobalt chrome an intermediate amount. Although titanium wire produces the least amount of magnetic resonance imaging artifact, it remains a poor choice for implant fixation because its notch sensitivity reduces its fatigue resistance compared with stainless steel, which remains the more dependable choice.

  17. Nanotwin-enhanced fatigue resistance of ultrathin Ag films for flexible electronics applications

    Energy Technology Data Exchange (ETDEWEB)

    Wan, H.Y. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016 (China); Luo, X.M.; Li, X.; Liu, W. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Zhang, G.P., E-mail: gpzhang@imr.ac.cn [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China)

    2016-10-31

    Fatigue strength and cracking behavior of ultrathin Ag films on flexible polyimide substrates were investigated. The experimental results show that the enhanced fatigue strength of the 50 nm-thick Ag films not only is caused by the increase in the yield stress and the suppression of cyclic strain localization, but also results from the severe crack deflection induced by the formation of nanotwins, which delays the fatigue crack initiation and enhances the resistance to the fatigue crack growth. The fatigue cracking mechanism for the nanocrystalline metal films is evaluated.

  18. Fatigue Reliability and Calibration of Fatigue Design Factors for Offshore Wind Turbines

    Directory of Open Access Journals (Sweden)

    Sergio Márquez-Domínguez

    2012-06-01

    Full Text Available Consequences of failure of offshore wind turbines (OWTs is in general lower than consequences of failure of, e.g., oil & gas platforms. It is reasonable that lower fatigue design factors can be applied for fatigue design of OWTs when compared to other fixed offshore structures. Calibration of appropriate partial safety factors/Fatigue Design Factors (FDF for steel substructures for OWTs is the scope of this paper. A reliability-based approach is used and a probabilistic model has been developed, where design and limit state equations are established for fatigue failure. The strength and load uncertainties are described by stochastic variables. SN and fracture mechanics approaches are considered for to model the fatigue life. Further, both linear and bi-linear SN-curves are formulated and various approximations are investigated. The acceptable reliability level for fatigue failure of OWTs is discussed and results are presented for calibrated optimal fatigue design factors. Further, the influence of inspections is considered in order to extend and maintain a given target safety level.

  19. Handgrip performance in relation to self-perceived fatigue, physical functioning and circulating IL-6 in elderly persons without inflammation

    Directory of Open Access Journals (Sweden)

    Gorus Ellen

    2007-03-01

    Full Text Available Abstract Background Low grip strength is recognized as one of the characteristics of frailty, as are systemic inflammation and the sensation of fatigue. Contrary to maximal grip strength, the physical resistance of the muscles to fatigue is not often included in the clinical evaluation of elderly patients. The aim of this study was to investigate if the grip strength and the resistance of the handgrip muscles to fatigue are related to self-perceived fatigue, physical functioning and circulating IL-6 in independently living elderly persons. Methods Forty elderly subjects (15 female and 25 male, mean age 75 ± 5 years were assessed for maximal grip strength, as well as for fatigue resistance and grip work (respectively time and work delivered until grip strength drops to 50% of its maximum during sustained contraction, self perceived fatigue (VAS-Fatigue, Mob-Tiredness scale and the energy & fatigue items of the WHOQOL-100, self rated physical functioning (domain of physical functioning on the MOS short-form and circulating IL-6. Relationships between handgrip performance and the other outcome measures were assessed. Results In the male participants, fatigue resistance was negatively related to actual sensation of fatigue (VAS-F, p Conclusion Well functioning elderly subjects presenting less handmuscle fatigue resistance and weaker grip strength are more fatigued, experience more tiredness during daily activities and are more bothered by fatigue sensations. Body weight seems to play an important role in the relation of muscle performance to fatigue perception. Elderly patients complaining from fatigue should be physically assessed, both evaluating maximal grip strength and fatigue resistance, allowing the calculation of grip work, which integrates both parameters. Grip work might best reflect the functional capacity resulting from the development of a certain strength level in relation to the time it can be maintained.

  20. Notch3 signalling promotes tumour growth in colorectal cancer.

    Science.gov (United States)

    Serafin, Valentina; Persano, Luca; Moserle, Lidia; Esposito, Giovanni; Ghisi, Margherita; Curtarello, Matteo; Bonanno, Laura; Masiero, Massimo; Ribatti, Domenico; Stürzl, Michael; Naschberger, Elisabeth; Croner, Roland S; Jubb, Adrian M; Harris, Adrian L; Koeppen, Hartmut; Amadori, Alberto; Indraccolo, Stefano

    2011-08-01

    Increased Notch1 activity has been observed in intestinal tumours, partially accomplished by β-catenin-mediated up-regulation of the Notch ligand Jagged-1. Whether further mechanisms of Notch activation exist and other Notch receptors might be involved is unclear. Microarray data indicated that Notch3 transcript levels are significantly up-regulated in primary and metastatic CRC samples compared to normal mucosa. Moreover, Notch3 protein was expressed at strong/moderate levels by 19.7% of 158 CRC samples analysed, and at weak levels by 51.2% of the samples. Intrigued by these findings, we sought to investigate whether Notch3 modulates oncogenic features of CRC cells. By exploiting xenografts of CRC cells with different tumourigenic properties in mice, we found that the aggressive phenotype was associated with altered expression of components of the Notch pathway, including Notch3, Delta-like 4 (DLL4), and Jagged-1 ligands. Stimulation with immobilized recombinant DLL4 or transduction with DLL4-expressing vectors dramatically increased Notch3 expression in CRC cells, associated with accelerated tumour growth. Forced expression of an active form of Notch3 mirrored the effects of DLL4 stimulation and increased tumour formation. Conversely, attenuation of Notch3 levels by shRNA resulted in perturbation of the cell cycle followed by reduction in cell proliferation, clonogenic capacity, and inhibition of tumour growth. Altogether, these findings indicate that Notch3 can modulate the tumourigenic properties of CRC cells and contributes to sustained Notch activity in DLL4-expressing tumours. Copyright © 2011 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  1. Effects of applied stress ratio on the fatigue behavior of additively manufactured porous biomaterials under compressive loading.

    Science.gov (United States)

    de Krijger, Joep; Rans, Calvin; Van Hooreweder, Brecht; Lietaert, Karel; Pouran, Behdad; Zadpoor, Amir A

    2017-06-01

    Additively manufactured (AM) porous metallic biomaterials are considered promising candidates for bone substitution. In particular, AM porous titanium can be designed to exhibit mechanical properties similar to bone. There is some experimental data available in the literature regarding the fatigue behavior of AM porous titanium, but the effect of stress ratio on the fatigue behavior of those materials has not been studied before. In this paper, we study the effect of applied stress ratio on the compression-compression fatigue behavior of selective laser melted porous titanium (Ti-6Al-4V) based on the diamond unit cell. The porous titanium biomaterial is treated as a meta-material in the context of this work, meaning that R-ratios are calculated based on the applied stresses acting on a homogenized volume. After morphological characterization using micro computed tomography and quasi-static mechanical testing, the porous structures were tested under cyclic loading using five different stress ratios, i.e. R = 0.1, 0.3, 0.5, 0.7 and 0.8, to determine their S-N curves. Feature tracking algorithms were used for full-field deformation measurements during the fatigue tests. It was observed that the S-N curves of the porous structures shift upwards as the stress ratio increases. The stress amplitude was the most important factor determining the fatigue life. Constant fatigue life diagrams were constructed and compared with similar diagrams for bulk Ti-6Al-4V. Contrary to the bulk material, there was limited dependency of the constant life diagrams to mean stress. The notches present in the AM biomaterials were the sites of crack initiation. This observation and other evidence suggest that the notches created by the AM process cause the insensitivity of the fatigue life diagrams to mean stress. Feature tracking algorithms visualized the deformation during fatigue tests and demonstrated the root cause of inclined (45°) planes of specimen failure. In conclusion, the R

  2. Fatigue behavior of thick composite single lap joints

    Energy Technology Data Exchange (ETDEWEB)

    Tang, J.H.; Sridhar, I.; Srikanth, N. [Nanyang Technological Univ., Singapore (Singapore)

    2012-07-01

    In consideration of bondline thickness variability, in bonded joints where thick adherend is adopted, relative thick adhesive layer (2-5 mm) is preferable. This paper aims to give some insight in fatigue strength of adhesively bonded structures involving thick adherend coupled with thick adhesive layer. Single lap joints with nominal adherend thickness of 8 mm and two different nominal thicknesses (2.5 mm and 5.5 mm) were made and tested under fatigue loading. The failure mode exhibits always a tendency for interfacial initiation, followed by interlaminar separation. Fatigue strength for higher adhesive thickness is found to be lower. (Author)

  3. How does strength training and balance training affect gait and fatigue in patients with Multiple Sclerosis? A study protocol of a randomized controlled trial

    DEFF Research Database (Denmark)

    Callesen, Jacob Lynge; Brincks, John; Cattaneo, Davide

    2018-01-01

    with group and time as fixed effects and center and patient within center as random effects. Spearman or Pearson correlation analysis will be conducted on baseline data to determine associations between the primary outcomes on gait function and the secondary outcomes on fatigue, spatial gait parameters......Abstract: INTRODUCTION:Multiple sclerosis (MS) is characterized by a demyelination that results in reduced conductivity in the somatosensory nervous system, decreased muscle strength, vestibular alteration, and severe fatigue. Progressive resistance training (PRT) has proven to be a promising...

