WorldWideScience

Sample records for northern mojave desert

  1. 77 FR 65133 - Revisions to the California State Implementation Plan, Mojave Desert Air Quality Management District

    Science.gov (United States)

    2012-10-25

    ... the California State Implementation Plan, Mojave Desert Air Quality Management District AGENCY... limited disapproval of revisions to the Mojave Desert Air Quality Management District (MDAQMD) portion of.... * * * * * (c) * * * (379) * * * (i) * * * (E) Mojave Desert Air Quality Management District. (1) Rule 1159...

  2. 76 FR 29153 - Revisions to the California State Implementation Plan, Mojave Desert Air Quality Management District

    Science.gov (United States)

    2011-05-20

    ... the California State Implementation Plan, Mojave Desert Air Quality Management District AGENCY... approve revisions to the Mojave Desert Air Quality Management District (MDAQMD) portion of the California... approving with the dates that they were adopted by the Mojave Desert Air Quality Management District (MDAQMD...

  3. Recovery of compacted soils in Mojave Desert ghost towns.

    Science.gov (United States)

    Webb, R.H.; Steiger, J.W.; Wilshire, H.G.

    1986-01-01

    Residual compaction of soils was measured at seven sites in five Mojave Desert ghost towns. Soils in these Death Valley National Monument townsites were compacted by vehicles, animals, and human trampling, and the townsites had been completely abandoned and the buildings removed for 64 to 75 yr. Recovery times extrapolated using a linear recovery model ranged from 80 to 140 yr and averaged 100 yr. The recovery times were related to elevation, suggesting freeze-thaw loosening as an important factor in ameliorating soil compaction in the Mojave Desert. -from Authors

  4. Desert tortoise use of burned habitat in the Eastern Mojave desert

    Science.gov (United States)

    Drake, Karla K.; Esque, Todd C.; Nussear, Kenneth E.; DeFalco, Lesley; Scoles, Sara; Modlin, Andrew T.; Medica, Philip A.

    2015-01-01

    Wildfires burned 24,254 ha of critical habitat designated for the recovery of the threatened Mojave desert tortoise (Gopherus agassizii) in southern Nevada during 2005. The proliferation of non-native annual grasses has increased wildfire frequency and extent in recent decades and continues to accelerate the conversion of tortoise habitat across the Mojave Desert. Immediate changes to vegetation are expected to reduce quality of critical habitat, yet whether tortoises will use burned and recovering habitat differently from intact unburned habitat is unknown. We compared movement patterns, home-range size, behavior, microhabitat use, reproduction, and survival for adult desert tortoises located in, and adjacent to, burned habitat to understand how tortoises respond to recovering burned habitat. Approximately 45% of home ranges in the post-fire environment contained burned habitat, and numerous observations (n = 12,223) corroborated tortoise use of both habitat types (52% unburned, 48% burned). Tortoises moved progressively deeper into burned habitat during the first 5 years following the fire, frequently foraging in burned habitats that had abundant annual plants, and returning to adjacent unburned habitat for cover provided by intact perennial vegetation. However, by years 6 and 7, the live cover of the short-lived herbaceous perennial desert globemallow (Sphaeralcea ambigua) that typically re-colonizes burned areas declined, resulting in a contraction of tortoise movements from the burned areas. Health and egg production were similar between burned and unburned areas indicating that tortoises were able to acquire necessary resources using both areas. This study documents that adult Mojave desert tortoises continue to use habitat burned once by wildfire. Thus, continued management of this burned habitat may contribute toward the recovery of the species in the face of many sources of habitat loss.

  5. Mid-to-Late Holocene Hydrologic Variability in the Southeastern Mojave Desert Using Sediments from Ford Lake

    Science.gov (United States)

    Mayer, S. A.; Kirby, M. E.; Anderson, W. T., Jr.; Stout, C.; Palermo, J. A.

    2015-12-01

    The focal point of most lacustrine studies in the Mojave National Preserve (MNP) to date has been on lakes fed by the Mojave River. The source of the Mojave River is found on the northern flank of the San Bernardino Mountains. Consequently, the lakes that receive these waters are predominantly responding to the winter-only coastal southwest United States climate (e.g., Kirby et al., 2015 - Silver Lake); to a lesser degree, these lakes are also influenced by the Mojave's bimodal winter/summer climate. Ford Lake, located in the southeastern Mojave Desert is a small closed basin lake with its drainage basin located exclusively within the Mojave Desert. Therefore, sediment collected from Ford Lake contains a 100% Mojave-only climate signal. A 2.18 m sediment core was collected from the lake's depocenter in May 2015. Sediment analyses at 1 cm contiguous intervals include: magnetic susceptibility (MS), percent total organic matter, percent total carbonate content, and grain size analysis; C:N ratios, C and N isotope (δ13C and δ15N) analyses, and macrofossil counts are determined at 2 cm intervals. The site's age model is based on accelerator mass spectrometry (AMS) radiocarbon ages from discrete organic macrofossils or bulk organic carbon. To deconvolve the coastal climate, winter-only signal from the Mojave-only climate signal the data from Ford Lake will be compared to one Mojave River fed lake (Silver) and several southern California lakes (Lower Bear, Lake Elsinore, Dry Lake, and Zaca Lake). Our results will be analyzed in the context of climate forcings such as insolation and ocean - atmosphere dynamics.

  6. Livestock grazing and the desert tortoise in the Mojave Desert

    Science.gov (United States)

    Oldemeyer, John L.

    1994-01-01

    A large part of the Mojave Desert is not in pristine condition, and some current conditions can be related to past grazing-management practices. No information could be found on densities of the desert tortoise (Gopherus agassizii) or on vegetative conditions of areas that had not been grazed to allow managers a comparison of range conditions with data on tortoises. Experimental information to assess the effect of livestock grazing on tortoises is lacking, and researchers have not yet examined whether the forage that remains after grazing is sufficient to meet the nutritional needs of desert tortoises.

  7. 77 FR 11990 - Revisions to the California State Implementation Plan, Mojave Desert Air Quality Management...

    Science.gov (United States)

    2012-02-28

    ... the California State Implementation Plan, Mojave Desert Air Quality Management District and Yolo-Solano Air Quality Management District AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule. SUMMARY: EPA is proposing to approve revisions to the Mojave Desert Air Quality Management...

  8. Land subsidence in the southwestern Mojave Desert, California, 1992–2009

    Science.gov (United States)

    Brandt, Justin; Sneed, Michelle

    2017-07-19

    Groundwater has been the primary source of domestic, agricultural, and municipal water supplies in the southwestern Mojave Desert, California, since the early 1900s. Increased demands on water supplies have caused groundwater-level declines of more than 100 feet (ft) in some areas of this desert between the 1950s and the 1990s (Stamos and others, 2001; Sneed and others, 2003). These water-level declines have caused the aquifer system to compact, resulting in land subsidence. Differential land subsidence (subsidence occurring at different rates across the landscape) can alter surface drainage routes and damage surface and subsurface infrastructure. For example, fissuring across State Route 247 at Lucerne Lake has required repairs as has pipeline infrastructure near Troy Lake.Land subsidence within the Mojave River and Morongo Groundwater Basins of the southwestern Mojave Desert has been evaluated using InSAR, ground-based measurements, geology, and analyses of water levels between 1992 and 2009 (years in which InSAR data were collected). The results of the analyses were published in three USGS reports— Sneed and others (2003), Stamos and others (2007), and Solt and Sneed (2014). Results from the latter two reports were integrated with results from other USGS/ MWA cooperative groundwater studies into the broader scoped USGS Mojave Groundwater Resources Web site (http://ca.water.usgs.gov/ mojave/). This fact sheet combines the detailed analyses from the three subsidence reports, distills them into a longer-term context, and provides an assessment of options for future monitoring.

  9. Late Holocene Hydrologic Variability in the southeast Mojave Desert using sediments from Ford Lake, California

    Science.gov (United States)

    Leidelmeijer, J.; Kirby, M.; Anderson, W. T., Jr.; Mayer, S. A.; Palermo, J. A.; Stout, C.; Shellhorn, A.; Weisberg, G.; Rangel, H.; Hess, B.

    2017-12-01

    Most published lacustrine studies located in the Mojave Desert focus on lakes that receive the majority of their water from the Mojave River (e.g., Silver Lake, Cronese Lakes, Soda Lake, etc). Consequently, these Mojave River-fed lake sites record coastal hydroclimatic signals rather than a solely Mojave-only signal. The reason for this signal-disconnect is that the Mojave River is sourced in the San Bernardino Mountains, where annual precipitation is dictated by coastal hydroclimates. Therefore, much remains unknown about how the Mojave Desert changed during the Holocene at sub-millennial time scales. To address this problem and fill in an important geographical gap, we focus on Ford Lake in the southeastern Mojave Desert. Ford Lake is an internally drained, closed basin, and it is completely disconnected from the Mojave River. As a result, it represents one of the first lakes studied in the Mojave Desert with a climate signal that is 100% Mojave. Sediments from Ford Lake provide valuable context for understanding hydroclimatic variability exclusive to the Mojave Desert. To date, two hand-dug 1.5 m trenches (depocenter and littoral zone) and 3 overlapping sediments cores from the lake's depocenter have been sampled. The total core length is 3.55 m and bottomed in coarse alluvium, suggesting we captured the complete lacustrine sediment package. Initial results by Mayer (2016) focused on the most recent 1200 calendar years before present, or the upper 2.16 m. Mayer (2016) found evidence for increased run-off (wetter climate) during the Little Ice Age and reduced run-off (drier climate) during the Medieval Climatic Anomaly. Here, we complete the study, improving age control using sediment charcoal. Grain size, magnetic susceptibility, percent total organic matter, percent total carbonate content, C:N ratios and C and N isotopic analyses are (will be) measured at 1 cm contiguous intervals. The Ford Lake record has been (will be) compared to pre-existing regional

  10. Subsidence (2004-2009) in and near lakebeds of the Mojave River and Morongo groundwater basins, southwest Mojave Desert, California

    Science.gov (United States)

    Solt, Mike; Sneed, Michelle

    2014-01-01

    Subsidence, in the vicinity of dry lakebeds, within the Mojave River and Morongo groundwater basins of the southwest Mojave Desert has been measured by Interferometric Synthetic Aperture Radar (InSAR). The investigation has focused on determining the location, extent, and magnitude of changes in land-surface elevation. In addition, the relation of changes in land-surface elevation to changes in groundwater levels and lithology was explored. This report is the third in a series of reports investigating land-surface elevation changes in the Mojave and Morongo Groundwater Basins, California. The first report, U.S. Geological Survey (USGS) Water-Resources Investigations Report 03-4015 by Sneed and others (2003), describes historical subsidence and groundwater-level changes in the southwest Mojave Desert from 1969 to 1999. The second report, U.S. Geological Survey Water-Resources Investigations Report 07-5097, an online interactive report and map, by Sneed and Brandt (2007), describes subsidence and groundwater-level changes in the southwest Mojave Desert from 1999 to 2004. The purpose of this report is to document an updated assessment of subsidence in these lakebeds and selected neighboring areas from 2004 to 2009 as measured by InSAR methods. In addition, continuous Global Positioning System (GPS)(2005-10), groundwater level (1951-2010), and lithologic data, if available, were used to characterize compaction mechanisms in these areas. The USGS California Water Science Center’s interactive website for the Mojave River and Morongo groundwater basins was created to centralize information pertaining to land subsidence and water levels and to allow readers to access available data and related reports online. An interactive map of land subsidence and water levels in the Mojave River and Morongo groundwater basins displays InSAR interferograms, subsidence areas, subsidence contours, hydrographs, well information, and water-level contours. Background information, including

  11. Fire Impacts on the Mojave Desert Ecosystem: Literature Review

    Energy Technology Data Exchange (ETDEWEB)

    Fenstermaker Lynn

    2012-01-01

    The Nevada National Security Site (NNSS) is located within the Mojave Desert, which is the driest region in North America. Precipitation on the NNSS varies from an annual average of 130 millimeters (mm; 5.1 inches) with a minimum of 47 mm (1.9 inches) and maximum of 328 mm (12.9 inches) over the past 15 year period to an annual average of 205 mm (8.1 inches) with an annual minimum of 89 mm (3.5 inches) and maximum of 391 mm (15.4 inches) for the same time period; for a Frenchman Flat location at 970 meters (m; 3182 feet) and a Pahute Mesa location at 1986 m (6516 feet), respectively. The combination of aridity and temperature extremes has resulted in sparsely vegetated basins (desert shrub plant communities) to moderately vegetated mountains (mixed coniferous forest plant communities); both plant density and precipitation increase with increasing elevation. Whereas some plant communities have evolved under fire regimes and are dependent upon fire for seed germination, plant communities within the Mojave Desert are not dependent on a fire regime and therefore are highly impacted by fire (Brown and Minnich, 1986; Brooks, 1999). As noted by Johansen (2003) natural range fires are not prevalent in the Mojave and Sonoran Deserts because there is not enough vegetation present (too many shrub interspaces) to sustain a fire. Fire research and hence publications addressing fires in the Southwestern United States (U.S.) have therefore focused on forest, shrub-steppe and grassland fires caused by both natural and anthropogenic ignition sources. In the last few decades, however, invasion of mid-elevation shrublands by non-native Bromus madritensis ssp. rubens and Bromus tectorum (Hunter, 1991) have been highly correlated with increased fire frequency (Brooks and Berry, 2006; Brooks and Matchett, 2006). Coupled with the impact of climate change, which has already been shown to be playing a role in increased forest fires (Westerling et al., 2006), it is likely that the fire

  12. Holocene landscape response to seasonality of storms in the Mojave Desert

    Science.gov (United States)

    Miller, D.M.; Schmidt, K.M.; Mahan, S.A.; McGeehin, J.P.; Owen, L.A.; Barron, J.A.; Lehmkuhl, F.; Lohrer, R.

    2010-01-01

    New optically stimulated and radiocarbon ages for alluvial fan and lake deposits in the Mojave Desert are presented, which greatly improves the temporal resolution of surface processes. The new Mojave Desert climate-landscape record is particularly detailed for the late Holocene. Evidence from ephemeral lake deposits and landforms indicates times of sustained stream flow during a wet interval of the latter part of the Medieval Warm Period at ca. AD 1290 and during the Little Ice Age at ca. AD 1650. The former lakes postdate megadroughts of the Medieval Warm Period, whereas the latter match the Maunder Minimum of the Little Ice Age. Periods of alluvial fan aggradation across the Mojave Desert are 14-9 cal ka and 6-3 cal ka. This timing largely correlates to times of increased sea-surface temperatures in the Gulf of California and enhanced warm-season monsoons. This correlation suggests that sustained alluvial fan aggradation may be driven by intense summer-season storms. These data suggest that the close proximity of the Mojave Desert to the Pacific Ocean and the Gulf of California promotes a partitioning of landscape-process responses to climate forcings that vary with seasonality of the dominant storms. Cool-season Pacific frontal storms cause river flow, ephemeral lakes, and fan incision, whereas periods of intense warm-season storms cause hillslope erosion and alluvial fan aggradation. The proposed landscape-process partitioning has important implications for hazard mitigation given that climate change may increase sea-surface temperatures in the Gulf of California, which indirectly could increase future alluvial fan aggradation.

  13. 76 FR 29182 - Revisions to the California State Implementation Plan, Mojave Desert Air Quality Management District

    Science.gov (United States)

    2011-05-20

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 52 [EPA-R09-OAR-2011-0030; FRL-9308-4] Revisions to the California State Implementation Plan, Mojave Desert Air Quality Management District AGENCY... the Mojave Desert Air Quality Management District (MDAQMD) portion of the California State...

  14. 77 FR 11992 - Revisions to the California State Implementation Plan, Mojave Desert Air Quality Management District

    Science.gov (United States)

    2012-02-28

    ... the California State Implementation Plan, Mojave Desert Air Quality Management District AGENCY... limited disapproval of revisions to the Mojave Desert Air Quality Management District (MDAQMD) portion of...,'' Northeast States for Coordinated Air Use Management, December 2000. B. Does the rule meet the evaluation...

  15. Distribution of photosynthetically fixed 14C in perennial plant species of the northern Mojave Desert

    International Nuclear Information System (INIS)

    Wallace, A.; Cha, J.W.; Romney, E.M.

    1980-01-01

    The distribution of photosynthate among plant parts subsequent to its production is needed to fully understand behavior of vegetation in any ecosystem. The present study, undertaken primarily to obtain information on transport of assimilates into roots of desert vegetation, was conducted in the northern Mojave Desert, where the mean annual rainfall is about 10 cm. Shoots of Ambrosia dumosa (A. Gray) Payne plants were exposed to 14 CO 2 in 1971, and the distribution of 14 C in roots, stems, and leaves was subsequently measured at 1 week, 2 months, and 5 months. Only about 12 percent of the 14 C photosynthate was stored in the root. Much of that stored in stems was available for new leaf growth. Photosynthate was labeled with 14 C for 24 plants representing eight species in 1972. Results showed that after 127 days the mean percentage of 14 C in roots as compared with the estimate of that originally fixed was 11.8; the percentage in stems was 43.8. To check the validity of the 14 C data, root growth of eight perennial desert plants grown in the glasshouse was followed as plants increased in size. The mean percent of the whole plant that was root for eight species was 17.7 percent. The mean proportion of the increase in plant weights that went below ground for the eight species was 19.5 percent. This value is higher than the fraction of 14 C found below ground, and therefore the 14 C technique underestimates the movement of C to roots. Results of an experiment designed to test the value of the 14 C-pulse technique for determining current root growth for some perennial species from the desert indicated that the transition part of roots where root growth continued after exposure to 14 C was highly labeled. Old growth contained less 14 C than new growth

  16. The geochemical associations of nitrate and naturally formed perchlorate in the Mojave Desert, California, USA

    Science.gov (United States)

    Lybrand, Rebecca A.; Michalski, Greg; Graham, Robert C.; Parker, David R.

    2013-03-01

    Perchlorate is a widely studied environmental contaminant that may adversely affect human health, and whose natural occurrence has emerged as a subject of great interest. Naturally formed perchlorate has been found to co-occur with nitrate in arid environments worldwide, but the relationship is not fully understood in the desert soils of the southwestern United States. The main objective of this research was to explore the origin, pedogenic distribution, and possible preservation of perchlorate and nitrate in the Mojave Desert mud hill deposits of California and to determine if the co-occurrence of putatively natural perchlorate was significantly correlated with nitrate in these soils. We identified 39 soil horizons in the Mojave Desert, California that contained reportable levels of perchlorate (MRL >165 μg kg-1) with a maximum concentration of 23 mg kg-1. A weak yet significant correlation was observed between perchlorate and nitrate (r2 = 0.321∗∗∗), which could be indicative of similar mechanisms of accumulation. When compared to published data for the Atacama Desert, the Mojave Desert perchlorate concentrations were remarkably lower for a given nitrate concentration. Oxygen isotopes in the nitrate were examined to identify variation within the Mojave Desert field sites, and to compare with the available literature for the Atacama Desert. The Mojave Desert Δ17O values ranged from 7‰ to 13‰, indicating a mixture of biologically and atmospherically-derived nitrate. An investigation of the distribution of perchlorate among soil horizons revealed that over sixty percent of the samples containing perchlorate were from C horizons while only twenty percent of the samples were from B horizons and even fewer in the overlying A horizons. Soil chemical, morphologic, and geologic characteristics of the soils suggest that the perchlorate, nitrate and/or other soluble salts have moved in a "bottom-up" manner wherein the salts were deposited in strata through

  17. Ozone Transport Aloft Drives Surface Ozone Maxima Across the Mojave Desert

    Science.gov (United States)

    VanCuren, R. A.

    2014-12-01

    A persistent layer of polluted air in the lower free troposphere over the Mojave Desert (California and Nevada) drives spring and summer surface ozone maxima as deep afternoon mixing delivers ozone and ozone precursors to surface measurement sites 200 km or more downwind of the mountains that separate the deserts from the heavily populated coastal areas of California. Pollutants in this elevated layer derive from California source regions (the Los Angeles megacity region and the intensive agricultural region of the San Joaquin Valley), and from long-range transport from Asia. Recognition of this poorly studied persistent layer explains and expands the significance of previously published reports of ozone and other pollutants observed in and over the Mojave Desert, resolves an apparent paradox in the timing of ozone peaks due to transport from the upwind basins, and provides a new perspective on the long-range downwind impacts of megacity pollution plumes.

  18. Transport aloft drives peak ozone in the Mojave Desert

    Science.gov (United States)

    VanCuren, Richard

    2015-05-01

    Transport of anthropogenic pollution eastward out of the Los Angeles megacity region in California has been periodically observed to reach the Colorado River and the Colorado Plateau region beyond. In the 1980s, anthropogenic halocarbon tracers measured in and near the Las Angeles urban area and at a mountain-top site near the Colorado River, 400 km downwind, were shown to have a correlated seven-day cycle explainable by transport from the urban area with a time lag of 1-2 days. Recent short term springtime intensive studies using aircraft observations and regional modeling of long range transport of ozone from the Southern California megacity region showed frequent and persistent ozone impacts at surface sites across the Colorado Plateau and Southern Rocky Mountain region, at distances up to 1500 km, also with time lags of 1-2 days. However, the timing of ozone peaks at low altitude monitoring sites within the Mojave Desert, at distances from 100 to 400 km from the South Coast and San Joaquin Valley ozone source regions, does not show the expected time-lag behavior seen in the larger transport studies. This discrepancy is explained by recognizing ozone transport across the Mojave Desert to occur in a persistent layer of polluted air in the lower free troposphere with a base level at approximately 1 km MSL. This layer impacts elevated downwind sites directly, but only influences low altitude surface ozone maxima through deep afternoon mixing. Pollutants in this elevated layer derive from California source regions (the Los Angeles megacity region and the intensive agricultural region of the San Joaquin Valley), from long-range transport from Asia, and stratospheric down-mixing. Recognition of the role of afternoon mixing during spring and summer over the Mojave explains and expands the significance of previously published reports of ozone and other pollutants observed in and over the Mojave Desert, and resolves an apparent paradox in the timing of ozone peaks due to

  19. Identification and interpretation of tectonic features from Skylab imagery. [Mojave Desert block of Texas, Arizona, and Chihuahua, Mexico

    Science.gov (United States)

    Abdel-Gawad, M. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. Two alternate models for the extension of the Texas zone through the Mojave Desert block have been developed: (1) along the Pisgah Line, and (2) along the eastern Transverse Ranges; this model suggests a counterclockwise rotation of the Mojave block. Analysis of S190B photographs of the western Mojave Desert provides strong evidence for the feasibility of identifying recent fault breaks.

  20. Reference intervals and physiologic alterations in hematologic and biochemical values of free-ranging desert tortoises in the Mojave Desert

    Science.gov (United States)

    Christopher, Mary M.; Berry, Kristin H.; Wallis, I.R.; Nagy, K.A.; Henen, B.T.; Peterson, C.C.

    1999-01-01

    Desert tortoise (Gopherus agassizii) populations have experienced precipitous declines resulting from the cumulative impact of habitat loss, and human and disease-related mortality. Evaluation of hematologic and biochemical responses of desert tortoises to physiologic and environmental factors can facilitate the assessment of stress and disease in tortoises and contribute to management decisions and population recovery. The goal of this study was to obtain and analyze clinical laboratory data from free-ranging desert tortoises at three sites in the Mojave Desert (California, USA) between October 1990 and October 1995, to establish reference intervals, and to develop guidelines for the interpretation of laboratory data under a variety of environmental and physiologic conditions. Body weight, carapace length, and venous blood samples for a complete blood count and clinical chemistry profile were obtained from 98 clinically healthy adult desert tortoises of both sexes at the Desert Tortoise Research Natural area (western Mojave), Goffs (eastern Mojave) and Ivanpah Valley (northeastern Mojave). Samples were obtained four times per year, in winter (February/March), spring (May/June), summer (July/August), and fall (October). Years of near-, above- and below-average rainfall were represented in the 5 yr period. Minimum, maximum and median values, and central 95 percentiles were used as reference intervals and measures of central tendency for tortoises at each site and/or season. Data were analyzed using repeated measures analysis of variance for significant (P < 0.01) variation on the basis of sex, site, season, and interactions between these variables. Significant sex differences were observed for packed cell volume, hemoglobin concentration, aspartate transaminase activity, and cholesterol, triglyceride, calcium, and phosphorus concentrations. Marked seasonal variation was observed in most parameters in conjunction with reproductive cycle, hibernation, or seasonal

  1. Comparative phylogeography reveals deep lineages and regional evolutionary hotspots in the Mojave and Sonoran Deserts

    Science.gov (United States)

    Wood, Dustin A.; Vandergast, Amy G.; Barr, Kelly R.; Inman, Richard D.; Esque, Todd C.; Nussear, Kenneth E.; Fisher, Robert N.

    2013-01-01

    Aim: We explored lineage diversification within desert-dwelling fauna. Our goals were (1) to determine whether phylogenetic lineages and population expansions were consistent with younger Pleistocene climate fluctuation hypotheses or much older events predicted by pre-Pleistocene vicariance hypotheses, (2) to assess concordance in spatial patterns of genetic divergence and diversity among species and (3) to identify regional evolutionary hotspots of divergence and diversity and assess their conservation status. Location: Mojave, Colorado, and Sonoran Deserts, USA. Methods: We analysed previously published gene sequence data for twelve species. We used Bayesian gene tree methods to estimate lineages and divergence times. Within each lineage, we tested for population expansion and age of expansion using coalescent approaches. We mapped interpopulation genetic divergence and intra-population genetic diversity in a GIS to identify hotspots of highest genetic divergence and diversity and to assess whether protected lands overlapped with evolutionary hotspots. Results: In seven of the 12 species, lineage divergence substantially predated the Pleistocene. Historical population expansion was found in eight species, but expansion events postdated the Last Glacial Maximum (LGM) in only four. For all species assessed, six hotspots of high genetic divergence and diversity were concentrated in the Colorado Desert, along the Colorado River and in the Mojave/Sonoran ecotone. At least some proportion of the land within each recovered hotspot was categorized as protected, yet four of the six also overlapped with major areas of human development. Main conclusions: Most of the species studied here diversified into distinct Mojave and Sonoran lineages prior to the LGM – supporting older diversification hypotheses. Several evolutionary hotspots were recovered but are not strategically paired with areas of protected land. Long-term preservation of species-level biodiversity would

  2. CO2 EFFECTS ON MOJAVE DESERT PLANT INTERACTIONS

    Energy Technology Data Exchange (ETDEWEB)

    L. A. DEFALCO; G. C. FERNANDEZ; S. D. SMITH; R. S. NOWAK

    2004-01-01

    Seasonal and interannual droughts characteristic of deserts have the potential to modify plant interactions as atmospheric CO{sub 2} concentrations continue to rise. At the Nevada Desert FACE (free-air CO{sub 2} enrichment) facility in the northern Mojave Desert, the effects of elevated atmospheric C02 (550 vs. ambient {approx}360 {micro}mol mol{sup -1}) on plant interactions were examined during two years of high and low rainfall. Results suggest that CO{sub 2} effects on the interaction between native species and their understory herbs are dependent on the strength of competition when rainfall is plentiful, but are unimportant during annual drought. Seasonal rainfall for 1999 was 23% the long-term average for the area, and neither elevated CO{sub 2} nor the low production of herbaceous neighbors had an effect on relative growth rate (RGR, d{sup -1}) and reproductive effort (RE, number of flowers g{sup -1}) for Achnatherum hymenoides (early season perennial C{sub 3} grass), Pleuraphis rigida (late season perennial C{sub 4} grass), and Larrea tridentata (evergreen C{sub 3} shrub). In contrast, 1998 received 213% the average rainfall. Consequently, the decrease in RGR and increase in RE for Achnatherum, whose period of growth overlaps directly with that of its neighbors, was exaggerated at elevated CO{sub 2}. However, competitive effects of neighbors on Eriogonum trichopes (a winter annual growing in shrub interspaces), Pleuraphis and Larrea were not affected by elevated CO{sub 2}, and possible explanations are discussed. Contrary to expectations, the invasive annual neighbor Bromus madritensis ssp. rubens had little influence on target plant responses because densities in 1998 and 1999 at this site were well below those found in other studies where it has negatively affected perennial plant growth. The extent that elevated CO{sub 2} reduces the performance of Achnatherum in successive years to cause its loss from the plant community depends more on future pressure

  3. Effects of high fire frequency in creosote bush scrub vegetation of the Mojave Desert

    Science.gov (United States)

    Brooks, M.L.

    2012-01-01

    Plant invasions can increase fire frequency in desert ecosystems where fires were historically infrequent. Although there are many resource management concerns associated with high frequency fire in deserts, fundamental effects on plant community characteristics remain largely unstudied. Here I describe the effects of fire frequency on creosote bush scrub vegetation in the Mojave Desert, USA. Biomass of the invasive annual grass Bromus rubens L. increased following fire, but did not increase further with additional fires. In contrast, density, cover and species richness of native perennial plants each decreased following fire and continued to decrease with subsequent fires, although not as dramatically as after the initial fire. Responses were similar 5 and 14 years post-fire, except that cover of Hymenoclea salsola Torr. & A. Gray and Achnatherum speciosa Trin. & Rupr. both increased in areas burnt once. These results suggest that control of B. rubens may be equally warranted after one, two or three fires, but revegetation of native perennial plants is most warranted following multiple fires. These results are valid within the scope of this study, which is defined as relatively short term vegetation responses (???14 years) to short fire return intervals (6.3 and 7.3 years for the two and three fire frequency levels) within creosote bush scrub of the Mojave Desert. ?? 2012 IAWF.

  4. Estimating wildfire risk on a Mojave Desert landscape using remote sensing and field sampling

    Science.gov (United States)

    Van Linn, Peter F.; Nussear, Kenneth E.; Esque, Todd C.; DeFalco, Lesley A.; Inman, Richard D.; Abella, Scott R.

    2013-01-01

    Predicting wildfires that affect broad landscapes is important for allocating suppression resources and guiding land management. Wildfire prediction in the south-western United States is of specific concern because of the increasing prevalence and severe effects of fire on desert shrublands and the current lack of accurate fire prediction tools. We developed a fire risk model to predict fire occurrence in a north-eastern Mojave Desert landscape. First we developed a spatial model using remote sensing data to predict fuel loads based on field estimates of fuels. We then modelled fire risk (interactions of fuel characteristics and environmental conditions conducive to wildfire) using satellite imagery, our model of fuel loads, and spatial data on ignition potential (lightning strikes and distance to roads), topography (elevation and aspect) and climate (maximum and minimum temperatures). The risk model was developed during a fire year at our study landscape and validated at a nearby landscape; model performance was accurate and similar at both sites. This study demonstrates that remote sensing techniques used in combination with field surveys can accurately predict wildfire risk in the Mojave Desert and may be applicable to other arid and semiarid lands where wildfires are prevalent.

  5. Coupled Environmental Processes and Long-term Performance of Landfill Covers in the northern Mojave Desert

    Energy Technology Data Exchange (ETDEWEB)

    David Shafer; Michael Young; Stephen Zitzer; Eric McDonald; Todd Caldwell

    2004-05-12

    Evapotransiration (ET) covers have gained widespread acceptance as a closure feature for waste disposal sites, particularly in the arid and semi-arid regions of the southwestern U.S. But as landforms, ET covers are subject to change over time because of processes such as pedogenesis, hydrologic processes, vegetation establishment and change, and biological processes. To better understand the effects of coupled process changes to ET covers, a series of four primary analog sites in Yucca Flat on the Nevada Test Site, along with measurements and observations from other locations in the Mojave Desert, were selected to evaluate changes in ET covers over time. The analog sites, of varying ages, were selected to address changes in the early post-institutional control period, the 1,000-year compliance period for disposal of low-level and mixed low-level waste, and the 10,000-year compliance period for transuranic waste sites.

  6. Coupled Environmental Processes and Long-term Performance of Landfill Covers in the northern Mojave Desert

    International Nuclear Information System (INIS)

    David Shafer; Michael Young; Stephen Zitzer; Eric McDonald; Todd Caldwell

    2004-01-01

    Evapotransiration (ET) covers have gained widespread acceptance as a closure feature for waste disposal sites, particularly in the arid and semi-arid regions of the southwestern U.S. But as landforms, ET covers are subject to change over time because of processes such as pedogenesis, hydrologic processes, vegetation establishment and change, and biological processes. To better understand the effects of coupled process changes to ET covers, a series of four primary analog sites in Yucca Flat on the Nevada Test Site, along with measurements and observations from other locations in the Mojave Desert, were selected to evaluate changes in ET covers over time. The analog sites, of varying ages, were selected to address changes in the early post-institutional control period, the 1,000-year compliance period for disposal of low-level and mixed low-level waste, and the 10,000-year compliance period for transuranic waste sites

  7. Precipitation regime classification for the Mojave Desert: Implications for fire occurrence

    Science.gov (United States)

    Tagestad, Jerry; Brooks, Matthew L.; Cullinan, Valerie; Downs, Janelle; McKinley, Randy

    2016-01-01

    Long periods of drought or above-average precipitation affect Mojave Desert vegetation condition, biomass and susceptibility to fire. Changes in the seasonality of precipitation alter the likelihood of lightning, a key ignition source for fires. The objectives of this study were to characterize the relationship between recent, historic, and future precipitation patterns and fire. Classifying monthly precipitation data from 1971 to 2010 reveals four precipitation regimes: low winter/low summer, moderate winter/moderate summer, high winter/low summer and high winter/high summer. Two regimes with summer monsoonal precipitation covered only 40% of the Mojave Desert ecoregion but contain 88% of the area burned and 95% of the repeat burn area. Classifying historic precipitation for early-century (wet) and mid-century (drought) periods reveals distinct shifts in regime boundaries. Early-century results are similar to current, while the mid-century results show a sizeable reduction in area of regimes with a strong monsoonal component. Such a shift would suggest that fires during the mid-century period would be minimal and anecdotal records confirm this. Predicted precipitation patterns from downscaled global climate models indicate numerous epochs of high winter precipitation, inferring higher fire potential for many multi-decade periods during the next century.

  8. Recovery of severely compacted soils in the Mojave Desert, California, USA

    Science.gov (United States)

    Webb, R.H.

    2002-01-01

    Often as a result of large-scale military maneuvers in the past, many soils in the Mojave Desert are highly vulnerable to soil compaction, particularly when wet. Previous studies indicate that natural recovery of severely compacted desert soils is extremely slow, and some researchers have suggested that subsurface compaction may not recover. Poorly sorted soils, particularly those with a loamy sand texture, are most vulnerable to soil compaction, and these soils are the most common in alluvial fans of the Mojave Desert. Recovery of compacted soil is expected to vary as a function of precipitation amounts, wetting-and-drying cycles, freeze-thaw cycles, and bioturbation, particularly root growth. Compaction recovery, as estimated using penetration depth and bulk density, was measured at 19 sites with 32 site-time combinations, including the former World War II Army sites of Camps Ibis, Granite, Iron Mountain, Clipper, and Essex. Although compaction at these sites was caused by a wide variety of forces, ranging from human trampling to tank traffic, the data do not allow segregation of differences in recovery rates for different compaction forces. The recovery rate appears to be logarithmic, with the highest rate of change occurring in the first few decades following abandonment. Some higher-elevation sites have completely recovered from soil compaction after 70 years. Using a linear model of recovery, the full recovery time ranges from 92 to 100 years; using a logarithmic model, which asymptotically approaches full recovery, the time required for 85% recovery ranges from 105-124 years.

  9. An Annual Plant Growth Proxy in the Mojave Desert Using MODIS-EVI Data.

    Science.gov (United States)

    Wallace, Cynthia S A; Thomas, Kathryn A

    2008-12-03

    In the arid Mojave Desert, the phenological response of vegetation is largely dependent upon the timing and amount of rainfall, and maps of annual plant cover at any one point in time can vary widely. Our study developed relative annual plant growth models as proxies for annual plant cover using metrics that captured phenological variability in Moderate-Resolution Imaging Spectroradiometer (MODIS) Enhanced Vegetation Index (EVI) satellite images. We used landscape phenologies revealed in MODIS data together with ecological knowledge of annual plant seasonality to develop a suite of metrics to describe annual growth on a yearly basis. Each of these metrics was applied to temporally-composited MODIS-EVI images to develop a relative model of annual growth. Each model was evaluated by testing how well it predicted field estimates of annual cover collected during 2003 and 2005 at the Mojave National Preserve. The best performing metric was the spring difference metric, which compared the average of three spring MODIS-EVI composites of a given year to that of 2002, a year of record drought. The spring difference metric showed correlations with annual plant cover of R² = 0.61 for 2005 and R² = 0.47 for 2003. Although the correlation is moderate, we consider it supportive given the characteristics of the field data, which were collected for a different study in a localized area and are not ideal for calibration to MODIS pixels. A proxy for annual growth potential was developed from the spring difference metric of 2005 for use as an environmental data layer in desert tortoise habitat modeling. The application of the spring difference metric to other imagery years presents potential for other applications such as fuels, invasive species, and dust-emission monitoring in the Mojave Desert.

  10. An Annual Plant Growth Proxy in the Mojave Desert Using MODIS-EVI Data

    Directory of Open Access Journals (Sweden)

    Kathryn A. Thomas

    2008-12-01

    Full Text Available In the arid Mojave Desert, the phenological response of vegetation is largely dependent upon the timing and amount of rainfall, and maps of annual plant cover at any one point in time can vary widely. Our study developed relative annual plant growth models as proxies for annual plant cover using metrics that captured phenological variability in Moderate-Resolution Imaging Spectroradiometer (MODIS Enhanced Vegetation Index (EVI satellite images. We used landscape phenologies revealed in MODIS data together with ecological knowledge of annual plant seasonality to develop a suite of metrics to describe annual growth on a yearly basis. Each of these metrics was applied to temporally-composited MODIS-EVI images to develop a relative model of annual growth. Each model was evaluated by testing how well it predicted field estimates of annual cover collected during 2003 and 2005 at the Mojave National Preserve. The best performing metric was the spring difference metric, which compared the average of three spring MODIS-EVI composites of a given year to that of 2002, a year of record drought. The spring difference metric showed correlations with annual plant cover of R2 = 0.61 for 2005 and R2 = 0.47 for 2003. Although the correlation is moderate, we consider it supportive given the characteristics of the field data, which were collected for a different study in a localized area and are not ideal for calibration to MODIS pixels. A proxy for annual growth potential was developed from the spring difference metric of 2005 for use as an environmental data layer in desert tortoise habitat modeling. The application of the spring difference metric to other imagery years presents potential for other applications such as fuels, invasive species, and dust-emission monitoring in the Mojave Desert.

  11. 77 FR 39181 - Revisions to the California State Implementation Plan, Mojave Desert Air Quality Management...

    Science.gov (United States)

    2012-07-02

    ... the California State Implementation Plan, Mojave Desert Air Quality Management District (MDAQMD) and Yolo-Solano Air Quality Management District (YSAQMD) AGENCY: Environmental Protection Agency (EPA... Air Quality Management District. (1) Rule 1165, ``Glass Melting Furnaces,'' amended on August 25, 2008...

  12. Economic analysis of critical habitat designation for the desert tortoise (Mojave population)

    Science.gov (United States)

    Schamberger, Mel; MacGillvray, Timothy J.; Draper, Dirk D.

    1993-01-01

    The U.S. Fish and Wildlife Service emergency 1isted the Mojave population of the desert tortoise as endangered on August 4, 1989. The Mojave population formally was listed as threatened on April 2, 1990. The Endangered Species Act of 1973, as amended, requires that the economic benefits and costs and other relevant effects of critical habitat designation be considered. The Secretary of the Interior may exclude from designation areas where the costs of designation are greater than the benefits, unless the exclusion would result in extinction of the species. Desert tortoises are threatened by an accumulation of human-and disease-related mortality accompanied by habitat destruction, degradation, and fragmentation. Many desert tortoises are illegally collected for pets, food, and commercial trade. Others are accidentally struck and killed by vehicles on roads and highways or are killed by gunshot or vehicles traveling off-highway. Raven predation on hatchling desert tortoises has increased as raven populations in the desert have risen. An upper respiratory tract disease is suspected to be a major cause of mortality in the western Mojave Desert. This presumably incurable affliction presumably is thought to be spread through the release of infected tortoises into the desert. The Service has proposed designating critical habitat in nine counties within four states. The 12 critical habitat units encompass 6.4 million acres of land, more than 80% federally owned. This region is economically and demographically diverse. Most of the land is sparsely settled and characterized as a hot desert ecosystem. Major industries in the region include entertainment and lodging (primarily in Las Vegas), property development to accommodate the rapid population growth, and services. Millions of rural acres in the region are leased by the federal government for livestock grazing and used for mining. Overall economic benefits to the affected states derived from cattle and sheep grazing in the

  13. Evolutionary hotspots in the Mojave Desert

    Science.gov (United States)

    Vandergast, Amy G.; Inman, Richard D.; Barr, Kelly R.; Nussear, Kenneth E.; Esque, Todd C.; Hathaway, Stacie A.; Wood, Dustin A.; Medica, Philip A.; Breinholt, Jesse W.; Stephen, Catherine L.; Gottscho, Andrew D.; Marks, Sharyn B.; Jennings, W. Bryan; Fisher, Robert N.

    2013-01-01

    Genetic diversity within species provides the raw material for adaptation and evolution. Just as regions of high species diversity are conservation targets, identifying regions containing high genetic diversity and divergence within and among populations may be important to protect future evolutionary potential. When multiple co-distributed species show spatial overlap in high genetic diversity and divergence, these regions can be considered evolutionary hotspots. We mapped spatial population genetic structure for 17 animal species across the Mojave Desert, USA. We analyzed these in concurrence and located 10 regions of high genetic diversity, divergence or both among species. These were mainly concentrated along the western and southern boundaries where ecotones between mountain, grassland and desert habitat are prevalent, and along the Colorado River. We evaluated the extent to which these hotspots overlapped protected lands and utility-scale renewable energy development projects of the Bureau of Land Management. While 30–40% of the total hotspot area was categorized as protected, between 3–7% overlapped with proposed renewable energy project footprints, and up to 17% overlapped with project footprints combined with transmission corridors. Overlap of evolutionary hotspots with renewable energy development mainly occurred in 6 of the 10 identified hotspots. Resulting GIS-based maps can be incorporated into ongoing landscape planning efforts and highlight specific regions where further investigation of impacts to population persistence and genetic connectivity may be warranted.

  14. Extensive summer water pulses do not necessarily lead to canopy growth of Great Basin and northern Mojave Desert shrubs.

    Science.gov (United States)

    Snyder, K A; Donovan, L A; James, J J; Tiller, R L; Richards, J H

    2004-10-01

    Plant species and functionally related species groups from arid and semi-arid habitats vary in their capacity to take up summer precipitation, acquire nitrogen quickly after summer precipitation, and subsequently respond with ecophysiological changes (e.g. water and nitrogen relations, gas exchange). For species that respond ecophysiologically, the use of summer precipitation is generally assumed to affect long-term plant growth and thus alter competitive interactions that structure plant communities and determine potential responses to climate change. We assessed ecophysiological and growth responses to large short-term irrigation pulses over one to three growing seasons for several widespread Great Basin and northern Mojave Desert shrub species: Chrysothamnus nauseosus, Sarcobatus vermiculatus, Atriplex confertifolia, and A. parryi. We compared control and watered plants in nine case studies that encompassed adults of all four species, juveniles for three of the species, and two sites for two of the species. In every comparison, plants used summer water pulses to improve plant water status or increase rates of functioning as indicated by other ecophysiological characters. Species and life history stage responses of ecophysiological parameters (leaf N, delta15N, delta13C, gas exchange, sap flow) were consistent with several previous short-term studies. However, use of summer water pulses did not affect canopy growth in eight out of nine comparisons, despite the range of species, growth stages, and site conditions. Summer water pulses affected canopy growth only for C. nauseosus adults. The general lack of growth effects for these species might be due to close proximity of groundwater at these sites, co-limitation by nutrients, or inability to respond due to phenological canalization. An understanding of the connections between short-term ecophysiological responses and growth, for different habitats and species, is critical for determining the significance of

  15. Δ17O Isotopic Investigation of Nitrate Salts Found in Co-Occurrence with Naturally Formed Perchlorate in the Mojave Desert, California, USA and the Atacama Desert, Chile

    Science.gov (United States)

    Lybrand, R. A.; Parker, D.; Rech, J.; Prellwitz, J.; Michalski, G.

    2009-12-01

    Perchlorate is both a naturally occurring and manmade contaminant that has been identified in soil, groundwater and surface water. Perchlorate directly affects human health by interfering with iodide uptake in the thyroid gland, which may in turn lower the production of key hormones that are needed for proper growth and development. Until recently, the Atacama Desert, Chile was thought to be the only location where perchlorate salts formed naturally. Recent work has documented the occurrence of these salts in several semi-arid regions of the United States. This study identified putatively natural sources of perchlorate in the Mojave Desert of California. Soil samples were collected from six field sites varying in geologic age. The co-occurrence of perchlorate and nitrate in caliches from the Atacama Desert and soils from the Mojave Desert was also investigated. Although the former are richer in NO3-, near-ore-grade (~5%) deposits occur in the vicinity of Death Valley National Park. Weak but significant correlations exist between ClO4- and NO3- at both locations, but the perchlorate levels are much higher (up to 800 mg/kg) in the Chilean samples than in California (atmospheric origin for the Atacama nitrate salts, and a mixture between biological nitrate and atmospherically-derived nitrate for the Mojave samples. When corrected for the percentage of atmospheric nitrate measured in the Atacama samples, the Mojave samples still contain much lower perchlorate concentrations than would be expected if the occurrence of perchlorate correlated strictly with atmospherically derived nitrate. These results indicate that the variation in the origins of the nitrate salts is not the only factor influencing perchlorate distribution in these environments. These findings suggest that there are other geologic differences in landform age and stability that are crucial to understanding the co-occurrence of nitrate and perchlorate between the two locations.

  16. A mechanistic modeling and data assimilation framework for Mojave Desert ecohydrology

    Science.gov (United States)

    Ng, Gene-Hua Crystal; Bedford, David R.; Miller, David M.

    2014-06-01

    This study demonstrates and addresses challenges in coupled ecohydrological modeling in deserts, which arise due to unique plant adaptations, marginal growing conditions, slow net primary production rates, and highly variable rainfall. We consider model uncertainty from both structural and parameter errors and present a mechanistic model for the shrub Larrea tridentata (creosote bush) under conditions found in the Mojave National Preserve in southeastern California (USA). Desert-specific plant and soil features are incorporated into the CLM-CN model by Oleson et al. (2010). We then develop a data assimilation framework using the ensemble Kalman filter (EnKF) to estimate model parameters based on soil moisture and leaf-area index observations. A new implementation procedure, the "multisite loop EnKF," tackles parameter estimation difficulties found to affect desert ecohydrological applications. Specifically, the procedure iterates through data from various observation sites to alleviate adverse filter impacts from non-Gaussianity in small desert vegetation state values. It also readjusts inconsistent parameters and states through a model spin-up step that accounts for longer dynamical time scales due to infrequent rainfall in deserts. Observation error variance inflation may also be needed to help prevent divergence of estimates from true values. Synthetic test results highlight the importance of adequate observations for reducing model uncertainty, which can be achieved through data quality or quantity.

  17. A mechanistic modeling and data assimilation framework for Mojave Desert ecohydrology

    Science.gov (United States)

    Ng, Gene-Hua Crystal.; Bedford, David; Miller, David

    2014-01-01

    This study demonstrates and addresses challenges in coupled ecohydrological modeling in deserts, which arise due to unique plant adaptations, marginal growing conditions, slow net primary production rates, and highly variable rainfall. We consider model uncertainty from both structural and parameter errors and present a mechanistic model for the shrub Larrea tridentata (creosote bush) under conditions found in the Mojave National Preserve in southeastern California (USA). Desert-specific plant and soil features are incorporated into the CLM-CN model by Oleson et al. (2010). We then develop a data assimilation framework using the ensemble Kalman filter (EnKF) to estimate model parameters based on soil moisture and leaf-area index observations. A new implementation procedure, the “multisite loop EnKF,” tackles parameter estimation difficulties found to affect desert ecohydrological applications. Specifically, the procedure iterates through data from various observation sites to alleviate adverse filter impacts from non-Gaussianity in small desert vegetation state values. It also readjusts inconsistent parameters and states through a model spin-up step that accounts for longer dynamical time scales due to infrequent rainfall in deserts. Observation error variance inflation may also be needed to help prevent divergence of estimates from true values. Synthetic test results highlight the importance of adequate observations for reducing model uncertainty, which can be achieved through data quality or quantity.

  18. Relationship between climate and vegetation and the stable carbon isotope chemistry of soils in the eastern Mojave Desert, Nevada

    International Nuclear Information System (INIS)

    Amundson, R.G.; Chadwick, O.A.; Sowers, J.M.; Doner, H.E.

    1988-01-01

    The relationship between the stable C-isotope composition of the soil environment and modern climate and vegetation was determined empirically along a present-day climatic transect in the eastern Mojave Desert. The δ 13 C of the soil CO 2 and carbonates decreased with increasing elevation and plant density, even though plant assemblages at all elevations were isotopically similar. Several factors, including differences in the ratios of pedogenic of limestone calcite and differences in past vegetation, were considered as explanations of this trend, However, it appears that in the sparsely vegetated Mojave Desert, the δ 13 C of pedogenic carbonate is controlled by differences in plant density and biological activity. This relationship may provide a tool for assessing past vegetational densities, as long as the vegetation is isotopically homogeneous. (author)

  19. Monitoring Springs in the Mojave Desert Using Landsat Time Series Analysis

    Science.gov (United States)

    Potter, Christopher S.

    2018-01-01

    The purpose of this study, based on Landsat satellite data was to characterize variations and trends over 30 consecutive years (1985-2016) in perennial vegetation green cover at over 400 confirmed Mojave Desert spring locations. These springs were surveyed between in 2015 and 2016 on lands managed in California by the U.S. Bureau of Land Management (BLM) and on several land trusts within the Barstow, Needles, and Ridgecrest BLM Field Offices. The normalized difference vegetation index (NDVI) from July Landsat images was computed at each spring location and a trend model was first fit to the multi-year NDVI time series using least squares linear regression.Â

  20. The Mojave Desert: A Martian Analog Site for Future Astrobiology Themed Missions

    Science.gov (United States)

    Salas, E.; Abbey, W.; Bhartia, R.; Beegle, L. W.

    2011-01-01

    Astrobiological interest in Mars is highlighted by evidence that Mars was once warm enough to have liquid water present on its surface long enough to create geologic formations that could only exist in the presense of extended fluvial periods. These periods existed at the same time life on Earth arose. If life began on Mars as well during this period, it is reasonable to assume it may have adapted to the subsurface as environments at the surface changed into the inhospitable state we find today. If the next series of Mars missions (Mars Science Laboratory, the ExoMars Trace Gas Orbiter proposed for launch in 2016, and potential near surface sample return) fail to discover either extinct or extant life on Mars, a subsurface mission would be necessary to attempt to "close the book" on the existence of martian life. Mars is much colder and drier than Earth, with a very low pressure CO2 environment and no obvious habitats. Terrestrial regions with limited precipitation, and hence reduced active biota, are some of the best martian low to mid latitude analogs to be found on Earth, be they the Antarctic dry valleys, the Atacama or Mojave Deserts. The Mojave Desert/Death Valley region is considered a Mars analog site by the Terrestrial Analogs Panel of the NSF-sponsored decadal survey; a field guide was even developed and a workshop was held on its applicability as a Mars analog. This region has received a great deal of attention due to its accessibility and the variety of landforms and processes observed relevant to martian studies.

  1. Map showing areas of visible land disturbances caused by two military training operations in the Mojave Desert, California

    Science.gov (United States)

    Prose, D.V.

    1986-01-01

    This map shows areas that retain visible land disturbances produced during two military armored-vehicle training operations in the Mojave Desert, California. The map documents the lasting visual effects these operations have on this arid region and provides a data base for monitoring changes in the extent of visual disturbances in the future.

  2. Gopherus agassizii: Desert tortoise

    Science.gov (United States)

    Berry, Kristen H.; Swingland, Ian Richard; Klemens, Michael W.

    1989-01-01

    The desert tortoise is one of four allopatric North American tortoises. It occurs in the Mojave and Sonoran deserts of the southwestern United States and Mexico.Auffenberg (1976) divided the genus Gopherus (consisting of four species, G. agassizi, G. berlandieri, G.flavomarginatus, and G. polyphemus) in two osteological groups. Bramble (1982), using morphological and palaeontological data, divided the genus Gopherus into two separate complexes, each with two species. He established a new genus, Scaptochelys, for agassizi and berlandieri, retaining Gopherus for polyphemus and flavomarginatus. Bour and Dubois (1984) noted that Xerobates Agassiz had priority over Scaptochelys Bramble. Using mitochondrial DNA (mtDNA), Lamb et al. (1989) evaluated the evolutionary relationships of the North American tortoises, particularly the desert tortoise. They concluded that the mtDNA analysis provides strong support for generic recognition of the two distinct species groups described by Bramble (1982).Until a few decades ago, the desert tortoise was widespread at lower elevations throughout the Mojave and Sonoran deserts of the U.S.A. In the northern and western parts of the geographic range, large and relatively homogeneous populations with densities exceeding 1,000/sq km extended throughout parts of California, and probably into Nevada and Utah. In terms of biomass, the tortoise played an important role in the ecosystems. In most areas, numbers have declined dramatically and the extent of populations has been reduced. Most populations are now isolated and low in numbers. Conservation of the desert tortoise is a highly visible and political issue in the U.S.A., but not in Mexico.

  3. Temperature and Heat-Related Mortality Trends in the Sonoran and Mojave Desert Region

    Directory of Open Access Journals (Sweden)

    Polioptro F. Martinez-Austria

    2017-03-01

    Full Text Available Extreme temperatures and heat wave trends in five cities within the Sonoran Desert region (e.g., Tucson and Phoenix, Arizona, in the United States and Ciudad Obregon and San Luis Rio Colorado, Sonora; and Mexicali, Baja California, in Mexico and one city within the Mojave Desert region (e.g., Las Vegas, Nevada were assessed using field data collected from 1950 to 2014. Instead of being selected by watershed, the cities were selected because they are part of the same arid climatic region. The data were analyzed for maximum temperature increases and the trends were confirmed statistically using Spearman’s nonparametric test. Temperature trends were correlated with the mortality information related with extreme heat events in the region. The results showed a clear trend of increasing maximum temperatures during the months of June, July, and August for five of the six cities and statically confirmed using Spearman’s rho values. Las Vegas was the only city where the temperature increase was not confirmed using Spearman’s test, probably because it is geographically located outside of the Sonoran Desert or because of its proximity to the Hoover Dam. The relationship between mortality and temperature was analyzed for the cities of Mexicali, Mexico and Phoenix. Arizona.

  4. Data measured on water collected from eastern Mojave Desert, California

    Energy Technology Data Exchange (ETDEWEB)

    Rose, Tim P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-08-17

    In March of 2000 field collection of water from the Eastern Mojave Desert resulted in the measurement of stable isotope, radiocarbon, tritium, and limited dissolved noble gases. This work was follow-on to previous studies on similar systems in southern Nevada associated with the Nevada Test Site (Davisson et al., 1999; Rose and Davisson, 2003). The data for groundwater from wells and springs was never formally published and is therefore tabulated in Table 1 in order to be recorded in public record. In addition 4 years of remote precipitation data was collected for stable isotopes and is included in Table 2. These studies, along with many parallel and subsequent ones using isotopes and elemental concentrations, are all related to the general research area of tracing sources and quantifying transport times of natural and man-made materials in the environment. This type of research has direct relevance in characterizing environmental contamination, understanding resource development and protection, designing early detection in WMD related terrorism, and application in forensics analysis.

  5. Final Technical Report: Effects of Changing Water and Nitrogen Inputs on a Mojave Desert Ecosystem

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Stanley, D.; Nowak, Robert S.; Fenstermaker, Lynn, F.; Young, Michael,H.

    2007-11-30

    In order to anticipate the effects of global change on ecosystem function, it is essential that predictive relationships be established linking ecosystem function to global change scenarios. The Mojave Desert is of considerable interest with respect to global change. It contains the driest habitats in North America, and thus most closely approximates the world’s great arid deserts. In order to examine the effects of climate and land use changes, in 2001 we established a long-term manipulative global change experiment, called the Mojave Global Change Facility. Manipulations in this study include the potential effects of (1) increased summer rainfall (75 mm over three discrete 25 mm events), (2) increased nitrogen deposition (10 and 40 kg ha-1), and (3) the disturbance of biological N-fixing crusts . Questions addressed under this grant shared the common hypothesis that plant and ecosystem performance will positively respond to the augmentation of the most limiting resources to plant growth in the Mojave Desert, e.g., water and nitrogen. Specific hypotheses include (1) increased summer rainfall will significantly increase plant production through an alleviation of moisture stress in the dry summer months, (2) N-deposition will increase plant production in this N-limited system, particularly in wet years or in concert with added summer rain, and (3) biological crust disturbance will gradually decrease bio-available N, with concomitant long-term reductions in photosynthesis and ANPP. Individual plant and ecosystem responses to global change may be regulated by biogeochemical processes and natural weather variability, and changes in plant and ecosystem processes may occur rapidly, may occur only after a time lag, or may not occur at all. During the first PER grant period, we observed changes in plant and ecosystem processes that would fall under each of these time-response intervals: plant and ecosystem processes responded rapidly to added summer rain, whereas most

  6. A long-term vegetation history of the Mojave-Colorado Desert ecotone at Joshua Tree National Park

    Science.gov (United States)

    Holmgren, Camille A.; Betancourt, Julio L.; Rylander, Kate A.

    2010-01-01

    Thirty-eight dated packrat middens were collected from upper desert (930–1357 m) elevations within Joshua Tree National Park near the ecotone between the Mojave Desert and Colorado Desert, providing a 30 ka record of vegetation change with remarkably even coverage for the last 15 ka. This record indicates that vegetation was relatively stable, which may reflect the lack of invasion by extralocal species during the late glacial and the early establishment and persistence of many desert scrub elements. Many of the species found in the modern vegetation assemblages were present by the early Holocene, as indicated by increasing Sørenson's Similarity Index values. C4 grasses and summer-flowering annuals arrived later at Joshua Tree National Park in the early Holocene, suggesting a delayed onset of warm-season monsoonal precipitation compared to other Sonoran Desert and Chihuahuan Desert localities to the east, where summer rains and C4 grasses persisted through the last glacial–interglacial cycle. This would suggest that contemporary flow of monsoonal moisture into eastern California is secondary to the core processes of the North American Monsoon, which remained intact throughout the late Quaternary. In the Holocene, northward displacement of the jet stream, in both summer and winter, allowed migration of the subtropical ridge as far north as southern Idaho and the advection of monsoonal moisture both westward into eastern California and northward into the southern Great Basin and Colorado Plateau.

  7. Evaluation of volatile organic compounds in two Mojave Desert basins-Mojave River and Antelope Valley-in San Bernardino, Los Angeles, and Kern Counties, California, June-October 2002

    Science.gov (United States)

    Densmore, Jill N.; Belitz, Kenneth; Wright, Michael T.; Dawson, Barbara J.; Johnson, Tyler D.

    2005-01-01

    The California Aquifer Susceptibility Assessment of the Ground-Water Ambient Monitoring and Assessment Program was developed to assess water quality and susceptibility of ground-water resources to contamination from surficial sources. This study focuses on the Mojave River and the Antelope Valley ground-water basins in southern California. Volatile organic compound (VOC) data were evaluated in conjunction with tritium data to determine a potential correlation with aquifer type, depth to top of perforations, and land use to VOC distribution and occurrence in the Mojave River and the Antelope Valley Basins. Detection frequencies for VOCs were compiled and compared to assess the distribution in each area. Explanatory variables were evaluated by comparing detection frequencies for VOCs and tritium and the number of compounds detected. Thirty-three wells were sampled in the Mojave River Basin (9 in the floodplain aquifer, 15 in the regional aquifer, and 9 in the sewered subset of the regional aquifer). Thirty-two wells were sampled in the Antelope Valley Basin. Quality-control samples also were collected to identify, quantify, and document bias and variability in the data. Results show that VOCs generally were detected slightly more often in the Antelope Valley Basin samples than in the Mojave River Basin samples. VOCs were detected more frequently in the floodplain aquifer than in the regional aquifer and the sewered subset. Tritium was detected more frequently in the Mojave River Basin samples than in the Antelope Valley Basin samples, and it was detected more frequently in the floodplain aquifer than in the regional aquifer and the sewered subset. Most of the samples collected in both basins for this study contained old water (water recharged prior to 1952). In general, in these desert basins, tritium need not be present for VOCs to be present. When VOCs were detected, young water (water recharge after 1952) was slightly more likely to be contaminated than old water

  8. Multiple factors affect a population of Agassiz's desert tortoise (Gopherus agassizii) in the Northwestern Mojave Desert

    Science.gov (United States)

    Berry, Kristin H.; Yee, Julie L.; Coble, Ashley A.; Perry, William M.; Shields, Timothy A.

    2013-01-01

    Numerous factors have contributed to declines in populations of the federally threatened Agassiz's Desert Tortoise (Gopherus agassizii) and continue to limit recovery. In 2010, we surveyed a low-density population on a military test facility in the northwestern Mojave Desert of California, USA, to evaluate population status and identify potential factors contributing to distribution and low densities. Estimated densities of live tortoises ranged spatially from 1.2/km2 to 15.1/km2. Although only one death of a breeding-age tortoise was recorded for the 4-yr period prior to the survey, remains of 16 juvenile and immature tortoises were found, and most showed signs of predation by Common Ravens (Corvus corax) and mammals. Predation may have limited recruitment of young tortoises into the adult size classes. To evaluate the relative importance of different types of impacts to tortoises, we developed predictive models for spatially explicit densities of tortoise sign and live tortoises using topography (i.e., slope), predators (Common Raven, signs of mammalian predators), and anthropogenic impacts (distances from paved road and denuded areas, density of ordnance fragments) as covariates. Models suggest that densities of tortoise sign increased with slope and signs of mammalian predators and decreased with Common Ravens, while also varying based on interaction effects involving these predictors as well as distances from paved roads, denuded areas, and ordnance. Similarly, densities of live tortoises varied by interaction effects among distances to denuded areas and paved roads, density of ordnance fragments, and slope. Thus multiple factors predict the densities and distribution of this population.

  9. The Mojave vadose zone: a subsurface biosphere analogue for Mars.

    Science.gov (United States)

    Abbey, William; Salas, Everett; Bhartia, Rohit; Beegle, Luther W

    2013-07-01

    If life ever evolved on the surface of Mars, it is unlikely that it would still survive there today, but as Mars evolved from a wet planet to an arid one, the subsurface environment may have presented a refuge from increasingly hostile surface conditions. Since the last glacial maximum, the Mojave Desert has experienced a similar shift from a wet to a dry environment, giving us the opportunity to study here on Earth how subsurface ecosystems in an arid environment adapt to increasingly barren surface conditions. In this paper, we advocate studying the vadose zone ecosystem of the Mojave Desert as an analogue for possible subsurface biospheres on Mars. We also describe several examples of Mars-like terrain found in the Mojave region and discuss ecological insights that might be gained by a thorough examination of the vadose zone in these specific terrains. Examples described include distributary fans (deltas, alluvial fans, etc.), paleosols overlain by basaltic lava flows, and evaporite deposits.

  10. Geochronology and paleoenvironment of pluvial Harper Lake, Mojave Desert, California, USA

    Science.gov (United States)

    Garcia, Anna L.; Knott, Jeffrey R.; Mahan, Shannon; Bright, Jordan

    2014-01-01

    Accurate reconstruction of the paleo-Mojave River and pluvial lake (Harper, Manix, Cronese, and Mojave) system of southern California is critical to understanding paleoclimate and the North American polar jet stream position over the last 500 ka. Previous studies inferred a polar jet stream south of 35°N at 18 ka and at ~ 40°N at 17–14 ka. Highstand sediments of Harper Lake, the upstream-most pluvial lake along the Mojave River, have yielded uncalibrated radiocarbon ages ranging from 24,000 to > 30,000 14C yr BP. Based on geologic mapping, radiocarbon and optically stimulated luminescence dating, we infer a ~ 45–40 ka age for the Harper Lake highstand sediments. Combining the Harper Lake highstand with other Great Basin pluvial lake/spring and marine climate records, we infer that the North American polar jet stream was south of 35°N about 45–40 ka, but shifted to 40°N by ~ 35 ka. Ostracodes (Limnocythere ceriotuberosa) from Harper Lake highstand sediments are consistent with an alkaline lake environment that received seasonal inflow from the Mojave River, thus confirming the lake was fed by the Mojave River. The ~ 45–40 ka highstand at Harper Lake coincides with a shallowing interval at downstream Lake Manix.

  11. Soil water availability and microsite mediate fungal and bacterial phospholipid fatty acid biomarker abundances in Mojave Desert soils exposed to elevated atmospheric CO2

    Science.gov (United States)

    Jin, V. L.; Schaeffer, S. M.; Ziegler, S. E.; Evans, R. D.

    2011-06-01

    Changes in the rates of nitrogen (N) cycling, microbial carbon (C) substrate use, and extracellular enzyme activities in a Mojave Desert ecosystem exposed to elevated atmospheric CO2 suggest shifts in the size and/or functional characteristics of microbial assemblages in two dominant soil microsites: plant interspaces and under the dominant shrub Larrea tridentata. We used ester-linked phospholipid fatty acid (PLFA) biomarkers as a proxy for microbial biomass to quantify spatial and temporal differences in soil microbial communities from February 2003 to May 2005. Further, we used the 13C signature of the fossil CO2 source for elevated CO2 plots to trace recent plant C inputs into soil organic matter (SOM) and broad microbial groups using δ13C (‰). Differences between individual δ13CPLFA and δ13CSOM for fungal biomarkers indicated active metabolism of newer C in elevated CO2 soils. Total PLFA-C was greater in shrub microsites compared to plant interspaces, and CO2 treatment differences within microsites increased under higher soil water availability. Total, fungal, and bacterial PLFA-C increased with decreasing soil volumetric water content (VWC) in both microsites, suggesting general adaptations to xeric desert conditions. Increases in fungal-to-bacterial PLFA-C ratio with decreasing VWC reflected functional group-specific responses to changing soil water availability. While temporal and spatial extremes in resource availability in desert ecosystems contribute to the difficulty in identifying common trends or mechanisms driving microbial responses in less extreme environments, we found that soil water availability and soil microsite interacted with elevated CO2 to shift fungal and bacterial biomarker abundances in Mojave Desert soils.

  12. Deserts

    Science.gov (United States)

    Belnap, Jayne; Webb, Robert H.; Esque, Todd; Brooks, Matthew L.; DeFalco, Lesley; MacMahon, James A.

    2016-01-01

    The deserts of California (Lead photo, Fig. 1) occupy approximately 38% of California’s landscape (Table 1) and consist of three distinct deserts: the Great Basin Desert, Mojave Desert, and Colorado Desert, the latter of which is a subdivision of the Sonoran Desert (Brown and Lowe 1980). The wide range of climates and geology found within each of these deserts result in very different vegetative communities and ecosystem processes and therefore different ecosystem services. In deserts, extreme conditions such as very high and low temperatures and very low rainfall result in abiotic factors (climate, geology, geomorphology, and soils) controlling the composition and function of ecosystems, including plant and animal distributions. This is in contrast to wetter and milder temperatures found in other ecosystems, where biotic interactions are the dominant driving force. However, despite the harsh conditions in deserts, they are home to a surprisingly large number of plants and animals. Deserts are also places where organisms display a wide array of adaptations to the extremes they encounter, providing some of the best examples of Darwinian selection (MacMahon and Wagner 1985, Ward 2009). Humans have utilized these regions for thousands of years, despite the relatively low productivity and harsh climates of these landscapes. Unlike much of California, most of these desert lands have received little high-intensity use since European settlement, leaving large areas relatively undisturbed. Desert landscapes are being altered, however, by the introduction of fire following the recent invasion of Mediterranean annual grasses. As most native plants are not fire-adapted, they Many do not recover, whereas the non-native grasses flourish. Because desert lands are slow to recover from disturbances, energy exploration and development, recreational use, and urban development will alter these landscapes for many years to come. This chapter provides a brief description of where the

  13. Disturbance and Plant Succession in the Mojave and Sonoran Deserts of the American Southwest

    Directory of Open Access Journals (Sweden)

    Scott R. Abella

    2010-03-01

    Full Text Available Disturbances such as fire, land clearing, and road building remove vegetation and can have major influences on public health through effects on air quality, aesthetics, recreational opportunities, natural resource availability, and economics. Plant recovery and succession following disturbance are poorly understood in arid lands relative to more temperate regions. This study quantitatively reviewed vegetation reestablishment following a variety of disturbances in the Mojave and Sonoran Deserts of southwestern North America. A total of 47 studies met inclusion criteria for the review. The time estimated by 29 individual studies for full reestablishment of total perennial plant cover was 76 years. Although long, this time was shorter than an estimated 215 years (among 31 individual studies required for the recovery of species composition typical of undisturbed areas, assuming that recovery remains linear following the longest time since disturbance measurement made by the studies.

  14. Polarization signatures for abandoned agricultural fields in the Manix Basin area of the Mojave Desert

    Science.gov (United States)

    Ray, Terrill W.; Farr, Tom G.; Vanzyl, Jakob J.

    1991-01-01

    Polarimetric signatures from abandoned circular alfalfa fields in the Manix Basin area of the Mojave desert show systematic changes with length of abandonment. The obliteration of circular planting rows by surface processes could account for the disappearance of bright 'spokes', which seems to be reflection patterns from remnants of the planting rows, with increasing length of abandonment. An observed shift in the location of the maximum L-band copolarization return away from VV, as well as an increase in surface roughness, both occurring with increasing age of abandonment, seems to be attributable to the formation of wind ripple on the relatively vegetationless fields. A Late Pleistocene/Holocene sand bar deposit, which can be identified in the radar images, is probably responsible for the failure of three fields to match the age sequence patterns in roughness and peak shift.

  15. Discriminating patterns and drivers of multiscale movement in herpetofauna: The dynamic and changing environment of the Mojave desert tortoise.

    Science.gov (United States)

    Sadoti, Giancarlo; Gray, Miranda E; Farnsworth, Matthew L; Dickson, Brett G

    2017-09-01

    Changes to animal movement in response to human-induced changes to the environment are of growing concern in conservation. Most research on this problem has focused on terrestrial endotherms, but changes to herpetofaunal movement are also of concern given their limited dispersal abilities and specialized thermophysiological requirements. Animals in the desert region of the southwestern United States are faced with environmental alterations driven by development (e.g., solar energy facilities) and climate change. Here, we study the movement ecology of a desert species of conservation concern, the Mojave desert tortoise ( Gopherus agassizii ). We collected weekly encounter locations of marked desert tortoises during the active (nonhibernation) seasons in 2013-2015, and used those data to discriminate movements among activity centers from those within them. We then modeled the probability of movement among activity centers using a suite of covariates describing characteristics of tortoises, natural and anthropogenic landscape features, vegetation, and weather. Multimodel inference indicated greatest support for a model that included individual tortoise characteristics, landscape features, and weather. After controlling for season, date, age, and sex, we found that desert tortoises were more likely to move among activity centers when they were further from minor roads and in the vicinity of barrier fencing; we also found that movement between activity centers was more common during periods of greater rainfall and during periods where cooler temperatures coincided with lower rainfall. Our findings indicate that landscape alterations and climate change both have the potential to impact movements by desert tortoises during the active season. This study provides an important baseline against which we can detect future changes in tortoise movement behavior.

  16. The Desert and the Sown Project in Northern Jordan

    DEFF Research Database (Denmark)

    Kerner, Susanne

    2014-01-01

    The desert and sown project, which started in 1999 and continued in 2008-2009, studied the region between the settled areas east of Irbid and Ramtha and the surrounding desert at Mafraq (northern Jordan). Large parts of the material comes from the Palaeolithic period, while some smaller tells date...

  17. Biotic Processes Regulating the Carbon Balance of Desert Ecosystems - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Nowak, Robert S [UNR; Smith, Stanley D [UNLV; Evans, Dave [WSU; Ogle, Kiona [ASU; Fenstermaker, Lynn [DRI

    2012-12-13

    Our results from the 10-year elevated atmospheric CO{sub 2} concentration study at the Nevada Desert FACE (Free-air CO{sub 2} Enrichment) Facility (NDFF) indicate that the Mojave Desert is a dynamic ecosystem with the capacity to respond quickly to environmental changes. The Mojave Desert ecosystem is accumulating carbon (C), and over the 10-year experiment, C accumulation was significantly greater under elevated [CO{sub 2}] than under ambient, despite great fluctuations in C inputs from year to year and even apparent reversals in which [CO{sub 2}] treatment had greater C accumulations.

  18. Polarization signatures for abandoned agricultural fields in the Manix Basin area of the Mojave Desert - Can polarimetric SAR detect desertification?

    Science.gov (United States)

    Ray, Terrill W.; Farr, Tom G.; Van Zyl, Jakob J.

    1992-01-01

    Radar backscatter from abandoned circular alfalfa fields in the Manix Basin area of the Mojave desert shows systematic changes with length of abandonment. The obliteration of circular planting rows by surface processes could account for the disappearance of bright spokes, which seem to be reflection patterns from remnants of the planting rows, with increasing length of abandonment. An observed shift in the location of the maximum L-band copolarization return away from VV, as well as an increase in surface roughness, both occurring with increasing age of abandonment, seems to be attributable to the formation of wind ripples on the relatively vegetationless fields.

  19. Aeolian responses to climate variability during the past century on Mesquite Lake Playa, Mojave Desert

    Science.gov (United States)

    Whitney, John W.; Breit, George N.; Buckingham, S.E.; Reynolds, Richard L.; Bogle, Rian C.; Luo, Lifeng; Goldstein, Harland L.; Vogel, John M.

    2015-01-01

    The erosion and deposition of sediments by wind from 1901 to 2013 have created large changes in surface features of Mesquite Lake playa in the Mojave Desert. The decadal scale recurrence of sand-sheet development, migration, and merging with older dunes appears related to decadal climatic changes of drought and wetness as recorded in the precipitation history of the Mojave Desert, complemented by modeled soil-moisture index values. Historical aerial photographs, repeat land photographs, and satellite images document the presence and northward migration of a mid-20th century sand sheet that formed during a severe regional drought that coincided with a multi-decadal cool phase of the Pacific Decadal Oscillation (PDO). The sand sheet slowly eroded during the wetter conditions of the subsequent PDO warm phase (1977–1998) due to a lack of added sediment. Sand cohesion gradually increased in the sand sheet by seasonal additions of salt and clay and by re-precipitation of gypsum, which resulted in the wind-carving of yardangs in the receding sand sheet. Smaller yardangs were aerodynamically shaped from coppice dunes with salt-clay crusts, and larger yardangs were carved along the walls and floor of trough blowouts. Evidence of a 19th century cycle of sand-sheet formation and erosion is indicated by remnants of yardangs, photographed in 1901 and 1916, that were found buried in the mid-20th century sand sheet. Three years of erosion measurements on the playa, yardangs, and sand sheets document relatively rapid wind erosion. The playa has lowered 20 to 40 cm since the mid-20th century and a shallow deflation basin has developed since 1999. Annually, 5–10 cm of surface sediment was removed from yardang flanks by a combination of wind abrasion, deflation, and mass movement. The most effective erosional processes are wind stripping of thin crusts that form on the yardang surfaces after rain events and the slumping of sediment blocks from yardang flanks. These wind

  20. A Systematic Review of Wild Burro Grazing Effects on Mojave Desert Vegetation, USA

    Science.gov (United States)

    Abella, Scott R.

    2008-06-01

    Wild burros ( Equus asinus), protected by the 1971 Wild Free-Roaming Horse and Burro Act on some federal lands but exotic animals many ecologists and resource mangers view as damaging to native ecosystems, represent one of the most contentious environmental management problems in American Southwest arid lands. This review synthesizes the scattered literature about burro effects on plant communities of the Mojave Desert, a center of burro management contentions. I classified 24 documents meeting selection criteria for this review into five categories of research: (i) diet analyses directly determining which plant species burros consume, (ii) utilization studies of individual species, (iii) control-impact comparisons, (iv) exclosure studies, and (v) forage analyses examining chemical characteristics of forage plants. Ten diet studies recorded 175 total species that burros consumed. However, these studies and two exclosure studies suggested that burros preferentially eat graminoid and forb groups over shrubs. One study in Death Valley National Park, for example, found that Achnatherum hymenoides (Indian ricegrass) was 11 times more abundant in burro diets than expected based on its availability. Utilization studies revealed that burros also exhibit preferences within the shrub group. Eighty-three percent of reviewed documents were produced in a 12-year period, from 1972 to 1983, with the most recent document produced in 1988. Because burros remain abundant on many federal lands and grazing may interact with other management concerns (e.g., desert wildfires fueled by exotic grasses), rejuvenating grazing research to better understand both past and present burro effects could help guide revegetation and grazing management scenarios.

