WorldWideScience

Sample records for north equatorial current

  1. Instabilities associated with the equatorial spread-F phenomenon and their north-south asymmetry

    International Nuclear Information System (INIS)

    Beghin, C.; Pandey, R.; Roux, D.

    1985-01-01

    Six North to South passes of AUREOL/ARCAD 3 satellite through the equatorial electron density depletion at variable altitude between 400 and 550 km, at night, during a two weeks period, exhibit a similar feature in plasma density irregularities which are thought to be associated with spread F phenomenon. The irregularities are found to be quasi-sinusoidal with a scale size of about 2 km along the satellite trajectory and occur only on the Northern edge of the equatorial electron density depletion. This implies a violation of the generally believed principle of conjugate mapping for those wavelengths. These observations are analysed and discussed in terms of different known generation mechanisms

  2. Vertical distribution of temperature, salinity and density in the upper 500 metres of the north equatorial Indian Ocean during the north-east monsoon period

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, L.V.G.; Jayaraman, R.

    In the 4th and 5th scientific cruises of INS KISTNA under the Indian Programme of IIOE, five sections were worked out in the North Equatorial Indian Ocean during Jan-Feb 1963. Using the physical oceanographic data collected in these cruises...

  3. Detection of radiation from a heated and modulated equatorial electrojet current system

    International Nuclear Information System (INIS)

    Lunnen, R.J.; Lee, H.S.; Ferraro, A.J.; Collins, T.W.

    1984-01-01

    In May 1983, ionospheric heating experiments were conducted using the very high frequency radar facility at Lima, Peru. Experiments involving high frequency heating of the ionosphere were successfully conducted during 1982 at Islote, Puerto Rico. These local experiments had characterized the signal radiated from a heated and modulated ionospheric current system near the mid-latitudes. A long-path signal had also been received in September 1982 at Salinas, Puerto Rico from a mid-day equatorial electrojet, heated and modulated by the Jicamarca facility. The authors have investigated the characteristics of the local signal that would be radiated from a strong equatorial electrojet when heated and modulated, and report here that at the geomagnetic equator they were similar to, but less intense than, those observed at Arecibo, Puerto Rico due to parameter differences. This radiation is believed to be the first detected from a heated and modulated equatorial electrojet current system in the Western Hemisphere. (author)

  4. Anthropogenic 236U recorded in annually banded coral skeleton at Majuro atoll, the equatorial Pacific

    International Nuclear Information System (INIS)

    Sakaguchi, Aya; Eto, Asuka; Takahashi, Yoshio; Steier, Peter; Yamazaki, Atsuko; Watanabe, Tsuyoshi; Sasaki, Keiichi; Yamano, Hiroya

    2013-01-01

    Historical 236 U/ 238 U atom ratio and concentration of 236 U were determined by Accelerator Mass Spectrometry (AMS) in skeletons of dated modern coral core sample collected from Majuro atoll, equatorial Pacific, to reconstruct anthropogenic 236 U inputs to the Equatorial Pacific. The maximum hydrogen bomb-pulses of 236 U/ 238 U and 236 U concentration, 2.83x10 -9 and 1.85x10 7 atom/g, in an annually resolved coral core were captured in 1954 (Operation Castle at Bikini and Enewetok atolls). The values were abruptly decreased in a few years, and they have been gradually decreased over time. Our results allow studies of not only the present distribution pattern, but gives access to the temporal evolution of 236 U in surface seawater of North Equatorial Current which is introduced to the Japan Sea and the North West Pacific Ocean as Kuroshio and Tsushima currents over the past decades. (author)

  5. Variability in the correlation between Asian dust storms and chlorophyll a concentration from the North to Equatorial Pacific.

    Directory of Open Access Journals (Sweden)

    Sai-Chun Tan

    Full Text Available A long-term record of Asian dust storms showed seven high-occurrence-frequency centers in China. The intrusion of Asian dust into the downwind seas, including the China seas, the Sea of Japan, the subarctic North Pacific, the North Pacific subtropical gyre, and the western and eastern Equatorial Pacific, has been shown to add nutrients to ocean ecosystems and enhance their biological activities. To explore the relationship between the transported dust from various sources to the six seas and oceanic biological activities with different nutrient conditions, the correlation between monthly chlorophyll a concentration in each sea and monthly dust storm occurrence frequencies reaching the sea during 1997-2007 was examined in this study. No correlations were observed between dust and chlorophyll a concentration in the 50 m China seas and the North Pacific subtropical gyre, the correlation coefficients were in the range 0.32-0.57. The correlation coefficients for the western and eastern Equatorial Pacific were relatively low (<0.36. These correlation coefficients were further interpreted in terms of the geographical distributions of dust sources, the transport pathways, the dust deposition, the nutrient conditions of oceans, and the probability of dust storms reaching the seas.

  6. Off-equatorial current-driven instabilities ahead of approaching dipolarization fronts

    Science.gov (United States)

    Zhang, Xu; Angelopoulos, V.; Pritchett, P. L.; Liu, Jiang

    2017-05-01

    Recent kinetic simulations have revealed that electromagnetic instabilities near the ion gyrofrequency and slightly away from the equatorial plane can be driven by a current parallel to the magnetic field prior to the arrival of dipolarization fronts. Such instabilities are important because of their potential contribution to global electromagnetic energy conversion near dipolarization fronts. Of the several instabilities that may be consistent with such waves, the most notable are the current-driven electromagnetic ion cyclotron instability and the current-driven kink-like instability. To confirm the existence and characteristics of these instabilities, we used observations by two Time History of Events and Macroscale Interactions during Substorms satellites, one near the neutral sheet observing dipolarization fronts and the other at the boundary layer observing precursor waves and currents. We found that such instabilities with monochromatic signatures are rare, but one of the few cases was selected for further study. Two different instabilities, one at about 0.3 Hz and the other at a much lower frequency, 0.02 Hz, were seen in the data from the off-equatorial spacecraft. A parallel current attributed to an electron beam coexisted with the waves. Our instability analysis attributes the higher-frequency instability to a current-driven ion cyclotron instability and the lower frequency instability to a kink-like instability. The current-driven kink-like instability we observed is consistent with the instabilities observed in the simulation. We suggest that the currents needed to excite these low-frequency instabilities are so intense that the associated electron beams are easily thermalized and hence difficult to observe.

  7. Equatorial Indian Ocean subsurface current variability in an Ocean General Circulation Model

    Science.gov (United States)

    Gnanaseelan, C.; Deshpande, Aditi

    2018-03-01

    The variability of subsurface currents in the equatorial Indian Ocean is studied using high resolution Ocean General Circulation Model (OGCM) simulations during 1958-2009. February-March eastward equatorial subsurface current (ESC) shows weak variability whereas strong variability is observed in northern summer and fall ESC. An eastward subsurface current with maximum amplitude in the pycnocline is prominent right from summer to winter during strong Indian Ocean Dipole (IOD) years when air-sea coupling is significant. On the other hand during weak IOD years, both the air-sea coupling and the ESC are weak. This strongly suggests the role of ESC on the strength of IOD. The extension of the ESC to the summer months during the strong IOD years strengthens the oceanic response and supports intensification and maintenance of IODs through modulation of air sea coupling. Although the ESC is triggered by equatorial winds, the coupled air-sea interaction associated with IODs strengthens the ESC to persist for several seasons thereby establishing a positive feedback cycle with the surface. This suggests that the ESC plays a significant role in the coupled processes associated with the evolution and intensification of IOD events by cooling the eastern basin and strengthening thermocline-SST (sea surface temperature) interaction. As the impact of IOD events on Indian summer monsoon is significant only during strong IOD years, understanding and monitoring the evolution of ESC during these years is important for summer monsoon forecasting purposes. There is a westward phase propagation of anomalous subsurface currents which persists for a year during strong IOD years, whereas such persistence or phase propagation is not seen during weak IOD years, supporting the close association between ESC and strength of air sea coupling during strong IOD years. In this study we report the processes which strengthen the IOD events and the air sea coupling associated with IOD. It also unravels

  8. Role of the magnetospheric and ionospheric currents in the generation of the equatorial scintillations during geomagnetic storms

    Directory of Open Access Journals (Sweden)

    L. Z. Biktash

    2004-09-01

    Full Text Available The equatorial ionosphere parameters, Kp, Dst, AU and AL indices characterized contribution of different magnetospheric and ionospheric currents to the H-component of geomagnetic field are examined to test the geomagnetic activity effect on the generation of ionospheric irregularities producing VLF scintillations. According to the results of the current statistical studies, one can predict near 70% of scintillations from Aarons' criteria using the Dst index, which mainly depicts the magnetospheric ring current field. To amplify Aarons' criteria or to propose new criteria for predicting scintillation characteristics is the question. In the present phase of the experimental investigations of electron density irregularities in the ionosphere new ways are opened up because observations in the interaction between the solar wind - magnetosphere - ionosphere during magnetic storms have progressed greatly. According to present view, the intensity of the electric fields and currents at the polar regions, as well as the magnetospheric ring current intensity, are strongly dependent on the variations of the interplanetary magnetic field. The magnetospheric ring current cannot directly penetrate the equatorial ionosphere and because of this difficulties emerge in explaining its relation to scintillation activity. On the other hand, the equatorial scintillations can be observed in the absence of the magnetospheric ring current. It is shown that in addition to Aarons' criteria for the prediction of the ionospheric scintillations, models can be used to explain the relationship between the equatorial ionospheric parameters, h'F, foF2, and the equatorial geomagnetic variations with the polar ionosphere currents and the solar wind.

  9. Evidence and effects of a wave-driven nonlinear current in the equatorial electrojet

    Directory of Open Access Journals (Sweden)

    M. Oppenheim

    1997-07-01

    Full Text Available Ionospheric two-stream waves and gradient-drift waves nonlinearly drive a large-scale (D.C. current in the E-region ionosphere. This current flows parallel to, and with a comparable magnitude to, the fundamental Pedersen current. Evidence for the existence and magnitude of wave-driven currents derives from a theoretical understanding of E-region waves, supported by a series of nonlinear 2D simulations of two-stream waves and by data collected by rocket instruments in the equatorial electrojet. Wave-driven currents will modify the large-scale dynamics of the equatorial electrojet during highly active periods. A simple model shows how a wave-driven current appreciably reduces the horizontally flowing electron current of the electrojet. This reduction may account for the observation that type-I radar echoes almost always have a Doppler velocity close to the acoustic speed, and also for the rocket observation that electrojet regions containing gradient-drift waves do not appear also to contain horizontally propagating two-stream waves. Additionally, a simple model of a gradient-drift instability shows that wave-driven currents can cause nonsinusoidal electric fields similar to those measured in situ.

  10. Penetration of ELF currents and electromagnetic fields into the Earth's equatorial ionosphere

    Science.gov (United States)

    Eliasson, B.; Papadopoulos, K.

    2009-10-01

    The penetration of extremely low frequency (ELF) transient electromagnetic fields and associated currents in the Earth's equatorial E-region plasma is studied theoretically and numerically. In the low-frequency regime, the plasma dynamics of the E-region is characterized by helicon waves since the ions are viscously coupled to neutrals while the electrons remain mobile. For typical equatorial E-region parameters, the plasma is magnetically insulated from penetration of very long timescale magnetic fields by a thin diffusive sheath. Wave penetration driven by a vertically incident pulse localized in space and time leads to both vertical penetration and the triggering of ELF helicon/whistler waves that carry currents obliquely to the magnetic field lines. The study presented here may have relevance for ELF wave generation by lightning discharges and seismic activity and can lead to new concepts in ELF/ULF injection in the earth-ionosphere waveguide.

  11. Role of interannual Kelvin wave propagations in the equatorial Atlantic on the Angola Benguela Current system

    Science.gov (United States)

    Imbol Koungue, Rodrigue Anicet; Illig, Serena; Rouault, Mathieu

    2017-06-01

    The link between equatorial Atlantic Ocean variability and the coastal region of Angola-Namibia is investigated at interannual time scales from 1998 to 2012. An index of equatorial Kelvin wave activity is defined based on Prediction and Research Moored Array in the Tropical Atlantic (PIRATA). Along the equator, results show a significant correlation between interannual PIRATA monthly dynamic height anomalies, altimetric monthly Sea Surface Height Anomalies (SSHA), and SSHA calculated with an Ocean Linear Model. This allows us to interpret PIRATA records in terms of equatorial Kelvin waves. Estimated phase speed of eastward propagations from PIRATA equatorial mooring remains in agreement with the linear theory, emphasizing the dominance of the second baroclinic mode. Systematic analysis of all strong interannual equatorial SSHA shows that they precede by 1-2 months extreme interannual Sea Surface Temperature Anomalies along the African coast, which confirms the hypothesis that major warm and cold events in the Angola-Benguela current system are remotely forced by ocean atmosphere interactions in the equatorial Atlantic. Equatorial wave dynamics is at the origin of their developments. Wind anomalies in the Western Equatorial Atlantic force equatorial downwelling and upwelling Kelvin waves that propagate eastward along the equator and then poleward along the African coast triggering extreme warm and cold events, respectively. A proxy index based on linear ocean dynamics appears to be significantly more correlated with coastal variability than an index based on wind variability. Results show a seasonal phasing, with significantly higher correlations between our equatorial index and coastal SSTA in October-April season.

  12. Surface currents in the equatorial Indian Ocean during spring and fall - An altimetry based analysis

    Digital Repository Service at National Institute of Oceanography (India)

    Antony, M.K.; Somayajulu, Y.K.

    This communication presents the results of a study aimed at investigating the nature and variability of surface currents in the equatorial Indian Ocean between 5 degrees N and 5 degrees S during spring and fall seasons. Geostrophic surface currents...

  13. The rôle of the complete Coriolis force in cross-equatorial flow of abyssal ocean currents

    Science.gov (United States)

    Stewart, A. L.; Dellar, P. J.

    Ocean currents flowing close to or across the equator are strongly constrained by the change in sign of f, the locally vertical component of the Earth's rotation vector, across the equator. We investigate these currents using a shallow water model that includes both the locally vertical and locally horizontal components of the Earth's rotation vector, thus accounting for the complete Coriolis force. We therefore avoid making the so-called "traditional approximation" that retains only the part of the Coriolis force associated with the locally vertical component of the rotation vector. Including the complete Coriolis force contributes an additional term to the fluid's potential vorticity, which may partially balance the change in sign of f as fluid crosses the equator over suitably shaped bathymetry. We focus on the Antarctic Bottom Water, which crosses the equator northwards in the western Atlantic ocean where the local bathymetry forms an almost-zonal channel. We show that this bathymetry facilitates the current's equatorial crossing via the action of the "non-traditional" component of the Coriolis force. We illustrate this process using both analytical and numerical solutions for flow of an abyssal current over idealised equatorial topography. We also consider the one-dimensional geostrophic adjustment of a body of fluid across the equator, and show that the "non-traditional" contribution to the fluid's angular momentum permits a larger cross-equatorial transport. These results underline the importance of including the complete Coriolis force in studies of the equatorial ocean, particularly in the weakly-stratified abyssal ocean where the non-traditional component is most pronounced.

  14. Seasonal influence of ENSO on the Atlantic ITCZ and equatorial South America

    Science.gov (United States)

    Münnich, M.; Neelin, J. D.

    2005-11-01

    In late boreal spring, especially May, a strong relationship exists in observations among precipitation anomalies over equatorial South America and the Atlantic intertropical convergence zone (ITCZ), and eastern equatorial Pacific and central equatorial Atlantic sea surface temperature anomalies (SSTA). A chain of correlations of equatorial Pacific SSTA, western equatorial Atlantic wind stress (WEA), equatorial Atlantic SSTA, sea surface height, and precipitation supports a causal chain in which El Niño/Southern Oscillation (ENSO) induces WEA stress anomalies, which in turn affect Atlantic equatorial ocean dynamics. These correlations show strong seasonality, apparently arising within the atmospheric links of the chain. This pathway and the influence of equatorial Atlantic SSTA on South American rainfall in May appear independent of that of the northern tropical Atlantic. Brazil's Nordeste is affected by the northern tropical Atlantic. The equatorial influence lies further to the north over the eastern Amazon and the Guiana Highlands.

  15. Electromagnetic analysis of ITER generic equatorial port plug designs during three plasma current disruption cases

    International Nuclear Information System (INIS)

    Guirao, J.; Rodríguez, E.; Ordieres, J.; Cabanas, M.F.; García, C.H. Rojas

    2012-01-01

    Highlights: ► Electromagnetic transient performance evaluation of the GEPP structure. ► Three different plasma current disruption cases: MD UP LIN36, VDE UP LIN36 and VDE DW LIN36 were analyzed. ► Three DSM-First Wall (FW) designs (horizontal and vertical drawers and monoblock) were compared. - Abstract: Electromagnetic phenomena due to plasma current disruptions are the cause for the main mechanical operation loads over the ITER equatorial level port plug structures. This paper presents a detailed finite element simulation and analysis of the transient electromagnetic effects of three different plasma current disruption cases over three designs of diagnostic shielding module (DSM) structure. The DSMs are contained into and supported by the generic equatorial port plug (GEPP) analyzed structure. The three plasma disruption cases studied were: major disruption upwards linear decay in 36 ms (MD UP LIN36), vertical displacements events, upwards and downwards linear decay in 36 ms (VDE UP LIN36 and VDE DW LIN36). A detailed analysis for GEPP structure and three DSM-first wall (FW) designs (horizontal and vertical drawers and monoblock) is also presented in order to extract the Eddy current distribution on these devices and thus the resultant electromagnetic forces and moments acting on them.