  4. Effects Of Welding On The Fatigue Behaviour Of Commercial Aluminum AA-1100 Joints

    Science.gov (United States)

    Uthayakumar, M.; Balasubramanian, V.; Rani, Ahmad Majdi Abdul; Hadzima, Branislav

    2018-04-01

    Friction Stir Welding (FSW) is an budding solid state welding process, which is frequently used for joining aluminum alloys where materials can be joined without melt and recast. Therefore, when welding alloys through FSW the phase transformations occurs will be in the solid state form. The present work is aimed in evaluating the fatigue life of friction stir welded commercial grade aluminum alloy joints. The commercial grade AA1100 aluminum alloy of 12mm thickness plate is welded and the specimens are tested using a rotary beam fatigue testing machine at different stress levels. The stress versus number of cycles (S-N) curves was plotted using the data points. The Fatigue life of tungsten inert gas (TIG) and metal inert gas (MIG) welded joints was compared. The fatigue life of the weld joints was interrelated with the tensile properties, microstructure and micro hardness properties. The effects of the notches and welding processes are evaluated and reported.

  5. Effects of environmental variables on the crack initiation stages of corrosion fatigue of high strength aluminum alloys

    Science.gov (United States)

    Poteat, L. E.

    1981-01-01

    Fatigue initiation in six aluminum alloys used in the aircraft industry was investigated. Cyclic loading superimposed on a constant stress was alternated with atmospheric corrosion. Tests made at different stress levels revealed that a residual stress as low as 39% of the yield strength caused stress corrosion cracking in some of the alloys. An atmospheric corrosion rate meter developed to measure the corrosivity of the atmosphere is described. An easily duplicated hole in the square test specimen with a self-induced residual stress was developed.

  6. Study of microstructure and fracture properties of blunt notched and sharp cracked high density polyethylene specimens.

    Science.gov (United States)

    Pan, Huanyu; Devasahayam, Sheila; Bandyopadhyay, Sri

    2017-07-21

    This paper examines the effect of a broad range of crosshead speed (0.05 to 100 mm/min) and a small range of temperature (25 °C and 45 °C) on the failure behaviour of high density polyethylene (HDPE) specimens containing a) standard size blunt notch and b) standard size blunt notch plus small sharp crack - all tested in air. It was observed that the yield stress properties showed linear increase with the natural logarithm of strain rate. The stress intensity factors under blunt notch and sharp crack conditions also increased linearly with natural logarithm of the crosshead speed. The results indicate that in the practical temperature range of 25 °C and 45 °C under normal atmosphere and increasing strain rates, HDPE specimens with both blunt notches and sharp cracks possess superior fracture properties. SEM microstructure studies of fracture surfaces showed craze initiation mechanisms at lower strain rate, whilst at higher strain rates there is evidence of dimple patterns absorbing the strain energy and creating plastic deformation. The stress intensity factor and the yield strength were higher at 25 °C compared to those at 45 °C.

  7. Fatigue strength of field welded joints in I-section girders of thick flange plates with cope hole details; Sukarappu wo yusuru atsuita I gata danmen keta genba yosetsu tsugitebu no hiro kyodo

    Energy Technology Data Exchange (ETDEWEB)

    Minami, K.; Miki, C.; Tateishi, K. [Tokyo Institute of Technology, Tokyo (Japan)

    1997-10-15

    Field welding an I-section girder forms details having scallop at the web, whereas the presence of the scallop causes shear deformation and localized stress concentration. Therefore the details in joints with low fatigue strength are ranked as class G in the fatigue design guideline published by JSSC. With special notice on the effect of shear, the present study has varied the phase by using multiple number of jacks; so loaded that the direction of the shear force will change; assumed field welding of a bridge constructed with a few number of main girders; and verified fatigue strength at thick flange plates. In addition, in order to improve the fatigue strength, elucidation was given on the effect of grinder finish at boxing welds. From these results, items to be considered were made clear when structural details are designed and fabricated, in which I-section girders having scallop are welded in fields. Furthermore, it was considered that stress in web plate jointing welding bead becomes relatively higher than local stress in boxing, which was indicated as a point requiring precaution. 8 refs., 20 figs., 2 tabs.

  8. Effect of HIP temperature on microstructure and low cycle fatigue strength of CuCrZr alloy

    Science.gov (United States)

    Nishi, Hiroshi; Enoeda, Mikio

    2011-10-01

    In order to investigate the effect of the HIP cycle temperatures on the metallurgic degradation and the mechanical properties of CuCrZr alloy, assessments of the microstructure, tensile test, Charpy impact test and low cycle fatigue test are performed for various heat treated CuCrZr alloys, which were solution-annealed followed by water-quenched and aged state of CuCrZr with simulated HIP cycle at temperatures of 980 and 1045 °C. Grain growth occurred on 1045 °C HIP CuCrZr, though slightly on 980 °C HIP CuCrZr. Metallurgic degradation such as voids was not found by optical and SEM observations. There were coarse precipitates in all the CuCrZr and the precipitates did not easily dissolve at 980 °C. The low cycle fatigue strength of 1045 °C HIP CuCrZr was lower than that of other CuCrZr because of the metallurgic degradation caused by the heat cycle, while that of other CuCrZr was corresponding to the best fit curve of ITER MPH.

  9. Effect of HIP temperature on microstructure and low cycle fatigue strength of CuCrZr alloy

    Energy Technology Data Exchange (ETDEWEB)

    Nishi, Hiroshi, E-mail: nishi.hiroshi88@jaea.go.jp [Japan Atomic Energy Agency, Naka-shi, Ibaraki-ken 311-0193 (Japan); Enoeda, Mikio [Japan Atomic Energy Agency, Naka-shi, Ibaraki-ken 311-0193 (Japan)

    2011-10-01

    In order to investigate the effect of the HIP cycle temperatures on the metallurgic degradation and the mechanical properties of CuCrZr alloy, assessments of the microstructure, tensile test, Charpy impact test and low cycle fatigue test are performed for various heat treated CuCrZr alloys, which were solution-annealed followed by water-quenched and aged state of CuCrZr with simulated HIP cycle at temperatures of 980 and 1045 deg. C. Grain growth occurred on 1045 deg. C HIP CuCrZr, though slightly on 980 deg. C HIP CuCrZr. Metallurgic degradation such as voids was not found by optical and SEM observations. There were coarse precipitates in all the CuCrZr and the precipitates did not easily dissolve at 980 deg. C. The low cycle fatigue strength of 1045 deg. C HIP CuCrZr was lower than that of other CuCrZr because of the metallurgic degradation caused by the heat cycle, while that of other CuCrZr was corresponding to the best fit curve of ITER MPH.

  10. Effect of HIP temperature on microstructure and low cycle fatigue strength of CuCrZr alloy

    International Nuclear Information System (INIS)

    Nishi, Hiroshi; Enoeda, Mikio

    2011-01-01

    In order to investigate the effect of the HIP cycle temperatures on the metallurgic degradation and the mechanical properties of CuCrZr alloy, assessments of the microstructure, tensile test, Charpy impact test and low cycle fatigue test are performed for various heat treated CuCrZr alloys, which were solution-annealed followed by water-quenched and aged state of CuCrZr with simulated HIP cycle at temperatures of 980 and 1045 deg. C. Grain growth occurred on 1045 deg. C HIP CuCrZr, though slightly on 980 deg. C HIP CuCrZr. Metallurgic degradation such as voids was not found by optical and SEM observations. There were coarse precipitates in all the CuCrZr and the precipitates did not easily dissolve at 980 deg. C. The low cycle fatigue strength of 1045 deg. C HIP CuCrZr was lower than that of other CuCrZr because of the metallurgic degradation caused by the heat cycle, while that of other CuCrZr was corresponding to the best fit curve of ITER MPH.

  11. Fatigue-creep interaction. Effect of hold time on the fatigue strengh of a Z2CND17-13 alloy (type 316L) at 600 degres C

    International Nuclear Information System (INIS)

    Brahim, Rezgui.

    1977-01-01

    The fatigue-creep interaction is studied in the case of austenitic stainless steels used in the construction of fast neutron reactors. With a view to discuss the mechanical behavior of the materials, fatigue strength as a function of cycle number and strain hardening are investigated and semi-empirical equations for the evaluation of fatigue strength are developed. The results are interpreted in terms of microstructure and by application of the dislocation theory [fr

  12. Relationship between enamel bond fatigue durability and surface free-energy characteristics with universal adhesives.

    Science.gov (United States)

    Nagura, Yuko; Tsujimoto, Akimasa; Barkmeier, Wayne W; Watanabe, Hidehiko; Johnson, William W; Takamizawa, Toshiki; Latta, Mark A; Miyazaki, Masashi

    2018-04-01

    The relationship between enamel bond fatigue durability and surface free-energy characteristics with universal adhesives was investigated. The initial shear bond strengths and shear fatigue strengths of five universal adhesives to enamel were determined with and without phosphoric acid pre-etching. The surface free-energy characteristics of adhesive-treated enamel with and without pre-etching were also determined. The initial shear bond strength and shear fatigue strength of universal adhesive to pre-etched enamel were higher than those to ground enamel. The initial shear bond strength and shear fatigue strength of universal adhesive to pre-etched enamel were material dependent, unlike those to ground enamel. The surface free-energy of the solid (γ S ) and the hydrogen-bonding force (γSh) of universal adhesive-treated enamel were different depending on the adhesive, regardless of the presence or absence of pre-etching. The bond fatigue durability of universal adhesives was higher to pre-etched enamel than to ground enamel. In addition, the bond fatigue durability to pre-etched enamel was material dependent, unlike that to ground enamel. The surface free-energy characteristics of universal adhesive-treated enamel were influenced by the adhesive type, regardless of the presence or absence of pre-etching. The surface free-energy characteristics of universal adhesive-treated enamel were related to the results of the bond fatigue durability. © 2018 Eur J Oral Sci.

  13. Fatigue crack initiation and propagation in steels exposed to inert and corrosive environments. Final report, May 1, 1977--December 31, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Youseffi, K.; Finnie, I.