  1. Status of groundwater quality in the Borrego Valley, Central Desert, and Low-Use Basins of the Mojave and Sonoran Deserts study unit, 2008-2010: California GAMA Priority Basin Project

    Science.gov (United States)

    Parsons, Mary C.; Hancock, Tracy Connell; Kulongoski, Justin T.; Belitz, Kenneth

    2014-01-01

    Groundwater quality in the approximately 963-square-mile Borrego Valley, Central Desert, and Low-Use Basins of the Mojave and Sonoran Deserts study unit was investigated as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The study unit is located in southern California in San Bernardino, Riverside, San Diego, and Imperial Counties. The GAMA Priority Basin Project is being conducted by the California State Water Resources Control Board in collaboration with the U.S. Geological Survey and the Lawrence Livermore National Laboratory. The GAMA Borrego Valley, Central Desert, and Low-Use Basins of the Mojave and Sonoran Deserts study was designed to provide a spatially unbiased assessment of the quality of untreated (raw) groundwater in the primary aquifer system. The assessment is based on water-quality and ancillary data collected by the U.S. Geological Survey from 52 wells (49 grid wells and 3 understanding wells) and on water-quality data from the California Department of Public Health database. The primary aquifer system was defined by the depth intervals of the wells listed in the California Department of Public Health database for the Borrego Valley, Central Desert, and Low-Use Basins of the Mojave and Sonoran Deserts study unit. The quality of groundwater in the primary aquifer system may be different from that in the shallower or deeper water-bearing zones; shallow groundwater may be more vulnerable to surficial contamination. This study assesses the status of the current quality of the groundwater resource by using data from samples analyzed for volatile organic compounds (VOCs), pesticides, and naturally occurring inorganic constituents, such as major ions and trace elements. This status assessment is intended to characterize the quality of groundwater resources in the primary aquifer system of the Borrego Valley, Central Desert, and Low-Use Basins of the Mojave and Sonoran Deserts study unit, not the

  2. Ground-water recharge from small intermittent streams in the western Mojave Desert, California: Chapter G in Ground-water recharge in the arid and semiarid southwestern United States (Professional Paper 1703)

    Science.gov (United States)

    Izbicki, John A.; Johnson, Russell U.; Kulongoski, Justin T.; Predmore, Steven; Stonestrom, David A.; Constantz, Jim; Ferré, Ty P.A.; Leake, Stanley A.

    2007-01-01

    Population growth has impacted ground-water resources in the western Mojave Desert, where declining water levels suggest that recharge rates have not kept pace with withdrawals. Recharge from the Mojave River, the largest hydrographic feature in the study area, is relatively well characterized. In contrast, recharge from numerous smaller streams that convey runoff from the bounding mountains is poorly characterized. The current study examined four representative streams to assess recharge from these intermittent sources. Hydraulic, thermal, geomorphic, chemical, and isotopic data were used to study recharge processes, from streamflow generation and infiltration to percolation through the unsaturated zone. Ground-water movement away from recharge areas was also assessed.Infiltration in amounts sufficient to have a measurable effect on subsurface temperature profiles did not occur in every year in instrumented study reaches. In addition to streamflow availability, results showed the importance of sediment texture in controlling infiltration and eventual recharge. Infiltration amounts of about 0.7 meters per year were an approximate threshold for the occurrence of ground-water recharge. Estimated travel times through the thick unsaturated zones underlying channels reached several hundred years. Recharging fluxes were influenced by stratigraphic complexity and depositional dynamics. Because of channel meandering, not all water that penetrates beneath the root zone can be assumed to become recharge on active alluvial fans.Away from study washes, elevated chloride concentrations and highly negative water potentials beneath the root zone indicated negligible recharge from direct infiltration of precipitation under current climatic conditions. In upstream portions of washes, generally low subsurface chloride concentrations and near-zero water potentials indicated downward movement of water toward the water table, driven primarily by gravity. Recharging conditions did not

  3. EFFECTS OF ELEVATED CO2 ON ROOT FUNCTION AND SOIL RESPIRATION IN A MOJAVE DESERT ECOSYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Nowak, Robert S.

    2007-12-19

    Increases in atmospheric CO{sub 2} concentration during the last 250 years are unequivocal, and CO{sub 2} will continue to increase at least for the next several decades (Houghton et al. 2001, Keeling & Whorf 2002). Arid ecosystems are some of the most important biomes globally on a land surface area basis, are increasing in area at an alarming pace (Dregne 1991), and have a strong coupling with regional climate (Asner & Heidebrecht 2005). These water-limited ecosystems also are predicted to be the most sensitive to elevated CO{sub 2}, in part because they are stressful environments where plant responses to elevated CO{sub 2} may be amplified (Strain & Bazzaz 1983). Indeed, all C{sub 3} species examined at the Nevada Desert FACE Facility (NDFF) have shown increased A{sub net} under elevated CO{sub 2} (Ellsworth et al. 2004, Naumburg et al. 2003, Nowak et al. 2004). Furthermore, increased shoot growth for individual species under elevated CO{sub 2} was spectacular in a very wet year (Smith et al. 2000), although the response in low to average precipitation years has been smaller (Housman et al. 2006). Increases in perennial cover and biomass at the NDFF are consistent with long term trends in the Mojave Desert and elsewhere in the Southwest, indicating C sequestration in woody biomass (Potter et al. 2006). Elevated CO{sub 2} also increases belowground net primary production (BNPP), with average increases of 70%, 21%, and 11% for forests, bogs, and grasslands, respectively (Nowak et al. 2004). Although detailed studies of elevated CO{sub 2} responses for desert root systems were virtually non-existent prior to our research, we anticipated that C sequestration may occur by desert root systems for several reasons. First, desert ecosystems exhibit increases in net photosynthesis and primary production at elevated CO{sub 2}. If large quantities of root litter enter the ecosystem at a time when most decomposers are inactive, significant quantities of carbon may be stored

  4. Airborne particle accumulation and composition at different locations in the northern Negev desert.

    NARCIS (Netherlands)

    Offer, Z.Y.; Goossens, D.

    2001-01-01

    Atmospheric desert dust was collected over 36 months in ground-level collectors at four stations in the northern Negev desert, Israel. Three stations (Shivta, Sede Boqer and Avdat) are located in the desert itself whereas the fourth station (Sayeret Shaked) is situated at the desert fringe, in the

  5. The Riparianness of a Desert Herpetofauna

    Science.gov (United States)

    Charles H. Lowe

    1989-01-01

    Within the Mojave, Sonoran, and Chihuahuan Desert subdivisions of the North American Desert in the U.S., more than half of 143 total amphibian and reptilian species perform as riparian and/or wetland taxa. For the reptiles, but not the amphibians, there is a significant inverse relationship between riparianness (obligate through preferential and facultative to...

  6. Groundwater quality in the Mojave area, California

    Science.gov (United States)

    Dawson, Barbara J. Milby; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Four groundwater basins along the Mojave River make up one of the study areas being evaluated. The Mojave study area is approximately 1,500 square miles (3,885 square kilometers) and includes four contiguous groundwater basins: Upper, Middle, and Lower Mojave River Groundwater Basins, and the El Mirage Valley (California Department of Water Resources, 2003). The Mojave study area has an arid climate, and is part of the Mojave Desert. Average annual rainfall is about 6 inches (15 centimeters). Land use in the study area is approximately 82 percent (%) natural (mostly shrubland), 4% agricultural, and 14% urban. The primary crops are pasture and hay. The largest urban areas are the cities of Victorville, Hesperia, and Apple Valley (2010 populations of 116,000, 90,000 and 69,000, respectively). Groundwater in these basins is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay derived from surrounding mountains. The primary aquifers in the Mojave study area are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database. Public-supply wells in the Mojave study area are completed to depths between 200 and 600 feet (18 to 61 meters), consist of solid casing from the land surface to a depth of 130 to 420 feet (40 to 128 meters), and are screened or perforated below the solid casing. Recharge to the groundwater system is primarily runoff from the mountains to the south, mostly through the Mojave River channel. The primary sources

  7. Regional water table (2016) in the Mojave River and Morongo groundwater basins, southwestern Mojave Desert, California

    Science.gov (United States)

    Dick, Meghan; Kjos, Adam

    2017-12-07

    From January to April 2016, the U.S. Geological Survey (USGS), the Mojave Water Agency, and other local water districts made approximately 1,200 water-level measurements in about 645 wells located within 15 separate groundwater basins, collectively referred to as the Mojave River and Morongo groundwater basins. These data document recent conditions and, when compared with older data, changes in groundwater levels. A water-level contour map was drawn using data measured in 2016 that shows the elevation of the water table and general direction of groundwater movement for most of the groundwater basins. Historical water-level data stored in the USGS National Water Information System (https://waterdata.usgs.gov/nwis/) database were used in conjunction with data collected for this study to construct 37 hydrographs to show long-term (1930–2016) and short-term (1990–2016) water-level changes in the study area.

  8. The Ocean deserts:salt budgets of northern subtropical oceans and their

    KAUST Repository

    Carton, Jim

    2011-04-09

    The Ocean deserts: salt budgets of northern subtropical oceans and their relationship to climate variability The high salinity near surface pools of the subtropical oceans are the oceanic deserts, with high levels of evaporation and low levels of precip

  9. Demographic studies of Joshua trees in Mojave Desert National Parks: demography with emphasis on germination and recruitment

    Science.gov (United States)

    Esque, T.C.; Reynolds, B.; DeFalco, L.A.; Waitman, B.A.; Hughson, Debra

    2010-01-01

    The study of population change with regard to reproduction, seed dispersal, and germination, establishment, growth, and survival/mortality is known as demography. Demographic studies provide managers with information to assess future trends on the density, distribution, health, and population changes of importance or value, including Joshua trees (Yucca brevifolia). Demographic research provides the potential to understand the combined impacts of climate change and land-use practices and determine if strategies for protecting important species are likely to succeed or fall short of management goals and will identify factors that have the potential to de-stabilize populations outside the realm of natural variation so that management strategies can be developed to circumvent challenges for key species, processes, and ecosystems. The National Park Service and US Geological Survey are collaborating to collect demographic information about the demographics of Joshua tree in the Mojave Desert.

  10. Preliminary study of the uranium favorability of Mesozoic intrusive and Tertiary volcanic and sedimentary rocks of the Central Mojave Desert, Kern and San Bernardino counties, California

    International Nuclear Information System (INIS)

    Leedom, S.H.; Kiloh, K.D.

    1978-02-01

    Numerous, small, low-grade, supergene uranium deposits are found in Tertiary volcanic and sedimentary rocks in the central Mojave Desert of southern California. Large thorium-to-uranium ratios in samples of Mesozoic intrusive rocks exposed in the area indicate that these rocks have been extensively weathered, eroded, and subsequently leached by ground waters, and that they may have been the primary source of uranium for the deposits. The uranium content of samples of volcanic intrusive and extrusive rocks is average for intermediate to silicic rocks, but samples of basalt flows in the area contain six times the average uranium content of mafic igneous rocks. Devitrified tuffs and tuffaceous sedimentary rocks, interbedded with calcareous units, are additional sources of uranium for supergene uranium deposits found in calcareous units. Uranium is also found in accessory minerals in a few Mesozoic quartz-rich pegmatite dikes. Uranium deposits in the central Mojave Desert have been formed by enrichment during diagenetic replacement of Tertiary carbonate rocks; by supergene enrichment along fractures, joints, and bedding planes in Tertiary volcanic and sedimentary rocks; during formation of Holocene caliche; and by deposition within hydrothermally altered shear zones. Within the area, the diagenetic replacement type of deposit has the greatest potential for large, low-grade uranium occurrences. The other type of uranium deposits are small, erratically distributed, and extensively covered by alluvium

  11. Gopherus agassizii (Desert Tortoise). Non-native seed dispersal

    Science.gov (United States)

    Ennen, J.R.; Loughran, Caleb L.; Lovich, Jeffrey E.

    2011-01-01

    Sahara Mustard (Brassica tournefortii) is a non-native, highly invasive weed species of southwestern U.S. deserts. Sahara Mustard is a hardy species, which flourishes under many conditions including drought and in both disturbed and undisturbed habitats (West and Nabhan 2002. In B. Tellman [ed.], Invasive Plants: Their Occurrence and Possible Impact on the Central Gulf Coast of Sonora and the Midriff Islands in the Sea of Cortes, pp. 91–111. University of Arizona Press, Tucson). Because of this species’ ability to thrive in these habitats, B. tournefortii has been able to propagate throughout the southwestern United States establishing itself in the Mojave and Sonoran Deserts in Arizona, California, Nevada, and Utah. Unfortunately, naturally disturbed areas created by native species, such as the Desert Tortoise (Gopherus agassizii), within these deserts could have facilitated the propagation of B. tournefortii. (Lovich 1998. In R. G. Westbrooks [ed.], Invasive Plants, Changing the Landscape of America: Fact Book, p. 77. Federal Interagency Committee for the Management of Noxious and Exotic Weeds [FICMNEW], Washington, DC). However, Desert Tortoises have never been directly observed dispersing Sahara Mustard seeds. Here we present observations of two Desert Tortoises dispersing Sahara Mustard seeds at the interface between the Mojave and Sonoran deserts in California.

  12. Vegetation - Central Mojave Desert [ds166

    Data.gov (United States)

    California Natural Resource Agency — The Department of Defense and the other desert managers are developing and organizing scientific information needed to better manage the natural resources of the...

  13. The Mojave Subsurface Bio-Geochemistry Explorer (MOSBE)

    Science.gov (United States)

    Guerrero, J.; Beegle, L.; Abbey, W.; Bhartia, R.; Kounaves, S.; Russell, M.; Towles, D.

    2012-01-01

    The MOSBE Team has developed a terrestrial field campaign to explore two subsurface biological habitats under the Mojave Desert. This field campaign will not only help us understand terrestrial desert biology, but also will develop methodologies and strategies for potential future Mars missions that would seek to explore the Martian subsurface. We have proposed to the ASTEP program to integrate a suite of field demonstrated instruments with a 20 m subsurface drill as a coherent unit, the Mojave Subsurface Bio-geochemistry Explorer. The ATK Space Modular Planetary Drill System (MPDS) requires no drilling fluid, which allows aseptic sampling, can penetrate lithic ground up to 20 meters of depth, and utilizes less than 100 Watts throughout the entire depth. The drill has been developed and demonstrated in field testing to a depth of 10 meters in Arizona, December 2002. In addition to caching a continuous core throughout the drilling depth, it also generates and caches cuttings and fines that are strata-graphically correlated with the core. As a core segment is brought to the surface, it will be analyzed for texture and structure by a color microscopic imager and for relevant chemistry and mineralogy with a UV fluorescence/Raman spectrometer. Organic and soluble ionic species will be identified through two instruments -- a microcapillary electrophoresis, and an ion trap mass spectrometer that have been developed under PIDDP, ASTID and MIDP funding.

  14. Who's hot, who's not? Effects of concentrating solar power heliostats on soil temperature at Ivanpah Solar Electric Generating System, Mojave Desert, USA

    Science.gov (United States)

    Grodsky, S.; Hernandez, R. R.

    2017-12-01

    Solar energy development may function as a contemporary, anthropogenic driver of disturbance when sited in natural ecosystems. Orientation and density of solar modules, including heliostats at concentrating solar power (CSP) facilities, may affect soils via shading and altered surface-water flow. Meanwhile, soil attributes like temperature and moisture may affect nutrient cycling, plant germination and growth, and soil biota. We tested effects of CSP heliostats on soil temperature at Ivanpah Solar Electric Generating System (ISEGS) in the Mojave Desert, USA. We implemented experimental treatments based on preconstruction rare plant [e.g., Mojave milkweed (Asclepias nyctaginifolia)] protection areas (hereafter "halos"), site preparation activities, and heliostat density throughout three, replicated CSP blocks (i.e., tower and associated heliostats), including: (1) No Halos (Bladed) - high site preparation intensity, high heliostat density immediately surrounding towers; (2) No Halos (Mowed) - moderate site preparation intensity, moderate to low heliostat density as distance increases from towers; and (3) Halos - no site preparation, no heliostats. We also established control sites within 1,600 km of ISEGS in undisturbed desert. We observed significant differences in soil temperature across treatments. We recorded significantly lower soil temperatures in the No Halos (Bladed) treatments (26.7°C) and No Halos (Mowed) treatments (29.9°C) than in the Halos treatments (32.9°C) and controls (32.1°C). We also determined that soil temperatures in the Halos treatments and controls did not significantly differ. Our results indicated that shading from high-density heliostat configuration significantly reduced soil temperature relative to low-density heliostat configuration and areas without CSP. Shading from heliostats and consequential fluctuation in soil temperatures may affect local-scale distribution of flora and fauna, leading to altered "bottom-up" ecological

  15. Effects of desert wildfires on desert tortoise (Gopherus agassizii) and other small vertebrates

    Science.gov (United States)

    Esque, T.C.; Schwalbe, C.R.; DeFalco, L.A.; Duncan, R.B.; Hughes, T.J.

    2003-01-01

    We report the results of standardized surveys to determine the effects of wildfires on desert tortoises (Gopherus agassizii) and their habitats in the northeastern Mojave Desert and northeastern Sonoran Desert. Portions of 6 burned areas (118 to 1,750 ha) were examined for signs of mortality of vertebrates. Direct effects of fire in desert habitats included animal mortality and loss of vegetation cover. A range of 0 to 7 tortoises was encountered during surveys, and live tortoises were found on all transects. In addition to desert tortoises, only small (reptiles (11 taxa) were found dead on the study areas. We hypothesize that indirect effects of fire on desert habitats might result in changes in the composition of diets and loss of vegetation cover, resulting in an increase in predation and loss of protection from temperature extremes. These changes in habitat also might cause changes in vertebrate communities in burned areas.

  16. A study of the depth of weathering and its relationship to the mechanical properties of near-surface rocks in the Mojave Desert

    Science.gov (United States)

    Stierman, D.J.; Healy, J.H.

    1985-01-01

    Weathered granite extends 70 m deep at Hi Vista in the arid central Mojave Desert of southern California. The low strength of this granite is due to the alteration of biotite and chlorite montmorillonite. Deep weathering probably occurs in most granites, although we cannot rule out some anomalous mechanisms at Hi Vista. Geophysical instruments set in these slightly altered rocks are limited by the unstable behavior of the rocks. Thus, tectonic signals from instruments placed in shallow boreholes give vague results. Geophysical measurements of these weathered rocks resemble measurements of granitic rocks near major faults. The rheology of the rocks in which instruments are placed limits the useful sensitivity of the instruments. ?? 1985 Birkha??user Verlag.

  17. First results from the Mojave Volatiles Prospector (MVP) Field Campaign, a Lunar Polar Rover Mission Analog

    Science.gov (United States)

    Heldmann, J. L.; Colaprete, A.; Cook, A.; Deans, M. C.; Elphic, R. C.; Lim, D. S. S.; Skok, J. R.

    2014-12-01

    The Mojave Volatiles Prospector (MVP) project is a science-driven field program with the goal to produce critical knowledge for conducting robotic exploration of the Moon. MVP will feed science, payload, and operational lessons learned to the development of a real-time, short-duration lunar polar volatiles prospecting mission. MVP achieves these goals through a simulated lunar rover mission to investigate the composition and distribution of surface and subsurface volatiles in a natural and a priori unknown environment within the Mojave Desert, improving our understanding of how to find, characterize, and access volatiles on the Moon. The MVP field site is the Mojave Desert, selected for its low, naturally occurring water abundance. The Mojave typically has on the order of 2-6% water, making it a suitable lunar analog for this field test. MVP uses the Near Infrared and Visible Spectrometer Subsystem (NIRVSS), Neutron Spectrometer Subsystem (NSS), and a downward facing GroundCam camera on the KREX-2 rover to investigate the relationship between the distribution of volatiles and soil crust variation. Through this investigation, we mature robotic in situ instruments and concepts of instrument operations, improve ground software tools for real time science, and carry out publishable research on the water cycle and its connection to geomorphology and mineralogy in desert environments. A lunar polar rover mission is unlike prior space missions and requires a new concept of operations. The rover must navigate 3-5 km of terrain and examine multiple sites in in just ~6 days. Operational decisions must be made in real time, requiring constant situational awareness, data analysis and rapid turnaround decision support tools. This presentation will focus on the first science results and operational architecture findings from the MVP field deployment relevant to a lunar polar rover mission.

  18. Maintenance of C sinks sustains enhanced C assimilation during long-term exposure to elevated [CO2] in Mojave Desert shrubs.

    Science.gov (United States)

    Aranjuelo, Iker; Ebbets, Allison L; Evans, R Dave; Tissue, David T; Nogués, Salvador; van Gestel, Natasja; Payton, Paxton; Ebbert, Volker; Adams, Williams W; Nowak, Robert S; Smith, Stanley D

    2011-10-01

    During the first few years of elevated atmospheric [CO(2)] treatment at the Nevada Desert FACE Facility, photosynthetic downregulation was observed in desert shrubs grown under elevated [CO(2)], especially under relatively wet environmental conditions. Nonetheless, those plants maintained increased A (sat) (photosynthetic performance at saturating light and treatment [CO(2)]) under wet conditions, but to a much lesser extent under dry conditions. To determine if plants continued to downregulate during long-term exposure to elevated [CO(2)], responses of photosynthesis to elevated [CO(2)] were examined in two dominant Mojave Desert shrubs, the evergreen Larrea tridentata and the drought-deciduous Ambrosia dumosa, during the eighth full growing season of elevated [CO(2)] treatment at the NDFF. A comprehensive suite of physiological processes were collected. Furthermore, we used C labeling of air to assess carbon allocation and partitioning as measures of C sink activity. Results show that elevated [CO(2)] enhanced photosynthetic performance and plant water status in Larrea, especially during periods of environmental stress, but not in Ambrosia. δ(13)C analyses indicate that Larrea under elevated [CO(2)] allocated a greater proportion of newly assimilated C to C sinks than Ambrosia. Maintenance by Larrea of C sinks during the dry season partially explained the reduced [CO(2)] effect on leaf carbohydrate content during summer, which in turn lessened carbohydrate build-up and feedback inhibition of photosynthesis. δ(13)C results also showed that in a year when plant growth reached the highest rates in 5 years, 4% (Larrea) and 7% (Ambrosia) of C in newly emerging organs were remobilized from C that was assimilated and stored for at least 2 years prior to the current study. Thus, after 8 years of continuous exposure to elevated [CO(2)], both desert perennials maintained their photosynthetic capacities under elevated [CO(2)]. We conclude that C storage, remobilization

  19. Bidirectional recovery patterns of Mojave Desert vegetation in an aqueduct pipeline corridor after 36 years: I. Perennial shrubs and grasses

    Science.gov (United States)

    Berry, Kristin H.; Weigand, James F.; Gowan, Timothy A.; Mack, Jeremy S.

    2015-01-01

    We studied recovery of 21 perennial plant species along a severely disturbed aqueduct corridor in a Larrea tridentata-Ambrosia dumosa plant alliance in the Mojave Desert 36 years after construction. The 97-m wide corridor contained a central dirt road and buried aqueduct pipeline. We established transects at 0 m (road verge), 20 m and 40 m into the disturbance corridor, and at 100 m in undisturbed habitat (the control). Although total numbers of shrubs per transect did not vary significantly with distance from the verge, canopy cover of shrubs, species richness, and species diversity were higher in the control than at the verge and other distances. Canopy cover of common shrubs (Ericameria nauseosa, Ambrosia salsola, A. dumosa, L. tridentata, Grayia spinosa) and perennial grasses (Elymus elymoides, Poa secunda) also varied significantly by location. Discriminant analysis clearly separated the four distances based on plant composition. Patterns of recovery were bidirectional: secondary succession from the control into the disturbance corridor and inhibition from the verge in the direction of the control. Time estimated for species composition to resemble the control is dependent on location within the disturbance corridor and could be centuries at the road verge. Our findings have applications to other deserts.

  20. Clustering of GPS velocities in the Mojave Block, southeastern California

    Science.gov (United States)

    Savage, James C.; Simpson, Robert W.

    2013-01-01

    We find subdivisions within the Mojave Block using cluster analysis to identify groupings in the velocities observed at GPS stations there. The clusters are represented on a fault map by symbols located at the positions of the GPS stations, each symbol representing the cluster to which the velocity of that GPS station belongs. Fault systems that separate the clusters are readily identified on such a map. The most significant representation as judged by the gap test involves 4 clusters within the Mojave Block. The fault systems bounding the clusters from east to west are 1) the faults defining the eastern boundary of the Northeast Mojave Domain extended southward to connect to the Hector Mine rupture, 2) the Calico-Paradise fault system, 3) the Landers-Blackwater fault system, and 4) the Helendale-Lockhart fault system. This division of the Mojave Block is very similar to that proposed by Meade and Hager. However, no cluster boundary coincides with the Garlock Fault, the northern boundary of the Mojave Block. Rather, the clusters appear to continue without interruption from the Mojave Block north into the southern Walker Lane Belt, similar to the continuity across the Garlock Fault of the shear zone along the Blackwater-Little Lake fault system observed by Peltzer et al. Mapped traces of individual faults in the Mojave Block terminate within the block and do not continue across the Garlock Fault [Dokka and Travis, ].

  1. Stable isotope evidence for an atmospheric origin of desert nitrate deposits in northern Chile and southern California, U.S.A.

    Science.gov (United States)

    Böhlke, J.K.; Ericksen, G.E.; Revesz, K.

    1997-01-01

    Natural surficial accumulations of nitrate-rich salts in the Atacama Desert, northern Chile, and in the Death Valley region of the Mojave Desert, southern California, are well known, but despite many geologic and geochemical studies, the origins of the nitrates have remained controversial. N and O isotopes in nitrate, and S isotopes in coexisting soluble sulfate, were measured to determine if some proposed N sources could be supported or rejected, and to determine if the isotopic signature of these natural deposits could be used to distinguish them from various types of anthropogenic nitrate contamination that might be found in desert groundwaters. High-grade caliche-type nitrate deposits from both localities have ??15N values that range from -5 to +5???, but are mostly near 0???. Values of ??15N near 0??? are consistent with either bulk atmospheric N deposition or microbial N fixation as major sources of the N in the deposits. ??18O values of those desert nitrates with ??15N near 0??? range from about +31 to + 50??? (V-SMOW), significantly higher than that of atmospheric O2 (+ 23.5???). Such high values of ??18O are considered unlikely to result entirely from nitrification of reduced N, but rather resemble those of modern atmospheric nitrate in precipitation from some other localities. Assuming that limited modern atmospheric isotope data are applicable to the deposits, and allowing for nitrification of co-deposited ammonium, it is estimated that the fraction of the nitrate in the deposits that could be accounted for isotopically by atmospheric N deposition may be at least 20% and possibly as much as 100%. ??34S values are less diagnostic but could also be consistent with atmospheric components in some of the soluble sulfates associated with the deposits. The stable isotope data support the hypothesis that some high-grade caliche-type nitrate-rich salt deposits in some of the Earth's hyperarid deserts represent long-term accumulations of atmospheric deposition

  2. Modeling Agassiz's Desert Tortoise Population Response to Anthropogenic Stressors

    Science.gov (United States)

    Mojave Desert tortoise (Gopherus agassizii) populations are exposed to a variety of anthropogenic threats, which vary in nature, severity, and frequency. Tortoise management in conservation areas can be compromised when the relative importance of these threats is not well underst...

  3. Negative impacts of invasive plants on conservation of sensitive desert wildlife

    Science.gov (United States)

    Drake, K. Kristina; Bowen, Lizabeth; Nussear, Kenneth E.; Esque, Todd C.; Berger, Andrew J.; Custer, Nathan; Waters, Shannon C.; Johnson, Jay D.; Miles, A. Keith; Lewison, Rebecca L.

    2016-01-01

    Habitat disturbance from development, resource extraction, off-road vehicle use, and energy development ranks highly among threats to desert systems worldwide. In the Mojave Desert, United States, these disturbances have promoted the establishment of nonnative plants, so that native grasses and forbs are now intermixed with, or have been replaced by invasive, nonnative Mediterranean grasses. This shift in plant composition has altered food availability for Mojave Desert tortoises (Gopherus agassizii), a federally listed species. We hypothesized that this change in forage would negatively influence the physiological ecology, immune competence, and health of neonatal and yearling tortoises. To test this, we monitored the effects of diet on growth, body condition, immunological responses (measured by gene transcription), and survival for 100 captive Mojave tortoises. Tortoises were assigned to one of five diets: native forbs, native grass, invasive grass, and native forbs combined with either the native or invasive grass. Tortoises eating native forbs had better body condition and immune functions, grew more, and had higher survival rates (>95%) than tortoises consuming any other diet. At the end of the experiment, 32% of individuals fed only native grass and 37% fed only invasive grass were found dead or removed from the experiment due to poor body conditions. In contrast, all tortoises fed either the native forb or combined native forb and native grass diets survived and were in good condition. Health and body condition quickly declined for tortoises fed only the native grass (Festuca octoflora) or invasive grass (Bromus rubens) with notable loss of fat and muscle mass and increased muscular atrophy. Bromus rubens seeds were found embedded in the oral mucosa and tongue in most individuals eating that diet, which led to mucosal inflammation. Genes indicative of physiological, immune, and metabolic functions were transcribed at lower levels for individuals fed B

  4. Moisture-driven xylogenesis in Pinus ponderosa from a Mojave Desert mountain reveals high phenological plasticity.

    Science.gov (United States)

    Ziaco, Emanuele; Truettner, Charles; Biondi, Franco; Bullock, Sarah

    2018-04-01

    Future seasonal dynamics of wood formation in hyperarid environments are still unclear. Although temperature-driven extension of the growing season and increased forest productivity are expected for boreal and temperate biomes under global warming, a similar trend remains questionable in water-limited regions. We monitored cambial activity in a montane stand of ponderosa pine (Pinus ponderosa) from the Mojave Desert for 2 consecutive years (2015-2016) showing opposite-sign anomalies between warm- and cold-season precipitation. After the wet winter/spring of 2016, xylogenesis started 2 months earlier compared to 2015, characterized by abundant monsoonal (July-August) rainfall and hyperarid spring. Tree size did not influence the onset and ending of wood formation, highlighting a predominant climatic control over xylem phenological processes. Moisture conditions in the previous month, in particular soil water content and dew point, were the main drivers of cambial phenology. Latewood formation started roughly at the same time in both years; however, monsoonal precipitation triggered the formation of more false rings and density fluctuations in 2015. Because of uncertainties in future precipitation patterns simulated by global change models for the Southwestern United States, the dependency of P. ponderosa on seasonal moisture implies a greater conservation challenge than for species that respond mostly to temperature conditions. © 2018 John Wiley & Sons Ltd.

  5. Serologic and molecular evidence for testudinid herpesvirus 2 infection in wild Agassiz’s desert tortoise, Gopherus agassizii

    Science.gov (United States)

    Jacobson, Elliott R.; Berry, Kristin H.; Wellehan, James F. X.; Origgi, Francesco; Childress, April L.; Braun, Josephine; Schrenzel, Mark; Yee, Julie; Rideout, Bruce

    2012-01-01

    Following field observations of wild Agassiz’s desert tortoises (Gopherus agassizii) with oral lesions similar to those seen in captive tortoises with herpesvirus infection, we measured the prevalence of antibodies to Testudinid herpesvirus (TeHV) 3 in wild populations of desert tortoises in California. The survey revealed 30.9% antibody prevalence. In 2009 and 2010, two wild adult male desert tortoises, with gross lesions consistent with trauma and puncture wounds, respectively, were necropsied. Tortoise 1 was from the central Mojave Desert and tortoise 2 was from the northeastern Mojave Desert. We extracted DNA from the tongue of tortoise 1 and from the tongue and nasal mucosa of tortoise 2. Sequencing of polymerase chain reaction products of the herpesviral DNA-dependent DNA polymerase gene and the UL39 gene respectively showed 100% nucleotide identity with TeHV2, which was previously detected in an ill captive desert tortoise in California. Although several cases of herpesvirus infection have been described in captive desert tortoises, our findings represent the first conclusive molecular evidence of TeHV2 infection in wild desert tortoises. The serologic findings support cross-reactivity between TeHV2 and TeHV3. Further studies to determine the ecology, prevalence, and clinical significance of this virus in tortoise populations are needed.

  6. The western pond turtle (Clemmys marmorata) in the Mojave River, California, USA: Highly adapted survivor or tenuous relict?

    Science.gov (United States)

    Lovich, J.; Meyer, K.

    2002-01-01

    Aspects of the ecology of populations of the western pond turtle Clemmys marmorata were investigated in the Mojave River of the central Mojave Desert, California, U.S.A. One population occupied man-made ponds and the other occurred in natural ponds in the flood plain of the Mojave River. Both habitats are severely degraded as a result of ground water depletion from human activities along the river and one is infested with the exotic shrub saltcedar Tamarix ramosissima. Mean female carapace length (CL) was significantly greater (14.4 cm) than that of males (13.7 cm). Live juveniles were not detected during the period of study. Shelled eggs were visible in X-radiographs from 26 May to 14 July. Mean clutch size was 4.46 and ranged from 3 to 6 eggs. Clutch size did not vary between 1998 and 1999 but was significantly correlated with CL for both years combined, increasing at the rate of 0.548 eggs/cm CL. Gravid female CL ranged from 13.3-16.0 cm. Some females nested in both years. Mean X-ray egg width (21.8 mm) was not significantly correlated with CL or clutch size. X-ray egg width differed more among clutches than within, whether including CL as a co-variate or not. Nesting migrations occurred from 6 June to 8 July with minimum round trip distances ranging from 17.5-585 m with a mean of 195 m. Mean estimated time of departure as measured at the drift fence was 18:13. Most females returned to the ponds in the early morning. Nesting migrations required females to be out of the water for estimated periods of 0.83 to 86 h. The destination of nesting females was typically fluvial sand bars in the channel of the dry riverbed. Overall, the ecology of C. marmorata in the Mojave River is very similar to that reported for populations in less severe habitats along the west coast of the United States. Notable exceptions include long nesting migrations to sandbars in the dry river channel, a possible result of human modifications to the environment, and an apparent lack of

  7. Contrasting long-term survival of two outplanted Mojave Desert perennials for post-fire revegetation

    Science.gov (United States)

    Scoles-Sciulla, Sara J.; Defalco, Lesley A.; Esque, Todd C.

    2015-01-01

    Post-fire recovery of arid shrublands is typically slow, and planting greenhouse-raised seedlings may be a means of jump-starting this process. Recovery can be further accelerated by understanding the factors controlling post-planting survival. In fall 2007 and 2009, we outplanted seedlings of two contrasting native evergreen shrubs—fast-growing Nevada jointfir and slow-growing blackbrush—across five burned sites in the Mojave Desert. To increase soil moisture and optimize seedling survival, we experimentally applied and evaluated soil amendments and supplemental watering. We also evaluated two herbicides that reduce competitive invasive annual grasses and two types of herbivore protection. Survival of jointfir outplanted in 2007 was 61% after 43 months, and site largely influenced survival, while herbicide containing imazapic applied more than one year after outplanting reduced survival. Reduced survival of jointfir outplanted in 2009 coincided with delayed seasonal precipitation that intensified foliar damage by small mammals. In contrast, blackbrush survival was 4% after 43 months, and was influenced by site, type of herbivore protection, and greenhouse during the 2007 outplanting, and soil amendment during 2009. Counter to expectations, we found that supplemental watering and soil amendments did not influence long-term survival of either blackbrush or jointfir. Shrub species with rapid growth rates and broad environmental tolerances, such as jointfir, make ideal candidates for outplanting, provided that seedlings are protected from herbivores. Re-introduction of species with slow growth rates and narrow environmental tolerances, such as blackbrush, requires careful consideration to optimize pre- and post-planting conditions.

  8. Measuring Dust Emission from the Mojave Desert (USA) by Daily Remote-Camera Observations and Wind-Erosion Measurements: Bearing on "Unseen" Sources and Global Dust Abundance

    Science.gov (United States)

    Reynolds, R. L.; Urban, F.; Goldstein, H. L.; Fulton, R.

    2017-12-01

    A large gap in understanding the effects of atmospheric dust at all spatial scales is uncertainty about how much and whence dust is emitted annually. Digital recording of dust emission at high spatial and temporal resolution would, together with periodic flux measurements, support improved estimates of local-scale dust flux where infrastructure could support remote internet enabled cameras. Such recording would also elucidate wind-erosion dynamics when combined with meteorological data. Remote camera recording of dust-emitting settings on and around Soda Lake (Mojave Desert) was conducted every 15 minutes during daylight between 10 Nov. 2010 and 31 Dec. 2016 and images uploaded to a web server. Examination of 135,000 images revealed frequent dust events, termed "dust days" when plumes obscured mountains beyond source areas. Such days averaged 68 (sd=10) per year (2011 through 2016). We examined satellite retrievals (MODIS, GOES) for dust events during six cloudless days of highest and longest duration dust emission but none were observed. From Apr. 2000 through May 2013, aeolian sediments collected at three sites were sampled and weighed. Estimates of the emitted mass of silt- and clay-size fractions were made on the basis of measured horizontal mass flux, particle sizes of sediment in collectors, and roughly determined areas of dust generation. Over this period, nearly 4 Tg yr-1 of dust (as particulate matter flood in the basin in late Dec. 2010 that deposited flood sediment across the lake basin. Increased emission was likely related to the availability of fresh, unanchored flood sediment. Within the Mojave and Great Basin deserts of North America, many settings akin to those at Soda Lake similarly emit dust that is rarely detected in satellite retrievals. These findings strongly imply that local and regional dust emissions from western North America are far underestimated and that, by extension to relatively small dust-source areas across all drylands, global

  9. Stratigraphy, age, and depositional setting of the Miocene Barstow Formation at Harvard Hill, central Mojave Desert, California

    Science.gov (United States)

    Leslie, Shannon R.; Miller, David M.; Wooden, Joseph L.; Vazquez, Jorge A.

    2010-01-01

    New detailed geologic mapping and geochronology of the Barstow Formation at Harvard Hill, 30 km east of Barstow, CA, help to constrain Miocene paleogeography and tectonics of the central Mojave Desert. A northern strand of the Quaternary ENE-striking, sinistral Manix fault divides the Barstow Formation at Harvard Hill into two distinct lithologic assemblages. Strata north of the fault consist of: a green rhyolitic tuff, informally named the Shamrock tuff; lacustrine sandstone; partially silicified thin-bedded to massive limestone; and alluvial sandstone to pebble conglomerate. Strata south of the fault consist of: lacustrine siltstone and sandstone; a rhyolitic tuff dated at 19.1 Ma (U-Pb); rock-avalanche breccia deposits; partially silicified well-bedded to massive limestone; and alluvial sandstone and conglomerate. Our U-Pb zircon dating of the Shamrock tuff by SHRIMP-RG yields a peak probability age of 18.7 ± 0.1 Ma. Distinctive outcrop characteristics, mineralogy, remanent magnetization, and zircon geochemistry (Th/U) suggest that the Shamrock tuff represents a lacustrine facies of the regionally extensive Peach Spring Tuff (PST). Here we compare zircon age and geochemical analyses from the Shamrock tuff with those of the PST at Stoddard Wash and provide new insight into the age of zircon crystallization in the PST rhyolite. Results of our field studies show that Miocene strata at Harvard Hill mostly accumulated in a lacustrine environment, although depositional environments varied from a relatively deep lake to a very shallow lake or even onshore setting. Rock-avalanche breccias and alluvial deposits near the base of the exposed section indicate proximity to a steep basin margin and detrital studies suggest a southern source for coarse-grained deposits; therefore, we may infer a southern basin-margin setting at Harvard Hill during the early Miocene. Our geochronology demonstrates that deposition of the Barstow Formation at Harvard Hill extended from before

  10. Short-Term Space-Use Patterns of Translocated Mojave Desert Tortoise in Southern California.

    Directory of Open Access Journals (Sweden)

    Matthew L Farnsworth

    Full Text Available Increasingly, renewable energy comprises a larger share of global energy production. Across the western United States, public lands are being developed to support renewable energy production. Where there are conflicts with threatened or endangered species, translocation can be used in an attempt to mitigate negative effects. For the threatened Mojave desert tortoise (Gopherus agassizii, we sought to compare habitat- and space-use patterns between short-distance translocated, resident, and control groups. We tested for differences in home range size based on utilization distributions and used linear mixed-effects models to compare space-use intensity, while controlling for demographic and environmental variables. In addition, we examined mean movement distances as well as home range overlap between years and for male and female tortoises in each study group. During the first active season post-translocation, home range size was greater and space-use intensity was lower for translocated tortoises than resident and control groups. These patterns were not present in the second season. In both years, there was no difference in home range size or space-use intensity between control and resident groups. Translocation typically resulted in one active season of questing followed by a second active season characterized by space-use patterns that were indistinguishable from control tortoises. Across both years, the number of times a tortoise was found in a burrow was positively related to greater space-use intensity. Minimizing the time required for translocated tortoises to exhibit patterns similar to non-translocated individuals may have strong implications for conservation by reducing exposure to adverse environmental conditions and predation. With ongoing development, our results can be used to guide future efforts aimed at understanding how translocation strategies influence patterns of animal space use.

  11. Polyphasic characterization of Trichocoleus desertorum sp. nov. (Pseudanabaenales, Cyanobacteria) from desert soils and phylogenetic placement of the genus Trichocoleus

    Science.gov (United States)

    Radka Muhlsteinova; Jeffrey R. Johansen; Nicole Pietrasiak; Michael P. Martin; Karina Osorio-Santos; Steven D. Warren

    2014-01-01

    Little is known about the taxonomic diversity of cyanobacteria in deserts, despite their important ecological roles in these ecosystems. In this study, cyanobacterial strains from the Atacama, Colorado, and Mojave Deserts were isolated and characterized using molecular, morphological, and ecological information. Phylogenetic placement of these strains was revealed...

  12. Landscape genetic approaches to guide native plant restoration in the Mojave Desert

    Science.gov (United States)

    Shryock, Daniel F.; Havrilla, Caroline A.; DeFalco, Lesley; Esque, Todd C.; Custer, Nathan; Wood, Troy E.

    2016-01-01

    Restoring dryland ecosystems is a global challenge due to synergistic drivers of disturbance coupled with unpredictable environmental conditions. Dryland plant species have evolved complex life-history strategies to cope with fluctuating resources and climatic extremes. Although rarely quantified, local adaptation is likely widespread among these species and potentially influences restoration outcomes. The common practice of reintroducing propagules to restore dryland ecosystems, often across large spatial scales, compels evaluation of adaptive divergence within these species. Such evaluations are critical to understanding the consequences of large-scale manipulation of gene flow and to predicting success of restoration efforts. However, genetic information for species of interest can be difficult and expensive to obtain through traditional common garden experiments. Recent advances in landscape genetics offer marker-based approaches for identifying environmental drivers of adaptive genetic variability in non-model species, but tools are still needed to link these approaches with practical aspects of ecological restoration. Here, we combine spatially-explicit landscape genetics models with flexible visualization tools to demonstrate how cost-effective evaluations of adaptive genetic divergence can facilitate implementation of different seed sourcing strategies in ecological restoration. We apply these methods to Amplified Fragment Length Polymorphism (AFLP) markers genotyped in two Mojave Desert shrub species of high restoration importance: the long-lived, wind-pollinated gymnosperm Ephedra nevadensis, and the short-lived, insect-pollinated angiosperm Sphaeralcea ambigua. Mean annual temperature was identified as an important driver of adaptive genetic divergence for both species. Ephedra showed stronger adaptive divergence with respect to precipitation variability, while temperature variability and precipitation averages explained a larger fraction of adaptive

  13. Delta Chromium-53/52 isotopic composition of native and contaminated groundwater, Mojave Desert, USA

    Science.gov (United States)

    Izbicki, John A.; Bullen, Thomas D.; Martin, Peter; Schroth, Brian

    2012-01-01

    Chromium(VI) concentrations in groundwater sampled from three contaminant plumes in aquifers in the Mojave Desert near Hinkley, Topock and El Mirage, California, USA, were as high as 2600, 5800 and 330 μg/L, respectively. δ53/52Cr compositions from more than 50 samples collected within these plumes ranged from near 0‰ to almost 4‰ near the plume margins. Assuming only reductive fractionation of Cr(VI) to Cr(III) within the plume, apparent fractionation factors for δ53/52Cr isotopes ranged from εapp = 0.3 to 0.4 within the Hinkley and Topock plumes, respectively, and only the El Mirage plume had a fractionation factor similar to the laboratory derived value of ε = 3.5. One possible explanation for the difference between field and laboratory fractionation factors at the Hinkley and Topock sites is localized reductive fractionation of Cr(VI) to Cr(III), with subsequent advective mixing of native and contaminated water near the plume margin. Chromium(VI) concentrations and δ53/52Cr isotopic compositions did not uniquely define the source of Cr near the plume margin, or the extent of reductive fractionation within the plume. However, Cr(VI) and δ53/52Cr data contribute to understanding of the interaction between reductive and mixing processes that occur within and near the margins of Cr contamination plumes. Reductive fractionation of Cr(VI) predominates in plumes having higher εapp, these plumes may be suitable for monitored natural attenuation. In contrast, advective mixing predominates in plumes having lower εapp, the highly dispersed margins of these plumes may be difficult to define and manage.

  14. Pedological and geological relationships with soil lichen and moss distribution in the eastern Mojave Desert, CA, USA

    Science.gov (United States)

    Belnap, Jayne; Miller, David M.; Bedford, David R.; Phillips, Susan L.

    2014-01-01

    Biological soil crusts (biocrusts) are ubiquitous in drylands globally. Lichens and mosses are essential biocrust components and provide a variety of ecosystem services, making their conservation and management of interest. Accordingly, understanding what factors are correlated with their distribution is important to land managers. We hypothesized that cover would be related to geologic and pedologic factors. We sampled 32 sites throughout the eastern Mojave Desert, stratifying by parent material and the age of the geomorphic surfaces. The cover of lichens and mosses on ‘available ground’ (L + Mav; available ground excludes ground covered by rocks or plant stems) was higher on limestone and quartzite-derived soils than granite-derived soils. Cover was also higher on moderately younger-aged geomorphic surfaces (Qya2, Qya3, Qya4) and cutbanks than on very young (Qya1), older-aged surfaces (Qia1, Qia2), or soils associated with coppice mounds or animal burrowing under Larrea tridentata. When all sites and parent materials were combined, soil texture was the most important factor predicting the occurrence of L + Mav, with cover positively associated with higher silt, very fine sand, and fine sand fractions and negatively associated with the very coarse sand fraction. When parent materials were examined separately, nutrients such as available potassium, iron, and calcium became the most important predictors of L + Mav cover.

  15. X-36 in Flight over Mojave Desert during 5th Flight

    Science.gov (United States)

    1997-01-01

    The unusual lines of the X-36 Tailless Fighter Agility Research Aircraft contrast sharply with the desert floor as the remotely-piloted aircraft flies over the Mojave Desert on a June 1997 research flight. The NASA/Boeing X-36 Tailless Fighter Agility Research Aircraft program successfully demonstrated the tailless fighter design using advanced technologies to improve the maneuverability and survivability of possible future fighter aircraft. The program met or exceeded all project goals. For 31 flights during 1997 at the Dryden Flight Research Center, Edwards, California, the project team examined the aircraft's agility at low speed / high angles of attack and at high speed / low angles of attack. The aircraft's speed envelope reached up to 206 knots (234 mph). This aircraft was very stable and maneuverable. It handled very well. The X-36 vehicle was designed to fly without the traditional tail surfaces common on most aircraft. Instead, a canard forward of the wing was used as well as split ailerons and an advanced thrust-vectoring nozzle for directional control. The X-36 was unstable in both pitch and yaw axes, so an advanced, single-channel digital fly-by-wire control system (developed with some commercially available components) was put in place to stabilize the aircraft. Using a video camera mounted in the nose of the aircraft and an onboard microphone, the X-36 was remotely controlled by a pilot in a ground station virtual cockpit. A standard fighter-type head-up display (HUD) and a moving-map representation of the vehicle's position within the range in which it flew provided excellent situational awareness for the pilot. This pilot-in-the-loop approach eliminated the need for expensive and complex autonomous flight control systems and the risks associated with their inability to deal with unknown or unforeseen phenomena in flight. Fully fueled the X-36 prototype weighed approximately 1,250 pounds. It was 19 feet long and three feet high with a wingspan of

  16. Historic distribution and challenges to bison recovery in the northern Chihuahuan Desert

    Science.gov (United States)

    List, Rurik; Ceballos, Gerardo; Curtin, Charles; Gogan, Peter J.; Pacheco, Jesus; Truett, Joe

    2007-01-01

    Ecologists and conservationists have long assumed that large grazers, including bison (Bison bison), did not occur in post-Pleistocene southwestern North America. This perception has been influential in framing the debate over conservation and land use in the northern Chihuahuan Desert. The lack of an evolutionary history of large grazers is being used to challenge the validity of ranching as a conservation strategy and to limit the protection and reintroduction of bison as a significant component of desert grassland ecosystems. Archeological records and historical accounts from Mexican archives from AD 700 to the 19th century document that the historic range of the bison included northern Mexico and adjoining areas in the United States. The Janos-Hidalgo bison herd, one of the few free-ranging bison herds in North America, has moved between Chihuahua, Mexico, and New Mexico, United States, since at least the 1920s. The persistence of this cross-border bison herd in Chihuahuan Desert grasslands and shrublands demonstrates that the species can persist in desert landscapes. Additional lines of evidence include the existence of grazing-adapted grasslands and the results of experimental studies that document declines in vegetation density and diversity following the removal of large grazers. The Janos-Hidalgo herd was formed with animals from various sources at the turn of the 19th century. Yet the future of the herd is compromised by differing perceptions of the ecological and evolutionary role of bison in the Desert Grasslands of North America. In Mexico they are considered native and are protected by federal law, whereas in New Mexico, they are considered non-native livestock and therefore lack conservation status or federal protection. Evidence written in Spanish of the presence of bison south of the accepted range and evidence from the disciplines of archaeology and history illustrate how differences in language and academic disciplines, in addition to

  17. Response of the desert shrub Krameria parvifolia after ten years of chronic gamma irradiation

    International Nuclear Information System (INIS)

    Vollmer, A.T.; Bamberg, S.A.

    1975-01-01

    A northern Mojave Desert shrub community was irradiated by a 137 Cs source for a ten-year period. Leaf and fruit production, cover, and percent live stem of Krameria parvifolia shrubs were found to respond significantly to a radiation gradient with exposure rates ranging from 0.1 to 10 R/day. Fruit and leaf production were greatly reduced at exposures over 6 R/day. Above 7 R/day 16% of the shrubs were dead compared to 1.2% in a non-irradiated area. Reduced cover, density and live stem values indicate a trend toward a lower status of Krameria in the community at cumulative exposures above 25 kR. Observations indicate that an equilibrium in response to irradiation has not yet occurred. Radiosensitivity of K. parvifolia is attributed in part to its phenology. (author)

  18. Response of the desert shrub Krameria parvifolia after ten years of chronic gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Vollmer, A T; Bamberg, S A [California Univ., Los Angeles (USA). Lab. of Nuclear Medicine and Radiation Biology

    1975-12-01

    A northern Mojave Desert shrub community was irradiated by a /sup 137/Cs source for a ten-year period. Leaf and fruit production, cover, and percent live stem of Krameria parvifolia shrubs were found to respond significantly to a radiation gradient with exposure rates ranging from 0.1 to 10 R/day. Fruit and leaf production were greatly reduced at exposures over 6 R/day. Above 7 R/day 16% of the shrubs were dead compared to 1.2% in a non-irradiated area. Reduced cover, density and live stem values indicate a trend toward a lower status of Krameria in the community at cumulative exposures above 25 kR. Observations indicate that an equilibrium in response to irradiation has not yet occurred. Radiosensitivity of K. parvifolia is attributed in part to its phenology.

  19. Soil Nematodes and Their Prokaryotic Prey Along an Elevation Gradient in The Mojave Desert (Death Valley National Park, California, USA

    Directory of Open Access Journals (Sweden)

    Alyxandra Pikus

    2012-10-01

    Full Text Available We characterized soil communities in the Mojave Desert across an elevation gradient. Our goal was to test the hypothesis that as soil quality improved with increasing elevation (due to increased productivity, the diversity of soil prokaryotes and nematodes would also increase. Soil organic matter and soil moisture content increased with elevation as predicted. Soil salinity did not correlate to elevation, but was highest at a mid-gradient, alluvial site. Soil nematode density, community trophic structure, and diversity did not show patterns related to elevation. Similar results were obtained for diversity of bacteria and archaea. Relationships between soil properties, nematode communities, and prokaryotic diversity were site-specific. For example, at the lowest elevation site, nematode communities contained a high proportion of fungal-feeding species and diversity of bacteria was lowest. At a high-salinity site, nematode density was highest, and overall, nematode density showed an unexpected, positive correlation to salinity. At the highest elevation site, nematode density and species richness were attenuated, despite relatively high moisture and organic matter content for the soils. Our results support emerging evidence for the lack of a relationship between productivity and the diversity of soil nematodes and prokaryotes.

  20. Difference in luminescence sensitivity of coarse-grained quartz from deserts of northern China

    International Nuclear Information System (INIS)

    Zheng, C.X.; Zhou, L.P.; Qin, J.T.

    2009-01-01

    The luminescence sensitivity of coarse quartz extracted from desert sands in northern China was investigated. In general, the western deserts' samples are shown to be less sensitive than samples from the eastern deserts with respect to both OSL and the 110 deg. C TL peak. However, internal scatter among different aliquots of the same sample is observed for these two signals, which have already been normalized by weight. Laboratory dosing/bleach experiments indicate that earth surface processes, such as repeated burial and transportation can cause the sensitivity change and suggest that they may be responsible for the internal scatter. An intrinsic property of quartz was explored via the luminescence response to thermal activation to a maximum temperature of 700 deg. C. The thermal activation curves obtained with quartz from western and central deserts are similar, except one sample from Gurbantungut, which follows the pattern of eastern samples. The differences in quartz luminescence sensitivity exhibited by OSL/110 deg. C TL sensitivity and response to thermal activation are in accordance with the published results of geochemical studies.

  1. Landscape-scale distribution and density of raptor populations wintering in anthropogenic-dominated desert landscapes

    Science.gov (United States)

    Duerr, Adam E.; Miller, Tricia A.; Cornell Duerr, Kerri L; Lanzone, Michael J.; Fesnock, Amy; Katzner, Todd E.

    2015-01-01

    Anthropogenic development has great potential to affect fragile desert environments. Large-scale development of renewable energy infrastructure is planned for many desert ecosystems. Development plans should account for anthropogenic effects to distributions and abundance of rare or sensitive wildlife; however, baseline data on abundance and distribution of such wildlife are often lacking. We surveyed for predatory birds in the Sonoran and Mojave Deserts of southern California, USA, in an area designated for protection under the “Desert Renewable Energy Conservation Plan”, to determine how these birds are distributed across the landscape and how this distribution is affected by existing development. We developed species-specific models of resight probability to adjust estimates of abundance and density of each individual common species. Second, we developed combined-species models of resight probability for common and rare species so that we could make use of sparse data on the latter. We determined that many common species, such as red-tailed hawks, loggerhead shrikes, and especially common ravens, are associated with human development and likely subsidized by human activity. Species-specific and combined-species models of resight probability performed similarly, although the former model type provided higher quality information. Comparing abundance estimates with past surveys in the Mojave Desert suggests numbers of predatory birds associated with human development have increased while other sensitive species not associated with development have decreased. This approach gave us information beyond what we would have collected by focusing either on common or rare species, thus it provides a low-cost framework for others conducting surveys in similar desert environments outside of California.

  2. Large-scale gravity sliding in the Miocene Shadow Valley Supradetachment Basin, Eastern Mojave Desert, California

    Science.gov (United States)

    Davis, G. A.; Friedmann, S. J.

    2005-12-01

    The Miocene Shadow Valley basin in the eastern Mojave Desert of California developed above the active west-dipping Kingston Range-Halloran Hills extensional detachment fault system between 13.5 and ca. 7 mybp. Although mass-wasting processes are common phenomena in supradetachment basins, the Shadow Valley basin is an exceptional locale for the study of such processes, especially rock-avalanches and gravity sliding. A score of megabreccias, interpreted as rock-avalanche deposits, and half that number of very large (> 1 km 2, up to 200 m thick), internally intact gravity-driven slide sheets are interbedded with various sedimentary facies. The slide sheets, variably composed of Proterozoic crystalline rocks and Proterozoic, Paleozoic, and Tertiary sedimentary strata, moved across both depositional and erosional surfaces in the basin. Although the majority consist of Paleozoic carbonate rocks, the largest slide sheet, the Eastern Star crystalline allochthon, contains Proterozoic gneisses and their sedimentary cover and is now preserved as klippen atop Miocene lacustrine and alluvial fan deposits over an area > 40 km 2. Estimates of slide sheet runouts into the basin from higher eastern and northern source terranes range from approximately a few km to > 10 km; in most cases the exact provenances of the slide blocks are not known. The basal contacts of Shadow Valley slide sheets are characteristically knife sharp, show few signs of lithologic mixing of upper- and lower-plate rocks, and locally exhibit slickensided and striated, planar fault-like bases. Pronounced folding of overridden Miocene lacustrine and fan deposits beneath the Eastern Star allochthon extends to depths up to 40 m at widely scattered localities. We conclude that this slow moving slide sheet encountered isolated topographic asperities (hills) and that stress transfer across the basal slide surface produced folding of footwall strata. Synkinematic gypsum veins in footwall playa sediments, with fibers

  3. Natural resource mitigation, adaptation and research needs related to climate change in the Great Basin and Mojave Desert

    Science.gov (United States)

    Hughson, Debra L.; Busch, David E.; Davis, Scott; Finn, Sean P.; Caicco, Steve; Verburg, Paul S.J.

    2011-01-01

    This report synthesizes the knowledge, opinions, and concerns of many Federal and State land managers, scientists, stakeholders, and partners from a workshop, held at the University of Nevada, Las Vegas, on April 20-22, 2010. Land managers, research scientists, and resource specialists identified common concerns regarding the potential effects of climate change on public lands and natural resources in the Great Basin and Mojave Desert and developed recommendations for mitigation, adaptation, and research needs. Water and, conversely, the effects of drought emerged as a common theme in all breakout sessions on terrestrial and aquatic species at risk, managing across boundaries, monitoring, and ecosystem services. Climate change models for the southwestern deserts predict general warming and drying with increasing precipitation variability year to year. Scientists noted that under these changing conditions the past may no longer be a guide to the future in which managers envision increasing conflicts between human water uses and sustaining ecosystems. Increasing environmental stress also is expected as a consequence of shifting ecosystem boundaries and species distributions, expansion of non-native species, and decoupling of biotic mutualisms, leading to increasingly unstable biologic communities. Managers uniformly expressed a desire to work across management and agency boundaries at a landscape scale but conceded that conflicting agency missions and budgetary constraints often impede collaboration. More and better science is needed to cope with the effects of climate change but, perhaps even more important is the application of science to management issues using the methods of adaptive management based on long-term monitoring to assess the merits of management actions. Access to data is essential for science-based land management. Basic inventories, spatial databases, baseline condition assessments, data quality assurance, and data sharing were identified as top

  4. Water-resources and land-surface deformation evaluation studies at Fort Irwin National Training Center, Mojave Desert, California

    Science.gov (United States)

    Densmore-Judy, Jill; Dishart, Justine E.; Miller, David; Buesch, David C.; Ball, Lyndsay B.; Bedrosian, Paul A.; Woolfenden, Linda R.; Cromwell, Geoffrey; Burgess, Matthew K.; Nawikas, Joseph; O'Leary, David; Kjos, Adam; Sneed, Michelle; Brandt, Justin

    2017-01-01

    The U.S. Army Fort Irwin National Training Center (NTC), in the Mojave Desert, obtains all of its potable water supply from three groundwater basins (Irwin, Langford, and Bicycle) within the NTC boundaries (fig. 1; California Department of Water Resources, 2003). Because of increasing water demands at the NTC, the U.S. Geological Survey (USGS), in cooperation with the U.S. Army, completed several studies to evaluate water resources in the developed and undeveloped groundwater basins underlying the NTC. In all of the developed basins, groundwater withdrawals exceed natural recharge, resulting in water-level declines. However, artificial recharge of treated wastewater has had some success in offsetting water-level declines in Irwin Basin. Additionally, localized water-quality changes have occurred in some parts of Irwin Basin as a result of human activities (i.e., wastewater disposal practices, landscape irrigation, and/or leaking pipes). As part of the multi-faceted NTC-wide studies, traditional datacollection methods were used and include lithological and geophysical logging at newly drilled boreholes, hydrologic data collection (i.e. water-level, water-quality, aquifer tests, wellbore flow). Because these data cover a small portion of the 1,177 square-mile (mi2 ) NTC, regional mapping, including geologic, gravity, aeromagnetic, and InSAR, also were done. In addition, ground and airborne electromagnetic surveys were completed and analyzed to provide more detailed subsurface information on a regional, base-wide scale. The traditional and regional ground and airborne data are being analyzed and will be used to help develop preliminary hydrogeologic framework and groundwater-flow models in all basins. This report is intended to provide an overview of recent water-resources and land-surface deformation studies at the NTC.

  5. Marine resource reliance in the human populations of the Atacama Desert, northern Chile - A view from prehistory

    Science.gov (United States)

    King, Charlotte L.; Millard, Andrew R.; Gröcke, Darren R.; Standen, Vivien G.; Arriaza, Bernardo T.; Halcrow, Siân E.

    2018-02-01

    The Atacama Desert is one of the most inhospitable terrestrial environments on Earth, yet the upwelling of the Humboldt Current off the coast has resulted in the presence of a rich marine biota. It is this marine environment which first enabled the human settlement of the northern Atacama Desert, and continues to form the basis of regional economies today. In this paper we explore how the desert has shaped human dietary choices throughout prehistory, using carbon and nitrogen isotope analysis of human bone collagen (n = 80) to reconstruct the diets of the inhabitants of the Arica region of the northern Atacama. This area is one of the driest parts of the desert, but has been generally understudied in terms of dietary adaptation. Statistical analysis using FRUITS has allowed deconvolution of isotopic signals to create dietary reconstructions and highlight the continued importance of marine resources throughout the archaeological sequence. Location also appears to have played a role in dietary choices, with inland sites having 10-20% less calories from marine foods than coastal sites. We also highlight evidence for the increasing importance of maize consumption, coinciding with contact with highland polities. In all periods apart from the earliest Archaic, however, there is significant variability between individuals in terms of dietary resource use. We conclude that marine resource use, and broad-spectrum economies persisted throughout prehistory. We interpret these results as reflecting a deliberate choice to retain dietary diversity as a buffer against resource instability.

  6. Relative abundance of desert tortoises on the Nevada Test Site

    International Nuclear Information System (INIS)

    Rautenstrauch, K.R.; O'Farrell, T.P.

    1993-01-01

    Seven hundred fifty-nine transects having a total length of 1,191 km were walked during 1981--1986 to determine the distribution and relative abundance of desert tortoises (Gopherus agassizii) on the Nevada Test Site (NTS). The abundance of tortoises on NTS was low to very low relative to other populations in the Mojave Desert. Sign of tortoises was found from 880 to 1,570 m elevation and was more abundant above 1,200 m than has been reported previously for Nevada. Tortoises were more abundant on NTS on the upper alluvial fans and slopes of mountains than in valley bottoms. They also were more common on or near limestone and dolomite mountains than on mountains of volcanic origin

  7. GOPHERUS AGASSIZII (Desert Tortoise)

    International Nuclear Information System (INIS)

    JAMES L. BOONE, DANNY L. RAKESTRAW, AND KURT R. RAUTENSTRAUCH

    1997-01-01

    GOPHERLTS AGAISSIZII (Desert Tortoise). Predation. A variety of predators, most notably coyotes (Canis Iatrans) and Common Ravens (Corvis corau) have been reported to prey on hatchling desert tortoises (Emst et al. 1994). Turtles of the United States and Canada (Smithsonian Institution Press, Washington, D.C. 578 pp.). Here, we report an observation of a hatchling tortoise, fitted with a radiotransmitter, that was preyed upon by native fire ants (Solenopsis sp.) in the eastern Mojave Desert at Yucca Mountain, Nevada (36 degrees 50 minutes N, 116 degree 25 minutes E). On 8/27/94, tortoise No.9315 (carapace length = 45 mm, age = 5 d) was found alive with eyes, chin, and parts of the head and legs being eaten by ants. The tortoise was alive, but lethargic, and responded little when touched. Eight of 74 other radiomarked hatchlings monitored at Yucca Mountain during 1992-1994 were found dead with fire ants on their carcass 3-7 days after the hatchlings emerged from their nests. It is not known whether those tortoises were killed by ants or were being scavenged when found. While imported fire ants (S. invicta) have long been known to kill hatchling gopher tortoises (G. polyphemus; Mount 1981. J. Alabama Acad. Sci. 52: 71-78), native fire ants have previously not been implicated as predators of desert tortoises. However, only 1 of 75 (or at worst 9 of 75) was killed by fire ants, suggesting that although fire ants do kill hatchlings, they were not important predators on desert tortoises during this study. Tortoise specimens were deposited at the University of California at Berkeley

  8. SEASONALITY OF ANNUAL PLANT ESTABLISHMENT INFLUENCES THE INTERACTIONBETWEEN THE NON-NATIVE ANNUAL GRASS BROMUS MADRITENSIS SSP. RUBENS AND MOJAVE DESERT PERENNIALS

    Energy Technology Data Exchange (ETDEWEB)

    L A. DEFALCO; G. C. FERNANDEZ; R. S. NOWAK

    2004-01-01

    Competition between native and non-native species can change the composition and structure of plant communities, but in deserts the timing of non-native plant establishment can modulate their impacts to native species. In a field experiment, we varied densities of the non-native annual grass Bromus madritensis ssp. rubens around individuals of three native perennials--Larrea iridentata, Achnatherum hymenoides, and Pleuraphis rigida--in either winter or spring. Additional plots were prepared for the Same perennial species and seasons, but with a mixture of native annual species. Relative growth rates of perennial shoots (RGRs) declined with increasing Bromus biomass when Bromus that was established in winter had 2-3 mo of growth and high water use before perennial growth began. However, this high water use did not significantly reduce water potentials for the perennials, suggesting Bromus that established earlier depleted other soil resources, such as N, otherwise used by perennial plants. Spring-established Bromus had low biomass even at higher densities and did not effectively reduce RGRs, resulting in an overall lower impact to perennials than when Bromus was established in winter. Similarly, growth and reproduction of perennials with mixed annuals as neighbors did not differ from those with Bromus neighbors of equivalent biomass, but densities of these annuals did not support the high biomass necessary to reduce perennial growth. Thus, impacts of native Mojave Desert annuals to perennials are expected to be lower than those of Bromus because seed dormancy and narrow requirements for seedling survivorship produce densities and biomass lower than those achieved by Bromus. In comparing the effects of Bromus among perennial species, the impact of increased Bromus biomass on RGR was lower for Larrea than for the two perennial grasses, probably because Lurrea maintains low growth rates throughout the year, even after Bromus has completed its life cycle. This contrasts

  9. The Holocene Geoarchaeology of the Desert Nile in Northern Sudan

    Science.gov (United States)

    Woodward, Jamie; Macklin, Mark; Spencer, Neal; Welsby, Derek; Dalton, Matthew; Hay, Sophie; Hardy, Andrew

    2016-04-01

    Invited Paper Forty years ago Colin Renfrew declared that "every archaeological problem starts as a problem in geoarchaeology" (Renfrew, 1976 p. 2). With this assertion in mind, this paper draws upon the findings from field research in two sectors of the Nile Valley of Northern Sudan dedicated to the exploration of human-environment interactions during the middle and late Holocene. This part of the Nile corridor contains a rich cultural record and an exceptionally well preserved Holocene fluvial archive. A distinctive feature of these records is the variety of evidence for interaction between desert and river over a range of spatial and temporal scales. This interaction presented both challenges and opportunities for its ancient inhabitants. This paper will present evidence for large-scale landscape changes driven by shifts in global climate. It will also show how we have integrated the archaeological and geological records in the Northern Dongola Reach and at Amara West - where long-term field projects led by archaeologists from the British Museum have recognised the importance of a sustained commitment to interdisciplinary research to achieve a fully integrated geoarchaeological approach across a range of scales. The former project is a large-scale landscape survey with multiple sites across an 80 km reach of the Nile whilst the latter has a strong focus on a single New Kingdom town site and changes in its environmental setting. By combining multiple archaeological and geological datasets - and pioneering the use of OSL dating and strontium isotope analysis in the Desert Nile - we have developed a new understanding of human responses to Holocene climate and landscape change in this region. Renfrew, C. (1976) Archaeology and the earth sciences. In: D.A. Davidson and M.I. Shackley (eds) Geoarchaeology: Earth Science and the Past, Duckworth, London, 1-5.

  10. Desert wildfire and severe drought diminish survivorship of the long-lived Joshua Tree (Yucca brevifolia; Agavaceae)

    Science.gov (United States)

    DeFalco, L.A.; Esque, T.C.; Scoles-Sciulla, S. J.; Rodgers, J.

    2010-01-01

    Extreme climate events are transforming plant communities in the desert Southwest of the United States. Abundant precipitation in 1998 associated with El Ni??o Southern Oscillation (ENSO) stimulated exceptional alien annual plant production in the Mojave Desert that fueled wildfires in 1999. Exacerbated by protracted drought, 80% of the burned Yucca brevifolia, a long-lived arborescent monocot, and 26% of unburned plants died at Joshua Tree National Park by 2004. Many burned plants old adults with fewer opportunities for plant recruitment, thus imperiling the persistence of this unique plant community.

  11. Effects of subsidized predators, resource variability, and human population density on desert tortoise populations in the Mojave Desert, USA

    Science.gov (United States)

    Esque, Todd C.; Nussear, Kenneth E.; Drake, K. Kristina; Walde, Andrew D.; Berry, Kristin H.; Averill-Murray, Roy C.; Woodman, A. Peter; Boarman, William I.; Medica, Phil A.; Mack, Jeremy S.; Heaton, Jill S.

    2010-01-01

    Understanding predator–prey relationships can be pivotal in the conservation of species. For 2 decades, desert tortoise Gopherus agassizii populations have declined, yet quantitative evidence regarding the causes of declines is scarce. In 2005, Ft. Irwin National Training Center, California, USA, implemented a translocation project including 2 yr of baseline monitoring of desert tortoises. Unusually high predation on tortoises was observed after translocation occurred. We conducted a retrospective analysis of predation and found that translocation did not affect the probability of predation: translocated, resident, and control tortoises all had similar levels of predation. However, predation rates were higher near human population concentrations, at lower elevation sites, and for smaller tortoises and females. Furthermore, high mortality rates were not limited to the National Training Center. In 2008, elevated mortality (as high as 43%) occurred throughout the listed range of the desert tortoise. Although no temporal prey base data are available for analysis from any of the study sites, we hypothesize that low population levels of typical coyote Canis latrans prey (i.e. jackrabbits Lepus californicus and other small animals) due to drought conditions influenced high predation rates in previous years. Predation may have been exacerbated in areas with high levels of subsidized predators. Many historical reports of increased predation, and our observation of a range-wide pattern, may indicate that high predation rates are more common than generally considered and may impact recovery of the desert tortoise throughout its range.

  12. Shrubland carbon sink depends upon winter water availability in the warm deserts of North America

    Science.gov (United States)

    Biederman, Joel A.; Scott, Russell L.; John A. Arnone,; Jasoni, Richard L.; Litvak, Marcy E.; Moreo, Michael T.; Papuga, Shirley A.; Ponce-Campos, Guillermo E.; Schreiner-McGraw, Adam P.; Vivoni, Enrique R.

    2018-01-01

    Global-scale studies suggest that dryland ecosystems dominate an increasing trend in the magnitude and interannual variability of the land CO2 sink. However, such model-based analyses are poorly constrained by measured CO2 exchange in open shrublands, which is the most common global land cover type, covering ∼14% of Earth’s surface. Here we evaluate how the amount and seasonal timing of water availability regulate CO2 exchange between shrublands and the atmosphere. We use eddy covariance data from six US sites across the three warm deserts of North America with observed ranges in annual precipitation of ∼100–400mm, annual temperatures of 13–18°C, and records of 2–8 years (33 site-years in total). The Chihuahuan, Sonoran and Mojave Deserts present gradients in both mean annual precipitation and its seasonal distribution between the wet-winter Mojave Desert and the wet-summer Chihuahuan Desert. We found that due to hydrologic losses during the wettest summers in the Sonoran and Chihuahuan Deserts, evapotranspiration (ET) was a better metric than precipitation of water available to drive dryland CO2 exchange. In contrast with recent synthesis studies across diverse dryland biomes, we found that NEP could not be directly predicted from ET due to wintertime decoupling of the relationship between ecosystem respiration (Reco) and gross ecosystem productivity (GEP). Ecosystem water use efficiency (WUE=GEP/ET) did not differ between winter and summer. Carbon use efficiency (CUE=NEP/GEP), however, was greater in winter because Reco returned a smaller fraction of carbon to the atmosphere (23% of GEP) than in summer (77%). Combining the water-carbon relations found here with historical precipitation since 1980, we estimate that lower average winter precipitation during the 21st century reduced the net carbon sink of the three deserts by an average of 6.8TgC yr1. Our results highlight that winter precipitation is critical to the annual carbon balance of these

  13. Dust emission at Franklin Lake Playa, Mojave Desert (USA): Response to meteorological and hydrologic changes 2005-2008

    Science.gov (United States)

    Reynolds, Richard L.; Bogle, Rian; Vogel, John; Goldstein, Harland L.; Yount, James

    2009-01-01

    Playa type, size, and setting; playa hydrology; and surface-sediment characteristics are important controls on the type and amount of atmospheric dust emitted from playas. Soft, evaporite-rich sediment develops on the surfaces of some Mojave Desert (USA) playas (wet playas), where the water table is shallow (monitored between March 2005 and April 2008. The dust record, based on day-time remote digital camera images captured during high wind, and compared with a nearby precipitation record, shows that aridity suppresses dust emission. High frequency of dust generation appears to be associated with relatively wet periods, identified as either heavy precipitation events or sustained regional precipitation over a few months. Several factors may act separately or in combination to account for this relation. Dust emission may respond rapidly to heavy precipitation when the dissolution of hard, wind-resistant evaporite mineral crusts is followed by the development of soft surfaces with thin, newly formed crusts that are vulnerable to wind erosion and (or) the production of loose aggregates of evaporite minerals that are quickly removed by even moderate winds. Dust loading may also increase when relatively high regional precipitation leads to decreasing depth to the water table, thereby increasing rates of vapor discharge, development of evaporite minerals, and temporary softening of playa surfaces. The seasonality of wind strength was not a major factor in dust-storm frequency at the playa. The lack of major dust emissions related to flood-derived sediment at Franklin Lake playa contrasts with some dry-lake systems elsewhere that may produce large amounts of dust from flood sediments. Flood sediments do not commonly accumulate on the surface of Franklin Lake playa because through-going drainage prevents frequent inundation and deposition of widespread flood sediment.

  14. Tracing the Atmospheric Source of Desert Nitrates Using Δ 17O

    Science.gov (United States)

    Michalski, G. M.; Holve, M.; Feldmeier, J.; Bao, H.; Reheis, M.; Bockheim, J. G.; Thiemens, M. H.

    2001-05-01

    Mineral, caliche, and soil nitrates are found throughout the worlds deserts, including the cold dry Wright Valley of Antarctica, the Atacama desert in Chile and the Mojave desert in the southwest United States. Several authors have suggested biologic sources of these nitrates while others have postulated atmospheric deposition. A recent study utilizing 18O indicated that 30%, and perhaps 100%, of nitrates found in the Atacama and Mojave were of atmospheric origin [1]. A more quantitative assessment of the source strength of atmospheric nitrates was impossible because of the high variability of δ 18 18O of atmospheric nitrates and uncertainties in conditions of biologic production. Mass independently fractionated (MIF) processes are defined and quantified by the equation Δ 17O = δ 17O - .52x δ 18O. MIF processes are associated with the photochemistry of trace gases in the atmosphere and have been found in O3, N2O, CO, and sulfate aerosols . A large MIF (Δ 17O ~ 28 ‰ ) in nitrate aerosols collected in polluted regions was recently reported [2]. Here we extend measurements of MIF in nitrate to the dry deposition of nitrate in less polluted areas (Mojave desert). In addition we trace the MIF signal as it accumulates in the regolith as nitrate salts and minerals and is mixed with biologically produced nitrate (nitrification). Also examined were the isotopic composition of soil nitrates from Antarctic dry valleys. Dust samples were collected as part of the NADP program and soils were collected throughout the Mojave and Death Valley regions of California. Isotope analysis was done in addition to soluble ion content (Cl, NO3, SO4). Dust samples collected by dry deposition samplers showed a large MIF > 20‰ approaching values measured in urban nitrate aerosol. Soils collected throughout the region showed large variations in Δ 17O from ~ 0 to 18 ‰ . The low Δ 17O values are nitrates dominated by biologic nitrification and higher values are nitrates derived by

  15. Identifying multiple timescale rainfall controls on Mojave Desert ecohydrology using an integrated data and modeling approach for Larrea tridentata

    Science.gov (United States)

    Ng, Gene-Hua Crystal; Bedford, David R.; Miller, David M.