  16. Equatorial westward electrojet impacting equatorial ionization anomaly development during the 6 April 2000 superstorm

    Science.gov (United States)

    Horvath, Ildiko; Lovell, Brian C.

    2013-11-01

    investigate the forward plasma fountain and the equatorial ionosphere in the topside region during the 6 April 2000 superstorm in the Australian sector at ~0900 LT. Space- and ground-based multi-instrument measurements, Coupled Thermosphere-Ionosphere-Plasmasphere Electrodynamics (CTIPe) simulations, and field-aligned observations comprise our results. These reveal an unusual storm development during which the eastward prompt penetration electric (E) field (PPEF) developed and operated under the continuous effects of the westward disturbance dynamo E-field (DDEF) while large-scale traveling ionospheric disturbances (TIDs) traveled equatorward and generated strong equatorward wind surges. We have identified the eastward PPEF by the superfountain effect causing the equatorial ionization anomaly (EIA)'s development with crests situated at ~±28°N (geomagnetic) in the topside ionosphere at ~840 km altitude. The westward DDEF's occurrence is confirmed by mapping the "anti-Sq" current system wherein the equatorial westward current created a weak long-lasting westward electrojet event. Line plots of vertical drift data tracked large-scale TIDs. Four scenarios, covering ~3.5 h in universal time, demonstrate that the westward DDEF became superimposed on the eastward PPEF. As these E-fields of different origins became mapped into the F region, they could interact. Consequently, the eastward PPEF-related equatorial upward E × B drift became locally reduced by up to 75 m/s near the dip equator by the westward DDEF-related equatorial downward E × B drift. Meanwhile, the EIA displayed a better development as equatorial wind surges, reproduced by CTIPe, increased from 501 to 629 m/s, demonstrating the crucial role of mechanical wind effects keeping plasma density high.

  17. Equatorial electrojet and its response to external electromagnetic effects

    Science.gov (United States)

    Bespalov, P. A.; Savina, O. N.

    2012-09-01

    In the quiet low-latitude Earth's ionosphere, a sufficiently developed current system that is responsible for the Sq magnetic-field variations is formed in quiet Sun days under the action of tidal streams. The density of the corresponding currents is maximum in the midday hours at the equatorial latitudes, where the so-called equatorial electrojet is formed. In this work, we discuss the nature of the equatorial electrojet. This paper studies the value of its response to external effects. First of all, it is concerned with estimating the possibility of using the equatorial electrojet for generating low-frequency electromagnetic signals during periodic heating of the ionosphere by the heating-facility radiation. The equatorial electrojet can also produce electrodynamic response to the natural atmospheric processes, e.g., an acoustic-gravity wave.

  18. The role of the Indonesian Throughflow in equatorial Pacific thermocline ventilation

    Science.gov (United States)

    Rodgers, Keith B.; Cane, Mark A.; Naik, Naomi H.; Schrag, Daniel P.

    1999-09-01

    The role of the Indonesian Throughflow (ITF) in the thermocline circulation of the low-latitude Pacific Ocean is explored using a high-resolution primitive equation ocean circulation model. Seasonally forced runs for a domain with an open Indonesian passage are compared with seasonally forced runs for a closed Pacific domain. Three cases are considered: one with no throughflow, one with 10 Sv of imposed ITF transport, and one with 20 Sv of ITF transport. Two idealized tracers, one that tags northern component subtropical water and another that tags southern component subtropical water, are used to diagnose the mixing ratio of northern and southern component waters in the equatorial thermocline. It is found that the mixing ratio of north/south component waters in the equatorial thermocline is highly sensitive to whether the model accounts for an ITF. Without an ITF, the source of equatorial undercurrent water is primarily of North Pacific origin, with the ratio of northern to southern component water being approximately 2.75 to 1. The ratio of northern to southern component water in the Equatorial Undercurrent with 10 Sv of ITF is approximately 1.4 to 1, and the ratio with 20 Sv of imposed ITF is 1 to 1.25. Estimates from data suggest a mean mixing ratio of northern to southern component water of less than 1 to 1. Assuming that the mixing ratio changes approximately linearly as the ITF transport varies between 10 and 20 Sv, an approximate balance between northern and southern component water is reached when the ITF transport is approximately 16 Sv. It is also shown that for the isopycnal surfaces within the core of the equatorial undercurrent, a 2°C temperature front exists across the equator in the western equatorial Pacific, beneath the warm pool. The implications of the model results and the temperature data for the heat budget of the equatorial Pacific are considered.

  19. Comparison of dayside current layers in Venus' ionosphere and earth's equatorial electrojet

    Science.gov (United States)

    Cole, Keith D.

    1993-01-01

    The major physical aspects of the equatorial electrojet of Earth and the dayside ionospheric current layers of Venus are compared, viz., the electric current intensity and total current, roles of electric field, pressure and gravity, diffusion time scales, and the Bernouille effect. The largest potential differences, of the order of 10 volts, horizontally across the dayside ionosphere of Venus, have important implications for possible dynamo action in the Venus ionosphere and the application of an electric field from the lower atmosphere or from the solar wind. An upper limit to the horizontal scale of vertical magnetic fields in the Venus ionosphere is estimated thereby for the first time. New upper limits on the velocity in, and thickness of, a possible S layer at Venus are presented. If an S layer exists, it is only for extreme conditions of the solar wind. A mechanism for formation of magnetic ropes in the Venus ionosphere is also proposed.

  20. Bow Shock Generator Current Systems: MMS Observations of Possible Current Closure

    Science.gov (United States)

    Hamrin, M.; Gunell, H.; Lindkvist, J.; Lindqvist, P.-A.; Ergun, R. E.; Giles, B. L.

    2018-01-01

    We use data from the first two dayside seasons of the Magnetospheric Multiscale (MMS) mission to study current systems associated with quasi-perpendicular bow shocks of generator type. We have analyzed 154 MMS bow shock crossings near the equatorial plane. We compute the current density during the crossings and conclude that the component perpendicular to the shock normal (J⊥) is consistent with a pileup of the interplanetary magnetic field (IMF) inside the magnetosheath. For predominantly southward IMF, we observe a component Jn parallel (antiparallel) to the normal for GSM Y > 0 (MMS probing region. For IMF clock angles near 90∘, we find indications of the current system being tilted toward the north-south direction, obtaining a significant Jz component, and we suggest that the current closes off the equatorial plane at higher latitudes where the spacecraft are not probing. The observations are complicated for several reasons. For example, variations in the solar wind and the magnetospheric currents and loads affect the closure, and Jn is distributed over large regions, making it difficult to resolve inside the magnetosheath proper.

  1. Geomagnetic storms and electric fields in the equatorial ionosphere

    International Nuclear Information System (INIS)

    Rastogi, R.G.

    1977-01-01

    Using direct measurements of equatorial electric field during a geomagnetic storm it is shown that the large decrease in the field observed near the dip equator is due to the reversal of the equatorial electrojet current. This is caused by the imposition of an additional westward electric field on the equatorial ionosphere which was originated by the interaction of solar wind with the interplanetary magnetic field. (author)

  2. Latitude-dependent delay in the responses of the equatorial electrojet and Sq currents to X-class solar flares

    Science.gov (United States)

    Nogueira, Paulo A. B.; Abdu, Mangalathayil A.; Souza, Jonas R.; Denardini, Clezio M.; Barbosa Neto, Paulo F.; Serra de Souza da Costa, João P.; Silva, Ana P. M.

    2018-01-01

    We have analyzed low-latitude ionospheric current responses to two intense (X-class) solar flares that occurred on 13 May 2013 and 11 March 2015. Sudden intensifications, in response to solar flare radiation impulses, in the Sq and equatorial electrojet (EEJ) currents, as detected by magnetometers over equatorial and low-latitude sites in South America, are studied. In particular we show for the first time that a 5 to 8 min time delay is present in the peak effect in the EEJ, with respect that of Sq current outside the magnetic equator, in response to the flare radiation enhancement. The Sq current intensification peaks close to the flare X-ray peak, while the EEJ peak occurs 5 to 8 min later. We have used the Sheffield University Plasmasphere-Ionosphere Model at National Institute for Space Research (SUPIM-INPE) to simulate the E-region conductivity enhancement as caused by the flare enhanced solar extreme ultraviolet (EUV) and soft X-rays flux. We propose that the flare-induced enhancement in neutral wind occurring with a time delay (with respect to the flare radiation) could be responsible for a delayed zonal electric field disturbance driving the EEJ, in which the Cowling conductivity offers enhanced sensitivity to the driving zonal electric field.

  3. New exoplanets from the SuperWASP-North survey

    Directory of Open Access Journals (Sweden)

    Keenan F.

    2011-02-01

    Full Text Available We present the current status of the WASP search for transiting exoplanets, focusing on recent planet discoveries from SuperWASP-North and the joint equatorial region (-20≤Dec≤+20 observed by both WASP telescopes. We report the results of monitoring of WASP planets, and discuss how these contribute to our understanding of planet properties and their diversity.

  4. Letter to the editor: Electric field fluctuations (25-35 min in the midnight dip equatorial ionosphere

    Directory of Open Access Journals (Sweden)

    J. Hanumath Sastri

    2000-02-01

    Full Text Available Measurements with a HF Doppler sounder at Kodaikanal (10.2°N, 77.5°E, geomagnetic latitude 0.8°N showed conspicuous quasi-periodic fluctuations (period 25-35 min in F region vertical plasma drift, Vz in the interval 0047-0210 IST on the night of 23/24 December, 1991 (Ap = 14, Kp < 4-. The fluctuations in F region vertical drift are found to be coherent with variations in Bz (north-south component of interplanetary magnetic field (IMF, in geomagnetic H/X components at high-mid latitude locations both in the sunlit and dark hemispheres and near the dayside dip equator, suggestive of DP2 origin. But the polarity of the electric field fluctuations at the midnight dip equator (eastward is the same as the dayside equator inferred from magnetic variations, contrary to what is expected of equatorial DP2. The origin of the coherent occurrence of equatorial electric field fluctuations in the DP2 range of the same sign in the day and night hemispheres is unclear and merits further investigations.Key words: Ionosphere (electric fields and currents; equatorial ionosphere; ionosphere-magnetosphere interactions

  5. The Role of Reversed Equatorial Zonal Transport in Terminating an ENSO Event

    Science.gov (United States)

    Chen, H. C.; Hu, Z. Z.; Huang, B.; Sui, C. H.

    2016-02-01

    In this study, we demonstrate that a sudden reversal of anomalous equatorial zonal current at the peaking ENSO phase triggers the rapid termination of an ENSO event. Throughout an ENSO cycle, the anomalous equatorial zonal current is strongly controlled by the concavity of the anomalous thermocline meridional structure near the equator. During the ENSO developing phase, the anomalous zonal current in the central and eastern Pacific generally enhances the ENSO growth through its zonal SST advection. In the mature phase of ENSO, however, the equatorial thermocline depth anomalies are reflected in the eastern Pacific and slowly propagate westward off the equator in both hemispheres. As a result, the concavity of the thermocline anomalies near the equator is reversed, i.e., the off-equatorial thermocline depth anomalies become higher than that on the equator for El Niño events and lower for La Niño events. This meridional change of thermocline structure reverses zonal transport rapidly in the central-to-eastern equatorial Pacific, which weakens the ENSO SST anomalies by reversed advection. More importantly, the reversed zonal mass transport weakens the existing zonal tilting of equatorial thermocline and suppresses the thermocline feedback. Both processes are concentrated in the eastern equatorial Pacific and can be effective on subseasonal time scales. These current reversal effects are built-in to the ENSO peak phase and independent of the zonal wind effect on thermocline slope. It functions as an oceanic control on ENSO evolution during both El Niño and La Niña events.

  6. On the propagation and decay of North Brazil Current rings

    Science.gov (United States)

    Jochumsen, Kerstin; Rhein, Monika; Hüttl-Kabus, Sabine; BöNing, Claus W.

    2010-10-01

    Near the western boundary of the tropical North Atlantic, where the North Brazil Current (NBC) retroflects into the North Equatorial Countercurrent, large anticyclonic rings are shed. After separating from the retroflection region, the so-called NBC rings travel northwestward along the Brazilian coast, until they reach the island chain of the Lesser Antilles and disintegrate. These rings contribute substantially to the upper limb return flow of the Atlantic Meridional Overturning Circulation by carrying South Atlantic Water into the northern subtropical gyre. Their relevance for the northward transport of South Atlantic Water depends on the frequency of their generation as well as on their horizontal and vertical structure. The ring shedding and propagation and the complex interaction of the rings with the Lesser Antilles are investigated in the ? Family of Linked Atlantic Model Experiments (FLAME) model. The ring properties simulated in FLAME reach the upper limit of the observed rings in diameter and agree with recent observations on seasonal variability, which indicates a maximum shedding during the first half of the year. When the rings reach the shallow topography of the Lesser Antilles, they are trapped by the island triangle of St. Lucia, Barbados and Tobago and interact with the island chain. The model provides a resolution that is capable of resolving the complex topographic conditions at the islands and illuminates various possible fates for the water contained in the rings. It also reproduces laboratory experiments that indicate that both cyclones and anticyclones are formed after a ring passes through a topographic gap. Trajectories of artificial floats, which were inserted into the modeled velocity field, are used to investigate the pathways of the ring cores and their fate after they encounter the Lesser Antilles. The majority of the floats entered the Caribbean, while the northward Atlantic pathway was found to be of minor importance. No prominent

  7. Proton flux under radiation belts: near-equatorial zone

    International Nuclear Information System (INIS)

    Grigoryan, O.R.; Panasyuk, M.I.; Petrov, A.N.; Kudela, K.

    2005-01-01

    In this work the features of low-energy proton flux increases in near-equatorial region (McIlvein parameter L th the proton flux (with energy from tens keV up to several MeV) increases are registering regularly. However modern proton flux models (for example AP8 model) works at L>1.15 only and does not take into account near-equatorial protons. These fluxes are not too big, but the investigation of this phenomenon is important in scope of atmosphere-ionosphere connections and mechanisms of particles transport in magnetosphere. In according to double charge-exchange model the proton flux in near-equatorial region does not depend on geomagnetic local time (MLT) and longitude. However the Azur satellite data and Kosmos-484, MIR station and Active satellite data revealed the proton flux dependence on longitude. The other feature of near-equatorial proton flux is the dependence on geomagnetic local time revealed in the Sampex satellite experiment and other experiments listed above. In this work the dependences on MLT and longitude are investigated using the Active satellite (30-500 keV) and Sampex satellite (>800 keV). This data confirms that main sources of near-equatorial protons are radiation belts and ring current. The other result is that near-equatorial protons are quasi-trapped. The empirical proton flux dependences on L, B at near-equatorial longitudes are presented. (author)

  8. Equatorial Guinea.

    Science.gov (United States)

    1989-03-01

    Equatorial Guinea is situated on the Gulf of Guinea along the west African coast between Cameroon and Gabon. The people are predominantly of Bantu origin. The country's ties with Spain are significant; in 1959, it became the Spanish Equatorial region ruled by Spain's commissioner general. Recent political developments in Equatorial Guinea include the formation of the Democratic Party for Equatorial Guinea in July of 1987 and the formation of a 60-member unicameral Chamber of Representatives of the People in 1983. Concerning the population, 83% of the people are Catholic and the official language is Spanish. Poverty and serious health, education and sanitary problems exist. There is no adequate hospital and few trained physicians, no dentists, and no opticians. Malaria is endemic and immunization for yellow fever is required for entrance into the country. The water is not potable and many visitors to the country bring bottled water. The tropical climate of Equatorial Guinea provides the climate for the country's largest exports and source of economy; cacao, wood and coffee. Although the country, as a whole, has progressed towards developing a participatory political system, there are still problems of governmental corruption in the face of grave health and welfare conditions. In recent years, the country has received assistance from the World Bank and the United States to aid in its development.

  9. An equatorial coronal hole at solar minimum

    Science.gov (United States)

    Bromage, B. J. I.; DelZanna, G.; DeForest, C.; Thompson, B.; Clegg, J. R.

    1997-01-01

    The large transequatorial coronal hole that was observed in the solar corona at the end of August 1996 is presented. It consists of a north polar coronal hole called the 'elephant's trunk or tusk'. The observations of this coronal hole were carried out with the coronal diagnostic spectrometer onboard the Solar and Heliospheric Observatory (SOHO). The magnetic field associated with the equatorial coronal hole is strongly connected to that of the active region at its base, resulting in the two features rotating at almost the same rate.

  10. Instability of equatorial protons in Jupiter's mid-magnetosphere

    International Nuclear Information System (INIS)

    Northrop, T.G.; Schardt, A.W.

