WorldWideScience

Sample records for north portal-hot water

  1. NORTH PORTAL - HOT WATER CALCULATION - CHANGE HOUSE FACILITY NO.5008

    International Nuclear Information System (INIS)

    Blackstone, R.

    1996-01-01

    The purpose of this design analysis and calculation is to determine the demand for hot water and to size the supply main piping for the Change House Facility No.5008 in accordance with the Uniform Plumbing Code (UPC) (Section 4.4.1) and U.S. Department of Energy Order 6430.1A-1540. The method used for the calculations is based on Section 4.4.1. The first step is to determine the maximum pressure drop between the most remote plumbing fixture and the main supply. The pressure drop for the hot water system is based on the total length of the supply piping from the cold water supply source through the water heater to the most remote hot water outlet. Equivalent fixture units are then assigned using Section 4.4.1. For hot water, the values are reduced by 25 percent in accordance with the UPC. The demand load in gpm is then determined based on the number of fixture units. The demand load and the pressure drop between the source and the most remote fixture is used to determine the pipe size and the corresponding friction losses for a given flow velocity not to exceed 10 feet/second

  2. NORTH PORTAL-HOT WATER CIRCULATION PUMP CALCULATION-SHOP BUILDING NO.5006

    International Nuclear Information System (INIS)

    Blackstone, R.

    1996-01-01

    The purpose of this design analysis and calculation is to size a circulating pump for the service hot water system in the Shop Building 5006, in accordance with the Uniform Plumbing Code (Section 4.4.1) and U.S. Department of Energy Order 6430.1A-1540 (Section 4.4.2). The method used for the calculation is based on Reference 5.2. This consists of determining the total heat transfer from the service hot water system piping to the surrounding environment. The heat transfer is then used to define the total pumping capacity based on a given temperature change in the circulating hot water as it flows through the closed loop piping system. The total pumping capacity is used to select a pump model from manufacturer's literature. This established the head generation for that capacity and particular pump model. The total length of all hot water supply and return piping including fittings is then estimated from the plumbing drawings which defines the pipe friction losses that must fit within the available pump head. Several iterations may be required before a pump can be selected that satisfies the head-capacity requirements

  3. 75 FR 49518 - Northwest Area Water Supply Project, North Dakota

    Science.gov (United States)

    2010-08-13

    ... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Northwest Area Water Supply Project, North Dakota... Area Water Supply Project (NAWS Project), a Federal reclamation project, located in North Dakota. A..., Dakotas Area Office, Attention: Alicia Waters, P.O. Box 1017, Bismarck, ND 58502. FOR FURTHER INFORMATION...

  4. 75 FR 48986 - Northwest Area Water Supply Project, North Dakota

    Science.gov (United States)

    2010-08-12

    ... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Northwest Area Water Supply Project, North Dakota... Area Water Supply Project (NAWS Project), a Federal reclamation project, located in North Dakota. A..., Dakotas Area Office, Attention: Alicia Waters, P.O. Box 1017, Bismarck, ND 58502. FOR FURTHER INFORMATION...

  5. Life around the North Water ecosystem

    DEFF Research Database (Denmark)

    Hastrup, Kirsten Blinkenberg; Andersen, Astrid Oberborbeck; Grønnow, Bjarne

    2018-01-01

    The formation of the North Water in Smith Sound about 4500 years ago, as evidenced by the establishment of bird colonies and human presence, also initiated a long-term anthropogenic agent as part of this High Arctic ecosystem. Different epochs have influenced the human occupation in the area...... drivers in terms of weather and climate affecting the northern hemisphere also impact accessibility and productivity of the ecosystem, with cascading effects on social drivers, again acting back on the natural ecologies. Despite its apparent isolation, the ecosystem had and still has wide ranging spatial...... ramifications that extend beyond the High Arctic, and include human activity. The challenge is to determine what is internal and what is external to an ecosystem....

  6. North sea water mass cartography, with radiotracer technologies

    International Nuclear Information System (INIS)

    Bailly du Bois, P.; Guegueniat, P.

    1995-01-01

    The radionuclide study was the root of important improvements in recent oceanography; indeed their environment future may be followed. The artificial radioisotopes, which are soluble in sea water, allowed to identify accurately water masses, penetrating in North Sea. Those water cartographies give essential informations on the release impact evaluation, accidental or controlled, in a very active economical european region. 6 figs. 1 tab

  7. Guide to North Dakota's ground-water resources

    Science.gov (United States)

    Paulson, Q.F.

    1983-01-01

    Ground water, the water we pump from the Earth through wells or that which flows naturally from springs, is one of North Dakota's most valuable resources. More than 60 percent of the people living in the State use ground water for one purpose of another. It is the only source of water for thousands of farm families and their livestock. Almost all smaller cities and villages depend solely on groudn water as a source of supply. Increasingly, ground water is being used to irrigate crops and grasslands (fig. 1) during protracted dry spells so common in North Dakota. During recent years there has been a rapid development of rural water ditribution systems in which thousands of farms and rurals residences are connected via underground pipeline to a single water source, usually wells pumping ground water.

  8. Water-resources activities, North Dakota District, Fiscal Year 1992

    Science.gov (United States)

    Martin, Cathy R.

    1993-01-01

    The mission of the U.S. Geological Survey, Water Resources Division, is to provide the hydrologic information and understanding needed for the optimum utilization and management of the Nation's water resources for the overall benefit of the people of the United States. This report describes water-resources activities of the Water Resources Division in North Dakota in fiscal year 1992. Information on each project includes objectives, approach, progress, plans for fiscal year 1993, and completed and planned report products.

  9. The assessment of a water budget of North Cyprus

    International Nuclear Information System (INIS)

    Elkiran, G.; Ergil, M.

    2006-01-01

    Water scarcity in North Cyprus (NC) began in the 1960s and is still tremendously increasing. Thus far no serious measurements have been taken to address this problem. Increased water demands led to extraction of water from unrestricted groundwater resources. Extreme water extractions caused the salinization of coastal aquifers up to brackish waters and the consequent depletion of interior aquifers. Such a situation requires precise control of water resources through an integrated water resources management (IWRM). Although the situation has reached an alarming state, no detailed research has been performed to establish the present demands of water in order to anticipate the future demands. Hence, this study, based on the IWRM approach, examines water budget of the country. (author)

  10. North Pacific Acoustic Laboratory and Deep Water Acoustics

    Science.gov (United States)

    2016-10-27

    During FY16 the primary effort has been working on manuscripts as summarized below: 1) A test of deep water Rytov theory at 284 Hz and 107 km in... signal , while the ambient noise field is in direct competition with the received signal . Research conducted in the North Pacific Acoustic Laboratory...low-frequency, long-range, deep water, broadband acoustic propagation, the effects of ocean variability on signal coherence, and the fundamental

  11. Circulation of the surface waters in the north Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Varadachari, V.V.R.; Sharma, G.S.

    The circulation pattern of the surface waters in the North Indian Ocean for different months of the year is discussed. In order to arrive at a reliable and detailed picture of the circulation pattern, streamlines are drawn using the isogon technique...

  12. Research on water shortage risks and countermeasures in North China

    Science.gov (United States)

    Cheng, Yuxiang; Fang, Wenxuan; Wu, Ziqin

    2017-05-01

    In the paper, a grey forecasting model and a population growth model are established for forecasting water resources supply and demand situation in the region, and evaluating the scarcity of water resources thereof in order to solve the problem of water shortage in North China. A concrete plan for alleviating water resources pressure is proposed with AHP as basis, thereby discussing the feasibility of the plan. Firstly, water resources supply and demand in the future 15 years are predicted. There are four sources for the demand of water resources mainly: industry, agriculture, ecology and resident living. Main supply sources include surface water and underground water resources. A grey forecasting method is adopted for predicting in the paper aiming at water resources demands since industrial, agricultural and ecological water consumption data have excessive decision factors and the correlation is relatively fuzzy. Since residents' water consumption is determined by per capita water consumption and local population, a logistic growth model is adopted to forecast the population. The grey forecasting method is used for predicting per capita water consumption, and total water demand can be obtained finally. International calculation standards are adopted as reference aiming at water supply. The grey forecasting method is adopted for forecasting surface water quantity and underground water quantity, and water resources supply is obtained finally. Per capita water availability in the region is calculated by comparing the water resources supply and demand. Results show that per capita water availability in the region is only 283 cubic meters this year, people live in serious water shortage region, who will suffer from water shortage state for long time. Then, sensitivity analysis is applied for model test. The test result is excellent, and the prediction results are more accurate. In the paper, the following measures are proposed for improving water resources condition

  13. Water-resources activities, North Dakota District, fiscal year 1990

    Science.gov (United States)

    Martin, Cathy R.

    1991-01-01

    The mission of the U.S. Geological Survey, Water Resources Division, is to provide the hydrologic information and understanding needed for the optimum utilization and management of the Nation's water resources for the overall benefit of the people of the United States. This report describes waterresources activities of the Water Resources Division in North Dakota in fiscal year 1990. Information on each project includes objectives, approach, progress in fiscal year 1990, plans for fiscal year 1991, completed and planned report products, and the name of the project chief.

  14. Hydraulic Fracking Water Treatment in Texas and North Dakota.

    OpenAIRE

    Abordo , Genel; Patel , Cameron; Duncan , Cody; McAlpine , Caitlin; Thomas, Trevor; Libby, James; Ryan , Kerrick

    2013-01-01

    Project Definition: Flo-tech Engineering is developing a mobile treatment system for flowback and produced water from hydraulic fracturing operations.  The water will be treated for fracking reuse.  The system will be implemented in Bakken Shale in North Dakota and/or Eagle Ford Shale in southern Texas.  Design Constraints and Parameters:  Extensive research was required to determine which site areas to develop and the current technologies used to treat the water involved in hydraulic fractur...

  15. Potable water radioactivity assessment in North Kazakhstan region

    International Nuclear Information System (INIS)

    Iseneev, K.K.

    2010-01-01

    Department of State Committee the Epidemiological Sanitary surveillance of the Public Health Ministry of the Republic of Kazakhstan in North Kazakhstan region in collaboration with the experts from Central Epidemiological Sanitary expertise had tested alpha- and beta activity in 690 probes of potable water sampled from subterranean springs in North Kazakhstan region (NKR). In 419 probes (60,7%) of water it was determined 6 times excess in total alpha activity according radiation standards - 99 (0,1 Bq/l). As a result of potable water study for 14,8% selected samples total alpha radiation permissible level exceeds in 2-4 times, the same parameter (alpha radiation surplus) for selected 28,9% of samples equals to 4-6 times and for 56,3 % of samples equals to 6 times. Surplus over permissible level of radionuclide interference making up 3 times for 238 U, 7 times for 226 Ra were detected in 7 settlements in Operation suspended 13 boreholes in Atyrau, Timiryazev, Taiynshin, Esil regions in NKR. In order to lowering radionuclide composition in water to the sanitarily fitted level filters local cleaning installation measures carried out in 39 settlements in NKR. Re-sampling of boreholes water probes after cleaning measures satisfy the normative requirements. Issues of control NKR population's provision with safe quality potable water are under strict control made by Regional Sanitary Service.

  16. North Slope Decision Support for Water Resource Planning and Management

    Energy Technology Data Exchange (ETDEWEB)

    Schnabel, William; Brumbelow, Kelly

    2013-03-31

    The objective of this project was to enhance the water resource decision-making process with respect to oil and gas exploration/production activities on Alaska’s North Slope. To this end, a web-based software tool was developed to allow stakeholders to assemble, evaluate, and communicate relevant information between and amongst themselves. The software, termed North Slope Decision Support System (NSDSS), is a visually-referenced database that provides a platform for running complex natural system, planning, and optimization models. The NSDSS design was based upon community input garnered during a series of stakeholder workshops, and the end product software is freely available to all stakeholders via the project website. The tool now resides on servers hosted by the UAF Water and Environmental Research Center, and will remain accessible and free-of-charge for all interested stakeholders. The development of the tool fostered new advances in the area of data evaluation and decision support technologies, and the finished product is envisioned to enhance water resource planning activities on Alaska’s North Slope.

  17. Phytoplankton biomass, production and potential export in the North Water

    Science.gov (United States)

    Klein, Bert; LeBlanc, Bernard; Mei, Zhi-Ping; Beret, Rachel; Michaud, Josée; Mundy, C.-J.; von Quillfeldt, Cecilie H.; Garneau, Marie-Ève; Roy, Suzanne; Gratton, Yves; Cochran, J. Kirk; Bélanger, Simon; Larouche, Pierre; Pakulski, J. Dean; Rivkin, Richard B.; Legendre, Louis

    The seasonal patterns of phytoplankton biomass and production were determined in the North Water, located between Greenland and Ellesmere Island (Canadian Arctic), in August 1997, April-July 1998, and August-September 1999. The patterns differed among the four defined regions of this large polynya, i.e. North (>77.5°N), East (>75°W), West (5 μm) fraction dominated the biomass and production during the bloom. During July, August, and September, biomass and production decreased over the whole region, with the highest biomass, dominated by large cells, occurring in the North. The annual particulate and dissolved phytoplankton production were the highest ever reported for the high Arctic, reaching maximum values of 254 and 123 g C m -2 yr -1, respectively, in the East. Rates in the North and West were considerably lower than in the East (ca. two- and three-fold, respectively). The f-ratios (i.e. ratio of new to total production), derived from the size structure of phytoplankton, were high north of 76°N (0.4-0.7). Regionally, this indicated a high potential export of particulate organic carbon ( EPOC) from the phytoplankton community to other trophic compartments and/or downwards in the East (155 g C m -2 yr -1), with lower values in the North and West (i.e. 77 and 42 g C m -2 yr -1, respectively). The seasonal and spatial patterns of EPOC were consistent with independent estimates of potential carbon export. Phytoplankton biomass and production were generally dominated by the large size fraction, whereas EPOC seemed to be dominated by the large size fraction early in the season and by the small size fraction (<5 μm) from June until the end of the growing season.

  18. Multi-Decadal Surface Water Dynamics in North American Tundra

    Science.gov (United States)

    Carroll, Mark L.; Loboda, Tatiana V.

    2017-01-01

    Over the last several decades, warming in the Arctic has outpaced the already impressive increases in global mean temperatures. The impact of these increases in temperature has been observed in a multitude of ecological changes in North American tundra including changes in vegetative cover, depth of active layer, and surface water extent. The low topographic relief and continuous permafrost create an ideal environment for the formation of small water bodies - a definitive feature of tundra surface. In this study, water bodies in Nunavut territory in northern Canada were mapped using a long-term record of remotely sensed observations at 30 meters spatial resolution from the Landsat suite of instruments. The temporal trajectories of water extent between 1985 and 2015 were assessed. Over 675,000 water bodies have been identified over the 31-year study period with over 168,000 showing a significant (probability is less than 0.05) trend in surface area. Approximately 55 percent of water bodies with a significant trend were increasing in size while the remaining 45 percent were decreasing in size. The overall net trend for water bodies with a significant trend is 0.009 hectares per year per water body.

  19. FEATURES OF TRANSPORT OF CERTAIN ELEMENTS IN WATER NORTH CASPIAN

    Directory of Open Access Journals (Sweden)

    E. V. Chujko

    2013-01-01

    Full Text Available Major influence on the form of migration of trace elements in the North Caspian has Volga runoff. The bulk of the elements in the Volga waters carried in the suspended solids. The exception is zinc, transports mainly in dissolved form.In article presents the results of a study of dissolved and suspended forms of zinc, copper, lead, and manganese in the surface water of the North Caspian Sea from 2002 to 2009. On the basis of the received data the ratio of dissolved and suspended forms of trace elements studied. According to calculations, the bulk of the copper, lead and manganese is carried in the suspended solids. Zinc migrates mainly in dissolved form. The dominant form of migration of the metal increases, depending on the season. For zinc, the migrant in the ionic state, and for copper, lead, manganese, transferring primarily in suspension, in the autumn period the increase in the proportion of dissolved (Zn and suspended forms (Cu, Pb, Mn, respectively. Increase in the proportion of ionic forms of metals in the North Caspian occurred episodically in local areas. Over the entire study period the greatest number of excess dissolved form of weighted metal observed in the central part of the shallow zone predustevogo space p. Volga near the exit of the Kirov and Belinsky channels.

  20. Summary of Surface-Water Quality, Ground-Water Quality, and Water Withdrawals for the Spirit Lake Reservation, North Dakota

    National Research Council Canada - National Science Library

    Vinning, Kevin C; Cates, Steven W

    2006-01-01

    .... The data were collected intermittently from 1948 through 2004 and were compiled from U.S. Geological Survey databases, North Dakota State Water Commission databases, and Spirit Lake Nation tribal agencies...

  1. Radiological assessment of private water supplies in Dolgellau, North Wales

    International Nuclear Information System (INIS)

    Green, D.; McReddie, R.; Holland, B.

    1993-01-01

    Water samples from 100 private water supplies in the Meirionnydd District Council area of Dolgellau, North Wales have been analysed for natural and artificial radionuclides and the elements Calcium and Strontium. In addition 20 of the 100 supplies were specifically sampled for the measurement of radon-222. Of the 100 supplies tested all total alpha and beta values were within the WHO guideline values. An assessment of the radiological significance of the analytical data has been carried out by calculating the committed effective dose equivalent to a hypothetical critical group which would arise from the consumption of water during a single year. The maximum adult annual committed effective dose equivalent for artificial and total radionuclides measured during this programme of monitoring was found to be 3.2 and 560 μSv, respectively. (author)

  2. Quality of surface-water supplies in the Triangle area of North Carolina, water year 2008

    Science.gov (United States)

    Giorgino, M.J.; Rasmussen, R.B.; Pfeifle, C.A.

    2012-01-01

    Surface-water supplies are important sources of drinking water for residents in the Triangle area of North Carolina, which is located within the upper Cape Fear and Neuse River Basins. Since 1988, the U.S. Geological Survey and a consortium of governments have tracked water-quality conditions and trends in several of the area's water-supply lakes and streams. This report summarizes data collected through this cooperative effort, known as the Triangle Area Water Supply Monitoring Project, during October 2007 through September 2008. Major findings for this period include:

  3. Investigating the potential for "water piracy" in North East Greenland

    Science.gov (United States)

    Karlsson, Nanna B.; Dahl-Jensen, Dorthe

    2013-04-01

    The incorporation of subglacial processes in ice flow models remains a challenge while at the same time observational evidence increasingly underscores the important role liquid water plays in ice flow dynamics. One of the many problems ice flow models face (that also includes scarcity of data at the bed and the deformational properties of water-saturated sediments) is the different time-scales on which the processes operate. For example, observations indicate that subglacial water may be re-routed to a neighbouring ice stream in response to changes in surface elevation. This implies that ice flow models have to allow for changes in ice flow mode where, depending on the basal properties, the flow may be dominated by deformation or basal sliding. The re-routing of water between neighbouring ice streams is often termed "water piracy" and in this study we demonstrate that the potential for water piracy exists even in regions with very small surface elevation changes. We use a simple, vertically integrated, 2D-plane ice flow model based on the shallow ice flow approximation to model the large-scale changes in surface elevation of North East Greenland in response to gravity and mass balance. Considering time-scales of 100-500 years the model predicts changes in elevation of less than a metre per year which is in agreement with data from remote sensing. We then calculate the corresponding changes in hydrological pressure potential and use evidence from radio-echo sounding data to identify areas with basal melting and thus potential liquid water production. The corresponding change in hydrological pressure potential in response to the surface elevation changes is sufficient to divert the subglacial water to different pathways. This change in subglacial water pathways could be sufficient to change the ice flow mode from deformation to sliding and might initiate speed-up and/or slow-down of the ice streams at the margins of the basin.

  4. Alleviating the water scarcity in the North China Plain: the role of virtual water and real water transfer

    Science.gov (United States)

    Zhang, Zhuoying; Yang, Hong; Shi, Minjun

    2016-04-01

    The North China Plain is the most water scarce region in China. Its water security is closely relevant to interregional water movement, which can be realized by real water transfers and/or virtual water transfers. This study investigates the roles of virtual water trade and real water transfer using Interregional Input-Output model. The results show that the region is receiving 19.4 billion m3/year of virtual water from the interregional trade, while exporting 16.4 billion m3/year of virtual water in the international trade. In balance, the region has a net virtual water gain of 3 billion m3/year from outside. Its virtual water inflow is dominated by agricultural products from other provinces, totalling 16.6 billion m3/year, whilst its virtual water export is dominated by manufacturing sectors to other countries, totalling 11.7 billion m3/year. Both virtual water import and real water transfer from South to North Water Diversion Project are important water supplements for the region. The results of this study provide useful scientific references for the establishment of combating strategies to deal with the water scarcity in the future.

  5. Connectivity between surface and deep waters determines prokaryotic diversity in the North Atlantic Deep Water.

    Science.gov (United States)

    Frank, Alexander H; Garcia, Juan A L; Herndl, Gerhard J; Reinthaler, Thomas

    2016-06-01

    To decipher the influence of depth stratification and surface provincialism on the dark ocean prokaryotic community composition, we sampled the major deep-water masses in the eastern North Atlantic covering three biogeographic provinces. Their diversity was evaluated using ordination and canonical analysis of 454 pyrotag sequences. Variance partitioning suggested that 16% of the variation in the bacterial community composition was based on depth stratification while 9% of the variation was due to geographic location. General linear mixed effect models showed that the community of the subsurface waters was connected to the dark ocean prokaryotic communities in different biogeographic provinces. Cluster analysis indicated that some prokaryotic taxa are specific to distinct regions in bathypelagic water masses. Taken together, our data suggest that the dark ocean prokaryotic community composition of the eastern North Atlantic is primed by the formation and the horizontal transport of water masses. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  6. Quality of surface-water supplies in the Triangle area of North Carolina, water year 2009

    Science.gov (United States)

    Pfeifle, C. A.; Giorgino, M. J.; Rasmussen, R. B.

    2014-01-01

    Surface-water supplies are important sources of drinking water for residents in the Triangle area of North Carolina, which is located within the upper Cape Fear and Neuse River Basins. Since 1988, the U.S. Geological Survey and a consortium of governments have tracked water-quality conditions and trends in several of the area’s water-supply lakes and streams. This report summarizes data collected through this cooperative effort, known as the Triangle Area Water Supply Monitoring Project, during October 2008 through September 2009. Major findings for this period include: - Annual precipitation was approximately 20 percent below the long-term mean (average) annual precipitation. - Streamflow was below the long-term mean at the 10 project streamgages during most of the year. - More than 7,000 individual measurements of water quality were made at a total of 26 sites—15 in the Neuse River Basin and 11 in the Cape Fear River Basin. Forty-seven water-quality properties and constituents were measured. - All observations met North Carolina water-quality standards for water temperature, pH, hardness, chloride, fluoride, sulfate, nitrate, arsenic, cadmium, chromium, lead, nickel, and selenium. - North Carolina water-quality standards were exceeded one or more times for dissolved oxygen, dissolved oxygen percent saturation, chlorophyll a, mercury, copper, iron, manganese, silver, and zinc. Exceedances occurred at 23 sites—13 in the Neuse River Basin and 10 in the Cape Fear River Basin. - Stream samples collected during storm events contained elevated concentrations of 18 water-quality constituents compared to samples collected during non-storm events. - Concentrations of nitrogen and phosphorus were within ranges observed during previous years. - Five reservoirs had chlorophyll a concentrations in excess of 40 micrograms per liter at least once during 2009: Little River Reservoir, Falls Lake, Cane Creek Reservoir, University Lake, and Jordan Lake.

  7. Interdecadal Trichodesmium Variability in Cold North Atlantic Waters

    Science.gov (United States)

    Rivero-Calle, Sara; Del Castillo, Carlos E.; Dezfuli, Amin; Gnanadesikan, Anand; Zaitchik, Benjamin; Johns, David G.

    2016-01-01

    Studies of the nitrogen cycle in the ocean generally assume that the distribution of the marine diazotroph, Trichodesmium, is restricted to warm, tropical, and subtropical oligotrophic waters. Here we show evidence that Trichodesmium are widely distributed in the North Atlantic. We report an approximately vefold increase during the 1980s and 1990s in Trichodesmium presence near the British Isles with respect to the average over the last 50 years. A potential explanation is an increase in the Saharan dust source starting in the 1980s, coupled with changes in North Atlantic winds that opened a pathway for dust transport. Results from a coarse-resolution model in which winds vary but iron deposition is climatologically fixed suggest frequent nitrogen limitation in the region and reversals of the Portugal current, but it does not simulate the observed changes in Trichodesmium. Our results suggest that Trichodesmium may be capable of growth at temperatures below 20C and challenge assumptions about their latitudinal distribution. Therefore, we need to reevaluate assumptions about the temperature limitations of Trichodesmium and the dinitrogen (N2) xation capabilities of extratropical strains, which may have important implications for the global nitrogen budget.

  8. Mixing Waters and Moving Ships off the North Carolina Coast

    Science.gov (United States)

    2000-01-01

    The estuarine and marine environments of the United States' eastern seaboard provide the setting for a variety of natural and human activities associated with the flow of water. This set of Multi-angle Imaging SpectroRadiometer images from October 11, 2000 (Terra orbit 4344) captures the intricate system of barrier islands, wetlands, and estuaries comprising the coastal environments of North Carolina and southern Virginia. On the right-hand side of the images, a thin line of land provides a tenuous separation between the Albemarle and Pamlico Sounds and the Atlantic Ocean. The wetland communities of this area are vital to productive fisheries and water quality.The top image covers an area of about 350 kilometers x 260 kilometers and is a true-color view from MISR's 46-degree backward-looking camera. Looking away from the Sun suppresses glint from the reflective water surface and enables mapping the color of suspended sediments and plant life near the coast. Out in the open sea, the dark blue waters indicate the Gulf Stream. As it flows toward the northeast, this ocean current presses close to Cape Hatteras (the pointed cape in the lower portion of the images), and brings warm, nutrient-poor waters northward from equatorial latitudes. North Carolina's Outer Banks are often subjected to powerful currents and storms which cause erosion along the east-facing shorelines. In an effort to save the historic Cape Hatteras lighthouse from the encroaching sea, it was jacked out of the ground and moved about 350 meters in 1999.The bottom image was created with red band data from the 46-degree backward, 70-degree forward, and 26-degree forward cameras displayed as red, green, and blue, respectively. The color variations in this multi-angle composite indicate different angular (rather than spectral) signatures. Here, the increased reflection of land vegetation at the angle viewing away from the Sun causes a reddish tint. Water, on the other hand, appears predominantly in shades

  9. Comparison of fipronil sources in North Carolina surface water ...

    Science.gov (United States)

    Fipronil is a phenylpyrazole insecticide that is widely used in residential and agricultural settings to control ants, roaches, termites, and other pests. Fipronil and its transformation products have been found in a variety of environmental matrices, but the source[s] which makes the greatest contribution to fipronil in surface water has yet to be determined. A sampling effort designed to prioritize known fipronil inputs (golf courses, residential areas, biosolids application sites and wastewater facilities) was conducted in North Carolina to learn more about the origins of fipronil in surface water. High resolution mass spectrometry (HRMS) analysis indicated that fipronil and its known derivatives were routinely present in all samples, but concentrations were substantially elevated near wastewater treatment plant outfalls (range 10–500 ng/L combined), suggesting that they predominate as environmental sources. Corresponding recycled wastewater samples, which were treated with NaOCl for disinfection, showed disappearance of fipronil and all known degradates. HRMS and nuclear magnetic resonance (NMR) analysis techniques were used to determine that all fipronil-related compounds are oxidized to a previously unidentified fipronil sulfone chloramine species in recycled wastewater. The implications of the presence of a new fipronil-related compound in recycled wastewater need to be considered. Journal Article Highlights • The most important sources of fipronil in

  10. Water-quality characteristics in runoff for three discovery farms in North Dakota, 2008-12

    Science.gov (United States)

    Nustad, Rochelle A.; Rowland, Kathleen M.; Wiederholt, Ronald

    2015-01-01

    The U.S. Geological Survey, in cooperation with North Dakota State University Agriculture Research Extension and in collaboration with North Dakota State Department of Health, North Dakota State Water Commission, U.S. Environmental Protection Agency, and several agricultural producers, helped organize a Discovery Farms program in North Dakota in 2007. Discharge measurements and water-quality samples collected at the three Farms (Underwood, Dazey, and Embden) were used to describe water-quality characteristics in runoff, and compute estimates of annual loads and yields for selected constituents from spring 2008 through fall 2012.

  11. Warm Water Pathways in the Northeastern North Atlantic ACCE RAFOS Float Data Report

    National Research Council Canada - National Science Library

    Furey, Heather

    2001-01-01

    ...). The RAFOS float component of ACCE, entitled "Warm Water Pathways and Intergyre Exchange in the Northeastern North Atlantic", was designed to measure the warm water currents entering the northeastern...

  12. ABoVE: Surface Water Extent, Boreal and Tundra Regions, North America, 1991-2011

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides the location and extent of surface water (open water not including vegetated wetlands) for the entire Boreal and Tundra regions of North...

  13. Water: The Hydraulic Parameter of Conflict in the Middle East and North Africa

    National Research Council Canada - National Science Library

    Kiser, Stephen D

    2000-01-01

    ...). Water is a primary concern of most governments in the Middle East and North Africa. A myriad of synergistic variables are exponentially increasing demands for water, while simultaneously decreasing the region's ability to supply...

  14. 75 FR 81642 - Long-Term North to South Water Transfer Program, Sacramento County, CA

    Science.gov (United States)

    2010-12-28

    ... amount of water for transfer, method to make water available, and price. The EIS/EIR will identify... Bureau of Reclamation Long-Term North to South Water Transfer Program, Sacramento County, CA AGENCY... joint EIS/EIR to analyze the effects of water transfers from water agencies in northern California to...

  15. Diurnal Albedo Variations of the Martian North Polar Water Ice Cap

    Science.gov (United States)

    Troy, R. F.; Bass, D.

    2002-01-01

    Presentation of findings regarding diurnal variations in the north polar water ice cap of Mars as part of a larger study of the interannual and seasonal variations of the Martian north polar water ice cap. Additional information is contained in the original extended abstract.

  16. Statistical summaries of water-quality data for selected streamflow-gaging stations in the Red River of the North basin, North Dakota, Minnesota, and South Dakota

    Science.gov (United States)

    Macek-Rowland, Kathleen M.; Dressler, Valerie M.

    2002-01-01

    The quantity and quality of current and future water resources in the Red River of the North Basin in North Dakota, Minnesota, and South Dakota are concerns of people who reside within the basin. Additional water resources are needed because of recent growth in population, industry, and agriculture. How the management of current and future water-resources will impact water quality within the basin is a critical issue. Water-quality data, particularly for surface-water sources, will help water-resources managers make decisions about current and future water resources in the Red River of the North Basin. Statistical summaries of water-quality data for 43 streamflow-gaging stations in the Red River of the North Basin in North Dakota, Minnesota, and South Dakota are presented in this report. Statistical summaries include sample size, maximum, minimum, mean, and values for the 95th, 75th, 50th, 25th, and 5th percentiles.

  17. Pliocene shallow water paleoceanography of the North Atlantic ocean based on marine ostracodes

    Science.gov (United States)

    Cronin, T. M.

    1991-01-01

    Middle Pliocene marine ostracodes from coastal and shelf deposits of North and Central America and Iceland were studied to reconstruct paleotemperatures of shelf waters bordering portions of the Western Boundary Current System (including the Gulf Loop Current, Florida Current, Gulf Stream and North Atlantic Drift). Factor analytic transfer functions provided Pliocene August and February bottom-water temperatures of eight regions from the tropics to the subfrigid. The results indicate: (1) meridional temperature gradients in the western North Atlantic were less steep during the Pliocene than either today or during Late Pleistocene Isotope Stage 5e; (2) tropical and subtropical shelf waters during the Middle Pliocene were as warm as, or slightly cooler than today; (3) slightly cooler water was on the outer shelf off the southeastern and mid-Atlantic coast of the U.S., possibly due to summer upwelling of Gulf Stream water; (4) the shelf north of Cape Hatteras, North Carolina may have been influenced by warm water incursions from the western edge of the Gulf Stream, especially in summer; (5) the northeast branch of the North Atlantic Drift brought warm water to northern Iceland between 4 and 3 Ma; evidence from the Iceland record indicates that cold East Greenland Current water did not affect coastal Iceland between 4 and 3 Ma; (6) Middle Pliocene North Atlantic circulation may have been intensified, transporting more heat from the tropics to the Arctic than it does today. ?? 1991.

  18. Potential water yield response following clearcut harvesting on north and south slopes in northern Idaho

    Science.gov (United States)

    Richard G. Cline; Harold F. Haupt; Gaylon S. Campbell

    1977-01-01

    The hydrologic response of small clearcuts on north and south slopes in northern Idaho was investigated. On the north slope, substantial gains (27 to 35 cm) in potential water yield per year resulted from (a) removal of transpiring surfaces associated with plant cover, (b) elimination of snow interception by a closed-canopied forest, and (C) delayed reoccupation of the...

  19. Research of water resources allocation of South-to-North Water Diversion East Route Project in Jiangsu Province ,Eastern China

    Science.gov (United States)

    Zeng, C.

    2015-12-01

    Optimized allocation of water resources is the important means of solving regional water shortage and can improve the utilization of water resources. Water resources allocation in the large-scale water diversion project area is the current research focus. This research takes the east route of the South-to-North Water Transfer Project in Jiangsu province as the research area, based on the hydrological model, agricultural irrigation quota model, and water project scheduling model, a water resources allocation model was constructed. The research carried on generalized regional water supply network, simulated the water supply, water demand and water deficit in agriculture, industry, life, ecology and lock under the status quo and planning engineering conditions. According to the results, the east route of the South-to-North Water Transfer Project is helpful to improve regional water shortage situation. The results showed that pump output increase by 2.8 billion cubic meters of water. On the conditions of P = 95%, 75% and 50%, compared with the benchmark year, water demand increases slightly due to the need of social and economic development in planning years, and water supply increased significantly because of new diversion ability. Water deficit are greatly reduced by 74.9% especially in the commonly drought condition because of the new project operation and optimized allocation of water resources.

  20. Declining trends of water requirements of dry season Boro rice in the north-west Bangladesh

    NARCIS (Netherlands)

    Acharjee, Tapos Kumar; Halsema, van Gerardo; Ludwig, Fulco; Hellegers, Petra

    2017-01-01

    The drought prone North-West Bangladesh is vulnerable to the impacts of climate change, particularly because of less water availability in the dry period and high water requirement for crop production. Improved understanding of recent changes in crop water demand in the dry season is important

  1. Quaternary North Atlantic Surface Paleoceanography in Regions of Potential Deep-water Formation

    Science.gov (United States)

    Ruddiman, W. F.

    1984-01-01

    At the time scale of the Quaternary climate cycles, the sites of formation of North Atlantic Deep Water are not known. The interglacial extreme is presumably exemplified by the modern regions; the Norwegian, Greenland and Labrador Seas. During the major glacial-age coolings in the North Atlantic, the sites may have shifted well to the south, perhaps as far as the limit of the polar front at 40 to 50 N. Still other sites may have been important during intermediate climatic conditions. Because of the close coupling of high-latitude surface waters to North Atlantic Deep Water in the modern ocean, the history of sea-surface temperature (SST) oscillations across the high-latitude North Atlantic is relevant to an understanding of deep-water formation on the longer time scales.

  2. NPDES Draft Permit for Spirit Lake Water Treatment Facility in North Dakota

    Science.gov (United States)

    Under NPDES draft permit ND-0031101, Spirit Lake Water Resource Management is authorized to discharge to an unnamed intermittent tributary to Devils Lake which is tributary to Sheyenne River in North Dakota.

  3. Fishery intensification in small water bodies: a review for North America

    National Research Council Canada - National Science Library

    Moehl, John Frederic; Davies, William D

    1993-01-01

    .... Intensification is also achieved by enhancing water fertility through liming and fertilization. Case studies are presented representing contrasting climatic regions of North America while demonstrating similarities in management style...

  4. Deep water formation in the North Pacific and deglacial CO2 rise

    OpenAIRE

    Rae, James William Buchanan; Sarnthein, Michael; Foster, Gavin; Ridgwell, Andy; Grootes, Pieter; Elliott, Tim

    2014-01-01

    Deep water formation in the North Atlantic and Southern Ocean is widely thought to influence deglacial CO_2 rise and climate change; here we suggest that deep water formation in the North Pacific may also play an important role. We present paired radiocarbon and boron isotope data from foraminifera from sediment core MD02-2489 at 3640 m in the North East Pacific. These show a pronounced excursion during Heinrich Stadial 1, with benthic-planktic radiocarbon offsets dropping to ~350 years, acco...

  5. Incorporating water consumption into crop water footprint: A case study of China's South-North Water Diversion Project.

    Science.gov (United States)

    Wei, Yuhang; Tang, Deshan; Ding, Yifan; Agoramoorthy, Govindasamy

    2016-03-01

    The crop water footprint (WF) indicates the consumption of water for a crop during the planting period, mainly through evapotranspiration. However, as irrigated agriculture accounts for nearly 25% of the global agriculture water usage, evaluation of WF during transportation becomes essential to improve the efficiency of irrigated agriculture. This study aims at building an improved WF model to understand how much WF is produced due to water diversion and how much crop WF increases during the transfer. The proposed model is then used to calculate the WF of four major crops in five provinces along China's South-North Water Transfer Project in two steps. First, the WF of the water transfer project (WFeng) is assessed in a supply chain analysis method. Second, a WF allocation model is built to distribute the project WF for each crop/province. The results show that the evaporation and seepage are the main sources of WFeng. Out of five provinces, two namely Tianjin and Hebei present higher WFblue and WF increase. A positive correlation between water diversion distance and crop WF increase is noted. Among the four crops, cotton presents higher WFblue and WF increase. The crops with higher WFblue tend to be more strongly influenced by the water diversion project, due to high irrigation water dependency. This analysis may expand the WF concept from an evaporation-related term to a term reflecting crop biological processes and water consumption by artificial irrigation projects. Thus, it may serve as an indicator for optimizing future objectives and strategies associated to water resource planning in China and elsewhere. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Cold-water fishes and climate change in North America

    Science.gov (United States)

    J. E. Williams; Daniel Isaak; J. Imhof; D. A. Hendrickson; J. R. McMillan

    2015-01-01

    Trout, salmon, grayling and whitefishes (Salmonidae) are among the most ecologically and economically important fishes. They also are among the most vulnerable to global warming, and increasing drought, floods, and wildfires. In North America, salmonids occur from central Mexico northward along coastal regions and mountainous interiors to the Arctic Plains. A...

  7. Plutonium and americium in arctic waters, the North Sea and Scottish and Irish coastal zones

    DEFF Research Database (Denmark)

    Hallstadius, L.; Aarkrog, Asker; Dahlgaard, Henning

    1986-01-01

    of the Irish Sea) to Spitsbergen. 241Am found in Arctic waters probably originates from the decay of fallout 241Pu and, like Pu, tentatively has a residence time of the order of several years. Americium from Sellafield has an estimated mean residence time of 4–6 months in Scottish waters.......Plutonium and americium have been measured in surface waters of the Greenland and Barents Seas and in the northern North Sea from 1980 through 1984. Measurements in water and biota, Fucus, Mytilus and Patella, were carried out in North-English and Scottish waters in 1982 and Fucus samples were...... collected from the Irish coast in 1983. Fallout is found to dominate as a source of 239+240Pu north of latitude 65°N, while for 238Pu a substantial fraction originates from European nuclear fuel reprocessing facilities. The 238Pu/239+240Pu isotope ratio provides clear evidence of the transport of effluent...

  8. The significance of the north water polynya to arctic top predators.

    Science.gov (United States)

    Heide-Jørgensen, Mads Peter; Burt, Louise M; Hansen, Rikke Guldborg; Nielsen, Nynne Hjort; Rasmussen, Marianne; Fossette, Sabrina; Stern, Harry

    2013-09-01

    The North Water polynya (~76°N to 79°N and 70°W to 80°W) is known to be an important habitat for several species of marine mammals and sea birds. For millennia, it has provided the basis for subsistence hunting and human presence in the northernmost part of Baffin Bay. The abundance of air-breathing top predators also represents a potential source of nutrient cycling that maintains primary production. In this study, aerial surveys conducted in 2009 and 2010 were used for the first time to map the distribution and estimate the abundance of top predators during spring in the North Water. Belugas (Delphinapterus leucas) were not detected north of 77°20'N but were found along the coast of West Greenland and offshore in the middle of the North Water with an abundance estimated at 2245 (95 % CI 1811-2783). Narwhals (Monodon monoceros) were widely distributed on the eastern side of the North Water with an estimate of abundance of 7726 (3761-15 870). Walruses (Odobenus rosmarus) were found across the North Water over both shallow and deep (>500 m) water with an estimated abundance of 1499 (1077-2087). Bearded (Erignathus barbatus) and ringed seals (Phoca hispida) used the large floes of ice in the southeastern part of the North Water for hauling out. Most polar bears (Ursus maritimus) were detected in the southern part of the polynya. The abundances of bearded and ringed seals were 6016 (3322-10 893) and 9529 (5460-16 632), respectively, and that of polar bears was 60 (12-292). Three sea bird species were distributed along the Greenland coast (eiders, Somateria spp.), in leads and cracks close to the Greenland coast (little auks, Alle alle) or widely in open water (thick-billed guillemots, Uria lomvia).

  9. Water-resources activities, North Dakota District, fiscal year 1994-95

    Science.gov (United States)

    Martin, Cathy R.

    1995-01-01

    The mission of the U.S. Geological Survey, Water Resources Division, is to provide the hydrologic information and understanding needed for the optimum utilization and management of the Nation's water resources for the overall benefit of the people of the United States. This report describes water-resources activities of the Water Resources Division in North Dakota in fiscal year 1994. Information on each project includes objectives, approach, progress, plans for fiscal year 1995, and completed and planned report products.

  10. The relationship between phytoplankton distribution and water column characteristics in North West European shelf sea waters.

    Science.gov (United States)

    Fehling, Johanna; Davidson, Keith; Bolch, Christopher J S; Brand, Tim D; Narayanaswamy, Bhavani E

    2012-01-01

    Phytoplankton underpin the marine food web in shelf seas, with some species having properties that are harmful to human health and coastal aquaculture. Pressures such as climate change and anthropogenic nutrient input are hypothesized to influence phytoplankton community composition and distribution. Yet the primary environmental drivers in shelf seas are poorly understood. To begin to address this in North Western European waters, the phytoplankton community composition was assessed in light of measured physical and chemical drivers during the "Ellett Line" cruise of autumn 2001 across the Scottish Continental shelf and into adjacent open Atlantic waters. Spatial variability existed in both phytoplankton and environmental conditions, with clear differences not only between on and off shelf stations but also between different on shelf locations. Temperature/salinity plots demonstrated different water masses existed in the region. In turn, principal component analysis (PCA), of the measured environmental conditions (temperature, salinity, water density and inorganic nutrient concentrations) clearly discriminated between shelf and oceanic stations on the basis of DIN:DSi ratio that was correlated with both salinity and temperature. Discrimination between shelf stations was also related to this ratio, but also the concentration of DIN and DSi. The phytoplankton community was diatom dominated, with multidimensional scaling (MDS) demonstrating spatial variability in its composition. Redundancy analysis (RDA) was used to investigate the link between environment and the phytoplankton community. This demonstrated a significant relationship between community composition and water mass as indexed by salinity (whole community), and both salinity and DIN:DSi (diatoms alone). Diatoms of the Pseudo-nitzschia seriata group occurred at densities potentially harmful to shellfish aquaculture, with the potential for toxicity being elevated by the likelihood of DSi limitation of

  11. The relationship between phytoplankton distribution and water column characteristics in North West European shelf sea waters.

    Directory of Open Access Journals (Sweden)

    Johanna Fehling

    Full Text Available Phytoplankton underpin the marine food web in shelf seas, with some species having properties that are harmful to human health and coastal aquaculture. Pressures such as climate change and anthropogenic nutrient input are hypothesized to influence phytoplankton community composition and distribution. Yet the primary environmental drivers in shelf seas are poorly understood. To begin to address this in North Western European waters, the phytoplankton community composition was assessed in light of measured physical and chemical drivers during the "Ellett Line" cruise of autumn 2001 across the Scottish Continental shelf and into adjacent open Atlantic waters. Spatial variability existed in both phytoplankton and environmental conditions, with clear differences not only between on and off shelf stations but also between different on shelf locations. Temperature/salinity plots demonstrated different water masses existed in the region. In turn, principal component analysis (PCA, of the measured environmental conditions (temperature, salinity, water density and inorganic nutrient concentrations clearly discriminated between shelf and oceanic stations on the basis of DIN:DSi ratio that was correlated with both salinity and temperature. Discrimination between shelf stations was also related to this ratio, but also the concentration of DIN and DSi. The phytoplankton community was diatom dominated, with multidimensional scaling (MDS demonstrating spatial variability in its composition. Redundancy analysis (RDA was used to investigate the link between environment and the phytoplankton community. This demonstrated a significant relationship between community composition and water mass as indexed by salinity (whole community, and both salinity and DIN:DSi (diatoms alone. Diatoms of the Pseudo-nitzschia seriata group occurred at densities potentially harmful to shellfish aquaculture, with the potential for toxicity being elevated by the likelihood of DSi

  12. Sustainability of Drinking Water Supply Projects in Rural of North ...

    African Journals Online (AJOL)

    Background: Safe water supply coverage in the rural areas of Ethiopia is very marginal. The coverage still remains very low because of limited progress in water supply activities in these areas. Factors affecting the continued use of the outcome of water supply projects in the background of limited resources are not well ...

  13. Assessment of water quality of Obueyinomo River, Ovia North East ...

    African Journals Online (AJOL)

    This study was carried out to assess the water quality of Obueyinomo River using water quality index. Ambient and water temperatures were determined in-situ while total dissolved solids (TDS), total suspended solids (TSS), total solids (TS), turbidity, pH, conductivity, hardness, alkalinity, dissolved Oxygen (DO), ...

  14. Addressing water challenges on the North China Plain with hydroeconomic optimization

    DEFF Research Database (Denmark)

    Martinsen, Grith; Davidsen, Claus; Bauer-Gottwein, Peter

    With its diverse environment and large population, China is facing water resource challenges, both in terms of quantity and quality. The North China Plain (NCP) is one of the world’s most densely populated areas and one of the highly water stressed regions of China. It counts for 15% of the Chinese...... GDP, from both industry and agriculture. The high water demand for especially irrigation has caused decade long groundwater depletion, ecosystem deterioration and high pollution loads in the region. To alleviate the water crisis of Northern China the South-North Water Transfer Project has been....... This enables the representation of links and interactions between the water resources system and the power system of Northern China. The multi-reservoir LP model is formulated as a flow path based optimization, which tracks each water delivery from supplier to receiver. This is useful for the exploration...

  15. Roadmap for sustainable water resources in southwestern North America.

    Science.gov (United States)

    Gleick, Peter H

    2010-12-14

    The management of water resources in arid and semiarid areas has long been a challenge, from ancient Mesopotamia to the modern southwestern United States. As our understanding of the hydrological and climatological cycles has improved, and our ability to manipulate the hydrologic cycle has increased, so too have the challenges associated with managing a limited natural resource for a growing population. Modern civilization has made remarkable progress in water management in the past few centuries. Burgeoning cities now survive in desert regions, relying on a mix of simple and complex technologies and management systems to bring adequate water and remove wastewater. These systems have permitted agricultural production and urban concentrations to expand in regions previously thought to have inadequate moisture. However, evidence is also mounting that our current management and use of water is unsustainable. Physical, economic, and ecological limits constrain the development of new supplies and additional water withdrawals, even in regions not previously thought vulnerable to water constraints. New kinds of limits are forcing water managers and policy makers to rethink previous assumptions about population, technology, regional planning, and forms of development. In addition, new threats, especially the challenges posed by climatic changes, are now apparent. Sustainably managing and using water in arid and semiarid regions such as the southwestern United States will require new thinking about water in an interdisciplinary and integrated way. The good news is that a wide range of options suggest a roadmap for sustainable water management and use in the coming decades.

  16. Roadmap for sustainable water resources in southwestern North America

    Science.gov (United States)

    Gleick, Peter H.

    2010-01-01

    The management of water resources in arid and semiarid areas has long been a challenge, from ancient Mesopotamia to the modern southwestern United States. As our understanding of the hydrological and climatological cycles has improved, and our ability to manipulate the hydrologic cycle has increased, so too have the challenges associated with managing a limited natural resource for a growing population. Modern civilization has made remarkable progress in water management in the past few centuries. Burgeoning cities now survive in desert regions, relying on a mix of simple and complex technologies and management systems to bring adequate water and remove wastewater. These systems have permitted agricultural production and urban concentrations to expand in regions previously thought to have inadequate moisture. However, evidence is also mounting that our current management and use of water is unsustainable. Physical, economic, and ecological limits constrain the development of new supplies and additional water withdrawals, even in regions not previously thought vulnerable to water constraints. New kinds of limits are forcing water managers and policy makers to rethink previous assumptions about population, technology, regional planning, and forms of development. In addition, new threats, especially the challenges posed by climatic changes, are now apparent. Sustainably managing and using water in arid and semiarid regions such as the southwestern United States will require new thinking about water in an interdisciplinary and integrated way. The good news is that a wide range of options suggest a roadmap for sustainable water management and use in the coming decades. PMID:21149725

  17. Importance of regular testing of private drinking water systems in North Carolina.

    Science.gov (United States)

    Barros, Nirmalla; Rudo, Kenneth; Shehee, Mina

    2014-01-01

    North Carolina state laws require that water from newly constructed private wells be tested for chemical and microbiologic contamination, but existing wells are not routinely tested. This commentary highlights the importance of regular testing of all private sources of drinking water.

  18. Radioactivity in the Rhine - the LWA controls North-Rhine-Westphalian surface waters

    International Nuclear Information System (INIS)

    Kloes, H.

    1985-01-01

    The State Authority for Water and Waste Management has been testing the Rhine and the most important surface waters of North-Rhine Westphalia for radioactivity ever since it was founded in 1969. Radiation exposure of human beings who use Rhine water is far below the permitted maximum values of the 'radiation protection ordinance'. Pollution of the Rhine and its tributaries in North-Rhine Westphalia with artificial radioactive substances has even slightly decreased over the past ten years; pollution of the River Emscher with natural radioactive material remained high, the Lippe River now contains less radium than before. (orig./PW) [de

  19. Water shortage and needs for wastewater re-use in the north China.

    Science.gov (United States)

    Wang, X C; Jin, P K

    2006-01-01

    This paper analyses the present condition of the water shortage in north China where annual rainfall is low and per capita water resource is below the line of regular water stress, or even the line of absolute water scarcity. Of the available water resources, the percentge of water withdrawal in all the north basins is high--the Yellow River and Huai River basins being greater than 80% and the Hai River basin mainly depending on interbasin water transfer. Over-withdrawal of water also results in serious water environmental problems including "flow cut-off" of the Yellow River main channel and water pollution of many rivers. The paper also analyses the potential of wastewater as a resource and the demand for treated wastewater re-use. In north China, due to low rainfall and high potential evaporation environmental re-use, gardening, afforestation, etc. is considered as the main usage of the treated wastewater. Considering the economic restrictions in the less developed area, a decentralised system can be taken as an important option in formulating water re-use strategies.

  20. Quantifying potential yield and water-limited yield of summer maize in the North China Plain

    Science.gov (United States)

    Jiang, Mingnuo; Liu, Chaoshun; Chen, Maosi

    2017-09-01

    The North China Plain is a major food producing region in China, and climate change could pose a threat to food production in the region. Based on China Meteorological Forcing Dataset, simulating the growth of summer maize in North China Plain from 1979 to 2015 with the regional implementation of crop growth model WOFOST. The results showed that the model can reflect the potential yield and water-limited yield of Summer Maize in North China Plain through the calibration and validation of WOFOST model. After the regional implementation of model, combined with the reanalysis data, the model can better reproduce the regional history of summer maize yield in the North China Plain. The yield gap in Southeastern Beijing, southern Tianjin, southern Hebei province, Northwestern Shandong province is significant, these means the water condition is the main factor to summer maize yield in these regions.

  1. Water stewardship and North America's food and beverage companies: a case study in corporate sustainability

    OpenAIRE

    Jones, Peter; Comfort, Daphne; Hillier, David

    2016-01-01

    The aim of this paper is to provide an exploratory review of the extent to which the leading North American food and beverage companies are publicly addressing water stewardship. The findings reveal that the vast majority of the selected companies address a number of elements concerning water stewardship as part of their more general approach to CSR. However, corporate commitments to water stewardship can be interpreted as being driven as much by business imperatives as by any specific concer...

  2. 75 FR 7590 - North Carolina Waters Along the Entire Length of New Hanover County; Final No Discharge Zone...

    Science.gov (United States)

    2010-02-22

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9114-9] North Carolina Waters Along the Entire Length of New... County, North Carolina, Coastal Waters as a No Discharge Zone (NDZ). One comment in favor of this designation was received. Specifically, these waters extend three nautical miles (nm) into the Atlantic Ocean...

  3. 2006 Southwest Florida Water Management District (SWFWMD) Lidar: North District

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set is one component of a digital terrain model (DTM) for the Southwest Florida Water Management District's FY2006 Digital Orthophoto (B089) and LiDAR...

  4. Water Use and Management in the Bakken Shale Oil Play in North Dakota.

    Science.gov (United States)

    Horner, R M; Harto, C B; Jackson, R B; Lowry, E R; Brandt, A R; Yeskoo, T W; Murphy, D J; Clark, C E

    2016-03-15

    Oil and natural gas development in the Bakken shale play of North Dakota has grown substantially since 2008. This study provides a comprehensive overview and analysis of water quantity and management impacts from this development by (1) estimating water demand for hydraulic fracturing in the Bakken from 2008 to 2012; (2) compiling volume estimates for maintenance water, or brine dilution water; (3) calculating water intensities normalized by the amount of oil produced, or estimated ultimate recovery (EUR); (4) estimating domestic water demand associated with the large oil services population; (5) analyzing the change in wastewater volumes from 2005 to 2012; and (6) examining existing water sources used to meet demand. Water use for hydraulic fracturing in the North Dakota Bakken grew 5-fold from 770 million gallons in 2008 to 4.3 billion gallons in 2012. First-year wastewater volumes grew in parallel, from an annual average of 1,135,000 gallons per well in 2008 to 2,905,000 gallons in 2012, exceeding the mean volume of water used in hydraulic fracturing and surpassing typical 4-year wastewater totals for the Barnett, Denver, and Marcellus basins. Surprisingly, domestic water demand from the temporary oilfield services population in the region may be comparable to the regional water demand from hydraulic fracturing activities. Existing groundwater resources are inadequate to meet the demand for hydraulic fracturing, but there appear to be adequate surface water resources, provided that access is available.

  5. Graphical user interface for accessing water-quality data for the Devils Lake basin, North Dakota

    Science.gov (United States)

    Ryberg, Karen R.; Damschen, William C.; Vecchia, Aldo V.

    2005-01-01

    Maintaining the quality of surface waters in the Devils Lake Basin in North Dakota is important for protecting the agricultural resources, fisheries, waterfowl and wildlife habitat, and recreational value of the basin. The U.S. Geological Survey, in cooperation with local, State, and Federal agencies, has collected and analyzed water-quality samples from streams and lakes in the basin since 1957, and the North Dakota Department of Health has collected and analyzed water-quality samples from lakes in the basin since 2001. Because water-quality data for the basin are important for numerous reasons, a graphical user interface was developed to access, view, and download the historical data for the basin. The interface is a web-based application that is available to the public and includes data through water year 2003. The interface will be updated periodically to include data for subsequent years.

  6. Deep water formation in the North Pacific and deglacial CO2 rise

    Science.gov (United States)

    Rae, James W. B.; Sarnthein, Michael; Foster, Gavin L.; Ridgwell, Andy; Grootes, Pieter M.; Elliott, Tim

    2014-06-01

    Deep water formation in the North Atlantic and Southern Ocean is widely thought to influence deglacial CO2 rise and climate change; here we suggest that deep water formation in the North Pacific may also play an important role. We present paired radiocarbon and boron isotope data from foraminifera from sediment core MD02-2489 at 3640 m in the North East Pacific. These show a pronounced excursion during Heinrich Stadial 1, with benthic-planktic radiocarbon offsets dropping to 350 years, accompanied by a decrease in benthic δ11B. We suggest that this is driven by the onset of deep convection in the North Pacific, which mixes young shallow waters to depth, old deep waters to the surface, and low-pH water from intermediate depths into the deep ocean. This deep water formation event was likely driven by an increase in surface salinity, due to subdued atmospheric/monsoonal freshwater flux during Heinrich Stadial 1. The ability of North Pacific Deep Water (NPDW) formation to explain the excursions seen in our data is demonstrated in a series of experiments with an intermediate complexity Earth system model. These experiments also show that breakdown of stratification in the North Pacific leads to a rapid 30 ppm increase in atmospheric CO2, along with decreases in atmospheric δ13C and Δ14C, consistent with observations of the early deglaciation. Our inference of deep water formation is based mainly on results from a single sediment core, and our boron isotope data are unavoidably sparse in the key HS1 interval, so this hypothesis merits further testing. However, we note that there is independent support for breakdown of stratification in shallower waters during this period, including a minimum in δ15N, younging in intermediate water 14C, and regional warming. We also re-evaluate deglacial changes in North Pacific productivity and carbonate preservation in light of our new data and suggest that the regional pulse of export production observed during the B

  7. Influence of the South-North Water Diversion Project and the mitigation projects on the water quality of Han River.

    Science.gov (United States)

    Zhu, Y P; Zhang, H P; Chen, L; Zhao, J F

    2008-11-15

    Situated in the central part of China, the Han River Basin is undergoing rapid social and economic development with some human interventions to be made soon which will profoundly influence the water environment of the basin. The integrated MIKE 11 model system comprising of a rainfall-runoff model (NAM), a non-point load evaluation model (LOAD), a hydrodynamic model (MIKE 11 HD) and a water quality model (ECOLab) was applied to investigate the impact of the Middle Route of the South-North Water Diversion Project on the Han River and the effectiveness of the 2 proposed mitigation projects, the 22 wastewater treatment plants (WWTPs) and the Yangtze-Han Water Diversion Project. The study concludes that business as usual will lead to a continuing rapid deterioration of the water quality of the Han River. Implementation of the Middle Route of the South-North Water Diversion Project in 2010 will bring disastrous consequence in the form of the remarkably elevated pollution level and high risk of algae bloom in the middle and lower reaches. The proposed WWTPs will merely lower the pollution level in the reach by around 10%, while the Yangtze-Han Water Diversion Project can significantly improve the water quality in the downstream 200-km reach. The results reveal that serious water quality problem will emerge in the middle reach between Xiangfan and Qianjiang in the future. Implementation of the South-North Water Diversion Project (phase II) in 2030 will further exacerbate the problem. In order to effectively improve the water quality of the Han River, it is suggested that nutrient removal processes should be adopted in the proposed WWTPs, and the pollution load from the non-point sources, especially the load from the upstream Henan Province, should be effectively controlled.

  8. Long-Term Ecological Research (LTER) Climate Data with Water Parameters from North Inlet Meteorological Station, North Inlet Estuary, Georgetown, South Carolina: 1982-1996.

    Data.gov (United States)

    Baruch Institute for Marine and Coastal Sciences, Univ of South Carolina — Meteorological data with water parameters were collected on an hourly basis from June 3, 1982 through April 29, 1996 in the North Inlet Estuary, Georgetown County,...

  9. Determination of the water quality index ratings of water in the Mpumalanga and North West provinces, South Africa

    Science.gov (United States)

    Wanda, Elijah M. M.; Mamba, Bhekie B.; Msagati, Titus A. M.

    2016-04-01

    This study reports on the water quality index (WQI) of wastewater and drinking water in the Mpumalanga and North West provinces of South Africa. The WQI is one of the most effective tools available to water sustainability researchers, because it provides an easily intelligible ranking of water quality on a rating scale from 0 to 100, based on the ascription of different weightings to several different parameters. In this study the WQI index ratings of wastewater and drinking water samples were computed according to the levels of pH, electrical conductivity (EC), biochemical oxygen demand (BOD), E. coli, temperature, turbidity and nutrients (nitrogen and phosphates) found in water samples collected from the two provinces between June and December, 2014. This study isolated three groups of WQ-rated waters, namely: fair (with a WQI range = 32.87-38.54%), medium (with a WQI range = 56.54-69.77%) and good (with a WQI range = 71.69-81.63%). More specifically, 23%, 23% and 54% of the sampled sites registered waters with fair, medium and good WQ ratings respectively. None of the sites sampled during the entire period of the project registered excellent or very good water quality ratings, which would ordinarily indicate that no treatment is required to make it fit for human consumption. Nevertheless, the results obtained by the Eerstehoek and Schoemansville water treatment plants in Mpumalanga and North West provinces, respectively, suggest that substantial improvement in the quality of water samples is possible, since the WQI values for all of the treated samples were higher than those for raw water. Presence of high levels of BOD, low levels of dissolved oxygen (DO), E. coli, nitrates and phosphates especially in raw water samples greatly affected their overall WQ ratings. It is recommended that a point-of-use system should be introduced to treat water intended for domestic purposes in the clean-water-deprived areas.

  10. Quality of surface-water supplies in the Triangle area of North Carolina, water years 2010-11

    Science.gov (United States)

    Pfeifle, C.A.; Cain, J.L.; Rasmussen, R.B.

    2016-02-02

    Surface-water supplies are important sources of drinking water for residents in the Triangle area of North Carolina, which is located within the upper Cape Fear and Neuse River Basins. Since 1988, the U.S. Geological Survey and a consortium of local governments have tracked water-quality conditions and trends in several of the area’s water-supply lakes and streams. This report summarizes data collected through this cooperative effort, known as the Triangle Area Water Supply Monitoring Project, during October 2009 through September 2010 (water year 2010) and October 2010 through September 2011 (water year 2011). Major findings for this data-collection effort include Annual precipitation was approximately 4 percent above the long-term mean (average) annual precipitation in 2010 and approximately 6 percent below the long-term mean in 2011.

  11. Simulating future water temperatures in the North Santiam River, Oregon

    Science.gov (United States)

    Buccola, Norman; Risley, John C.; Rounds, Stewart A.

    2016-01-01

    A previously calibrated two-dimensional hydrodynamic and water-quality model (CE-QUAL-W2) of Detroit Lake in western Oregon was used in conjunction with inflows derived from Precipitation-Runoff Modeling System (PRMS) hydrologic models to examine in-lake and downstream water temperature effects under future climate conditions. Current and hypothetical operations and structures at Detroit Dam were imposed on boundary conditions derived from downscaled General Circulation Models in base (1990–1999) and future (2059–2068) periods. Compared with the base period, future air temperatures were about 2 °C warmer year-round. Higher air temperature and lower precipitation under the future period resulted in a 23% reduction in mean annual PRMS-simulated discharge and a 1 °C increase in mean annual estimated stream temperatures flowing into the lake compared to the base period. Simulations incorporating current operational rules and minimum release rates at Detroit Dam to support downstream habitat, irrigation, and water supply during key times of year resulted in lower future lake levels. That scenario results in a lake level that is above the dam’s spillway crest only about half as many days in the future compared to historical frequencies. Managing temperature downstream of Detroit Dam depends on the ability to blend warmer water from the lake’s surface with cooler water from deep in the lake, and the spillway is an important release point near the lake’s surface. Annual average in-lake and release temperatures from Detroit Lake warmed 1.1 °C and 1.5 °C from base to future periods under present-day dam operational rules and fill schedules. Simulated dam operations such as beginning refill of the lake 30 days earlier or reducing minimum release rates (to keep more water in the lake to retain the use of the spillway) mitigated future warming to 0.4 and 0.9 °C below existing operational scenarios during the critical autumn spawning period for endangered

  12. Simulating future water temperatures in the North Santiam River, Oregon

    Science.gov (United States)

    Buccola, Norman L.; Risley, John C.; Rounds, Stewart A.

    2016-04-01

    A previously calibrated two-dimensional hydrodynamic and water-quality model (CE-QUAL-W2) of Detroit Lake in western Oregon was used in conjunction with inflows derived from Precipitation-Runoff Modeling System (PRMS) hydrologic models to examine in-lake and downstream water temperature effects under future climate conditions. Current and hypothetical operations and structures at Detroit Dam were imposed on boundary conditions derived from downscaled General Circulation Models in base (1990-1999) and future (2059-2068) periods. Compared with the base period, future air temperatures were about 2 °C warmer year-round. Higher air temperature and lower precipitation under the future period resulted in a 23% reduction in mean annual PRMS-simulated discharge and a 1 °C increase in mean annual estimated stream temperatures flowing into the lake compared to the base period. Simulations incorporating current operational rules and minimum release rates at Detroit Dam to support downstream habitat, irrigation, and water supply during key times of year resulted in lower future lake levels. That scenario results in a lake level that is above the dam's spillway crest only about half as many days in the future compared to historical frequencies. Managing temperature downstream of Detroit Dam depends on the ability to blend warmer water from the lake's surface with cooler water from deep in the lake, and the spillway is an important release point near the lake's surface. Annual average in-lake and release temperatures from Detroit Lake warmed 1.1 °C and 1.5 °C from base to future periods under present-day dam operational rules and fill schedules. Simulated dam operations such as beginning refill of the lake 30 days earlier or reducing minimum release rates (to keep more water in the lake to retain the use of the spillway) mitigated future warming to 0.4 and 0.9 °C below existing operational scenarios during the critical autumn spawning period for endangered salmonids. A

  13. The Contribution of Water Ice Clouds to the Water Cycle in the North Polar Region of Mars: Preliminary Analysis

    Science.gov (United States)

    Bass, D. S.; Tamppari, L. K.

    2000-01-01

    While it has long been known that Mars' north residual polar cap and the Martian regolith are significant sources of atmospheric water vapor, the amount of water vapor observed in the northern spring season by the Viking Mars Atmospheric Water Detector instrument (MAWD) cannot be attributed to cap and regolith sources alone. Kahn suggested that ice hazes may be the mechanism by which additional water is supplied to the Martian atmosphere. Additionally, a significant decrease in atmospheric water vapor was observed in the late northern summer that could not be correlated with the return of the cold seasonal C02 ice. While the detection of water ice clouds on Mars indicate that water exists in Mars' atmosphere in several different phases, the extent to which water ice clouds play a role in moving water through the Martian atmosphere remains uncertain. Work by Bass et. al. suggested that the time dependence of water ice cap seasonal variability and the increase in atmospheric water vapor depended on the polar cap center reaching 200K, the night time saturation temperature. Additionally, they demonstrated that a decrease in atmospheric water vapor may be attributed to deposition of water ice onto the surface of the polar cap; temperatures were still too warm at this time in the summer for the deposition of carbon dioxide. However, whether water ice clouds contribute significantly to this variability is unknown. Additional information is contained in original extended abstract.

  14. Water mass analysis for the U.S. GEOTRACES (GA03) North Atlantic sections

    Science.gov (United States)

    Jenkins, W. J.; Smethie, W. M.; Boyle, E. A.; Cutter, G. A.

    2015-06-01

    We present the distributions of hydrographic properties (potential temperature, salinity, dissolved oxygen, and micromolar level inorganic macronutrients) along two sections occupied in the subtropical North Atlantic as part of the first U.S. GEOTRACES (GA03) survey during 2010 and 2011. The purpose of this work is to place subsequent papers in this special issue in a general context and to provide a framework in which the observed distributions of Trace Elements and Isotopes can be interpreted. Using these hydrographic properties we use a modified Optimum Multiparameter water mass analysis method to diagnose the relative contributions of various water types along the sections and rationalize their distributions. The water mass compositions appear largely consistent with what is understood from previous studies about the large scale circulation and ventilation of the North Atlantic, with perhaps one exception. We found that the North Atlantic Deep water both east and west of the Mid Atlantic Ridge is more strongly influenced by Iceland Scotland Overflow Water relative to Denmark Straits Overflow Water (about 3:1) than inferred from other tracer studies (typically 2:1). It remains unclear whether this is an artifact of our calculation or a real change in deep water composition in the decades between the determinations.

  15. North Pacific Acoustic Laboratory: Deep Water Acoustic Propagation in the Philippine Sea

    Science.gov (United States)

    2016-06-21

    Acoustic Laboratory: Deep Water Acoustic Propagation in the Philippine Sea 5b. GRANT NUMBER NOOO 14-12-1 -0226 5c. PROGRAM ELEMENT NUMBER 6...based on data from the 2009-20 I I NPAL Philippine Sea experiments funded by ONR Grant NOOO 14-08-1-0840 , Fourteen of these publi cations appeared in...North Pacific Acoustic Laboratory: Deep Water Acoustic Propagation in the Philippine Sea ONR Grant NOOO 14-12-1-0226 Period of Performance: 01

  16. Long-term hydrology and water quality of a drained pine plantation in North Carolina

    Science.gov (United States)

    D.M. Amatya; R.W. Skaggs

    2011-01-01

    Long-term data provide a basis for understanding natural variability, reducing uncertainty in model inputs and parameter estimation, and developing new hypotheses. This article evaluates 21 years (1988-2008) of hydrologic data and 17 years (1988-2005) of water quality data from a drained pine plantation in eastern North Carolina. The plantation age was 14 years at the...

  17. Water resources trends in Middle East and North Africa towards 2050

    NARCIS (Netherlands)

    Droogers, P.; Immerzeel, W.W.; Terink, W.; Hoogeveen, J.; Bierkens, M.F.P.; Beek, L.P.H. van; Debele, B.

    Changes in water resources availability can be expected as consequences of climate change, population growth, economic development and environmental considerations. A two-stage modeling approach is used to explore the impact of these changes in the Middle East and North Africa (MENA) region. An

  18. Irrigation and drainage management strategies to enhance cranberry production and optimize water use in North America

    Science.gov (United States)

    Recent funding, as well as technological and management changes, have led to important advances in irrigation and drainage strategies for the North American cranberry industry. This paper represents a synthesis of water management research on cranberry, as well as an introduction to a special issue ...

  19. Deep-water formation in the North Atlantic during the latest Cretaceous

    Science.gov (United States)

    Martin, E. E.; Rostami, M. A.; MacLeod, K. G.; Haynes, S.; Poulsen, C. J.; Vande Guchte, A.