    1978-02-01

    The fatigue crack initiation life of AISI 1018 steel was investigated using compact tension specimens having sharp notch root radii. The data were analyzed using two methods for predicting initiation in strain cycling experiments. Also, another approach in which initiation is related to the stress intensity factor was developed. The next phase, that of propagation, was studied using AISI 1018 steel and a new high strength steel HY-180. The crack propagation data obtained for both steels tested in air can be described accurately by the power law first suggested by Paris, da/dN = C(..delta..K)/sup n/, where a is the crack length, N the number of cycles, and C and n are material constants. However, the exponent n was found to be two times larger for AISI 1018 steel than HY-180 steel.

  14. Fatigue crack initiation and propagation in steels exposed to inert and corrosive environments. Final report, May 1, 1977--December 31, 1977

    International Nuclear Information System (INIS)

    Youseffi, K.; Finnie, I.

    1978-02-01

    The fatigue crack initiation life of AISI 1018 steel was investigated using compact tension specimens having sharp notch root radii. The data were analyzed using two methods for predicting initiation in strain cycling experiments. Also, another approach in which initiation is related to the stress intensity factor was developed. The next phase, that of propagation, was studied using AISI 1018 steel and a new high strength steel HY-180. The crack propagation data obtained for both steels tested in air can be described accurately by the power law first suggested by Paris, da/dN = C(ΔK)/sup n/, where a is the crack length, N the number of cycles, and C and n are material constants. However, the exponent n was found to be two times larger for AISI 1018 steel than HY-180 steel

  15. Effect of Cryorolling and Aging on Fatigue Behavior of Ultrafine-grained Al6061

    Science.gov (United States)

    Yadollahpour, M.; Hosseini-Toudeshky, H.; Karimzadeh, F.

    2016-05-01

    The effects of cryorolling (rolling at liquid nitrogen temperature) and heat treatment on tensile and high-cycle fatigue properties and fatigue crack growth rate of Al6061 alloy have been investigated in the present work. First, the solid solution-treated bulk Al6061 alloy was subjected to cryorolling with 90% total thickness reduction and subsequent short annealing at 205°C for 5 min and peak aging at 148°C for 39 h to achieve grain refinement and simultaneous improvement of the strength and ductility. Then, hardness measurements, tensile tests, fatigue life, and fatigue crack growth rate tests including fractography analyses using scanning electron microscopy were performed on bulk Al6061 alloy, cryorolled (CR), and cryorolled material followed by peak aging (PA). The PA specimen showed improved yield strength by 24%, ultimate tensile strength by 20%, and ductility by 12% as compared with the bulk Al6061 alloy. It is shown that the fatigue strength of both CR and PA specimens under a high-cycle fatigue regime are larger than that of the bulk Al6061 alloy. Also, fatigue crack growth rates of the CR and PA specimens show significant enhancement in fatigue crack growth resistances as compared with the bulk Al6061 alloy, as a result of grain refinement.

  16. Elucidating the Relations Between Monotonic and Fatigue Properties of Laser Powder Bed Fusion Stainless Steel 316L

    Science.gov (United States)

    Zhang, Meng; Sun, Chen-Nan; Zhang, Xiang; Goh, Phoi Chin; Wei, Jun; Li, Hua; Hardacre, David

    2018-03-01

    The laser powder bed fusion (L-PBF) technique builds parts with higher static strength than the conventional manufacturing processes through the formation of ultrafine grains. However, its fatigue endurance strength σ f does not match the increased monotonic tensile strength σ b. This work examines the monotonic and fatigue properties of as-built and heat-treated L-PBF stainless steel 316L. It was found that the general linear relation σ f = mσ b for describing conventional ferrous materials is not applicable to L-PBF parts because of the influence of porosity. Instead, the ductility parameter correlated linearly with fatigue strength and was proposed as the new fatigue assessment criterion for porous L-PBF parts. Annealed parts conformed to the strength-ductility trade-off. Fatigue resistance was reduced at short lives, but the effect was partially offset by the higher ductility such that comparing with an as-built part of equivalent monotonic strength, the heat-treated parts were more fatigue resistant.

  17. Progress Report on Alloy 617 Notched Specimen Testing

    Energy Technology Data Exchange (ETDEWEB)

    McMurtrey, Michael David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Wright, Richard Neil [Idaho National Lab. (INL), Idaho Falls, ID (United States); Lillo, Thomas Martin [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-08-01

    Creep behavior of Alloy 617 has been extensively characterized to support the development of a draft Code Case to qualify Alloy 617 in Section III division 5 of the ASME Boiler and Pressure Vessel Code. This will allow use of Alloy 617 in construction of nuclear reactor components at elevated temperatures and longer periods of time (up to 950°C and 100,000 hours). Prior to actual use, additional concerns not considered in the ASME code need to be addressed. Code Cases are based largely on uniaxial testing of smooth gage specimens. In service conditions, components will generally be under multi axial loading. There is also the concern of the behavior at discontinuities, such as threaded components. To address the concerns of multi axial creep behavior and at geometric discontinuities, notched specimens have been designed to create conditions representative of the states that service components experience. Two general notch geometries have been used for these series of tests: U notch and V notch specimens. The notches produce a tri axial stress state, though not uniform across the specimen. Characterization of the creep behavior of the U notch specimens and the creep rupture behavior of the V notch specimens provides a good approximation of the behavior expected of actual components. Preliminary testing and analysis have been completed and are reported in this document. This includes results from V notch specimens tested at 900°C and 800°C. Failure occurred in the smooth gage section of the specimen rather than at the root of the notch, though some damage was present at the root of the notch, where initial stress was highest. This indicates notch strengthening behavior in this material at these temperatures.

  18. Notch signaling and progenitor/ductular reaction in steatohepatitis.

    Directory of Open Access Journals (Sweden)

    Carola M Morell

    Full Text Available Persistent hepatic progenitor cells (HPC activation resulting in ductular reaction (DR is responsible for pathologic liver repair in cholangiopathies. Also, HPC/DR expansion correlates with fibrosis in several chronic liver diseases, including steatohepatitis. Increasing evidence indicates Notch signaling as a key regulator of HPC/DR response in biliary and more in general liver injuries. Therefore, we aimed to investigate the role of Notch during HPC/DR activation in a mouse model of steatohepatitis.Steatohepatitis was generated using methionine-choline deficient (MCD diet. For hepatocyte lineage tracing, R26R-YFP mice were infected with AAV8-TBG-Cre.MCD diet promoted a strong HPC/DR response that progressively diffused in the lobule, and correlated with increased fibrosis and TGF-β1 expression. Notch signaling was unchanged in laser-capture microdissected HPC/DR, whereas Notch receptors were down regulated in hepatocytes. However, in-vivo lineage tracing experiments identified discrete hepatocytes showing Notch-1 activation and expressing (the Notch-dependent Sox9. Stimulation of AML-12 hepatocyte-cell line with immobilized Jag1 induced Sox9 and down-regulated albumin and BSEP expression. TGF-β1 treatment in primary hepatic stellate cells (HSC induced Jag1 expression. In MCD diet-fed mice, αSMA-positive HSC were localized around Sox9 expressing hepatocytes, suggesting that Notch activation in hepatocytes was promoted by TGF-β1 stimulated HSC. In-vivo Notch inhibition reduced HPC response and fibrosis progression.Our data suggest that Notch signaling is an important regulator of DR and that in steatohepatitis, hepatocytes exposed to Jag1-positive HSC, contribute to pathologic DR by undergoing Notch-mediated differentiation towards an HPC-like phenotype. Given the roles of Notch in fibrosis and liver cancer, these data suggest mesenchymal expression of Jag1 as an alternative therapeutic target.

  19. Oncogenic Notch signaling in T-cell and B-cell lymphoproliferative disorders.

    Science.gov (United States)

    Chiang, Mark Y; Radojcic, Vedran; Maillard, Ivan

    2016-07-01

    This article highlights recent discoveries about Notch activation and its oncogenic functions in lymphoid malignancies, and discusses the therapeutic potential of Notch inhibition. NOTCH mutations arise in a broad spectrum of lymphoid malignancies and are increasingly scrutinized as putative therapeutic targets. In T-cell acute lymphoblastic leukemia (T-ALL), NOTCH1 mutations affect the extracellular negative regulatory region and lead to constitutive Notch activation, although mutated receptors remain sensitive to Notch ligands. Other NOTCH1 mutations in T-ALL and NOTCH1/2 mutations in multiple B-cell malignancies truncate the C-terminal proline (P), glutamic acid (E), serine (S), threonine (T)-rich (PEST) domain, leading to decreased Notch degradation after ligand-mediated activation. Thus, targeting Notch ligand-receptor interactions could provide therapeutic benefits. In addition, we discuss recent reports on clinical testing of Notch inhibitors in T-ALL that influenced contemporary thinking on the challenges of targeting Notch in cancer. We review advances in the laboratory to address these challenges in regards to drug targets, the Notch-driven metabolome, and the sophisticated protein-protein interactions at Notch-dependent superenhancers that underlie oncogenic Notch functions. Notch signaling is a recurrent oncogenic pathway in multiple T- and B-cell lymphoproliferative disorders. Understanding the complexity and consequences of Notch activation is critical to define optimal therapeutic strategies targeting the Notch pathway.

  20. Role of Notch signaling in the mammalian heart

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, X.L.; Liu, J.C. [Department of Cardiac Surgery, The First Affiliated Hospital, Nanchang University, Donghu District, Nanchang, Jiangxi (China)

    2013-12-12

    Notch signaling is an evolutionarily ancient, highly conserved pathway important for deciding cell fate, cellular development, differentiation, proliferation, apoptosis, adhesion, and epithelial-to-mesenchymal transition. Notch signaling is also critical in mammalian cardiogenesis, as mutations in this signaling pathway are linked to human congenital heart disease. Furthermore, Notch signaling can repair myocardial injury by promoting myocardial regeneration, protecting ischemic myocardium, inducing angiogenesis, and negatively regulating cardiac fibroblast-myofibroblast transformation. This review provides an update on the known roles of Notch signaling in the mammalian heart. The goal is to assist in developing strategies to influence Notch signaling and optimize myocardial injury repair.