    1980-01-01

    Two different models for the distribution function are fit to the Jovian protons seen by Pioneer 10 inbound. The models reproduce the observed energy and angular distributions. These models are then used to assess the collisionless mirror instability. Because of the pancake proton angular distributions in the equatorial ring current region, the ring current particle population appears to be mirror unstable at times, with instability growth rates of approx.10 min. Such a time is consistent with observed proton flux autocorrelation times. An instability such as this (there are other candidates) may be responsible for the previously established proton flux flowing parallel to the magnetic field away from the equatorial region

  11. Instabilities of continuously stratified zonal equatorial jets in a periodic channel model

    Directory of Open Access Journals (Sweden)

    S. Masina

    2002-05-01

    Full Text Available Several numerical experiments are performed in a nonlinear, multi-level periodic channel model centered on the equator with different zonally uniform background flows which resemble the South Equatorial Current (SEC. Analysis of the simulations focuses on identifying stability criteria for a continuously stratified fluid near the equator. A 90 m deep frontal layer is required to destabilize a zonally uniform, 10° wide, westward surface jet that is symmetric about the equator and has a maximum velocity of 100 cm/s. In this case, the phase velocity of the excited unstable waves is very similar to the phase speed of the Tropical Instability Waves (TIWs observed in the eastern Pacific Ocean. The vertical scale of the baroclinic waves corresponds to the frontal layer depth and their phase speed increases as the vertical shear of the jet is doubled. When the westward surface parabolic jet is made asymmetric about the equator, in order to simulate more realistically the structure of the SEC in the eastern Pacific, two kinds of instability are generated. The oscillations that grow north of the equator have a baroclinic nature, while those generated on and very close to the equator have a barotropic nature.  This study shows that the potential for baroclinic instability in the equatorial region can be as large as at mid-latitudes, if the tendency of isotherms to have a smaller slope for a given zonal velocity, when the Coriolis parameter vanishes, is compensated for by the wind effect.Key words. Oceanography: general (equatorial oceanography; numerical modeling – Oceanography: physics (fronts and jets

  12. Upper ocean circulation modulation by phytoplankton concentration in the Equatorial Pacific and the Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Nakamoto, S.; PrasannaKumar, S.; Oberhuber, J.M.; Sammarco, P.; Muneyama, K.; Sato, T.; AjoyKumar, A.; Frouin, R.

    gradient in the upper ocean. This strengthens the geostrophically balanced westward currents in both side of the equatorial wave-guide (within 5 degree bands). Once these currents reach the western Pacific coast, they feed the Equatorial undercurrent (EUC...

  13. Trophic Diversity of Plankton in the Epipelagic and Mesopelagic Layers of the Tropical and Equatorial Atlantic Determined with Stable Isotopes

    Directory of Open Access Journals (Sweden)

    Antonio Bode

    2018-06-01

    Full Text Available Plankton living in the deep ocean either migrate to the surface to feed or feed in situ on other organisms and detritus. Planktonic communities in the upper 800 m of the tropical and equatorial Atlantic were studied using the natural abundance of stable carbon and nitrogen isotopes to identify their food sources and trophic diversity. Seston and zooplankton (>200 µm samples were collected with Niskin bottles and MOCNESS nets, respectively, in the epipelagic (0–200 m, upper mesopelagic (200–500 m, and lower mesopelagic layers (500–800 m at 11 stations. Food sources for plankton in the productive zone influenced by the NW African upwelling and the Canary Current were different from those in the oligotrophic tropical and equatorial zones. In the latter, zooplankton collected during the night in the mesopelagic layers was enriched in heavy nitrogen isotopes relative to day samples, supporting the active migration of organisms from deep layers. Isotopic niches showed also zonal differences in size (largest in the north, mean trophic diversity (largest in the tropical zone, food sources, and the number of trophic levels (largest in the equatorial zone. The observed changes in niche size and overlap (up to 71% between the mesopelagic layers but <50% between the epipelagic and upper mesopelagic layers support the prevalence of in situ feeding at deep layers in tropical and equatorial zooplankton.

  14. Geomagnetically Induced Currents Around the World During the 17 March 2015 Storm

    Science.gov (United States)

    Carter, B. A.; Yizengaw, E.; Pradipta, R.; Weygand, J. M.; Piersanti, M.; Pulkkinen, Antti Aleksi; Moldwin, M. B.; Norman, R.; Zhang, K.

    2016-01-01

    Geomagnetically induced currents (GICs) represent a significant space weather issue for power grid and pipeline infrastructure, particularly during severe geomagnetic storms. In this study, magnetometer data collected from around the world are analyzed to investigate the GICs caused by the 2015 St. Patricks Day storm. While significant GIC activity in the high-latitude regions due to storm time substorm activity is shown for this event, enhanced GIC activity was also measured at two equatorial stations in the American and Southeast Asian sectors. This equatorial GIC activity is closely examined, and it is shown that it is present both during the arrival of the interplanetary shock at the storm sudden commencement (SSC) in Southeast Asia and during the main phase of the storm approximately 10 h later in South America. The SSC caused magnetic field variations at the equator in Southeast Asia that were twice the magnitude of those observed only a few degrees to the north, strongly indicating that the equatorial electrojet (EEJ) played a significant role. The large equatorial magnetic field variations measured in South America are also examined, and the coincident solar wind data are used to investigate the causes of the sudden changes in the EEJ approximately 10 h into the storm. From this analysis it is concluded that sudden magnetopause current increases due to increases in the solarwind dynamic pressure, and the sudden changes in the resultant magnetospheric and ionospheric current systems, are the primary drivers of equatorial GICs.

  15. Instabilities of continuously stratified zonal equatorial jets in a periodic channel model

    Directory of Open Access Journals (Sweden)

    S. Masina

    Full Text Available Several numerical experiments are performed in a nonlinear, multi-level periodic channel model centered on the equator with different zonally uniform background flows which resemble the South Equatorial Current (SEC. Analysis of the simulations focuses on identifying stability criteria for a continuously stratified fluid near the equator. A 90 m deep frontal layer is required to destabilize a zonally uniform, 10° wide, westward surface jet that is symmetric about the equator and has a maximum velocity of 100 cm/s. In this case, the phase velocity of the excited unstable waves is very similar to the phase speed of the Tropical Instability Waves (TIWs observed in the eastern Pacific Ocean. The vertical scale of the baroclinic waves corresponds to the frontal layer depth and their phase speed increases as the vertical shear of the jet is doubled. When the westward surface parabolic jet is made asymmetric about the equator, in order to simulate more realistically the structure of the SEC in the eastern Pacific, two kinds of instability are generated. The oscillations that grow north of the equator have a baroclinic nature, while those generated on and very close to the equator have a barotropic nature. 

    This study shows that the potential for baroclinic instability in the equatorial region can be as large as at mid-latitudes, if the tendency of isotherms to have a smaller slope for a given zonal velocity, when the Coriolis parameter vanishes, is compensated for by the wind effect.

    Key words. Oceanography: general (equatorial oceanography; numerical modeling – Oceanography: physics (fronts and jets

  16. Equatorial electrojet in east Brazil longitudes

    Indian Academy of Sciences (India)

    dip latitude as the electrons/ions can move vertically along the inclined magnetic field lines. Equatorial electrojet has been extensively studied from ground, rocket ... Keywords. Equatorial electrojet; Brazilian anomaly in equatorial electrojet; asymmetries in equatorial electrojet. J. Earth Syst. Sci. 119, No. 4, August 2010, pp.

  17. The growth and decay of equatorial backscatter plumes

    Science.gov (United States)

    Tsunoda, R. T.

    1980-02-01

    During the past three years, a series of rocket experiments from the Kwajalein Atoll, Marshall Islands, were conducted to investigate the character of intense, scintillation-producing irregularities that occur in the nighttime equatorial ionosphere. Because the source mechanism of equatorial irregularities, believed to be the Rayleigh-Taylor instability, is analogous to that which generates plasma-density striations in a nuclear-induced environment, there is considerable interest in the underlying physics that controls the characteristics of these irregularities. A primary objective of ALTAIR investigations of equatorial irregularities is to seek an understanding of the underlying physics by establishing the relationship between meter-scale irregularities (detected by ALTAIR), and the large-scale plasma-density depletions (or 'bubbles') that contain the kilometer-scale, scintillation-producing irregularities. We describe the time evolution of backscatter 'plumes' produced by one meter equatorial field-aligned irregularities. Using ALTAIR, a fully steerable backscatter radar, to repeatedly map selected plumes, we characterize the dynamic behavior of plumes in terms of growth and a decay phase. Most of the observed characteristics are found to be consistent with equatorial-irregularity generation predicted by current theories of Rayleigh-Taylor and gradient-drift instabilities. However, other characteristics have been found that suggest key roles played by the eastward neutral wind and by altitude-modulation of the bottomside F layer in establishing the initial conditions for plume growth.

  18. Equatorial ionospheric electric fields during the November 2004 magnetic storm

    OpenAIRE

    Fejer, Bela G.; Jensen, J. W.; Kikuchi, T.; Abdu, M. A.; Chau, J. L.

    2007-01-01

    [1] We use radar measurements from the Jicamarca Radio Observatory, magnetometer observations from the Pacific sector and ionosonde data from Brazil to study equatorial ionospheric electric fields during the November 2004 geomagnetic storm. Our data show very large eastward and westward daytime electrojet current perturbations with lifetimes of about an hour (indicative of undershielding and overshielding prompt penetration electric fields) in the Pacific equatorial region during the November...

  19. Modelling the development of mixing height in near equatorial region

    Energy Technology Data Exchange (ETDEWEB)

    Samah, A.A. [Univ. of Malaya, Air Pollution Research Unit, Kuala Lumpur (Malaysia)

    1997-10-01

    Most current air pollution models were developed for mid-latitude conditions and as such many of the empirical parameters used were based on observations taken in the mid-latitude boundary layer which is physically different from that of the equatorial boundary layer. In the equatorial boundary layer the Coriolis parameter f is small or zero and moisture plays a more important role in the control of stability and the surface energy balance. Therefore air pollution models such as the OMLMULTI or the ADMS which were basically developed for mid-latitude conditions must be applied with some caution and would need some adaptation to properly simulate the properties of equatorial boundary layer. This work elucidates some of the problems of modelling the evolution of mixing height in the equatorial region. The mixing height estimates were compared with routine observations taken during a severe air pollution episodes in Malaysia. (au)

  20. Transport and Thermohaline Structure in the Western Tropical North Pacific

    Science.gov (United States)

    Schonau, Martha Coakley

    Transport and thermohaline structure of water masses and their respective variability are observed and modeled in the western tropical North Pacific using autonomous underwater gliders, Argo climatology and a numerical ocean state estimate. The North Equatorial Current (NEC) advects subtropical and subpolar water masses into the region that are transported equatorward by the Mindanao Current (MC). Continuous glider observations of these two currents from June 2009 to December 2013 provide absolute geostrophic velocity, water mass structure, and transport. The observations are compared to Argo climatology (Roemmich and Gilson, 2009), wind and precipitation to assess forcing, and annual and interannual variability. Observations are assimilated into a regional ocean state estimate (1/6°) to examine regional transport variability and its relationship to the El Nino-Southern Oscillation phenomena (ENSO). The NEC, described in Chapter 1, is observed along 134.3°E, from 8.5°N to 16.5°N. NEC thermocline transport is relatively constant, with a variable subthermocline transport that is distinguished by countercurrents centered at 9.6°N and 13.1°N. Correlation between thermocline and subthermocline transport is strong. Isopycnals with subducted water masses, the North Pacific Tropical Water and North Pacific Intermediate Water, have the greatest fine-scale thermohaline variance. The NEC advects water masses into the MC, described in Chapter 2, that flows equatorward along the coast of Mindanao. Gliders observed the MC at a mean latitude of 8.5°N. The Mindanao Undercurrent (MUC) persists in the subthermocline offshore of the MC, with a net poleward transport of intermediate water typical of South Pacific origin. The variable subthermocline transport in the MC/MUC has an inverse linear relationship with the Nino 3.4 index and strongly impacts total transport variability. For each the MC and NEC, surface salinity and thermocline depth have a strong relationship with ENSO

  1. Sensitivity of equatorial Pacific and Indian Ocean watermasses to the position of the Indonesian Throughflow

    Science.gov (United States)

    Rodgers, Keith B.; Latif, Mojib; Legutke, Stephanie

    2000-09-01

    The sensitivity of the thermal structure of the equatorial Pacific and Indian Ocean pycnoclines to a model's representation of the Indonesian Straits connecting the two basins is investigated. Two integrations are performed using the global HOPE ocean model. The initial conditions and surface forcing for both cases are identical; the only difference between the runs is that one has an opening for the Indonesian Straits which spans the equator on the Pacific side, and the other has an opening which lies fully north of the equator. The resulting sensitivity throughout much of the upper ocean is greater than 0.5°C for both the equatorial Indian and Pacific. A realistic simulation of net Indonesian Throughflow (ITF) transport (measured in Sverdrups) is not sufficient for an adequate simulation of equatorial watermasses. The ITF must also contain a realistic admixture of northern and southern Pacific source water.

  2. Westward equatorial electrojet during daytime hours. [relation to geomagnetic horizontal field depression

    Science.gov (United States)

    Rastogi, R. G.

    1974-01-01

    The phenomenon of the depression of the geomagnetic horizontal field during the daytime hours of magnetically quiet days at equatorial stations is described. These events are generally seen around 0700 and 1600 LT, being more frequent during the evening than the morning hours. The evening events are more frequent during periods of low solar activity and in the longitude region of weak equatorial electrojet currents. The latitudinal extent of the phenomenon is limited to the normal equatorial electrojet region, and on some occasions the phenomenon is not seen at both stations, separated by only a few hours in longitude. During such an event, the latitudinal profile of the geomagnetic vertical field across the equator is reversed, the ionospheric drift near the equator is reversed toward the east, the q type of sporadic E layer is completely absent, and the height of the peak ionization in the F2 region is decreased. It is suggested that these effects are caused by a narrow band of current flowing westward in the E region of the ionosphere and within the latitude region of the normal equatorial electrojet, due to the reversal of the east-west electrostatic field at low latitudes.

  3. Analysis of tidal currents in the North Sea from shipboard acoustic Doppler current profiler data

    Science.gov (United States)

    Vindenes, Håvard; Orvik, Kjell Arild; Søiland, Henrik; Wehde, Henning

    2018-06-01

    North Sea tidal currents are determined by applying harmonic analysis to ship-borne acoustic Doppler current profiler data recorded from 1999 to 2016, covering large areas of the northern North Sea. Direct current measurement data sets of this magnitude are rare in the otherwise well investigated North Sea, and thus it is a valuable asset in studying and expanding our understanding of its tidal currents and circulation in general. The harmonic analysis is applied to a least squares fit of the current observations at a set of knot points. Results from the harmonic analysis compare favorably to tidal parameters estimated from observations from moored instruments. The analysis shows that the tides are characterized by strong semi-diurnal component, with amplitudes of the principal Lunar constituent ranging from 1.6 cm/s in the Skagerrak to 67 cm/s in the Fair Isle Channel. Diurnal tides are found to be approximately one fifth the strength of the predominant semi-diurnal constituent. Output from a regional barotropic tide model compares well to tidal current determined from the harmonic analysis of the Acoustic Doppler Current Profiler data.

  4. Equatorial electrojet as part of the global circuit: a case-study from the IEEY

    Directory of Open Access Journals (Sweden)

    A. T. Kobea

    1998-06-01

    Full Text Available Geomagnetic storm-time variations often occur coherently at high latitude and the day-side dip equator where they affect the normal eastward Sq field. This paper presents an analysis of ground magnetic field and ionospheric electrodynamic data related to the geomagnetic storm which occured on 27 May 1993 during the International Equatorial Electrojet Year (IEEY experiment. This storm-signature analysis on the auroral, mid-latitude and equatorial ground field and ionospheric electrodynamic data leads to the identification of a sensitive response of the equatorial electrojet (EEJ to large-scale auroral return current: this response consists in a change of the eastward electric field during the pre-sunrise hours (0400-0600 UT coherently to the high-, mid-, and equatorial-latitude H decrease and the disappearance of the EEJ irregularities between the time-interval 0800-0950 UT. Subsequent to the change in h'F during pre-sunrise hours, the observed foF2 increase revealed an enhancement of the equatorial ionization anomaly (EIA caused by the high-latitude penetrating electric field. The strengthening of these irregularities attested by the Doppler frequency increase tracks the H component at the equator which undergoes a rapid increase around 0800 UT. The ∆H variations observed at the equator are the sum of the following components: SR, DP, DR, DCF and DT.Keywords. Equatorial electrojet · Magnetosphere-ionosphere interactions · Electric fields and currents · Auroral ionosphere · Ionospheric disturbances

  5. Continuous day-time time series of E-region equatorial electric fields derived from ground magnetic observatory data

    Science.gov (United States)

    Alken, P.; Chulliat, A.; Maus, S.

    2012-12-01

    The day-time eastward equatorial electric field (EEF) in the ionospheric E-region plays an important role in equatorial ionospheric dynamics. It is responsible for driving the equatorial electrojet (EEJ) current system, equatorial vertical ion drifts, and the equatorial ionization anomaly (EIA). Due to its importance, there is much interest in accurately measuring and modeling the EEF. However, there are limited sources of direct EEF measurements with full temporal and spatial coverage of the equatorial ionosphere. In this work, we propose a method of estimating a continuous day-time time series of the EEF at any longitude, provided there is a pair of ground magnetic observatories in the region which can accurately track changes in the strength of the EEJ. First, we derive a climatological unit latitudinal current profile from direct overflights of the CHAMP satellite and use delta H measurements from the ground observatory pair to determine the magnitude of the current. The time series of current profiles is then inverted for the EEF by solving the governing electrodynamic equations. While this method has previously been applied and validated in the Peruvian sector, in this work we demonstrate the method using a pair of magnetometers in Africa (Samogossoni, SAM, 0.18 degrees magnetic latitude and Tamanrasset, TAM, 11.5 degrees magnetic latitude) and validate the resulting EEF values against the CINDI ion velocity meter (IVM) instrument on the C/NOFS satellite. We find a very good 80% correlation with C/NOFS IVM measurements and a root-mean-square difference of 9 m/s in vertical drift velocity. This technique can be extended to any pair of ground observatories which can capture the day-time strength of the EEJ. We plan to apply this work to more observatory pairs around the globe and distribute real-time equatorial electric field values to the community.