    2017-12-01

    Global cooling during the late Campanian-Maastrichtian (78 - 66 Ma) has been linked to changes in ocean circulation. In the North Atlantic, both Northern Component (NCW) and Southern Component (SCW) Waters have been proposed as primary deep water sources in the Late Cretaceous. Neodymium (Nd) isotope records alone do not distinguish between these two alternatives because of similar initial ɛNd values. To provide additional resolution on deep water sources, we compiled an integrated dataset of Nd isotopes from fossil fish teeth, C and O isotopic records, and benthic foraminiferal assemblages from seven northeast (NE) and northwest (NW) North Atlantic DSDP, ODP and IODP sites with estimated paleodepths >2000 m. In the NE, deep water ɛNd values are -9.5 throughout the latest Cretaceous, while values at NW sites are slightly higher ( -8.5) in the Campanian and then decrease to -10 during the Maastrichtian. Although coverage is limited because many sites were below the CCD, distinct patterns occur in the stable isotopic data. NE δ13C values are 1.7‰ throughout while NW δ13C values increase from 1.2 ‰ in the Campanian to 1.9 ‰ in the Maastrichtian, and the increase is correlated with a shift to higher % benthic epifauna. These data suggest formation of oxygen-rich/nutrient-poor NCW in the NE Atlantic during the latest Cretaceous. Decreasing δ13C and increasing ɛNd values from north to south are consistent with flow of NCW into the NW Atlantic during the Campanian. In contrast, lower δ13C in the South Atlantic and ɛNd values that are similar at high northern and southern latitudes, but separated by regions with both higher and lower values, are inconsistent with flow of SCW into the North Atlantic. The shift to lower ɛNd values, higher δ13C values, and abundant epifauna in the NW Atlantic during the Maastrichtian may indicate formation of a proximal deep water mass analogous to modern Labrador Sea Water that introduced nonradiogenic ɛNd from weathering of

  20. Toward sustainable water use in North China Plain - Scenario analysis of water conservation strategies in a changing climate

    Science.gov (United States)

    He, X.; Qin, H.; Refsgaard, J. C.; Zheng, C.

    2016-12-01

    North China Plain (NCP), situated in the continental semi-arid climate region, is one of the most densely populated regions in the world, and contributes to over 1/10 of the Gross Domestic Product (GDP) in China. NCP is traditionally a water scarce area where precipitation equals to or less than ET. In recent years, due to rapid population and economic growth, and subsequently significantly larger water demand, the water crisis in this region has deepened. The surface water resources has run dry except for a few canals and reservoirs, and thus the water consumption of NCP is almost entirely dependent on groundwater. It is estimated that the groundwater table has declined at the rate of about 1 m/year in the past decades; therefore, sustainable water use in the NCP is of critical importance. In the present study, we explore the scale of the water scarcity problem in NCP as well as the possible water saving strategies to alleviate the crisis from a modeling approach. Water demand is extremely difficult to estimate due to the lack of actual data. To solve this problem, we use a System Dynamic model, where the resulted data are then used as groundwater pumping in a physically based, distributed and integrated hydrological model. Five scenarios are developed to analyze different water management perspectives: 1) Business as usual, 2) Agricultural water saving, 3) Domestic and industrial water saving, 4) Managed aquifer recharge using water leftover from the South-to-North Water Diversion Project, and 5) a combination of the above mentioned measures. The hydrological model will predict the overall water balance and water at different hydrological components for the period 2020-2050. Under each scenario, our study also accounts for dry, medium, and wet climate conditions. The results indicate if the current tendency continues, groundwater table will keep declining at the rate of about 1 m/year. Each single conservation measure will not be able to solve the water crisis on

  1. The role of the subtropical North Atlantic water cycle in recent US extreme precipitation events

    Science.gov (United States)

    Li, Laifang; Schmitt, Raymond W.; Ummenhofer, Caroline C.

    2018-02-01

    The role of the oceanic water cycle in the record-breaking 2015 warm-season precipitation in the US is analyzed. The extreme precipitation started in the Southern US in the spring and propagated northward to the Midwest and the Great Lakes in the summer of 2015. This seasonal evolution of precipitation anomalies represents a typical mode of variability of US warm-season precipitation. Analysis of the atmospheric moisture flux suggests that such a rainfall mode is associated with moisture export from the subtropical North Atlantic. In the spring, excessive precipitation in the Southern US is attributable to increased moisture flux from the northwestern portion of the subtropical North Atlantic. The North Atlantic moisture flux interacts with local soil moisture which enables the US Midwest to draw more moisture from the Gulf of Mexico in the summer. Further analysis shows that the relationship between the rainfall mode and the North Atlantic water cycle has become more significant in recent decades, indicating an increased likelihood of extremes like the 2015 case. Indeed, two record-high warm-season precipitation events, the 1993 and 2008 cases, both occurred in the more recent decades of the 66 year analysis period. The export of water from the North Atlantic leaves a marked surface salinity signature. The salinity signature appeared in the spring preceding all three extreme precipitation events analyzed in this study, i.e. a saltier-than-normal subtropical North Atlantic in spring followed by extreme Midwest precipitation in summer. Compared to the various sea surface temperature anomaly patterns among the 1993, 2008, and 2015 cases, the spatial distribution of salinity anomalies was much more consistent during these extreme flood years. Thus, our study suggests that preseason salinity patterns can be used for improved seasonal prediction of extreme precipitation in the Midwest.

  2. Climatic and oceanic forcing of new, net, and diatom production in the North Water

    Science.gov (United States)

    Tremblay, Jean-Eric; Gratton, Yves; Fauchot, Juliette; Price, Neil M.

    New, net, and diatom production in the North Water were estimated during May to July 1998 from in vitro measurements of nitrate uptake and mesoscale temporal changes in the inventories of nitrate, silicate, oxygen, and inorganic carbon (DIC). Sampling stations were divided into two domains according to the position of the dominant water types: the silicate-rich Arctic water (SRAW) and Baffin Bay Water (BBW). BBW dominated in the southeast and was associated with relatively shallow upper mixed layers (UMLs) and weak horizontal advection. A phytoplankton bloom started in late April in BBW and grew slowly over 7 weeks, during which time the build-up of particulate organic nitrogen and carbon accounted for ca. 80% of the nitrate and DIC deficit, respectively. Over half of the new production (1.37 g C m -2 d -1) during this period was attributed to wind-driven replenishment of nitrate in the euphotic zone. The bloom culminated when seasonally declining winds and rising temperatures severed the UML from the deep nutrient reservoir. The same change in weather induced ice melt, stratification, and bloom development in northern SRAW, which had previously been characterized by deep UMLs. Collectively, the results imply that the timing and magnitude of blooms in the North Water are controlled by a succession of oceanic and climatic forcings. New C production in the North Water during April to July (1.11 g C m -2 d -1) was an order of magnitude higher than in adjacent waters and up to 8 times higher than in the Northeast Water polynya. As much as 80% of this production was mediated by diatoms >5 μm, suggesting potentially high and efficient C transfer to the herbivorous food web and deep waters.

  3. First record of Lagocephalus laevigatus (Tetraodontiformes, Tetraodontidae) from Galician waters (north-west Spain), a northernmost occurrence in the north-east Atlantic Ocean.

    Science.gov (United States)

    Bañón, R; Santás, V

    2011-05-01

    The first record of the smooth puffer Lagocephalus laevigatus from Galician waters (north-west Spain) is reported. Three possible mechanisms of introduction of the specimen are considered: natural displacement, the aquarist trade and transport in ballast water. © 2011 The Authors. Journal of Fish Biology © 2011 The Fisheries Society of the British Isles.

  4. Assessing the viability of microorganisms in the ballast water of vessels transiting the North Atlantic Ocean.

    Science.gov (United States)

    Steichen, Jamie L; Quigg, Antonietta

    2015-12-15

    Testing phytoplankton viability within ballast tanks and receiving waters of ballast water discharge remain understudied. Potentially harmful dinoflagellates and diatoms are transported via ballast water to Galveston Bay, Texas (USA), home to three major ports: Houston, Texas City and Galveston. Ballast water from vessels transiting the North Atlantic Ocean was inoculated into treatments representing low and high salinity conditions similar to the Ports of Houston and Galveston respectively. Phytoplankton in ballast water growout experiments were deemed viable and showed growth in low and mid salinities with nutrient enrichment. Molecular methods identified several genera: Dinophysis, Gymnodinium, Gyrodinium, Heterocapsa, Peridinium, Scrippsiella, Chaetoceros and Nitzschia. These phytoplankton genera were previously identified in Galveston Bay except Scrippsiella. Phytoplankton, including those capable of forming harmful algal blooms leading to fish and shellfish kills, are transported to Galveston Bay via ballast water, and are viable when introduced to similar salinity conditions found in Galveston Bay ports. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Suspended-Sediment Budget for the North Santiam River Basin, Oregon, Water Years 2005-08

    Science.gov (United States)

    Bragg, Heather M.; Uhrich, Mark A.

    2010-01-01

    Significant Findings An analysis of sediment transport in the North Santiam River basin during water years 2005-08 indicated that: Two-thirds of sediment input to Detroit Lake originated in the upper North Santiam River subbasin. Two-thirds of the sediment transported past Geren Island originated in the Little North Santiam River subbasin. The highest annual suspended-sediment load at any of the monitoring stations was the result of a debris flow on November 6, 2006, on Mount Jefferson. About 86 percent of the total sediment input to Detroit Lake was trapped in the lake, whereas 14 percent was transported farther downstream. More than 80 percent of the sediment transport in the basin was in November, December, and January. The variance in the annual suspended-sediment loads was better explained by the magnitude of the annual peak streamflow than by the annual mean streamflow.

  6. Optimization and coordination of South-to-North Water Diversion supply chain with strategic customer behavior

    Directory of Open Access Journals (Sweden)

    Zhi-song Chen

    2012-12-01

    Full Text Available The South-to-North Water Diversion (SNWD Project is a significant engineering project meant to solve water shortage problems in North China. Faced with market operations management of the water diversion system, this study defined the supply chain system for the SNWD Project, considering the actual project conditions, built a decentralized decision model and a centralized decision model with strategic customer behavior (SCB using a floating pricing mechanism (FPM, and constructed a coordination mechanism via a revenue-sharing contract. The results suggest the following: (1 owing to water shortage supplements and the excess water sale policy provided by the FPM, the optimal ordering quantity of water resources is less than that without the FPM, and the optimal profits of the whole supply chain, supplier, and external distributor are higher than they would be without the FPM; (2 wholesale pricing and supplementary wholesale pricing with SCB are higher than those without SCB, and the optimal profits of the whole supply chain, supplier, and external distributor are higher than they would be without SCB; and (3 considering SCB and introducing the FPM help increase the optimal profits of the whole supply chain, supplier, and external distributor, and improve the efficiency of water resources usage.

  7. Bering Sea Nd isotope records of North Pacific Intermediate Water circulation

    Science.gov (United States)

    Rabbat, C.; Knudson, K. P.; Goldstein, S. L.

    2017-12-01

    North Pacific Intermediate Water (NPIW) is the primary water mass associated with Pacific meridional overturning circulation. While the relationship between Atlantic meridional overturning circulation and climate has been extensively studied, a lack of suitable sediment cores has limited past investigations of North Pacific climate and NPIW variability. Integrated Ocean Drilling Program Site U1342 (818 m water depth) on Bower's Ridge in the Bering Sea is located at a sensitive depth for detecting changes in NPIW, and it is the only available sub-arctic North Pacific site that offers long, continuous core recovery, relatively high sedimentation rates, excellent foraminifera preservation, and a well-constrained age model over multiple glacial-interglacial cycles. Previous work at Site U1342 from Knudson and Ravelo (2015), using non-quantitative circulation proxies, provides evidence for enhanced NPIW formation during extreme glacials associated with the closure of the Bering Strait and suggest that NPIW was formed locally within the Bering Sea. Our work builds on the potential importance of these results and applies more robust and potentially quantitative circulation proxies to constrain NPIW variability. Here, we present new records of NPIW circulation from Site U1342 based on Nd isotope analyses on fish debris and Fe-Mn encrusted foraminifera, which serve as semi-quantitative "water mass tracers." Weak Bering Sea NPIW formation and ventilation are reflected by relatively lower eNd values indicative of open subarctic North Pacific waters, which are presently predominant, whereas enhanced Bering Sea NPIW formation and ventilation are be reflected by relatively higher eNd values due to the input of Nd from regional volcanic rocks.

  8. Water Quality and Algal Data for the North Umpqua River Basin, Oregon, 2005

    Science.gov (United States)

    Tanner, Dwight Q.; Arnsberg, Andrew J.; Anderson, Chauncey W.; Carpenter, Kurt D.

    2006-01-01

    The upper North Umpqua River Basin has experienced a variety of water-quality problems since at least the early 1990's. Several reaches of the North Umpqua River are listed as water-quality limited under section 303(d) of the Clean Water Act. Diamond Lake, a eutrophic lake that is an important source of water and nutrients to the upper North Umpqua River, is also listed as a water-quality limited waterbody (pH, nuisance algae). A draft Total Maximum Daily Load (TMDL) was proposed for various parameters and is expected to be adopted in full in 2006. Diamond Lake has supported potentially toxic blue-green algae blooms since 2001 that have resulted in closures to recreational water contact and impacts to the local economy. Increased populations of the invasive tui chub fish are reportedly responsible, because they feed on zooplankton that would otherwise control the algal blooms. The Final Environmental Impact Statement (FEIS) for the Diamond Lake Restoration Project advocates reduced fish biomass in Diamond Lake in 2006 as the preferred alternative. A restoration project scheduled to reduce fish biomass for the lake includes a significant water-level drawdown that began in January 2006. After the drawdown of Diamond Lake, the fish toxicant rotenone was applied to eradicate the tui chub. The lake will be refilled and restocked with game fish in 2007. Winter exports of nutrients from Diamond Lake during the restoration project could affect the summer trophic status of the North Umpqua River if retention and recycling in Lemolo Lake are significant. The FEIS includes comprehensive monitoring to assess the water quality of the restored Diamond Lake and the effects of that restoration downstream. One component of the monitoring is the collection of baseline data, in order to observe changes in the river's water quality and algal conditions resulting from the restoration of Diamond Lake. During July 2005, the USGS, in cooperation with Douglas County, performed a synoptic

  9. Walrus history around the North Water: Human-animal relations in a long-term perspective.

    Science.gov (United States)

    Gotfredsen, Anne Birgitte; Appelt, Martin; Hastrup, Kirsten

    2018-04-01

    This article highlights the relationship between walruses and humans in and around the North Water polynya in a long-term perspective. The present study draws on a combination of biological, archaeological, archaeo-zoological, historical, and ethnographic sources covering the period from the 8th century AD to the late 20th century. The study demonstrates that the walrus was an important resource of meat, blubber, and other products throughout all the studied periods, if always supplemented by other kinds of game. It is suggested that walrus distribution and behaviour, as well as hunting strategies and technologies historically constituted a powerful component not only in forming human action and social life in the region but also in serving as an imaginative resource. It is further argued that the walrus and the walrus hunt still play a significant role in the present community living on the edge of the North Water, even if the hunt is increasingly circumscribed due to changing ice conditions.

  10. Analysis of Demersal Fish Schooling Distribution in Tarakan Waters North Borneo by Using Hidroacoustic Method

    OpenAIRE

    ', Susilawati; Mulyadi, Aras; ', Mubarak

    2015-01-01

    This research is aimed to determine the distribution of demersal fish schooling and the relation between demersal fish schooling and temperature, salinity and depth of water by using hydroacoustic method. The research was held in August 2014 at the Research Institute of Marine Fisheries Laboratory of Muara Baru, North Jakarta. This research used hydroacoustic method with acoustic descriptor techniques. The amount of fish schooling was obtained by digitization and integration, the values of in...

  11. Hierarchical biodiversity and environment impact assessment of South-to-North Water Diversion Project of China

    OpenAIRE

    Youhua Chen

    2013-01-01

    In this brief review, the potential environmental and biodiversity impact of South-to-North Water Diversion (SNWD) project in China on regional environments was assessed. I used the hierarchical environmental impact assessment to classify the possible impacts into three orders caused by the construction of SNWD and then presented the current research advances on each order of the impacts. Further impact assessments should be reinforced during the construction period of SNDW project for the su...

  12. Hydrological and Farming System Impacts of Agricultural Water Management Interventions in North Gujarat

    OpenAIRE

    Singh, O.P.

    2013-01-01

    Groundwater over-exploitation is a common phenomenon in many arid and semi arid regions of the world. Within India, north Gujarat is one of such intensively exploited regions. Groundwater supports irrigated crop production and intensive dairy farming in the region. Well irrigation is critical to the region’s rural economy and livelihoods. The overall objective of the study was to examine the water demand management interventions on farming system, livelihood patterns, food and nutritional s...

  13. Managing Injected Water Composition To Improve Oil Recovery: A Case Study of North Sea Chalk Reservoirs

    DEFF Research Database (Denmark)

    Zahid, Adeel; Shapiro, Alexander; Stenby, Erling Halfdan

    2012-01-01

    imbibition, which has been applied in most of the previous studies. Two different flooding schemes (with and without aging) were used for flooding North Sea reservoir chalk samples. For comparison, two tests were also carried out with Stevns Klint core plugs. The flooding tests were carried out...... composition but also the formation water composition affected the oil recovery at high temperatures from the Stevns Klint chalk rock....

  14. Four Years of North Pacific Mode Water Evolution: A Fukushima Tracer Perspective

    Science.gov (United States)

    Macdonald, Alison M.; Yoshida, Sachiko; Pike, Steven; Buesseler, Ken O.; Rypina, Irina I.; Jayne, Steven

    2017-04-01

    Here we presents the results of a investigation which uses the tracer information provided by the 2011 direct ocean release of radio-isotopes, (137Cs, 30-year half-life and 134Cs, 2-year half-life) from the Fukushima Daiichi nuclear power plant to better understand the pathways, mixing and transport of water in the North Pacific Ocean. The main focus is the analysis of cesium observations obtained from the spring 2015 CLIVAR/GO-SHIP occupation of the P16N line in the eastern North Pacific. Nearly four hundred 20 L radionuclide samples were obtained on this cruise between 29 April and 26 June 2015 covering the 152°W line from 3°N to the Alaskan Shelf off Kodiak (56.4°N), crossing the Alaska Gyre at 55°N and making a short (200 nm) line extending from the outer edge of U.S. EEZ coming into Seattle, just to the south of the Canadian border and Line-P. Samples include both profiles from the surface to 1000 m and surface/subsurface pairs that provide an average 1° latitude spacing along 152°W. A clear Fukushima signal is apparent from the surface down to 400 m. The core signal lies at between 0-200 m at about 40°N where Subtropical Mode Water density water outcrops. The densest waters with Fukushima isotopes lie at 440 m in the bottom density range of Dense-Central Mode Water. There is a weak, but detectable signal in the Alaska Current to the north off both Kodiak and Sitka. The deepest detectable 137Cs (weapon's testing) signals are found at and to the north of 45°N at 900-1000 m. There is detectable, background level 137Cs as far south as 3°N, but as of spring 2015 the southernmost 134C signal was found above 200 m at 30°N. This horizontal and vertical pattern of Fukushima radionuclides traces the path of mode waters from their formation regions in the western North Pacific to their outcrop in eastern basin over the four years since their release.

  15. Tritium and radiocarbon in the western North Pacific waters: post-Fukushima situation.

    Science.gov (United States)

    Kaizer, Jakub; Aoyama, Michio; Kumamoto, Yuichiro; Molnár, Mihály; Palcsu, László; Povinec, Pavel P

    2018-04-01

    Impact of the Fukushima Dai-ichi Nuclear Power Plant (FNPP1) accident on tritium ( 3 H) and radiocarbon ( 14 C) levels in the water column of the western North Pacific Ocean in winter 2012 is evaluated and compared with radiocesium ( 134,137 Cs) data collected for the same region. Tritium concentrations in surface seawater, varying between 0.4 and 2.0 TU (47.2-236 Bq m -3 ), follow the Fukushima radiocesium trend, however, some differences in the vertical profiles were observed, namely in depths of 50-400 m. No correlation was visible in the case of 14 C, whose surface Δ 14 C levels raised from negative values (about -40‰) in the northern part of transect, to positive values (∼68‰) near the equator. Homogenously mixed 14 C levels in the subsurface layers were observed at all stations. Sixteen surface (from 30 in total) and 6 water profile (from 7) stations were affected by the Fukushima tritium. Surface and vertical profile data together with the calculated water column inventories indicate that the total amount of the FNPP1-derived tritium deposited to the western North Pacific Ocean was 0.7 ± 0.3 PBq. No clear impact of the Fukushima accident on 14 C levels in the western North Pacific was observed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Plutonium and americium in arctic waters, the North Sea and Scottish and Irish coastal zones

    DEFF Research Database (Denmark)

    Hallstadius, L.; Aarkrog, Asker; Dahlgaard, Henning

    1986-01-01

    collected from the Irish coast in 1983. Fallout is found to dominate as a source of 239+240Pu north of latitude 65°N, while for 238Pu a substantial fraction originates from European nuclear fuel reprocessing facilities. The 238Pu/239+240Pu isotope ratio provides clear evidence of the transport of effluent...... of the Irish Sea) to Spitsbergen. 241Am found in Arctic waters probably originates from the decay of fallout 241Pu and, like Pu, tentatively has a residence time of the order of several years. Americium from Sellafield has an estimated mean residence time of 4–6 months in Scottish waters....

  17. Water and water-borne diseases in North Masaba District, kenya ...

    African Journals Online (AJOL)

    ... consuming the water. There is also need for more research to establish why some of the POU interventions fail to provide safe water even though it is known that such methods are very effective in microbial decontamination. Key words: Point of use (POU) intervention, biosand filtration, chlorination, boiling, water quality ...

  18. North Atlantic deep water formation and AMOC in CMIP5 models

    Science.gov (United States)

    Heuzé, Céline

    2017-07-01

    Deep water formation in climate models is indicative of their ability to simulate future ocean circulation, carbon and heat uptake, and sea level rise. Present-day temperature, salinity, sea ice concentration and ocean transport in the North Atlantic subpolar gyre and Nordic Seas from 23 CMIP5 (Climate Model Intercomparison Project, phase 5) models are compared with observations to assess the biases, causes and consequences of North Atlantic deep convection in models. The majority of models convect too deep, over too large an area, too often and too far south. Deep convection occurs at the sea ice edge and is most realistic in models with accurate sea ice extent, mostly those using the CICE model. Half of the models convect in response to local cooling or salinification of the surface waters; only a third have a dynamic relationship between freshwater coming from the Arctic and deep convection. The models with the most intense deep convection have the warmest deep waters, due to a redistribution of heat through the water column. For the majority of models, the variability of the Atlantic Meridional Overturning Circulation (AMOC) is explained by the volumes of deep water produced in the subpolar gyre and Nordic Seas up to 2 years before. In turn, models with the strongest AMOC have the largest heat export to the Arctic. Understanding the dynamical drivers of deep convection and AMOC in models is hence key to realistically forecasting Arctic oceanic warming and its consequences for the global ocean circulation, cryosphere and marine life.

  19. Potential effects of climate change on surface-water quality in North America

    Science.gov (United States)

    Murdoch, Peter S.; Baron, Jill S.; Miller, T.L.

    2000-01-01

    Data from long-term ecosystem monitoring and research stations in North America and results of simulations made with interpretive models indicate that changes in climate (precipitation and temperature) can have a significant effect on the quality of surface waters. Changes in water quality during storms, snowmelt, and periods of elevated air temperature or drought can cause conditions that exceed thresholds of ecosystem tolerance and, thus, lead to water-quality degradation. If warming and changes in available moisture occur, water-quality changes will likely first occur during episodes of climate-induced stress, and in ecosystems where the factors controlling water quality are sensitive to climate variability. Continued climate stress would increase the frequency with which ecosystem thresholds are exceeded and thus lead to chronic water-quality changes. Management strategies in a warmer climate will therefore be needed that are based on local ecological thresholds rather than annual median condition. Changes in land use alter biological, physical, and chemical processes in watersheds and thus significantly alter the quality of adjacent surface waters; these direct human-caused changes complicate the interpretation of water-quality changes resulting from changes in climate, and can be both mitigated and exacerbated by climate change. A rigorous strategy for integrated, long-term monitoring of the ecological and human factors that control water quality is necessary to differentiate between actual and perceived climate effects, and to track the effectiveness of our environmental policies.

  20. Norwegian North Sea shale alteration by diffusion of water and ions

    Energy Technology Data Exchange (ETDEWEB)

    Rabe, Claudio [Pontificia Univ. Catolica do Rio de Janeiro, RJ (Brazil). Dept. de Engenharia Civil. Grupo de Tecnologia e Engenharia de Petroleo (GTEP)

    2004-07-01

    The present work has the objective of studying the changes in the physical-chemical properties of preserved shale samples when immersed in water and inorganic salts. Immersion equipment was developed in which shale samples are put in contact with fluid and special sensors measure the electrochemical properties of the fluid throughout the test. Offshore shale from Norwegian North Sea was used throughout the study. Calcium, potassium and sodium chlorides were used at 20 to 30% w/w. The results show that immersion of shale samples in salt solutions reduce, when compared with de-ionized water, the changes in chemical and electrochemical properties of solutions. The inorganic salts reduce the rock water content, the cation exchange capacity and the chemical composition of interstitial water. The salts avoid or reduce the solid dispersion and the superficial disintegration (author)

  1. Whales, Dolphins, and Porpoises of the Eastern North Pacific and Adjacent Arctic Waters: A Guide to Their Identification.

    Science.gov (United States)

    Leatherwood, Stephen; And Others

    This field guide is designed to permit observers to identify the cetaceans (whales, dolphins, and porpoises) they see in the waters of the eastern North Pacific, including the Gulf of California, Hawaii, and the western Arctic of North America. The animals described are grouped not by scientific relationships but by similarities in appearance in…

  2. Life cycle assessment of water supply alternatives in water-receiving areas of the South-to-North Water Diversion Project in China.

    Science.gov (United States)

    Li, Yi; Xiong, Wei; Zhang, Wenlong; Wang, Chao; Wang, Peifang

    2016-02-01

    To alleviate the water shortage in northern China, the Chinese government launched the world's largest water diversion project, the South-to-North Water Diversion Project (SNWDP), which delivers water from water-sufficient southern China to water-deficient northern China. However, an up-to-date study has not been conducted to determine whether the project is a favorable option to augment the water supply from an environmental perspective. The life cycle assessment (LCA) methodology integrated with a freshwater withdrawal category (FWI) was adopted to compare water supply alternatives in the water-receiving areas of the SNWDP, i.e., water diversion, wastewater reclamation and seawater desalination. Beijing, Tianjin, Jinan and Qingdao were studied as representative cities because they are the primary water-receiving areas of the SNWDP. The results revealed that the operation phase played the dominant role in all but one of the life cycle impact categories considered and contributed to more than 70% of their scores. For Beijing and Tianjin, receiving water through the SNWDP is the most sustainable option to augment the water supply. The result can be drawn in all of the water-receiving areas of the middle route of the SNWDP. For Jinan and Qingdao, the most sustainable option is the wastewater reclamation system. The seawater desalination system obtains the highest score of the standard impact indicators in all of the study areas, whereas it is the most favorable water supply option when considering the freshwater withdrawal impact. Although the most sustainable water supply alternative was recommended through an LCA analysis, multi-water resources should be integrated into the region's water supply from the perspective of water sustainability. The results of this study provide a useful recommendation on the management of water resources for China. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. 76 FR 18548 - North Carolina Waters Along the Entire Length of Brunswick and Pender Counties and the Lower...

    Science.gov (United States)

    2011-04-04

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9289-5] North Carolina Waters Along the Entire Length of... facilities exist for the designation of Brunswick and Pender Counties Coastal Waters and a portion of the Cape Fear River, as a No Discharge Zone (NDZ). Specifically, these waters include all the tidal salt...

  4. 75 FR 35024 - North Carolina Waters Along the Entire Length of Brunswick and Pender Counties and the Saline...

    Science.gov (United States)

    2010-06-21

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9164-2] North Carolina Waters Along the Entire Length of Brunswick and Pender Counties and the Saline Waters of the Cape Fear River in Brunswick and New Hanover... designation of Brunswick and Pender Counties Coastal Waters as a No Discharge Zone (NDZ). Specifically, these...

  5. Impacts of climate change on agricultural water resources and adaptation on the North China Plain

    Directory of Open Access Journals (Sweden)

    Xing-Guo Mo

    2017-06-01

    Full Text Available Climate change is having a considerable impact on the availability of water resources for agricultural production on the North China Plain (NCP, where the shortage of water is currently disturbing the stability and sustainability of agricultural production with respect to the drying tendency since the 1950s. However, although potential evapotranspiration (ET has shown a decreasing trend under climate change, actual ET has slightly increased with an acceleration in hydrological cycling. Global climate model (GCM ensemble projections predict that by the 2050s, the increased crop water demand and intensified ET resulting from global warming will reduce water resources surplus (Precipitation–ET about 4%–24% and increase significantly the irrigation water demand in crop growth periods. This study assesses possible mitigation and adaptation measures for enabling agricultural sustainability. It is revealed that reducing the sowing area of winter wheat (3.0%–15.9% in water-limited basins, together with improvement in crop water-use efficiency would effectively mitigate water shortages and intensify the resilience of agricultural systems to climate change.

  6. Boron exposure assessment using drinking water and urine in the North of Chile

    Energy Technology Data Exchange (ETDEWEB)

    Cortes, S., E-mail: scortes@med.puc.cl [Departamento de Salud Publica, Pontificia Universidad Catolica de Chile, Santiago (Chile); Reynaga-Delgado, E. [Centro de Investigaciones Biologicas del Noroeste, La Paz B.C.S. (Mexico); Sancha, A.M. [Facultad de Ciencias Fisicas y Matematicas, Universidad de Chile, Santiago (Chile); Ferreccio, C. [Departamento de Salud Publica, Pontificia Universidad Catolica de Chile, Santiago (Chile)

    2011-12-01

    Boron is an essential trace element for plants and humans however it is still an open question what levels of boron are actually safe for humans. This study, conducted between 2006 and 2010, measured exposure levels of boron in drinking water and urine of volunteers in Arica, an area in the North of Chile with high levels of naturally occurring boron. Samples were taken of tap and bottled water (173 and 22, respectively), as well as urine from 22 volunteers, and subsequently analyzed by inductively coupled plasma spectroscopy (ICP-OES). Boron varied in public tap water from 0.22 to 11.3 mg L{sup -1}, with a median value of 2.9 mg L{sup -1}, while concentrations of boron in bottled water varied from 0.01 to 12.2 mg L{sup -1}. Neither tap nor bottled water samples had concentrations of boron within WHO recommended limits. The concentration of boron in urine varied between 0.45 and 17.4 mg L{sup -1}, with a median of 4.28 mg L{sup -1} and was found to be correlated with tap water sampled from the homes of the volunteers (r = 0.64). Authors highly recommend that in northern Chile - where levels of boron are naturally high - that the tap and bottled water supplies be monitored in order to protect public health and that regulatory standards also be established for boron in drinking water in order to limit exposure.

  7. Functional groups in North Chilean desert shrub species, based on the water sources used

    International Nuclear Information System (INIS)

    Squeo, Francisco A; Olivares, Nancy; Olivares, Sandra; Jorquera, Carmen; Pollastri, Alberto; Aguirre, Evelyn; Aravena, Ramon; Ehleringer, James R

    1999-01-01

    Primary productivity and vegetation structure in arid ecosystems are determined by water availability. In studies conducted in the coastal dry land of North Central Chile (29 degrees 43'S; 71degrees 14'0, 300m), the mechanisms to use different water sources by shrubs species, in two contrasting rainfall years were compared. Information on pheno logical studies, root architecture and water sources used by shrubs through the use of stable isotopes is are discussed. Six functional groups based on water uptake and water use are recognized. The functional groups were defined based on their habits (deciduous and evergreen), their root systems, (shallow, dimorphic and deep), and their ability to use different water sources (surficial and/or deep). Because of the differential impact of the goat overgrazing on different functional groups, this would result on a lower utilization of surficial waters. A management and/or restoration plan should maximize the use of all water sources available to recover the primary productivity and the system stability

  8. Tropical Cyclone Exposure for U.S. waters within the North Atlantic Ocean basin, 1900-2013

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data represent modeled, historical exposure of U.S. offshore and coastal waters to tropical cyclone activity within the North Atlantic Ocean basin. BOEM Outer...

  9. Mesohabitat-specific Macroinvertebrate Assemblage Responses to Water Quality Variation in Mid-continent (North America) Great Rivers

    Science.gov (United States)

    We compared the responsiveness of macroinvertebrate assemblages to water quality stressors (ions, nutrients, dissolved metals and suspended sediment) in two mesohabitats within the main-channel macrohabitat of three mid-continent North American rivers, the Upper Mississippi, Miss...

  10. A Water Resources Management Model to Evaluate Climate Change Impacts in North-Patagonia, Argentina

    Science.gov (United States)

    Bucciarelli, L. F.; Losano, F. T.; Marizza, M.; Cello, P.; Forni, L.; Young, C. A.; Girardin, L. O.; Nadal, G.; Lallana, F.; Godoy, S.; Vallejos, R.

    2014-12-01

    Most recently developed climate scenarios indicate a potential future increase in water stress in the region of Comahue, located in the North-Patagonia, Argentina. This region covers about 140,000 km2 where the Limay River and the Neuquén River converge into the Negro River, constituting the largest integrated basins in Argentina providing various uses of water resources: a) hydropower generation, contributing 15% of the national electricity market; b) fruit-horticultural products for local markets and export; c) human and industrial water supply; d) mining and oil exploitation, including Vaca Muerta, second world largest reserves of shale gas and fourth world largest reserves of shale-oil. The span of multiple jurisdictions and the convergence of various uses of water resources are a challenge for integrated understanding of economically and politically driven resource use activities on the natural system. The impacts of climate change on the system could lead to water resource conflicts between the different political actors and stakeholders. This paper presents the results of a hydrological simulation of the Limay river and Neuquén river basins using WEAP (Water Evaluation and Planning) considering the operation of artificial reservoirs located downstream at a monthly time step. This study aims to support policy makers via integrated tools for water-energy planning under climate uncertainties, and to facilitate the formulation of water policy-related actions for future water stress adaptation. The value of the integrated resource use model is that it can support local policy makers understand the implications of resource use trade-offs under a changing climate: 1) water availability to meet future growing demand for irrigated areas; 2) water supply for hydropower production; 3) increasing demand of water for mining and extraction of unconventional oil; 4) potential resource use conflicts and impacts on vulnerable populations.

  11. Radium-226 and barium as tracers of water masses in the North Atlantic (GA01-GEOTRACES)

    Science.gov (United States)

    Le Roy, Emilie; Sanial, Virginie; Charette, Matthew; Henderson, Paul; Jacquet, Stéphanie; García-Ibáñez, Maribel; Pérez, Fiz; Lherminer, Pascale; Souhaut, Marc; Jeandel, Catherine; Lacan, François; van Beek, Pieter

    2017-04-01

    In this study, we report concentrations of radium-226 (226Ra, t1/2=1602 y) and barium determined along the GEOVIDE section conducted in the North Atlantic (May-July 2014; Portugal-Greenland-Canda) in the framework of the international GEOTRACES program. A high vertical resolution (up to 22 depths per station) was achieved by analyzing small volumes (˜10 L) of seawater for 226Ra using a radon emanation technique. We will present the distribution of 226Ra activities and barium concentrations in contrasting biogeochemical regions of the North Atlantic (Iberian margin, West European Basin, Reykjanes Ridge, Irminger Sea, Greenland margin and Labrador Sea). These regions strongly differ in terms of boundary inputs, biogeochemistry and deep water formation. We observe a linear correlation between 226Ra and barium along the GEOVIDE section, which results from the dominantly conservative behavior of the two tracers. However, deviations from the linear correlation between 226Ra and Ba are found in several places. The potential causes for such deviations are investigated. Optimum multi-parameter (OMP) analysis was thus used to distinguish the relative importance of physical transport (i.e., water mass mixing) from non-conservative processes (sedimentary, river or hydrothermal inputs; uptake by particles) on the 226Ra and Ba distribution in the North Atlantic.

  12. Prevalence Survey of Selected Bovine Pathogens in Water Buffaloes in the North Region of Brazil

    Directory of Open Access Journals (Sweden)

    Jenevaldo Barbosa da Silva

    2014-01-01

    Full Text Available Although the largest buffalo herd in the occident is in the north region of Brazil, few studies have been conducted to assess the prevalence of selected parasitic diseases in buffalo herd. The present study was therefore conducted to investigate the epidemiological of Toxoplasma gondii, Neospora caninum, Anaplasma marginale, Babesia bigemina, and Babesia bovis in water buffaloes in the north region of Brazil. A total of 4796 buffalo blood samples were randomly collected from five provinces and simultaneously analyzed by the IFAT and ELISA. The serological prevalence of T. gondii and N. caninum was 41.3% and 55.5% in ELISA and 35.7% and 48.8% in IFAT, respectively. The overall prevalence of A. marginale, B. bovis, and B. bigemina was 63%, 25%, and 21% by ELISA and 50.0%, 22.5%, and 18.8% by IFAT, respectively. This study shows valuable information regarding the serological survey of selected bovine pathogens in water buffaloes in the north region of Brazil which will likely be very beneficial for the management and control programs of this disease.

  13. Climatological coupling of the thermohaline decadal changes in Central Water of the Eastern North Atlantic

    Directory of Open Access Journals (Sweden)

    F. F. Pérez

    2000-09-01

    Full Text Available Data collected at 42ºN, 10ºW in the intergyre region of the Northeast Atlantic show significant year to year variability in the T-S characteristics of the upper 800m of the water column. Taking salinity values on the sq = 27.1 kg m-3 isopycnal as representative of the Eastern North Atlantic Central Water mass it was found that the variability correlates well with the wind stress at 43ºN, 11ºW, with cumulative river discharge (which we take as an index of precipitation over the ocean and with the NAO (which is an index of the strength and position of storm tracks and the state of the evaporation-precipitation balance. The covariation illustrates the close coupling between water mass formation and climate in the North Atlantic, where climate changes affect the deep ventilation by which ENACW is formed and the evaporation-precipitation balance from which the T-S signature results. Hints of a 20 year cycle in the ocean correlate with a 20 year periodicity in the NAO. It remains to be established whether there is a feedback mechanism by which water mass anomalies affect the climate and the intensity and variation of the NAO pattern, and the extent to which upper ocean observations can be used as an indicator of future climate trends.

  14. Modelling the impacts of projected future climate change on water resources in north-west England

    Directory of Open Access Journals (Sweden)

    2007-01-01

    Full Text Available Over the last two decades, the frequency of water resource drought in the UK, coupled with the more recent pan-European drought of 2003, has increased concern over changes in climate. Using the UKCIP02 Medium-High (SRES A2 scenario for 2070–2100, this study investigates the impact of climate change on the operation of the Integrated Resource Zone (IRZ, a complex conjunctive-use water supply system in north-western England. The results indicate that the contribution of individual sources to yield may change substantially but that overall yield is reduced by only 18%. Notwithstanding this significant effect on water supply, the flexibility of the system enables it to meet modelled demand for much of the time under the future climate scenario, even without a change in system management, but at significant expense for pumping additional abstraction from lake and borehole sources. This research provides a basis for the future planning and management of the complex water resource system in the north-west of England.

  15. Evaluating Adaptive Governance Approaches to Sustainable Water Management in North-West Thailand

    Science.gov (United States)

    Clark, Julian R. A.; Semmahasak, Chutiwalanch

    2013-04-01

    Adaptive governance is advanced as a potent means of addressing institutional fit of natural resource systems with prevailing modes of political-administrative management. Its advocates also argue that it enhances participatory and learning opportunities for stakeholders over time. Yet an increasing number of studies demonstrate real difficulties in implementing adaptive governance `solutions'. This paper builds on these debates by examining the introduction of adaptive governance to water management in Chiang Mai province, north-west Thailand. The paper considers, first, the limitations of current water governance modes at the provincial scale, and the rationale for implementation of an adaptive approach. The new approach is then critically examined, with its initial performance and likely future success evaluated by (i) analysis of water stakeholders' opinions of its first year of operation; and (ii) comparison of its governance attributes against recent empirical accounts of implementation difficulty and failure of adaptive governance of natural resource management more generally. The analysis confirms the potentially significant role that the new approach can play in brokering and resolving the underlying differences in stakeholder representation and knowledge construction at the heart of the prevailing water governance modes in north-west Thailand.

  16. Hydrogeochemical and stable isotope geochemical characterization of shallow ground waters and submarine ground water discharge in North-Eastern Germany

    Science.gov (United States)

    Böttcher, Michael E.; Schmiedinger, Iris; Böttcher, Gerd; Schwerdtfeger, Beate; Lipka, Marko; Westphal, Julia

    2017-04-01

    The evolution and hydrochemical composition of ground waters in Mecklenburg-Western Pommerania (North-Eastern Germany) is controlled by different natural and anthropogenic factors. In the present study, the hydrogeochemistry and stable isotope geochemistry (H, C, O, S) of shallow ground waters was investigated in 2014 and 2015. A mass balance approach is combined with physico-chemical modeling to define the mineral dissolution/precipitation potential as well as the processes taking place during the ground water development. The dissolved inorganic carbon system of the ground waters is controlled by the dissolution of biogenic carbon dioxide, the dissolution of (marine) carbonates and the oxidation of anthropogenically introduced DOC and at a few sites biogenic methane. The sulfur isotope composition of dissolved sulfate indicates the substantial impact from the oxidation of sedimentary pyrite using oxygen or nitrate as electron acceptor. The combined results are the base for a quantitative reaction path analysis. The composition of ground water is discussed with respect to its role as a source for fresh waters forming SGD and in a re-wetting wetland area (Hütelmoor) at the southern Baltic Sea coast line. Acknowledgements: The SGD/Hütelmoor part of this study is supported by German Science Foundation during DFG research training group BALTIC TRANSCOAST.

  17. Application of water quality indices and analysis of the surface water quality monitoring network in semiarid North-Central Chile.

    Science.gov (United States)

    Espejo, Lesly; Kretschmer, Nicole; Oyarzún, Jorge; Meza, Francisco; Núñez, Jorge; Maturana, Hugo; Soto, Guido; Oyarzo, Paula; Garrido, Marcela; Suckel, Felipe; Amezaga, Jaime; Oyarzún, Ricardo

    2012-09-01

    Surface water quality has increasing importance worldwide and is particularly relevant in the semiarid North-Central Chile, where agriculture and mining activities are imposing heavy pressure on limited water resources. The current study presents the application of a water quality index in four watersheds of the 29°-33°S realm for the period 1999-2008, based on the Canadian Council of Ministers for the Environment approach and the Chilean regulation for irrigation water quality. In addition, two modifications to the index are tested and a comprehensive characterization of the existing monitoring network is performed through cluster analysis. The basins studied show fairly good water quality in the overall, specially the Limarí basin. On the other hand, the lower index values were obtained for the headwaters of Elqui, associated with the El Indio mining district. The first modification of the indicator (i.e., to consider parameters differentially according to their effect on human health or the environment) did not produce major differences with respect to the original index, given the generally good water quality. The second modification (i.e., to consider as threshold values the more restrictive figures derived from a set of regulations) yielded important differences in the indicator values. Finally, an adequate characterization of the monitoring network was obtained. The results presented spatial coherence and the information can be used as a basis for the optimization of the monitoring network if required.

  18. Monitoring on Heavy Metals Content in Sea Water and Sediment in the Waters of Bacan Island, North of Maluku

    OpenAIRE

    Febriana Lisa Valentin; Edward; M. Djen Marasabessy

    2010-01-01

    Measurement on heavy metals content in seawater and sediment in the waters of Bacan Islands, North of Maluku were carried out in September 2005. That heavy metals are Pb, Cd, Cu, Zn, and Ni. Seawater and sediment sample collected from 10 station by purposive sampling, in line with the goal of the research. The results showed that the heavy metals content in seawater still in line with the threshold value (NAB) stated by The Office of State Ministry for Life Environment (KMNLH) but in sedimen...

  19. Observed and modeled pathways of the Iceland Scotland Overflow Water in the eastern North Atlantic

    Science.gov (United States)

    Zou, Sijia; Lozier, Susan; Zenk, Walter; Bower, Amy; Johns, William

    2017-12-01

    The spreading of Iceland Scotland Overflow Water (ISOW) in the eastern North Atlantic has largely been studied in an Eulerian frame using numerical models or with observations limited to a few locations. No study to date has provided a comprehensive description of the ISOW spreading pathways from both Eulerian and Lagrangian perspectives. In this paper, we use a combination of previously unreported current meter data, hydrographic data, RAFOS float data, and a high resolution (1/12°) numerical ocean model to study the spreading pathways of ISOW from both of these perspectives. We identify three ISOW transport cores in the central Iceland Basin (∼59°N), with the major core along the eastern boundary of the Reykjanes Ridge (RR) and the other two in the basin interior. Based on trajectories of observed and/or numerical floats seeded along 59°N, we also describe the ISOW spreading pathways and quantify their relative importance. Within 10 years, 7-11% of ISOW from 59°N escapes into the Irminger Sea via gaps in the RR north of the Charlie Gibbs Fracture Zone (CGFZ); the water that moves through these gaps principally originates from the shallower ISOW layer along the RR eastern boundary. 10-13% travels further southward until the CGFZ, where it crosses westward into the western subpolar gyre. 18-21% of ISOW spreads southward along the eastern flank of the Mid-Atlantic Ridge into the Western European Basin (WEB). Most of the remaining water stays in the Iceland Basin over the 10-year period. A model-based investigation provides a first look at the temporal variability of these ISOW pathways. We find that the fraction of southward water exported into the WEB is anti-correlated with the export through the CGFZ, a result assumed to reflect these pathways' interactions with the North Atlantic Current in magnitude and/or position shift.

  20. VICIOUS CIRCULATION OF WATER DEFICIENCY AND WATER POLLUTION – “CANCER” OF THE RIVERS IN THE NORTH OF CHINA.

    Directory of Open Access Journals (Sweden)

    Yang Liankang

    2005-05-01

    Full Text Available The North of China belongs to the basin of the Tarim River ,the Heihe River , the Yellow River , the Huaihe River ,the Haihe River ,the Liaohe River , the Heilongjiang River and other shorter rivers and other indraft areas. The total area of all river basin is about 3,200,000 sq. km., exceeds 3/5 of area of land of 13 provinces , municipalities and autonomous regions of the North of China (5, 220,000 sq. km. .Follow the growth of the economy and the population, lacking of water in the rivers of the northern China is serious,. Since the sixties and seventies of previous century, the blanking has taken place successively in numerous rivers, brought serious influence on the development of the economic, made the society to shake. Afterwards, through certain effort, although the blanking phenomenon is alleviated for the past several years, but the water quality of manyrivers has sharply worsened and was dropped to V, bad V grade in the numerous sections, fromthe situation that the water quality in a great part sections in the main stream was still rather good for past more than 20 years ago. It has become the first killer, influencing the life of river.Therefore, we must summarize the experiences on that the rivers of the northern China, especially the most influential Yellow River, have gone from blanking to resuming flow, we also must control the pollution and proportionate the development of the society and theeconomic, with the water yield and the water quality. These affair have already become task of top priority!

  1. Modeling the buoyancy-driven Black Sea Water outflow into the North Aegean Sea

    Directory of Open Access Journals (Sweden)

    Nikolaos Kokkos

    2016-04-01

    Full Text Available A three-dimensional numerical model was applied to simulate the Black Sea Water (BSW outflux and spreading over the North Aegean Sea, and its impact on circulation and stratification–mixing dynamics. Model results were validated against satellite-derived sea surface temperature and in-situ temperature and salinity profiles. Further, the model results were post-processed in terms of the potential energy anomaly, ϕ, analyzing the factors contributing to its change. It occurs that BSW contributes significantly on the Thracian Sea water column stratification, but its signal reduces in the rest of the North Aegean Sea. The BSW buoyancy flux contributed to the change of ϕ in the Thracian Sea by 1.23 × 10−3 W m−3 in the winter and 7.9 × 10−4 W m−3 in the summer, significantly higher than the corresponding solar heat flux contribution (1.41 × 10−5 W m−3 and 7.4 × 10−5 W m−3, respectively. Quantification of the ϕ-advective term crossing the north-western BSW branch (to the north of Lemnos Island, depicted a strong non-linear relation to the relative vorticity of Samothraki Anticyclone. Similar analysis for the south-western branch illustrated a relationship between the ϕ-advective term sign and the relative vorticity in the Sporades system. The ϕ-mixing term increases its significance under strong winds (>15 m s−1, tending to destroy surface meso-scale eddies.

  2. Multi-decadal uptake of carbon dioxide into subtropical mode water of the North Atlantic Ocean

    Directory of Open Access Journals (Sweden)

    N. R. Bates

    2012-07-01

    Full Text Available Natural climate variability impacts the multi-decadal uptake of anthropogenic carbon dioxide (Cant into the North Atlantic Ocean subpolar and subtropical gyres. Previous studies have shown that there is significant uptake of CO2 into subtropical mode water (STMW of the North Atlantic. STMW forms south of the Gulf Stream in winter and constitutes the dominant upper-ocean water mass in the subtropical gyre of the North Atlantic Ocean. Observations at the Bermuda Atlantic Time-series Study (BATS site near Bermuda show an increase in dissolved inorganic carbon (DIC of +1.51 ± 0.08 μmol kg−1 yr−1 between 1988 and 2011, but also an increase in ocean acidification indicators such as pH at rates (−0.0022 ± 0.0002 yr−1 higher than the surface ocean (Bates et al., 2012. It is estimated that the sink of CO2 into STMW was 0.985 ± 0.018 Pg C (Pg = 1015 g C between 1988 and 2011 (70 ± 1.8% of which is due to uptake of Cant. The sink of CO2 into the STMW is 20% of the CO2 uptake in the North Atlantic Ocean between 14°–50° N (Takahashi et al., 2009. However, the STMW sink of CO2 was strongly coupled to the North Atlantic Oscillation (NAO, with large uptake of CO2 into STMW during the 1990s during a predominantly NAO positive phase. In contrast, uptake of CO2 into STMW was much reduced in the 2000s during the NAO neutral/negative phase. Thus, NAO induced variability of the STMW CO2 sink is important when evaluating multi-decadal changes in North Atlantic Ocean CO2 sinks.

  3. Global Warming, New Climate, New Atmospheric Circulation and New Water Cycle in North Africa

    Science.gov (United States)

    Karrouk, M. S.

    2017-12-01

    Global warming has now reached the energetic phase of H2O's return to the ground after the saturation of the atmosphere in evaporation since the 80s and 90s of the last century, which were characterized by severe droughts, mainly in Africa.This phase is the result of the accumulation of thermal energy exchanges in the Earth-Ocean-Atmosphere system that resulted in the thrust reversal of the energy balance toward the poles. This situation is characterized by a new thermal distribution: above the ocean, the situation is more in surplus compared to the mainland, or even opposite when the balance is negative on the land, and in the atmosphere, warm thermal advection easily reach the North Pole (planetary crests), as well as cold advection push deep into North Africa and the Gulf of Mexico (planetary valleys: Polar Vortex).This "New Ground Energy Balance" establishes a "New Meridian Atmospheric Circulation (MAC)" with an undulating character throughout the year, including the winter characterized by intense latitudinal very active energy exchanges between the surplus areas (tropical) and the deficit (polar) on the one hand, and the atmosphere, the ocean and the continent on the other.The excess radiation balance increases the potential evaporation of the atmosphere and provides a new geographical distribution of Moisture and Water worldwide: the excess water vapor is easily converted by cold advection (Polar Vortex) to heavy rains that cause floods or snow storms that paralyze the normal functioning of human activities, which creates many difficulties for users and leaves damage and casualties, but ensures water availability missing since a long time in many parts of the world, in Africa, Europe and America.The new thermal distribution reorganizes the geography of atmospheric pressure: the ocean energy concentration is transmitted directly to the atmosphere, and the excess torque is pushed northward. The Azores anticyclone is strengthened and is a global lock by the

  4. Formation of Barents Sea Branch Water in the north-eastern Barents Sea

    Directory of Open Access Journals (Sweden)

    Vidar S. Lien

    2013-09-01

    Full Text Available The Barents Sea throughflow accounts for approximately half of the Atlantic Water advection to the Arctic Ocean, while the other half flows through Fram Strait. Within the Barents Sea, the Atlantic Water undergoes considerable modifications before entering the Arctic Ocean through the St. Anna Trough. While the inflow area in the south-western Barents Sea is regularly monitored, oceanographic data from the outflow area to the north-east are very scarce. Here, we use conductivity, temperature and depth data from August/September 2008 to describe in detail the water masses present in the downstream area of the Barents Sea, their spatial distribution and transformations. Both Cold Deep Water, formed locally through winter convection and ice-freezing processes, and Atlantic Water, modified mainly through atmospheric cooling, contribute directly to the Barents Sea Branch Water. As a consequence, it consists of a dense core characterized by a temperature and salinity maximum associated with the Atlantic Water, in addition to the colder, less saline and less dense core commonly referred to as the Barents Sea Branch Water core. The denser core likely constitutes a substantial part of the total flow, and it is more saline and considerably denser than the Fram Strait branch as observed within the St. Anna Trough. Despite the recent warming of the Barents Sea, the Barents Sea Branch Water is denser than observed in the 1990s, and the bottom water observed in the St. Anna Trough matches the potential density at 2000 m depth in the Arctic Ocean.

  5. The New Challenges of China's South to North Water Diversion Project

    Science.gov (United States)

    Liu, X.

    2017-12-01

    Water shortage has restricted the economic and social development of Beijing during recent years. The central route of China's South to North Water Diversion Project is planned to divert water from the Danjiangkou Reservoir to Beijing. Currently, the main local surface water source for Beijing is the Miyun Reservoir. We found that annual runoffs in both of the Danjiangkou Reservoir Basin and Miyun Reservoir Basin decreased significantly from 1956 to 2015. The decrease in runoff represents a decrease in available water resources. We classified each year between 1956 and 2015 as either a wet, normal or dry year based on the Pearson-III probability distribution of annual runoff. The probability of a simultaneous dry year in the two basins was about 8.8% during 1956 to 1989, while it increased to 33.7% during 1990 to 2015. The increase in probability of a simultaneous dry year could threaten the success of the water diversion project. We suggest that urgent adaptive measures are implemented in advance to face this challenge.

  6. Lost in Translation: The Participatory Imperative and Local Water Governance in North Thailand and Southwest Germany

    Directory of Open Access Journals (Sweden)

    Andreas Neef

    2008-06-01

    Full Text Available Water management in Thailand and Germany has been marked by a command-and-control policy-style for decades, but has recently begun to move slowly towards more inclusive and participatory approaches. In Germany, the push for public participation stems from the recently promulgated European Union Water Framework Directive (EU WFD, while participatory and integrated river basin management in Thailand has been strongly promoted by major international donors. Drawing on case studies from two watersheds in North Thailand and Southwest Germany, this paper analyses how the participatory imperative in water governance is translated at the local level. Evidence suggests that in both countries public participation in water management is still in its infancy, with legislative and executive responsibilities being divided between a variety of state agencies and local authorities. Bureaucratic restructuring and technocratic attitudes, passive resistance on the part of administrative staff towards inclusive processes, and a trend towards the (recentralisation of responsibilities for water governance in both study regions undermines community-based and stakeholder-driven water governance institutions, thus calling into question the subsidiarity principle. State-driven participatory processes tend to remain episodic and ceremonial and have not (yet gone beyond the informative and consultative stage. Meaningful public participation, promised on paper and in speeches, gets lost in translation too often.

  7. Estimation of food limitation of bivalve larvae in coastal waters of north-western Europe

    DEFF Research Database (Denmark)

    Bos, O.G.; Hendriks, I.E.; Strasser, M.

    2006-01-01

    Marine invertebrate recruitment may be affected by food limitation during the pelagic larval life stages. In the present study, field data on abundance of bivalve larvae along with their prey (small phytoplankton) were examined to see whether they were consistent with predictions made...... assimilation rate averaged 7-26% of the maximum assimilation rate. Under the assumptions made for the present study, it is suggested that growth of larvae in north-west European waters is often food-limited. (c) 2005 Elsevier B.V. All rights reserved...

  8. Echinoderm Biodiversity in the Takofi Coastal Waters, Moti Island, North Maluku

    Directory of Open Access Journals (Sweden)

    Eddy Yusron

    2006-04-01

    Full Text Available A total of 22 echinoderm species were found in Takofi waters, North Maluku. They were represented by 6 species of holothuroidea, 4 species of asteroidea, 5 species of echinoidea and 7 species of ophiuroidea. The Ophiuroidea were relatively common in seagrass area. The quantitative analysis on the abundance data revealed the highest diversity index of faunal assemblage at station II (H'=1.19. The highest evenness index was exhibited by the echinoderms from station III (J = 0.99, while the highest species richness was represented by them from station I (D = 1.22.

  9. Interactions of climate, socio-economics, and global mercury pollution in the North Water

    DEFF Research Database (Denmark)

    Dietz, Rune; Mosbech, Anders; Flora, Janne

    2018-01-01

    Despite the remoteness of the North Water, Northwest Greenland, the local Inughuit population is affected by global anthropogenic pollution and climate change. Using a cross-disciplinary approach combining Mercury (Hg) analysis, catch information, and historical and anthropological perspectives......, this article elucidates how the traditional diet is compromised by Hg pollution originating from lower latitudes. In a new approach we here show how the Inughuits in Avanersuaq are subject to high Hg exposure from the hunted traditional food, consisting of mainly marine seabirds and mammals. Violation...

  10. North Putrajaya Catchment Area Putrajaya, Malaysia-Challenges in Water Quality Management

    International Nuclear Information System (INIS)

    Mohd Zamri Daud; Pereira, J.J.; Mazlin Mokhtar

    2011-01-01

    The Putrajaya Administrative area covers 70 % of the Putrajaya Lake catchment area. Development work carried out within the Putrajaya area abides by the rules and regulations set by the Putrajaya Corporation to ensure that the quality of the lake water and wetland within the Putrajaya area meets the stipulated benchmark standards. However, 30 % of the Putrajaya lake and wetland catchment area is located outside of administration and prerogative of the Putrajaya Corporation. The North Putrajaya catchment area which originates from the Sg. Chuau River contributes the bulk of the water that flows into the lake and wetlands of Putrajaya. Water quality data collected by the Putrajaya Corporation for the period of 2002 to 2005 has been analysed to identify major issues in the Putrajaya Wetland North Catchment area. Data from 2002 shows average percentage parameter of non-compliance Putrajaya Standard for ammoniacal nitrogen (NH 3 -N) at 43.7 %, E. coli at 31.3 % and TSS at 12.5 % while the DO and COD are both 6.2 %. For 2003, the average percentage parameter of non compliance for NH 3 -N was at 23.7 %, E. coli at 18.4 %, total coliform at 18.4 %, TSS at 2.6 %, DO at 13.2 %, COD at 13.2 % and BOD at 10.5 %. For 2004, the average percentage parameter of non complying for NH 3 -N was at 35.5 %, E. coli at 22.6 %, total coliform at 12.9 %, TSS at 9.7 %, COD at 3.2 % and BOD at 16.1 %. For 2005, the average percentage parameter of non compliance were at is 36.4 % for E. coli, 22.7 % for NH 3 -N, 18.2 % for total coliform, 13.6 % for BOD and 4.5 % for both DO and COD. In conclusion the analysed data within the four year period showed that the NH 3 -N and E. coli discharge from the north catchment area did not comply with the Putrajaya Standard. The main factors of water quality issues in the Putrajaya Wetland North Catchment area include the failure of integrating the management of the catchment areas and the stake holders attitude of total disregard of the management and

  11. Water resource management in river oases along the Tarim River in North-West of China

    Science.gov (United States)

    Kliucininkaite, Lina; Disse, Markus

    2013-04-01

    Tarim River is one of the longest inland rivers in the world. It flows its water in the northern part of the Taklamakan desert in Xinjiang, North-west of China, which is a very hostile region due its climatic conditions and particularly due to low precipitation and very high evaporation rates. During the past five decades intensive exploitation of water resources, mainly by agricultural activities, has changed the temporal and spatial distribution of them and caused serious environmental problems in the Tarim River Basin. The support measures for oasis management along the Tarim River under climatic and societal changes became the overarching goal of this research. The temperature has risen by nearly 1° C over the past 50 years in the Tarim River Basin so more water was available in the mountainous areas of Xinjiang, leading to an increasing trend of the headstream discharges of the Tarim Basin. Aksu, Hotan and Yarkant Rivers are three tributaries of the Tarim River, as well as its main water suppliers. However, under the condition of water increase with the volume of 25×108 m3 in headstreams in recent 10 years, the water to the mainstream has increased less than 108 m3 (in Alar hydrological station), which is less than 3% of the increased water volume of runoff. Moreover, the region is one of the biggest cotton and other cash crops producers in China. In addition, expansion of urban and, in particular, of irrigation areas have caused higher water consumption at different parts of the river, leading to severe ecological effects on rural areas, especially in the lower reaches. Moreover, it also highly affects groundwater level and quality. The aim of this research is to support decision makers, planners and engineers to find right measures in the area for the further development of the region, as well as adaptation to changing climate. Different scenarios for water resource management, as well as water distribution and allocation in a more efficient and water

  12. North Atlantic deep water formation and AMOC in CMIP5 models

    Directory of Open Access Journals (Sweden)

    C. Heuzé

    2017-07-01

    Full Text Available Deep water formation in climate models is indicative of their ability to simulate future ocean circulation, carbon and heat uptake, and sea level rise. Present-day temperature, salinity, sea ice concentration and ocean transport in the North Atlantic subpolar gyre and Nordic Seas from 23 CMIP5 (Climate Model Intercomparison Project, phase 5 models are compared with observations to assess the biases, causes and consequences of North Atlantic deep convection in models. The majority of models convect too deep, over too large an area, too often and too far south. Deep convection occurs at the sea ice edge and is most realistic in models with accurate sea ice extent, mostly those using the CICE model. Half of the models convect in response to local cooling or salinification of the surface waters; only a third have a dynamic relationship between freshwater coming from the Arctic and deep convection. The models with the most intense deep convection have the warmest deep waters, due to a redistribution of heat through the water column. For the majority of models, the variability of the Atlantic Meridional Overturning Circulation (AMOC is explained by the volumes of deep water produced in the subpolar gyre and Nordic Seas up to 2 years before. In turn, models with the strongest AMOC have the largest heat export to the Arctic. Understanding the dynamical drivers of deep convection and AMOC in models is hence key to realistically forecasting Arctic oceanic warming and its consequences for the global ocean circulation, cryosphere and marine life.

  13. [Nitrogen and water cycling of typical cropland in the North China Plain].

    Science.gov (United States)

    Pei, Hong-wei; Shen, Yan-jun; Liu, Chang-ming

    2015-01-01

    Intensive fertilization and irrigation associated increasing grain production has led to serious groundwater depletion and soil/water pollution in the North China Plain (NCP). Intensive agriculture changes the initial mass and energy balance, and also results in huge risks to the water/soil resources and food security regionally. Based on the research reports on the nitrogen cycle and water cycle in typical cropland (winter wheat and summer corn) in the NCP during the past 20 years, and the meteorological data, field experiments and surveys, we calculated the nitrogen cycle and water-cycle for this typical cropland. Annual total nitrogen input were 632 kg N . hm-2, including 523 kg N . hm-2 from commercial fertilizer, 74 kg N . hm-2 from manure, 23 kg N . hm-2 from atmosphere, and 12 kg N . hm-2 from irrigation. All of annual outputs summed to 532 kg N . hm-2 including 289 kg N . hm-2 for crop, 77 kg N . hm-2 staying in soil profile, leaching 104 kg N . hm-2, 52 kg N . hm-2 for ammonia volatilization, 10 kg N . hm-2 loss in nitrification and denitrification. Uncertainties of the individual cases and the summary process lead to the unbalance of nitrogen. For the dominant parts of the field water cycle, annual precipitation was 557 mm, irrigation was 340 mm, while 762 mm was for evapotranspiration and 135 mm was for deep percolation. Considering uncertainties in the nitrogen and water cycles, coupled experiments based on multi-disciplines would be useful for understanding mechanisms for nitrogen and water transfer processes in the soil-plant-atmosphere-continuum (SPAC) , and the interaction between nitrogen and water, as well as determining the critical threshold values for sustainability of soil and water resources in the NCP.

  14. Water Mass Variability at the Mid-Atlantic Ridge and in the Eastern North Atlantic

    Science.gov (United States)

    Köllner, Manuela; Klein, Birgit; Kieke, Dagmar; Klein, Holger; Roessler, Achim; Rhein, Monika

    2017-04-01

    The strong warming and salinification of the Eastern North Atlantic starting in the mid 1990s has been attributed to a westward contraction of the sub-polar gyre and stronger inflow of waters from the sub-tropical gyre. Temporal changes in the shape and strength of the two gyres have been related to the major mode of atmospheric variability in the Atlantic sector, the NAO. Hydrographic conditions along the Northwest European shelf are thus the result of different processes such as variations in transports, varying relative contributions of water masses from the two gyres and property trends in the source water masses. The North Atlantic Current (NAC) can be regarded as the southern border of the sub-polar gyre transporting water from the tropical regions northward. On its way towards the Mid Atlantic Ridge (MAR) the NAC has partly mixed with waters from the sub-polar gyre and crosses the MAR split into several branches. For the study we analyzed data of water mass variability and transport fluctuations from the RACE (Regional circulation and Global change) project (2012-2015) which provided time series of transports and hydrographic anomalies from moored instruments at the western flank of the MAR. The time depending positions of the NAC branches over the MAR were obtained from mooring time series and compared to sea surface velocities from altimeter data. The results show a high variability of NAC pathways over the MAR. Transition regimes with strong meandering and eddies could be observed as well as periods of strong NAC branches over the Fracture Zones affecting water mass exchange at all depth levels. A positive temperature trend at depths between 1000-2000 m was found at the Faraday Fracture Zone (FFZ). This warming trend was also detected by Argo floats crossing the MAR close to the FFZ region. During the second phase of RACE (RACE-II, 2016-2018) a mooring array across the eastern shelf break at Goban Spur was deployed to monitor the poleward Eastern Boundary

  15. Ground Water Atlas of the United States: Segment 8, Montana, North Dakota, South Dakota, Wyoming

    Science.gov (United States)

    Whitehead, R.L.

    1996-01-01

    The States of Montana, North Dakota, South Dakota, and Wyoming compose the 392,764-square-mile area of Segment 8, which is in the north-central part of the continental United States. The area varies topographically from the high rugged mountain ranges of the Rocky Mountains in western Montana and Wyoming to the gently undulating surface of the Central Lowland in eastern North Dakota and South Dakota (fig. 1). The Black Hills in southwestern South Dakota and northeastern Wyoming interrupt the uniformity of the intervening Great Plains. Segment 8 spans the Continental Divide, which is the drainage divide that separates streams that generally flow westward from those that generally flow eastward. The area of Segment 8 is drained by the following major rivers or river systems: the Green River drains southward to join the Colorado River, which ultimately discharges to the Gulf of California; the Clark Fork and the Kootenai Rivers drain generally westward by way of the Columbia River to discharge to the Pacific Ocean; the Missouri River system and the North Platte River drain eastward and southeastward to the Mississippi River, which discharges to the Gulf of Mexico; and the Red River of the North and the Souris River drain northward through Lake Winnipeg to ultimately discharge to Hudson Bay in Canada. These rivers and their tributaries are an important source of water for public-supply, domestic and commercial, agricultural, and industrial uses. Much of the surface water has long been appropriated for agricultural use, primarily irrigation, and for compliance with downstream water pacts. Reservoirs store some of the surface water for flood control, irrigation, power generation, and recreational purposes. Surface water is not always available when and where it is needed, and ground water is the only other source of supply. Ground water is obtained primarily from wells completed in unconsolidated-deposit aquifers that consist mostly of sand and gravel, and from wells

  16. North Atlantic Deep Water formation inhibits high Arctic contamination by continental perfluorooctane sulfonate discharges

    Science.gov (United States)

    Zhang, Xianming; Zhang, Yanxu; Dassuncao, Clifton; Lohmann, Rainer; Sunderland, Elsie M.

    2017-08-01

    Perfluorooctane sulfonate (PFOS) is an aliphatic fluorinated compound with eight carbon atoms that is extremely persistent in the environment and can adversely affect human and ecological health. The stability, low reactivity, and high water solubility of PFOS combined with the North American phaseout in production around the year 2000 make it a potentially useful new tracer for ocean circulation. Here we characterize processes affecting the lifetime and accumulation of PFOS in the North Atlantic Ocean and transport to sensitive Arctic regions by developing a 3-D simulation within the MITgcm. The model captures variability in measurements across biogeographical provinces (R2 = 0.90, p = 0.01). In 2015, the North Atlantic PFOS reservoir was equivalent to 60% of cumulative inputs from the North American and European continents (1400 Mg). Cumulative inputs to the Arctic accounted for 30% of continental discharges, while the remaining 10% was transported to the tropical Atlantic and other regions. PFOS concentrations declined rapidly after 2002 in the surface mixed layer (half-life: 1-2 years) but are still increasing below 1000 m depth. During peak production years (1980-2000), plumes of PFOS-enriched seawater were transported to the sub-Arctic in energetic surface ocean currents. However, Atlantic Meridional Overturning Circulation (AMOC) and deep ocean transport returned a substantial fraction of this northward transport (20%, 530 Mg) to southern latitudes and reduced cumulative inputs to the Arctic (730 Mg) by 70%. Weakened AMOC due to climate change is thus likely to increase the magnitude of persistent bioaccumulative pollutants entering the Arctic Ocean.

  17. U.S. Geological Survey; North Carolina's water resources; a partnership with State, Federal and local agencies

    Science.gov (United States)

    Winner, M.D.

    1993-01-01

    For more than 80 years, the Federal-State Cooperative Program in North Carolina has been an effective partnership that provides timely water information for all levels of government. The cooperative program has raised awareness of State and local water problems and issues and has enhanced transfer and exchange of scientific information. The U.S. Geological Survey (USGS) conducts statewide water-resources investigations in North Carolina that include hydrologic data collection, applied research studies, and other interpretive studies. These programs are funded through cooperative agreements with the North Carolina Departments of Environment, Health, and Natural Resources; Human Resources; and Transportation, as well as more than a dozen city and county governmental agencies. The USGS also conducts special studies and data-collection programs for Federal agencies, including the Department of Defense, the U.S. Soil Conservation Service, the Tennessee Valley Authority, and the U.S. Environmental Protection Agency that contribute to North Carolina's water information data base. Highlights of selected programs are presented to show the scope of USGS activities in North Carolina and their usefulness in addressing water-resource problems. The reviewed programs include the statewide data-collection program, estuarine studies, the National Water-Quality Assessment program, military installation restoration program, and groundwater flow model-development program in the Coastal Plain and Piedmont provinces.