  1. Fatigue assessment of the ITER TF coil case based on JJ1 fatigue tests

    International Nuclear Information System (INIS)

    Hamada, K.; Nakajima, H.; Takano, K.; Kudo, Y.; Tsutsumi, F.; Okuno, K.; Jong, C.

    2005-01-01

    The material of the TF coil case in the ITER requires to withstand cyclic electromagnetic forces applied up to 3 x 10 4 cycles at 4.2 K. A cryogenic stainless steel, JJ1, is used in high stress region of TF coil case. The fatigue characteristics (S-N curve) of JJ1 base metal and welded joint at 4.2 K has been measured. The fatigue strength of base metal and welded joint at 3 x 10 4 cycles are measured as 1032 and 848 MPa, respectively. The design S-N curve is derived from the measured data taking account of the safety factor of 20 for cycle-to-failure and 2 for fatigue strength, and it indicates that an equivalent alternating stress of the case should be kept less than 516 MPa for the base metal and 424 MPa for the welded joint at 3 x 10 4 cycles. It is demonstrated that the TF coil case has enough margins for the cyclic operation. It is also shown the welded joint should be located in low cyclic stress region because a residual stress affects the fatigue life

  2. Microstructural aspects of fatigue failure of two-phase titanium alloys

    International Nuclear Information System (INIS)

    Filip, R.; Sieniawski, J.

    1995-01-01

    Investigations conducted in this work were aimed at obtaining information on the influence of the microstructure of the two-phase titanium alloys on fatigue strength. A course of fatigue failure depends on both dispersion and a number of secondary α-phase particles. The lamellar structure is formed during controlled cooling from the temperature range of β-phase stability. The cooling rate influences the geometrical parameters of the microstructure and finally the fatigue strength of the alloy. (author). 20 refs, 12 figs, 2 tabs

  3. Effectiveness of a tailored neck training program on neck strength, movement, and fatigue in under-19 male rugby players: a randomized controlled pilot study

    Directory of Open Access Journals (Sweden)

    Barrett MD

    2015-05-01

    Full Text Available Matthew D Barrett,1 Terence F McLoughlin,2 Kieran R Gallagher,1 Don Gatherer,3 Michael TR Parratt,1 Jonathan R Perera,1 Tim WR Briggs1 1Royal National Orthopaedic Hospital, Stanmore, Middlesex, United Kingdom; 2Royal Liverpool University Hospital, Liverpool, Mersey Deanery, United Kingdom; 3The Gatherer Partnership, Aylesbury, United Kingdom Purpose: To investigate the effect of a tailored neck muscle conditioning program on neck muscle strength, neck muscle fatigue, and range of neck movement in 16–18-year-old male rugby players. Materials and methods: Thirty-four male rugby players were divided into forward and back playing positions and randomized within these groups. Seventeen players were randomly assigned to each group. The test group was given a tailored 6-week exercise regime based on their baseline measurements to be performed three times a week in addition to their normal training and playing. The control group trained and played as normal. The outcome measures used were cervical spine range of movement, neck strength, and neck muscle fatigability. Results: There were no clinically relevant statistically significant differences between the two groups. Trends identified between the two groups suggest that a tailored neck exercise program increases neck strength, particularly neck extension, and increases resistance to fatigue, as well as influencing right- and left-sided neck muscle balance. A reduction in range of movement was also demonstrated in the test group. There was a great deal of variability in range of movement and strength within this age group. No previously undiagnosed neck conditions were detected, and there were no adverse events reported. Conclusion: This study has shown that neck strength, range of movement, and susceptibility of the neck muscles to fatigue can be influenced using a focused neck training regime. It forms an important basis for a larger, multicenter study to ensure the neck is given due attention in

  4. Fatigue Characteristic of Chopped Strand Mat/Polyester Composite

    Directory of Open Access Journals (Sweden)

    I Made Astika

    2012-11-01

    Full Text Available The application of composite as an alternatif material to substitute of metal has better properties than metal such as light, high elasticity, corrosion and fatigue resistance. Some components in its application are subjected to millions of varying stress cycles that initiated to fatigue failure such as crack, delamination and fracture. The strength of composite is influenced by construction, fiber type, orientation and fiber fraction. The objective of this experiment is to investigate the fatigue characteristic on SCM composite. Material composite to be used is glass fiber with chopped strand mat (CSM as fiber and Yukalac 157 BQTN-EX with 1% hardener (Mexpox as matrix. The mold process was built with hand lay-up. Fiber volume fractions in composite are 40, 32 and 24 %. The tests to be done on composite are fatigue and tensile test. The research show that the increasing of fiber fraction in composite affects increasing of fatigue life, endurance limit and tensile strength. Fatigue failure modes of composite are debonding, matrix cracking, delamination and fiber fracture.

  5. Microstructural heterogeneities and fatigue anisotropy of forged steels

    International Nuclear Information System (INIS)

    Pessard, Etienne; Morel, Franck; Verdu, Catherine; Flaceliere, Laurent; Baudry, Gilles

    2011-01-01

    Highlights: → Tomography result: fibering is composed of non-metallic inclusions bands. → Elongated inclusions decreases the: ductility, fracture toughness and fatigue limit. → Cracks initiate from both inclusion clusters and from the bainitic matrix. → The classical self-heating method does not predict the effect of the inclusions. - Abstract: In this study, various experimental methods are employed to determine the anisotropic fatigue behavior of a 25MnCrSiVB6 forged steel (Metasco MC). This material has a bainitic microstructure and contains many elongated non-metallic inclusions in the rolled direction, which are grouped into clusters. Specimens with different orientations relative to the rolling direction have been extracted from a hot rolled bar and the ability of certain experimental techniques to capture the fatigue anisotropy has been tested. Results obtained from monotonic tensile tests and Charpy impact tests show that the material has isotropic fracture strength and anisotropic ductility. The influence of the 'inclusion clusters' is clearly demonstrated via observation of the fracture surfaces. Concerning the fatigue behavior, results from a classical staircase experimental procedure are compared to results from self-heating fatigue tests. For specimens orientated at 0 o relative to the rolled direction, microcrack initiation is controlled by the material matrix and the prediction of the fatigue strength with the self-heating method has been observed to be correct. For specimens orientated at 45 o and 90 o , the elongated manganese sulfide inclusion clusters are the origin of crack initiation and the fatigue strength drops significantly. For this case, it appears that the self-heating method has difficulty predicting the fatigue behavior.

  6. Microstructural heterogeneities and fatigue anisotropy of forged steels

    Energy Technology Data Exchange (ETDEWEB)

    Pessard, Etienne, E-mail: etienne.pessard@angers.ensam.fr [LAMPA, Arts et Metiers ParisTech Angers, 2 Bd du Ronceray, 49035 Angers Cedex 01 (France); Morel, Franck [LAMPA, Arts et Metiers ParisTech Angers, 2 Bd du Ronceray, 49035 Angers Cedex 01 (France); Verdu, Catherine [MATEIS, INSA-Lyon, Universite de Lyon, 25 Av Jean Capelle, 69621 Villeurbanne Cedex (France); Flaceliere, Laurent; Baudry, Gilles [CREAS - ASCOMETAL, BP 70045, 57301 Hagondange (France)

    2011-11-25

    Highlights: {yields} Tomography result: fibering is composed of non-metallic inclusions bands. {yields} Elongated inclusions decreases the: ductility, fracture toughness and fatigue limit. {yields} Cracks initiate from both inclusion clusters and from the bainitic matrix. {yields} The classical self-heating method does not predict the effect of the inclusions. - Abstract: In this study, various experimental methods are employed to determine the anisotropic fatigue behavior of a 25MnCrSiVB6 forged steel (Metasco MC). This material has a bainitic microstructure and contains many elongated non-metallic inclusions in the rolled direction, which are grouped into clusters. Specimens with different orientations relative to the rolling direction have been extracted from a hot rolled bar and the ability of certain experimental techniques to capture the fatigue anisotropy has been tested. Results obtained from monotonic tensile tests and Charpy impact tests show that the material has isotropic fracture strength and anisotropic ductility. The influence of the 'inclusion clusters' is clearly demonstrated via observation of the fracture surfaces. Concerning the fatigue behavior, results from a classical staircase experimental procedure are compared to results from self-heating fatigue tests. For specimens orientated at 0{sup o} relative to the rolled direction, microcrack initiation is controlled by the material matrix and the prediction of the fatigue strength with the self-heating method has been observed to be correct. For specimens orientated at 45{sup o} and 90{sup o}, the elongated manganese sulfide inclusion clusters are the origin of crack initiation and the fatigue strength drops significantly. For this case, it appears that the self-heating method has difficulty predicting the fatigue behavior.

  7. Some aspects of thermal fatigue in stainless steel

    International Nuclear Information System (INIS)

    Iorio, A.F.; Crespi, J.C.