    2015-01-01

    The perennial shrub Larrea tridentata is widely successful in North American warm deserts but is also susceptible to climatic perturbations. Understanding its response to rainfall variability requires consideration of multiple timescales. We examine intra-annual to multi-year relationships using model simulations of soil moisture and vegetation growth over 50 years in the Mojave National Preserve in southeastern California (USA). Ecohydrological model parameters are conditioned on field and remote sensing data using an ensemble Kalman filter. Although no specific periodicities were detected in the rainfall record, simulated leaf-area-index exhibits multi-year dynamics that are driven by multi-year (∼3-years) rains, but with up to a 1-year delay in peak response. Within a multi-year period, Larrea tridentata is more sensitive to winter rains than summer. In the most active part of the root zone (above ∼80 cm), >1-year average soil moisture drives vegetation growth, but monthly average soil moisture is controlled by root uptake. Moisture inputs reach the lower part of the root zone (below ∼80 cm) infrequently, but once there they can persist over a year to help sustain plant growth. Parameter estimates highlight efficient plant physiological properties facilitating persistent growth and high soil hydraulic conductivity allowing deep soil moisture stores. We show that soil moisture as an ecological indicator is complicated by bidirectional interactions with vegetation that depend on timescale and depth. Under changing climate, Larrea tridentata will likely be relatively resilient to shorter-term moisture variability but will exhibit higher sensitivity to shifts in seasonal to multi-year moisture inputs.

  16. Home in the heat: Dramatic seasonal variation in home range of desert golden eagles informs management for renewable energy development

    Science.gov (United States)

    Braham, Melissa A.; Miller, Tricia A.; Duerr, Adam E.; Lanzone, Michael J.; Fesnock, Amy; LaPre, Larry; Driscoll, Daniel; Katzner, Todd E.

    2015-01-01

    Renewable energy is expanding quickly with sometimes dramatic impacts to species and ecosystems. To understand the degree to which sensitive species may be impacted by renewable energy projects, it is informative to know how much space individuals use and how that space may overlap with planned development. We used global positioning system–global system for mobile communications (GPS-GSM) telemetry to measure year-round movements of golden eagles (Aquila chrysaetos) from the Mojave Desert of California, USA. We estimated monthly space use with adaptive local convex hulls to identify the temporal and spatial scales at which eagles may encounter renewable energy projects in the Desert Renewable Energy Conservation Plan area. Mean size of home ranges was lowest and least variable from November through January and greatest in February–March and May–August. These monthly home range patterns coincided with seasonal variation in breeding ecology, habitat associations, and temperature. The expanded home ranges in hot summer months included movements to cooler, prey-dense, mountainous areas characterized by forest, grasslands, and scrublands. Breeding-season home ranges (October–May) included more lowland semi-desert and rock vegetation. Overlap of eagle home ranges and focus areas for renewable energy development was greatest when eagle home ranges were smallest, during the breeding season. Golden eagles in the Mojave Desert used more space and a wider range of habitat types than expected and renewable energy projects could affect a larger section of the regional population than was previously thought.

  17. Regional and temporal variability of melts during a Cordilleran magma pulse: Age and chemical evolution of the jurassic arc, eastern mojave desert, California

    Science.gov (United States)

    Barth, A.P.; Wooden, J.L.; Miller, David; Howard, Keith A.; Fox, Lydia; Schermer, Elizabeth R.; Jacobson, C.E.

    2017-01-01

    Intrusive rock sequences in the central and eastern Mojave Desert segment of the Jurassic Cordilleran arc of the western United States record regional and temporal variations in magmas generated during the second prominent pulse of Mesozoic continental arc magmatism. U/Pb zircon ages provide temporal control for describing variations in rock and zircon geochemistry that reflect differences in magma source components. These source signatures are discernible through mixing and fractionation processes associated with magma ascent and emplacement. The oldest well-dated Jurassic rocks defining initiation of the Jurassic pulse are a 183 Ma monzodiorite and a 181 Ma ignimbrite. Early to Middle Jurassic intrusive rocks comprising the main stage of magmatism include two high-K calc-alkalic groups: to the north, the deformed 183–172 Ma Fort Irwin sequence and contemporaneous rocks in the Granite and Clipper Mountains, and to the south, the 167–164 Ma Bullion sequence. A Late Jurassic suite of shoshonitic, alkali-calcic intrusive rocks, the Bristol Mountains sequence, ranges in age from 164 to 161 Ma and was emplaced as the pulse began to wane. Whole-rock and zircon trace-element geochemistry defines a compositionally coherent Jurassic arc with regional and secular variations in melt compositions. The arc evolved through the magma pulse by progressively greater input of old cratonic crust and lithospheric mantle into the arc magma system, synchronous with progressive regional crustal thickening.

  18. X-36 in Flight over Mojave Desert

    Science.gov (United States)

    1997-01-01

    The unusual lines of the X-36 technology demonstrator contrast sharply with the desert floor as the remotely piloted aircraft scoots across the California desert at low altitude during a research flight on October 30, 1997. The NASA/Boeing X-36 Tailless Fighter Agility Research Aircraft program successfully demonstrated the tailless fighter design using advanced technologies to improve the maneuverability and survivability of possible future fighter aircraft. The program met or exceeded all project goals. For 31 flights during 1997 at the Dryden Flight Research Center, Edwards, California, the project team examined the aircraft's agility at low speed / high angles of attack and at high speed / low angles of attack. The aircraft's speed envelope reached up to 206 knots (234 mph). This aircraft was very stable and maneuverable. It handled very well. The X-36 vehicle was designed to fly without the traditional tail surfaces common on most aircraft. Instead, a canard forward of the wing was used as well as split ailerons and an advanced thrust-vectoring nozzle for directional control. The X-36 was unstable in both pitch and yaw axes, so an advanced, single-channel digital fly-by-wire control system (developed with some commercially available components) was put in place to stabilize the aircraft. Using a video camera mounted in the nose of the aircraft and an onboard microphone, the X-36 was remotely controlled by a pilot in a ground station virtual cockpit. A standard fighter-type head-up display (HUD) and a moving-map representation of the vehicle's position within the range in which it flew provided excellent situational awareness for the pilot. This pilot-in-the-loop approach eliminated the need for expensive and complex autonomous flight control systems and the risks associated with their inability to deal with unknown or unforeseen phenomena in flight. Fully fueled the X-36 prototype weighed approximately 1,250 pounds. It was 19 feet long and three feet high with

  19. Correlation of Aerogravity and BHT Data to Develop a Geothermal Gradient Map of the Northern Western Desert of Egypt using an Artificial Neural Network

    Science.gov (United States)

    Mohamed, Haby S.; Abdel Zaher, Mohamed; Senosy, Mahmoud M.; Saibi, Hakim; El Nouby, Mohamed; Fairhead, J. Derek

    2015-06-01

    The northern part of the Western Desert of Egypt represents the second most promising area of hydrocarbon potential after the Gulf of Suez province. An artificial neural network (ANN) approach was used to develop a new predictive model for calculation of the geothermal gradients in this region based on gravity and corrected bottom-hole temperature (BHT) data. The best training data set was obtained with an ANN architecture composed of seven neurons in the hidden layer, which made it possible to predict the geothermal gradient with satisfactory efficiency. The BHT records of 116 deep oil wells (2,000-4,500 m) were used to evaluate the geothermal resources in the northern Western Desert. Corrections were applied to the BHT data to obtain the true formation equilibrium temperatures, which can provide useful constraints on the subsurface thermal regime. On the basis of these corrected data, the thermal gradient was computed for the linear sections of the temperature-versus-depth data at each well. The calculated geothermal gradient using temperature log data was generally 30 °C/km, with a few local high geothermal gradients in the northwestern parts of the study area explained by potential local geothermal fields. The Bouguer gravity values from the study area ranged from -60 mGal in the southern parts to 120 mGal in the northern areas, and exhibited NE-SW and E-W trends associated with geological structures. Although the northern Western Desert of Egypt has low regional temperature gradients (30 °C/km), several potential local geothermal fields were found (>40 °C/km). The heat flow at each well was also computed by combining sets of temperature gradients and thermal conductivity data. Aerogravity data were used to delineate the subsurface structures and tectonic framework of the region. The result of this study is a new geothermal gradient map of the northern Western Desert developed from gravity and BHT log data.

  20. Microbial Community and Biochemical Dynamics of Biological Soil Crusts across a Gradient of Surface Coverage in the Central Mojave Desert

    Directory of Open Access Journals (Sweden)

    Rakesh Mogul

    2017-10-01

    Full Text Available In this study, we expand upon the biogeography of biological soil crusts (BSCs and provide molecular insights into the microbial community and biochemical dynamics along the vertical BSC column structure, and across a transect of increasing BSC surface coverage in the central Mojave Desert, CA, United States. Next generation sequencing reveals a bacterial community profile that is distinct among BSCs in the southwestern United States. Distribution of major phyla in the BSC topsoils included Cyanobacteria (33 ± 8%, Proteobacteria (26 ± 6%, and Chloroflexi (12 ± 4%, with Phormidium being the numerically dominant genus. Furthermore, BSC subsurfaces contained Proteobacteria (23 ± 5%, Actinobacteria (20 ± 5%, and Chloroflexi (18 ± 3%, with an unidentified genus from Chloroflexi (AKIW781, order being numerically dominant. Across the transect, changes in distribution at the phylum (p < 0.0439 and genus (p < 0.006 levels, including multiple biochemical and geochemical trends (p < 0.05, positively correlated with increasing BSC surface coverage. This included increases in (a Chloroflexi abundance, (b abundance and diversity of Cyanobacteria, (b OTU-level diversity in the topsoil, (c OTU-level differentiation between the topsoil and subsurface, (d intracellular ATP abundances and catalase activities, and (e enrichments in clay, silt, and varying elements, including S, Mn, Co, As, and Pb, in the BSC topsoils. In sum, these studies suggest that BSCs from regions of differing surface coverage represent early successional stages, which exhibit increasing bacterial diversity, metabolic activities, and capacity to restructure the soil. Further, these trends suggest that BSC successional maturation and colonization across the transect are inhibited by metals/metalloids such as B, Ca, Ti, Mn, Co, Ni, Mo, and Pb.

  1. Microbial Community and Biochemical Dynamics of Biological Soil Crusts across a Gradient of Surface Coverage in the Central Mojave Desert.

    Science.gov (United States)

    Mogul, Rakesh; Vaishampayan, Parag; Bashir, Mina; McKay, Chris P; Schubert, Keith; Bornaccorsi, Rosalba; Gomez, Ernesto; Tharayil, Sneha; Payton, Geoffrey; Capra, Juliana; Andaya, Jessica; Bacon, Leonard; Bargoma, Emily; Black, David; Boos, Katie; Brant, Michaela; Chabot, Michael; Chau, Danny; Cisneros, Jessica; Chu, Geoff; Curnutt, Jane; DiMizio, Jessica; Engelbrecht, Christian; Gott, Caroline; Harnoto, Raechel; Hovanesian, Ruben; Johnson, Shane; Lavergne, Britne; Martinez, Gabriel; Mans, Paul; Morales, Ernesto; Oei, Alex; Peplow, Gary; Piaget, Ryan; Ponce, Nicole; Renteria, Eduardo; Rodriguez, Veronica; Rodriguez, Joseph; Santander, Monica; Sarmiento, Khamille; Scheppelmann, Allison; Schroter, Gavin; Sexton, Devan; Stephenson, Jenin; Symer, Kristin; Russo-Tait, Tatiane; Weigel, Bill; Wilhelm, Mary B

    2017-01-01

    In this study, we expand upon the biogeography of biological soil crusts (BSCs) and provide molecular insights into the microbial community and biochemical dynamics along the vertical BSC column structure, and across a transect of increasing BSC surface coverage in the central Mojave Desert, CA, United States. Next generation sequencing reveals a bacterial community profile that is distinct among BSCs in the southwestern United States. Distribution of major phyla in the BSC topsoils included Cyanobacteria (33 ± 8%), Proteobacteria (26 ± 6%), and Chloroflexi (12 ± 4%), with Phormidium being the numerically dominant genus. Furthermore, BSC subsurfaces contained Proteobacteria (23 ± 5%), Actinobacteria (20 ± 5%), and Chloroflexi (18 ± 3%), with an unidentified genus from Chloroflexi (AKIW781, order) being numerically dominant. Across the transect, changes in distribution at the phylum ( p < 0.0439) and genus ( p < 0.006) levels, including multiple biochemical and geochemical trends ( p < 0.05), positively correlated with increasing BSC surface coverage. This included increases in (a) Chloroflexi abundance, (b) abundance and diversity of Cyanobacteria, (b) OTU-level diversity in the topsoil, (c) OTU-level differentiation between the topsoil and subsurface, (d) intracellular ATP abundances and catalase activities, and (e) enrichments in clay, silt, and varying elements, including S, Mn, Co, As, and Pb, in the BSC topsoils. In sum, these studies suggest that BSCs from regions of differing surface coverage represent early successional stages, which exhibit increasing bacterial diversity, metabolic activities, and capacity to restructure the soil. Further, these trends suggest that BSC successional maturation and colonization across the transect are inhibited by metals/metalloids such as B, Ca, Ti, Mn, Co, Ni, Mo, and Pb.

  2. Oxalosis in wild desert tortoises, Gopherus agassizii

    Science.gov (United States)

    Jacobson, Elliott R.; Berry, Kristin H.; Stacy, Brian; Huzella, Louis M.; Kalasinsky, Victor F.; Fleetwood, Michelle L.; Mense, Mark G.

    2009-01-01

    We necropsied a moribund, wild adult male desert tortoise (Gopherus agassizii) with clinical signs of respiratory disease and elevated plasma biochemical analytes indicative of renal disease (blood urea nitrogen [415 mg/dl], uric acid [11.8 mg/dl], sodium >180 mmol/l] and chloride [139 mmol/l]). Moderate numbers of birefringent oxalate crystals, based on infrared and electron microscopy, were present within renal tubules; small numbers were seen in colloid within thyroid follicles. A retrospective analysis of 66 additional cases of wild desert tortoises was conducted to determine whether similar crystals were present in thyroid and kidney. The tortoises, from the Mojave and Sonoran deserts, were necropsied between 1992 and 2003 and included juveniles and adults. Tortoises were classified as healthy (those that died due to trauma and where no disease was identified after necropsy and evaluation by standard laboratory tests used for other tortoises) or not healthy (having one or more diseases or lesions). For all 67 necropsied tortoises, small numbers of crystals of similar appearance were present in thyroid glands from 44 of 54 cases (81%) and in kidneys from three of 65 cases (5%). Presence of oxalates did not differ significantly between healthy and unhealthy tortoises, between age classes, or between desert region, and their presence was considered an incidental finding. Small numbers of oxalate crystals seen within the kidney of two additional tortoises also were considered an incidental finding. Although the source of the calcium oxalate could not be determined, desert tortoises are herbivores, and a plant origin seems most likely. Studies are needed to evaluate the oxalate content of plants consumed by desert tortoises, and particularly those in the area where the tortoise in renal failure was found.

  3. Drawing a line in the sand: Effectiveness of off-highway vehicle management in California's Sonoran desert

    Science.gov (United States)

    Custer, Nathan; Defalco, Lesley A.; Nussear, Kenneth E.; Esque, Todd C.

    2017-01-01

    Public land policies manage multiple uses while striving to protect vulnerable plant and wildlife habitats from degradation; yet the effectiveness of such policies are infrequently evaluated, particularly for remote landscapes that are difficult to monitor. We assessed the use and impacts of recreational vehicles on Mojave Desert washes (intermittent streams) in the Chemehuevi Desert Wildlife Management Area (DWMA) of southern California. Wash zones designated as open and closed to off-highway vehicle (OHV) activity were designed in part to protect Mojave desert tortoise (Gopherus agassizii) habitat while allowing recreation in designated areas. OHV tracks were monitored in washes located near access roads during winter and early spring holidays – when recreation is typically high – and at randomly dispersed locations away from roads. Washes near access roads had fewer vehicle tracks within closed than open zones; further away from roads, OHV tracks were infrequent and their occurrence was not different between wash designations. Washes were in better condition in closed zones following major holidays as indicated by less vegetation damage, presence of trash, and wash bank damage. Furthermore, the frequency of washes with live tortoises and their sign was marginally greater in closed than open wash zones. Collectively, these results suggest that low impacts to habitats in designated closed wash zones reflect public compliance with federal OHV policy and regulations in the Chemehuevi DWMA during our study. Future monitoring to contrast wash use and impacts during other seasons as well as in other DWMAs will elucidate spatial and temporal patterns of recreation in these important conservation areas.

  4. Conservation Planning for Offsetting the Impacts of Development: A Case Study of Biodiversity and Renewable Energy in the Mojave Desert.

    Science.gov (United States)

    Kreitler, Jason; Schloss, Carrie A; Soong, Oliver; Hannah, Lee; Davis, Frank W

    2015-01-01

    Balancing society's competing needs of development and conservation requires careful consideration of tradeoffs. Renewable energy development and biodiversity conservation are often considered beneficial environmental goals. The direct footprint and disturbance of renewable energy, however, can displace species' habitat and negatively impact populations and natural communities if sited without ecological consideration. Offsets have emerged as a potentially useful tool to mitigate residual impacts after trying to avoid, minimize, or restore affected sites. Yet the problem of efficiently designing a set of offset sites becomes increasingly complex where many species or many sites are involved. Spatial conservation prioritization tools are designed to handle this problem, but have seen little application to offset siting and analysis. To address this need we designed an offset siting support tool for the Desert Renewable Energy Conservation Plan (DRECP) of California, and present a case study of hypothetical impacts from solar development in the Western Mojave subsection. We compare two offset scenarios designed to mitigate a hypothetical 15,331 ha derived from proposed utility-scale solar energy development (USSED) projects. The first scenario prioritizes offsets based precisely on impacted features, while the second scenario offsets impacts to maximize biodiversity conservation gains in the region. The two methods only agree on 28% of their prioritized sites and differ in meeting species-specific offset goals. Differences between the two scenarios highlight the importance of clearly specifying choices and priorities for offset siting and mitigation in general. Similarly, the effects of background climate and land use change may lessen the durability or effectiveness of offsets if not considered. Our offset siting support tool was designed specifically for the DRECP area, but with minor code modification could work well in other offset analyses, and could provide

  5. Mid-Holocene Climate and Culture Change in the Atacama Desert, Northern Chile

    Science.gov (United States)

    Grosjean, Martin; Núñez, Lautaro; Cartajena, Isabel; Messerli, Bruno

    1997-09-01

    Twenty archaeological campsites intercalated between more than 30 debris flows caused by heavy rainfall events between 6200 and 3100 14C yr B.P. have recently been discovered at Quebrada Puripica in the Atacama Desert of northern Chile. This record provides detailed information about extreme, short-lived climatic events during the hyperarid mid-Holocene period. For the first time, we found evidence of continuous human occupation in this area, filling the regional hiatus in the Atacama basin ("Silencio Arqueologico") between 8000 and 4800 14C yr B.P. The transformation of Early Archaic hunters into the complex Late Archaic cultural tradition was an adaptive process. During this time, the site was a local ecological refuge with abundant resources in a generally hostile environment.

  6. Seed banks in a degraded desert shrubland: Influence of soil surface condition and harvester ant activity on seed abundance

    Science.gov (United States)

    DeFalco, L.A.; Esque, T.C.; Kane, J.M.; Nicklas, M.B.

    2009-01-01

    We compared seed banks between two contrasting anthropogenic surface disturbances (compacted, trenched) and adjacent undisturbed controls to determine whether site condition influences viable seed densities of perennial and annual Mojave Desert species. Viable seeds of perennials were rare in undisturbed areas (3-4 seeds/m2) and declined to importance of litter as an indicator of site degradation and recovery potential in arid lands.

  7. Middle Pleistocene infill of Hinkley Valley by Mojave River sediment and associated lake sediment: Depositional architecture and deformation by strike-slip faults

    Science.gov (United States)

    Miller, David; Haddon, Elizabeth; Langenheim, Victoria; Cyr, Andrew J.; Wan, Elmira; Walkup, Laura; Starratt, Scott W.

    2018-01-01

    Hinkley Valley in the Mojave Desert, near Barstow about 140 km northeast of Los Angeles and midway between Victorville Valley and the Lake Manix basin, contains a thick sedimentary sequence delivered by the Mojave River. Our study of sediment cores drilled in the valley indicates that Hinkley Valley was probably a closed playa basin with stream inflow from four directions prior to Mojave River inflow. The Mojave River deposited thick and laterally extensive clastic wedges originating from the southern valley that rapidly filled much of Hinkley Valley. Sedimentary facies representing braided stream, wetland, delta, and lacustrine depositional environments all are found in the basin fill; in some places, the sequence is greater than 74 m (245 ft) thick. The sediment is dated in part by the presence of the ~631 ka Lava Creek B ash bed low in the section, and thus represents sediment deposition after Victorville basin was overtopped by sediment and before the Manix basin began to be filled. Evidently, upstream Victorville basin filled with sediment by about 650 ka, causing the ancestral Mojave River to spill to the Harper and Hinkley basins, and later to Manix basin.Initial river sediment overran wetland deposits in many places in southern Hinkley Valley, indicating a rapidly encroaching river system. These sediments were succeeded by a widespread lake (“blue” clay) that includes the Lava Creek B ash bed. Above the lake sediment lies a thick section of interlayered stream sediment, delta and nearshore lake sediment, mudflat and/or playa sediment, and minor lake sediment. This stratigraphic architecture is found throughout the valley, and positions of lake sediment layers indicate a successive northward progression in the closed basin. A thin overlapping sequence at the north end of the valley contains evidence for a younger late Pleistocene lake episode. This late lake episode, and bracketing braided stream deposits of the Mojave River, indicate that the river

  8. Variation of Desert Soil Hydraulic Properties with Pedogenic Maturity

    Science.gov (United States)

    Nimmo, J. R.; Perkins, K. S.; Mirus, B. B.; Schmidt, K. M.; Miller, D. M.; Stock, J. D.; Singha, K.

    2006-12-01

    Older alluvial desert soils exhibit greater pedogenic maturity, having more distinct desert pavements, vesicular (Av) horizons, and more pronounced stratification from processes such as illuviation and salt accumulation. These and related effects strongly influence the soil hydraulic properties. Older soils have been observed to have lower saturated hydraulic conductivity, and possibly greater capacity to retain water, but the quantitative effect of specific pedogenic features on the soil water retention or unsaturated hydraulic conductivity (K) curves is poorly known. With field infiltration/redistribution experiments on three different-aged soils developed within alluvial wash deposits in the Mojave National Preserve, we evaluated effective hydraulic properties over a scale of several m horizontally and to 1.5 m depth. We then correlated these properties with pedogenic features. The selected soils are (1) recently deposited sediments, (2) a soil of early Holocene age, and (3) a highly developed soil of late Pleistocene age. In each experiment we ponded water in a 1-m-diameter infiltration ring for 2.3 hr. For several weeks we monitored subsurface water content and matric pressure using surface electrical resistance imaging, dielectric-constant probes, heat-dissipation probes, and tensiometers. Analysis of these data using an inverse modeling technique gives the water retention and K properties needed for predictive modeling. Some properties show a consistent trend with soil age. Progressively more developed surface and near-surface features such as desert pavement and Av horizons are the likely cause of an observed consistent decline of infiltration capacity with soil age. Other properties, such as vertical flow retardation by layer contrasts, appear to have a more complicated soil-age dependence. The wash deposits display distinct depositional layering that has a retarding effect on vertical flow, an effect that may be less pronounced in the older Holocene soil

  9. Preliminary Surficial Geology of the Dove Spring Off-Highway Vehicle Open Area, Mojave Desert, California

    Science.gov (United States)

    Miller, David M.; Amoroso, Lee

    2007-01-01

    vegetation, biological soil crusts, compaction, and other information may be correlated with land use to identify possible ecological thresholds in OHV use that require monitoring. Surficial geology is relevant for several other studies of OHV impact, such as soil compaction, dust emissions, and acceleration of erosion. Compaction, reduced infiltration, and accelerated erosion have been documented in Dove Spring Canyon because of OHV use (Snyder and others, 1976) and elsewhere in the Mojave Desert (e.g., Webb, 1983; Langdon, 2000). A surficial geologic map enables the use of geomorphic process models, which when combined with measured soil properties, such as texture, nutrient chemistry, and bulk density, allows spatial extrapolation of the properties. Maps can be produced that predict compaction susceptibility, moisture conditions, dust emissions, flood hazards, and erodibility, among other applications.

  10. 77 FR 12495 - Revisions to the California State Implementation Plan, Antelope Valley Air Quality Management...

    Science.gov (United States)

    2012-03-01

    ... the California State Implementation Plan, Antelope Valley Air Quality Management District and Mojave Desert Quality Management District AGENCY: Environmental Protection Agency (EPA). ACTION: Direct final... Quality Management District (AVAQMD) and Mojave Desert Air Quality Management District (MDAQMD) portion of...

  11. Chemical constituents of Cenchrus ciliaris L. from the Cholistan desert, Pakistan

    OpenAIRE

    Ashraf Muhammad Aqeel; Mahmood Karamat; Yusoff Ismail; Qureshi Ahmad Kaleem

    2013-01-01

    The Cholistan Desert is an extension of the Great Indian Desert, covering an area of 26,330 km2. The desert can be divided into two main geomorphic regions: the northern region, known as Lesser Cholistan, constituting the desert margin and consisting of a series of saline alluvial flats alternating with low sand ridges/dunes; and the southern region, known as Greater Cholistan, a wind-resorted sandy desert comprised of a number of old Hakra River terraces w...

  12. Radiotelemetry Study of a Desert Tortoise Population: Sand Hill Training Mea, Marine Corps Air Ground Combat Center, Twentynine Palms, California

    Science.gov (United States)

    1998-05-01

    shallow caliche burrows. Mojave populations differ genetically ( Lamb et al. 1989), morphologically (Weinstein and Berry 1987), in burrow construction...34 Abstract in The Desert Tortoise Council Symposium (1995d), p 92. Lamb , T., J.C. Avise, and J.W. Gibbons, "Phylogeographic Patterns in Mitochondrial...ATTN: STEWS -EL US Army Envr Hygiene Agency ATTN:HSHB-ME 21010 US Army Environmental Center ATTN: SFIM-AEC 21010-5401 Defense Tech Info Center

  13. Size-segregated fluxes of mineral dust from a desert area of northern China by eddy covariance

    Directory of Open Access Journals (Sweden)

    G. Fratini

    2007-06-01

    Full Text Available Mineral dust emission accounts for a substantial portion of particles present in the troposphere. It is emitted mostly from desert areas, mainly through intense storm episodes. The aim of this work was to quantify size-segregated fluxes of mineral dust particles emitted during storm events occurring in desert areas of northern China (Alashan desert, Inner Mongolia, known to act as one of the strongest sources of mineral dust particles in the Asian continent. Long-range transport of mineral dust emitted in this area is responsible for the high particle concentrations reached in densely populated areas, including the city of Beijing. Based on a theoretical analysis, an eddy covariance system was built to get size-segregated fluxes of mineral dust particles with optical diameters ranging between 0.26 and 7.00 µm. The system was optimised to measure fluxes under intense storm event conditions. It was tested in two sites located in the Chinese portion of the Gobi desert. During the field campaign, an intense wind erosion event, classified as a "weak dust storm", was recorded in one of them. Data obtained during this event indicate that particle number fluxes were dominated by the finer fraction, whereas in terms of mass, coarser particle accounted for the largest portion. It was found that during the storm event, ratios of size-segregated particle mass fluxes remained substantially constant and a simple parameterization of particle emission from total mass fluxes was possible. A strong correlation was also found between particle mass fluxes and the friction velocity. This relationship is extremely useful to investigate mechanisms of particle formation by wind erosion.

  14. Enhancing and restoring habitat for the desert tortoise

    Science.gov (United States)

    Abella, Scott R.; Berry, Kristin H.

    2016-01-01

    Habitat has changed unfavorably during the past 150 y for the desert tortoise Gopherus agassizii, a federally threatened species with declining populations in the Mojave Desert and western Sonoran Desert. To support recovery efforts, we synthesized published information on relationships of desert tortoises with three habitat features (cover sites, forage, and soil) and candidate management practices for improving these features for tortoises. In addition to their role in soil health and facilitating recruitment of annual forage plants, shrubs are used by desert tortoises for cover and as sites for burrows. Outplanting greenhouse-grown seedlings, protected from herbivory, has successfully restored (>50% survival) a variety of shrubs on disturbed desert soils. Additionally, salvaging and reapplying topsoil using effective techniques is among the more ecologically beneficial ways to initiate plant recovery after severe disturbance. Through differences in biochemical composition and digestibility, some plant species provide better-quality forage than others. Desert tortoises selectively forage on particular annual and herbaceous perennial species (e.g., legumes), and forage selection shifts during the year as different plants grow or mature. Nonnative grasses provide low-quality forage and contribute fuel to spreading wildfires, which damage or kill shrubs that tortoises use for cover. Maintaining a diverse “menu” of native annual forbs and decreasing nonnative grasses are priorities for restoring most desert tortoise habitats. Reducing herbivory by nonnative animals, carefully timing herbicide applications, and strategically augmenting annual forage plants via seeding show promise for improving tortoise forage quality. Roads, another disturbance, negatively affect habitat in numerous ways (e.g., compacting soil, altering hydrology). Techniques such as recontouring road berms to reestablish drainage patterns, vertical mulching (“planting” dead plant material

  15. Water developments and canids in two North American deserts: a test of the indirect effect of water hypothesis.

    Directory of Open Access Journals (Sweden)

    Lucas K Hall

    Full Text Available Anthropogenic modifications to landscapes intended to benefit wildlife may negatively influence wildlife communities. Anthropogenic provisioning of free water (water developments to enhance abundance and distribution of wildlife is a common management practice in arid regions where water is limiting. Despite the long-term and widespread use of water developments, little is known about how they influence native species. Water developments may negatively influence arid-adapted species (e.g., kit fox, Vulpes macrotis by enabling water-dependent competitors (e.g., coyote, Canis latrans to expand distribution in arid landscapes (i.e., indirect effect of water hypothesis. We tested the two predictions of the indirect effect of water hypothesis (i.e., coyotes will visit areas with free water more frequently and kit foxes will spatially and temporally avoid coyotes and evaluated relative use of free water by canids in the Great Basin and Mojave Deserts from 2010 to 2012. We established scent stations in areas with (wet and without (dry free water and monitored visitation by canids to these sites and visitation to water sources using infrared-triggered cameras. There was no difference in the proportions of visits to scent stations in wet or dry areas by coyotes or kit foxes at either study area. We did not detect spatial (no negative correlation between visits to scent stations or temporal (no difference between times when stations were visited segregation between coyotes and kit foxes. Visitation to water sources was not different for coyotes between study areas, but kit foxes visited water sources more in Mojave than Great Basin. Our results did not support the indirect effect of water hypothesis in the Great Basin or Mojave Deserts for these two canids.

  16. The source, discharge, and chemical characteristics of selected springs, and the abundance and health of associated endemic anuran species in the Mojave network parks

    Science.gov (United States)

    Schroeder, Roy A.; Smith, Gregory A.; Martin, Peter; Flint, Alan L.; Gallegos, Elizabeth; Fisher, Robert N.; Martin, Peter; Schroeder, Roy A.

    2015-01-01

    Hydrological and biological investigations were done during 2005 and 2006 in cooperation with the U.S. National Park Service to investigate the source, discharge, and chemical characteristics of selected springs and the abundance and health of endemic anuran (frog and toad) species at Darwin Falls in Death Valley National Park, Piute Spring in Mojave National Preserve, and Fortynine Palms Oasis in Joshua Tree National Park. Discharge from the springs at these sites sustains isolated riparian habitats in the normally dry Mojave Desert. Data were collected on water quantity (discharge) and quality, air and water temperature, and abundance and health of endemic anuran species. In addition, a single survey of the abundance and health of endemic anuran species was completed at Rattlesnake Canyon in Joshua Tree National Park. Results from this study were compared to limited historical data, where they exist, and can provide a baseline for future hydrological and biological investigations to evaluate the health and sustainability of the resource and its response to changing climate and increasing human use.

  17. The Agassiz's desert tortoise genome provides a resource for the conservation of a threatened species.

    Directory of Open Access Journals (Sweden)

    Marc Tollis

    Full Text Available Agassiz's desert tortoise (Gopherus agassizii is a long-lived species native to the Mojave Desert and is listed as threatened under the US Endangered Species Act. To aid conservation efforts for preserving the genetic diversity of this species, we generated a whole genome reference sequence with an annotation based on deep transcriptome sequences of adult skeletal muscle, lung, brain, and blood. The draft genome assembly for G. agassizii has a scaffold N50 length of 252 kbp and a total length of 2.4 Gbp. Genome annotation reveals 20,172 protein-coding genes in the G. agassizii assembly, and that gene structure is more similar to chicken than other turtles. We provide a series of comparative analyses demonstrating (1 that turtles are among the slowest-evolving genome-enabled reptiles, (2 amino acid changes in genes controlling desert tortoise traits such as shell development, longevity and osmoregulation, and (3 fixed variants across the Gopherus species complex in genes related to desert adaptations, including circadian rhythm and innate immune response. This G. agassizii genome reference and annotation is the first such resource for any tortoise, and will serve as a foundation for future analysis of the genetic basis of adaptations to the desert environment, allow for investigation into genomic factors affecting tortoise health, disease and longevity, and serve as a valuable resource for additional studies in this species complex.

  18. Hydrochemical and isotopic characteristics of groundwater in the northeastern Tennger Desert, northern China

    Science.gov (United States)

    Wang, Liheng; Dong, Yanhui; Xu, Zhifang; Qiao, Xiaojuan

    2017-12-01

    Groundwater is typically the only water source in arid regions, and its circulation processes should be better understood for rational resource exploitation. Stable isotopes and major ions were investigated in the northeastern Tengger Desert, northern China, to gain insights into groundwater recharge and evolution. In the northern mountains, Quaternary unconsolidated sediments, exposed only in valleys between hills, form the main aquifer, which is mainly made of aeolian sand and gravel. Most of the mountain groundwater samples plot along the local meteoric water line (LMWL), with a more depleted signature compared to summer precipitation, suggesting that mountain groundwater was recharged by local precipitation during winter. Most of the groundwater was fresh, with total dissolved solids less than 1 g/L; dominant ions are Na+, SO4 2- and Cl-, and all mineral saturation indices are less than zero. Evaporation, dissolution and cation exchange are the major hydrogeochemical processes. In the southern plains, however, the main aquifers are sandstone. The linear regression line of δD and δ 18O of groundwater parallels the LMWL but the intercept is lower, indicating that groundwater in the plains has been recharged by ancient precipitation rather than modern. Both calcite and dolomite phases in the plains groundwater are close to saturation, while gypsum and halite can still be dissolved into the groundwater. Different recharge mechanisms occur in the northern mountains and the southern plains, and the hydraulic connection between them is weak. Because of the limited recharge, groundwater exploitation should be limited as much as possible.

  19. Impacts of upper respiratory tract disease on olfactory behavior of the Mojave desert tortoise

    Science.gov (United States)

    Germano, Jennifer; Van Zerr, Vanessa E.; Esque, Todd C.; Nussear, Ken E.; Lamberski, Nadine

    2014-01-01

    Upper respiratory tract disease (URTD) caused by Mycoplasma agassizii is considered a threat to desert tortoise populations that should be addressed as part of the recovery of the species. Clinical signs can be intermittent and include serous or mucoid nasal discharge and respiratory difficulty when nares are occluded. This nasal congestion may result in a loss of the olfactory sense. Turtles are known to use olfaction to identify food items, predators, and conspecifics; therefore, it is likely that URTD affects not only their physical well-being but also their behavior and ability to perform necessary functions in the wild. To determine more specifically the impact nasal discharge might have on free-ranging tortoises (Gopherus agassizii), we compared the responses of tortoises with and without nasal discharge and both positive and negative for M. agassizii antibodies to a visually hidden olfactory food stimulus and an empty control. We found that nasal discharge did reduce sense of smell and hence the ability to locate food. Our study also showed that moderate chronic nasal discharge in the absence of other clinical signs did not affect appetite in desert tortoises.

  20. Managing Fire in the Northern Chihuahuan Desert: A Review and Analysis of the Literature

    Science.gov (United States)

    Gebow, Brooke S.; Halvorson, William L.

    2005-01-01

    Executive Summary This report began as a literature review (Gebow and Halvorson 2001) conducted for fire planners at Carlsbad Caverns National Park who were seeking information about (1) the natural state of park vegetation, (2) northern Chihuahuan Desert natural fire regimes, and (3) fire effects on park plant species. It is the goal of managers there to continue to refine the wildland and prescribed fire program as they learn more about the ecosystems at the park.The park has a history of grazing and then fire suppression in the 20th century. The current effort revisits questions asked by earlier workers at the park, Walter Kittams and Gary Ahlstrand, who began fire studies in the 1970s. This document addresses ecosystems and historical change to those systems in Chihuahuan Desert areas of southeast Arizona, southern New Mexico, west Texas, or in neighboring regions that share the same plant species. It examines fire literature for situations possibly analogous to those at Carlsbad Caverns. It also includes papers that offer advice on extrapolating future ecological trends from past ones (Swetnam et al. 1999) and on resource management decision-making (Grumbine 1997), and other pieces that address broader aspects of fire or landscape change (Goldman 1994; Marston 1996; Mutch 1994, 1995). These more philosophical works were included in the original review at the park's request and have been retained here because they discuss other issues relevant to fire management. Individual reviews of 35 papers, as requested originally by Carlsbad Caverns, appear in Appendix 1. The results section-summary of key findings-discusses historical changes to plant communities then focuses on burn intervals observed or recommended by workers for particular plant communities. Results from a search of the USDA Forest Service's Fire Effects Information System (www.fs.fed.us/database/feis) are also included in this report, supplemented with information from a review conducted by Ahlstrand

  1. Cumulative biological impacts framework for solar energy projects in the California Desert

    Science.gov (United States)

    Davis, Frank W.; Kreitler, Jason R.; Soong, Oliver; Stoms, David M.; Dashiell, Stephanie; Hannah, Lee; Wilkinson, Whitney; Dingman, John

    2013-01-01

    This project developed analytical approaches, tools and geospatial data to support conservation planning for renewable energy development in the California deserts. Research focused on geographical analysis to avoid, minimize and mitigate the cumulative biological effects of utility-scale solar energy development. A hierarchical logic model was created to map the compatibility of new solar energy projects with current biological conservation values. The research indicated that the extent of compatible areas is much greater than the estimated land area required to achieve 2040 greenhouse gas reduction goals. Species distribution models were produced for 65 animal and plant species that were of potential conservation significance to the Desert Renewable Energy Conservation Plan process. These models mapped historical and projected future habitat suitability using 270 meter resolution climate grids. The results were integrated into analytical frameworks to locate potential sites for offsetting project impacts and evaluating the cumulative effects of multiple solar energy projects. Examples applying these frameworks in the Western Mojave Desert ecoregion show the potential of these publicly-available tools to assist regional planning efforts. Results also highlight the necessity to explicitly consider projected land use change and climate change when prioritizing areas for conservation and mitigation offsets. Project data, software and model results are all available online.

  2. Ecological restoration and recovery in the wind-blown sand hazard areas of northern China: relationship between soil water and carrying capacity for vegetation in the Tengger Desert.

    Science.gov (United States)

    Li, XingRong; Zhang, ZhiShan; Tan, HuiJuan; Gao, YanHong; Liu, LiChao; Wang, XingPing

    2014-05-01

    The main prevention and control area for wind-blown sand hazards in northern China is about 320000 km(2) in size and includes sandlands to the east of the Helan Mountain and sandy deserts and desert-steppe transitional regions to the west of the Helan Mountain. Vegetation recovery and restoration is an important and effective approach for constraining wind-blown sand hazards in these areas. After more than 50 years of long-term ecological studies in the Shapotou region of the Tengger Desert, we found that revegetation changed the hydrological processes of the original sand dune system through the utilization and space-time redistribution of soil water. The spatiotemporal dynamics of soil water was significantly related to the dynamics of the replanted vegetation for a given regional precipitation condition. The long-term changes in hydrological processes in desert areas also drive replanted vegetation succession. The soil water carrying capacity of vegetation and the model for sand fixation by revegetation in aeolian desert areas where precipitation levels are less than 200 mm are also discussed.

  3. 77 FR 16447 - Approval and Promulgation of Implementation Plans; Designation of Areas for Air Quality Planning...

    Science.gov (United States)

    2012-03-21

    ... County, Western Mojave Desert, South Coast Air Basin, Eastern Kern County, and San Diego County. DATES... April 30, 2004 final rule, we designated the Western Mojave Desert area as a moderate nonattainment area... reclassification of several areas for the 1997 8-hour ozone standard. See 75 FR 24409 (May 5, 2010). The Western...

  4. Cytogeography of Larrea tridentata at the Chihuahuan-Sonoran Desert ecotone

    Science.gov (United States)

    Robert G. Laport; Robert L.. Minckley

    2013-01-01

    The long separation of the Chihuahuan and Sonoran Deserts is reflected in the high species richness and endemism of their floras. Although many endemic species from both deserts reach their distributional limits where the Sierra Madre Occidental massif fragments into smaller mountain complexes in northern Mexico and adjoining areas of the United States, indicator...

  5. Does a decade of elevated [CO2] affect a desert perennial plant community?

    Science.gov (United States)

    Newingham, Beth A; Vanier, Cheryl H; Kelly, Lauren J; Charlet, Therese N; Smith, Stanley D

    2014-01-01

    Understanding the effects of elevated [CO2 ] on plant community structure is crucial to predicting ecosystem responses to global change. Early predictions suggested that productivity in deserts would increase via enhanced water-use efficiency under elevated [CO2], but the response of intact arid plant communities to elevated [CO2 ] is largely unknown. We measured changes in perennial plant community characteristics (cover, species richness and diversity) after 10 yr of elevated [CO2] exposure in an intact Mojave Desert community at the Nevada Desert Free-Air CO2 Enrichment (FACE) Facility. Contrary to expectations, total cover, species richness, and diversity were not affected by elevated [CO2]. Over the course of the experiment, elevated [CO2] had no effect on changes in cover of the evergreen C3 shrub, Larrea tridentata; alleviated decreases in cover of the C4 bunchgrass, Pleuraphis rigida; and slightly reduced the cover of C3 drought-deciduous shrubs. Thus, we generally found no effect of elevated [CO2] on plant communities in this arid ecosystem. Extended drought, slow plant growth rates, and highly episodic germination and recruitment of new individuals explain the lack of strong perennial plant community shifts after a decade of elevated [CO2]. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  6. Erosion Potential of a Burn Site in the Mojave-Great Basin Transition Zone: Interim Summary of One Year of Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Etyemezian, V.; Shafer, D.; Miller, J.; Kavouras, I.; Campbell, S.; DuBois, D.; King, J.; Nikolich, G.; Zitzer, S.

    2010-05-18

    A historic return interval of 100 years for large fires in deserts in the Southwest U.S. is being replaced by one where fires may reoccur as frequently as every 20 to 30 years. This increase in fires has implications for management of Soil Sub-Project Corrective Action Units (CAUs) for which the Department of Energy, National Nuclear Security Administration Nevada Site office (NNSA/NSO) has responsibility. A series of studies has been initiated at uncontaminated analog sites to better understand the possible impacts of erosion and transport by wind and water should contaminated soil sites burn over to understand technical and perceived risk they might pose to site workers and public receptors in communities around the NTS, TTR, and NTTR; and to develop recommendations for stabilization and restoration after a fire. The first of these studies was undertaken at the Jacob fire, a lightning-caused fire approximately 12 kilometers north of Hiko, Nevada, that burned approximately 200 ha between August 6-8, 2008, and is representative of a transition zone on the NTS between the Mojave and Great Basin Deserts, where the largest number of Soil Sub-Project CAUs/CASs are located.

  7. Groundwater-quality data in the Borrego Valley, Central Desert, and Low-Use Basins of the Mojave and Sonoran Deserts study unit, 2008-2010--Results from the California GAMA Program

    Science.gov (United States)

    Mathany, Timothy M.; Wright, Michael T.; Beuttel, Brandon S.; Belitz, Kenneth

    2012-01-01

    Groundwater quality in the 12,103-square-mile Borrego Valley, Central Desert, and Low-Use Basins of the Mojave and Sonoran Deserts (CLUB) study unit was investigated by the U.S. Geological Survey (USGS) from December 2008 to March 2010, as part of the California State Water Resources Control Board (SWRCB) Groundwater Ambient Monitoring and Assessment (GAMA) Program's Priority Basin Project (PBP). The GAMA-PBP was developed in response to the California Groundwater Quality Monitoring Act of 2001 and is being conducted in collaboration with the SWRCB and Lawrence Livermore National Laboratory (LLNL). The CLUB study unit was the twenty-eighth study unit to be sampled as part of the GAMA-PBP. The GAMA CLUB study was designed to provide a spatially unbiased assessment of untreated-groundwater quality in the primary aquifer systems, and to facilitate statistically consistent comparisons of untreated-groundwater quality throughout California. The primary aquifer systems (hereinafter referred to as primary aquifers) are defined as parts of aquifers corresponding to the perforation intervals of wells listed in the California Department of Public Health (CDPH) database for the CLUB study unit. The quality of groundwater in shallow or deep water-bearing zones may differ from the quality of groundwater in the primary aquifers; shallow groundwater may be more vulnerable to surficial contamination. In the CLUB study unit, groundwater samples were collected from 52 wells in 3 study areas (Borrego Valley, Central Desert, and Low-Use Basins of the Mojave and Sonoran Deserts) in San Bernardino, Riverside, Kern, San Diego, and Imperial Counties. Forty-nine of the wells were selected by using a spatially distributed, randomized grid-based method to provide statistical representation of the study unit (grid wells), and three wells were selected to aid in evaluation of water-quality issues (understanding wells). The groundwater samples were analyzed for organic constituents (volatile

  8. Chroococcidiopsis sp. strain AAB1, a new model from the Atacama desert for the understanding of extreme UV tolerance in an astrobiological context

    International Nuclear Information System (INIS)

    Azua-Bustos, A.; Arenas, C.; Paulino-Lima, I G.; Galante, D.

    2012-01-01

    Full text: The Atacama Desert in northern Chile is the driest and oldest desert on Earth. In a recently published report [Azua-Bustos, 2011] we showed that along its Coastal Range, fog can support hypolithic colonization rates of 80From these hypolithic communities we were able to obtain a previously unknown strain of Chroococcidiopsis which we characterized by morphological and molecular means. Due to the extreme tolerance of cyanobacteria of this genus to UV, and since the Atacama Desert has constantly high UV radiation levels all year long, we propose this strain as a pertinent model for understanding the limits UV tolerance for life as we know it. We have measured the viability of the isolate by using the DEAD/LIVE BacLight kit which allows the detection of dead cells by measuring the loss of integrity of the plasma membrane, and found that it remains almost unchanged with control cultures when desiccated. In addition, desiccated samples readily start new cultures. Transmission electron microscopy (TEM) of desiccated samples show no evident changes compared with controls. Pigments extracts from desiccated samples show a decrease in photosynthetic pigments like Chlorophyll-a, measured by fluorescence spectra and by tissue layer chromatography. Desiccated samples also synthesize sucrose, an intracellular compatible solute known to play a role in desiccation tolerance. As desiccation and extreme UV tolerance are thought to share similar metabolic routes [Rebecchi, 2007], we expect that our isolate (as suggested by preliminary experiments performed with our strain at LNLS in 2010) should be extremely tolerant to UV radiation. Future work include exposition of monolayers of our strain using the VUV line, and the determination of its comparative tolerance levels with a Chroococcidiopsis strain (N76) isolated from the Mojave Desert which we also have in culture. The experiments will consist of different exposition times in order to achieve increasing UV accumulation

  9. A new species of Metacyclops Kiefer, 1927 (Copepoda, Cyclopidae, Cyclopinae) from the Chihuahuan desert, northern Mexico

    Science.gov (United States)

    Mercado-Salas, Nancy F.; Suárez-Morales, Eduardo; Maeda-Martínez, Alejandro M.; Silva-Briano, Marcelo

    2013-01-01

    Abstract A new species of the freshwater cyclopoid copepod genus Metacyclops Kiefer, 1927 is described from a single pond in northern Mexico, within the binational area known as the Chihuahuan Desert. This species belongs to a group of Metacyclops species with a 3443 spine formula of swimming legs. It is morphologically similar to Metacyclops lusitanus Lindberg, 1961 but differs from this and other congeners by having a unique combination of characters, including a caudal rami length/width proportion of 3.5–3.8, a innermost terminal seta slightly longer than the outermost terminal seta, intercoxal sclerites of legs 1-4 naked, a strong apical spine of the second endopodal segment of leg 1 and one row of 6-8 small spinules at the insertion of this spine. The finding of this species represents also the first record of the genus in Mexico and the third in North America, where only two other species, Metacyclops gracilis (Lilljeborg, 1853)and Metacyclops cushae Reid, 1991 have been hitherto reported. This is also the first continental record of a species of Metacyclops from an arid environment in the Americas. This species appears to be endemic to the Chihuahuan Desert, thus emphasizing the high endemicity of this area. PMID:23794845

  10. Numerical dating of a Late Quaternary spit-shoreline complex at the northern end of Silver Lake playa, Mojave Desert, California: A comparison of the applicability of radiocarbon, luminescence, terrestrial cosmogenic nuclide, electron spin resonance, U-series and amino acid racemization methods

    Science.gov (United States)

    Owen, L.A.; Bright, Jordon; Finkel, R.C.; Jaiswal, M.K.; Kaufman, D.S.; Mahan, S.; Radtke, U.; Schneider, J.S.; Sharp, W.; Singhvi, A.K.; Warren, C.N.

    2007-01-01

    A Late Quaternary spit-shoreline complex on the northern shore of Pleistocene Lake Mojave of southeastern California, USA was studied with the goal of comparing accelerator mass spectrometry (AMS) radiocarbon, luminescence, electron spin resonance (ESR), terrestrial cosmogenic radionuclide (TCN) surface exposure, amino acid racemization (AAR) and U-series dating methods. The pattern of ages obtained by the different methods illustrates the complexity of processes acting in the lakeshore environment and highlights the utility of a multi-method approach. TCN surface exposure ages (mostly ???20-30 ka) record the initial erosion of shoreline benches, whereas radiocarbon ages on shells (determined in this and previous studies) within the spit, supported by AAR data, record its construction at fluctuating lake levels from ???16 to 10 ka. Luminescence ages on spit sediment (???6-7 ka) and ESR ages on spit shells (???4 ka) are anomalously young relative to radiocarbon ages of shells within the same deposits. The significance of the surprisingly young luminescence ages is not clear. The younger ESR ages could be a consequence of post-mortem enrichment of U in the shells. High concentrations of detrital thorium in tufa coating spit gravels inhibited the use of single-sample U-series dating. Detailed comparisons such as this provide one of the few means of assessing the accuracy of Quaternary dating techniques. More such comparisons are needed. ?? 2007 Elsevier Ltd and INQUA.

  11. Effects of drought on shrub survival and longevity in the northern Sonoran Desert

    Science.gov (United States)

    Bowers, Janice E.

    2005-01-01

    Permanent vegetation plots in the northern Sonoran Desert, USA, provided an opportunity to assess the effects of recent drought on desert shrubs and to examine survival in relation to rainfall variability during the past 76 years. Survival and maximum longevity of six species were determined for eight intercensus periods between 1928 and 2004. Average annual survival was Ambrosia deltoidea, 0.9167 ?? 0.0415; Encelia farinosa, 0.7952 ?? 0.0926; Janusia gracilis, 0.9334 ?? 0.0247; Krameria grayi, 0.9702 ?? 0.0270; Larrea tridentata, 0.9861 ?? 0.0174; and Lycium berlandieri, 0.9910 ?? 0.0077. The longest-lived species were Larrea, Lycium, and Krameria, with average maximum life spans of 330, 211, and 184 years. Janusia, Ambrosia, and Encelia were much shorter lived, with average maximum longevity of 53, 40, and 16 years. Winter rain equalled or exceeded 90% of the long-term average accumulation except during 1948 to 1959 (65% of average) and from 2001 to 2003 (49% of average). Summer rain did not drop below 90% of the average accumulation in any period. The 1950s drought caused modest declines in survival of Ambrosia, Encelia, Janusia, Krameria, and Lycium. The effects of the recent drought were much more pronounced, resulting in sharp declines in survival and maximum longevity of Ambrosia, Encelia, Krameria, and Larrea, and modest declines for Lycium. Despite heightened mortality during the recent severe drought, 72% of the deaths observed between 1928 and 2004 occurred during periods of average or better-than-average rain, providing support for the idea that demography of shrubs in arid regions is influenced by continuous as well as episodic processes.

  12. Effects of sand burial on dew deposition on moss soil crust in a revegetated area of the Tennger Desert, Northern China

    Science.gov (United States)

    Jia, Rong-liang; Li, Xin-rong; Liu, Li-chao; Pan, Yan-xia; Gao, Yan-hong; Wei, Yong-ping

    2014-11-01

    Sand burial and dew deposition are two fundamental phenomena profoundly influencing biological soil crusts in desert areas. However, little information is available regarding the effects of sand burial on dew deposition on biological soil crusts in desert ecosystems. In this study, we evaluated the effects of sand burial at depths of 0 (control), 0.5, 1, 2 and 4 mm on dew formation and evaporation of three dominant moss crusts in a revegetated area of the Tengger Desert (Northern China) in 2010. The results revealed that sand burial significantly decreased the amount of dew deposited on the three moss crust types by acting as a semi-insulator retarding the dew formation and evaporation rates. The changes in surface temperature cannot fully explain the variations of the formation and evaporation rates of dew by moss crusts buried by sand. The extension of dew retention time was reflected by the higher dew ratios (the ratio of dew amount at a certain time to the maximum value in a daily course) in the daytime, and may to some extent have acted as compensatory mechanisms that diminished the negative effects of the reduction of dew amount induced by sand burial of moss crusts. The resistances to reduction of dewfall caused by sand burial among the three moss crusts were also compared and it was found that Bryum argenteum crust showed the highest tolerance, followed by crusts dominated by Didymodon vinealis and Syntrichia caninervis. This sequence corresponds well with the successional order of the three moss crusts in the revegetated area, thereby suggesting that resistance to reduction of dewfall may act as one mechanism by which sand burial drives the succession of moss crusts in desert ecosystems. This side effect of dew reduction induced by sand burial on biological soil crusts should be considered in future ecosystem construction and management of desert area.

  13. Lunar polar rover science operations: Lessons learned and mission architecture implications derived from the Mojave Volatiles Prospector (MVP) terrestrial field campaign

    Science.gov (United States)

    Heldmann, Jennifer L.; Colaprete, Anthony; Elphic, Richard C.; Lim, Darlene; Deans, Matthew; Cook, Amanda; Roush, Ted; Skok, J. R.; Button, Nicole E.; Karunatillake, S.; Stoker, Carol; Marquez, Jessica J.; Shirley, Mark; Kobayashi, Linda; Lees, David; Bresina, John; Hunt, Rusty

    2016-08-01

    The Mojave Volatiles Prospector (MVP) project is a science-driven field program with the goal of producing critical knowledge for conducting robotic exploration of the Moon. Specifically, MVP focuses on studying a lunar mission analog to characterize the form and distribution of lunar volatiles. Although lunar volatiles are known to be present near the poles of the Moon, the three dimensional distribution and physical characteristics of lunar polar volatiles are largely unknown. A landed mission with the ability to traverse the lunar surface is thus required to characterize the spatial distribution of lunar polar volatiles. NASA's Resource Prospector (RP) mission is a lunar polar rover mission that will operate primarily in sunlit regions near a lunar pole with near-real time operations to characterize the vertical and horizontal distribution of volatiles. The MVP project was conducted as a field campaign relevant to the RP lunar mission to provide science, payload, and operational lessons learned to the development of a real-time, short-duration lunar polar volatiles prospecting mission. To achieve these goals, the MVP project conducted a simulated lunar rover mission to investigate the composition and distribution of surface and subsurface volatiles in a natural environment with an unknown volatile distribution within the Mojave Desert, improving our understanding of how to find, characterize, and access volatiles on the Moon.

  14. Gopherus Agassizii (Desert Tortoise). Predation/Mountain Lions (Pre-Print)

    Energy Technology Data Exchange (ETDEWEB)

    Paul D. Greger and Philip A. Medica

    2009-01-01

    During a long-term study on tortoise growth within 3 fenced 9-ha enclosures in Rock Valley, Nevada Test Site (NTS), Nye County, Nevada, USA, tortoises have been captured annually since 1964 (Medica et al. 1975. Copeia 1975:630-643; Turner et al. 1987. Copeia 1987:974-979). Between early August and mid October 2003 we observed a significant mortality event. The Rock Valley enclosures were constructed of 6 x 6 mm mesh 1.2 m wide hardware cloth, buried 0.3 m in the soil with deflective flashing on both sides on the top to restrict the movement of small mammals and lizards from entering or leaving the enclosures (Rundel and Gibson 1996, Ecological communities and process in a Mojave Desert ecosystem: Rock Valley, Nevada, Cambridge University Press, Great Britain. 369 pp.). On August 6, 2003, the carcass of an adult female Desert Tortoise No.1411 (carapace length 234 mm when alive) was collected while adult male tortoise No.4414 (carapace length 269 mm) was observed alive and in good health on the same day. Subsequently the carcass of No.4414 was found on October 16, 2003. Between October 16-17, 2003, the remains of 6 (5 adult and 1 juvenile) Desert Tortoises were found, some within each of the 3 enclosures in Rock Valley. A seventh adult tortoise was found on September 26, 2006, its death also attributed to the 2003 mortality event based upon the forensic evidence. Each of the 7 adult Desert Tortoises had the central portion of their carapace broken open approximately to the dorsal portion of the marginal scutes while the plastron was still intact (Figure 1A). Adjacent to 7 of the 8 remains we located numerous bone fragments including parts of the carapace and limbs as well as dried intestines in a nearby Range Rhatany (Krameria parvifolia) shrub. The significance of the frequent use of this shrub is puzzling. Three of the Desert Tortoise shell remains possessed distinctive intercanine punctures measuring 55-60 mm center to center indicating that this was an adult

  15. Environmental Assessment/Overseas Environmental Assessment for the F-35 Joint Strike Fighter Initial Operational Test and Evaluation

    Science.gov (United States)

    2009-09-01

    shrub layer. White fir (Abies concolor) occurs at elevations above approximately 8,000 feet, with single leaf pinyon ( Pinus monophylla) and limber...pine ( Pinus flexilis). The South Range lies in the northeastern portion of the Mojave Desert. Creosote bush, white bursage, and saltbush...pools of water, of sufficient extent, to sustain populations during drought . Wildlife species associated with Mojave Desert habitats found in the

  16. Inventory of Amphibians and Reptiles at Mojave National Preserve: Final Report

    Science.gov (United States)

    Persons, Trevor B.; Nowak, Erika M.

    2007-01-01

    As part of the National Park Service Inventory and Monitoring Program in the Mojave Network, we conducted an inventory of amphibians and reptiles at Mojave National Preserve in 2004-2005. Objectives for this inventory were to use fieldwork, museum collections, and literature review to document the occurrence of reptile and amphibian species occurring at MOJA. Our goals were to document at least 90% of the species present, provide one voucher specimen for each species identified, provide GIS-referenced distribution information for sensitive species, and provide all deliverables, including NPSpecies entries, as outlined in the Mojave Network Biological Inventory Study Plan. Methods included daytime and nighttime visual encounter surveys and nighttime road driving. Survey effort was concentrated in predetermined priority sampling areas, as well as in areas with a high potential for detecting undocumented species. We recorded 31 species during our surveys. During literature review and museum specimen database searches, we found records for seven additional species from MOJA, elevating the documented species list to 38 (two amphibians and 36 reptiles). Based on our surveys, as well as literature and museum specimen review, we estimate an overall inventory completeness of 95% for Mojave National Preserve herpetofauna; 67% for amphibians and 97% for reptiles.

  17. 76 FR 27344 - Water Resources Management Plan/Environmental Impact Statement, Mojave National Preserve, San...

    Science.gov (United States)

    2011-05-11

    ... and resource management activities must be guided by general principles that can be applied to... Resources Management Plan/Environmental Impact Statement, Mojave National Preserve, San Bernardino County... Management Plan/ Environmental Impact Statement for Mojave National Preserve. SUMMARY: In accordance with Sec...

  18. Origins and ecological consequences of pollen specialization among desert bees.

    Science.gov (United States)

    Minckley, R L; Cane, J H; Kervin, L

    2000-02-07

    An understanding of the evolutionary origins of insect foraging specialization is often hindered by a poor biogeographical and palaeoecological record. The historical biogeography (20,000 years before present to the present) of the desert-limited plant, creosote bush (Larrea tridentata), is remarkably complete. This history coupled with the distribution pattern of its bee fauna suggests pollen specialization for creosote bush pollen has evolved repeatedly among bees in the Lower Sonoran and Mojave deserts. In these highly xeric, floristically depauperate environments, species of specialist bees surpass generalist bees in diversity, biomass and abundance. The ability of specialist bees to facultatively remain in diapause through resource-poor years and to emerge synchronously with host plant bloom in resource-rich years probably explains their ecological dominance and persistence in these areas. Repeated origins of pollen specialization to one host plant where bloom occurs least predictably is a counter-example to prevailing theories that postulate such traits originate where the plant grows best and blooms most reliably Host-plant synchronization, a paucity of alternative floral hosts, or flowering attributes of creosote bush alone or in concert may account for the diversity of bee specialists that depend on this plant instead of nutritional factors or chemical coevolution between floral rewards and the pollinators they have evolved to attract.

  19. Optimal balance of water use efficiency and leaf construction cost with a link to the drought threshold of the desert steppe ecotone in northern China.

    Science.gov (United States)

    Wei, Haixia; Luo, Tianxiang; Wu, Bo

    2016-09-01

    In arid environments, a high nitrogen content per leaf area (Narea) induced by drought can enhance water use efficiency (WUE) of photosynthesis, but may also lead to high leaf construction cost (CC). Our aim was to investigate how maximizing Narea could balance WUE and CC in an arid-adapted, widespread species along a rainfall gradient, and how such a process may be related to the drought threshold of the desert-steppe ecotone in northern China. Along rainfall gradients with a moisture index (MI) of 0·17-0·41 in northern China and the northern Tibetan Plateau, we measured leaf traits and stand variables including specific leaf area (SLA), nitrogen content relative to leaf mass and area (Nmass, Narea) and construction cost (CCmass, CCarea), δ(13)C (indicator of WUE), leaf area index (LAI) and foliage N-pool across populations of Artemisia ordosica In samples from northern China, a continuous increase of Narea with decreasing MI was achieved by a higher Nmass and constant SLA (reduced LAI and constant N-pool) in high-rainfall areas (MI > 0·29), but by a lower SLA and Nmass (reduced LAI and N-pool) in low-rainfall areas (MI ≤ 0·29). While δ(13)C, CCmass and CCarea continuously increased with decreasing MI, the low-rainfall group had higher Narea and δ(13)C at a given CCarea, compared with the high-rainfall group. Similar patterns were also found in additional data for the same species in the northern Tibetan Plateau. The observed drought threshold where MI = 0·29 corresponded well to the zonal boundary between typical and desert steppes in northern China. Our data indicated that below a climatic drought threshold, drought-resistant plants tend to maximize their intrinsic WUE through increased Narea at a given CCarea, which suggests a linkage between leaf functional traits and arid vegetation zonation. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please

  20. Opening up the solar box: Cultural resource management and actor network theory in solar energy projects in the Mojave Desert

    Science.gov (United States)

    Gorrie, Bryan F.

    This project considers the ways that Actor-Network Theory (ANT) can be brought to bear upon Cultural Resource Management (CRM) practices on renewable energy projects. ANT is a way of making inquiry into scientific knowledge practices and as CRM is intended to preserve environmental, historic, and prehistoric resources, it necessarily involves certain kinds of knowledge generation about regions in which projects are being developed. Because the practice of CRM is complex, involving a range of actors from developers to biologists, native peoples to academics, private landholders to environmental and cultural activists, it is imperative to account for the interests of all stakeholders and to resist devolving into the polemical relations of winners and losers, good and bad participants, or simple situations of right and wrong. This project intends to account for the "matters of concern" of various actors, both primary and secondary, by examining the case study of a single solar installation project in the Mojave Desert. A theoretical description of ANT is provided at the beginning and the concerns of this theory are brought to bear upon the case study project through describing the project, discussing the laws governing CRM on federal lands and in the state of California, and providing the points of view of various interviewees who worked directly or indirectly on various aspects of CRM for the solar project. The creators of ANT claim that it is not a methodology but it does speak to ethnomethodologies in that it insists that there is always something more to learn from inquiring into and describing any given situation. These descriptions avoid generalizations, providing instead various points of entry, from diverse perspectives to the project. There is an invitation to avoid assuming that one knows all there is to know about a given situation and to choose instead to continue investigating and thus give voice to the more obscure, often marginalized, voices in the

  1. Source apportionment of PM₁₀ and PM₂.₅ in a desert region in northern Chile.

    Science.gov (United States)

    Jorquera, Héctor; Barraza, Francisco

    2013-02-01

    Estimating contributions of anthropogenic sources to ambient particulate matter (PM) in desert regions is a challenging issue because wind erosion contributions are ubiquitous, significant and difficult to quantify by using source-oriented, dispersion models. A receptor modeling analysis has been applied to ambient PM(10) and PM(2.5) measured in an industrial zone ~20 km SE of Antofagasta (23.63°S, 70.39°W), a midsize coastal city in northern Chile; the monitoring site is within a desert region that extends from northern Chile to southern Perú. Integrated 24-hour ambient samples of PM(10) and PM(2.5) were taken with Harvard Impactors; samples were analyzed by X Ray Fluorescence, ionic chromatography (NO(3)(-) and SO(4)(=)), atomic absorption (Na(+), K(+)) and thermal optical transmission for elemental and organic carbon determination. Receptor modeling was carried out using Positive Matrix Factorization (US EPA Version 3.0); sources were identified by looking at specific tracers, tracer ratios, local winds and wind trajectories computed from NOAA's HYSPLIT model. For the PM(2.5) fraction, six contributions were found - cement plant, 33.7 ± 1.3%; soil dust, 22.4 ± 1.6%; sulfates, 17.8 ± 1.7%; mineral stockpiles and brine plant, 12.4 ± 1.2%; Antofagasta, 8.5 ± 1.3% and copper smelter, 5.3 ± 0.8%. For the PM(10) fraction five sources were identified - cement plant, 38.2 ± 1.5%; soil dust, 31.2 ± 2.3%; mineral stockpiles and brine plant, 12.7 ± 1.7%; copper smelter, 11.5 ± 1.6% and marine aerosol, 6.5 ± 2.4%. Therefore local sources contribute to ambient PM concentrations more than distant sources (Antofagasta, marine aerosol) do. Soil dust is enriched with deposition of marine aerosol and calcium, sulfates and heavy metals from surrounding industrial activities. The mean contribution of suspended soil dust to PM(10) is 50 μg/m(3) and the peak daily value is 104 μg/m(3). For the PM(2.5) fraction, suspended soil dust contributes with an average of 9.3

  2. Egg laying site selection by a host plant specialist leaf miner moth at two intra-plant levels in the northern Chilean Atacama Desert

    Directory of Open Access Journals (Sweden)

    José Storey-Palma

    2014-09-01

    Full Text Available Egg laying site selection by a host plant specialist leaf miner moth at two intra-plant levels in the northern Chilean Atacama Desert. The spatial distribution of the immature stages of the leaf miner Angelabella tecomae Vargas & Parra, 2005 was determined at two intra-plant levels (shoot and leaflet on the shrub Tecoma fulva fulva (Cav. D. Don (Bignoniaceae in the Azapa valley, northern Chilean Atacama Desert. An aggregated spatial pattern was detected for all the immature stages along the shoot, with an age dependent relative position: eggs and first instar larvae were clumped at apex; second, third and fourth instar larvae were mostly found at intermediate positions; meanwhile the spinning larva and pupa were clumped at basis. This pattern suggests that the females select new, actively growing leaflets for egg laying. At the leaflet level, the immature stages were found more frequently at underside. Furthermore, survivorship was higher for larvae from underside mines. All these results highlight the importance of an accurate selection of egg laying site in the life history of this highly specialized leaf miner. By contrast, eventual wrong choices in the egg laying site selection may be associated with diminished larval survivorship. The importance of the continuous availability of new plant tissue in this highly human modified arid environment is discussed in relation with the observed patterns.

  3. Natural product diversity of actinobacteria in the Atacama Desert.

    Science.gov (United States)

    Rateb, Mostafa E; Ebel, Rainer; Jaspars, Marcel

    2018-02-14

    The Atacama Desert of northern Chile is considered one of the most arid and extreme environment on Earth. Its core region was described as featuring "Mars-like" soils that were at one point deemed too extreme for life to exist. However, recent investigations confirmed the presence of diverse culturable actinobacteria. In the current review, we discuss a total of 46 natural products isolated to date representing diverse chemical classes characterized from different actinobacteria isolated from various locations in the Atacama Desert. Their reported biological activities are also discussed.

  4. Effects of sand burial and wind disturbances on moss soil crusts in a revegetated area of the Tennger Desert, Northern China

    Science.gov (United States)

    Jia, R. L.; Li, X. R.; Liu, L. C.; Gao, Y. H.

    2012-04-01

    Sand burial and wind are two predominant natural disturbances in the desert ecosystems worldwide. However, the effects of sand burial and wind disturbances on moss soil crusts are still largely unexplored. In this study, two sets of experiments were conducted separately to evaluated the effects of sand burial (sand depth of 0, 1, 2, 3 and 4 mm) and wind blowing (wind speed of 0.2, 3, 6 and 9ms-1) on ecophysiological variables of two moss soil crusts collected from a revegetated area of the Tengger Desert, Northern China. Firstly, the results from the sand burial experiment revealed that respiration rate was significantly decreased and that moss shoot elongation was significantly increased after burial. In addition, Bryum argenteum crust showed the fastest speed of emergence and highest tolerance index, followed by Didymodon vinealis crust. This sequence was consistent with the successional order of the two moss crusts that happened in our study area, indicating that differential sand burial tolerance explains their succession sequence. Secondly, the results from the wind experiment showed that CO2 exchange, PSII photochemical efficiency, photosynthetic pigments, shoot upgrowth, productivity and regeneration potential of the two moss soil crust mentioned above were all substantially depressed. Furthermore, D. vinealis crust exhibited stronger wind resistance than B. argenteum crust from all aspects mentioned above. And this is comparison was identical with their contrasting microhabitats with B. argenteum crust being excluded from higher wind speed microsites in the windward slopes, suggesting that the differential wind resistance of moss soil crusts explains their microdistribution pattern. In conclusion, the ecogeomorphological processes of moss soil crusts in desert ecosystems can be largely determined by natural disturbances caused by sand burial and wind blowing in desert ecosystems.

  5. A potential predator-prey interaction of an American badger and an Agassiz's desert tortoise with a review of badger predation on turtles

    Science.gov (United States)

    Smith, Amanda L.; Puffer, Shellie R.; Lovich, Jeffrey E.; Tennant, Laura A.; Arundel, Terry; Vamstad, Michael S.; Brundige, Kathleen D.

    2016-01-01

    The federally threatened Agassiz’s desert tortoise (Gopherus agassizii) was listed under the U.S. Endangered Species Act in 1990, but thus far, recovery efforts have been unsuccessful (U.S. Fish and Wildlife Service [USFWS] 2015). Predation has been identified as a contributing factor to declining G. agassizii populations range-wide (e.g., Esque et al. 2010, Lovich et al. 2014). Understanding and managing for predator-prey dynamics is thus an important part of the recovery and conservation of this threatened species (USFWS 2011). Desert tortoises have a host of predators at all stages of their life cycle. Over 20 species of birds, mammals, and reptiles have been recorded as known or suspected predators (Woodbury and Hardy 1948, Luckenbach 1982, Ernst and Lovich 2009). American badgers (Taxidea taxus, family: Mustelidae) are confirmed excavators of desert tortoise nests (Turner and Berry 1984). They are also suspected predators of adult desert tortoises, a possibility which has been presented in some studies but without empirical verification (Luckenbach 1982, Turner and Berry 1984). Active mostly at night, badgers are solitary, secretive predators (Lindzey 1978, 1982; Armitage 2004) that are extremely difficult to observe in predatory encounters. Recently, strong circumstantial evidence presented by Emblidge et al. (2015) suggests that badgers do prey on adult Agassiz’s desert tortoises based on observations of more than two dozen dead tortoises in the Western Mojave Desert of California. In this note, we present another case of potential badger predation on a large adult desert tortoise in the Sonoran Desert of California. Collectively, these recent two cases potentially indicate that badger predation may be more common and widespread than previously thought. In addition, we review the worldwide literature of badger predation on turtles in general and summarize reported badger observations in Joshua Tree National Park, where our observation occurred, over a

  6. The role of airborne radiometric survey in defining the distribution of phosphate rocks in the Syrian desert and the Northern Palmyrides

    International Nuclear Information System (INIS)

    Jubeli, Y.M.

    2000-01-01

    Gamma-ray spectrometry, an effective tool in geological mapping, was used to define boundaries between various lithological formations in three adjacent areas of Central Syria, namely, the Syrian Desert, Ar Rassafeh Badiayat and the Northern Palmyrides mountains. This paper describes the role of an airborne gamma spectrometric survey which was originally undertaken to assist uranium exploration. Interpretation of the total count data obtained through the survey has led to significant modifications and corrections to the previously published distribution map of the Palaeogene phosphate rocks. Another important result to the survey is the discovery of four previously unknown phosphorite horizons in the Rasm Al-Aawabed area of the Northern Palmyrides. In addition, previously unknown phosphatic horizons are outlined in the other study areas. The importance of this technique as an effective prospecting method, not only for U but also for exploring for the economically important phosphorite formations in Syria, is emphasized. Furthermore, its role in geological mapping is stressed, especially in areas that lack sufficient geological data. (author)

  7. Effectiveness of post-fire seeding in desert tortoise Critical Habitat following the 2005 Southern Nevada Fire Complex

    Science.gov (United States)

    DeFalco, Lesley; Drake, Karla K.; Scoles-Sciulla, S. J.; Bauer, Kyla L.

    2010-01-01

    In June 2005, lightning strikes ignited multiple wildfires in southern Nevada. The Southern Nevada Fire Complex burned more than 32,000 acres of designated desert tortoise Critical Habitat and an additional 403,000 acres of Mojave Desert habitat characterized as potentially suitable for the tortoise. Mortalities of desert tortoises were observed after the fires, but altered habitat is likely to prolong and magnify the impacts of wildfire on desert tortoise populations. To accelerate the re-establishment of plants commonly used by tortoises for food and shelter, the Bureau of Land Management (BLM) distributed seeds of native annual and perennial species in burned areas within desert tortoise Critical Habitat. The U.S. Geological Survey (USGS) established monitoring plots to evaluate broadcast seeding as a means to restore habitat and tortoise activity compared with natural recovery. Within the standard three-year Emergency and Stabilization Response (ESR) monitoring timeline, seeding augmented perennial seed banks by four to six-fold within a year of seed applications compared with unseeded areas. By the end of the three-year monitoring period, seedling densities of seeded perennial species were 33% higher in seeded areas than in unseeded areas, particularly for the disturbance-adapted desert globemallow (Sphaeralcea ambigua) and desert marigold (Baileya multiradiata). Seeded annuals, in contrast, did not increase significantly in seed banks or biomass production, likely due to low seeding rates of these species. Production of non-native annuals that helped carry the fires was not reduced by seeding efforts but instead was strongly correlated with site-specific rainfall, as were native annual species. The short-term vegetation changes measured in seeded areas were not yet associated with a return of tortoise activity to unburned levels. By focusing on a combination of native species that can withstand disturbance conditions, including species that are found in

  8. Foraging behavior of heritage versus recently introduced herbivores on desert landscapes of the American Southwest

    Science.gov (United States)

    Since the 1800s managed grasslands and shrublands of the arid American Southwest have been grazed predominantly by cattle originally bred for temperate climates in northern Europe. A heritage breed, the criollo cattle, has survived in northern Mexico for more than 400 years under desert-like conditi...

  9. 76 FR 53482 - Endangered and Threatened Wildlife and Plants; Notice of Availability of a Revised Recovery Plan...

    Science.gov (United States)

    2011-08-26

    ... and revised the recovery plan accordingly. The desert tortoise is a large, herbivorous reptile that... tortoise populations. Disease and increased incidence of fire in the Mojave Desert have also been... tortoises, there are few data available to evaluate or quantify the effects of threats on desert tortoise...