  18. Perceived risks of produced water management and naturally occurring radioactive material content in North Dakota.

    Science.gov (United States)

    Torres, Luisa; Yadav, Om Prakash; Khan, Eakalak

    2017-07-01

    Unconventional oil and gas development using hydraulic fracturing has caused conflict and controversy across the globe including the U.S. where some States banned the practice. Nevertheless, North Dakota (ND) has supported the practice because the State perceives the risks to be acceptable and because it has brought growth and opportunities to small communities. However, social acceptance of new technology is based on a number of factors and not contingent on economic benefits. To date, no research has been conducted to understand public risk perception of hazards associated with produced water from hydraulic fracturing in ND. This study focuses on understanding the risk perception of select ND stakeholder groups regarding produced water management and naturally occurring radioactive material. The software Qualtrics was used to create an online survey, collect data, and perform statistical analysis. The most important variables that seem to influence risk perception are the images and thoughts associated with produced water, level of knowledge about produced water handling and content, and knowing how to proceed in case of a spill of produced water. Overall, social risk perception could be in alignment with actual technical risk if availability of objective information is improved. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Radiological indices of drinking waters on the north part of the bulgarian black sea coast

    International Nuclear Information System (INIS)

    Todorov, P.T.; Rusev, R.; Chuturkova, R.

    2005-01-01

    Bulgaria is a country which is located in the Eastern Europe. A drinking water sources on the North part of Bulgarian Black Sea coast have different radiological indices. The sources of drinking water can be lakes, rivers, wells, dam lakes and so on. Property estimation of the contents of Uranium (Ur), Radium (Ra 226), and total Beta activity, shows that concentrations of investigated parameters vary around TDI (tolerable daily intake). To Uranium for example the TDI yields a guideline value are 2 μg/litre if a 60 kg adult consuming 2 litres of drinking water per day and the provisional guideline value of Uranium which shows the health significance in drinking waters is 0.002 mg/1. The situation with the full Beta activity and Radium concentrations is the same. All these qualitative and quantitative indices are close to the provisional guideline values, but in some cases it is higher than the limit concentrations. The full Beta activity is measured in Becquerel per litre and values are around 0.193+7-20% Bq/1. The Radium concentration takes the dimensions of Bq/1 and it is about 0.009 Bq/l. No matter of the source of drinking water, contents of radiological indices is a very important element of the health care control

  20. Analysing the origin of rain- and subsurface water in seasonal wetlands of north-central Namibia

    Science.gov (United States)

    Hiyama, Tetsuya; Kanamori, Hironari; Kambatuku, Jack R.; Kotani, Ayumi; Asai, Kazuyoshi; Mizuochi, Hiroki; Fujioka, Yuichiro; Iijima, Morio

    2017-03-01

    We investigated the origins of rain- and subsurface waters of north-central Namibia’s seasonal wetlands, which are critical to the region’s water and food security. The region includes the southern part of the Cuvelai system seasonal wetlands (CSSWs) of the Cuvelai Basin, a transboundary river basin covering southern Angola and northern Namibia. We analysed stable water isotopes (SWIs) of hydrogen (HDO) and oxygen (H2 18O) in rainwater, surface water and shallow groundwater. Rainwater samples were collected during every rainfall event of the rainy season from October 2013 to April 2014. The isotopic ratios of HDO (δD) and oxygen H2 18O (δ 18O) were analysed in each rainwater sample and then used to derive the annual mean value of (δD, δ 18O) in precipitation weighted by each rainfall volume. Using delta diagrams (plotting δD vs. δ 18O), we showed that the annual mean value was a good indicator for determining the origins of subsurface waters in the CSSWs. To confirm the origins of rainwater and to explain the variations in isotopic ratios, we conducted atmospheric water budget analysis using Tropical Rainfall Measuring Mission (TRMM) multi-satellite precipitation analysis (TMPA) data and ERA-Interim atmospheric reanalysis data. The results showed that around three-fourths of rainwater was derived from recycled water at local-regional scales. Satellite-observed outgoing longwave radiation (OLR) and complementary satellite data from MODerate-resolution Imaging Spectroradiometer (MODIS) and Advanced Microwave Scanning Radiometer (AMSR) series implied that the isotopic ratios in rainwater were affected by evaporation of raindrops falling from convective clouds. Consequently, integrated SWI analysis of rain-, surface and subsurface waters, together with the atmospheric water budget analysis, revealed that shallow groundwater of small wetlands in this region was very likely to be recharged from surface waters originating from local rainfall, which was

  1. Priority volatile organic compounds in surface waters of the southern North Sea

    International Nuclear Information System (INIS)

    Huybrechts, Tom; Dewulf, Jo; Langenhove, Herman van

    2005-01-01

    The occurrence of 25 volatile organic compounds (VOCs) was studied from April 1998 to October 2000 in the southern North Sea. Target VOCs were selected from lists of priority pollutants for the marine environment and included, e.g., chlorinated short-chain hydrocarbons (CHCs), monocyclic aromatic hydrocarbons (MAHs), and chlorinated monocyclic aromatic hydrocarbons (CMAHs). Water samples were taken from the Channel, the Belgian Continental Shelf, the mouth of the Scheldt estuary and the Southern Bight, and were analysed by purge-and-trap and high-resolution gas chromatography-mass spectrometry. All data were produced by analyses deemed 'in control' by a rigorous quality assurance/quality control program provided by QUASIMEME (Quality Assurance of Information for Marine Environmental Monitoring in Europe). Chloroform and trichloroethene were commonly detected at concentrations up to 1900 and 270 ng l -1 , respectively. The other CHCs were generally found below 5 ng l -1 , and rarely exceeded 10 ng l -1 . Concentrations of MAHs were at least one order of magnitude higher than those of the CHCs. The higher levels were attributed to anthropogenic emissions from oil-related activities in coastal areas. CMAHs, except chlorobenzene and 1,4-dichlorobenzene, were hardly detected in North Sea waters. The levels of several CHCs and MAHs were shown to decrease compared to previous investigations in 1994-1995, probably as a result of on-going emission reduction efforts. The occurrence of 1,1,1-trichloroethane, for instance, was substantially reduced since the Montreal Protocol was implemented in 1995. - Volatile aromatics are a major group of volatile organic compounds in the North Sea, and are attributed to discharges from shipping and oil related activities

  2. Focus on CSIR research in water resources: Managed aquifer recharge on the west coast north of Cape Town, South Africa

    CSIR Research Space (South Africa)

    Colvin, C

    2007-08-01

    Full Text Available The Atlantis Water Resource Management Scheme (AWRMS) located some 40 km north of Cape Town shows how insightful planning and management can expand the groundwater supply potential of a primary aquifer for bulk urban water supply. The AWRMS...

  3. Contrasting trends in North Atlantic deep-water formation in the Labrador Sea and Nordic Seas during the Holocene

    NARCIS (Netherlands)

    Renssen, H.; Goosse, H.; Fichefet, T.

    2005-01-01

    The Holocene North Atlantic deep-water formation is studied in a 9,000-year long simulation with a coupled climate model of intermediate complexity, forced by changes in orbital forcing and atmospheric trace gas concentrations. During the experiment, deep-water formation in the Nordic Seas is

  4. Modeling SST gradient changes, the hydrological cycle response, and deep water formation in the North Pacific

    Science.gov (United States)

    Burls, N.; Ford, H. L.; Fedorov, A. V.; Jahn, A.; Jacobs, P.

    2017-12-01

    The absence of deep-water formation and a deep meridional overturning cell in the modern North Pacific has been attributed to the relatively fresh surface conditions in the subarctic. These conditions are, in turn, best explained by the local excess of precipitation over evaporation in the northern Pacific due to net moisture transport from the Atlantic to the Pacific and/or moisture transport associated with the Asian monsoon. Some studies link the lack of deep-water formation in the Pacific directly to its occurrence in the Atlantic via the Atlantic-Pacific seesaw effect and idealized experiments indicate that the smaller width of the Atlantic predisposes it to higher salinity and deep-water formation. We have conducted a series of coupled model experiments across which global mean temperatures and large-scale meridional SST gradients are varied. We perturb either atmospheric CO2 concentrations or the meridional gradient in cloud radiative forcing and run each experiment out to 3000 years so that the deep ocean has equilibrated. As the strength of the meridional temperature gradient decreases across our experiments, a Pacific Meridional Overturning Circulation develops. The strength of this Pacific Meridional Overturning Circulation generally increases as the gradient weakens. In one of these experiments where the meridional SST gradient most closely resembles Pliocene reconstructions, a PMOC exists of comparable in strength to the modern AMOC. We will describe how the hydrological cycle response to reduced meridional SST gradients acts to increase the strength of the PMOC across our sensitivity experiments. Additionally, we will discuss our effort to include carbon isotopes in our Pliocene-like simulation for data-model comparisons. Calcium carbonate accumulation data from Subarctic North Pacific Site 882 and new and previously published carbon isotope records from the Pacific appear to support our modelling results suggesting that weaker meridonal SST gradients

  5. Assessing the value of information for water quality management in the North Sea.

    Science.gov (United States)

    Bouma, J A; van der Woerd, H J; Kuik, O J

    2009-02-01

    Global Earth Observation (GEO) is one of the most important sources of information for environmental resource management and disaster prevention. With budgets for GEO increasingly under pressure, it is becoming important to be able to quantify the returns to informational investments. For this, a clear analytical framework is lacking. By combining Bayesian decision theory with an empirical, stakeholder-oriented approach, this paper attempts to develop such a framework. The analysis focuses on the use of satellite observations for Dutch water quality management in the North Sea. Dutch water quality management currently relies on information from 'in situ' measurements but is considering extending and deepening its information base with satellite observations. To estimate returns to additional investments in satellite observation, we analyze the added value of an extended monitoring system for the management of eutrophication, potentially harmful algal blooms and suspended sediment and turbidity in the North Sea. First, we develop a model to make the potential contribution of information to welfare explicit. Second, we use this model to develop a questionnaire and interpret the results. The results indicate that the expected welfare impact of investing in satellite observation is positive, but that outcomes strongly depend on the accuracy of the information system and the range of informational benefits perceived.

  6. Microplastics Baseline Surveys at the Water Surface and in Sediments of the North-East Atlantic

    Directory of Open Access Journals (Sweden)

    Thomas Maes

    2017-05-01

    Full Text Available Microplastic contamination was determined in sediments of the Southern North Sea and floating at the sea surface of North West Europe. Floating concentrations ranged between 0 and 1.5 microplastic/m3, whereas microplastic concentrations in sediments ranged between 0 and 3,146 particles/kg dry weight sediment. In sediments, mainly fibers and spheres were found, whereas at the sea surface fragments were dominant. At the sea surface, concentrations of microplastics are lower and more variable than in sediments, meaning that larger sample sizes and water volumes are required to find detectable concentrations. We have calculated the widths of the confidence intervals (CI for different sample sizes, to give a first indication of the necessary sample size for a microplastic survey at the water surface. Higher concentrations of floating microplastics were found near estuaries. In sediments, estuaries and areas with a high organic carbon content were likely hotspots. Standardization of monitoring methods within marine regions is recommended to compare and assess microplastics pollution over time.

  7. High Resolution Map of Water Supply and Demand for North East United States

    Science.gov (United States)

    Ehsani, N.; Vorosmarty, C. J.; Fekete, B. M.

    2012-12-01

    Accurate estimates of water supply and demand are crucial elements in water resources management and modeling. As part of our NSF-funded EaSM effort to build a Northeast Regional Earth System Model (NE-RESM) as a framework to improve our understanding and capacity to forecast the implications of planning decisions on the region's environment, ecosystem services, energy and economic systems through the 21st century, we are producing a high resolution map (3' x 3' lat/long) of estimated water supply and use for the north east region of United States. Focusing on water demand, results from this study enables us to quantify how demand sources affect the hydrology and thermal-chemical water pollution across the region. In an attempt to generate this 3-minute resolution map in which each grid cell has a specific estimated monthly domestic, agriculture, thermoelectric and industrial water use. Estimated Use of Water in the United States in 2005 (Kenny et al., 2009) is being coupled to high resolution land cover and land use, irrigation, power plant and population data sets. In addition to water demands, we tried to improve estimates of water supply from the WBM model by improving the way it controls discharge from reservoirs. Reservoirs are key characteristics of the modern hydrologic system, with a particular impact on altering the natural stream flow, thermal characteristics, and biogeochemical fluxes of rivers. Depending on dam characteristics, watershed characteristics and the purpose of building a dam, each reservoir has a specific optimum operating rule. It means that literally 84,000 dams in the National Inventory of Dams potentially follow 84,000 different sets of rules for storing and releasing water which must somehow be accounted for in our modeling exercise. In reality, there is no comprehensive observational dataset depicting these operating rules. Thus, we will simulate these rules. Our perspective is not to find the optimum operating rule per se but to find

  8. Water footprint of crop production for different crop structures in the Hebei southern plain, North China

    Science.gov (United States)

    Chu, Yingmin; Shen, Yanjun; Yuan, Zaijian

    2017-06-01

    The North China Plain (NCP) has a serious shortage of freshwater resources, and crop production consumes approximately 75 % of the region's water. To estimate water consumption of different crops and crop structures in the NCP, the Hebei southern plain (HSP) was selected as a study area, as it is a typical region of groundwater overdraft in the NCP. In this study, the water footprint (WF) of crop production, comprised of green, blue and grey water footprints, and its annual variation were analyzed. The results demonstrated the following: (1) the WF from the production of main crops was 41.8 km3 in 2012. Winter wheat, summer maize and vegetables were the top water-consuming crops in the HSP. The water footprint intensity (WFI) of cotton was the largest, and for vegetables, it was the smallest; (2) the total WF, WFblue, WFgreen and WFgrey for 13 years (2000-2012) of crop production were 604.8, 288.5, 141.3 and 175.0 km3, respectively, with an annual downtrend from 2000 to 2012; (3) winter wheat, summer maize and vegetables consumed the most groundwater, and their blue water footprint (WFblue) accounted for 74.2 % of the total WFblue in the HSP; (4) the crop structure scenarios analysis indicated that, with approximately 20 % of arable land cultivated with winter wheat-summer maize in rotation, 38.99 % spring maize, 10 % vegetables and 10 % fruiters, a sustainable utilization of groundwater resources can be promoted, and a sufficient supply of food, including vegetables and fruits, can be ensured in the HSP.

  9. Water footprint of crop production for different crop structures in the Hebei southern plain, North China

    Directory of Open Access Journals (Sweden)

    Y. Chu

    2017-06-01

    Full Text Available The North China Plain (NCP has a serious shortage of freshwater resources, and crop production consumes approximately 75 % of the region's water. To estimate water consumption of different crops and crop structures in the NCP, the Hebei southern plain (HSP was selected as a study area, as it is a typical region of groundwater overdraft in the NCP. In this study, the water footprint (WF of crop production, comprised of green, blue and grey water footprints, and its annual variation were analyzed. The results demonstrated the following: (1 the WF from the production of main crops was 41.8 km3 in 2012. Winter wheat, summer maize and vegetables were the top water-consuming crops in the HSP. The water footprint intensity (WFI of cotton was the largest, and for vegetables, it was the smallest; (2 the total WF, WFblue, WFgreen and WFgrey for 13 years (2000–2012 of crop production were 604.8, 288.5, 141.3 and 175.0 km3, respectively, with an annual downtrend from 2000 to 2012; (3 winter wheat, summer maize and vegetables consumed the most groundwater, and their blue water footprint (WFblue accounted for 74.2 % of the total WFblue in the HSP; (4 the crop structure scenarios analysis indicated that, with approximately 20 % of arable land cultivated with winter wheat–summer maize in rotation, 38.99 % spring maize, 10 % vegetables and 10 % fruiters, a sustainable utilization of groundwater resources can be promoted, and a sufficient supply of food, including vegetables and fruits, can be ensured in the HSP.

  10. Water storage changes in North America retrieved from GRACE gravity and GPS data

    Directory of Open Access Journals (Sweden)

    Hansheng Wang

    2015-07-01

    Full Text Available As global warming continues, the monitoring of changes in terrestrial water storage becomes increasingly important since it plays a critical role in understanding global change and water resource management. In North America as elsewhere in the world, changes in water resources strongly impact agriculture and animal husbandry. From a combination of Gravity Recovery and Climate Experiment (GRACE gravity and Global Positioning System (GPS data, it is recently found that water storage from August, 2002 to March, 2011 recovered after the extreme Canadian Prairies drought between 1999 and 2005. In this paper, we use GRACE monthly gravity data of Release 5 to track the water storage change from August, 2002 to June, 2014. In Canadian Prairies and the Great Lakes areas, the total water storage is found to have increased during the last decade by a rate of 73.8 ± 14.5 Gt/a, which is larger than that found in the previous study due to the longer time span of GRACE observations used and the reduction of the leakage error. We also find a long term decrease of water storage at a rate of −12.0 ± 4.2 Gt/a in Ungava Peninsula, possibly due to permafrost degradation and less snow accumulation during the winter in the region. In addition, the effect of total mass gain in the surveyed area, on present-day sea level, amounts to −0.18 mm/a, and thus should be taken into account in studies of global sea level change.

  11. Water runoff vs modern climatic warming in mountainous cryolithic zone in North-East Russia

    Science.gov (United States)

    Glotov, V. E.; Glotova, L. P.

    2018-01-01

    The article presents the results of studying the effects of current climatic warming for both surface and subsurface water runoffs in North-East Russia, where the Main Watershed of the Earth separates it into the Arctic and Pacific continental slopes. The process of climatic warming is testified by continuous weather records during 80-100 years and longer periods. Over the Arctic slope and in the northern areas of the Pacific slope, climatic warming results in a decline in a total runoff of rivers whereas the ground-water recharge becomes greater in winter low-level conditions. In the southern Pacific slope and in the Sea of Okhotsk basin, the effect of climatic warming is an overall increase in total runoff including its subsurface constituents. We believe these peculiar characters of river runoff there to be related to the cryolithic zone environments. Over the Arctic slope and the northern Pacific slope, where cryolithic zone is continuous, the total runoff has its subsurface constituent as basically resulting from discharge of ground waters hosted in seasonally thawing rocks. Warmer climatic conditions favor growth of vegetation that needs more water for the processes of evapotranspiration and evaporation from rocky surfaces in summer seasons. In the Sea of Okhotsk basin, where the cryolithic zone is discontinuous, not only ground waters in seasonally thawing layers, but also continuous taliks and subpermafrost waters participate in processes of river recharges. As a result, a greater biological productivity of vegetation cover does not have any effect on ground-water supply and river recharge processes. If a steady climate warming is provided, a continuous cryolithic zone can presumably degrade into a discontinuous and then into an island-type permafrost layer. Under such a scenario, there will be a general increase in the total runoff and its subsurface constituent. From geoecological viewpoints, a greater runoff will have quite positive effects, whereas some

  12. The caesium 137 content in the water of the North Sea during the years 1969 to 1975

    International Nuclear Information System (INIS)

    Kautsky, H.

    1976-01-01

    In April 1975, about 34,000 Ci Caesium 137 in a water mass of about 30,500 km 3 was found in the area of the North Sea that we investigated between 51 0 N to 60 0 N and 4 0 W to 10 0 E. This represented a mean concentration of about 1.1 Ci/km 3 or 1.1 pCi/l water. Concentration variations of between 0.44 to 2.2 pCi/l in the different areas of the North Sea were measured. As compared with ICRP Standards, 137 Cs concentrations in sea water of up to some 900 pCi/l may be viewed as a still permissible limit (IAEA, 1970). The development of the 137 Cs content in the North Sea from 1969 to 1975 is discussed. Especially, the temporal changes in concentrations in different sections of the North Sea will be compared. These clearly show the different influence in different sections of the radioactive waste waters of the three coastal European nuclear fuel reprocessing plants on the content of radioactive fission products as well as their spreading in the water of the North Sea. (orig./HP) [de

  13. Introducing the North Water: Histories of exploration, ice dynamics, living resources, and human settlement in the Thule Region.

    Science.gov (United States)

    Hastrup, Kirsten; Mosbech, Anders; Grønnow, Bjarne

    2018-04-01

    The North Water is a recurrent polynya in the High Arctic situated between Northwest Greenland and Ellesmere Island of Canada. The North Water makes a dynamic space, where various processes may enhance or obstruct each other, accelerating or halting particular modes of human-animal relations in the region, where life itself depends on the North Water. This will be discussed in four steps. The first step posits the North Water as a perceived oasis for explorers and whalers hailing from Europe or America in the nineteenth century. The second step concentrates on the diverse rhythms inherent in the ice conditions, as affected by trends that are set in motion elsewhere. The third step highlights the implications of the dynamics of the ice and sea currents for animal life in the region. The fourth step gives an overview of human settlement patterns around the North Water across the ages. The article shows how natural and social features are deeply implicated in each other, even if they are not directly co-variant.

  14. Potential for nuclear desalination as a source of low cost potable water in North Africa

    International Nuclear Information System (INIS)

    1996-11-01

    Based on the limited regional water resources and in recognizing the possible role of nuclear energy in seawater desalination, the five North African Countries (NACs): Algeria, Egypt, Libya, Morocco and Tunisia submitted a request to the IAEA in 1990 for assistance in carrying out a feasibility study on the use of nuclear energy for seawater desalination in some pre-selected sites in these countries to cover their medium- and long-term needs for economical potable water. The present report has been prepared and is presented to the NACs in response to their request. It contains an assessment of the regional specific aspects, the available technical options with respect to desalination processes and energy sources, the cost evaluation of various technical options for the production of desalinated water, as well as the financial constraints and options, and finally the necessary steps needed to ensure the successful implementation of a nuclear desalination programme. The report also complements other work of the IAEA in the field of nuclear desalination, carried out in response to various resolutions of the IAEA General Conferences since 1989, namely: ''Use of Nuclear Reactors for Seawater Desalination'', IAEA-TECDOC-574 (1990) and ''Technical and Economic Evaluation of Potable Water Production through Desalination of Seawater by using Nuclear Energy and Other Means'', IAEA-TECDOC-666 (1992). 105 refs, 39 figs, tabs

  15. Drinking water and pregnancy outcome in central North Carolina: source, amount, and trihalomethane levels.

    Science.gov (United States)

    Savitz, D A; Andrews, K W; Pastore, L M

    1995-01-01

    In spite of the recognition of potentially toxic chemicals in chlorinated drinking water, few studies have evaluated reproductive health consequences of such exposure. Using data from a case-control study of miscarriage, preterm delivery, and low birth weight in central North Carolina, we evaluated risk associated with water source, amount, and trihalomethane (THM) concentration. Water source was not related to any of those pregnancy outcomes, but an increasing amount of ingested water was associated with decreased risks of all three outcomes (odds ratios around 1.5 for 0 glasses per day relative to 1-3 glasses per day, falling to 0.8 for 4+ glasses per day). THM concentration and dose (concentration x amount) were not related to pregnancy outcome, with the possible exception of an increased risk of miscarriage in the highest sextile of THM concentration (adjusted odds ratio = 2.8, 95% confidence interval = 1.1-2.7), which was not part of an overall dose-response gradient. These data do not indicate a strong association between chlorination by-products and adverse pregnancy outcome, but given the limited quality of our exposure assessment and the increased miscarriage risk in the highest exposure group, more refined evaluation is warranted. PMID:7556013

  16. Predicting large wildfires across western North America by modeling seasonal variation in soil water balance.

    Science.gov (United States)

    Waring, Richard H; Coops, Nicholas C

    A lengthening of the fire season, coupled with higher temperatures, increases the probability of fires throughout much of western North America. Although regional variation in the frequency of fires is well established, attempts to predict the occurrence of fire at a spatial resolution soil water reserves were coupled more directly to maximum leaf area index (LAI max ) and stomatal behavior. In an earlier publication, we used LAI max and a process-based forest growth model to derive and map the maximum available soil water storage capacity (ASW max ) of forested lands in western North America at l km resolution. To map large fires, we used data products acquired from NASA's Moderate Resolution Imaging Spectroradiometers (MODIS) over the period 2000-2009. To establish general relationships that incorporate the major biophysical processes that control evaporation and transpiration as well as the flammability of live and dead trees, we constructed a decision tree model (DT). We analyzed seasonal variation in the relative availability of soil water ( fASW ) for the years 2001, 2004, and 2007, representing respectively, low, moderate, and high rankings of areas burned. For these selected years, the DT predicted where forest fires >1 km occurred and did not occur at ~100,000 randomly located pixels with an average accuracy of 69 %. Extended over the decade, the area predicted burnt varied by as much as 50 %. The DT identified four seasonal combinations, most of which included exhaustion of ASW during the summer as critical; two combinations involving antecedent conditions the previous spring or fall accounted for 86 % of the predicted fires. The approach introduced in this paper can help identify forested areas where management efforts to reduce fire hazards might prove most beneficial.

  17. Reassessment of Ground-Water Recharge and Simulated Ground-Water Availability for the Hawi Area of North Kohala, Hawaii

    Science.gov (United States)

    Oki, Delwyn S.

    2002-01-01

    An estimate of ground-water availability in the Hawi area of north Kohala, Hawaii, is needed to determine whether ground-water resources are adequate to meet future demand within the area and other areas to the south. For the Hawi area, estimated average annual recharge from infiltration of rainfall, fog drip, and irrigation is 37.5 million gallons per day from a daily water budget. Low and high annual recharge estimates for the Hawi area that incorporate estimated uncertainty are 19.9 and 55.4 million gallons per day, respectively. The recharge estimates from this study are lower than the recharge of 68.4 million gallons per day previously estimated from a monthly water budget. Three ground-water models, using the low, intermediate, and high recharge estimates (19.9, 37.5, and 55.4 million gallons per day, respectively), were developed for the Hawi area to simulate ground-water levels and discharges for the 1990?s. To assess potential ground-water availability, the numerical ground-water flow models were used to simulate the response of the freshwater-lens system to withdrawals at rates in excess of the average 1990?s withdrawal rates. Because of uncertainty in the recharge estimate, estimates of ground-water availability also are uncertain. Results from numerical simulations indicate that for appropriate well sites, depths, and withdrawal rates (1) for the low recharge estimate (19.9 million gallons per day) it may be possible to develop an additional 10 million gallons per day of fresh ground water from the Hawi area and maintain a freshwater-lens thickness of 160 feet near the withdrawal sites, (2) for the intermediate recharge estimate (37.5 million gallons per day) it may be possible to develop an additional 15 million gallons per day of fresh ground water from the Hawi area and maintain a freshwater-lens thickness of 190 feet near the withdrawal sites, and (3) for the high recharge estimate (55.4 million gallons per day) it may be possible to develop at

  18. Integrated hydrological modeling of the North China Plain and implications for sustainable water management

    Directory of Open Access Journals (Sweden)

    H. Qin

    2013-10-01

    Full Text Available Groundwater overdraft has caused fast water level decline in the North China Plain (NCP since the 1980s. Although many hydrological models have been developed for the NCP in the past few decades, most of them deal only with the groundwater component or only at local scales. In the present study, a coupled surface water–groundwater model using the MIKE SHE code has been developed for the entire alluvial plain of the NCP. All the major processes in the land phase of the hydrological cycle are considered in the integrated modeling approach. The most important parameters of the model are first identified by a sensitivity analysis process and then calibrated for the period 2000–2005. The calibrated model is validated for the period 2006–2008 against daily observations of groundwater heads. The simulation results compare well with the observations where acceptable values of root mean square error (RMSE (most values lie below 4 m and correlation coefficient (R (0.36–0.97 are obtained. The simulated evapotranspiration (ET is then compared with the remote sensing (RS-based ET data to further validate the model simulation. The comparison result with a R2 value of 0.93 between the monthly averaged values of simulated actual evapotranspiration (AET and RS AET for the entire NCP shows a good performance of the model. The water balance results indicate that more than 70% of water leaving the flow system is attributed to the ET component, of which about 0.25% is taken from the saturated zone (SZ; about 29% comes from pumping, including irrigation pumping and non-irrigation pumping (net pumping. Sustainable water management analysis of the NCP is conducted using the simulation results obtained from the integrated model. An effective approach to improve water use efficiency in the NCP is by reducing the actual ET, e.g. by introducing water-saving technologies and changes in cropping.

  19. Deep water convection and biogeochemical cycling of carbon in the Northern North Atlantic

    International Nuclear Information System (INIS)

    Buch, E.; Gissel Nielsen, T.; Lundsgaard, C.; Bendtsen, J.

    2001-01-01

    In 1998, the Danish Research Council launched the Global Change project 'Biochemical cycling of carbon and ocean circulation in the Northern North Atlantic'. The overall aim of the project was to describe the effect of high latitude carbon dynamics on the global ocean-atmosphere carbon system, in general, and on the atmospheric pCO 2 in particular. At present, knowledge concerning the seasonal differences in turnover rates of organic material in polar and sub-polar regions is limited. Thus, in order to achieve the aim of the project, it was necessary to obtain biological and chemical rate measurements for production and mineralization of dissolved and particulate organic material at high latitudes and relate these to ocean dynamics at different times of the year. This was investigated in the project by performing three cruises to the Greenland Sea area at different times of the year. The purpose of the present chapter is to give a review of: 1) The physical environment of the Northern North Atlantic (ocean circulation, deep convection, North Atlantic Oscillation) and its variability including the recent trends of importance to climate change. 2) The chemical and biological processes of importance to carbon cycle and the importance of the carbon cycle to our understanding of climate variability. Additionally preliminary results from the Danish global change investigation in the Greenland Sea will be presented. With regard to circulation it is concluded that the deep water in the Greenland Sea continues to warm up, indicating that the deep water formation in this area is reduced. The biological investigations are providing a highly needed basic knowledge of the structure and function of the pelagic food web as well as of the microbial food web of the intermediate and deep water. These studies form a basis for assessing the productivity, export mechanisms, mineralization rates and mineralization depth-scales in these areas. Especially the questions about the

  20. Hydrologic effects of land and water management in North America and Asia: 1700–1992

    Directory of Open Access Journals (Sweden)

    I. Haddeland

    2007-01-01

    Full Text Available The hydrologic effects of land use changes, dams, and irrigation in North America and Asia over the past 300 years are studied using a macroscale hydrologic model. The simulation results indicate that the expansion of croplands over the last three centuries has resulted in 2.5 and 6 percent increases in annual runoff volumes for North America and Asia, respectively, and that these increases in runoff to some extent have been compensated by increased evapotranspiration caused by irrigation practices. Averaged over the year and the continental scale, the accumulated anthropogenic impacts on surface water fluxes are hence relatively minor. However, for some regions within the continents human activities have altered hydrologic regimes profoundly. Reservoir operations and irrigation practices in the western part of USA and Mexico have resulted in a 25 percent decrease in runoff in June, and a 9 percent decrease in annual runoff volumes reaching the Pacific Ocean. In the area in South East Asia draining to the Pacific Ocean, land use changes have caused an increase in runoff volumes throughout the year, and the average annual increase in runoff is 12 percent.

  1. Coastal outfalls, a sustainable alternative for improving water quality in north-east Atlantic estuaries.

    Science.gov (United States)

    Echavarri-Erasun, Beatriz; Juanes, José A; Puente, Araceli; Revilla, José A

    2010-09-01

    The city of Santander ceased the discharge of sewage effluents into the bay of Santander in June, 2001 and began discharging at a site 2.4 km offshore in the nearby coastal area (Virgen del Mar, Bay of Biscay) at a water depth of about 40 m. The present study investigates the effects of the new outfall discharges on the water quality of the high-energy coastal area and the recovery of the perturbed temperate estuarine area now only affected by combined sewer overflows (CSOs). Nutrients, phytoplankton biomass and urban pollution indicators were analysed. No significant spatial or temporal change in water quality variables was found in the coastal area around the outfall. No signs of nutrification or increases in chlorophyll-a were observed throughout the study period, although a slight increase in phosphates, suspended solids and turbidity were observed two years after the relocation of the discharge. These changes were not attributed to outfall discharge but to a regional increase also observed at control stations and nearby coastal areas. Considerable reductions in indicators of urban discharges were observed in the estuary after the relocation of discharges, even at stations located around CSOs. Results from this study support the efficiency of ecological quality-driven designs of sanitation systems, which are used as management tools for sensitive and environmentally valuable coastal ecosystems in the north-east Atlantic.

  2. The North Pacific Acoustic Laboratory deep-water acoustic propagation experiments in the Philippine Sea.

    Science.gov (United States)

    Worcester, Peter F; Dzieciuch, Matthew A; Mercer, James A; Andrew, Rex K; Dushaw, Brian D; Baggeroer, Arthur B; Heaney, Kevin D; D'Spain, Gerald L; Colosi, John A; Stephen, Ralph A; Kemp, John N; Howe, Bruce M; Van Uffelen, Lora J; Wage, Kathleen E

    2013-10-01

    A series of experiments conducted in the Philippine Sea during 2009-2011 investigated deep-water acoustic propagation and ambient noise in this oceanographically and geologically complex region: (i) the 2009 North Pacific Acoustic Laboratory (NPAL) Pilot Study/Engineering Test, (ii) the 2010-2011 NPAL Philippine Sea Experiment, and (iii) the Ocean Bottom Seismometer Augmentation of the 2010-2011 NPAL Philippine Sea Experiment. The experimental goals included (a) understanding the impacts of fronts, eddies, and internal tides on acoustic propagation, (b) determining whether acoustic methods, together with other measurements and ocean modeling, can yield estimates of the time-evolving ocean state useful for making improved acoustic predictions, (c) improving our understanding of the physics of scattering by internal waves and spice, (d) characterizing the depth dependence and temporal variability of ambient noise, and (e) understanding the relationship between the acoustic field in the water column and the seismic field in the seafloor. In these experiments, moored and ship-suspended low-frequency acoustic sources transmitted to a newly developed distributed vertical line array receiver capable of spanning the water column in the deep ocean. The acoustic transmissions and ambient noise were also recorded by a towed hydrophone array, by acoustic Seagliders, and by ocean bottom seismometers.

  3. North American water availability under stress and duress: building understanding from simulations, observations and data products

    Science.gov (United States)

    Maxwell, R. M.; Condon, L. E.; Atchley, A. L.; Hector, B.

    2017-12-01

    Quantifying the available freshwater for human use and ecological function depends on fluxes and stores that are hard to observe. Evapotranspiration (ET) is the largest terrestrial flux of water behind precipitation but is observed with low spatial density. Likewise, groundwater is the largest freshwater store, yet is equally uncertain. The ability to upscale observations of these variables is an additional complication; point measurements are made at scales orders of magnitude smaller than remote sensing data products. Integrated hydrologic models that simulate continental extents at fine spatial resolution are now becoming an additional tool to constrain fluxes and address interconnections. For example, recent work has shown connections between water table depth and transpiration partitioning, and demonstrated the ability to reconcile point observations and large-scale inferences. Here we explore the dynamics of large hydrologic systems experiencing change and stress across continental North America using integrated model simulations, observations and data products. Simulations of aquifer depletion due to pervasive groundwater pumping diagnose both stream depletion and changes in ET. Simulations of systematic increases in temperature are used to understand the relationship between snowpack dynamics, surface and groundwater flow, ET and a changing climate. Remotely sensed products including the GRACE estimates of total storage change are downscaled using model simulations to better understand human impacts to the hydrologic cycle. These example applications motivate a path forward to better use simulations to understand water availability.

  4. Occurence of perfluorinated organic acids in the water of the North Sea

    Energy Technology Data Exchange (ETDEWEB)

    Caliebe, C.; Gerwinski, W.; Theobald, N. [Bundesamt fuer Seeschiffahrt und Hydrographie, Hamburg (Germany); Huehnerfuss, H. [Hamburg Univ. (Germany). Inst. fuer Organische Chemie

    2004-09-15

    Perfluorinated organic acids (PFC) and their derivatives are industrially produced since many years in very large quantities and are used for many purposes: Perfluoroalkyl sulfonates are applied, e.g., as surfactants and surface protectors to carpets, leather, paper, fabrics and many more. In addition, some sulfonated and carboxylated PFCs have been utilized in or as fire fighting foams, alkaline cleaners, shampoos, and insecticide formulations. Due to the large production quantities and the persistence in the environment, perfluorinated compounds are meanwhile globally distributed. Perfluorooctanesulfonic acid (PFOS) and other long chain perfluorinated chemicals have been detected in blood of ringed seals, in polar bears, arctic foxes, mink, birds, and fishes collected in the USA, at the coasts of the Baltic and Mediterranean Sea and in the Arctic. Because of the findings of perfluorinated compounds in Arctic biota samples, it is of special interest to investigate their long range transport. Due to their high polarity, a transport by the water phase is likely. However up till now, only few studies report on the occurrence in surface or ground water and none in sea water. The aim of this work was, therefore, to develop a method for the determination of perfluorinated organic acids in seawater and to study their occurrence and distribution in the North Sea.

  5. Coccolithophore assemblage response to Black Sea Water inflow into the North Aegean Sea (NE Mediterranean)

    Science.gov (United States)

    Karatsolis, B.-Th.; Triantaphyllou, M. V.; Dimiza, M. D.; Malinverno, E.; Lagaria, A.; Mara, P.; Archontikis, O.; Psarra, S.

    2017-10-01

    This study aims to presents the species composition of living coccolithophore communities in the NE Aegean Sea, investigating their spatial and temporal variations along a north-south transect in the area receiving the inflowing surface Black Sea Water (BSW) over the deeper Levantine Water (LW) layer. Coccolithophores in the area were relatively diverse and a total of 95 species over 3 sampling periods studied were recognized using Scanning Electron Microscope (SEM) techniques. R-mode hierarchical cluster analysis distinguished two coccolithophore Groups (I, IIa, IIb, IIc) with different ecological preferences. Emiliania huxleyi was the most abundant species of Group I, whereas Syracosphaera spp., Rhabdosphaera spp. and holococcolithophores were prevailing in the highly diversified Group II assemblages. Biometric analysis conducted on E. huxleyi coccoliths from Aegean water column and Black Sea sediment trap samples, indicated that during autumn, NE Aegean specimens in samples under BSW influence were featured by unimodal distribution concerning the coccolith relative tube width, with values similar to those provided by the Black Sea specimens. In early spring, coccoliths in the stations with increased BSW influx displayed a bimodal pattern of relative tube width with smaller values found mostly in the surface layers, while the distribution became again unimodal and dominated by larger values within the deeper LW layers. In the summer period, the typical LW holococcolithophore species (Group II) presented low cell numbers in the surface layer (Black Sea early summer bloom conditions, E. huxleyi was almost absent in the NE Aegean during the summer sampling period.

  6. Evaluating the impact of water processing on wood charcoal remains: Tell Qarassa North, a case study

    DEFF Research Database (Denmark)

    Otaegui, Amaia Arranz; Zapata, Lydia; Colledge, Sue

    . In this work a comparison of the results obtained from water processing and hand-picking of wood charcoal remains at the Neolithic site of Tell Qarassa North (south Syria) is presented. The material comes from a burnt roof structure, where a total of 50 hand-picked wood samples and four flotation samples (120...... as those not vitrified (i.e. Salicaceae) and therefore, the proportion of vitrified wood charcoal samples would be larger than originally. These results suggest that recovery methods may be introducing biases, particularly in assemblages where features such as vitrification are unevenly distributed among...... the taxa present at the site. The results presented here warn against straightforward interpretations of wood charcoal frequencies in terms of original composition of past vegetation, and suggest that it would be advisable to use more than one recovery technique, along with recording of different types...

  7. Vertical mixing and elements of mesoscale dynamics over North Carolina shelf and contiguous Gulf Stream waters

    Science.gov (United States)

    Lozovatsky, Iossif; Planella-Morato, Jesus; Shearman, Kipp; Wang, Qing; Fernando, Harindra Joseph S.

    2017-06-01

    Results of microstructure measurements conducted in October-November of 2015 as a part of the Coupled Air Sea Processes and Electromagnetic Ducting Research (CASPER) project are discussed. The measurements were taken on the North Carolina shelf and across the Gulf Stream front. On the shelf, the oceanic stratification was influenced by highly variable surface salinity and along-bottom advection. Vertical mixing was mostly governed by variable winds. The vertical eddy diffusivity was estimated using the VMP-based dissipation measurements, and the diffusivity values obtained during calm periods and stormy winds were compared. Parameterization of the diffusivity for various mesoscale dynamical conditions is discussed in terms of shear instabilities and internal wave-generated turbulence based on data obtained in deep waters of the Gulf Stream and on the continental slope.

  8. Impacts of Off-Farm Employment on Irrigation Water Efficiency in North China

    Directory of Open Access Journals (Sweden)

    Ning Yin

    2016-10-01

    Full Text Available This paper examines the impacts of off-farm employment on irrigation water efficiency (IWE with a set of household level data collected in Hebei Province in North China. A major finding is that households with higher shares of laborers working off-farm locally seem to achieve higher IWEs. The effect of local off-farm employment is greater among those households that have made more efforts to use furrow irrigation. We also find that households with higher shares of elderly laborers and those with larger land holding are associated with lower IWEs. Households with better soil quality and those that pump from deeper wells are associated with higher IWEs.

  9. Hydrogen apparent fractionation between source water and epicuticular waxes of Pinus sylvestris in North East Finland

    Science.gov (United States)

    Newberry, S. L.; Grace, J.; Pedentchouk, N.

    2010-12-01

    Hydrogen isotopic composition of plant biomass provides crucial information about plant ecophysiology and local hydrology. Little is known about the apparent fractionation between hydrogen in source water and epicuticular leaf waxes of coniferous tree species that dominate the boreal forest ecosystem exposed to prolonged periods of sunlight during the growing season. In this study, single rope canopy access techniques were used to harvest needle and twig material from the upper, middle and lower crown of north and south facing branches of Pinus sylvestris within the subarctic forest of North East Finland. Samples were collected towards the beginning of the growing season in July and repeated in late September 2010. Leaf and twig waters were extracted cryogenically and analysed for D-enrichment. Individual n-alkanes are currently being quantified and analyzed for 13C/12C and D/H compositions. The molecular and isotopic data are supplemented by long-term in-situ cuvette photosynthetic assimilation measurements as well as relative humidity (RH), air temperature, precipitation and wind speed data collected by Helsinki University (SMEAR I). In addition RH, air temperature, wind speed and incoming solar radiation measurements were made at each individual sample point at the time of harvesting to quantify meteorological and microclimatological variation within individual trees. The outcome of this investigation will provide important insights into plant biochemistry and physiology of a crucial climate sensitive higher plant species subjected to continuous low light throughout the season. Furthermore, this work will expand our understanding of modern and palaeo-hydrology not only in northern Finland but also in other boreal forests around the world.

  10. Determining water balance components at a lysimeter site in north-eastern Austria

    Science.gov (United States)

    Nolz, Reinhard; Kammerer, Gerhard; Cepuder, Peter

    2014-05-01

    The water balance of a certain soil profile in a certain time interval is subjected to changes of soil water content within the respective profile, and fluxes at its upper and lower boundary such as evapotranspiration and percolation, respectively. Weighing lysimeters are valuable instruments for water balance studies. Typically, mass changes - thus, changes of soil profile water content - are detected by a weighing system, while percolating water is measured by a tipping bucket or a weighed storage tank, and precipitation is measured by a rain gauge. Consequently, evapotranspiration can be determined by solving a simple water balance equation. However, a typical problem is that using separately measured precipitation data may cause implausible (negative) evapotranspiration. As a solution, the quantities can be determined directly from lysimeter mass changes, which are assumed to be positive due to precipitation and negative due to evapotranspiration. This method requires short measuring intervals and precise data. In this regard, data management of primarily older lysimeter facilities may be improved to fulfil these criteria. At an experimental site in north-eastern Austria hourly water balance components were determined using a reference lysimeter that was installed 1983 and equipped with lever-arm-counterbalance weighing system. A disadvantage of such systems is their sensitivity to external disturbances, mainly forces exerted by wind, which can significantly decrease measuring accuracy. Hence, we firstly studied the mechanical performance of the system regarding wind effects and oscillation behavior, and tested averaging procedures on noisy raw data to enhance measurement accuracy. The measurement accuracy for a wind velocity piecewise sigmoid function was easy to fit and gave proper results of typical diurnal variation of evapotranspiration on single days without rainfall. However, on a longer time period with rainfall events, a polynomial spline function

  11. Runoff and water-quality characteristics of three Discovery Farms in North Dakota, 2008–16

    Science.gov (United States)

    Galloway, Joel M.; Nustad, Rochelle A.

    2017-12-21

    Agricultural producers in North Dakota are aware of concerns about degrading water quality, and many of the producers are interested in implementing conservation practices to reduce the export of nutrients from their farms. Producers often implement conservation practices without knowledge of the water quality of the runoff from their farm or if conservation practices they may implement have any effect on water quality. In response to this lack of information, the U.S. Geological Survey, in cooperation with North Dakota State University Extension Service and in coordination with an advisory group consisting of State agencies, agricultural producers, and commodity groups, implemented a monitoring study as part of a Discovery Farms program in North Dakota in 2007. Three data-collection sites were established at each of three farms near Underwood, Embden, and Dazey, North Dakota. The purpose of this report is to describe runoff and water-quality characteristics using data collected at the three Discovery Farms during 2008–16. Runoff and water-quality data were used to help describe the implications of agricultural conservation practices on runoff and water-quality patterns.Runoff characteristics of monitoring sites at the three farms were determined by measuring flow volume and precipitation. Runoff at the Underwood farm monitoring sites generally was controlled by precipitation in the area, antecedent soil moisture conditions, and, after 2012, possibly by the diversion ditch constructed by the producer. Most of the annual runoff was in March and April each year during spring snowmelt. Runoff characteristics at the Embden farm are complex because of the mix of surface runoff and flow through two separate drainage tile systems. Annual flow volumes for the drainage tiles sites (sites E2 and E3) were several orders of magnitude greater than measured at the surface water site E1. Site E1 generally only had runoff briefly in March and April during spring snowmelt and

  12. DISTRIBUSI KARBON DI BEBERAPA PERAIRAN SULAWESI UTARA (Carbon Distribution in North Sulawesi Waters

    Directory of Open Access Journals (Sweden)

    Nasprianto Nasprianto

    2016-02-01

    carbon and to analyze the sink and source potency in North Sulawesi waters. In situ measurements performed on the parameter pCO2. Measurements of pCO2were taken in the waters of Buyat Bay, Totok Bay, Manado Bay, Lembeh Strait and Tongkaina waters. In the waters of Buyat Bay ranged from 414.17 to 608.29 μatm, Ratatotok Bay ranged from 428.18 to 516.97 μatm, Manado Bay waters ranged from 385.16 to 395.52 μatm, Lembeh Strait waters ranged from 342.90 to 492,12 μatm and Tongkaina waters ranged from 394.54 to 568.32 μatm. Lowest pCO2 values located in Manado Bay, while the highest in Buyat Bay. Range measurement results are within normal limits measurements in coastal areas ranging from 200 – 4.600 μatm. The result of ∆pCO2analysis shows that Buyat Bay, Totok Bay, Tongkaina waters and Lembeh Strait relatively act as carbon source and Manado Bay as carbon sink.

  13. Acute and chronic toxicity of produced water from a North Sea oil production platform to the calanoid copepod Acartia tonsa

    Energy Technology Data Exchange (ETDEWEB)

    Girling, A.E. (Shell Research Limited, Kent (England))

    1989-08-01

    The routine operation of offshore oil production platforms results in the discharge to the sea of produced water after it has been separated from oil drawn from the reservoir. Discharge of produced water in the UK sector of the North Sea is given an exemption from the provisions of the 1971 Prevention of Oil Pollution Act providing the monthly average oil-in-water content measured twice per day does not exceed 40 mg kg{sup {minus}1}. To assess the toxic hazard to marine organisms of produced water discharged to the North Sea, within this exemption, Shell UK Exploration and Production has implemented a research program. Methods for determining the acute and chronic toxicity of produced water to the marine calanoid copepod Acartia tonsa have been established and applied at Shell's Sittingbourne Research Centre to samples from the Shell/Esso Dunlin A platform. This paper describes the methods used to assess acute and chronic toxicity and the results of tests performed on a sample of produced water collected in February 1986. Tests were performed on subsamples of the bulk sample which: (a) were untreated (b) had been filtered and (c) biodegraded (i.e., organic substances present in the produced water were degraded by micro-organisms) and then filtered. The results of the tests are discussed in relation to the likely patterns of dilution offshore in the North Sea.

  14. Heterogeneous occupancy and density estimates of the pathogenic fungus Batrachochytrium dendrobatidis in waters of North America.

    Directory of Open Access Journals (Sweden)

    Tara Chestnut

    Full Text Available Biodiversity losses are occurring worldwide due to a combination of stressors. For example, by one estimate, 40% of amphibian species are vulnerable to extinction, and disease is one threat to amphibian populations. The emerging infectious disease chytridiomycosis, caused by the aquatic fungus Batrachochytrium dendrobatidis (Bd, is a contributor to amphibian declines worldwide. Bd research has focused on the dynamics of the pathogen in its amphibian hosts, with little emphasis on investigating the dynamics of free-living Bd. Therefore, we investigated patterns of Bd occupancy and density in amphibian habitats using occupancy models, powerful tools for estimating site occupancy and detection probability. Occupancy models have been used to investigate diseases where the focus was on pathogen occurrence in the host. We applied occupancy models to investigate free-living Bd in North American surface waters to determine Bd seasonality, relationships between Bd site occupancy and habitat attributes, and probability of detection from water samples as a function of the number of samples, sample volume, and water quality. We also report on the temporal patterns of Bd density from a 4-year case study of a Bd-positive wetland. We provide evidence that Bd occurs in the environment year-round. Bd exhibited temporal and spatial heterogeneity in density, but did not exhibit seasonality in occupancy. Bd was detected in all months, typically at less than 100 zoospores L(-1. The highest density observed was ∼3 million zoospores L(-1. We detected Bd in 47% of sites sampled, but estimated that Bd occupied 61% of sites, highlighting the importance of accounting for imperfect detection. When Bd was present, there was a 95% chance of detecting it with four samples of 600 ml of water or five samples of 60 mL. Our findings provide important baseline information to advance the study of Bd disease ecology, and advance our understanding of amphibian exposure to free

  15. Terrestrial carbon balance in a drier world: the effects of water availability in southwestern North America.

    Science.gov (United States)

    Biederman, Joel A; Scott, Russell L; Goulden, Michael L; Vargas, Rodrigo; Litvak, Marcy E; Kolb, Thomas E; Yepez, Enrico A; Oechel, Walter C; Blanken, Peter D; Bell, Tom W; Garatuza-Payan, Jaime; Maurer, Gregory E; Dore, Sabina; Burns, Sean P

    2016-05-01

    Global modeling efforts indicate semiarid regions dominate the increasing trend and interannual variation of net CO2 exchange with the atmosphere, mainly driven by water availability. Many semiarid regions are expected to undergo climatic drying, but the impacts on net CO2 exchange are poorly understood due to limited semiarid flux observations. Here we evaluated 121 site-years of annual eddy covariance measurements of net and gross CO2 exchange (photosynthesis and respiration), precipitation, and evapotranspiration (ET) in 21 semiarid North American ecosystems with an observed range of 100 - 1000 mm in annual precipitation and records of 4-9 years each. In addition to evaluating spatial relationships among CO2 and water fluxes across sites, we separately quantified site-level temporal relationships, representing sensitivity to interannual variation. Across the climatic and ecological gradient, photosynthesis showed a saturating spatial relationship to precipitation, whereas the photosynthesis-ET relationship was linear, suggesting ET was a better proxy for water available to drive CO2 exchanges after hydrologic losses. Both photosynthesis and respiration showed similar site-level sensitivity to interannual changes in ET among the 21 ecosystems. Furthermore, these temporal relationships were not different from the spatial relationships of long-term mean CO2 exchanges with climatic ET. Consequently, a hypothetical 100-mm change in ET, whether short term or long term, was predicted to alter net ecosystem production (NEP) by 64 gCm(-2) yr(-1). Most of the unexplained NEP variability was related to persistent, site-specific function, suggesting prioritization of research on slow-changing controls. Common temporal and spatial sensitivity to water availability increases our confidence that site-level responses to interannual weather can be extrapolated for prediction of CO2 exchanges over decadal and longer timescales relevant to societal response to climate change.

  16. Water requirements for wheat and maize under climate change in North Nile Delta

    Energy Technology Data Exchange (ETDEWEB)

    Ouda, S.; Noreldin, T; Abd El-Latif, K.

    2015-07-01

    Determination of water requirements for wheat and maize under climate change is important for policy makers in Egypt. The objectives of this paper were to calculate (i) ETo and (ii) water requirements for wheat and maize crops grown in five governorates (Alexandria, Demiatte, Kafr El-Sheik, El-Dakahlia and El-Behira) located in North Nile Delta of Egypt under current climate and climate change. ECHAM5 climate model was used to develop A1B climate change scenario in 2020, 2030 and 2040. Monthly values of evapotranspiration (ETo) under the different scenarios in these governorates were calculated using Hargreaves-Samani equation (H-S). Then, these values were regressed on ETo values previously calculated by Penman-Monteith equation (P-M) and linear regression (prediction equations were developed for each governorate). The predicted ETo values were compared to the values of ETo calculated by P-M equation and the deviations between them were very low (RMSE/obs=0.04-0.06 mm and R2 =0.96-0.99). Water requirements for wheat and maize were calculated using BISm model under current climate and in 2020, 2030 and 2040. The results showed that average annual ETo would increase by low percentage in 2020 and 2030. However, in 2040 the increase would reach 8%. Water requirements are expected to increase by 2-3% for wheat and by 10-15% for maize, which would result in reduction of the cultivated area. Thus, it is very important to revise and fix the production system of wheat and maize, in terms of the used cultivars, fertilizer and irrigation application to overcome the risk of climate change. (Author)

  17. Prediction of soil water erosion risk within GIS-case study of Beni Amrane Dam catchment (North of Algeria)

    Science.gov (United States)

    Touahir, S.; Khenter, K.; Remini, B.; Saad, H.

    2017-08-01

    Isser River is one of North Algeria’s major resources. It is vulnerable to water soil erosion because of favourable conjunctions of different geomorphological, hydro-climatic and lithologic factors. This case study has been carried out on the Beni Amrane dam Catchment, which is located in the bottom of Isser River, in North Algeria. The study involves a mapping of main factors of water erosion: rainfall erosivity, soil erodibility, slope and land use. Essentially a data mapping specification analysis shows, on each factor, how to identify the areas that are prone to water erosion. 04 classes of multifactorial vulnerability to water erosion have been identified: areas with low vulnerability (10 per cent); area with middle vulnerability (49 per cent); areas with high and very high vulnerability (38 per cent and 3 per cent). This could be a first guidance document for a rational use of land in the region and better secure the Beni Amrane dam against reservoir siltation.

  18. Evaluating Sea water Quality in the Coastal Zone of North Lebanon using Telemac-2DTM

    International Nuclear Information System (INIS)

    Awad, Mohamad; Darwich, T.

    2009-01-01

    The coastal zones of the Mediterranean are undergoing rapid development withgrowing and conflicting demands on the natural resources. Coastal zones are often subjected to irreversible land degradation and environmental deterioration. Lebanon is located in the eastern part of the Mediterranean basin and the integrated management of the environment in the Lebanese coastal zone must be given concern. Most of the successful decisions addressing the environment protection or the elaboration of preventive measures in the coastal zone. These decisions depend on the availability of efficient simulation tools. The existence of these tools can help protecting the environment and establishing the ground for sustainable natural resources in the coastal zones. In this paper, a simulation tool called Telemac-2D TM software was used to simulate the business as usual, pessimistic, and optimistic status of the sea water quality in the coastal zone of Tripoli (North Lebanon). The coastal zone is affected by the effluents of solid and liquid wastes from Abou-Ali river. The different quality states of the coastal zone represent the normal, high, and low flow of the effluents (plume pollutants) from Abou-Ali river. In addition, it represents the variation of different factors such as wind and sea currents speed and direction. This simulation will help the decision makers to implement pre-cautious measures before a disaster takes place by assessing the quality of the sea water near the coastal zones. (author)

  19. Tracing variability in the iodine isotopes and species along surface water transect from the North Sea to the Canary Islands

    DEFF Research Database (Denmark)

    He, Peng; Aldahan, Ala; Hou, Xiaolin

    2016-01-01

    A complete transect of surface water samples from the North Sea to the Canary Islands was collected during a continuous period in 2010. The samples were analyzed for total 129I and 127I isotopes and their iodide and iodate species. The results indicate a large variability in the total 129I and its...

  20. Household-Level Determinants of Soil and Water Conservation Adoption Phases: Evidence from North-Western Ethiopian Highlands

    NARCIS (Netherlands)

    Teshome, Akalu; Graaff, de J.; Kassie, M.

    2016-01-01

    Soil and water conservation (SWC) practices have been promoted in the highlands of Ethiopia during the last four decades. However, the level of adoption of SWC practices varies greatly. This paper examines the drivers of different stages of adoption of SWC technologies in the north-western highlands

  1. Evaluation of soil and water conservation practices in the north-western Ethiopian highlands using multi-criteria analysis

    NARCIS (Netherlands)

    Teshome Firew, A.; Graaff, de J.; Stroosnijder, L.

    2014-01-01

    Investments by farmers in soil and water conservation (SWC) practices are influenced by the physical effectiveness, financial efficiency, and social acceptability of these practices. The objective of this study is to evaluate different SWC practices in the north-western highlands of Ethiopia using

  2. Generalist hydrocarbon-degrading bacterial communities in the oil-polluted water column of the North Sea

    NARCIS (Netherlands)

    Chronopoulou, P.M.; Sanni, G.O.; Silas-Olu, D.I.; van der Meer, J.R.; Timmis, K.N.; Brussaard, C.P.D.; McGenity, T.J.

    2015-01-01

    The aim of this work was to determine the effect of light crude oil on bacterial communities during an experimental oil spill in the North Sea and in mesocosms (simulating a heavy, enclosed oil spill), and to isolate and characterize hydrocarbon-degrading bacteria from the water column. No

  3. Low temporal variation in the intact polar lipid composition of North Sea coastal marine water reveals limited chemotaxonomic value

    NARCIS (Netherlands)

    Brandsma, J.; Hopmans, E.C.; Philippart, C.J.M.; Veldhuis, M.J.W.; Schouten, S.; Sinninghe Damsté, J.S.S.

    2012-01-01

    Temporal variations in the abundance and composition of intact polar lipids (IPLs) in North Sea coastal marine water were assessed over a one-year seasonal cycle, and compared with environmental parameters and the microbial community composition. Sulfoquinovosyldiacylglycerol (SQDG) was the most

  4. Microplastic contamination in brown shrimp (Crangon crangon, Linnaeus 1758) from coastal waters of the Southern North Sea and Channel area

    NARCIS (Netherlands)

    Devriese, L.I.; van der Meulen, M.D.; Maes, T.; Bekaert, K.; Paul-Pont, I.; Frère, L.; Robbens, J.; Vethaak, A.D.

    2015-01-01

    This study assessed the capability of Crangon crangon (L.), an ecologically and commercially important crustacean, of consuming plastics as an opportunistic feeder. We therefore determined the microplastic content of shrimp in shallow water habitats of the Channel area and Southern part of the North

  5. Fungal parasites of algae in the waters of North-Eastern Poland with reference to the enviroment

    Directory of Open Access Journals (Sweden)

    Bazyli Czeczuga

    2014-08-01

    Full Text Available In tnę present work the results of investigations of the fungal parasites of algae in various types of water bodies (slough, ponds. lakes and river in North-Eastern Poland with reference to the chemical environment are presented.

  6. Calibration of a water-quality model for low-flow conditions on the Red River of the North at Fargo, North Dakota, and Moorhead, Minnesota, 2003

    Science.gov (United States)

    Lundgren, Robert F.; Nustad, Rochelle A.

    2008-01-01

    A time-of-travel and reaeration-rate study was conducted by the U.S. Geological Survey, in cooperation with the North Dakota Department of Health, the Minnesota Pollution Control Agency, and the cities of Fargo, North Dakota, and Moorhead, Minnesota, to provide information to calibrate a water-quality model for streamflows of less than 150 cubic feet per second. Data collected from September 24 through 27, 2003, were used to develop and calibrate the U.S. Environmental Protection Agency Water Quality Analysis Simulation Program model (hereinafter referred to as the Fargo WASP water-quality model) for a 19.2-mile reach of the Red River of the North. The Fargo WASP water-quality model was calibrated for the transport of dye by fitting simulated time-concentration dye curves to measured time-concentration dye curves. Simulated peak concentrations were within 10 percent of measured concentrations. Simulated traveltimes of the dye cloud centroid were within 7 percent of measured traveltimes. The variances of the simulated dye concentrations were similar to the variances of the measured dye concentrations, indicating dispersion was reproduced reasonably well. Average simulated dissolved-oxygen concentrations were within 6 percent of average measured concentrations. Average simulated ammonia concentrations were within the range of measured concentrations. Simulated dissolved-oxygen and ammonia concentrations were affected by the specification of a single nitrification rate in the Fargo WASP water-quality model. Data sets from August 1989 and August 1990 were used to test traveltime and simulation of dissolved oxygen and ammonia. For streamflows that ranged from 60 to 407 cubic feet per second, simulated traveltimes were within 7 percent of measured traveltimes. Measured dissolved-oxygen concentrations were underpredicted by less than 15 percent for both data sets. Results for ammonia were poor; measured ammonia concentrations were underpredicted by as much as 70 percent

  7. Reliable, Economic, Efficient CO2 Heat Pump Water Heater for North America

    Energy Technology Data Exchange (ETDEWEB)

    Radcliff, Thomas D; Sienel, Tobias; Huff, Hans-Joachim; Thompson, Adrian; Sadegh, Payman; Olsommer, Benoit; Park, Young

    2006-12-31

    Adoption of heat pump water heating technology for commercial hot water could save up to 0.4 quads of energy and 5 million metric tons of CO2 production annually in North America, but industry perception is that this technology does not offer adequate performance or reliability and comes at too high of a cost. Development and demonstration of a CO2 heat pump water heater is proposed to reduce these barriers to adoption. Three major themes are addressed: market analysis to understand barriers to adoption, use of advanced reliability models to design optimum qualification test plans, and field testing of two phases of water heater prototypes. Market experts claim that beyond good performance, market adoption requires 'drop and forget' system reliability and a six month payback of first costs. Performance, reliability and cost targets are determined and reliability models are developed to evaluate the minimum testing required to meet reliability targets. Three phase 1 prototypes are designed and installed in the field. Based on results from these trials a product specification is developed and a second phase of five field trial units are built and installed. These eight units accumulate 11 unit-years of service including 15,650 hours and 25,242 cycles of compressor operation. Performance targets can be met. An availability of 60% is achieved and the capability to achieve >90% is demonstrated, but overall reliability is below target, with an average of 3.6 failures/unit-year on the phase 2 demonstration. Most reliability issues are shown to be common to new HVAC products, giving high confidence in mature product reliability, but the need for further work to minimize leaks and ensure reliability of the electronic expansion valve is clear. First cost is projected to be above target, leading to an expectation of 8-24 month payback when substituted for an electric water heater. Despite not meeting all targets, arguments are made that an industry leader could

  8. POWDERED ACTIVATED CARBON FROM NORTH DAKOTA LIGNITE: AN OPTION FOR DISINFECTION BY-PRODUCT CONTROL IN WATER TREATMENT PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Daniel J. Stepan; Thomas A. Moe; Melanie D. Hetland; Margaret L. Laumb

    2001-06-01

    New federal drinking water regulations have been promulgated to restrict the levels of disinfection by-products (DBPs) in finished public water supplies. DBPs are suspected carcinogens and are formed when organic material is partially oxidized by disinfectants commonly used in the water treatment industry. Additional federal mandates are expected in the near future that will further affect public water suppliers with respect to DBPs. Powdered activated carbon (PAC) has traditionally been used by the water treatment industry for the removal of compounds contributing to taste and odor problems. PAC also has the potential to remove naturally occurring organic matter (NOM) from raw waters prior to disinfection, thus controlling the formation of regulated DBPs. Many small water systems are currently using PAC for taste and odor control and have the potential to use PAC for controlling DBPs. This project, a cooperative effort between the Energy & Environmental Research Center (EERC), the Grand Forks Water Treatment Plant, and the University of North Dakota Department of Civil Engineering, consists of several interrelated tasks. The objective of the research was to evaluate a cost-effective PAC produced from North Dakota lignite for removing NOM from water and reducing trihalomethane formation potential. The research approach was to develop a statistically valid testing protocol that can be used to compare dose-response relationships between North Dakota lignite-derived PAC and commercially available PAC products. A statistical analysis was performed to determine whether significant correlations exist between operating conditions, water properties, PAC properties, and dose-response behavior. Pertinent physical and chemical properties were also measured for each of the waters and each of the PACs.

  9. Comparison of the Water Budget for the Typical Cropland and Pear Orchard Ecosystems in the North China Plain

    Science.gov (United States)

    Zhang, Y.; Shen, Y.

    2016-12-01

    Cropland and orchard play important roles in the land use types of the world and China. Water budget for the typical cropland and orchard ecosystem have significant meanings for the water usage and agricultural production, especially in the North China Plain. In this paper, water evapotranspiration (ET) and water balance of the winter wheat - summer maize rotation cropland and pear orchard were studied. Results suggested that annual water consumption for pear trees was 764 mm, which was 74 mm higher than crops (almost equal to once irrigation). Wheat growth needs more water and larger irrigation frequency than maize, while more water consumed in growing season and less in non-growing season. More than 80% of ET took place in April to September. Annual precipitation was 469 mm of pear orchard ecosystem and 444mm of cropland ecosystem, which concentrated in June to September (80%) for these two sites. Irrigation for the pear orchard was 400 mm, which was 100 mm more than the cropland, corresponding with the evapotranspiration. Compared with the precipitation, annual mean water deficit for the pear trees was 294 mm, which was 50 mm higher than the crops. May is the most serious water shortage month, while water surplus happened in July and August. Accumulated water budgets components variation had a very good consistency with the daily change. Annual patterns of plants phenology determined the energy and ET fluxes dynamic change under the timely cultivation and irrigation practices by humans. As the serious water shortage situation in the North China Plain, the government has to carry out reasonable policies and measures to ensure the sustainable water use and water safety and reduce the agricultural water use by the adjustment of crop planting structure.

  10. Enabling intelligent copernicus services for carbon and water balance modeling of boreal forest ecosystems - North State

    Science.gov (United States)

    Häme, Tuomas; Mutanen, Teemu; Rauste, Yrjö; Antropov, Oleg; Molinier, Matthieu; Quegan, Shaun; Kantzas, Euripides; Mäkelä, Annikki; Minunno, Francesco; Atli Benediktsson, Jon; Falco, Nicola; Arnason, Kolbeinn; Storvold, Rune; Haarpaintner, Jörg; Elsakov, Vladimir; Rasinmäki, Jussi

    2015-04-01

    The objective of project North State, funded by Framework Program 7 of the European Union, is to develop innovative data fusion methods that exploit the new generation of multi-source data from Sentinels and other satellites in an intelligent, self-learning framework. The remote sensing outputs are interfaced with state-of-the-art carbon and water flux models for monitoring the fluxes over boreal Europe to reduce current large uncertainties. This will provide a paradigm for the development of products for future Copernicus services. The models to be interfaced are a dynamic vegetation model and a light use efficiency model. We have identified four groups of variables that will be estimated with remote sensed data: land cover variables, forest characteristics, vegetation activity, and hydrological variables. The estimates will be used as model inputs and to validate the model outputs. The earth observation variables are computed as automatically as possible, with an objective to completely automatic estimation. North State has two sites for intensive studies in southern and northern Finland, respectively, one in Iceland and one in state Komi of Russia. Additionally, the model input variables will be estimated and models applied over European boreal and sub-arctic region from Ural Mountains to Iceland. The accuracy assessment of the earth observation variables will follow statistical sampling design. Model output predictions are compared to earth observation variables. Also flux tower measurements are applied in the model assessment. In the paper, results of hyperspectral, Sentinel-1, and Landsat data and their use in the models is presented. Also an example of a completely automatic land cover class prediction is reported.

  11. Hg concentrations in fish from coastal waters of California and Western North America

    Science.gov (United States)

    Davis, Jay; Ross, John; Bezalel, Shira; Sim, Lawrence; Bonnema, Autumn; Ichikawa, Gary; Heim, Wes; Schiff, Kenneth C; Eagles-Smith, Collin A.; Ackerman, Joshua T.

    2016-01-01

    The State of California conducted an extensive and systematic survey of mercury (Hg) in fish from the California coast in 2009 and 2010. The California survey sampled 3483 fish representing 46 species at 68 locations, and demonstrated that methylHg in fish presents a widespread exposure risk to fish consumers. Most of the locations sampled (37 of 68) had a species with an average concentration above 0.3 μg/g wet weight (ww), and 10 locations an average above 1.0 μg/g ww. The recent and robust dataset from California provided a basis for a broader examination of spatial and temporal patterns in fish Hg in coastal waters of Western North America. There is a striking lack of data in publicly accessible databases on Hg and other contaminants in coastal fish. An assessment of the raw data from these databases suggested the presence of relatively high concentrations along the California coast and in Puget Sound, and relatively low concentrations along the coasts of Alaska and Oregon, and the outer coast of Washington. The dataset suggests that Hg concentrations of public health concern can be observed at any location on the coast of Western North America where long-lived predator species are sampled. Output from a linear mixed-effects model resembled the spatial pattern observed for the raw data and suggested, based on the limited dataset, a lack of trend in fish Hg over the nearly 30-year period covered by the dataset. Expanded and continued monitoring, accompanied by rigorous data management procedures, would be of great value in characterizing methylHg exposure, and tracking changes in contamination of coastal fish in response to possible increases in atmospheric Hg emissions in Asia, climate change, and terrestrial Hg control efforts in coastal watersheds.

  12. Critical discharge at Datong for controlling operation of South-to-North Water Transfer Project in dry seasons

    Directory of Open Access Journals (Sweden)

    Wang Yigang

    2008-06-01

    Full Text Available Previous research shows that there is a strong correlation between saltwater intrusion in the Yangtze Estuary and discharge at Datong. In the near future, the discharge of the Yangtze River during dry seasons will decrease due to the construction and operation of large water diversion projects, including the South-to-North Water Transfer Project, which will further exacerbate saltwater intrusion in the estuary. In this paper, a nested 1D river network model and a 2D saltwater numerical model are used to associate saltwater intrusion in the Yangtze Estuary with different values of discharge at Datong. It is concluded that 13 000 m3/s is the critical discharge at Datong for preventing saltwater intrusion and controlling the volume of water transferred by the South-to-North Water Transfer Project. Furthermore, based on the analysis of river discharge from Datong to Xuliujing and in consideration of the influence of all of the water diversion projects, operation schemes are proposed for the Eastern Route of the South-to-North Water Transfer Project for different hydrological years.