    1987-01-01

    This paper is concerned with the analysis of failures in a moderator circuit branch piping of the ATUCHA-I pressurized heavy water reactor (PHWR), made of austenitic steel to DIN 1.4550 specification (similar to AISI 347). These failures are considered to result from a thermal fatigue processes induced by fluctuations in a zone where stratified temperature layers occurred -the fluctuations being associated with variations in the heavy water flow. The first section evaluates the possibility of cracking due to thermal fatigue phenomena and concludes that under service conditions a crack may be initiated and growth through 7 mm of the wall thickness of the pipe. Laboratory thermal fatigue tests that simulated the thermomechanical conditions for such a component, showed that the number of cycles required to initiate a thermal fatigue crack in a notched modified standard fatigue specimen was about 10 3 . This value may be used to give a conservative prediction of the number of thermal cycles for crack initiation in actual station piping, including those who suffered a cold plug condition which is produced in some emergency shut-down and valve testing situations. It was also demonstrated that beyond a crack depth of 7 mm stress corrosion cracking has the main process in further crack propagation. The relevance of this prediction has been confirmed by microfractographic observations, since the brittle nature of the fracture surfaces under service conditions appears very different from the transgranular ductile striations found in both thermal and mechanical fatigue test specimens as a result of environmental effects. (Author)

  8. Common nonmutational NOTCH1 activation in chronic lymphocytic leukemia.

    Science.gov (United States)

    Fabbri, Giulia; Holmes, Antony B; Viganotti, Mara; Scuoppo, Claudio; Belver, Laura; Herranz, Daniel; Yan, Xiao-Jie; Kieso, Yasmine; Rossi, Davide; Gaidano, Gianluca; Chiorazzi, Nicholas; Ferrando, Adolfo A; Dalla-Favera, Riccardo

    2017-04-04

    Activating mutations of NOTCH1 (a well-known oncogene in T-cell acute lymphoblastic leukemia) are present in ∼4-13% of chronic lymphocytic leukemia (CLL) cases, where they are associated with disease progression and chemorefractoriness. However, the specific role of NOTCH1 in leukemogenesis remains to be established. Here, we report that the active intracellular portion of NOTCH1 (ICN1) is detectable in ∼50% of peripheral blood CLL cases lacking gene mutations. We identify a "NOTCH1 gene-expression signature" in CLL cells, and show that this signature is significantly enriched in primary CLL cases expressing ICN1, independent of NOTCH1 mutation. NOTCH1 target genes include key regulators of B-cell proliferation, survival, and signal transduction. In particular, we show that NOTCH1 transactivates MYC via binding to B-cell-specific regulatory elements, thus implicating this oncogene in CLL development. These results significantly extend the role of NOTCH1 in CLL pathogenesis, and have direct implications for specific therapeutic targeting.

  9. Essential Role of Endothelial Notch1 in Angiogenesis

    Science.gov (United States)

    Limbourg, Florian P.; Takeshita, Kyosuke; Radtke, Freddy; Bronson, Roderick T.; Chin, Michael T.; Liao, James K.

    2009-01-01

    Background Notch signaling influences binary cell fate decisions in a variety of tissues. The Notch1 receptor is widely expressed during embryogenesis and is essential for embryonic development. Loss of global Notch1 function results in early embryonic lethality, but the cell type responsible for this defect is not known. Here, we identify the endothelium as the primary target tissue affected by Notch1 signaling. Methods and Results We generated an endothelium-specific deletion of Notch1 using Tie2Cre and conditional Notch1flox/flox mice. Mutant embryos lacking endothelial Notch1 died at approximately embryonic day 10.5 with profound vascular defects in placenta, yolk sac, and embryo proper, whereas heterozygous deletion had no effect. In yolk sacs of mutant embryos, endothelial cells formed a primary vascular plexus indicative of intact vasculogenesis but failed to induce the secondary vascular remodeling required to form a mature network of well-organized large and small blood vessels, which demonstrates a defect in angiogenesis. These vascular defects were also evident in the placenta, where blood vessels failed to invade the placental labyrinth, and in the embryo proper, where defective blood vessel maturation led to pericardial and intersomitic hemorrhage. Enhanced activation of caspase-3 was detected in endothelial and neural cells of mutant mice, which resulted in enhanced apoptotic degeneration of somites and the neural tube. Conclusions These findings recapitulate the vascular phenotype of global Notch1-/- mutants and indicate an essential cell-autonomous role of Notch1 signaling in the endothelium during vascular development. These results may have important clinical implications with regard to Notch1 signaling in adult angiogenesis. PMID:15809373

  10. Mechanical factors affecting reliability of pressure components (fatigue, cracking)

    International Nuclear Information System (INIS)

    Lebey, J.; Garnier, C.; Roche, R.; Barrachin, B.

    1978-01-01

    The reliability of a pressure component can be seriously affected by the formation and development of cracks. The experimental studies presented in this paper are devoted to three different aspects of crack propagation phenomena which have been relatively little described. In close connection with safety analyses of PWR, the authors study the influence of the environment by carrying out fatigue tests with samples bathed in hot pressurized water. Ferritic, austenitic and Incolloy 800 steels were used and the results are presented in the form of fatigue curves in the oligocyclic region. The second part of the paper relates to crack initiation cirteria in ductile steels weakened by notches. The CT samples used make it possible to study almost all types of fracture (ductile, intermediate and brittle). The use of two criteria based on the load limit and on the toughness of the material constitutes a practical way of evaluating crack propagation conditions. A series of tests carried out on notched spherical vessels of different size shows that large vessels are relatively brittle; fast unstable fracture is observed as size increases. Crack growth rate in PWR primary circuits (3/6 steel) is studied on piping elements (0.25 scale) subjected to cyclic stress variations (285 0 C and with pressure varying between 1 and 160 bar in each cycle). By calculating the stress intensity factor, correlation with results obtained in the laboratory on CT samples is possible. (author)

  11. Notch effects in uniaxial tension specimens

    International Nuclear Information System (INIS)

    Delph, T.J.

    1979-03-01

    Results of a literature survey on the effect of notches on the time-dependent failure of uniaxial tension specimens at elevated temperatures are presented. Particular attention is paid to the failure of notched specimens containing weldments

  12. Influence of Cyclic Straining on Fatigue, Deformation, and Fracture Behavior of High-Strength Alloy Steel

    Science.gov (United States)

    Manigandan, K.; Srivatsan, T. S.; Vasudevan, V. K.; Tammana, D.; Poorganji, B.

    2016-01-01

    In this paper, the results of a study on microstructural influences on mechanical behavior of the high-strength alloy steel Tenax™ 310 are presented and discussed. Under the influence of fully reversed strain cycling, the stress response of this alloy steel revealed softening from the onset of deformation. Cyclic strain resistance exhibited a linear trend for the variation of both elastic strain amplitude with reversals-to-failure, and plastic strain amplitude with reversals-to-failure. Fracture morphology was essentially the same at the macroscopic level over the entire range of cyclic strain amplitudes examined. However, at the fine microscopic level, this high-strength alloy steel revealed fracture to be mixed-mode with features reminiscent of "locally" ductile and brittle mechanisms. The macroscopic mechanisms governing stress response at the fine microscopic level, resultant fatigue life, and final fracture behavior are presented and discussed in light of the mutually interactive influences of intrinsic microstructural effects, deformation characteristics of the microstructural constituents during fully reversed strain cycling, cyclic strain amplitude, and resultant response stress.

  13. Thermo-elastic-plastic analysis for elastic component under high temperature fatigue crack growth rate

    Science.gov (United States)

    Ali, Mohammed Ali Nasser

    The research project presents a fundamental understanding of the fatigue crack growth mechanisms of AISI 420 martensitic stainless steel, based on the comparison analysis between the theoretical and numerical modelling, incorporating research findings under isothermal fatigue loading for solid cylindrical specimen and the theoretical modelling with the numerical simulation for tubular specimen when subjected to cyclic mechanical loading superimposed by cyclic thermal shock.The experimental part of this research programme studied the fatigue stress-life data for three types of surface conditions specimen and the isothermal stress-controlled fatigue testing at 300 °C - 600 °C temperature range. It is observed that the highest strength is obtained for the polished specimen, while the machined specimen shows lower strength, and the lowest strength is the notched specimen due to the high effect of the stress concentration. The material behaviour at room and high temperatures shows an initial hardening, followed by slow extension until fully plastic saturation then followed by crack initiation and growth eventually reaching the failure of the specimen, resulting from the dynamic strain ageing occurred from the transformation of austenitic microstructure to martensite and also, the nucleation of precipitation at grain boundaries and the incremental temperature increase the fatigue crack growth rate with stress intensity factor however, the crack growth rate at 600 °C test temperature is less than 500 °C because of the creep-fatigue taking place.The theoretical modelling presents the crack growth analysis and stress and strain intensity factor approaches analysed in two case studies based on the addition of thermo-elastic-plastic stresses to the experimental fatigue applied loading. Case study one estimates the thermal stresses superimposed sinusoidal cyclic mechanical stress results in solid cylinder under isothermal fatigue simulation. Case study two estimates the

  14. [Loading and strength of single- and multi-unit fixed dental prostheses 2. Strength

    NARCIS (Netherlands)

    Baat, C. de; Witter, D.J.; Meijers, C.C.A.J.; Vergoossen, E.L.; Creugers, N.H.J.

    2014-01-01

    The ultimate strength of a dental prosthesis is defined as the strongest loading force applied to the prosthesis until afracture failure occurs. Important key terms are strength, hardness, toughness and fatigue. Relatively prevalent complications of single- and multi-unit fixed dental prostheses are

  15. Improving Fatigue Strength of polymer concrete using nanomaterials.

    Science.gov (United States)

    2016-11-30

    Polymer concrete (PC) is that type of concrete where the cement binder is replaced with polymer. PC is often used to improve friction and protect structural substrates in reinforced concrete and orthotropic steel bridges. However, its low fatigue per...

  16. Stress concentration at notches

    CERN Document Server

    Savruk, Mykhaylo P

    2017-01-01

    This book compiles solutions of linear theory of elasticity problems for isotropic and anisotropic bodies with sharp and rounded notches. It contains an overview of established and recent achievements, and presents the authors’ original solutions in the field considered with extensive discussion. The volume demonstrates through numerous, useful examples the effectiveness of singular integral equations for obtaining exact solutions of boundary problems of the theory of elasticity for bodies with cracks and notches. Incorporating analytical and numerical solutions of the problems of stress concentrations in solid bodies with crack-like defects, this volume is ideal for scientists and PhD students dealing with the problems of theory of elasticity and fracture mechanics. Stands as a modern and extensive compendium of solutions to the problems of linear theory of elasticity of isotropic and anisotropic bodies with sharp and rounded notches; Adopts a highly reader-friendly layout of tables, charts, approximation ...