  10. Supplementing seed banks to rehabilitate disturbed Mojave Desert shrublands: where do all the seeds go?

    Science.gov (United States)

    DeFalco, Lesley A.; Esque, Todd C.; Nicklas, Melissa B.; Kane, Jeffrey M.

    2012-01-01

    Revegetation of degraded arid lands often involves supplementing impoverished seed banks and improving the seedbed, yet these approaches frequently fail. To understand these failures, we tracked the fates of seeds for six shrub species that were broadcast across two contrasting surface disturbances common to the Mojave Desert—sites compacted by concentrated vehicle use and trenched sites where topsoil and subsurface soils were mixed. We evaluated seedbed treatments that enhance soil-seed contact (tackifier) and create surface roughness while reducing soil bulk density (harrowing). We also explored whether seed harvesting by granivores and seedling suppression by non-native annuals influence the success of broadcast seeding in revegetating degraded shrublands. Ten weeks after treatments, seeds readily moved off of experimental plots in untreated compacted sites, but seed movements were reduced 32% by tackifier and 55% through harrowing. Harrowing promoted seedling emergence in compacted sites, particularly for the early-colonizing species Encelia farinosa, but tackifier was largely ineffective. The inherent surface roughness of trenched sites retained three times the number of seeds than compacted sites, but soil mixing during trench development likely altered the suitability of the seedbed thus resulting in poor seedling emergence. Non-native annuals had little influence on seed fates during our study. In contrast, the prevalence of harvester ants increased seed removal on compacted sites, whereas rodent activity influenced removal on trenched sites. Future success of broadcast seeding in arid lands depends on evaluating disturbance characteristics prior to seeding and selecting appropriate species and seasons for application.

  11. Palaeoenvironmental implications of a Holocene sequence of lacustrine-peat sediments from the desert-loess transitional zone in Northern China

    Science.gov (United States)

    Jia, Feifei; Lu, Ruijie; Liu, Xiaokang; Zhao, Chao; Lv, Zhiqiang; Gao, Shangyu

    2018-05-01

    A high-resolution lacustrine-peat record from the desert-loess transitional zone in Northern China was obtained to reconstruct Holocene environmental change in the region. AMS 14C dates are used to provide a chronology. The results indicate that the site was a desert environment before 12.2 cal kyr BP, and was then occupied by a paleolake which started to shrink, with a wetland occurring from 6.2 to 3.0 cal kyr BP. Subsequently, the site became a seasonally water-filled depression. Based on the lithology and measurements of grain size and total organic carbon content, the climate changed from arid to humid at 12.2 cal kyr BP, and became more humid after 8.3 cal kyr BP. From 6.2 to 3.0 cal kyr BP, precipitation decreased but the climate remained at an optimum. After 3.0 cal kyr BP, the climate was dry overall but with several humid intervals. A comparison of paleoclimatic records from lacustrine and aeolian deposits from the region reveals a discrepancy about the nature of the early Holocene climate, and we conclude that this is because lacustrine sediments responded more sensitively to precipitation than aeolian deposits when the temperature was low. The environmental evolution of the region was synchronous with changes in the Asian summer monsoon (ASM), but temperature also played a key role in the early Holocene.

  12. The role of fire on soil mounds and surface roughness in the Mojave Desert

    Science.gov (United States)

    Soulard, Christopher E.; Esque, Todd C.; Bedford, David R.; Bond, Sandra

    2013-01-01

    A fundamental question in arid land management centers on understanding the long-term effects of fire on desert ecosystems. To assess the effects of fire on surface topography, soil roughness, and vegetation, we used terrestrial (ground-based) LiDAR to quantify the differences between burned and unburned surfaces by creating a series of high-resolution vegetation structure and bare-earth surface models for six sample plots in the Grand Canyon-Parashant National Monument, Arizona. We find that 11 years following prescribed burns, mound volumes, plant heights, and soil-surface roughness were significantly lower on burned relative to unburned plots. Results also suggest a linkage between vegetation and soil mounds, either through accretion or erosion mechanisms such as wind and/or water erosion. The biogeomorphic implications of fire-induced changes are significant. Reduced plant cover and altered soil surfaces from fire likely influence seed residence times, inhibit seed germination and plant establishment, and affect other ecohydrological processes.

  13. Utilizing genetic diversity in the desert watermelon citrullus colocynthis for enhancing watermelon cultivars for resistance to biotic and abiotic stress

    Science.gov (United States)

    Wide genetic diversity exists among the desert watermelon Citrullus colocynthis (L.) Schrad. (CC) accessions collected in the deserts of northern Africa, the Middle East, and Asia. Because of their resistance to biotic and abiotic stresses, there can be a viable source of genes used for enhancing wa...

  14. Thirteen years of Aeolian dust dynamics in a desert region (Negev desert, Israel): analysis of horizontal and vertical dust flux, vertical dust distribution and dust grain size

    NARCIS (Netherlands)

    Offer, Z.Y.; Goossens, D.

    2004-01-01

    At Sede Boqer (northern Negev desert, Israel), aeolian dust dynamics have been measured during the period 1988–2000. This study focuses on temporal records of the vertical and horizontal dust flux, the vertical distribution of the dust particles in the atmosphere, and the grain size of the

  15. Recurrence of water bodies in the hyperarid core of the Atacama Desert - New insights into the Late Pleistocene paleoclimate history of Northern Chile

    Science.gov (United States)

    Diederich, J. L.; Wennrich, V.; Fernández Galego, E.; Ritter, B.; Brill, D.; Niemann, K.; Rolf, C.; Melles, M.

    2017-12-01

    The Atacama Desert of northern Chile is regarded as the driest desert on Earth. Although still controversially discussed, overall arid to hyperarid conditions in the Atacama are thought to have persisted at least since the early Miocene, but were frequently punctuated by pluvial phases. The knowledge of past changes in humidity is strongly hampered by the fact that sediment records from the central Atacama Desert, which enable longer-scale precipitation reconstructions, are rare and mostly restricted to the Miocene/Pliocene or the late Pleistocene <50 kyrs. In this study, we focus on a sediment record from the hyperarid core of the Atacama Desert, derived from a tectonically blocked clay pan in the Coastal Cordillera (20°04'33.64"S, 69°55'01.75"W). This clay pan `Huara' has been initially investigated by a geophysical survey in spring 2015, followed by drilling of a short core (HU-III) covering the uppermost 4 m of sediment. Initial results of the ground penetrating radar (GPR) and horizontal to vertical (H/V) spectral ratio measurements indicate well-stratified sediment bodies in the basin with a maximum sediment infill of 30 ± 4 m. The chronology of core HU-III was established by a combination of optically stimulated luminescence (OSL) and paleomagnetic dating. The sedimentological and geochemical data of core HU-III as well as it's sediment geophysical properties indicate the primary accumulation of fine-grained sediments over the past ca. 50 kyrs, interpreted to be deposited under arid conditions with only sporadic precipitation. Intercalated coarser horizons indicate several periods of semiarid climate conditions, causing multiple phases of local alluvial deposition from the interior catchment area into the clay pan. The results are in agreement with a cosmogenic nuclide study from an adjacent meander system, indicating that the whole sediment sequence of the Huara clay pan covers the regional climate history of the past 500 - 700 kyrs.

  16. Desert tortoises (Gopherus agassizii are selective herbivores that track the flowering phenology of their preferred food plants.

    Directory of Open Access Journals (Sweden)

    W Bryan Jennings

    Full Text Available Previous studies of desert tortoise foraging ecology in the western Mojave Desert suggest that these animals are selective herbivores, which alter their diet according to the temporal availability of preferred food plants. These studies, however, did not estimate availability of potential food plants by taking into account the spatial and temporal variability in ephemeral plant abundance that occurs within the spring season. In this study, we observed 18 free-ranging adult tortoises take 35,388 bites during the spring foraging season. We also estimated the relative abundance of potential food plants by stratifying our sampling across different phenological periods of the 3-month long spring season and by different habitats and microhabitats. This methodology allowed us to conduct statistical tests comparing tortoise diet against plant abundance. Our results show that tortoises choose food plants non-randomly throughout the foraging season, a finding that corroborates the hypothesis that desert tortoises rely on key plants during different phenological periods of spring. Moreover, tortoises only consumed plants in a succulent state until the last few weeks of spring, at which time most annuals and herbaceous perennials had dried and most tortoises had ceased foraging. Many species of food plants--including several frequently eaten species--were not detected in our plant surveys, yet tortoises located these rare plants in their home ranges. Over 50% of bites consumed were in the group of undetected species. Interestingly, tortoises focused heavily on several leguminous species, which could be nutritious foods owing to their presumably high nitrogen contents. We suggest that herbaceous perennials, which were rare on our study area but represented ~30% of tortoise diet, may be important in sustaining tortoise populations during droughts when native annuals are absent. These findings highlight the vulnerability of desert tortoises to climate change

  17. Desert tortoises (Gopherus agassizii) are selective herbivores that track the flowering phenology of their preferred food plants

    Science.gov (United States)

    Jennings, Bryan W.; Berry, Kristin H.

    2015-01-01

    Previous studies of desert tortoise foraging ecology in the western Mojave Desert suggest that these animals are selective herbivores, which alter their diet according to the temporal availability of preferred food plants. These studies, however, did not estimate availability of potential food plants by taking into account the spatial and temporal variability in ephemeral plant abundance that occurs within the spring season. In this study, we observed 18 free-ranging adult tortoises take 35,388 bites during the spring foraging season. We also estimated the relative abundance of potential food plants by stratifying our sampling across different phenological periods of the 3-month long spring season and by different habitats and microhabitats. This methodology allowed us to conduct statistical tests comparing tortoise diet against plant abundance. Our results show that tortoises choose food plants non-randomly throughout the foraging season, a finding that corroborates the hypothesis that desert tortoises rely on key plants during different phenological periods of spring. Moreover, tortoises only consumed plants in a succulent state until the last few weeks of spring, at which time most annuals and herbaceous perennials had dried and most tortoises had ceased foraging. Many species of food plants—including several frequently eaten species—were not detected in our plant surveys, yet tortoises located these rare plants in their home ranges. Over 50% of bites consumed were in the group of undetected species. Interestingly, tortoises focused heavily on several leguminous species, which could be nutritious foods owing to their presumably high nitrogen contents. We suggest that herbaceous perennials, which were rare on our study area but represented ~30% of tortoise diet, may be important in sustaining tortoise populations during droughts when native annuals are absent. These findings highlight the vulnerability of desert tortoises to climate change if such changes

  18. Soil, plant, and structural considerations for surface barriers in arid environments: Application of results from studies in the Mojave Desert near Beatty, Nevada

    Science.gov (United States)

    Andraski, Brian J.; Prudic, David E.; ,

    1997-01-01

    The suitability of a waste-burial site depends on hydrologic processes that can affect the near-surface water balance. In addition, the loss of burial trench integrity by erosion and subsidence of trench covers may increase the likelihood of infiltration and percolation, thereby reducing the effectiveness of the site in isolating waste. Although the main components of the water balance may be defined, direct measurements can be difficult, and actual data for specific locations are seldom available. A prevalent assumption is that little or no precipitation will percolate to buried wastes at an arid site. Thick unsaturated zones, which are common to arid regions, are thought to slow water movement and minimize the risk of waste migration to the underlying water table. Thus, reliance is commonly placed on the natural system to isolate contaminants at waste-burial sites in the arid West.Few data are available to test assumptions about the natural soil-water flow systems at arid sites, and even less is known about how the natural processes are altered by construction of a waste-burial facility. The lack of data is the result of technical complexity of hydraulic characterization of the dry, stony soils, and insufficient field studies that account for the extreme temporal and spatial variations in precipitation, soils, and plants in arid regions. In 1976, the U.S. Geological Survey (USGS) began a long-term study at a waste site in the Mojave Desert. This paper summarizes the findings of ongoing investigations done under natural-site and waste-burial conditions, and discusses how this information may be applied to the design of surface barriers for waste sites in arid environments.The waste-burial site is in one of the most arid parts of the United States and is about 40 km northeast of Death Valley, near Beatty, Nev. (Figure 1). Precipitation averaged 108 mm/yr during 1981-1992. The water table is 85-115 m below land surface (Fischer, 1992). Sediments are largely alluvial

  19. Effects of an invasive plant on a desert sand dune landscape

    Science.gov (United States)

    Barrows, C.W.; Allen, E.B.; Brooks, M.L.; Allen, M.F.

    2009-01-01

    Given the abundance of non-native species invading wildland habitats, managers need to employ informed triage to focus control efforts on weeds with the greatest potential for negative impacts. Our objective here was to determine the level of threat Sahara mustard, Brassica tournefortii, represents to meeting regional goals for protecting biodiversity. Sahara mustard has spread throughout much of the Mojave and lower Sonoran Deserts. It has occurred in southern California's Coachella Valley for nearly 80 years, punctuated by years of extremely high abundance following high rainfall. In those years the mustard has clear negative impacts on the native flora. Using mustard removal experiments we identified reductions in native plant reproduction, shifting composition increasingly toward Sahara mustard while decreasing the fraction of native species. High between-year variance in precipitation may be a key to maintaining biodiversity as the mustard is less abundant in drier years. Sahara mustard impacts to the native fauna were much less evident. Of the animal species evaluated, only the Coachella Valley fringe-toed lizard, Uma inornata, demonstrated a negative response to mustard abundance; however the impacts were short-lived, lasting no more than a year after the mustard's dominance waned. Without control measures the long-term impacts to desert biodiversity may rest on the changing climate. Wetter conditions or increased periodicity of high rainfall years will favor Sahara mustard and result in reduced biodiversity, especially of native annual plants. Drier conditions will keep the mustard from becoming dominant but may have other negative consequences on the native flora and fauna. ?? 2008 Springer Science+Business Media B.V.

  20. The floral hosts and distribution of a supposed creosote bush specialist, Colletes stepheni Timberlake (Hymenoptera: Colletidae)

    Science.gov (United States)

    Colletes stepheni Timberlake, previously thought to be a narrow oligolege of Larrea (creosote bush) of limited distribution in the Sonoran Desert, is found to be a much more widely distributed psammophile of the Sonoran, Mojave and Great Basin Deserts that utilizes two unrelated plant pollen sources...

  1. ON PHYTOCOENOTICAL MAPPING OF CASPIAN DESERT REGION

    Directory of Open Access Journals (Sweden)

    I. SAFRONOVA

    2004-05-01

    Full Text Available The phytoecological map (l :2.500.000 for Desert Region, including the Caspian Lowland and the Mangyshlak. has been compiled. It gives an idea of latitudinal differentiation cf vegetation. Edaphic variants and lithological composition in low mountains. The legend has been constructed according to zonal-typological principle e using an ecological-phytocoenotic classification. Heterogeneity of vegetation is reflected by means of territoria1 units (complex, series, combination and additional marks above the vegetation background. In the northern subzone vegetation is fairly monotonous and characterized by prevalence of wormwood communities (Artemisia of subgenus Seriphidium, joined in three formations: Artemisia lerchiana, A. arenaria. A. pauciflora. Small areas are occupied by shrub deserts of Calligollum aphyllum and Tamarix ramosissima. To southward of 47° N in the middle subzone on the Caspian Lowland the communities of halophyte perennial saltworts essential1y dominate, and to less extent-wormwood communities of hemipsammophytic Artemisia terrae-albae and psammophytic Artemisia arenaria and A. lerchiana. Deserts of Mangyshlak are much diverse. Dwarf semishrubs are presented by species of perennial saltworts (Anabasis salsa, Nanophyton erinaceum,Arthrophytum lehnwnianum, Salsola orientaUs and wonnwood (Artemisia terrae-albae, A. gurganica. A. santolina. To southward of 43° N in the southern subzone dwarf semishrub Salsola gemmascens and Artemisia kemrudica corrnnunities prevail.

  2. ON PHYTOCOENOTICAL MAPPING OF CASPIAN DESERT REGION

    Directory of Open Access Journals (Sweden)

    I. SAFRONOVA

    2004-01-01

    Full Text Available The phytoecological map (l :2.500.000 for Desert Region, including the Caspian Lowland and the Mangyshlak. has been compiled. It gives an idea of latitudinal differentiation cf vegetation. Edaphic variants and lithological composition in low mountains. The legend has been constructed according to zonal-typological principle e using an ecological-phytocoenotic classification. Heterogeneity of vegetation is reflected by means of territoria1 units (complex, series, combination and additional marks above the vegetation background. In the northern subzone vegetation is fairly monotonous and characterized by prevalence of wormwood communities (Artemisia of subgenus Seriphidium, joined in three formations: Artemisia lerchiana, A. arenaria. A. pauciflora. Small areas are occupied by shrub deserts of Calligollum aphyllum and Tamarix ramosissima. To southward of 47° N in the middle subzone on the Caspian Lowland the communities of halophyte perennial saltworts essential1y dominate, and to less extent-wormwood communities of hemipsammophytic Artemisia terrae-albae and psammophytic Artemisia arenaria and A. lerchiana. Deserts of Mangyshlak are much diverse. Dwarf semishrubs are presented by species of perennial saltworts (Anabasis salsa, Nanophyton erinaceum,Arthrophytum lehnwnianum, Salsola orientaUs and wonnwood (Artemisia terrae-albae, A. gurganica. A. santolina. To southward of 43° N in the southern subzone dwarf semishrub Salsola gemmascens and Artemisia kemrudica corrnnunities prevail.

  3. Precipitation Dynamics and Feedback mechanisms of the Arabian Desert

    Science.gov (United States)

    Burger, Roelof; Kucera, Paul; Piketh, Stuart; Axisa, Duncan; Chapman, Michael; Krauss, Terry; Ghulam, Ayman

    2010-05-01

    The subtropical Arabian desert extends across the entire Peninsula. The Arabian desert finds itself in the downward branch of the Hadley cell with persistent subsidence. This stabilizes the atmosphere and lowers the relative humidity. The result is a strongly capped convective boundary layer and an extremely dry mid troposphere. Most of the area experience very little rainfall, generally below 100 mm per year, resulting in the largest uninterrupted sand desert in the world. However, local factors such as an unbroken 1000 km escarpment along the Red Sea, rocky mountains between 2000 and 3000 m, and gravel plains cut by wadis, causes micro climates with significant altered precipitation characteristics. Altitude oases with annual rainfall between 200 mm and 500 mm are found on the Asir mountains in the south west and over the Jebel Akdhar mountains on the Gulf coast of Oman. This region receives most of its rainfall in the Northern Hemisphere summer driven by a monsoon trough and the ITCZ. During summer, moist surface winds from the Red Sea converges with dry easterlies triggering convection along the Asir escarpment on a daily basis. Clear mornings grow into a layer of Altocumulus stratiformis cumulogenites by noon, which usually last until sunset. This cloud deck interacts with large severe convective cells which grow to the top of the troposphere by mid afternoon. The north experience a mediterranean climate with eastward propagating midlatitude cyclones causing wintertime rainfall. Characteristic cloud bands form over the northern interior. Vertically layered embedded convective cells that are not coupled with the surface propagate on north easterly tracks. This result in another oasis with annual rainfall exceeding 200 mm. Surface based convection causes isolated thunderstorms during spring and early summer, but cloud bases increase as the season progress until the evaporating downdraft causes dust storms. In-situ measurements, WRF model runs, radiosonde ascends

  4. Microclimate and limits to photosynthesis in a diverse community of hypolithic cyanobacteria in northern Australia

    Science.gov (United States)

    Tracy, Christopher R.; Streten-Joyce, Claire; Dalton, Robert; Nussear, Kenneth E.; Gibb, Karen S.; Christian, Keith A.

    2010-01-01

    Hypolithic microbes, primarily cyanobacteria, inhabit the highly specialized microhabitats under translucent rocks in extreme environments. Here we report findings from hypolithic cyanobacteria found under three types of translucent rocks (quartz, prehnite, agate) in a semiarid region of tropical Australia. We investigated the photosynthetic responses of the cyanobacterial communities to light, temperature and moisture in the laboratory, and we measured the microclimatic variables of temperature and soil moisture under rocks in the field over an annual cycle. We also used molecular techniques to explore the diversity of hypolithic cyanobacteria in this community and their phylogenetic relationships within the context of hypolithic cyanobacteria from other continents. Based on the laboratory experiments, photosynthetic activity required a minimum soil moisture of 15% (by mass). Peak photosynthetic activity occurred between approximately 8°C and 42°C, though some photosynthesis occurred between −1°C and 51°C. Maximum photosynthesis rates also occurred at light levels of approximately 150–550 μmol m−2 s−1. We used the field microclimatic data in conjunction with these measurements of photosynthetic efficiency to estimate the amount of time the hypolithic cyanobacteria could be photosynthetically active in the field. Based on these data, we estimated that conditions were appropriate for photosynthetic activity for approximately 942 h (∼75 days) during the year. The hypolithic cyanobacteria community under quartz, prehnite and agate rocks was quite diverse both within and between rock types. We identified 115 operational taxonomic units (OTUs), with each rock hosting 8–24 OTUs. A third of the cyanobacteria OTUs from northern Australia grouped with Chroococcidiopsis, a genus that has been identified from hypolithic and endolithic communities from the Gobi, Mojave, Atacama and Antarctic deserts. Several OTUs identified from northern Australia have

  5. The provenance of Taklamakan desert sand

    Science.gov (United States)

    Rittner, Martin; Vermeesch, Pieter; Carter, Andrew; Bird, Anna; Stevens, Thomas; Garzanti, Eduardo; Andò, Sergio; Vezzoli, Giovanni; Dutt, Ripul; Xu, Zhiwei; Lu, Huayu

    2016-03-01

    Sand migration in the vast Taklamakan desert within the Tarim Basin (Xinjiang Uyghur Autonomous region, PR China) is governed by two competing transport agents: wind and water, which work in diametrically opposed directions. Net aeolian transport is from northeast to south, while fluvial transport occurs from the south to the north and then west to east at the northern rim, due to a gradual northward slope of the underlying topography. We here present the first comprehensive provenance study of Taklamakan desert sand with the aim to characterise the interplay of these two transport mechanisms and their roles in the formation of the sand sea, and to consider the potential of the Tarim Basin as a contributing source to the Chinese Loess Plateau (CLP). Our dataset comprises 39 aeolian and fluvial samples, which were characterised by detrital-zircon U-Pb geochronology, heavy-mineral, and bulk-petrography analyses. Although the inter-sample differences of all three datasets are subtle, a multivariate statistical analysis using multidimensional scaling (MDS) clearly shows that Tarim desert sand is most similar in composition to rivers draining the Kunlun Shan (south) and the Pamirs (west), and is distinctly different from sediment sources in the Tian Shan (north). A small set of samples from the Junggar Basin (north of the Tian Shan) yields different detrital compositions and age spectra than anywhere in the Tarim Basin, indicating that aeolian sediment exchange between the two basins is minimal. Although river transport dominates delivery of sand into the Tarim Basin, wind remobilises and reworks the sediment in the central sand sea. Characteristic signatures of main rivers can be traced from entrance into the basin to the terminus of the Tarim River, and those crossing the desert from the south to north can seasonally bypass sediment through the sand sea. Smaller ephemeral rivers from the Kunlun Shan end in the desert and discharge their sediment there. Both river run

  6. Source apportionment of PM10 and PM2.5 in a desert region in northern Chile

    International Nuclear Information System (INIS)

    Jorquera, Héctor; Barraza, Francisco

    2013-01-01

    Estimating contributions of anthropogenic sources to ambient particulate matter (PM) in desert regions is a challenging issue because wind erosion contributions are ubiquitous, significant and difficult to quantify by using source-oriented, dispersion models. A receptor modeling analysis has been applied to ambient PM 10 and PM 2.5 measured in an industrial zone ∼ 20 km SE of Antofagasta (23.63°S, 70.39°W), a midsize coastal city in northern Chile; the monitoring site is within a desert region that extends from northern Chile to southern Perú. Integrated 24-hour ambient samples of PM 10 and PM 2.5 were taken with Harvard Impactors; samples were analyzed by X Ray Fluorescence, ionic chromatography (NO 3 − and SO 4 = ), atomic absorption (Na + , K + ) and thermal optical transmission for elemental and organic carbon determination. Receptor modeling was carried out using Positive Matrix Factorization (US EPA Version 3.0); sources were identified by looking at specific tracers, tracer ratios, local winds and wind trajectories computed from NOAA's HYSPLIT model. For the PM 2.5 fraction, six contributions were found — cement plant, 33.7 ± 1.3%; soil dust, 22.4 ± 1.6%; sulfates, 17.8 ± 1.7%; mineral stockpiles and brine plant, 12.4 ± 1.2%; Antofagasta, 8.5 ± 1.3% and copper smelter, 5.3 ± 0.8%. For the PM 10 fraction five sources were identified — cement plant, 38.2 ± 1.5%; soil dust, 31.2 ± 2.3%; mineral stockpiles and brine plant, 12.7 ± 1.7%; copper smelter, 11.5 ± 1.6% and marine aerosol, 6.5 ± 2.4%. Therefore local sources contribute to ambient PM concentrations more than distant sources (Antofagasta, marine aerosol) do. Soil dust is enriched with deposition of marine aerosol and calcium, sulfates and heavy metals from surrounding industrial activities. The mean contribution of suspended soil dust to PM 10 is 50 μg/m 3 and the peak daily value is 104 μg/m 3 . For the PM 2.5 fraction, suspended soil dust contributes with an average of 9.3

  7. How much Carbon is Stored in Deserts? AN Approach for the Chilean Atacama Desert Using LANDSAT-8 Products

    Science.gov (United States)

    Hernández, H. J.; Acuña, T.; Reyes, P.; Torres, M.; Figueroa, E.

    2016-06-01

    The Atacama Desert in northern Chile is known as the driest place on Earth, with an average rainfall of about 15 mm per year. Despite these conditions, it contains a rich variety of flora with hundreds of species characterised by their extraordinary ability to adapt to this extreme environment. These biotic components have a direct link to important ecosystem services, especially those related to carbon storage and sequestration. No quantitative assessment is currently available for these services and the role of the desert in this matter remains unclear. We propose an approach to estimate above-ground biomass (AGB) using Landsat-8 data, which we tested in the Taparacá region, located in the northern section of the desert. To calibrate and validate the models, we used field data from 86 plots and several spectral indexes (NDVI, EVI and SAVI) obtained from the provisional Landsat-8 Surface-reflectance products. We applied randomised branch sampling and allometry principles (non-destructive methods) to collect biomass samples for all plant biological types: wetlands, steppes, shrubs and trees. All samples were dried in an oven until they reached constant weight and the final values were used to extrapolate dry matter content (AGB) to each plot in terms of kg m-2. We used all available scenes from September 2014 to August 2015 to calculate the maximum, minimum and average value for each index in each pixel within this period. For modeling, we used the method based on classification and regression trees called random forest (RF), available in the statistical software R-Project. The explained variance obtained by the RF algorithm was around 80-85%, and it improved when a wetland vector layer was used as the predictive factor in the model to reach the range 85-90%. The mean error was 1.45 kg m-2 of dry matter. The best model was obtained using the maximum and mean values of SAVI and EVI indexes. We were able to estimate total biomass storage of around 8 million tons

  8. Stable isotope tracers of water vapor sources in the Atacama Desert, Northern Chile: a pilot study on the Chajnantor Plateau

    Science.gov (United States)

    Samuels, K. E.; Galewsky, J.; Sharp, Z. D.; Rella, C.; Ward, D.

    2010-12-01

    Subtropical deserts form in response to the interaction of large-scale processes, including atmospheric circulation and oceanic currents, with local features like topography. The degree to which each of these factors controls desert formation and the anticipated impacts of variations in each as climate changes, however, are poorly understood. Stable isotope compositions of water vapor in desert air can help to distinguish between moisture sources and processes that control aridity. The Atacama Desert, located in northern Chile between latitudes 23S and 27S, provides a natural laboratory in which to test the degree to which water vapor isotopologues enable the distinction between processes that control humidity, including the Hadley Circulation, the cold Humboldt Current off the coast of Chile, and the orographic effect of the Andes, in this subtropical desert. Water vapor isotopologues and concentrations were measured in real time using a cavity-ringdown spectrometer deployed on the Chajnantor Plateau over a three-week period from mid-July early August 2010. The elevation of the Plateau, 5000 m amsl (~550 hPa), places it above the boundary layer, allowing the evaluation of the Rayleigh fractionation model from the coast inland. Values reported by the instrument were verified with air samples taken at the coast and the Plateau, which were analyzed on an MAT-252 mass spectrometer. Water vapor concentrations and δD values varied spatially and temporally. Water vapor concentrations on the Plateau ranged from 200 to 3664 ppmv with a mean value of 536 ppmv. In contrast, water vapor concentrations at the coast were approximately 10000 ppmv, and at Yungay, 60 km inland, water vapor concentrations ranged from 1300 to 2000 ppmv from morning to evening. δD values on the Plateau ranged from -526‰ to -100‰ with a mean value of 290‰ with enriched values correlated to periods with higher water vapor concentrations. There are no strong diurnal variations in water vapor

  9. Mapping Palaeohydrography in Deserts: Contribution from Space-Borne Imaging Radar

    Directory of Open Access Journals (Sweden)

    Philippe Paillou

    2017-03-01

    Full Text Available Space-borne Synthetic Aperture Radar (SAR has the capability to image subsurface features down to several meters in arid regions. A first demonstration of this capability was performed in the Egyptian desert during the early eighties, thanks to the first Shuttle Imaging Radar mission. Global coverage provided by recent SARs, such as the Japanese ALOS/PALSAR sensor, allowed the mapping of vast ancient hydrographic systems in Northern Africa. We present a summary of palaeohydrography results obtained using PALSAR data over large deserts such as the Sahara and the Gobi. An ancient river system was discovered in eastern Lybia, connecting in the past the Kufrah oasis to the Mediterranean Sea, and the terminal part of the Tamanrasett river was mapped in western Mauritania, ending with a large submarine canyon. In southern Mongolia, PALSAR images combined with topography analysis allowed the mapping of the ancient Ulaan Nuur lake. We finally show the potentials of future low frequency SAR sensors by comparing L-band (1.25 GHz and P-band (435 MHz airborne SAR acquisitions over a desert site in southern Tunisia.

  10. Aridification of the Sahara desert caused by Tethys Sea shrinkage during Late Miocene

    Science.gov (United States)

    Zhang, Z.; Ramstein, G.; Schuster, M.; Li, C.; Contoux, C.; Yan, Q.

    2014-12-01

    It is widely believed that the Sahara desert is no more than ~2-3 million years (Myr) old, with geological evidence showing a remarkable aridification of north Africa at the onset of the Quaternary ice ages. Before that time, north African aridity was mainly controlled by the African summer monsoon (ASM), which oscillated with Earth's orbital precession cycles. Afterwards, the Northern Hemisphere glaciation added an ice volume forcing on the ASM, which additionally oscillated with glacial-interglacial cycles. These findings led to the idea that the Sahara desert came into existence when the Northern Hemisphere glaciated ~2-3 Myr ago. The later discovery, however, of aeolian dune deposits ~7 Myr old suggested a much older age, although this interpretation is hotly challenged and there is no clear mechanism for aridification around this time. Here we use climate model simulations to identify the Tortonian stage (~7-11 Myr ago) of the Late Miocene epoch as the pivotal period for triggering north African aridity and creating the Sahara desert. Through a set of experiments with the Norwegian Earth System Model and the Community Atmosphere Model, we demonstrate that the African summer monsoon was drastically weakened by the Tethys Sea shrinkage during the Tortonian, allowing arid, desert conditions to expand across north Africa. Not only did the Tethys shrinkage alter the mean climate of the region, it also enhanced the sensitivity of the African monsoon to orbital forcing, which subsequently became the major driver of Sahara extent fluctuations. These important climatic changes probably caused the shifts in Asian and African flora and fauna observed during the same period, with possible links to the emergence of early hominins in north Africa.

  11. Assessing water stress of desert vegetation using remote sensing : the case of the Tamarugo forest in the Atacama Desert (Northern Chile)

    NARCIS (Netherlands)

    Chávez Oyanadel, R.O.

    2014-01-01

    Water stress assessment of natural vegetation plays a key role in water management of desert ecosystems. It allows scientists and managers to relate water extraction rates to changes in vegetation water condition, and consequently to define safe water extraction rates for maintaining a healthy

  12. Floristic diversity and vegetation analysis of Wadi Arar: A typical desert Wadi of the Northern Border region of Saudi Arabia.

    Science.gov (United States)

    Osman, Ahmed K; Al-Ghamdi, Faraj; Bawadekji, Abdulhakim

    2014-12-01

    Wadi Arar in the Northern border region of Saudi Arabia is one of the most important Wadis of the Kingdom. The present study provides an analysis of vegetation types, life forms, as well as floristic categories and species distribution. A total of 196 species representing 31 families of vascular plants were recorded. Compositae, Gramineae and Leguminosae were the most common families. Therophytes and chamaephytes are the most frequent life forms, indicating typical desert spectrum vegetation. The distribution of these species in the different sectors of the Wadi as well as the phytochoria for the recorded species is provided. Ninety-one species (46.5%) are typical bi-regional. Furthermore, about 105 species (53.5%) are mono- or pluriregional taxa. The highest number of species (136 or 69.5%) was recorded for annual plants, while the lowest number of species (60% or 30.5%) was recorded for perennial, short perennial or annual to biennial species.

  13. Carbon sequestration capacity of shifting sand dune after establishing new vegetation in the Tengger Desert, northern China.

    Science.gov (United States)

    Yang, Haotian; Li, Xinrong; Wang, Zengru; Jia, Rongliang; Liu, Lichao; Chen, Yongle; Wei, Yongping; Gao, Yanhong; Li, Gang

    2014-04-15

    Reconstructing vegetation in arid and semiarid areas has become an increasingly important management strategy to realize habitat recovery, mitigate desertification and global climate change. To assess the carbon sequestration potential in areas where sand-binding vegetation has been established on shifting sand dunes by planting xeric shrubs located near the southeastern edge of the Tengger Desert in northern China, we conducted a field investigation of restored dune regions that were established at different times (20, 30, 47, and 55 years ago) in the same area. We quantified the total organic carbon (TOC) in each ecosystem by summing the individual carbon contributions from the soil (soil organic carbon; SOC), shrubs, and grasses in each system. We found that the TOC, as well as the amount of organic carbon in the soil, shrubs, and grasses, significantly increased over time in the restored areas. The average annual rate of carbon sequestration was highest in the first 20 years after restoration (3.26 × 10(-2)kg·m(-2) ·year(-1)), and reached a stable rate (2.14 × 10(-2) kg·m(-2) ·year(-1)) after 47 years. Organic carbon storage in soil represented the largest carbon pool for both restored systems and a system containing native vegetation, accounting for 67.6%-85.0% of the TOC. Carbon in grass root biomass, aboveground grass biomass, litter, aboveground shrub biomass, and shrub root biomass account for 10.0%-21.0%, 0.2%-0.6%, 0.1%-0.2%, 1.7%-12.1% and 0.9%-6.2% of the TOC, respectively. Furthermore, we found that the 55-year-old restored system has the capacity to accumulate more TOC (1.02 kg·m(-2) more) to reach the TOC level found in the natural vegetation system. These results suggest that restoring desert ecosystems may be a cost-effective and environmentally friendly way to sequester CO2 from the atmosphere and mitigate the effects of global climate change. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Latest Miocene-Pliocene Tiliviche Paleolake, Atacama Desert, Northern Chile 19.5°S: Paleoclimatic and Paleohydrologic Implications

    Science.gov (United States)

    Kirk-Lawlor, N. E.; Jordan, T. E.; Rech, J.; Lehmann, S.

    2010-12-01

    Endorheic paleolake deposits of diatomite, mudstone, sandstone, and evaporites are exposed in the Atacama Desert of northern Chile. This study focuses on a major latest Miocene-Pliocene paleolake system centered at 19.5°S, near Tiliviche. A diatiomite unit, up to 35m thick, composed of 0.2-1.5m thick beds of massive, white diatiomite, free of plant matter and root traces, is interpreted have formed from lacustrine diatom blooms. At its maximum extent, the lake would have had a surface area of roughly 200 km2, based on the extent of the diatomite unit, and might have been 50-100 m deep, as inferred by the relationship between the diatomite unit and modern topography. The Tiliviche paleolake initially formed before 6.4 Ma, and much of its sedimentary record formed under a wetter climatic and hydrologic regime than the present. Prior to 3.5 Ma, the lake had evolved into a groundwater-fed saltpan. Polygonally fractured efflorescent halite evaporite and bedded gypsum and gypsarenite evaporite deposits that overlie the diatomite unit are evidence of this saltpan environment. The modern Atacama Desert is hyperarid, with an average precipitation of 2 mm/yr in the driest areas. The paleosol record demonstrates that hyperarid conditions dominated this region since the middle Miocene, albeit with multiple fluctuations to less arid conditions of short to moderately long duration. This hyperaridity is due to the desert’s latitude, ocean currents and the rainshadow created by the Andes. There is no evidence that the rainshadow effect has diminished since the late Miocene, hence global climate changes affecting ocean temperatures and atmospheric patterns likely caused the wetter periods in the Atacama. In particular, prior workers noted wetter conditions in the region ~6-5 Ma, followed by a return to hyper-arid conditions. The regional Pliocene return to hyperaridity coincided with the desiccation of the Tiliviche endorheic lake system. During the late Miocene (~6-5 Ma) wetter

  15. The Landers earthquake; preliminary instrumental results

    Science.gov (United States)

    Jones, L.; Mori, J.; Hauksson, E.

    1992-01-01

    Early on the morning of June 28, 1992, millions of people in southern California were awakened by the largest earthquake to occur in the western United States in the past 40 yrs. At 4:58 a.m PDT (local time), faulting associated with the magnitude 7.3 earthquake broke through to earth's surface near the town of Landers, California. the surface rupture then propagated 70km (45 mi) to the north and northwest along a band of faults passing through the middle of the Mojave Desert. Fortunately, the strongest shaking occurred in uninhabited regions of the Mojave Desert. Still one child was killed in Yucca Valley, and about 400 people were injured in the surrounding area. the desert communities of Landers, Yucca Valley, and Joshua Tree in San Bernardino Country suffered considerable damage to buildings and roads. Damage to water and power lines caused problems in many areas. 

  16. Desertification triggered by hydrological and geomorphological processes and palaeoclimatic changes in the Hunshandake Sandy Lands, Inner Mongolia, northern China

    Science.gov (United States)

    Yang, X.; Scuderi, L. A.; Wang, X.; Zhang, D.; Li, H.; Forman, S. L.

    2015-12-01

    Although Pleistocene and earlier aeolian sediments in the adjacent regions of deserts were used as indicators for the occurrence of the deserts in northern China, our multidisciplinary investigation in the Hunshandake Sandy Lands, Inner Mongolia, a typical landscape in the eastern portion of the Asian mid-latitude desert belt, demonstrates that this sandy desert is just ca. 4000 years old. Before the formation of the current sand dunes, Hunshandke was characterized with large and deep lakes and grasssland vegetation, as many sedimentary sections indicate. Optically Stimulated Luminescence (OSL) chronology shows that the three large former lakes where we have done detailed investigation, experienced high stands from early Holocene to ca. 5 ka. During the early and middle Holocene this desert was a temperate steppe environment, dominated by grasslands and trees near lakes and streams, as various palaeoenvironmental proxies suggest. While North Hemisphere's monsoonal regions experienced catastrophic precipitation decreases at ca. 4.2 ka, many parts of the presently arid and semi-arid zone in northern China were shifted from Green to Desert state. In the eastern portion of the Hunshandake, the desertification was, however, directly associated with groundwater capture by the Xilamulun River, as the palaeo-drainage remains show. The process of groundwater sapping initiated a sudden and irreversible region-wide hydrologic event that lowered the groundwater table and exacerbated the desertification of the Hunshandake, and further resulting in post-Humid period mass migration of northern China's Hongshan culture from that we think the modern Chinese civilization has been rooted.

  17. Grassland to shrubland state transitions enhance carbon sequestration in the northern Chihuahuan Desert.

    Science.gov (United States)

    Petrie, M D; Collins, S L; Swann, A M; Ford, P L; Litvak, M E

    2015-03-01

    The replacement of native C4 -dominated grassland by C3 -dominated shrubland is considered an ecological state transition where different ecological communities can exist under similar environmental conditions. These state transitions are occurring globally, and may be exacerbated by climate change. One consequence of the global increase in woody vegetation may be enhanced ecosystem carbon sequestration, although the responses of arid and semiarid ecosystems may be highly variable. During a drier than average period from 2007 to 2011 in the northern Chihuahuan Desert, we found established shrubland to sequester 49 g C m(-2) yr(-1) on average, while nearby native C4 grassland was a net source of 31 g C m(-2) yr(-1) over this same period. Differences in C exchange between these ecosystems were pronounced--grassland had similar productivity compared to shrubland but experienced higher C efflux via ecosystem respiration, while shrubland was a consistent C sink because of a longer growing season and lower ecosystem respiration. At daily timescales, rates of carbon exchange were more sensitive to soil moisture variation in grassland than shrubland, such that grassland had a net uptake of C when wet but lost C when dry. Thus, even under unfavorable, drier than average climate conditions, the state transition from grassland to shrubland resulted in a substantial increase in terrestrial C sequestration. These results illustrate the inherent tradeoffs in quantifying ecosystem services that result from ecological state transitions, such as shrub encroachment. In this case, the deleterious changes to ecosystem services often linked to grassland to shrubland state transitions may at least be partially offset by increased ecosystem carbon sequestration. © 2014 John Wiley & Sons Ltd.

  18. Aridification of the Sahara desert caused by Tethys Sea shrinkage during the Late Miocene

    Science.gov (United States)

    Zhang, Zhongshi; Ramstein, Gilles; Schuster, Mathieu; Li, Camille; Contoux, Camille; Yan, Qing

    2014-09-01

    It is widely believed that the Sahara desert is no more than ~2-3 million years (Myr) old, with geological evidence showing a remarkable aridification of north Africa at the onset of the Quaternary ice ages. Before that time, north African aridity was mainly controlled by the African summer monsoon (ASM), which oscillated with Earth's orbital precession cycles. Afterwards, the Northern Hemisphere glaciation added an ice volume forcing on the ASM, which additionally oscillated with glacial-interglacial cycles. These findings led to the idea that the Sahara desert came into existence when the Northern Hemisphere glaciated ~2-3 Myr ago. The later discovery, however, of aeolian dune deposits ~7 Myr old suggested a much older age, although this interpretation is hotly challenged and there is no clear mechanism for aridification around this time. Here we use climate model simulations to identify the Tortonian stage (~7-11 Myr ago) of the Late Miocene epoch as the pivotal period for triggering north African aridity and creating the Sahara desert. Through a set of experiments with the Norwegian Earth System Model and the Community Atmosphere Model, we demonstrate that the African summer monsoon was drastically weakened by the Tethys Sea shrinkage during the Tortonian, allowing arid, desert conditions to expand across north Africa. Not only did the Tethys shrinkage alter the mean climate of the region, it also enhanced the sensitivity of the African monsoon to orbital forcing, which subsequently became the major driver of Sahara extent fluctuations. These important climatic changes probably caused the shifts in Asian and African flora and fauna observed during the same period, with possible links to the emergence of early hominins in north Africa.

  19. A 22,000-Year Record of Monsoonal Precipitation from Northern Chile's Atacama Desert.

    Science.gov (United States)

    Betancourt; Latorre; Rech; Quade; Rylander

    2000-09-01

    Fossil rodent middens and wetland deposits from the central Atacama Desert (22 degrees to 24 degrees S) indicate increasing summer precipitation, grass cover, and groundwater levels from 16.2 to 10.5 calendar kiloyears before present (ky B.P.). Higher elevation shrubs and summer-flowering grasses expanded downslope across what is now the edge of Absolute Desert, a broad expanse now largely devoid of rainfall and vegetation. Paradoxically, this pluvial period coincided with the summer insolation minimum and reduced adiabatic heating over the central Andes. Summer precipitation over the central Andes and central Atacama may depend on remote teleconnections between seasonal insolation forcing in both hemispheres, the Asian monsoon, and Pacific sea surface temperature gradients. A less pronounced episode of higher groundwater levels in the central Atacama from 8 to 3 ky B.P. conflicts with an extreme lowstand of Lake Titicaca, indicating either different climatic forcing or different response times and sensitivities to climatic change.

  20. Characteristics and origin of rock varnish from the hyperarid coastal deserts of northern Peru

    Science.gov (United States)

    Jones, Charles E.

    1991-01-01

    The characteristics of a new type of rock varnish from the hyperarid coastal deserts of northern Peru, combined with laboratory experiments on associated soil materials, provide new insights into the formation of rock varnish. The Peruvian varnish consists of an Fe-rich, Mn-poor component covering up to 95% of a varnished surface and a Fe-rich, Mn-rich component found only in pits and along cracks and ridges. The alkaline soils plus the catalytic Fe oxyhydroxides that coat much of the varnish surfaces make the Peruvian situation ideal for physicochemical precipitation of Mn. However, the low Mn content of the dominant Fe-rich, Mn-poor component suggests that such precipitation is minor. This, plus the presence of abundant bacteria in the Mn-rich varnish and the recorded presence of Mn-precipitating bacteria in varnish elsewhere, suggests that bacteria are almost solely responsible for Mn-precipitation in rock varnish. A set of experiments involving Peruvian soil samples in contact with water-CO 2 solutions indicates that natural fogs or dews release Mn but not Fe when they come in contact with eolian materials on rock surfaces. This mechanism may efficiently provide Mn to bacteria on varnishing surfaces. The lack of Fe in solution suggests that a large but unknown proportion of Fe in varnish may be in the form of insoluble Fe oxyhydroxides sorbed onto the clay minerals that form the bulk of rock varnish. The results of this study do not substantively change R. I. Dorn's paleoenvironmental interpretations of varnish Mn:Fe ratios, but they do suggest areas for further inquiry.

  1. Background aerosol composition in the Namib desert

    International Nuclear Information System (INIS)

    Annegarn, H.J.; Sellschop, J.P.F.; Van Grieken, R.E.; Winchester, J.W.

    The sulfur content of atmospheric particulate matter in non-urban areas is apparently rising above natural levels in the Northern Hemisphere. Sulfur emissions to the atmosphere are also increasing with increasing combustion of fossil fuels. Current research is being focussed not only on gaseous sulfur dioxide, but also on particulate forms, including sulfates and sulfuric acid. A global network of non urban studies using proton induced X-ray emission (PIXE) of which the sampling site at Gobabeb in the Namib desert is one, are developing a data base on which questions of natural levels of sulfur can be answered

  2. HOW MUCH CARBON IS STORED IN DESERTS? AN APPROACH FOR THE CHILEAN ATACAMA DESERT USING LANDSAT-8 PRODUCTS

    Directory of Open Access Journals (Sweden)

    H. J. Hernández

    2016-06-01

    Full Text Available The Atacama Desert in northern Chile is known as the driest place on Earth, with an average rainfall of about 15 mm per year. Despite these conditions, it contains a rich variety of flora with hundreds of species characterised by their extraordinary ability to adapt to this extreme environment. These biotic components have a direct link to important ecosystem services, especially those related to carbon storage and sequestration. No quantitative assessment is currently available for these services and the role of the desert in this matter remains unclear. We propose an approach to estimate above-ground biomass (AGB using Landsat-8 data, which we tested in the Taparacá region, located in the northern section of the desert. To calibrate and validate the models, we used field data from 86 plots and several spectral indexes (NDVI, EVI and SAVI obtained from the provisional Landsat-8 Surface-reflectance products. We applied randomised branch sampling and allometry principles (non-destructive methods to collect biomass samples for all plant biological types: wetlands, steppes, shrubs and trees. All samples were dried in an oven until they reached constant weight and the final values were used to extrapolate dry matter content (AGB to each plot in terms of kg m-2. We used all available scenes from September 2014 to August 2015 to calculate the maximum, minimum and average value for each index in each pixel within this period. For modeling, we used the method based on classification and regression trees called random forest (RF, available in the statistical software R-Project. The explained variance obtained by the RF algorithm was around 80-85%, and it improved when a wetland vector layer was used as the predictive factor in the model to reach the range 85-90%. The mean error was 1.45 kg m-2 of dry matter. The best model was obtained using the maximum and mean values of SAVI and EVI indexes. We were able to estimate total biomass storage of around 8

  3. Faulting and groundwater in a desert environment: constraining hydrogeology using time-domain electromagnetic data

    Science.gov (United States)

    Bedrosian, Paul A.; Burgess, Matthew K.; Nishikawa, Tracy

    2013-01-01

    Within the south-western Mojave Desert, the Joshua Basin Water District is considering applying imported water into infiltration ponds in the Joshua Tree groundwater sub-basin in an attempt to artificially recharge the underlying aquifer. Scarce subsurface hydrogeological data are available near the proposed recharge site; therefore, time-domain electromagnetic (TDEM) data were collected and analysed to characterize the subsurface. TDEM soundings were acquired to estimate the depth to water on either side of the Pinto Mountain Fault, a major east-west trending strike-slip fault that transects the proposed recharge site. While TDEM is a standard technique for groundwater investigations, special care must be taken when acquiring and interpreting TDEM data in a twodimensional (2D) faulted environment. A subset of the TDEM data consistent with a layered-earth interpretation was identified through a combination of three-dimensional (3D) forward modelling and diffusion time-distance estimates. Inverse modelling indicates an offset in water table elevation of nearly 40 m across the fault. These findings imply that the fault acts as a low-permeability barrier to groundwater flow in the vicinity of the proposed recharge site. Existing production wells on the south side of the fault, together with a thick unsaturated zone and permeable near-surface deposits, suggest the southern half of the study area is suitable for artificial recharge. These results illustrate the effectiveness of targeted TDEM in support of hydrological studies in a heavily faulted desert environment where data are scarce and the cost of obtaining these data by conventional drilling techniques is prohibitive.

  4. Controls on plant functional surface cover types along a precipitation gradient in the Negev Desert of Israel

    NARCIS (Netherlands)

    Buis, E.; Veldkamp, A.; Boeken, B.; Breemen, van N.

    2009-01-01

    We studied the controls on functional surface cover types in four catchments along a semi-arid to arid precipitation gradient in the northern Negev Desert of Israel. First, we selected four functional types, based on their unique water use and redistribution functionality: shrubs, Asphodelus

  5. The effects of extreme rainfall events on carbon release from Biological Soil Crusts covered soil in fixed sand dunes in the Tengger Desert, northern China

    Science.gov (United States)

    Zhao, Yang; Li, Xinrong; Pan, Yanxia; Hui, Rong

    2016-04-01

    How soil cover types and extreme rainfall event influence carbon (C) release in temperate desert ecosystems has largely been unexplored. We assessed the effects of extreme rainfall (quantity and intensity) events on the carbon release from soils covered by different types of biological soil crusts (BSCs) in fixed sand dunes in the Tengger Desert, Shapotou regionof northern China. We removed intact crusts down to 10 cm and measured them in PVC mesocosms. A Li-6400-09 Soil Chamber was used to measure the respiration rates of the BSCs immediately after the rainfall stopped, and continued until the respiration rates of the BSCs returned to the pre-rainfall basal rate. Our results showed that almost immediately after extreme rainfall events the respiration rates of algae crust and mixed crust were significantly inhibited, but moss crust was not significantly affected. The respiration rates of algae crust, mixed crust, and moss crust in extreme rainfall quantity and intensity events were, respectively, 0.12 and 0.41 μmolCO2/(m2•s), 0.10 and 0.45 μmolCO2/(m2•s), 0.83 and 1.69 μmolCO2/(m2•s). Our study indicated that moss crust in the advanced succession stage can well adapt to extreme rainfall events in the short term. Keywords: carbon release; extreme rainfall events; biological soil crust

  6. 77 FR 47536 - Revisions to the California State Implementation Plan, Mojave Desert, Northern Sierra, Sacramento...

    Science.gov (United States)

    2012-08-09

    ... San Diego Air Pollution Agencies AGENCY: Environmental Protection Agency (EPA). ACTION: Direct final...), Sacramento Metropolitan Air Quality Management District (SMAQMD) and San Diego County Air Pollution Control...) September 2008, 5. ``Control Techniques Guidelines for Miscellaneous Metal and Plastic Parts Coatings,'' EPA...

  7. Regional and Seasonal Diet of the Western Burrowing Owl in South-Central Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Derek B. Hall, Paul D. Greger, Jeffrey R. Rosier

    2009-04-01

    We examined diets of Western Burrowing Owls (Athene cunicularia hypugaea) based on contents of pellets and large prey remains collected year-round at burrows in each of the 3 regions in south central Nevada (Mojave Desert, Great Basin Desert, and Transition region). The most common prey items, based on percent frequency of occurrence, were crickets and grasshoppers, beetles, rodents, sun spiders, and scorpions. The most common vertebrate prey was kangaroo rats (Dipodomys spp.). True bugs (Hemiptera), scorpions, and western harvest mice (Reithrodontomys megalotis) occurred most frequently in pellets from the Great Basin Desert region. Kangaroo rats (Dipodomys spp.) and pocket mice (Perognathinae) were the most important vertebrate prey items in the Transition and Mojave Desert regions, respectively. Frequency of occurrence of any invertebrate prey was high (>80%) in samples year-round but dropped in winter samples, with scorpions and sun spiders exhibiting the steepest declines. Frequency of occurrence of any vertebrate prey peaked in spring samples, was intermediate for winter and summer samples, and was lowest in fall samples. With the possible exception of selecting for western harvest mice in the Great Basin Desert region, Western Burrowing Owls in our study appeared to be opportunistic foragers with a generalist feeding strategy.

  8. Distance to human populations influences epidemiology of respiratory disease in desert tortoises

    Science.gov (United States)

    Berry, Kristin H.; Ashley A. Coble (formerly Emerson), no longer USGS; Yee, Julie L.; Mack, Jeremy S.; Perry, William M.; Anderson, Kemp M.; Brown, Mary B.

    2014-01-01

    We explored variables likely to affect health of Agassiz's desert tortoises (Gopherus agassizii) in a 1,183-km2 study area in the central Mojave Desert of California between 2005 and 2008. We evaluated 1,004 tortoises for prevalence and spatial distribution of 2 pathogens, Mycoplasma agassizii and M. testudineum, that cause upper respiratory tract disease. We defined tortoises as test-positive if they were positive by culture and/or DNA identification or positive or suspect for specific antibody for either of the two pathogens. We used covariates of habitat (vegetation, elevation, slope, and aspect), tortoise size and sex, distance from another test-positive tortoise, and anthropogenic variables (distances to roads, agricultural areas, playas, urban areas, and centroids of human-populated census blocks). We used both logistic regression models and regression trees to evaluate the 2 species of Mycoplasma separately. The prevalence of test-positive tortoises was low: 1.49% (15/1,004) for M. agassizii and 2.89% (29/1,004) for M. testudineum. The spatial distributions of test-positive tortoises for the 2 Mycoplasma species showed little overlap; only 2 tortoises were test-positive for both diseases. However, the spatial distributions did not differ statistically between the 2 species. We consistently found higher prevalence of test-positive tortoises with shorter distances to centroids of human-populated census blocks. The relationship between distance to human-populated census blocks and tortoises that are test-positive for M. agassizii and potentially M. testudineum may be related to release or escape of captive tortoises because the prevalence of M. agassizii in captive tortoises is high. Our findings have application to other species of chelonians where both domestic captive and wild populations exist. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  9. Extended Radio Emission in MOJAVE Blazars: Challenges to Unification

    Science.gov (United States)

    Kharb, P.; Lister, M. L.; Cooper, N. J.

    2010-02-01

    We present the results of a study on the kiloparsec-scale radio emission in the complete flux density limited MOJAVE sample, comprising 135 radio-loud active galactic nuclei. New 1.4 GHz Very Large Array (VLA) radio images of six quasars and previously unpublished images of 21 blazars are presented, along with an analysis of the high-resolution (VLA A-array) 1.4 GHz emission for the entire sample. While extended emission is detected in the majority of the sources, about 7% of the sources exhibit only radio core emission. We expect more sensitive radio observations, however, to detect faint emission in these sources, as we have detected in the erstwhile "core-only" source, 1548+056. The kiloparsec-scale radio morphology varies widely across the sample. Many BL Lac objects exhibit extended radio power and kiloparsec-scale morphology typical of powerful FRII jets, while a substantial number of quasars possess radio powers intermediate between FRIs and FRIIs. This poses challenges to the simple radio-loud unified scheme, which links BL Lac objects to FRIs and quasars to FRIIs. We find a significant correlation between extended radio emission and parsec-scale jet speeds: the more radio powerful sources possess faster jets. This indicates that the 1.4 GHz (or low-frequency) radio emission is indeed related to jet kinetic power. Various properties such as extended radio power and apparent parsec-scale jet speeds vary smoothly between different blazar subclasses, suggesting that, at least in terms of radio jet properties, the distinction between quasars and BL Lac objects, at an emission-line equivalent width of 5 Å, is essentially an arbitrary one. While the two blazar subclasses display a smooth continuation in properties, they often reveal differences in the correlation test results when considered separately. This can be understood if, unlike quasars, BL Lac objects do not constitute a homogeneous population, but rather include both FRI and FRII radio galaxies for

  10. EXTENDED RADIO EMISSION IN MOJAVE BLAZARS: CHALLENGES TO UNIFICATION

    International Nuclear Information System (INIS)

    Kharb, P.; Lister, M. L.; Cooper, N. J.

    2010-01-01

    We present the results of a study on the kiloparsec-scale radio emission in the complete flux density limited MOJAVE sample, comprising 135 radio-loud active galactic nuclei. New 1.4 GHz Very Large Array (VLA) radio images of six quasars and previously unpublished images of 21 blazars are presented, along with an analysis of the high-resolution (VLA A-array) 1.4 GHz emission for the entire sample. While extended emission is detected in the majority of the sources, about 7% of the sources exhibit only radio core emission. We expect more sensitive radio observations, however, to detect faint emission in these sources, as we have detected in the erstwhile 'core-only' source, 1548+056. The kiloparsec-scale radio morphology varies widely across the sample. Many BL Lac objects exhibit extended radio power and kiloparsec-scale morphology typical of powerful FRII jets, while a substantial number of quasars possess radio powers intermediate between FRIs and FRIIs. This poses challenges to the simple radio-loud unified scheme, which links BL Lac objects to FRIs and quasars to FRIIs. We find a significant correlation between extended radio emission and parsec-scale jet speeds: the more radio powerful sources possess faster jets. This indicates that the 1.4 GHz (or low-frequency) radio emission is indeed related to jet kinetic power. Various properties such as extended radio power and apparent parsec-scale jet speeds vary smoothly between different blazar subclasses, suggesting that, at least in terms of radio jet properties, the distinction between quasars and BL Lac objects, at an emission-line equivalent width of 5 A, is essentially an arbitrary one. While the two blazar subclasses display a smooth continuation in properties, they often reveal differences in the correlation test results when considered separately. This can be understood if, unlike quasars, BL Lac objects do not constitute a homogeneous population, but rather include both FRI and FRII radio galaxies for

  11. Estimating Winter Annual Biomass in the Sonoran and Mojave Deserts with Satellite- and Ground-Based Observations

    Directory of Open Access Journals (Sweden)

    Bradley C. Reed

    2013-02-01

    Full Text Available Winter annual plants in southwestern North America influence fire regimes, provide forage, and help prevent erosion. Exotic annuals may also threaten native species. Monitoring winter annuals is difficult because of their ephemeral nature, making the development of a satellite monitoring tool valuable. We mapped winter annual aboveground biomass in the Desert Southwest from satellite observations, evaluating 18 algorithms using time-series vegetation indices (VI. Field-based biomass estimates were used to calibrate and evaluate each algorithm. Winter annual biomass was best estimated by calculating a base VI across the period of record and subtracting it from the peak VI for each winter season (R2 = 0.92. The normalized difference vegetation index (NDVI derived from 8-day reflectance data provided the best estimate of winter annual biomass. It is important to account for the timing of peak vegetation when relating field-based estimates to satellite VI data, since post-peak field estimates may indicate senescent biomass which is inaccurately represented by VI-based estimates. Images generated from the best-performing algorithm show both spatial and temporal variation in winter annual biomass. Efforts to manage this variable resource would be enhanced by a tool that allows the monitoring of changes in winter annual resources over time.

  12. Effect of desertification on productivity in a desert steppe.

    Science.gov (United States)

    Tang, Zhuangsheng; An, Hui; Deng, Lei; Wang, Yingying; Zhu, Guangyu; Shangguan, Zhouping

    2016-06-14

    Desertification, one of the most severe types of land degradation in the world, is of great importance because it is occurring, to some degree, on approximately 40% of the global land area and is affecting more than 1 billion people. In this study, we used a space-for-time method to quantify the impact of five different desertification regimes (potential (PD), light (LD), moderate (MD), severe (SD), and very severe (VSD)) on a desert steppe ecosystem in northern China to examine the relationship between the productivity of the vegetation and soil properties and to determine the mechanism underlying the effects of desertification on productivity. Our results showed that the effects of desertification on TP (total phosphorus) and AP (available phosphorus) were not significant, and desertification decreased productivity in the desert steppe as a result of direct changes to soil physical properties, which can directly affect soil chemical properties. Therefore, intensive grassland management to improve soil quality may result in the long-term preservation of ecosystem functions and services.

  13. FIELD SIMULATION OF WET AND DRY YEARS IN THE CHIHUAHUAN DESERT: SOIL MOISTURE, N MINERALIZATION AND ION-EXCHANGE RESIN BAGS

    Science.gov (United States)

    Irrigation and rain-out shelters were used to simulate precipitation patterns of wet and dry years in the northern Chihuahuan Desert. Irrigation provided approximately double the long-term average monthly precipitation. Rain was excluded during the wet season, July-October, to si...

  14. Mapping habitat for multiple species in the Desert Southwest

    Science.gov (United States)

    Inman, Richard D.; Nussear, Kenneth E.; Esque, Todd C.; Vandergast, Amy G.; Hathaway, Stacie A.; Wood, Dustin A.; Barr, Kelly R.; Fisher, Robert N.

    2014-01-01

    Many utility scale renewable energy projects are currently proposed across the Mojave Ecoregion. Agencies that manage biological resources throughout this region need to understand the potential impacts of these renewable energy projects and their associated infrastructure (for example, transmission corridors, substations, access roads, etc.) on species movement, genetic exchange among populations, and species’ abilities to adapt to changing environmental conditions. Understanding these factors will help managers’ select appropriate project sites and possibly mitigate for anticipated effects of management activities. We used species distribution models to map habitat for 15 species across the Mojave Ecoregion to aid regional land-use management planning. Models were developed using a common 1 × 1 kilometer resolution with maximum entropy and generalized additive models. Occurrence data were compiled from multiple sources, including VertNet (http://vertnet.org/), HerpNET (http://www.herpnet.org), and MaNIS (http://manisnet.org), as well as from internal U.S. Geological Survey databases and other biologists. Background data included 20 environmental covariates representing terrain, vegetation, and climate covariates. This report summarizes these environmental covariates and species distribution models used to predict habitat for the 15 species across the Mojave Ecoregion.

  15. Medicinal flora of the Cholistan desert: a review

    International Nuclear Information System (INIS)

    Hmeed, M.; Ashraf, M.; Nawaz, T.; Naz, N.; Ahmad, M.S.A.; Al-Quriany, F.; Younis, A.

    2011-01-01

    The Cholistan desert can be divided into two distinct regions on the basis of topography, soil type and texture, and vegetation structure: the northern Lesser Cholistan and southern Greater Cholistan. The desert is characterized by large saline compacted areas with alluvial clay, sandy ridges and dunes, and semi-stabilized to frequently shifting dunes. The climate is subtropical, harsh, hot and arid, and influenced by seasonal monsoons. Vegetation cover on the sand dunes is comprised by a few tussock-forming grasses including Cenchrus ciliaris, Panicum turgidum and Lasiurus scindicus, along with perennial shrubs Calligonum polygonoides, Leptadenia pyrotechnica and Aerva javanica. Interdunal flats are dominated by grasses, mainly Cymbopogon jwarancusa, Sporobolus ioclados, Panicum antidotale, and Ochthochloa compressa, and tall shrubs Calligonum polygonoides and Capparis decidua. Vegetation of saline patches is specific, dominated by halophytes mainly belonging to family Chenopodiaceae (Amaranthaceae). Many plants of the Cholistan desert, including Neurada procumbens, Aerva javanica, Capparis decidua, Cleome brachycarpa, Dipterygium glaucum, Gisekia pharnacioides, Suaeda fruticosa, Achyranthes aspera, Aerva javanica, Alhagi maurorum, Calotropis procera, Capparis decidua, Zaleya pentandra, Mollugo cerviana, Ziziphus mauritiana, Boerhavia procumbens, Cressa cretica and Crotalaria burhia, are frequently used by the local inhabitants to cure chronic and acute diseases. A variety of medicinally important chemical compounds have been extracted and identified from the plants of the Cholistan desert, including terpenes and triterpenoids, sterols and steroids, phenolics, flavonoids, gums and resins, quinones, anthocyanidines, saponins, antioxidants and fatty acids. Habitat degradation, intensive agricultural practices and over exploitation of resources pose a serious threat to the diversity of ethno botanically important plant species. Allopathic medicines are generally

  16. Lut Desert, Iran

    Science.gov (United States)

    1981-01-01

    Iran is a large country with several desert regions. In the Dasht-E-Lut (Lut Desert) (30.5N, 58.5E) an area known as Namak-Zar, about 100 miles east of the city of Kerman, is at the center of this photograph. Some of the world's most prominent Yardangs (very long, parallel ridges and depressions) have been wind eroded in these desert dry lake bed sediments. At the left of the photo is a large field of sand dunes at right angles to the wind.

  17. The pre-Columbian introduction and dispersal of Algarrobo (Prosopis, Section Algarobia) in the Atacama Desert of northern Chile

    Science.gov (United States)

    Gayo, Eugenia M.; Santoro, Calogero M.; De Pol-Holz, Ricardo; Latorre, Claudio

    2017-01-01

    Archaeological and palaeoecological studies throughout the Americas have documented widespread landscape and environmental transformation during the pre-Columbian era. The highly dynamic Formative (or Neolithic) period in northern Chile (ca. 3700–1550 yr BP) brought about the local establishment of agriculture, introduction of new crops (maize, quinoa, manioc, beans, etc.) along with a major population increase, new emergent villages and technological innovations. Even trees such as the Algarrobos (Prosopis section Algarobia) may have been part of this transformation. Here, we provide evidence that these species were not native to the Atacama Desert of Chile (18–27°S), appearing only in the late Holocene and most likely due to human actions. We assembled a database composed of 41 taxon specific AMS radiocarbon dates from archaeobotanical and palaeoecological records (rodent middens, leaf litter deposits), as well an extensive bibliographical review comprising archaeobotanical, paleoecological, phylogenetic and taxonomic data to evaluate the chronology of introduction and dispersal of these trees. Although Algarrobos could have appeared as early as 4200 yr BP in northernmost Chile, they only became common throughout the Atacama over a thousand years later, during and after the Formative period. Cultural and natural factors likely contributed to its spread and consolidation as a major silvicultural resource. PMID:28742126

  18. 40 CFR 52.220 - Identification of plan.

    Science.gov (United States)

    2010-07-01

    ... (Mojave Desert AQMD only). (xx) Mariposa County APCD. (A) Previously approved on September 22, 1972 in.... (viii) Mariposa County APCD. (A) Rules 101, 102, 201, 202, 203 (a-f, h, i, and k), 204-216, 301-303, 305...

  19. Stream capture to form Red Pass, northern Soda Mountains, California

    Science.gov (United States)

    Miller, David; Mahan, Shannon

    2014-01-01

    Red Pass, a narrow cut through the Soda Mountains important for prehistoric and early historic travelers, is quite young geologically. Its history of downcutting to capture streams west of the Soda Mountains, thereby draining much of eastern Fort Irwin, is told by the contrast in alluvial fan sediments on either side of the pass. Old alluvial fan deposits (>500 ka) were shed westward off an intact ridge of the Soda Mountains but by middle Pleistocene time, intermediate-age alluvial fan deposits (~100 ka) were laid down by streams flowing east through the pass into Silurian Valley. The pass was probably formed by stream capture driven by high levels of groundwater on the west side. This is evidenced by widespread wetland deposits west of the Soda Mountains. Sapping and spring discharge into Silurian Valley over millennia formed a low divide in the mountains that eventually was overtopped and incised by a stream. Lessons include the importance of groundwater levels for stream capture and the relatively youthful appearance of this ~100-200 ka feature in the slowly changing Mojave Desert landscape.

  20. Predicting Pinus monophylla forest cover in the Baja California Desert by remote sensing

    Directory of Open Access Journals (Sweden)

    Jonathan G. Escobar-Flores

    2018-04-01

    Full Text Available The Californian single-leaf pinyon (Pinus monophylla var. californiarum, a subspecies of the single-leaf pinyon (the world’s only one-needled pine, inhabits semi-arid zones of the Mojave Desert (southern Nevada and southeastern California, US and also of northern Baja California (Mexico. This tree is distributed as a relict subspecies, at elevations of between 1,010 and 1,631 m in the geographically isolated arid Sierra La Asamblea, an area characterized by mean annual precipitation levels of between 184 and 288 mm. The aim of this research was (i to estimate the distribution of P. monophylla var. californiarum in Sierra La Asamblea by using Sentinel-2 images, and (ii to test and describe the relationship between the distribution of P. monophylla and five topographic and 18 climate variables. We hypothesized that (i Sentinel-2 images can be used to predict the P. monophylla distribution in the study site due to the finer resolution (×3 and greater number of bands (×2 relative to Landsat-8 data, which is publically available free of charge and has been demonstrated to be useful for estimating forest cover, and (ii the topographical variables aspect, ruggedness and slope are particularly important because they represent important microhabitat factors that can determine the sites where conifers can become established and persist. An atmospherically corrected a 12-bit Sentinel-2A MSI image with 10 spectral bands in the visible, near infrared, and short-wave infrared light region was used in combination with the normalized differential vegetation index (NDVI. Supervised classification of this image was carried out using a backpropagation-type artificial neural network algorithm. Stepwise multiple linear binominal logistical regression and Random Forest classification including cross validation were used to model the associations between presence/absence of P. monophylla and the five topographical and 18 climate variables. Using supervised

  1. [Paleoclimatology studies for Yucca Mountain site characterization]. Final report

    International Nuclear Information System (INIS)

    1996-01-01

    This report consists of two separate papers: Fernley Basin studies; and Influence of sediment supply and climate change on late Quaternary eolian accumulation patterns in the Mojave Desert. The first study involved geologic mapping of late Quaternary sediments and lacustrine features combined with precise control of elevations and descriptions of sediments for each of the major sedimentary units. The second paper documents the response of a major eolian sediment transport system in the east-central Mojave Desert: that which feeds the Kelso Dune field. Information from geomorphic, stratigraphic, and sedimentologic studies of eolian deposits and landforms is combined with luminescence dating of these deposits to develop a chronology of periods of eolian deposition. Both studies are related to site characterization studies of Yucca Mountain and the forecasting of rainfall patterns possible for the high-level radioactive waste repository lifetime

  2. Vascular plants of the Nevada Test Site and Central-Southern Nevada: ecologic and geographic distributions

    Energy Technology Data Exchange (ETDEWEB)

    Beatley, J.C.

    1976-01-01

    The physical environment of the Nevada Test Site and surrounding area is described with regard to physiography, geology, soils, and climate. A discussion of plant associations is given for the Mojave Desert, Transition Desert, and Great Basin Desert. The vegetation of disturbed sites is discussed with regard to introduced species as well as endangered and threatened species. Collections of vascular plants were made during 1959 to 1975. The plants, belonging to 1093 taxa and 98 families are listed together with information concerning ecologic and geographic distributions. Indexes to families, genera, and species are included. (HLW)

  3. In situ metabolism in halite endolithic microbial communities of the hyperarid Atacama Desert

    Directory of Open Access Journals (Sweden)

    Alfonso F Davila

    2015-10-01

    Full Text Available The Atacama Desert of northern Chile is one of the driest regions on Earth, with areas that exclude plants and where soils have extremely low microbial biomass. However, in the driest parts of the desert there are microorganisms that colonize the interior of halite nodules in fossil continental evaporites, where they are sustained by condensation of atmospheric water triggered by the salt substrate. Using a combination of in situ observations of variable chlorophyll fluorescence and controlled laboratory experiments, we show that this endolithic community is capable of carbon fixation both through oxygenic photosynthesis and potentially ammonia oxidation. We also present evidence that photosynthetic activity is finely tuned to moisture availability and solar insolation and can be sustained for days, and perhaps longer, after a wetting event. This is the first demonstration of in situ active metabolism in the hyperarid core of the Atacama Desert, and it provides the basis for proposing a self-contained, endolithic community that relies exclusively on non-rainfall sources of water. Our results contribute to an increasing body of evidence that even in hyperarid environments active metabolism, adaptation and growth can occur in highly specialized microhabitats.

  4. Evapotranspiration partitioning, stomatal conductance, and components of the water balance: A special case of a desert ecosystem in China

    Science.gov (United States)

    Zhao, Wenzhi; Liu, Bing; Chang, Xuexiang; Yang, Qiyue; Yang, Yuting; Liu, Zhiling; Cleverly, James; Eamus, Derek

    2016-07-01

    Partitioning evapotranspiration (ET) into its components reveals details of the processes that underlie ecosystem hydrologic budgets and their feedback to the water cycle. We measured rates of actual evapotranspiration (ETa), canopy transpiration (Tc), soil evaporation (Eg), canopy-intercepted precipitation (EI), and patterns of stomatal conductance of the desert shrub Calligonum mongolicum in northern China to determine the water balance of this ecosystem. The ETa was 251 ± 8 mm during the growing period, while EI, Tc, and Eg accounted for 3.2%, 63.9%, and 31.3%, respectively, of total water use (256 ± 4 mm) during the growing period. In this unique ecosystem, groundwater was the main water source for plant transpiration and soil evaporation, Tc and exceeded 60% of the total annual water used by desert plants. ET was not sensitive to air temperature in this unique desert ecosystem. Partitioning ET into its components improves our understanding of the mechanisms that underlie adaptation of desert shrubs, especially the role of stomatal regulation of Tc as a determinant of ecosystem water balance.

  5. Factors affecting the thermal environment of Agassiz’s Desert Tortoise (Gopherus agassizii) cover sites in the Central Mojave Desert during periods of temperature extremes

    Science.gov (United States)

    Mack, Jeremy S.; Berry, Kristin H.; Miller, David; Carlson, Andrea S.

    2015-01-01

    Agassiz's Desert Tortoises (Gopherus agassizii) spend >95% of their lives underground in cover sites that serve as thermal buffers from temperatures, which can fluctuate >40°C on a daily and seasonal basis. We monitored temperatures at 30 active tortoise cover sites within the Soda Mountains, San Bernardino County, California, from February 2004 to September 2006. Cover sites varied in type and structural characteristics, including opening height and width, soil cover depth over the opening, aspect, tunnel length, and surficial geology. We focused our analyses on periods of extreme temperature: in summer, between July 1 and September 1, and winter, between November 1 and February 15. With the use of multivariate regression tree analyses, we found cover-site temperatures were influenced largely by tunnel length and subsequently opening width and soil cover. Linear regression models further showed that increasing tunnel length increased temperature stability and dampened seasonal temperature extremes. Climate change models predict increased warming for southwestern North America. Cover sites that buffer temperature extremes and fluctuations will become increasingly important for survival of tortoises. In planning future translocation projects and conservation efforts, decision makers should consider habitats with terrain and underlying substrate that sustain cover sites with long tunnels and expanded openings for tortoises living under temperature extremes similar to those described here or as projected in the future.

  6. 77 FR 12526 - Revisions to the California State Implementation Plan, Antelope Valley Air Quality Management...

    Science.gov (United States)

    2012-03-01

    ... the California State Implementation Plan, Antelope Valley Air Quality Management District and Mojave Desert Quality Management District AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule. SUMMARY: EPA is proposing to approve revisions to the Antelope Valley Air Quality Management District...

  7. Ecology and behavior of pronghorn in the Red Desert, Wyoming with reference to energy development

    International Nuclear Information System (INIS)

    Deblinger, R.D.

    1988-01-01

    Pronghorn in the Red Desert were not negatively impacted by the Sweetwater Uranium Mining Project or other human activities associated with mining. A proportion of the pronghorn population habituated to the mine site and inhabited lands adjacent to the mine their entire lives. Other pronghorn remained wary of mining activities and migrated around the mine without difficulty. Distribution patterns in the Red Desert varied seasonally and yearly. Generally, pronghorn used northern portions of the study area during summer and central to southern portions during winter. Summer range was used traditionally, while winter ranges were chosen opportunistically. Initial fall migration movement and total distances traveled were dictated by weather. Specifically, snow accumulation and temperatures determined fall migration timing and length of travel. Similarly, pronghorn migrated back to summer ranges as soon as snow melted

  8. Organic matter composition and substrate diversity under elevated CO2 in the Mojave Desert

    Science.gov (United States)

    Tfaily, M. M.; Hess, N. J.; Koyama, A.; Evans, R. D.