  6. High resolution modelling of the North Icelandic Irminger Current (NIIC

    Directory of Open Access Journals (Sweden)

    K. Logemann

    2006-01-01

    Full Text Available The northward inflow of Atlantic Water through Denmark Strait – the North Icelandic Irminger Current (NIIC – is simulated with a numerical model of the North Atlantic and Arctic Ocean. The model uses the technique of adaptive grid refinement which allows a high spatial resolution (1 km horizontal, 10 m vertical around Iceland. The model is used to assess time and space variability of volume and heat fluxes for the years 1997–2003. Passive tracers are applied to study origin and composition of NIIC water masses. The NIIC originates from two sources: the Irminger Current, flowing as part of the sub-polar gyre in 100–500 m depth along the Reykjanes Ridge and the shallow Icelandic coastal current, flowing north-westward on the south-west Icelandic shelf. The ratio of volume flux between the deep and shallow branch is around 2:1. The NIIC continues as a warm and saline branch northward through Denmark Strait where it entrains large amounts of polar water due to the collision with the southward flowing East Greenland Current. After passing Denmark Strait, the NIIC follows the coast line eastward being an important heat source for north Icelandic waters. At least 60% of the temporal temperature variability of north Icelandic waters is caused by the NIIC. The NIIC volume and heat transport is highly variable and depends strongly on the wind field north-east of Denmark Strait. Daily means can change from 1 Sv eastward to 2 Sv westward within a few days. Highest monthly mean transport rates occur in summer when winds from north are weak, whereas the volume flux is reduced by around 50% in winter. Summer heat flux rates can be even three times higher than in winter. The simulation also shows variability on the interannual scale. In particular weak winds from north during winter 2002/2003 combined with mild weather conditions south of Iceland led to anomalous high NIIC volume (+40% and heat flux (+60% rates. In this period, simulated north Icelandic

  7. Millennial-scale iron fertilization of the eastern equatorial Pacific over the past 100,000 years

    Science.gov (United States)

    Loveley, Matthew R.; Marcantonio, Franco; Wisler, Marilyn M.; Hertzberg, Jennifer E.; Schmidt, Matthew W.; Lyle, Mitchell

    2017-10-01

    The eastern equatorial Pacific Ocean plays a crucial role in global climate, as it is a substantial source of CO2 to the atmosphere and accounts for a significant portion of global new export productivity. Here we present a 100,000-year sediment core from the eastern equatorial Pacific, and reconstruct dust flux, export productivity and bottom-water oxygenation using excess-230Th-derived fluxes of 232Th and barium, and authigenic uranium concentrations, respectively. We find that during the last glacial period (71,000 to 41,000 years ago), increased delivery of dust to the eastern equatorial Pacific was coeval with North Atlantic Heinrich stadial events. Millennial-scale pulses of increased dust flux coincided with episodes of heightened biological productivity, suggesting that dissolution of dust released iron that promoted ocean fertilization. We also find that periods of low atmospheric CO2 concentrations were associated with suboxic conditions and increased storage of respired carbon in the deep eastern equatorial Pacific. Increases in CO2 concentrations during the deglaciation are coincident with increases in deep Pacific and Southern Ocean water oxygenation levels. We suggest that deep-ocean ventilation was a primary control on CO2 outgassing in this region, with superimposed pulses of high productivity providing a negative feedback.

  8. EQUATORIAL SUPERROTATION ON TIDALLY LOCKED EXOPLANETS

    International Nuclear Information System (INIS)

    Showman, Adam P.; Polvani, Lorenzo M.

    2011-01-01

    The increasing richness of exoplanet observations has motivated a variety of three-dimensional (3D) atmospheric circulation models of these planets. Under strongly irradiated conditions, models of tidally locked, short-period planets (both hot Jupiters and terrestrial planets) tend to exhibit a circulation dominated by a fast eastward, or 'superrotating', jet stream at the equator. When the radiative and advection timescales are comparable, this phenomenon can cause the hottest regions to be displaced eastward from the substellar point by tens of degrees longitude. Such an offset has been subsequently observed on HD 189733b, supporting the possibility of equatorial jets on short-period exoplanets. Despite its relevance, however, the dynamical mechanisms responsible for generating the equatorial superrotation in such models have not been identified. Here, we show that the equatorial jet results from the interaction of the mean flow with standing Rossby waves induced by the day-night thermal forcing. The strong longitudinal variations in radiative heating-namely intense dayside heating and nightside cooling-trigger the formation of standing, planetary-scale equatorial Rossby and Kelvin waves. The Rossby waves develop phase tilts that pump eastward momentum from high latitudes to the equator, thereby inducing equatorial superrotation. We present an analytic theory demonstrating this mechanism and explore its properties in a hierarchy of one-layer (shallow-water) calculations and fully 3D models. The wave-mean-flow interaction produces an equatorial jet whose latitudinal width is comparable to that of the Rossby waves, namely the equatorial Rossby deformation radius modified by radiative and frictional effects. For conditions typical of synchronously rotating hot Jupiters, this length is comparable to a planetary radius, explaining the broad scale of the equatorial jet obtained in most hot-Jupiter models. Our theory illuminates the dependence of the equatorial jet

  9. Equatorial electrojet as part of the global circuit: a case-study from the IEEY

    Directory of Open Access Journals (Sweden)

    A. T. Kobea

    Full Text Available Geomagnetic storm-time variations often occur coherently at high latitude and the day-side dip equator where they affect the normal eastward Sq field. This paper presents an analysis of ground magnetic field and ionospheric electrodynamic data related to the geomagnetic storm which occured on 27 May 1993 during the International Equatorial Electrojet Year (IEEY experiment. This storm-signature analysis on the auroral, mid-latitude and equatorial ground field and ionospheric electrodynamic data leads to the identification of a sensitive response of the equatorial electrojet (EEJ to large-scale auroral return current: this response consists in a change of the eastward electric field during the pre-sunrise hours (0400-0600 UT coherently to the high-, mid-, and equatorial-latitude H decrease and the disappearance of the EEJ irregularities between the time-interval 0800-0950 UT. Subsequent to the change in h'F during pre-sunrise hours, the observed foF2 increase revealed an enhancement of the equatorial ionization anomaly (EIA caused by the high-latitude penetrating electric field. The strengthening of these irregularities attested by the Doppler frequency increase tracks the H component at the equator which undergoes a rapid increase around 0800 UT. The ∆H variations observed at the equator are the sum of the following components: SR, DP, DR, DCF and DT.

    Keywords. Equatorial electrojet · Magnetosphere-ionosphere interactions · Electric fields and currents · Auroral ionosphere · Ionospheric disturbances

  10. Intraseasonal vertical velocity variation caused by the equatorial wave in the central equatorial Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Horii, T.; Masumoto, Y.; Ueki, I.; PrasannaKumar, S.; Mizuno, K.

    to the theoretical solution of the equatorial waves [Matsuno, 1966] and the phase speed of the baroclinic mode, the wave that has meridional current on the equator with a quasi-biweekly period is the anti-symmetric mixed Rossby-gravity wave. In the wave... and conclusions are given in section 5. 2. Field Experiment, Data, and Methods 2.1. MISMO Ocean Observation [8] The goal of MISMO was to observe atmospheric conditions and variability associated with intraseasonal disturbances and resulting ocean responses...

  11. Radar observation of the equatorial counter-electrojet

    International Nuclear Information System (INIS)

    Hanuise, C.; Crochet, M.; Gouin, P.; Ogubazghi, Ghebrebrhan

    1979-01-01

    Electron drift velocity in the equatorial electrojet has been measured for a few years by coherent radar techniques in Africa. For the first time such measurements were performed during a strong reversal of the ionospheric current dubbed 'counter-electrojet'. These observations agree with the theories of the plasma instabilities at the origin of the electron density irregularities giving the radar echoes

  12. Origins of wind-driven intraseasonal sea level variations in the North Indian Ocean coastal waveguide

    Digital Repository Service at National Institute of Oceanography (India)

    Suresh, I.; Vialard, J.; Lengaigne, M.; Han, W.; Mc; Durand, F.; Muraleedharan, P.M.

    version: Geophys. Res. Lett., vol.40(21); 2013; 5740-5744 Origins of wind-driven intraseasonal sea level variations in the North Indian Ocean coastal waveguide I. Suresh1, J. Vialard2, M. Lengaigne2, W. Han3, J. McCreary4, F. Durand5, P.M. Muraleedharan1... reversing winds. These wind variations drive seasonal equatorial Kelvin and Rossby wave responses. The seasonal equatorial Kelvin waves propagate into the North Indian Ocean (hereafter NIO) as coastal Kelvin waves [McCreary et al., 1993]. As a result...

  13. Nonlinearly coupled dynamics of irregularities in the equatorial electrojet

    Energy Technology Data Exchange (ETDEWEB)

    Atul, J.K., E-mail: jkatulphysics@gmail.com [Department of Physics, College of Commerce under Magadh University, Patna 800020 (India); Sarkar, S. [FCIPT, Institute for Plasma Research, Gandhinagar 382428 (India); Singh, S.K. [Department of Physics, College of Commerce under Magadh University, Patna 800020 (India)

    2016-04-01

    Kinetic wave description is used to study the nonlinear influence of background Farley Buneman (FB) modes on the Gradient Drift (GD) modes in the equatorial electrojet ionosphere. The dominant nonlinearity is mediated through the electron flux term in the governing fluid equation which further invokes a turbulent current into the system. Electron dynamics reveals the modification in electron collision frequency and inhomogeneity scale length. It is seen that the propagation and growth rate of GD modes get modified by the background FB modes. Also, a new quasimode gets excited through the quadratic dispersion relation. Physical significance of coupled dynamics between the participating modes is also discussed. - Highlights: • Nonlinear influence of Farley Buneman mode on the Gradient drift mode, is investigated. • Electron collision frequency and density gradient scale length get modified. • A new quasimode gets excited due to the competition between these modes. • It seems to be important for modelling of Equatorial Electrojet current system.

  14. Nonlinearly coupled dynamics of irregularities in the equatorial electrojet

    International Nuclear Information System (INIS)

    Atul, J.K.; Sarkar, S.; Singh, S.K.

    2016-01-01

    Kinetic wave description is used to study the nonlinear influence of background Farley Buneman (FB) modes on the Gradient Drift (GD) modes in the equatorial electrojet ionosphere. The dominant nonlinearity is mediated through the electron flux term in the governing fluid equation which further invokes a turbulent current into the system. Electron dynamics reveals the modification in electron collision frequency and inhomogeneity scale length. It is seen that the propagation and growth rate of GD modes get modified by the background FB modes. Also, a new quasimode gets excited through the quadratic dispersion relation. Physical significance of coupled dynamics between the participating modes is also discussed. - Highlights: • Nonlinear influence of Farley Buneman mode on the Gradient drift mode, is investigated. • Electron collision frequency and density gradient scale length get modified. • A new quasimode gets excited due to the competition between these modes. • It seems to be important for modelling of Equatorial Electrojet current system.

  15. Anthropogenic CO2 distribution in the North Pacific ocean

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C [National Sun Yat-Sen University, Kaohsiung (Taiwan, Province of China)

    1993-06-01

    This paper discusses the penetration depth of anthropogenic CO2 in the North Pacific Ocean based on carbonate data in the literature. The carbonate data in the literature were used to supplement the tracer data showing oceanic mixing features for waters formed in the last 140 years. The deepest penetration over 2,000m was found in the northwest North Pacific. On the other hand, the shallowest penetration to less than 400m was found in the eastern equatorial Pacific. Consequently, it was suggested that penetration depth of anthropogenic CO2 has been controlled by such factors as deep water formation in the Northwest Pacific, upwelling in the equatorial Pacific, and vertical mixing in the western boundary areas. It was revealed that these results are in harmony well with results implied from tritium, C-14, and freons distributions. The total inventory of excess carbon in the North Pacific was 14.7[plus minus]4[times]10[sup 15]g around 1980. 48 refs., 10 figs.

  16. Observational evidence of lower-frequency Yanai waves in the central equatorial Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    David, D.T.; PrasannaKumar, S.; Byju, P.; Sarma, M.S.S.; Suryanarayana, A.; Murty, V.S.N.

    created by the northward shifting and strengthening of the westward flowing south equatorial current associated with positive IOD and the eastward flowing southwest monsoon current provides energy for the generation of lower-frequency Yanai waves. Vertical...

  17. Precursory enhancement of EIA in the morning sector: Contribution from mid-latitude large earthquakes in the north-east Asian region

    Science.gov (United States)

    Ryu, Kwangsun; Oyama, Koh-Ichiro; Bankov, Ludmil; Chen, Chia-Hung; Devi, Minakshi; Liu, Huixin; Liu, Jann-Yenq

    2016-01-01

    To investigate whether the link between seismic activity and EIA (equatorial ionization anomaly) enhancement is valid for mid-latitude seismic activity, DEMETER observations around seven large earthquakes in the north-east Asian region were fully analyzed (M ⩾ 6.8). In addition, statistical analysis was performed for 35 large earthquakes (M ⩾ 6.0) that occurred during the DEMETER observation period. The results suggest that mid-latitude earthquakes do contribute to EIA enhancement, represented as normalized equatorial Ne , and that ionospheric change precedes seismic events, as has been reported in previous studies. According to statistical studies, the normalized equatorial density enhancement is sensitive and proportional to both the magnitude and the hypocenter depth of an earthquake. The mechanisms that can explain the contribution of mid-latitude seismic activity to EIA variation are briefly discussed based on current explanations of the geochemical and ionospheric processes involved in lithosphere-ionosphere interaction.

  18. The equatorial F-layer: progress and puzzles

    Directory of Open Access Journals (Sweden)

    H. Rishbeth

    Full Text Available This work reviews some aspects of the ionospheric F-layer in the vicinity of the geomagnetic equator. Starting with a historical introduction, brief summaries are given of the physics that makes the equatorial ionosphere so interesting, concentrating on the large-scale structure rather than the smaller-scale instability phenomena. Several individual topics are then discussed, including eclipse effects, the asymmetries of the `equatorial trough', variations with longitude, the semiannual variation, the effects of the global thermospheric circulation, and finally the equatorial neutral thermosphere, including `superrotation' and possible topographic influences.

    Keyword: Ionosphere (equatorial ionosphere

  19. Seasonal cycle of cross-equatorial flow in the central Indian Ocean

    Science.gov (United States)

    Wang, Yi; McPhaden, Michael J.

    2017-05-01

    This study investigates the seasonal cycle of meridional currents in the upper layers of central equatorial Indian Ocean using acoustic Doppler current profiler (ADCP) and other data over the period 2004-2013. The ADCP data set collected along 80.5°E is the most comprehensive collection of direct velocity measurements in the central Indian Ocean to date, providing new insights into the meridional circulation in this region. We find that mean volume transport is southward across the equator in the central Indian Ocean in approximate Sverdrup balance with the wind stress curl. In addition, mean westerly wind stress near the equator drives convergent Ekman flow in the surface layer and subsurface divergent geostrophic flow in the thermocline at 50-150 m depths. In response to a mean northward component of the surface wind stress, the maximum surface layer convergence is shifted off the equator to between 0.5° and 1°N. Evidence is also presented for the existence of a shallow equatorial roll consisting of a northward wind-driven surface drift overlaying the southward directed subsurface Sverdrup transport. Seasonal variations are characterized by cross-equatorial transports flowing from the summer to the winter hemisphere in quasi-steady Sverdrup balance with the wind stress curl. In addition, semiannually varying westerly monsoon transition winds lead to semiannual enhancements of surface layer Ekman convergence and geostrophic divergence in the thermocline. These results quantify expectations from ocean circulation theories for equatorial Indian Ocean meridional circulation patterns with a high degree of confidence given the length of the data records.

  20. Lagrangian mixed layer modeling of the western equatorial Pacific

    Science.gov (United States)

    Shinoda, Toshiaki; Lukas, Roger

    1995-01-01

    Processes that control the upper ocean thermohaline structure in the western equatorial Pacific are examined using a Lagrangian mixed layer model. The one-dimensional bulk mixed layer model of Garwood (1977) is integrated along the trajectories derived from a nonlinear 1 1/2 layer reduced gravity model forced with actual wind fields. The Global Precipitation Climatology Project (GPCP) data are used to estimate surface freshwater fluxes for the mixed layer model. The wind stress data which forced the 1 1/2 layer model are used for the mixed layer model. The model was run for the period 1987-1988. This simple model is able to simulate the isothermal layer below the mixed layer in the western Pacific warm pool and its variation. The subduction mechanism hypothesized by Lukas and Lindstrom (1991) is evident in the model results. During periods of strong South Equatorial Current, the warm and salty mixed layer waters in the central Pacific are subducted below the fresh shallow mixed layer in the western Pacific. However, this subduction mechanism is not evident when upwelling Rossby waves reach the western equatorial Pacific or when a prominent deepening of the mixed layer occurs in the western equatorial Pacific or when a prominent deepening of the mixed layer occurs in the western equatorial Pacific due to episodes of strong wind and light precipitation associated with the El Nino-Southern Oscillation. Comparison of the results between the Lagrangian mixed layer model and a locally forced Eulerian mixed layer model indicated that horizontal advection of salty waters from the central Pacific strongly affects the upper ocean salinity variation in the western Pacific, and that this advection is necessary to maintain the upper ocean thermohaline structure in this region.