  13. Water requirements for wheat and maize under climate change in North Nile Delta

    Directory of Open Access Journals (Sweden)

    Samiha Ouda

    2015-03-01

    Full Text Available Determination of water requirements for wheat and maize under climate change is important for policy makers in Egypt. The objectives of this paper were to calculate (i ETo and (ii water requirements for wheat and maize crops grown in five governorates (Alexandria, Demiatte, Kafr El-Sheik, El-Dakahlia and El-Behira located in North Nile Delta of Egypt under current climate and climate change. ECHAM5 climate model was used to develop A1B climate change scenario in 2020, 2030 and 2040. Monthly values of evapotranspiration (ETo under the different scenarios in these governorates were calculated using Hargreaves-Samani equation (H-S. Then, these values were regressed on ETo values previously calculated by Penman-Monteith equation (P-M and linear regression (prediction equations were developed for each governorate. The predicted ETo values were compared to the values of ETo calculated by P-M equation and the deviations between them were very low (RMSE/obs=0.04-0.06 mm and R2 =0.96-0.99. Water requirements for wheat and maize were calculated using BISm model under current climate and in 2020, 2030 and 2040. The results showed that average annual ETo would increase by low percentage in 2020 and 2030. However, in 2040 the increase would reach 8%. Water requirements are expected to increase by 2-3% for wheat and by 10-15% for maize, which would result in reduction of the cultivated area. Thus, it is very important to revise and fix the production system of wheat and maize, in terms of the used cultivars, fertilizer and irrigation application to overcome the risk of climate change. Additional key words: Triticum spp; Zea mays; Penman-Monteith equation; Hargreaves-Samani equation; BISm model; ECHAM5 climate model; A1B climate change scenario. Abbreviations used: BISm (basic irrigation scheduling model; CCAFS (Climate Change, Agriculture and Food Security; ETo (evapotranspiration; H-S (Hargreaves & Samani; Kc (crop coefficient; PI (percentage of increase; P

  14. Calibration, verification, and use of a water-quality model to simulate effects of discharging treated wastewater to the Red River of the North at Fargo, North Dakota

    Science.gov (United States)

    Wesolowski, E.A.

    1994-01-01

    A 30.8-mile reach of the Red River of the North receives treated wastewater from plants at Fargo, North Dakota, and Moorhead, Minnesota, and streamflows from the Sheyenne River. A one-dimensional, steady-state, stream water-quality model, the Enhanced Stream Water Quality Model (QUAL2E), was calibrated and verified for summer stream flow conditions to simulate some of the biochemical processes that result from discharging treated wastewater into this reach of the river. Data obtained to define the river's transport conditions are measurements of channel geometry, streamflow, traveltime, specific conductance, and temperature. Data obtained to define the river's water-quality conditions are measurements of concentrations of selected water-quality constituents and estimates of various reaction coefficients. Most of the water-quality data used to calibrate and verify the model were obtained during two synoptic samplings in August 1989 and August 1990. The water-quality model simulates specific conductance, water temperature, dissolved oxygen, ultimate carbonaceous biochemical oxygen demand, total nitrite plus nitrate as nitrogen, total ammonia as nitrogen, total organic nitrogen as nitrogen, total phosphorus as phosphorus, and algal biomass as chlorophyll a. Of the nine properties and constituents that the calibrated model simulates, all except algae were verified. When increases in dissolved-oxygen concentration are considered, model sensitivity analyses indicate that dissolved-oxygen concentration is most sensitive to maximum specific algal growth rate. When decreases in dissolved-oxygen concentration are considered, model sensitivity analyses indicate that dissolved-oxygen concentration is most sensitive to point-source ammonia. Model simulations indicate nitrification and sediment oxygen demand consume most of the dissolved oxygen in the study reach. The Red River at Fargo Water-Quality Model and the verification data set, including associated reaction

  15. Continuous water-quality monitoring and regression analysis to estimate constituent concentrations and loads in the Red River of the North, Fargo, North Dakota, 2003-05

    Science.gov (United States)

    Ryberg, Karen R.

    2006-01-01

    This report presents the results of a study by the U.S. Geological Survey, done in cooperation with the Bureau of Reclamation, U.S. Department of the Interior, to estimate water-quality constituent concentrations in the Red River of the North at Fargo, North Dakota. Regression analysis of water-quality data collected in 2003-05 was used to estimate concentrations and loads for alkalinity, dissolved solids, sulfate, chloride, total nitrite plus nitrate, total nitrogen, total phosphorus, and suspended sediment. The explanatory variables examined for regression relation were continuously monitored physical properties of water-streamflow, specific conductance, pH, water temperature, turbidity, and dissolved oxygen. For the conditions observed in 2003-05, streamflow was a significant explanatory variable for all estimated constituents except dissolved solids. pH, water temperature, and dissolved oxygen were not statistically significant explanatory variables for any of the constituents in this study. Specific conductance was a significant explanatory variable for alkalinity, dissolved solids, sulfate, and chloride. Turbidity was a significant explanatory variable for total phosphorus and suspended sediment. For the nutrients, total nitrite plus nitrate, total nitrogen, and total phosphorus, cosine and sine functions of time also were used to explain the seasonality in constituent concentrations. The regression equations were evaluated using common measures of variability, including R2, or the proportion of variability in the estimated constituent explained by the regression equation. R2 values ranged from 0.703 for total nitrogen concentration to 0.990 for dissolved-solids concentration. The regression equations also were evaluated by calculating the median relative percentage difference (RPD) between measured constituent concentration and the constituent concentration estimated by the regression equations. Median RPDs ranged from 1.1 for dissolved solids to 35.2 for

  16. Water and Climate Change in the Classroom in the North-East of Romania

    Science.gov (United States)

    Luchian, A. M.; Luchian, D.; Luchian, N.

    2012-04-01

    We have studied with the students our climate variability in the last 55 years (1956-2010) to better understanding the feedback between the interlinked terrestrial and atmospheric processes on different spatial and temporal scales. We did case studies of regional hydrological behavior in climate sensitive and drought or flood regions in the North-East of Romania. In the classroom at the "Costache Negruzzi" National College Iasi we have studied with our students, aged 14-18 years old, the temporal and spatial distribution of the precipitation and the temperature in a 55 years period, between 1956-2010, in the North-East of Romania, especially at the meteorological station in Iaši. We did graphs with the observational data from the National Meteorological Agency of Romania about precipitation and air-temperature in our region climate and we have registered our own data with an automatic meteorological station placed in the "Costache Negruzzi" schoolyard. In the classroom we have represented the annual medium precipitation and the temperature variability in graphics registered between 1970-2010, in the area of Iasi-Moldavia, Romania. We have identified four dangerous levels of precipitation especially for flood and drought regions in the North-East of Romania. We have studied the maximal and minimal level of the daily, monthly and annual precipitation in correlation with the temperature variability graphs in the same area. We have realized with the students a very complex analysis on the frequency, repartition and variation in time of the precipitation and we have used the information in the Physics and Geography classes. The students aged 14-18 years old did computing statistics of the meteorological data and did different graphs for the precipitation intensity and frequency on special levels: medium, minimum and maximum. The students applied the data for annual precipitation level in each month, 1970-2010 period and discuss the results to identify the climate

  17. Water-quality trend analysis and sampling design for streams in North Dakota, 1971-2000

    Science.gov (United States)

    Vecchia, Aldo V.

    2003-01-01

    This report presents the results of a study conducted by the U.S. Geological Survey, in cooperation with the North Dakota Department of Health, to analyze historical water-quality trends in selected dissolved major ions, nutrients, and dissolved trace metals for 10 streams in southwestern and eastern North Dakota and to develop an efficient sampling design to monitor future water-quality trends. A time-series model for daily streamflow and constituent concentration was used to identify significant concentration trends, separate natural hydroclimatic variability in concentration from variability that could have resulted from anthropogenic causes, and evaluate various sampling designs to monitor future water-quality trends. The interannual variability in concentration as a result of variability in streamflow, referred to as the annual concentration anomaly, generally was high for all constituents and streams used in the trend analysis and was particularly sensitive to the severe drought that occurred in the late 1980's and the very wet period that began in 1993 and has persisted to the present (2002). Although climatic conditions were similar across North Dakota during the trend-analysis period (1971-2000), significant differences occurred in the annual concentration anomalies from constituent to constituent and location to location, especially during the drought and the wet period. Numerous trends were detected in the historical constituent concentrations after the annual concentration anomalies were removed. The trends within each of the constituent groups (major ions, nutrients, and trace metals) showed general agreement among the streams. For most locations, the largest dissolved major-ion concentrations occurred during the late 1970's and concentrations in the mid- to late 1990's were smaller than concentrations during the late 1970's. However, the largest concentrations for three of the Missouri River tributaries and one of the Red River of the North

  18. Monitoring on Heavy Metals Content in Sea Water and Sediment in the Waters of Bacan Island, North of Maluku

    Directory of Open Access Journals (Sweden)

    Febriana Lisa Valentin

    2010-04-01

    Full Text Available Measurement on heavy metals content in seawater and sediment in the waters of Bacan Islands, North of Maluku were carried out in September 2005. That heavy metals are Pb, Cd, Cu, Zn, and Ni. Seawater and sediment sample collected from 10 station by purposive sampling, in line with the goal of the research. The results showed that the heavy metals content in seawater still in line with the threshold value (NAB stated by The Office of State Ministry for Life Environment (KMNLH but in sediment heavy metals content is high relative, especially Cu and Ni has passed the threshold value for sediment. Beside heavy metal content also measured physical and chemical parameters such as temperature, salinity, total suspended solid, light transmission, dissolved oxygen, acidity, phosphate and nitrate. The result also indicated that parameters still in line with the threshold value stated by KMNLH for marine organism. Based on heavy metals content, the value of seawater quality status included into class A (fine with score 0. Heavy metal content in sediment is higher than seawater, this condition indicated there are heavy metals accumulation in sediment.

  19. Hydrological implications of soil water-repellency in Eucalyptus globulus forests, north-central Portugal

    Science.gov (United States)

    Ferreira, A. J. D.; Coelho, C. O. A.; Walsh, R. P. D.; Shakesby, R. A.; Ceballos, A.; Doerr, S. H.

    2000-05-01

    Soil water-repellency (hydrophobicity) is a widespread property of Eucalyptus globulus and Pinus pinaster forest soils in central and north littoral Portugal and is particularly severe during the summer dry conditions. This paper attempts to assess the impact of water repellency on overland flow and runoff generation at plot and catchment scales for two types of terrain with differing land management and degree of soil hydrophobicity: (i) highly hydrophobic land with regenerating eucalyptus forest following fire; and (ii) largely hydrophilic land on which deep-ploughing prior to planting eucalyptus seedlings had eliminated hydrophobicity. Overland flow responses were monitored over a 40-month period for two 8 m×2 m plots and streamflow was recorded continuously at gauging stations for two small catchments of predominantly regrowth eucalyptus and ploughed/planted eucalyptus, respectively. Soil hydrophobicity was assessed using the Water Drop Penetration Time (WDPT) test. Seasonal variations in the factors influencing plot overland flow response were assessed for each land management type using multivariate analysis. For the regrowth eucalyptus plot, overland flow generation was found to be negatively correlated with antecedent soil moisture in summer (suggesting that hydrophobicity-linked Hortonian overland flow is then dominant), but positively related to throughflow in winter (suggesting that saturation overland flow generation in a hydrophilic-phase soil was at that time the dominant mechanism). In the ploughed/planted areas, negative correlations with soil moisture were found neither in summer nor winter. Rainfall amount (and in winter also antecedent precipitation) were found to be the variables most strongly and positively related to overland flow volume. The plot results are compared with streamflow responses for the small catchments.

  20. Monitoring of 1300 organic micro-pollutants in surface waters from Tianjin, North China.

    Science.gov (United States)

    Kong, Lingxiao; Kadokami, Kiwao; Wang, Shaopo; Duong, Hanh Thi; Chau, Hong Thi Cam

    2015-03-01

    In spite of the quantities and species of chemicals dramatically increased with rapid economic growth in China in the last decade, the focus of environmental research was mainly on limited number of priority pollutants. Therefore, to elucidate environmental pollution by organic micro-pollutants, this work was conducted as the first systematic survey on the occurrence of 1300 substances in 20 surface water samples of Tianjin, North China, selected as a representative area of China. The results showed the presence of 227 chemicals. The most relevant compounds in terms of frequency of detection and median concentration were bis(2-ethylhexyl) phthalate (100%; 0.26μgL(-1)), siduron (100%; 0.20μgL(-1)), lidocaine (100%; 96ngL(-1)), antipyrine (100%; 76ngL(-1)), caffeine (95%; 0.28μgL(-1)), cotinine (95%; 0.20μgL(-1)), phenanthrene (95%; 0.17μgL(-1)), metformin (90%; 0.61μgL(-1)), diethyl phthalate (90%; 0.19μgL(-1)), quinoxaline-2-carboxylic acid (90%; 0.14μgL(-1)), 2-(methylthio)-benzothiazole (85%; 0.11μgL(-1)) and anthraquinone (85%; 54ngL(-1)). Cluster analysis discriminated three highly polluted sites from others based on data similarity. Principle component analysis identified four factors, corresponding to industrial wastewater, domestic discharge, tire production and atmospheric deposition, accounting for 78% of the total variance in the water monitoring data set. This work provides a wide reconnaissance on broad spectrum of organic micro-contaminants in surface waters in China, which indicates that the aquatic environment in China has been polluted by a large number of chemicals. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Impact of the large-scale Arctic circulation and the North Water Polynya on nutrient inventories in Baffin Bay

    Science.gov (United States)

    Tremblay, Jean-Éric; Gratton, Yves; Carmack, Eddy C.; Payne, Christopher D.; Price, Neil M.

    2002-08-01

    The distributions of nitrate, phosphate, and silicate in northern Baffin Bay were determined from 90 bottle casts taken between April 11 and July 21, 1998. During late spring, low-salinity Arctic water entered northern Smith Sound and mixed with Baffin Bay water (BBW) within the North Water Polynya. The Arctic water originated from the Bering Sea and contained high concentrations of phosphate and silicate (referred to as silicate-rich Arctic water (SRAW)). The distribution of the two water masses was established using a new tracer, Siex, which showed moderate penetration of SRAW into Smith Sound during April and a very strong incursion in May and June, consistent with the intensification of southward current velocities. Biological depletion of macronutrients in BBW began in April and continued until nitrate was exhausted from the upper mixed layer in early June. Beneath the Polynya the deep waters (>450 m) showed a marked increase in nutrient concentration toward the bottom, which was most pronounced in the south and much stronger for silicate than nitrate and phosphate. The silicate enrichment was consistent with dissolution of diatom-derived biogenic silica in deep waters. The results indicate that the North Water acts as a silicate trap in which the biota differentially transports surface silicate to depth, thereby influencing local and downstream nutrient signatures.

  2. Cloud/Fog Computing System Architecture and Key Technologies for South-North Water Transfer Project Safety

    Directory of Open Access Journals (Sweden)

    Yaoling Fan

    2018-01-01

    Full Text Available In view of the real-time and distributed features of Internet of Things (IoT safety system in water conservancy engineering, this study proposed a new safety system architecture for water conservancy engineering based on cloud/fog computing and put forward a method of data reliability detection for the false alarm caused by false abnormal data from the bottom sensors. Designed for the South-North Water Transfer Project (SNWTP, the architecture integrated project safety, water quality safety, and human safety. Using IoT devices, fog computing layer was constructed between cloud server and safety detection devices in water conservancy projects. Technologies such as real-time sensing, intelligent processing, and information interconnection were developed. Therefore, accurate forecasting, accurate positioning, and efficient management were implemented as required by safety prevention of the SNWTP, and safety protection of water conservancy projects was effectively improved, and intelligential water conservancy engineering was developed.

  3. From Europe to America: Pliocene to Recent trans-Atlantic expansion of cold-water North Atlantic molluscs

    Science.gov (United States)

    Vermeij, Geerat J

    2005-01-01

    Data on the geographical distribution, phylogeny and fossil record of cool-temperate North Atlantic shell-bearing molluscs that live in waters shallower than 100 m depth belong to two biogeographic provinces, one in eastern North America north of Cape Cod, the other in northern Europe. Amphi-Atlantic species, which are found in both provinces, comprise 30.8% of the 402 species in the northeastern Atlantic and 47.3% of the 262 species in the northwestern Atlantic. Some 54.8% of these amphi-Atlantic species have phylogenetic origins in the North Pacific. Comparisons among fossil Atlantic faunas show that amphi-Atlantic distributions became established in the Middle Pliocene (about 3.5 million years ago), and that all represent westward expansions of European taxa to North America. No American taxa spread eastward to Europe without human assistance. These results are in accord with previous phylogeographic studies among populations within several amphi-Atlantic species. Explanations for the unidirectional expansion of species across the Atlantic remain uncertain, but may include smaller size and greater prior extinction of the North American as compared to the European fauna and biased transport mechanisms. Destruction of the European source fauna may jeopardize faunas on both sides of the Atlantic. PMID:16271981

  4. Chemical quality of surface waters in Devils Lake basin, North Dakota

    Science.gov (United States)

    Swenson, Herbert; Colby, Bruce R.

    1955-01-01

    Devils Lake basin, a closed basin in northeastern North Dakota, covers about 3,900 square miles of land, the topography of which is morainal and of glacial origin. In this basin lies a chain of waterways, which begins with the Sweetwater group and extends successively through Mauvais Coulee, Devils Lake, East Bay Devils Lake, and East Devils Lake, to Stump Lake. In former years when lake levels were high, Mauvais Coulee drained the Sweetwater group and discharged considerable water into Devils Lake. Converging coulees also transported excess water to Stump Lake. For at least 70 years prior to 1941, Mauvais Coulee flowed only intermittently, and the levels of major lakes in this region gradually declined. Devils Lake, for example, covered an area of about 90,000 acres in 1867 but had shrunk to approximately 6,500 acres by 1941. Plans to restore the recreational appeal of Devils Lake propose the dilution and eventual displacement of the brackish lake water by fresh water that would be diverted from the Missouri River. Freshening of the lake water would permit restocking Devils Lake with fish. Devils and Stump Lake have irregular outlines and numerous windings and have been described as lying in the valley of a preglacial river, the main stem and tributaries of which are partly filled with drift. Prominent morainal hills along the south shore of Devils Lake contrast sharply with level farmland to the north. The mean annual temperature of Devils Lake basin ranges between 36 ? and 42 ? F. Summer temperatures above 100 ? F and winter temperatures below -30 ? Fare not uncommon. The annual precipitation for 77 years at the city of Devils Lake averaged 17.5 inches. Usually, from 75 to 80 percent of the precipitation in the basin falls during the growing season, April to September. From 1867 to 1941 the net fall of the water surface of Devils Lake was about 38 feet. By 1951 the surface had risen fully 14 feet from its lowest altitude, 1,400.9 feet. Since 1951, the level has

  5. Sustainable Electricity and Water for Europe, Middle East and North Africa

    Science.gov (United States)

    Müller-Steinhagen, H.; Trieb, F.

    2009-04-01

    Sufficient supply of energy and water are among the key requirements for a sustainable development of nations. Both depend strongly on energy carriers such as oil, gas, coal and uranium which have limited availability and a negative impact on the environment during their use. Within the framework of a series of detailed studies, conventional and renewable energy sources available for electricity production and desalination in Europe, North Africa and the Middle East (EU-MENA) have been analysed. Scenarios have been developed for a sustainable electricity supply based on increased plant and user efficiency, and an accelerated introduction of renewable energy sources. Even if all potential exclusion criteria are applied and only those technologies are considered which will become economically competitive within the next decades, a potential has been identified which exceeds the present electricity demand by orders of magnitude. Solar energy is, in this context, the by far largest resource which will most economically be exploited in centralised solar thermal power plants. In combination with heat storage, these power plants can provide bulk and peak electricity, and can be combined with thermal or reverse osmosis desalination plants. At present, solar thermal power plants with a total capacity exceeding 10 GW are in operation or under construction in Abu Dhabi, Algeria, Egypt, Iran, Israel, Italy, Morocco, Spain and the USA. Ultimately, the increasing electricity demand of EU-MENA can only be secured in conjunction with the required climate and resource protection targets, if all renewable energy sources are exploited where appropriate, and conversion and user efficiency are increased. To utilise the enormous energy resources of the Mediterranean countries, high voltage direct current power lines will have to be built, linking the most abundant and economic resources with the load centres in the North. With electricity losses below 10% over a distance of 3000 km

  6. Asian industrial lead inputs to the North Pacific evidenced by lead concentrations and isotopic compositions in surface waters and aerosols.

    Science.gov (United States)

    Gallon, Céline; Ranville, Mara A; Conaway, Christopher H; Landing, William M; Buck, Clifton S; Morton, Peter L; Flegal, A Russell

    2011-12-01

    Recent trends of atmospheric lead deposition to the North Pacific were investigated with analyses of lead in aerosols and surface waters collected on the fourth Intergovernmental Oceanographic Commission Contaminant Baseline Survey from May to June, 2002. Lead concentrations of the aerosols varied by 2 orders of magnitude (0.1-26.4 pmol/m(3)) due in part to variations in dust deposition during the cruise. The ranges in lead aerosol enrichment factors relative to iron (1-119) and aluminum (3-168) were similar, evidencing the transport of Asian industrial lead aerosols across the North Pacific. The oceanic deposition of some of those aerosols was substantiated by the gradient of lead concentrations of North Pacific waters, which varied 3-fold (32.7-103.5 pmol/kg), were highest along with the Asian margin of the basin, and decreased eastward. The hypothesized predominance of Asian industrial lead inputs to the North Pacific was further corroborated by the lead isotopic composition of ocean surface waters ((206)Pb/(207)Pb = 1.157-1.169; (208)Pb/(206)Pb = 2.093-2.118), which fell within the range of isotopic ratios reported in Asian aerosols that are primarily attributed to Chinese industrial lead emissions.

  7. Heterogeneous occupancy and density estimates of the pathogenic fungus Batrachochytrium dendrobatidis in waters of North America

    Science.gov (United States)

    Chestnut, Tara E.; Anderson, Chauncey; Popa, Radu; Blaustein, Andrew R.; Voytek, Mary; Olson, Deanna H.; Kirshtein, Julie

    2014-01-01

    Biodiversity losses are occurring worldwide due to a combination of stressors. For example, by one estimate, 40% of amphibian species are vulnerable to extinction, and disease is one threat to amphibian populations. The emerging infectious disease chytridiomycosis, caused by the aquatic fungus Batrachochytrium dendrobatidis (Bd), is a contributor to amphibian declines worldwide. Bd research has focused on the dynamics of the pathogen in its amphibian hosts, with little emphasis on investigating the dynamics of free-living Bd. Therefore, we investigated patterns of Bd occupancy and density in amphibian habitats using occupancy models, powerful tools for estimating site occupancy and detection probability. Occupancy models have been used to investigate diseases where the focus was on pathogen occurrence in the host. We applied occupancy models to investigate free-living Bd in North American surface waters to determine Bd seasonality, relationships between Bd site occupancy and habitat attributes, and probability of detection from water samples as a function of the number of samples, sample volume, and water quality. We also report on the temporal patterns of Bd density from a 4-year case study of a Bd-positive wetland. We provide evidence that Bd occurs in the environment year-round. Bd exhibited temporal and spatial heterogeneity in density, but did not exhibit seasonality in occupancy. Bd was detected in all months, typically at less than 100 zoospores L−1. The highest density observed was ∼3 million zoospores L−1. We detected Bd in 47% of sites sampled, but estimated that Bd occupied 61% of sites, highlighting the importance of accounting for imperfect detection. When Bd was present, there was a 95% chance of detecting it with four samples of 600 ml of water or five samples of 60 mL. Our findings provide important baseline information to advance the study of Bd disease ecology, and advance our understanding of amphibian exposure

  8. Shrubland carbon sink depends upon winter water availability in the warm deserts of North America

    Science.gov (United States)

    Biederman, Joel A.; Scott, Russell L.; John A. Arnone,; Jasoni, Richard L.; Litvak, Marcy E.; Moreo, Michael T.; Papuga, Shirley A.; Ponce-Campos, Guillermo E.; Schreiner-McGraw, Adam P.; Vivoni, Enrique R.

    2018-01-01

    Global-scale studies suggest that dryland ecosystems dominate an increasing trend in the magnitude and interannual variability of the land CO2 sink. However, such model-based analyses are poorly constrained by measured CO2 exchange in open shrublands, which is the most common global land cover type, covering ∼14% of Earth’s surface. Here we evaluate how the amount and seasonal timing of water availability regulate CO2 exchange between shrublands and the atmosphere. We use eddy covariance data from six US sites across the three warm deserts of North America with observed ranges in annual precipitation of ∼100–400mm, annual temperatures of 13–18°C, and records of 2–8 years (33 site-years in total). The Chihuahuan, Sonoran and Mojave Deserts present gradients in both mean annual precipitation and its seasonal distribution between the wet-winter Mojave Desert and the wet-summer Chihuahuan Desert. We found that due to hydrologic losses during the wettest summers in the Sonoran and Chihuahuan Deserts, evapotranspiration (ET) was a better metric than precipitation of water available to drive dryland CO2 exchange. In contrast with recent synthesis studies across diverse dryland biomes, we found that NEP could not be directly predicted from ET due to wintertime decoupling of the relationship between ecosystem respiration (Reco) and gross ecosystem productivity (GEP). Ecosystem water use efficiency (WUE=GEP/ET) did not differ between winter and summer. Carbon use efficiency (CUE=NEP/GEP), however, was greater in winter because Reco returned a smaller fraction of carbon to the atmosphere (23% of GEP) than in summer (77%). Combining the water-carbon relations found here with historical precipitation since 1980, we estimate that lower average winter precipitation during the 21st century reduced the net carbon sink of the three deserts by an average of 6.8TgC yr1. Our results highlight that winter precipitation is critical to the annual carbon balance of these

  9. Bathymetric maps and water-quality profiles of Table Rock and North Saluda Reservoirs, Greenville County, South Carolina

    Science.gov (United States)

    Clark, Jimmy M.; Journey, Celeste A.; Nagle, Doug D.; Lanier, Timothy H.

    2014-01-01

    Lakes and reservoirs are the water-supply source for many communities. As such, water-resource managers that oversee these water supplies require monitoring of the quantity and quality of the resource. Monitoring information can be used to assess the basic conditions within the reservoir and to establish a reliable estimate of storage capacity. In April and May 2013, a global navigation satellite system receiver and fathometer were used to collect bathymetric data, and an autonomous underwater vehicle was used to collect water-quality and bathymetric data at Table Rock Reservoir and North Saluda Reservoir in Greenville County, South Carolina. These bathymetric data were used to create a bathymetric contour map and stage-area and stage-volume relation tables for each reservoir. Additionally, statistical summaries of the water-quality data were used to provide a general description of water-quality conditions in the reservoirs.

  10. DRIVERS OF THE DYNAMICS OF DIAZOTROPHS AND DENITRIFIERS IN NORTH SEA BOTTOM WATERS AND SEDIMENTS

    Directory of Open Access Journals (Sweden)

    Lucas eStal

    2015-07-01

    Full Text Available The fixation of dinitrogen (N2 and denitrification are two opposite processes in the nitrogen cycle. The former transfers atmospheric dinitrogen gas into bound nitrogen in the biosphere, while the latter returns this bound nitrogen back to atmospheric dinitrogen. It is unclear whether or not these processes are intimately connected in any microbial ecosystem or that they are spatially and/or temporally separated. Here, we measured seafloor nitrogen fixation and denitrification as well as pelagic nitrogen fixation by using the stable isotope technique. Alongside, we measured the diversity, abundance, and activity of nitrogen-fixing and denitrifying microorganisms at three stations in the southern North Sea. Nitrogen fixation ranged from undetectable to 2.4 nmol N L-1 d-1 and from undetectable to 8.2 nmol N g-1 d-1 in the water column and seafloor, respectively. The highest rates were measured in August at Doggersbank, both for the water column and for the seafloor. Denitrification ranged from 1.7 to 208.8 µmol m-2 d-1 and the highest rates were measured in May at the Oyster Grounds. DNA sequence analysis showed sequences of nifH, a structural gene for nitrogenase, related to sequences from anaerobic sulfur/iron reducers and sulfate reducers. Sequences of the structural gene for nitrite reductase, nirS, were related to environmental clones from marine sediments. Quantitative polymerase chain reaction (qPCR data revealed the highest abundance of nifH and nirS genes at the Oyster Grounds. Quantitative reverse transcription polymerase chain reaction (qRT-PCR data revealed the highest nifH expression at Doggersbank and the highest nirS expression at the Oyster Grounds. The distribution of the diazotrophic and denitrifying communities seems to be subject to different selecting factors, leading to spatial and temporal separation of nitrogen fixation and denitrification. These selecting factors include temperature, organic matter availability, and

  11. Prevention of ground-water quality degradation during reclamation of a uraniferous lignite mine, North Dakota

    International Nuclear Information System (INIS)

    Houghton, R.L.; Anderson, G.S.; Hill, S.R.; Burgess, J.L.; Wald, J.D.; Patrick, D.P.; Hall, R.L.; Unseth, J.D.

    1987-01-01

    About 590,000 pounds of uranium oxide were recovered from 85,000 tons of lignite in at least 16 North Dakota pits between 1955 and 1967. Because uranium salts in the overburden generally were not recovered, spoil piles at abandoned mine sites contain elevated uranium contents. Reclamation of these mines is required to eliminate public hazards due to elevated radiation and toxic-element levels. A pilot reclamation project was implemented at one abandoned mine pit in northwestern Stark County. Basically, the reclamation involved the replacement of spoil material into the pits from which it was removed. Based on analyses of drill-hole cutting samples obtained from 2-foot depth increments on a 50-foot grid over the 7.25-acre spoil pile, spoil material with radium-226 concentrations exceeding 5 picocuries per gram above background or with uranium concentrations exceeding 5 times background was identified and mapped in three dimensions. This ''most-contaminated'' spoil material was selectively replaced in the mine pits above the water table to prevent dissolution of uranium salts and under a minimum of 5 feed of cover to minimize postreclamation surface-radiation levels. Similarly, areas of spoils with specific conductance greater than 5,000 microsiemens per centimeter were replaced at least 6 feet below the postreclamation ground surface to promote revegetation and above the water table to prevent enrichment of dissolved-solids concentrations in the aquifer. Finally, replaced zones of high radioactivity and soluble salts were capped with clay from the base of an adjacent pit; and the surface topography was mounded to minimize infiltration that might introduce radioactive and other soluble salts into the aquifer

  12. The NCSU [North Carolina State Univ.] freon PWR [pressurized water reactor] loop

    International Nuclear Information System (INIS)

    Caves, J.R.; Doster, J.M.; Miller, G.D.; Wehring, B.W.; Turinsky, P.J.

    1989-01-01

    The nuclear engineering department at North Carolina State University has designed and constructed an operating scale model of a pressurized water reactor (PWR) nuclear steam supply system (NSSS). This facility will be used for education, training, and research. The loop uses electric heaters to simulate the reactor core and Freon as the primary and secondary coolant. Viewing ports at various locations in the loop allow the students to visualize flow regimes in normal and off-normal operating conditions. The objective of the design effort was to scale the thermal-hydraulic characteristics of a two-loop Westinghouse NSSS. Provisions have been made for the simulation of various abnormal occurrences. The model is instrumented in much the same manner as the actual NSSS. Current research projects using the loop include the development of adaptive expert systems to monitor the performance of the facility, diagnose mechanical faults, and to make recommendations to operators for mitigation of accidents. This involves having thermal-hydraulics and core-physics simulators running faster than real time on a mini-supercomputer, with operating parameters updated by communication with the data acquisition and control computer. Further opportunities for research will be investigated as they arise

  13. Interactions of climate, socio-economics, and global mercury pollution in the North Water.

    Science.gov (United States)

    Dietz, Rune; Mosbech, Anders; Flora, Janne; Eulaers, Igor

    2018-04-01

    Despite the remoteness of the North Water, Northwest Greenland, the local Inughuit population is affected by global anthropogenic pollution and climate change. Using a cross-disciplinary approach combining Mercury (Hg) analysis, catch information, and historical and anthropological perspectives, this article elucidates how the traditional diet is compromised by Hg pollution originating from lower latitudes. In a new approach we here show how the Inughuits in Avanersuaq are subject to high Hg exposure from the hunted traditional food, consisting of mainly marine seabirds and mammals. Violation of the provisional tolerably yearly intake of Hg, on average by a factor of 11 (range 7-15) over the last 20 years as well as the provisional tolerably monthly intake by a factor of 6 (range 2-16), raises health concerns. The surplus of Selenium (Se) in wildlife tissues including narwhals showed Se:Hg molar ratios of 1.5, 2.3, and 16.7 in muscle, liver, and mattak, respectively, likely to provide some protection against the high Hg exposure.

  14. Life around the North Water ecosystem: Natural and social drivers of change over a millennium.

    Science.gov (United States)

    Hastrup, Kirsten; Andersen, Astrid Oberborbeck; Grønnow, Bjarne; Heide-Jørgensen, Mads Peter

    2018-04-01

    The formation of the North Water in Smith Sound about 4500 years ago, as evidenced by the establishment of bird colonies and human presence, also initiated a long-term anthropogenic agent as part of this High Arctic ecosystem. Different epochs have influenced the human occupation in the area: immigration pulses from Canada and Alaska, trade with meteorite iron throughout the Arctic, introduction of new technologies by whalers and explorers, exploitation of resources by foreigners, political sequestration, export of fox and seal skins and later narwhal products, and recently fishing. Physical drivers in terms of weather and climate affecting the northern hemisphere also impact accessibility and productivity of the ecosystem, with cascading effects on social drivers, again acting back on the natural ecologies. Despite its apparent isolation, the ecosystem had and still has wide ranging spatial ramifications that extend beyond the High Arctic, and include human activity. The challenge is to determine what is internal and what is external to an ecosystem.

  15. Diurnal variability of gas phase and surface water ethanol in southeastern North Carolina, USA

    Science.gov (United States)

    Kieber, R. J.; Powell, J. P.; Foley, L.; Mead, R. N.; Willey, J. D.; Avery, G. B.

    2017-11-01

    Diurnal variations in gas phase and surface water concentrations of ethanol and acetaldehyde were investigated at five locations in southeastern North Carolina, USA. There were distinct diurnal oscillations observed in gas phase concentrations with maxima occurring in late afternoon suggesting that photochemical production is an important process in the cycling of these analytes in the troposphere. The rapid decrease in concentrations after the mid day maximum suggests that there is also an atmospheric photochemical sink for both analytes most likely involving photo produced hydroxyl radicals with a half-life on the order of hours rather than days at ground level. Ethanol concentrations in the surface microlayer taken at the same time as gas phase samples had a very similar diurnal profile suggesting photochemical processes, in addition to atmospheric deposition, play a role in the aqueous phase cycling of both analytes. The concentration of ethanol and acetaldehyde increased significantly in flasks containing freshwater collected from the Cape Fear River exposed to simulated sunlight for 6 h underscoring the importance of in situ photochemical production. Results of this study are significant because they represent the first simultaneous analyses of the temporal variability of ethanol and acetaldehyde concentrations in the gas and aqueous phases. These measurements are essential in order to better define the processes involved in the global biogeochemical cycling of ethanol both now and in the future as our use of the biofuel continues to grow.

  16. Regions of open water and melting sea ice drive new particle formation in North East Greenland.

    Science.gov (United States)

    Dall Osto, M; Geels, C; Beddows, D C S; Boertmann, D; Lange, R; Nøjgaard, J K; Harrison, Roy M; Simo, R; Skov, H; Massling, A

    2018-04-17

    Atmospheric new particle formation (NPF) and growth significantly influences the indirect aerosol-cloud effect within the polar climate system. In this work, the aerosol population is categorised via cluster analysis of aerosol number size distributions (9-915 nm, 65 bins) taken at Villum Research Station, Station Nord (VRS) in North Greenland during a 7 year record (2010-2016). Data are clustered at daily averaged resolution; in total, we classified six categories, five of which clearly describe the ultrafine aerosol population, one of which is linked to nucleation events (up to 39% during summer). Air mass trajectory analyses tie these frequent nucleation events to biogenic precursors released by open water and melting sea ice regions. NPF events in the studied regions seem not to be related to bird colonies from coastal zones. Our results show a negative correlation (r = -0.89) between NPF events and sea ice extent, suggesting the impact of ultrafine Arctic aerosols is likely to increase in the future, given the likely increased sea ice melting. Understanding the composition and the sources of Arctic aerosols requires further integrated studies with joint multi-component ocean-atmosphere observation and modelling.

  17. Water management challenges and perspective for surface oil sands operations in North Eastern Alberta

    International Nuclear Information System (INIS)

    MacKinnon, M.

    2009-01-01

    Oil sands waters has many sources, such as raw water inputs (import water and hydrologic waters); oil sands ore water such as formation water; and oil sands process-affected water (OSPW) such as produced water and released water from tailings. This presentation demonstrated the importance of water to oil sands operations and indicated how oil sands processing affects water quality. Water imports to meet oil sands needs is a topic of particular interest. Other topics that were presented included water properties changing during oil sands operations; tailings management and the effects on water quality; oil sands tailings and water management and the impact on water quality of the region; how oil sands processing affected water quality; and current tailings approach and proposed new tailings methods and the effects on water composition. Post extraction changes in OSPW and the potential impacts of engineered tailings were also discussed. It was concluded that water treatment options must meet water management objectives. figs.

  18. Astronomically paced changes in deep-water circulation in the western North Atlantic during the middle Eocene

    Science.gov (United States)

    Vahlenkamp, Maximilian; Niezgodzki, Igor; De Vleeschouwer, David; Bickert, Torsten; Harper, Dustin; Kirtland Turner, Sandra; Lohmann, Gerrit; Sexton, Philip; Zachos, James; Pälike, Heiko

    2018-02-01

    North Atlantic Deep Water (NADW) currently redistributes heat and salt between Earth's ocean basins, and plays a vital role in the ocean-atmosphere CO2 exchange. Despite its crucial role in today's climate system, vigorous debate remains as to when deep-water formation in the North Atlantic started. Here, we present datasets from carbonate-rich middle Eocene sediments from the Newfoundland Ridge, revealing a unique archive of paleoceanographic change from the progressively cooling climate of the middle Eocene. Well-defined lithologic alternations between calcareous ooze and clay-rich intervals occur at the ∼41-kyr beat of axial obliquity. Hence, we identify obliquity as the driver of middle Eocene (43.5-46 Ma) Northern Component Water (NCW, the predecessor of modern NADW) variability. High-resolution benthic foraminiferal δ18O and δ13C suggest that obliquity minima correspond to cold, nutrient-depleted, western North Atlantic deep waters. We thus link stronger NCW formation with obliquity minima. In contrast, during obliquity maxima, Deep Western Boundary Currents were weaker and warmer, while abyssal nutrients were more abundant. These aspects reflect a more sluggish NCW formation. This obliquity-paced paleoceanographic regime is in excellent agreement with results from an Earth system model, in which obliquity minima configurations enhance NCW formation.

  19. Water-Quality Trends in the Neuse River Basin, North Carolina, 1974-2003

    Science.gov (United States)

    Harned, D. A.

    2003-12-01

    Data from two U.S. Geological Survey (USGS) sites in the Neuse River basin were reviewed for trends in major ions, sediment, nutrients, and pesticides during the period 1974-2003. In 1997, the North Carolina Division of Water Quality implemented management rules to reduce nitrogen loading to the Neuse River by 30 percent by 2003. Therefore, the 1997-2003 period was reviewed for trends associated with the management changes. The Neuse River at Kinston basin (2,695 square miles) includes much of Raleigh, N.C., with 8-percent urban and 30-percent agricultural land use (1992 data). The Contentnea Creek basin (734 square miles), a Neuse River tributary, is 42-percent agricultural and 3-percent urban. Agricultural land uses in the Contentnea Creek basin have changed over the last decade from predominantly corn, soybean, and tobacco row crops to corn, soybeans, and cotton, with reduced tobacco acreages, and development of the hog industry. Data for this analysis were collected by the USGS for the National Stream Quality Accounting Network and National Water-Quality Assessment Program. Data were examined for trends using the Seasonal Kendall trend test or Tobit regression. The Seasonal Kendall test, which accounts for seasonal variability and adjusts for effects of streamflow on concentration with residuals from LOWESS (LOcally Weighted Sum of Squares) curves, was used to analyze trends in major ions, nutrients, and sediment. The Tobit test, appropriate for examining values with reporting limits, was used for the pesticide analysis. Monotonic trends are considered significant at the alpha solids, hardness, and sulfate in the Neuse River and for potassium in Contentnea Creek. No significant recent (1997-2003) trends were detected for dissolved oxygen, pH, specific conductance, hardness, dissolved solids, or major ions. The Neuse River data indicated a recent declining trend in sediment concentration. Nitrogen concentrations in the form of ammonia, total ammonia and organic

  20. Deep formation waters of Western Europe, Russia and North America characterised by sodium, calcium, magnesium and chloride concentrations

    Science.gov (United States)

    Bozau, Elke; Hemme, Christina; Sattler, Carl-Diedrich; van Berk, Wolfgang

    2015-04-01

    Deep formation water can be classified according to depth, temperature, and salinity (e.g., Graf et al. 1966, Kharaka & Hanor 2007). Most of the deep formation waters contain dissolved solids in excess of sea water. The hydrogeochemical development of formation water has been discussed for a long time. It is widely accepted that deep aquifers are influenced by the meteoric cycle and geochemical processes within the crust (e.g., Hebig et al. 2012). Similar hydrogeochemical signatures are found in deep formation waters of all continents and can be explained by general geochemical processes within the deep reservoirs (e.g., Land 1995). Therefore, data of deep formation waters from Western Europe, Russia, and North America are collected and classified by the major water components. The data are used to identify important hydrogeochemical processes (e.g., halite dissolution and albitisation) leading to different compositions of formation water. Two significant water types are identified: Na-Cl water and Na-Ca-Cl water. Based on the collected hydrogeochemical data, development trends are stated for the formation waters, and albitisation is favoured as the main process for calcium enrichment. Furthermore, differences of formation water according to stratigraphical units are shown for deep reservoirs of the North German Basin and the North Sea. References: Graf, D.L., 1982. Chemical osmosis, reverse chemical osmosis, and the origin of subsurface brines. Geochimica Cosmochimica Acta 46, 1431-1448. Hebig, K.H., Ito, N., Scheytt, T., Marui, A., 2012. Review: Deep groundwater research with focus on Germany. Hydrogeology Journal 20, 227-243. Kharaka, Y.K., Hanor, J.S., 2007. Deep fluids in continents: I. Sedimentary Basins. Treatise on Geochemistry 5, 1-48. Land, L.S., 1995. The role of saline formation water in the crustal cycling. Aquatic Geochemistry 1, 137-145. Acknowledgements: The presented data are results of the collaborative research program "gebo" (Geothermal energy

  1. Transient soil moisture profile of a water-shedding soil cover in north Queensland, Australia

    Science.gov (United States)

    Gonzales, Christopher; Baumgartl, Thomas; Scheuermann, Alexander

    2014-05-01

    In current agricultural and industrial applications, soil moisture determination is limited to point-wise measurements and remote sensing technologies. The former has limitations on spatial resolution while the latter, although has greater coverage in three dimensions, but may not be representative of real-time hydrologic conditions of the substrate. This conference paper discusses the use of elongated soil moisture probes to describe the transient soil moisture profile of water-shedding soil cover trial plots in north Queensland, Australia. Three-metre long flat ribbon cables were installed at designed depths across a soil cover with substrate materials from mining activities comprising of waste rocks and blended tailings. The soil moisture measurement is analysed using spatial time domain reflectometry (STDR) (Scheuermann et al., 2009) Calibration of the flat ribbon cable's soil moisture measurement in waste rocks is undertaken in a glasshouse setting. Soil moisture retention and outflows are monitored at specific time interval by mass balance and water potential measurements. These data sets together with the soil hydrologic properties derived from laboratory and field measurements are used as input in the numerical code on unsaturated flow, Hydrus2D. The soil moisture calculations of the glasshouse calibration using this numerical method are compared with results from the STDR soil moisture data sets. In context, the purpose of the soil cover is to isolate sulphide-rich mine wastes from atmospheric interaction as oxidation and leaching of these materials may result to acid and metalliferous drainage. The long term performance of a soil cover will be described in terms of the quantities and physico-chemical characteristics of its outflows. With the soil moisture probes set at automated and pre-determined measurement time intervals, it is expected to distinguish between macropore and soil moisture flows during high intensity rainfall events and, also continuously

  2. Microplastics Baseline Surveys at the Water Surface and in Sediments of the North-East Atlantic

    NARCIS (Netherlands)

    Maes, Thomas; van der Meulen, Myra; Devriese, Lisa; Leslie, H.A.; Huvet, Arnaud; Frère, Laura; Robbens, Johan; Vethaak, A.D.

    2017-01-01

    Microplastic contamination was determined in sediments of the Southern North Sea and floating at the sea surface of NorthWest Europe. Floating concentrations ranged between 0 and 1.5 microplastic/m3, whereas microplastic concentrations in sediments ranged between 0 and 3,146 particles/kg dry weight

  3. Baseline risk assessment of ground water contamination at the inactive uriniferous lignite ashing site near Belfield, North Dakota

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-08-01

    This Baseline Risk Assessment of Ground Water Contamination at the Inactive Uraniferous Lignite Ashing Site Near Belfield, North Dakota, evaluates potential impacts to public health or the environment resulting from ground water contamination at the site where coal containing uranium was burned to produce uranium. The US Department of Energy`s Uranium Mill Tailings Remedial Action (UMTRA) Project is evaluating plans to remedy soil and ground water contamination at the site. Phase I of the UMTRA Project consists of determining the extent of soil contamination. Phase II of the UMTRA Project consists of evaluating ground water contamination. Under Phase II, results of this risk assessment will help determine what remedial actions may be necessary for contaminated ground water at the site. This risk assessment evaluates the potential risks to human health and the environment resulting from exposure to contaminated ground water as it relates to historic processing activities at the site. Potential risk is quantified for constituents introduced from the processing activities, and not for those constituents naturally occurring in water quality in the site vicinity. Background ground water quality has the potential to cause adverse health effects from exposure through drinking. Any risks associated with contaminants attributable to site activities are incremental to these risks from background ground water quality. This incremental risk from site-related contaminants is quantified in this risk assessment. The baseline risk from background water quality is incorporated only into the assessment of potential chemical interactions and the definition of the overall site condition.

  4. Baseline risk assessment of ground water contamination at the inactive uraniferous lignite ashing site near Belfield, North Dakota

    International Nuclear Information System (INIS)

    1994-08-01

    This Baseline Risk Assessment of Ground Water Contamination at the Inactive Uraniferous Lignite Ashing Site Near Belfield, North Dakota, evaluates potential impacts to public health or the environment resulting from ground water contamination at the site where coal containing uranium was burned to produce uranium. The US Department of Energy's Uranium Mill Tailings Remedial Action (UMTRA) Project is evaluating plans to remedy soil and ground water contamination at the site. Phase I of the UMTRA Project consists of determining the extent of soil contamination. Phase II of the UMTRA Project consists of evaluating ground water contamination. Under Phase II, results of this risk assessment will help determine what remedial actions may be necessary for contaminated ground water at the site. This risk assessment evaluates the potential risks to human health and the environment resulting from exposure to contaminated ground water as it relates to historic processing activities at the site. Potential risk is quantified for constituents introduced from the processing activities, and not for those constituents naturally occurring in water quality in the site vicinity. Background ground water quality has the potential to cause adverse health effects from exposure through drinking. Any risks associated with contaminants attributable to site activities are incremental to these risks from background ground water quality. This incremental risk from site-related contaminants is quantified in this risk assessment. The baseline risk from background water quality is incorporated only into the assessment of potential chemical interactions and the definition of the overall site condition

  5. Bilateral and multilateral agreements and other arrangements in Europe and North America on the protection and use of transboundary waters

    International Nuclear Information System (INIS)

    1993-01-01

    The present document presents in a chronological order existing bilateral and multilateral legally binding agreements and other arrangements in Europe and North America on the protection and use of transboundary waters, which had been concluded by may 1992. These include agreements, treaties, conventions, protocols, orders and exchanges of notes. For each agreement the following information is given: title of the agreement, field of application, river basin, area of application, contracting parties, date of agreement and place of signature, joint body, and reference

  6. Increasing efficiency in ethanol production: Water footprint and economic productivity of sugarcane ethanol under nine different water regimes in north-eastern Brazil

    Directory of Open Access Journals (Sweden)

    Daniel Chico

    2015-06-01

    Full Text Available Ethanol production in Brazil has grown by 219% between 2001 and 2012, increasing the use of land and water resources. In the semi-arid north-eastern Brazil, irrigation is the main way for improving sugarcane production. This study aimed at quantifying water consumed in ethanol production from sugarcane in this region using the water footprint (WF indicator and complementing it with an evaluation of the water apparent productivity (WAP. This way we were able to provide a measure of the crop´s physical and economic water productivity using, respectively, the WF and WAP concepts. We studied sugarcane cultivation under nine different water regimes, including rainfed and full irrigation. Data from a mill of the state of Alagoas for three production seasons were used. Irrigation influenced sugarcane yield increasing total profit per hectare and economic water productivity. Full irrigation showed the lowest WF, 1229 litres of water per litre of ethanol (L/L, whereas rainfed production showed the highest WF, 1646 L/L. However, the lower WF in full irrigation as compared to the rest of the water regimes implied the use of higher volumes of blue water per cultivated hectare. Lower water regimes yielded the lowest economic productivity, 0.72 US$/m3 for rainfed production as compared to 1.11 US$/m3 for full irrigation. Since economic revenues are increased with higher water regimes, there are incentives for the development of these higher water regimes. This will lead to higher general crop water and economic productivity at field level, as green water is replaced by blue water consumption.

  7. Assimilation of Gridded GRACE Terrestrial Water Storage Estimates in the North American Land Data Assimilation System

    Science.gov (United States)

    Kumar, Sujay V.; Zaitchik, Benjamin F.; Peters-Lidard, Christa D.; Rodell, Matthew; Reichle, Rolf; Li, Bailing; Jasinski, Michael; Mocko, David; Getirana, Augusto; De Lannoy, Gabrielle; hide

    2016-01-01

    The objective of the North American Land Data Assimilation System (NLDAS) is to provide best available estimates of near-surface meteorological conditions and soil hydrological status for the continental United States. To support the ongoing efforts to develop data assimilation (DA) capabilities for NLDAS, the results of Gravity Recovery and Climate Experiment (GRACE) DA implemented in a manner consistent with NLDAS development are presented. Following previous work, GRACE terrestrial water storage (TWS) anomaly estimates are assimilated into the NASA Catchment land surface model using an ensemble smoother. In contrast to many earlier GRACE DA studies, a gridded GRACE TWS product is assimilated, spatially distributed GRACE error estimates are accounted for, and the impact that GRACE scaling factors have on assimilation is evaluated. Comparisons with quality-controlled in situ observations indicate that GRACE DA has a positive impact on the simulation of unconfined groundwater variability across the majority of the eastern United States and on the simulation of surface and root zone soil moisture across the country. Smaller improvements are seen in the simulation of snow depth, and the impact of GRACE DA on simulated river discharge and evapotranspiration is regionally variable. The use of GRACE scaling factors during assimilation improved DA results in the western United States but led to small degradations in the eastern United States. The study also found comparable performance between the use of gridded and basin averaged GRACE observations in assimilation. Finally, the evaluations presented in the paper indicate that GRACE DA can be helpful in improving the representation of droughts.

  8. Temperature and injection water source influence microbial community structure in four Alaskan North Slope hydrocarbon reservoirs.

    Directory of Open Access Journals (Sweden)

    Yvette Marisa Piceno

    2014-08-01

    Full Text Available A fundamental knowledge of microbial community structure in petroleum reservoirs can improve predictive modeling of these environments. We used hydrocarbon profiles, stable isotopes, and high-density DNA microarray analysis to characterize microbial communities in produced water from four Alaska North Slope hydrocarbon reservoirs. Produced fluids from Schrader Bluff (24-27°C, Kuparuk (47-70°C, Sag River (80°C, and Ivishak (80-83°C reservoirs were collected, with paired soured/non-soured wells sampled from Kuparuk and Ivishak. Chemical and stable isotope data suggested Schrader Bluff had substantial biogenic methane, whereas methane was mostly thermogenic in deeper reservoirs. Acetoclastic methanogens (Methanosaeta were most prominent in Schrader Bluff samples, and the combined δD and δ13C values of methane also indicated acetoclastic methanogenesis could be a primary route for biogenic methane. Conversely, hydrogenotrophic methanogens (e.g., Methanobacteriaceae and sulfide-producing Archaeoglobus and Thermococcus were more prominent in Kuparuk samples. Sulfide-producing microbes were detected in all reservoirs, uncoupled from souring status (e.g., the non-soured Kuparuk samples had higher relative abundances of many sulfate-reducers compared to the soured sample, suggesting sulfate-reducers may be living fermentatively/syntrophically when sulfate is limited. Sulfate abundance via long-term seawater injection resulted in greater relative abundances of Desulfonauticus, Desulfomicrobium, and Desulfuromonas in the soured Ivishak well compared to the non-soured well. In the non-soured Ivishak sample, several taxa affiliated with Thermoanaerobacter and Halomonas predominated. Archaea were not detected in the deepest reservoirs. Functional group taxa differed in relative abundance among reservoirs, likely reflecting differing thermal and/or geochemical influences.

  9. Evaluation of limited irrigation strategies to improve water use efficiency and wheat yield in the North China Plain.

    Science.gov (United States)

    Zhang, Di; Li, Ruiqi; Batchelor, William D; Ju, Hui; Li, Yanming

    2018-01-01

    The North China Plain is one of the most important grain production regions in China, but is facing serious water shortages. To achieve a balance between water use and the need for food self-sufficiency, new water efficient irrigation strategies need to be developed that balance water use with farmer net return. The Crop Environment Resource Synthesis Wheat (CERES-Wheat model) was calibrated and evaluated with two years of data which consisted of 3-4 irrigation treatments, and the model was used to investigate long-term winter wheat productivity and water use from irrigation management in the North China Plain. The calibrated model simulated accurately above-ground biomass, grain yield and evapotranspiration of winter wheat in response to irrigation management. The calibrated model was then run using weather data from 1994-2016 in order to evaluate different irrigation strategies. The simulated results using historical weather data showed that grain yield and water use was sensitive to different irrigation strategies including amounts and dates of irrigation applications. The model simulated the highest yield when irrigation was applied at jointing (T9) in normal and dry rainfall years, and gave the highest simulated yields for irrigation at double ridge (T8) in wet years. A single simulated irrigation at jointing (T9) produced yields that were 88% compared to using a double irrigation treatment at T1 and T9 in wet years, 86% of that in normal years, and 91% of that in dry years. A single irrigation at jointing or double ridge produced higher water use efficiency because it obtained higher evapotranspiration. The simulated farmer irrigation practices produced the highest yield and net income. When the cost of water was taken into account, limited irrigation was found to be more profitable based on assumptions about future water costs. In order to increase farmer income, a subsidy will likely be needed to compensate farmers for yield reductions due to water savings

  10. Watershed prioritization in the upper Han River basin for soil and water conservation in the South-to-North Water Transfer Project (middle route) of China.

    Science.gov (United States)

    Wu, Haibing

    2018-01-01

    Watershed prioritization with the objective of identifying critical areas to undertake soil and water conservation measures was conducted in the upper Han River basin, the water source area of approximately 95,000 km 2 for the middle route of China's South-to-North Water Transfer Project. Based on the estimated soil erosion intensity in uplands and clustering analysis of measured nutrient concentrations in rivers, the basin was grouped into very-high-, high-, moderate-, and low-priority regions for water and soil conservation, respectively. The results indicated that soil erosion was primarily controlled by topography, and nutrients in rivers were associated with land use and land cover in uplands. Also, there was large spatial disparity between soil erosion intensity in the uplands and nutrient concentrations in the rivers across the basin. Analysis was then performed to prioritize the basin by the integration of the soil erosion intensity and water quality on a GIS platform in order to identify critical areas for water and soil conservation in the basin. The identified high-priority regions which occupy 5.74% of the drainage areas need immediate attention for soil and water conservation treatments, of which 5.28% is critical for soil erosion prevention and 0.46% for water conservation. Understandings of the basin environment and pollutant loading with spatial explicit are critical to the soil and water resource conservation for the interbasin water transfer project.

  11. Baseline risk assessment of ground water contamination at the inactive uraniferous lignite ashing site near Bowman, North Dakota

    International Nuclear Information System (INIS)

    1994-11-01

    This baseline risk assessment of ground water contamination at the inactive uraniferous lignite ashing site near Bowman, North Dakota, evaluates the potential impacts to public health or the environment from contaminated ground water at this site. This contamination is a result of the uraniferous lignite ashing process, when coal containing uranium was burned to produce uranium. Potential risk is quantified only for constituents introduced by the processing activities and not for the constituents naturally occurring in background ground water in the site vicinity. Background ground water, separate from any site-related contamination, imposes a percentage of the overall risk from ground water ingestion in the Bowman site vicinity. The US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project is developing plans to address soil and ground water contamination at the site. The UMTRA Surface Project involves the determination of the extent of soil contamination and design of an engineered disposal cell for long-term storage of contaminated materials. The UMTRA Ground Water Project evaluates ground water contamination. Based on results from future site monitoring activities as defined in the site observational work plan and results from this risk assessment, the DOE will propose an approach for managing contaminated ground water at the Bowman site

  12. Baseline risk assessment of ground water contamination at the inactive uraniferous lignite ashing site near Bowman, North Dakota

    Energy Technology Data Exchange (ETDEWEB)

    1994-11-01

    This baseline risk assessment of ground water contamination at the inactive uraniferous lignite ashing site near Bowman, North Dakota, evaluates the potential impacts to public health or the environment from contaminated ground water at this site. This contamination is a result of the uraniferous lignite ashing process, when coal containing uranium was burned to produce uranium. Potential risk is quantified only for constituents introduced by the processing activities and not for the constituents naturally occurring in background ground water in the site vicinity. Background ground water, separate from any site-related contamination, imposes a percentage of the overall risk from ground water ingestion in the Bowman site vicinity. The US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project is developing plans to address soil and ground water contamination at the site. The UMTRA Surface Project involves the determination of the extent of soil contamination and design of an engineered disposal cell for long-term storage of contaminated materials. The UMTRA Ground Water Project evaluates ground water contamination. Based on results from future site monitoring activities as defined in the site observational work plan and results from this risk assessment, the DOE will propose an approach for managing contaminated ground water at the Bowman site.

  13. Evaluation of water-quality characteristics and sampling design for streams in North Dakota, 1970–2008

    Science.gov (United States)

    Galloway, Joel M.; Vecchia, Aldo V.; Vining, Kevin C.; Densmore, Brenda K.; Lundgren, Robert F.

    2012-01-01

    In response to the need to examine the large amount of historic water-quality data comprehensively across North Dakota and evaluate the efficiency of the State-wide sampling programs, a study was done by the U.S. Geological Survey in cooperation with the North Dakota State Water Commission and the North Dakota Department of Health to describe the water-quality data collected for the various programs and determine an efficient State-wide sampling design for monitoring future water-quality conditions. Although data collected for the North Dakota State Water Commission High-Low Sampling Program, the North Dakota Department of Health Ambient Water-Quality Network, and other projects and programs provide valuable information on the quality of water in streams in North Dakota, the objectives vary among the programs, some of the programs overlap spatially and temporally, and the various sampling designs may not be the most efficient or relevant to the objectives of the individual programs as they have changed through time. One objective of a State-wide sampling program was to evaluate ways to describe the spatial variability of water-quality conditions across the State in the most efficient manner. Weighted least-squares regression analysis was used to relate the average absolute difference between paired downstream and upstream concentrations, expressed as a percent of the average downstream concentration, to the average absolute difference in daily flow between the downstream and upstream pairs, expressed as a percent of the average downstream flow. The analysis showed that a reasonable spatial network would consist of including the most downstream sites in large basins first, followed by the next upstream site(s) that roughly bisect the downstream flows at the first sites, followed by the next upstream site(s) that roughly bisect flows for the second sites. Sampling sites to be included in a potential State-wide network were prioritized into 3 design levels: level 1

  14. Brackish and seawater desalination for process and demineralised water production for large power plants in the North Sea region

    Energy Technology Data Exchange (ETDEWEB)

    Nagel, Rolf [Hager + Elsaesser GmbH, Stuttgart (Germany); Brinkmann, Juergen [RWE Technology GmbH, Essen (Germany)

    2010-06-15

    Large power plants for power generation from fossil fuels are constantly being optimised in order to improve their efficiency. One element of the overall considerations is once-through cooling with brackish or seawater on sites near the sea. In addition to the higher overall efficiency, such sites - thanks to their connection to ocean shipping - also offer infrastructural advantages regarding fuel supply and residual material disposal compared to inland sites. Because the cooling water intake and discharge structures have to be built anyway, they lend themselves to also producing the process and demineralised water from the brackish or seawater. In this case, the use of fresh or drinking water as resources can be minimised. In the following report, we present a pilot study using ultrafiltration and reverse osmosis on a North Sea site with raw water intake from a seaport basin. (orig.)

  15. Fingerprinting the sources of suspended sediment delivery to a large municipal drinking water reservoir: Falls Lake, Neuse River, North Carolina, USA

    Science.gov (United States)

    We employ a novel geochemical-fingerprinting approach to estimate the source of suspended sediments collected from tributaries entering Falls Lake, a 50 km2 drinking water reservoir on the Neuse River, North Carolina. Many of the major tributaries to the lake are on North Carolina’s 303(d) list for ...

  16. Holocene North Atlantic Deep Water variability through a centennial-scale study of its precursor watermasses

    Science.gov (United States)

    Hall, I.; Bianchi, G.; Evans, J.; Cortijo, E.; Keigwin, L.; Schonfeld, J.

    2003-04-01

    Holocene climate proxy records increasingly indicate the presence of millennial- and centennial-scale climatic events that are subdued compared to their glacial counterparts. Nonetheless, it appears that their pacing and underlying cause(s) may be similar irrespective of whether the system is in a glacial or interglacial mode. Meridional circulation of the ocean plays a key role in the poleward transport of heat and freshwater. These ocean fluxes are intimately linked to the formation of North Atlantic Deep Water (NADW). Variability in deep ocean flow along Reykjanes Ridge, south of Iceland, has been demonstrated by grain size and lithological proxies with significant components of the variance in the band 1-2 ka. This is matched by records related to iceberg incursions that also show periodicity in this band recently ascribed to solar forcing. We present results of an ongoing study aimed at the centennial-scale monitoring of the principal deep inflows contributing to the formation of NADW over the past 10,000 years. Four cores from downstream of (west to east) Labrador Sea, Denmark Strait Overflow, Iceland-Scotland Ridge Overflow (ISOW) and Wyville-Thomson Ridge Overflow waters have been targeted for their strategic position and high sedimentation rates. Kasten core NEAP-4K and box core NEAP-4B from Bjorn Drift, northern Iceland Basin (1,627 m depth) display long-term trends in the grain size data (sortable silt mean size) that indicate a decrease in average relative flow speed starting at ~5 ka BP until ~1,5 ka BP. Superimposed on these trends are rapid centennial- to millennial-scale fluctuations in flow speed that allow the establishment of crucial correlations with proxy records of both ice-rafted debris sedimentation in the region and heat/moisture transport over the Atlantic coast of Ireland. Such evidence supports a role for the thermohaline circulation as an amplifier of small climate forcing in the Holocene as was observed in glacial times. Although no

  17. Quantifying dust input to the Subarctic North Pacific - Results from surface sediments and sea water thorium isotope measurements

    Science.gov (United States)

    Winckler, G.; Serno, S.; Hayes, C.; Anderson, R. F.; Gersonde, R.; Haug, G. H.

    2012-12-01

    The Subarctic North Pacific is one of the three primary high-nutrient-low chlorophyll regions of the modern ocean, where the biological pump is relatively inefficient at transferring carbon from the atmosphere to the deep sea. The system is thought to be iron-limited. Aeolian dust is a significant source of iron and other nutrients that are essential for the health of marine ecosystems and potentially a controlling factor of the high-nutrient-low chlorophyll status of the Subarctic North Pacific. However, constraining the size of the dust flux to the surface ocean remains difficult. Here we apply two different approaches, based on surface sediment and water column samples, respectively, obtained during the SO202/INOPEX research cruise to the Subarctic North Pacific in 2009. We map the spatial patterns of Th/U isotopes, helium isotopes and rare earth elements across surface sediments from 37 multi-core core-top sediments across the Subarctic North Pacific. In order to deconvolve the detrital endmembers in regions of the North Pacific affected by volcanic material, IRD and hemipelagic input, we use a combination of trace elements with distinct characteristics in the different endmembers. This approach allows us to calculate the relative aeolian fraction, and in combination with Thorium230-normalized mass flux data, to quantify the dust supply. Secondly, we present an innovative approach to use paired Thorium-232 and Thorium-230 concentrations of upper-ocean seawater at 7 stations along the INOPEX track. Thorium-232 in the upper water column is dominantly derived from dissolution of aeolian dust, whereas Thorium-230 data provide a measure of the thorium removal from the surface waters and, thus, allow us to derive Thorium-232 fluxes. Combined with a mean Thorium-232 concentration in dust and estimate of the thorium solubility, the Thorium-232 flux can be translated in a dust flux to the surface ocean. Dust flux estimates for the Subarctic North Pacific will be

  18. Metric matters : the performance and organisation of volumetric water control in large-scale irrigation in the North Coast of Peru

    NARCIS (Netherlands)

    Vos, J.M.C.

    2002-01-01

    This thesis describes the organisation and performance of two large-scale irrigation systems in the North Coast of Peru. Good water management is important in this area because water is scarce and irrigated agriculture provides a livelihood to many small and middle-sized farmers. Water in

  19. Simulation of efficiency impact of drainage water reuse: case of small-scale vegetable growers in North West Province, South Africa

    NARCIS (Netherlands)

    Speelman, S.; Haese, D' M.F.C.; Haese, D' L.

    2011-01-01

    This paper focuses on estimating the effect of drainage water reuse on the technical efficiency of small-scale vegetable growers in South Africa applying a data envelopment analysis (DEA). In the semi-arid North West Province of South Africa water scarcity and the soon to be implemented water

  20. Oceanographic field observations off North Carolina, summer survey: ocean outfall waste water disposal feasibility and planning study from 22 May 1976 to 23 May 1978 (NODC Accession 8000016)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Nutrients, temperature profile, waste disposal, and ocean circulation data were collected using CTD from the JOHN DEWOLF in the coastal waters of North Carolina from...

  1. Trophic Ecology and Movement Patters of Tiger Sharks (Galeocerdo Cuvier) off the Western North Atlantic Coastal and Continental Shelf Waters

    Science.gov (United States)

    Sancho, G.; Edman, R.; Frazier, B.; Bubley, W.

    2016-02-01

    Understanding the trophic dynamics and habitat utilization of apex predators is central to inferring their influence on different marine landscapes and to help design effective management plans for these animals. Tiger sharks (Galeocerdo cuvier) are abundant in shelf and offshore Gulf Stream waters of the western North Atlantic Ocean, and based on movements from individuals captured in Florida and Bahamas, seem to avoid coastal and shelf waters off South Carolina and Georgia. This contradicts reports of tiger sharks regularly being caught nearshore by anglers in these states, indicating that separate sub-populations may exist in the western North Atlantic. In the present study we captured Tiger Sharks in coastal waters off South Carolina in 2014 and 2015 in order to describe their movement patterns through acoustic and satellite tagging, and trophic dynamics through stable isotope analyses. Movement data show that these tiger sharks repeatedly visit particular inshore areas and mainly travel over the continental shelf, but rarely venture offshore beyond the continental shelf edge. Ongoing C and N stable isotope analyses of muscle, blood and skin tissues from adult and juvenile tiger sharks, as well as from potential prey species and primary producers, will help determine if their diets are based on inshore, shelf or offshore based food webs. Tiger sharks exploiting nearshore environments and shelf waters have much higher probabilities of interacting with humans than individuals occupying far offshore Gulf Stream habitats.

  2. Characterization of water-quality and bed-sediment conditions in Currituck Sound, North Carolina, prior to the Mid-Currituck Bridge construction, 2011–15

    Science.gov (United States)

    Wagner, Chad R.; Fitzgerald, Sharon; Antolino, Dominick J.

    2015-12-24

    The North Carolina Turnpike Authority, a division of the North Carolina Department of Transportation, is planning to make transportation improvements in the Currituck Sound area by constructing a two-lane bridge from U.S. Highway 158 just south of Coinjock, North Carolina, to State Highway 12 on the Outer Banks just south of Corolla, North Carolina. The results of the Final Environmental Impact Study associated with the bridge and existing roadway improvements indicated potential water-quality and habitat impacts to Currituck Sound related to stormwater runoff, altered light levels, introduction of piles as hard substrate, and localized turbidity and siltation during construction.

  3. Water: The Hydraulic Parameter of Conflict in the Middle East and North Africa

    National Research Council Canada - National Science Library

    Kiser, Stephen D

    2000-01-01

    ... it. These variables include a rapidly increasing population, a large per capita increase in water demand, increasing water pollution, rapid economic growth, persistent regional drought, and irrecoverable...

  4. Characterizing the Effects of Irrigation in the Middle East and North Africa Using Remotely Sensed Vegetation and Water Cycle Observations

    Science.gov (United States)

    Bolten, John; Ozdogan, Mutlu; Beaudoing, Hiroko; Rodell, Matthew

    2012-01-01

    A majority of the countries in the Middle East and North Africa (MENA) region suffer from water scarcity due in part to widespread rainfall deficits, unprecedented levels of water demand, and the inefficient use of renewable freshwater resources. Since a majority of the water withdrawal in the MENA is used for irrigation, there is a desperate need for improved understanding of irrigation practices and agricultural water use in the region. Here, satellite-derived irrigation maps and crop-type agricultural data are applied to the Land Data Assimilation System for the MENA region (MENA LDAS), designed to provide regional, gridded fields of hydrological states and fluxes relevant for water resources assessments. Within MENA-LDAS, the Catchment Land Surface Model (CLSM) simulates the location, timing, and amount of water applied through agricultural irrigation practices over the region from 2002-2012. In addition to simulating the irrigation impact on evapotranspiration, soil moisture, and runoff, we also investigate regional changes in terrestrial water storage (TWS) observed from the Gravity Recovery and Climate Experiment (GRACE) and simulated by CLSM.

  5. Hydrogeological framework, numerical simulation of groundwater flow, and effects of projected water use and drought for the Beaver-North Canadian River alluvial aquifer, northwestern Oklahoma

    Science.gov (United States)

    Ryter, Derek W.; Correll, Jessica S.

    2016-01-14

    This report describes a study of the hydrology, hydrogeological framework, numerical groundwater-flow models, and results of simulations of the effects of water use and drought for the Beaver-North Canadian River alluvial aquifer, northwestern Oklahoma. The purpose of the study was to provide analyses, including estimating equal-proportionate-share (EPS) groundwater-pumping rates and the effects of projected water use and droughts, pertinent to water management of the Beaver-North Canadian River alluvial aquifer for the Oklahoma Water Resources Board.

  6. Spatial assessment of water quality in the vicinity of Lake Alice National Wildlife Refuge, Upper Devils Lake Basin, North Dakota.