  17. Significance of residual stress on fatigue properties of welded pipes

    International Nuclear Information System (INIS)

    Ohta, A.; Maeda, Y.; Kanao, M.

    1984-01-01

    The mean stress effect on the fatigue properties of two kinds of welded pipes was investigated in cantilever bending. The fatigue strength changed with the mean stress on fillet welded pipes, but did not change on butt welded pipes. The fatigue crack initiated from the toe of weld on the outer surface of fillet welded pipes and from the undercut on the inner surface of butt welded pipes. The measurement of the fatigue crack propagation rate and the residual stress distribution through the thickness of pipe revealed that the difference in the fatigue properties between fillet and butt welded pipes arose from the weld-induced residual stress, tension on the inner surface and compression on the outer surface. It is suggested that the production of compressive residual stress along the inner surface would be an effective means for improving the fatigue strength of butt welded pipes. (author)

  18. The influence of cyclic shear fatigue on the bracket-adhesive-enamel complex: an in vitro study.

    Science.gov (United States)

    Daratsianos, Nikolaos; Musabegovic, Ena; Reimann, Susanne; Grüner, Manfred; Jäger, Andreas; Bourauel, Christoph

    2013-05-01

    To describe the effect of fatigue on the strength of the bracket-adhesive-enamel complex and characterize the fatigue behavior of the materials tested. Upper central incisor brackets (Discovery(®), Dentaurum) were bonded with a light-curing (Transbond XT™, 3M Unitek) and a chemically-curing adhesive (Concise™, 3M Unitek) on bovine teeth embedded in cylindrical resign bases and stored in water at 37(±2)°C for 24 (±2)h. The first 15 specimens were tested with a universal testing machine ZMART.PRO(®) (Zwick GmbH & Co. KG, Ulm, Germany) for ultimate shear bond strength according to the DIN-13990-2-standard. The remaining three groups of 20 specimens underwent fatigue staircase testing of 100, 1000 and 3000 cycles at 1Hz with a self-made testing machine. The survived specimens were subjected to shear strength testing. The fatigued specimens showed decreased shear strength with both adhesives at all cycle levels. The shear strength after fatigue for 100, 1000 and 3000 cycles was in the Concise™-groups 34.8%, 59.0%, 47.3% and in the Transbond™ XT-groups 33.6%, 23.1%, 27.3% relative to the ultimate shear strength. The fatigue life of the Concise™-groups decreased with increasing stress and Transbond™ XT showed lower fatigue ratio with no obvious trend. The specimens bonded with Transbond™ XT showed typically favorable fracture modes in contrary to Concise™. Fatigue of the bracket-adhesive-enamel complex decreased its shear strength. The staircase method can provide a standardized experimental protocol for fatigue studies, however testing at various cycle numbers is recommended. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  19. Current state of low-cycle fatigue research based on multiaxial stress intensity and its challenges. Part 1. Focusing on low-cycle fatigue strength evaluation method of elbow piping subjected to in-plane cyclic bending displacement load

    International Nuclear Information System (INIS)

    Urabe, Yoshio

    2017-01-01

    The R and D of fatigue strength at multiaxial stress intensity is recognized to become extremely important in the future in terms of the elaboration of low-cycle fatigue evaluation of various structures including piping systems and reflection on those standards. This paper focuses on the evaluation method developed by the author, namely cumulative damage rule in consideration of multiaxial stress intensity, and explains the concept and the results of verification and evaluation. It also discusses the engineering problems of the current low cycle fatigue assessment technology that were clarified in the process of developing low-cycle fatigue assessment method based on multiaxial stress intensity. The conservative lifespan and somewhat more conservative actual lifetime of elbow piping can be estimated by the conventional 'revised universal slope method' and 'advanced revised universal slope method.' However, these are empirical rules, and the theoretical basis is not clear. From 'cumulative damage rule in consideration of multiaxial stress intensity,' the author calculated furthermore 'low cycle fatigue evaluation formula based on cumulative damage rule in consideration of multi-axial stress intensity,' and examined it. As a result, an evaluation formula that can reasonably assume the equivalent thermoplastic strain range could be obtained at half of the repeat count as targeted. Furthermore, at the stage where future high precision FEM analysis can be used, direct low-cycle fatigue life curve can be established. (A.O.)

  20. Sadhana | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Modelling heterogeneity of concrete using 2D lattice network for concrete fracture and comparison with AE study · R Vidya Sagar ... Size effect in self consolidating concrete beams with and without notches · H Eskandari S ... pp 133-147. Residual strength evaluation of concrete structural components under fatigue loading.

  1. Probabilistic Fatigue Design of Composite Material for Wind Turbine Blades

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard

    2011-01-01

    In the present paper a probabilistic design approach to fatigue design of wind turbine blades is presented. The physical uncertainty on the fatigue strength for composite material is estimated using public available fatigue tests. Further, the model uncertainty on Miner rule for damage accumulation...

  2. Effects of Oxygen Content on Tensile and Fatigue Performance of Ti-6Al-4 V Manufactured by Selective Laser Melting

    Science.gov (United States)

    Quintana, Oscar A.; Tong, Weidong

    2017-12-01

    We investigated the selective laser melting (SLM) process for development of Ti-6Al-4 V solid material with oxygen content corresponding to the extra low interstitial (ELI) and non-ELI conditions. The microstructure, chemistry, and tensile properties of samples in as-built and hot isostatically pressed (HIPed) condition were evaluated for both material types, while fatigue performance was evaluated by rotating bending fatigue tests on both smooth and notched SLM ELI and non-ELI Ti-6Al-4 V samples in HIPed condition.

  3. Deep lateral notch sign and double notch sign in complete tears of the anterior cruciate ligament: MR imaging evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Grimberg, Alexandre [University of California, San Diego School of Medicine, Division of Musculoskeletal Radiology, Department of Radiology, San Diego, CA (United States); Universidade Federal de Sao Paulo, Department of Diagnostic Imaging, Sao Paulo, SP (Brazil); Shirazian, Hoda; Torshizy, Hamid; Smitaman, Edward; Resnick, Donald L. [University of California, San Diego School of Medicine, Division of Musculoskeletal Radiology, Department of Radiology, San Diego, CA (United States); Chang, Eric Y. [Veterans Administrations San Diego Healthcare Systems, Osteoradiology Section, Department of Radiology, San Diego, CA (United States); University of California, San Diego School of Medicine, Division of Musculoskeletal Radiology, Department of Radiology, San Diego, CA (United States)

    2014-11-20

    To systematically compare the notches of the lateral femoral condyle (LFC) in patients with and without complete tears of the anterior cruciate ligament (ACL) in MR studies by (1) evaluating the dimensions of the lateral condylopatellar sulcus; (2) evaluating the presence and appearance of an extra or a double notch and its association with such tears. This retrospective study was approved by our institutional review board, and informed written patient consent was waived. In 58 cases of complete ACL tears and 37 control cases with intact ACL, the number of notches on the LFC was determined, and the depth and anteroposterior (AP) length of each notch were measured in each third of the LFC. The chi-square test, t-test, and logistic regression model were used to analyze demographic data and image findings, as appropriate. Presence of more than one notch demonstrated a sensitivity of 17.2 %, specificity of 100 %, positive predictive value of 100 %, and negative predictive value of 43.5 % for detecting a complete ACL tear. Lateral third depth measurement (p = 0.028) was a significant associated finding with a complete ACL tear. A deep notch in the lateral third of the LFC is a significant associated finding with a complete ACL tear when compared with an ACL-intact control group, and the presence of more than one notch is a specific but insensitive sign of such a tear. (orig.)

  4. Fatigue crack propagation in additively manufactured porous biomaterials.

    Science.gov (United States)

    Hedayati, R; Amin Yavari, S; Zadpoor, A A

    2017-07-01

    Additively manufactured porous titanium implants, in addition to preserving the excellent biocompatible properties of titanium, have very small stiffness values comparable to those of natural bones. Although usually loaded in compression, biomedical implants can also be under tensional, shear, and bending loads which leads to crack initiation and propagation in their critical points. In this study, the static and fatigue crack propagation in additively manufactured porous biomaterials with porosities between 66% and 84% is investigated using compact-tension (CT) samples. The samples were made using selective laser melting from Ti-6Al-4V and were loaded in tension (in static study) and tension-tension (in fatigue study) loadings. The results showed that displacement accumulation diagram obtained for different CT samples under cyclic loading had several similarities with the corresponding diagrams obtained for cylindrical samples under compression-compression cyclic loadings (in particular, it showed a two-stage behavior). For a load level equaling 50% of the yield load, both the CT specimens studied here and the cylindrical samples we had tested under compression-compression cyclic loading elsewhere exhibited similar fatigue lives of around 10 4 cycles. The test results also showed that for the same load level of 0.5F y , the lower density porous structures demonstrate relatively longer lives than the higher-density ones. This is because the high bending stresses in high-density porous structures gives rise to local Mode-I crack opening in the rough external surface of the struts which leads to quicker formation and propagation of the cracks. Under both the static and cyclic loading, all the samples showed crack pathways which were not parallel to but made 45 ° angles with respect to the notch direction. This is due to the fact that in the rhombic dodecahedron unit cell, the weakest struts are located in 45 ° direction with respect to the notch direction

  5. Effects of friction and high torque on fatigue crack propagation in Mode III

    Science.gov (United States)

    Nayeb-Hashemi, H.; McClintock, F. A.; Ritchie, R. O.