  1. The Sidebands of the Equatorial Electrojet: General Characteristic of the Westward Currents, as Deduced From CHAMP

    Science.gov (United States)

    Zhou, Yun-Liang; Lühr, Hermann; Alken, Patrick

    2018-02-01

    Based on 5 years (2001-2005) of magnetic field measurements made by the CHAMP satellite, latitudinal profiles of the equatorial electrojet (EEJ) have been derived. This study provides a comprehensive characterization of the reverse current EEJ sidebands. These westward currents peak at ±5° quasi-dipole latitude with typical amplitudes of 35% of the main EEJ. The diurnal amplitude variation is quite comparable with that of the EEJ. Similarly to the EEJ, the intensity is increasing with solar EUV flux, but with a steeper slope, indicating that not only the conductivity plays a role. For the longitude distribution we find, in general, larger amplitudes in the Western than in the Eastern Hemisphere. It is presently a common understanding that the reverse current EEJ sidebands are generated by eastward zonal winds at altitudes above about 120 km. In particular, a positive vertical gradient of wind speed generates westward currents at magnetic latitudes outside of 2° dip latitude. Interesting information about these features can be deduced from the sidebands' tidal characteristics. The longitudinal variation of the amplitude is dominated by a wave-1 pattern, which can primarily be attributed to the tidal components SPW1 and SW3. In case of the hemispheric amplitude differences these same two wave-1 components dominate. The ratio between sideband amplitude and main EEJ is largely controlled by the tidal features of the EEJ. The longitudinal patterns of the latitude, where the sidebands peak, resemble to some extent those of the amplitude. Current densities become larger when the peaks move closer to the magnetic equator.

  2. Do the Atlantic climate modes impact the ventilation of the eastern tropical North Atlantic oxygen minimum zones?

    Science.gov (United States)

    Burmeister, Kristin; Lübbecke, Joke F.

    2017-04-01

    Oxygen minimum zones (OMZs) exist in the upwelling regions of the eastern tropical Atlantic and Pacific at intermediate depth. They are a consequence of high biological productivity in combination with weak ventilation. The flow fields in the tropical Atlantic is characterized by Latitudinally Alternating Zonal Jets (LAZJs) with a large vertical scale. It has been suggested that LAZJs play an important role for the ventilation of the OMZ as eastward currents advect oxygen-rich waters from the western boundary towards the OMZ. In the Eastern Tropical North Atlantic (ETNA), the eastward flowing North Equatorial Undercurrent and North Equatorial Countercurrent (NECC) provide the main oxygen supply into the OMZ. Variability in the strength and location of the LAZJs is associated with oxygen variability in the ETNA OMZ. We here want to address the question whether the variability in the zonal current field can be partly attributed to the large-scale climate modes of the tropical Atlantic, namely the Atlantic zonal and meridional mode. An influence of these modes on the NECC has been found in previous studies. For the analysis we are using the output of a global ocean circulation model, in which a 1/10° nest covering the tropical Atlantic is embedded into a global 1/2° model, as well as reanalysis products and satellite data. The zonal current field and oxygen distribution from the high resolution model is compared to observational data. The location and intensity of the current bands during positive and negative phases of the Atlantic climate modes are compared by focusing on individual events and via composite analysis. Based on the results, the potential impact of the Atlantic climate modes on the ventilation of the ETNA OMZ is discussed.

  3. Impact of improved momentum transfer coefficients on the dynamics and thermodynamics of the north Indian Ocean

    Science.gov (United States)

    Parekh, Anant; Gnanaseelan, C.; Jayakumar, A.

    2011-01-01

    Long time series of in situ observations from the north Indian Ocean are used to compute the momentum transfer coefficients over the north Indian Ocean. The transfer coefficients behave nonlinearly for low winds (<4 m/s), when most of the known empirical relations assume linear relations. Impact of momentum transfer coefficients on the upper ocean parameters is studied using an ocean general circulation model. The model experiments revealed that the Arabian Sea and Equatorial Indian Ocean are more sensitive to the momentum transfer coefficients than the Bay of Bengal and south Indian Ocean. The impact of momentum transfer coefficients on sea surface temperature is up to 0.3°C-0.4°C, on mixed layer depth is up to 10 m, and on thermocline depth is up to 15 m. Furthermore, the impact on the zonal current is maximum over the equatorial Indian Ocean (i.e., about 0.12 m/s in May and 0.15 m/s in October; both May and October are the period of Wyrtki jets and the difference in current has potential impact on the seasonal mass transport). The Sverdrup transport has maximum impact in the Bay of Bengal (3 to 4 Sv in August), whereas the Ekman transport has maximum impact in the Arabian Sea (4 Sv during May to July). These highlight the potential impact of accurate momentum forcing on the results from current ocean models.

  4. Magnetization modeling in the north and equatorial Atlantic Ocean using MAGSAT data

    Science.gov (United States)

    Hayling, K. L.; Harrison, C. G. A.

    1986-01-01

    Magsat 2 x 2-deg scalar anomalous-magnetic-field data (Langel et al., 1982) for the northern and equatorial Atlantic are inverted and combined with physiographic data and laboratory results on the magnetization of oceanic rocks and the oceanic crust to construct models explaining the shorter-wavelength component of the anomalies. An annihilator is applied to the inversion results to eliminate reverse-magnetized sources and facilitate comparisons of areas inverted separately, and a latitude effect on source spacing is tentatively attributed to greater noise contamination at lower latitudes. It is found that remanent magnetization combined with considerable crustal thickening can best explain the high intensity levels observed, although viscous magnetization or contamination of the data by noncrustal sources must also be considered.

  5. Reflection of equatorial Kelvin waves at eastern ocean boundaries Part I: hypothetical boundaries

    Directory of Open Access Journals (Sweden)

    J. Soares

    1999-06-01

    Full Text Available A baroclinic shallow-water model is developed to investigate the effect of the orientation of the eastern ocean boundary on the behavior of equatorial Kelvin waves. The model is formulated in a spherical polar coordinate system and includes dissipation and non-linear terms, effects which have not been previously included in analytical approaches to the problem. Both equatorial and middle latitude response are considered given the large latitudinal extent used in the model. Baroclinic equatorial Kelvin waves of intraseasonal, seasonal and annual periods are introduced into the domain as pulses of finite width. Their subsequent reflection, transmission and dissipation are investigated. It is found that dissipation is very important for the transmission of wave energy along the boundary and for reflections from the boundary. The dissipation was found to be dependent not only on the presence of the coastal Kelvin waves in the domain, but also on the period of these coastal waves. In particular the dissipation increases with wave period. It is also shown that the equatorial β-plane approximation can allow an anomalous generation of Rossby waves at higher latitudes. Nonlinearities generally have a small effect on the solutions, within the confines of this model.Key words. Oceanography: general (equatorial oceanography; numerical modeling · Oceanography: physical (eastern boundary currents

  6. Modeling Global Ocean Biogeochemistry With Physical Data Assimilation: A Pragmatic Solution to the Equatorial Instability

    Science.gov (United States)

    Park, Jong-Yeon; Stock, Charles A.; Yang, Xiaosong; Dunne, John P.; Rosati, Anthony; John, Jasmin; Zhang, Shaoqing

    2018-03-01

    Reliable estimates of historical and current biogeochemistry are essential for understanding past ecosystem variability and predicting future changes. Efforts to translate improved physical ocean state estimates into improved biogeochemical estimates, however, are hindered by high biogeochemical sensitivity to transient momentum imbalances that arise during physical data assimilation. Most notably, the breakdown of geostrophic constraints on data assimilation in equatorial regions can lead to spurious upwelling, resulting in excessive equatorial productivity and biogeochemical fluxes. This hampers efforts to understand and predict the biogeochemical consequences of El Niño and La Niña. We develop a strategy to robustly integrate an ocean biogeochemical model with an ensemble coupled-climate data assimilation system used for seasonal to decadal global climate prediction. Addressing spurious vertical velocities requires two steps. First, we find that tightening constraints on atmospheric data assimilation maintains a better equatorial wind stress and pressure gradient balance. This reduces spurious vertical velocities, but those remaining still produce substantial biogeochemical biases. The remainder is addressed by imposing stricter fidelity to model dynamics over data constraints near the equator. We determine an optimal choice of model-data weights that removed spurious biogeochemical signals while benefitting from off-equatorial constraints that still substantially improve equatorial physical ocean simulations. Compared to the unconstrained control run, the optimally constrained model reduces equatorial biogeochemical biases and markedly improves the equatorial subsurface nitrate concentrations and hypoxic area. The pragmatic approach described herein offers a means of advancing earth system prediction in parallel with continued data assimilation advances aimed at fully considering equatorial data constraints.

  7. Cross-equatorial flow through an abyssal channel under the complete Coriolis force: Two-dimensional solutions

    Science.gov (United States)

    Stewart, A. L.; Dellar, P. J.

    The component of the Coriolis force due to the locally horizontal component of the Earth's rotation vector is commonly neglected, under the so-called traditional approximation. We investigate the role of this "non-traditional" component of the Coriolis force in cross-equatorial flow of abyssal ocean currents. We focus on the Antarctic Bottom Water (AABW), which crosses from the southern to the northern hemisphere through the Ceara abyssal plain in the western Atlantic ocean. The bathymetry in this region resembles a northwestward channel, connecting the Brazil Basin in the south to the Guyana Basin in the north. South of the equator, the AABW leans against the western continental rise, consistent with a northward flow in approximate geostrophic balance. The AABW then crosses to the other side of the abyssal channel as it crosses the equator, and flows into the northern hemisphere leaning towards the east against the Mid-Atlantic Ridge. The non-traditional component of the Coriolis force is strongest close to the equator. The traditional component vanishes at the equator, being proportional to the locally vertical component of the Earth's rotation vector. The weak stratification of the abyssal ocean, and subsequent small internal deformation radius, defines a relatively short characteristic horizontal lengthscale that tends to make non-traditional effects more prominent. Additionally, the steep gradients of the channel bathymetry induce large vertical velocities, which are linked to zonal accelerations by the non-traditional components of the Coriolis force. We therefore expect non-traditional effects to play a substantial role in cross-equatorial transport of the AABW. We present asymptotic steady solutions for non-traditional shallow water flow through an idealised abyssal channel, oriented at an oblique angle to the equator. The current enters from the south, leaning up against the western side of the channel in approximate geostrophic balance, and crosses the

  8. Performance evaluation of GPS receiver under equatorial scintillation

    Directory of Open Access Journals (Sweden)

    Alison de Oliveira Moraes

    2009-06-01

    Full Text Available Equatorial scintillation is a phenomenon that occurs daily in the equatorial region after the sunset and affects radio signals that propagate through the ionosphere. Depending on the temporal and spatial situation, equatorial scintillation can represent a problem in the availability and precision of the Global Positioning System (GPS. This work is concerned with evaluating the impact of equatorial scintillation on the performance of GPS receivers. First, the morphology and statistical model of equatorial scintillation is briefly presented. A numerical model that generates synthetic scintillation data to simulate the effects of equatorial scintillation is presented. An overview of the main theoretical principles on GPS receivers is presented. The analytical models that describe the effects of scintillation at receiver level are presented and compared with numerical simulations using a radio software receiver and synthetic data. The results achieved by simulation agreed quite well with those predicted by the analytical models. The only exception is for links with extreme levels of scintillation and when weak signals are received.

  9. Discovery Of A Rossby Wave In Jupiter's South Equatorial Region

    Science.gov (United States)

    Simon-Miller, Amy A.; Choi, D. S.; Rogers, J. H.; Gierasch, P. J.

    2012-01-01

    A detailed study of the chevron-shaped dark spots on the strong southern equatorial wind jet near 7.5 deg S planetographic latitude shows variations in velocity with longitude and time. The chevrons move with velocities near the maximum wind jet velocity of approx.140 m/s, as deduced by the history of velocities at this latitude and the magnitude of the symmetric wind jet near 7 deg N latitude. Their repetitive nature is consistent with an inertia-gravity wave (n = 75-100) with phase speed up to 25 m/s, relative to the local flow, but the identity of this wave mode is not well constrained. However, high spatial resolution movies from Cassini images show that the chevrons oscillate in latitude with a approx.7-day period. This oscillating motion has a wavelength of approx.20 deg and a speed of approx.100 m/s, following a pattern similar to that seen in the Rossby wave plumes of the North Equatorial Zone, and possibly reinforced by it, though they are not perfectly in phase. The transient anticyclonic South Equatorial Disturbance (SED) may be a similar wave feature, but moves at slower velocity. All data show chevron latitude variability, but it is unclear if this Rossby wave is present during other epochs, without time series movies that fully delineate it. In the presence of multiple wave modes, the difference in dominant cloud appearance between 7 deg N and 7.5 deg S may be due to the presence of the Great Red Spot, either through changes in stratification and stability or by acting as a wave boundary.

  10. The role of the complete Coriolis force in cross-equatorial transport of the Antarctic Bottom Water

    Science.gov (United States)

    Stewart, Andrew; Dellar, Paul

    2010-05-01

    We investigate the equatorial crossing of the Antarctic Bottom Water using a shallow water model that includes the complete Coriolis force. Most theoretical models of the atmosphere and ocean neglect the component of the Coriolis force associated with the horizontal component of the Earth's rotation vector, the so-called traditional approximation. This approximation is typically justified on the basis that ratio of the ocean depth to the Rossby radius of deformation is negligibly small, H-Rd ≪ 1. However, the steep topography and weak stratification in the abyssal ocean magnify the role of the non-traditional component of the Coriolis force. This is most pronounced in equatorial regions, where the traditional component of the Coriolis force is weakest and the non-traditional component is strongest. The inclusion of the complete Coriolis force gives rise to a range of very long sub-inertial waves, whose frequencies lie below the inertial frequency, in the two-layer shallow water equations. These waves have a dramatically different structure to their traditional counterparts, particularly when the stratification is weak. We focus on the flow of the Antarctic Bottom Water from the Brazil Basin in the western South Atlantic to the Guiana Basin in the western North Atlantic. In this region, the current traverses a deep channel directed westwards and very slightly northwards across the equator. Previous attempts to model this flow have struggled to explain why the cross-equatorial transport is so high, with around 2.0-2.2 Sv exiting at the northern end of the channel. We present analytical and numerical solutions of the non-traditional shallow water equations for the cross-equatorial flow of the Antarctic Bottom Water. We obtain analytical solutions by considering the steady-state flow of a single layer of shallow water through a northwesterly channel with a simple geometry. We assume zero potential vorticity, as it may be shown that fluid whose potential vorticity q

  11. Understanding the Longitudinal Variability of Equatorial Electrodynamics using integrated Ground- and Space-based Observations

    Science.gov (United States)

    Yizengaw, E.; Moldwin, M.; Zesta, E.

    2015-12-01

    The currently funded African Meridian B-Field Education and Research (AMBER) magnetometer array comprises more than thirteen magnetometers stationed globally in the vicinity of geomagnetic equator. One of the main objectives of AMBER network is to understand the longitudinal variability of equatorial electrodynamics as function of local time, magnetic activity, and season. While providing complete meridian observation in the region and filling the largest land-based gap in global magnetometer coverage, the AMBER array addresses two fundamental areas of space physics: first, the processes governing electrodynamics of the equatorial ionosphere as a function of latitude (or L-shell), local time, longitude, magnetic activity, and season, and second, ULF pulsation strength at low/mid-latitude regions and its connection with equatorial electrojet and density fluctuation. The global AMBER network can also be used to augment observations from space-based instruments, such us the triplet SWARM mission and the upcoming ICON missions. Thus, in coordination with space-based and other ground-based observations, the AMBER magnetometer network provides a great opportunity to understand the electrodynamics that governs equatorial ionosphere motions. In this paper we present the longitudinal variability of the equatorial electrodynamics using the combination of instruments onboard SWARM and C/NOFS satellites and ground-based AMBER network. Both ground- and pace-based observations show stronger dayside and evening sector equatorial electrodynamics in the American and Asian sectors compared to the African sector. On the other hand, the African sector is home to stronger and year-round ionospheric bubbles/irregularities compared to the American and Asian sectors. This raises the question if the evening sector equatorial electrodynamics (vertical drift), which is believed to be the main cause for the enhancement of Rayleigh-Taylor (RT) instability growth rate, is stronger in the

  12. Photoelectric panel with equatorial mounting of drive

    Science.gov (United States)

    Kukhta, M. S.; Krauinsh, P. Y.; Krauinsh, D. P.; Sokolov, A. P.; Mainy, S. B.

    2018-03-01

    The relevance of the work is determined by the need to create effective models for sunny energy. The article considers a photoelectric panel equipped with a system for tracking the sun. Efficiency of the system is provided by equatorial mounting, which compensates for the rotation of the Earth by rotating the sunny panel in the plane of the celestial equator. The specificity of climatic and geographical conditions of Tomsk is estimated. The dynamics of power variations of photoelectric panels with equatorial mounting during seasonal fluctuations in Tomsk is calculated. A mobile photovoltaic panel with equatorial mounting of the drive has been developed. The methods of design strategy for placing photovoltaic panels in the architectural environment of the city are presented. Key words: sunny energy, photovoltaics, equatorial mounting, mechatronic model, wave reducer, electric drive.