    Science.gov (United States)

    Vandeberg, Gregory S; Dixon, Cami S; Vose, Brian; Fisher, Mark R

    2015-02-01

    Runoff from concentrated animal feeding operations and croplands in the Upper Devils Lake Basin (Towner and Ramsey Counties), North Dakota, has the potential to impact the water quality and wildlife of the Lake Alice National Wildlife Refuge. Water samples were collected at eight locations upstream and downstream of the refuge, beginning in June 2007 through March 2011, to identify the spatial distribution of water quality parameters and assess the potential impacts from the upstream land use practices. Geographic Information Systems, statistical analysis, and regulatory standards were used to differentiate between sample locations, and identify potential impacts to water quality for the refuge based on 20 chemical constituents. Kruskal-Wallis analysis of variance (ANOVA) showed significant differences between sample locations based on boron, calcium, Escherichia coli, phosphorus, aluminum, manganese, and nickel. Hierarchical agglomerative cluster analysis of these constituents identified four distinct water quality groupings in the study area. Furthermore, this study found a significant positive correlation between the nutrient measures of nitrate-nitrite and total Kjeldahl nitrogen, and the percentage of concentrated animal feeding operation nutrient management areas using the non-parametric Spearman rho method. Significant correlations were also noted between total organic carbon and nearness to concentrated animal feeding operations. Finally, dissolved oxygen, pH, sulfate, E. coli, total phosphorus, nitrate-nitrite, and aluminum exceeded state of North Dakota and/or US Environmental Protection Agency water quality standards and/or guidelines. Elevated concentrations of phosphorus, nitrate-nitrite, and E. coli from upstream sources likely have the greatest potential impact on the Lake Alice Refuge.

  7. Leveraging this Golden Age of Remote Sensing and Modeling of Terrestrial Hydrology to Understand Water Cycling in the Water Availability Grand Challenge for North America

    Science.gov (United States)

    Painter, T. H.; Famiglietti, J. S.; Stephens, G. L.

    2016-12-01

    We live in a time of increasing strains on our global fresh water availability due to increasing population, warming climate, changes in precipitation, and extensive depletion of groundwater supplies. At the same time, we have seen enormous growth in capabilities to remotely sense the regional to global water cycle and model complex systems with physically based frameworks. The GEWEX Water Availability Grand Challenge for North America is poised to leverage this convergence of remote sensing and modeling capabilities to answer fundamental questions on the water cycle. In particular, we envision an experiment that targets the complex and resource-critical Western US from California to just into the Great Plains, constraining physically-based hydrologic modeling with the US and international remote sensing capabilities. In particular, the last decade has seen the implementation or soon-to-be launch of water cycle missions such as GRACE and GRACE-FO for groundwater, SMAP for soil moisture, GPM for precipitation, SWOT for terrestrial surface water, and the Airborne Snow Observatory for snowpack. With the advent of convection-resolving mesoscale climate and water cycle modeling (e.g. WRF, WRF-Hydro) and mesoscale models capable of quantitative assimilation of remotely sensed data (e.g. the JPL Western States Water Mission), we can now begin to test hypotheses on the nature and changes in the water cycle of the Western US from a physical standpoint. In turn, by fusing water cycle science, water management, and ecosystem management while addressing these hypotheses, this golden age of remote sensing and modeling can bring all fields into a markedly less uncertain state of present knowledge and decadal scale forecasts.

  8. A reassessment of North American river basin water balances in light of new estimates of mountain snow accumulation

    Science.gov (United States)

    Wrzesien, M.; Durand, M. T.; Pavelsky, T.

    2017-12-01

    The hydrologic cycle is a key component of many aspects of daily life, yet not all water cycle processes are fully understood. In particular, water storage in mountain snowpacks remains largely unknown. Previous work with a high resolution regional climate model suggests that global and continental models underestimate mountain snow accumulation, perhaps by as much as 50%. Therefore, we hypothesize that since snow water equivalent (one aspect of the water balance) is underestimated, accepted water balances for major river basins are likely wrong, particularly for mountainous river basins. Here we examine water balances for four major high latitude North American watersheds - the Columbia, Mackenzie, Nelson, and Yukon. The mountainous percentage of each basin ranges, which allows us to consider whether a bias in the water balance is affected by mountain area percentage within the watershed. For our water balance evaluation, we especially consider precipitation estimates from a variety of datasets, including models, such as WRF and MERRA, and observation-based, such as CRU and GPCP. We ask whether the precipitation datasets provide enough moisture for seasonal snow to accumulate within the basin and whether we see differences in the variability of annual and seasonal precipitation from each dataset. From our reassessment of high-latitude water balances, we aim to determine whether the current understanding is sufficient to describe all processes within the hydrologic cycle or whether datasets appear to be biased, particularly in high-elevation precipitation. Should currently-available datasets appear to be similarly biased in precipitation, as we have seen in mountain snow accumulation, we discuss the implications for the continental water budget.

  9. Study on Water Resources Optimal Operation of Jiangsu Section of South - to - North Water Transfer Project Based on Novel Multi-objective Quantum Genetic Algorithm

    Science.gov (United States)

    Fang, G.; Guo, Y.; Wen, X.; Huang, X.

    2017-12-01

    Considering the water supply and economic cost of Jiangsu Section of South - to - North Water Transfer (E-SNWT) Project, this paper develops a water resources optimal operation model of E-SNWT Project with minimizing the total pumpage and maximizing the water supply rate as the objective functions, and explores the novel multi-objective quantum genetic algorithm, and proposes the multi-attribute decision- making method, and proposes an optimal operation scheme for E-SNWT Project. Under normal, dry and extremely dry inflow conditions, compared with the conventional dispatching, the water shortage could be reduced by 0.89 billion m3, 0.87 billion m3, and 0.08 billion m3, respectively; the pumping amount of the system could be reduced by 20.14 billion m3, 39.14 billion m3 and 50.76 billion m3 respectively. It shows the that the optimal operation solution can make full use of lakes, improve the water of water requirement, and reduce the cost of pumping, which can provide theoretical basis and scientific support for the operation management of E-SNWT Project.

  10. An ensemble study of extreme storm surge related water levels in the North Sea in a changing climate

    Directory of Open Access Journals (Sweden)

    A. Sterl

    2009-09-01

    Full Text Available The height of storm surges is extremely important for a low-lying country like The Netherlands. By law, part of the coastal defence system has to withstand a water level that on average occurs only once every 10 000 years. The question then arises whether and how climate change affects the heights of extreme storm surges. Published research points to only small changes. However, due to the limited amount of data available results are usually limited to relatively frequent extremes like the annual 99%-ile. We here report on results from a 17-member ensemble of North Sea water levels spaning the period 1950–2100. It was created by forcing a surge model of the North Sea with meteorological output from a state-of-the-art global climate model which has been driven by greenhouse gas emissions following the SRES A1b scenario. The large ensemble size enables us to calculate 10 000 year return water levels with a low statistical uncertainty. In the one model used in this study, we find no statistically significant change in the 10 000 year return values of surge heights along the Dutch during the 21st century. Also a higher sea level resulting from global warming does not impact the height of the storm surges. As a side effect of our simulations we also obtain results on the interplay between surge and tide.

  11. Effect of land-applied biosolids on surface-water nutrient yields and groundwater quality in Orange County, North Carolina

    Science.gov (United States)

    Wagner, Chad R.; Fitzgerald, Sharon A.; McSwain, Kristen Bukowski; Harden, Stephen L.; Gurley, Laura N.; Rogers, Shane W.

    2015-01-01

    Land application of municipal wastewater biosolids is the most common method of biosolids management used in North Carolina and the United States. Biosolids have characteristics that may be beneficial to soil and plants. Land application can take advantage of these beneficial qualities, whereas disposal in landfills or incineration poses no beneficial use of the waste. Some independent studies and laboratory analysis, however, have shown that land-applied biosolids can pose a threat to human health and surface-water and groundwater quality. The effect of municipal biosolids applied to agriculture fields is largely unknown in relation to the delivery of nutrients, bacteria, metals, and contaminants of emerging concern to surface-water and groundwater resources. Therefore, the North Carolina Department of Environment and Natural Resources (NCDENR) collaborated with the U.S. Geological Survey (USGS) through the 319 Nonpoint Source Program to better understand the transport of nutrients and bacteria from biosolids application fields to groundwater and surface water and to provide a scientific basis for evaluating the effectiveness of the current regulations.

  12. Variation in pupil diameter in North American Gartersnakes (Thamnophis) is regulated by immersion in water, not by light intensity.

    Science.gov (United States)

    Fontenot, Clifford L

    2008-07-01

    A variable pupil generally regulates the amount of incoming light available for image formation on the retina. However, some of the semi-aquatic snakes (North American Gartersnakes, Thamnophis) that forage in relatively low light conditions reduce the pupil aperture in response to submergence underwater at the expense incoming light. Given that these snakes have all-cone retinas, reduction of incoming light because of pupillary constriction upon immersion seems counterintuitive. To test the effect of light and water on pupil aperture, three species of North American Gartersnakes (T. atratus, T. hammondii, and T. sirtalis) were exposed to nine light intensities in air and water. There was no effect of light on relative pupil aperture for any species. However, all three species showed a significant reduction in pupil aperture upon submergence underwater. The lack of a light response is surprising, and may be related to the method of accommodation in snakes. Snakes lack a ciliary muscle, and move the lens by constricting the pupil, which increases pressure in the posterior chamber and pushes the lens forward. Upon submergence, the snakes may be attempting to overcome the change in refractive index and defocus imposed by the water, by constricting the pupil. Thus, having the iris muscle involved in accommodation may preclude it from much of a light regulating function.

  13. Controls of the surface water partial pressure of CO2 in the North Sea

    NARCIS (Netherlands)

    Thomas, H.; Bozec, Y.; Elkalay, K.; Baar, H.J.W. de; Borges, A.V.; Schiettecatte, L.-S.

    2005-01-01

    The seasonal variability of the partial pressure of CO2 (pCO2) has been investigated in the North Sea, a northwest European shelf sea. Based on a seasonal and high spatial resolution data set the main controlling factors - biological processes and temperature - have been identified and quantified.

  14. Assessment of water quality of Ogbese River in Ovia North-East ...

    African Journals Online (AJOL)

    The pollution of Ogbese River in Ovia North-East L.G.A. of Edo State, Nigeria was studied. Parameters like pH, temperature, electrical conductivity, colour, odour, chlorides, nitrates, phosphates and heavy metal ions such as lead, chromium, zinc etc, were analyzed. Also various techniques such as titrimetric methods, atomic ...

  15. Water flowing north of the border: export agriculture and water politics in a rural community in Baja California.

    Science.gov (United States)

    Zlolniski, Christian

    2011-01-01

    Favored by neoliberal agrarian policies, the production of fresh crops for international markets has become a common strategy for economic development in Mexico and other Latin American countries. But as some scholars have argued, the global fresh produce industry in developing countries in which fresh crops are produced for consumer markets in affluent nations implies “virtual water flows,” the transfer of high volumes of water embedded in these crops across international borders. This article examines the local effects of the production of fresh produce in the San Quintín Valley in northwestern Mexico for markets in the United States. Although export agriculture has fostered economic growth and employment opportunities for indigenous farm laborers, it has also led to the overexploitation of underground finite water resources, and an alarming decline of the quantity and quality of water available for residents’ domestic use. I discuss how neoliberal water policies have further contributed to water inequalities along class and ethnic lines, the hardships settlers endure to secure access to water for their basic needs, and the political protests and social tensions water scarcity has triggered in the region. Although the production of fresh crops for international markets is promoted by organizations such as the World Bank and Inter-American Development Bank as a model for economic development, I argue that it often produces water insecurity for the poorest, threatening the UN goal of ensuring access to clean water as a universal human right.

  16. Rates of Dinitrogen Fixation and the Abundance of Diazotrophs in North American Coastal Waters Between Cape Hatteras and Georges Bank

    Science.gov (United States)

    Mulholland, M.R.; Bernhardt, P. W.; Blanco-Garcia, J. L.; Mannino, A.; Hyde, K.; Mondragon, E.; Turk, K.; Moisander, P. H.; Zehr, J. P.

    2012-01-01

    We coupled dinitrogen (N2) fixation rate estimates with molecular biological methods to determine the activity and abundance of diazotrophs in coastal waters along the temperate North American Mid-Atlantic continental shelf during multiple seasons and cruises. Volumetric rates of N2 fixation were as high as 49.8 nmol N L(sup -1) d(sup -1) and areal rates as high as 837.9 micromol N m(sup -2) d(sup -1) in our study area. Our results suggest that N2 fixation occurs at high rates in coastal shelf waters that were previously thought to be unimportant sites of N2 fixation and so were excluded from calculations of pelagic marine N2 fixation. Unicellular N2-fixing group A cyanobacteria were the most abundant diazotrophs in the Atlantic coastal waters and their abundance was comparable to, or higher than, that measured in oceanic regimes where they were discovered. High rates of N2 fixation and the high abundance of diazotrophs along the North American Mid-Atlantic continental shelf highlight the need to revise marine N budgets to include coastal N2 fixation. Integrating areal rates of N2 fixation over the continental shelf area between Cape Hatteras and Nova Scotia, the estimated N2 fixation in this temperate shelf system is about 0.02 Tmol N yr(sup -1), the amount previously calculated for the entire North Atlantic continental shelf. Additional studies should provide spatially, temporally, and seasonally resolved rate estimates from coastal systems to better constrain N inputs via N2 fixation from the neritic zone.

  17. Glider Observations of the Properties, Circulation and Formation of Water Masses on the Rockall Plateau in the North Atlantic.

    Science.gov (United States)

    Houpert, L.; Gary, S. F.; Inall, M. E.; Johns, W. E.; Porter, M.; Dumont, E.; Cunningham, S. A.

    2016-02-01

    The Overturning in Subpolar North Atlantic Program (OSNAP) is an international collaboration with the overarching goal of measuring the full-depth mass fluxes associated with the AMOC (Atlantic Meridional Overturning Circulation), as well as meridional heat and fresh-water fluxes. Through the deployment of moorings and gliders, UK-OSNAP is part of this international partnership to maintain a transoceanic observing system in the subpolar north Atlantic (the OSNAP array).We present here the first year and a half of UK-OSNAP glider missions on the Rockall Plateau in the North Atlantic, along the section located at 58°N, between 22°W and 15°W. Between July 2014 and September 2015, 10 gliders sections were realized on the Rockall Plateau. The depth-averaged current estimated from gliders shows very strong values (up to 45cm.s-1) associated with meso-scale variability due particularly to eddies and water mass formation. Glider data also reveal a deep mixed layer in February/March 2015 up to 600m associated with the formation of the 27.3σθ and 27.4σθ Subpolar Mode Waters. The variability of the meridional transport of heat, salt and mass on the Rockall Plateau are also discussed. Relative and absolute geostrophic transports are calculated from the glider data and from the combination of the glider data and the data from mooring M4 located in the Iceland Basin (58°N, 21°W).

  18. Phytoplankton community structure in local water types at a coastal site in north-western Bay of Bengal.

    Science.gov (United States)

    Baliarsingh, S K; Srichandan, Suchismita; Lotliker, Aneesh A; Sahu, K C; Srinivasa Kumar, T

    2016-07-01

    A comprehensive analysis on seasonal distribution of phytoplankton community structure and their interaction with environmental variables was carried out in two local water types (type 1  30 m isobath) at a coastal site in north-western Bay of Bengal. Phytoplankton community was represented by 211 taxa (146 marine, 37 fresh, 2 brackish, 20 marine-fresh, and 6 marine-brackish-fresh) belonging to seven major groups including 45 potential bloom forming and 22 potential toxin producing species. The seasonal variability depicted enrichment of phytoplankton during pre-monsoon in both water types. Total phytoplankton abundance pattern observed with inter-annual shift during monsoon and post-monsoon period at both water types. In both water types, diatom predominance was observed in terms of species richness and abundance comprising of centric (82 sp.) and pennate (58 sp.) forms. Pennate diatoms, Thalassiothrix longissima and Skeletonema costatum preponderated in both the water types. The diatom abundance was higher in type 1 in comparison to type 2. In general, SiO4 found to fuel growth of the dominant phytoplankton group, diatom in both the water types despite comparative lower concentration of other macronutrients in type 2.

  19. Organic compounds assessed in Neuse River water used for public supply near Smithfield, North Carolina, 2002-2005

    Science.gov (United States)

    Moorman, Michelle C.

    2012-01-01

    Organic compounds studied in a U.S. Geological Survey (USGS) assessment of water samples from the Neuse River and the public supply system for the Town of Smithfield, North Carolina, generally are manmade and include pesticides, gasoline hydrocarbons, solvents, personal-care and domestic-use products, disinfection by-products, and manufacturing additives. Of the 277 compounds assessed, a total of 113 compounds were detected in samples collected approximately monthly during 2002–2005 at the drinking-water intake for the town's water-treatment plant on the Neuse River. Fifty-two organic compounds were commonly detected (in at least 20 percent of the samples) in source water and (or) finished water. The diversity of compounds detected suggests a variety of sources and uses, including wastewater discharges, industrial, agricultural, domestic, and others. Only once during the study did an organic compound concentration exceed a human-health benchmark (benzo[a]pyrene). A human-health benchmark is a chemical concentration specific to water above which there is a risk to humans, however, benchmarks were available for only 18 of the 42 compounds with detected concentrations greater than 0.1 micrograms per liter. On the basis of this assessment, adverse effects to human health are assumed to be negligible.

  20. Risk-based analysis of environmental monitoring data: application to heavy metals in North Carolina surface waters.

    Science.gov (United States)

    Preston, Benjamin L; Shackelford, Jeremiah

    2002-08-01

    The state of North Carolina's Department of Environment and Natural Resources (NCDENR) conducts routine water quality monitoring throughout the state to assess the health of aquatic systems. The current study reports the results of a retrospective (1990-2000) ecological risk assessment of six heavy metals (arsenic, cadmium, copper, lead, mercury, and zinc) in 17 North Carolina basins that was conducted to estimate the risk of heavy metal toxicity to freshwater organisms and assess the sufficiency of NCDENR's monitoring data to identify water-quality-related ecological threats. Acute and chronic ecotoxicological thresholds (ETs) were calculated for each metal based upon the 10th percentile of species sensitivity distributions and were normalized for water hardness. Statewide probabilities (expressed as percentages) of a random sample exceeding acute or chronic ETs among the six metals ranged from 0.01% to 12.19% and 0.76% to 21.21%, respectively, with copper having the highest and arsenic and mercury the lowest risk. Basin-specific probabilities varied significantly depending upon water hardness and presumably watershed development. Although the majority of specific sites where data were collected were at low risk for metal toxicity, some specific sites had a high probability of toxic events associated with one or more metals. Analytical detection limits for metals were frequently higher than estimated chronic ET, limiting the ability to assess the risk of chronic toxicity in soft-water basins. Results suggest risk-based criteria may be useful for assessing and validating the sufficiency of monitoring programs and prioritizing management goals.

  1. Water-quality trend analysis and sampling design for the Souris River, Saskatchewan, North Dakota, and Manitoba

    Science.gov (United States)

    Vecchia, Aldo V.

    2000-01-01

    The Souris River Basin is a 24,600-square-mile basin located in southeast Saskatchewan, north-central North Dakota, and southwest Manitoba.  The Souris River Bilateral Water Quality Monitoring Group, formed in 1989 by the governments of Canada and the United States, is responsible for documenting trends in water quality in the Souris River and making recommendations for monitoring future water-quality conditions.  This report presents results of a study conducted for the Bilateral Water Quality Monitoring Group by the U.S. Geological Survey, in cooperation with the North Dakota Department of Health, to analyze historic trends in water quality in the Souris River and to determine efficient sampling designs for monitoring future trends.  U.S. Geological Survey and Environment Canada water-quality data collected during 1977-96 from four sites near the boundary crossings between Canada and the United States were included in the trend analysis. A parametric time-series model was developed for detecting trends in historic constituent concentration data.  The model can be applied to constituents that have at least 90 percent of observations above detection limits of the analyses, which, for the Souris River, includes most major ions and nutrients and many trace elements.  The model can detect complex nonmonotonic trends in concentration in the presence of complex interannual and seasonal variability in daily discharge.  A key feature of the model is its ability to handle highly irregular sampling intervals.  For example, the intervals between concentration measurements may be be as short as 10 days to as long as several months, and the number of samples in any given year can range from zero to 36. Results from the trend analysis for the Souris River indicated numerous trends in constituent concentration.  The most significant trends at the two sites located near the upstream boundary crossing between Saskatchewan and North Dakota consisted of increases in

  2. Hydrochemical modelling of water quality in terms of emerging micropollutants in Mpumalanga, Gauteng and North West Provinces

    Science.gov (United States)

    Wanda, Elijah M. M.; Mamba, Bhekie B.; Msagati, Titus A. M.

    2017-08-01

    Emerging micropollutants (EMPs) are ubiquitous in aquatic systems and are associated with a wide range of eco-toxicological effects worldwide. There remains a lack of scientific understanding of the major underlying hydrochemical factors behind variations in concentration heterogeneities of EMPs in time and space. This study was therefore conducted to determine major hydrochemical processes controlling water quality and the occurrence of EMPs mainly, carbamazepine (CBZ), tonalide (AHTN), galaxolide (HHCB), caffeine (CAF), technical 4-nonylphenol (NP) and bisphenol A (BPA) in water from Mpumalanga, Gauteng and North West Provinces in South Africa. Grab water samples were collected bi-monthly between June 2014 and April 2016 from 44 water sources using standard sampling procedures. BPA, NP, CAF, HHCB, AHTN, CBZ were extracted, cleaned and enriched using autotrace-SPE at neutral pH and analyzed using GC × GC-TOFMS. Kruskal Wallis-test was used to test for temporal variations in occurrence of the analytes. The Geochemist's Workbench® Release 11 software, Surfer Golden Graphics for surface mapping, PHREEQC software and bivariate ion plots were used determine the major hydrogeochemical processes. The mean concentrations of EMPs varied from 3.48 μg/L for CAF to 421.53 μg/L for HHCB. Although the Kruskal Wallis test revealed no any statistically significant temporal variations in concentrations of the analytes in water samples at 95% confidence level, their occurrence and distribution vary spatially with BPA being the most widely distributed EMP and was present in 62% of the sampled sites. Municipal waste water inputs, agricultural pollution, ion-exchange reactions, carbonate and silicate weathering were the major processes controlling water quality in the study area. This study may assist water resource managers to ably address and manage water pollution resulting from a number of natural and anthropogenic hydrochemical processes in the study area.

  3. Investigation of Radon in drinking water from wells of the North-Eastern region of Bosnia and Herzegovina

    International Nuclear Information System (INIS)

    Adrovic, Feriz; Dedic, Amela

    2008-01-01

    Some areas of the Tuzla region (B and H) suffer heavily from the shortage of quality drinking water. The only real long-term water resource in this region is the Lake Modrac, the largest accumulation lake in Bosnia and Herzegovina. Due to the fact that radon is soluble in water it can be transported by water to long distances. In cases of intake of waters rich in radon the most affected are sensitive cells within the abdomen and other internal organs. In order to satisfy the needs for drinking water, people are forced to excavate and drill wells. In the area of Tuzla region and the entire B and H excavated wells are very frequent, and so are drilled wells lately, due to more developed and cheaper technology for soil drilling. Such activities in this area, and the whole of B and H, are carried out in an unorderly manner and without previously completed chemical and radiological analyses of soil and water samples. The University of Tuzla formed the Laboratory for detection of radon in all environments, and the survey displayed in this paper have been the first investigation of that kind in B and H. Here we presented the results of radon survey of drinking waters from excavated and drilled wells in the area of Tuzla region (North-Eastern region of B and H). The measurements were conducted over the period of one year (2006), so as to make possible monitoring of variations of radon concentrations in dependence of meteorological changes. These investigation works showed that radon concentration at most locations was significantly higher in drilled wells than in excavated wells. Mean values of radon concentration in the tested water samples ranged within the interval of 101-4200 Bq/m 3 . Radon activity concentration was measured with the Alpha GAURD radon system (Genitron instruments-Frankfurt). (author)

  4. Evaluation of soil and water salinity for irrigation in North-eastern ...

    African Journals Online (AJOL)

    For sound land use and water management in irrigated area, knowledge of the chemical composition of soils, water, climate, drainage condition and irrigation methods before action are crucial for sustainability of irrigation projects. The study aimed to evaluate the physicochemical properties of soils and water for intended ...

  5. The Quality of Drinking Well Waters in Jos Metropolis, North Central ...

    African Journals Online (AJOL)

    Background: Water quality is a term used to describe the chemical, physical, and biological characteristics of water, usually in respect to its suitability for a particular purpose. Water is said to be polluted if there is an excess, whatsoever, in the values (concentration levels) of the physical, chemical, biological or radioactive ...

  6. Chemical assessment of ballast water exchange compliance: Implementation in North America and New Zealand

    Directory of Open Access Journals (Sweden)

    Monaca eNoble

    2016-05-01

    Full Text Available Fluorescence by naturally occurring dissolved organic matter (FDOM is a sensitive indicator of ballast water source, with high FDOM in coastal ballast water decreasing typically dramatically when replaced by oceanic seawater during ballast water exchange. In this study, FDOM was measured in 92 ships arriving at Pacific ports on the US west coast and in New Zealand, and used to assess their compliance with ballast water regulations that required 95% replacement of port water to minimize invasive species risks. Fluorescence in many ships that reported ballast water exchange was significantly higher than is usual for oceanic seawater, and in several cases, significantly higher than in other ships with similar provenance and ballast water management. Pre-exchange source port conditions represented the largest source of uncertainty in the analysis, because residual coastal FDOM when highly fluorescent can significantly influence the fluorescence signature of exchanged ballast water. A meta-analysis comparing the intensities of FDOM in un-exchanged ballast tanks with calculated pre-exchange intensities assuming that ships all correctly implemented and reported ballast water exchange revealed notable discrepancies. Thus, the incidence of high-FDOM port waters was seven times lower in reality than would be expected on the basis of these calculations. The results suggest that a significant rate of reporting errors occur due to a combination of factors that may include inadequate ballast water exchange and unintentional or deliberate misreporting of ballast water management.

  7. Water footprint assessment in North Eastern region of Romania: A case study for Iasi County, Romania

    NARCIS (Netherlands)

    Ene, S.A.; Hoekstra, Arjen Ysbert; Mekonnen, Mesfin; Teodosiu, C.

    2012-01-01

    Many factors affect the water consumption pattern such as growing world population, climate changes, industrial and agricultural practices, etc. The present study provides for the first time a year-to-year analysis of water use for agricultural production, domestic water supply and industrial

  8. Simulated North Atlantic-Nordic Seas water mass exchanges in an isopycnic coordinate OGCM

    OpenAIRE

    Nilsen, Jan Even Øie; Gao, Yongqi; Drange, Helge; Furevik, Tore; Bentsen, Mats

    2003-01-01

    The variability in the volume exchanges between the North Atlantic and the Nordic Seas during the last 50 years is investigated using a synoptic forced, global version of the Miami Isopycnic Coordinate Ocean Model (MICOM). The simulated volume fluxes agree with the existing observations. The net volume flux across the Faroe-Shetland Channel (FSC) is positively correlated with the net flux through the Denmark Strait (DS; R = 0.74 for 3 years low pass filtering), but negatively correlated with ...

  9. The water-energy nexus in Middle East and North Africa

    International Nuclear Information System (INIS)

    Siddiqi, Afreen; Anadon, Laura Diaz

    2011-01-01

    Extracting, delivering, and disposing water requires energy, and similarly, many processes for extracting and refining various fuel sources and producing electricity use water. This so-called 'water-energy nexus', is important to understand due to increasing energy demands and decreasing freshwater supplies in many areas. This paper performs a country-level quantitative assessment of this nexus in the MENA region. The results show a highly skewed coupling with a relatively weak dependence of energy systems on fresh water, but a strong dependence of water abstraction and production systems on energy. In case of Saudi Arabia it is estimated that up to 9% of the total annual electrical energy consumption may be attributed to ground water pumping and desalination. Other countries in the Arabian Gulf may be consuming 5-12% or more of total electricity consumption for desalination. The results suggest that policy makers should explicitly consider energy implications in water intensive food imports and future restructuring of water demand. This will help in making more integrated decisions on water and energy infrastructure systems. An integrated assessment may in some cases favor water reuse and changes in the agricultural sector as opposed to the expansion of energy intensive and financially expensive desalination systems. - Highlights: → The water-energy nexus in MENA has a highly skewed coupling. → Energy production systems are weakly dependent on fresh water. → Water abstraction and production is strongly dependent on energy. → In Arabian Gulf countries, 5-12% or more of total electricity consumption is for desalination. → Energy implications in water intensive food imports should be included in policy considerations.

  10. Study of Aerosol Liquid Water Content based on Hygroscopicity Measurements at High Relative Humidity in the North China Plain

    Science.gov (United States)

    Bian, Y.; Zhao, C.

    2013-12-01

    Aerosol has significant effects on direct/indirect climate forcing, visibility, tropospheric chemistry and human health. Water can represent an extensive proportion of the mass of aerosol particles, and can also serve as a medium for aqueous-phase reactions in such particulate matter. In this study, a new method is proposed to estimate the aerosol liquid water content at high relative humidity, based on aerosol hygroscopic growth factors, particle number size distribution and relative humidity measured during the Haze in China (HaChi) campaign of July-August, 2009. The aerosol liquid water content estimated by this method is compared to the results calculated by a thermodynamic equilibrium model (ISORROPIA II). The calculation results from these two methods agree well at high relative humidity above 60% with the correlation coefficient of 0.9658. At relative humidity lower than 60%, the thermodynamic equilibrium model underestimates the aerosol liquid water content. The discrepancy is mainly caused by the ISORROPIA II model, which considers only limited chemical species. The mean and maximum value of aerosol liquid water content during July-August, 2009 in the North China Plain reached 1.69×10^{-4}g/m^3 and 9.71×10^{-4}g/m^3, respectively. Aerosol liquid water content is highly related to the relative humidity. There exists a distinct diurnal variation of the aerosol liquid water content, with lower values during daytime and higher ones during night time. The contribution to the aerosol liquid water content from the accumulation mode is dominating among all the aerosol particle modes.

  11. Bio-optical properties of Arctic drift ice and surface waters north of Svalbard from winter to spring

    Science.gov (United States)

    Kowalczuk, Piotr; Meler, Justyna; Kauko, Hanna M.; Pavlov, Alexey K.; Zabłocka, Monika; Peeken, Ilka; Dybwad, Christine; Castellani, Giulia; Granskog, Mats A.

    2017-06-01

    We have quantified absorption by CDOM, aCDOM(λ), particulate matter, ap(λ), algal pigments, aph(λ), and detrital material, aNAP(λ), coincident with chlorophyll a in sea ice and surface waters in winter and spring 2015 in the Arctic Ocean north of Svalbard. The aCDOM(λ) was low in contrast to other regions of the Arctic Ocean, while ap(λ) has the largest contribution to absorption variability in sea ice and surface waters. ap(443) was 1.4-2.8 times and 1.3-1.8 times higher than aCDOM(443) in surface water and sea ice, respectively. aph(λ) contributed 90% and 81% to ap(λ), in open leads and under-ice waters column, and much less (53%-74%) in sea ice, respectively. Both aCDOM(λ) and ap(λ) followed closely the vertical distribution of chlorophyll a in sea ice and the water column. We observed a tenfold increase of the chlorophyll a concentration and nearly twofold increase in absorption at 443 nm in sea ice from winter to spring. The aCDOM(λ) dominated the absorption budget in the UV both in sea ice and surface waters. In the visible range, absorption was dominated by aph(λ), which contributed more than 50% and aCDOM(λ), which contributed 43% to total absorption in water column. Detrital absorption contributed significantly (33%) only in surface ice layer. Algae dynamics explained more than 90% variability in ap(λ) and aph(λ) in water column, but less than 70% in the sea ice. This study presents detailed absorption budget that is relevant for modeling of radiative transfer and primary production.

  12. A study on uranium metallogenetic prospects of ground water oxidation zone type in the lower cretaceous, north Shanganning basin

    International Nuclear Information System (INIS)

    Wang Jinping

    2000-01-01

    Lower Cretaceous is developed well in the north part of Shanganning basin. The area was widely uplifting vertically after their deposited. Based on the features of lithology, lithophase and Neotectonic forms, two main periods of oxidation-erosion of K2-E1 and N1-present can be distinguished. During these two periods, large scale horizontal oxidation were occurred. It is significant that the ground water oxidation related to the uranium mineralization and has been proved by the field investigation and the data of γ-logging in drill hole for oil. Meanwhile, according to the hydrodynamic features of present Shanganning plateau type artesian basin, it seems that uranium mineralization main related to the ground water oxidation the upper parts of the Lower Cretaceous

  13. Assessing water resources adaptive capacity to climate change impacts in the Pacific Northwest Region of North America

    Directory of Open Access Journals (Sweden)

    A. F. Hamlet

    2011-05-01

    Full Text Available Climate change impacts in Pacific Northwest Region of North America (PNW are projected to include increasing temperatures and changes in the seasonality of precipitation (increasing precipitation in winter, decreasing precipitation in summer. Changes in precipitation are also spatially varying, with the northwestern parts of the region generally experiencing greater increases in cool season precipitation than the southeastern parts. These changes in climate are projected to cause loss of snowpack and associated streamflow timing shifts which will increase cool season (October–March flows and decrease warm season (April–September flows and water availability. Hydrologic extremes such as the 100 yr flood and extreme low flows are also expected to change, although these impacts are not spatially homogeneous and vary with mid-winter temperatures and other factors. These changes have important implications for natural ecosystems affected by water, and for human systems.

    The PNW is endowed with extensive water resources infrastructure and well-established and well-funded management agencies responsible for ensuring that water resources objectives (such as water supply, water quality, flood control, hydropower production, environmental services, etc. are met. Likewise, access to observed hydrological, meteorological, and climatic data and forecasts is in general exceptionally good in the United States and Canada, and is often supported by federally funded programs that ensure that these resources are freely available to water resources practitioners, policy makers, and the general public.

    Access to these extensive resources support the argument that at a technical level the PNW has high capacity to deal with the potential impacts of natural climate variability on water resources. To the extent that climate change will manifest itself as moderate changes in variability or extremes, we argue that existing water resources

  14. Assessing water resources adaptive capacity to climate change impacts in the Pacific Northwest Region of North America

    Science.gov (United States)

    Hamlet, A. F.

    2011-05-01

    Climate change impacts in Pacific Northwest Region of North America (PNW) are projected to include increasing temperatures and changes in the seasonality of precipitation (increasing precipitation in winter, decreasing precipitation in summer). Changes in precipitation are also spatially varying, with the northwestern parts of the region generally experiencing greater increases in cool season precipitation than the southeastern parts. These changes in climate are projected to cause loss of snowpack and associated streamflow timing shifts which will increase cool season (October-March) flows and decrease warm season (April-September) flows and water availability. Hydrologic extremes such as the 100 yr flood and extreme low flows are also expected to change, although these impacts are not spatially homogeneous and vary with mid-winter temperatures and other factors. These changes have important implications for natural ecosystems affected by water, and for human systems. The PNW is endowed with extensive water resources infrastructure and well-established and well-funded management agencies responsible for ensuring that water resources objectives (such as water supply, water quality, flood control, hydropower production, environmental services, etc.) are met. Likewise, access to observed hydrological, meteorological, and climatic data and forecasts is in general exceptionally good in the United States and Canada, and is often supported by federally funded programs that ensure that these resources are freely available to water resources practitioners, policy makers, and the general public. Access to these extensive resources support the argument that at a technical level the PNW has high capacity to deal with the potential impacts of natural climate variability on water resources. To the extent that climate change will manifest itself as moderate changes in variability or extremes, we argue that existing water resources infrastructure and institutional arrangements

  15. Nutrient profile of pond water in north-eastern state of Tripura and impact of water acidity on aquaculture productivity

    OpenAIRE

    Datta, M.K.; Saha, R.K.; Dhanze, J.R.; Prakash, C.; Singh Kohli, M.P.; Saharan, N.

    2008-01-01

    Physicochemical parameters of 31 fish pond water samples of Tripura were studied to ascertain the nutrient profile of acidic soil zone and the impact of water acidity towards aquaculture productivity. The pH was acidic (mean 6.63±0.44) with high Fe (mean1.04±0.40 mglˉ¹) and AI (mean 2.67±2.41 mglˉ¹) contents. These were mostly responsible for pond water acidity and poor productivity with low nitrogen, phosphate and total alkalinity. The study also showed strong negative relationship between w...

  16. Algal massive growth in relation to water quality and salinity at Damietta, north of Egypt

    Directory of Open Access Journals (Sweden)

    Mohamed Ali Ibraheem Deyab

    2015-02-01

    Full Text Available Objective: To relate the proliferation and dominance of certain algal species at the Damietta and its relation to water quality. Methods: Water and algal biomass were bimonthly sampled from five selected sites at Damietta Province, Egypt during 2012. Algae were identified and quantified. Waters, algae and sediment were analyzed. Results: The physicochemical properties of water showed limited seasonal but substantial local variation. The high levels of nitrogen and phosphorus and turbidity of water pointed to marked eutrophication, which could enhance massive algal growth. The temporal fluctuation in temperature, exposure to industrial and domestic sewage and salinity results in succession between blooming algal species. Spirulina platensis and Chlorella vulgaris alternated in a moderately saline water and Oscillatoria agardhii and Mougeotia scalaris in a fresh water body during summer and winter respectively. Likewise, Microcystis aureginosa and Ulva lactuca alternated in a moderately saline site during autumn and summer respectively. Cladophora albida dominated a fish pond of brackish water and Dunaliella salina dominated the most saline water over the whole period of study. Conclusions: Growth of the predominant algal species is correlated to water quality. These species are of considerable nutritive value, with moderate contents of protein, carbohydrate, macronutrients and micronutrients, which evaluates them for usage as food (green and macroalgae, fodder or bio-fertilizer (cyanophytes.

  17. Diagnosing water security in the rural North with an environmental security framework.

    Science.gov (United States)

    Penn, Henry J F; Loring, Philip A; Schnabel, William E

    2017-09-01

    This study explores the nature of water security challenges in rural Alaska, using a framework for environmental security that entails four interrelated concepts: availability, access, utility, and stability of water resources. Many researchers and professionals agree that water insecurity is a problem in rural Alaska, although the scale and nature of the problem is contested. Some academics have argued that the problem is systemic, and rooted in an approach to water security by the state that prioritizes economic concerns over public health concerns. Health practitioners and state agencies, on the other hand, contend that much progress has been made, and that nearly all rural households have access to safe drinking water, though many are still lacking 'modern' in-home water service. Here, we draw on a synthesis of ethnographic research alongside data from state agencies to show that the persistent water insecurity problems in rural Alaska are not a problem of access to or availability of clean water, or a lack of 'modern' infrastructure, but instead are rooted in complex human dimensions of water resources management, including the political legacies of state and federal community development schemes that did not fully account for local needs and challenges. The diagnostic approach we implement here helps to identify solutions to these challenges, which accordingly focus on place-based needs and empowering local actors. The framework likewise proves to be broadly applicable to exploring water security concerns elsewhere in the world. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. A measure for the efficiency of water use and its determinants, a case study of small-scale irrigation schemes in North-West Province, South Africa

    NARCIS (Netherlands)

    Speelman, S.; Haese, D' M.F.C.; Buysse, J.; Haese, D' L.

    2008-01-01

    This paper analyses the efficiency with which water is used in small-scale irrigation schemes in North-West Province in South Africa and studies its determinants. In the study area, small-scale irrigation schemes play an important role in rural development, but the increasing pressure on water

  19. Seaglider surveys at Ocean Station Papa: Circulation and water mass properties in a meander of the North Pacific Current

    Science.gov (United States)

    Pelland, Noel A.; Eriksen, Charles C.; Cronin, Meghan F.

    2016-09-01

    A Seaglider autonomous underwater vehicle augmented the Ocean Station Papa (OSP; 50°N, 145°W) surface mooring, measuring spatial structure on scales relevant to the monthly evolution of the moored time series. During each of three missions from June 2008 to January 2010, a Seaglider made biweekly 50 km × 50 km surveys in a bowtie-shaped survey track. Horizontal temperature and salinity gradients measured by these surveys were an order of magnitude stronger than climatological values and sometimes of opposite sign. Geostrophically inferred circulation was corroborated by moored acoustic Doppler current profiler measurements and AVISO satellite altimetry estimates of surface currents, confirming that glider surveys accurately resolved monthly scale mesoscale spatial structure. In contrast to climatological North Pacific Current circulation, upper-ocean flow was modestly northward during the first half of the 18 month survey period, and weakly westward during its latter half, with Rossby number O>(0.01>). This change in circulation coincided with a shift from cool and fresh to warm, saline, oxygen-rich water in the upper-ocean halocline, and an increase in vertical fine structure there and in the lower pycnocline. The anomalous flow and abrupt water mass transition were due to the slow growth of an anticyclonic meander within the North Pacific Current with radius comparable to the scale of the survey pattern, originating to the southeast of OSP.

  20. Living in an oasis: Rapid transformations, resilience, and resistance in the North Water Area societies and ecosystems.

    Science.gov (United States)

    Jeppesen, Erik; Appelt, Martin; Hastrup, Kirsten; Grønnow, Bjarne; Mosbech, Anders; Smol, John P; Davidson, Thomas A

    2018-04-01

    Based on lake sediment data, archaeological findings, and historical records, we describe rapid transformations, resilience and resistance in societies and ecosystems, and their interactions in the past in the North Water area related to changes in climate and historical events. Examples are the formation of the polynya itself and the early arrival of people, ca. 4500 years ago, and later major human immigrations (different societies, cultural encounters, or abandonment) from other regions in the Arctic. While the early immigrations had relatively modest and localised effect on the ecosystem, the later-incoming culture in the early thirteenth century was marked by extensive migrations into and out of the area and abrupt shifts in hunting technologies. This has had long-lasting consequences for the local lake ecosystems. Large natural transformations in the ecosystems have also occurred over relatively short time periods related to changes in the polynya. Finally, we discuss the future perspectives for the North Water area given the many threats, but also opportunities.

  1. Game theory based models to analyze water conflicts in the Middle Route of the South-to-North Water Transfer Project in China.

    Science.gov (United States)

    Wei, Shouke; Yang, Hong; Abbaspour, Karim; Mousavi, Jamshid; Gnauck, Albrecht

    2010-04-01

    This study applied game theory based models to analyze and solve water conflicts concerning water allocation and nitrogen reduction in the Middle Route of the South-to-North Water Transfer Project in China. The game simulation comprised two levels, including one main game with five players and four sub-games with each containing three sub-players. We used statistical and econometric regression methods to formulate payoff functions of the players, economic valuation methods (EVMs) to transform non-monetary value into economic one, cost-benefit Analysis (CBA) to compare the game outcomes, and scenario analysis to investigate the future uncertainties. The validity of game simulation was evaluated by comparing predictions with observations. The main results proved that cooperation would make the players collectively better off, though some player would face losses. However, players were not willing to cooperate, which would result in a prisoners' dilemma. Scenarios simulation results displayed that players in water scare area could not solve its severe water deficit problem without cooperation with other players even under an optimistic scenario, while the uncertainty of cooperation would come from the main polluters. The results suggest a need to design a mechanism to reduce the risk of losses of those players by a side payment, which provides them with economic incentives to cooperate. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  2. The South-to-North Water Diversion Project: effect of the water diversion pattern on transmission of Oncomelania hupensis, the intermediate host of Schistosoma japonicum in China.

    Science.gov (United States)

    Liang, You-Sheng; Wang, Wei; Li, Hong-Jun; Shen, Xue-Hui; Xu, Yong-Liang; Dai, Jian-Rong

    2012-03-20

    The South-to-North Water Diversion Project (SNWDP) is the largest national water conservancy project in China. However, the Eastern Route Project (ERP) of SNWDP will refer to the habitats of Oncomelania hupensis, the intermediate host of Schistosoma japonicum. The present study was aimed at investigating the effects of some factors relating to the water diversion pattern on the spread north of O. hupensis and transmission of S. japonicum. Marked snails were attached to the floating debris, and then placed on the water surface, the passage of snails through water pumps was observed. Some marked living adult snails were placed under water in the 5 spots, 15, 30, 60, 90 and 120 days later, their survival and transfer under water were investigated. 2, 4, 8, 16, 32, 64 and 128 juvenile snails, with a male: female ratio of about 1, were caged, 1 year later, their reproductions were calculated. The snails attached on the floating debris at 100-, 50- and 20-cm-distance from the inlet pipe of the big pump (with a diameter of 80 cm), could be absorbed into the pumps, with passing rates of 2.45%, 3.93% and 43.46%, respectively, compared with 72.07% and 91.00% for the snails at 20 cm and 10 cm-distance from the inlet pipe of the small pump (with a diameter of 20 cm). A total of 36,600 marked living snails were put into 5 ponds and ditches, with the water depths of 1-1.6 m, 15-120 days later, no marked ones were found along the ponds and ditches or in the straw packages. The juvenile snails did not reproduce until their density reached up to 8 snails (ratio of male: female of 1)/0.16 m2. During the construction of ERP of SNWDP, the risk of northward spread of schistosomiasis japonica will be decreased or eliminated as long as long-term reliable interventions for snail control are implemented.

  3. The South-to-North Water Diversion Project: effect of the water diversion pattern on transmission of Oncomelania hupensis, the intermediate host of Schistosoma japonicum in China

    Directory of Open Access Journals (Sweden)

    Liang You-Sheng

    2012-03-01

    Full Text Available Abstract Background The South-to-North Water Diversion Project (SNWDP is the largest national water conservancy project in China. However, the Eastern Route Project (ERP of SNWDP will refer to the habitats of Oncomelania hupensis, the intermediate host of Schistosoma japonicum. The present study was aimed at investigating the effects of some factors relating to the water diversion pattern on the spread north of O. hupensis and transmission of S. japonicum. Methods Marked snails were attached to the floating debris, and then placed on the water surface, the passage of snails through water pumps was observed. Some marked living adult snails were placed under water in the 5 spots, 15, 30, 60, 90 and 120 days later, their survival and transfer under water were investigated. 2, 4, 8, 16, 32, 64 and 128 juvenile snails, with a male: female ratio of about 1, were caged, 1 year later, their reproductions were calculated. Results The snails attached on the floating debris at 100-, 50- and 20-cm-distance from the inlet pipe of the big pump (with a diameter of 80 cm, could be absorbed into the pumps, with passing rates of 2.45%, 3.93% and 43.46%, respectively, compared with 72.07% and 91.00% for the snails at 20 cm and 10 cm-distance from the inlet pipe of the small pump (with a diameter of 20 cm. A total of 36,600 marked living snails were put into 5 ponds and ditches, with the water depths of 1-1.6 m, 15-120 days later, no marked ones were found along the ponds and ditches or in the straw packages. The juvenile snails did not reproduce until their density reached up to 8 snails (ratio of male: female of 1/0.16 m2. Conclusions During the construction of ERP of SNWDP, the risk of northward spread of schistosomiasis japonica will be decreased or eliminated as long as long-term reliable interventions for snail control are implemented.

  4. Water mass transformation in the North Atlantic over 1985-2002 simulated in an eddy-permitting model

    Directory of Open Access Journals (Sweden)

    R. Marsh

    2005-01-01

    Full Text Available Water mass transformation in the North Atlantic is examined in an eddy-permitting simulation with the OCCAM ocean general circulation model, forced by realistic surface fluxes over the period 1985-2002. Three Atlantic regions are considered - the subtropics, mid-latitudes, the northeast Atlantic - along with the Labrador Sea. The oceanic boundaries of each region coincide with hydrographic sections occupied in recent years. These regions broadly represent the formation sites of Eighteen Degree Water (EDW, Subtropical Mode Water (STMW, Subpolar Mode Water (SPMW and Labrador Sea Water (LSW. Water mass budgets are obtained for each region and year. Terms in the budget comprise surface-forced transformation rates, boundary exchanges and unsteadiness. Transformation rates due to 'total mixing' are obtained as the difference between net and surface transformation rates. Transports at the boundaries are evaluated alongside recent hydrographic section datasets, while surface-driven and mixing-driven transformation rates are compared with estimates based on air-sea flux datasets and inverse analysis of hydrographic data. In general OCCAM compares well with the observations, although two particular discrepancies are identified: deep overflows at high latitudes too light by around 0.2 kg m-3 and spurious heat gain of up to 100 Wm-2 east of the Grand Banks. Over 1985-2002, there is considerable variability on a range of timescales, in the annual surface-driven and mixing-driven formation rates of all four water masses. In the case of EDW and STMW, surface-driven and mixing-driven formation rates largely cancel. This is not so for SPMW and LSW, leading to regional net formation rates of up to 17 Sv and 15 Sv, respectively. In particular, OCCAM successfully simulates the strong LSW formation event of 1989-1994.

  5. A survey of bacteriological quality of drinking water in North Gondar ...

    African Journals Online (AJOL)

    Background: The high prevalence of diarrheal disease among children and infants can be traced to the use of unsafe water and unhygienic practices. The over all concept adopted for microbiological quality is that no water intended for human consumption shall contain E. coli in 100 ml sample. But, a 1-10 E.coli count per ...

  6. Water as a Human Right for the Middle East and North Africa

    International Development Research Centre (IDRC) Digital Library (Canada)

    All these global intergovernmental conferences and their resulting declarations and action plans pointed out the need for water for drinking (humans and livestock), food production, electricity generation, environmental conservation and industrial developments. The importance of access to clean water and sanitation was ...

  7. Quality evaluation of three water sources used in the North Bank ...

    African Journals Online (AJOL)

    The physico chemical, microbiological and sensory qualities of water from three sources :NASMEwater treatment plant (sample A), Kpeghe well and Kernel Stream (sample C) were determined using standard methods of water analysis. While samplesAand B were colourless and odourless, they had rusty and salty tastes ...

  8. Public Participation in rural area water management: experiences from the North Sea countries in Europe

    NARCIS (Netherlands)

    Hophmayer Tokich, Sharon; Krozer, Yoram

    2008-01-01

    The EU Water Framework Directive (WFD) in effect since 2000, mandates public participation in water management. The directive's requirements are general, leaving it up to the EU Member States to determine how to address the issue. Using case studies, this paper discusses some of the benefits brought

  9. Water as a Human Right for the Middle East and North Africa | IDRC ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2008-07-11

    Jul 11, 2008 ... Access to safe drinking water and proper sanitation is essential for human survival and for maintenance of a decent quality of life. Currently, more than a billion people do not have access to safe drinking water and more than 2 billion people lack proper sanitation. In 1992, the United Nations proclaimed that ...

  10. Arsenic concentrations correlate with salinity for fish taken from the North Sea and Baltic waters

    DEFF Research Database (Denmark)

    Larsen, Erik Huusfeldt; Francesconi, K. A.

    2003-01-01

    Total arsenic concentrations were determined in three teleost species (herring Clupea harengus; cod Gadus morhua, and flounder Platichthys flesus) taken. from four locations in the Baltic and North Sea with salinities ranging from 8 to 32 psu. Individual arsenic concentrations ranged from 0.......04 to 10.9 mg/kg wet mass, and there was a positive linear relationship between arsenic concentration and salinity for all three species (r(2) 0.44 to 0.72, all P arsenic than do freshwater fish, the data reported...... here are the first showing a relationship between the total arsenic concentration in fish and salinity....

  11. UMTRA Project water sampling and analysis plan, Belfield and Bowman, North Dakota

    International Nuclear Information System (INIS)

    1994-08-01

    Surface remedial action is scheduled to begin at the Belfield and Bowman Uranium Mill Tailings Remedial Action (UMTRA) Project sites in the spring of 1996. Water sampling was conducted in 1993 at both the Belfield processing site and the Bowman processing/disposal site. Results of the sampling at both sites indicate that ground water conditions have remained relatively stable over time. Water sampling activities are not scheduled for 1994 because ground water conditions at the two sites are relatively stable, the 1993 sampling was comprehensive, and surface remediation activities are not scheduled to start until 1996. The next water sampling event is scheduled before the start of remedial activities and will include sampling selected monitor wells at both sites and several domestic wells in the vicinity

  12. Climatic impacts of the Middle Route of the South-to-North Water Transfer Project over the Haihe River basin in North China simulated by a regional climate model

    Science.gov (United States)

    Zou, Jing; Zhan, Chesheng; Xie, Zhenghui; Qin, Peihua; Jiang, Shanshan

    2016-08-01

    The Middle Route of the South-to-North Water Transfer Project (MSWTP) was constructed to ease the water crisis over the North China Plain. In this study, we incorporated a water transfer scheme into the regional climate model RegCM4 and investigated the climatic impacts of the MSWTP over the Haihe River Basin in North China. Four 10 year simulation tests were conducted from 2001 to 2010 where different volumes of water were transferred. The results demonstrated that before the MSWTP was conducted the original groundwater exploitation and consumption over the Haihe River Basin led to wetting and cooling at the land surface with rapidly falling groundwater depth. The extra water input from the MSWTP slightly enhanced the wetting and cooling effects over the basin, as well as reduced the falling rate in the groundwater depth along the conveyance line. However, the weak climatic effects of the MSWTP were limited at a local scale and had no obvious interannual trends, because the transfer volume of the MSWTP was far lower than the total demand which has been conventionally satisfied through local water exploitation. In terms of seasonal variations, the greatest changes due to the MSWTP occurred in the summer for precipitation and soil moisture and in the spring for energy-related variables (heat fluxes and 2 m air temperature).

  13. Quantifying Surface Water Dynamics at 30 Meter Spatial Resolution in the North American High Northern Latitudes 1991-2011

    Science.gov (United States)

    Carroll, Mark; Wooten, Margaret; DiMiceli, Charlene; Sohlberg, Robert; Kelly, Maureen

    2016-01-01

    The availability of a dense time series of satellite observations at moderate (30 m) spatial resolution is enabling unprecedented opportunities for understanding ecosystems around the world. A time series of data from Landsat was used to generate a series of three maps at decadal time step to show how surface water has changed from 1991 to 2011 in the high northern latitudes of North America. Previous attempts to characterize the change in surface water in this region have been limited in either spatial or temporal resolution, or both. This series of maps was generated for the NASA Arctic and Boreal Vulnerability Experiment (ABoVE), which began in fall 2015. These maps show a nominal extent of surface water by using multiple observations to make a single map for each time step. This increases the confidence that any detected changes are related to climate or ecosystem changes not simply caused by short duration weather events such as flood or drought. The methods and comparison to other contemporary maps of the region are presented here. Initial verification results indicate 96% producer accuracy and 54% user accuracy when compared to 2-m resolution World View-2 data. All water bodies that were omitted were one Landsat pixel or smaller, hence below detection limits of the instrument.

  14. Effect of climatic change and afforestation on water yield in the Rocky Mountain Area of North China

    Directory of Open Access Journals (Sweden)

    Yang Zhao

    2015-04-01

    Full Text Available Aim of study: We studied effects of climatic variability and afforestation on water yield to make a quantitative assessment of the hydrological effects of afforestation on basin water yield in the Rocky Mountain Area of North China. Area of study: Seven typical forest sub-watersheds in Chaobai River watershed, located near Beijing’s Miyun Reservoir, were selected as our study object. Material and methods: Annual water yield model and Separate evaluation method were applied to quantify the respective contributions of changes in climate and different vegetation types on variations in runoff. Main results: Statistical analysis indicated precipitation did not vary significantly whereas the annual runoff decreased significantly in the past decades. Although forest increased significantly in the late 20th century, climatic variations have the strongest contribution to the reductions in runoff, with the average contribution reaching 63.24%, while the remainder caused by human activities. Afforestation has a more positive impact on the reduction in runoff, with a contribution of 65.5%, which was more than the grassland of 17.6% and the farmland of 16.9%. Research highlights: Compared to the impact of climatic change, we believe the large-scale afforestation may not be the main reason for the reductions in basin water yield.

  15. A COMPREHENSIVE STUDY OF RESIDENTIAL, GEOGENIC AND WATER RADON IN THE NORTH AREA OF MUREŞ COUNTY, ROMANIA.

    Science.gov (United States)

    Papp, Botond; Cucos Dinu, Alexandra; Cosma, Constantin

    2017-11-18

    This study presents results of a complex survey about residential, soil and water radon in the North of Mureş county (Romania). Indoor radon measurements were performed by using CR-39 track detectors, while radon concentrations in soil and in water were measured by using the LUK3C device and accessories. The indoor radon concentrations of 157 houses ranged from 9 to 414 Bq m-3, with an arithmetic mean of 131 Bq m-3 and a geometric mean of 105 Bq m-3. In ~3.2% of the investigated houses exceed the recommended reference level of 300 Bq m-3. The soil gas radon concentrations in 137 sampling points varied from 5.0 to 88.0 kBq m-3, with a geometric mean of 14.6 kBq m-3. Results of 190 water samples shows radon concentrations from 0.2 to 28.0 Bq L-1, with a geometric mean of 5.0 Bq L-1. Beside these results, indoor, soil and water radon maps were performed, divided into cells of 5 km × 5 km. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Changing characteristics of land use and ecological service value in the water source region of the Middle Route of South-to-North Water Transfer Project

    Science.gov (United States)

    Tang, Jian; Zhai, Wenliang; Cao, Huiqun

    2017-08-01

    Research on changing characteristics of land use and ecological service value (ESV) can guide the regional land use planning and promote the rational use of environmental resources. On the basis of four phases of land-use data (2000, 2005, 2010 and 2015), this research analysed the changing characteristics of land use and ESV in the water source region of the Middle Route of South-to-North Water Transfer Project (SRMRP). The results showed that forest, grassland and cultivated land were the major land-use types in the SRMRP. During 2000∼2015, forest, grassland, farmland and wetland decreased. Construction land and bare land had increased, and the annual increase rates reached 3.6% and 8%, respectively. After the implementation of the water transfer project in 2003, water area was also increasing. The total ESV in the SRMRP is about 196 billion CNY, and mainly comes from the contributions of forest, grassland and farmland. During 2000∼2015, farmland shrinks leaded to the declines in value from supply service. With increasing in water and construction land, value from entertainment and cultural service increased. During the early stage of the water transfer project, value from regulation and support services increased due to the increase in water. With the decreasing in wetland and the increasing in construction land, the negative effects on the regulation and support services were increasing, and value from regulation and support services were therefore decreasing. During the process of resource exploitation and management, more attentions should be paid to the total control of construction land and wetland protection in the SRMRP.

  17. Bacteriological Study of the Marine Water in the Coastal of the North Sulawesi Province, Indonesia

    Directory of Open Access Journals (Sweden)

    Lies Indah Sutiknowati

    2006-11-01

    Full Text Available The main objective of this research was to study the marine bacteriology of the coast of North Sulawesi. The study was accomplished by calculating the abundance of coliform, heterotrophic, and pathogenic bacteria, and analyzing the coexistence relationship between bacteria and phytoplanktons. This research, which included the sampling and laboratory works, has been carried out on 25 - 28 October, 2000. The results suggested that the abundance of each bacteria was as follows: coliform bacteria range between 227-5940 cfu/100 ml with averages 1814.1 cfu/100 ml, found in all stations; heterotrophic bacteria range between (1-82 x 103 cfu/ml with averages 12.1 x 103 cfu/ml, it was high density and has association with phytoplankton Trichodesmium thieubautii. It was also found 6 species of pathogen bacteria e.g. Aeromonas, Citrobacter, Proteus, Pseudomonas, Yersinia and Shigella. The presence of coliform and pathogen bacteria was indicator of low quality of the seawater in the sampling area. Based on bacteriological study, the North Sulawesi Coastal is not suitable for aquaculture and need treatment and controlled for further coastal exploitation.

  18. Effect of Moringa oleifera-alum Ratios on Surface Water Treatment in North East Nigeria

    OpenAIRE

    N.E. Nwaiwu; A.A. Bello

    2011-01-01

    The aim of this study is to find out the optimum combination for MO and alum using alum as a coagulant aid in household treatment of natural pond surface water for domestic use. The physico-chemical properties investigated for in the raw, settled and filtered water were Ph, Total Dissolved Solids (tds), turbidity, colour and total suspended solids (tss). The various coagulant combinations with which the raw water from the pond was treated include Moringa oleifera (MO) seed powder only (i.e., ...

  19. Concentrations of 222Rn in well and tap waters of North-Eastern Attiki (Central Greece)

    International Nuclear Information System (INIS)

    Kritidis, Panaiotis; Angelou, Panaiotis.

    1984-07-01

    An alpha-scintillation system for determination of low 222 Rn concentrations in water is described. The use of vacuum sampling, the avoidance of sample transfer and the corrections applied result in low systematical errors. The method has been used for a preliminary investigation of 222 Rn concentrations in well waters of NE Attiki, where values between 4 and 345 pCi/1 have been observed. The additional annual effective dose equivalent due to the systematic domestic use of water with the highest radon concentration measured is estimated not to exceed 5 mrem. (author)

  20. Using LiDAR datasets to improve HSPF water quality modeling in the Red River of the North Basin

    Science.gov (United States)

    Burke, M. P.; Foreman, C. S.

    2013-12-01

    The Red River of the North Basin (RRB), located in the lakebed of ancient glacial Lake Agassiz, comprises one of the flattest landscapes in North America. The topography of the basin, coupled with the Red River's direction of flow from south to north results in a system that is highly susceptible to flooding. The magnitude and frequency of flood events in the RRB has prompted several multijurisdictional projects and mitigation efforts. In response to the devastating 1997 flood, an International Joint Commission sponsored task force established the need for accurate elevation data to help improve flood forecasting and better understand risks. This led to the International Water Institute's Red River Basin Mapping Initiative, and the acquisition LiDAR Data for the entire US portion of the RRB. The resulting 1 meter bare earth digital elevation models have been used to improve hydraulic and hydrologic modeling within the RRB, with focus on flood prediction and mitigation. More recently, these LiDAR datasets have been incorporated into Hydrological Simulation Program-FORTRAN (HSPF) model applications to improve water quality predictions in the MN portion of the RRB. RESPEC is currently building HSPF model applications for five of MN's 8-digit HUC watersheds draining to the Red River, including: the Red Lake River, Clearwater River, Sandhill River, Two Rivers, and Tamarac River watersheds. This work is being conducted for the Minnesota Pollution Control Agency (MPCA) as part of MN's statewide watershed approach to restoring and protecting water. The HSPF model applications simulate hydrology (discharge, stage), as well as a number of water quality constituents (sediment, temperature, organic and inorganic nitrogen, total ammonia, organic and inorganic phosphorus, dissolved oxygen and biochemical oxygen demand, and algae) continuously for the period 1995-2009 and are formulated to provide predictions at points of interest within the watersheds, such as observation gages

  1. Sup(239,240)Pu in estuarine and shelf waters of the north-eastern United States

    International Nuclear Information System (INIS)

    Sholkovitz, E.R.; Mann, D.R.

    1987-01-01

    The distribution of sup(239,240)Pu between dissolved and particulate forms has been measured in four estuaries on the north-east coast of the United States (Connecticut River, Delaware Bay, Chesapeake Bay, and Mullica River). The data cover the whole salinity range from freshwater input to shelf waters at 3.5% and includes one profile from a nearly anoxic basin in the Chesapeake Bay. In the organic-rich Mullica River estuary, large-scale removal of riverine dissolved sup(239,240)Pu occurs at low salinities due to salt-induced coagulation, a mechanism analogous to that for iron and humic acids. Within the 0 to 2.5-3.5% zone in the other three estuaries, the activity of dissolved sup(239,240)Pu increases almost conservatively. The activities of particulate sup(239,240)Pu are highest in the more turbid waters of low salinity regime (0-1.5%), but become increasingly insignificant with respect to dissolved sup(239,240)Pu as salinities increase. At higher salinities corresponding to shelf water, there is a sharp increase in dissolved sup(239,240)Pu activity. The dissolved sup(239,240)Pu activity within each estuary appears to be inversely related to the flushing time of water. The sharp decrease in dissolved sup(239,240)Pu activities between shelf and estuarine waters appears to be driven by removal within the estuaries themselves rather than on the shelf. Dissolved sup(239,240)Pu activities are lower in the nearly-anoxic bottom waters of Chesapeake Bay indicating enhanced removal by redox transformation of Pu [i.e., Pu(V) to Pu(IV)]. (author)

  2. Field scale interaction and nutrient exchange between surface water and shallow groundwater in the Baiyang Lake region, North China Plain.

    Science.gov (United States)

    Brauns, Bentje; Bjerg, Poul L; Song, Xianfang; Jakobsen, Rasmus

    2016-07-01

    Fertilizer input for agricultural food production, as well as the discharge of domestic and industrial water pollutants, increases pressures on locally scarce and vulnerable water resources in the North China Plain. In order to: (a) understand pollutant exchange between surface water and groundwater, (b) quantify nutrient loadings, and (c) identify major nutrient removal pathways by using qualitative and quantitative methods, including the geochemical model PHREEQC) a one-year study at a wheat (Triticum aestivum L.) and maize (Zea mays L.) double cropping system in the Baiyang Lake area in Hebei Province, China, was undertaken. The study showed a high influence of low-quality surface water on the shallow aquifer. Major inflowing pollutants into the aquifer were ammonium and nitrate via inflow from the adjacent Fu River (up to 29.8mg/L NH4-N and 6.8mg/L NO3-N), as well as nitrate via vertical transport from the field surface (up to 134.8mg/L NO3-N in soil water). Results from a conceptual model show an excess nitrogen input of about 320kg/ha/a. Nevertheless, both nitrogen species were only detected at low concentrations in shallow groundwater, averaging at 3.6mg/L NH4-N and 1.8mg/L NO3-N. Measurement results supported by PHREEQC-modeling indicated cation exchange, denitrification, and anaerobic ammonium oxidation coupled with partial denitrification as major nitrogen removal pathways. Despite the current removal capacity, the excessive nitrogen fertilization may pose a future threat to groundwater quality. Surface water quality improvements are therefore recommended in conjunction with simultaneous monitoring of nitrate in the aquifer, and reduced agricultural N-inputs should be considered. Copyright © 2016. Published by Elsevier B.V.

  3. Synoptic Disturbances Found in Precipitable Water Fields North of Equatorial Africa

    National Research Council Canada - National Science Library

    Patla, Jason

    1999-01-01

    The origin and structure of tropical synoptic scale precipitable water (PW) anomalies estimated from TOVS satellite observations are analyzed as they propagate eastward across northern Africa during MAM 1988...

  4. Modeling of phase equilibrium of North Sea oils with water and MEG

    DEFF Research Database (Denmark)

    Frost, Michael Grynnerup; Kontogeorgis, Georgios; von Solms, Nicolas

    2016-01-01

    The complex phase equilibrium between reservoir fluids and associating compounds like water and glycols has become very important as the increasing global energy demand pushes the oil industry to use advanced methods to increase oil recovery, such as increasing the use of various chemicals......, such as water and ethylene glycol (MEG). Using these new correlations for prediction of all binary interactions, the CPA EoS satisfactorily describes the mutual solubility of the “binary systems” reservoir fluid and MEG and promising results are also obtained with CPA for ternary mixtures (reservoir fluid + water...... to ensure a constant and safe production. The CPA equation of state has been successfully applied in the past to well defined systems and gas condensates containing associating compounds. It has also been extended to reservoir fluids in presence of water and polar chemicals using modified correlations...

  5. Presence of Cryptosporidium spp. and Giardia duodenalis in Drinking Water Samples in the North of Portugal

    Science.gov (United States)

    Moreira, Maria João; Soares, Sónia; de Lurdes Delgado, Maria; Figueiredo, João; Silva, Elisabete; Castro, António; Cosa, José Manuel Correida Da

    2010-01-01

    Cryptosporidium and Giardia are 2 protozoan parasites responsible for waterborne diseases outbreaks worldwide. In order to assess the prevalence of these protozoans in drinking water samples in the northern part of Portugal and the risk of human infection, we have established a long term program aiming at pinpointing the sources of surface water, drinking water, and environmental contamination, working with the water-supply industry. Total 43 sources of drinking water samples were selected, and a total of 167 samples were analyzed using the Method 1623. Sensitivity assays regarding the genetic characterization by PCR and sequencing of the genes, 18S SSU rRNA, for Cryptosporidium spp. and β,-giardin for G. duodenalis were set in the laboratory. According to the defined criteria, molecular analysis was performed over 4 samples. Environmental stages of the protozoa were detected in 25.7% (43 out of 167) of the water samples, 8.4% (14 out of 167) with cysts of Giardia, 10.2% (17 out of 167) with oocysts of Cryptosporidium and 7.2% (12 out of 167) for both species. The mean concentrations were 0.1-12.7 oocysts of Cryptosporidium spp. per 10 L and 0.1-108.3 cysts of Giardia duodenalis per 10 L. Our results suggest that the efficiency in drinking water plants must be ameliorated in their efficiency in reducing the levels of contamination. We suggest the implementation of systematic monitoring programs for both protozoa. To authors' knowledge, this is the first report evaluating the concentration of environmental stages of Cryptosporidium and Giardia in drinking water samples in the northern part of Portugal. PMID:20333284

  6. Presence of Cryptosporidium spp. and Giardia duodenalis in drinking water samples in the north of Portugal.

    Science.gov (United States)

    Almeida, André; Moreira, Maria João; Soares, Sónia; Delgado, Maria de Lurdes; Figueiredo, João; Silva, Elisabete; Castro, António; Cosa, José Manuel Correida Da

    2010-03-01

    Cryptosporidium and Giardia are 2 protozoan parasites responsible for waterborne diseases outbreaks worldwide. In order to assess the prevalence of these protozoans in drinking water samples in the northern part of Portugal and the risk of human infection, we have established a long term program aiming at pinpointing the sources of surface water, drinking water, and environmental contamination, working with the water-supply industry. Total 43 sources of drinking water samples were selected, and a total of 167 samples were analyzed using the Method 1623. Sensitivity assays regarding the genetic characterization by PCR and sequencing of the genes, 18S SSU rRNA, for Cryptosporidium spp. and beta,-giardin for G. duodenalis were set in the laboratory. According to the defined criteria, molecular analysis was performed over 4 samples. Environmental stages of the protozoa were detected in 25.7% (43 out of 167) of the water samples, 8.4% (14 out of 167) with cysts of Giardia, 10.2% (17 out of 167) with oocysts of Cryptosporidium and 7.2% (12 out of 167) for both species. The mean concentrations were 0.1-12.7 oocysts of Cryptosporidium spp. per 10 L and 0.1-108.3 cysts of Giardia duodenalis per 10 L. Our results suggest that the efficiency in drinking water plants must be ameliorated in their efficiency in reducing the levels of contamination. We suggest the implementation of systematic monitoring programs for both protozoa. To authors' knowledge, this is the first report evaluating the concentration of environmental stages of Cryptosporidium and Giardia in drinking water samples in the northern part of Portugal.