    1982-12-01

    Turbo-generator and automotive shafts are often subjected to complex histories of high torques. To provide a basis for fatigue life estimation in such components, a study of fatigue crack propagation in Mode III (anti-plane shear) for a mill-annealed AISI 4140 steel (RB88, 590 MN/m2 tensile strength) has been undertaken, using torsionally-loaded, circumferentially-notched cylindrical specimens. As demonstrated previously for higher strength AISI 4340 steel, Mode III cyclic crack growth rates (dc/dN) IIIcan be related to the alternating stress intensity factor ΔKIII for conditions of small-scale yielding. However, to describe crack propagation behavior over an extended range of crack growth rates (˜10-6 to 10-2 mm per cycle), where crack growth proceeds under elastic-plastic and full plastic conditions, no correlation between (dc/dN) III and ΔKIII is possible. Accordingly, a new parameter for torsional crack growth, termed the plastic strain intensity Γ III, is introduced and is shown to provide a unique description of Mode III crack growth behavior for a wide range of testing conditions, provided a mean load reduces friction, abrasion, and interlocking between mating fracture surfaces. The latter effect is found to be dependent upon the mode of applied loading (i.e., the presence of superimposed axial loads) and the crack length and torque level. Mechanistically, high-torque surfaces were transverse, macroscopically flat, and smeared. Lower torques showed additional axial cracks (longitudinal shear cracking) perpendicular to the main transverse surface. A micro-mechanical model for the main radi l Mode III growth, based on the premise that crack advance results from Mode II coalescence of microcracks initiated at inclusions ahead of the main crack front, is extended to high nominal stress levels, and predicts that Mode III fatigue crack propagation rates should be proportional to the range of plastic strain intensity (ΔΓIII if local Mode II growth rates are

  6. Fatigue behaviour of metals. 2. ed.; Ermuedungsverhalten metallischer Werkstoffe

    Energy Technology Data Exchange (ETDEWEB)

    Christ, H.J. [Siegen Univ. (Gesamthochschule) (Germany). Inst. fuer Werkstofftechnik

    2009-07-01

    The book presents an outline of the fatigue characteristics of metals. Interested students, engineers, scientists and users are provided with a basic understanding of the possible processes, from which they will get a feeling for the processes going on inside materials under fatigue stress which is indispensable for developing and testing modern constructional materials. Subjects: Introduction and outline - Material fatigue and microstructure - Cyclic stress-strain behaviour - Cracking - Electron microscopy - Fundamentals of fracture mechanics - Fatigue crack growth - Cyclic strength of steels - Thermomechanical fatigue - Operating strength of components - Fatigue of welded constructions. [German] In dem vorliegenden Buch wird ein Ueberblick ueber die Ermuedung metallischer Werkstoffe gegeben. Interessierten Studenten, Ingenieuren, Wissenschaftlern und Anwendern wird ein Grundverstaendnis fuer die moeglichen Prozesse vermittelt, aus dem sich ein Gefuehl fuer die Vorgaenge im Werkstoff bei zyklischer Beanspruchung entwickelt - unabdingbar fuer Entwicklung und Pruefung moderner Kontruktionswerkstoffe. Es enthaelt folgende Themen: Einfuehrung und Ueberblick - Materialermuedung und Mikrostruktur - Zyklisches Spannungs-Dehnungsverhalten - Rissbildung - Elektronenmikroskopische Untersuchungen - Grundlagen der Bruchmechanik - Ermuedungsrisswachstum - Schwingfestigkeit von Staehlen - Thermomechanisches Ermuedungsverhalten - Betriebsfestigkeit von Bauteilen - Ermuedung von Schweisskonstruktionen.

  7. Influence of water storage on fatigue strength of self-etch adhesives.

    Science.gov (United States)

    Takamizawa, Toshiki; Barkmeier, Wayne W; Tsujimoto, Akimasa; Scheidel, Donal D; Watanabe, Hidehiko; Erickson, Robert L; Latta, Mark A; Miyazaki, Masashi

    2015-12-01

    The purpose of this study was to determine enamel and dentin bond durability after long-term water storage using self-etch adhesives. Two single step self-etch adhesives (SU, Scotchbond Universal and GB, G-ӕnial Bond) and a two-step self-etch adhesive (OX, OptiBond XTR) were used. The shear bond strength (SBS) and shear fatigue strength (FS) of the enamel and dentin were obtained with and without phosphoric acid pre-etching prior to application of the adhesives. The specimens were stored in distilled water at 37 °C for 24 h, 6 months, and one year. A staircase method was used to determine the FS using a frequency of 10 Hz for 50,000 cycles or until failure occurred. The SBS and FS of enamel bonds were significantly higher with pre-etching, when compared to no pre-etching for the same water storage period. The FS of dentin bonds with pre-etching tended to decrease relative to no pre-etching at the same storage period. For the one year storage period, SU and GB with pre-etching showed significantly lower FS values than the groups without pre-etching. The influence of water storage on FS of the self-etch adhesives was dependent on the adhesive material, storage period and phosphoric acid pre-etching of the bonding site. Phosphoric acid pre-etching of enamel improves the effectiveness of self-etch adhesive systems. Inadvertent contact of phosphoric acid on dentin appears to reduce the ability of self-etch adhesives to effectively bond resin composite materials. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Magnetoresistance effect in permalloy nanowires with various types of notches

    Science.gov (United States)

    Gao, Y.; You, B.; Wang, J.; Yuan, Y.; Wei, L. J.; Tu, H. Q.; Zhang, W.; Du, J.

    2018-05-01

    Suppressing the stochastic domain wall (DW) motion in magnetic nanowires is of great importance for designing DW-related spintronic devices. In this work, we have investigated the pinning/depinning processes of DWs in permalloy nanowires with three different types of notches by using longitudinal magnetoresistance (MR) measurement. The averaged MR curves demonstrate that the stochastic DW depinning is suppressed partly or even completely by a transversely asymmetric notch. The single-shot MR curves show that how the resistance changes with the applied field also depends strongly on the notch type while the DW is pinned around the notch. In the case of two depinning fields, larger (smaller) change of resistance always corresponds to larger (smaller) depinning field, regardless of the notch type. These phenomena can be understood by that the spin structure around the notch changes differently with the notch type when the DW is traveling through the notch.

  9. Wooden Bridges - Phase 2, Subproject 2.3 Fatigue

    DEFF Research Database (Denmark)

    Clorius, Christian Odin; Pedersen, Martin Bo Uhre; Hoffmeyer, Preben

    1999-01-01

    The report presents preliminary results on fatigue of wood subjected to tension perpendicular to the grain at a moisture content around 12% and 17%. The main result of the paper concerns the frequency dependency of the fatigue strength. At present it is concluded that fatigue in tension...... perpendicular to the grain can be time dependent as well as time independent depending on stress level and moisture content....

  10. Gauging NOTCH1 Activation in Cancer Using Immunohistochemistry.

    Directory of Open Access Journals (Sweden)

    Michael J Kluk

    Full Text Available Fixed, paraffin-embedded (FPE tissues are a potentially rich resource for studying the role of NOTCH1 in cancer and other pathologies, but tests that reliably detect activated NOTCH1 (NICD1 in FPE samples have been lacking. Here, we bridge this gap by developing an immunohistochemical (IHC stain that detects a neoepitope created by the proteolytic cleavage event that activates NOTCH1. Following validation using xenografted cancers and normal tissues with known patterns of NOTCH1 activation, we applied this test to tumors linked to dysregulated Notch signaling by mutational studies. As expected, frequent NICD1 staining was observed in T lymphoblastic leukemia/lymphoma, a tumor in which activating NOTCH1 mutations are common. However, when IHC was used to gauge NOTCH1 activation in other human cancers, several unexpected findings emerged. Among B cell tumors, NICD1 staining was much more frequent in chronic lymphocytic leukemia than would be predicted based on the frequency of NOTCH1 mutations, while mantle cell lymphoma and diffuse large B cell lymphoma showed no evidence of NOTCH1 activation. NICD1 was also detected in 38% of peripheral T cell lymphomas. Of interest, NICD1 staining in chronic lymphocytic leukemia cells and in angioimmunoblastic lymphoma was consistently more pronounced in lymph nodes than in surrounding soft tissues, implicating factors in the nodal microenvironment in NOTCH1 activation in these diseases. Among carcinomas, diffuse strong NICD1 staining was observed in 3.8% of cases of triple negative breast cancer (3 of 78 tumors, but was absent from 151 non-small cell lung carcinomas and 147 ovarian carcinomas. Frequent staining of normal endothelium was also observed; in line with this observation, strong NICD1 staining was also seen in 77% of angiosarcomas. These findings complement insights from genomic sequencing studies and suggest that IHC staining is a valuable experimental tool that may be useful in selection of

  11. Proof of fatigue strength of ferritic and austenitic nuclear components

    Energy Technology Data Exchange (ETDEWEB)

    Roos, E.; Herter, K.H.; Schuler, X.; Weissenberg, T. [Materialpruefungsanstalt, Univ. Stuttgart (Germany)

    2009-07-01

    For the construction, design and operation of nuclear components and systems the appropriate technical codes and standards provide material data, detailed stress analysis procedures and a design philosophy which guarantees a reliable behaviour of the structural components throughout the specified lifetime. Especially for cyclic stress evaluation the different codes and standards provide different fatigue analyses procedures to be performed considering the various mechanical and thermal loading histories and geometric complexities of the components. For the fatigue design curves used as limiting criteria the influence of different factors like e.g., environment, surface finish and temperature must be taken into consideration in an appropriate way. Fatigue tests were performed with low alloy steels as well as with Nb- and Ti-stabilized German austenitic stainless steels in air and simulated high temperature boiling water reactor environment. The experimental results are compared and valuated with the mean data curves in air as well as with mean data curves under high temperature water environment published in the international literature. (orig.)

  12. Corrosion Fatigue Crack Growth Behavior at Notched Hole in 7075 T6 Under Different Biaxial Stress Ratios

    Science.gov (United States)

    2016-08-18

    Subjected to Biaxial Cyclic Loads.” Engineering Fracture Mechanics , 78:1516- 1528, 2011. [37] Sih, G.C.. “A Special Theory of Crack Propagation...of Aeronautics and Astronautics Graduate School of Engineering and Management Air Force Institute of Technology Air University Air Education and...environments from pre- cracked notched circular hole in a 7075-T6 cruciform specimen using a fracture mechanics approach. With stress ratio of R

  13. On the Specific Role of Microstructure in Governing Cyclic Fatigue, Deformation, and Fracture Behavior of a High-Strength Alloy Steel

    Science.gov (United States)

    Manigandan, K.; Srivatsan, T. S.