    2016-12-01

    Little is known about how rising atmospheric CO2 concentration will impact long-term plant biomass or the dynamics of soil organic matter (SOM) in arid ecosystems. In this study, we investigated the change in the molecular composition of SOM by high resolution mass spectrometry after 10 years exposure to elevated atmospheric CO2 concentrations at the Nevada Desert FACE Facility. Samples were collected from soil profiles from 0 to 1m in 0.2m increments under the dominant evergreen shrub (Larrea tridentata). The differences in the composition of SOM were more evident in soils close to the surface and consistent with higher bulk soil organic carbon (C) and total nitrogen (N) concentrations under elevated than ambient CO2, reflecting increased net productivity of shrubs under elevated CO2, which could be attributed to increased litter input from above-ground biomass and/or shallow roots, root exudation and/or microbial residues. This was further supported by the significant increase in the abundance of amino sugars-, protein- and carbohydrate-like compounds. These compounds are involved in diverse pathways ranging from sugars and amino-acid metabolism to lipid biosynthesis. This indicates increased activity and metabolism under elevated CO2 and suggests that elevated CO2 have altered microbial C use patterns, reflecting changes in the quality and quantity of soil C inputs. A significant increase in the mineral-bound soil organic C was also observed in the surface soils under elevated CO2. This was accompanied by increased microbial residues as identified by mass spectrometry that supports microbial lipid analysis, and reflecting accelerated microbial turnover under elevated CO2. Fungal neutral lipid fatty acids (NLFA) abundance doubled under elevated CO2. When provided with excess labile compounds, such as root exudates, and with limited supply of nutrients, fungi assimilate the excess labile C and store it as NLFA likely contributing to increased total N

  9. Hominin dispersal into the Nefud Desert and Middle palaeolithic settlement along the Jubbah Palaeolake, Northern Arabia.

    Directory of Open Access Journals (Sweden)

    Michael D Petraglia

    Full Text Available The Arabian Peninsula is a key region for understanding hominin dispersals and the effect of climate change on prehistoric demography, although little information on these topics is presently available owing to the poor preservation of archaeological sites in this desert environment. Here, we describe the discovery of three stratified and buried archaeological sites in the Nefud Desert, which includes the oldest dated occupation for the region. The stone tool assemblages are identified as a Middle Palaeolithic industry that includes Levallois manufacturing methods and the production of tools on flakes. Hominin occupations correspond with humid periods, particularly Marine Isotope Stages 7 and 5 of the Late Pleistocene. The Middle Palaeolithic occupations were situated along the Jubbah palaeolake-shores, in a grassland setting with some trees. Populations procured different raw materials across the lake region to manufacture stone tools, using the implements to process plants and animals. To reach the Jubbah palaeolake, Middle Palaeolithic populations travelled into the ameliorated Nefud Desert interior, possibly gaining access from multiple directions, either using routes from the north and west (the Levant and the Sinai, the north (the Mesopotamian plains and the Euphrates basin, or the east (the Persian Gulf. The Jubbah stone tool assemblages have their own suite of technological characters, but have types reminiscent of both African Middle Stone Age and Levantine Middle Palaeolithic industries. Comparative inter-regional analysis of core technology indicates morphological similarities with the Levantine Tabun C assemblage, associated with human fossils controversially identified as either Neanderthals or Homo sapiens.

  10. Crustal structure of northern Egypt from joint inversion of receiver functions and surface wave dispersion velocities

    Science.gov (United States)

    Badawy, Ahmed; Hegazi, Mona; Gaber, Hanan; Korrat, Ibrahim

    2018-01-01

    In this study, we used a combined inversion of body wave receiver functions and surface wave dispersion measurements to provide constraints on the crustal structure of northern Egypt. The two techniques are complementary to each other: receiver functions (RFs) are sensitive to shear-wave velocity contrasts, while surface wave dispersion (SWD) measurements are sensitive to finite variations of shear-wave velocity with depth. A database of 122 teleseismic events digitally recorded by the Egyptian National Seismological Network (ENSN) stations has been used as well. To enhance the resulting RFs at each ENSN station, the H-k stacking method was applied. A joint inversion process between the resulting receiver functions and the surface wave dispersion curves was applied as well. We have produced three averaged velocity structure models for distinct geographic and tectonic provinces namely Sinai, eastern desert, and western desert from east to the west respectively. These models will deeply help in estimation the epicenter distance of earthquake, focal mechanism solutions, and earthquake hazard analysis in northern Egypt. An obvious image of the subsurface structure has been determined which shows that generally the crustal structure of northern Egypt consists of three layers covered with a sequence of sediments that differs in thickness from across the region except in the Sharm area where the sedimentary cover is absent. The obtained results indicate that crustal thickness differs from east to west and reaches its maximum value of about 36 km at Siwa station (SWA) in the western desert and its minimum value of about 28 km at Sharm station (SHR) of the southern tip of the Sinai Peninsula. The Vp/Vs ratio varies between 1.71 and 2.07 in northern Egypt. Generally, the high values (1.93) of (Vp/Vs) at SWA station may reflect the well-known rich aquifer with fully saturated sediments of the Swia Oasis in the Western Desert. Moreover, the highest value (2.07) of (Vp/Vs) at

  11. Crustal structure of northern Egypt from joint inversion of receiver functions and surface wave dispersion velocities

    Science.gov (United States)

    Badawy, Ahmed; Hegazi, Mona; Gaber, Hanan; Korrat, Ibrahim

    2018-05-01

    In this study, we used a combined inversion of body wave receiver functions and surface wave dispersion measurements to provide constraints on the crustal structure of northern Egypt. The two techniques are complementary to each other: receiver functions (RFs) are sensitive to shear-wave velocity contrasts, while surface wave dispersion (SWD) measurements are sensitive to finite variations of shear-wave velocity with depth. A database of 122 teleseismic events digitally recorded by the Egyptian National Seismological Network (ENSN) stations has been used as well. To enhance the resulting RFs at each ENSN station, the H-k stacking method was applied. A joint inversion process between the resulting receiver functions and the surface wave dispersion curves was applied as well. We have produced three averaged velocity structure models for distinct geographic and tectonic provinces namely Sinai, eastern desert, and western desert from east to the west respectively. These models will deeply help in estimation the epicenter distance of earthquake, focal mechanism solutions, and earthquake hazard analysis in northern Egypt. An obvious image of the subsurface structure has been determined which shows that generally the crustal structure of northern Egypt consists of three layers covered with a sequence of sediments that differs in thickness from across the region except in the Sharm area where the sedimentary cover is absent. The obtained results indicate that crustal thickness differs from east to west and reaches its maximum value of about 36 km at Siwa station (SWA) in the western desert and its minimum value of about 28 km at Sharm station (SHR) of the southern tip of the Sinai Peninsula. The Vp/Vs ratio varies between 1.71 and 2.07 in northern Egypt. Generally, the high values (1.93) of (Vp/Vs) at SWA station may reflect the well-known rich aquifer with fully saturated sediments of the Swia Oasis in the Western Desert. Moreover, the highest value (2.07) of (Vp/Vs) at

  12. Impacts of climate change and renewable energy development on habitat of an endemic squirrel, Xerospermophilus mohavensis, in the Mojave Desert, USA

    Science.gov (United States)

    Inman, Richard D.; Esque, Todd C.; Nussear, Kenneth E.; Leitner, Philip; Matocq, Marjorie D.; Weisberg, Peter J.; Dilts, Thomas E.

    2016-01-01

    Predicting changes in species distributions under a changing climate is becoming widespread with the use of species distribution models (SDMs). The resulting predictions of future potential habitat can be cast in light of planned land use changes, such as urban expansion and energy development to identify areas with potential conflict. However, SDMs rarely incorporate an understanding of dispersal capacity, and therefore assume unlimited dispersal in potential range shifts under uncertain climate futures. We use SDMs to predict future distributions of the Mojave ground squirrel, Xerospermophilus mohavensis Merriam, and incorporate partial dispersal models informed by field data on juvenile dispersal to assess projected impact of climate change and energy development on future distributions of X. mohavensis. Our models predict loss of extant habitat, but also concurrent gains of new habitat under two scenarios of future climate change. Under the B1 emissions scenario- a storyline describing a convergent world with emphasis on curbing greenhouse gas emissions- our models predicted losses of up to 64% of extant habitat by 2080, while under the increased greenhouse gas emissions of the A2 scenario, we suggest losses of 56%. New potential habitat may become available to X. mohavensis, thereby offsetting as much as 6330 km2 (50%) of the current habitat lost. Habitat lost due to planned energy development was marginal compared to habitat lost from changing climates, but disproportionately affected current habitat. Future areas of overlap in potential habitat between the two climate change scenarios are identified and discussed in context of proposed energy development.

  13. Russian deserters of World War I

    OpenAIRE

    Os'kin Maksim

    2014-01-01

    Desertion is one of the most active forms of ordinary resistance of the people to the state pressure during the low-popular war which is conducting for the purposes unclear for the people. At the same time, mass desertion is a manifestation of «total» war in the world conflicts of the XX century. During World War I in all armies of the world there was the desertion often accepting mass character. In the Russian army, as well as in other, deserters appeared from the war beginning. Desertion sca...

  14. Origin of water in the Badain Jaran Desert, China: new insight from isotopes

    Science.gov (United States)

    Wu, Xiujie; Wang, Xu-Sheng; Wang, Yang; Hu, Bill X.

    2017-09-01

    To better understand the origin of water in the Badain Jaran Desert, China, water samples were collected from lakes, a spring and local unconfined aquifer for analyses of radiocarbon (14C), tritium (3H), stable hydrogen and oxygen isotope ratios (δ2H - δ18O), and d-excess values ( = δ2H - 8δ18O). A series of evaporation experiments were also conducted in the desert to examine how the isotopic signature of water may change during evaporation and infiltration under local environmental conditions. The results show that the lakes in the southeastern sand dune area are fed by groundwater discharging into the lakes and that local groundwater, on the other hand, is derived primarily from modern meteoric precipitation in the region. Although dissolved inorganic carbon (DIC) in groundwater yielded very old radiocarbon ages, the presence of detectable amounts of tritium in groundwater samples, together with their δ2H, δ18O and d-excess characteristics, strongly suggests that the old radiocarbon ages of DIC do not represent the residence time of water in the aquifer but are the result of addition of old DIC derived from dissolution of ancient carbonates in the aquifer. The data do not support the hypothesis that the water in the Badain Jaran Desert was sourced in remote mountains on the northern Tibetan Plateau. This study also finds no support for the hypothesis that present-day water resources in the desert were recharged by the precipitation that fell in the past during the early Holocene when the climate was much wetter than today. Instead, this study shows that both groundwater and lake water originated from meteoric precipitation in the region including mountainous areas adjacent to the desert under the modern climatic condition.

  15. Origin of water in the Badain Jaran Desert, China: new insight from isotopes

    Directory of Open Access Journals (Sweden)

    X. Wu

    2017-09-01

    Full Text Available To better understand the origin of water in the Badain Jaran Desert, China, water samples were collected from lakes, a spring and local unconfined aquifer for analyses of radiocarbon (14C, tritium (3H, stable hydrogen and oxygen isotope ratios (δ2H – δ18O, and d-excess values ( = δ2H – 8δ18O. A series of evaporation experiments were also conducted in the desert to examine how the isotopic signature of water may change during evaporation and infiltration under local environmental conditions. The results show that the lakes in the southeastern sand dune area are fed by groundwater discharging into the lakes and that local groundwater, on the other hand, is derived primarily from modern meteoric precipitation in the region. Although dissolved inorganic carbon (DIC in groundwater yielded very old radiocarbon ages, the presence of detectable amounts of tritium in groundwater samples, together with their δ2H, δ18O and d-excess characteristics, strongly suggests that the old radiocarbon ages of DIC do not represent the residence time of water in the aquifer but are the result of addition of old DIC derived from dissolution of ancient carbonates in the aquifer. The data do not support the hypothesis that the water in the Badain Jaran Desert was sourced in remote mountains on the northern Tibetan Plateau. This study also finds no support for the hypothesis that present-day water resources in the desert were recharged by the precipitation that fell in the past during the early Holocene when the climate was much wetter than today. Instead, this study shows that both groundwater and lake water originated from meteoric precipitation in the region including mountainous areas adjacent to the desert under the modern climatic condition.

  16. Ploidy race distributions since the Last Glacial Maximum in the North American desert shrub, Larrea tridentata

    Science.gov (United States)

    Hunter, K.L.; Betancourt, J.L.; Riddle, B.R.; Van Devender, T. R.; Cole, K.L.; Geoffrey, Spaulding W.

    2000-01-01

    1 A classic biogeographic pattern is the alignment of diploid, tetraploid and hexaploid races of creosote bush (Larrea tridentata) across the Chihuahuan, Sonoran and Mohave Deserts of western North America. We used statistically robust differences in guard cell size of modern plants and fossil leaves from packrat middens to map current and past distributions of these ploidy races since the Last Glacial Maximum (LGM). 2 Glacial/early Holocene (26-10 14C kyr BP or thousands of radiocarbon years before present) populations included diploids along the lower Rio Grande of west Texas, 650 km removed from sympatric diploids and tetraploids in the lower Colorado River Basin of south-eastern California/south-western Arizona. Diploids migrated slowly from lower Rio Grande refugia with expansion into the northern Chihuahuan Desert sites forestalled until after ???4.0 14C kyr BP. Tetraploids expanded from the lower Colorado River Basin into the northern limits of the Sonoran Desert in central Arizona by 6.4 14C kyr BP. Hexaploids appeared by 8.5 14C kyr BP in the lower Colorado River Basin, reaching their northernmost limits (???37??N) in the Mohave Desert between 5.6 and 3.9 14C kyr BP. 3 Modern diploid isolates may have resulted from both vicariant and dispersal events. In central Baja California and the lower Colorado River Basin, modern diploids probably originated from relict populations near glacial refugia. Founder events in the middle and late Holocene established diploid outposts on isolated limestone outcrops in areas of central and southern Arizona dominated by tetraploid populations. 4 Geographic alignment of the three ploidy races along the modern gradient of increasingly drier and hotter summers is clearly a postglacial phenomenon, but evolution of both higher ploidy races must have happened before the Holocene. The exact timing and mechanism of polyploidy evolution in creosote bush remains a matter of conjecture. ?? 2001 Blackwell Science Ltd.

  17. Estimating Natural Recharge in a Desert Environment Facing Increasing Ground-Water Demands

    Science.gov (United States)

    Nishikawa, T.; Izbicki, J. A.; Hevesi, J. A.; Martin, P.

    2004-12-01

    Ground water historically has been the sole source of water supply for the community of Joshua Tree in the Joshua Tree ground-water subbasin of the Morongo ground-water basin in the southern Mojave Desert. Joshua Basin Water District (JBWD) supplies water to the community from the underlying Joshua Tree ground-water subbasin, and ground-water withdrawals averaging about 960 acre-ft/yr have resulted in as much as 35 ft of drawdown. As growth continues in the desert, ground-water resources may need to be supplemented using imported water. To help meet future demands, JBWD plans to construct production wells in the adjacent Copper Mountain ground-water subbasin. To manage the ground-water resources and to identify future mitigating measures, a thorough understanding of the ground-water system is needed. To this end, field and numerical techniques were applied to determine the distribution and quantity of natural recharge. Field techniques included the installation of instrumented boreholes in selected washes and at a nearby control site. Numerical techniques included the use of a distributed-parameter watershed model and a ground-water flow model. The results from the field techniques indicated that as much as 70 acre-ft/yr of water infiltrated downward through the two principal washes during the study period (2001-3). The results from the watershed model indicated that the average annual recharge in the ground-water subbasins is about 160 acre-ft/yr. The results from the calibrated ground-water flow model indicated that the average annual recharge for the same area is about 125 acre-ft/yr. Although the field and numerical techniques were applied to different scales (local vs. large), all indicate that natural recharge in the Joshua Tree area is very limited; therefore, careful management of the limited ground-water resources is needed. Moreover, the calibrated model can now be used to estimate the effects of different water-management strategies on the ground

  18. Fluvial-aeolian interactions in sediment routing and sedimentary signal buffering: an example from the Indus Basin and Thar Desert

    Science.gov (United States)

    East, Amy E.; Clift, Peter D.; Carter, Andrew; Alizai, Anwar; VanLaningham, Sam

    2015-01-01

    Sediment production and its subsequent preservation in the marine stratigraphic record offshore of large rivers are linked by complex sediment-transfer systems. To interpret the stratigraphic record it is critical to understand how environmental signals transfer from sedimentary source regions to depositional sinks, and in particular to understand the role of buffering in obscuring climatic or tectonic signals. In dryland regions, signal buffering can include sediment cycling through linked fluvial and eolian systems. We investigate sediment-routing connectivity between the Indus River and the Thar Desert, where fluvial and eolian systems exchanged sediment over large spatial scales (hundreds of kilometers). Summer monsoon winds recycle sediment from the lower Indus River and delta northeastward, i.e., downwind and upstream, into the desert. Far-field eolian recycling of Indus sediment is important enough to control sediment provenance at the downwind end of the desert substantially, although the proportion of Indus sediment of various ages varies regionally within the desert; dune sands in the northwestern Thar Desert resemble the Late Holocene–Recent Indus delta, requiring short transport and reworking times. On smaller spatial scales (1–10 m) along fluvial channels in the northern Thar Desert, there is also stratigraphic evidence of fluvial and eolian sediment reworking from local rivers. In terms of sediment volume, we estimate that the Thar Desert could be a more substantial sedimentary store than all other known buffer regions in the Indus basin combined. Thus, since the mid-Holocene, when the desert expanded as the summer monsoon rainfall decreased, fluvial-eolian recycling has been an important but little recognized process buffering sediment flux to the ocean. Similar fluvial-eolian connectivity likely also affects sediment routing and signal transfer in other dryland regions globally.

  19. Minerals in deserts

    International Nuclear Information System (INIS)

    Smith, G.I.

    1982-01-01

    Almost any kind of mineral deposit can occur in desert areas, and the lack of vegetation and soil cover makes finding them easier. Some kinds of deposits, though, are more likely to occur in deserts than elsewhere. Some of these result from processes genetically related to the present desert climate that improved lower grade deposits of ore. One such process, termed secondary enrichment, is most effective in areas with deep water tables, and many low-grade copper, silver, and uranium deposits have been converted into mineable ore by the downward migration and redeposition of soluble metals. In a desert terrane, placer processes are effective whenever running water flowing over steep slopes erodes outcropping ore bodies and transports and concentrates the heavier ore minerals at lower levels, thus converting low-grade or hard-to-mine bedrock deposits into economically workable concentrations. Other kinds of deposits are better preserved in deserts because the lower rainfall at the surface, and the lower volume of flow and the greater depths to groundwater, result in less destruction of soluble ores; deposits of salines and phosphates are the most notable ores affected by these factors. Still other ore deposits are created as a consequence of the arid climate, mostly because the high evaporation rates operating on standing bodies of water produce brines that can lead directly to concentrations of salts and indirectly to secondary minerals, such as zeolites, that are produced by reaction of silicate minerals with saline waters

  20. Navajo Code Talker Joe Morris, Sr. shared insights from his time as a secret World War Two messenger

    Science.gov (United States)

    2002-01-01

    Navajo Code Talker Joe Morris, Sr. shared insights from his time as a secret World War Two messenger with his audience at NASA's Dryden Flight Research Center on Nov. 26, 2002. NASA Dryden is located on Edwards Air Force Base in California's Mojave Desert.

  1. Preliminary survey of ticks (Acari : Ixodidae on cattle in northern Sudan

    Directory of Open Access Journals (Sweden)

    D.A. Salih

    2004-11-01

    Full Text Available In a cross sectional survey conducted during the period June 2001 to July 2002, the geographical distribution of ticks on cattle in the Sudan was determined. Seventeen locations were surveyed from Northern, Central, Eastern, Western, Blue Nile and White Nile Provinces. Total body collections of ticks were made from 20 cattle at each location. Four tick genera and 11 species were identified. The tick species collected included Amblyomma lepidum, Amblyomma variegatum, Boophilus decoloratus, Hyalomma anatolicum anatolicum, Hyalomma dromedarii, Hyalomma impeltatum, Hyalomma marginatum rufipes, Hyalomma truncatum, Rhipicephalus evertsi evertsi, Rhipicephalus sanguineus group and Rhipicephalus simus simus. Major ecological changes have occurred due to extensive animal movement, deforestation, desertification and establishment of large mechanized agricultural schemes. These factors have certainly affected the distribution of ticks and tick-borne diseases in the Sudan. The absence of A. variegatum and A. lepidum in northern Sudan was not surprising, since these tick species are known to survive in humid areas and not in the desert and semi-desert areas of northern Sudan. The absence of B. annulatus in northern and central Sudan is in accordance with the finding that this tick species is restricted to the southern parts of the central Sudan. The presence of H. anatolicum anatolicum in Um Benin in relatively high abundance is an interesting finding. The present finding may indicate that the southern limit of this species has changed and moved southwards to latitude 13o N. It is concluded that major changes in tick distribution have taken place in the Sudan

  2. Russian deserters of World War I

    Directory of Open Access Journals (Sweden)

    Os'kin Maksim

    2014-10-01

    Full Text Available Desertion is one of the most active forms of ordinary resistance of the people to the state pressure during the low-popular war which is conducting for the purposes unclear for the people. At the same time, mass desertion is a manifestation of «total» war in the world conflicts of the XX century. During World War I in all armies of the world there was the desertion often accepting mass character. In the Russian army, as well as in other, deserters appeared from the war beginning. Desertion scales in the Russian army explained as objective factors - diffi cult fights, shortage of supply, defeat at the front, and subjective - unwillingness to participate in war, melancholy for the house, desire to help a family the work. Desertion in different years of war had various forms. If at the beginning of war there were mainly «self-arrows», in 1915, during defeats at the front - evasion from entrenchments. By the end of 1916, because of the general fatigue from war, desertion takes the real form - flight from the front to the back. After February revolution desertion becomes mass in which hundreds thousands military personnel take part already. Disorder of army and development of revolutionary process extremely strengthen desertion scales that is explained by the actual lack of punishment for this crime. Destruction of the Russian state during revolution became the main reason of coming to power of Bolsheviks, an exit of Russia from war and the army demobilization which essential part in 1917 already deserted from the front.

  3. Pre-treating Seed to Enhance Germination of Desert Shrubs

    Energy Technology Data Exchange (ETDEWEB)

    W. K. Ostler; D. C. Anderson; D. J. Hansen

    2002-06-01

    Creosotebush [Larrea tridentata (D.C.) Cav.] and white bursage [Ambrosia dumosa (A. Gray) W.W. Payne] seeds were subjected to pre-treatments of rinsing and soaking in water and thiourea to enhance germination in laboratory experiments. The effects of darkness, temperature, seed source, and soil moisture were also evaluated in the laboratory. The best pre-treatment from the laboratory experiments, rinsing with water for 36 hours followed by drying, was field-tested at Fort Irwin, California. Two sites and two seeding dates (early March and mid April) were determined for each site. Five mulch treatments (no mulch, straw, gravel, chemical stabilizer, and plastic) were evaluated in combination with the seed pre-treatments. Field emergence was greatly enhanced with the seed pre-treatment for white bursage during the March (18-42% increase in germination) and April seedings (16-23% increase in germination). Creosotebush showed poor germination during March (2-5%) when soil temperatures averaged 15 C, but germination increased during the April trials (6-43%) when soil temperatures averaged 23 C. The seed pre-treatment during the April trials increased germination from 16-23%. The plastic mulch treatment increased germination dramatically during both the March and April trials. The plastic mulch increased soil temperatures (8-10 C)and maintained high humidity during germination. Both the chemical stabilizer and the gravel mulches improved germination over the control while the straw mulch decreased germination. These results suggest that seed pre-treatments combined with irrigation and mulch are effective techniques to establish these two dominant Mojave Desert species from seed.

  4. 20th-Century Climate Change over Africa: Seasonal Variation in Hydroclimate Trends and Sahara Desert Extent

    Science.gov (United States)

    Nigam, S.; Thomas, N. P.

    2017-12-01

    Twentieth-century trends in seasonal temperature and precipitation over the African continent are analyzed from observational data sets and historical climate simulations. Given the agricultural economy of the continent, a seasonal perspective is adopted as it is more pertinent than an annual-average one which can mask off-setting but agriculturally-sensitive seasonal hydroclimate variations. Examination of linear trends in seasonal surface air temperature (SAT) shows that heat stress has increased in several regions, including Sudan and Northern Africa where largest SAT trends occur in the warm season. Broadly speaking, the northern continent has warmed more than the southern one in all seasons. Precipitation trends are varied but notable declining trends are found in the countries along the Gulf of Guinea, especially in the source region of Niger river in West Africa, and in the Congo river basin. Rainfall over the African Great Lakes - one of the largest freshwater repositories - has however increased. We show that the Sahara Desert has expanded significantly over the 20th century - by 12-20% depending on the season. The desert expanded southward in summer, reflecting retreat of the northern edge of the Sahel rainfall belt; and to the north in winter, indicating potential impact of the widening of the Tropics. Specific mechanisms driving the expansion in each season are investigated. Finally, this observational analysis is used to evaluate the state-of-the-art climate models from a comparison of the 20th-century hydroclimate trends with those manifest in historical climate simulations. The evaluation shows that modeling regional hydroclimate change over the Africa continent remains challenging.

  5. Reproduction and pollination of the endangered dwarf bear-poppy Arctomecon humilis (Papaveraceae)across a quarter century: unraveling of a pollination web?

    Science.gov (United States)

    ABSTRACT.—Arctomecon humilis, a rare gypsophile of the extreme northeastern Mojave Desert, is restricted to a few isolated populations in Washington County, Utah, USA. At several times in the past quarter century, we have studied the breeding system and reproductive success of this endangered specie...

  6. Exploration of hydro-geomorphological indices for coastal floodplain ...

    African Journals Online (AJOL)

    Ozdemir and Bird (2008) investigated morphometric parameters across two ... industries are dominant and across many rural communities, fishing and ... a high correlation with Species richness, pH, groundwater, soil moisture and ..... for Animal Habitat Analysis: A Case Study Using Bighorn Sheep in the Mojave Desert. The.

  7. Respondence and feedback of modern sand deserts to climate change--A case study in Gurbantunggut Desert

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The research on the respondence and feedback of modern sand deserts to the climate change is an important component part in the studies on the global climate change. Deserts respond to the climate change, meanwhile, they affect the climate with their feedback of peculiar environment during the respondence. Many researches on desert climate have been carried out at home and abroad. However, there is little research on the respondence and feedback of modern fixed, semi-fixed and mobile deserts in arid areas to the climate change, in which the factor analysis as well as the parameter changing effects is especially the difficult problem all along. In this note, the parameters of the respondence and feedback of Gurbantunggut Desert to the climate change are measured and analyzed, some variable parameters of water-heat exchange are obtained, and a numerical model of desertification is developed according to a series of climate change of about 40 years and the variable relations of meteorological and physical features of the sand surface in Gurbantunggut Desert.

  8. Influence of surface roughness of a desert

    Science.gov (United States)

    Sud, Y. C.; Smith, W. E.

    1984-01-01

    A numerical simulation study, using the current GLAS climate GCM, was carried out to examine the influence of low bulk aerodynamic drag parameter in the deserts. The results illustrate the importance of yet another feedback effect of a desert on itself, that is produced by the reduction in surface roughness height of land once the vegetation dies and desert forms. Apart from affecting the moisture convergence, low bulk transport coefficients of a desert lead to enhanced longwave cooling and sinking which together reduce precipitation by Charney's (1975) mechanism. Thus, this effect, together with albedo and soil moisture influence, perpetuate a desert condition through its geophysical feedback effect. The study further suggests that man made deserts is a viable hypothesis.

  9. Fault tectonics and earthquake hazards in parts of southern California. [penninsular ranges, Garlock fault, Salton Trough area, and western Mojave Desert

    Science.gov (United States)

    Merifield, P. M. (Principal Investigator); Lamar, D. L.; Gazley, C., Jr.; Lamar, J. V.; Stratton, R. H.

    1976-01-01

    The author has identified the following significant results. Four previously unknown faults were discovered in basement terrane of the Peninsular Ranges. These have been named the San Ysidro Creek fault, Thing Valley fault, Canyon City fault, and Warren Canyon fault. In addition fault gouge and breccia were recognized along the San Diego River fault. Study of features on Skylab imagery and review of geologic and seismic data suggest that the risk of a damaging earthquake is greater along the northwestern portion of the Elsinore fault than along the southeastern portion. Physiographic indicators of active faulting along the Garlock fault identifiable in Skylab imagery include scarps, linear ridges, shutter ridges, faceted ridges, linear valleys, undrained depressions and offset drainage. The following previously unrecognized fault segments are postulated for the Salton Trough Area: (1) An extension of a previously known fault in the San Andreas fault set located southeast of the Salton Sea; (2) An extension of the active San Jacinto fault zone along a tonal change in cultivated fields across Mexicali Valley ( the tonal change may represent different soil conditions along opposite sides of a fault). For the Skylab and LANDSAT images studied, pseudocolor transformations offer no advantages over the original images in the recognition of faults in Skylab and LANDSAT images. Alluvial deposits of different ages, a marble unit and iron oxide gossans of the Mojave Mining District are more readily differentiated on images prepared from ratios of individual bands of the S-192 multispectral scanner data. The San Andreas fault was also made more distinct in the 8/2 and 9/2 band ratios by enhancement of vegetation differences on opposite sides of the fault. Preliminary analysis indicates a significant earth resources potential for the discrimination of soil and rock types, including mineral alteration zones. This application should be actively pursued.

  10. Leaching characteristics of Wadi Belih uraniferous Hammamat sediments,eastern desert,Egypt

    International Nuclear Information System (INIS)

    Mahdy, M.A.; EL-Hazek, M.N.

    1998-01-01

    This work deals with the direct chemical treatment of Wadi Belih uraniferous ore material using the agitation leaching technique. The study ore is mainly localized in siltstones belonging to the Hammamat sediments situated in the northern part of the eastern desert. The uranium mineral in the ore are mainly represented by the silicate mineral uranophane, the vanadate mineral tyuyamunite and to a laser extent the sulphate mineral shroekingerite, both acid (sulphuric acid) alkaline (sodium carbonate and bicarbonate) leaching methods have been applied beside sodium and ferric chlorides. The latter leaching reagents are greatly beneficial in removing radium together with uranium, a matter which is greatly important for environmental concerns

  11. Animal ecology

    International Nuclear Information System (INIS)

    Turner, F.B.; Strojan, C.L.; Ackerman, T.L.; Maza, B.G.

    1976-01-01

    Progress is reported in the following areas of research: dynamics of trace elements in desert environments; sterility of female Uta stansburiana exposed to gamma radiation; behavior and metabolism of jackrabbits, Lepus californicus, in the Mojave desert; determination of 18 O in water contained in biological samples by charged particle activation; temperature maintenance and CO 2 concentration in a swarm of honey bees; energy and nitrogen budgets and water balance in lizards; distribution and abundance of soil arthropods; and water balance of the cockroach, arenivaga investigata

  12. Desertions in nineteenth-century shipping: modelling quit behaviour

    OpenAIRE

    Jari Ojala; Jaakko Pehkonen; Jari Eloranta

    2013-01-01

    Ship jumping in foreign ports was widespread throughout the age of sail. Desertion by seamen was illegal, it occurred abroad, and men who deserted only seldom returned home. We analyse desertion quantitatively and link it to the broader question of quit behaviour and labour turnover. Though the better wages paid at the foreign ports were the main reason for desertion, the regression model of the determinants of desertion indicates that outside opportunities, such as migration, and monetary in...

  13. HIGH FOLIAR NITROGEN IN DESERT SHRUBS: AN IMPORTANT ECOSYSTEM TRAIT OR DEFECTIVE DESERT DOCTRINE?

    Science.gov (United States)

    Nitrogen concentrations in green and senesced leaves of perennial desert shrubs were compiled from a worldwide literature search to test the validity of the doctrine that desert shrubs produce foliage and leaf litter much richer in nitrogen than that in the foliage of plants from...

  14. Rural childhoods in Egypt's desert lands

    DEFF Research Database (Denmark)

    Adriansen, Hanne Kirstine

    Based on fieldwork in Egypt’s desert lands, this paper discusses rural childhoods in an area experiencing rapid social and cultural change. Since 1987, the Egyptian Government has made new villages in the desert as a means to increase agricultural production and solving problems of unemployment....... Many settlers move to the Mubarak villages in order to give their children a good start in life. The desert villages are associated with a type of ‘rural idyll’. The process of settling in the desert impacts upon the children’s possible pathways to adulthood and their identities and social......’s new roles impact upon the children’s lives. The social contexts shaping the desert childhoods are in some ways more similar to contexts in ‘developed’ countries than in other parts of rural Egypt. The paper ends up by contrasting ideas of rural childhoods in Egypt with those found in ‘developed...

  15. Habitat Effect on Allometry of a Xeric Shrub (Artemisia ordosica Krasch in the Mu Us Desert of Northern China

    Directory of Open Access Journals (Sweden)

    Weiwei She

    2015-12-01

    Full Text Available Allometric models are useful for assessment of aboveground net primary productivity (ANPP and aboveground biomass (AGB of forests and shrubs, and are widely implemented in forest inventory and management. Multiple forms of allometric models have been used to estimate vegetation carbon storage for desert shrubland, but their validity for biomass estimation has not been tested at a region scale with different habitats. To verify the validity of habitat-specific models, general models (combining data from all habitats/sites, and previously developed models for biomass prediction, we developed both general models and habitat-specific models for aboveground biomass and ANPP of Artemisia ordosica Krasch, a dominant shrub of the Mu Us Desert. Our results showed that models based on crown area or canopy volume consistently explained large parts of the variations in aboveground biomass and ANPP. Model fitting highlighted that general allometric models were inadequate across different habitats, and habitat-specific models were useful for that specific habitat. Previous models might be inappropriate for other sites because of site quality differences. There was a strong habitat effect on the allometric relationships of A. ordosica. Although our study is a case in point, the results indicate that allometric models for desert shrubs should be used with caution and require robust validation if adopted from other studies or applied to different sites/habitats.

  16. Regional signatures of plant response to drought and elevated temperature across a desert ecosystem

    Science.gov (United States)

    Munson, Seth M.; Muldavin, Esteban H.; Belnap, Jayne; Peters, Debra P.C.; Anderson, John P.; Reiser, M. Hildegard; Gallo, Kirsten; Melgoza-Castillo, Alicia; Herrick, Jeffrey E.; Christiansen, Tim A.

    2013-01-01

    The performance of many desert plant species in North America may decline with the warmer and drier conditions predicted by climate change models, thereby accelerating land degradation and reducing ecosystem productivity. We paired repeat measurements of plant canopy cover with climate at multiple sites across the Chihuahuan Desert over the last century to determine which plant species and functional types may be the most sensitive to climate change. We found that the dominant perennial grass, Bouteloua eriopoda, and species richness had nonlinear responses to summer precipitation, decreasing more in dry summers than increasing with wet summers. Dominant shrub species responded differently to the seasonality of precipitation and drought, but winter precipitation best explained changes in the cover of woody vegetation in upland grasslands and may contribute to woody-plant encroachment that is widespread throughout the southwestern United States and northern Mexico. Temperature explained additional variability of changes in cover of dominant and subdominant plant species. Using a novel empirically based approach we identified ‘‘climate pivot points’’ that were indicative of shifts from increasing to decreasing plant cover over a range of climatic conditions. Reductions in cover of annual and several perennial plant species, in addition to declines in species richness below the long-term summer precipitation mean across plant communities, indicate a decrease in the productivity for all but the most drought-tolerant perennial grasses and shrubs in the Chihuahuan Desert. Overall, our regional synthesis of long-term data provides a robust foundation for forecasting future shifts in the composition and structure of plant assemblages in the largest North American warm desert.

  17. Cost estimates for Operation Desert Shield/Desert Storm: a budgetary analysis

    OpenAIRE

    Johnson, J. Andrew.

    1991-01-01

    Operation Desert Shield/Desert Storm (DS/DS) presented unique challenges for estimating the cost of that conflict. This analysis reviews the cost estimates and methodologies developed for that purpose by DoD, CBO and GAO. It considers the budget climate and the role of foreign cash and in-kind contributions. Finally, it reviews the budgeting innovations used to provide and monitor DS/DS defense spending. At the outset of the crisis, costs were estimated to determine the defense funding requir...

  18. First host plant records for Iridopsis hausmanni Vargas (Lepidoptera, Geometridae in the coastal valleys of northern Chile

    Directory of Open Access Journals (Sweden)

    Héctor A. Vargas

    2014-03-01

    Full Text Available First host plant records for Iridopsis hausmanni Vargas (Lepidoptera, Geometridae in the coastal valleys of northern Chile. The trees Haplorhus peruviana Engl. and Schinus molle L. (Anacardiaceae are mentioned as the first host plant records for the little known native moth Iridopsis hausmanni Vargas, 2007 (Lepidoptera, Geometridae, Ennominae in the coastal valleys of the northern Chilean Atacama Desert. This is also the first record of Anacardiaceae as host plant for a Neotropical species of Iridopsis Warren, 1894.

  19. Fog deposition to the Atacama desert

    Science.gov (United States)

    Westbeld, A.; Klemm, O.; Griessbaum, F.; Sträter, E.; Larrain, H.; Osses, P.; Cereceda, P.

    2010-07-01

    In the Atacama Desert, one of the driest places on earth, fog deposition plays an important role for the water balance and for the survival of vulnerable ecosystems. The eddy covariance method, previously applied for the quantification of fog deposition to forests in various parts of the world, was used for the first time to measure deposition of fog water to a desert. We estimated the amount of water available for the ecosystem by deposition and determined the relevant processes driving fog deposition. This is especially important for the species Tillandsia landbecki living in coastal Atacama at the limit of plant existence with fog and dew being the only sources of liquid water. Between 31 July and 19 August, 2008, measurements were realized in a 31 ha large Tillandsia carpet at Cerro Guanaco, located 15 km south of Iquique, northern Chile. Several data quality assurance procedures were applied. For the values in compliance with the applied criteria, the mean total deposition per hour was determined (0.04 L per m2) for foggy periods. This number was applied to estimate the amount of water deposited during the measuring period, during the entire month of August 2008, and throughout a whole year. For August 2008, a frequency of fog of 16 %, as established during the measuring period, was assumed. The frequency for a whole year was estimated from the differences of the collected amount of water obtained with standard fog collectors installed at Cerro Guanaco in an earlier study. Calculations resulted in an amount of 2.5 L per m2 of deposited fog water for the measuring period. During the entire August, 4.4 L per m2 have likely been available, and for a whole year, a total of 25 L per m2 was estimated to have reached the surface. Inaccuracies could have been caused by the low amount of data applied, and by a possible underestimation of the deposition due to additional formation of radiation fog during the fog events. Three days were used for further analysis because

  20. A recent Mw 4.3 earthquake proving activity of a shallow strike-slip fault in the northern part of the Western Desert, Egypt

    Science.gov (United States)

    Ezzelarab, Mohamed; Ebraheem, Mohamed O.; Zahradník, Jiří

    2018-03-01

    The Mw 4.3 earthquake of September 2015 is the first felt earthquake since 1900 A.D in the northern part of the Western Desert, Egypt, south of the El-Alamein City. The available waveform data observed at epicentral distances 52-391 km was collected and carefully evaluated. Nine broad-band stations were selected to invert full waveforms for the centroid position (horizontal and vertical) and for the focal mechanism solution. The first-arrival travel times, polarities and low-frequency full waveforms (0.03-0.08 Hz) are consistently explained in this paper as caused by a shallow source of the strike-slip mechanism. This finding indicates causal relation of this earthquake to the W-E trending South El-Alamein fault, which developed in Late Cretaceous as dextral strike slip fault. Recent activity of this fault, proven by the studied rare earthquake, is of fundamental importance for future seismic hazard evaluations, underlined by proximity (∼65 km) of the source zone to the first nuclear power plant planned site in Egypt. Safe exploration and possible future exploitation of hydrocarbon reserves, reported around El-Alamein fault in the last decade, cannot be made without considering the seismic potential of this fault.

  1. Luminescence profiling of loess-dominated archaeological layers of a Chalcolithic site, Northern Negev Desert fringe, Israel

    Science.gov (United States)

    López, Gloria I.; Roskin, Joel; Bee'ri, Ron

    2017-04-01

    This study applies a pulsed-photon Portable OSL Reader (PPSL) in investigating the palaeoenviroment and stages of development of a Chalcolithic site revealed during a salvage excavation. The (Shoqet Junction) site, within late Pleistocene loess-dominated sediment, is adjacent to the meandering and ephemeral Hebron Wadi in the Beer-Sheva Valley, at the fringe of the Northern Negev Desert (Israel). The site intermittently covers approximately 8 hectares and was exposed at 0.3 - 0.5 m depths beneath a plowed field. Five areas were excavated down to 4 meters. The site was dominated by an array of underground facilities: tunnels, (capped) shafts, walls, floors and infilled cavities were found within four main layers. The site includes a mixture of sediments: large amounts of organic material, weathered bricks, a powdery loess-like unit and thin Bk horizons. The artifact assemblage is associated with the Ghassulian culture. The objectives of this multi-parameter study, which combines PPSL luminescence profiling with sedimentological and geomorphic analyses, are to (1) analyze the Chalcolithic palaeoenvironments, aeolian and fluvial processes and location and morphology of streambeds, (2) identify possible deterministic physical influences upon the occupations (3) decipher the natural stratigraphic archive and discriminate between human and natural (aeolian/fluvial) induced sedimentation (4) create relative age profiles based on portable OSL measurements and OSL ages, in order to minimize OSL dating. Three main sections were profiled: a natural section - in order to identify the natural sedimentological regime and two walls of two excavation squares down to the sites' alluvial base. A small section above a prominent Bk horizon was also profiled. Altogether 58 samples were obtained for sediment and PPSL analyses. Luminescence profiles in general fit the stratigraphic breaks and enable discrimination between layers. Plowed and surface loess give low reads. Inverse reads

  2. Physiological adaptation in desert birds

    NARCIS (Netherlands)

    Williams, JB; Tieleman, BI; Williams, Joseph B.

    We call into question the idea that birds have not evolved unique physiological adaptations to desert environments. The rate at which desert larks metabolize energy is lower than in mesic species within the same family, and this lower rate of living translates into a lower overall energy requirement

  3. Analysing the mechanisms of soil water and vapour transport in the desert vadose zone of the extremely arid region of northern China

    Science.gov (United States)

    Du, Chaoyang; Yu, Jingjie; Wang, Ping; Zhang, Yichi

    2018-03-01

    The transport of water and vapour in the desert vadose zone plays a critical role in the overall water and energy balances of near-surface environments in arid regions. However, field measurements in extremely dry environments face many difficulties and challenges, so few studies have examined water and vapour transport processes in the desert vadose zone. The main objective of this study is to analyse the mechanisms of soil water and vapour transport in the desert vadose zone (depth of ∼350 cm) by using measured and modelled data in an extremely arid environment. The field experiments are implemented in an area of the Gobi desert in northwestern China to measure the soil properties, daily soil moisture and temperature, daily water-table depth and temperature, and daily meteorological records from DOYs (Days of Year) 114-212 in 2014 (growing season). The Hydrus-1D model, which simulates the coupled transport of water, vapour and heat in the vadose zone, is employed to simulate the layered soil moisture and temperature regimes and analyse the transport processes of soil water and vapour. The measured results show that the soil water and temperatures near the land surface have visible daily fluctuations across the entire soil profile. Thermal vapour movement is the most important component of the total water flux and the soil temperature gradient is the major driving factor that affects vapour transport in the desert vadose zone. The most active water and heat exchange occurs in the upper soil layer (depths of 0-25 cm). The matric potential change from the precipitation mainly re-draws the spatio-temporal distribution of the isothermal liquid water in the soil near the land surface. The matric potential has little effect on the isothermal vapour and thermal liquid water flux. These findings offer new insights into the liquid water and vapour movement processes in the extremely arid environment.

  4. Invasive species in southern Nevada [Chapter 4

    Science.gov (United States)

    Mathew L. Brooks; Steven M. Ostoja; Jeanne C. Chambers

    2013-01-01

    Southern Nevada contains a wide range of topographies, elevations, and climatic zones emblematic of its position at the ecotone between the Mojave Desert, Great Basin, and Colorado Plateau ecoregions. These varied environmental conditions support a high degree of biological diversity (Chapter 1), but they also provide opportunities for a wide range of invasive species...

  5. Invasive species in southern Nevada [Chapter 4] (Executive Summary)

    Science.gov (United States)

    Matthew L. Brooks; Steven M. Ostoja; Jeanne C.. Chambers

    2013-01-01

    Southern Nevada contains a wide range of topographies, elevations, and climatic zones that are emblematic of its position at the ecotone between the Mojave Desert, Great Basin, and Colorado Plateau ecoregions. These varied environmental conditions support a high degree of biological diversity, but they also provide opportunities for a wide range of invasive species. In...

  6. Phylogeographic patterns of the desert poplar in Northwest China shaped by both geology and climatic oscillations.

    Science.gov (United States)

    Zeng, Yan-Fei; Zhang, Jian-Guo; Abuduhamiti, Bawerjan; Wang, Wen-Ting; Jia, Zhi-Qing

    2018-05-25

    The effects of historical geology and climatic events on the evolution of plants around the Qinghai-Tibetan Plateau region have been at the center of debate for years. To identify the influence of the uplift of the Tianshan Mountains and/or climatic oscillations on the evolution of plants in arid northwest China, we investigated the phylogeography of the Euphrates poplar (Populus euphratica) using chloroplast DNA (cpDNA) sequences and nuclear microsatellites, and estimated its historical distribution using Ecological Niche Modeling (ENM). We found that the Euphrates poplar differed from another desert poplar, P. pruinosa, in both nuclear and chloroplast DNA. The low clonal diversity in both populations reflected the low regeneration rate by seed/seedlings in many locations. Both cpDNA and nuclear markers demonstrated a clear divergence between the Euphrates poplar populations from northern and southern Xinjiang regions. The divergence time was estimated to be early Pleistocene based on cpDNA, and late Pleistocene using an Approximate Bayesian Computation analysis based on microsatellites. Estimated gene flow was low between these two regions, and the limited gene flow occurred mainly via dispersal from eastern regions. ENM analysis supported a wider distribution of the Euphrates poplar at 3 Ma, but a more constricted distribution during both the glacial period and the interglacial period. These results indicate that the deformation of the Tianshan Mountains has impeded gene flow of the Euphrates poplar populations from northern and southern Xinjiang, and the distribution constriction due to climatic oscillations further accelerated the divergence of populations from these regions. To protect the desert poplars, more effort is needed to encourage seed germination and seedling establishment, and to conserve endemic gene resources in the northern Xinjiang region.

  7. Water quality and hydrology of the Lac Vieux Desert watershed, Gogebic County, Michigan, and Vilas County, Wisconsin, 2002-04

    Science.gov (United States)

    Weaver, T.L.; Neff, B.P.; Ellis, J.M.

    2005-01-01

    Lac Vieux Desert is a prominent 6.6 square-mile lake that straddles the Michigan-Wisconsin border and forms the headwaters of the Wisconsin River. For generations, the Lac Vieux Desert Band of Lake Superior Chippewa Indians have used Lac Vieux Desert and the surrounding area for growing and harvesting wild rice, and hunting and fishing. The Lac Vieux Desert Band is concerned about the impact of lake-stage regulation on hydrology and ecology, and the impact on water quality of development along and near the shore, and recreational watercraft use and sport fishing. In 2005, the U.S. Geological Survey completed a water-resources investigation of the Lac Vieux Desert watershed in cooperation with the Lac Vieux Desert Band of Lake Superior Chippewa Indians.Water quality of Lac Vieux Desert is typical of many lakes in the northern United States. Trophic State Index calculations classify Lac Vieux Desert as a highly productive eutrophic lake. The pH of water in Lac Vieux Desert ranged from 6.5 to 9.5, and specific conductance ranged from 62 to 114 µs/cm. Chloride concentration was less than 1.5 mg/L, indicating little effect from septic-tank or road-salt input. Results indicate that the water can be classified as soft, with hardness concentrations reported as calcium carbonate ranging from 29 to 49 mg/L. Concentrations of calcium, magnesium, chloride, and other dissolved solids ranged from 47 to 77 mg/L. Alkalinity of Lac Vieux Desert ranged from 27 to 38 mg/L.Pervasive aquatic blooms, including a bloom noted during the September 2003 sampling, are apparently common in late summer. Biological productivity at Lac Vieux Desert does not appear to have changed appreciably between 1973 and 2004. In the current study, total phosphorus concentrations ranged from 0.01 to 0.064 mg/L and dissolved nitrite plus nitrate nitrogen concentrations ranged from at, or below detection limit to 0.052 mg/L. Overabundance of nutrients in Lac Vieux Desert, particularly nitrogen and phosphorus

  8. When the solar energy pays

    International Nuclear Information System (INIS)

    Laramee, V.

    1997-01-01

    In the californian desert of Mojave, the three biggest solar power plants in the world produce 90% of world solar electric power. They have been operating for ten years, and their managers go on to improve them. These installations beat the productivity record every year, proving that the thermal solar energy can be competitive. (N.C.)

  9. Directional floral orientation in Joshua trees (Yucca brevifolia)

    Science.gov (United States)

    Steve Warren; L. Scott Baggett; Heather Warren

    2016-01-01

    Joshua tree (Yucca brevifolia Engelm.) is a large, arborescent member of the yucca genus. It is an endemic and visually dominant plant in portions of the Mojave Desert, USA. We document the unique and heretofore unreported directional orientation of its flower panicles. The flower panicles grow primarily at the tips of branches that are oriented to the south....

  10. Impacts of atmospheric nitrogen deposition on vegetation and soils in Joshua Tree National Park

    Science.gov (United States)

    E.B. Allen; L. Rao; R.J. Steers; A. Bytnerowicz; M.E. Fenn

    2009-01-01

    The western Mojave Desert is downwind of nitrogen emissions from coastal and inland urban sources, especially automobiles. The objectives of this research were to measure reactive nitrogen (N) in the atmosphere and soils along a N-deposition gradient at Joshua Tree National Park and to examine its effects on invasive and native plant species. Atmospheric nitric acid (...

  11. Arizona/New Mexico Plateau Ecoregion: Chapter 26 in Status and trends of land change in the Western United States--1973 to 2000

    Science.gov (United States)

    Ruhlman, Jana; Gass, Leila; Middleton, Barry

    2012-01-01

    Situated between ecoregions of distinctly different topographies and climates, the Arizona/New Mexico Plateau Ecoregion represents a large area of approximately 192,869 km2 (74,467 mi2) that stretches across northern Arizona, central and northwestern New Mexico, and parts of southwestern Colorado; in addition, a small part extends into southeastern Nevada (fig. 1) (Omernik, 1987; U.S. Environmental Protection Agency, 1997). Forested, mountainous terrain borders the ecoregion on the northeast (Southern Rockies Ecoregion) and southwest (Arizona/New Mexico Mountains Ecoregion). Warmer and drier climates exist to the south (Chihuahuan Deserts Ecoregion) and west (Mojave Basin and Range Ecoregion). The semiarid grasslands of the western Great Plains are to the east (Southwestern Tablelands Ecoregion), and the tablelands of the Colorado Plateau in Utah and western Colorado lie to the north (Colorado Plateaus Ecoregion). The Arizona/New Mexico Plateau Ecoregion occupies a significant portion of the southern half of the Colorado Plateau.

  12. The vegetation of Yucca Mountain: Description and ecology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-29

    Vegetation at Yucca Mountain, Nevada, was monitored over a six-year period, from 1989 through 1994. Yucca Mountain is located at the northern limit of the Mojave Desert and is the only location being studied as a potential repository for high-level nuclear waste. Site characterization consists of a series of multidisciplinary, scientific investigations designed to provide detailed information necessary to assess the suitability of the Yucca Mountain Site as a repository. This vegetation description establishes a baseline for determining the ecological impact of site characterization activities; it porvides input for site characterization research and modeling; and it clarifies vegetation community dynamics and relationships to the physical environment. A companion study will describe the impact of site characterization of vegetation. Cover, density, production, and species composition of vascular plants were monitored at 48 Ecological Study Plots (ESPs) stratified in four vegetation associations. Precipitation, soil moisture, and maximum and minimum temperatures also were measured at each study plot.

  13. The vegetation of Yucca Mountain: Description and ecology

    International Nuclear Information System (INIS)

    1996-01-01

    Vegetation at Yucca Mountain, Nevada, was monitored over a six-year period, from 1989 through 1994. Yucca Mountain is located at the northern limit of the Mojave Desert and is the only location being studied as a potential repository for high-level nuclear waste. Site characterization consists of a series of multidisciplinary, scientific investigations designed to provide detailed information necessary to assess the suitability of the Yucca Mountain Site as a repository. This vegetation description establishes a baseline for determining the ecological impact of site characterization activities; it porvides input for site characterization research and modeling; and it clarifies vegetation community dynamics and relationships to the physical environment. A companion study will describe the impact of site characterization of vegetation. Cover, density, production, and species composition of vascular plants were monitored at 48 Ecological Study Plots (ESPs) stratified in four vegetation associations. Precipitation, soil moisture, and maximum and minimum temperatures also were measured at each study plot

  14. Groundwater-flow and land-subsidence model of Antelope Valley, California

    Science.gov (United States)

    Siade, Adam J.; Nishikawa, Tracy; Rewis, Diane L.; Martin, Peter; Phillips, Steven P.

    2014-01-01

    Antelope Valley, California, is a topographically closed basin in the western part of the Mojave Desert, about 50 miles northeast of Los Angeles. The Antelope Valley groundwater basin is about 940 square miles and is separated from the northern part of Antelope Valley by faults and low-lying hills. Prior to 1972, groundwater provided more than 90 percent of the total water supply in the valley; since 1972, it has provided between 50 and 90 percent. Most groundwater pumping in the valley occurs in the Antelope Valley groundwater basin, which includes the rapidly growing cities of Lancaster and Palmdale. Groundwater-level declines of more than 270 feet in some parts of the groundwater basin have resulted in an increase in pumping lifts, reduced well efficiency, and land subsidence of more than 6 feet in some areas. Future urban growth and limits on the supply of imported water may increase reliance on groundwater.

  15. How desert varnish forms?

    Science.gov (United States)

    Perry, Randall S.; Kolb, Vera M.; Lynne, Bridget Y.; Sephton, Mark A.; Mcloughlin, Nicola; Engel, Michael H.; Olendzenski, Lorraine; Brasier, Martin; Staley, James T., Jr.

    2005-09-01

    Desert varnish is a black, manganese-rich rock coating that is widespread on Earth. The mechanism underlying its formation, however, has remained unresolved. We present here new data and an associated model for how desert varnish forms, which substantively challenges previously accepted models. We tested both inorganic processes (e.g. clays and oxides cementing coatings) and microbial methods of formation. Techniques used in this preliminary study include SEM-EDAX with backscatter, HRTEM of focused ion beam prepared (FIB) wafers and several other methods including XRPD, Raman spectroscopy, XPS and Tof-SIMS. The only hypothesis capable of explaining a high water content, the presence of organic compounds, an amorphous silica phase (opal-A) and lesser quantities of clays than previously reported, is a mechanism involving the mobilization and redistribution of silica. The discovery of silica in desert varnish suggests labile organics are preserved by interaction with condensing silicic acid. Organisms are not needed for desert varnish formation but Bacteria, Archaea, Eukarya, and other organic compounds are passively incorporated and preserved as organominerals. The rock coatings thus provide useful records of past environments on Earth and possibly other planets. Additionally this model also helps to explain the origin of key varnish and rock glaze features, including their hardness, the nature of the "glue" that binds heterogeneous components together, its layered botryoidal morphology, and its slow rate of formation.

  16. Little Ice Age wetting of interior Asian deserts and the rise of the Mongol Empire

    Science.gov (United States)

    Putnam, Aaron E.; Putnam, David E.; Andreu-Hayles, Laia; Cook, Edward R.; Palmer, Jonathan G.; Clark, Elizabeth H.; Wang, Chunzeng; Chen, Feng; Denton, George H.; Boyle, Douglas P.; Bassett, Scott D.; Birkel, Sean D.; Martin-Fernandez, Javier; Hajdas, Irka; Southon, John; Garner, Christopher B.; Cheng, Hai; Broecker, Wallace S.

    2016-01-01

    The degree to which warming of the planet will alter Asia's water resources is an important question for food, energy, and economic security. Here we present geological evidence, underpinned by radiometric dating and dendrochronology, and bolstered by hydrological modeling, indicating that wetter-than-present conditions characterized the core of the inner Asian desert belt during the Little Ice Age, the last major Northern Hemispheric cold spell of the Holocene. These wetter conditions accompanied northern mid-latitude cooling, glacier expansion, a strengthened/southward-shifted boreal jet, and weakened south Asian monsoons. We suggest that southward migration of grasslands in response to these wetter conditions aided the spread of Mongol Empire steppe pastoralists across Asian drylands. Conversely, net drying over the 20th century has led to drought that is unprecedented for the past ∼830 years, and that could intensify with further heating of the Asian continent.

  17. Phylogeography of the Cactophilic Drosophila and Other Arthropods Associated with Cactus Necroses in the Sonoran Desert

    Directory of Open Access Journals (Sweden)

    Therese A. Markow

    2011-05-01

    Full Text Available Studies on the population genetics, phylogenetic relationships, systematics and evolution of arthropods that inhabit necrotic tissue of cacti in the Sonoran Desert of North America are reviewed. These studies have focused upon several species of insects (orders Diptera and Coleoptera and arachnids (order Pseudoscorpiones. For most taxa studied, little genetic structure and high dispersal ability are found in populations inhabiting the mainland and Baja California peninsula regions of the Sonoran Desert, consistent with the availability of the rotting cactus microhabitat which is patchily distributed and ephemeral. There is evidence, however, that the Gulf of California, which bisects the Sonoran Desert, has played a role in limiting gene flow and promoting speciation in several taxa, including histerid beetles, whereas other taxa, especially Drosophila nigrospiracula and D. mettleri, apparently are able to freely cross the Gulf, probably by taking advantage of the Midriff Islands in the northern Gulf as dispersal “stepping stones”. Genetic evidence has also been found for historical population expansions dating to the Pleistocene and late Pliocene in several taxa. Overall, these studies have provided important insights into how arthropods with different life history traits, but generally restricted to a necrotic cactus microhabitat, have evolved in an environmentally harsh and tectonically active region. In addition, they suggest some taxa for further, and more detailed, hypothesis driven studies of speciation.

  18. Late Quaternary history of the Atacama Desert

    Science.gov (United States)

    Latorre, Claudio; Betancourt, Julio L.; Rech, Jason A.; Quade, Jay; Holmgren, Camille; Placzek, Christa; Maldonado, Antonio; Vuille, Mathias; Rylander, Kate A.; Smith, Mike; Hesse, Paul

    2005-01-01

    Of the major subtropical deserts found in the Southern Hemisphere, the Atacama Desert is the driest. Throughout the Quaternary, the most pervasive climatic influence on the desert has been millennial-scale changes in the frequency and seasonality of the scant rainfall, and associated shifts in plant and animal distributions with elevation along the eastern margin of the desert. Over the past six years, we have mapped modern vegetation gradients and developed a number of palaeoenvironmental records, including vegetation histories from fossil rodent middens, groundwater levels from wetland (spring) deposits, and lake levels from shoreline evidence, along a 1200-kilometre transect (16–26°S) in the Atacama Desert. A strength of this palaeoclimate transect has been the ability to apply the same methodologies across broad elevational, latitudinal, climatic, vegetation and hydrological gradients. We are using this transect to reconstruct the histories of key components of the South American tropical (summer) and extratropical (winter) rainfall belts, precisely at those elevations where average annual rainfall wanes to zero. The focus has been on the transition from sparse, shrubby vegetation (known as the prepuna) into absolute desert, an expansive hyperarid terrain that extends from just above the coastal fog zone (approximately 800 metres) to more than 3500 metres in the most arid sectors in the southern Atacama.

  19. Fog water chemistry in the Namib desert, Namibia

    Science.gov (United States)

    Eckardt, Frank D.; Schemenauer, Robert S.

    This study documents the ion concentrations and ion enrichment relative to sea water, in Namib Desert fog water, with the purpose of establishing its suitability for future fogwater collection schemes, while also examining claims that Namib Desert fog water carries exceptionally high concentrations of sulphate, which may be responsible for the formation of gypsum deposits in the desert. The work suggests that Namibian fog water is at least as clean as has been reported from other coastal deserts in South America and Arabia, and provides a source of very clean water for the coastal desert region of south-western Africa. It does not appear that fog is an efficient sulphur source for the formation of the gypsum deposits, unless rare events with high concentrations of marine sulphur compounds occur.

  20. A 30-year chronosequence of burned areas in Arizona: effects of wildfires on vegetation in Sonoran Desert Tortoise (Gopherus morafkai) habitats

    Science.gov (United States)

    Shryock, Daniel F.; Esque, Todd C.; Chen, Felicia C.

    2015-01-01

    Fire is widely regarded as a key evolutionary force in fire-prone ecosystems, with effects spanning multiple levels of organization, from species and functional group composition through landscape-scale vegetation structure, biomass, and diversity (Pausas and others, 2004; Bond and Keeley 2005; Pausas and Verdu, 2008). Ecosystems subjected to novel fire regimes may experience profound changes that are difficult to predict, including persistent losses of vegetation cover and diversity (McLaughlin and Bowers, 1982; Brown and Minnich, 1986; Brooks, 2012), losses to seed banks (Esque and others, 2010a), changes in demographic processes (Esque and others, 2004; DeFalco and others, 2010), increased erosion (Soulard and others, 2013), changes in nutrient availability (Esque and others, 2010b), increased dominance of invasive species (Esque and others, 2002; Brooks and others, 2004), and transitions to alternative community states (Davies and others, 2012). In the deserts of the Southwestern United States, fire size and frequency have increased substantially over the last several decades because of an invasive grass/fire feedback cycle (Schmid and Rogers, 1988; D’Antonio and Vitousek, 1992; Swantek and others, 1999; Brooks and Matchett, 2006; Esque and others, 2010a), in which invasive annual species are able to establish fuel loads capable of sustaining large-scale wildfires following years of high rainfall (Esque and Schwalbe, 2002). Native perennial vegetation is not well-adapted to fire in these environments, and widespread, physiognomically dominant species such as creosote bush (Larrea tridentata), Joshua tree (Yucca brevifolia), giant saguaro cactus (Carnegiea gigantea), and paloverde (Parkinsonia spp.) may be reduced or eliminated (Brown and Minnich, 1986; Esque and others, 2006; DeFalco and others, 2010), potentially affecting wildlife populations including the Sonoran and federally threatened Mojave Desert Tortoises (Gopherus morafkai and Gopherus agassizii

  1. Nationwide desert highway assessment: a case study in China.

    Science.gov (United States)

    Mao, Xuesong; Wang, Fuchun; Wang, Binggang

    2011-07-01

    The natural environment affects the construction of desert highways. Conversely, highway construction affects the natural environment and puts the ecological environment at a disadvantage. To satisfy the variety and hierarchy of desert highway construction and discover the spatio-temporal distribution of the natural environment and its effect on highway construction engineering, an assessment of the natural regional divisions of desert highways in China is carried out for the first time. Based on the general principles and method for the natural region division, the principles, method and index system for desert highway assessment is put forward by combining the desert highway construction features and the azonal differentiation law. The index system combines the dominant indicator and four auxiliary indicators. The dominant indicator is defined by the desert's comprehensive state index and the auxiliary indicators include the sand dune height, the blown sand strength, the vegetation coverage ratio and the annual average temperature difference. First the region is divided according to the dominant indicator. Then the region boundaries are amended according to the four auxiliary indicators. Finally the natural region division map for desert highway assessment is presented. The Chinese desert highways can be divided into three sections: the east medium effect region, the middle medium-severe effect region, and the west slight-medium effect region. The natural region division map effectively paves the way for the route planning, design, construction, maintenance and ongoing management of desert highways, and further helps environmental protection.

  2. Cumulative drought and land-use impacts on perennial vegetation across a North American dryland region

    Science.gov (United States)

    Munson, Seth M.; Long, A. Lexine; Wallace, Cynthia; Webb, Robert H.

    2016-01-01

    Question The decline and loss of perennial vegetation in dryland ecosystems due to global change pressures can alter ecosystem properties and initiate land degradation processes. We tracked changes of perennial vegetation using remote sensing to address the question of how prolonged drought and land-use intensification have affected perennial vegetation cover across a desert region in the early 21st century? Location Mojave Desert, southeastern California, southern Nevada, southwestern Utah and northwestern Arizona, USA. Methods We coupled the Moderate-Resolution Imaging Spectroradiometer Enhanced Vegetation Index (MODIS-EVI) with ground-based measurements of perennial vegetation cover taken in about 2000 and about 2010. Using the difference between these years, we determined perennial vegetation changes in the early 21st century and related these shifts to climate, soil and landscape properties, and patterns of land use. Results We found a good fit between MODIS-EVI and perennial vegetation cover (2000: R2 = 0.83 and 2010: R2 = 0.74). The southwestern, far southeastern and central Mojave Desert had large declines in perennial vegetation cover in the early 21st century, while the northeastern and southeastern portions of the desert had increases. These changes were explained by 10-yr precipitation anomalies, particularly in the cool season and during extreme dry or wet years. Areas heavily impacted by visitor use or wildfire lost perennial vegetation cover, and vegetation in protected areas increased to a greater degree than in unprotected areas. Conclusions We find that we can extrapolate previously documented declines of perennial plant cover to an entire desert, and demonstrate that prolonged water shortages coupled with land-use intensification create identifiable patterns of vegetation change in dryland regions.

  3. Desert Pavement Studies

    National Research Council Canada - National Science Library

    Haff, Peter

    2003-01-01

    Combining plan view information from aerial photography showing details of stream channels on desert pavement surfaces with process-based erosion models, a high-resolution, synthetic topography DEM...

  4. Desert Pavement Studies

    National Research Council Canada - National Science Library

    Haff, P

    2003-01-01

    Combining plan view information from aerial photography showing details of stream channels on desert pavement surfaces with process-based erosion models, a high-resolution, "synthetic topography" DEM...

  5. Remote Sensing Field Guide - Desert

    Science.gov (United States)

    1991-09-01

    experienced boatmen. Most river water, even in deserts, contains Giardia micro -organisms that can cause serious diarrhea. Sich water should be boiled...water. The solutes and suspended micro -matter can be moved up and down by an oscillating water table and redeposited or precipitated at differ- ent...McCauley, U.S. Geological Survey, Desert Studies Group, Flagstaff, AZ, Nov 1973. B. Servicio Aerofotografia Nacional del Peru (on back). / ...... CONN:MFI

  6. Plant responses to an edaphic gradient across an active sand dune/desert boundary in the great basin desert.

    NARCIS (Netherlands)

    Rosenthal, D.M.; Ludwig, F.; Donovan, L.A.

    2005-01-01

    In arid ecosystems, variation in precipitation causes broad-scale spatial heterogeneity in soil moisture, but differences in soil texture, development, and plant cover can also create substantial local soil moisture heterogeneity. The boundary between inland desert sand dunes and adjacent desert

  7. Nine-year spatial and temporal evolution of desert dust aerosols over South and East Asia as revealed by CALIOP

    Directory of Open Access Journals (Sweden)

    E. Proestakis

    2018-02-01

    Full Text Available We present a 3-D climatology of the desert dust distribution over South and East Asia derived using CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation data. To distinguish desert dust from total aerosol load we apply a methodology developed in the framework of EARLINET (European Aerosol Research Lidar Network. The method involves the use of the particle linear depolarization ratio and updated lidar ratio values suitable for Asian dust, applied to multiyear CALIPSO observations (January 2007–December 2015. The resulting dust product provides information on the horizontal and vertical distribution of dust aerosols over South and East Asia along with the seasonal transition of dust transport pathways. Persistent high D_AOD (dust aerosol optical depth values at 532 nm, of the order of 0.6, are present over the arid and semi-arid desert regions. Dust aerosol transport (range, height and intensity is subject to high seasonality, with the highest values observed during spring for northern China (Taklimakan and Gobi deserts and during summer over the Indian subcontinent (Thar Desert. Additionally, we decompose the CALIPSO AOD (aerosol optical depth into dust and non-dust aerosol components to reveal the non-dust AOD over the highly industrialized and densely populated regions of South and East Asia, where the non-dust aerosols yield AOD values of the order of 0.5. Furthermore, the CALIPSO-based short-term AOD and D_AOD time series and trends between January 2007 and December 2015 are calculated over South and East Asia and over selected subregions. Positive trends are observed over northwest and east China and the Indian subcontinent, whereas over southeast China trends are mostly negative. The calculated AOD trends agree well with the trends derived from Aqua MODIS (Moderate Resolution Imaging Spectroradiometer, although significant differences are observed over specific regions.

  8. Chapter 8: Fire and nonnative invasive plants in the Interior West bioregion

    Science.gov (United States)

    Peter M. Rice; Guy R. McPherson; Lisa J. Rew

    2008-01-01

    The Interior West bioregion is bounded on the east by the eastern slope of the Rocky Mountains from Canada south to Mexico and on the west by the eastern foothills of the Cascade Range in Washington and Oregon and the eastern foothills of the Sierra Nevada in California. The bioregion includes the Chihuahuan, Sonoran, and Mojave hot deserts and the Great Basin cold...

  9. Groundwater geochemistry of nile delta-desert interface 1.isotope hydrology

    International Nuclear Information System (INIS)

    Hussein, M.F.; Nada, A.A.; Awad, M.A.

    1995-01-01

    Sustenance and environmental protection of groundwater supply is of major concern in the integral environmental development in the arid to sub-arid regions in the Nile basin. Isotope data ( 18O , 2H and 3H ) of groundwater in the west of the Nile delta indicates the contribution of palaeo groundwater component (in the range 0.1 - 0.8 with means of 0.39 and 0.52 for tahrir and khatatbah, respectively) along with sub recent recharge from the delta aquifer and recent recharge from irrigation conveyance canals in desert. Isotope mixing model (developed as Two-input table using excel TM spreads heat on apple Macintosh TM) is proposed to explain the apparent discrepancies in groundwater isotopic composition of khatatbah and tahrir areas assuming the contribution of two isotopically different palaeo-oples with two isotopically similar maind delta groundwater poles. About 0.30% 1 8 O depletion per 10 Km downstream is detected and low northward groundwater recharge is suggested along 75 Km of the western strip of rosetta Nile. Higher sub-recent recharge from the main delta aquifer is believed to take place in khatatbah than tahrir whereas the last is believed to be replenished at present from the irrigation/ drainage network and irrigated fields with higher pollution risk for groundwater system in tahrir aquifer is exposed to northern marine intrusion. Lowering of the piezo metric level is to be expected in the newly exploited desertic areas under over pumping. 9 figs

  10. The impact of desert solar power utilization on sustainable development

    International Nuclear Information System (INIS)

    Sadiq Ali Shah; Yang Zhang

    2011-01-01

    This paper evaluates the prospects of developing a solar based desert economy in the deserts of solar-rich countries. The potential deserts are analysed to study their positive impact on the sustainable development processes in these regions. The sustainability of the processes is established on the basis of self-contained nature of energy generation, environmental emission reduction and desert land reclamation. (authors)

  11. Microbial ecology of hot desert edaphic systems.

    Science.gov (United States)

    Makhalanyane, Thulani P; Valverde, Angel; Gunnigle, Eoin; Frossard, Aline; Ramond, Jean-Baptiste; Cowan, Don A

    2015-03-01

    A significant proportion of the Earth's surface is desert or in the process of desertification. The extreme environmental conditions that characterize these areas result in a surface that is essentially barren, with a limited range of higher plants and animals. Microbial communities are probably the dominant drivers of these systems, mediating key ecosystem processes. In this review, we examine the microbial communities of hot desert terrestrial biotopes (including soils, cryptic and refuge niches and plant-root-associated microbes) and the processes that govern their assembly. We also assess the possible effects of global climate change on hot desert microbial communities and the resulting feedback mechanisms. We conclude by discussing current gaps in our understanding of the microbiology of hot deserts and suggest fruitful avenues for future research. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Biological and Proteolytic Variation in the Venom of Crotalus scutulatus scutulatus from Mexico

    Directory of Open Access Journals (Sweden)

    Miguel Borja

    2018-01-01

    Full Text Available Rattlesnake venoms may be classified according to the presence/absence and relative abundance of the neurotoxic phospholipases A 2 s (PLA 2 s, such as Mojave toxin, and snake venom metalloproteinases (SVMPs. In Mexico, studies to determine venom variation in Mojave Rattlesnakes (Crotalus scutulatus scutulatus are limited and little is known about the biological and proteolytic activities in this species. Tissue (34 and venom (29 samples were obtained from C. s. scutulatus from different locations within their distribution in Mexico. Mojave toxin detection was carried out at the genomic (by PCR and protein (by ELISA levels for all tissue and venom samples. Biological activity was tested on representative venoms by measuring LD 50 and hemorrhagic activity. To determine the approximate amount of SVMPs, 15 venoms were separated by RP-HPLC and variation in protein profile and proteolytic activity was evaluated by SDS-PAGE (n = 28 and Hide Powder Azure proteolytic analysis (n = 27. Three types of venom were identified in Mexico which is comparable to the intraspecific venom diversity observed in the Sonoran Desert of Arizona, USA: Venom Type A (∼Type II, with Mojave toxin, highly toxic, lacking hemorrhagic activity, and with scarce proteolytic activity; Type B (∼Type I, without Mojave toxin, less toxic than Type A, highly hemorrhagic and proteolytic; and Type A + B, containing Mojave toxin, as toxic as venom Type A, variable in hemorrhagic activity and with intermediate proteolytic activity. We also detected a positive correlation between SVMP abundance and hemorrhagic and proteolytic activities. Although more sampling is necessary, our results suggest that venoms containing Mojave toxin and venom lacking this toxin are distributed in the northwest and southeast portions of the distribution in Mexico, respectively, while an intergradation in the middle of both zones is present.

  13. Growth responses of five desert plants as influenced by biological soil crusts from a temperate desert, China

    Science.gov (United States)

    Zhang, Yuanming; Belnap, Jayne

    2015-01-01

    In almost all dryland systems, biological soil crusts (biocrusts) coexist alongside herbaceous and woody vegetation, creating landscape mosaics of vegetated and biocrusted patches. Results from past studies on the interaction between biocrusts and vascular plants have been contradictory. In the Gurbantunggut desert, a large temperate desert in northwestern China, well-developed lichen-dominated crusts dominate the areas at the base and between the sand dunes. We examined the influence of these lichen-dominated biocrusts on the germination, growth, biomass accumulation, and elemental content of five common plants in this desert: two shrubs (Haloxylon persicum, Ephedra distachya) and three herbaceous plants (Ceratocarpus arenarius, Malcolmia africana and Lappula semiglabra) under greenhouse conditions. The influence of biocrusts on seed germination was species-specific. Biocrusts did not affect percent germination in plants with smooth seeds, but inhibited germination of seeds with appendages that reduced or eliminated contact with the soil surface or prevented seeds from slipping into soil cracks. Once seeds had germinated, biocrusts had different influences on growth of shrub and herbaceous plants. The presence of biocrusts increased concentrations of nitrogen but did not affect phosphorus or potassium in tissue of all tested species, while the uptake of the other tested nutrients was species-specific. Our study showed that biocrusts can serve as a biological filter during seed germination and also can influence growth and elemental uptake. Therefore, they may be an important trigger for determining desert plant diversity and community composition in deserts.

  14. The Use of Water During the Crew 144, Mars Desert Research Station, Utah Desert

    Science.gov (United States)

    De Morais Mendonca Teles, Antonio

    2016-07-01

    Well. from November 29th to December 14th, 2014, the author conducted astrobiological and geological surveys, as analog astronaut member of the international Crew 144, at the site of the Mars Society's Mars Desert Research Station, located at a remote location in the Utah desert, United States. The use of water for drinking, bathing, cleaning, etc., in the crew was a major issue for consideration for a human expedition to the planet Mars in the future. The author would like to tell about the factors of the rationalized use of water.

  15. Surveys for desert tortoise on the proposed site of a high-level nuclear waste repository at the Nevada Test Site

    International Nuclear Information System (INIS)

    Collins, E.; Sauls, M.L.; O'Farrell, T.P.