  7. Insights into the benthic communities response to the inflow of Black Sea mesotrophic waters in the North Aegean Sea

    Science.gov (United States)

    Lampadariou, Nikolaos; Sevastou, Katerina; Podaras, Dimitrios; Tselepides, Anastasios

    2017-10-01

    The effects of the Dardanelles inflow of buoyant, modified Black Sea waters (BSW) of low salinity and temperature, on the meio- and macrobenthic communities of the north Aegean ecosystem was investigated during two cruises in October 2013 and March 2014. Sediment samples were collected from two stations subjected to the BSW effect, one shallow and one deep north of the Dardanelles Straits, and from two stations of similar bathymetry, which were considered to be outside the influence of BSW and were located to the south of the Dardanelles Straits. Results suggest that there is an effect of the BSW on benthos, as both meiofaunal and macrofaunal standing stocks were lower at the most distant, and therefore least affected from the inflow, station, and higher at the station of similar bathymetry which was affected the most by the BSW inflow. Univariate and multivariate non-parametric analyses (nMDS, PERMANOVA) provided further support, indicating differences between the two areas (North vs. South) in the case of the deep stations, while differences between depth categories were evident in the area outside the BSW influence zone. Distance-based linear modeling (DISTLM) indicated that meiofauna correlated with proxies of food availability and sediment characteristics. Macrofauna, on the other hand, showed a rather high significant correlation with depth only. Nematode species composition was statistically significant different between depth categories only, yet the nMDS ordination clearly separated the deep southern station from the rest, with non-selective deposit feeders dominating the stations under the influence of the BSW, and epistratum feeders being important at the stations outside the influence of the BSW. It is concluded that both the meiofaunal and macrofaunal communities at the northern stations benefit from a constant input of high amounts of organic matter to the seafloor, while those at the southern area may be occasionally affected by the thermohaline BSW

  8. North Inlet-Winyah Bay National Estuarine Research Reserve's (NERR) Estuarine Water Quality Data for the North Inlet and Winyah Bay Estuaries, Georgetown, South Carolina: 1993-2002

    Data.gov (United States)

    Baruch Institute for Marine and Coastal Sciences, Univ of South Carolina — The North Inlet Estuary and the adjacent lower northeastern section of the Winyah Bay Estuary were designated as part of the National Estuarine Research Reserve...

  9. Estimating Snow Water Storage in North America Using CLM4, DART, and Snow Radiance Data Assimilation

    Science.gov (United States)

    Kwon, Yonghwan; Yang, Zong-Liang; Zhao, Long; Hoar, Timothy J.; Toure, Ally M.; Rodell, Matthew

    2016-01-01

    This paper addresses continental-scale snow estimates in North America using a recently developed snow radiance assimilation (RA) system. A series of RA experiments with the ensemble adjustment Kalman filter are conducted by assimilating the Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) brightness temperature T(sub B) at 18.7- and 36.5-GHz vertical polarization channels. The overall RA performance in estimating snow depth for North America is improved by simultaneously updating the Community Land Model, version 4 (CLM4), snow/soil states and radiative transfer model (RTM) parameters involved in predicting T(sub B) based on their correlations with the prior T(sub B) (i.e., rule-based RA), although degradations are also observed. The RA system exhibits a more mixed performance for snow cover fraction estimates. Compared to the open-loop run (0.171m RMSE), the overall snow depth estimates are improved by 1.6% (0.168m RMSE) in the rule-based RA whereas the default RA (without a rule) results in a degradation of 3.6% (0.177mRMSE). Significant improvement of the snow depth estimates in the rule-based RA as observed for tundra snow class (11.5%, p < 0.05) and bare soil land-cover type (13.5%, p < 0.05). However, the overall improvement is not significant (p = 0.135) because snow estimates are degraded or marginally improved for other snow classes and land covers, especially the taiga snow class and forest land cover (7.1% and 7.3% degradations, respectively). The current RA system needs to be further refined to enhance snow estimates for various snow types and forested regions.

  10. Water-mass evolution in the Cretaceous Western Interior Seaway of North America and equatorial Atlantic

    Directory of Open Access Journals (Sweden)

    J. S. Eldrett

    2017-07-01

    Full Text Available The Late Cretaceous Epoch was characterized by major global perturbations in the carbon cycle, the most prominent occurring near the Cenomanian–Turonian (CT transition marked by Oceanic Anoxic Event 2 (OAE-2 at 94.9–93.7 Ma. The Cretaceous Western Interior Seaway (KWIS was one of several epicontinental seas in which a complex water-mass evolution was recorded in widespread sedimentary successions. This contribution integrates new data on the main components of organic matter, geochemistry, and stable isotopes along a north–south transect from the KWIS to the equatorial western Atlantic and Southern Ocean. In particular, cored sedimentary rocks from the Eagle Ford Group of west Texas (∼ 90–98 Ma demonstrate subtle temporal and spatial variations in palaeoenvironmental conditions and provide an important geographic constraint for interpreting water-mass evolution. High-latitude (boreal–austral, equatorial Atlantic Tethyan and locally sourced Western Interior Seaway water masses are distinguished by distinct palynological assemblages and geochemical signatures. The northward migration of an equatorial Atlantic Tethyan water mass into the KWIS occurred during the early–middle Cenomanian (98–95 Ma followed by a major re-organization during the latest Cenomanian–Turonian (95–94 Ma as a full connection with a northerly boreal water mass was established during peak transgression. This oceanographic change promoted de-stratification of the water column and improved oxygenation throughout the KWIS and as far south as the Demerara Rise off Suriname. In addition, the recorded decline in redox-sensitive trace metals during the onset of OAE-2 likely reflects a genuine oxygenation event related to open water-mass exchange and may have been complicated by variable contribution of organic matter from different sources (e.g. refractory/terrigenous material, requiring further investigation.

  11. Iodine-129 concentrations in marginal seas of the North Pacific and Pacific-influenced waters of the Arctic Ocean

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, Lee W.; Grebmeier, Jacqueline M. [Tennessee Univ., Dept. of Ecology and Evolutionary Biology, Knoxville, TN (United States); Hong, Gi H. [Korea Ocean Research and Development Inst., Seoul (Korea); Beasley, Tom M. [US Dept. of Energy, New York, NY (United States)

    2001-07-01

    Water sampling during the 1993 IV Russian-US Joint Expedition to the Bering and Chukchi Seas (BERPAC) indicates that Pacific Ocean burdens of the long-lived radionuclide {sup 129}I are relatively low in the Pacific-influenced Arctic, particularly compared to high latitude water influenced by the North Atlantic. These low concentrations occur despite the presence of potential submerged anthropogenic sources in the East Sea (Sea of Japan), and in the northwest Pacific Ocean, east of the Kamchatka Peninsula. The concentration of {sup 129}I entering the Arctic Ocean through Bering Strait, {approx}0.7x10{sup 8} atoms kg {sup -1}, is only slightly higher than observed in deep Pacific water. Similar concentrations (0.44-0.76x10{sup 8}atoms kg{sup -1}) measured in Long Strait indicate no significant transfer of {sup 129}I eastward into the Chukchi Sea in the Siberian Coastal Current from the Siberian marginal seas to the west, However, the concentrations reported here are more than an order to magnitude higher than the Bering Strait input concentration estimated (1.0x10{sup 6}atoms kg{sup -1}) from bomb fallout mass balances, which supports other existing evidence for a significant atmospheric deposition term for this radionuclide in surface ocean waters. Near-bottom water samples collected in productive waters of the Bering and Chukchi Seas also suggest that sediment regeneration may locally elevate {sup 129}I concentrations, and impact its utility as a water mass tracer. As part of this study, two deep {sup 129}I profiles were also measured in the East Sea in 1993-1994. The near-surface concentration of {sup 129}I ranged from 0.12 to 0.31x10{sup 8}atoms kg{sup -1}. The {sup 129}I concentration showed a steady decrease with depth, although because of active deep water ventilation, the entire 3000 m water column exceeded natural concentrations of the radionuclide. Atom ratios of {sup 129}I/{sup 137}Cs in the East Sea also suggest an excess of {sup 129}I above bomb fallout

  12. Using stable isotopes of water to re-evaluate the recharge/discharge functions of North American bogs and fens

    Science.gov (United States)

    Levy, Zeno; Siegel, Donald; Glaser, Paul; Dasgupta, Soumitri

    2014-05-01

    In North American mires hydrologists commonly find raised bog crests and low-lying fen water tracks to be focal points for groundwater recharge and discharge, respectively. To further test these observations we synoptically surveyed vertical profiles of peat pore water δ18O/δ2H and major mineral solutes from a range of bog and fen landforms across the Glacial Lake Agassiz Peatlands (GLAP) of northern Minnesota. We also sampled a detailed transect through a 150 km2 bog-fen complex in the Red Lake II peatland watershed of the GLAP. The molar ratios of Ca/Mg in the pore water beneath the Red Lake II bog crest are depleted in Mg with respect to the atmospheric average of 3.6, indicative of preferential flushing of Mg from the peat by meteoric recharge. Higher solute concentrations in the middle of the peat profile at an adjacent fen show focused groundwater discharge with Ca/Mg ratios of ~1.4, similar to that of water from local wells tapping underlying glacial till. However, contrary to expectations, we find evidence that modern recharge has penetrated throughout the peat column beneath both bog and fen landforms throughout the GLAP. Landform surface features control the isotopic recharge value. These landform-specific isotope signatures propagate through vertical pore water profiles. Pore waters deeper than 0.5 m partition into discrete ranges of δ18O according to three a priori landform classifications: 1) -11.9 ± 0.4 o for bog crests, 2) -10.6 ± 0.1 o for Sphagnum lawns, and 3) -8.8 ± 1.0 o for fen water tracks. The fen water tracks have standing water at their surface that is seasonally enriched by isotope fractionating evaporation and therefore fingerprints recharge to depths ≥3 m. Incongruities between isotope and solute mixing trends may be related to the dual porosity nature of peat and matrix diffusion, which could supply solutes to active pore spaces following flushing by meteoric recharge. This buffering of base solutes in the deep peat may

  13. Triangle Area Water Supply Monitoring Project, North Carolina—Summary of monitoring activities, quality assurance, and data, October 2013–September 2015

    Science.gov (United States)

    Pfeifle, C.A.; Cain, J.L.; Rasmussen, R.B.

    2017-09-27

    Surface-water supplies are important sources of drinking water for residents in the Triangle area of North Carolina, which is located within the upper Cape Fear and Neuse River Basins. Since 1988, the U.S. Geological Survey and a consortium of local governments have tracked water-quality conditions and trends in several of the area’s water-supply lakes and streams. This report summarizes data collected through this cooperative effort, known as the Triangle Area Water Supply Monitoring Project, during October 2013 through September 2014 (water year 2014) and October 2014 through September 2015 (water year 2015). Major findings for this period include:More than 5,500 individual measurements of water quality were made at a total of 15 sites—4 in the Neuse River Basin and 11 in the Cape Fear River Basin. Thirty water-quality properties or constituents were measured; State water-quality thresholds exist for 11 of these.All observations met State water-quality thresholds for temperature, hardness, chloride, fluoride, sulfate, and nitrate plus nitrite.North Carolina water-quality thresholds were exceeded one or more times for dissolved oxygen, dissolved-oxygen percent saturation, pH, turbidity, and chlorophyll a.

  14. Environmental isotope study related to groundwater age, flow system and saline water origin in Quaternary aquifers of North China Plain

    International Nuclear Information System (INIS)

    Zhang Zhigan; Payne, B.R.

    1988-01-01

    An isotopic hydrology section across the North China Plain has been studied to investigate problems of groundwater age, flow system and saline water origin in a semi-arid pre-mountain artesian basin. Two local and one regional flow system along the section have been recognized. Turnover time of water for alluvial fan, shallow and regional systems are estimated to be the order of 10 2 , 10 3 , and 10 4 years respectively. Specific flow rates for the three systems have been calculated. Only less than 5 percent of flow from alluvial fan is drained by the regional flow system and the rest, in natural conditions, discharges at surface in the front edge of an alluvial fan and forms a groundwater discharge belt at a good distance away from the mountain foot. Developed in the alluvial plain and coastal plain areas the shallow flow system embraces a series of small local systems. Groundwater in these systems appears to be the salt carrier during continental salinization. It washes salt out of the recharge area and deep-occurred strata by circulating and carries it up to the surface in lowland areas. Consequently, in parallel with salinization at surface a desalinization process occurs at depth, which provides an additional explanation for the existing thick deep fresh water zone in most arid and semi-arid regions, where continental salting process is in progress. (author). 6 refs, 8 figs, 4 tabs

  15. Water Access, Sanitation, and Hygiene Conditions and Health Outcomes among Two Settlement Types in Rural Far North Cameroon.

    Science.gov (United States)

    Gorham, Tyler J; Yoo, Joshua; Garabed, Rebecca; Mouhaman, Arabi; Lee, Jiyoung

    2017-04-20

    The Far North region in Cameroon has been more heavily impacted by cholera than any other region over the past decade, but very little has been done to study the drivers of waterborne diseases in the region. We investigated the relationship between water, sanitation, and hygiene (WASH) parameters, microbial and antibiotic resistance (AR) contamination levels in drinking water, and health outcomes using health survey and molecular analysis during June and July of 2014 in two settlement types (agro-pastoralist villages and transhumant pastoralist camps). Quantitative polymerase chain reaction was used to determine fecal contamination sources, enteric pathogens, and antibiotic resistance genes. Ruminant-associated fecal contamination was widespread in both settlement types (81.2%), with human-associated contamination detected in 21.7% of the samples. Salmonella spp. (59.4%) and Shiga toxin-producing E. coli ( stx 1 44.9% and stx 2 31.9%) were detected across all samples. Tetracycline resistance was found only in village samples. A significant difference in diarrheal incidence within the past 28 days among young children was found between camps (31.3%) and villages (0.0%). Our findings suggest that water contamination may play an important role in contributing to gastrointestinal illness, supporting the need for future research and public health intervention to reduce gastrointestinal illness in the area.

  16. Effects of land use on the water quality and biota of three streams in the Piedmont province of North Carolina

    Science.gov (United States)

    Crawford, J.K.; Lenat, D.R.

    1989-01-01

    Three small streams in North Carolina 's northern Piedmont were studied to compare the effects of land use in their watersheds on water quality characteristics and aquatic biota. Devil 's Cradle Creek (agricultural watershed) had more than two times the sediment yield of Smith Creek (forested watershed) (0.34 tons/acre compared to 0.13 tons/acre), and Marsh Creek (urban watershed) had more than four times the yield of Smith Creek (0.59 tons/acre). Concentrations of nutrients were consistently highest in Devil 's Craddle Creek. Concentrations of total copper, iron, and lead in samples from each of the three streams at times exceeded State water quality standards as did concentrations of total zinc in samples from both Smith and Marsh Creeks. Successively lower aquatic invertebrate taxa richness was found in the forested, the agricultural, and the urban watershed streams. Invertebrate biota in Smith Creek was dominated by insects, such as Ephemeroptera, that are intolerant to stress from pollution, whereas Devil 's Cradle Creek was dominated by the more tolerant Diptera, and Marsh Creek was dominated by the most pollution-tolerant group, the Oligochaeta. Fish communities in the forested and agricultural watershed streams were characterized by more species and more individuals of each species, relative to a limited community in urban Marsh Creek. Three independent variables closely linked to land use--suspended-sediment yield, suspended-sediment load, and total lead concentrations in stream water--are inversely associated with the biological communities of the streams.

  17. Research on the surface water quality in mining influenced area in north-western part of Romania

    Directory of Open Access Journals (Sweden)

    Smical Irina

    2015-01-01

    Full Text Available The paper highlights the current situation of the quality of surface water in the areas influenced by mining activities in the north-western part of Romania. In this respect a series of investigations have been conducted regarding the contamination with heavy metals of the water of the Someş and Tisa hydro- graphic Basins, which cover the northern part of Maramures County and the south-western area of Maramures County, respectively. The results of the comparative research refer to the period between 1999 and 2011 and reveal the specific heavy metal ions of mining activity: Fe, Mn, Zn, Cu, Pb Cd and Ni, as well as the water pH. The presented values as annual average values reveal an increase in several heavy metals after the closure of mines, which is due to the lack of effectiveness of the closure and of the conservation of the mine galleries, as well as of the impaired functioning of the mining wastewater treatment plants.

  18. Water Access, Sanitation, and Hygiene Conditions and Health Outcomes among Two Settlement Types in Rural Far North Cameroon

    Science.gov (United States)

    Gorham, Tyler J.; Yoo, Joshua; Garabed, Rebecca; Mouhaman, Arabi; Lee, Jiyoung

    2017-01-01

    The Far North region in Cameroon has been more heavily impacted by cholera than any other region over the past decade, but very little has been done to study the drivers of waterborne diseases in the region. We investigated the relationship between water, sanitation, and hygiene (WASH) parameters, microbial and antibiotic resistance (AR) contamination levels in drinking water, and health outcomes using health survey and molecular analysis during June and July of 2014 in two settlement types (agro-pastoralist villages and transhumant pastoralist camps). Quantitative polymerase chain reaction was used to determine fecal contamination sources, enteric pathogens, and antibiotic resistance genes. Ruminant-associated fecal contamination was widespread in both settlement types (81.2%), with human-associated contamination detected in 21.7% of the samples. Salmonella spp. (59.4%) and Shiga toxin-producing E. coli (stx1 44.9% and stx2 31.9%) were detected across all samples. Tetracycline resistance was found only in village samples. A significant difference in diarrheal incidence within the past 28 days among young children was found between camps (31.3%) and villages (0.0%). Our findings suggest that water contamination may play an important role in contributing to gastrointestinal illness, supporting the need for future research and public health intervention to reduce gastrointestinal illness in the area. PMID:28425935

  19. Water supply management using an extended group fuzzy decision-making method: a case study in north-eastern Iran

    Science.gov (United States)

    Minatour, Yasser; Bonakdari, Hossein; Zarghami, Mahdi; Bakhshi, Maryam Ali

    2015-09-01

    The purpose of this study was to develop a group fuzzy multi-criteria decision-making method to be applied in rating problems associated with water resources management. Thus, here Chen's group fuzzy TOPSIS method extended by a difference technique to handle uncertainties of applying a group decision making. Then, the extended group fuzzy TOPSIS method combined with a consistency check. In the presented method, initially linguistic judgments are being surveyed via a consistency checking process, and afterward these judgments are being used in the extended Chen's fuzzy TOPSIS method. Here, each expert's opinion is turned to accurate mathematical numbers and, then, to apply uncertainties, the opinions of group are turned to fuzzy numbers using three mathematical operators. The proposed method is applied to select the optimal strategy for the rural water supply of Nohoor village in north-eastern Iran, as a case study and illustrated example. Sensitivity analyses test over results and comparing results with project reality showed that proposed method offered good results for water resources projects.

  20. Strategic development plan for integrated water resources management in Lake Manyara sub-basin, North-Eastern Tanzania

    Science.gov (United States)

    Ngana, J. O.; Mwalyosi, R. B. B.; Yanda, P.; Madulu, N. F.

    This paper reports that the core problem in the water resources management of the Lake Manyara sub-basin in north-eastern Tanzania is unsustainable utilization and management of natural resources. The subsequent effects observed in the sub-basin are natural resource use conflicts, poverty, low productivity, overcrowding, high siltation in rivers and lakes, degraded environment, decreased river flows, polluted water sources, etc. In order to establish strategies to arrest this situation, a strategic planning process has been used as a tool involving key stakeholders in the basin at various levels. Policy making officials at the district level i.e. planning officers, agricultural officers, water engineers and natural resources officers and grass root level experiences of respective wards in the basin were established through involving Ward executive officers. Water users of the key sectors in the basin were equally involved which included hotels, tented camps, irrigators and livestock keepers. Institutions working in natural resources management in the areas also participated including NGOs. The main causes leading to unsustainable utilization and management of natural resources were established as poverty, environment degradation, poor governance, weak enforcement of conservation laws, conflicting policies, inadequate experts at all levels, inadequate information on natural resources, high natural population growth rate, high immigration rates, high livestock population in comparison to land carrying capacity, political interference in implementation, limited water resources and lack of basin wide institution managing the natural resources in the basin. Various strategic objectives were identified by stakeholders and respective strategies, activities and verifiable indicators mapped for implementation. Stakeholders having owned the process and articulated the strategies themselves showed commitment and readiness to cooperate in the implementation of the plan.

  1. Surface-water quality in agricultural watersheds of the North Carolina Coastal Plain associated with concentrated animal feeding operations

    Science.gov (United States)

    Harden, Stephen L.

    2015-01-01

    The effects of concentrated animal feeding operations (CAFOs) on water quality were investigated at 54 agricultural stream sites throughout the North Carolina Coastal Plain during 2012 and 2013. Three general watershed land-use types were examined during the study, including 18 background watersheds with no active CAFOs (BK sites), 18 watersheds with one or more active swine CAFOs but no poultry CAFOs (SW sites), and 18 watersheds with at least one active swine CAFO and one active dry-litter poultry CAFO (SP sites). The watershed drainage areas for these 54 stream sites ranged from 1.2 to 17.5 square miles. Conventional fertilizers used for crop production are the primary source of nutrients at the BK sites. Animal-waste manures represent an additional source of nutrients at the SW and SP study sites.

  2. Critical chain construction with multi-resource constraints based on portfolio technology in South-to-North Water Diversion Project

    Directory of Open Access Journals (Sweden)

    Jing-chun Feng

    2011-06-01

    Full Text Available Recently, the critical chain study has become a hot issue in the project management research field. The construction of the critical chain with multi-resource constraints is a new research subject. According to the system analysis theory and project portfolio theory, this paper discusses the creation of project portfolios based on the similarity principle and gives the definition of priority in multi-resource allocation based on quantitative analysis. A model with multi-resource constraints, which can be applied to the critical chain construction of the A-bid section in the South-to-North Water Diversion Project, was proposed. Contrast analysis with the comprehensive treatment construction method and aggressive treatment construction method was carried out. This paper also makes suggestions for further research directions and subjects, which will be useful in improving the theories in relevant research fields.

  3. Seasonal variations in the aragonite saturation state in the upper open-ocean waters of the North Pacific Ocean

    Science.gov (United States)

    Kim, Tae-Wook; Park, Geun-Ha; Kim, Dongseon; Lee, Kitack; Feely, Richard A.; Millero, Frank J.

    2015-06-01

    Seasonal variability of the aragonite saturation state (ΩAR) in the upper (50 m and 100 m depths) North Pacific Ocean (NPO) was investigated using multiple linear regression (MLR). The MLR algorithm derived from a high-quality carbon data set accurately predicted the ΩAR of evaluation data sets (three time series stations and P02 section) with acceptable uncertainty (<0.1 ΩAR). The algorithm was combined with seasonal climatology data, and the estimated ΩAR varied in the range of 0.4-0.6 in the midlatitude western NPO, with the largest variation found for the tropical eastern NPO. These marked variations were largely controlled by seasonal changes in vertical mixing and thermocline depth, both of which determine the degree of entrainment of CO2-rich corrosive waters from deeper depths. Our MLR-based subsurface ΩAR climatology is complementary to surface climatology based on pCO2 measurements.

  4. Monitoring the water vapor isotopic composition in the temperate North Atlantic

    Science.gov (United States)

    Sveinbjörnsdottir, Arny E.; Steen-Larsen, Hans Christian; Jonsson, Thorsteinn; Johnsen, Sigfus J.

    2013-04-01

    Water stable isotopes have during many decades been used as climate proxies and indicators for variations in the hydrological cycle. However we are to a great extent still using simple empirical relationships without any deeper theoretical understanding. In order to properly relate changes in the climate and hydrological cycle to changes in the observed stable water isotopic signal we must understand the underlying physical processes. Furthermore it is a challenge for General Climate Models to adequately represent the isotopes in the hydrological cycle because of lack of in-situ measurements of the atmospheric water-vapor composition in the source regions. During the fall of 2010 we installed an autonomous water vapor spectroscopy laser (from Los Gatos Research) in a lighthouse on the South Coast of Iceland (63.83 N 21.47W) with the plan to be operational for several years. The purpose of this installation was through monitoring of the water vapor isotopic composition to understand the physical processes governing the isotopic composition of the water vapor evaporated from the ocean as well as the processes of mixing between the free troposphere and marine boundary layer. Because of the remoteness of the monitoring site and simple topography we are able to isolate the 'fingerprint' on the isotopic signal in the water vapor from respectively the ocean and the interior highland leading to a near perfect case-study area. Using back-trajectories we find a strong influence of the origin of the air masses on the measured isotopic composition. The mixing of the marine-boundary layer is found to strongly influence the measured isotopic composition. The second order isotopic parameter, d-excess, is contrary to theory and previous observations found not to depend on the relative humidity. However we do find a good correlation between the d-excess and the measured isotopic composition. We speculate that the lack of correlation between d-excess and relative humidity can be

  5. North-south comparison of springtime dark slope structures on Mars, and the possibility of liquid water

    Science.gov (United States)

    Kereszturi, A.; Berczi, Sz.; Horvath, A.; Ganti, T.; Kuti, A.; Pocs, T.; Sik, A.; Szathmary, E.

    2008-09-01

    Introduction Various polar seasonal surface albedo structures were analyzed by several authors in the past [1, 2, 3, 4, 5, 6, 7, 8, 8, 9], partly in connection with the possibility of liquid water. In our previous work [10] we identified two groups of slope streaks emanating form Dark Dune Spots of polar dunes, which grow in size and number during spring with the advancement of the season. The diffuse shaped group appears earlier and formed probably by CO2 geysers [8]. The confine shaped group appears in a later seasonal phase, when the temperature is higher. They are probably connected with exposed water-ice on the surface, and may formed by the seepage of undercooled interfacial water on microscopic scale [11]. Methods For the analysis of northern slope structures we used MGS MOC, MRO HiRISE images, and MRG TES data [12] using the "vanilla" software. Temperature data show annual trend, and were derived for daytime. Note that the surface temperature values have spatial resolution around 3 km, and they can be taken only as a rough approach of the surface temperature of the whole dune complex, and not different parts of it. Discussion The target area of the analysis was (84N 233E) in the northern circumpolar sand sea, with 300-500 m diameter overlapping dunes. We searched for springtime confined and elongated dark slope streaks, similar to those, which we observed at south. Basic similarities between northern and southern structures are: 1. streaks always emanate from Dark Dune Spots in downward direction, 2. streaks are present in local spring, when the temperature is above the CO2 buffered level, suggesting there are parts of the surface without CO2 ice, where possibly H2O ice is exposed (Fig. 1.), 4. the streaks show branching pattern (Fig. 2.). Basic differences between the northern and southern structures: 1. at north there is a dark annulus around the Dark Dune Spots, which is absent at south, 2. there are fewer and fainter diffuse streaks of gas jet activity

  6. Determinants of farmers’ perception to invest in soil and water conservation technologies in the North-Western Highlands of Ethiopia

    Directory of Open Access Journals (Sweden)

    Desalew Meseret Moges

    2017-03-01

    Full Text Available Soil erosion by water is a severe and continuous ecological problem in the north-western Highlands of Ethiopia. Limited perception of farmers to practice soil and water conservation (SWC technologies is one of the major causes that have resulted accelerated soil erosion. Therefore, this paper examines the major determinants of farmers’ perception to use and invest in SWC technologies in Ankasha District, north-western highlands of Ethiopia. A detailed field survey was carried out among 338 households, randomly selected from two rural sample kebeles (called villages here after. Descriptive statistics and logistic regression model were used to analyse the effects of multiple variables on farmers’ perception. The results indicate that educational level of the respondents and their access to trainings were found to have a positive and very significant association (P<0.01 with farmers’ perception. Likewise, land ownership, plot size, slope type, and extension contact positively and significantly influenced farmers’ perception at 5% level of significance. On the other hand, the influence of respondents’ age and plot distance from the homestead was found to be negative and significant (P<0.05. The overall results of this study indicate that the perception of farmers to invest in SWC technologies was highly determined by socioeconomic, institutional, attitudinal and biophysical factors. Thus, a better understanding of constrains that influence farmers' perception is very important while designing and implementing SWC technologies. Frequent contacts between farmers and extension agents and continues agricultural trainings are also needed to increase awareness of the impacts of SWC benefits.

  7. Seasonal Variations of Oceanographic Variables and Eastern Little Tuna (Euthynnus affinis) Catches in the North Indramayu Waters Java Sea

    Science.gov (United States)

    Syamsuddin, Mega; Sunarto; Yuliadi, Lintang

    2018-02-01

    The remotely derived oceanographic variables included sea surface temperature (SST), chlorophyll-a (Chl-a) and Eastern Little Tuna (Euthynnus affinis) catches are used as a combined dataset to understand the seasonal variation of oceanographic variables and Eastern Little Tuna catches in the north Indramayu waters, Java Sea. The fish catches and remotely sensed data were analysed for the 5 years datasets from 2010-2014. This study has shown the effect of monsoon inducing oceanographic condition in the study area. Seasonal change features were dominant for all the selected oceanographic parameters of SST and Chl-a, and also Eastern Little Tuna catches, respectively. The Eastern Little Tuna catch rates have the peak season from September to December (700 to 1000) ton that corresponded with the value of SST ranging from 29 °C to 30 °C following the decreasing of Chl-a concentrations in September to November (0.4 to 0.5) mg m-3. The monsoonal system plays a great role in determining the variability of oceanographic conditions and catch in the north Indramayu waters, Java Sea. The catches seemed higher during the northwest monsoon than in the southeast monsoon for all year observations except in 2010. The wavelet spectrum analysis results confirmed that Eastern Little Tuna catches had seasonal and inter-annual variations during 2012-2014. The SST had seasonal variations during 2010-2014. The Chl-a also showed seasonal variations during 2010-2011 and interannual variations during 2011-2014. Our results would benefit the fishermen and policy makers to have better management for sustainable catch in the study area.

  8. Water pollution abatement programme. The Czech Republic. Project 4.2. Assessing critical loads of acidity to surface waters in the Czech Republic. Critical loads of acidity to surface waters, north-eastern Bohemia and northern Moravia, The Czech Republic

    Energy Technology Data Exchange (ETDEWEB)

    Lien, L.; Raclavsky, K.; Raclavska, H.; Matysek, D.; Hovind, H.

    1996-01-01

    This report discusses estimates of critical loads of acidity to surface waters and their exceedances, for north-eastern Bohemia and Moravia in The Czech Republic. The survey covers 13 400 km{sup 2}, or 17% of the area of the country. Varying critical loads were observed within the examined region. 19% of the examined area showed exceedance of critical load and another 11% was close to exceedance. The survey should continue in Bohemia. 24 refs., 20 figs., 4 tabs.

  9. Water-quality assessment of the Albermarle-Pamlico drainage basin, North Carolina and Virginia; environmental setting and water-quality issues

    Science.gov (United States)

    McMahon, Gerard; Lloyd, Orville B.

    1995-01-01

    -sediment yields for selected forested, agricultural, and developed urban basins in North Carolina are 50, 250, and 550 tons per square mile, respectively. In order to facilitate comparisons, much of the data were compiled by hydrologic unit. Homogeneous areas, or strata, representing the most prevalent combinations of environmental factors, such as land use, soils, and geology, were defined. Future data collection and analyses will be designed to answer objective-related concerns about the relations between important water-quality conditions and these study-unit strata.

  10. Physical habitat, water quality, and riverine biological assemblages of selected reaches of the Sheyenne River, North Dakota, 2010

    Science.gov (United States)

    Lundgren, Robert F.; Rowland, Kathleen M.; Lindsay, Matthew J.

    2012-01-01

    In 2010, data on physical habitat, water quality, and riverine biological assemblages were collected at selected reaches in four locations (Kleven, Sheyenne, Cooperstown, and West Fargo) on the Sheyenne River in east-central North Dakota. Three of the locations (Kleven, Sheyenne, and Cooperstown) are above Baldhill Dam and one location (West Fargo) is below Baldhill Dam on the Sheyenne River. The 2010 data provide information to establish a better understanding of the water-quality and ecological conditions of the Sheyenne River. Concerns were raised about the water-quality and ecological conditions of the Sheyenne River because of the interbasin transfer of water from nearby Devils Lake. The transfer of water from Devils Lake to the Sheyenne River occurs through the Devils Lake State Outlet near Peterson Coulee or, if lake elevations exceed 1,459 feet above National Geodetic Vertical Datum of 1929 (NGVD 29), through a natural outlet, Tolna Coulee. The field measurements of water-quality characteristics and results of chemical analyses generally are comparable to summary statistics calculated for Sheyenne River for 1980 through 2006. Overall, water-quality results show differences between the Kleven, Sheyenne, Cooperstown, and West Fargo reaches. Sulfate concentrations were less than the State of North Dakota criterion of 750 milligrams per liter for the upper Sheyenne River above Baldhill Dam and less than the criterion of 450 milligrams per liter for the lower Sheyenne River below Baldhill Dam. Arsenic concentrations at most reaches exceeded the U.S. Environmental Protection Agency drinking-water standard of 10 micrograms per liter. Nutrient concentrations (nitrogen, phosphorus) were higher in the upper Sheyenne River above Baldhill Dam than below Baldhill Dam where concentrations decreased by about half. In 2010, 35 families and 44 genera of benthic macroinvertebrates were collected and identified. On the basis of the index of biotic intergrity scores for

  11. Reconnaissance of the Pigeon River, a cold-water river in the north-central part of Michigan's southern peninsula

    Science.gov (United States)

    Hendrickson, G.E.; Doonan, C.J.

    1970-01-01

    The cold-water streams of the northern states provide unique recreational values to the American people (wilderness or semi-wilderness atmosphere, fast-water canoeing, and trout fishing), but the expanding recreational needs must be balanced against the growing demand of water for public and industrial supplies, for irrigation, and for the dilution of sewage and other wastes. In order to make intelligent decisions regarding use and management of the water resource for recreation and other demands, an analysis of the hydrologic factors related to recreational values is essential.The Pigeon River is one of Michigan's outstanding trout streams and is the favorite of a large number of anglers who return year after year. Camping is also popular and is usually, but not always, associated with fishing. Boating is very rare on the Pigeon because of numerous portages around log jams. Cabin-living and resorting are relatively minor on this river as yet, but much of the private river front may be developed in future years.The Pigeon is located in the north-central part of the southern peninsula of Michigan (see index map). Headwaters are a few miles northeast of Gaylord, and the mouth is at Mullet Lake, a few miles northeast of Indian River. Interstate Highway 75 roughly parallels the river about 5 to 10 miles to the west. Exits from this highway at Gaylord, Vanderbilt, Wolverine, and Indian River, provide easy access to the Pigeon.The recreational value of the river depends on the streamflow characteristics, quality of water, and character of stream channel, and bed and banks. The purpose of this atlas is to describe these characteristics, and to show how they relate to recreational uses.Most of the information presented here was obtained from a field reconnaissance in June, 1966, and from basic records of the U.S. Geological Survey's Water Resources Division. The area of field study is limited to the channel, bed, and banks of the main stem of the Pigeon from source to

  12. Water quality effects of switchgrass intercropping on pine forest in Coastal North Carolina.

    Science.gov (United States)

    Augustine Muwamba; Devendra Amatya; George M Chescheir; Jamie Nettles; Timothy Appelboom; Herbert Ssegane; Ernest Tollner; Mohamed Youssef; Francois Birgand; R. Wayne Skaggs; Shiying Tian

    2017-01-01

    Interplanting a cellulosic bioenergy crop (switchgrass, Panicum virgatum L.) between loblolly pine (Pinus taeda L.) rows could potentially provide a sustainable source of bio-feedstock without competing for land currently in food production. The objectives of this study were to: (1) quantify the concentrations and loads of drainage water nitrogen (N) and phosphorus (...

  13. Gulf Coast Deep Water Port Facilities study. Appendix B. North Central Gulf Hydrobiological Zones.

    Science.gov (United States)

    1973-04-01

    for the pet food, fish oil, and fish meal industries. Estuaries also support large numbers of fur-bearing mammals and migratory water- fowl. *4 Man’s...opossum, mink and otter . There has been a significant loss of these animals during the last few years through habitat deterioration such as hurricanes

  14. Hydrology and Water Quality of Forested Lands in Eastern North Carolina

    Science.gov (United States)

    George M. Chescheir; M.E. Lebo; Devendra M. Amatya; J. Hughes; J.W. Gilliam; R. Wayne Skaggs; R.B. Hermann

    2003-01-01

    More than 100 site years of hydrology and water quality data spanning 25 years (1976-2000) were compiled from research and monitoring studies on forest stands with natural vegetation and tracts managed for timber production. A total of 41 watersheds located on poorly drained to very poorly drained soils on flat divides between coastal streams were included ranging in...

  15. Egg and larval distributions of seven fish species in north-east Atlantic waters

    NARCIS (Netherlands)

    Ibaibarriaga, L.; Irigoien, X.; Santos, M.; Eltink, A.T.G.W.

    2007-01-01

    The distribution of egg and larvae of mackerel, horse mackerel, sardine, hake, megrim, blue whiting and anchovy along the European Atlantic waters (south Portugal to Scotland) during 1998 is described. Time of the year, sea surface temperature and bottom depth are used to define the spawning habitat

  16. Evaluation of soil and water salinity for irrigation in North-eastern ...

    African Journals Online (AJOL)

    GREG

    2013-05-08

    May 8, 2013 ... proper understanding of the hazard and appropriate miti- gation measures. Salt affected soils and the ... made us to assess the salinity hazard for soils and water of Fursa irrigation project. Therefore, the objective of this ... Records from Elliwuha metrological station showed that the mean annual rainfall was ...

  17. NORTH PORTAL-WATER HEATER CALCULATION-SHOP BUILDING No. 5006

    International Nuclear Information System (INIS)

    R. Blackstone

    1996-01-01

    The purpose of this design analysis and calculation is to determine the demand for hot and the selection of a water heater of appropriate size, in accordance with the Uniform Plumbing Code (Section 4.4.1) and U.S. Department of Energy Order 6430.1A-1540 (Section 4.4.2)

  18. Spatial and temporal changes of water quality, and SWAT modeling of Vosvozis river basin, North Greece.

    Science.gov (United States)

    Boskidis, Ioannis; Gikas, Georgios D; Pisinaras, Vassilios; Tsihrintzis, Vassilios A

    2010-09-01

    The results of an investigation of the quantitative and qualitative characteristics of Vosvozis river in Northern Greece is presented. For the purposes of this study, three gaging stations were installed along Vosvozis river, where water quantity and quality measurements were conducted for the period August 2005 to November 2006. Water discharge, temperature, pH, dissolved oxygen (DO) and electrical conductivity (EC) were measured in situ using appropriate equipment. The collected water samples were analyzed in the laboratory for the determination of nitrate, nitrite and ammonium nitrogen, total Kjeldalh nitrogen (TKN), orthophosphate (OP), total phosphorus (TP), COD, and BOD. Agricultural diffuse sources provided the major source of nitrate nitrogen loads during the wet period. During the dry period (from June to October), the major nutrient (N, P) and COD, BOD sources were point sources. The trophic status of Vosvozis river during the monitoring period was determined as eutrophic, based on Dodds classification scheme. Moreover, the SWAT model was used to simulate hydrographs and nutrient loads. SWAT was validated with the measured data. Predicted hydrographs and pollutographs were plotted against observed values and showed good agreement. The validated model was used to test eight alternative scenarios concerning different cropping management approaches. The results of these scenarios indicate that nonpoint source pollution is the prevailing type of pollution in the study area. The SWAT model was found to satisfactorily simulate processes in ephemeral river basins and is an effective tool in water resources management.

  19. Leveraging North Carolina's QL2 Lidar to Quantify Sensitivity of National Water Model Derived Flood Inundation Extent to DEM Resolution

    Science.gov (United States)

    Lovette, J. P.; Lenhardt, W. C.; Blanton, B.; Duncan, J. M.; Stillwell, L.

    2017-12-01

    The National Water Model (NWM) has provided a novel framework for near real time flood inundation mapping across CONUS at a 10m resolution. In many regions, this spatial scale is quickly being surpassed through the collection of high resolution lidar (1 - 3m). As one of the leading states in data collection for flood inundation mapping, North Carolina is currently improving their previously available 20 ft statewide elevation product to a Quality Level 2 (QL2) product with a nominal point spacing of 0.7 meters. This QL2 elevation product increases the ground points by roughly ten times over the previous statewide lidar product, and by over 250 times when compared to the 10m NED elevation grid. When combining these new lidar data with the discharge estimates from the NWM, we can further improve statewide flood inundation maps and predictions of at-risk areas. In the context of flood risk management, these improved predictions with higher resolution elevation models consistently represent an improvement on coarser products. Additionally, the QL2 lidar also includes coarse land cover classification data for each point return, opening the possibility for expanding analysis beyond the use of only digital elevation models (e.g. improving estimates of surface roughness, identifying anthropogenic features in floodplains, characterizing riparian zones, etc.). Using the NWM Height Above Nearest Drainage approach, we compare flood inundation extents derived from multiple lidar-derived grid resolutions to assess the tradeoff between precision and computational load in North Carolina's coastal river basins. The elevation data distributed through the state's new lidar collection program provide spatial resolutions ranging from 5-50 feet, with most inland areas also including a 3 ft product. Data storage increases by almost two orders of magnitude across this range, as does processing load. In order to further assess the validity of the higher resolution elevation products on

  20. Implications of Water Budget Deficits on Socio-Economic Stability and Food Security in the Arabian Peninsula and in North Africa

    Science.gov (United States)

    Mazzoni, A.; Heggy, E.; Scabbia, G.

    2017-12-01

    Water scarcity in the Arabian Peninsula and North Africa is accentuated by forecasted climatic variability, decreasing precipitation volumes and projected population growth, urbanization and economic development, increasing water demand. These factors impose uncertainties on food security and socio-economic stability in the region. We develop a water-budget model combining hydrologic, climatic and economic data to quantify water deficit volumes and groundwater depletion rates for the main aquifer systems in the area, taking into account three different climatic scenarios, and calculated from the precipitation forecast elaborated in the CSIRO, ECHAM4 and HADCM3 global circulation models from 2016 to 2050 over 1-year intervals. Water demand comprises water requirements for each economic sector, derived from data such as population, GDP, cropland cover and electricity production, and is based upon the five different SSPs. Conventional and non-conventional water resource supply data are retrieved from FAO Aquastat and institutional databases. Our results suggest that in the next 35 years, in North Africa, only Egypt and Libya will exhibit severe water deficits with respectively 44% and 89.7% of their current water budgets by 2050 (SSP2-AVG climatic scenario), while all the countries in the Arabian Peninsula will be subjected to water stress; the majority of small-size aquifers in the Arabian Peninsula will reach full depletion by 2050. In North Africa, the fossil aquifers' volume loss will be 1-15% by 2050, and total depletion within 200-300 years. Our study suggests that (1) anthropogenic drivers on water resources are harsher than projected climatic variability; (2) the estimated water deficit will induce substantial rise in domestic food production's costs, causing higher dependency on food imports; and (3) projected water deficits will most strongly impact the nations with the lowest GDPP, namely Egypt, Yemen and Libya.

  1. Occurrence of perfluorooctanesulfonate and perfluorooctanoic acid and histopathology in eels from north Italian waters.

    Science.gov (United States)

    Giari, Luisa; Guerranti, Cristiana; Perra, Guido; Lanzoni, Mattia; Fano, Elisa Anna; Castaldelli, Giuseppe

    2015-01-01

    A perfluorinated alkylated substances (PFAS) biomonitoring study was conducted in European eel (Anguilla anguilla) in Italy for the first time. Perfluorooctanesulfonate (PFOS) and perfluorooctanoic acid (PFOA) concentrations were assessed in the organs of 35 wild eels from two locations, the highly impacted Po River and the Comacchio Lagoon along the north-western Adriatic coast. PFAS were extracted by ion-pairing liquid extraction procedure and measured using high performance liquid chromatography with electrospray ionization tandem mass spectrometry. There were no significant differences in mean PFAS concentrations (p>0.05) between samples from the two sites. PFOS and PFOA were detectable (>0.4ngg(-1) wet weight, w.w) in 73% and 31% of the total samples, respectively. PFOS concentrations ranged from PFAS levels were observed in blood and the lowest in muscle. Histology showed macrophage aggregates and hepatocytic vacuolation in some liver samples. No tissue anomalies were seen in the gonads, suggesting no reproductive impairment. The PFAS contamination levels observed were comparable to, or lower than, those reported in fish in other European countries, seeming to indicate that PFAS pollution of the study area is not remarkable. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Spatial and seasonal variability in water quality of Devils Lake, North Dakota, September 1988 through October 1990

    Science.gov (United States)

    Sando, Steven K.; Lent, Robert M.

    1995-01-01

    Devils Lake, in northeastern North Dakota, is a closed-basin lake characterized by large fluctuations in water level and in concentrations of dissolved chemical constituents. A study was conducted to assess spatial and seasonal variability in water-quality conditions in Devils Lake during September 1988 through October 1990.Specific conductance, which generally increased from west to east in Devils Lake and East Devils Lake, ranged from 3,580 to 20,100 microsiemens per centimeter. pH, water temperature, and dissolved oxygen generally were similar among sites. Devils Lake generally does not undergo thermal stratification during open-water periods but does undergo inverse thermal stratification in the winter. Vertical variability of water-column properties during open-water periods generally was small, but near-bottom dissolved oxygen was less than near-surface dissolved oxygen during summer sampling periods. The potential exists for establishment of near-bottom anoxia during the summer and during the winter. Concentrations of all major ions generally increased eastward through Devils Lake and East Devils Lake, but sodium, sulfate, and chloride were enriched relative to the other major ions.Dissolved-solids concentrations varied both spatially and seasonally. Median dissolvedsolids concentrations generally increased from west to east. Dissolved-solids concentrations generally were largest in the winter when ions were concentrated because of ice formation and smallest in the spring when water was diluted because of icemelt, surface-water inflow, and seasonal precipitation. Dissolved-solids concentrations generally increased in the summer and fall when evaporation exceeded surface-water inflow and precipitation. Although the dissolvedsolids concentration of Devils Lake generally fluctuates inversely with water level, the dissolvedsolids mass generally fluctuates directly with water level. During periods of extremely low water levels, dissolved solids may be lost from

  3. Comparison of fipronil sources in North Carolina surface water and identification of a novel fipronil transformation product in recycled wastewater

    Energy Technology Data Exchange (ETDEWEB)

    McMahen, Rebecca L. [United States Environmental Protection Agency, National Exposure Research Laboratory, 109 TW Alexander Dr., Durham, North Carolina 27705 (United States); Strynar, Mark J., E-mail: strynar.mark@epa.gov [United States Environmental Protection Agency, National Exposure Research Laboratory, 109 TW Alexander Dr., Durham, North Carolina 27705 (United States); McMillan, Larry [National Caucus and Center on Black Aged Employee, U.S. Environmental Protection Agency, National Exposure Research Laboratory, 109 TW Alexander Dr., Durham, North Carolina 27705 (United States); DeRose, Eugene [National Institute for Environmental Health Sciences, Nuclear Magnetic Resonance Facility, 111 TW Alexander Dr., Durham, North Carolina 27713 (United States); Lindstrom, Andrew B. [United States Environmental Protection Agency, National Exposure Research Laboratory, 109 TW Alexander Dr., Durham, North Carolina 27705 (United States)

    2016-11-01

    Fipronil is a phenylpyrazole insecticide that is widely used in residential and agricultural settings to control ants, roaches, termites, and other pests. Fipronil and its transformation products have been found in a variety of environmental matrices, but the source[s] which makes the greatest contribution to fipronil in surface water has yet to be determined. A sampling effort designed to prioritize known fipronil inputs (golf courses, residential areas, biosolids application sites and wastewater facilities) was conducted in North Carolina to learn more about the origins of fipronil in surface water. High resolution mass spectrometry (HRMS) analysis indicated that fipronil and its known derivatives were routinely present in all samples, but concentrations were substantially elevated near wastewater treatment plant outfalls (range 10–500 ng/L combined), suggesting that they predominate as environmental sources. Corresponding recycled wastewater samples, which were treated with NaOCl for disinfection, showed disappearance of fipronil and all known degradates. HRMS and nuclear magnetic resonance (NMR) analysis techniques were used to determine that all fipronil-related compounds are oxidized to a previously unidentified fipronil sulfone chloramine species in recycled wastewater. The implications of the presence of a new fipronil-related compound in recycled wastewater need to be considered. - Highlights: • The most important sources of fipronil in the environment have yet to be determined. • Sampling was conducted to learn more about the origins of fipronil in surface water. • High resolution mass spec analysis indicated that fipronil was routinely present. • Concentrations were substantially elevated near wastewater treatment plant outfalls. • In recycled water fipronil compounds are oxidized to a novel species.

  4. Occurrence of perfluorinated organic acids in the North and Baltic seas. Part 1: distribution in sea water.

    Science.gov (United States)

    Theobald, Norbert; Caliebe, Christina; Gerwinski, Wolfgang; Hühnerfuss, Heinrich; Lepom, Peter

    2011-08-01

    Due to their high water solubilities and mobilities, persistent, polar perfluorinated compounds (PFCs) such as perfluorinated carboxylates and sulfonates are likely to end up in the oceans. In part 1 of this study, their distribution in North and Baltic Sea water is reported, being of special interest because these seas are surrounded by highly industrialized countries with high population densities. A combination of solid-phase extraction and liquid chromatography coupled with tandem mass spectrometry was used after optimisation to determine nine PFCs with chain lengths of C(4) to C(10) in water samples at ultra-trace levels. The observed concentration distribution and gradients were explained by oceanographic mixing processes and currents. The big rivers were identified as major input sources. At the mouth of the river Elbe, concentrations of 9 ng/L were observed for perfluorooctanoate (PFOA), and 8 ng/L for perfluorooctylsulfonate (PFOS); all other PFC concentrations ranged from 0.6 to 1.7 ng/L. At coastal stations, concentrations decreased to 3.8 ng/L (PFOA) and 1.8 ng/L (PFOS), dropping to 0.13 and 0.09 ng/L, respectively, towards the open sea. Along the Dutch coast, high perfluorobutylsulfonate concentrations (3.9 ng/L) were observed as regional characteristics. In the Baltic Sea, fairly even PFC distributions with low gradients were observed. Again, PFOA and PFOS were the major compounds (up to 1.1 and 0.9 ng/L). The results underline the necessity to include PFCs in marine monitoring programs. Water was found to be a good matrix for monitoring environmental levels, sources, and transport pathways of PFCs.

  5. A workflow for improving estimates of microplastic contamination in marine waters: A case study from North-Western Australia.

    Science.gov (United States)

    Kroon, Frederieke; Motti, Cherie; Talbot, Sam; Sobral, Paula; Puotinen, Marji

    2018-03-10

    Plastic pollution is ubiquitous throughout the marine environment, with microplastic (i.e. contamination a global issue of emerging concern. The lack of universally accepted methods for quantifying microplastic contamination, including consistent application of microscopy, photography, an spectroscopy and photography, may result in unrealistic contamination estimates. Here, we present and apply an analysis workflow tailored to quantifying microplastic contamination in marine waters, incorporating stereomicroscopic visual sorting, microscopic photography and attenuated total reflectance (ATR) Fourier transform infrared (FTIR) spectroscopy. The workflow outlines step-by-step processing and associated decision making, thereby reducing bias in plastic identification and improving confidence in contamination estimates. Specific processing steps include (i) the use of a commercial algorithm-based comparison of particle spectra against an extensive commercially curated spectral library, followed by spectral interpretation to establish the chemical composition, (ii) a comparison against a customised contaminant spectral library to eliminate procedural contaminants, and (iii) final assignment of particles as either natural- or anthropogenic-derived materials, based on chemical type, a compare analysis of each particle against other particle spectra, and physical characteristics of particles. Applying this workflow to 54 tow samples collected in marine waters of North-Western Australia visually identified 248 potential anthropogenic particles. Subsequent ATR-FTIR spectroscopy, chemical assignment and visual re-inspection of photographs established 144 (58%) particles to be of anthropogenic origin. Of the original 248 particles, 97 (39%) were ultimately confirmed to be plastics, with 85 of these (34%) classified as microplastics, demonstrating that over 60% of particles may be misidentified as plastics if visual identification is not complemented by spectroscopy. Combined

  6. Natural and anthropogenic factors affecting the shallow groundwater quality in a typical irrigation area with reclaimed water, North China Plain.

    Science.gov (United States)

    Gu, Xiaomin; Xiao, Yong; Yin, Shiyang; Pan, Xingyao; Niu, Yong; Shao, Jingli; Cui, Yali; Zhang, Qiulan; Hao, Qichen

    2017-09-22

    In this study, the hydrochemical characteristics of shallow groundwater were analyzed to get insight into the factors affecting groundwater quality in a typical agricultural dominated area of the North China Plain. Forty-four shallow groundwater samples were collected for chemical analysis. The water type changes from Ca·Na-HCO 3 type in grass land to Ca·Na-Cl (+NO 3 ) type and Na (Ca)-Cl (+NO 3 +SO 4 ) type in construction and facility agricultural land, indicating the influence of human activities. The factor analysis and geostatistical analysis revealed that the two major factors contributing to the groundwater hydrochemical compositions were the water-rock interaction and contamination from sewage discharge and agricultural fertilizers. The major ions (F, HCO 3 ) and trace element (As) in the shallow groundwater represented the natural origin, while the nitrate and sulfate concentrations were related to the application of fertilizer and sewage discharge in the facility agricultural area, which was mainly affected by the human activities. The values of pH, total dissolved solids, electric conductivity, and conventional component (K, Ca, Na, Mg, Cl) in shallow groundwater increased from grass land and cultivated land, to construction land and to facility agriculture which were originated from the combination sources of natural processes (e.g., water-rock interaction) and human activities (e.g., domestic effluents). The study indicated that both natural processes and human activities had influences on the groundwater hydrochemical compositions in shallow groundwater, while anthropogenic processes had more contribution, especially in the reclaimed water irrigation area.

  7. Many objective optimization and impact assessment of water management options in the Jaguaribe Basin of North East Brazil

    Science.gov (United States)

    Hurford, A. P.; Huskova, I.; Matrosov, E.; Harou, J. J.

    2012-12-01

    The Jaguaribe river basin in the north east of Brazil lies in the country's driest state, Ceará. Rainfall is concentrated in six months of the year, evapotranspiration can reach 2000 mm per year and a high proportion of the population relies on irrigated agriculture for their subsistence or livelihood. The current water management strategy involves negotiating monthly release rates from each of the basin's three major reservoirs twice a year. The state water management company leads these negotiations with representatives of various water user groups; releases are decided based on the currently stored volume and limited modelling of release scenarios. Presently reservoirs are managed such that municipal demands are guaranteed for 30 months from the date of negotiation. We use multi-objective optimization to search for the pareto-optimal number of months of municipal demand to be guaranteed, and the shape of release rules (based on stored volume). System performance is assessed by comparing flow-duration curves and livelihood factors, such as riparian farm land availability and fishery quality , in addition to the satisfaction of demands in the region supplied by each reservoir. Historical monthly flows are used to simulate the system over 90 years. Results shows the trade-offs between different performance measures and the effects of management option combinations on different water users. A few climate change projections of reservoir inflows are used to assess how a selection of the resulting release rules might perform against the same measures under altered future hydrological conditions. The proposed approach helps planners evaluate the impacts of management options and allows finding balanced stakeholder-backed ways to reduce negative impacts on the environment and the region's vulnerable groups while maintaining overall system performance.

  8. Projeto Vida no Vale: universal access to water and sanitation in the North East of Minas Gerais (Brazil

    Directory of Open Access Journals (Sweden)

    A. Loireau

    2008-08-01

    Full Text Available In the rural areas of the developing countries, the access to water supply and sanitation services is still largely inadequate. Poor governance of the water sector is frequently singled out as a cause and reforms are required. Studies analyzing the great diversity of restructuring efforts currently being undertaken in the water sector have not succeeded in determining the most appropriate institutional and economic framework for such reforms. Moreover they underline the lack of documentation on actual projects and call for concrete models and tools for improving water and sanitation services (WSS and for adapting water utility practice to real conditions. In this context, the Vida no Vale (Life in the Valley project is aimed at bringing universal access to WSS for all inhabitants of both urban and rural areas, in the north-eastern area of the Brazilian State of Minas Gerais. The project takes sustainable development as its guiding principle, and relies on the joint implementation of an innovative technical design, a governance model involving public participation and subsidiarity, and an economic structure combining financial viability and social equity. Designed at a consistent geographical and hydrological scale, it includes the creation of a regional subsidiary of the existing state water company as a keystone element. The institutional organisation also relies on the creation of a public board consisting of the 92 municipalities of the project region and of the State of Minas Gerais. This board will be in charge of the system's governance. This paper presents the first step of the project (2006, consisting of a feasibility study and the implementation of 9 pilot sub-projects. During the feasibility study, the supply, demand and capacity to pay for water services were defined, existing infrastructure appraised, the necessary amount of investment assessed and an innovative operational model and a sustainable management system, including civil

  9. Regional variability of farmer decision making and irrigation water use: insights from a data-scarce region of North India

    Science.gov (United States)

    O'Keeffe, Jimmy; Buytaert, Wouter; Brozović, Nick; Mijic, Ana

    2014-05-01

    Over the last fifty years, changes in agriculture brought about by the Green Revolution have transformed India from a famine-prone, drought-susceptible country into the worlds' third largest grain producer and one of the most intensively irrigated parts of the globe. Regionally, cheap energy, subsidised seeds and fertilisers, and in some areas Government purchase guarantees for grain promote the intensification of farming. While this allows farmers to survive, it also aggravates the drain agriculture is having on resources, particularly energy and water. Analysis at a regional scale, however, masks the considerable spatial variability that exists on a more localised level and must be taken into consideration to understand correctly aggregate system response to policy, hydrologic, and climatic change. In this study we present and analyse the results from over 100 farmer interviews conducted in the data-scarce districts of Jalaun and Sitapur on the Gangetic Plains of Uttar Pradesh during the post monsoon period of 2013. Variables such as the volumes and timing of irrigation water applied, sources of water, methods of abstraction and irrigation, and costs incurred are mapped, using qualitative data analysis and GIS. Large differences between the districts emerge, for instance in the region of Jalaun where cheaper canal water is available in addition to groundwater. This has enabled farmers to afford more water efficient technologies such as sprinklers, a practice not found in Sitapur which depends almost exclusively on more expensive diesel pumps. Results are used to delineate the spatial variability in water use practices, along with farmer behaviour and decision making. The primary data are compared with socio-economic information taken from regionally produced statistical abstracts. The combined data are used to identify the main drivers that influence farmer decision-making, which is in turn leading to groundwater overdraught in many parts of North India. Finally

  10. Agricultural contamination in soil-groundwater-surface water systems in the North China Plain

    DEFF Research Database (Denmark)

    Brauns, Bentje

    of China’s main agricultural production zones, accounting for about one third of the national grain output. The dominant crop system is a winter wheat and summer maize rotation. Beginning in the 1980s, in an effort to increase agricultural productivity, China’s government heavily promoted the use....... Additionally, nitrate was infiltrating from the surface of the field into the aquifer. Anammox, denitrification, and cation exchange were the suggested dominant removal processes in the soil-surface water-groundwater system examined in this study, which showed a very high nitrogen removal capacity. However......, if the composition of the river water were to change (if, for instance, the ammonium concentration were to decrease) the removal processes in the system would also be altered. Consequently, further monitoring of nitrate pollution is suggested. Regarding pesticides, a literature review and data assessment revealed...

  11. Emergent Toxins in North Atlantic Temperate Waters: A Challenge for Monitoring Programs and Legislation

    Directory of Open Access Journals (Sweden)

    Marisa Silva

    2015-03-01

    Full Text Available Harmful Algal Blooms (HAB are complex to manage due to their intermittent nature and their severe impact on the economy and human health. The conditions which promote HAB have not yet been fully explained, though climate change and anthropogenic intervention are pointed as significant factors. The rise of water temperature, the opening of new sea canals and the introduction of ship ballast waters all contribute to the dispersion and establishment of toxin-producing invasive species that promote the settling of emergent toxins in the food-chain. Tetrodotoxin, ciguatoxin, palytoxin and cyclic imines are commonly reported in warm waters but have also caused poisoning incidents in temperate zones. There is evidence that monitoring for these toxins exclusively in bivalves is simplistic and underestimates the risk to public health, since new vectors have been reported for these toxins and as well for regulated toxins such as PSTs and DSTs. In order to avoid public health impacts, there is a need for adequate monitoring programs, a need for establishing appropriate legislation, and a need for optimizing effective methods of analysis. In this review, we will compile evidence concerning emergent marine toxins and provide data that may indicate the need to restructure the current monitoring programs of HAB.

  12. Emergent Toxins in North Atlantic Temperate Waters: A Challenge for Monitoring Programs and Legislation

    Science.gov (United States)

    Silva, Marisa; Pratheepa, Vijaya K.; Botana, Luis M.; Vasconcelos, Vitor

    2015-01-01

    Harmful Algal Blooms (HAB) are complex to manage due to their intermittent nature and their severe impact on the economy and human health. The conditions which promote HAB have not yet been fully explained, though climate change and anthropogenic intervention are pointed as significant factors. The rise of water temperature, the opening of new sea canals and the introduction of ship ballast waters all contribute to the dispersion and establishment of toxin-producing invasive species that promote the settling of emergent toxins in the food-chain. Tetrodotoxin, ciguatoxin, palytoxin and cyclic imines are commonly reported in warm waters but have also caused poisoning incidents in temperate zones. There is evidence that monitoring for these toxins exclusively in bivalves is simplistic and underestimates the risk to public health, since new vectors have been reported for these toxins and as well for regulated toxins such as PSTs and DSTs. In order to avoid public health impacts, there is a need for adequate monitoring programs, a need for establishing appropriate legislation, and a need for optimizing effective methods of analysis. In this review, we will compile evidence concerning emergent marine toxins and provide data that may indicate the need to restructure the current monitoring programs of HAB. PMID:25785464

  13. Alfalfa Water Use and Yield under Different Sprinkler Irrigation Regimes in North Arid Regions of China

    Directory of Open Access Journals (Sweden)

    Yan Li

    2017-08-01

    Full Text Available Alfalfa (Medicago sativa is one of the major crops grown in Northern China in recent years, however, the current serious water shortage conditions present a challenge to the growth of this crop, especially if efficient use of water is considered in forage production for sustainability. This study aimed to evaluate alfalfa productivity and water use efficiency (WUE under different sprinkler irrigation levels. This experiment was conducted at Shiyanghe Experimental Station for Water-Saving in Agriculture and Ecology of China Agricultural University in Wuwei, Gansu, China, over a period of two years. There were three irrigation treatments: A1: 100% measured evapotranspiration (ETc of alfalfa; A2: irrigation amount was 66% of A1; A3: irrigation amount was 33% of A1; and a control of A4: no irrigation during the growing season. A randomized block design with three replications were applied. The results showed that the ETc and forage yield of alfalfa decreased, while WUE and crude protein (CP increased with the decreasing irrigation amounts. The seasonal average ETc and yield ranged from 412 mm to 809 mm and from 11,577 to 18,636 kg/ha, respectively, under different irrigation levels. The highest yields were obtained from the first growth period in all treatments in both years, due to the winter irrigation and the longest growth period. Alfalfa grown under lesser irrigation treatment conditions had higher variability in ETc and yield, mainly due to the variability in the amount of rainfall during the growth period. The seasonal average WUE of treatments ranged from 22.78 to 26.84 kg/(mm·ha, and the highest WUE was obtained at the first growth period, regardless of treatments. Seasonal average CP content ranged from 18.99% to 22.99%. A significant linear relationship was found between yield and ETc or irrigation amount, and the fitting results varied between growth periods and years. The present results also implied that winter irrigation provided the

  14. Freshwater fish's spatial patterns in isolated water springs in North-eastern Mexico.

    Science.gov (United States)

    Palacio-Núñez, Jorge; Verdú, José R; Numa, Catherine; Jiménez-García, Daniel; Olmos Oropeza, Genaro; Galante, Eduardo

    2010-03-01

    The Media Luna lake-spring was selected as representative of all thermal or no thermal springs in the zone of Valley of Rioverde, a semi-arid vegetation in the North-eastern of Mexico. This system is inhabited by 11 fish species, of which six are native. Four of the native species are endemic to the region and threatened due to touristic pressure and to the introduction of exotic species. The objectives were to determine the characteristics that influence the spatial distribution of the fish species, to analyze their spatial distribution patterns, and to describe the relationships between the different species. The general aim was to establish some basis for the conservation of these fish communities and their habitat. Several sessions were initiated in 1992 through direct observation. Later, between 1998 and 1999 five systematically seasonal sampling sessions were conducted (54 subaquatic transects/session). Finally, the data was updated by sampling in summer 2002 and winter 2006. Through the analysis was performed only for endemics of the region, like Ataeniobius toweri Meek, Cualac tessellatus Miller, Cichlasoma bartoni Bean and C. labridens Pellegrin, in at least one life stage, showed correlation with habitat variables or with other species. For these species, patterns of spatial aggregation and association with other species were observed. These results show a certain degree of specialization of endemic species to some microhabitat characteristics, as well as a significant interaction with other native species which they coexist. In addition, some significant relations between endemic and alien species suggest an antagonist relation. Management actions focused in the touristic use of the spring represent the main threat for these species, followed by an adequate management of exotic species. This study provides basis for future responsible management of these wetlands, where tourism and conservation can be combined.

  15. Water quality and algal conditions in the North Umpqua River, Oregon, 1995-2007, and their response to Diamond Lake restoration

    Science.gov (United States)

    Carpenter, Kurt D.; Anderson, Chauncey W.; Jones, Mikeal E.

    2014-01-01

    The Wild and Scenic North Umpqua River is one of the highest-quality waters in the State of Oregon, supporting runs of wild salmon, steelhead, and trout. For many years, blooms of potentially toxic blue-green algae in Diamond and Lemolo Lakes have threatened water quality, fisheries, and public health. The blooms consist primarily of Anabaena, a nitrogen (N)-fixing planktonic alga that appears to have contributed to N enrichment, which could account for changes in communities and biomass of periphyton, or attached benthic algae, in the river. Periphyton can become a nuisance in summer by affecting riffle habitat and causing high pH that fails to meet State of Oregon water-quality standards. These symptoms of nutrient enrichment in the North Umpqua River were first documented in 1995, and the symptoms have continued since then. Restoring natural ecosystem processes that store nutrients rather than fueling algae might help improve pH and water-clarity conditions.

  16. Arctic North Atlantic Water pathways and heat fluxes in Eddy-Admitting and Eddy-Permitting Global Ocean Simulations

    Science.gov (United States)

    Aksenov, Yevgeny; Kelly, Stephen; Popova, Ekaterina; Bacon, Sheldon; Nurser, A. J. George; Yool, Andrew; Coward, Andrew C.

    2017-04-01

    Results from the model tracer releases in global NEMO configurations at 1/4 and 1/12 degree resolution are presented. We examine North Atlantic water (NAW) inflows in the Arctic Ocean in the models in "eddying" regimes and investigate the role of the eddies in the NAW dynamics and heat transports. In the model experiments the NAW tracers have been released in the eastern Fram Strait and the western Barents Sea and traced in the Arctic Ocean and Nordic Sea for the 2000-2015. The model results demonstrate that NAW follows continental shelf slopes within the Arctic Boundary Current and also flows across the shelf slopes in the Arctic Ocean, with the eddy transport being a principal mechanism for the NAW spread. We investigate cascading of the dense northern Barents Sea water into the deep Arctic Ocean, which is another mechanism to transport the modified NAW into the deep Arctic Ocean. The study quantifies eddy heat fluxes across Siberian shelf slopes towards the central Arctic Ocean. By comparing the eddying runs with the similar runs at a lower resolution, the study highlights difference in the NAW model dynamics due to eddy resolving model capabilities.

  17. Using Enhanced Grace Water Storage Data to Improve Drought Detection by the U.S. and North American Drought Monitors

    Science.gov (United States)

    Houborg, Rasmus; Rodell, Matthew; Lawrimore, Jay; Li, Bailing; Reichle, Rolf; Heim, Richard; Rosencrans, Matthew; Tinker, Rich; Famiglietti, James S.; Svoboda, Mark; hide

    2011-01-01

    NASA's Gravity Recovery and Climate Experiment (GRACE) satellites measure time variations of the Earth's gravity field enabling reliable detection of spatio-temporal variations in total terrestrial water storage (TWS), including groundwater. The U.S. and North American Drought Monitors rely heavily on precipitation indices and do not currently incorporate systematic observations of deep soil moisture and groundwater storage conditions. Thus GRACE has great potential to improve the Drought Monitors by filling this observational gap. GRACE TWS data were assimilating into the Catchment Land Surface Model using an ensemble Kalman smoother enabling spatial and temporal downscaling and vertical decomposition into soil moisture and groundwater components. The Drought Monitors combine several short- and long-term drought indicators expressed in percentiles as a reference to their historical frequency of occurrence. To be consistent, we generated a climatology of estimated soil moisture and ground water based on a 60-year Catchment model simulation, which was used to convert seven years of GRACE assimilated fields into drought indicator percentiles. At this stage we provide a preliminary evaluation of the GRACE assimilated moisture and indicator fields.

  18. North-south patterning of millet agriculture on the Loess Plateau: Late Neolithic adaptations to water stress, NW China.

    Science.gov (United States)

    Sheng, P.; Shang, X.; Yang, L.; Jones, M.

    2017-12-01

    Abstract: Water availability and climatic condition profoundly affect agricultural system in different areas. The Loess Plateau, which lies on the marginal area of the East Asian monsoonal climatic zone, is one of the most ideal region to study the agricultural decision-making by ancient farm communities to adapt to different water stress level in same geographic region. Here we report new results of archaeobotanical research on the analysis of charred seeds from two late Neolithic sites on the northern Loess Plateau and review many contemporaneous archaeobotanical data recovered from the south and middle parts of the Loess Plateau. It is indicative of that common millet-based millet agriculture was developed in the arid northern Loess Plateau from the late Yangshao to Longshan periods (3000 1800 BC). Yet, there is a clear preference of foxtail millet farming with rice and wheat production as a supplement in the south and middle parts of the Loess Plateau during the same period. The north-south patterns of millet farming preferring by ancient farmers certainly promoted the social diversity and different evolutionary trajectories of human culture in both areas during the Mid-Late Holocene.