  13. Simulated wind-generated inertial oscillations compared to current measurements in the northern North Sea

    Science.gov (United States)

    Bruserud, Kjersti; Haver, Sverre; Myrhaug, Dag

    2018-04-01

    Measured current speed data show that episodes of wind-generated inertial oscillations dominate the current conditions in parts of the northern North Sea. In order to acquire current data of sufficient duration for robust estimation of joint metocean design conditions, such as wind, waves, and currents, a simple model for episodes of wind-generated inertial oscillations is adapted for the northern North Sea. The model is validated with and compared against measured current data at one location in the northern North Sea and found to reproduce the measured maximum current speed in each episode with considerable accuracy. The comparison is further improved when a small general background current is added to the simulated maximum current speeds. Extreme values of measured and simulated current speed are estimated and found to compare well. To assess the robustness of the model and the sensitivity of current conditions from location to location, the validated model is applied at three other locations in the northern North Sea. In general, the simulated maximum current speeds are smaller than the measured, suggesting that wind-generated inertial oscillations are not as prominent at these locations and that other current conditions may be governing. Further analysis of the simulated current speed and joint distribution of wind, waves, and currents for design of offshore structures will be presented in a separate paper.

  14. Midday reversal of equatorial ionospheric electric field

    Directory of Open Access Journals (Sweden)

    R. G. Rastogi

    1997-10-01

    Full Text Available A comparative study of the geomagnetic and ionospheric data at equatorial and low-latitude stations in India over the 20 year period 1956–1975 is described. The reversal of the electric field in the ionosphere over the magnetic equator during the midday hours indicated by the disappearance of the equatorial sporadic E region echoes on the ionograms is a rare phenomenon occurring on about 1% of time. Most of these events are associated with geomagnetically active periods. By comparing the simultaneous geomagnetic H field at Kodaikanal and at Alibag during the geomagnetic storms it is shown that ring current decreases are observed at both stations. However, an additional westward electric field is superimposed in the ionosphere during the main phase of the storm which can be strong enough to temporarily reverse the normally eastward electric field in the dayside ionosphere. It is suggested that these electric fields associated with the V×Bz electric fields originate at the magnetopause due to the interaction of the solar wind and the interplanetary magnetic field.

  15. Midday reversal of equatorial ionospheric electric field

    Directory of Open Access Journals (Sweden)

    R. G. Rastogi

    Full Text Available A comparative study of the geomagnetic and ionospheric data at equatorial and low-latitude stations in India over the 20 year period 1956–1975 is described. The reversal of the electric field in the ionosphere over the magnetic equator during the midday hours indicated by the disappearance of the equatorial sporadic E region echoes on the ionograms is a rare phenomenon occurring on about 1% of time. Most of these events are associated with geomagnetically active periods. By comparing the simultaneous geomagnetic H field at Kodaikanal and at Alibag during the geomagnetic storms it is shown that ring current decreases are observed at both stations. However, an additional westward electric field is superimposed in the ionosphere during the main phase of the storm which can be strong enough to temporarily reverse the normally eastward electric field in the dayside ionosphere. It is suggested that these electric fields associated with the V×Bz electric fields originate at the magnetopause due to the interaction of the solar wind and the interplanetary magnetic field.

  16. Intermonsoonal equatorial jets

    Digital Repository Service at National Institute of Oceanography (India)

    Muraleedharan, P.M.

    , respectively. Hydrographic features and transport computations favour a well developed equatorial jet during both seasons. The net surface eastward and subsurface westward flows are well balanced during the premonsoon transition period and appear...

  17. Deep currents in the Gulf of Guinea: along slope propagation of intraseasonal waves

    Directory of Open Access Journals (Sweden)

    C. Guiavarc'h

    2009-05-01

    Full Text Available In the Gulf of Guinea, intraseasonal variability is large at the equator and along the coast. Current data on the continental slope near 7.5° S show very energetic biweekly oscillations at 1300 m depth. A high resolution primitive equation numerical model demonstrates that this deep variability is forced by equatorial winds, through the generation of equatorial Yanai waves that propagate eastward and at depth, and then poleward as coastally-trapped waves upon reaching the coast of Africa. Intraseasonal variability is intensified along the coast of the Gulf of Guinea, especially in the 10–20 day period range and at depths between 500 and 1500 m. The kinetic energy distribution is well explained at first order by linear theory. Along the equator, eastward intensification of energy and bottom intensification are in qualitative agreement with vertically propagating Yanai waves, although the signal is influenced by the details of the bathymetry. Along the coast, baroclinic modes 3 to 5 are important close to the equator, and the signal is dominated by lower vertical modes farther south. Additional current meter data on the continental slope near 3° N display an energy profile in the 10–20 day period band that is strikingly different from the one at 7.5° S, with surface intensification rather than bottom intensification and a secondary maximum near 800 m. The model reproduces these features and explains them: the surface intensification in the north is due to the regional wind forcing, and the north-south asymmetry of the deep signal is due to the presence of the zonal African coast near 5° N. A 4 years time series of current measurements at 7.5° S shows that the biweekly oscillations are intermittent and vary from year to year. This intermittency is not well correlated with fluctuations of the equatorial winds and does not seem to be a simple linear response to the wind forcing.

  18. Role of the meridional dipole of SSTA and associated cross-equatorial flow in the tropical eastern Pacific in terminating the 2014 El Niño development

    Science.gov (United States)

    Wu, Yi-Kai; Chen, Lin; Hong, Chi-Cherng; Li, Tim; Chen, Cheng-Ta; Wang, Lu

    2018-03-01

    In the boreal spring of 2014, the oceanic and atmospheric conditions were favorable for an El Niño's development. It was predicted that in 2014, a super El Niño or at least a regular El Niño with normal magnitude, would initiate. However, the growth rate of the sea surface temperature anomaly (SSTA) in the equatorial eastern Pacific suddenly declined in the boreal summer. The physical processes responsible for the termination of the 2014 El Niño were addressed in this study. We hypothesized that a meridional dipole of SSTA, characterized by a pronounced warm SSTA over the eastern North Pacific (ENP) and cold SSTA over the eastern South Pacific (ESP), played a crucial role in blocking the 2014 El Niño's development. The observational analysis revealed that the meridional dipole of SSTA and the relevant anomalous cross-equatorial flow in the tropical eastern Pacific, induced anomalous westward ({u^' }0) currents in the equatorial eastern Pacific, leading to negative anomalous zonal advection term (- {u^' }partial \\overline T /partial xpartial \\overline T /partial znegative SSTA tendency in the boreal summer, and thus killed off the budding 2014 El Niño. The idealized numerical experiments further confirmed that the 2014 El Niño's development could be suppressed by the meridional dipole of SSTA, and both the ENP pole and ESP pole make a contribution.

  19. Possible ionospheric preconditioning by shear flow leading to equatorial spread F

    Directory of Open Access Journals (Sweden)

    D. L. Hysell

    2005-10-01

    Full Text Available Vertical shear in the zonal plasma drift speed is apparent in incoherent and coherent scatter radar observations of the bottomside F region ionosphere made at Jicamarca from about 1600–2200 LT. The relative importance of the factors controlling the shear, which include competition between the E and F region dynamos as well as vertical currents driven in the E and F regions at the dip equator, is presently unknown. Bottom-type scattering layers arise in strata where the neutral and plasma drifts differ widely, and periodic structuring of irregularities within the layers is telltale of intermediate-scale waves in the bottomside. These precursor waves appear to be able to seed ionospheric interchange instabilities and initiate full-blown equatorial spread F. The seed or precursor waves may be generated by a collisional shear instability. However, assessing the viability of shear instability requires measurements of the same parameters needed to understand shear flow quantitatively - thermospheric neutral wind and off-equatorial conductivity profiles. Keywords. Ionosphere (Equatorial ionosphere; ionospheric irregularities – Space plasma physics (Waves and instabilities

  20. An estimate of equatorial wave energy flux at 9- to 90-day periods in the Central Pacific

    Science.gov (United States)

    Eriksen, Charles C.; Richman, James G.

    1988-01-01

    Deep fluctuations in current along the equator in the Central Pacific are dominated by coherent structures which correspond closely to narrow-band propagating equatorial waves. Currents were measured roughly at 1500 and 3000 m depths at five moorings between 144 and 148 deg W from January 1981 to March 1983, as part of the Pacific Equatorial Ocean Dynamics program. In each frequency band resolved, a single complex empirical orthogonal function accounts for half to three quarters of the observed variance in either zonal or meridional current. Dispersion for equatorial first meridional Rossby and Rossby gravity waves is consistent with the observed vertical-zonal coherence structure. The observations indicate that energy flux is westward and downward in long first meridional mode Rossby waves at periods 45 days and longer, and eastward and downward in short first meridional mode Rossby waves and Rossby-gravity waves at periods 30 days and shorter. A local minimum in energy flux occurs at periods corresponding to a maximum in upper-ocean meridional current energy contributed by tropical instability waves. Total vertical flux across the 9- to 90-day period range is 2.5 kW/m.

  1. Quantum cloning machines for equatorial qubits

    International Nuclear Information System (INIS)

    Fan Heng; Matsumoto, Keiji; Wang Xiangbin; Wadati, Miki

    2002-01-01

    Quantum cloning machines for equatorial qubits are studied. For the case of a one to two phase-covariant quantum cloning machine, we present the networks consisting of quantum gates to realize the quantum cloning transformations. The copied equatorial qubits are shown to be separable by using Peres-Horodecki criterion. The optimal one to M phase-covariant quantum cloning transformations are given

  2. Energy efficiency and comfort conditions in passive solar buildings: Effect of thermal mass at equatorial high altitudes

    Science.gov (United States)

    Ogoli, David Mwale

    This dissertation is based on the philosophy that architectural design should not just be a function of aesthetics, but also of energy-efficiency, advanced technologies and passive solar strategies. A lot of published literature is silent regarding buildings in equatorial highland regions. This dissertation is part of the body of knowledge that attempts to provide a study of energy in buildings using thermal mass. The objectives were to establish (1) effect of equatorial high-altitude climate on thermal mass, (2) effect of thermal mass on moderating indoor temperatures, (3) effect of thermal mass in reducing heating and cooling energy, and (4) the amount of time lag and decrement factor of thermal mass. Evidence to analyze the effect of thermal mass issues came from three sources. First, experimental physical models involving four houses were parametrically conducted in Nairobi, Kenya. Second, energy computations were made using variations in thermal mass for determining annual energy usage and costs. Third, the data gathered were observed, evaluated, and compared with currently published research. The findings showed that: (1) Equatorial high-altitude climates that have diurnal temperature ranging about 10--15°C allow thermal mass to moderate indoor temperatures; (2) Several equations were established that indicate that indoor mean radiant temperatures can be predicted from outdoor temperatures; (3) Thermal mass can reduce annual energy for heating and cooling by about 71%; (4) Time lag and decrement of 200mm thick stone and concrete thermal mass can be predicted by a new formula; (5) All windows on a building should be shaded. East and west windows when shaded save 51% of the cooling energy. North and south windows when fully shaded account for a further 26% of the cooling energy; (6) Insulation on the outside of a wall reduces energy use by about 19.6% below the levels with insulation on the inside. The basic premise of this dissertation is that decisions that

  3. Short-term magnetic field alignment variations of equatorial ionospheric irregularities

    International Nuclear Information System (INIS)

    Johnson, A.L.

    1988-01-01

    The ionospheric irregularities that cause equatorial scintillation are elongated along the north-south magnetic field lines. During a 1981 field campaign at Ascension Island, 250-MHz receivers were spaced from 300 m to 1.6 km along the field lines, and the signals received from the Marisat satellite were cross correlated. Data collected during eight nights of fading showed a linear relationship between fading rate and cross correlation. The alignment of the antennas was adjusted to give a zero time lag between the widely spaced receivers with a measurement accuracy of 0.03 s. Since the average irregularity velocity was 125 m/s, this time accuracy translated to an angular measurement accuracy of 0.1 deg. During a 4-hour period of nightly fading, occasional differences in time of arrival were noted that corresponded to a tilt in the north-south alignment of + or - 1 deg. Data from several nights of fading were analyzed, and each night exhibited the same variance in the north-south irregularity alignment. It is postulated that the shift in the measured peak correlation may have been caused by patches of irregularities at different altitudes where the magnetic field lines have a slightly different direction. 13 references

  4. Recent global-warming hiatus tied to equatorial Pacific surface cooling.

    Science.gov (United States)

    Kosaka, Yu; Xie, Shang-Ping

    2013-09-19

    Despite the continued increase in atmospheric greenhouse gas concentrations, the annual-mean global temperature has not risen in the twenty-first century, challenging the prevailing view that anthropogenic forcing causes climate warming. Various mechanisms have been proposed for this hiatus in global warming, but their relative importance has not been quantified, hampering observational estimates of climate sensitivity. Here we show that accounting for recent cooling in the eastern equatorial Pacific reconciles climate simulations and observations. We present a novel method of uncovering mechanisms for global temperature change by prescribing, in addition to radiative forcing, the observed history of sea surface temperature over the central to eastern tropical Pacific in a climate model. Although the surface temperature prescription is limited to only 8.2% of the global surface, our model reproduces the annual-mean global temperature remarkably well with correlation coefficient r = 0.97 for 1970-2012 (which includes the current hiatus and a period of accelerated global warming). Moreover, our simulation captures major seasonal and regional characteristics of the hiatus, including the intensified Walker circulation, the winter cooling in northwestern North America and the prolonged drought in the southern USA. Our results show that the current hiatus is part of natural climate variability, tied specifically to a La-Niña-like decadal cooling. Although similar decadal hiatus events may occur in the future, the multi-decadal warming trend is very likely to continue with greenhouse gas increase.

  5. Filamentary Alfvénic structures excited at the edges of equatorial plasma bubbles

    Directory of Open Access Journals (Sweden)

    R. Pottelette

    2007-11-01

    Full Text Available Recent observations performed by the French DEMETER satellite at altitudes of about 710 km suggest that the generation of equatorial plasma bubbles correlates with the presence of filamentary structures of field aligned currents carried by Alfvén waves. These localized structures are located at the bubble edges. We study the dynamics of the equatorial plasma bubbles, taking into account that their motion is dictated by gravity driven and displacement currents. Ion-polarization currents appear to be crucial for the accurate description of the evolution of plasma bubbles in the high altitude ionosphere. During their eastward/westward motion the bubbles intersect gravity driven currents flowing transversely with respect to the background magnetic field. The circulation of these currents is prohibited by large density depressions located at the bubble edges acting as perfect insulators. As a result, in these localized regions the transverse currents have to be locally closed by field aligned currents. Such a physical process generates kinetic Alfvén waves which appear to be stationary in the plasma bubble reference frame. Using a two-dimensional model and "in situ" wave measurements on board the DEMETER spacecraft, we give estimates for the magnitude of the field aligned currents and the associated Alfvén fields.

  6. An Analysis of Cassini Observations Regarding the Structure of Jupiter's Equatorial Atmosphere

    Science.gov (United States)

    Choi, David S.; Simon-Miller, Amy A.

    2012-01-01

    A variety of intriguing atmospheric phenomena reside on both sides of Jupiter's equator. 5-micron bright hot spots and opaque plumes prominently exhibit dynamic behavior to the north, whereas compact, dark chevron-shaped features and isolated anticyclonic disturbances periodically occupy the southern equatorial latitudes. All of these phenomena are associated with the vertical and meridional perturbations of Rossby waves disturbing the mean atmospheric state. As previous observational analysis and numerical simulations have investigated the dynamics of the region, an examination of the atmosphere's vertical structure though radiative transfer analysis is necessary for improved understanding of this unique environment. Here we present preliminary analysis of a multispectral Cassini imaging data set acquired during the spacecraft's flyby of Jupiter in 2000. We evaluated multiple methane and continuum spectral channels at available viewing angles to improve constraints on the vertical structure of the haze and cloud layers comprising these interesting features. Our preliminary results indicate distinct differences in the structure for both hemispheres. Upper troposphere hazes and cloud layers are prevalent in the northern equatorial latitudes, but are not present in corresponding southern latitudes. Continued analysis will further constrain the precise structure present in these phenomena and the differences between them.

  7. The oil boom in Equatorial Guinea

    International Nuclear Information System (INIS)

    Frynas, J.G.

    2004-01-01

    In less than a decade, Equatorial Guinea has transformed itself from an African backwater into one of the world's fastest growing economies and a sought-after political partner in the Gulf of Guinea. The sole reason for this transformation has been the discovery of oil and gas. This article outlines the rise of Equatorial Guinea as one of Africa's leading oil-producing countries and investigates the political, economic and social effects of becoming a petro-state. The article is based on the author's field research in Equatorial Guinea in the autumn of 2003 and interviews with senior oil company staff, government officials and staff of international organizations as well as secondary sources. This research demonstrates how reliance on oil and gas exports can lead to profound changes in a country's political economy. (author)

  8. Relationship of boreal summer 10-20-day and 30-60-day intraseasonal oscillation intensity over the tropical western North Pacific to tropical Indo-Pacific SST

    Science.gov (United States)

    Wu, Renguang; Cao, Xi

    2017-06-01

    The present study contrasts interannual variations in the intensity of boreal summer 10-20-day and 30-60-day intraseasonal oscillations (ISOs) over the tropical western North Pacific and their factors. A pronounced difference is found in the relationship of the two ISOs to El Niño-Southern Oscillation. The 10-20-day ISO intensity is enhanced during El Niño developing summer, whereas the 30-60-day ISO intensity is enhanced during La Niña decaying summer. The above different relationship is interpreted as follows. The equatorial central and eastern Pacific SST anomalies modify vertical wind shear, lower-level moisture, and vertical motion in a southeast-northwest oriented band from the equatorial western Pacific to the tropical western North Pacific where the 10-20-day ISOs originate and propagate. These background field changes modulate the amplitude of 10-20-day ISOs. Preceding equatorial central and eastern Pacific SST anomalies induce SST anomalies in the North Indian Ocean in summer, which in turn modify vertical wind shear and vertical motion over the tropical western North Pacific. The modified background fields influence the amplitude of the 30-60-day ISOs when they reach the tropical western North Pacific from the equatorial region. A feedback of ISO intensity on local SST change is identified in the tropical western North Pacific likely due to a net effect of ISOs on surface heat flux anomalies. This feedback is more prominent from the 10-20-day than the 30-60-day ISO intensity change.