    1983-01-01

    The National Waste Terminal Storage Program is a national search for suitable sites to isolate commercial spent nuclear fuel or high-level radioactive waste. The Nevada Nuclear Waste Storage Investigation (NNWSI) managed by the U.S. Department of Energy (DOE), Nevada Operations Office, was initiated to study the suitability of a portion of Yucca Mountain on the DOE's Nevada Test Site (NTS) as a location for such a repository. EG and G was contracted to provide information concerning the ecosystems encountered on the site. A comprehensive literature survey was conducted to evaluate the status and completeness of the existing biological information for the previously undisturbed area. Site specific studies were begun in 1981 when preliminary field surveys confirmed the presence of the desert tortoise (Gopherus agassizi) within the project area FY82 studies were designed to determine the overall distribution and abundance of the tortoise within the area likely to be impacted by NNWSI activities. The Yucca Mountain area of the Nevada Test Site is situated close to the northern range limit of the desert tortoise. Prior to the 1982 surveys, the desert tortoise was reported from only nine locations on NTS. A known population had been under study in Rock Valley about 25 miles southeast of the project area. However, the distribution and population densities of tortoise in the southwest portion of NTS were virtually unknown. Results of our surveys indicate that desert tortoise can be expected, albeit in small numbers, in a wide range of Mojavean and Transitional habitats

  16. Structural and Tectonic Map Along the Pacific-North America Plate Boundary in Northern Gulf of California, Sonora Desert and Valle de Mexicali, Mexico, from Seismic Reflection Evidence

    Science.gov (United States)

    Gonzalez-Escobar, M.; Suarez-Vidal, F.; Mendoza-Borunda, R.; Martin Barajas, A.; Pacheco-Romero, M.; Arregui-Estrada, S.; Gallardo-Mata, C.; Sanchez-Garcia, C.; Chanes-Martinez, J.

    2012-12-01

    Between 1978 and 1983, Petróleos Mexicanos (PEMEX) carried on an intense exploration program in the northern Gulf of California, the Sonora Desert and the southern part of the Mexicali Valley. This program was supported by a seismic reflection field operation. The collected seismic data was 2D, with travel time of 6 s recording, in 48 channels, and the source energy was: dynamite, vibroseis and air guns. Since 2007 to present time, the existing seismic data has been re-processing and ire-interpreting as part of a collaboration project between the PEMEX's Subdirección de Exploración (PEMEX) and CICESE. The study area is located along a large portion of the Pacific-North America plate boundary in the northern Gulf of California and the Southern part of the Salton Trough tectonic province (Mexicali Valley). We present the result of the processes reflection seismic lines. Many of the previous reported known faults were identify along with the first time described located within the study region. We identified regions with different degree of tectonic activity. In structural map it can see the location of many of these known active faults and their associated seismic activity, as well as other structures with no associated seismicity. Where some faults are mist placed they were deleted or relocated based on new information. We included historical seismicity for the region. We present six reflection lines that cross the aftershocks zone of the El Mayor-Cucapah earthquake of April 4, 2010 (Mw7.2). The epicenter of this earthquake and most of the aftershocks are located in a region where pervious to this earthquake no major earthquakes are been reported. A major result of this study is to demonstrate that there are many buried faults that increase the seismic hazard.

  17. Infrared Spectroscopic Analyses of Sulfate, Nitrate, and Carbonate-bearing Atacama Desert Soils: Analogs for the Interpretation of Infrared Spectra from the Martian Surface

    Science.gov (United States)

    Dalton, J. B.; Dalton, J. B.; Ewing, S. A.; Amundson, R.; McKay, C. P.

    2005-01-01

    The Atacama Desert of northern Chile is the driest desert on Earth, receiving only a few mm of rain per decade. The Mars climate may, in the past, have been punctuated by short-lived episodes of aqueous activity. The paleo-Martian environment may have had aqueous conditions similar to the current conditions that exist in the Atacama, and Mars soils may have formed with soil chemistry and mineralogy similar to those found in the Atacama. Remote and in-situ analysis of the Martian surface using infrared technology has a long heritage. Future investigations of the subsurface mineralogy are likely to build upon this heritage, and will benefit from real life lessons to be learned from terrestrial analog studies. To that end, preliminary results from a near- and mid-infrared spectroscopic study of Atacama soil profiled at a range of depths are presented.

  18. Investigating the mysteries of groundwater in the Badain Jaran Desert, China

    Science.gov (United States)

    Wang, Xu-Sheng; Zhou, Yanyi

    2018-03-01

    The Badain Jaran Desert (BJD) in China is a desert with impressive sand dunes and a groundwater situation that has attracted numerous researchers. This paper gives an overview of the mysteries of groundwater in the BJD that are exhibited as five key problems identified in previous studies. These problems relate to the origin of the groundwater, the hydrological connection between the BJD and the Heihe River Basin (HRB), the infiltration recharge, the lake-groundwater interactions, and the features of stable isotope analyses. The existing controversial analyses and hypotheses have caused debate and have hindered effective water resources management in the region. In recent years, these problems have been partly addressed by additional surveys. It has been revealed that the Quaternary sandy sediments and Neogene-Cretaceous sandstones form a thick aquifer system in the BJD. Groundwater flow at the regional scale is dominated by a significant difference in water levels between the surrounding mountains and lowlands at the western and northern edges. Discharge of groundwater from the BJD to the downstream HRB occurs according to the regional flow. Seasonal fluctuations of the water level in lakes are less than 0.5 m due to the quasi-steady groundwater discharge. The magnitude of infiltration recharge is still highly uncertain because significant limitations existed in previous studies. The evaporation effect may be the key to interpreting the anomalous negative deuterium-excess in the BJD groundwater. Further investigations are expected to reveal the hydrogeological conditions in more detail.

  19. Groundwater geochemistry of nile delta-desert interface 1.isotope hydrology

    Energy Technology Data Exchange (ETDEWEB)

    Hussein, M F [Cairo University, Dept., of Soil and water, Giza, Gamma Street, (Egypt); Nada, A A; Awad, M A [Atomic Energy Authority, Nuclear Chemistry Dept., P.o. Box 13759, Cairo, (Egypt)

    1995-10-01

    Sustenance and environmental protection of groundwater supply is of major concern in the integral environmental development in the arid to sub-arid regions in the Nile basin. Isotope data ({sup 18O}, {sup 2H} and {sup 3H}) of groundwater in the west of the Nile delta indicates the contribution of palaeo groundwater component (in the range 0.1 - 0.8 with means of 0.39 and 0.52 for tahrir and khatatbah, respectively) along with sub recent recharge from the delta aquifer and recent recharge from irrigation conveyance canals in desert. Isotope mixing model (developed as Two-input table using excel{sup TM} spreads heat on apple Macintosh{sup TM)} is proposed to explain the apparent discrepancies in groundwater isotopic composition of khatatbah and tahrir areas assuming the contribution of two isotopically different palaeo-oples with two isotopically similar maind delta groundwater poles. About 0.30% {sup 1}8{sup O} depletion per 10 Km downstream is detected and low northward groundwater recharge is suggested along 75 Km of the western strip of rosetta Nile. Higher sub-recent recharge from the main delta aquifer is believed to take place in khatatbah than tahrir whereas the last is believed to be replenished at present from the irrigation/ drainage network and irrigated fields with higher pollution risk for groundwater system in tahrir aquifer is exposed to northern marine intrusion. Lowering of the piezo metric level is to be expected in the newly exploited desertic areas under over pumping. 9 figs.

  20. Annual report on paleoclimate studies for the Yucca Mountain project site characterization conducted by the Desert Research Institute for the Department of Energy

    International Nuclear Information System (INIS)

    1994-01-01

    The prospect that Yucca Mountain may become a repository for high-level radionuclides with especially long half-lives means that the intended waste containment area must be well beyond the reach of the hydrologic system for at least ten millennia. Through the integration of several avenues of paleoclimatic proxy data, the authors intend to arrive at definite conclusions regarding rates of change, and extremes and stabilities of past climate regimes. These will in turn lead to rough estimates of: the amounts of rainfall available for recharge during past periods of effectively wetter climate, and the durations and frequencies of recharge periods. The paper gives summaries of the following studies: Late Quaternary and Holocene climate derived from vegetation history and plant cellulose stable isotope records from the Great basin of western North America; Accomplishments of paleofaunal studies, 1993--1994; Geomorphology studies in the Great Basin; Alluvial fan response to climatic change, Buena Vista Valley, central Nevada; Sedimentology, stratigraphy, and chronology of lacustrine deposition in the Fernley Basin, west-central Nevada; Tree-rings, lake chronologies, alluvial sequences and climate--Implications for Great Basin paleoenvironmental studies; Stable isotopic validation studies--Fossil snails; and Late Pleistocene and Holocene eolian activity in the Mojave Desert

  1. Long-Term Observations of Dust Storms in Sandy Desert Environments

    Science.gov (United States)

    Yun, Hye-Won; Kim, Jung-Rack; Choi, Yun-Soo

    2015-04-01

    Mineral dust occupies the largest portion of atmospheric aerosol. Considering the numerous risks that dust poses for socioeconomic and anthropogenic activities, it is crucial to understand sandy desert environments, which frequently generate dust storms and act as a primary source of atmospheric aerosol. To identify mineral aerosol mechanisms, it is essential to monitor desert environmental factors involving dust storm generation in the long term. In this study, we focused on two major environmental factors: local surface roughness and soil moisture. Since installments of ground observation networks in sandy deserts are unfeasible, remote sensing techniques for mining desert environmental factors were employed. The test area was established within the Badain Jaran and Kubuqi Deserts in Inner Mongolia, China, where significant seasonal aeolian processes emit mineral dust that influences all of East Asia. To trace local surface roughness, we employed a multi-angle imaging spectroradiometer (MISR) image sequence to extract multi-angle viewing (MAV) topographic parameters such as normalized difference angular index, which represents characteristics of the target desert topography. The backscattering coefficient from various space-borne SAR and stereotopography were compared with MAV observations to determine calibrated local surface roughness. Soil moisture extraction techniques from InSAR-phase coherence stacks were developed and compiled with advanced scatterometer (ASCAT) soil moisture data. Combined with metrological information such as the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA interim, correlations between intensity of sand dune activity as a proxy of aeolian processes in desert environments, surface wind conditions, and surface soil moisture were traced. Overall, we have confirmed that tracking sandy desert aeolian environments for long-term observations is feasible with space-borne, multi-sensor observations when combined with

  2. Goods and services provided by native plants in desert ecosystems: Examples from the northwestern coastal desert of Egypt

    Directory of Open Access Journals (Sweden)

    Laila M. Bidak

    2015-01-01

    Full Text Available About one third of the earth’s land surface is covered by deserts that have low and variable rainfall, nutrient-poor soils, and little vegetation cover. Here, we focus on the goods and services offered by desert ecosystems using the northwestern coastal desert of Egypt extending from Burg El-Arab to El-Salloum as an example. We conducted field surveys and collected other data to identify the goods services and provided by native plant species. A total of 322 native plant species were compiled. The direct services provided by these native plants included sources of food, medicine, and energy; indirect vegetation services included promotion of biodiversity, water storage, and soil fertility. The plant diversity in this ecosystem provided economic service benefits, such as sources of fodder, fuel-wood, and traditional medicinal plants. Changes in land use and recent ill-managed human activities may influence the availability of these services and strongly impact biodiversity and habitat availability. Although deserts are fragile and support low levels of productivity, they provide a variety of goods and services whose continuing availability is contingent upon the adoption of rational land management practices.

  3. Evaluating process domains in small arid granitic watersheds: Case study of Pima Wash, South Mountains, Sonoran Desert, USA

    Science.gov (United States)

    Seong, Yeong Bae; Larson, Phillip H.; Dorn, Ronald I.; Yu, Byung Yong

    2016-02-01

    and roofs for coyotes (Canis latrans) and gray fox (Urocyon Cinereoargenteus) dens on terrace scarps via stage 3 pedogenic carbonate. These four process domains occur in six other randomly selected granitic watersheds with drainage areas < 5 km2 in the Mojave and Sonoran Deserts. Results on rates of geomorphic processes in the Pima Wash watershed provide new insight in the desert geomorphology of small granitic watersheds. Catchment-wide denudation rates (CWDRs) recorded by 10Be sampled along the main ephemeral wash vary between 15 and 23 mm/ka and do not appear to be influenced by knickpoint or knickzone occurrence; instead slightly lower CWDRs appear to be associated with sediment contributions by subbasins with more abundance of bare bedrock forms. Resampling for CWDR after a 500-year flood event from hurricane moisture at two sites along the main ephemeral channel revealed no detectable changes; this finding confirms the average representativeness of CWDR as a long-term denudation proxy and also means that sediment transport on these arid granitic hillslopes must be incremental and without rapid crest to wash transport. The first reported measurements of incision rates into a small granitic Sonoran Desert watershed, using 10Be and VML, reveal rates on the order of 70-180 mm/ka in the lower quarter of Pima Wash for the last 60 ka - producing a narrow and deep trench. As this base-level fall propagates upstream, erosion focuses on weaker material with higher joint densities; this facilitates the emergence of domes and kopje landforms with more widely spaced jointing.

  4. A new species of Eccopsis Zeller (Lepidoptera, Tortricidae from the coastal valleys of northern Chile, with the first continental record of E. galapagana Razowski & Landry

    Directory of Open Access Journals (Sweden)

    Héctor A. Vargas

    2011-06-01

    Full Text Available A new species of Eccopsis Zeller (Lepidoptera, Tortricidae from the coastal valleys of northern Chile, with the first continental record of E. galapagana Razowski & Landry. Eccopsis Zeller, 1852 is reported for the first time from Chile. Eccopsis razowskii Vargas, n. sp. is described and illustrated based on specimens reared from larvae collected on native Acacia macracantha Willd. (Fabaceae in the coastal valleys of the northern Chilean desert. Eccopsis galapagana Razowski & Landry, 2008, previously known only from the Galapagos Islands, Ecuador, is recorded for the first time from continental South America. Larvae of the latter were collected in northern Chile feeding on Prosopis alba Griseb (Fabaceae.

  5. Aborigines of the nuclear desert

    International Nuclear Information System (INIS)

    Rujula, A. de

    1985-01-01

    The chart of 'stable nuclides' extends from Hydrogen, to Z proportional 98, A proportional 263. It contains another island of stability - neutron stars - in a narrow range around Z proportional 10 56 , A proportional 10 57 . In between lies a supposedly barren region encompassing more than 50 orders of magnitude. This desert may be populated by strange quark balls: Stable single bags containing similar proportions of u, d and s quarks. These balls are candidates for the constituency of the 'dark mass' in galaxies and in the Universe. We describe seven ways to search for these possible inhabitants of the nuclear desert. (orig.)

  6. Renewable Energy Development on Fort Mojave Reservation Feasiblity Study

    Energy Technology Data Exchange (ETDEWEB)

    Russell Gum, ERCC analytics LLC

    2008-03-17

    The Ft. Mojave tribe, whose reservation is located along the Colorado River in the states of Arizona, California, and Nevada near the point where all three states meet, has a need for increased energy supplies. This need is a direct result of the aggressive and successful economic development projects undertaken by the tribe in the last decade. While it is possible to contract for additional energy supplies from fossil fuel sources it was the desire of the tribal power company, AHA MACAV Power Service (AMPS) to investigate the feasibility and desirability of producing power from renewable sources as an alternative to increased purchase of fossil fuel generated power and as a possible enterprise to export green power. Renewable energy generated on the reservation would serve to reduce the energy dependence of the tribal enterprises on off reservation sources of energy and if produced in excess of reservation needs, add a new enterprise to the current mix of economic activities on the reservation. Renewable energy development would also demonstrate the tribe’s support for improving environmental quality, sustainability, and energy independence both on the reservation and for the larger community.

  7. 78 FR 27256 - Meeting of the California Desert District Advisory Council

    Science.gov (United States)

    2013-05-09

    ..., from 8 a.m. to 4:30 p.m. in Ridgecrest, Calif. at a location to be announced later. There also will be a DAC Business Meeting on Friday, June 7, from noon to 4:30 p.m. at the Jawbone Station Visitors... Saturday meeting will include a focus on the West Mojave Plan, as well as updates by council members, the...

  8. Are biological effects of desert shrubs more important than physical effects on soil microorganisms?

    Science.gov (United States)

    Berg, Naama; Steinberger, Yosef

    2010-01-01

    Vegetation cover plays a major role in providing organic matter and in acting as a physical barrier, with both together contributing to the formation of "fertile islands," which play an active role in prolonging biological activity in desert ecosystems. By undertaking this study, a longterm research, we designed an experiment to separate the two components-the physical and biotic parts of the perennial plants-and to identify the factor that contributes the most to the ecosystem. The study site was located in the northern Negev Desert, Israel, where 50 Hammada scoparia shrubs and 50 artificial plants were randomly marked. Soil samples were collected monthly over 3 years of research at three locations: under the canopy of H. scoparia shrubs, in the vicinity of the artificial plants, and between the shrubs (control). The contribution to microbial activity was measured by evaluation of the microbial community functions in soil. The functional aspects of the microbial community that were measured were CO2 evolution, microbial biomass, microbial functional diversity, and the physiological profile of the community. The results of this study are presented in two ways: (1) according to the three locations/treatments; and (2) according to the phenological situation of the vegetation (annual and perennial plants) in the research field: the growing phase, the drying process, and the absence of annual plants. The only parameters that were found to affect microbial activity were the contribution of the organic matter of perennial shrubs and the growth of vegetation (annual and perennial) during the growing seasons. The physical component was found to have no effect on soil microbial functional diversity, which elucidates the important contribution of the desert shrub in enhancing biological multiplicity and activity.

  9. 1983 biotic studies of Yucca Mountain, Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    O'Farrell, T.P.; Collins, E.

    1984-04-01

    A 27.5-square-mile portion of Yucca Mountain on and adjacent to the US Department of Energy's Nevada Test Site, Nye County, Nevada, is being considered as a potential location for a national high-level radioactive waste repository. Preliminary geologic and environmental characterization studies have been supported and more extensive studies are planned. Goals of the biotic surveys were to identify species of concern, describe major floral and faunal associations, and assess possible impacts of characterization and operational activities. Floral associations observed were characteristic of either the Mojave or Transition deserts that are widely distributed in southern Nevada. Diversity, in terms of total number of perennial species represented, was higher in Transition Desert associations than in Mojave Desert associations. Canopy coverage of associations fell within the range of reported values, but tended to be more homogeneous than expected. Annual vegetation was found to be diverse only where the frequency of Bromus rubens was low. Ground cover of winter annuals, especially annual grasses, was observed to be very dense in 1983. The threat of range fires on Yucca Mountain was high because of the increased amount of dead litter and the decreased amount of bare ground. Significant variability was observed in the distribution and relative abundance of several small mammal species between 1982 and 1983. Desert tortoise were found in low densities comparable with those observed in 1982. Evidence of recent activity, which included sighting of two live tortoises, was found in five areas on Yucca Mountain. Two of these areas have a high probability of sustaining significant impacts if a repository is constructed. Regeneration of aboveground shrub parts from root crowns was observed in areas damaged in 1982 by seismic testing with Vibroseis machines. These areas, which had been cleared to bare dirt by passage of the machines, also supported lush stands of winter annuals

  10. Lizard burrows provide thermal refugia for larks in the Arabian desert

    NARCIS (Netherlands)

    Williams, JB; Tieleman, BI; Shobrak, M

    A common perception is that desert birds experience greater extremes of heat and aridity than their mammalian counterparts, in part, because birds do not use burrows as a refuge from the desert environment. We report observations of Dunn's Larks (Eremalauda dunni), Bar-tailed Desert Larks (Ammomanes

  11. Community adaptations to an impending food desert in rural Appalachia, USA.

    Science.gov (United States)

    Miller, Wayne C; Rogalla, Denver; Spencer, Dustin; Zia, Nida; Griffith, Brian N; Heinsberg, Haylee B

    2016-01-01

    The United States Department of Agriculture (USDA) describes a food desert as an urban neighborhood or rural town without ready access to fresh, healthy, and affordable food. An estimated 2.3 million rural Americans live in food deserts. One goal of the USDA is to eliminate food deserts. However, at a time when some food deserts are being eliminated, hundreds of grocery stores are closing, causing other food deserts to arise. The literature is scarce on how a community adapts to an impending food desert. Alderson, West Virginia, USA (population 1184) rallied to face an impending food desert when the only grocery store in town closed in December 2014. This study investigated how this small rural community adapted to its oncoming food desert. A community member survey was administered to 155 Alderson families (49%) to determine how the new food desert affected family food acquisition and storage behaviors. A restaurant survey was given to the town's four restaurants to determine how the food desert affected their businesses. Sales data for a new food hub (Green Grocer) was obtained to see if this new initiative offset the negative effects of the food desert. ANOVA and t-tests were used to compare group numerical data. Two group response rates were compared by testing the equality of two proportions. Categorical data were analyzed with the χ2 or frequency distribution analysis. Group averages are reported as mean ± standard error of the mean. Significance for all analyses was set at pp=0.16) from the number before the food desert (2.8±0.3). Price comparisons among the Green Grocer and three distant supermarkets showed a 30% savings by traveling to distant supermarkets. Frequency of monthly restaurant visits did not change after the emergence of the food desert (2.98±0.54 vs 3.05±0.51, p=0.85). However, restaurant patrons requested to buy fresh produce and dairy from the restaurants to use for their own home cooking. Food pantry use increased by 43%, with

  12. Population, desert expanding.

    Science.gov (United States)

    1992-01-01

    The conditions of desert expansion in the Sahara are highlighted. On the southern border the desert is growing at a rate of 3-6 miles/year. This growth is encroaching on arable land in Ethiopia and Mauritania. The region loses up to 28,000 sq miles/year of farmland. 33% of Africa's fertile land is threatened. Land-use patterns are responsible for the deterioration of the soil. Traditional practices are not effective because the practices are not suitable for permanent farming. Farmers also have stopped environmentally sound practices such as letting the fields remain fallow in order to renew soil fertility. Nomads overgraze areas before moving on. A recent study by the World Bank's Africa Region Office was released; the report details some of the links between rapid population growth, poor agricultural performance, and environmental degradation. Soil conditions are such that valuable topsoil is blow away by the wind because the layer is too thin. Vegetation at the desert's edge is used for cooking purposes or for heating fuel. Tropical and savannah areas are depleted when tree replacement is inadequate. Only 9 trees are planted for every 100 removed. The report emphasized the role of women and children in contributing to population pressure by increased fertility. Women's work load is heavy and children are a help in alleviating some of the burden of domestic and agricultural work. There is hope in meeting demographic, agricultural, food security, and environmental objectives over the next 30 years if the needs of women are met. The needs include access to education for young women, lessening the work loads of women, and decreasing child mortality through improved health care and access to safe water.

  13. Post-wildfire natural restoration of riparian vegetation under stable hydro-geomorphic conditions: Nahal Grar, Northern Negev Desert, Israel

    Science.gov (United States)

    Egozi, Roey

    2015-04-01

    Wildfires are common to the Mediterranean region due to its defined dry season and long historical anthropogenic activities. Most of post-wildfire studies focus on mountains areas and thus refer to the hill-slope and its physical characteristics, e.g. morphology, length, angles, and aspect; its soil characteristics, e.g. type, infiltration rate, repellency; and its vegetative covers, e.g. planted trees vs. natural forest or native vs. exotic vegetation. In contrary there is very limited literature focusing on ecological and hydro-geomorphic aspects of post-wildfire of riparian vegetation / zone probably because of its negligible burned area relative to the spread of the fire, sometimes, over the whole watershed area. The limited literature on the topic is surprising given the fact that riparian vegetation zone has been acknowledged as a unique and important habitat supporting rich biodiversity. Herein we report on a wildfire event occurred on October 14th 2009 in a river section of Nahal Grar, Northern Negev Desert, Israel. The wildfire although was limited in its area (only 3 hectare) extended over the channel alone from bank to bank and thus provide a unique case study of completely burn down of riparian vegetation, mainly dense stands of Common Red (Australis Phragmites. Therefore a detailed study of this event provides an opportunity to tackle one of the basics questions which is determining the rate of natural restoration process that act at the immediate time after the wildfire event occurred. This type of information is most valuable to professional and stakeholders for better management of post-fire riparian zones. The results of the study suggest that under stable conditions, i.e. no major flood events occurred; disturbance time was short and ranged over 200 days due to, almost, immediate recovery of the riparian vegetation. However the re-growth of the riparian vegetation was not even but rather deferential and more complex then reported in the literature

  14. The effect of leaf beetle herbivory on the fire behaviour of tamarisk (Tamarix ramosissima Lebed.)

    Science.gov (United States)

    Drus, Gail M.; Dudley, Tom L.; Brooks, Matthew L.; Matchett, John R.

    2012-01-01

    The non-native tree, Tamarix spp. has invaded desert riparian ecosystems in the south-western United States. Fire hazard has increased, as typically fire-resistant native vegetation is replaced by Tamarix. The tamarisk leaf beetle, Diorhabda carinulata Desbrochers, introduced for biological control, may affect fire behaviour by converting hydrated live Tamarix leaves and twigs into desiccated and dead fuels. This potentially increases fire hazard in the short term before native vegetation can be re-established. This study investigates how fire behaviour is altered in Tamarix fuels desiccated by Diorhabda herbivory at a Great Basin site, and by herbivory simulated by foliar herbicide at a Mojave Desert site. It also evaluates the influence of litter depth on fire intensity. Fire behaviour was measured with a fire intensity index that integrates temperature and duration (degree-minutes above 70°C), and with maximum temperature, duration, flame lengths, rates of spread and vegetation removal. Maximum temperature, flame length and rate of spread were enhanced by foliar desiccation of Tamarix at both sites. At only the Mojave site, there was a trend for desiccated trees to burn with greater fire intensity. At both sites, fire behaviour parameters were influenced to a greater degree by litter depth, vegetation density and drier and windier conditions than by foliar desiccation.

  15. The politics of accessing desert land in Jordan

    NARCIS (Netherlands)

    Naber, Al Majd; Molle, Francois

    2016-01-01

    With the dramatic increase of the population in Jordan, the value of land has rocketed up. Urban sprawl into semi-desert or desert areas, initially not surveyed or settled by the British and considered as state land, has brought to the surface the problematic status of those lands. Likewise, the

  16. An Integrated Multi-Sensor Approach to Monitor Desert Environments by UAV and Satellite Sensors: Case Study Kubuqi Desert, China

    Science.gov (United States)

    Kim, J.; Lin, C. W.; vanGasselt, S.; Lin, S.; Lan, C. W.

    2017-12-01

    Expanding deserts have been causing significant socio-economical threats by, e.g., hampering anthropogenic activities or causing decline of agricultural productivity. Countries in the Asian-Pacific regions in particular have been suffering from dust storms originating in the arid deserts of China, Mongolia and central Asia. In order to mitigate such environmental interferences by means of, e.g. combat desertification activities and early warning systems, the establishment of reliable desert monitoring schemes is needed. In this study, we report on a remote sensing data fusion approach to constantly and precisely monitor desert environments. We have applied this approach over a test site located in the Kubuqi desert located in Northeast China and which is considered to be a major contributor of dust storms today. In order to understand spatial and temporal trends of desertification, the planimetric distribution and 3D shape and size of sand dunes were reconstructed using Digital Terrain Models (DTM) derived from stereo observations made by Unmanned Aerial Vehicles (UAV). Based on this, the volumetric change of sand dunes was directly estimated through co-registered DTMs. We furthermore derived and investigated topographic parameters, such as the aerodynamic roughness length, the protrusion coefficient, the Normalized Difference Angular Index, and the phase coherence derived from spaceborne optical/synthetic aperture radar (SAR) remote sensing assets with the calibration index from UAV observation. Throughout such a multi-data approach, temporal changes of a target's environmental parameters can be traced, analyzed and correlated with weather conditions. An improved understanding of aeolian processes in sand deserts will be a valuable contribution for desertification combat activities and early warning systems for dust storm generation. Future research needs to be conducted over more extensive spatial and temporal domains, also by combining investigations on the

  17. Effects of altered temperature and precipitation on desert protozoa associated with biological soil crusts.

    Science.gov (United States)

    Darby, Brian J; Housman, David C; Zaki, Amr M; Shamout, Yassein; Adl, Sina M; Belnap, Jayne; Neher, Deborah A

    2006-01-01

    Biological soil crusts are diverse assemblages of bacteria, cyanobacteria, algae, fungi, lichens, and mosses that cover much of arid land soils. The objective of this study was to quantify protozoa associated with biological soil crusts and test the response of protozoa to increased temperature and precipitation as is predicted by some global climate models. Protozoa were more abundant when associated with cyanobacteria/lichen crusts than with cyanobacteria crusts alone. Amoebae, flagellates, and ciliates originating from the Colorado Plateau desert (cool desert, primarily winter precipitation) declined 50-, 10-, and 100-fold, respectively, when moved in field mesocosms to the Chihuahuan Desert (hot desert, primarily summer rain). However, this was not observed in protozoa collected from the Chihuahuan Desert and moved to the Sonoran desert (hot desert, also summer rain, but warmer than Chihuahuan Desert). Protozoa in culture began to encyst at 37 degrees C. Cysts survived the upper end of daily temperatures (37-55 degrees C), and could be stimulated to excyst if temperatures were reduced to 15 degrees C or lower. Results from this study suggest that cool desert protozoa are influenced negatively by increased summer precipitation during excessive summer temperatures, and that desert protozoa may be adapted to a specific desert's temperature and precipitation regime.

  18. Evaluation of great deserts of the world for perpetual radiowaste storage

    International Nuclear Information System (INIS)

    Libby, L.M.; Wurtele, M.G.; Whipple, C.G.

    1982-01-01

    Desert sites with a history of seismic stability were studied for storage of radioactive wastes because of the attractive meteorology, proven longterm geological stability, and distance from human population centers. Specific deserts were to be representative of various kinds of world deserts, if substantial information about each desert was available, to examine with respect to transporting, handling, storing, and cooling the radioactive waste, and the site suitability as to geological conditions, water availability, alternative land use, airborne emissions of heat, accidental radioactive emission, and possible socioeonomic impacts. No significant technical obstacles to the use of the world deserts as sites for a retrievable storage facility for 500 years were found. However, given the relatively low level of effort that was allocated between the many technical issues listed above, this study is neither a full risk assessment nor a full environmental impact analysis of such a facility. Assessments for siting the facility were made for five deserts, chosen to be representative of Old World, New World, Australian, interior, coastal, foggy, hot and cold: the Nullarbor Plain of Australia, the Namib in Africa, the Great Basin of the United States represented by the Nevada Test Site, the North Slope of Alaska and Canada, and the Egyptian desert

  19. Water use sources of desert riparian Populus euphratica forests.

    Science.gov (United States)

    Si, Jianhua; Feng, Qi; Cao, Shengkui; Yu, Tengfei; Zhao, Chunyan

    2014-09-01

    Desert riparian forests are the main body of natural oases in the lower reaches of inland rivers; its growth and distribution are closely related to water use sources. However, how does the desert riparian forest obtains a stable water source and which water sources it uses to effectively avoid or overcome water stress to survive? This paper describes an analysis of the water sources, using the stable oxygen isotope technique and the linear mixed model of the isotopic values and of desert riparian Populus euphratica forests growing at sites with different groundwater depths and conditions. The results showed that the main water source of Populus euphratica changes from water in a single soil layer or groundwater to deep subsoil water and groundwater as the depth of groundwater increases. This appears to be an adaptive selection to arid and water-deficient conditions and is a primary reason for the long-term survival of P. euphratica in the desert riparian forest of an extremely arid region. Water contributions from the various soil layers and from groundwater differed and the desert riparian P. euphratica forests in different habitats had dissimilar water use strategies.

  20. Determining heterogeneous deformation for granitic rocks in the northern thrust in Wadi Mubarak belt, Eastern Desert, Egypt

    Science.gov (United States)

    Kassem, Osama M. K.

    2011-05-01

    Finite-strain was studied in the mylonitic granitic and metasedimentary rocks in the northern thrust in Wadi Mubarak belt to show a relationship to nappe contacts between the old granitic and metavolcano-sedimentary rocks and to shed light on the heterogeneous deformation for the northern thrust in Wadi Mubarak belt. We used the Rf/ϕ and Fry methods on feldspar porphyroclasts, quartz and mafic grains from 7 old granitic and 7 metasedimentary samples in the northern thrust in Wadi Mubarak belt. The finite-strain data shows that old granitic rocks were moderate to highly deformed and axial ratios in the XZ section range from 3.05 to 7.10 for granitic and metasedimentary rocks. The long axes (X) of the finite-strain ellipsoids trend W/WNW and E/ENE in the northern thrust in Wadi Mubarak belt. Furthermore, the short axes (Z) are subvertical associated with a subhorizontal foliation. The value of strain magnitudes mainly constants towards the tectonic contacts between the mylonitic granite and metavolcano-sedimentary rocks. The data indicate oblate strain symmetry (flattening strain) in the mylonitic granite rocks. It is suggested that the accumulation of finite strain was formed before or/and during nappe contacts. The penetrative subhorizontal foliation is subparallel to the tectonic contacts with the overlying nappes and foliation was formed during nappe thrusting.

  1. Stable Isotopic Analysis on Water Utilization of Two Xerophytic Shrubs in a Revegetated Desert Area: Tengger Desert, China

    OpenAIRE

    Lei Huang; Zhishan Zhang

    2015-01-01

    Stable isotope studies on stable isotope ratios of hydrogen and oxygen in water within plants provide new information on water sources and water use patterns under natural conditions. In this study, the sources of water uptake for two typical xerophytic shrubs, Caragana korshinskii and Artemisia ordosica, were determined at four different-aged revegetated sites (1956, 1964, 1981, and 1987) in the Tengger Desert, a revegetated desert area in China. Samples from precipitation, soil water at dif...

  2. Geology and geochemistry of the Atacama Desert.

    Science.gov (United States)

    Tapia, J; González, R; Townley, B; Oliveros, V; Álvarez, F; Aguilar, G; Menzies, A; Calderón, M

    2018-02-14

    The Atacama Desert, the driest of its kind on Earth, hosts a number of unique geological and geochemical features that make it unlike any other environment on the planet. Considering its location on the western border of South America, between 17 and 28 °S, its climate has been characterized as arid to hyperarid for at least the past 10 million years. Notably dry climatic conditions of the Atacama Desert have been related to uplift of the Andes and are believed to have played an important role in the development of the most distinctive features of this desert, including: (i) nitrates and iodine deposits in the Central Depression, (ii) secondary enrichment in porphyry copper deposits in the Precordillera, (iii) Li enrichment in salt flats of the Altiplano, and (iv) life in extreme habitats. The geology and physiography of the Atacama Desert have been largely shaped by the convergent margin present since the Mesozoic era. The geochemistry of surface materials is related to rock geochemistry (Co, Cr, Fe, Mn, V, and Zn), salt flats, and evaporite compositions in endorheic basins (As, B, and Li), in addition to anthropogenic activities (Cu, Mo, and Pb). The composition of surface water is highly variable, nonetheless in general it presents a circumneutral pH with higher conductivity and total dissolved solids in brines. Major water constituents, with the exception of HCO 3 - , are generally related to the increase of salinity, and despite the fact that trace elements are not well-documented, surface waters of the Atacama Desert are enriched in As, B, and Li when compared to the average respective concentrations in rivers worldwide.

  3. Engineered Approaches to In Situ Bioremediation of Chlorinated Solvents: Fundamentals and Field Applications

    Science.gov (United States)

    2000-07-01

    310-9000 Fax: (512) 310-8800 mail@micro-bac.com Harry Christensen Phone: (714) 666-0110 Fax: (714) 538-5134 micro@webworldinc.com Del Christensen...Strategies & Applications, Inc. Somerset, New Jersey S. Koenigsberg, Regenesis 1011 Calle Sombra San Clemente, CA 92672 181 Offutt Air Force Base, Fire...Mojave Desert, about 60 miles north of Los Angeles , covers approximately 301,000 and is used for aircraft research and development. From 1958 through 1967

  4. Liquid Water Restricts Habitability in Extreme Deserts.

    Science.gov (United States)

    Cockell, Charles S; Brown, Sarah; Landenmark, Hanna; Samuels, Toby; Siddall, Rebecca; Wadsworth, Jennifer

    2017-04-01

    Liquid water is a requirement for biochemistry, yet under some circumstances it is deleterious to life. Here, we show that liquid water reduces the upper temperature survival limit for two extremophilic photosynthetic microorganisms (Gloeocapsa and Chroococcidiopsis spp.) by greater than 40°C under hydrated conditions compared to desiccated conditions. Under hydrated conditions, thermal stress causes protein inactivation as shown by the fluorescein diacetate assay. The presence of water was also found to enhance the deleterious effects of freeze-thaw in Chroococcidiopsis sp. In the presence of water, short-wavelength UV radiation more effectively kills Gloeocapsa sp. colonies, which we hypothesize is caused by factors including the greater penetration of UV radiation into hydrated colonies compared to desiccated colonies. The data predict that deserts where maximum thermal stress or irradiation occurs in conjunction with the presence of liquid water may be less habitable to some organisms than more extreme arid deserts where organisms can dehydrate prior to being exposed to these extremes, thus minimizing thermal and radiation damage. Life in extreme deserts is poised between the deleterious effects of the presence and the lack of liquid water. Key Words: Deserts-Extremophiles-Stress-High temperatures-UV radiation-Desiccation. Astrobiology 17, 309-318.

  5. Water/Pasture Assessment of Registan Desert (Kandahar and Helmand Provinces)

    OpenAIRE

    Toderich, Kristina; Tsukatani, Tsuneo

    2005-01-01

    The desolate desert in Afghanistan's Kandahar and Helmand Provinces was previously populated by thousands of pastoralists until a devastating drought decimated animal herds and forced them to live as IDPs (Internally Displaced Persons) on land bordering the desert. Through funding from UNAMA (United Nations Assistance Mission in Afghanistan), this report assesses conditions in the Registan Desert and border regions to devise solutions to the problems facing Registan Kuchi nomads. A work plan ...

  6. Strategy for the development and management of deserts

    Energy Technology Data Exchange (ETDEWEB)

    1978-02-01

    Recommendations from the June 1977 Conference on Alternative Strategies for Desert Development and Management apply primarily to arid lands, although some can be applied to true desert with no vegetation as well. The causes of desertification are reviewed and corrective measures suggested for both developed and developing countries. A range of strategies is proposed, but all are based on the efficient use of water and most are concerned with water used for agricultural purposes. The conference papers also addressed water management, agricultural development, field crops versus animal husbandry, grazing, land use and allocation, wild life resources, industry coastal resources, tourism, energy and minerals, and establishing the infrastructure needed to improve and retain desert health.

  7. From Fireproof Desert to Flammable Grassland: Buffelgrass Invasion in the Sonoran Desert

    Science.gov (United States)

    Betancourt, J. L.

    2007-12-01

    Only a few decades ago, the Sonoran Desert of northwestern Mexico and southern Arizona was considered mostly fireproof, a case of not enough fine fuel to connect the dominant shrubs and cacti. This has changed with invasions by non-native, winter annual and summer-flower perennial grasses that are rapidly transforming fireproof desert into flammable grassland. Of particular concern is buffelgrass, Pennisetum ciliare, a fire-prone and invasive African perennial grass that has already converted millions of hectares across Sonora since the mid-1960s and has made quick headway in southern and central Arizona beginning in the 1980s. Near Tucson and Phoenix, AZ, buffelgrass invasion is proceeding exponentially, with population expansion (and the costs of mitigation) more than doubling every year. As this conversion progresses, there will be increased fire risks, lost tourist revenue, diminished property values, insurmountable setbacks to conservation efforts, and the threat of large ignition fronts in desert valleys routinely spreading into the mountains. Although somewhat belated, an integrated, multi-jurisdictional effort is being organized to reduce ecological and economic impacts. My presentation will summarize the history and context of buffelgrass introduction and invasion, the disconnect in attitudes and policies across state and international boundaries, ongoing management efforts, the role of science and responsibilities of scientists, accelerated spread with changing climate, and impacts to regional ecosystems and economies. This narrative may serve as a template for other semi-arid lands where buffelgrass and similar grasses have become invasive, including Australia, South America, and many islands in the Pacific Ocean (including Hawaii), Indian Ocean, and Caribbean Sea.

  8. Water relations in grassland and desert ecosystems exposed to elevated atmospheric CO2.

    Science.gov (United States)

    Morgan, J A; Pataki, D E; Körner, C; Clark, H; Del Grosso, S J; Grünzweig, J M; Knapp, A K; Mosier, A R; Newton, P C D; Niklaus, P A; Nippert, J B; Nowak, R S; Parton, W J; Polley, H W; Shaw, M R

    2004-06-01

    Atmospheric CO2 enrichment may stimulate plant growth directly through (1) enhanced photosynthesis or indirectly, through (2) reduced plant water consumption and hence slower soil moisture depletion, or the combination of both. Herein we describe gas exchange, plant biomass and species responses of five native or semi-native temperate and Mediterranean grasslands and three semi-arid systems to CO2 enrichment, with an emphasis on water relations. Increasing CO2 led to decreased leaf conductance for water vapor, improved plant water status, altered seasonal evapotranspiration dynamics, and in most cases, periodic increases in soil water content. The extent, timing and duration of these responses varied among ecosystems, species and years. Across the grasslands of the Kansas tallgrass prairie, Colorado shortgrass steppe and Swiss calcareous grassland, increases in aboveground biomass from CO2 enrichment were relatively greater in dry years. In contrast, CO2-induced aboveground biomass increases in the Texas C3/C4 grassland and the New Zealand pasture seemed little or only marginally influenced by yearly variation in soil water, while plant growth in the Mojave Desert was stimulated by CO2 in a relatively wet year. Mediterranean grasslands sometimes failed to respond to CO2-related increased late-season water, whereas semiarid Negev grassland assemblages profited. Vegetative and reproductive responses to CO2 were highly varied among species and ecosystems, and did not generally follow any predictable pattern in regard to functional groups. Results suggest that the indirect effects of CO2 on plant and soil water relations may contribute substantially to experimentally induced CO2-effects, and also reflect local humidity conditions. For landscape scale predictions, this analysis calls for a clear distinction between biomass responses due to direct CO2 effects on photosynthesis and those indirect CO2 effects via soil moisture as documented here.

  9. Analytical results and sample locality map for rock, stream-sediment, and soil samples, Northern and Eastern Coloado Desert BLM Resource Area, Imperial, Riverside, and San Bernardino Counties, California

    Science.gov (United States)

    King, Harley D.; Chaffee, Maurice A.

    2000-01-01

    INTRODUCTION In 1996-1998 the U.S. Geological Survey (USGS) conducted a geochemical study of the Bureau of Land Management's (BLM) 5.5 million-acre Northern and Eastern Colorado Desert Resource Area (usually referred to as the NECD in this report), Imperial, Riverside, and San Bernardino Counties, southeastern California (figure 1). This study was done in support of the BLM's Coordinated Management Plan for the area. This report presents analytical data from this study. To provide comprehensive coverage of the NECD, we compiled and examined all available geochemical data, in digital form, from previous studies in the area, and made sample-site plots to aid in determining where sample-site coverage and analyses were sufficient, which samples should be re-analyzed, and where additional sampling was needed. Previous investigations conducted in parts of the current study area included the National Uranium Resource Evaluation (NURE) program studies of the Needles and Salton Sea 1? x 2? quadrangles; USGS studies of 12 BLM Wilderness Study Areas (WSAs) (Big Maria Mountains, Chemehuevi Mountains, Chuckwalla Mountains, Coxcomb Mountains, Mecca Hills, Orocopia Mountains, Palen-McCoy, Picacho Peak, Riverside Mountains, Sheephole Valley (also known as Sheep Hole/Cadiz), Turtle Mountains, and Whipple Mountains); and USGS studies in the Needles and El Centro 1? x 2? quadrangles done during the early 1990s as part of a project to identify the regional geochemistry of southern California. Areas where we did new sampling of rocks and stream sediments are mainly in the Chocolate Mountain Aerial Gunnery Range and in Joshua Tree National Park, which extends into the west-central part of the NECD, as shown in figure 1 and figure 2. This report contains analytical data for 132 rock samples and 1,245 stream-sediment samples collected by the USGS, and 362 stream-sediment samples and 189 soil samples collected during the NURE program. All samples are from the Northern and Eastern Colorado

  10. Adaptation strategies of endolithic chlorophototrophs to survive the hyperarid and extreme solar radiation environment of the Atacama Desert.

    Science.gov (United States)

    Wierzchos, Jacek; DiRuggiero, Jocelyne; Vítek, Petr; Artieda, Octavio; Souza-Egipsy, Virginia; Škaloud, Pavel; Tisza, Michel; Davila, Alfonso F; Vílchez, Carlos; Garbayo, Inés; Ascaso, Carmen

    2015-01-01

    The Atacama Desert, northern Chile, is one of the driest deserts on Earth and, as such, a natural laboratory to explore the limits of life and the strategies evolved by microorganisms to adapt to extreme environments. Here we report the exceptional adaptation strategies of chlorophototrophic and eukaryotic algae, and chlorophototrophic and prokaryotic cyanobacteria to the hyperarid and extremely high solar radiation conditions occurring in this desert. Our approach combined several microscopy techniques, spectroscopic analytical methods, and molecular analyses. We found that the major adaptation strategy was to avoid the extreme environmental conditions by colonizing cryptoendolithic, as well as, hypoendolithic habitats within gypsum deposits. The cryptoendolithic colonization occurred a few millimeters beneath the gypsum surface and showed a succession of organized horizons of algae and cyanobacteria, which has never been reported for endolithic microbial communities. The presence of cyanobacteria beneath the algal layer, in close contact with sepiolite inclusions, and their hypoendolithic colonization suggest that occasional liquid water might persist within these sub-microhabitats. We also identified the presence of abundant carotenoids in the upper cryptoendolithic algal habitat and scytonemin in the cyanobacteria hypoendolithic habitat. This study illustrates that successful lithobiontic microbial colonization at the limit for microbial life is the result of a combination of adaptive strategies to avoid excess solar irradiance and extreme evapotranspiration rates, taking advantage of the complex structural and mineralogical characteristics of gypsum deposits-conceptually called "rock's habitable architecture." Additionally, self-protection by synthesis and accumulation of secondary metabolites likely produces a shielding effect that prevents photoinhibition and lethal photooxidative damage to the chlorophototrophs, representing another level of adaptation.

  11. Global Warming: The Instability of Desert Climate is Enhancing in the Northwest Area in China: A Case Study in the Desert Area in Northwestern China

    OpenAIRE

    Zhao-Feng Chang; Shu-Juan Zhu; Fu-Gui Han; Sheng-Nnian Zhong; Qiang-Qiang Wang; Jian-Hui Zhang

    2013-01-01

    To disclose the relation between the sandstorms change and the temperature changes, a case study in the desert area in northwestern china is investigated. The results showed that: the instability of climate in Minqin desert area is enhancing in the arid desert region in northwest China. Mainly as follows: Variation the annual extreme maximum temperature increasing. Variation of extreme minimum temperature also an increasing trend. Average visibility of sandstorms significantly reduced and the...

  12. Modeling Soil Moisture in Support of the Revegetation of Military Lands in Arid Regions.

    Science.gov (United States)

    Caldwell, T. G.; McDonald, E. V.; Young, M. H.

    2003-12-01

    The National Training Center (NTC), the Army's primary mechanized maneuver training facility, covers approximately 2600 km2 within the Mojave Desert in southern California, and is the subject of ongoing studies to support the sustainability of military lands in desert environments. Revegetation of these lands by the Integrated Training Areas Management (ITAM) Program requires the identification of optimum growing conditions to reestablish desert vegetation from seed and seedling, especially with regard to the timing and abundance of plant-available water. Water content, soil water potential, and soil temperature were continuously monitored and used to calibrate the Simultaneous Heat And Water (SHAW) model at 3 re-seeded sites. Modeled irrigation scenarios were used to further evaluate the most effective volume, frequency, and timing of irrigation required to maximize revegetation success and minimize water use. Surface treatments including straw mulch, gravel mulch, soil tackifier and plastic sheet

  13. Birds and conservation significance of the Namib Desert's least ...

    African Journals Online (AJOL)

    -long Namib Desert and it remains the least known coastal wetland on a desert coast rich in shorebirds. Two surveys of the Baia dos Tigres region in 1999 and 2001 indicated a rich wetland bird diversity consisting of 25 species, with a total of ...

  14. First remarks on the nesting biology of Hypodynerus andeus (Packard (Hymenoptera, Vespidae, Eumeninae in the Azapa valley, northern Chile

    Directory of Open Access Journals (Sweden)

    Felipe Méndez-Abarca

    2012-06-01

    Full Text Available First remarks on the nesting biology of Hypodynerus andeus (Packard (Hymenoptera, Vespidae, Eumeninae in the Azapa valley, northern Chile. Some aspects about the nesting biology of the potter wasp Hypodynerus andeus (Packard, 1869 are reported for the first time. Observations were carried out at the Azapa valley, coastal desert of northern Chile. A total of sixty nests were collected and examined, each composed by 1-14 cells, most of them found attached to concrete lamp posts. The only preys recorded in the cells were Geometridae (Lepidoptera caterpillars and the presence of the parasitoid Anthrax sp. (Diptera, Bombyliidae was also recorded. A number of arthropods belonging to different groups, mainly spiders, were found occupying empty nests.

  15. Tree planting in deserts and utilization of atomic energy

    International Nuclear Information System (INIS)

    Hattori, Sadao; Minato, Akio; Hashizume, Kenichi; Handa, Norihiko.

    1991-01-01

    Global environment problems are discussed actively, concretely, those are the warming of the earth, the advance of desertification, the damage due to acid rain, the decrease of tropical forests, the pollution of sea, the depletion of ozone layer and so on. Most of these phenomena advance gradually. However, the advance of desertification is different from other phenomena in that the people in the areas concerned are deprived of their living space and even their lives are threatened at this moment. Desertification is advancing on global scale, and its rate is estimated to be 60,000 km 2 yearly. Especially the area where the advance is remarkable is the southern edge of Sahara Desert, which advances southward at 10-30 km in one year. Recently also in Japan, the interest in the prevention of desertification has become high, and the experiment on tree planting in a desert using a huge desert dome of the Institute of Physical and Chemical Research, 'Desert Aquanet concept' of Shimizu Construction Co., Ltd., 'Sahara green belt project' of the Ministry of International Trade and Industry and so on were published. Water and energy for tree planting in deserts, utilization of atomic energy for seawater desalination and the technical fields to which Japan can contribute are reported. (K.I.)

  16. Tree planting in deserts and utilization of atomic energy

    Energy Technology Data Exchange (ETDEWEB)

    Hattori, Sadao; Minato, Akio [Central Research Inst. of Electric Power Industry, Tokyo (Japan); Hashizume, Kenichi; Handa, Norihiko

    1991-06-01

    Global environment problems are discussed actively, concretely, those are the warming of the earth, the advance of desertification, the damage due to acid rain, the decrease of tropical forests, the pollution of sea, the depletion of ozone layer and so on. Most of these phenomena advance gradually. However, the advance of desertification is different from other phenomena in that the people in the areas concerned are deprived of their living space and even their lives are threatened at this moment. Desertification is advancing on global scale, and its rate is estimated to be 60,000 km{sup 2} yearly. Especially the area where the advance is remarkable is the southern edge of Sahara Desert, which advances southward at 10-30 km in one year. Recently also in Japan, the interest in the prevention of desertification has become high, and the experiment on tree planting in a desert using a huge desert dome of the Institute of Physical and Chemical Research, 'Desert Aquanet concept' of Shimizu Construction Co., Ltd., 'Sahara green belt project' of the Ministry of International Trade and Industry and so on were published. Water and energy for tree planting in deserts, utilization of atomic energy for seawater desalination and the technical fields to which Japan can contribute are reported. (K.I.).

  17. Mapping Potential Areas For Gold And Base Metals Mineralization In Southeastern Desert, Egypt: An Approach By Using Remote Sensing And GIS

    International Nuclear Information System (INIS)

    ElFouly, A.; Salem, H.

    2003-01-01

    Integration of Landsat-Thematic Mapper (TM), aero magnetic data, structural geology along with the known mineralization occurrences in the area are mainly the factors used to recognize favorable sites for structurally controlled mineralization at the northern part of the southeastern Desert of Egypt. Two knowledge-driven models were constructed based on a conceptual gold exploration model. The Density of Lineament Intersection (DLI) results from this study along with Dempster-Shafer (D-S) Belief approach show good results in delineating favorable mineralization areas. The basic assignment probability maps for the heat source, strong magnetism, hydrothermal alteration, geologic structure, and known mineralization occurrences in the area are the main D-S Belief approach recognition criteria component used for mineral exploration in the study area. The DLI method is maximizing the use of Landsat remote sensing data that could be used efficiently in the exploration for structurally controlled hydrothermal related mineralization. The DLI method results show higher resolution and accurate results for gold and base metals exploration. The high favorability areas by using the DLI method is 2196 Km 2 which are concise area than the D-S Belief approach for about 3976.5 Km 2 . These results are useful to be a strong base for planning accurate exploration program. The potential favorability maps of gold and base metals ore deposits from the northern part of the South Eastern Desert predicted the known areas of mineralization as well as identified high potential areas not known before with mineralization for future exploration

  18. In vitro germination of desert rose varieties(

    OpenAIRE

    Tatiane Lemos Varella; Gizelly Mendes Silva; Kaliane Zaira Camacho Maximiliano da Cruz; Andréia Izabel Mikovski; Josué Ribeiro da Silva Nunes; Ilio Fealho Carvalho; Maurecilne Lemes Silva

    2015-01-01

    The drought stress resistance is a characteristic of the desert rose and its estimable beauty flowers, which gave it great relevance in the ornamental market. However, the desert rose production and germination is hampered by possible sterility of their male and female flowers and frequent problems in pollination, so the tissue culture is a promising alternative to the propagation of these plants. This study aimed to evaluate the effect of gibberellic acid on four commercial varieties of dese...

  19. Screening the Egyptian desert actinomycetes as candidates for new ...

    African Journals Online (AJOL)

    In a screening program to study the antimicrobial activities of desert actinomycetes as potential producers of active metabolites, 75 actinomycete strains were isolated from the Egyptian desert habitats and tested. Out of the isolated 75 organisms, 32 (42.67%) showed activity against the used test organisms.

  20. Camelid genomes reveal evolution and adaptation to desert environments.

    Science.gov (United States)

    Wu, Huiguang; Guang, Xuanmin; Al-Fageeh, Mohamed B; Cao, Junwei; Pan, Shengkai; Zhou, Huanmin; Zhang, Li; Abutarboush, Mohammed H; Xing, Yanping; Xie, Zhiyuan; Alshanqeeti, Ali S; Zhang, Yanru; Yao, Qiulin; Al-Shomrani, Badr M; Zhang, Dong; Li, Jiang; Manee, Manee M; Yang, Zili; Yang, Linfeng; Liu, Yiyi; Zhang, Jilin; Altammami, Musaad A; Wang, Shenyuan; Yu, Lili; Zhang, Wenbin; Liu, Sanyang; Ba, La; Liu, Chunxia; Yang, Xukui; Meng, Fanhua; Wang, Shaowei; Li, Lu; Li, Erli; Li, Xueqiong; Wu, Kaifeng; Zhang, Shu; Wang, Junyi; Yin, Ye; Yang, Huanming; Al-Swailem, Abdulaziz M; Wang, Jun

    2014-10-21

    Bactrian camel (Camelus bactrianus), dromedary (Camelus dromedarius) and alpaca (Vicugna pacos) are economically important livestock. Although the Bactrian camel and dromedary are large, typically arid-desert-adapted mammals, alpacas are adapted to plateaus. Here we present high-quality genome sequences of these three species. Our analysis reveals the demographic history of these species since the Tortonian Stage of the Miocene and uncovers a striking correlation between large fluctuations in population size and geological time boundaries. Comparative genomic analysis reveals complex features related to desert adaptations, including fat and water metabolism, stress responses to heat, aridity, intense ultraviolet radiation and choking dust. Transcriptomic analysis of Bactrian camels further reveals unique osmoregulation, osmoprotection and compensatory mechanisms for water reservation underpinned by high blood glucose levels. We hypothesize that these physiological mechanisms represent kidney evolutionary adaptations to the desert environment. This study advances our understanding of camelid evolution and the adaptation of camels to arid-desert environments.

  1. Jojoba could stop the desert creep

    Energy Technology Data Exchange (ETDEWEB)

    1982-03-25

    The Sahara desert is estimated to be expanding at a rate of 5km a year. The Sudanese government is experimenting with jojoba in six different regions as the bush has the potential to stop this ''desert creep''. The plant, a native to Mexico, is long known for its resistance to drought and for the versatile liquid wax that can be extracted from its seeds. It is estimated that one hectare of mature plants could produce 3000 kg of oil, currently selling at $50 per litre, and so earn valuable foreign currency.

  2. Closed bioregenerative life support systems: Applicability to hot deserts

    Science.gov (United States)

    Polyakov, Yuriy S.; Musaev, Ibrahim; Polyakov, Sergey V.

    2010-09-01

    Water scarcity in hot deserts, which cover about one-fifth of the Earth's land area, along with rapid expansion of hot deserts into arable lands is one of the key global environmental problems. As hot deserts are extreme habitats characterized by the availability of solar energy with a nearly complete absence of organic life and water, space technology achievements in designing closed ecological systems may be applicable to the design of sustainable settlements in the deserts. This review discusses the key space technology findings for closed biogenerative life support systems (CBLSS), which can simultaneously produce food, water, nutrients, fertilizers, process wastes, and revitalize air, that can be applied to hot deserts. Among them are the closed cycle of water and the acceleration of the cycling times of carbon, biogenic compounds, and nutrients by adjusting the levels of light intensity, temperature, carbon dioxide, and air velocity over plant canopies. Enhanced growth of algae and duckweed at higher levels of carbon dioxide and light intensity can be important to provide complete water recycling and augment biomass production. The production of fertilizers and nutrients can be enhanced by applying the subsurface flow wetland technology and hyper-thermophilic aerobic bacteria for treating liquid and solid wastes. The mathematical models, optimization techniques, and non-invasive measuring techniques developed for CBLSS make it possible to monitor and optimize the performance of such closed ecological systems. The results of long-duration experiments performed in BIOS-3, Biosphere 2, Laboratory Biosphere, and other ground-based closed test facilities suggest that closed water cycle can be achieved in hot-desert bioregenerative systems using the pathways of evapotranspiration, condensation, and biological wastewater treatment technologies. We suggest that the state of the art in the CBLSS design along with the possibility of using direct sunlight for

  3. Investigating water resources of the desert: How isotopes can help

    International Nuclear Information System (INIS)

    Gonfiantini, R.

    1992-01-01

    Newspapers and magazines from time to time write about the enormous reserves of water stored underground in the Sahara, whose rational exploitation would allow the agricultural development of the desert. Although the practical implementation of such projects is rather problematic, it is true that groundwater is relatively abundant under most of the Sahara (as well as in other deserts in the world), but it is seldom easily accessible. What do we really know about these resources of groundwater and how they have accumulated in areas where rainfall is so scarce. What do we know of the hydrological history of the desert. These problems are important for the correct evaluation and use of the groundwater in the desert. Isotope techniques help in their solution, and are described in this document. 6 figs

  4. Investigating water resources of the desert: how isotopes can help

    International Nuclear Information System (INIS)

    Gonfiantini, R.

    1981-01-01

    Newspapers and magazines from time to time write about the enormous reserves of water stored underground in the Sahara, whose rational exploitation would allow the agricultural development of the desert. Although the practical implementation of such projects is rather problematic, it is true that groundwater is relatively abundant under most of the Sahara (as well as in other deserts in the world), but it is seldom easily accessible. What do we really know about these resources of groundwater and how they have accumulated in areas where rainfall is so scarce. What do we know of the hydrological history of the desert. These problems are important for the correct evaluation and use of the groundwater in the desert. Isotope techniques help in their solution, and are described in this document

  5. Reclaiming freshwater sustainability in the Cadillac Desert

    Science.gov (United States)

    Sabo, John L.; Sinha, Tushar; Bowling, Laura C.; Schoups, Gerrit H.W.; Wallender, Wesley W.; Campana, Michael E.; Cherkauer, Keith A.; Fuller, Pam L.; Graf, William L.; Hopmans, Jan W.; Kominoski, John S.; Taylor, Carissa; Trimble, Stanley W.; Webb, Robert H.; Wohl, Ellen E.

    2010-01-01

    Increasing human appropriation of freshwater resources presents a tangible limit to the sustainability of cities, agriculture, and ecosystems in the western United States. Marc Reisner tackles this theme in his 1986 classic Cadillac Desert: The American West and Its Disappearing Water. Reisner's analysis paints a portrait of region-wide hydrologic dysfunction in the western United States, suggesting that the storage capacity of reservoirs will be impaired by sediment infilling, croplands will be rendered infertile by salt, and water scarcity will pit growing desert cities against agribusiness in the face of dwindling water resources. Here we evaluate these claims using the best available data and scientific tools. Our analysis provides strong scientific support for many of Reisner's claims, except the notion that reservoir storage is imminently threatened by sediment. More broadly, we estimate that the equivalent of nearly 76% of streamflow in the Cadillac Desert region is currently appropriated by humans, and this figure could rise to nearly 86% under a doubling of the region's population. Thus, Reisner's incisive journalism led him to the same conclusions as those rendered by copious data, modern scientific tools, and the application of a more genuine scientific method. We close with a prospectus for reclaiming freshwater sustainability in the Cadillac Desert, including a suite of recommendations for reducing region-wide human appropriation of streamflow to a target level of 60%.

  6. Endolithic algae of semi-desert sandstones: systematic, biogeographic and ecophysiologic investigations

    International Nuclear Information System (INIS)

    Bell, R.A.

    1986-01-01

    Investigations were conducted into the ecology of an unusual algal community in northern Arizona. These microorganisms are called endolithic algae because they occur beneath the surface of rocks. Eighteen taxa, including representatives of both eukaryotic and prokaryotic genera, were isolated from below the surface of eight sandstones in four semi-desert and cold temperate biomes of the Colorado Plateau. As the macroclimate of the area changes from cold temperature desert scrub to cold temperate forest the taxonomic composition of the endolithic algal communities shifts from domination by coccoid blue-green algae to domination by coccoid and sarcinoid green algae. The algal communities varied in generic composition, chlorophyll a content, and in their location within the different sandstones. Investigations into the microclimate of the endolithic algal zone in two adjacent but differently-colored sections (white and brown) of Coconino sandstone have demonstrated differences between the environment above the rock surface and that just beneath the surface. In seasonal samples of the Coconino sandstone, chlorophyll a content ranged from 50 to 100 mg x m -2 in the white rock and 8 to 45 mg x m -2 in the brown rock. Primary production (as measured by 14 CO 2 incorporation) displayed marked seasonal patterns that appear to be correlated to the environmental conditions within the rocks as opposed to those outside the rocks. The widespread distribution of certain algae in the endolithic habitats of the Colorado Plateau and their presence in rocks at quite distant locations suggests that the endolithic habitat may be utilized by algae whenever it provides more favorable conditions than the surrounding surfaces

  7. Observed 20th Century Desert Dust Variability: Impact on Climate and Biogeochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Mahowald, Natalie [Cornell University; Kloster, Silvia [Cornell University; Engelstaedter, S. [Cornell University; Moore, Jefferson Keith [University of California, Irvine; Mukhopadhyay, S. [Harvard University; McConnell, J. R. [Desert Research Institute, Reno, NV; Albani, S. [Cornell University; Doney, Scott C. [Woods Hole Oceanographic Institution (WHOI), Woods Hole, MA; Bhattacharya, A. [Harvard University; Curran, M. A. J. [Antarctic Climate and Ecosystems Cooperative Research Centre; Flanner, Mark G. [University of Michigan; Hoffman, Forrest M [ORNL; Lawrence, David M. [National Center for Atmospheric Research (NCAR); Lindsay, Keith [National Center for Atmospheric Research (NCAR); Mayewski, P. A. [University of Maine; Neff, Jason [University of Colorado, Boulder; Rothenberg, D. [Cornell University; Thomas, E. [British Antarctic Survey, Cambridge, UK; Thornton, Peter E [ORNL; Zender, Charlie S. [University of California, Irvine

    2010-01-01

    Desert dust perturbs climate by directly and indirectly interacting with incoming solar and outgoing long wave radiation, thereby changing precipitation and temperature, in addition to modifying ocean and land biogeochemistry. While we know that desert dust is sensitive to perturbations in climate and human land use, previous studies have been unable to determine whether humans were increasing or decreasing desert dust in the global average. Here we present observational estimates of desert dust based on paleodata proxies showing a doubling of desert dust during the 20th century over much, but not all the globe. Large uncertainties remain in estimates of desert dust variability over 20th century due to limited data. Using these observational estimates of desert dust change in combination with ocean, atmosphere and land models, we calculate the net radiative effect of these observed changes (top of atmosphere) over the 20th century to be -0.14 {+-} 0.11 W/m{sup 2} (1990-1999 vs. 1905-1914). The estimated radiative change due to dust is especially strong between the heavily loaded 1980-1989 and the less heavily loaded 1955-1964 time periods (-0.57 {+-} 0.46 W/m{sup 2}), which model simulations suggest may have reduced the rate of temperature increase between these time periods by 0.11 C. Model simulations also indicate strong regional shifts in precipitation and temperature from desert dust changes, causing 6 ppm (12 PgC) reduction in model carbon uptake by the terrestrial biosphere over the 20th century. Desert dust carries iron, an important micronutrient for ocean biogeochemistry that can modulate ocean carbon storage; here we show that dust deposition trends increase ocean productivity by an estimated 6% over the 20th century, drawing down an additional 4 ppm (8 PgC) of carbon dioxide into the oceans. Thus, perturbations to desert dust over the 20th century inferred from observations are potentially important for climate and biogeochemistry, and our understanding

  8. Pastoralist rock art in the Black Desert of Jordan

    NARCIS (Netherlands)

    Brusgaard, N.O.

    2015-01-01

    This paper discusses the current problems that exist with the rock art research of the Black Desert in Jordan and presents some preliminary field results of the author’s research on the petroglyphs. It also explore the possibilities that the rock art affords to learn more about the elusive desert

  9. Are There High Meteorite Concentrations in the Atacama Desert/Chile?

    Science.gov (United States)

    Scherer, P.; Delisle, G.

    1992-07-01

    We have visited numerous regions of the Atacama desert between Copiapo (27 degrees, 15'S) and Calama (22 degrees, 25'S) to assess their potential as a high-yield meteorite concentration surface, easily exploitable by search efforts within a reasonable time frame. According to our observations, this desert is characterized by the following features: a) A high percentage of the desert consists of sloping surfaces on which soil movement occurs, presumably by very infrequent, though heavy rain. b) Vast areas of the desert are covered by a dm-thick sand layer of dark colour. Since the sand is too coarse-grained to be transported by wind it presumably resulted from in-situ weathering of rock debris derived from nearby mountains. We suspect that impacting smaller objects can easily penetrate the sand layer. c) The sand layer is typically dotted by rocks, fist-size or smaller, that are covered by a thick layer of desert paint (reddish-brown to black colour). Most country rocks are of volcanic origin (rhyolite, andesite, basalt) and are typically of grey to black colour. A noticeable colour contrast in particular to potential stony meteorites is almost nonexistent. d) Soil salts with a potential to speed up weathering processes are ubiquitous near the surface. e) The Pampa de Mejillones, 45 km north of Antofagasta, is one of the few light-coloured areas in the Atacama desert. The surface, being of Mio-Pliocene age, consists of an almost continuous layer of light-brown fossil shells (bivalves and gastropodes). Fluvially transported dark rocks from adjacent outcrops rest on top. The latter material is covered again by desert paint. Few meteorite discoveries have been reported from this area (Pampa (a),(b),(c)). f) Numerous old tire tracks, in particular around mines in operation, crisscross most areas of the Atacama. Undetected objects such as large masses of iron bodies are not likely to have remained undiscovered in great numbers any more. We conclude that the potential of

  10. Strong genetic differentiation in the invasive annual grass Bromus tectorum across the Mojave-Great Basin ecological transition zone

    Science.gov (United States)

    Susan E. Meyer; Elizabeth A. Leger; Desiree R. Eldon; Craig E. Coleman

    2016-01-01

    Bromus tectorum, an inbreeding annual grass, is a dominant invader in sagebrush steppe habitat in North America. It is also common in warm and salt deserts, displaying a larger environmental tolerance than most native species. We tested the hypothesis that a suite of habitat-specific B. tectorum lineages dominates warm desert habitats. We sampled 30 B....

  11. Biologic overview for the Nevada Nuclear Waste Storage Investigations, Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    Collins, E.; O'Farrell, T.P.; Rhoads, W.A.

    1982-01-01

    The Nevada Nuclear Waste Storage Investigations project study area includes five major vegetation associations characteristic of the transition between the northern extent of the Mojave Desert and the southern extent of the Great Basin Desert. A total of 32 species of reptiles, 66 species of birds, and 46 species of mammals are known to occur within these associations elsewhere on the Nevada Test Site. Ten species of plants, and the mule deer, wild horse, feral burro, and desert tortoise were defined as possible sensitive species because they are protected by federal and state regulations, or are being considered for such protection. The major agricultural resources of southern Nye County included 737,000 acres of public grazing land managed by the Bureau of Land Management, and 9500 acres of irrigated crop land located in the Beatty/Oasis valleys, the Amargosa Valley, and Ash Meadows. Range lands are of poor quality. Alfalfa and cotton are the major crops along with small amounts of grains, Sudan grass, turf, fruits, and melons. The largest impacts to known ecosystems are expected to result from: extensive disturbances associated with construction of roads, seismic lines, drilling pads, and surface facilities; storage and leaching of mined spoils; disposal of water; off-road vehicle travel; and, over several hundred years, elevated soil temperatures. Significant impacts to off-site areas such as Ash Meadows are anticipated if new residential developments are built there to accommodate an increased work force. Several species of concern and their essential habitats are located at Ash Meadows. Available literature contained sufficient baseline information to assess potential impacts of the proposed project on an area-wide basis. It was inadequate to support analysis of potential impacts on specific locations selected for site characterization studies, mining an exploratory shaft, or the siting and operation of a repository

  12. 76 FR 8730 - Desert Southwest Customer Service Region-Rate Order No. WAPA-151

    Science.gov (United States)

    2011-02-15

    ... DEPARTMENT OF ENERGY Western Area Power Administration Desert Southwest Customer Service Region.... Jack Murray, Rates Manager, Desert Southwest Customer Service Region, Western Area Power Administration... ancillary service rates for the Desert Southwest Customer Service Region in accordance with section 302 of...

  13. Production of desert rose seedlings in different potting media

    Directory of Open Access Journals (Sweden)

    Ronan Carlos Colombo

    2017-09-01

    Full Text Available Over the past decade the desert rose received fame in the flower market due to its striking and sculptural forms; however, the commercial production of these species is quite recent and little is known about its crop management, including substrates recommendation. The objectives of this study were to investigate the effect of different substrates on desert rose seed germination and production of its seedlings. Experiment I: freshly harvested seeds of desert rose were sown in different substrates e.g. sand, coconut fiber, semi-composted pine bark, sand + coconut fiber, semi-composted pine bark + sand and coconut fiber + semicomposted pine bark. These substrates were evaluated to study the emergence percentage of seeds, initial growth of seedlings and seedling emergence speed index (ESI. Experiment II: desert rose from the experiment I were transferred to plastic pots filled with the same substrates as in experiment I. The pH and electrical conductivity (EC of the substrates were noted every 30 days while the growth parameters of seedlings were recorded after 240 days. Results from experiment I showed higher germination rate and seedling growth in substrates containing semi-composted pine bark. Similarly, in experiment II, better quality seedlings were observed in substrates containing semi-composted pine bark. Thus, for desert rose seed germination and seedling growth, it is recommended to use substrates containing semi-composted pine bark.

  14. Land use in the northern Coachella Valley

    Science.gov (United States)

    Bale, J. B.; Bowden, L. W.

    1973-01-01

    Satellite imagery has proved to have great utility for monitoring land use change and as a data source for regional planning. In California, open space desert resources are under severe pressure to serve as a source for recreational gratification to individuals living in the heavily populated southern coastal plain. Concern for these sensitive arid environments has been expressed by both federal and state agencies. The northern half of the Coachella Valley has historically served as a focal point for weekend recreational activity and second homes. Since demand in this area has remained high, land use change from rural to urban residential has been occurring continuously since 1968. This area of rapid change is an ideal site to illustrate the utility of satellite imagery as a data source for planning information, and has served as the areal focus of this investigation.

  15. Pollen spectrum, a cornerstone for tracing the evolution of the eastern Central Asian desert

    Science.gov (United States)

    Lu, Kai-Qing; Xie, Gan; Li, Min; Li, Jin-Feng; Trivedi, Anjali; Ferguson, David K.; Yao, Yi-Feng; Wang, Yu-Fei

    2018-04-01

    The temperate desert in arid Central Asia (ACA) has acted as a thoroughfare for the ancient Silk Road and today's Belt and Road, linking economic and cultural exchanges between East and West. The interaction between human sustainable development and the dynamic change in the desert ecosystem in this region is an area of concern for governments and scientific communities. Nevertheless, the lack of a pollen spectrum of the dominant taxa within the temperate desert vegetation and a corresponding relation between pollen assemblages and specific desert vegetation types is an obstacle to further understanding the formation and maintenance of this desert ecosystem. In this work, we link pollen assemblages to specific desert vegetation types with a new pollen spectrum with specific pollen grains, specific plant taxa and related habitats, providing a solid foundation for further tracing the evolution of the desert ecosystem in eastern arid Central Asia.

  16. Approved wind energy sites - Kern County, CA (Tehachapi Mountains)

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-01

    Rising out of the California desert near Mojave, California, are the Tehachapi Mountains - a rugged chain of wind swept hills. Up until 1981, this land was used almost exclusively by local ranchers for grazing beef cattle. But, in a raging December blizzard, a dedicated band of men and women threw the switch and fed the first wind-generated electrical power into Southern California Edison's grid. That single event drastically changed land use patterns in the Tehachapi's.

  17. Ecosystem responses to warming and watering in typical and desert steppes

    Science.gov (United States)

    Xu, Zhenzhu; Hou, Yanhui; Zhang, Lihua; Liu, Tao; Zhou, Guangsheng

    2016-10-01

    Global warming is projected to continue, leading to intense fluctuations in precipitation and heat waves and thereby affecting the productivity and the relevant biological processes of grassland ecosystems. Here, we determined the functional responses to warming and altered precipitation in both typical and desert steppes. The results showed that watering markedly increased the aboveground net primary productivity (ANPP) in a typical steppe during a drier year and in a desert steppe over two years, whereas warming manipulation had no significant effect. The soil microbial biomass carbon (MBC) and the soil respiration (SR) were increased by watering in both steppes, but the SR was significantly decreased by warming in the desert steppe only. The inorganic nitrogen components varied irregularly, with generally lower levels in the desert steppe. The belowground traits of soil total organic carbon (TOC) and the MBC were more closely associated with the ANPP in the desert than in the typical steppes. The results showed that the desert steppe with lower productivity may respond strongly to precipitation changes, particularly with warming, highlighting the positive effect of adding water with warming. Our study implies that the habitat- and year-specific responses to warming and watering should be considered when predicting an ecosystem’s functional responses under climate change scenarios.

  18. Monitoring of desert dune topography by multi angle sensors

    Science.gov (United States)

    Yun, J.; Kim, J.; Choi, Y.; Yun, H.

    2011-12-01

    Nowadays, the sandy desert is rapidly expanding world widely and results in a lot of risks in the socio-econimical aspects as well as the anthropogenic activities. For example, the increasing occurrences of mineral dust storm which presumably originated from the sandy deserts in northwest China become a serious threat in human activities as well as public health over Far East Asian area as the interpretation by the MODIS analysis (Zhang et al., 2007) and the particle trajectory simulation with HYSPLYT (HYbrid Single-Particle Lagrangian Integrated Trajectory) (Kim et al., 2011) identified. Since the sand dune activity has been recognized as an essential indicator of the progressive desertification, it is important to establish the monitoring method for the variations of topographic properties by the dune activities such as local roughness. Thus it will provide the crucial data about the extent and the transition of sandy desert. For example, it is well known the aerodynamic roughness lengths Zo which can be driven from the specialized sensor such as POLDER (POLarization and Directionality of the Earth's Reflectances) is essential to understand desert dune characteristics. However, for the multi temporal observation of dune fields, the availability of data set to extract Zo is limited. Therefore, we employed MISR (Multi angle imaging Spectro Radiometer) image sequence to extract multi angle topographic parameters such as NDAI (Normalized Difference Angular Index) or the variation of radiance with the viewing geometry which are representing the characteristics of target desert topography instead of Zo. In our approach, NDAI were expanded to the all viewing angles and then compared over the target sandy desert and the surrounding land covers. It showed very strong consistencies according to the land cover type and especially over the dynamic dune fields. On the other hands, the variation of NDAIs of sandy desert combining with the metrological observations were

  19. Rocks, climate and the survival of human societies in hyper-arid and arid environments - Are the human civilization in deserts at a permanent risk of collapse?