  19. Pore water geochemistry along continental slopes north of the East Siberian Sea: inference of low methane concentrations

    Science.gov (United States)

    Miller, Clint M.; Dickens, Gerald R.; Jakobsson, Martin; Johansson, Carina; Koshurnikov, Andrey; O'Regan, Matt; Muschitiello, Francesco; Stranne, Christian; Mörth, Carl-Magnus

    2017-06-01

    Continental slopes north of the East Siberian Sea potentially hold large amounts of methane (CH4) in sediments as gas hydrate and free gas. Although release of this CH4 to the ocean and atmosphere has become a topic of discussion, the region remains sparingly explored. Here we present pore water chemistry results from 32 sediment cores taken during Leg 2 of the 2014 joint Swedish-Russian-US Arctic Ocean Investigation of Climate-Cryosphere-Carbon Interactions (SWERUS-C3) expedition. The cores come from depth transects across the slope and rise extending between the Mendeleev and the Lomonosov ridges, north of Wrangel Island and the New Siberian Islands, respectively. Upward CH4 flux towards the seafloor, as inferred from profiles of dissolved sulfate (SO42-), alkalinity, and the δ13C of dissolved inorganic carbon (DIC), is negligible at all stations east of 143° E longitude. In the upper 8 m of these cores, downward SO42- flux never exceeds 6.2 mol m-2 kyr-1, the upward alkalinity flux never exceeds 6.8 mol m-2 kyr-1, and δ13C composition of DIC (δ13C-DIC) only moderately decreases with depth (-3.6 ‰ m-1 on average). Moreover, upon addition of Zn acetate to pore water samples, ZnS did not precipitate, indicating a lack of dissolved H2S. Phosphate, ammonium, and metal profiles reveal that metal oxide reduction by organic carbon dominates the geochemical environment and supports very low organic carbon turnover rates. A single core on the Lomonosov Ridge differs, as diffusive fluxes for SO42- and alkalinity were 13.9 and 11.3 mol m-2 kyr-1, respectively, the δ13C-DIC gradient was 5.6 ‰ m-1, and Mn2+ reduction terminated within 1.3 m of the seafloor. These are among the first pore water results generated from this vast climatically sensitive region, and they imply that abundant CH4, including gas hydrates, do not characterize the East Siberian Sea slope or rise along the investigated depth transects. This contradicts previous modeling and discussions, which

  20. Greening of the Sahara - a paleo perspective on the history of water in the Middle East and North Africa

    Science.gov (United States)

    Bar-Matthews, M.

    2012-04-01

    The Middle-East, mostly at its southern edge together with North Africa, the northern edge of the Sahara Desert, are located at the boundary between high- to-mid latitude and tropical-subtropical climate systems. The geographical duality of desert adjacent to Mediterranean-type climate regions played and still plays a major role on the water availability. Thanks to the number of important paleoclimate studies that been made on accurate dating of cave speleothems in Southern Arabia and Oman (Fleitmann et al., 2011) and in the northeast Sahara, the Negev Desert Israel (Vaks et al., 2010) and the study of sapropels in Eastern and central Mediterranean (Almogi-Labin et al., 2009; Osborne et al, 2008), it is clear that the region was graced with water during peak interglacials when the African monsoon and westerly storm/rainfall systems intensified. Northward penetration of the Inter Tropical Convergence Zone over the Arabian and African continents resulted in increased discharge of the Nile River and rivers that emerged from central Sahara into the Eastern Mediterranean Sea. Correspondingly, enhanced westerly wind activity led to an increase in rainfall from Atlantic-Mediterranean sources over the entire Mediterranean basin, which even penetrated south into the north-east corner of the Sahara Desert. The Saharo-Arabian Desert became narrower and climatic "windows" opened for the dispersal of hominids and animals out of the African continent at 250-239, 210-193, 138-120, 108-98, 87-84 and 10-6.5 ka BP, with severe dry conditions in between. Greening of the Sahara Desert at these intervals is supported also by various marine and terrestrial records, such as corals, lakes, tufa deposits and archeological findings. Dry conditions prevailed in the Sahara desert during glacials. This is in contrast to the climatic conditions in the Eastern Mediterranean coastal region and the Jordan Rift Valley (Bar-Matthews et al., 2003; Lisker et al., 2010), where water was available for

  1. Spatial and temporal distribution (1987-91) of 125Sb used to trace pathways and transit times of waters entering the North Sea from the English Channel

    International Nuclear Information System (INIS)

    Guegueniat, P.; Du Bois, P.B.; Gandon, R.; Leon, R.

    1994-01-01

    The labelling of marine waters off north-western Europe by artificial radionuclides discharged by the nuclear fuel reprocessing plants at Sellafield and La Hague provides a potentially useful tool for the study of hydrodynamic processes. In this context, the present investigation introduces a tracer, 125 Sb, which is conservative within the watermass and which is characteristic of releases from la Hague. Analysis of the data collected between 1987 and 1991 shows that a large part of the channel waters entering the North Sea follow a route along the Belgian, Dutch, German and Danish coasts, while undergoing a low degree of dilution with other marine waters circulating in the central North Sea. The westward extension of the channel plume is variable with time, but the general distribution is in good agreement with the ICES box model. Estimates are given for the transit times from Cap de la Hague to various sectors of the North Sea; it takes 15-17 months for labelled waters to reach the Norwegian Channel. (Author)

  2. Heavy Metals (Cd, Cu, Cr, Pb and Zn) in Meretrix meretrix Roding, Water and Sediments from Estuaries in Sabah, North Borneo

    Science.gov (United States)

    Abdullah, Mohd. Harun; Sidi, Jovita; Aris, Ahmad Zaharin

    2007-01-01

    Concentrations of heavy metals (Cd, Cu, Cr, Pb and Zn) in tissues of Meretrix meretrix Roding (M. meretrix R.), water and sediments from two estuaries were determined. One estuary is located in an urban area of Kota Kinabalu (Likas estuary) and the other in a rural district of Kota Belud (Kota Belud estuary), where both are in Sabah, North of…

  3. Water quality, sediment, and soil characteristics near Fargo-Moorhead urban areas as affected by major flooding of the Red River of the north

    Science.gov (United States)

    A.C. Guy; T.M. DeSutter; F.X.M. Casey; R. Kolka; H. Hakk

    2012-01-01

    Spring flooding of the Red River of the North (RR) is common, but little information exits on how these flood events affect water and overbank sediment quality within an urban area. With the threat of the spring 2009 flood in the RR predicted to be the largest in recorded history and the concerns about the flooding of farmsteads, outbuildings, garages, and basements,...

  4. The importance of genetic verification for determination of Atlantic salmon in north Pacific waters

    Science.gov (United States)

    Nielsen, J.L.; Williams, I.; Sage, G.K.; Zimmerman, C.E.

    2003-01-01

    Genetic analyses of two unknown but putative Atlantic salmon Salmo salar captured in the Copper River drainage, Alaska, demonstrated the need for validation of morphologically unusual fishes. Mitochondrial DNA sequences (control region and cytochrome b) and data from two nuclear genes [first internal transcribed spacer (ITS-1) sequence and growth hormone (GH1) amplification product] indicated that the fish caught in fresh water on the Martin River was a coho salmon Oncorhynchus kisutch, while the other fish caught in the intertidal zone of the Copper River delta near Grass Island was an Atlantic salmon. Determination of unusual or cryptic fish based on limited physical characteristics and expected seasonal spawning run timing will add to the controversy over farmed Atlantic salmon and their potential effects on native Pacific species. It is clear that determination of all putative collections of Atlantic salmon found in Pacific waters requires validation. Due to uncertainty of fish identification in the field using plastic morphometric characters, it is recommended that genetic analyses be part of the validation process. ?? 2003 The Fisheries Society of the British Isles.

  5. Immune modulation in the blue mussel Mytilus edulis exposed to North Sea produced water

    Energy Technology Data Exchange (ETDEWEB)

    Hannam, M.L., E-mail: marie.hannam@plymouth.ac.u [Ecotoxicology and Stress Biology Research Centre, School of Biological Sciences, University of Plymouth, Drake Circus, Plymouth, Devon, PL4 8AA (United Kingdom); Bamber, S.D.; Sundt, R.C. [IRIS - Biomiljo, Mekjarvik 12, 4070 Randaberg (Norway); Galloway, T.S. [School of Biosciences, University of Exeter, Hatherly Laboratories, Prince of Wales Road, Exeter, EX4 4PS (United Kingdom)

    2009-06-15

    The discharge of oil well produced water (PW) provides a constant source of contaminants to the marine environment including polycyclic aromatic hydrocarbons, alkylated phenols, metals and production chemicals. High concentrations of PW cause adverse effects to exposed biota, including reduced survival, growth and reproduction. Here we explore the effects of PW on immune function in the blue mussel, Mytilus edulis. Mussels were exposed for 21 days to sublethal PW concentrations (0.125-0.5%) and cellular parameters were measured. Cell viability, phagocytosis and cytotoxicity were inhibited after exposure to 0.25% and 0.5% PW, whilst the 0.125% PW treatment produced significant increases in these biomarker responses. This biphasic response was only observed after 7 days exposure; longer exposure periods led to a reduction in immune parameters. Results indicate that PW concentrations close to the discharge point cause modulation to cellular immunity. The implications for longer-term disease resistance are discussed. - Exposure to produced water alters immune function in the sentinel species Mytilus edulis.

  6. Selection of a suitable model for the prediction of soil water content in north of Iran

    Directory of Open Access Journals (Sweden)

    Leila Esmaeelnejad

    2015-03-01

    Full Text Available Multiple Linear Regression (MLR, Artificial Neural Network (ANN and Rosetta model were employed to develop pedotransfers functions (PTFs for soil moisture prediction using available soil properties for northern soils of Iran. The Rosetta model is based on ANN works in a hierarchical approach to predict water retention curves. For this purpose, 240 soil samples were selected from the south of Guilan province, Gilevan region, northern Iran. The data set was divided into two subsets for calibration and testing of the models. The general performance of PTFs was evaluated using coefficient of determination (R2, root mean square error (RMSE and mean biased error between the observed and predicted values. Results showed that ANN with two hidden layers, Tan-sigmoid and linear functions for hidden and output layers respectively, performed better than the others in predicting soil moisture. In the other hand, ANN can model non-linear functions and showed to perform better than MLR. After ANN, MLR had better accuracy than Rosetta. The developed PTFs resulted in more accurate estimation at matric potentials of 100, 300, 500, 1000, 1500 kPa. Whereas, Rosetta model resulted in slightly better estimation than derived PTFs at matric potentials of 33 kPa. This research can provide the scientific basis for the study of soil hydraulic properties and be helpful for the estimation of soil water retention in other places with similar conditions, too.

  7. Variations in mid-latitude North Atlantic surface water properties during the mid-Brunhes (MIS 9–14 and their implications for the thermohaline circulation

    Directory of Open Access Journals (Sweden)

    A. H. L. Voelker

    2010-08-01

    Full Text Available Stable isotope and ice-rafted debris records from three core sites in the mid-latitude North Atlantic (IODP Site U1313, MD01-2446, MD03-2699 are combined with records of ODP Sites 1056/1058 and 980 to reconstruct hydrographic conditions during the middle Pleistocene spanning Marine Isotope Stages (MIS 9–14 (300–540 ka. Core MD03-2699 is the first high-resolution mid-Brunhes record from the North Atlantic's eastern boundary upwelling system covering the complete MIS 11c interval and MIS 13. The array of sites reflect western and eastern basin boundary current as well as north to south transect sampling of subpolar and transitional water masses and allow the reconstruction of transport pathways in the upper limb of the North Atlantic's circulation. Hydrographic conditions in the surface and deep ocean during peak interglacial MIS 9 and 11 were similar among all the sites with relative stable conditions and confirm prolonged warmth during MIS 11c also for the mid-latitudes. Sea surface temperature (SST reconstructions further reveal that in the mid-latitude North Atlantic MIS 11c is associated with two plateaus, the younger one of which is slightly warmer. Enhanced subsurface northward heat transport in the eastern boundary current system, especially during early MIS 11c, is denoted by the presence of tropical planktic foraminifer species and raises the question how strongly it impacted the Portuguese upwelling system. Deep water ventilation at the onset of MIS 11c significantly preceded surface water ventilation. Although MIS 13 was generally colder and more variable than the younger interglacials the surface water circulation scheme was the same. The greatest differences between the sites existed during the glacial inceptions and glacials. Then a north – south trending hydrographic front separated the nearshore and offshore waters off Portugal. While offshore waters originated from the North Atlantic Current as indicated by the similarities

  8. Properties, formation, and dissipation of the North Pacific Eastern Subtropical Mode Water and its impact on interannual spiciness anomalies

    Science.gov (United States)

    Katsura, Shota

    2018-03-01

    The properties, formation, and dissipation of the North Pacific Eastern Subtropical Mode Water (ESTMW), their interannual variability, and impact on spiciness anomalies in the upper permanent pycnocline were investigated using Argo profiling float data in 2005-2015. The core temperature and salinity of ESTMWs were horizontally compensated to a constant density, and core potential density concentrates in a range of 24.5-25.2 kg m-3 with two distinct peaks. ESTMWs showed different spatial distribution and persistence for its core potential density. Denser ESTMWs with a potential density of 24.9-25.2 kg m-3 were formed in winter mixed layer depth maximum centered at 30°N, 140°W and lighter ESTMWs of 24.5-24.9 kg m-3 were formed south and east of it. After formation through shoaling of the winter mixed layer, the former persisted until the following autumn and a small part of it subducted in winter, while the latter dissipated in summer. The formation region of ESTMW corresponded to the summer sea surface density maximum resulting from its poleward sea surface salinity front. Sea surface density maximum maintains weak stratification during summer, preconditioning the deepening of the winter mixed layer and hence the formation of ESTMWs. A relationship between the ESTMW formation region and the summer sea surface density maximum was also found in the North Atlantic and the South Pacific, implying the importance of sea surface salinity fronts and the associated summer sea surface density maximum to ESTMW formation. Interannual variations of ESTMW reflected that of the winter mixed layer in its formation region, and the thickness of ESTMW was related to the Pacific decadal oscillation. ESTMW contributed to the occurrence of spice injection and affected spiciness anomalies in the upper permanent pycnocline through its formation and dissipation.

  9. Size distributions and chemical characterization of water-soluble organic aerosols over the western North Pacific in summer

    Science.gov (United States)

    Miyazaki, Yuzo; Kawamura, Kimitaka; Sawano, Maki

    2010-12-01

    Size-segregated aerosol samples were collected over the western North Pacific in summer 2008 to investigate marine biological contribution to organic aerosols. The samples were analyzed for organic carbon (OC), water-soluble organic carbon (WSOC), and water-soluble organic compounds including diacids (C2-C9), ω-oxocarboxylic acids, and α-dicarbonyls as well as methanesulfonic acid (MSA). The average concentrations of OC and oxalic acid (C2) were approximately two to three times larger in marine biologically more influenced aerosols, defined by the concentrations of MSA and azelaic acid (C9), than in less influenced aerosols. WSOC, which showed a statistically significant correlation with MSA, accounted for 15-21% of total mass of the components determined in the submicrometer range of biologically more influenced aerosols. These values are comparable to those of water-insoluble organic carbon (WIOC) (˜14-23%), suggesting that organic aerosols in this region are enriched in secondary organic aerosols (SOA) linked to oceanic biological activity. In these aerosols, substantial fractions of C2-C4 diacids were found in the submicrometer size range. Positive correlations of oxalic acid with C3-C5 diacids and glyoxylic acid suggest that secondary production of oxalic acid occurs possibly in the aqueous aerosol phase via the oxidation of longer-chain diacids and glyoxylic acid in the oceanic region with higher biological productivity. We found similar concentration levels and size distributions of methylglyoxal between the two types of aerosols, suggesting that formation of oxalic acid via the oxidation of methylglyoxal from marine isoprene is insignificant in the study region.

  10. Reduced irrigation increases the water use efficiency and productivity of winter wheat-summer maize rotation on the North China Plain.

    Science.gov (United States)

    Wang, Yunqi; Zhang, Yinghua; Zhang, Rui; Li, Jinpeng; Zhang, Meng; Zhou, Shunli; Wang, Zhimin

    2018-03-15

    The groundwater table has fallen sharply over the last 30years on the North China Plain, resulting in a shortage of water for winter wheat irrigation. Reducing irrigation may be an important strategy to maintain agricultural sustainability in the region; however, few studies have evaluated the transition from conventional irrigation management practices to reduced irrigation management practices in the winter wheat-summer maize rotation system. Here, we compare the yield, water consumption, and water use efficiency of winter wheat-summer maize rotation under conventional irrigation and reduced irrigation on the North China Plain from 2012 to 2015. Reducing irrigation decreased the yield but increased the water use efficiency and significantly advanced the harvest date of winter wheat. As a result, the summer maize sowing date advanced significantly, and the flowering date subsequently advanced 2-8days, thus extending the summer maize grain-filling stage. Therefore, the yield and water use efficiency of summer maize were higher under reduced irrigation than conventional irrigation, which compensated for the winter wheat yield loss under reduced irrigation. In addition, under reduced irrigation from 2012 to 2015, the yield and water use efficiency advantage of the winter wheat-summer maize rotation ranged from 0.0 to 9.7% and from 4.1 to 14.7%, respectively, and water consumption and irrigated water decreased by 20-61mm and 150mm, respectively, compared to conventional irrigation. Overall, the reduced irrigation management practice involving no irrigation after sowing winter wheat, and sowing summer maize on June 7 produced the most favorable grain yield with superb water use efficiency in the winter wheat-summer maize rotation. This study indicates that reducing irrigation could be an efficient means to cope with water resource shortages while maintaining crop production sustainability on the North China Plain. Copyright © 2017. Published by Elsevier B.V.

  11. Freshwater fish’s spatial patterns in isolated water springs in North-eastern Mexico

    Directory of Open Access Journals (Sweden)

    Jorge Palacio-Núñez

    2010-03-01

    Full Text Available The Media Luna lake-spring was selected as representative of all thermal or no thermal springs in the zone of Valley of Rioverde, a semi-arid vegetation in the North-eastern of Mexico. This system is inhabited by 11 fish species, of which six are native. Four of the native species are endemic to the region and threatened due to touristic pressure and to the introduction of exotic species. The objectives were to determine the characteristics that influence the spatial distribution of the fish species, to analyze their spatial distribution patterns, and to describe the relationships between the different species. The general aim was to establish some basis for the conservation of these fish communities and their habitat. Several sessions were initiated in 1992 through direct observation. Later, between 1998 and 1999 five systematically seasonal sampling sessions were conducted (54 subaquatic transects/session. Finally, the data was updated by sampling in summer 2002 and winter 2006. Through the analysis was performed only for endemics of the region, like Ataeniobius toweri Meek, Cualac tessellatus Miller, Cichlasoma bartoni Bean and C. labridens Pellegrin, in at least one life stage, showed correlation with habitat variables or with other species. For these species, patterns of spatial aggregation and association with other species were observed. These results show a certain degree of specialization of endemic species to some microhabitat characteristics, as well as a significant interaction with other native species which they coexist. In addition, some significant relations between endemic and alien species suggest an antagonist relation. Management actions focused in the touristic use of the spring represent the main threat for these species, followed by an adequate management of exotic species. This study provides basis for future responsible management of these wetlands, where tourism and conservation can be combined. Rev. Biol. Trop. 58 (1

  12. Swim speed, behavior, and movement of North Atlantic right whales (Eubalaena glacialis in coastal waters of northeastern Florida, USA.

    Directory of Open Access Journals (Sweden)

    James H W Hain

    Full Text Available In a portion of the coastal waters of northeastern Florida, North Atlantic right whales (Eubalaena glacialis occur close to shore from December through March. These waters are included within the designated critical habitat for right whales. Data on swim speed, behavior, and direction of movement--with photo-identification of individual whales--were gathered by a volunteer sighting network working alongside experienced scientists and supplemented by aerial observations. In seven years (2001-2007, 109 tracking periods or "follows" were conducted on right whales during 600 hours of observation from shore-based observers. The whales were categorized as mother-calf pairs, singles and non-mother-calf pairs, and groups of 3 or more individuals. Sample size and amount of information obtained was largest for mother-calf pairs. Swim speeds varied within and across observation periods, individuals, and categories. One category, singles and non mother-calf pairs, was significantly different from the other two--and had the largest variability and the fastest swim speeds. Median swim speed for all categories was 1.3 km/h (0.7 kn, with examples that suggest swim speeds differ between within-habitat movement and migration-mode travel. Within-habitat right whales often travel back-and-forth in a north-south, along-coast, direction, which may cause an individual to pass by a given point on several occasions, potentially increasing anthropogenic risk exposure (e.g., vessel collision, fishing gear entanglement, harassment. At times, mothers and calves engaged in lengthy stationary periods (up to 7.5 h that included rest, nursing, and play. These mother-calf interactions have implications for communication, learning, and survival. Overall, these behaviors are relevant to population status, distribution, calving success, correlation to environmental parameters, survey efficacy, and human-impacts mitigation. These observations contribute important parameters to

  13. Swim speed, behavior, and movement of North Atlantic right whales (Eubalaena glacialis) in coastal waters of northeastern Florida, USA.

    Science.gov (United States)

    Hain, James H W; Hampp, Joy D; McKenney, Sheila A; Albert, Julie A; Kenney, Robert D

    2013-01-01

    In a portion of the coastal waters of northeastern Florida, North Atlantic right whales (Eubalaena glacialis) occur close to shore from December through March. These waters are included within the designated critical habitat for right whales. Data on swim speed, behavior, and direction of movement--with photo-identification of individual whales--were gathered by a volunteer sighting network working alongside experienced scientists and supplemented by aerial observations. In seven years (2001-2007), 109 tracking periods or "follows" were conducted on right whales during 600 hours of observation from shore-based observers. The whales were categorized as mother-calf pairs, singles and non-mother-calf pairs, and groups of 3 or more individuals. Sample size and amount of information obtained was largest for mother-calf pairs. Swim speeds varied within and across observation periods, individuals, and categories. One category, singles and non mother-calf pairs, was significantly different from the other two--and had the largest variability and the fastest swim speeds. Median swim speed for all categories was 1.3 km/h (0.7 kn), with examples that suggest swim speeds differ between within-habitat movement and migration-mode travel. Within-habitat right whales often travel back-and-forth in a north-south, along-coast, direction, which may cause an individual to pass by a given point on several occasions, potentially increasing anthropogenic risk exposure (e.g., vessel collision, fishing gear entanglement, harassment). At times, mothers and calves engaged in lengthy stationary periods (up to 7.5 h) that included rest, nursing, and play. These mother-calf interactions have implications for communication, learning, and survival. Overall, these behaviors are relevant to population status, distribution, calving success, correlation to environmental parameters, survey efficacy, and human-impacts mitigation. These observations contribute important parameters to conservation biology

  14. Investigation of Ground-Water Contamination at Solid Waste Management Unit 12, Naval Weapons Station Charleston, North Charleston, South Carolina

    Science.gov (United States)

    Vroblesky, Don A.; Casey, Clifton C.; Petkewich, Matthew D.; Lowery, Mark A.; Conlon, Kevin J.; Harrelson, Larry G.

    2007-01-01

    The U.S. Geological Survey and the Naval Facilities Engineering Command Southeast investigated natural and engineered remediation of chlorinated volatile organic compound ground-water contamination at Solid Waste Management Unit 12 at the Naval Weapons Station Charleston, North Charleston, South Carolina. The primary contaminants of interest are tetrachloroethene, 1,1,1-trichloroethane, trichloroethene, cis-1,2-dichloroethene, vinyl chloride, 1,1-dichloroethane, and 1,1-dichloroethene. In general, the hydrogeology of Solid Waste Management Unit 12 consists of a surficial aquifer, composed of sand to clayey sand, overlain by dense clay that extends from about land surface to a depth of about 8 to 10 feet and substantially limits local recharge. During some months in the summer, evapotranspiration and limited local recharge result in ground-water level depressions in the forested area near wells 12MW-12S and 12MW-17S, seasonally reflecting the effects of evapotranspiration. Changes in surface-water levels following Hurricane Gaston in 2004 resulted in a substantial change in the ground-water levels at the site that, in turn, may have caused lateral shifting of the contaminant plume. Hydraulic conductivity, determined by slug tests, is higher along the axis of the plume in the downgradient part of the forests than adjacent to the plume, implying that there is some degree of lithologic control on the plume location. Hydraulic conductivity, hydraulic gradient, sulfur-hexafluoride measurements, and historical data indicate that ground-water flow rates are substantially slower in the forested area relative to upgradient areas. The ground-water contamination, consisting of chlorinated volatile organic compounds, extends eastward in the surficial aquifer from the probable source area near a former underground storage tank. Engineered remediation approaches include a permeable reactive barrier and phytoremediation. The central part of the permeable reactive barrier along the

  15. Simulation of groundwater flow and analysis of the effects of water-management options in the North Platte Natural Resources District, Nebraska

    Science.gov (United States)

    Peterson, Steven M.; Flynn, Amanda T.; Vrabel, Joseph; Ryter, Derek W.

    2015-08-12

    The North Platte Natural Resources District (NPNRD) has been actively collecting data and studying groundwater resources because of concerns about the future availability of the highly inter-connected surface-water and groundwater resources. This report, prepared by the U.S. Geological Survey in cooperation with the North Platte Natural Resources District, describes a groundwater-flow model of the North Platte River valley from Bridgeport, Nebraska, extending west to 6 miles into Wyoming. The model was built to improve the understanding of the interaction of surface-water and groundwater resources, and as an optimization tool, the model is able to analyze the effects of water-management options on the simulated stream base flow of the North Platte River. The groundwater system and related sources and sinks of water were simulated using a newton formulation of the U.S. Geological Survey modular three-dimensional groundwater model, referred to as MODFLOW–NWT, which provided an improved ability to solve nonlinear unconfined aquifer simulations with wetting and drying of cells. Using previously published aquifer-base-altitude contours in conjunction with newer test-hole and geophysical data, a new base-of-aquifer altitude map was generated because of the strong effect of the aquifer-base topography on groundwater-flow direction and magnitude. The largest inflow to groundwater is recharge originating from water leaking from canals, which is much larger than recharge originating from infiltration of precipitation. The largest component of groundwater discharge from the study area is to the North Platte River and its tributaries, with smaller amounts of discharge to evapotranspiration and groundwater withdrawals for irrigation. Recharge from infiltration of precipitation was estimated with a daily soil-water-balance model. Annual recharge from canal seepage was estimated using available records from the Bureau of Reclamation and then modified with canal

  16. Effects of agricultural land-management practices on water quality in northeastern Guilford County, North Carolina, 1985-90

    Science.gov (United States)

    Harned, Douglas A.

    1995-01-01

    The effects of selected agricultural land-management practices on water quality were assessed in a comparative study of four small basins in the Piedmont province of North Carolina. Agricultural practices, such as tillage and applications of fertilizer and pesticides, are major sources of sediment, nutrients, and pesticides in surface water, and of nutrients and pesticides in ground water. The four study basins included two adjacent row-crop fields, a mixed land-use basin, and a forested basin. One of the row-crop fields (7.4 acres) was farmed by using conservation land-management (CLM) practices, which included strip cropping, contour plowing, field borders, and grassed waterways. The other row-crop field (4.8 acres) was farmed by using standard land-management (SLM) practices, which included continuous cropping, straight-row plowing without regard to land topography, and poorly maintained waterways. The mixed land-use basin (665 acres) was monitored to compare water quality in surface water as SLM practices were converted to CLM practices during the project. The forested basin (44 acres) provided background surface-water hydrologic and chemical-quality conditions. Surface-water flow was reduced by 18 percent by CLM practices compared to surface-water flow from the SLM practices basin. The thickness of the unsaturated zone in the row-crop basins ranged from a few feet to 25 feet. Areas with thick unsaturated zones have a greater capacity to intercept and store nutrients and pesticides than do areas with thinner zones. Sediment concentrations and yields for the SLM practices basin were considerably higher than those for the other basins. The median sediment concentration in surface water for the SLM basin was 3.4 times that of the CLM basin, 8.2 times that of the mixed land-use basin, and 38.4 times that of the forested basin. The total sediment yield for the SLM basin was 2.3 times that observed for the CLM basin, 14.1 times that observed for the mixed land

  17. Ground Water Atlas of the United States: Segment 11, Delaware, Maryland, New Jersey, North Carolina, Pennsylvania, Virginia, West Virginia

    Science.gov (United States)

    Trapp, Henry; Horn, Marilee A.

    1997-01-01

    Segment 11 consists of the States of Delaware, Maryland, New Jersey, North Carolina, West Virginia, and the Commonwealths of Pennsylvania and Virginia. All but West Virginia border on the Atlantic Ocean or tidewater. Pennsylvania also borders on Lake Erie. Small parts of northwestern and north-central Pennsylvania drain to Lake Erie and Lake Ontario; the rest of the segment drains either to the Atlantic Ocean or the Gulf of Mexico. Major rivers include the Hudson, the Delaware, the Susquehanna, the Potomac, the Rappahannock, the James, the Chowan, the Neuse, the Tar, the Cape Fear, and the Yadkin-Peedee, all of which drain into the Atlantic Ocean, and the Ohio and its tributaries, which drain to the Gulf of Mexico. Although rivers are important sources of water supply for many cities, such as Trenton, N.J.; Philadelphia and Pittsburgh, Pa.; Baltimore, Md.; Washington, D.C.; Richmond, Va.; and Raleigh, N.C., one-fourth of the population, particularly the people who live on the Coastal Plain, depends on ground water for supply. Such cities as Camden, N.J.; Dover, Del.; Salisbury and Annapolis, Md.; Parkersburg and Weirton, W.Va.; Norfolk, Va.; and New Bern and Kinston, N.C., use ground water as a source of public supply. All the water in Segment 11 originates as precipitation. Average annual precipitation ranges from less than 36 inches in parts of Pennsylvania, Maryland, Virginia, and West Virginia to more than 80 inches in parts of southwestern North Carolina (fig. 1). In general, precipitation is greatest in mountainous areas (because water tends to condense from moisture-laden air masses as the air passes over the higher altitudes) and near the coast, where water vapor that has been evaporated from the ocean is picked up by onshore winds and falls as precipitation when it reaches the shoreline. Some of the precipitation returns to the atmosphere by evapotranspiration (evaporation plus transpiration by plants), but much of it either flows overland into streams as

  18. Assessment of water and proppant quantities associated with petroleum production from the Bakken and Three Forks Formations, Williston Basin Province, Montana and North Dakota, 2016

    Science.gov (United States)

    Haines, Seth; Varela, Brian A.; Hawkins, Sarah J.; Gianoutsos, Nicholas J.; Thamke, Joanna N.; Engle, Mark A.; Tennyson, Marilyn E.; Schenk, Christopher J.; Gaswirth, Stephanie B.; Marra, Kristen R.; Kinney, Scott A.; Mercier, Tracey J.; Martinez, Cericia D.

    2017-06-23

    The U.S. Geological Survey (USGS) has completed an assessment of water and proppant requirements and water production associated with the possible future production of undiscovered oil and gas resources in the Three Forks and Bakken Formations (Late Devonian to Early Mississippian) of the Williston Basin Province in Montana and North Dakota. This water and proppant assessment is directly linked to the geology-based assessment of the undiscovered, technically recoverable continuous oil and gas resources that is described in USGS Fact Sheet 2013–3013.

  19. Role of sediment denitrification in water column oxygen dynamics: comparison of the North American East and West Coasts

    Directory of Open Access Journals (Sweden)

    L. Bianucci

    2012-07-01

    Full Text Available Low oxygen concentrations, either natural or anthropogenically driven, can severely affect coastal marine ecosystems. A deeper understanding of oxygen dynamics is required in order to improve numerical models, eventually to predict the timing and severity of hypoxia. In this study we investigate the effect of sediment denitrification on oxygen concentrations in bottom waters over the continental shelf. We used two coupled physical-biological models based on the Regional Ocean Modelling System (ROMS to compare summer simulations with and without denitrification within the sediments for two North American shelves: the Middle Atlantic Bight (MAB and the Vancouver Island Shelf (VIS. These regions belong to western and eastern boundary current systems, respectively, and are characterized by different physical and biological dynamics. Both models assume coupled nitrification-denitrification within the sediments. Denitrification represents a loss of bioavailable nitrogen through the production of dinitrogen gas, with the potential to affect biogeochemical cycles. In our MAB model, this loss of regenerated nutrients through denitrification within the sediments significantly affects primary production, since recycled nitrogen supports most of the primary production in that region. The diminished primary production and consequent decrease of organic matter flux to the seafloor leads to less sediment oxygen consumption and higher oxygen concentrations in bottom waters. However, changes in regenerated nitrogen on the VIS barely affect primary production due to the efficient supply of new nutrients through wind-driven upwelling during summer and the nutrient-rich coastal current. We recommend that modelling experiments focusing on oxygen dynamics (as well as oxygen budget calculations should include sediment denitrification in coastal regions where regenerated primary production dominates productivity.

  20. Role of sediment denitrification in water column oxygen dynamics: comparison of the North American East and West Coasts

    Science.gov (United States)

    Bianucci, L.; Fennel, K.; Denman, K. L.

    2012-07-01

    Low oxygen concentrations, either natural or anthropogenically driven, can severely affect coastal marine ecosystems. A deeper understanding of oxygen dynamics is required in order to improve numerical models, eventually to predict the timing and severity of hypoxia. In this study we investigate the effect of sediment denitrification on oxygen concentrations in bottom waters over the continental shelf. We used two coupled physical-biological models based on the Regional Ocean Modelling System (ROMS) to compare summer simulations with and without denitrification within the sediments for two North American shelves: the Middle Atlantic Bight (MAB) and the Vancouver Island Shelf (VIS). These regions belong to western and eastern boundary current systems, respectively, and are characterized by different physical and biological dynamics. Both models assume coupled nitrification-denitrification within the sediments. Denitrification represents a loss of bioavailable nitrogen through the production of dinitrogen gas, with the potential to affect biogeochemical cycles. In our MAB model, this loss of regenerated nutrients through denitrification within the sediments significantly affects primary production, since recycled nitrogen supports most of the primary production in that region. The diminished primary production and consequent decrease of organic matter flux to the seafloor leads to less sediment oxygen consumption and higher oxygen concentrations in bottom waters. However, changes in regenerated nitrogen on the VIS barely affect primary production due to the efficient supply of new nutrients through wind-driven upwelling during summer and the nutrient-rich coastal current. We recommend that modelling experiments focusing on oxygen dynamics (as well as oxygen budget calculations) should include sediment denitrification in coastal regions where regenerated primary production dominates productivity.

  1. Recirculation in the Fram Strait and transports of water in and north of the Fram Strait derived from CTD data

    Directory of Open Access Journals (Sweden)

    M. Marnela

    2013-05-01

    Full Text Available The volume, heat and freshwater transports in the Fram Strait are estimated from geostrophic computations based on summer hydrographic data from 1984, 1997, 2002 and 2004. In these years, in addition to the usually sampled section along 79° N, a section between Greenland and Svalbard was sampled further north. Quasi-closed boxes bounded by the two sections and Greenland and Svalbard can then be formed. Applying conservation constraints on these boxes provides barotropic reference velocities. The net volume flux is southward and varies between 2 and 4 Sv. The recirculation of Atlantic water is about 2 Sv. Heat is lost to the atmosphere and the heat loss from the area between the sections averaged over the four years is about 10 TW. The net heat (temperature transport is 20 TW northward into the Arctic Ocean, with large interannual differences. The mean net freshwater added between the sections is 40 mSv and the mean freshwater transport southward across 79° N is less than 60 mSv, indicating that most of the liquid freshwater leaving the Arctic Ocean through Fram Strait in summer is derived from sea ice melt in the northern vicinity of the strait. In 1997, 2001 and 2003 meridional sections along 0° longitude were sampled and in 2003 two smaller boxes can be formed, and the recirculation of Atlantic water in the strait is estimated by geostrophic computations and continuity constraints. The recirculation is weaker close to 80° N than close to 78° N, indicating that the recirculation is mainly confined to the south of 80° N. This is supported by the observations in 1997 and 2001, when only the northern part of the meridional section, from 79° N to 80° N, can be computed with the constraints applied. The recirculation is found strongest close to 79° N.

  2. Hurricane Matthew's Effects on Wetland Sources of Organic Matter to North Carolina Coastal Waters.

    Science.gov (United States)

    Rudolph, J. C.; Osburn, C. L.; Paerl, H. W.; Hounshell, A.

    2017-12-01

    Increased frequency and intensity of storm events such as tropical cyclones will have a major impact on estuarine and coastal biogeochemical cycling. Here, we determined the sources of dissolved and particulate organic matter (DOM and POM) as part of a larger study to quantify the short-term (several months) response of carbon and nitrogen cycling in the Neuse River Estuary-Pamlico Sound (NRE-PS) ecosystem to floodwaters associated with Hurricane Matthew. Sampling was conducted weekly in both the NRE-PS (October 2016 to January 2017), the Neuse River (NR) (October to December 2016) and in freshwater wetlands of the Neuse River above head of tide in March 2017. Specific ultraviolet (UV) absorbance at 254 nm (SUVA254) and stable carbon isotope ratios (δ13C-DOC) were used to determine the sources of DOM and POM transported to the NRE-PS in post-hurricane floodwaters. For DOM, SUVA254 values increased from 3.23 ±0.52 mg C L-1 m-1 in the NR to 4.14±0.52 mg C L-1 m-1 in the NRE and then declined to 3.63±0.32 mg C L-1 m-1 in PS. Combined with depleted δ13C-DOC values (-26 to -32‰) and elevated C:N values in the estuary and sound, these results confirm continued loading of fresh terrestrial organic matter into NRE-PS weeks after the storm. For POM, δ13C-POC and C:N ratio results likewise indicated a terrestrial source in floodwaters. SUVA254 values >3.5 mg C L-1 m-1 coupled with the depleted δ13C values and large C:N values were consistent with DOM primarily sourced from wetlands (e.g., wetland SUVA254 = 3.77±0.52 mg C L-1 m-1 in March 2017). We hypothesize that floodwaters connected riverine wetlands to the main channel of the NR, exporting DOM and POM into the NRE-PS. Our results indicate that upstream wetlands play a central and potentially significant role in organic matter enrichment and metabolism of estuarine and coastal waters, in light of increasing frequencies and intensities of tropical cyclones impacting coastal watersheds.

  3. Hydro engineering Feasibility Study of Surface Runoff Water Harvesting in Al-Ajeej Basin, North West Iraq

    Directory of Open Access Journals (Sweden)

    Thair M. Al-Taiee

    2013-04-01

    Full Text Available The hydro engineering  characteristics of Al-Ajeej basin which was located within south Sinjar plain north west Iraq was analyzed to predict the possibility of surface runoff harvesting during rainfall season in the upstream sites in this basin using watershed modeling system (WMS. The hydrological feasibility of constructing small dam on Al-Ajeej valley with some preliminary design calculations were presented. The best optimum dam site was selected to be located (3.95 km downstream the confluence of Al-Badee branch with Al-Ajeej valley (35° 46¢ 6² Latitude and Longitude 41° 36¢ 11² having a catchment's area of (3043km2. The proposed dam  height was (12.5 meter with a dam length of (1277m, while the normal storage volume of the reservoir is (38.8 million m3. Construction a dams in such sites characterized by water shortage during all  around the year will give an aid in the sustainable development of such area by increasing  the cultivation lands, the agricultural products and also modify the income of the villagers living  in this area leading to prevent them leaving their lands to other places

  4. Assessment of impact of climate change on water resources: a long term analysis of the Great Lakes of North America

    Directory of Open Access Journals (Sweden)

    E. McBean

    2008-02-01

    Full Text Available In the threshold of the appearance of global warming from theory to reality, extensive research has focused on predicting the impact of potential climate change on water resources using results from Global Circulation Models (GCMs. This research carries this further by statistical analyses of long term meteorological and hydrological data. Seventy years of historical trends in precipitation, temperature, and streamflows in the Great Lakes of North America are developed using long term regression analyses and Mann-Kendall statistics. The results generated by the two statistical procedures are in agreement and demonstrate that many of these variables are experiencing statistically significant increases over a seven-decade period. The trend lines of streamflows in the three rivers of St. Clair, Niagara and St. Lawrence, and precipitation levels over four of the five Great Lakes, show statistically significant increases in flows and precipitation. Further, precipitation rates as predicted using fitted regression lines are compared with scenarios from GCMs and demonstrate similar forecast predictions for Lake Superior. Trend projections from historical data are higher than GCM predictions for Lakes Michigan/Huron. Significant variability in predictions, as developed from alternative GCMs, is noted.

    Given the general agreement as derived from very different procedures, predictions extrapolated from historical trends and from GCMs, there is evidence that hydrologic changes particularly for the precipitation in the Great Lakes Basin may be demonstrating influences arising from global warming and climate change.

  5. Traditional Practicing with Arsenic Rich Water in Fish Industries Leads to Health Hazards in West Bengal and North-Eastern States of India

    Science.gov (United States)

    Kashyap, C. A.

    2014-12-01

    The supply of good quality food is main necessity for economic and social health of urban and rural population throughout the globe. This study comes to know the severity of As in the west Bengal and north-eastern states of the India. Over the 75% large population of India lives in villages and associated with farming and its related work. West Bengal is the densest populated area of India, fish and rice is the staple food as well as in north-eastern states. For the fulfil demand of fish large population the area are used fisheries as the business. Arsenic contamination in ground water is major growing threat to worldwide drinking water resources. High As contamination in water have been reported in many parts of the world Chandrasekharam et al., 2001; Smedley and Kinniburgh, 2002; Farooq et al., 2010). In context to West Bengal and north-east states of India arsenic is main problem in the food chain. These areas are very rich in arsenic many fold higher concentrations of Arsenic than their respective WHO permissible limits have been reported in the water. Over the 36 million people in Bengal delta are at risk due to drinking of As contaminated water (Nordstrom, 2002). The highest concentration of arsenic (535 μg/L Chandrashekhar et al. 2012) was registered from Ngangkha Lawai Mamang Leikai area of Bishnupur district which is fifty fold of the WHO limit for arsenic and tenfold of Indian permissible limit. With the continuous traditional practicing (As rich water pond) and untreated arsenic rich water in fish industries leads to health hazards. A sustainable development in aquaculture should comprise of various fields including environmental, social, cultural and economic aspects. A scientific study has to be needed for the overcome on this problem and rain harvested water may be used for reduce the arsenic problems in fisheries.

  6. Assessment of surface water vulnerability to pesticide contamination using the modeling tool PegOpera: Application in North Tunisia

    Science.gov (United States)

    Boukari, Amira; Habaieb, Hamadi; Deliège, Jean-François

    2017-04-01

    Tunisia is a country in which three quarters of the territory is arid to semi-arid with limited water resources. Decreasing water scarcity and water pollution constitute a big challenge for water stakeholders particularly in rural areas and poor communities. The main factors influencing water availability in this Mediterranean country is, among others, overexploitation of non-renewable resources and diffuse pollution. Due to intensive agriculture in proximity of rivers and continuous use of pesticides, there is a potential risk for contamination of waterbodies by the agrochemicals used. This could have a negative impact on agricultural production as well as human health and threaten in priority the north part of the country where 82% of surface water is available. Despite this situation, no catchment monitoring program is currently put in place since it is expensive and require large investment. In this study, we established a methodology using the PegOpera modeling tool to assess the potential risk of pesticides contamination of surface water at the scale of a rural catchment situated in the northwestern part of Tunisia, the Joumine basin, draining an area of 418 km2 and devoted to agriculture, mainly rainfed cereal crops. In the downstream part of the basin, the Joumine dam was built in 1984 to provide water for irrigation and drinking purposes. We performed a survey with catchment farmers to report management practices in the area as well as spatial and temporal information about pesticide compounds, timing and application rate from which we identified the most used pesticide molecules. The SIRIS method (System of Integration of Risk with Interactions of Scores) was applied to classify compounds used according to the risk that they present to the aquatic environment and therefore to identify those chemicals that should be monitored (Guerbet et al., 2002; Le Gall et al., 2007). According to the results of this classification, we selected 6 molecules to study in

  7. Simulation of the effects of Devils Lake outlet alternatives on future lake levels and water quality in the Sheyenne River and Red River of the North

    Science.gov (United States)

    Vecchia, Aldo V.

    2011-01-01

    Since 1992, Devils Lake in northeastern North Dakota has risen nearly 30 feet, destroying hundreds of homes, inundating thousands of acres of productive farmland, and costing more than $1 billion for road raises, levee construction, and other flood mitigation measures. In 2011, the lake level is expected to rise at least another 2 feet above the historical record set in 2010 (1,452.0 feet above the National Geodetic Vertical Datum of 1929), cresting less than 4 feet from the lake's natural spill elevation to the Sheyenne River (1,458.0 feet). In an effort to slow the rising lake and reduce the chance of an uncontrolled spill, the State of North Dakota is considering options to expand a previously constructed outlet from the west end of Devils Lake or construct a second outlet from East Devils Lake. Future outlet discharges from Devils Lake, when combined with downstream receiving waters, need to be in compliance with applicable Clean Water Act requirements. This study was completed by the U.S. Geological Survey, in cooperation with the North Dakota Department of Health Division of Water Quality, to evaluate the various outlet alternatives with respect to their effect on downstream water quality and their ability to control future lake levels.

  8. Expanding dryland ecosystem flux datasets enable novel quantification of water availability and carbon exchange in Southwestern North America

    Science.gov (United States)

    Biederman, J. A.; Scott, R. L.; Smith, W. K.; Litvak, M. E.; MacBean, N.

    2017-12-01

    Global-scale studies suggest that water-limited dryland ecosystems dominate the increasing trend in magnitude and interannual variability of the land CO2 sink. However, the terrestrial biosphere models and remote sensing models used in large-scale analyses are poorly constrained by flux measurements in drylands, which are under-represented in global datasets. In this talk, I will address this gap with eddy covariance data from 30 ecosystems across the Southwest of North America with observed ranges in annual precipitation of 100 - 1000 mm, annual temperatures of 2 - 25 °C, and records of 3 - 10 years each (160 site-years). This extensive dryland dataset enables new approaches including 1) separation of temporal and spatial patterns to infer fast and slow ecosystem responses to change, and 2) partitioning of precipitation into hydrologic losses, evaporation, and ecosystem-available water. I will then compare direct flux measurements with models and remote sensing used to scale fluxes regionally. Combining eddy covariance and streamflow measurements, I will show how evapotranspiration (ET), which is the efflux of soil moisture remaining after hydrologic losses, is a better metric than precipitation of water available to drive ecosystem CO2 exchange. Furthermore, I will present a novel method to partition ET into evaporation and transpiration using the tight coupling of transpiration and photosynthesis. In contrast with typical carbon sink function in wetter, more-studied regions, dryland sites express an annual net carbon uptake varying from -350 to +330 gC m-2. Due to less respiration losses relative to photosynthesis gains during winter, declines in winter precipitation across the Southwest since 1999 are reducing annual net CO2 uptake. Interannual variability of net uptake is larger than for wetter regions, and half the sites pivot between sinks in wet years to sources in dry years. Biospheric and remote sensing models capture only 20-30 % of interannual

  9. Integrated Assessment Of Groundwater Recharge In The North Kelantan River Basin Using Environmental Water Stable Isotopes, Tritium And Chloride Data

    International Nuclear Information System (INIS)

    Wan Zakaria Wan Muhamad Tahir; Nur Hayati Hussin; Ismail Yusof; Kamaruzaman Mamat; Johari Abdul Latif; Rohaimah Demanah

    2014-01-01

    Estimation and understanding of groundwater recharge mechanism and capacity of aquifer are essential issues in water resources investigation. An integrated study of environmental chloride content in the unsaturated zone using chloride mass balance method (CMB) and isotopic analyses of deuterium, oxygen-18, and tritium values range in the alluvial channel aquifer profiles (quaternary sediments) of the North Kelantan River basin has been carried out in order to estimate and understand groundwater recharge processes. However, the rate of aquifer recharge is one of the most difficult factors to measure in the evaluation of ground water resources. Estimation of recharge, by whatever method, is normally subject to large uncertainties and errors. In this paper, changes in stable isotopic signatures in different seasons and tritium analysis of the sampled groundwater observed at different depth in the aquifer system were evaluated. Stable isotope data are slightly below the local meteoric water line (LMWL) indicating that there is some isotopic enrichment due to direct evaporation through the soil surface which is exposed prior or during the recharging process. The overall data on water isotopic signatures from boreholes and production wells (shallow and relatively deep aquifer system) are spread over a fairly small range but somewhat distinct compared to river water isotopic compositions. Such a narrow variation in isotopic signatures of the sampled groundwaters may suggest that all groundwater samples originated from the same area of direct recharge predominantly from rainfall and nearby rivers. Environmental tritium data measured in groundwater at different depths and locations together with a medium-term of limited monthly rainfall collections were used to investigate the groundwater age distributions (residence times). The existence of groundwater in the aquifer system (sampled wells) is predominantly designated as modern (young) water that has undergone recharged

  10. Assessing water quality suitability for shortnose sturgeon in the Roanoke River, North Carolina, USA with an in situ bioassay approach

    Science.gov (United States)

    Cope, W.G.; Holliman, F.M.; Kwak, T.J.; Oakley, N.C.; Lazaro, P.R.; Shea, D.; Augspurger, T.; Law, J.M.; Henne, J.P.; Ware, K.M.

    2011-01-01

    The aim of this study was to determine the suitability of water quality in the Roanoke River of North Carolina for supporting shortnose sturgeon Acipenser brevirostrum, an endangered species in the United States. Fathead minnows Pimephales promelas were also evaluated alongside the sturgeon as a comparative species to measure potential differences in fish survival, growth, contaminant accumulation, and histopathology in a 28-day in situ toxicity test. Captively propagated juvenile shortnose sturgeon (total length 49??8mm, mean??SD) and fathead minnows (total length 39??3mm, mean??SD) were used in the test and their outcomes were compared to simultaneous measurements of water quality (temperature, dissolved oxygen, pH, conductivity, total ammonia nitrogen, hardness, alkalinity, turbidity) and contaminant chemistry (metals, polycyclic aromatic hydrocarbons, organochlorine pesticides, current use pesticides, polychlorinated biphenyls) in river water and sediment. In the in situ test, there were three non-riverine control sites and eight riverine test sites with three replicate cages (25??15-cm (OD) clear plexiglass with 200-??m tear-resistant Nitex?? screen over each end) of 20 shortnose sturgeon per cage at each site. There was a single cage of fathead minnows also deployed at each site alongside the sturgeon cages. Survival of caged shortnose sturgeon among the riverine sites averaged 9% (range 1.7-25%) on day 22 of the 28-day study, whereas sturgeon survival at the non-riverine control sites averaged 64% (range 33-98%). In contrast to sturgeon, only one riverine deployed fathead minnow died (average 99.4% survival) over the 28-day test period and none of the control fathead minnows died. Although chemical analyses revealed the presence of retene (7-isopropyl-1-methylphenanthrene), a pulp and paper mill derived compound with known dioxin-like toxicity to early life stages of fish, in significant quantities in the water (251-603ngL-1) and sediment (up to 5000ngg-1

  11. Irrigation Water Availability and Winter Wheat Abandonment in the North China Plain (NCP): Findings from a Case Study in Cangxian County of Hebei Province

    OpenAIRE

    Xue Wang; Xiubin Li

    2018-01-01

    The North China Plain (NCP) is the major winter wheat producing area in China. Abandonment of this crop has, however, become more and more prevalent in this region since the late 1990s. Although the underlying causes of this phenomenon remain little understood, irrigation water availability (IWA) has always been regarded as the key factor limiting winter wheat production on the NCP. The aim of this paper is to determine the role played by IWA in the abandonment of winter wheat, using evidence...

  12. Studies of Labrador Sea Water formation and variability in the subpolar North Atlantic in the light of international partnership and collaboration

    Science.gov (United States)

    Kieke, Dagmar; Yashayaev, Igor

    2015-03-01

    Labrador Sea Water (LSW), the lightest contribution to North Atlantic Deep Water (NADW) and one of the most prominent water masses of the subpolar North Atlantic, has seen remarkable changes over the past century. LSW originates in the Labrador Sea, where it is formed through wintertime ocean convection of varying intensity, depth and spatial extent. Formation of LSW, followed by its respective injection into the mid-depth circulation system, is mandatory for ventilating and renewing water layers of the interior ocean. Indispensably important for unraveling the history of variability in formation and properties of LSW as well as for mapping its large-scale spreading and export are sustained physical and chemical observations from the deep ocean. These observations started at the beginning of the 20th century from occasional mostly national surveys and today constitute large-scale multi-national collaborative efforts including a vast arsenal of sophisticated instrumentation. In a historical context, we revisit major milestones over the past 100 years which have established and are constantly adding to shaping today's knowledge on LSW, and present first details on the latest vintage of LSW generated during the strong winter of 2013/2014. Respective Argo data reveal mixed-layer depths greater than 1700 m marking formation of a new cold and fresh anomaly that has spread since then over the subpolar North Atlantic. We further summarize the on-going observational efforts in the subpolar North Atlantic and present a compilation of hydrographic standard lines that serve to provide top-to-bottom information on NADW components.

  13. Authigenic albite formation due to water-rock interactions - Case study: Magnus oilfield (UK, Northern North Sea)

    Science.gov (United States)

    Mu, Nana; Fu, Yunjiao; Schulz, Hans-Martin; van Berk, Wolfgang

    2016-01-01

    It is the aim of this contribution to test whether organic-inorganic interactions could induce the formation of authigenic albite. This concept and related results are being compared with modelling scenarios which are purely based on inorganic geochemical reactions. In order to unravel the pathway of authigenic albite formation, this paper presents results of a multidisciplinary study from imaging, geochemistry, mineralogy, and hydrogeochemical modelling. The Jurassic reservoir sandstones of the Magnus oilfield (UK, North Sea) were chosen as a test site. Albite occurs with 4-18 wt.% in the Magnus sandstones and its contents vary with depth. However, albite contents increase with increasing K-feldspar contents and decreasing grain size. It occurs in three forms: (1) as lamellae in perthite, (2) as overgrowth on/in corroded feldspar, and, (3) as cloudy replacing albite patches in K-feldspar. The albite overgrowth has the highest chemical purity (100% albite) whilst albite lamellae and replacing albite patches are slightly less pure (containing 1-4% anorthite). Albite appears non-altered, and has a euhedral morphology and dull cathodoluminescence. It commonly co-occurs with corroded K-feldspar grains. The precipitation of diagenetic albite in the Magnus sandstones is attributed to deep burial 80 Ma ago and may have continued until today at temperatures between 90-120 °C. The results of hydrogeochemical modelling offer two possible pathways for the authigenic albite formation: (1) Dissolution of unstable minerals (such as kaolinite and chalcedony) coupled to reduction of ferric iron minerals by products generated during oil generation, migration and degradation; (2) Dissolution of non-end member feldspar, such as K-feldspar with 10% albite, coupled to illite formation can account for trace amounts of albite due to an elevated Na+/K+ activity ratio in the pore water.

  14. Watershed-scale drivers of air-water CO2 exchanges in two lagoonal, North Carolina (USA) estuaries

    Science.gov (United States)

    Van Dam, B.; Crosswell, J.; Anderson, I. C.; Paerl, H. W.

    2017-12-01

    Riverine loading of nutrients and organic matter act in concert to modulate CO2 fluxes in estuaries, yet quantitative relationships between these factors remain poorly defined. This study explored watershed-scale mechanisms responsible for the relatively low CO2 fluxes observed in two microtidal, lagoonal estuaries. Air-water CO2 fluxes were quantified with 74 high-resolution spatial surveys in the neighboring New River Estuary (NewRE) and Neuse River Estuary (NeuseRE), North Carolina, which experience a common climatology, but differ in marine versus riverine influence. Annually, both estuaries were relatively small sources of CO2 to the atmosphere, 12.5 and 16.3 mmol C m2 d-1 in the NeuseRE and NewRE, respectively. Variations in riverine alkalinity and inorganic carbon loading caused zones of minimum buffering capacity to occur at different locations in each estuary, enhancing the sensitivity of estuarine inorganic C chemistry to acidification. Large-scale pCO2 variations were driven by changes in freshwater age (akin to residence time), which modulate nutrient and organic carbon supply and phytoplankton flushing. Greatest pCO2 under-saturation was observed at intermediate freshwater ages, between 2-3 weeks. Biological controls on CO2 fluxes were obscured by variable inputs of river-borne CO2, which drove CO2 degassing in the river-dominated NeuseRE. Internally produced CO2 exceeded river-borne CO2 in the marine-dominated NewRE, suggesting that net ecosystem heterotrophy, rather than riverine inputs, drove CO2 fluxes in this system. Although annual CO2 fluxes were similar between systems, watershed-specific hydrologic factors led to disparate controls on internal carbonate chemistry, which can influence overall ecosystem health and response to future perturbation.

  15. Determination of the watering scheme for naturally grown cane sugar cultures during the maturing period in the north of the Ivory Coast

    International Nuclear Information System (INIS)

    Langellier, P.

    1980-01-01

    In order to produce sugar canes of optimum richness at the time of harvesting, it is necessary to determine the duration of the weaning period and the water requirements prior to this period. This problem was studied for a naturally grown cane with a NCo 376 cycle grown in the north of the Ivory coast. Water balances were determined using neutronic and tensiometric methods. It was thus possible to confirm the practical usefulness of tensiometers and to establish a weaning period of one month and a half and to determine a vegetation coefficient K=0.5 [fr

  16. Water-quality and algal conditions in the North Umpqua River basin, Oregon, 1992-95, and indications for resource management

    Science.gov (United States)

    Anderson, Chauncey W.; Carpenter, Kurt D.

    1998-01-01

    This report describes the results of a synoptic water-quality and algal investigation during July 1995 at 36 stream sites in a 1,350 square-mile area of the North Umpqua River Basin, Oregon. The study area includes a headwaters hydroelectric project area, a Wild and Scenic reach in the main stem immediately downstream, and the watersheds of several major tributaries. Additional data from previous investigations are reviewed, and impacts on water quality in the Wild and Scenic reach from resource management, including forestry and reservoir operations, are inferred where sufficient data exist.

  17. Modelling deep-water formation in the north-west Mediterranean Sea with a new air-sea coupled model: sensitivity to turbulent flux parameterizations

    Science.gov (United States)

    Seyfried, Léo; Marsaleix, Patrick; Richard, Evelyne; Estournel, Claude

    2017-12-01

    In the north-western Mediterranean, the strong, dry, cold winds, the Tramontane and Mistral, produce intense heat and moisture exchange at the interface between the ocean and the atmosphere leading to the formation of deep dense waters, a process that occurs only in certain regions of the world. The purpose of this study is to demonstrate the ability of a new coupled ocean-atmosphere modelling system based on MESONH-SURFEX-SYMPHONIE to simulate a deep-water formation event in real conditions. The study focuses on summer 2012 to spring 2013, a favourable period that is well documented by previous studies and for which many observations are available. Model results are assessed through detailed comparisons with different observation data sets, including measurements from buoys, moorings and floats. The good overall agreement between observations and model results shows that the new coupled system satisfactorily simulates the formation of deep dense water and can be used with confidence to study ocean-atmosphere coupling in the north-western Mediterranean. In addition, to evaluate the uncertainty associated with the representation of turbulent fluxes in strong wind conditions, several simulations were carried out based on different parameterizations of the flux bulk formulas. The results point out that the choice of turbulent flux parameterization strongly influences the simulation of the deep-water convection and can modify the volume of the newly formed deep water by a factor of 2.

  18. The variation of the water deficit during the winter wheat growing season and its impact on crop yield in the North China Plain.

    Science.gov (United States)

    Wu, Jianjun; Liu, Ming; Lü, Aifeng; He, Bin

    2014-11-01

    The North China Plain (NCP) is one of the main agricultural areas in China. However, it is also widely known for its water shortages, especially during the winter wheat growing season. Recently, climate change has significantly affected the water environment for crop growth. Analyzing the changes in the water deficit, which is only affected by climate factor, will help to improve water management in the NCP. In this study, the Decision Support System for Agrotechnology Transfer (DSSAT) was used to investigate the variations in the water deficit during the winter wheat growing season from 1961 to 2010 in 12 selected stations in the NCP. To represent the changes in the water deficit without any artificial affection, the rainfed simulation was used. Over the past 50 years, the average temperature during the winter wheat growing season increased approximately 1.42 °C. The anthesis date moved forward approximately 7-10 days and to late April, which increased the water demand in April. Precipitation in March and May showed a positive trend, but there was a negative trend in April. The water deficit in late April and early May became more serious than before, with an increasing trend of more than 0.1 mm/year. In addition, because the heading stage, which is very important to crop yield of winter wheat, moved forward, the impact of water deficit in late April was more serious to crop yield.

  19. Stable isotopes and amphibole chemistry on hydrothermally altered granitoids in the North Chilean Precordillera: a limited role for meteoric water?

    NARCIS (Netherlands)

    Agemar, T.; Wörner, G.; Heumann, A.

    1999-01-01

    Whole rock and mineral stable isotope and microprobe analyses are presented from granitoids of the North Chilean Precordillera. The Cretaceous to Tertiary plutonic rocks contain important ore deposits and frequently display compositional and textural evidence of hydrothermal alteration even in

  20. Occurrence and partitioning of phenolic endocrine-disrupting chemicals (EDCs) between surface water and suspended particulate matter in the north Tai Lake basin, eastern China.

    Science.gov (United States)

    Zhang, Yi-Zhang; Meng, Wei; Zhang, Yuan

    2014-02-01

    Concentrations and distribution of octylphenol (OP), nonylphenol (NP), and bisphenol A (BPA) in surface water and suspended particulate matter (SPM) from the north Tai Lake basin, China were studied. Aqueous and particulate (dry weight) concentrations for OP, NP, and BPA varied from 10.5-1,175 ng/L to gradually increased from upstream to downstream. There were good correlations between particulate EDCs and particulate organic carbon, with correlation coefficients of 0.46-0.57. Regression analysis of in situ SPM-water partition coefficients (log K' oc) and log K ow for EDCs indicated that the hydrophobicity of chemicals greatly contributed to their SPM-water partitioning. Strong positive correlations (r = 0.68-0.82) among in situ log K' oc of OP, NP, and BPA and flow velocity of water were observed, indicating the critical importance of riverine hydrodynamics on the sorption of these compounds.

  1. Distribution of Escherichia coli and Enterococci in water, sediments, and bank soils along North Shore Channel between Bridge Street and Wilson Avenue, Metropolitan Water Reclamation District of Greater Chicago

    Science.gov (United States)

    Byappanahalli, Muruleedhara; Whitman, Richard L.; Shively, Dawn; Przybyla-Kelly, Katarzyna; Lukasik, Ashley M.

    2010-01-01

    The Metropolitan Water Reclamation District of Greater Chicago (MWRDGC) wished to know the distribution and potential sources of fecal indicator bacteria, E. coli and enterococci, in water, sediments, and upland soils along an upstream and downstream portion of the North Shore Channel (NSC) that is the receiving stream for the District’s North Side Water Reclamation Plant (NSWRP) outfall. Biweekly water and sediment samples were collected between August and October 2008 and included the following locations upstream of the outfall: Bridge Street (UPS-1), Oakton Street (UPS-2), the NSWRP outfall (OF), and downstream: Foster Avenue (DNS-1), and Wilson Avenue (DNS-2). E. coli and enterococci were consistently found in water and sediments at all sampling locations, with bacterial densities in water increasing below the NSWRP outfall; bacterial densities in sediment were more variable. On a relative measurement basis (i.e., 100 ml=100 g), both E. coli and enterococci densities were significantly higher in sediments than water. E. coli and enterococci were consistently recovered from bank soil along wooded, grassy, erosional, and depositional areas at two recreational parks, as well as other riparian areas along the river. Thus, soils along the river basin are likely sources of these bacteria to the NSC channel, introduced through runoff or other physical processes. Tributaries, such as the North Branch of the Chicago River (NBCR) that flow into NSC near Albany Ave, may provide a constant source of E. coli and enterococci to the NSC. Additionally, storm sewer outfalls may increase E. coli loadings to NSC during wet weather conditions. Our findings suggest that the abundance of nonpoint sources contributing to the overall fecal indicator bacteria (FIB) load in the NSC channel may complicate bacteria source determination and remediation efforts to protect the stream water quality.

  2. Thermohaline structure and water masses in the north of Antarctic Peninsula from data collected in situ by southern elephant seals (Mirounga leonina

    Directory of Open Access Journals (Sweden)

    Ilana E. K. C. Wainer

    2013-04-01

    Full Text Available The Western Antarctic Peninsula is rapidly warming and exhibits high indices of biodiversity concentrated mostly along its continental shelf. This region has great importance due to the the mixing caused by the interaction of waters from Weddell Sea (MW, Bransfield Strait (EB and the Antarctic Circumpolar Current (CCA transmits thermohaline characteristics and nutrients of different sites and finally connects with all the world’s oceans. However, studies focusing on the temporal variability of the region’s oceanographic conditions that finally determine the water mass formation are sparse due to the logistical difficulties of conducting oceanographic surveys and traditional monitoring during the winter. For this study, variations of the thermohaline structure and water masses in the vicinity and below the sea ice in the North of the Antarctic Peninsula (AP and Scotia Sea (SS were recorded between February and November 2008 by two female southern elephant seals (SES, Mirounga leonina tagged with Conductivity–Temperature–Depth/Satellite-Relay Data Logger (CTD–SRDL. One thousand three hundred and thirty vertical profiles of temperature and salinity were collected by seals which were tagged by the MEOP-BR Project team at the Elephant Island, South Shetlands. These profiles, together with spread state diagrams allowed the identification of water masses and their variances in the ocean’s vertical structure. Among the set of identified water masses we cite: Antarctic Surface Water (AASW, Winter Water (WW, Warm Deep Water (WDW, Modified Warm Deep Water (MWDW, Circumpolar Deep Water (CDW, Upper Circumpolar Deep Water (UCDW, Lower Circumpolar Deep Water (LCDW and Ice Shelf Water (ISW. Our results show that the oceanic vertical structure undergoes changes that cannot be traditionally monitored, particularly during the Austral winter and that SES are important and modern oceanographic data collection platforms allowing for the improvement of our

  3. Distribution and Sources of Dissolved Black Carbon in Surface Waters of the Chukchi Sea, Bering Sea, and the North Pacific Ocean

    Directory of Open Access Journals (Sweden)

    Motohiro Nakane

    2017-05-01

    Full Text Available Pyrogenic carbon, also called black carbon (BC, is an important component in the global carbon cycle. BC produced by biomass burning or fossil fuel combustion is transported to oceans by the atmosphere or rivers. However, environmental dynamics (i.e., major sources and sinks of BC in marine environments have not been well-documented. In this study, dissolved BC (DBC collected from surface waters of the Chukchi Sea, the Bering Sea, and the subarctic and subtropical North Pacific were analyzed using the benzene polycarboxylic acid (BPCA method. The DBC concentration and the ratio of B5CA and B6CA to all BPCAs (an index of the DBC condensation degree ranged from 4.8 to 15.5 μg-C L−1 and from 0.20 to 0.43, respectively, in surface waters of the Chukchi/Bering Seas and the North Pacific Ocean. The concentration and condensation degree of DBC in the Chukchi/Bering Seas were higher and more variable than those in the subarctic and subtropical North Pacific, which implies that the major factors controlling DBC distribution were different in these marine provinces. In the Chukchi/Bering Seas, the DBC concentration was negatively correlated to salinity but positively correlated to chromophoric dissolved organic matter (CDOM quantity and total dissolved lignin phenol concentration estimated by CDOM parameters. These correlations indicated that the possible major source of DBC in the Chukchi/Bering Seas was Arctic rivers. However, in the North Pacific, where riverine inputs are negligible for most sampling sites, DBC was possibly derived from the atmosphere. Although spectral slopes of CDOM at 275–295 nm (an index of the photodegradation degree of CDOM differed widely between the subarctic and subtropical North Pacific, the concentration and condensation degrees of DBC were similar between the subarctic and subtropical North Pacific, which suggests that photodegradation was not the only major factor controlling DBC distribution. Therefore, DBC

  4. Distribution and sources of dissolved black carbon in surface waters of the Chukchi Sea, Bering Sea, and the North Pacific Ocean

    Science.gov (United States)

    Nakane, Motohiro; Ajioka, Taku; Yamashita, Youhei

    2017-05-01

    Pyrogenic carbon, also called black carbon (BC), is an important component in the global carbon cycle. BC produced by biomass burning or fossil fuel combustion is transported to oceans by the atmosphere or rivers. However, environmental dynamics (i.e., major sources and sinks) of BC in marine environments have not been well documented. In this study, dissolved BC (DBC) collected from surface waters of the Chukchi Sea, the Bering Sea, and the subarctic and subtropical North Pacific were analyzed using the benzene polycarboxylic acid (BPCA) method. The DBC concentration and the ratio of B5CA and B6CA to all BPCAs (an index of the DBC condensation degree) ranged from 4.8 to 15.5 µg-C L-1 and from 0.20 to 0.43, respectively, in surface waters of the Chukchi/Bering Seas and the North Pacific Ocean. The concentration and condensation degree of DBC in the Chukchi/Bering Seas were higher and more variable than those in the subarctic and subtropical North Pacific, which implies that the major factors controlling DBC distribution were different in these marine provinces. In the Chukchi/Bering Seas, the DBC concentration was negatively correlated to salinity but positively correlated to chromophoric dissolved organic matter (CDOM) quantity and total dissolved lignin phenol concentration estimated by CDOM parameters. These correlations indicated that the possible major source of DBC in the Chukchi/Bering Seas was Arctic rivers. However, in the North Pacific, where riverine inputs are negligible for most sampling sites, DBC was possibly derived from the atmosphere. Although spectral slopes of CDOM at 275-295 nm (an index of the photodegradation degree of CDOM) differed widely between the subarctic and subtropical North Pacific, the concentration and condensation degrees of DBC were similar between the subarctic and subtropical North Pacific, which suggests that photodegradation was not the only major factor controlling DBC distribution. Therefore, DBC distributions of the

  5. Temperature profile and water depth data collected from AMERICAN RESERVIST using BT and XBT casts in the North Pacific Ocean from 20 January 1974 to 29 September 1977 (NODC Accession 8900287)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using BT and XBT casts from the AMERICAN RESERVIST in the North Pacific Ocean and TOGA Area - Pacific Ocean....

  6. Current profile data collected aboard NOAA Ship Ronald Brown during cruise RB0708 in the North Atlantic Ocean and coastal waters of Florida from 2007-09-11 to 2007-09-22 (NCEI Accession 0131294)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0131294 includes physical underway data collected aboard NOAA Ship Ronald Brown during cruise RB0708 in the North Atlantic Ocean and coastal waters of...

  7. Temperature profile and water depth data collected from HMAS DARWIN and other platforms using BT and XBT casts in the North / South Pacific Ocean and Indian Ocean from 29 April 1985 to 12 April 1988 (NODC Accession 8800166)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using BT and XBT casts from the HMAS DARWIN and other platforms in the North / South Pacific Ocean and Indian...

  8. Observations of carbon dioxide in the surface waters of the Eastern North Pacific Ocean and the Bering Sea from 21 July 1968 to 03 September 1968 (NODC Accession 7100114)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Measurements of the equilibrium concentration of carbon dioxide in the air and surface waters of the North Pacific Ocean and the Bering Sea are presented....

  9. Long term study of monsoon effect on the distribution of Calanus sinicus in the waters of Taiwan, western North Pacific Ocean

    Science.gov (United States)

    Hwang, J.-S.; Souissi, S.; Li-Chun Tseng, L.-C.; Molinero, J. C.; Chen, Q.-C.; Wong, C.-K.