  9. Updated precipitation reconstruction (AD 1482-2012) for Huashan, north-central China

    Science.gov (United States)

    Chen, Feng; Zhang, Ruibo; Wang, Huiqin; Qin, Li; Yuan, Yujiang

    2016-02-01

    We developed a tree-ring width chronology from pine trees ( Pinus tabulaeformis and Pinus armandii) stand near the peaks of Huashan, Shaanxi, north-central China. Growth-climate response analyses showed that the radial growth of pine trees is mainly influenced by April-June precipitation. A model to reconstruct precipitation based on tree widths was constructed, accounting for 55 % of the instrumental variance during the period 1953-2012. Spatial correlation analyses between the reconstruction and observed gridded precipitation data shows that the seasonal precipitation reconstruction captures regional climatic variations over north China. Compared with the historical archives and other tree-ring records in north China, many large-scale drought events, linked to the El Niño-Southern Oscillation (ENSO), were found. Many of these events have had profound impacts on the people of north China over the past several centuries. Composite maps of sea surface temperatures and 500 hPa geopotential heights for selected extremely dry and wet years in Huashan show characteristics similar to those related to the ENSO patterns, particularly with regard to ocean and atmospheric conditions in the equatorial and north Pacific. Our 531-year precipitation reconstruction for Huashan provides a long-term perspective on current and 20th century wet and dry events in north China, and is useful to guide expectations of future variability, and helps us to address climate change.

  10. Late Cenozoic stable isotope stratigraphy and paleoceanography of DSDP sites from the East equatorial and central north Pacific Ocean

    International Nuclear Information System (INIS)

    Keigwin, L.D. Jr

    1979-01-01

    Stable isotopic analyses of Middle Miocene to Quaternary foraminiferal calcite from east equatorial and central north Pacific DSDP cores have provided much new information on the paleoceanography of the Pacific Neogene. The history of delta 18 O change in planktonic foraminifera reflects the changing isotopic composition and temperature of seawater at the time of test formation. Changes in the isotopic composition of benthonic foraminfera largely reflect changes in the volume of continental ice. Isotopic data from these cores indicates the following sequence of events related to continental galaciation: (1) A permanent Antarctic ice sheet developed late in the Middle Miocene (about 13 to 11.5 m.y. ago). (2) The Late Miocene (about 11.5 to 5 m.y. ago) is marked by significant variation in delta 18 O of about 0.5% throughout, indicating instability of Antarctic ice cap size or bottom-water temperature. (3) The early Pliocene (5 to about 3 m.y. ago) was a time of relative stability in ice volume and bottom-water temperature. (4) Growth of permanent Northern Hemisphere ice sheets is inferred to have begun about 3 m.y. ago. (5) The late Pliocene (3 to about 1.8 m.y. ago) is marked by one major glaciation or bottom-water cooling dated between about 2.1 to 2.3 m.y. (6) There is some evidence that the frequency of glacial-interglacial cycles increased at about 0.9 m.y. (Auth.)

  11. 75 FR 69470 - Tele Atlas North America, Inc., Currently Doing Business as Tom Tom Including Off-Site Workers...

    Science.gov (United States)

    2010-11-12

    ...,839B; TA-W-70,839C] Tele Atlas North America, Inc., Currently Doing Business as Tom Tom Including Off... Business as Tom Tom, Concord, MA; Tele Atlas North America, Inc. Currently Doing Business as Tom Tom, Detroit, MI; Tele Atlas North America, Inc. Currently Doing Business as Tom Tom, Redwood, CA; Amended...

  12. Effect of solar flare on the equatorial electrojet in eastern Brazil region

    Indian Academy of Sciences (India)

    The effect of solar flare, sudden commencement of magnetic storm and of the disturbances ring current on the equatorial electrojet in the Eastern Brazil region, where the ground magnetic declination is as large as 20∘W is studied based on geomagnetic data with one minute resolution from Bacabal during ...

  13. Electric field mapping and auroral Birkeland currents

    International Nuclear Information System (INIS)

    Kaufmann, R.L.; Larson, D.J.

    1989-01-01

    Magnetic field lines, electric fields and equipotentials have been mapped throughout the magnetosphere in the vicinity of strong Birkeland currents. It was found that a uniform electric field at either the ionospheric or the equatorial end of a field line can map to a highly structured field at the other end if strong Birkeland currents are located nearby. The initiation of sheet currents of the region 1 - region 2 scale size and intensity resulted in magnetic field line displacements of about 1/2 hour in local time between equatorial and ionospheric end points. As a result, a uniform dawn to dusk electric field at the equator mapped to an ionospheric electric field with strong inward pointing components in the dusk hemisphere. Similar distortions were produced by Birkeland currents associated with narrow east-west-aligned auroral arcs. A specific model for the auroral current system, based on ionospheric measurements during a large substorm, was used to study effects seen during disturbed periods. An iterative procedure was developed to generate a self-consistent current system even in the presence of highly twisted field lines. The measured ionospheric electric field was projected tot he equatorial plane in the presence of the model Birkeland current system. Several physical processes were seen to influence ionospheric and equatorial electric fields, and the associated plasma convection, during a substorm

  14. Weak Thermocline Mixing in the North Pacific Low-Latitude Western Boundary Current System

    Science.gov (United States)

    Liu, Zhiyu; Lian, Qiang; Zhang, Fangtao; Wang, Lei; Li, Mingming; Bai, Xiaolin; Wang, Jianing; Wang, Fan

    2017-10-01

    Despite its potential importance in the global climate system, mixing properties of the North Pacific low-latitude western boundary current system (LLWBC) remained unsampled until very recently. We report here on the first measurements of turbulence microstructure associated with these currents, made in the western boundary region of the tropical North Pacific east of the Philippines. The results suggest that thermocline mixing in the North Pacific LLWBC is generally weak with the diapycnal diffusivity κρ˜O(10-6) m2 s-1. This is consistent with predictions from internal wave-wave interaction theory that mixing due to internal wave breaking is significantly reduced at low latitudes. Enhanced mixing is found to be associated with a permanent cyclonic eddy, the Mindanao Eddy, but mainly at its south and north flanks. There, κρ is elevated by an order of magnitude due to eddy-induced geostrophic shear. Mixing in the eddy core is at the background level with no indication of enhancement.

  15. Post-midnight occurrence of equatorial plasma bubbles

    Science.gov (United States)

    Ajith, K. K.; Otsuka, Yuichi; Yamamoto, Mamoru; Yokoyama, Tatsuhiro; Tulasiram, S.

    2016-07-01

    The equatorial plasma bubbles (EPBs)/equatorial spread F (ESF) irregularities are an important topic of space weather interest because of their impact on transionospheric radio communications, satellite-based navigation and augmentation systems. This local plasma depleted structures develop at the bottom side F layer through Rayleigh-Taylor instability and rapidly grow to topside ionosphere via polarization electric fields within them. The steep vertical gradients due to quick loss of bottom side ionization and rapid uplift of equatorial F layer via prereversal enhancement (PRE) of zonal electric field makes the post-sunset hours as the most preferred local time for the formation of EPBs. However, there is a different class of irregularities that occurs during the post-midnight hours of June solstice reported by the previous studies. The occurrence of these post-midnight EPBs maximize during the low solar activity periods. The growth characteristics and the responsible mechanism for the formation of these post-midnight EPBs are not yet understood. Using the rapid beam steering ability of 47 MHz Equatorial Atmosphere Radar (EAR) at Kototabang (0.2°S geographic latitude, 100.3°E geographic longitude, and 10.4°S geomagnetic latitude), Indonesia, the spatial and temporal evolution of equatorial plasma bubbles (EPBs) were examined to classify the evolutionary-type EPBs from those which formed elsewhere and drifted into the field of view of radar. The responsible mechanism for the genesis of summer time post-midnight EPBs were discussed in light of growth rate of Rayleigh-Taylor instability using SAMI2 model.

  16. ITER L 6 equatorial maintenance duct remote handling study

    International Nuclear Information System (INIS)

    Millard, J.

    1996-09-01

    The status and conclusions of a preliminary study of equatorial maintenance duct remote handling is reported. Due to issues with the original duct design a significant portion of the study had to be refocused on equatorial duct layout studies. The study gives an overview of some of the options for design of these ducts and the impact of the design on the equipment to work in the duct. To develop a remote handling concept for creating access through the ducts the following design tasks should be performed: define the operations sequences for equatorial maintenance duct opening and closing; review the remote handling requirements for equatorial maintenance duct opening and closing; design concept for door and pipe handling equipment and to propose preliminary procedures for material handling outsides the duct. 35 figs

  17. The streaming-trapped ion interface in the equatorial inner magnetosphere

    Science.gov (United States)

    Lin, J.; Horwitz, J. L.; Gallagher, D.; Pollock, C. J.

    1994-01-01

    Spacecraft measurements of core ions on L=4-7 field-lines typically show trapped ion distributions near the magnetic equator, and frequently indicate field-aligned ion streams at higher latitudes. The nature of the transition between them may indicate both the microphysics of hot-cold plasma interactions and overall consequences for core plasma evolution. We have undertaken a statistical analysis and characterization of this interface and its relation to the equatorial region of the inner magnetosphere. In this analysis, we have characterized such features as the equatorial ion flux anisotropy, the penetration of field-aligned ionospheric streams into the equatorial region, the scale of the transition into trapped ion populations, and the transition latitude. We found that most transition latitudes occur within 13 deg of the equator. The typical values of equatorial ion anisotropies are consistent with bi-Maxwellian temperature ratios of T(sub perpendicular)/T(sub parallel) in the range of 3-5. The latitudinal scales for the edges of the trapped ion populations display a rather strong peak in the 2-3 deg range. We also found that there is a trend for the penetration ratio, the anisotropy half width, and the transition scale length to decrease with a higher equatorial ion anisotropy. We may interpret these features in terms of Liouville mapping of equatorially trapped ions and the reflection of the incoming ionospheric ion streams from the equatorial potential peaks associated with such trapped ions.

  18. Equatorial segment of the mid-atlantic ridge

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The Equatorial Segment of the Mid-Atlantic Ridge is a part of this mid-oceanic ridge limited by a cluster of fracture zones - Cape Verde, Marathon, Mercury, Vema, Doldrums, Vernadsky and Sierra Leone - in the North, and a similar cluster of fracture zones - St Paul, Romanche and Chain - in the South. During recent decades, following the publication of the 5. edition of the General Bathymetric Chart of the Oceans (GEBCO), there has been a great deal of geological-geophysical research and mapping of the World Ocean. The results have led to the development of a number of theories concerning the essential heterogeneity of the structure of the ocean floor and, in particular, the heterogeneity of the structure and segmentation of mid-oceanic ridges. Research on the nature of such segmentation is of great importance for an understanding of the processes of development of such ridges and oceanic basins as a whole. Chapter 20 is dedicated to the study of the atlantic ocean mantle by using (Th.U)Th, (Th/U)pb and K/Ti systematics 380 refs.

  19. Equatorial segment of the mid-atlantic ridge

    International Nuclear Information System (INIS)

    1996-01-01

    The Equatorial Segment of the Mid-Atlantic Ridge is a part of this mid-oceanic ridge limited by a cluster of fracture zones - Cape Verde, Marathon, Mercury, Vema, Doldrums, Vernadsky and Sierra Leone - in the North, and a similar cluster of fracture zones - St Paul, Romanche and Chain - in the South. During recent decades, following the publication of the 5. edition of the General Bathymetric Chart of the Oceans (GEBCO), there has been a great deal of geological-geophysical research and mapping of the World Ocean. The results have led to the development of a number of theories concerning the essential heterogeneity of the structure of the ocean floor and, in particular, the heterogeneity of the structure and segmentation of mid-oceanic ridges. Research on the nature of such segmentation is of great importance for an understanding of the processes of development of such ridges and oceanic basins as a whole. Chapter 20 is dedicated to the study of the atlantic ocean mantle by using (Th.U)Th, (Th/U)pb and K/Ti systematics

  20. Equatorial segment of the mid-atlantic ridge

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The Equatorial Segment of the Mid-Atlantic Ridge is a part of this mid-oceanic ridge limited by a cluster of fracture zones - Cape Verde, Marathon, Mercury, Vema, Doldrums, Vernadsky and Sierra Leone - in the North, and a similar cluster of fracture zones - St Paul, Romanche and Chain - in the South. During recent decades, following the publication of the 5. edition of the General Bathymetric Chart of the Oceans (GEBCO), there has been a great deal of geological-geophysical research and mapping of the World Ocean. The results have led to the development of a number of theories concerning the essential heterogeneity of the structure of the ocean floor and, in particular, the heterogeneity of the structure and segmentation of mid-oceanic ridges. Research on the nature of such segmentation is of great importance for an understanding of the processes of development of such ridges and oceanic basins as a whole. Chapter 20 is dedicated to the study of the atlantic ocean mantle by using (Th.U)Th, (Th/U)pb and K/Ti systematics 380 refs.

  1. The Equatorial Scintillations and Space Weather Effects on its Generation during Geomagnetic Storms

    Science.gov (United States)

    Biktash, Lilia

    Great diversity of the ionospheric phenomena leads to a variety of irregularity types with spatial size from many thousands of kilometers to few centimeters and lifetimes from days to fractions of second. Since the ionosphere strongly influences the propagation of radio waves, signal distortions caused by these irregularities affect short-wave transmissions on Earth, transiono-spheric satellite communications and navigation. In this work the solar wind and the equatorial ionosphere parameters, Kp, Dst, AU, AL indices characterized contribution of different mag-netospheric and ionospheric currents to the H-component of geomagnetic field are examined to test the space weather effect on the generation of ionospheric irregularities producing VLF scintillations. According to the results of the current statistical studies, one can predict scintil-lations from Aarons' criteria using the Dst index, which mainly depicts the magnetospheric ring current field. To amplify Aarons' criteria or to propose new criteria for predicting scintillation characteristics is the question. In the present phase of the experimental investigations of elec-tron density irregularities in the ionosphere new ways are opened up because observations in the interaction between the solar wind -magnetosphere -ionosphere during magnetic storms have progressed greatly. We have examined scintillation relation to magnetospheric and ionospheric currents and show that the factor, which presents during magnetic storms to fully inhibit scin-tillation, is the positive Bz-component of the IMF. During the positive Bz IMF F layer cannot raise altitude where scintillations are formed. The auroral indices and Kp do better for the prediction of the ionospheric scintillations at the equator. The interplanetary magnetic field data and models can be used to explain the relationship between the equatorial ionospheric parameters, h'F, foF2, and the equatorial geomagnetic variations with the polar ionosphere cur-rents and

  2. Equatorial ozone profile comparisons using OSO-8 UVMCS and Nimbus 4 BUV data

    Science.gov (United States)

    Aikin, A. C.; Millier, F.; Emery, B.

    1981-01-01

    A comparison is made of equatorial ozone altitude profiles derived from data taken during near-coincident passes of the French solar occultation experiment on OSO-8 and the BUV instrument on Nimbus 4. The period of observation is August through October 1975. OSO-8 data are confined to sunset and the BUV measures ozone during the day for a range of solar zenith angles. Good agreement is found between ozone concentrations from OSO-8 and Nimbus 4 in the region of near overlap, 0.7 mb (52 km). Data indicate that the diurnal variation in ozone below 55 km is less than 20 percent in agreement with current models. The equatorial ozone profile can be described frequently by a single scale height from 34 to 60 km.

  3. Interannual variability of the Equatorial Jets in the Indian Ocean from the merged altimetry data

    Digital Repository Service at National Institute of Oceanography (India)

    Somayajulu, Y.K.; Murty, V.S.N.; Neelima, C.; Jagadeesh, P.S.V.

    The merged ERS-1/2, TOPEX/Poseidon and Jason-1 altimeter weekly sea level anomalies (SLAs) for the period 1997- 2005 were analyzed to study the variability of sea level and computed geostrophic currents in relation to the equatorial jets...

  4. VM-ADCP measured upper ocean currents in the southeastern Arabian Sea and Equatorial Indian Ocean during December, 2000

    Digital Repository Service at National Institute of Oceanography (India)

    Murty, V.S.N.; Suryanarayana, A.; Somayajulu, Y.K.; Raikar, V.; Tilvi, V.

    west wind forcing through December and retroflection of NEC. The transport of the NECC in the upper 100 m varies from 4x10@u6@@ m@u3@@ /s at 83 degrees E to 7x10@u6@@ m@u3@@ /s at 93 degrees E. The data details the structure of the South Equatorial...

  5. Backscatter measurements of 11-cm equatorial spread-F irregularities

    International Nuclear Information System (INIS)

    Tsunoda, R.T.