    Science.gov (United States)

    Yoav, Avni; Noa, Avriel-Avni

    2017-04-01

    The great challenges of living in the arid and hyper arid regions worldwide are the shortage of water, limited resources and the permanent uncertainty of the desert climate. These challenges are known as the main weaknesses of desert societies that are prone, according to the existing paradigm, to a permanent risk of collapse. However, in the Middle East deserts, human societies are known since prehistoric times and during the entire hyper-dry Holocene. This hints that the simple paradigm of desert societies' high vulnerability to harsh desert environments needs to be better examined. In this context we examine three case studies: 1. The Southern Sinai region in Egypt: In this region, the annual precipitation fluctuates between 20-50 mm/y. However, in this highly mountainous area, desert agriculture plots including orchards were constructed, located mainly around the byzantine monastery of Santa Katerina. During the last 1500 years, much of the water supply needed for humans and agriculture was generated from runoff developed on exposed granite rocks. 2. The southern Jordan region south of Petra: Much of this wide area connecting the deserts of the Arabian Peninsula and southern Jordan receive only 20-30 mm/y. However, the main caravan route established by the Arabian tribes during the first millennia BC managed to cross this land, supplying the water needs of many camels. Most of this water was stored in large cisterns dug into the sandstone rock formations exposed along the route, especially within the Disi Formation. 3. The Negev Highlands of southern Israel: This region is divided between the hyper arid region to the south, receiving 70-80 mm/y, and the arid region to the north receiving 90-130 mm/y. During the last two millennia, the hyper arid area was used for camel grazing and goats herds, while the northern sector was used for the construction of agriculture plots, agriculture farms and even desert towns. All these activities were sustained by runoff

  20. Desert wetlands in the geologic record

    Science.gov (United States)

    Pigati, Jeff S.; Rech, Jason A.; Quade, Jay; Bright, Jordon; Edwards, L.; Springer, A.

    2014-01-01

    Desert wetlands support flora and fauna in a variety of hydrologic settings, including seeps, springs, marshes, wet meadows, ponds, and spring pools. Over time, eolian, alluvial, and fluvial sediments become trapped in these settings by a combination of wet ground conditions and dense plant cover. The result is a unique combination of clastic sediments, chemical precipitates, and organic matter that is preserved in the geologic record as ground-water discharge (GWD) deposits. GWD deposits contain information on the timing and magnitude of past changes in water-table levels and, therefore, are a potential source of paleohydrologic and paleoclimatic information. In addition, they can be important archeological and paleontological archives because desert wetlands provide reliable sources of fresh water, and thus act as focal points for human and faunal activities, in some of the world's harshest and driest lands. Here, we review some of the physical, sedimentological, and geochemical characteristics common to GWD deposits, and provide a contextual framework that researchers can use to identify and interpret geologic deposits associated with desert wetlands. We discuss several lines of evidence used to differentiate GWD deposits from lake deposits (they are commonly confused), and examine how various types of microbiota and depositional facies aid in reconstructing past environmental and hydrologic conditions. We also review how late Quaternary GWD deposits are dated, as well as methods used to investigate desert wetlands deeper in geologic time. We end by evaluating the strengths and limitations of hydrologic and climatic records derived from GWD deposits, and suggest several avenues of potential future research to further develop and utilize these unique and complex systems.

  1. CAMEL REARING IN CHOLISTAN DESERT OF PAKISTAN

    OpenAIRE

    I. ALI, M. SHAFIQ CHAUDHRY1 AND U. FAROOQ

    2009-01-01

    The camel is one of the typical and the best adopted animals of the desert, capable of enduring thirst and hunger for days and is the most patient of land animals. For desert nomads of Pakistani Cholistan, it is a beloved companion, a source of milk and meat, transport facility provider and a racing/dancing animal, thus, playing an important role in the socioeconomic uplift of the local community. Camels of Marrecha or Mahra breed are mainly used for riding and load carrying but may be traine...

  2. Bacterial succession within an ephemeral hypereutrophic mojave desert playa lake

    Science.gov (United States)

    Navarro, J.B.; Moser, D.P.; Flores, A.; Ross, C.; Rosen, Michael R.; Dong, H.; Zhang, G.; Hedlund, B.P.

    2009-01-01

    Ephemerally wet playas are conspicuous features of arid landscapes worldwide; however, they have not been well studied as habitats for microorganisms. We tracked the geochemistry and microbial community in Silver Lake playa, California, over one flooding/desiccation cycle following the unusually wet winter of 2004-2005. Over the course of the study, total dissolved solids increased by 10-fold and pH increased by nearly one unit. As the lake contracted and temperatures increased over the summer, a moderately dense planktonic population of 1 ?????106 cells ml-1 of culturable heterotrophs was replaced by a dense population of more than 1????????109 cells ml-1, which appears to be the highest concentration of culturable planktonic heterotrophs reported in any natural aquatic ecosystem. This correlated with a dramatic depletion of nitrate as well as changes in the microbial community, as assessed by small subunit ribosomal RNA gene sequencing of bacterial isolates and uncultivated clones. Isolates from the early-phase flooded playa were primarily Actinobacteria, Firmicutes, and Bacteroidetes, yet clone libraries were dominated by Betaproteobacteria and yet uncultivated Actinobacteria. Isolates from the late-flooded phase ecosystem were predominantly Proteobacteria, particularly alkalitolerant isolates of Rhodobaca, Porphyrobacter, Hydrogenophaga, Alishwenella, and relatives of Thauera; however, clone libraries were composed almost entirely of Synechococcus (Cyanobacteria). A sample taken after the playa surface was completely desiccated contained diverse culturable Actinobacteria typically isolated from soils. In total, 205 isolates and 166 clones represented 82 and 44 species-level groups, respectively, including a wide diversity of Proteobacteria, Bacteroidetes, Actinobacteria, Firmicutes, Gemmatimonadetes, Acidobacteria, and Cyanobacteria. ?? 2008 Springer Science+Business Media, LLC.

  3. The evolution of deserts with climatic changes in China since 150 ka B.P.

    Institute of Scientific and Technical Information of China (English)

    董光荣; 陈惠忠; 王贵勇; 李孝泽; 邵亚军; 金炯

    1997-01-01

    According to the bioclimatic zones, dune mobility and the fabric characteristics of stratigraphic sedimentary facies, the deserts in China are divided into Eastern, Western, Central and Northwestern deserts. Based on the records of stratigraphical facies, climatic proxies, historical data, etc. in each desert region, the evolution of deserts with climatic changes in time and space since 150 ka B. P. in China are dealt with; then the evolution of deserts in relation to the glacial climatic fluctuations caused by solar radiation changes, underlying surface variation and their feedback mechanism is discussed through comparison with global records; finally, in consideration of global wanning due to increasing of greenhouse gases such as CO2, the possible tendency of the evolution of deserts and the climatic changes is discussed.

  4. Aeromycobiota of Western Desert of Egypt | Ismail | African Journal ...

    African Journals Online (AJOL)

    The prevalence of airborne mycobiota at six different regions of Western desert (5 regions) and Eastern desert (1) of Egypt was determined using the exposed-plate method. A total of 44 genera, 102 species and one variety in addition to some unidentified yeasts and dark sterile mycelia were collected. Of the above, only 5 ...

  5. Adaptation strategies of endolithic chlorophototrophs to survive the hyperarid and extreme solar radiation environment of the Atacama Desert

    Directory of Open Access Journals (Sweden)

    Jacek eWierzchos

    2015-09-01

    Full Text Available The Atacama Desert, northern Chile, is one of the driest deserts on Earth and, as such, a natural laboratory to explore the limits of life and the strategies evolved by microorganisms to adapt to extreme environments. Here we report the exceptional adaptation strategies of chlorophototrophic and eukaryotic algae, and chlorophototrophic and prokaryotic cyanobacteria to the hyperarid and extremely high solar radiation conditions occurring in this desert. Our approach combined several microscopy techniques, spectroscopic analytical methods, and molecular analyses. We found that the major adaptation strategy was to avoid the extreme environmental conditions by colonizing cryptoendolithic, as well as, hypoendolithic habitats within gypsum deposits. The cryptoendolithic colonization occurred a few millimeters beneath the gypsum surface and showed a succession of organized horizons of algae and cyanobacteria, which has never been reported for endolithic microbial communities. The presence of cyanobacteria beneath the algal layer, in close contact with sepiolite inclusions, and their hypoendolithic colonization suggest that occasional liquid water might persist within these sub-microhabitats. We also identified the presence of abundant carotenoids in the upper cryptoendolithic algal habitat and scytonemin in the cyanobacteria hypoendolithic habitat. This study illustrates that successful lithobiontic microbial colonization at the limit for microbial life is the result of a combination of adaptive strategies to avoid excess solar irradiance and extreme evapotranspiration rates, taking advantage of the complex structural and mineralogical characteristics of gypsum deposits – conceptually called rock’s habitable architecture. Additionally self-protection by synthesis and accumulation of secondary metabolites likely produces a shielding effect that prevents photoinhibition and lethal photooxidative damage to the chlorophototrophs, representing another

  6. Optical characteristics of desert dust over the East Mediterranean during summer: a case study

    Directory of Open Access Journals (Sweden)

    D. Balis

    2006-05-01

    Full Text Available High aerosol optical depth (AOD values, larger than 0.6, are systematically observed in the Ultraviolet (UV region both by sunphotometers and lidar systems over Greece during summertime. To study in more detail the characteristics and the origin of these high AOD values, a campaign took place in Greece in the frame of the PHOENICS (Particles of Human Origin Extinguishing Natural solar radiation In Climate Systems and EARLINET (European Aerosol Lidar Network projects during August–September of 2003, which included simultaneous sunphotometric and lidar measurements at three sites covering the north-south axis of Greece: Thessaloniki, Athens and Finokalia, Crete. Several events with high AOD values have been observed over the measuring sites during the campaign period, many of them corresponding to Saharan dust. In this paper we focused on the event of 30 and 31 August 2003, when a dust layer in the height range of 2000-5000 m, progressively affected all three stations. This layer showed a complex behavior concerning its spatial evolution and allowed us to study the changes in the optical properties of the desert dust particles along their transport due to aging and mixing with other types of aerosol. The extinction-to-backscatter ratio determined on the 30 August 2003 at Thessaloniki was approximately 50 sr, characteristic for rather spherical mineral particles, and the measured color index of 0.4 was within the typical range of values for desert dust. Mixing of the desert dust with other sources of aerosols resulted the next day in overall smaller and less absorbing population of particles with a lidar ratio of 20 sr. Mixing of polluted air-masses originating from Northern Greece and Crete and Saharan dust result in very high aerosol backscatter values reaching 7 Mm-1 sr-1 over Finokalia. The Saharan dust observed over Athens followed a different spatial evolution and was not mixed with the boundary layer aerosols mainly originating from

  7. [Academic stress, desertion, and retention strategies for students in higher education].

    Science.gov (United States)

    Suárez-Montes, Nancy; Díaz-Subieta, Luz B

    2015-04-01

    A systematic review was performed to specify the characteristics of academic stress that affect the mental health of the university population. To do this, recent publications regarding academic stress, student desertion, and retention strategies were examined. Throughout this text, we present the results of the review in terms of the definitions of academic stress, student desertion, and retention strategies. In the same way, we examine the interpretative models with regard to student desertion and approach retention strategies in higher education. We also review retention experiences of several other countries. In terms of Colombia, we present aspects related to student desertion and retention programs from the point of view of the National Ministry of Education and from the experience of some universities with consolidated programs.

  8. Dust deposition effects on growth and physiology of the endangered Astragalus jaegerianus (Fabaceae)

    Science.gov (United States)

    Wijayratne, Upekala C.; Scoles-Sciulla, Sara J.; Defalco, Lesley A.

    2009-01-01

    Human expansion into the Mojave Desert is a significant threat to rare desert plants. While immediate habitat loss is often the greatest concern, rare plants situated near areas where soil surfaces experience frequent disturbance may be indirectly impacted when fine particulate dust accumulates on leaf surfaces. Remaining populations of the federally listed Astragalus jaegerianus (Lane Mountain milkvetch) occur on land open to expanding military activities and on adjacent public land with increasing recreational use. This study was initiated to determine whether dust accumulation could decrease the vigor and fitness of A. jaegerianus through reduced growth. Beginning in early May 2004, plants located on Bureau of Land Management (BLM) land were dusted bimonthly at canopy-level dust concentrations ranging from 0 to 32 g/m2, and physiology and growth were monitored until late June when plants senesced. The maximum experimental dust level simulates dust concentrations of Mojave Desert perennials neighboring military activities at a nearby army training center. Average shoot growth declined with increasing dust accumulation, but seasonal net photosynthesis increased. Further investigation of plants grown in a greenhouse supported similar trends. This pattern of greater net photosynthesis with increasing dust accumulation may be explained by higher leaf temperatures of dusted individuals. Ambient dust deposition measured in traps near field plants (May 2004–July 2004) ranged from 0.04–0.17 g/m2/ d, which was well below the lowest level of dust on experimental plants (3.95 g/m2/d). With this low level of ambient deposition, we expect that A. jaegerianus plants in this population were not greatly affected by the dust they receive at the level of recreational use during the study.

  9. Geochemical evidence for airborne dust additions to soils in Channel Islands National Park, California

    Science.gov (United States)

    Muhs, D.R.; Budahn, J.R.; Johnson, D.L.; Reheis, M.; Beann, J.; Skipp, G.; Fisher, E.; Jones, J.A.

    2008-01-01

    There is an increasing awareness that dust plays important roles in climate change, biogeochemical cycles, nutrient supply to ecosystems, and soil formation. In Channel Islands National Park, California, soils are clay-rich Vertisols or Alfisols and Mollisols with vertic properties. The soils are overlain by silt-rich mantles that contrast sharply with the underlying clay-rich horizons. Silt mantles contain minerals that are rare or absent in the volcanic rocks that dominate these islands. Immobile trace elements (Sc-Th-La and Ta-Nd-Cr) and rare-earth elements show that the basalt and andesite on the islands have a composition intermediate between upper-continental crust and oceanic crust. In contrast, the silt fractions and, to a lesser extent, clay fractions of the silt mantle have compositions closer to average upper-continental crust and very similar to Mojave Desert dust. Island shelves, exposed during the last glacial period, could have provided a source of eolian sediment for the silt mantles, but this is not supported by mineralogical data. We hypothesize that a more likely source for the silt-rich mantles is airborne dust from mainland California and Baja California, either from the Mojave Desert or from the continental shelf during glacial low stands of sea. Although average winds are from the northwest in coastal California, easterly winds occur numerous times of the year when "Santa Ana" conditions prevail, caused by a high-pressure cell centered over the Great Basin. The eolian silt mantles constitute an important medium of plant growth and provide evidence that abundant eolian silt and clay may be delivered to the eastern Pacific Ocean from inland desert sources. ?? 2007 Geological Society of America.

  10. Female offspring desertion and male-only care increase with natural and experimental increase in food abundance.

    Science.gov (United States)

    Eldegard, Katrine; Sonerud, Geir A

    2009-05-07

    In species with biparental care, one parent may escape the costs of parental care by deserting and leaving the partner to care for the offspring alone. A number of theoretical papers have suggested a link between uniparental offspring desertion and ecological factors, but empirical evidence is scarce. We investigated the relationship between uniparental desertion and food abundance in a natural population of Tengmalm's owl Aegolius funereus, both by means of a 5-year observational study and a 1-year experimental study. Parents and offspring were fitted with radio-transmitters in order to reveal the parental care strategy (i.e. care or desert) of individual parents, and to keep track of the broods post-fledging. We found that 70 per cent of the females from non-experimental nests deserted, while their partner continued to care for their joint offspring alone. Desertion rate was positively related to natural prey population densities and body reserves of the male partner. In response to food supplementation, a larger proportion of the females deserted, and females deserted the offspring at an earlier age. Offspring survival during the post-fledging period tended to be lower in deserted than in non-deserted broods. We argue that the most important benefit of deserting may be remating (sequential polyandry).

  11. Observed 20th century desert dust variability: impact on climate and biogeochemistry

    Directory of Open Access Journals (Sweden)

    N. M. Mahowald

    2010-11-01

    Full Text Available Desert dust perturbs climate by directly and indirectly interacting with incoming solar and outgoing long wave radiation, thereby changing precipitation and temperature, in addition to modifying ocean and land biogeochemistry. While we know that desert dust is sensitive to perturbations in climate and human land use, previous studies have been unable to determine whether humans were increasing or decreasing desert dust in the global average. Here we present observational estimates of desert dust based on paleodata proxies showing a doubling of desert dust during the 20th century over much, but not all the globe. Large uncertainties remain in estimates of desert dust variability over 20th century due to limited data. Using these observational estimates of desert dust change in combination with ocean, atmosphere and land models, we calculate the net radiative effect of these observed changes (top of atmosphere over the 20th century to be −0.14 ± 0.11 W/m2 (1990–1999 vs. 1905–1914. The estimated radiative change due to dust is especially strong between the heavily loaded 1980–1989 and the less heavily loaded 1955–1964 time periods (−0.57 ± 0.46 W/m2, which model simulations suggest may have reduced the rate of temperature increase between these time periods by 0.11 °C. Model simulations also indicate strong regional shifts in precipitation and temperature from desert dust changes, causing 6 ppm (12 PgC reduction in model carbon uptake by the terrestrial biosphere over the 20th century. Desert dust carries iron, an important micronutrient for ocean biogeochemistry that can modulate ocean carbon storage; here we show that dust deposition trends increase ocean productivity by an estimated 6% over the 20th century, drawing down an additional 4 ppm (8 PgC of carbon dioxide into the oceans. Thus, perturbations to desert dust over the 20th century inferred from observations are potentially important for climate and

  12. Malaria prevalence, prevention and treatment seeking practices among nomadic pastoralists in northern Senegal.

    Science.gov (United States)

    Seck, Mame Cheikh; Thwing, Julie; Fall, Fatou Ba; Gomis, Jules Francois; Deme, Awa; Ndiaye, Yaye Die; Daniels, Rachel; Volkman, Sarah K; Ndiop, Medoune; Ba, Mady; Ndiaye, Daouda

    2017-10-13

    Malaria transmission in Senegal is highly stratified, from low in the dry north to moderately high in the moist south. In northern Senegal, along the Senegal River Valley and in the Ferlo semi-desert region, annual incidence is less than five cases per 1000 inhabitants. Many nomadic pastoralists have permanent dwellings in the Ferlo Desert and Senegal River Valley, but spend dry season in the south with their herds, returning north when the rains start, leading to a concern that this population could contribute to ongoing transmission in the north. A modified snowball sampling survey was conducted at six sites in northern Senegal to determine the malaria prevention and treatment seeking practices and parasite prevalence among nomadic pastoralists in the Senegal River Valley and the Ferlo Desert. Nomadic pastoralists aged 6 months and older were surveyed during September and October 2014, and data regarding demographics, access to care and preventive measures were collected. Parasite infection was detected using rapid diagnostic tests (RDTs), microscopy (thin and thick smears) and polymerase chain reaction (PCR). Molecular barcodes were determined by high resolution melting (HRM). Of 1800 participants, 61% were male. Sixty-four percent had at least one bed net in the household, and 53% reported using a net the night before. Only 29% had received a net from a mass distribution campaign. Of the 8% (142) who reported having had fever in the last month, 55% sought care, 20% of whom received a diagnostic test, one-third of which (n = 5) were reported to be positive. Parasite prevalence was 0.44% by thick smear and 0.50% by PCR. None of the molecular barcodes identified among the nomadic pastoralists had been previously identified in Senegal. While access to and utilization of malaria control interventions among nomadic pastoralists was lower than the general population, parasite prevalence was lower than expected and sheds doubt on the perception that they are a

  13. Observation of water and heat fluxes in the Badain Jaran desert, China

    NARCIS (Netherlands)

    Zhang, T.; Wen, J.; Su, Z.; Tian, H.; Zeng, Y.

    Badain Jaran Desert lie in the northwest of the Alashan plateau in western Inner Mongolia of China, between39o20'N to 41o30'N and 100oE to 104oE. It is the 4th largest desert in the world and the second largest desert in China, with an area of 49000 square kilometers and an altitude between 900 and

  14. Biparentally deserted offspring are viable in a species with intense sexual conflict over care.

    Science.gov (United States)

    Pogány, Ákos; Kosztolányi, András; Miklósi, Ádám; Komdeur, Jan; Székely, Tamás

    2015-07-01

    Desertion of clutch (or brood) by both parents often leads to breeding failure, since in vast majority of birds care by at least one parent is required for any young to fledge. Recent works in a highly polygamous passerine bird, the Eurasian penduline tit (Remiz pendulinus), suggest that biparental clutch desertion is due to intense sexual conflict over care. However, an alternative yet untested hypothesis for biparental desertion is low offspring viability so that the parents abandon the offspring that have poor prospect for survival. Here we test the latter hypothesis in a common garden experiment by comparing the viability of deserted and cared for eggs. We show that embryonic development does not differ between deserted and cared for eggs. Therefore, sexual conflict over care remains the best supported hypothesis for biparental clutch desertion in penduline tits. Our work points out that conflict over care is a potential - yet rarely considered - cause of biparental nest desertion, and a strong alternative for the traditional explanations of low offspring viability, human disturbance or deteriorating ambient environment. Apart from a handful of species, the intensity of sexual conflict has not been quantified, and we call for further studies to consider sexual conflict as a cause of nest desertion. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Establishment and formation of fog-dependent Tillandsia landbeckii dunes in the Atacama Desert: Evidence from radiocarbon and stable isotopes

    Science.gov (United States)

    Latorre, Claudio; GonzáLez, AngéLica L.; Quade, Jay; FariñA, José M.; Pinto, Raquel; Marquet, Pablo A.

    2011-09-01

    Extensive dune fields made up exclusively of the bromeliad Tillandsia landbeckii thrive in the Atacama Desert, one of the most extreme landscapes on earth. These plants survive by adapting exclusively to take in abundant advective fog and dew as moisture sources. Although some information has been gathered regarding their modern distribution and adaptations, very little is known about how these dune systems actually form and accumulate over time. We present evidence based on 20 radiocarbon dates for the establishment age and development of five different such dune systems located along a ˜215 km transect in northern Chile. Using stratigraphy, geochronology and stable C and N isotopes, we (1) develop an establishment chronology of these ecosystems, (2) explain how the unique T. landbeckii dunes form, and (3) link changes in foliar δ15N values to moisture availability in buried fossil T. landbeckii layers. We conclude by pointing out the potential that these systems have for reconstructing past climate change along coastal northern Chile during the late Holocene.

  16. CAMEL REARING IN CHOLISTAN DESERT OF PAKISTAN

    Directory of Open Access Journals (Sweden)

    I. ALI, M. SHAFIQ CHAUDHRY1 AND U. FAROOQ

    2009-05-01

    Full Text Available The camel is one of the typical and the best adopted animals of the desert, capable of enduring thirst and hunger for days and is the most patient of land animals. For desert nomads of Pakistani Cholistan, it is a beloved companion, a source of milk and meat, transport facility provider and a racing/dancing animal, thus, playing an important role in the socioeconomic uplift of the local community. Camels of Marrecha or Mahra breed are mainly used for riding and load carrying but may be trained for dancing or racing. Berella is another heavy and milch breed of camel famous for milk production and can produce upto 10-15 liters of milk per day. This breed is also suitable for draught purpose, though comparatively slow due to heavy body. The present paper also describes the traditional camel rearing system used by nomads of Cholistan desert. Some aspects of camel health, production, feeding, socio-economic values, marketing and some constraints and suggestions are also given so that the policy makers may consider them for the welfare of this animal.

  17. Pastoralist rock art in the Black Desert of Jordan

    OpenAIRE

    Brusgaard, N.O.

    2015-01-01

    This paper discusses the current problems that exist with the rock art research of the Black Desert in Jordan and presents some preliminary field results of the author’s research on the petroglyphs. It also explore the possibilities that the rock art affords to learn more about the elusive desert societies and the limitations about studying rock art in archaeologically unfamiliar territories.

  18. Condition-dependent clutch desertion in Great Tit (Parus major) females subjected to human disturbance

    OpenAIRE

    2011-01-01

    Abstract Nest desertion behaviour in relation to body condition and timing of breeding was studied in Great Tit (Parus major) females during two breeding seasons. Desertion, most likely unintentionally provoked by catching females during the incubation period, occurred at a very high rate with 41.2 and 25.6% of deserted first clutches in the two study years. The association between desertion probability, body condition (index calculated as residuals from the regression of body mass...

  19. Hydrological indications of aeolian salts in mid-latitude deserts of ...

    Indian Academy of Sciences (India)

    Hydrological indications of aeolian salts in mid-latitude deserts of northwestern China. B Q Zhu. Supplementary data. Figure S1. Photograph views of Quaternary and modern sediments of aeolian and lacustrine/fluvial facies that consisted of clay and sand/silt sand alternations in the Taklamakan and Badanjilin Deserts.

  20. Mineral compositions and sources of the riverbed sediment in the desert channel of Yellow River.

    Science.gov (United States)

    Jia, Xiaopeng; Wang, Haibing

    2011-02-01

    The Yellow River flows through an extensive, aeolian desert area and extends from Xiaheyan, Ningxia Province, to Toudaoguai, Inner Mongolia Province, with a total length of 1,000 km. Due to the construction and operation of large reservoirs in the upstream of the Yellow River, most water and sediment from upstream were stored in these reservoirs, which leads to the declining flow in the desert channel that has no capability to scour large amount of input of desert sands from the desert regions. By analyzing and comparing the spatial distribution of weight percent of mineral compositions between sediment sources and riverbed sediment of the main tributaries and the desert channel of the Yellow River, we concluded that the coarse sediment deposited in the desert channel of the Yellow River were mostly controlled by the local sediment sources. The analyzed results of the Quartz-Feldspar-Mica (QFM) triangular diagram and the R-factor models of the coarse sediment in the Gansu reach and the desert channel of the Yellow River further confirm that the Ningxia Hedong desert and the Inner Mongolian Wulanbuhe and Kubuqi deserts are the main provenances of the coarse sediment in the desert channel of the Yellow River. Due to the higher fluidity of the fine sediment, they are mainly contributed by the local sediment sources and the tributaries that originated from the loess area of the upper reach of the Yellow River.

  1. Siting a low-level radioactive waste disposal facility in California

    International Nuclear Information System (INIS)

    Romano, S.A.; Gaynor, R.K.

    1991-01-01

    US Ecology is the State of California's designee to site, develop and operate a low-level radioactive waste disposal facility. In March 1988, a site in the Ward Valley of California's Mojave Desert was chosen for development. Strong local community support has been expressed for the site. US Ecology anticipates licensing and constructing a facility to receive waste by early 1991. This schedule places California well ahead of the siting milestones identified in Federal law. (author) 1 fig., 2 refs

  2. A demographic approach to study effects of climate change in desert plants

    Science.gov (United States)

    Salguero-Gómez, Roberto; Siewert, Wolfgang; Casper, Brenda B.; Tielbörger, Katja

    2012-01-01

    Desert species respond strongly to infrequent, intense pulses of precipitation. Consequently, indigenous flora has developed a rich repertoire of life-history strategies to deal with fluctuations in resource availability. Examinations of how future climate change will affect the biota often forecast negative impacts, but these—usually correlative—approaches overlook precipitation variation because they are based on averages. Here, we provide an overview of how variable precipitation affects perennial and annual desert plants, and then implement an innovative, mechanistic approach to examine the effects of precipitation on populations of two desert plant species. This approach couples robust climatic projections, including variable precipitation, with stochastic, stage-structured models constructed from long-term demographic datasets of the short-lived Cryptantha flava in the Colorado Plateau Desert (USA) and the annual Carrichtera annua in the Negev Desert (Israel). Our results highlight these populations' potential to buffer future stochastic precipitation. Population growth rates in both species increased under future conditions: wetter, longer growing seasons for Cryptantha and drier years for Carrichtera. We determined that such changes are primarily due to survival and size changes for Cryptantha and the role of seed bank for Carrichtera. Our work suggests that desert plants, and thus the resources they provide, might be more resilient to climate change than previously thought. PMID:23045708

  3. Mapping of Grocery Stores in Slovak Countryside in Context of Food Deserts

    Directory of Open Access Journals (Sweden)

    Kristína Bilková

    2015-01-01

    Full Text Available The paper is focused on mapping grocery stores in the Slovak countryside with an emphasis on identifying potential food deserts in rural areas. Grocery stores are analyzed in the time period 2001–2011. Food deserts in rural areas are identified by two accessibility measures. The results show the development of food retailing in the Slovak countryside and in potentially threatened localities which can be defined as food deserts.

  4. Soil seed bank in different habitats of the Eastern Desert of Egypt.

    Science.gov (United States)

    Gomaa, Nasr H

    2012-04-01

    The floristic composition and species diversity of the germinable soil seed bank were studied in three different habitats (desert salinized land, desert wadi, and reclaimed land) in the Eastern Desert of Egypt. Moreover, the degree of similarity between the seed bank and the above-ground vegetation was determined. The seed bank was studied in 40 stands representing the three habitats. Ten soil samples (each 25 × 20 cm and 5 cm depth) were randomly taken per stand. The seed bank was investigated by the seedling emergence method. Some 61 species belonging to 21 families and 54 genera were identified in the germinable seed bank. The recorded species include 43 annuals and 18 perennials. Ordination of stands by Detrended Correspondence Analysis (DCA) indicates that the stands of the three habitats are markedly distinguishable and show a clear pattern of segregation on the ordination planes. This indicates variations in the species composition among habitats. The results also demonstrate significant associations between the floristic composition of the seed bank and edaphic factors such as CaCO3, electrical conductivity, organic carbon and soil texture. The reclaimed land has the highest values of species richness, Shannon-index of diversity and the density of the germinable seed bank followed by the habitats of desert wadi and desert salinized land. Motyka's similarity index between the seed bank and the above-ground vegetation is significantly higher in reclaimed land (75.1%) compared to desert wadi (38.4%) and desert salinized land (36.5%).

  5. Sharia as ‘Desert Business’: Understanding the Links between Criminal Networks and Jihadism in Northern Mali

    DEFF Research Database (Denmark)

    Haugegaard, Rikke

    2017-01-01

    How can we understand the social and economic dynamics that enable the operative space of the militant networks in northern Mali? This article argues that jihadist militant groups are actors in local power struggles rather than ‘fighters’ or ‘terrorists’ with extremist ideological motivations. I ...

  6. Debris Flows and Water Tracks in Continental Antarctica: Water as a geomorphic agent in a hyperarid polar desert

    Science.gov (United States)

    Hauber, E.; Sassenroth, C.; De Vera, J.-P.; Schmitz, N.; Reiss, D.; Hiesinger, H.; Johnsson, A.

    2017-09-01

    Most studies using Antarctica as a Mars analogue have focused on the McMurdo Dry Valleys, which are among the coldest and driest places on Earth. However, other ice-free areas in continental Antarctica also display landforms that can inform the study of the possible geomorphic impact of water in a polar desert. Here we present a new analogue site in the interior of the Transantarctic Mountains in Northern Victoria Land. Gullies show unambiguous evidence for debris flows, and water tracks act as shallow subsurface pathways of water on top of the permafrost tale. Both processes are driven by meltwater from glacier ice and snow in an environ-ment which never experiences rainfall and in which the air temperatures probably never exceed 0°C.

  7. Desert farming benefits from microbial potential in arid soils and promotes diversity and plant health.

    Directory of Open Access Journals (Sweden)

    Martina Köberl

    Full Text Available BACKGROUND: To convert deserts into arable, green landscapes is a global vision, and desert farming is a strong growing area of agriculture world-wide. However, its effect on diversity of soil microbial communities, which are responsible for important ecosystem services like plant health, is still not known. METHODOLOGY/PRINCIPAL FINDINGS: We studied the impact of long-term agriculture on desert soil in one of the most prominent examples for organic desert farming in Sekem (Egypt. Using a polyphasic methodological approach to analyse microbial communities in soil as well as associated with cultivated plants, drastic effects caused by 30 years of agriculture were detected. Analysing bacterial fingerprints, we found statistically significant differences between agricultural and native desert soil of about 60%. A pyrosequencing-based analysis of the 16S rRNA gene regions showed higher diversity in agricultural than in desert soil (Shannon diversity indices: 11.21/7.90, and displayed structural differences. The proportion of Firmicutes in field soil was significantly higher (37% than in the desert (11%. Bacillus and Paenibacillus play the key role: they represented 96% of the antagonists towards phytopathogens, and identical 16S rRNA sequences in the amplicon library and for isolates were detected. The proportion of antagonistic strains was doubled in field in comparison to desert soil (21.6%/12.4%; disease-suppressive bacteria were especially enriched in plant roots. On the opposite, several extremophilic bacterial groups, e.g., Acidimicrobium, Rubellimicrobium and Deinococcus-Thermus, disappeared from soil after agricultural use. The N-fixing Herbaspirillum group only occurred in desert soil. Soil bacterial communities were strongly driven by the a-biotic factors water supply and pH. CONCLUSIONS/SIGNIFICANCE: After long-term farming, a drastic shift in the bacterial communities in desert soil was observed. Bacterial communities in agricultural

  8. Palynology in a polar desert, eastern North Greenland

    DEFF Research Database (Denmark)

    Funder, Svend Visby; Abrahamsen, Niels

    1988-01-01

    history back to c. 7,000 years calBP (6,000 years convBP) in this·extreme environment, which presents the coldest thermal regime where vascular plants can grow. The diagram shows that polar desert developed from sparse high arctic tundra at c. 4,300 years calBP (3,900 years convBP), owing...... to reduced summer heat. Also adjacent parts of high arctic Greenland, Canada and Svalbard suffered environmental decline, and polar deserts- presently restricted to a narrow fringe of land at the shores of the Arctic Ocean-were even more restricted before this time. Like other arctic vegetation types, polar...... desert is highly sensitive to summer temperatures, and its southern limit coincides with the isotherm for mean July temperatures of 3.5'C, A comparison with the Northwest European ice-age pollen record shows no evidence of summers as cold as those now prevailing in the extreme north, and the results...

  9. [Spatial change of the grain-size of aeolian sediments in Qira oasis-desert ecotone, Northwest China].

    Science.gov (United States)

    Lin, Yong Chong; Xu, Li Shuai

    2017-04-18

    In order to understand the environmental influence of oasis-desert ecotone to oasis ecological system, we comparatively analyzed the grain size characteristics of various aeolian sediments, including the sediments in oasis-desert ecotone, shelterbelt and the inside oasis and in Qira River valley. The results showed that the grain size characteristics (including grain-size distribution curve, grain size parameters, and content of different size classes) of sediments in the oasis-desert ecotone were consistent along the prevailing wind direction with a grain-size range of 0.3-200 μm and modal size of 67 μm. All of the sediments were good sorting and mainly composed of suspension components and saltation components, but not denatured saltation and creeping components (>200 μm). They were typically aeolian deposits being short-range transported. The grain sizes of sediments in oasis-desert ecotone were smaller than that in the material sources of Qira River valley and desert (0.3-800 μm), but very similar to those of the modern aeolian deposits in oasis-desert ecotone, shelterbelt and the inside oasis. The denatured saltation and creep components (>200 μm) were suppressed to transport into oasis-desert ecotone because of the high vegetation cover in oasis-desert ecotone. Therefore, like the shelterbelts, the oasis-desert ecotone could also block the invasion of desert. They safeguarded the oasis ecological environment together.

  10. Desert Net-Structure and Aims of an International Network for Desertification Research

    International Nuclear Information System (INIS)

    Akhtar-Schuster, M.; San Juan Mesonada, C.

    2009-01-01

    Desert Net://www.european-desert net.eu) is an interdisciplinary scientific network which was established in October 2006 at the UN premises in Bonn, Germany, by a group of international scientists. The network strives to generate and enhance scientific knowledge and understanding of the biophysical and socio-economic processes of desertification. This international scientific network provides an international platform for scientifically based discussions and exchange of ideas, addressing knowledge gaps, and identifying research areas. Desert Net is also a think tank community which identifies issues and priorities for the sustainable development of dry lands. the paper outlines the current role of Desert Net in the international scientific community and it delineates its role to strengthen the Science/Policy Interface. (Author) 2 refs.

  11. Water appropriation and ecosystem stewardship in the Baja desert

    OpenAIRE

    de las Heras Alejandro; Rodriguez Mario A.; Islas-Espinoza Marina

    2014-01-01

    The UNESCO San Francisco Rock Paintings polygon within El Vizcaino Biosphere Reserve in the Baja California Peninsula derives its moisture from the North American monsoon. There, ranchers have depended on the desert since the 18th century. More recently, the desert has depended on the environmental stewardship of the ranchers who have allayed mining exploitation and archaeological looting. Using a Rapid Assessment Procedure (RAP), climate data, and geographical informa...

  12. MX Siting Investigation. Gravity Survey - Sevier Desert Valley, Utah.

    Science.gov (United States)

    1981-01-24

    Cheyenne, Wyoming. DMAHTC reduces the data to Simple Bouguer Anomaly (see Section A1.4, Appendix Al.0). The Defense Mapping Agency Aerospace Center...Desert Valley, Utah ......... 2 2 Topographic Setting - Sevier Desert Valley, Utah . 3 LIST OF DRAWINGS Drawing Number 1 Complete Bouguer Anomaly...gravity stations were distributed throughout the valley at an approxi- mate interval of 1.4 miles (2.3 km). Drawing 1 is a Complete Bouguer Anomaly

  13. Reestablishing healthy food retail: changing the landscape of food deserts.

    Science.gov (United States)

    Karpyn, Allison; Young, Candace; Weiss, Stephanie

    2012-02-01

    The term "food desert" was formally introduced into the lexicon in 1995 and has come to describe areas with limited access to affordable nutritious foods, particularly areas in lower-income neighborhoods. The definition has led to the development of national and regional maps that focus efforts on equity in food access. Recognition of food deserts also marks a strategic change in public health's approach to obesity prevention. Today's emphasis on prevention has shifted away from individual responsibility to the role of the environment in health promotion. A number of solutions are underway to address food deserts, including public–private financing programs, industry commitments, as well as local and regional efforts to put healthy food within reach. The promise of financing programs to facilitate development of healthy food markets in underserved communities is rooted in their potential to alleviate the grocery gap and address underlying environmental contributors to obesity and diet-related diseases, such as obesity and diabetes. As food desert mapping and related interventions expand, there remains a need for ongoing investigation of impacts and the mechanisms by which impacts are achieved.

  14. Liquid Water Restricts Habitability in Extreme Deserts

    Science.gov (United States)

    Cockell, Charles S.; Brown, Sarah; Landenmark, Hanna; Samuels, Toby; Siddall, Rebecca; Wadsworth, Jennifer

    2017-04-01

    Liquid water is a requirement for biochemistry, yet under some circumstances it is deleterious to life. Here, we show that liquid water reduces the upper temperature survival limit for two extremophilic photosynthetic microorganisms (Gloeocapsa and Chroococcidiopsis spp.) by greater than 40°C under hydrated conditions compared to desiccated conditions. Under hydrated conditions, thermal stress causes protein inactivation as shown by the fluorescein diacetate assay. The presence of water was also found to enhance the deleterious effects of freeze-thaw in Chroococcidiopsis sp. In the presence of water, short-wavelength UV radiation more effectively kills Gloeocapsa sp. colonies, which we hypothesize is caused by factors including the greater penetration of UV radiation into hydrated colonies compared to desiccated colonies. The data predict that deserts where maximum thermal stress or irradiation occurs in conjunction with the presence of liquid water may be less habitable to some organisms than more extreme arid deserts where organisms can dehydrate prior to being exposed to these extremes, thus minimizing thermal and radiation damage. Life in extreme deserts is poised between the deleterious effects of the presence and the lack of liquid water.

  15. Landscape movements by two species of migratory nectar-feeding bats (Leptonycteris) in a northern area of seasonal sympatry

    Science.gov (United States)

    Bogan, Michael A.; Cryan, Paul; Weise, Christa D.; Valdez, Ernest W.

    2017-01-01

    Animals often migrate to exploit seasonally ephemeral food. Three species of nectar-feeding phyllostomid bats migrate north from Mexico into deserts of the United States each spring and summer to feed on blooms of columnar cactus and century plants (Agave spp.). However, the habitat needs of these important desert pollinators are poorly understood. We followed the nighttime movements of 2 species of long-nosed bats (Leptonycteris yerbabuenae and L. nivalis) in an area of late-summer sympatry at the northern edges of their migratory ranges. We radio-tracked bats in extreme southwestern New Mexico during 22 nights over 2 summers and acquired location estimates for 31 individuals. Both species cohabitated 2 major day roosts that were 30 km apart and in different mountain ranges, and individual bats sometimes moved between the roosts. Sampling was opportunistic and limited, but there were no obvious qualitative differences in observed patterns of movement between species or years, or among sex, age, and reproductive groups. Both species were observed foraging most often in the mountain range that had a relatively higher observed density of presumed food plants (Agave palmeri); when roosting in an adjacent mountain range, bats sometimes commuted >20 km one way to forage. Contrary to evidence indicating these species partition resources farther south in Mexico, our findings suggest that L. yerbabuenae and L. nivalis seasonally share common roost and food resources during late summer in this northern area of sympatry.

  16. The economics of hybrid power systems for sustainable desert agriculture in Egypt

    DEFF Research Database (Denmark)

    Kamel, S.M.; Dahl, C.

    2005-01-01

    Egypt has embarked on an ambitious desert land reclamation program in order to increase total food production. Energy planners for these desert agriculture locations have chosen diesel generation power technology because minimization of the initial capital cost of a power supply system is their top...... priority. This heavy reliance on diesel generation has negative effects on the surrounding environment including soil, groundwater, and air pollution. Although good solar and wind resource prospects exist for the use of cleaner hybrid power systems in certain desert locations, little research has been done...... to investigate the economic potential of such systems in Egypt’s desert agriculture sector. Using optimization software, we assess the economics of hybrid power systems versus the present diesel generation technology in a remote agricultural development area. We also consider the emission reduction advantages...

  17. Winter precipitation and fire in the Sonoran Desert

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, G.F.; Vint, M.K.

    1987-01-01

    Historical fire and climate records from the Arizona Upland portion of the Tonto National forest were used to test the hypothesis that fires burn larger areas in the Sonoran Desert after two wet winters than after one. We found that many more hectares burn in years following two winters that are wetter than normal, than during any other years. We agree with other ecologists, that desert fire occurrence is probably related to increased production of winter annual plants, and we suggest ways that the relationship may be clarified.

  18. Naturalisation, Desert, and the Symbolic Meaning of Citizenship

    DEFF Research Database (Denmark)

    Lægaard, Sune

    2012-01-01

    of naturalisation requirements as involving notions of desert and asks what these developments imply about the meaning of citizenship. Naturalisation marks the boundary of society understood as a political community, i.e. a civic rather than territorial boundary. How this boundary is policed and on the basis...... that the introduction of naturalisation tests and other desert-based naturalisation requirements imply that citizenship comes to have different symbolic meanings for native born citizens and naturalised citizens because such requirements distinguish between volitional or ‘earned’ and ascriptive or ‘natural’ citizenship...

  19. A Dynamic Simulation Model of the Desert Tortoise (Gopherus agassizii) Habitat in the Central Mojave Desert

    National Research Council Canada - National Science Library

    Westervelt, James

    1997-01-01

    .... Across the nation, Army and civilian land management offices responsible for the management of natural resources, endangered species, water quality, aesthetics, and economic productivity of the land...

  20. 1982 biotic survey of Yucca Mountain, Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    O'Farrell, T.P.; Collins, E.

    1983-02-01

    In 1981 an extensive literature review was conducted to determine the current state of knowledge about the ecological characteristics of the Yucca Mountain study area and to identify what site-specific information was lacking. Based on the findings of the review a field study was initiated in 1982 to gather site-specific information on the ecological characteristics of the project area. The biota observed were representative of either the Mojave or Transition deserts that are widely distributed in southern Nevada and the arid Southwest. No unusual vegetation associations or assemblages of animals were observed. Based on observations of tracks and scats it was concluded that low numbers of both mule deer and feral burros used the area seasonally, and that neither species should be severely threatened by the proposed activities. The Mojave fishhook cactus and desert tortoise, both under consideration for federal protection as threatened species, were found to occur in the study area. The former was distributed in notable densities on the rocky ridgelines of Yucca Mountain in areas that should not be greatly disturbed by site characterization or future repository activities. Evidence of desert tortoise was observed throughout the project area to elevations of 5240 ft; however, relative densities were estimated to be low (less than 20 per square mile). Physical destruction of soils and native vegetation was determined to be the most significant negative effect associated with current and proposed characterization activities. Solution holes in exposed flat rock on ridgelines that served as passive collectors of precipitation and runoff were the only sources of free water observed. While these water supplies were not adequate to support riparian vegetation, there was evidence that they served as an important ephemeral source of water for wildlife

  1. Interactive effects of warming and increased precipitation on community structure and composition in an annual forb dominated desert steppe.

    Directory of Open Access Journals (Sweden)

    Yanhui Hou

    Full Text Available To better understand how warming, increased precipitation and their interactions influence community structure and composition, a field experiment simulating hydrothermal interactions was conducted at an annual forb dominated desert steppe in northern China over 2 years. Increased precipitation increased species richness while warming significantly decreased species richness, and their effects were additive rather than interactive. Although interannual variations in weather conditions may have a major affect on plant community composition on short term experiments, warming and precipitation treatments affected individual species and functional group composition. Warming caused C4 grasses such as Cleistogenes squarrosa to increase while increased precipitation caused the proportions of non-perennial C3 plants like Artemisia capillaris to decrease and perennial C4 plants to increase.

  2. The water economy of South American desert rodents: from integrative to molecular physiological ecology.

    Science.gov (United States)

    Bozinovic, Francisco; Gallardo, Pedro

    2006-01-01

    Rodents from arid and semi-arid habitats live under conditions where the spatial and temporal availability of free water is limited, or scarce, thus forcing these rodents to deal with the problem of water conservation. The response of rodents to unproductive desert environments and water deficits has been intensively investigated in many deserts of the world. However, current understanding of the cellular, systemic and organismal physiology of water economy relies heavily on short-term, laboratory-oriented experiments, which usually focus on responses at isolated levels of biological organization. In addition, studies in small South American mammals are scarce. Indeed xeric habitats have existed in South America for a long time and it is intriguing why present day South American desert rodents do not show the wide array of adaptive traits to desert life observed for rodents on other continents. Several authors have pointed out that South American desert rodents lack physiological and energetic specialization for energy and water conservation, hypothesizing that their success is based more on behavioral and ecological strategies. We review phenotypic flexibility and physiological diversity in water flux rate, urine osmolality, and expression of water channels in South American desert-dwelling rodents. As far as we know, this is the first review of integrative studies at cellular, systemic and organismal levels. Our main conclusion is that South American desert rodents possess structural as well as physiological systems for water conservation, which are as remarkable as those found in "classical" rodents inhabiting other desert areas of the world.

  3. Are Wildlife Detector Dogs or People Better at Finding Desert Tortoises (Gopherus Agassizii)?

    National Research Council Canada - National Science Library

    Nussear, Kenneth E; Esque, Todd C; Heaton, Jill S; Cablk, Mary E; Drake, Kristina K; Valentin, Cindee; Yee, Julie L; Medica, Philip A

    2008-01-01

    .... Recent studies highlight the effectiveness of trained detector dogs to locate wildlife during field surveys, including Desert Tortoises in a semi-natural setting. Desert Tortoises (Gopherus agassizii...

  4. Are wildlife detector dogs or people better at finding Desert Tortoises (Gopherus agassizii)?

    Science.gov (United States)

    Nussear, K.E.; Esque, T.C.; Heaton, J.S.; Cablk, Mary E.; Drake, K.K.; Valentin, C.; Yee, J.L.; Medica, P.A.

    2008-01-01

    Our ability to study threatened and endangered species depends on locating them readily in the field. Recent studies highlight the effectiveness of trained detector dogs to locate wildlife during field surveys, including Desert Tortoises in a semi-natural setting. Desert Tortoises (Gopherus agassizii) are cryptic and difficult to detect during surveys, especially the smaller size classes. We conducted comparative surveys to determine whether human or detector dog teams were more effective at locating Desert Tortoises in the wild. We compared detectability of Desert Tortoises and the costs to deploy human and dog search teams. Detectability of tortoises was not statistically different for either team, and was estimated to be approximately 70% (SE = 5%). Dogs found a greater proportion of tortoises located in vegetation than did humans. The dog teams finished surveys 2.5 hours faster than the humans on average each day. The human team cost was approximately $3,000 less per square kilometer sampled. Dog teams provided a quick and effective method for surveying for adult Desert Tortoises; however, we were unable to determine-their effectiveness at locating smaller size classes. Detection of smaller size classes during surveys would improve management of the species and should be addressed by future research using Desert Tortoise detector dogs.

  5. Concentration of plutonium in desert plants from contaminated area

    International Nuclear Information System (INIS)

    Xu Hui; Jin Yuren; Tian Mei; Li Weiping; Zeng Ke; Wang Yaoqin; Wang Yu

    2012-01-01

    The investigation of plutonium in desert plants from contaminated sites contributes to the evaluation of its pollution situation and to the survey of plutonium hyper accumulator. The concentration of 239 Pu in desert plants collected from a contaminated site was determined, and the influence factors were studied. The concentration of 239 Pu in plants was (1.8±4.9) Bq/kg in dry weight, and it means that the plants were contaminated, moreover, the resuspension results in dramatic plutonium pollution of plant surface. The concentration of plutonium in plants depends on species, live stages and the content of plutonium in the rhizosphere soil. The concentration of plutonium in herbage is higher than that in woody plant, and for the seven species of desert plants investigated, it decreases in the order of Hexinia polydichotoma, Phragmites australis, Halostashys caspica, Halogeton arachnoideus, Lycium ruthenicum, Tamarix hispida and Calligonum aphyllum. (authors)

  6. Clean power from deserts. The DESERTEC concept for energy, water and climate security

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    The main challenge for the future is to reclaim energy from renewable and clean sources in environmentally compatible ways. Here the deserts of the earth can play a key role. They receive about 700 times more energy from the sun than humankind consumes by burning fossil fuels, day by day. Deserts are the places with the best solar radiation conditions and with the least possible impact of collector deployment onto the biosphere on earth. In deserts, clean power can be produced by solar thermal power plants (CSP) in a truly sustainable way and at any volume of conceivable demand. Power can be transmitted with low losses by high voltage direct current (HVDC) lines to more than 90% of the world's population. This gives the deserts a new role: Together with the many other forms of accessible renewable energy the newly utilized desert would enable us to replace fossil fuels and thus end the ongoing destruction of our natural living conditions. To put this into practice, countries with deserts, countries with high energy demand and countries with technology competence must cooperate. This is an opportunity for the Mediterranean riparian regions of Europe, the Middle East and North Africa (EUMENA) to form a community for energy, water and climate security. With the political will, EUMENA countries could now launch 'EUMENA-DESERTEC' Program, to bring humankind back into balance with its environment, by putting deserts and technology into service for energy, water and climate security. This would be an important step towards creating a truly sustainable civilization.

  7. Water Sources for Cyanobacteria Below Desert Rocks in the Negev Desert Determined by Conductivity

    Science.gov (United States)

    McKay, Christopher P.

    2016-01-01

    We present year round meteorological and conductivity measurements of colonized hypolithic rocks in the Arava Valley, Negev Desert, Israel. The data indicate that while dew is common in the Negev it is not an important source of moisture for hypolithic organisms at this site. The dominance of cyanobacteria in the hypolithic community are consistent with predictions that cyanobacteria are confined to habitats supplied by rain. To monitor the presence of liquid water under the small Negev rocks we developed and tested a simple field conductivity system based on two wires placed about 0.5 cm apart. Based on 21 replicates recorded for one year in the Negev we conclude that in natural rains (0.25 mm to 6 mm) the variability between sensor readings is between 20 and 60% decreasing with increasing rain amount. We conclude that the simple small electrical conductivity system described here can be used effectively to monitor liquid water levels in lithic habitats. However, the natural variability of these sensors indicates that several replicates should be deployed. The results and method presented have use in arid desert reclamation programs.

  8. The Palm Desert renewable [hydrogen] transportation system

    Energy Technology Data Exchange (ETDEWEB)

    Chamberlin, C.E.; Lehman, P. [Humboldt State Univ., Arcata, CA (United States). Schatz Energy Research Center

    1998-08-01

    This paper describes the Schatz Energy Research Center (SERC) progress on the Palm Desert Renewable Hydrogen Transportation System Project for the period June 1997 through May 1998. The project began in March 1996. The goal of the Palm Desert Project is to develop a clean and sustainable transportation system for a community. The project demonstrates the practical utility of hydrogen as a transportation fuel and the proton exchange membrane (PEM) fuel cell as a vehicle power system. The project includes designing and building 4 fuel cell powered vehicles, a solar hydrogen generating and refueling station, and a fuel cell vehicle diagnostic center. Over this last year, SERC has built a fuel cell powered neighborhood electric vehicle and delivered it to the City of Palm Desert. The design of the hydrogen refueling station is near completion and it is anticipated that construction will be complete in the fall of 1998. The vehicles are currently being refueled at a temporary refueling station. The diagnostic center is being designed and maintenance procedures as well as computer diagnostic programs for the fuel cell vehicles are being developed. City employees are driving the vehicles daily and monitoring data are being collected. The drivers are pleased with the performance of the vehicles.

  9. Use of space photographs in deciphering the origin and evolution of the desert

    International Nuclear Information System (INIS)

    El-Baz, F.

    1989-01-01

    Space photographs provide a very useful tool to study deserts and semiarid land because of their coverage and the amount of data they portray about vegetation-free terrain. This is a welcome contribution because we do not understand the desert as we do other types of terrain. Results of wind action, erosion and deposition are clearly portrayed in images obtained from spacecraft. They are indications of the state of the environment and should be studied well in all cases where economic development projects are instituted in deserts and semiarid lands. Furthermore, the history of evolution of the arid landscape in space and time must be considered in order to be able to use more of the desert for the benefit of mankind. (author). 33 refs, 14 figs

  10. Loess deposits since early Pleistocene in northeast China and implications for desert evolution in east China

    Science.gov (United States)

    Sun, Miao; Zhang, Xujiao; Tian, Mingzhong; Liu, Ru; He, Zexin; Qi, Lin; Qiao, Yansong

    2018-04-01

    Loess deposits and deserts are regarded as coupled geological systems and loess deposits on the periphery of deserts can often be used to reconstruct desert evolution. Previous studies of desert evolution in Asia are mainly concentrated in northwest China and the China Loess Plateau, and little is known about long-term desert evolution in east China. In this study, we selected the Sishijiazi loess section in the Chifeng area in northeast China to study the long-term evolution of the desert in east China. A high-resolution magnetostratigraphy combined with optically stimulated luminescence dating indicated that the age of the section base is approximately 1.02 Ma. The Brunhes-Matuyama boundary is at the depth of 39.8 m in loess unit L8, and the upper boundary of the Jaramillo Subchron is at the depth of 60.8 m in paleosol S10. The results of grain-size analysis indicate a coarsening grain-size trend in the past 1.0 Ma. In addition, based on grain-size variations, the desert evolution in east China since ∼1.0 Ma can be divided into three stages: stability from 1.0 to 0.8 Ma, desert recession from 0.8 to 0.5 Ma, and gradual expansion since 0.5 Ma. Our results further indicate that the evolution of desert in east China was mainly controlled by changes in global ice volume, and that the uplift of the Tibetan Plateau may have had an additional effect.

  11. Trace-element evidence for the origin of desert varnish by direct aqueous atmospheric deposition

    Science.gov (United States)

    Thiagarajan, Nivedita; Aeolus Lee, Cin-Ty

    2004-07-01

    Smooth rock surfaces in arid environments are often covered with a thin coating of Fe-Mn oxyhydroxides known as desert varnish. It is debated whether such varnish is formed (a) by slow diagenesis of dust particles deposited on rock surfaces, (b) by leaching from the underlying rock substrate, or (c) by direct deposition of dissolved constituents in the atmosphere. Varnishes collected from smooth rock surfaces in the Mojave Desert and Death Valley, California are shown here to have highly enriched and fractionated trace-element abundances relative to upper continental crust (UCC). They are highly enriched in Co, Ni, Pb and the rare-earth elements (REEs). In particular, they have anomalously high Ce/La and low Y/Ho ratios. These features can only be explained by preferential scavenging of Co, Ni, Pb and the REEs by Fe-Mn oxyhydroxides in an aqueous environment. High field strength elements (HFSEs: Zr, Hf, Ta, Nb, Th), however, show only small enrichments despite the fact that these elements should also be strongly scavenged by Fe-Mn oxyhydroxides. This suggests that their lack of enrichment is a feature inherited from a solution initially poor in HFSEs. The first two scenarios for varnish formation can be ruled out as follows. The high enrichment factors of Fe, Mn and many trace elements cannot be generated by mass loss associated with post-depositional diagenesis of dust particles because such a process predicts only a small increase in concentration. In addition, the highly fractionated abundance patterns of particle reactive element pairs (e.g., Ce/La and Y/Ho) rules out leaching of the rock substrate. This is because if leaching were to occur, varnishes would grow from the inside to the outside, and thus any particle-reactive trace element leached from the substrate would be quantitatively sequestered in the Fe-Mn oxyhydroxide layers, prohibiting any significant elemental fractionations. One remaining possibility is that the Fe, Mn and trace metals in varnish are

  12. The CO2 exchange of biological soil crusts in a semiarid grass-shrubland at the northern transition zone of the Negev desert, Israel

    Directory of Open Access Journals (Sweden)

    M. O. Andreae

    2008-10-01

    Full Text Available Biological soil crusts (BSC contribute significantly to the soil surface cover in many dryland ecosystems. A mixed type of BSC, which consists of cyanobacteria, mosses and cyanolichens, constitutes more than 60% of ground cover in the semiarid grass-shrub steppe at Sayeret Shaked in the northern Negev Desert, Israel. This study aimed at parameterizing the carbon sink capacity of well-developed BSC in undisturbed steppe systems. Mobile enclosures on permanent soil borne collars were used to investigate BSC-related CO2 fluxes in situ and with natural moisture supply during 10 two-day field campaigns within seven months from fall 2001 to summer 2002. Highest BSC-related CO2 deposition between –11.31 and –17.56 mmol m−2 per 15 h was found with BSC activated from rain and dew during the peak of the winter rain season. Net CO2 deposition by BSC was calculated to compensate 120%, –26%, and less than 3% of the concurrent soil CO2 efflux from November–January, February–May and November–May, respectively. Thus, BSC effectively compensated soil CO2 effluxes when CO2 uptake by vascular vegetation was probably at its low point. Nighttime respiratory emission reduced daily BSC-related CO2 deposition within the period November–January by 11–123% and on average by 27%. The analysis of CO2 fluxes and water inputs from the various sources showed that the bulk of BSC-related CO2 deposition occurs during periods with frequent rain events and subsequent condensation from water accumulated in the upper soil layers. Significant BSC activity on days without detectable atmospheric water supply emphasized the importance of high soil moisture contents as additional water source for soil-dwelling BSC, whereas activity upon dew formation at low soil water contents was not of major importance for BSC-related CO2 deposition. However, dew may still be important in attaining a pre-activated status during the transition from a long "summer" anabiosis towards

  13. Temporal 222Rn distributions to reveal groundwater discharge into desert lakes: Implication of water balance in the Badain Jaran Desert, China

    Science.gov (United States)

    Luo, Xin; Jiao, Jiu Jimmy; Wang, Xu-sheng; Liu, Kun

    2016-03-01

    How lake systems are maintained and water is balanced in the lake areas in the Badain Jaran Desert (BJD), northeast of China have been debated for about a decade. In this study, continuous 222Rn measurement is used to quantify groundwater discharge into two representative fresh and brine water lakes in the desert using a steady-state mass-balance model. Two empirical equations are used to calculate atmospheric evasion loss crossing the water-air interface of the lakes. Groundwater discharge rates yielded from the radon mass balance model based on the two empirical equations are well correlated and of almost the same values, confirming the validity of the model. The fresh water and brine lakes have a daily averaged groundwater discharge rate of 7.6 ± 1.7 mm d-1 and 6.4 ± 1.8 mm d-1, respectively. The temporal fluctuations of groundwater discharge show similar patterns to those of the lake water level, suggesting that the lakes are recharged from nearby groundwater. Assuming that all the lakes have the same discharge rate as the two studied lakes, total groundwater discharge into all the lakes in the desert is estimated to be 1.59 × 105 m3 d-1. A conceptual model of water balance within a desert lake catchment is proposed to characterize water behaviors within the catchment. This study sheds lights on the water balance in the BJD and is of significance in sustainable regional water resource utilization in such an ecologically fragile area.

  14. Lithium abundance patterns of late-F stars: an in-depth analysis of the lithium desert

    Science.gov (United States)

    Aguilera-Gómez, Claudia; Ramírez, Iván; Chanamé, Julio

    2018-06-01

    Aims: We address the existence and origin of the lithium (Li) desert, a region in the Li-Teff plane sparsely populated by stars. Here we analyze some of the explanations that have been suggested for this region, including mixing in the late main sequence, a Li dip origin for stars with low Li abundances in the region, and a possible relation with the presence of planets. Methods: To study the Li desert, we measured the atmospheric parameters and Li abundance of 227 late-F dwarfs and subgiants, chosen to be in the Teff range of the desert and without previous Li abundance measurements. Subsequently, we complemented those with literature data to obtain a homogeneous catalog of 2318 stars, for which we compute masses and ages. We characterize stars surrounding the region of the Li desert. Results: We conclude that stars with low Li abundances below the desert are more massive and more evolved than stars above the desert. Given the unexpected presence of low Li abundance stars in this effective temperature range, we concentrate on finding their origin. We conclude that these stars with low Li abundance do not evolve from stars above the desert: at a given mass, stars with low Li (i.e., below the desert) are more metal-poor. Conclusions: Instead, we suggest that stars below the Li desert are consistent with having evolved from the Li dip, discarding the need to invoke additional mixing to explain this feature. Thus, stars below the Li desert are not peculiar and are only distinguished from other subgiants evolved from the Li dip in that their combination of atmospheric parameters locates them in a range of effective temperatures where otherwise only high Li abundance stars would be found (i.e., stars above the desert). Full Tables 1 and 3 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/614/A55This paper includes observations collected at The McDonald Observatory and

  15. Atmospheric Surface Layer Characterization: Preliminary Desert Lapse Rate Study 22-25 August 2000

    National Research Council Canada - National Science Library

    Elliott, Doyle

    2003-01-01

    Results of the August 2000 Desert Lapse Rate (DLR) Experiment are presented. The DLR Experiment was performed to document the night-to-day transition effects on the desert Atmospheric Surface Layer (ASL...

  16. Soil stabilization by a prokaryotic desert crust - Implications for Precambrian land biota

    Science.gov (United States)

    Campbell, S. E.

    1979-01-01

    The ecology of the cyanophyte-dominated stromatolitic mat forming the ground cover over desert areas of Utah and Colorado is investigated and implications for the formation of mature Precambrian soils are discussed. The activation of the growth of the two species of filamentous cyanophyte identified and the mobility of their multiple trichromes upon wetting are observed, accompanied by the production and deposition of a sheath capable of accreting and stabilizing sand and clay particles. The formation of calcium carbonate precipitates upon the repeated wetting and drying of desert crust is noted, and it is suggested that the desert crust community may appear in fossil calcrete deposits as lithified microscopic tubes and cellular remains of algal trichromes. The invasion of dry land by both marine and freshwater algae on the model of the desert crust is proposed to be responsible for the accumulation, stabilization and biogenic modification of mature Precambrian soils.

  17. Epifluorescent direct counts of bacteria and viruses from topsoil of various desert dust storm regions

    Science.gov (United States)

    Gonzalez-Martin, Cristina; Teigell-Perez, Nuria; Lyles, Mark; Valladares, Basilio; Griffin, Dale W.

    2013-01-01

    Topsoil from arid regions is the main source of dust clouds that move through the earth's atmosphere, and microbial communities within these soils can survive long-range dispersion. Microbial abundance and chemical composition were analyzed in topsoil from various desert regions. Statistical analyses showed that microbial direct counts were strongly positively correlated with calcium concentrations and negatively correlated with silicon concentrations. While variance between deserts was expected, it was interesting to note differences between sample sites within a given desert region, illustrating the 'patchy' nature of microbial communities in desert environments.

  18. Bacterial Rhizosphere Biodiversity from Several Pioneer Desert Sand Plants Near Jizan, Saudi Arabia

    KAUST Repository

    Osman, Jorge R.; Zelicourt, Axel de; Bisseling, Ton; Geurts, Rene; Hirt, Heribert; DuBow, Michael S.

    2016-01-01

    Life in arid regions and, in particular, hot deserts is often limited due to their harsh environmental conditions, such as large temperature fluctuations and low amounts of water. These extreme environments can influence the microbial community present on the surface sands and any rhizosphere members surrounding desert plant roots. The Jizan desert area, located in Saudi Arabia, supports particular vegetation that grows in the large sandy flat terrain. We examined five different samples, four from the rhizosphere of pioneer plants plus a surface sand sample, and used pyrosequencing of PCR-amplified V1-V3 regions of 16S rDNA genes from total extracted DNA to reveal and compare the bacterial population diversity of the samples. The results showed a total of 3,530 OTUs in the five samples, calculated using ≥ 97% sequence similarity levels. The Chao1 estimation of the bacterial diversity fluctuated from 637 to 2,026 OTUs for a given sample. The most abundant members found in the samples belong to the Bacteroidetes, Firmicutes and Proteobacteria phyla. This work shows that the Jizan desert area of Saudi Arabia can contain a diverse bacterial community on the sand and surrounding the roots of pioneer desert plants. It also shows that desert sand microbiomes can vary depending on conditions, with broad implications for sandstone monument bacterial communities

  19. Bacterial Rhizosphere Biodiversity from Several Pioneer Desert Sand Plants Near Jizan, Saudi Arabia

    KAUST Repository

    Osman, Jorge R.

    2016-04-08

    Life in arid regions and, in particular, hot deserts is often limited due to their harsh environmental conditions, such as large temperature fluctuations and low amounts of water. These extreme environments can influence the microbial community present on the surface sands and any rhizosphere members surrounding desert plant roots. The Jizan desert area, located in Saudi Arabia, supports particular vegetation that grows in the large sandy flat terrain. We examined five different samples, four from the rhizosphere of pioneer plants plus a surface sand sample, and used pyrosequencing of PCR-amplified V1-V3 regions of 16S rDNA genes from total extracted DNA to reveal and compare the bacterial population diversity of the samples. The results showed a total of 3,530 OTUs in the five samples, calculated using ≥ 97% sequence similarity levels. The Chao1 estimation of the bacterial diversity fluctuated from 637 to 2,026 OTUs for a given sample. The most abundant members found in the samples belong to the Bacteroidetes, Firmicutes and Proteobacteria phyla. This work shows that the Jizan desert area of Saudi Arabia can contain a diverse bacterial community on the sand and surrounding the roots of pioneer desert plants. It also shows that desert sand microbiomes can vary depending on conditions, with broad implications for sandstone monument bacterial communities

  20. Paleoproterozoic mojaveprovince in northwestern Mexico? Isotopic and U-Pb zircon geochronologic studies of precambrian and Cambrian crystalline and sedimentary rocks, Caborca, Sonora

    Science.gov (United States)

    Lang, Farmer G.; Bowring, S.A.; Matzel, J.; Maldonado, G.E.; Fedo, C.; Wooden, J.

    2005-01-01

    Whole-rock Nd isotopic data and U-Pb zircon geochronology from Precambrian crystalline rocks in the Caborca area, northern Sonora, reveal that these rocks are most likely a segment of the Paleoproterozoic Mojave province. Supporting this conclusion are the observations that paragneiss from the ??? 1.75 Ga Bamori Complex has a 2.4 Ga Nd model age and contains detrital zircons ranging in age from Paleo- proterozoic (1.75 Ga) to Archean (3.2 Ga). Paragneisses with similar age and isotopic characteristics occur in the Mojave province in southern California. In addition, "A-type" granite exposed at the southern end of Cerro Rajon has ca 2.0 Ga Nd model age and a U-Pb zircon age of 1.71 Ga, which are similar to those of Paleoproterozoic granites in the Mojave province. Unlike the U.S. Mojave province, the Caborcan crust contains ca. 1.1 Ga granite (Aibo Granite), which our new Nd isotopic data suggest is largely the product of anatexis of the local Precambrian basement. Detrital zircons from Neoproterozoic to early Cambrian miogeoclinal arenites at Caborca show dominant populations ca. 1.7 Ga, ca. 1.4 Ga, and ca. 1.1 Ga, with subordinate Early Cambrian and Archean zircons. These zircons were likely derived predominately from North American crust to the east and northeast, and not from the underlying Caborcan basement. The general age and isotopic similarities between Mojave province basement and overlying miogeoclinal sedimentary rocks in Sonora and southern California is necessary, but not sufficient, proof of the hypothesis that Sonoran crust is allochthonous and was transported to its current position during the Mesozoic along the proposed Mojave-Sonora megashear. One viable alternative model is that the Caborcan Precambrian crust is an isolated, autochthonous segment of Mojave province crust that shares a similar, but not identical, Proterozoic geological history with Mojave province crust found in the southwest United States ?? 2005 Geological Society of America.

  1. The Influence of Solar Power Plants on Microclimatic Conditions and the Biotic Community in Chilean Desert Environments

    Science.gov (United States)

    Suuronen, Anna; Muñoz-Escobar, Christian; Lensu, Anssi; Kuitunen, Markku; Guajardo Celis, Natalia; Espinoza Astudillo, Pablo; Ferrú, Marcos; Taucare-Ríos, Andrés; Miranda, Marcelo; Kukkonen, Jussi V. K.

    2017-10-01

    The renewable energy sector is growing at a rapid pace in northern Chile and the solar energy potential is one of the best worldwide. Therefore, many types of solar power plant facilities are being built to take advantage of this renewable energy resource. Solar energy is considered a clean source of energy, but there are potential environmental effects of solar technology, such as landscape fragmentation, extinction of local biota, microclimate changes, among others. To be able to minimize environmental impacts of solar power plants, it is important to know what kind of environmental conditions solar power plants create. This study provides information about abiotic and biotic conditions in the vicinity of photovoltaic solar power plants. Herein, the influence of these power plants as drivers of new microclimate conditions and arthropods diversity composition in the Atacama Desert was evaluated. Microclimatic conditions between panel mounts was found to be more extreme than in the surrounding desert yet beneath the panels temperature is lower and relative humidity higher than outside the panel area. Arthropod species composition was altered in fixed-mount panel installations. In contrast, solar tracking technology showed less influence on microclimate and species composition between Sun and Shade in the power plant. Shady conditions provided a refuge for arthropod species in both installation types. For example, Dipterans were more abundant in the shade whereas Solifugaes were seldom present in the shade. The presented findings have relevance for the sustainable planning and construction of solar power plants.

  2. The Influence of Solar Power Plants on Microclimatic Conditions and the Biotic Community in Chilean Desert Environments.

    Science.gov (United States)

    Suuronen, Anna; Muñoz-Escobar, Christian; Lensu, Anssi; Kuitunen, Markku; Guajardo Celis, Natalia; Espinoza Astudillo, Pablo; Ferrú, Marcos; Taucare-Ríos, Andrés; Miranda, Marcelo; Kukkonen, Jussi V K

    2017-10-01

    The renewable energy sector is growing at a rapid pace in northern Chile and the solar energy potential is one of the best worldwide. Therefore, many types of solar power plant facilities are being built to take advantage of this renewable energy resource. Solar energy is considered a clean source of energy, but there are potential environmental effects of solar technology, such as landscape fragmentation, extinction of local biota, microclimate changes, among others. To be able to minimize environmental impacts of solar power plants, it is important to know what kind of environmental conditions solar power plants create. This study provides information about abiotic and biotic conditions in the vicinity of photovoltaic solar power plants. Herein, the influence of these power plants as drivers of new microclimate conditions and arthropods diversity composition in the Atacama Desert was evaluated. Microclimatic conditions between panel mounts was found to be more extreme than in the surrounding desert yet beneath the panels temperature is lower and relative humidity higher than outside the panel area. Arthropod species composition was altered in fixed-mount panel installations. In contrast, solar tracking technology showed less influence on microclimate and species composition between Sun and Shade in the power plant. Shady conditions provided a refuge for arthropod species in both installation types. For example, Dipterans were more abundant in the shade whereas Solifugaes were seldom present in the shade. The presented findings have relevance for the sustainable planning and construction of solar power plants.

  3. Potential for deserts to supply reliable renewable electric power

    Science.gov (United States)

    Labordena, Mercè; Lilliestam, Johan

    2015-04-01

    To avoid dangerous climate change, the electricity systems must be decarbonized by mid-century. The world has sufficient renewable electricity resources for complete power sector decarbonization, but an expansion of renewables poses several challenges for the electricity systems. First, wind and solar PV power are intermittent and supply-controlled, making it difficult to securely integrate this fluctuating generation into the power systems. Consequently, power sources that are both renewable and dispatchable, such as biomass, hydro and concentrating solar power (CSP), are particularly important. Second, renewable power has a low power density and needs vast areas of land, which is problematic both due to cost reasons and due to land-use conflicts, in particular with agriculture. Renewable and dispatchable technologies that can be built in sparsely inhabited regions or on land with low competition with agriculture would therefore be especially valuable; this land-use competition greatly limits the potential for hydro and biomass electricity. Deserts, however, are precisely such low-competition land, and are at the same time the most suited places for CSP generation, but this option would necessitate long transmission lines from remote places in the deserts to the demand centers such as big cities. We therefore study the potential for fleets of CSP plants in the large deserts of the world to produce reliable and reasonable-cost renewable electricity for regions with high and/or rapidly increasing electricity demand and with a desert within or close to its borders. The regions in focus here are the European Union, North Africa and the Middle East, China and Australia. We conduct the analysis in three steps. First, we identify the best solar generation areas in the selected deserts using geographic information systems (GIS), and applying restrictions to minimize impact on biodiversity, soils, human heath, and land-use and land-cover change. Second, we identify

  4. Food deserts in Winnipeg, Canada: a novel method for measuring a complex and contested construct

    Directory of Open Access Journals (Sweden)

    Joyce Slater

    2017-10-01

    Full Text Available Introduction: "Food deserts" have emerged over the past 20 years as spaces of concern for communities, public health authorities and researchers because of their potential negative impact on dietary quality and subsequent health outcomes. Food deserts are residential geographic spaces, typically in urban settings, where low-income residents have limited or no access to retail food establishments with sufficient variety at affordable cost. Research on food deserts presents methodological challenges including retail food store identification and classification, identification of low-income populations, and transportation and proximity metrics. Furthermore, the complex methods often used in food desert research can be difficult to reproduce and communicate to key stakeholders. To address these challenges, this study sought to demonstrate the feasibility of implementing a simple and reproducible method of identifying food deserts using data easily available in the Canadian context. Methods: This study was conducted in Winnipeg, Canada in 2014. Food retail establishments were identified from Yellow Pages and verified by public health dietitians. We calculated two scenarios of food deserts based on location of the lowest-income quintile population: (a living ≥ 500 m from a national chain grocery store, or (b living ≥ 500 m from a national chain grocery store or a full-service grocery store. Results: The number of low-income residents living in a food desert ranged from 64 574 to 104 335, depending on the scenario used. Conclusion: This study shows that food deserts affect a significant proportion of the Winnipeg population, and while concentrated in the urban core, exist in suburban neighbourhoods also. The methods utilized represent an accessible and transparent, reproducible process for identifying food deserts. These methods can be used for costeffective, periodic surveillance and meaningful engagement with communities, retailers and policy

  5. Vegetation dynamics at a Mojave Desert restoration site, 1992 to 2007

    Science.gov (United States)

    Jeffrey E. Ott; E. Durant McArthur; Stewart C. Sanderson

    2011-01-01

    The Twist Hollow restoration site on BLM land near St. George, Utah, had been badly disturbed by sand mining, rock quarrying, dumping, off-road vehicles and target shooting prior to its closure and treatment. In December 1992 the site was sculpted and drill seeded with Indian ricegrass (Stipa hymenoides), sand dropseed (Sporobolus cryptandrus), galleta (Hilaria jamesii...

  6. Surficial geology and stratigraphy of Pleistocene Lake Manix, San Bernardino County, California

    Science.gov (United States)

    Reheis, Marith C.; Redwine, Joanna R.; Wan, Elmira; McGeehin, John P.; VanSistine, D. Paco

    2014-01-01

    Pluvial Lake Manix and its surrounding drainage basin, in the central Mojave Desert of California, has been a focus of paleoclimate, surficial processes, and neotectonic studies by the U.S. Geological Survey (USGS) since about 2004. The USGS initiated studies of Lake Manix deposits to improve understanding of the paleoclimatic record and the shifts in atmospheric circulation that controlled precipitation in the Mojave Desert. Until approximately 25,000 years ago, Lake Manix was the terminus of the Mojave River, which drains northeasterly from the San Bernardino Mountains; the river currently terminates in the Soda Lake and Silver Lake playas. Pleistocene Lake Manix occupied several subbasins at its maximum extent. This map focuses on the extensive exposures created by incision of the Mojave River and its tributaries into the interbedded lacustrine and alluvial deposits within the central (Cady) and northeastern (Afton) subbasins of Lake Manix, and extends from the head of Afton Canyon to Manix Wash. The map illuminates the geomorphic development and depositional history of the lake and alluvial fans within the active tectonic setting of the eastern California shear zone, especially interactions with the left-lateral Manix fault. Lake Manix left an extraordinarily detailed but complex record of numerous transgressive-regressive sequences separated by desiccation and deposition of fan, eolian, and fluvial deposits, and punctuated by tectonic movements and a catastrophic flood that reconfigured the lake basin. Through careful observation of the intercalated lacustrine and fan sequences and by determining the precise elevations of unit contacts, this record was decoded to understand the response of the lake and river system to the interplay of climatic, geomorphic, and tectonic forces. These deposits are exposed in steep badland topography. Mapping was carried out mostly at scales of 1:12,000, although the map is presented at 1:24,000 scale, and employs custom unit

  7. Biodiversity analysis of vegetation on the Nevada Test Site

    International Nuclear Information System (INIS)

    Ostler, W. K.; Hansen, D. J.