    2012-04-01

    Calanus sinicus (Copepoda: Calanoida) has a key role in the dynamics of marine food web and also on fish recruitment in the west Pacific Ocean, particularly in the Yellow Sea, the East China Sea and the coastal waters of Japan. The spatial distribution of this copepod can be traced further south such as north and west of Taiwan, Hong Kong, Hi-Nan Island and Vietnam. To understand the mechanism of how this key species distributes spatially and temporally, two long-term monitoring programs of the planktonic copepods have been conducted since 1998. The spatio-temporal distribution pattern of this copepod in the studied areas showed a clear relationship between the intrusions of cold-water mass of the China Coastal Currents (CCC) during the northeast monsoons into north and west Taiwan thus transporting this copepod further south with high concentrations. Calanus sinicus can be considered a biological tracer of CCC during NE monsoon originating from the Yellow Sea and the East China Sea to the north and west of Taiwan and further south up to Hong Kong, Hi-Nan and Vietnam. Keywords: Monsoon, China coastal Current, Calanus sinicus, indicator species

  10. Effect of Nitrogen and Irrigation Application on Water Movement and Nitrogen Transport for a Wheat Crop under Drip Irrigation in the North China Plain

    Directory of Open Access Journals (Sweden)

    Juan Sui

    2015-11-01

    Full Text Available For improving water scarcity and groundwater pollution from agriculture, two-year experiments (2011–2013 with three water levels (0.3, 0.5 and 0.8 evaporation (E in 20-cm-diameter pans and four nitrogen (N levels (120, 140 and 190 kg·ha−1 in 2012 and 120, 190 and 290 kg·ha−1 in 2013 were conducted to study effects of water and N availability on water movement and N transport for a wheat crop under drip irrigation in the North China Plain. The results indicated that under drip irrigation, deep percolation at 1-m depth was stable at 0.5–0.8 E with the same N rate for winter wheat. At 0.5–0.8 E, deep percolation was also relatively stable with increasing N rate from 120 to 140 kg·ha−1 or from 190 to 290 kg·ha−1. The irrigation schedule and N rates only affected N leaching below the root zone of winter wheat (60-cm depth, while the N residual in the soil layer presented more risk to the environment than N leaching. In general, the 290-kg-ha−1 N level was not recommended using drip fertigation for winter wheat in the North China Plain. The empirical equation given by the Ministry of Geology and Mineral Resources was also not recommended for estimating the drainage under drip irrigation.

  11. Observation of oxygen ventilation into deep waters through targeted deployment of multiple Argo-O2 floats in the north-western Mediterranean Sea in 2013

    Science.gov (United States)

    Coppola, L.; Prieur, L.; Taupier-Letage, I.; Estournel, C.; Testor, P.; Lefevre, D.; Belamari, S.; LeReste, S.; Taillandier, V.

    2017-08-01

    During the winter 2013, an intense observation and monitoring was performed in the north-western Mediterranean Sea to study deep water formation process that drives thermohaline circulation and biogeochemical processes (HYMEX SOP2 and DEWEX projects). To observe intensively and continuously the impact of deep convection on oxygen (O2) ventilation, an observation strategy was based on the enhancement of the Argo-O2 floats to monitor the offshore dense water formation area (DWF) in the Gulf of Lion prior to and at the end of the convective period (December 2012 to April 2013). The intense O2 measurements performed through shipborne CTD casts and Argo-O2 floats deployment revealed an O2 inventory rapidly impacted by mixed layer (ML) deepening on the month scale. The open-sea convection in winter 2013 ventilated the deep waters from mid-February to the end of May 2013. The newly ventilated dense water volume, based on an Apparent Oxygen Utilization (AOU) threshold, was estimated to be about 1.5 × 1013 m3 during the DWF episode, increasing the deep O2 concentrations from 196 to 205 µmol kg-1 in the north-western basin.

  12. Experimental evidence of site specific preferential processing of either ice algae or phytoplankton by benthic macroinfauna in Lancaster Sound and North Water Polynyas, Canada

    Science.gov (United States)

    Mäkelä, Anni; Witte, Ursula; Archambault, Philippe

    2016-04-01

    Rapid warming is dramatically reducing the extent and thickness of summer sea ice of the Arctic Ocean, changing both the quantity and type of marine primary production as the longer open water period favours phytoplankton growth and reduces ice algal production. The benthic ecosystem is dependent on this sinking organic matter for source of energy, and ice algae is thought to be a superior quality food source due to higher essential fatty acid content. The resilience of the benthos to changing quality and quantity of food was investigated through sediment incubation experiments in the summer 2013 in two highly productive Arctic polynyas in the North Water and Lancaster Sound, Canada. The pathways of organic matter processing and contribution of different organisms to these processes was assessed through 13C and 15N isotope assimilation into macroinfaunal tissues. In North Water Polynya, the total and biomass specific uptake of ice algal derived C and N was higher than the uptake of phytoplankton, whereas an opposite trend was observed in Lancaster Sound. Polychaetes, especially individuals of families Sabellidae and Spionidae, unselectively ingested both algal types and were significant in the overall organic matter processing at both sites. Feeding preference was observed in crustaceans, which preferentially fed on ice algae at Lancaster Sound, but preferred phytoplankton in North Water Polynya. Bivalves also had a significant role in the organic matter processing overall, but only showed preferential feeding on phytoplankton at Lancaster Sound polynya. Overall the filter feeders and surface deposit feeders occupying lowest trophic levels were responsible for majority of the processing of both algal types. The results provide direct evidence of preferential resource utilisation by benthic macrofauna and highlight spatial differences in the processes. This helps to predict future patterns of nutrient cycling in Arctic sediments, with implications to benthic

  13. Occurrence of Selected Pharmaceutical and Organic Wastewater Compounds in Effluent and Water Samples from Municipal Wastewater and Drinking-Water Treatment Facilities in the Tar and Cape Fear River Basins, North Carolina, 2003-2005

    Science.gov (United States)

    Ferrell, G.M.

    2009-01-01

    Samples of treated effluent and treated and untreated water were collected at 20 municipal wastewater and drinkingwater treatment facilities in the Tar and Cape Fear River basins of North Carolina during 2003 and 2005. The samples were analyzed for a variety of prescription and nonprescription pharmaceutical compounds and a suite of organic compounds considered indicative of wastewater. Concentrations of these compounds generally were less than or near the detection limits of the analytical methods used during this investigation. None of these compounds were detected at concentrations that exceeded drinking-water standards established by the U.S. Environmental Protection Agency. Bromoform, a disinfection byproduct, was the only compound detected at a concentration that exceeded regulatory guidelines. The concentration of bromoform in one finished drinking-water sample, 26 micrograms per liter, exceeded North Carolina water-quality criteria. Drinking-water treatment practices were effective at removing many of the compounds detected in untreated water. Disinfection processes used in wastewater treatment - chlorination or irradiation with ultraviolet light - did not seem to substantially degrade the organic compounds evaluated during this study.

  14. 'Natural background' soil water repellency in conifer forests of the north-western USA: Its prediction and relationship to wildfire occurrence

    Science.gov (United States)

    Doerr, S.H.; Woods, S.W.; Martin, D.A.; Casimiro, M.

    2009-01-01

    Soils under a wide range of vegetation types exhibit water repellency following the passage of a fire. This is viewed by many as one of the main causes for accelerated post-fire runoff and soil erosion and it has often been assumed that strong soil water repellency present after wildfire is fire-induced. However, high levels of repellency have also been reported under vegetation types not affected by fire, and the question arises to what degree the water repellency observed at burnt sites actually results from fire. This study aimed at determining 'natural background' water repellency in common coniferous forest types in the north-western USA. Mature or semi-mature coniferous forest sites (n = 81), which showed no evidence of recent fires and had at least some needle cast cover, were sampled across six states. After careful removal of litter and duff at each site, soil water repellency was examined in situ at the mineral soil surface using the Water Drop Penetration Time (WDPT) method for three sub-sites, followed by collecting near-surface mineral soil layer samples (0-3 cm depth). Following air-drying, samples were further analyzed for repellency using WDPT and contact angle (??sl) measurements. Amongst other variables examined were dominant tree type, ground vegetation, litter and duff layer depth, slope angle and aspect, elevation, geology, and soil texture, organic carbon content and pH. 'Natural background' water repellency (WDPT > 5 s) was detected in situ and on air-dry samples at 75% of all sites examined irrespective of dominant tree species (Pinus ponderosa, Pinus contorta, Picea engelmanii and Pseudotsuga menziesii). These findings demonstrate that the soil water repellency commonly observed in these forest types following burning is not necessarily the result of recent fire but can instead be a natural characteristic. The notion of a low background water repellency being typical for long-unburnt conifer forest soils of the north-western USA is

  15. Understanding farmers' intention and behavior regarding water conservation in the Middle-East and North Africa: a case study in Iran.

    Science.gov (United States)

    Yazdanpanah, Masoud; Hayati, Dariush; Hochrainer-Stigler, Stefan; Zamani, Gholam Hosein

    2014-03-15

    There is a high risk of serious water shortages in Middle-East and North African countries. To decrease this threat water conservation strategies are gaining overall importance and one main focus is now on farmer's behavior. Among other dimensions it is assumed that normative issues play an important role in predicting environmental oriented intentions and actual actions. To empirically test the possible interactions the Theory of Planned Behavior was used, revised and expanded for the specific case on water management issues and applied to Iranian farmers. The results could not validate the TPB framework which emphasizes the importance of perceived behavioral control for intention and actual behavior and findings are much more in line with the Theory of Reasoned Action. Normative inclinations as well as perception of risk are found to be important for intention as well as actual water conservation behavior. Additionally, the importance and linkages of the dimensions are found to be different between sub-groups of farmers, especially between traditional water management farmers and those who already using advanced water management strategies. This raises the question if one-fits-all behavioral models are adequate for practical studies where sub-groups may very much differ in their actions. Still, our study suggests that in the context of water conservation, normative inclination is a key dimension and it may be useful to consider the role of positive, self-rewarding feelings for farmers when setting up policy measures in the region. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. The six year report: Acidification of surface water in Europe and North America. Dose/response relationships and long-term trends

    Energy Technology Data Exchange (ETDEWEB)

    Skjelkvaale, B.L.; Newell, A.D.; Raddum, G.; Johannessen, M.; Hovind, H.; Tjomsland, T.; Wathne, B.M.

    1994-12-31

    This report discusses The International Cooperative Programme on Assessment and Monitoring of Acidification of Rivers and Lakes, which is designed to (1) establish degree and extent of acidification of surface waters, (2) evaluate dose/response relationships and (3) define long-term trends and variations in aquatic chemistry and biota attributable to atmospheric pollution. Data from 200 sites in 14 countries of Europe and North America are available. Dose/response relationships show that the fauna is adapted to different water qualities in different regions, and that critical limits for the fauna must be calculated according to data for the specific region. Long-term trends of water chemistry show decreases in SO{sub 4}{sup 2-} and Ca{sup 2+} at many sites. Nitrate shows no consistent trends. 66 refs., 26 figs., 16 tabs.

  17. [Study of the bacteriological quality of water used in the agro-food industry in the North of Morocco].

    Science.gov (United States)

    Haijoubi, El Houcine; Benyahya, Fatiha; Bendahou, Abdrezzak; Essadqui, Faima Zahra; Behhari, Mohammed El; El Mamoune, Ahmed Fouad; Ghailani, Naima Nourouti; Mechita, Mohcine Bennani; Barakat, Amina

    2017-01-01

    Water is used predominantly in food manufacturing process. Northern morocco agro-food industries use different sources of water, but public water and wells water are the main sources of water used. This water can be the main source of possible food contaminations and alterations. This study aims is to assess the bacteriological quality of water used in the agro-food industries in the Northern region of Morocco, to identify the different types of germs responsible for the pollution of these waters and to establish the main causes of this pollution. Water samples taken from taps or wells were analyzed to detect pollution indicator germs (total coliform (TC), fecal coliform (FC), intestinal enterococci (E), revivable microorganisms (RM), sulphite-reducing anaerobes) and pathogens (Salmonella, Staphylococci, Pseudomonas aeruginosa). The enumeration of the bacteria was performed by filtration technique and incorporation obtained through supercooled solid state. The results showed that public-supply waters were of satisfactory bacteriological quality while 40% of the wells water was non-compliant with water quality standards due to the presence of TC, FC, E and RM pollution indicators. In contrast, pathogens, particularly Salmonellae, were absent in all the wells water analyzed. Well water pollution was generally due to failure to meet hygienic requirements for water pumping. Bacteriological quality of these wells water could be improved by adequate protection.

  18. Scale-4 analysis of pressurized water reactor critical configurations: Volume 5, North Anna Unit 1 Cycle 5

    International Nuclear Information System (INIS)

    Bowman, S.M.; Suto, T.

    1996-10-01

    ANSI/ANS 8.1 requires that calculational methods for away-from- reactor (AFR) criticality safety analyses be validated against experiment. This report summarizes part of the ongoing effort to benchmark AFR criticality analysis methods using selected critical configurations from commercial PWRs. Codes and data in the SCALE-4 code system were used. This volume documents the SCALE system analysis of one reactor critical configuration for North Anna Unit 1 Cycle 5. The KENO V.a criticality calculations for the North Anna 1 Cycle 5 beginning-of-cycle model yielded a value for k eff of 1. 0040±0.0005

  19. Influence of mining activities in the North of Potosi, Bolivia on the water quality of the Chayanta River, and its consequences.

    Science.gov (United States)

    Rojas, Jenny C; Vandecasteele, Carlo

    2007-09-01

    Mining activity in the North of Potosi (Siglo XX mine, Ingenio Catavi-Siglo XX, Pucro mine and Colquechaca mine) produces minewater containing high concentrations of heavy metals such as As (0.02-34 mg/l), Cd (45-11,600 microg/l), Cu (0.35-32 mg/l), Fe (42-1,010 mg/l), Pb(33-3,130 microg/l), Ni(20-4,320 microg/l), and Zn (1.1-485 mg/l), that exceed considerably the limit values. The rivers in the North of Potosi (Katiri and Pongoma) that do not receive minewater contain clear water with rather low heavy metal concentrations. These rivers and also other rivers contaminated with minewater, are tributaries of the Chayanta River that transports water with a high concentration of heavy metals such as As (6-24 microg/l), Cd (260-2,620 microg/l), Cu (205-812 microg/l), Pb(10-21 microg/l) and Ni(110-332 microg/l). These elements result from mining activity, as indicated by a comparison with rivers not contaminated by minewater discharges. Water of the Chayanta River, used all year long by the population of Quila Quila, (a village situated at about 75 km from the mining centers), for the irrigation of crops such as potato, maize and broad bean, contains heavy metal concentrations exceeding for several elements the guidelines for irrigation. As drinking water the population of Quila Quila consumes spring water with a generally acceptable heavy metal concentration, as well as infiltrated water of Chayanta River (which is also used in animal drinking troughs) with a high concentration of Cd (23-63 microg/l), exceeding the limit value for drinking water. The metal concentration is significantly lower in the infiltrated water than in the water of Chayanta River. Some technological solutions are suggested to improve the quality of the water used. Surveys carried out on inhabitants of the region, showed that many people present health problems, probably to be attributed to the bad quality of the water they consume and use for irrigation.

  20. Evaluation and trends of land cover, streamflow, and water quality in the North Canadian River Basin near Oklahoma City, Oklahoma, 1968–2009

    Science.gov (United States)

    Esralew, Rachel A.; Andrews, William J.; Smith, S. Jerrod

    2011-01-01

    The U.S. Geological Survey, in cooperation with the city of Oklahoma City, collected water-quality samples from the North Canadian River at the streamflow-gaging station near Harrah, Oklahoma (Harrah station), since 1968, and at an upstream streamflow-gaging station at Britton Road at Oklahoma City, Oklahoma (Britton Road station), since 1988. Statistical summaries and frequencies of detection of water-quality constituent data from water samples, and summaries of water-quality constituent data from continuous water-quality monitors are described from the start of monitoring at those stations through 2009. Differences in concentrations between stations and time trends for selected constituents were evaluated to determine the effects of: (1) wastewater effluent discharges, (2) changes in land-cover, (3) changes in streamflow, (4) increases in urban development, and (5) other anthropogenic sources of contamination on water quality in the North Canadian River downstream from Oklahoma City. Land-cover changes between 1992 and 2001 in the basin between the Harrah station and Lake Overholser upstream included an increase in developed/barren land-cover and a decrease in pasture/hay land cover. There were no significant trends in median and greater streamflows at either streamflow-gaging station, but there were significant downward trends in lesser streamflows, especially after 1999, which may have been associated with decreases in precipitation between 1999 and 2009 or construction of low-water dams on the river upstream from Oklahoma City in 1999. Concentrations of dissolved chloride, lead, cadmium, and chlordane most frequently exceeded the Criterion Continuous Concentration (a water-quality standard for protection of aquatic life) in water-quality samples collected at both streamflow-gaging stations. Visual trends in annual frequencies of detection were investigated for selected pesticides with frequencies of detection greater than 10 percent in all water samples

  1. Changes in water mass exchange between the NW shelf areas and the North Atlantic and their impact on nutrient/carbon cycling

    Science.gov (United States)

    Gröger, Matthias; Maier-Reimer, Ernst; Mikolajewicz, Uwe; Segschneider, Joachim; Sein, Dimitry

    2010-05-01

    Despite their comparatively small extension on a global scale, shelf areas are of interest for several economic reasons and climatic processes related to nutrient cycling, sea food supply, and biological productivity. Moreover, they constitute an important interface for nutrients, pollutants and freshwater on their pathway from the continents to the open ocean. This modelling study aims to investigate the spatial and temporal variability of water mass exchange between the North Atlantic and the NW European shelf and their impact on nutrient/carbon cycling and biological productivity. For this, a new modeling approach has been set up which bridges the gap between pure shelf models where water mass transports across the model domain too strongly depend on the formulation of open boundaries and global models suffering under their too coarse resolution in shelf regions. The new model consists of the global ocean and carbon cycle model MPIOM/HAMOCC with strongly increased resolution in the North Sea and the North Atlantic coupled to the regional atmosphere model REMO. The model takes the full luni-solar tides into account. It includes further a 12 layer sediment module with the relevant pore water chemistry. The main focus lies on the governing mechanisms of water mass exchange across the shelf break and the imprint on shelf biogeochemistry. For this, artificial tracers with a prescribed decay rate have been implemented to distinguish waters arriving from polar and shelf regions and those that originate from the tropics. Experiments were carried out for the years 1948 - 2007. The relationship to larger scale circulation patterns like the position and variability of the subtropical and subpolar gyres is analyzed. The water mass exchange is analyzed with respect to the nutrient concentration and productivity on the European shelf areas. The implementation of tides leads to an enhanced vertical mixing which causes lower sea surface temperatures compared to simulations

  2. North Atlantic Deep Water export to the Southern Ocean over the past 14 Myr: Evidence from Nd and Pb isotopes in ferromanganese crusts

    Science.gov (United States)

    Frank, M.; Whiteley, N.; Kasten, S.; Hein, J.R.; O'Nions, K.

    2002-01-01

    The intensity of North Atlantic Deep Water (NADW) production has been one of the most important parameters controlling the global thermohaline ocean circulation system and climate. Here we present a new approach to reconstruct the overall strength of NADW export from the North Atlantic to the Southern Ocean over the past 14 Myr applying the deep water Nd and Pb isotope composition as recorded by ferromanganese crusts and nodules. We present the first long-term Nd and Pb isotope time series for deep Southern Ocean water masses, which are compared with previously published time series for NADW from the NW Atlantic Ocean. These data suggest a continuous and strong export of NADW, or a precursor of it, into the Southern Ocean between 14 and 3 Ma. An increasing difference in Nd and Pb isotope compositions between the NW Atlantic and the Southern Ocean over the past 3 Myr gives evidence for a progressive overall reduction of NADW export since the onset of Northern Hemisphere glaciation (NHG). The Nd isotope data allow us to assess at least semiquantitatively that the amount of this reduction has been in the range between 14 and 37% depending on location.

  3. Use of Satellite-Derived Water Vapor Data to Investigate Northwestward Expansion of North Pacific Subtropical High During 1995 Summer: Westward Propagating Moisture Pattern

    Science.gov (United States)

    Sohn, Byung-Ju; Chung, Hyo-Sang; Kim, Do-Hyung; Perkey, Donald; Robertson, Franklin R.; Smith, Eric A.; Arnold, James E. (Technical Monitor)

    2001-01-01

    The spatial and temporal evolution of the moisture field over the subtropical northwest Pacific during the summer of 1995 is investigated using daily total precipitable water from combined SSM/I-TOVS data and pentad upper tropospheric humidity (UTH) data, in conjunction with NCEP reanalysis data. From analysis of the combined water vapor field, the westward movement of a dry airmass is observed along the 20-30 degrees N latitude zone from near the dateline to the south of Japan throughout the summer of 1995. Extended EOF analysis of total precipitable water reveals that the westward moving pattern takes place in conjunction with an expanding North Pacific subtropical high maintaining an oscillatory component exhibiting a period of some 15-25 days. A concomitant dipole-like oscillating anomalous circulation with approximately a 20-day period between the South China Sea and south of Japan appears to influence the westward expansion of the subtropical high. The analysis also suggests that the fluctuations of the North Pacific high are in response to a local Hadley-type circulation which is induced by westward-moving anomalous convection episodes along 10-20 degrees N.

  4. North Sea research projects ZISCH and PRISMA: application of total-reflection x-ray spectrometry in sea-water analysis

    International Nuclear Information System (INIS)

    Haarich, M.; Schmidt, D.; Freimann, P.; Jacobsen, A.

    1993-01-01

    Since 1986, the ''Bundesamt fur Seeschiffahrt und Hydrographie'' (BSH), has participated in two interdisciplinary North Sea research projects involving trace heavy metal analysis in sea-water. The analysis of heavy metals (such as manganese, iron, nickel, copper, zinc and lead) in sea-water samples has been performed previously by application of total-reflection X-ray fluorescence spectrometry (TXRF). Samples obtained on the first cruise of the following project ''Processes in the Pollutant Transfer between Sea and Atmosphere'' (PRISMA) in September and October 1990, covering parts of the northern North Sea and Atlantic Ocean, were also analysed by TXRF. Results from these two surveys and from the first PRISMA drift experiments in the German Bight in April 1991 show the concentration ranges and variabilities of some heavy metals and are presented here. The ability of TXRF, in connection with tested procedures for sampling, matrix separation and enrichment, to master large quantities of trace heavy metal analyses in sea-water with sufficient analytical quality is demonstrated. (author)

  5. Retrospective Case Study in Killdeer, North Dakota, Study of the Potential Impacts of Hydraulic Fracturing on Drinking Water Resources.

    Science.gov (United States)

    This report describes the retrospective case study conducted near Killdeer, Dunn County, North Dakota. The Killdeer study area is the location of historical oil and gas production, with current unconventional oil and gas production occurring in the late Devonian/early Mississipp...

  6. Parasitic prevalences in fresh water prawn Macrobrachium rosenbergii in north and south 24 Parganas districts of West Bengal

    OpenAIRE

    Monjit Paul; Mukti Chanda; Joydev Maity; Supriya Sen Gupta; Bidhan Chandra Patra; Gadadhar Dash

    2010-01-01

    The occurrence of different freshwater prawn (Macrobrachium rosenbergii) parasites, found during the period from April to August 2007, was investigated in different freshwater wetlands of north and south 24 Parganas districts of West Bengal state in India. Eleven parasites - Zoothamnium, Epistylis, Gregarina, Amphileptus, Dileptus, Myxobolus, Chilodonella, Balladyna, Gozia, Rhabdochona, Indocucullanus, Procamallanus and Cucullanus - were found after examining 1,000 specimens of Macrobrachium ...

  7. Emergency control system based on the analytical hierarchy process and coordinated development degree model for sudden water pollution accidents in the Middle Route of the South-to-North Water Transfer Project in China.

    Science.gov (United States)

    Long, Yan; Xu, Guobin; Ma, Chao; Chen, Liang

    2016-06-01

    Water transfer projects are important for realizing reasonable allocation of water resources, but once a water pollution accident occurs during such a project, the water environment is exposed to enormous risks. Therefore, it is critical to determine an appropriate emergency control system (ECS) for sudden water pollution accidents that occur in water transfer projects. In this study, the analytical hierarchy process (AHP) integrated with the coordinated development degree model (CDDM) was used to develop the ECS. This ECS was developed into two parts, including the emergency risk assessment and the emergency control. Feasible emergency control targets and control technology were also proposed for different sudden water pollution accidents. A demonstrative project was conducted in the Fangshui to Puyang channel, which is part of the Beijing-Shijiazhuang Emergency Water Supply Project (BSP) in the Middle Route of the South-to-North Water Transfer Project (MR-SNWTP) in China. However, we could not use an actual toxic soluble pollutant to validate our ECS, so we performed the experiment with sucrose to test the ECS based on its concentration variation. The relative error of peak sucrose concentration was less than 20 %.

  8. Towards health impact assessment of drinking-water privatization--the example of waterborne carcinogens in North Rhine-Westphalia (Germany).

    Science.gov (United States)

    Fehr, Rainer; Mekel, Odile; Lacombe, Martin; Wolf, Ulrike

    2003-01-01

    Worldwide there is a tendency towards deregulation in many policy sectors - this, for example, includes liberalization and privatization of drinking-water management. However, concerns about the negative impacts this might have on human health call for prospective health impact assessment (HIA) on the management of drinking-water. On the basis of an established generic 10-step HIA procedure and on risk assessment methodology, this paper aims to produce quantitative estimates concerning health effects from increased exposure to carcinogens in drinking-water. Using data from North Rhine-Westphalia in Germany, probabilistic estimates of excess lifetime cancer risk, as well as estimates of additional cases of cancer from increased carcinogen exposure levels are presented. The results show how exposure to contaminants that are strictly within current limits could increase cancer risks and case-loads substantially. On the basis of the current analysis, we suggest that with uniform increases in pollutant levels, a single chemical (arsenic) is responsible for a large fraction of expected additional risk. The study also illustrates the uncertainty involved in predicting the health impacts of changes in water quality. Future analysis should include additional carcinogens, non-cancer risks including those due to microbial contamination, and the impacts of system failures and of illegal action, which may be increasingly likely to occur under changed management arrangements. If, in spite of concerns, water is privatized, it is particularly important to provide adequate surveillance of water quality.

  9. Bilateral and multilateral agreements and other arrangements in Europe and North America on the protection and use of transboundary waters. Addendum. 1994 Update

    International Nuclear Information System (INIS)

    1995-01-01

    The present document is issued pursuant to the decision taken by the Committee on Environmental Policy at its first session (ECE/CEP/1) to revise and update annually the 1993 list of Bilateral and Multilateral Agreements and Other Arrangements in Europe and North America on the Protection and Use of Transboundary Waters (ECE/ENVWA/32) and to publish a completely revised and updated version of the consolidated list of agreements at three-yearly intervals. By 31 December 1994, additions and amendments to this document had been submitted by the delegations of Austria, Croatia, Netherlands, Russian Federation and Slovakia. These have been incorporated into the present document

  10. Silicate:nitrate ratios of upwelled waters control the phytoplankton community sustained by mesoscale eddies in sub-tropical North Atlantic and Pacific

    Directory of Open Access Journals (Sweden)

    T. S. Bibby

    2011-03-01

    Full Text Available Mesoscale eddies in sub-tropical gyres physically perturb the water column and can introduce macronutrients to the euphotic zone, stimulating a biological response in which phytoplankton communities can become dominated by large phytoplankton. Mesoscale eddies may therefore be important in driving export in oligotrophic regions of the modern ocean. However, the character and magnitude of the biological response sustained by eddies is variable. Here we present data from mesoscale eddies in the Sargasso Sea (Atlantic and the waters off Hawai'i (Pacific, alongside mesoscale events that affected the Bermuda Atlantic Time-Series Study (BATS over the past decade. From this analysis, we suggest that the phytoplankton community structure sustained by mesoscale eddies is predetermined by the relative abundance of silicate over nitrate (Si* in the upwelled waters. We present data that demonstrate that mode-water eddies (MWE in the Sargasso Sea upwell locally formed waters with relatively high Si* to the euphotic zone, and that cyclonic eddies in the Sargasso Sea introduce waters with relatively low Si*, a signature that originated in the iron-limited Southern Ocean. We propose that this phenomenon can explain the observed dominance of the phytoplankton community by large-diatom species in MWE and by small prokaryotic phytoplankton in cyclonic features. In contrast to the Atlantic, North Pacific Intermediate Water (NPIW with high Si* may influence the cyclonic eddies in waters off Hawai'i, which also appear capable of sustaining diatom populations. These observations suggest that the structure of phytoplankton communities sustained by eddies may be related to the chemical composition of the upwelled waters in addition to the physical nature of the eddy.

  11. Projected sea level rise, gyre circulation and water mass formation in the western North Pacific: CMIP5 inter-model analysis

    Science.gov (United States)

    Terada, Mio; Minobe, Shoshiro

    2017-09-01

    Future changes in the dynamic sea level (DSL), which is defined as sea-level deviation from the global mean sea level, is investigated over the North Pacific, by analyzing data from the Coupled Model Intercomparison Project Phase 5. The analysis provides more comprehensive descriptions of DSL responses to the global warming in this region than available from previous studies, by using surface and subsurface data until the year 2300 under middle and high greenhouse-gas emission scenarios. The DSL changes in the North Pacific are characterized by a DSL rise in the western North Pacific around the Kuroshio Extension (KE), as also reported by previous studies. Subsurface density analysis indicates that DSL rise around the KE is associated with decrease in density of subtropical mode water (STMW) and with northward KE migration, the former (latter) of which is relatively strong between 2000 and 2100 for both RCP4.5 and RCP8.5 (between 2100 and 2300 for RCP8.5). The STMW density decrease is related to large heat uptake to the south and southeast of Japan, while the northward KE migration is associated with the poleward shift of the wind stress field. These features are commonly found in multi-model ensemble means and the relations among representative quantities produced by different climate models.

  12. Interaction of water components in the semi-arid Huasco and Limarí river basins, North Central Chile

    Directory of Open Access Journals (Sweden)

    G. Strauch

    2009-10-01

    Full Text Available For sustainable water resource management in semi-arid regions, sound information is required about interactions between the different components of the water system: rain/snow precipitation, surface/subsurface run-off, groundwater recharge. Exemplarily, the Huasco and Limarí river basins as water stressed river catchments have been studied by isotope and hydrochemical methods for (i the origin of water, (ii water quality, (iii relations of surface and groundwater.

    Applying the complex multi-isotopic and hydrochemical methodology to the water components of the Huasco and Limarí basins, a differentiation of water components concerning subsurface flow and river water along the catchment area and by anthropogenic impacts are detected. Sulphate and nitrate concentrations indicate remarkable input from mining and agricultural activities along the river catchment.

    The 2H-18O relations of river water and groundwater of both catchments point to the behaviour of river waters originated in an arid to semi-arid environment.

    Consequently, the groundwater from several production wells in the lower parts of the catchments is related to the rivers where the wells located, however, it can be distinguished from the river water. Using the hydrological water balance and the isotope mixing model, the interaction between surface and subsurface flows and river flow is estimated.

  13. Future changes in water requirements of Boro rice in the face of climate change in North-West Bangladesh

    NARCIS (Netherlands)

    Acharjee, Tapos Kumar; Ludwig, Fulco; Halsema, van Gerardo; Hellegers, Petra; Supit, Iwan

    2017-01-01

    Understanding future changes in crop water requirements and irrigation demand in the context of climate change is essential for long-term water resources management and agricultural planning. This study investigates the impacts of climate change on future water requirements of dry season Boro

  14. Changing forest water yields in response to climate warming: results from long-term experimental watershed sites across North America

    Science.gov (United States)

    Irena F. Creed; Adam T. Spargo; Julia A. Jones; Jim M. Buttle; Mary B. Adams; Fred D. Beall; Eric G. Booth; John L. Campbell; Dave Clow; Kelly Elder; Mark B. Green; Nancy B. Grimm; Chelcy Miniat; Patricia Ramlal; Amartya Saha; Stephen Sebestyen; Dave Spittlehouse; Shannon Sterling; Mark W. Williams; Rita Winkler; Huaxia. Yao

    2014-01-01

    Climate warming is projected to affect forest water yields but the effects are expected to vary.We investigated how forest type and age affect water yield resilience to climate warming. To answer this question, we examined the variability in historical water yields at long-term experimental catchments across Canada and the United States over 5-year cool and warm...

  15. Preliminary hydrogeologic assessment and study plan for a regional ground-water resource investigation of the Blue Ridge and Piedmont provinces of North Carolina

    Science.gov (United States)

    Daniel, Charles C.; Dahlen, Paul R.

    2002-01-01

    Prolonged drought, allocation of surface-water flow, and increased demands on ground-water supplies resulting from population growth are focuses for the need to evaluate ground-water resources in the Blue Ridge and Piedmont Provinces of North Carolina. Urbanization and certain aspects of agricultural production also have caused increased concerns about protecting the quality of ground water in this region. More than 75 percent of the State's population resides in the Blue Ridge and Piedmont Provinces in an area that covers 30,544 square miles and 65 counties. Between 1940 and 2000, the population in the Piedmont and Blue Ridge Provinces increased from 2.66 to 6.11 million; most of this increase occurred in the Piedmont. Of the total population, an estimated 1.97 million people, or 32.3 percent (based on the 1990 census), relied on ground water for a variety of uses, including commercial, industrial, and most importantly, potable supplies. Ground water in the Blue Ridge and Piedmont traditionally has not been considered as a source for large supplies, primarily because of readily available and seemingly limitless surface-water supplies, and the perception that ground water in the Blue Ridge and Piedmont Provinces occurs in a complex, generally heterogeneous geologic environment. Some reluctance to use ground water for large supplies derives from the reputation of aquifers in these provinces for producing low yields to wells, and the few high-yield wells that are drilled seem to be scattered in areas distant from where they are needed. Because the aquifers in these provinces are shallow, they also are susceptible to contamination by activities on the land surface. In response to these issues, the North Carolina Legislature supported the creation of a Resource Evaluation Program to ensure the long-term availability, sustainability, and quality of ground water in the State. As part of the Resource Evaluation Program, the North Carolina Division of Water Quality

  16. Virulence Profiles of Vibrio vulnificus in German Coastal Waters, a Comparison of North Sea and Baltic Sea Isolates.

    Science.gov (United States)

    Bier, Nadja; Jäckel, Claudia; Dieckmann, Ralf; Brennholt, Nicole; Böer, Simone I; Strauch, Eckhard

    2015-12-15

    Vibrio vulnificus is a halophilic bacterium of coastal environments known for sporadically causing severe foodborne or wound infections. Global warming is expected to lead to a rising occurrence of V. vulnificus and an increasing incidence of human infections in Northern Europe. So far, infections in Germany were exclusively documented for the Baltic Sea coast, while no cases from the North Sea region have been reported. Regional variations in the prevalence of infections may be influenced by differences in the pathogenicity of V. vulnificus populations in both areas. This study aimed to compare the distribution of virulence-associated traits and genotypes among 101 V. vulnificus isolates from the Baltic Sea and North Sea in order to assess their pathogenicity potential. Furthermore, genetic relationships were examined by multilocus sequence typing (MLST). A high diversity of MLST sequences (74 sequence types) and differences regarding the presence of six potential pathogenicity markers were observed in the V. vulnificus populations of both areas. Strains with genotypes and markers associated with pathogenicity are not restricted to a particular geographic region. This indicates that lack of reported cases in the North Sea region is not caused by the absence of potentially pathogenic strains.

  17. Virulence Profiles of Vibrio vulnificus in German Coastal Waters, a Comparison of North Sea and Baltic Sea Isolates

    Directory of Open Access Journals (Sweden)

    Nadja Bier

    2015-12-01

    Full Text Available Vibrio vulnificus is a halophilic bacterium of coastal environments known for sporadically causing severe foodborne or wound infections. Global warming is expected to lead to a rising occurrence of V. vulnificus and an increasing incidence of human infections in Northern Europe. So far, infections in Germany were exclusively documented for the Baltic Sea coast, while no cases from the North Sea region have been reported. Regional variations in the prevalence of infections may be influenced by differences in the pathogenicity of V. vulnificus populations in both areas. This study aimed to compare the distribution of virulence-associated traits and genotypes among 101 V. vulnificus isolates from the Baltic Sea and North Sea in order to assess their pathogenicity potential. Furthermore, genetic relationships were examined by multilocus sequence typing (MLST. A high diversity of MLST sequences (74 sequence types and differences regarding the presence of six potential pathogenicity markers were observed in the V. vulnificus populations of both areas. Strains with genotypes and markers associated with pathogenicity are not restricted to a particular geographic region. This indicates that lack of reported cases in the North Sea region is not caused by the absence of potentially pathogenic strains.

  18. Simulation of the hydrogeologic effects of oil-shale mining on the neighbouring wetland water balance: case study in north-eastern Estonia

    Science.gov (United States)

    Marandi, Andres; Karro, Enn; Polikarpus, Maile; Jõeleht, Argo; Kohv, Marko; Hang, Tiit; Hiiemaa, Helen

    2013-11-01

    The water balance of wetlands plays an integral role in their function. Developments adjacent to wetlands can affect their water balance through impacts on groundwater flow and increased discharge in the area, and they can cause lowering of the wetland water table. A 430 km2 area was selected for groundwater modelling to asses the effect of underground mining on the water balance of wetlands in north-eastern Estonia. A nature conservation area (encompassing Selisoo bog) is within 3 km of an underground oil-shale mine. Two future mining scenarios with different areal extents of mining were modeled and compared to the present situation. Results show that the vertical hydraulic conductivity of the subsurface is of critical importance to potential wetland dewatering as a result of mining. Significant impact on the Selisoo bog water balance will be caused by the approaching mine but there will be only minor additional impacts from mining directly below the bog. The major impact will arise before that stage, when the underground mine extension reaches the border of the nature conservation area; since the restriction of activities in this area relates to the ground surface, the conservation area’s border is not sufficiently protective in relation to underground development.

  19. Sediment pore-water interactions associated with arsenic and uranium transport from the North Cave Hills mining region, South Dakota, USA

    International Nuclear Information System (INIS)

    Larson, Lance N.; Kipp, Gregory G.; Mott, Henry V.; Stone, James J.

    2012-01-01

    The extent of historical U mining impacts is well documented for the North Cave Hills region of Harding County, South Dakota, USA. While previous studies reported watershed sediment and surface water As and U concentrations up to 90× established background concentrations, it was unclear whether or how localized changes in sediment redox behavior may influence contaminant remobilization. Five pore-water equilibration samplers (peepers) were spatially and temporally deployed within the study area to evaluate seasonal solid–liquid As and U distributions as a function of sediment depth. Pore-water and solid phase As and U concentrations, Fe speciation, Eh and pH were measured to ascertain specific geochemical conditions responsible for As and U remobilization and transport behavior. At a mine overburden sedimentation pond adjacent to the mine sites, high total aqueous As and U concentrations (4920 and 674 μg/L, respectively) were found within surface water during summer sampling; however pond dredging prior to autumn sampling resulted in significantly lower aqueous As and U concentrations (579 and 108 μg/L, respectively); however, both As and U still exceeded regional background concentrations (20 and 18 μg/L, respectively). At a wetlands-dominated deposition zone approximately 2 km downstream of the sedimentation pond, pore-water geochemical conditions varied seasonally. Summer conditions promoted reducing conditions in pore water, resulting in active release of As(III) to the water column. Autumn conditions promoted oxidizing conditions, decreasing pore-water As (As pw ) 5× and increasing U pw 10×. Peak U pore-water concentrations (781 μg/L) were 3.5× greater than determined for the surface water (226 μg/L), and approximately 40× background concentrations. At the Bowman–Haley reservoir backwaters 45 km downstream from the mine sites, As and U pore-water concentrations increased significantly between the summer and autumn deployments, attributed to

  20. Water quality of the Ogallala Formation, central High Plains aquifer within the North Plains Groundwater Conservation District, Texas Panhandle, 2012-13

    Science.gov (United States)

    Baldys, Stanley; Haynie, Monti M.; Beussink, Amy M.

    2014-01-01

    In cooperation with the North Plains Groundwater Conservation District (NPGCD), the U.S. Geological Survey collected and analyzed water-quality samples at 30 groundwater monitor wells in the NPGCD in the Texas Panhandle. All of the wells were completed in the Ogallala Formation of the central High Plains aquifer. Samples from each well were collected during February–March 2012 and in March 2013. Depth to groundwater in feet below land surface was measured at each well before sampling to determine the water-quality sampling depths. Water-quality samples were analyzed for physical properties, major ions, nutrients, and trace metals, and 6 of the 30 samples were analyzed for pesticides. There was a strong relation between specific conductance and dissolved solids as evidenced by a coefficient of determination (R2) value of 0.98. The dissolved-solids concentration in water from five wells exceeded the secondary drinking-water standard of 500 milligrams per liter set by the U.S. Environmental Protection Agency. Water from 3 of these 5 wells was near the north central part of the NPGCD. Nitrate values exceeded the U.S. Environmental Protection Agency maximum contaminant level of 10 milligrams per liter in 2 of the 30 wells. A sodium-adsorption ratio of 23.4 was measured in the sample collected from well Da-3589 in Dallam County, with the next largest sodium-adsorption ratio measured in the sample collected from well Da-3588 (12.5), also in Dallum County. The sodium-adsorption ratios measured in all other samples were less than 10. The groundwater was generally a mixed cation-bicarbonate plus carbonate type. Twenty-three trace elements were analyzed, and no concentrations exceeded the secondary drinking-water standard or maximum contaminant level set by the U.S. Environmental Protection Agency for water supplies. In 2012, 6 of the 30 wells were sampled for commonly used pesticides. Atrazine and its degradate 2-Chloro-4-isopropylamino-6-amino-s-triazine were detected in

  1. Foraminiferal Zn/Ca: New Insights as to Glacial-Interglacial Changes in North Atlantic Deep Water Fluxes to the Southern Ocean

    Science.gov (United States)

    James, R. H.; Austin, W.; Rogers, N. W.

    2002-12-01

    The subantarctic section of the Southern Ocean is particularly suited to monitoring fluctuations in the global influence of North Atlantic Deep Water (NADW), but proxy data for past NADW fluxes into this region taken from sediment cores have yielded conflicting information. Variations in benthic foraminiferal δ13C and Nd isotope ratios in the Fe-Mn oxide component of sediments support the idea of a weakening or shutdown of NADW production during glacial times, whereas other proxies, such as Cd/Ca, Ba/Ca and 231Pa/230Th ratios, show little change from the Last Glacial Maximum (LGM) to the Holocene epoch. Because of the potential importance of deep water circulation for global climate change, it is imperative to find new tracers for reconstructing changes in water mass composition. One such tracer is Zn. Firstly, there is a particularly large (~sevenfold) increase in Zn between the deep North Atlantic and the deep South Atlantic, so Zn will be a sensitive tracer of the glacial-interglacial interactions between NADW and southern source deep waters such as Circumpolar Deep Water (CPDW). Secondly, Zn is associated with the refractory parts of planktonic material produced in surface waters, so the Zn concentration of deep waters will be less sensitive to changes in surface productivity than other proxy data (Cd and δ13C). Finally, because Zn has a long residence time in the oceans (a few thousand to tens of thousand years) relative to the estimated residence time of CPDW (~120 years), then bottom water Zn concentrations respond to changes in NADW fluxes on a sub-millenial timescale. In order to test this idea, we have measured the glacial-interglacial variation of Zn/Ca (and also Mg/Ca, Sr/Ca and Cd/Ca) in benthic foraminifera recovered from the subantarctic Southern Ocean (ODP Site 1089). Preliminary results obtained to date suggest that Zn/Ca is lower during interglacials and this is thought to reflect stronger influence of NADW (with low Zn) at this site. In

  2. Clinical pathology reference intervals for an in-water population of juvenile loggerhead sea turtles (Caretta caretta in Core Sound, North Carolina, USA.

    Directory of Open Access Journals (Sweden)

    Terra R Kelly

    Full Text Available The loggerhead sea turtle (Caretta caretta is found throughout the waters of the Atlantic, Pacific, and Indian Oceans. It is a protected species throughout much of its range due to threats such as habitat loss, fisheries interactions, hatchling predation, and marine debris. Loggerheads that occur in the southeastern U.S. are listed as "threatened" on the U.S. Endangered Species List, and receive state and federal protection. As part of an on-going population assessment conducted by the National Marine Fisheries Service, samples were collected from juvenile loggerhead sea turtles in Core Sound, North Carolina, between 2004 and 2007 to gain insight on the baseline health of the threatened Northwest Atlantic Ocean population. The aims of the current study were to establish hematologic and biochemical reference intervals for this population, and to assess variation of the hematologic and plasma biochemical analytes by season, water temperature, and sex and size of the turtles. Reference intervals for the clinical pathology parameters were estimated following Clinical Laboratory Standards Institute guidelines. Season, water temperature, sex, and size of the turtles were found to be significant factors of variation for parameter values. Seasonal variation could be attributed to physiological effects of decreasing photoperiod, cooler water temperature, and migration during the fall months. Packed cell volume, total protein, and albumin increased with increasing size of the turtles. The size-related differences in analytes documented in the present study are consistent with other reports of variation in clinical pathology parameters by size and age in sea turtles. As a component of a health assessment of juvenile loggerhead sea turtles in North Carolina, this study will serve as a baseline aiding in evaluation of trends for this population and as a diagnostic tool for assessing the health and prognosis for loggerhead sea turtles undergoing

  3. The combined impact of land use change and aquaculture on sediment and water quality in oligotrophic Lake Rupanco (North Patagonia, Chile, 40.8°S).

    Science.gov (United States)

    León-Muñoz, Jorge; Echeverría, Cristian; Marcé, Rafael; Riss, Wolfgang; Sherman, Bradford; Iriarte, Jose Luis

    2013-10-15

    Water and sediment quality in North Patagonia's large, oligotrophic lakes are expected to suffer as native forest continues to be fragmented and degraded by its conversion to cropping and pasture land uses. These changes in land use are expected to increase diffuse nutrient loads to the region's lakes. In addition, these lakes are home to the world's second largest salmon aquaculture industry which provides additional point sources of nutrients within the lakes. We studied the combined influences of land use change and salmon farming on the nutrient concentrations in a North Patagonian lake (Lake Rupanco, 233 km(2) water surface, 163 m average depth) in four sub-watersheds ranging in disturbance from near-pristine forest to 53% converted to cropping and pasture. Nitrogen exports from the tributary sub-watersheds increased from 33 kg TN/km(2)/y to 621 kg TN/km(2)/y as the proportion of crop and pasture land increased. The combined nutrient load from land use change and salmon farming has led to significant differences in the nitrogen concentrations of the lake's water column and sediments in the near-shore zones across the lake. Total nitrogen concentrations in the sediments varied from 37 ± 18 mg/kg in near-pristine sub-watersheds without salmon farming to 6400 ± 698 mg/kg where the sub-watershed was dominated by crop and pasture lands combined with the presence of salmon farming. These results demonstrate the importance of considering the impacts of both salmon farming and land use on water and sediment quality for future environmental planning, management and decision making. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Clinical Pathology Reference Intervals for an In-Water Population of Juvenile Loggerhead Sea Turtles (Caretta caretta) in Core Sound, North Carolina, USA

    Science.gov (United States)

    Kelly, Terra R.; McNeill, Joanne Braun; Avens, Larisa; Hall, April Goodman; Goshe, Lisa R.; Hohn, Aleta A.; Godfrey, Matthew H.; Mihnovets, A. Nicole; Cluse, Wendy M.; Harms, Craig A.

    2015-01-01

    The loggerhead sea turtle (Caretta caretta) is found throughout the waters of the Atlantic, Pacific, and Indian Oceans. It is a protected species throughout much of its range due to threats such as habitat loss, fisheries interactions, hatchling predation, and marine debris. Loggerheads that occur in the southeastern U.S. are listed as “threatened” on the U.S. Endangered Species List, and receive state and federal protection. As part of an on-going population assessment conducted by the National Marine Fisheries Service, samples were collected from juvenile loggerhead sea turtles in Core Sound, North Carolina, between 2004 and 2007 to gain insight on the baseline health of the threatened Northwest Atlantic Ocean population. The aims of the current study were to establish hematologic and biochemical reference intervals for this population, and to assess variation of the hematologic and plasma biochemical analytes by season, water temperature, and sex and size of the turtles. Reference intervals for the clinical pathology parameters were estimated following Clinical Laboratory Standards Institute guidelines. Season, water temperature, sex, and size of the turtles were found to be significant factors of variation for parameter values. Seasonal variation could be attributed to physiological effects of decreasing photoperiod, cooler water temperature, and migration during the fall months. Packed cell volume, total protein, and albumin increased with increasing size of the turtles. The size-related differences in analytes documented in the present study are consistent with other reports of variation in clinical pathology parameters by size and age in sea turtles. As a component of a health assessment of juvenile loggerhead sea turtles in North Carolina, this study will serve as a baseline aiding in evaluation of trends for this population and as a diagnostic tool for assessing the health and prognosis for loggerhead sea turtles undergoing rehabilitation. PMID

  5. Clinical pathology reference intervals for an in-water population of juvenile loggerhead sea turtles (Caretta caretta) in Core Sound, North Carolina, USA.

    Science.gov (United States)

    Kelly, Terra R; McNeill, Joanne Braun; Avens, Larisa; Hall, April Goodman; Goshe, Lisa R; Hohn, Aleta A; Godfrey, Matthew H; Mihnovets, A Nicole; Cluse, Wendy M; Harms, Craig A

    2015-01-01

    The loggerhead sea turtle (Caretta caretta) is found throughout the waters of the Atlantic, Pacific, and Indian Oceans. It is a protected species throughout much of its range due to threats such as habitat loss, fisheries interactions, hatchling predation, and marine debris. Loggerheads that occur in the southeastern U.S. are listed as "threatened" on the U.S. Endangered Species List, and receive state and federal protection. As part of an on-going population assessment conducted by the National Marine Fisheries Service, samples were collected from juvenile loggerhead sea turtles in Core Sound, North Carolina, between 2004 and 2007 to gain insight on the baseline health of the threatened Northwest Atlantic Ocean population. The aims of the current study were to establish hematologic and biochemical reference intervals for this population, and to assess variation of the hematologic and plasma biochemical analytes by season, water temperature, and sex and size of the turtles. Reference intervals for the clinical pathology parameters were estimated following Clinical Laboratory Standards Institute guidelines. Season, water temperature, sex, and size of the turtles were found to be significant factors of variation for parameter values. Seasonal variation could be attributed to physiological effects of decreasing photoperiod, cooler water temperature, and migration during the fall months. Packed cell volume, total protein, and albumin increased with increasing size of the turtles. The size-related differences in analytes documented in the present study are consistent with other reports of variation in clinical pathology parameters by size and age in sea turtles. As a component of a health assessment of juvenile loggerhead sea turtles in North Carolina, this study will serve as a baseline aiding in evaluation of trends for this population and as a diagnostic tool for assessing the health and prognosis for loggerhead sea turtles undergoing rehabilitation.

  6. Baseline risk assessment of ground water contamination at the inactive uraniferous lignite ashing site near Belfield, North Dakota. Revision 1

    International Nuclear Information System (INIS)

    1994-09-01

    This risk assessment evaluates the potential for impacts to public health or the environment from contaminated ground water at this site caused by the burning of coal containing uranium to produce uranium. Potential risk is quantified for constituents introduced from the processing activities and not for those constituents naturally occurring in background ground water in the site vicinity. Because background ground water quality has the potential to cause adverse health effects from exposure through drinking, any risks associated with contaminants attributable to site activities are incremental to these risks from background. The incremental risk from site-related contaminants is quantified in this risk assessment. The baseline risk from background water quality is incorporated only into the assessment of potential chemical interactions and the definition of the overall site condition. The US Department of Energy's (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project is developing plans to remedy soil and ground water contamination at the site. The UMTRA Surface Project consists of determining the extent of soil contamination and disposing of the contaminated soils in an engineered disposal cell. The UMTRA Ground Water Project consists of evaluating ground water contamination. Under the UMTRA Ground Water Project, results of this risk assessment will help determine what ground water compliance strategy may be applied at the site

  7. Quantitative analysis of yield and soil water balance for summer maize on the piedmont of the North China Plain using AquaCrop

    Directory of Open Access Journals (Sweden)

    Jingjing WANG,Feng HUANG,Baoguo LI

    2015-12-01

    Full Text Available The North China Plain (NCP is a major grain production area in China, but the current winter wheat-summer maize system has resulted in a large water deficit. This water-shortage necessitates the improvement of crop water productivity in the NCP. A crop water model, AquaCrop, was adopted to investigate yield and water productivity (WP for rain-fed summer maize on the piedmont of the NCP. The data sets to calibrate and validate the model were obtained from a 3-year (2011—2013 field experiment conducted on the Yanshan piedmont of the NCP. The range of root mean square error (RMSE between the simulated and measured biomass was 0.67—1.25 t·hm-2, and that of relative error (RE was 9.4%—15.4%, the coefficient of determination (R2 ranged from 0.992 to 0.994. The RMSE between the simulated and measured soil water storage at depth of 0—100 cm ranged from 4.09 to 4.39 mm; and RE and R2 in the range of 1.07%—1.20% and 0.880—0.997, respectively. The WP as measured by crop yield per unit evapotranspiration was 2.50—2.66 kg·m-3. The simulated impact of long-term climate (i.e., 1980—2010 and groundwater depth on crop yield and WP revealed that the higher yield and WP could be obtained in dry years in areas with capillary recharge from groundwater, and much lower values elsewhere. The simulation also suggested that supplementary irrigation in areas without capillary groundwater would not result in groundwater over-tapping since the precipitation can meet the water required by both maize and ecosystem, thus a beneficial outcome for both food and ecosystem security can be assured.

  8. Water and Gender in Recreating Family Life with Maa Ganga: The Confluence of Nature and Culture in a North Indian River Pilgrimage

    Directory of Open Access Journals (Sweden)

    Catrien Notermans

    2016-11-01

    Full Text Available This article studies the meaning of water and gender in the North Indian pilgrimage to the sacred river Ganges. It joins the recent criticism in anthropology concerning the nature/culture divide and aims to transcend that divide by focusing on water, not apart from but as part of social life. Assuming that water’s sociality is gendered, the authors look at how both the river water—itself as a landscape material—and the pilgrims’ engagements with that water are gendered. Starting from the central question: How do men’s and women’s ritual engagements with the sacred female river water (mutually construct social life? The article investigates men’s and women’s ritual use of water at different sites. It focuses on more than the central pilgrimage shrine and links the sacred river site to people’s homes to know how the moving river water, collected by pilgrims at the shrine, is used in water rituals back home. Trying to counterbalance the male and scriptural bias which is prominent in the literature on Ganges’ pilgrimage sites, the pilgrimage is studied from the perspective of lived religion that takes people’s embodied practices and sensory experiences of nature into account as well as people’s everyday life. By showing how men’s and women’s rituals differ and complement each other, it argues that men’s rituals at the pilgrimage site and women’s rituals at home serve the recreation of the family in a paired way. The argument is built on longitudinal and multi-sited ethnographic fieldwork at the Ganges river shrine in Haridwar (Uttarakhand and pilgrims’ residence in Udaipur (Rajasthan.

  9. Impacts of fertilizer additions on water quality of a drained pine plantation in North Carolina. A worst case scenario.

    Science.gov (United States)

    Bray J. Beltran; Devendra M. Amatya; Martin Jones; R. Wayne Skaggs; William Neal Reynolds; Timothy J. Callahan; Jami E. Nettles

    2008-01-01

    Abstract. Intensive plantation forestry will be increasingly important in the next 50 years to meet the high demand for domestic wood in the US. However, forestry management practices can substantially influence downstream water quality and ecology. In this study, the effect of fertilization on drainage water quality of a coastal pine plantation located in Carteret...

  10. Impact of North Atlantic Treaty Organization Policies and Procedures on Combined Medical Operations: Food and Water Safety and Veterinary Support.

    Science.gov (United States)

    Stevenson, Timothy H; Chevalier, Nicole A; Scher, Gregory R; Burke, Ronald L

    2016-01-01

    Effective multilateral military operations such as those conducted by the North Atlantic Treaty Organization (NATO) require close cooperation and standardization between member nations to ensure interoperability. Failure to standardize policies, procedures, and doctrine prior to the commencement of military operations will result in critical interoperability gaps, which jeopardize the health of NATO forces and mission success. To prevent these gaps from occurring, US forces must be actively involved with NATO standardization efforts such as the Committee of the Chiefs of Medical Services to ensure US interests are properly represented when NATO standards are developed and US doctrine and procedures will meet the established NATO requirements.

  11. Typhlocirolana longimera sp. n. (Crustacea, Isopoda, Cirolanidae from north-western Algerian ground waters with notes on Algerian Typhlocirolana

    Directory of Open Access Journals (Sweden)

    Abdelhakim Mahi

    2017-03-01

    Full Text Available A new species of hypogean cirolanid isopod, Typhlocirolana longimera sp. n. is reported and described from a region located in north-western Algeria. Typhlocirolana longimera sp. n. can be distinguished from all other species of the genus especially by the peculiar shape of the merus of pereiopod I longer than in any other Typhlocirolana species, and for the presence of 6 molariform robust conical robust setae, the bottle shape of uropods and the aesthetasc formula of flagellum in antennulae. The presence in the same region of the two already known species T. fontis and T. gurneyi is also discussed.

  12. Hydrogeology, hydraulic characteristics, and water-quality conditions in the surficial, Castle Hayne and Peedee aquifers of the greater New Hanover County area, North Carolina, 2012-13

    Science.gov (United States)

    McSwain, Kristen Bukowski; Gurley, Laura N.; Antolino, Dominick J.

    2014-01-01

    A major issue facing the greater New Hanover County, North Carolina, area is the increased demand for drinking water resources as a result of rapid growth. The principal sources of freshwater supply in the greater New Hanover County area are withdrawals of surface water from the Cape Fear River and groundwater from the underlying Castle Hayne and Peedee aquifers. Industrial, mining, irrigation, and aquaculture groundwater withdrawals increasingly compete with public-supply utilities for freshwater resources. Future population growth and economic expansion will require increased dependence on high-quality sources of fresh groundwater. An evaluation of the hydrogeology and water-quality conditions in the surficial, Castle Hayne, and Peedee aquifers was conducted in New Hanover, eastern Brunswick, and southern Pender Counties, North Carolina. A hydrogeologic framework was delineated by using a description of the geologic and hydrogeologic units that compose aquifers and their confining units. Current and historic water-level, water-quality, and water-isotope data were used to approximate the present boundary between freshwater and brackish water in the study area. Water-level data collected during August–September 2012 and March 2013 in the Castle Hayne aquifer show that recharge areas with the highest groundwater altitudes are located in central New Hanover County, and the lowest are located in a discharge area along the Atlantic Ocean. Between 1964 and 2012, groundwater levels in the Castle Hayne aquifer in central New Hanover County have rebounded by about 10 feet, but in the Pages Creek area groundwater levels declined in excess of 20 feet. In the Peedee aquifer, the August–September 2012 groundwater levels were affected by industrial withdrawals in north-central New Hanover County. Groundwater levels in the Peedee aquifer declined more than 20 feet between 1964 and 2012 in northeastern New Hanover County because of increased withdrawals. Vertical gradients

  13. Solar heating and hot water system installed at Shoney's Restaurant, North Little Rock, Arkansas. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-08-01

    The solar heating system is designed to supply a major portion of the space and water heating requirements for a newly built Shoney's Big Boy Restaurant which was installed with completion occurring in December 1979. The restaurant has a floor space of approximately 4,650 square feet and requires approximately 1500 gallons of hot water daily. The solar energy system consists of 1,428 square feet of Chamberlain flat plate liquid collector subsystem, and a 1500 gallon storage subsystem circulating hot water producing 321 x 10/sup 6/ Btu/yr (specified) building heating and hot water heating. Designer - Energy Solutions, Incorporated. Contractor - Stephens Brothers, Incorporated. This report includes extracts from site files, specification references for solar modifications to existing building heating and hot water systems, drawings installation, operation and maintenance instructions.

  14. HYDRUS Simulation of Sustainable Brackish Water Irrigation in a Winter Wheat-Summer Maize Rotation System in the North China Plain

    Directory of Open Access Journals (Sweden)

    Kangkang He

    2017-07-01

    Full Text Available Freshwater resources in the North China Plain (NCP are near depletion due to the unceasing overexploitation of deep groundwater, by far the most significant source of freshwater in the region. To deal with the deepening freshwater crisis, brackish water (rich but largely unused water in agriculture is increasingly being used in irrigation in the region. However, inappropriate irrigation with brackish water could lead to soil salinization and cropland degradation. To evaluate such negative impacts, the HYDRUS-1D model was used to simulate soil salt transport and accumulation under 15 years of irrigation with brackish water. The irrigation scenarios included brackish water irrigation during the wintering and jointing stages of winter wheat and then freshwater irrigation just before the sowing of summer maize. Freshwater irrigation was done to leach out soil salts, which is particularly vital in dry years. For the littoral region of the plain, HYDRUS-ID was used to simulate the irrigated cropping system stated above for a total period of 15 years. The results showed that it was feasible to use brackish water twice in one year, provided freshwater irrigation was performed before sowing summer maize. Freshwater irrigation, in conjunction with precipitation, leached out soil salts from the 100 cm root-zone depth. The maximum salt accumulation was in the 160–220 cm soil layer, which ensured that root-zone soil was free of restrictive salinity for crop growth. Precipitation was a critical determinant of the rate and depth leaching of soil salt. Heavy rainfall (>100 mm caused significant leaching of soluble salts in the 0–200 cm soil profile. Salt concentration under brackish water irrigation had no significant effect on the variations in the trend of soil salt transport in the soil profile. The variations of soil salinity were mainly affected by hydrological year type, for which the buried depth of soil salt was higher in wet years than in dry years

  15. Late Quaternary paleoenvironments of an ephemeral wetland in North Dakota, USA: Relative interactions of ground-water hydrology and climate change

    Science.gov (United States)

    Yansa, C.H.; Dean, W.E.; Murphy, E.C.

    2007-01-01

    This study of fossils (pollen, plant macrofossils, stomata and fish) and sediments (lithostratigraphy and geochemistry) from the Wendel site in North Dakota, USA, emphasizes the importance of considering ground-water hydrology when deciphering paleoclimate signals from lakes in postglacial landscapes. The Wendel site was a paleolake from about 11,500 14C yr BP to 11,100 14C yr BP. Afterwards, the lake-level lowered until it became a prairie marsh by 9,300 14C yr BP and finally, at 8,500 14C yr BP, an ephemeral wetland as it is today. Meanwhile, the vegetation changed from a white spruce parkland (11,500 to 10,500 14C yr BP) to deciduous parkland, followed by grassland at 9,300 14C yr BP. The pattern and timing of these aquatic and terrestrial changes are similar to coeval kettle lake records from adjacent uplands, providing a regional aridity signal. However, two local sources of ground water were identified from the fossil and geochemical data, which mediated atmospheric inputs to the Wendel basin. First, the paleolake received water from the melting of stagnant ice buried under local till for about 900 years after glacier recession. Later, Holocene droughts probably caused the lower-elevation Wendel site to capture the ground water of up-gradient lakes. ?? 2007 Springer Science+Business Media, Inc.

  16. Society in the north depends on being able to fish in clean waters; Samfunnet i nord er avhengig av aa fiske i et reint hav

    Energy Technology Data Exchange (ETDEWEB)

    Vaage, Roald

    1997-12-31

    This presentation begins by putting the northern seas in a geographic and oceanographic context. This is important for the understanding of the threats and possibilities faced by Norway in the near waters when it comes to keeping these waters clean. Contaminations in Norwegian waters may be carried by the Gulf Stream straight into the Barents Sea to important fish areas west of Spitzbergen. Organic environmental poisons like PCB found in fish from the Barents Sea are mainly air transported. Radioactive contamination of fish from the Barents Sea is decreasing, although it has never been large, but the concentration of environmental poisons and extraneous matter is increasing. It causes concern that considerable concentrations of environmental poisons have been found in polar bears. People in the north of Norway, are not at present worried about clean sea or failing fish resources, but rather about the fact that strong interest groups and others will take an interest in the Barents Sea and adjacent seas. To qualify for an exploration licence for this area, oil companies must document that they will not compromise the purity of Europe`s cleanest seas. It now appears that the greatest threats to the Barents Sea may not come from northbound contaminated flows or from discharge of water from Russian rivers, but from petroleum activities in the area. Probably the petroleum activities will be subject to increasing attention from many sides and the companies will depend on keeping these areas in a clean condition. 12 figs.

  17. Changing forest water yields in response to climate warming: results from long-term experimental watershed sites across North America.

    Science.gov (United States)

    Creed, Irena F; Spargo, Adam T; Jones, Julia A; Buttle, Jim M; Adams, Mary B; Beall, Fred D; Booth, Eric G; Campbell, John L; Clow, Dave; Elder, Kelly; Green, Mark B; Grimm, Nancy B; Miniat, Chelcy; Ramlal, Patricia; Saha, Amartya; Sebestyen, Stephen; Spittlehouse, Dave; Sterling, Shannon; Williams, Mark W; Winkler, Rita; Yao, Huaxia

    2014-10-01

    Climate warming is projected to affect forest water yields but the effects are expected to vary. We investigated how forest type and age affect water yield resilience to climate warming. To answer this question, we examined the variability in historical water yields at long-term experimental catchments across Canada and the United States over 5-year cool and warm periods. Using the theoretical framework of the Budyko curve, we calculated the effects of climate warming on the annual partitioning of precipitation (P) into evapotranspiration (ET) and water yield. Deviation (d) was defined as a catchment's change in actual ET divided by P [AET/P; evaporative index (EI)] coincident with a shift from a cool to a warm period - a positive d indicates an upward shift in EI and smaller than expected water yields, and a negative d indicates a downward shift in EI and larger than expected water yields. Elasticity was defined as the ratio of interannual variation in potential ET divided by P (PET/P; dryness index) to interannual variation in the EI - high elasticity indicates low d despite large range in drying index (i.e., resilient water yields), low elasticity indicates high d despite small range in drying index (i.e., nonresilient water yields). Although the data needed to fully evaluate ecosystems based on these metrics are limited, we were able to identify some characteristics of response among forest types. Alpine sites showed the greatest sensitivity to climate warming with any warming leading to increased water yields. Conifer forests included catchments with lowest elasticity and stable to larger water yields. Deciduous forests included catchments with intermediate elasticity and stable to smaller water yields. Mixed coniferous/deciduous forests included catchments with highest elasticity and stable water yields. Forest type appeared to influence the resilience of catchment water yields to climate warming, with conifer and deciduous catchments more susceptible to

  18. Organochlorine pesticides and polychlorinated biphenyls along an east-to-west gradient in subtropical North Atlantic surface water.

    Science.gov (United States)

    Lammel, Gerhard; Spitzy, Alejandro; Audy, Ondřej; Beckmann, Sabine; Codling, Garry P; Kretzschmann, Lisett; Kukučka, Petr; Stemmler, Irene

    2017-04-01

    Despite the fact that most persistent toxic substances have hardly been primarily emitted for several decades, their concentrations are only slowly decreasing in the global oceans. Surface seawater samples were collected along a 38°-24° N/28°-67° W transect in the subtropical North Atlantic Ocean. While the concentration levels of hexachlorobenzene (2.1-6.1 pg L -1 ), dichlorodiphenyltrichloroethane (DDT, up to 2.1 pg L -1 ) and polychlorinated biphenyls (PCB, 10.8-24.9 pg L -1 ) were in the same range as observed earlier in the North Atlantic, hexachlorocyclohexane (HCH, 90-627 pg L -1 ) was found elevated, partly also relative to previous measurements in the same sea region. Hereby, the ratio α-HCH/γ-HCH was very low, 0.09-0.13. Chlordane and endosulfan were found in the range pollution patterns in surface seawaters seem to be determined by atmospheric and oceanic transport patterns, rather than by mixing and air-sea equilibrium. The comparison with global multicompartment chemistry-transport model predictions of surface seawater levels indicate underestimated degradation of PCBs and overestimated emissions of endosulfan.

  19. A Cryptosporidium hominis outbreak in north-west Wales associated with low oocyst counts in treated drinking water.

    Science.gov (United States)

    Mason, B W; Chalmers, R M; Carnicer-Pont, D; Casemore, D P

    2010-06-01

    An outbreak in the autumn of 2005 resulted in 218 confirmed cases of Cryptosporidium hominis. The attack rate (relative risk 4.1, 95%CI 2.8-9.1) was significantly higher in the population supplied by Cwellyn Water Treatment Works (WTW). A case-control study demonstrated a statistically significant association (odds ratio 6.1, 95% CI 1.8-23.8) between drinking unboiled tap water and C. hominis infection. The association remained significant in a logistic regression analysis, with an adjusted odds ratio of 1.30 (95 CI 1.05-1.61) per glass of unboiled tap water consumed per day. This evidence together with environmental and associated microbiological investigations, and the absence of effective treatment to remove Cryptosporidium oocysts at the WTW, led to the conclusion that the outbreak was waterborne. Oocyst counts in final treated water at the WTW and at different points in the distribution system were consistently very low, maximum count in continuous monitoring 0.08 oocysts per 10 litres. Data from continuous monitoring and the epidemic curve is consistent with the hypothesis that low numbers of oocysts of C hominis were present in treated water continuously during the outbreak and these were of sufficient infectivity to cause illness. All surface water derived water supplies present a potential risk to human health and appropriate control measures should be in place to minimise these risks.

  20. AN EXPERIENCE OF HANDLING MICROBIAL CONTAMINATION OF PRODUCT WATER AT A HAEMODIALYSIS UNIT IN NORTH KARNATAKA OF INDIA

    Directory of Open Access Journals (Sweden)

    Archana Aravindrao Dambal

    2017-09-01

    Full Text Available BACKGROUND Dialysis units need regular prophylactic disinfection of the dialysis water production and distribution circuit without which there can be chronic inflammation among patients using the facility. The aim of the study is to present here our experience in containing an episode of microbial contamination of dialysis water. MATERIALS AND METHODS Our haemodialysis unit had a single pass reverse osmosis plant with facility for pretreatment of raw water and a distribution loop of medical grade PVC (polyvinyl chloride feeding haemodialysis machines, bicarbonate preparation and dialyser reprocessing areas. After installation, the Reverse Osmosis (RO membranes and distribution loop were disinfected every fortnight using formalin. Cultures of product water were sent from various sites in the product water loop every month. RESULTS From January to April 2011, 15 water samples out of 52 water samples grew Pseudomonas aeruginosa with a colony count over 200 Colony-Forming Units (CFU. The average monthly number of haemodialysis was reduced from 84.75 to 65. Two patients had intradialytic pyrexia and two others had mild lower respiratory infection. So, the reverse osmosis plant and product water distribution system were repeatedly disinfected using 2% formalin and 1% bleach ensuring contact time and thorough rinsing to address persistent cultures. When these measures could not eradicate microbial growth, the system was sanitised with Gramicid (48% w/w H2O2 + 500 ppm Ag and all traces of the disinfectant were rinsed away before resuming haemodialysis. CONCLUSION The microbial contamination of dialysis water was eradicated by Gramicid and not by bleach or formalin without any adverse effects after thorough rinsing.