    2015-06-01

    In this paper, the results of an experimental study that focused on evaluating the conjoint influence of microstructure and test specimen orientation on fully reversed strain-controlled fatigue behavior of the high alloy steel X2M are presented and discussed. The cyclic stress response of this high-strength alloy steel revealed initial hardening during the first few cycles followed by gradual softening for most of fatigue life. Cyclic strain resistance exhibited a linear trend for the variation of elastic strain amplitude with reversals to failure, and plastic strain amplitude with reversals to failure. Fracture morphology was the same at the macroscopic level over the entire range of cyclic strain amplitudes examined. However, at the fine microscopic level, the alloy steel revealed fracture to be essentially ductile with features reminiscent of predominantly "locally" ductile and isolated brittle mechanisms. The mechanisms governing stress response at the fine microscopic level, fatigue life, and final fracture behavior are presented and discussed in light of the mutually interactive influences of intrinsic microstructural effects, deformation characteristics of the microstructural constituents during fully reversed strain cycling, cyclic strain amplitude, and resultant response stress.

  14. Determination of mode-I cohesive strength for interfaces

    DEFF Research Database (Denmark)

    Jørgensen, J. B.; Thouless, M. D.; Sørensen, Bent F.

    2016-01-01

    The cohesive strength is one of the governing parameters controlling crack deflection at interfaces, but measuring its magnitude is challenging. In this paper, we demonstrate a novel approach to determine the mode-I cohesive strength of an interface by using a 4-point single-edge-notch beam...... in response to this stress, before the main crack starts to grow. Observations using 2D digital-image correlation showed that an ''apparent" strain across the interface initially increases linearly with the applied load, but becomes nonlinear upon the initiation of the interface crack. The cohesive strength...

  15. Notch receptor expression in neurogenic regions of the adult zebrafish brain.

    Directory of Open Access Journals (Sweden)

    Vanessa de Oliveira-Carlos

    Full Text Available The adult zebrash brain has a remarkable constitutive neurogenic capacity. The regulation and maintenance of its adult neurogenic niches are poorly understood. In mammals, Notch signaling is involved in stem cell maintenance both in embryonic and adult CNS. To better understand how Notch signaling is involved in stem cell maintenance during adult neurogenesis in zebrafish we analysed Notch receptor expression in five neurogenic zones of the adult zebrafish brain. Combining proliferation and glial markers we identified several subsets of Notch receptor expressing cells. We found that 90 [Formula: see text] of proliferating radial glia express notch1a, notch1b and notch3. In contrast, the proliferating non-glial populations of the dorsal telencephalon and hypothalamus rarely express notch3 and about half express notch1a/1b. In the non-proliferating radial glia notch3 is the predominant receptor throughout the brain. In the ventral telencephalon and in the mitotic area of the optic tectum, where cells have neuroepithelial properties, notch1a/1b/3 are expressed in most proliferating cells. However, in the cerebellar niche, although progenitors also have neuroepithelial properties, only notch1a/1b are expressed in a high number of PCNA [Formula: see text] cells. In this region notch3 expression is mostly in Bergmann glia and at low levels in few PCNA [Formula: see text] cells. Additionally, we found that in the proliferation zone of the ventral telencephalon, Notch receptors display an apical high to basal low gradient of expression. Notch receptors are also expressed in subpopulations of oligodendrocytes, neurons and endothelial cells. We suggest that the partial regional heterogeneity observed for Notch expression in progenitor cells might be related to the cellular diversity present in each of these neurogenic niches.

  16. Identification of epidermal Pdx1 expression discloses different roles of Notch1 and Notch2 in murine Kras(G12D-induced skin carcinogenesis in vivo.

    Directory of Open Access Journals (Sweden)

    Pawel K Mazur

    Full Text Available BACKGROUND: The Ras and Notch signaling pathways are frequently activated during development to control many diverse cellular processes and are often dysregulated during tumorigenesis. To study the role of Notch and oncogenic Kras signaling in a progenitor cell population, Pdx1-Cre mice were utilized to generate conditional oncogenic Kras(G12D mice with ablation of Notch1 and/or Notch2. METHODOLOGY/PRINCIPAL FINDINGS: Surprisingly, mice with activated Kras(G12D and Notch1 but not Notch2 ablation developed skin papillomas progressing to squamous cell carcinoma providing evidence for Pdx1 expression in the skin. Immunostaining and lineage tracing experiments indicate that PDX1 is present predominantly in the suprabasal layers of the epidermis and rarely in the basal layer. Further analysis of keratinocytes in vitro revealed differentiation-dependent expression of PDX1 in terminally differentiated keratinocytes. PDX1 expression was also increased during wound healing. Further analysis revealed that loss of Notch1 but not Notch2 is critical for skin tumor development. Reasons for this include distinct Notch expression with Notch1 in all layers and Notch2 in the suprabasal layer as well as distinctive p21 and β-catenin signaling inhibition capabilities. CONCLUSIONS/SIGNIFICANCE: Our results provide strong evidence for epidermal expression of Pdx1 as of yet not identified function. In addition, this finding may be relevant for research using Pdx1-Cre transgenic strains. Additionally, our study confirms distinctive expression and functions of Notch1 and Notch2 in the skin supporting the importance of careful dissection of the contribution of individual Notch receptors.

  17. High levels of Notch signaling down-regulate Numb and Numblike

    NARCIS (Netherlands)

    Chapman, G.; Liu, L.; Sahlgren, C.; Dahlqvist, C.; Lendahl, U.

    2006-01-01

    Inhibition of Notch signaling by Numb is critical for many cell fate decisions. In this study, we demonstrate a more complex relationship between Notch and the two vertebrate Numb homologues Numb and Numblike. Although Numb and Numblike at low levels of Notch signaling negatively regulated Notch,

  18. Magnetoresistance effect in permalloy nanowires with various types of notches

    Directory of Open Access Journals (Sweden)

    Y. Gao

    2018-05-01

    Full Text Available Suppressing the stochastic domain wall (DW motion in magnetic nanowires is of great importance for designing DW-related spintronic devices. In this work, we have investigated the pinning/depinning processes of DWs in permalloy nanowires with three different types of notches by using longitudinal magnetoresistance (MR measurement. The averaged MR curves demonstrate that the stochastic DW depinning is suppressed partly or even completely by a transversely asymmetric notch. The single-shot MR curves show that how the resistance changes with the applied field also depends strongly on the notch type while the DW is pinned around the notch. In the case of two depinning fields, larger (smaller change of resistance always corresponds to larger (smaller depinning field, regardless of the notch type. These phenomena can be understood by that the spin structure around the notch changes differently with the notch type when the DW is traveling through the notch.

  19. Inhibitory role of Notch1 in calcific aortic valve disease.

    Directory of Open Access Journals (Sweden)

    Asha Acharya

    Full Text Available Aortic valve calcification is the most common form of valvular heart disease, but the mechanisms of calcific aortic valve disease (CAVD are unknown. NOTCH1 mutations are associated with aortic valve malformations and adult-onset calcification in families with inherited disease. The Notch signaling pathway is critical for multiple cell differentiation processes, but its role in the development of CAVD is not well understood. The aim of this study was to investigate the molecular changes that occur with inhibition of Notch signaling in the aortic valve. Notch signaling pathway members are expressed in adult aortic valve cusps, and examination of diseased human aortic valves revealed decreased expression of NOTCH1 in areas of calcium deposition. To identify downstream mediators of Notch1, we examined gene expression changes that occur with chemical inhibition of Notch signaling in rat aortic valve interstitial cells (AVICs. We found significant downregulation of Sox9 along with several cartilage-specific genes that were direct targets of the transcription factor, Sox9. Loss of Sox9 expression has been published to be associated with aortic valve calcification. Utilizing an in vitro porcine aortic valve calcification model system, inhibition of Notch activity resulted in accelerated calcification while stimulation of Notch signaling attenuated the calcific process. Finally, the addition of Sox9 was able to prevent the calcification of porcine AVICs that occurs with Notch inhibition. In conclusion, loss of Notch signaling contributes to aortic valve calcification via a Sox9-dependent mechanism.

  20. The pathological significance of Notch1 in oral squamous cell carcinoma.

    Science.gov (United States)

    Yoshida, Ryoji; Nagata, Masashi; Nakayama, Hideki; Niimori-Kita, Kanako; Hassan, Wael; Tanaka, Takuji; Shinohara, Masanori; Ito, Takaaki

    2013-10-01

    Notch signaling has been reported to be involved in several types of malignant tumors; however, the role and activation mechanism of Notch signaling in oral squamous cell carcinoma (OSCC) remains poorly characterized. The purpose of this study was to elucidate the pathological significance of Notch signaling and its activation mechanism in the development and progression of OSCC. In this study, we showed that the expression of Notch1 and intracellular Notch domain (NICD) are upregulated in OSCCs. In addition, Notch1 and NICD were found to be characteristically localized at the invasive tumor front. TNF-α, a major inflammatory cytokine, significantly activated Notch signaling in vitro. In a clinicopathological analysis, Notch1 expression correlated with both the T-stage and the clinical stage. Furthermore, loss of Notch1 expression correlated with the inhibition of cell proliferation and TNF-α-dependent invasiveness in an OSCC cell line. In addition, γ-secretase inhibitor (GSI) prevented cell proliferation and TNF-α-dependent invasion of OSCC cells in vitro. These results indicate that altered expression of Notch1 is associated with increased cancer progression and that Notch1 regulates the steps involved in cell metastasis in OSCC. Moreover, inactivating Notch signaling with GSI could therefore be a useful approach for treating patients with OSCC.