    2000-01-01

    The Nevada Test Site (NTS), located in south-central Nevada, encompasses approximately 3,500 square kilometers and straddles two major North American deserts, Mojave and Great Basin. Transitional areas between the two desert types have been created by gradients in elevation, precipitation, temperature, and soils. From 1996 to 1998, more than 1,500 ecological landform units were sampled at the NTS for numerous biotic and abiotic parameters. The data provide a basis for spatial evaluations of biodiversity over landscape scales at the NTS. Biodiversity maps (species richness vs. species abundance) have been produced. Differences in biodiversity among ecoregions and vegetation alliances are presented. Spatial distribution maps of species' presence and abundance provide evidence of where transition zones occur and the resulting impact on biodiversity. The influences of abiotic factors, such as elevation, soil, and precipitation, on biodiversity are assessed

  8. Detection of land degradation with polarimetric SAR

    Science.gov (United States)

    Ray, Terrill W.; Farr, Tom G.; Van Zyl, Jakob J.

    1992-01-01

    Multispectral radar polarimeter data were collected over the Manix Basin Area of the Mojave desert using an airborne SAR. An analysis of the data reveals unusual polarization responses which are attributed to the formation of wind ripples on the surfaces of fields that have been abandoned for more than 5 years. This hypothesis has been confirmed through field observations, and a second-order perturbation model is shown to effectively model the polarization responses. The results demonstrate the usefulness of remote sensing techniques for the study of land degradation at synoptic scales.

  9. Metabolic rate, evaporative water loss and thermoregulatory state in four species of bats in the Negev desert.

    Science.gov (United States)

    Muñoz-Garcia, Agustí; Larraín, Paloma; Ben-Hamo, Miriam; Cruz-Neto, Ariovaldo; Williams, Joseph B; Pinshow, Berry; Korine, Carmi

    2016-01-01

    Life in deserts is challenging for bats because of their relatively high energy and water requirements; nevertheless bats thrive in desert environments. We postulated that bats from desert environments have lower metabolic rates (MR) and total evaporative water loss (TEWL) than their mesic counterparts. To test this idea, we measured MR and TEWL of four species of bats, which inhabit the Negev desert in Israel, one species mainly restricted to hyper-arid deserts (Otonycteris hemprichii), two species from semi-desert areas (Eptesicus bottae and Plecotus christii), and one widespread species (Pipistrellus kuhlii). We also measured separately, in the same individuals, the two components of TEWL, respiratory water loss (RWL) and cutaneous evaporative water loss (CEWL), using a mask. In all the species, MR and TEWL were significantly reduced during torpor, the latter being a consequence of reductions in both RWL and CEWL. Then, we evaluated whether MR and TEWL in bats differ according to their geographic distributions, and whether those rates change with Ta and the use of torpor. We did not find significant differences in MR among species, but we found that TEWL was lowest in the species restricted to desert habitats, intermediate in the semi-desert dwelling species, and highest in the widespread species, perhaps a consequence of adaptation to life in deserts. Our results were supported by a subsequent analysis of data collected from the literature on rates of TEWL for 35 bat species from desert and mesic habitats. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Climate change: Its possible impact on the environment and the people of northern regions

    International Nuclear Information System (INIS)

    Roots, F.

    1993-01-01

    A detailed overview is presented of the possible impacts of climate change on the Arctic environment, ecosystems, and human activities. The extent of global climate change is examined through the use of historical and paleoclimatologic records of temperature and stratospheric ozone. The effects of precipitation distribution and airborne particulates on climate change are also outlined. Changes in the Arctic are then examined, with an explanation of why global change in the Arctic is likely to be exaggerated. Likely scenarios of Arctic climate change involve milder winter temperatures, wetter and cloudier summers, more stormy weather and snowfall, greater variability in regional weather patterns, and dramatic changes in the extent of sea ice. Biological responses of wetland, northern forest, tundra, Arctic desert, below-ground, and marine ecosystems are assessed. Features of northern and Arctic ecosystems that may be particularly vulnerable to climate change are noted. Finally, the impacts of climate change on traditional activities and lifestyles, resource management and harvesting, agriculture, forestry, mining and fossil-fuel development, offshore operations, and human infrastructures are summarized. 5 figs

  11. Who Needs Religion When You Have The Desert?

    DEFF Research Database (Denmark)

    Sørensen, Bent

    In my paper I propose to read so-called ‘post-ironic’ texts by authors associated with the Blank Generation and Generation X (including Bret Easton Ellis and Douglas Coupland, as well as less well-known authors such as K.S. Haddock) and examine their use of the desert as a trope for identity...... testing and summation. Perhaps surprisingly, one finds in novels such as Ellis’ Less Than Zero (1984) and Coupland’s Generation X (1991) a reliance on desert locations to provide an alternative to the numerous non-places (in Marc Augé’s sense of the term) that otherwise make up the setting of these works....

  12. The Chemistry and Mineralogy of Atacama Desert soils: A Possible Analog for Mars Soils

    Science.gov (United States)

    Sutter, B.; Amundson, R.; Ewing, S.; Rhodes, K. W.; McKay, C.

    2002-12-01

    The Atacama Desert of northern Chile is the driest desert in the world, having experienced its present hyper-arid climate since the Miocene. While Mars is vastly more dry and cold than the Atacama, the Atacama environment may be one of the best terrestrial Mars analog environments accessible to researchers. Because of the long-term hyperaridity, the soils retain atmospherically-derived elements, which accumulate to economically valuable quantities. The objective of this work was to examine physical and chemical evolution of the soils of the hyper-arid Atacama Desert to provide insight as to what soil properties may be found on Mars. Three soils were excavated and examined on widely representative landforms along a south to north transect (Copiapo > Altimira > Yungay) that coincides with decreasing moisture levels (~15mm to ~2 mm yr-1, south to north). Total chemical analyses were used to calculate strain (i.e. volume change) and elemental gains or losses (\\tau). Relative to parent material values, the Yungay and Altimira soils have expanded over 400% in certain horizons, while the Copiapo soil has collapsed by as much as 48%. The expansions are driven by elemental gains; the collapse by weathering losses. Calculations of \\tau indicate a 380 000% enrichment in Cl (halite) in the lower horizons, and S enrichments (anhydrite, gypsum) as high as 50 000% in the upper horizons, of the Yungay soil. The Altimira soil had a 110 000% enrichment of S (gypsum) and a 16,000% enrichment of carbonate, reflecting the higher precipitation and the relative solubility of salts. The southern, higher rainfall Copiapo soil had small \\tau values for S (283%) and Cl (63%) in the middle horizons, but significant gains of CaCO3 (\\tau values as high as 4 000% in certain horizons). In general, the type and depth of Cl, S, and CaCO3 enrichment in the soils varied predictably with rainfall. The results of this work, which document enormous atmospherically-derived elemental gains and

  13. Water sources for cyanobacteria below desert rocks in the Negev Desert determined by conductivity

    Directory of Open Access Journals (Sweden)

    Christopher P. McKay

    2016-04-01

    Full Text Available We present year round meteorological and conductivity measurements of colonized hypolithic rocks in the Arava Valley, Negev Desert, Israel. The data indicate that while dew is common in the Negev it is not an important source of moisture for hypolithic organisms at this site. The dominance of cyanobacteria in the hypolithic community is consistent with predictions that cyanobacteria are confined to habitats supplied by rain. To monitor the presence of liquid water under the small Negev rocks we developed and tested a simple field conductivity system based on two wires placed about 0.5 cm apart. Based on 21 replicates recorded for one year in the Negev we conclude that in natural rains (0.25 mm to 6 mm the variability between sensor readings is between 20 and 60% decreasing with increasing rain amount. We conclude that the simple small electrical conductivity system described here can be used effectively to monitor liquid water levels in lithic habitats. However, the natural variability of these sensors indicates that several replicates should be deployed. The results and method presented have use in arid desert reclamation programs.

  14. Giant desiccation fissures on the Black Rock and Smoke Creek Deserts, Nevada

    Science.gov (United States)

    Willden, R.; Mabey, D.R.

    1961-01-01

    Open fissures, from 100 to several hundred feet apart, that have produced polygonal patterns on the Black Rock Desert, Nevada, are believed to be giant desiccation cracks resulting from a secular trend toward aridity in the last few decades. Similar features on the Smoke Creek Desert probably have the same origin.

  15. [Analysis of spectral features based on water content of desert vegetation].

    Science.gov (United States)

    Zhao, Zhao; Li, Xia; Yin, Ye-biao; Tang, Jin; Zhou, Sheng-bin

    2010-09-01

    By using HR-768 field-portable spectroradiometer made by the Spectra Vista Corporation (SVC) of America, the hyper-spectral data of nine types of desert plants were measured, and the water content of corresponding vegetation was determined by roasting in lab. The continuum of measured hyperspectral data was removed by using ENVI, and the relationship between the water content of vegetation and the reflectance spectrum was analyzed by using correlation coefficient method. The result shows that the correlation between the bands from 978 to 1030 nm and water content of vegetation is weak while it is better for the bands from 1133 to 1266 nm. The bands from 1374 to 1534 nm are the characteristic bands because of the correlation between them and water content is the best. By using cluster analysis and according to the water content, the vegetation could be marked off into three grades: high (>70%), medium (50%-70%) and low (<50%). The research reveals the relationship between water content of desert vegetation and hyperspectral data, and provides basis for the analysis of area in desert and the monitoring of desert vegetation by using remote sensing data.

  16. Desert rose: building material of cupolas in the Souf in Algeria

    Science.gov (United States)

    Azil, C.; Djebri, B.; Rovero, L.

    2018-05-01

    In the Souf of Algeria, the roofs of all constructions are arranged like corbelled domes, built with local particular material to this region, which is the desert rose. These cupolas describe a unique landscape of historic centres. Such constructions include a widespread and precious heritage that deserves protection to save this urban landscape which constitutes an element of identity of heritage built upon the material as well as the immaterial of the local know-how. Unfortunately, these architectural elements have undergone alterations that devalue the urban landscape and destabilize the buildings. However, the structural system that provides stability and endurance to this day remains an open question. In this, paper, we describe the role of desert rose cupolas in the construction of a single urban landscape and we contribute to this knowledge. Then, we explain the role of the availability of the materials locals (desert rose and tafza) to appearance ad emergence of construction with cupolas typology. In addition, we describe these materials locals, and the method to them usage. In the end, we have traced the process of construction of these cupolas by corbelling which is mounted by successive courses of the desert rose and the plaster mortar.

  17. Reconstructing the origin of Helianthus deserticola: Survival and selection on the desert floor

    NARCIS (Netherlands)

    Gross, B.L.; Kane, D.L.; Lexer, C.; Ludwig, F.; Rosenthal, D.R.; Donovan, L.A.; Rieseberg, L.H.

    2004-01-01

    The diploid hybrid species Helianthus deserticola inhabits the desert floor, an extreme environment relative to its parental species Helianthus annuus and Helianthus petiolaris. Adaptation to the desert floor may have occurred via selection acting on transgressive, or extreme, traits in early

  18. Biological soil crusts as an integral component of desert environments

    Science.gov (United States)

    Belnap, Jayne; Weber, Bettina

    2013-01-01

    The biology and ecology of biological soil crusts, a soil surface community of mosses, lichens, cyanobacteria, green algae, fungi, and bacteria, have only recently been a topic of research. Most efforts began in the western U.S. (Cameron, Harper, Rushforth, and St. Clair), Australia (Rogers), and Israel (Friedmann, Evenari, and Lange) in the late 1960s and 1970s (e.g., Friedmann et al. 1967; Evenari 1985reviewed in Harper and Marble 1988). However, these groups worked independently of each other and, in fact, were often not aware of each other’s work. In addition, biological soil crust communities were seen as more a novelty than a critical component of dryland ecosystems. Since then, researchers have investigated many different aspects of these communities and have shown that although small to microscopic, biological soil crusts are critical in many ecological processes of deserts. They often cover most of desert soil surfaces and substantially mediate inputs and outputs from desert soils (Belnap et al. 2003). They can be a large source of biodiversity for deserts, as they can contain more species than the surrounding vascular plant community (Rosentreter 1986). These communities are important in reducing soil erosion and increasing soil fertility through the capture of dust and the fixation of atmospheric nitrogen and carbon into forms available to other life forms (Elbert et al. 2012). Because of their many effects on soil characteristics, such as external and internal morphological characteristics, aggregate stability, soil moisture, and permeability, they also affect seed germination and establishment and local hydrological cycles. Covering up to 70% of the surface area in many arid and semi-arid regions around the world (Belnap and Lange 2003), biological soil crusts are a key component within desert environments.

  19. Resource pulses in desert river habitats: productivity-biodiversity hotspots, or mirages?

    Science.gov (United States)

    Free, Carissa L; Baxter, Greg S; Dickman, Christopher R; Leung, Luke K P

    2013-01-01

    Resource pulses in the world's hot deserts are driven largely by rainfall and are highly variable in both time and space. However, run-on areas and drainage lines in arid regions receive more water more often than adjacent habitats, and frequently sustain relatively high levels of primary productivity. These landscape features therefore may support higher biotic diversity than other habitats, and potentially act as refuges for desert vertebrates and other biota during droughts. We used the ephemeral Field River in the Simpson Desert, central Australia, as a case study to quantify how resources and habitat characteristics vary spatially and temporally along the riparian corridor. Levels of moisture and nutrients were greater in the clay-dominated soils of the riverine corridor than in the surrounding sand dunes, as were cover values of trees, annual grasses, other annual plants and litter; these resources and habitat features were also greater near the main catchment area than in the distal reaches where the river channel runs out into extensive dune fields. These observations confirm that the riverine corridor is more productive than the surrounding desert, and support the idea that it may act as a refuge or as a channel for the ingress of peri-desert species. However, the work also demonstrates that species diversity of invertebrates and plants is not higher within the river corridor; rather, it is driven by rainfall and the accompanying increase in annual plants following a rain event. Further research is required to identify the biota that depend upon these resource pulses.

  20. Resource Pulses in Desert River Habitats: Productivity-Biodiversity Hotspots, or Mirages?

    Science.gov (United States)

    Free, Carissa L.; Baxter, Greg S.; Dickman, Christopher R.; Leung, Luke K. P.

    2013-01-01

    Resource pulses in the world's hot deserts are driven largely by rainfall and are highly variable in both time and space. However, run-on areas and drainage lines in arid regions receive more water more often than adjacent habitats, and frequently sustain relatively high levels of primary productivity. These landscape features therefore may support higher biotic diversity than other habitats, and potentially act as refuges for desert vertebrates and other biota during droughts. We used the ephemeral Field River in the Simpson Desert, central Australia, as a case study to quantify how resources and habitat characteristics vary spatially and temporally along the riparian corridor. Levels of moisture and nutrients were greater in the clay-dominated soils of the riverine corridor than in the surrounding sand dunes, as were cover values of trees, annual grasses, other annual plants and litter; these resources and habitat features were also greater near the main catchment area than in the distal reaches where the river channel runs out into extensive dune fields. These observations confirm that the riverine corridor is more productive than the surrounding desert, and support the idea that it may act as a refuge or as a channel for the ingress of peri-desert species. However, the work also demonstrates that species diversity of invertebrates and plants is not higher within the river corridor; rather, it is driven by rainfall and the accompanying increase in annual plants following a rain event. Further research is required to identify the biota that depend upon these resource pulses. PMID:24124446

  1. Microbial communities in a High Arctic polar desert landscape

    Directory of Open Access Journals (Sweden)

    Clare M McCann

    2016-03-01

    Full Text Available The High Arctic is dominated by polar desert habitats whose microbial communities are poorly understood. In this study, we used next generation sequencing to describe the α- and β-diversity of polar desert soils from the Kongsfjorden region of Svalbard. Ten phyla consistently dominated the soils and accounted for 95 % of all sequences, with Proteobacteria, Actinobacteria and Chloroflexi being the dominant lineages. In contrast to previous investigations of Arctic soils, Acidobacterial relative abundances were low as were the Archaea throughout the Kongsfjorden polar desert landscape. Lower Acidobacterial abundances were attributed to the circumneutral soil pH in this region which has resulted from the weathering of the underlying carbonate geology. In addition, we correlated previously measured geochemical variables to determine potential controls on the communities. Soil phosphorus, pH, nitrogen and calcium significantly correlated with β-diversity indicating a landscape scale lithological control of soil nutrients which in turn influenced community composition. In addition, soil phosphorus and pH significantly correlated with α- diversity, specifically the Shannon diversity and Chao 1 richness indices.

  2. Mid-Cretaceous aeolian desert systems in the Yunlong area of the Lanping Basin, China: Implications for palaeoatmosphere dynamics and paleoclimatic change in East Asia

    Science.gov (United States)

    Li, Gaojie; Wu, Chihua; Rodríguez-López, Juan Pedro; Yi, Haisheng; Xia, Guoqing; Wagreich, Michael

    2018-02-01

    The mid-Cretaceous constitutes a period of worldwide atmospheric and oceanic change associated with slower thermohaline circulation and ocean anoxic events, possible polar glaciations and by a changing climate pattern becoming controlled by a zonal planetary wind system and an equatorial humid belt. During the mid-Cretaceous, the subtropical high-pressure arid climate belt of the planetary wind system controlled the palaeolatitude distribution of humid belts in Asia as well as the spatial distribution of rain belts over the massive continental blocks at mid-low latitudes in the southern and northern hemispheres. Additionally, the orographic effect of the Andean-type active continental margin in East Asia hindered the transportation of ocean moisture to inland regions. With rising temperatures and palaeoatmospheric conditions dominated by high pressure systems, desert climate environments expanded at the inland areas of East Asia including those accumulated in the mid-Cretaceous of the Simao Basin, the Sichuan Basin, and the Thailand's Khorat Basin, and leading the Late Cretaceous erg systems in the Xinjiang Basin and Jianghan Basin. This manuscript presents evidences that allow to reinterpret previously considered water-laid sediments to be accumulated as windblown deposits forming part of extensive erg (sandy desert) systems. Using a multidisciplinary approach including petrological, sedimentological and architectural observations, the mid-Cretaceous (Albian-Turonian) Nanxin Formation from the Yunlong region of Lanping Basin, formerly considered to aqueous deposits is here interpreted as representing aeolian deposits, showing local aeolian-fluvial interaction deposits. The palaeowind directions obtained from the analysis of aeolian dune cross-beddings indicates that inland deserts were compatible with a high-pressure cell (HPC) existing in the mid-low latitudes of East Asia during the mid-Cretaceous. Compared with the Early Cretaceous, the mid-Cretaceous had

  3. 76 FR 28767 - Desert Southwest Customer Service Region-Rate Order No. WAPA-152

    Science.gov (United States)

    2011-05-18

    ... DEPARTMENT OF ENERGY Western Area Power Administration Desert Southwest Customer Service Region..., Desert Southwest Customer Service Region, Western Area Power Administration, P.O. Box 6457, Phoenix, AZ... Customer Service Region, Western Area Power Administration, P.O. Box 6457, Phoenix, AZ 85005-6457, (602...

  4. Urban particle size distributions during two contrasting dust events originating from Taklimakan and Gobi Deserts

    International Nuclear Information System (INIS)

    Zhao, Suping; Yu, Ye; Xia, Dunsheng; Yin, Daiying; He, Jianjun; Liu, Na; Li, Fang

    2015-01-01

    The dust origins of the two events were identified using HYSPLIT trajectory model and MODIS and CALIPSO satellite data to understand the particle size distribution during two contrasting dust events originated from Taklimakan and Gobi deserts. The supermicron particles significantly increased during the dust events. The dust event from Gobi desert affected significantly on the particles larger than 2.5 μm, while that from Taklimakan desert impacted obviously on the particles in 1.0–2.5 μm. It is found that the particle size distributions and their modal parameters such as VMD (volume median diameter) have significant difference for varying dust origins. The dust from Taklimakan desert was finer than that from Gobi desert also probably due to other influencing factors such as mixing between dust and urban emissions. Our findings illustrated the capacity of combining in situ, satellite data and trajectory model to characterize large-scale dust plumes with a variety of aerosol parameters. - Highlights: • Dust particle size distributions had large differences for varying origins. • Dust originating from Taklimakan Desert was finer than that from Gobi Desert. • Effect of dust on the supermicron particles was obvious. • PM_1_0 concentrations increased by a factor of 3.4–25.6 during the dust event. - Dust particle size distributions had large differences for varying origins, which may be also related to other factors such as mixing between dust and urban emissions.

  5. Desert dust,Ocean spray,Volcanoes,Biomass burning: Pathways of nutrients into Andean rainforests

    Science.gov (United States)

    Fabian, P.; Rollenbeck, R.; Spichtinger, N.; Dominguez, G.; Brothers, L.; Thiemens, M.

    2009-04-01

    Atlantic air masses to reach the receptor site within less than 5 days.Episodes of enhanced Ca 2+ and Mg 2+ were found to be associated with air masses from African deserts.Satellite aerosol data clearly confirmed desert sources both on the Northern (Sahara) as on the Southern Hemisphere (Namib),depending on season. Few episodes of distinct PO43-deposition are due to air masses either from north African (phosphate mining) or coastal sites of Peru (guano?). While volcanic,oceanic and desert sources are natural, large scale biomass burning is an anthropogenic source which adds about 7 kg/ha of NO3- and 14 kg/ha of SO4 2- per year .The episodic PO4 3- deposition amounts to about 2.6 kg/ha PO4 3- per year.Controlled fertilizing experiments are presently carried out to investigate the impact of these disturbances on the mountain forest ecosystem.

  6. The Plant Genetic Engineering Laboratory For Desert Adaptation

    Science.gov (United States)

    Kemp, John D.; Phillips, Gregory C.

    1985-11-01

    The Plant Genetic Engineering Laboratory for Desert Adaptation (PGEL) is one of five Centers of Technical Excellence established as a part of the state of New Mexico's Rio Grande Research Corridor (RGRC). The scientific mission of PGEL is to bring innovative advances in plant biotechnology to bear on agricultural productivity in arid and semi-arid regions. Research activities focus on molecular and cellular genetics technology development in model systems, but also include stress physiology investigations and development of desert plant resources. PGEL interacts with the Los Alamos National Laboratory (LANL), a national laboratory participating in the RGRC. PGEL also has an economic development mission, which is being pursued through technology transfer activities to private companies and public agencies.

  7. Spatial probability models of fire in the desert grasslands of the southwestern USA

    Science.gov (United States)

    Fire is an important driver of ecological processes in semiarid environments; however, the role of fire in desert grasslands of the Southwestern US is controversial and the regional fire distribution is largely unknown. We characterized the spatial distribution of fire in the desert grassland region...

  8. Site selection and directional models of deserts used for ERBE validation targets

    Science.gov (United States)

    Staylor, W. F.

    1986-01-01

    Broadband shortwave and longwave radiance measurements obtained from the Nimbus 7 Earth Radiation Budget scanner were used to develop reflectance and emittance models for the Sahara, Gibson, and Saudi Deserts. These deserts will serve as in-flight validation targets for the Earth Radiation Budget Experiment being flown on the Earth Radiation Budget Satellite and two National Oceanic and Atmospheric Administration polar satellites. The directional reflectance model derived for the deserts was a function of the sum and product of the cosines of the solar and viewing zenith angles, and thus reciprocity existed between these zenith angles. The emittance model was related by a power law of the cosine of the viewing zenith angle.

  9. Exploring the Limits to Photosynthetic Life in the Hyperarid Atacama (Chile) and Taklimakan (China) Deserts

    Science.gov (United States)

    Warren-Rhodes, K.; Ewing, S.; McKay, C. P.; Rhodes, K. L.

    2003-12-01

    Photosynthetic microbes inhabiting the cracks or fissures (chasmoendoliths) and undersides (hypoliths) of translucent stones function as the sole primary producers in the world's driest deserts. This poster reports on our studies of the distribution and survival of these microorganisms in the hyperarid core of the Atacama Desert--an extreme environment previously considered too dry to support photosynthetic life--and the Taklimakan Desert in China--one of the oldest and driest deserts on the Earth. In both deserts, we measured colonization rates and microclimate variables across natural precipitation gradients in order to investigate the role of moisture in the ecology and survival of hypolithic and chasmoendolithic microorganisms. Our results show 1000-fold variations in colonization rates--from 12% in the wettest portions of the Taklimakan Desert to 3000 y. At slightly wetter sites in the Atacama, Δ 14C of hypolith soils was progressively more enriched in proportion to increased MAP, with corresponding turnover times of >600 y (Δ 14C = -73 ‰ at sites with ˜5-10 mm MAP and ˜1 y Δ 14C = +12 ‰ ) as annual rainfall increased to ˜25 mm. At all sites, Δ 14C signatures of non-hypolith soils corresponded to turnover times that were longer by an order of magnitude, indicating significantly slower OC cycling by non-hypoliths. In the hyperarid core of the Atacama Desert, the prolonged lack of rainfall (decadal scales of a few millimeters) is responsible for possibly the lowest hypolithic and chasmoendolithic colonization rates observed in deserts on the Earth. Microclimate data for rock and soil surface moisture from rainfall, dew and frost suggest the particular form of moisture and its frequency may also explain observed differences in hypolithic versus chasmoendolithic colonization modes. These results hold theoretical and practical considerations for both terrestrial ecology and as analogs for possible life on Mars.

  10. Supersymmetry without the Desert

    International Nuclear Information System (INIS)

    Nomura, Yasunori; Poland, David

    2006-01-01

    Naturalness of electroweak symmetry breaking in weak scale supersymmetric theories may suggest the absence of the conventional supersymmetric desert. We present a simple, realistic framework for supersymmetry in which (most of) the virtues of the supersymmetric desert are naturally reproduced without having a large energy interval above the weak scale. The successful supersymmetric prediction for the low-energy gauge couplings is reproduced due to a gauged R symmetry present in the effective theory at the weak scale. The observable sector superpotential naturally takes the form of the next-to-minimal supersymmetric standard model, but without being subject to the Landau pole constraints up to the conventional unification scale. Supersymmetry breaking masses are generated by the F-term and D-term VEVs of singlet and U(1) R gauge fields, as well as by anomaly mediation, at a scale not far above the weak scale. We study the resulting pattern of supersymmetry breaking masses in detail, and find that it can be quite distinct. We construct classes of explicit models within this framework, based on higher dimensional unified theories with TeV-sized extra dimensions. A similar model based on a non-R symmetry is also presented. These models have a rich phenomenology at the TeV scale, and allow for detailed analyses of, e.g., electroweak symmetry breaking

  11. Preliminary survey of bee (Hymenoptera: Anthophila) richness in the northwestern Chihuahuan Desert

    Science.gov (United States)

    Robert L. Minckley; John S. Ascher

    2013-01-01

    Museum records indicate that the peak number of bee species occurs around the Mediterranean Sea and in the warm desert areas of North America, whereas flowering plants are most diverse in the tropics. We examine this biogeographic pattern for the bee species known from a limited area of northeastern Chihuahuan Desert, Mexico/United States. This topographically complex...

  12. Manufacturing wizardry : products to tame heat, cold, deserts, swamps and underground infernos

    International Nuclear Information System (INIS)

    Jaremko, G.

    1997-01-01

    Some examples of Canadian oil and natural gas service equipment are cited as examples of exportable Canadian know-how. Foremosts are Canadian made, all terrain vehicles, designed to work in rugged terrain. Calgary-based Foremost Industries Inc., has sold several of their industrial vehicles for the Taklamakan, the high desert in the Tarim Basin of northwestern China. The huge vehicles with monster tires can haul up to 70 tonnes of material and leave very little or no mark on the wilderness. Foremost Industries Inc. is also an international corporation with branches in Nevada and Indiana. Their success stems from the fact that they were able to develop a vehicle for well drilling that would withstand the rough terrain and extreme climate conditions across western and northern Canada. Atco, a Calgary-based company, has developed quality portable housing to shelter surveyors, geologists, and drilling-rig crews. Another company, Reynolds Manufacturing, has developed safety clothing for workers in the oil industry. Canadian Oilfield Rigs and Equipment Fabrication Inc., manufacture volume production technology packages such as wireline data recording vehicles and well-service rigs, sold in markets from Algeria to Venezuela. 5 figs

  13. Radiatively-driven processes in forest fire and desert dust plumes

    Energy Technology Data Exchange (ETDEWEB)

    Weinzierl, Bernadett Barbara

    2008-07-01

    The absorption of solar radiation by atmospheric aerosol particles is important for the climate effects of aerosols. Absorption by aerosol particles heats atmospheric layers, even though the net effect for the entire atmospheric column may still be a cooling. Most experimental studies on absorbing aerosols so far focussed mainly on the aerosol properties and did not consider the influence of the aerosols on the thermodynamic structure of the atmosphere. In this study, data from two international aircraft field experiments, the Intercontinental Transport of Ozone and Precursors study (ITOP) 2004 and the Saharan Mineral Dust Experiment (SAMUM) 2006 are investigated. The ITOP data were collected before the work on this thesis started, while the logistics and the instrument preparation of the SAMUM campaign, the weather forecast during SAMUM and the in-situ aerosol measurements during SAMUM were done within this thesis. The experimental data are used to explore the impact of layers containing absorbing forest fire and desert dust aerosol particles on the atmospheric stability and the implications of a changed stability on the development of the aerosol microphysical and optical properties during long-range transport. For the first time, vertical profiles of the Richardson number Ri are used to assess the stability and mixing in forest fire and desert dust plumes. Also for the first time, the conclusions drawn from the observations of forest fire and desert dust aerosol, at first glance apparently quite different aerosol types, are discussed from a common perspective. Two mechanisms, the selfstabilising and the sealed ageing effect, acting in both forest fire and desert dust aerosol layers, are proposed to explain the characteristic temperature structure as well as the aerosol properties observed in lofted forest fire and desert dust plumes. The proposed effects impact on the ageing of particles within the plumes and reduce the plume dilution, therefore extending the

  14. Total vertical sediment flux and PM10 emissions from disturbed Chihuahuan Desert Surfaces

    Science.gov (United States)

    Desert surfaces are typically stable and represent some of the oldest landforms on Earth. For surfaces without vegetation, the evolution of a desert pavements of gravel protects the surface from erosive forces and vegetation further protects the surface in arid and semi-arid rangelands. The suscep...

  15. Genetic population structure of the desert shrub species lycium ruthenicum inferred from chloroplast dna

    International Nuclear Information System (INIS)

    Chen, H.; Yonezawa, T.

    2014-01-01

    Lycium ruthenicum (Solananeae), a spiny shrub mostly distributed in the desert regions of north and northwest China, has been shown to exhibit high tolerance to the extreme environment. In this study, the phylogeography and evolutionary history of L. ruthenicum were examined, on the basis of 80 individuals from eight populations. Using the sequence variations of two spacer regions of chloroplast DNA (trnH-psbA and rps16-trnK) , the absence of a geographic component in the chloroplast DNA genetic structure was identified (GST = 0.351, NST = 0.304, NST< GST), which was consisted with the result of SAMOVA, suggesting weak phylogeographic structure of this species. Phylogenetic and network analyses showed that a total of 10 haplotypes identified in the present study clustered into two clades, in which clade I harbored the ancestral haplotypes that inferred two independent glacial refugia in the middle of Qaidam Basin and the western Inner Mongolia. The existence of regional evolutionary differences was supported by GENETREE, which revealed that one of the population in Qaidam Basin and the two populations in Tarim Basin had experienced rapid expansion, and the other populations retained relatively stable population size during the Pleistocene . Given the results of long-term gene flow and pairwise differences, strong gene flow was insufficient to reduce the genetic differentiation among populations or within populations, probably due to the genetic composition containing a common haplotype and the high number of private haplotypes fixed for most of the population. The divergence times of different lineages were consistent with the rapid uplift phases of the Qinghai-Tibetan Plateau and the initiation and expansion of deserts in northern China, suggesting that the origin and evolution of L. ruthenicum were strongly influenced by Quaternary environment changes. (author)

  16. Spatial and temporal changes in desertification in the southern region of the Tengger Desert from 1973 to 2009

    Science.gov (United States)

    Guan, Qingyu; Guan, Wenqian; Yang, Jing; Zhao, Shilei; Pan, Baotian; Wang, Lei; Song, Na; Lu, Min; Li, Fuchun

    2017-07-01

    The sandy land in the southern region of the Tengger Desert is adjacent to cities and towns, and land desertification poses a threat to the livelihood and production of local residents. To determine dynamic changes in local desertification, five periods (1973, 1987, 1992, 2001, and 2009) of remote sensing data are studied by remote sensing (RS) and geographic information system (GIS). The desert contraction area is primarily centered around three units (Wuwei, Gulang, and Jingtai) and nearby regions of Zhongwei City. The primary desert expansion areas include the west side of Helan Mountain (WSHM), the Central Mountainous Area (CMA), and the eastern and western Zhongwei units far from towns. From 1973 to 2009, the degree of change in the contracting part of the primary desert expansion unit showed an increasing trend; in brief, most of the desert (especially after 2001) has been developing in a direction in which desertification has been gradually controlled. The primary desert expansion areas are less affected by human activity, but they are primarily controlled by natural factors (especially wind and terrain). The desert contraction areas occur around the towns and nearby regions with frequent human activity; desertification is primarily controlled by human factors. With rapid economic development (especially after 2000), the scale of the cultivated area, town, and ecological protection engineering has gradually expanded, and the latter two are primarily built on a previous desert, which is the root cause of the reduction in the desert areas around the towns and the shrinkage toward north of border. Therefore, reasonable and effective human activity in the southern region of the Tengger Desert is playing a crucial role in preventing desertification.

  17. Water consumption in artificial desert oasis based on net primary productivity

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Analysis of the water consumption is the basis for water allocation in oasis. However, the method of estimating oasis water consumption remains a great challenge. Based on net primary productivity (NPP) and the transpiration coefficient, a vegetation water consumption model was developed to estimate the water consumption in desert oasis in ERDAS environment. Our results demonstrated that the ecosystem in the middle reaches of the Heihe oasis consumed water of 18.41×108-21.9×108 m3 for irrigation. Without taking precipitation into account, the water consumption in farmland accounted for 77.1%-77.8% (or about 13.97×108-16.84×108 m3) of the oasis vegetation water consumption and in the farmland protection system accounting for 22%. The growing period precipitation in desert environments is about 7.02×108 m3, and the total annual precipitation is about 8.29×108 m3. The modeled water consumption of desert vegetation, however, is about 4.57×108 m3, equivalent to only 65% of the growing period precipitation or 55% of the total annual precipitation. The modeled value equals to the cumulative precipitation of greater than 5 mm, which is defined as the effective precipitation in arid desert.

  18. Validation of SWEEP for creep, saltation, and suspension in a desert-oasis ecotone

    Science.gov (United States)

    Wind erosion in the desert-oasis ecotone can accelerate desertification and thus impacts oasis ecological security. Little is known about the susceptibility of the desert-oasis ecotone to wind erosion in the Tarim Basin even though the ecotone is a major source of windblown dust in China. The object...

  19. Ecosystem responses to warming and watering in typical and desert steppes

    OpenAIRE

    Zhenzhu Xu; Yanhui Hou; Lihua Zhang; Tao Liu; Guangsheng Zhou

    2016-01-01

    Global warming is projected to continue, leading to intense fluctuations in precipitation and heat waves and thereby affecting the productivity and the relevant biological processes of grassland ecosystems. Here, we determined the functional responses to warming and altered precipitation in both typical and desert steppes. The results showed that watering markedly increased the aboveground net primary productivity (ANPP) in a typical steppe during a drier year and in a desert steppe over two ...

  20. Vegetation - Anza-Borrego Desert State Park [ds165

    Data.gov (United States)

    California Natural Resource Agency — The Anza Borrego Desert State Park (ABDSP) Vegetation Map depicts vegetation within the Park and its surrounding environment. The map was prepared by the Department...

  1. Biodiversity Analysis of Vegetation on the Nevada Test Site

    International Nuclear Information System (INIS)

    W. K. Ostler; D. J. Hansen

    2001-01-01

    The Nevada Test Site (NTS) located in south central Nevada encompasses approximately 3,561 square kilometers and straddles two major North American deserts, Mojave and Great Basin. Transitional areas between the two desert types have been created by gradients in elevation, precipitation, temperature, and soils. From 1996-1998, more than 1,500 ecological landform units were sampled at the NTS for numerous biotic and abiotic parameters. These data provide a basis for spatial evaluations of biodiversity over landscape scales at the NTS. Species diversity maps (species richness vs. species abundance) have been produced. Differences in ecosystem diversity at the ecoregion, alliance, association, and ecological landform unit levels are presented. Spatial distribution maps of species presence and abundance provide evidence of where transition zones occur and the resulting impact on biodiversity. The influences of abiotic factors (elevation, soil, precipitation) and anthropogenic disturbance on biodiversity are assessed

  2. Resistance to invasion and resilience to fire in desert shrublands of North America

    Science.gov (United States)

    Matthew L. Brooks; Jeanne C. Chambers

    2011-01-01

    Settlement by Anglo-Americans in the desert shrublands of North America resulted in the introduction and subsequent invasion of multiple nonnative grass species. These invasions have altered presettlement fire regimes, resulted in conversion of native perennial shrublands to nonnative annual grasslands, and placed many native desert species at risk. Effective...

  3. Seeing desert as wilderness and as landscape—an exercise in visual thinking approaches

    Science.gov (United States)

    John Opie

    1979-01-01

    Based on the components and program of VRVA (Visual Resources Values Assessment), a behavioral history of the visitor's perception of the American desert is examined. Emphasis is placed upon contrasts between traditional eastern "garden-park" viewpoints and contemporary desert scenery experiences. Special attention is given to the influence of John...

  4. Geospatial techniques to Identify the Location of Farmers Markets and Community Gardens within Food Deserts in Virginia

    Science.gov (United States)

    Sriharan, S.; Meekins, D.; Comar, M.; Bradshaw, S.; Jackson, L.

    2017-12-01

    Specifically, a food desert is defined as an area where populations live more than one mile from a supermarket or large grocery store if in an urban area or more than 10 miles from a supermarket or large grocery store if in a rural area (Ver Ploeg et al. 2012). According to the U.S. Department of Agriculture, a food desert is "an area in the United States with limited access to affordable and nutritious food, particularly such an area composed of predominately lower-income neighborhoods and communities" (110th Congress 2008). Three fourths of these food deserts are urban. In the Commonwealth of Virginia, Petersburg City is among the eight primary localities, where its population is living in a food desert. This project will compare those identified food deserts in Virginia (areas around Virginia State University) with focus to where farmers markets and community gardens are being established. The hypothesis of this study is that these minority groups do not get healthy food due to limited access to grocery stores and superstores. To address this problem, the community development activities should focus on partnering local Petersburg convenience stores with farmers and community gardeners to sell fresh produce. Existing data was collected on convenient stores and community gardens in Petersburg City and Chesterfield County. Rare data was generated for Emporia, Lynchburg and Hopewell. The data was compiled through field work and mapping with ArcGIS where markets and gardens are being established, and create a spatial analysis of their location We have localities that reflect both rural and urban areas. The project provides educational support for students who will find solution to community problems by developing activities to: (a) define and examine characteristics of food deserts, (b) identify causes and consequences of food deserts and determine if their community is a food desert, (c) research closest food desert to their school, and (d) design solutions to help

  5. Thermal design of a fully equipped solar-powered desert home

    KAUST Repository

    Serag-Eldin, M.A.

    2010-03-01

    The paper presents a conceptual design and thermodynamic analysis of a solar-powered desert home. The home is airconditioned and provides all modern comforts and facilities. Electrical power, which drives the entire energy system, is generated by roof mounted photovoltaic modules. A detailed dynamic heat transfer analysis is conducted for the building envelope, coupled with a solar radiation model. A dynamic heat balance for a typical Middle-Eastern desert site, reveals that indeed such a design is feasible with present day technology; and should be even more attractive with future advances in technology.

  6. Temporal and spatial characteristics of wet-dry climate variation in the northern slope of Tianshan Mountains, Xinjiang

    Science.gov (United States)

    Yu, Meiyan; Xi, Chen; Bao, Anming

    2008-10-01

    Based on the monthly temperature and rainfall data of 1961-2006, aridity is calculated and its multi-time scales characteristics in different divisions in the northern slope of Tianshan Mountains have been analyzed using Mexican Hat wavelet analysis in this article. The periodic oscillation of aridity variation and the points of abrupt change at different time scales along the time series are discovered. Also the trend of climate change is tested. Additionally, possible association of climate variation in this area with ENSO is explored using SOI date series. The research results indicate that there exist obvious regional characteristics of wet-dry climate variation in the northern slope of Tianshan Mountains. Wavelet analysis shows that there mainly exits two modes of scales (12-24 years and 4-8 years) in every division, while catastrophe point differs in different zones. To predict on the scale of 12-24 years, it will be relatively dry in mountain division and desert area in a period after 2006. In addition, the transition from warm-dry to warm-wet appears in oasis area. Correlation analysis indicted that aridity variation of the northern slope of Tianshan Mountains is affected by ENSO, while influence degree is different between areas; furthermore, this influence is one-year lagging behind ENSO in the whole area.

  7. A New Infrared Desert Dust Index over French Guyana Rain forest: First results

    Science.gov (United States)

    Molinie, J.; Barnacin, E.; Henry, J. L.; Gobinddass, M. L.; Panechou-Pulcherie, K.; Feuillard, T.; Nagau, J.

    2017-12-01

    Recently a NASA researcher showed the role of desert dust contribution for the Amazonian rain forest. In another hand, desert dust impact population health when PM 10 level reached values around and upper the PM 10 threshold of the 50 µg m-3, established by the World Health Organization (WHO). Infrared Desert Dust Index (IDDI) developed by Legrand with Meteosat infrared images, allow the following of desert dust plumes over semi-arid land. In French Guiana the WHO threshold is currently overpass in measurements done by ORA air quality network, in the two main towns located close to the coast. For inland population, it is very difficult to have continuous dust measures due to the low infrastructure supplies. We need to develop a tools in order to follow the crossing of desert dust over the French Guyana rain forest, from the coast to inland villages. Following the IDDI concept and comparing with VIIRS AOT EDR result over the same area, a modified IDDI for Amazonian region (IDDI_A) has been proposed to identify the dusty pixels over the forest. Despite of high cloud presence, a good correlation between AOT EDR and IDDI_A was obtained. The IDDI_A calculation has been applied over French Guiana area for different PM 10 level at Cayenne, a town along the coast.

  8. Characterizing dust aerosols in the atmospheric boundary layer over the deserts in Northwest China: monitoring network and field observation

    Science.gov (United States)

    He, Q.; Matimin, A.; Yang, X.

    2016-12-01

    TheTaklimakan, Gurbantunggut and BadainJaran Deserts with the total area of 43.8×104 km2 in Northwest China are the major dust emission sources in Central Asia. Understanding Central Asian dust emissions and the interaction with the atmospheric boundary layer has an important implication for regional and global climate and environment changes. In order to explore these scientific issues, a monitoring network of 63 sites was established over the vast deserts (Taklimakan Desert, Gurbantunggut Desert and Badain Jaran Desert) in Northwest China for the comprehensive measurements of dust aerosol emission, transport and deposition as well as the atmospheric boundary layer including the meteorological parameters of boundary layer, surface radiation, surface heat fluxes, soil parameters, dust aerosol properties, water vapor profiles, and dust emission. Based on the monitoring network, the field experiments have been conducted to characterize dust aerosols and the atmospheric boundary layer over the deserts. The experiment observation indicated that depth of the convective boundary layer can reach 5000m on summer afternoons. In desert regions, the diurnal mean net radiation was effected significantly by dust weather, and sensible heat was much greater than latent heat accounting about 40-50% in the heat balance of desert. The surface soil and dust size distributions of Northwest China Deserts were obtained through widely collecting samples, results showed that the dominant dust particle size was PM100within 80m height, on average accounting for 60-80% of the samples, with 0.9-2.5% for PM0-2.5, 3.5-7.0% for PM0-10 and 5.0-14.0% for PM0-20. The time dust emission of Taklimakan Desert, Gurbantunggut Desert and Badain Jaran Desert accounted for 0.48%, 7.3%×10-5and 1.9% of the total time within a year, and the threshold friction velocity for dust emission were 0.22-1.06m/s, 0.29-1.5m/s and 0.21-0.59m/s, respectively.

  9. Translocation as a conservation tool for Agassiz's desert tortoises: Survivorship, reproduction, and movements

    Science.gov (United States)

    K. E. Nussear; C. R. Tracy; P. A. Medica; D. S. Wilson; R. W. Marlow; P. S. Corn

    2012-01-01

    We translocated 120 Agassiz's desert tortoises to 5 sites in Nevada and Utah to evaluate the effects of translocation on tortoise survivorship, reproduction, and habitat use. Translocation sites included several elevations, and extended to sites with vegetation assemblages not typically associated with desert tortoises in order to explore the possibility of moving...

  10. 78 FR 143 - Desert Mining, Inc., Eagle Broadband, Inc., Endovasc, Inc., Environmental Oil Processing...

    Science.gov (United States)

    2013-01-02

    ... SECURITIES AND EXCHANGE COMMISSION [File No. 500-1] Desert Mining, Inc., Eagle Broadband, Inc., Endovasc, Inc., Environmental Oil Processing Technology Corp., Falcon Ridge Development, Inc., Fellows... that there is a lack of current and accurate information concerning the securities of Desert Mining...

  11. Influence of shrubs on soil chemical properties in Alxa desert steppe, China

    Science.gov (United States)

    Hua Fu; Shifang Pei; Yaming Chen; Changgui Wan

    2007-01-01

    Alxa desert steppe is one of severely the degraded rangelands in the Northwest China. Shrubs, as the dominant life form in the desert steppe, play an important role in protecting this region from further desertification. Chemical properties of three soil layers (0 to 10, 10 to 20 and 20 to 30 cm) at three locations (the clump center [A], in the periphery of shrub...

  12. Should I stay or should I go? Female brood desertion and male counterstrategy in rock sparrows

    DEFF Research Database (Denmark)

    Griggio, Matteo; Matessi, Giuliano; Pilastro, Andrea

    2005-01-01

    petronia), a species in which females can desert their first brood before the nestlings from the first brood leave the nest. We predicted that the male would either desert the brood first or stay even if this implied the risk of caring for the brood alone. We found that males mated to loaded females did...... not leave but stayed and significantly increased their courtship rate and mate guarding. Unexpectedly, they also increased their food provisioning to the nestlings, even though loaded females did not reduce their nestling-feeding rate. The increase in male feeding rate may be explained as a way for the male...... to reduce the female's propensity to switch mate and desert or to increase her propensity to copulate with the male to obtain paternity in her next brood. Altogether, our results demonstrate that the perception of the risk of being deserted by the female does not necessarily induce males to desert first...

  13. A Study to Determine the Mental Models in Preschool Children’s Conceptualization of a Desert Environment

    Directory of Open Access Journals (Sweden)

    Berat AHİ

    2016-03-01

    Full Text Available This study aimed to determine mental models and identify codes (schemes used in conceptualizing a desert environment. The sample for this study consisted of 184 – out of a total population of 3,630 - children in preschool education in the central district of Kastamonu, Turkey. Within the scope of this study, the children were initially asked to draw a desert-themed picture, followed by a semi-structured interview to seek their opinions about the drawing and clarify what a desert environment meant to them. According to the findings, the children referred to 38 different codes relevant to the conceptualization of a desert environment; the most frequently used were the sun (f= 160, 86.9%, sand (f= 100, 54.3%, cacti (f= 74, 35.3% and camels (f= 52, 28.6%. During the interview phase, 33 children described a desert as a place where there is no life, although a significant number of the children (f= 65, 39.1% did describe a desert as a place where plants and animals live. Moreover, the sun and its rays were disproportionately bigger in size, in order to emphasize the excessive heat associated with the specific ecosystem found in a desert environment; to reinforce this, humans drenched in sweat, the absence of trees and the prevalence of cacti and exotic wildlife, including camels, scorpions and lizards, were all features of the children’s drawings. Based on these findings, it was inferred that the mental models in some of the children (f= 72, 39.1% were scientifically informed, with a degree of accuracy, about a desert environment. On the basis of the findings, it is considered that determining mental models in children in relation to different ecological concepts can be beneficial to teachers and curriculum programmers involved in environmental education.

  14. A study to determine the mental models in preschool children’s conceptualization of a desert environment

    Directory of Open Access Journals (Sweden)

    Berat Ahi

    2016-03-01

    Full Text Available This study aimed to determine mental models and identify codes (schemes used in conceptualizing a desert environment. The sample for this study consisted of 184 – out of a total population of 3,630 - children in preschool education in the central district of Kastamonu, Turkey. Within the scope of this study, the children were initially asked to draw a desert-themed picture, followed by a semi-structured interview to seek their opinions about the drawing and clarify what a desert environment meant to them. According to the findings, the children referred to 38 different codes relevant to the conceptualization of a desert environment; the most frequently used were the sun (f= 160, 86.9%, sand (f= 100, 54.3%, cacti (f= 74, 35.3% and camels (f= 52, 28.6%. During the interview phase, 33 children described a desert as a place where there is no life, although a significant number of the children (f= 65, 39.1% did describe a desert as a place where plants and animals live. Moreover, the sun and its rays were disproportionately bigger in size, in order to emphasize the excessive heat associated with the specific ecosystem found in a desert environment; to reinforce this, humans drenched in sweat, the absence of trees and the prevalence of cacti and exotic wildlife, including camels, scorpions and lizards, were all features of the children’s drawings. Based on these findings, it was inferred that the mental models in some of the children (f= 72, 39.1% were scientifically informed, with a degree of accuracy, about a desert environment. On the basis of the findings, it is considered that determining mental models in children in relation to different ecological concepts can be beneficial to teachers and curriculum programmers involved in environmental education.

  15. 76 FR 50493 - Notice of Availability of the Record of Decision for the Desert Sunlight Holdings, LLC, Desert...

    Science.gov (United States)

    2011-08-15

    ... DEPARTMENT OF THE INTERIOR Bureau of Land Management [CACA-48649, LLCAD06000 L51010000 ER0000... right-of-way (ROW) application CACA-48649 for the Desert Sunlight Solar Farm Project (DSSF). The DSSF is... (CACA-052682) where the project would interconnect with the SCE regional transmission system. The DSSF...

  16. Preventing desert locust plagues: optimizing management interventions

    NARCIS (Netherlands)

    Huis, van A.; Cressman, K.; Magor, J.I.

    2007-01-01

    Solitarious desert locusts, Schistocerca gregaria (Forskål) (Orthoptera: Acrididae), inhabit the central, arid, and semi-arid parts of the species¿ invasion area in Africa, the Middle East, and South-West Asia. Their annual migration circuit takes them downwind to breed sequentially where winter,

  17. Divining Jordan's desert waters | IDRC - International Development ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    ... in the area have a long history of being water-conservers, and the idea of using the ... Dr Abu-Jaber examined is covered by an ancient, volcanic rock called basalt. ... When a desert cloudburst drops rain on the area, the raindrops quickly roll ...

  18. A Proposal for Desert House Design in Egypt Using Passive Ground Cooling Techniques

    Directory of Open Access Journals (Sweden)

    Mohamed Medhat Dorra

    2018-06-01

    Full Text Available An area less than 5.5% of Egyptian territory is where most of Egypt‘s population lives in. A narrow strip of land forms the Nile Valley and Delta sector.The National Project for Desert Hinterlands is one of the urban projects targeting rehabilitation of the poor in alternative villages in the near desert to stop urban sprawl over agricultural land and decrease the congestion in the old habitats. Low cost energy efficient houses are the aim of the architect in similar projects taking in consideration the high electricity consumption of Egypt’s residential sector. Based on a literature review, this paper presents a proposal for designing desert dwellings   that accommodates the hot dry climate by incorporating passive elements and using stabilized earth blocks as a local building material. Furthermore, simulation is used to test alternative proposals. The results show that an underground constructed house with a sunken courtyard incorporating an Earth to Air Heat Exchanger System (EAHE can reduce between 42-72% of energy consumption used to achieve thermal comfort compared to contemporary desert housing projects.

  19. Water sources for cyanobacteria below desert rocks in the Negev Desert determined by conductivity

    OpenAIRE

    McKay, Christopher P.

    2016-01-01

    We present year round meteorological and conductivity measurements of colonized hypolithic rocks in the Arava Valley, Negev Desert, Israel. The data indicate that while dew is common in the Negev it is not an important source of moisture for hypolithic organisms at this site. The dominance of cyanobacteria in the hypolithic community is consistent with predictions that cyanobacteria are confined to habitats supplied by rain. To monitor the presence of liquid water under the small Negev rocks ...

  20. Water relations and photosynthesis in the cryptoendolithic microbial habitat of hot and cold deserts

    Science.gov (United States)

    Palmer, R. J. Jr; Friedmann, E. I.

    1990-01-01

    Two cryptoendolithic microbial communities, lichens in the Ross Desert of Antarctica and cyanobacteria in the Negev Desert, inhabit porous sandstone rocks of similar physical structure. Both rock types adsorb water vapor by physical mechanisms unrelated to biological processes. Yet the two microbial communities respond differently to water stress: cryptoendolithic lichens begin to photosynthesize at a matric water potential of -46.4 megaPascals (MPa) [70% relative humidity (RH) at 8 degrees C], resembling thallose desert lichens. Cryptoendolithic cyanobacteria, like other prokaryotes, photosynthesize only at very high matric water potentials [> -6.9 MPa, 90% RH at 20 degrees C].

  1. Wind to Hydrogen in California: Case Study

    Energy Technology Data Exchange (ETDEWEB)

    Antonia, O.; Saur, G.

    2012-08-01

    This analysis presents a case study in California for a large scale, standalone wind electrolysis site. This is a techno-economic analysis of the 40,000 kg/day renewable production of hydrogen and subsequent delivery by truck to a fueling station in the Los Angeles area. This quantity of hydrogen represents about 1% vehicle market penetration for a city such as Los Angeles (assuming 0.62 kg/day/vehicle and 0.69 vehicles/person) [8]. A wind site near the Mojave Desert was selected for proximity to the LA area where hydrogen refueling stations are already built.

  2. Environmental racism: the US nuclear industry and native Americans

    International Nuclear Information System (INIS)

    Lehtinen, Ulla

    1997-01-01

    The author argues that the United States nuclear industry has acted in a discriminatory fashion towards Native American peoples and the land they hold as reservations. Both uranium mining and nuclear weapons testing is commonplace and plans now exist to locate a low-level radioactive waste dump in the Mojave desert in California, a sacred site for many native people. Opposition to such plans is growing among the Native Americans, sharpened by their existing commitment to conservation of the environment, but on their own, they are not a lobby powerful enough to oppose the might of the nuclear industry. (UK)

  3. Environmental racism: the US nuclear industry and native Americans

    Energy Technology Data Exchange (ETDEWEB)

    Lehtinen, Ulla [Organization of the Fourth World - First Peoples (Finland)

    1997-03-01

    The author argues that the United States nuclear industry has acted in a discriminatory fashion towards Native American peoples and the land they hold as reservations. Both uranium mining and nuclear weapons testing is commonplace and plans now exist to locate a low-level radioactive waste dump in the Mojave desert in California, a sacred site for many native people. Opposition to such plans is growing among the Native Americans, sharpened by their existing commitment to conservation of the environment, but on their own, they are not a lobby powerful enough to oppose the might of the nuclear industry. (UK).

  4. Windblown sediment transport and loss in a desert-oasis ecotone in the Tarim Basin.

    Science.gov (United States)

    Pi, Huawei; Sharratt, Brenton; Lei, Jiaqiang

    2017-08-10

    The Tarim Basin is regarded as one of the most highly erodible areas in China. Desert comprises 64% of the land use in the Basin, but the desert-oasis ecotone plays a prominent role in maintaining oasis ecological security and stability. Yet, little is known concerning the magnitude of windblown sediment transport in a desert-oasis ecotone. Therefore, aeolian sediment transport and loss was assessed from a desert-oasis experimental site located near Alaer City in the northwestern Tarim Basin. Sediment transport and factors governing transport were measured during three high wind events in 2012 and four events in 2013. Sediment transport was measured to a height of 10 m using passive aeolian airborne sediment samplers. The mass flux profile over the eroding surface was well represented by the power-law (R 2  > 0.77). Sediment loss from the site ranged from 118 g m -2 for the 20-24Apr 2012 wind event to 2925 g m -2 for the 31Mar-11Apr 2012 event. Suspension accounted for 67.4 to 84.8% of sediment loss across all high wind events. Our results indicate the severity of wind erosion in a desert-oasis ecotone and thus encourage adoption of management practices that will enhance oasis ecological security.

  5. [Risk factors for students desertion from the UASLP School of Medicine, México].

    Science.gov (United States)

    Hernández-Mata, José María; Hernández-Castro, Rodrigo; Nieto-Caraveo, Amado; Hernández-Sierra, Juan Francisco

    2005-01-01

    To obtain the profile of students that deserted from the Faculty of Medicine of the Autonomous University of San Luis Potosi, México. Cases and controls nested in a cohort. All students that voluntarily deserted between 1992 and 2002 were consulted. Each student was compared in an aleatory form with a regular student and a proper questionnaire was applied. The significantly associated factors to abandon the Faculty of Medicine were: high school of origin (OR=2.43), extra-ordinary exam (OR=3.13), and lack of vocation (OR=2.41). The subjacent factors for not deserting from the Faculty of Medicine were: study habits, capacity for sustained effort, and tolerance to frustration.

  6. Disturbance to desert soil ecosystems contributes to dust-mediated impacts at regional scales

    Science.gov (United States)

    Pointing, Stephen B.; Belnap, Jayne

    2014-01-01

    This review considers the regional scale of impacts arising from disturbance to desert soil ecosystems. Deserts occupy over one-third of the Earth’s terrestrial surface, and biological soil covers are critical to stabilization of desert soils. Disturbance to these can contribute to massive destabilization and mobilization of dust. This results in dust storms that are transported across inter-continental distances where they have profound negative impacts. Dust deposition at high altitudes causes radiative forcing of snowpack that leads directly to altered hydrological regimes and changes to freshwater biogeochemistry. In marine environments dust deposition impacts phytoplankton diazotrophy, and causes coral reef senescence. Increasingly dust is also recognized as a threat to human health.

  7. Desert Peak East Enhanced Geothermal Systems (EGS) Project

    Energy Technology Data Exchange (ETDEWEB)

    Zemach, Ezra [Ormat Technologies Inc., Reno, NV (United States); Drakos, Peter [Ormat Technologies Inc., Reno, NV (United States); Spielman, Paul [Ormat Technologies Inc., Reno, NV (United States); Akerley, John [Ormat Technologies Inc., Reno, NV (United States)

    2013-09-30

    This manuscript is a draft to replaced with a final version at a later date TBD. A summary of activities pertaining to the Desert Peak EGS project including the planning and resulting stimulation activities.

  8. Introduction: Chapter 1

    Science.gov (United States)

    Esque, Todd C.; Nussear, Kenneth E.; Inman, Richard D.; Matocq, Marjorie D.; Weisberg, Peter J.; Dilts, Thomas E.; Leitner, Philip

    2013-01-01

    The Mohave ground squirrel (Xerospermophilus mohavensis), named just over a century ago (Merriam 1889), is precinctive to the western Mojave Desert in California, USA, and occupies portions of Kern, Los Angeles, Inyo and San Bernardino counties (Best 1995). Early estimates of the geographic range of the squirrel are just 20,000 km2 in area (Hall 1981, Zeiner et al. 1988‐ 1990), one of the smallest distributions among North American ground squirrel species (Hoyt 1972, P. Leitner – pers. obs.). The closest living relative of the Mohave ground squirrel (MGS) is the round‐tailed ground squirrel (Xerospermophilus tereticaudus). Mohave ground squirrels have a “shorter tail with distichous hairs and white undersurface”, but visual differences between the two species are subtle (Hafner and Yates 1983). Speciation likely occurred when portions of the parent population were isolated 4‐1.6 million years ago during the accelerated uplift of the Sierra Nevada, the Transverse Ranges and the Mojave River system, resulting in separation and isolation with MGS evolving in refugia (Hafner 1992, Bell et al. 2009). Subsequently, fluvial‐ lacustrine systems in the Mojave River basin provided vicariance features during the Pleistocene (Hafner 1992, Bell et al. 2009). Responding to previous climate change, the two species potentially migrated into their current ranges from southern refugia after the Last Glacial Maximum, eventually abutting each other along the Mojave River (Hafner and Yates 1983). The species are capable of hybridizing, but intercrosses appear to be rare, and sampling near the zones of potential hybridization remains limited (Bell and Matocq 2011). The only other similar sized squirrel occupying the range of MGS is the white‐tailed antelope ground squirrel (Ammospermophilus leucurus) whose range entirely overlaps MGS, but is easily distinguished by its bright white dorso‐lateral stripes (Best 1995)

  9. Ground-water quality and geochemistry, Carson Desert, western Nevada

    Science.gov (United States)

    Lico, Michael S.; Seiler, R.L.

    1994-01-01

    Aquifers in the Carson Desert are the primary source of drinking water, which is highly variable in chemical composition. In the shallow basin-fill aquifers, water chemistyr varies from a dilute calcium bicarbonate-dominated water beneath the irrigated areas to a saline sodium chloride- dominated water beneath unirrigated areas. Water samples from the shallow aquifers commonly have dissolved solids, chloride, magnesium, sulfate, arsenic, and manganese concentrations that exceed State of Nevada drinking-water standards. Water in the intermediante basin-fill aquifers is a dilute sodium bicarbonate type in the Fallon area and a distinctly more saline sodium chloride type in the Soda Lake-Upsal Hogback area. Dissolved solids, chloride, arsenic, fluoride, and manganese concen- trations commonly exceed drinking-water standards. The basalt aquifer contains a dilute sodium bicarbonate chloride water. Arsenic concentrations exceed standards in all sampled wells. The concen- trations of major constituents in ground water beneath the southern Carson Desert are the result of evapotranspiration and natural geochemical reactions with minerals derived mostly from igneous rocks. Water with higher concentrations of iron and manganese is near thermodynamic equilibrium with siderite and rhodochrosite and indicates that these elements may be limited by the solubility of their respective carbonate minerals. Naturally occurring radionuclides (uranium and radon-222) are present in ground water from the Carson Desert in concen- tratons higher than proposed drinking-water standards. High uranium concentrations in the shallow aquifers may be caused by evaporative concentration and the release of uranium during dissolution of iron and manganese oxides or the oxidation of sedimentary organic matter that typically has elevated uranium concentrations. Ground water in the Carson Desert does not appear to have be contaminated by synthetic organic chemicals.

  10. Molecular mechanisms of foliar water uptake in a desert tree.

    Science.gov (United States)

    Yan, Xia; Zhou, Maoxian; Dong, Xicun; Zou, Songbing; Xiao, Honglang; Ma, Xiao-Fei

    2015-11-12

    Water deficits severely affect growth, particularly for the plants in arid and semiarid regions of the world. In addition to precipitation, other subsidiary water, such as dew, fog, clouds and small rain showers, may also be absorbed by leaves in a process known as foliar water uptake. With the severe scarcity of water in desert regions, this process is increasingly becoming a necessity. Studies have reported on physical and physiological processes of foliar water uptake. However, the molecular mechanisms remain less understood. As major channels for water regulation and transport, aquaporins (AQPs) are involved in this process. However, due to the regulatory complexity and functional diversity of AQPs, their molecular mechanism for foliar water uptake remains unclear. In this study, Tamarix ramosissima, a tree species widely distributed in desert regions, was investigated for gene expression patterns of AQPs and for sap flow velocity. Our results suggest that the foliar water uptake of T. ramosissima occurs in natural fields at night when the humidity is over a threshold of 85 %. The diurnal gene expression pattern of AQPs suggests that most AQP gene expressions display a circadian rhythm, and this could affect both photosynthesis and transpiration. At night, the PIP2-1 gene is also upregulated with increased relative air humidity. This gene expression pattern may allow desert plants to regulate foliar water uptake to adapt to extreme drought. This study suggests a molecular basis of foliar water uptake in desert plants. Published by Oxford University Press on behalf of the Annals of Botany Company.

  11. Out of the Desert: My Journey from Nomadic Bedouin to the Heart of Global Oil

    KAUST Repository

    Al-Naimi, Ali Ibrahim

    2017-01-01

    Arabian deserts. From his first job as a shepherd boy to his appointment to one of the most powerful political and economic jobs in the world, Out of the Desert charts Al-Naimi's extraordinary rise to power.

  12. Isotopic characterization and genetic origin of crude oils from Gulf of Suez and western desert fields in Egypt

    International Nuclear Information System (INIS)

    Abd El Samie, S.G.

    2006-01-01

    Stable carbon isotopes were used to asses the general characteristics of the western desert and Gulf of Suez crude oils in accordance with hydrocarbon generation, source rocks, thermal gradient and maturation level. The carbon isotopic results of all the analyzed oil samples in both areas lie in the range from -29.62 to -24.11 %. The av. σ 13 C values in the Gulf of Suez reaches about -28.6% and -26.4% in western desert. It was accounted a marginal difference between the two areas by about 2.5 : 3% in carbon-13 isotope of the whole oil indicated two distinct oil types of different organic input and varies in the depositional environment. It was found that Gulf of Suez oils are dominated by marine organic matter (plankton algae) deposited in saline environment. The derived oils from the northern and central provinces of the Gulf are isotopically light, higher in sulfur content, lower in API gravity degree and have Pristane/Phytane (Pr/Ph) ratio less than or equal one (Pr/Ph = 1). In the southern province, about 0.5% isotopic enrichment was recorded in the produced oils from shallower depths, associated with gradual increment in API and maturity level as thermal gradient increase. However, low API gravity degree and less maturity of the Gulf of Suez oils could be related to the rifting temperature that forced and accelerated the expulsion rate and hydrocarbon generation prior reaching higher maturation levels. On the other hand, the produced oils from the western desert fields belong mostly to terrestrial organic debris (with minor marine fragment in some basins) deposited at deeper geological formations. It is characterized by isotopic enrichment, paraffinic waxy oils, low in sulphur content, have Pr/Ph = 1, high in API gravity and maturity level. Hydrocarbon generated from the western desert fields has been controlled by time-temperature effect in the source rocks and reservoirs where the humic organic matter are affected by high temperature over longer period of

  13. Biotechnological Applications Derived from Microorganisms of the Atacama Desert

    Directory of Open Access Journals (Sweden)

    Armando Azua-Bustos

    2014-01-01

    Full Text Available The Atacama Desert in Chile is well known for being the driest and oldest desert on Earth. For these same reasons, it is also considered a good analog model of the planet Mars. Only a few decades ago, it was thought that this was a sterile place, but in the past years fascinating adaptations have been reported in the members of the three domains of life: low water availability, high UV radiation, high salinity, and other environmental stresses. However, the biotechnological applications derived from the basic understanding and characterization of these species, with the notable exception of copper bioleaching, are still in its infancy, thus offering an immense potential for future development.

  14. Temporal dynamics of hot desert microbial communities reveal structural and functional responses to water input.

    Science.gov (United States)

    Armstrong, Alacia; Valverde, Angel; Ramond, Jean-Baptiste; Makhalanyane, Thulani P; Jansson, Janet K; Hopkins, David W; Aspray, Thomas J; Seely, Mary; Trindade, Marla I; Cowan, Don A

    2016-09-29

    The temporal dynamics of desert soil microbial communities are poorly understood. Given the implications for ecosystem functioning under a global change scenario, a better understanding of desert microbial community stability is crucial. Here, we sampled soils in the central Namib Desert on sixteen different occasions over a one-year period. Using Illumina-based amplicon sequencing of the 16S rRNA gene, we found that α-diversity (richness) was more variable at a given sampling date (spatial variability) than over the course of one year (temporal variability). Community composition remained essentially unchanged across the first 10 months, indicating that spatial sampling might be more important than temporal sampling when assessing β-diversity patterns in desert soils. However, a major shift in microbial community composition was found following a single precipitation event. This shift in composition was associated with a rapid increase in CO 2 respiration and productivity, supporting the view that desert soil microbial communities respond rapidly to re-wetting and that this response may be the result of both taxon-specific selection and changes in the availability or accessibility of organic substrates. Recovery to quasi pre-disturbance community composition was achieved within one month after rainfall.

  15. Temporal dynamics of hot desert microbial communities reveal structural and functional responses to water input

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, Alacia; Valverde, Angel; Ramond, Jean-Baptiste; Makhalanyane, Thulani P.; Jansson, Janet K.; Hopkins, David W.; Aspray, Thomas J.; Seely, Mary; Trindade, Marla I.; Cowan, Don A.

    2016-09-29

    The temporal dynamics of desert soil microbial communities are poorly understood. Given the implications for ecosystem functioning under a global change scenario, a better understanding of desert microbial community stability is crucial. Here, we sampled soils in the central Namib Desert on sixteen different occasions over a one-year period. Using Illumina-based amplicon sequencing of the 16S rRNA gene, we found that α-diversity (richness) was more variable at a given sampling date (spatial variability) than over the course of one year (temporal variability). Community composition remained essentially unchanged across the first 10 months, indicating that spatial sampling might be more important than temporal sampling when assessing β-diversity patterns in desert soils. However, a major shift in microbial community composition was found following a single precipitation event. This shift in composition was associated with a rapid increase in CO2 respiration and productivity, supporting the view that desert soil microbial communities respond rapidly to re-wetting and that this response may be the result of both taxon-specific selection and changes in the availability or accessibility of organic substrates. Recovery to quasi pre-disturbance community composition was achieved within one month after rainfall.

  16. Landscape-scale distribution and density of raptor populations wintering in anthropogenic-dominated desert landscapes

    Science.gov (United States)

    Adam E. Duerr; Tricia A. Miller; Kerri L. Cornell Duerr; Michael J. Lanzone; Amy Fesnock; Todd E. Katzner

    2015-01-01

    Anthropogenic development has great potential to affect fragile desert environments. Large-scale development of renewable energy infrastructure is planned for many desert ecosystems. Development plans should account for anthropogenic effects to distributions and abundance of rare or sensitive wildlife; however, baseline data on abundance and distribution of such...

  17. From Desert to Dessert: Why Australian Dust Matters.

    Science.gov (United States)

    Hunter, K. A.; Mackie, D. S.; Boyd, P. W.; McTainsh, G. H.

    2006-12-01

    The growth of some types of phytoplankton in several parts of the world ocean, including much of the Southern Ocean, is limited by the supply of iron. Large Australian dust storms uplift, transport and abrade soils, to produce aeolian dust that is a significant source iron to the Southern Ocean. Atmospheric processes that enhance the dissolution of iron from aeolian dusts are of interest and have been studied for material from major dust producing regions like the Sahara, Gobi and Australian deserts; the reported solubility of iron from aeolian dusts ranges from <0.01% to 80%. The characteristic red soils, sands and dusts from Australia are generally believed to consist of quartz grains with a coating of fine grains and crystals of iron oxides, primarily hematite and goethite. The precise mineralogy of soil and dust grain coatings is poorly understood and it also not well known how the coatings are altered during uplift and transport to the ocean. Current models to understand the processes operating during the transport and atmospheric processing of dust include some generalisations and simplifications that are not always warranted and our work has shown the overlooked complexity of the system. Models for aeolian-iron dissolution based on Northern Hemisphere data commonly include the pollutants SOx and NOx. The modern Southern Hemisphere is less polluted and thus resembles past environmental systems. The dissolution of iron from soils of the Saharan, Gobi and Australian deserts in the presence of protons only (i.e. without SOx and NOx) occurs in two phases. The first, faster phase, representing up to 20% of total iron is via a surface-controlled mechanism. The rate determining variable is the exposed surface area of the iron oxides and not the size of the underlying quartz grain. The second, slower, phase of dissolution occurs via the transport-controlled formation of a leached layer. During the simulated aeolian abrasion of Australian soils from dust producing

  18. Study of the microwave emissivity characteristics over Gobi Desert

    International Nuclear Information System (INIS)

    Yubao, Qiu; Lijuan, Shi; Wenbo, Wu

    2014-01-01

    The microwave emissivity represents the capacity of the thermal radiation of the surface, and it is the significant parameter for understanding the geophysical processes such as surface energy budget and surface radiation. Different land covers have different emissivity properties, and the Gobi Desert in Central Asia seriously impact the sandstorms occur and develop in China, because of its special geographical environment and surface soil characteristics. In this study half-month averaged microwave emissivity from March 2003 to February 2004 over the Gobi Desert has been estimated. Emissivities in this area at different frequencies, polarization and their seasonal variations are discussed respectively. The results showed that emissivity polarization difference decrease as the frequency increases, and the polarization difference is large (0.03–0.127). The H polarization emissivity increases with increasing frequency, but the V-polarized microwave emissivity is reduced with increasing frequency because of the body scattering. In winter, emissivity decreases sharply in snow covered area, especially for higher frequencies (such as 89GHz). In addition, we compared emissivity with MODIS NDVI data at the same time in the Gobi Desert, and the results indicate that NDVI derived the good negative correlation with microwave emissivity polarization difference at 37GHz

  19. Biological Communities in Desert Varnish and Potential Implications for Varnish Formation Mechanisms

    Science.gov (United States)

    Lang-Yona, Naama; Maier, Stefanie; Macholdt, Dorothea; Rodriguez-Caballero, Emilio; Müller-Germann, Isabell; Yordanova, Petya; Jochum, Klaus-Peter; Andreae, Meinrat O.; Pöschl, Ulrich; Weber, Bettina; Fröhlich-Nowoisky, Janine

    2017-04-01

    Desert varnishes are thin, orange to black coatings found on rocks in arid and semi-arid environments on Earth. The formation mechanisms of rock varnish are still under debate and the involvement of microorganisms in this process remains unclear. In this work we aimed to identify the microbial community occurring in rock varnish to potentially gain insights into the varnish formation mechanism. For this purpose, rocks coated with desert varnish were collected from the Anza-Borrego Desert, California, USA, as well as soils from underneath the rocks. DNA from both varnish coatings and soil samples was extracted and subsequently used for metagenomic analysis, as well as for q-PCR analyses for specific species quantification. The element composition of the varnish coatings was analyzed and compared to the soil samples. Rock varnish shows similar depleted elements, compared to soil, but Mn and Pb are 50-60 times enriched compared to the soil samples, and about 100 times enriched compared to the upper continental crust. Our genomic analyses suggest unique populations and different protein functional groups occurring in the varnish compared to soil samples. We discuss these differences and try to shed light on the mechanism of Mn oxyhydroxide production in desert varnish formation.

  20. Gravity, magnetic, and physical property data in the Smoke Creek Desert area, northwest Nevada

    Science.gov (United States)

    Tilden, Janet E.; Ponce, David A.; Glen, Jonathan M.G.; Chuchel, Bruce A.; Tushman, Kira; Duvall, Alison

    2006-01-01

    The Smoke Creek Desert, located approximately 100 km (60 mi) north of Reno near the California-Nevada border, is a large basin situated along the northernmost parts of the Walker Lane Belt (Stewart, 1988), a physiographic province defined by northwest-striking topographic features and strike-slip faulting. Because geologic framework studies play an important role in understanding the hydrology of the Smoke Creek Desert, a geologic and geophysical effort was begun to help determine basin geometry, infer structural features, and estimate depth to Pre-Cenozoic rocks, or basement. In May and June of 2004, and June of 2005, the U.S. Geological Survey (USGS) collected 587 new gravity stations, more than 160 line-kilometers (100 line-miles) of truck-towed magnetometer data, and 111 rock property samples in the Smoke Creek Desert and vicinity in northwest Nevada, as part of an effort to characterize its hydrogeologic framework. In the Smoke Creek Desert area, gravity highs occur over rocks of the Skedaddle Mountains, Fox Range, Granite Range, and over portions of Tertiary volcanic rocks in the Buffalo Hills. These gravity highs likely reflect basement rocks, either exposed at the surface or buried at shallow depths. The southern Smoke Creek Desert corresponds to a 25-mGal isostatic gravity low, which corresponds with a basin depth of approximately 2 km. Magnetic highs are likely due to granitic, andesitic, and metavolcanic rocks, whereas magnetic lows are probably associated with less magnetic gneiss and metasedimentary rocks in the region. Three distinctive patterns of magnetic anomalies occur throughout the Smoke Creek Desert and Squaw Creek Valley, likely reflecting three different geological and structural settings.