    1980-01-01

    In the equatorial F-region ionosphere, a turbulent cascade process has been found to exist that extends from irregularity spatial wavelengths longer than tens of kilometers down to wavelengths as short as 36 cm. To investigate the small-scale regime of wavelengths less than 36 cm, an equatorial radar experiment was conducted using a frequency of 1320 MHz that corresponds to an irregularity wavelength of 11 cm. The first observations of radar backscatter from 11-cm field-aligned irregularities (FAI) are described. These measurements extend the spatial wavelength regime of F-region FAI to lengths that approach both electron gyroradius and the Debye length. Agreement of these results with the theory of high-frequency drift waves suggests that these observations may be unique to the equatorial ionosphere. That is, the requirement of low electron densities for which the theroy calls may preclude the existence of 11-cm FAI elsewhere in the F-region ionosphere, except in equatorial plasma bubbles

  6. OH Airglow and Equatorial Variations Observed by ISUAL Instrument on Board the FORMOSAT 2 Satellite

    Directory of Open Access Journals (Sweden)

    Jan-Bai Nee

    2010-01-01

    Full Text Available OH airglow observed by the ISUAL (Imager of Sprites and Upper Atmospheric Lightning instrument on board the FORMOSAT 2 satellite is reported in this paper. The satellite is sun-synchronous and it returns to the same orbit at the same local time daily. By using this property, we can study the upper atmosphere in detail. With a CCD camera, ISUAL has measured the emission layers of OH Meinel band at 630 nm for several two-week periods in 2004 and 2007 in equatorial regions. ISUAL images are snapshots of the atmosphere 250 km (height ¡_ 1200 km (horizontal distance. These images of OH airglow are analyzed to derive its peak height and latitudinal variations. ISUAL observation is unique in its capability of continuous observation of the upper atmosphere as the satellite travels from south to north along a specific orbit. However, 630 nm filter also measured O(1D at 200 km, and there are interferences between O(1D and OH airglows as as observed from a distance in space. We have studied the overlap of two airglows by simulations, and our final analyses show that OH airglow can be correctly derived with its average peak height of 89 ¡_ 2.1 km usually lying within ¡_10¢X latitude about the equator. ISUAL data reveal detailed structures of equatorial OH airglow such as the existences of a few secondary maxima within the equatorial regions, and the oscillations of the peak latitudes. These results are discussed and compared with previous reports.

  7. Trace gas concentrations, intertropical convergence, atmospheric fronts, and ocean currents in the tropical Pacific m(Paper 8C1060)

    International Nuclear Information System (INIS)

    Wilkniss, P.E.; Rodgers, E.B.; Swinnerton, J.W.; Larson, R.E.; Lamontagne, R.A.

    1979-01-01

    Shipboard measurements of atmospheric 222 Rn, CO, and CH 4 and of dissolved CO in surface waters have been carried out in the equatorial Pacific on a cruise from Ecuador to Hawaii, Tahiti and Panama in March and April of 1974, and during transit from Los Angeles to Antarctica in November and December of 1972. The trace gas results, combined with conventional meteorological data and with satellite images from Nimbus 5 and the defense meteorological satellite project (DMSP), have provided descriptions of the intertropical convergence zones (ITCZ) near 04 0 N, 102 0 W and 03 0 N, 154 0 W in March of 1974, near 04 0 N, 86 0 W in April of 1974, and near 05 0 N, 139 0 W in November of 1972. In all cases the ITCZ seems to be located north of the south equatorial current (SEC) as shown by dissolved CO peaks in surface waters. In April of 1974 a 'second' ITCZ was observed near 01 0 S, 102 0 W just south of the SEC. A stationary front near Hawaii (20 0 N, 147 0 W) in March of 1974 was investigated. The ITCZ was marked by light shifting winds near a zone of heavy cloud cover and precipitation. In the eastern Tropical Pacific atmospheric 222 Rn increases distinctly north of the ITCZ and thus serves as an indicator for the ITCZ. CO and CH 4 do not always increase coincident with atmospheric 222 Rn. The atmospheric features of the stationary front near Hawaii are in many ways similar to those observed for the ITCZ. The front is marked by cloud cover, precipitation zone and light shifting winds. 222 Rn, CO and CH 4 increase signifantly behind the front in subsiding air which was traced back to the Asian continent. The variation of atmospheric 222 Rn, CO and CH 4 with time and geographical area over the equatorial Pacific seems to be a consequence of seasonal variations of the trade wind field and long range transport to the central Pacific from Asia and to the eastern equatorial Pacific from North and Central America

  8. High altitude flights in equatorial regions

    Science.gov (United States)

    Redkar, R. T.

    A thorough analysis of balloon flights made from Hyderabad, India (Latitude 17°28'N, Longitude 78°35'E), and other equatorial sites has been made. It has been shown that limited success is expected for flights made from equatorial latitudes with balloons made out of natural colour polyethylene film, since the best known balloon film in the world today viz. Winzen Stratofilm is tested for low temperature brittleness only at -80°C., whereas the tropopause temperatures over equatorial latitudes vary between -80°C and -90°C. The success becomes even more critical when flights are made with heavy payloads and larger balloons particularly at night when in the absence of solar radiation the balloon film becomes more susceptible to low temperature brittle failure. It is recommended that in case of capped balloons longer caps should be used to fully cover the inflated protion of the balloon at the higher level equatorial tropopause. It is also advised that the conditions such as wind shears in the tropopause should be critically studied before launching and a day with the tropopause temperature nearer to -80°C should be chosen. Special care also should be taken while handling the balloon on ground and during launching phase. Properties of Winzen Stratofilm have been critically studied and fresh mandates have been recommended on the basis of limiting values of film stresses which caused balloon failures in the equatorial tropopause. It is also emphasized that the data on such flights is still meagre especially for flights with heavy payloads and larger balloons. It has been also shown that it is safest to use balloons made out of grey coloured film which retains its flexibility with the absorption of solar radiation, the success obtained with such balloons so far being 100%. The drawback, however, is that these balloons cannot be used for night flights. Stratospheric wind regimes over Hyderabad are also discussed with a view to determine the period over which long

  9. Variabilities of mesospheric tides and equatorial electrojet strength during major stratospheric warming events

    Directory of Open Access Journals (Sweden)

    S. Sridharan

    2009-11-01

    Full Text Available The present study demonstrates the relationship between the high latitude northern hemispheric major sudden stratospheric warming (SSW events and the reversal in the afternoon equatorial electrojet (EEJ, often called the counter-electrojet (CEJ, during the winter months of 1998–1999, 2001–2002, 2003–2004 and 2005–2006. As the EEJ current system is driven by tidal winds, an investigation of tidal variabilities in the MF radar observed zonal winds during the winters of 1998–1999 and 2005–2006 at 88 km over Tirunelveli, a site close to the magnetic equator, shows that there is an enhancement of semi-diurnal tidal amplitude during the days of a major SSW event and a suppression of the same immediately after the event. The significance of the present results lies in demonstrating the latitudinal coupling between the high latitude SSW phenomenon and the equatorial ionospheric current system with clear evidence for major SSW events influencing the day-to-day variability of the CEJ.

  10. Circulation and watermass structure in the Central Arabian Sea during December 1982

    Digital Repository Service at National Institute of Oceanography (India)

    Sarma, Y.V.B.; Murty, V.S.N.; Rao, D.P.; Sastry, J.S.

    After the cessation of the SW monsoon over Arabian Sea, the North Equatorial Current sets strongly and the low saline waters from the Bay of Bengal and the equatorial Indian Ocean penetrate into the Arabian Sea. This results in strong horizontal...

  11. Electromagnetic analysis of ITER diagnostic equatorial port plugs during plasma disruptions

    International Nuclear Information System (INIS)

    Zhai, Y.; Feder, R.; Brooks, A.; Ulrickson, M.; Pitcher, C.S.; Loesser, G.D.

    2013-01-01

    Highlights: ► Disruption loads on ITER diagnostic equatorial port plugs are extracted. ► Upward major disruption produces the largest radial moment and radial force on diagnostic first walls and diagnostic shield modules. ► Large eddy currents on supporting rails, keys and water pipes are observed during disruption. -- Abstract: ITER diagnostic port plugs perform many functions including structural support of diagnostic systems under high electromagnetic loads while allowing for diagnostic access to the plasma. The design of diagnostic equatorial port plugs (EPP) are largely driven by electromagnetic loads and associate responses of EPP structure during plasma disruptions and VDEs. This paper summarizes results of transient electromagnetic analysis using Opera 3d in support of the design activities for ITER diagnostic EPP. A complete distribution of disruption loads on the diagnostic first walls (DFWs), diagnostic shield modules (DSMs) and the EPP structure, as well as impact on the system design integration due to electrical contact among various EPP structural components are discussed

  12. Equatorial origin for Lower Jurassic radiolarian chert in the Franciscan Complex, San Rafael Mountains, southern California

    Science.gov (United States)

    Hagstrum, J.T.; Murchey, B.L.; Bogar, R.S.

    1996-01-01

    Lower Jurassic radiolarian chert sampled at two localities in the San Rafael Mountains of southern California (???20 km north of Santa Barbara) contains four components of remanent magnetization. Components A, B???, and B are inferred to represent uplift, Miocene volcanism, and subduction/accretion overprint magnetizations, respectively. The fourth component (C), isolated between 580?? and 680??C, shows a magnetic polarity stratigraphy and is interpreted as a primary magnetization acquired by the chert during, or soon after, deposition. Both sequences are late Pliensbachian to middle Toarcian in age, and an average paleolatitude calculated from all tilt-corrected C components is 1?? ?? 3?? north or south. This result is consistent with deposition of the cherts beneath the equatorial zone of high biologic productivity and is similar to initial paleolatitudes determined for chert blocks in northern California and Mexico. This result supports our model in which deep-water Franciscan-type cherts were deposited on the Farallon plate as it moved eastward beneath the equatorial productivity high, were accreted to the continental margin at low paleolatitudes, and were subsequently distributed northward by strike-slip faulting associated with movements of the Kula, Farallon, and Pacific plates. Upper Cretaceous turbidites of the Cachuma Formation were sampled at Agua Caliente Canyon to determine a constraining paleolatitude for accretion of the Jurassic chert sequences. These apparently unaltered rocks, however, were found to be completely overprinted by the A component of magnetization. Similar in situ directions and demagnetization behaviors observed in samples of other Upper Cretaceous turbidite sequences in southern and Baja California imply that these rocks might also give unreliable results.

  13. Quiet Time Depression of the Equatorial Electrojet and Dynamics of the F-layer Ionosphere

    Science.gov (United States)

    Khadka, S.; Valladares, C. E.; Doherty, P.

    2017-12-01

    The depression of the equatorial electrojet (EEJ) is marked by a westward current due to streaming movement of laterally limited (±3°) charged particles in the ionospheric E region during the day along the magnetic equator. It is a complex low-latitude phenomenon and driven by various sources of electric fields associated with global neutral wind, solar tidal force, Interplanetary magnetic Field (IMF), etc. This unique physical property of the equatorial ionosphere holds a great promise for sorting out the governing mechanism of the dayside ionospheric electrodynamics and the onset of the enigmatic plasma structures in the ionospheric layers. Present study provides an overview of the special sequence of the longitudinal, seasonal, and occurrence rate variability of the depression of the EEJ, including its temporal variation, using data from an excellent chain of magnetic and ionospheric observatories along the low-latitude regions. A case and statistical study of the geomagnetically quiet time depression of EEJ strengths is presented using a pair of magnetometers, one located at the dip equator and another off the dip equator (±6° to ±9° away) in the American low-latitude regions. The significance of the variability of the depression of the EEJ current observed in the scenario of vertical drifts, sporadic E-layer, the equatorial F region plasma fountain, and height of the peak ionization in the F-layer, as well as GPS-TEC distributions, will be investigated.

  14. Nonlinear bounce resonances between magnetosonic waves and equatorially mirroring electrons

    Science.gov (United States)

    Chen, Lunjin; Maldonado, Armando; Bortnik, Jacob; Thorne, Richard M.; Li, Jinxing; Dai, Lei; Zhan, Xiaoya

    2015-08-01

    Equatorially mirroring energetic electrons pose an interesting scientific problem, since they generally cannot resonate with any known plasma waves and hence cannot be scattered down to lower pitch angles. Observationally it is well known that the flux of these equatorial particles does not simply continue to build up indefinitely, and so a mechanism must necessarily exist that transports these particles from an equatorial pitch angle of 90° down to lower values. However, this mechanism has not been uniquely identified yet. Here we investigate the mechanism of bounce resonance with equatorial noise (or fast magnetosonic waves). A test particle simulation is used to examine the effects of monochromatic magnetosonic waves on the equatorially mirroring energetic electrons, with a special interest in characterizing the effectiveness of bounce resonances. Our analysis shows that bounce resonances can occur at the first three harmonics of the bounce frequency (nωb, n = 1, 2, and 3) and can effectively reduce the equatorial pitch angle to values where resonant scattering by whistler mode waves becomes possible. We demonstrate that the nature of bounce resonance is nonlinear, and we propose a nonlinear oscillation model for characterizing bounce resonances using two key parameters, effective wave amplitude à and normalized wave number k~z. The threshold for higher harmonic resonance is more strict, favoring higher à and k~z, and the change in equatorial pitch angle is strongly controlled by k~z. We also investigate the dependence of bounce resonance effects on various physical parameters, including wave amplitude, frequency, wave normal angle and initial phase, plasma density, and electron energy. It is found that the effect of bounce resonance is sensitive to the wave normal angle. We suggest that the bounce resonant interaction might lead to an observed pitch angle distribution with a minimum at 90°.

  15. Rocket studies of plasma turbulence in the equatorial and auroral electrojets

    International Nuclear Information System (INIS)

    Pfaff, R.F. Jr.

    1986-01-01

    Rocket observations of plasma turbulence in the equatorial and auroral electrojets have been studied in detail. Intense electric field and plasma density fluctuations characterize the collisional two-stream and gradient drift instabilities, showing a marked spectral differentiation with respect to height consistent with changes in the local sources of free energy. The interpretation of the frequencies and amplitudes of irregularities detected by in-situ probes travelling at comparable speeds to the waves is discussed in detail. Observations from three rockets in the daytime equatorial electrojet during strong, mild, and weak currents show that the linear theory accounts for the general height and wavelength domains of the irregularities. In the strong case, laminar two-stream waves were observed where the current was strongest and the density gradient was stable. The data suggest phase velocities that were comparable to the electron drift velocity (∼500 m/s) and peak wavelengths (2-3 m) that agree with kinetic theory. Vertically propagating waves observed here may have been generated by mode coupling. Where the gradient was unstable, large amplitude, kilometer scale waves dominated, although the linear gradient drift growth rate peaks at a few hundred meters. The amplitudes (10-15 mV/m) of these horizontal waves were strong enough to drive vertical two-stream waves

  16. Healthcare in Equatorial Guinea, West Africa: obstacles and barriers to care.

    Science.gov (United States)

    Reuter, Kim Eleanor; Geysimonyan, Aurora; Molina, Gabriela; Reuter, Peter Robert

    2014-01-01

    The provision of healthcare services in developing countries has received increasing attention, but inequalities persist. One nation with potential inequalities in healthcare services is Equatorial Guinea (Central-West Africa). Mitigating these inequalities is difficult, as the Equatoguinean healthcare system remains relatively understudied. In this study, we interviewed members of the healthcare community in order to: 1) learn which diseases are most common and the most common cause of death from the perspective of healthcare workers; and 2) gain an understanding of the healthcare community in Equatorial Guinea by describing how: a) healthcare workers gain their professional knowledge; b) summarizing ongoing healthcare programs aimed at the general public; c) discussing conflicts within the healthcare community and between the public and healthcare providers; d) and addressing opportunities to improve healthcare delivery. We found that some causes of death, such as serious injuries, may not be currently treatable in country, potentially due to a lack of resources and trauma care facilities. In addition, training and informational programs for both healthcare workers and the general public may not be effectively transmitting information to the intended recipients. This presents hurdles to the healthcare community, both in terms of having professional competence in healthcare delivery and in having a community that is receptive to medical care. Our data also highlight government-facility communication as an opportunity for improvement. Our research is an important first step in understanding the context of healthcare delivery in Equatorial Guinea, a country that is relatively data poor.

  17. Solar flare effect in equatorial magnetic field during morning counter electrojet

    International Nuclear Information System (INIS)

    Rangarajan, G.K.; Rastogi, R.G.

    1981-01-01

    Surface geomagnetic signatures of intense solar radio noise bursts are studied from the magnetograms of several equatorial and low latitude observatories. It is shown that for the even on 21 June 1980, the solar flare effect recorded was during a period of counter electrojet currents in the morning hours in the Indian region, and hence it reverses direction between Alibag and Trivandrum. The longitudinal extent of this event has been estimated to be less than three hours (45). (author)

  18. Equatorial waves in the stratosphere of Uranus

    Science.gov (United States)

    Hinson, David P.; Magalhaes, Julio A.

    1991-01-01

    Analyses of radio occultation data from Voyager 2 have led to the discovery and characterization of an equatorial wave in the Uranus stratosphere. The observed quasi-periodic vertical atmospheric density variations are in close agreement with theoretical predictions for a wave that propagates vertically through the observed background structure of the stratosphere. Quantitative comparisons between measurements obtained at immersion and at emersion yielded constraints on the meridional and zonal structure of the wave; the fact that the two sets of measurements are correlated suggests a wave of planetary scale. Two equatorial wave models are proposed for the wave.

  19. Pacific Equatorial Transect

    OpenAIRE

    Pälike, Heiko; Nishi, Hiroshi; Lyle, Mitch; Raffi, Isabella; Klaus, Adam; Gamage, Kusali

    2009-01-01

    Integrated Ocean Drilling Program Expedition 320/321, "Pacific Equatorial Age Transect" (Sites U1331–U1338), was designed to recover a continuous Cenozoic record of the paleoequatorial Pacific by coring above the paleoposition of the Equator at successive crustal ages on the Pacific plate. These sediments record the evolution of the paleoequatorial climate system throughout the Cenozoic. As we gained more information about the past movement of plates and when in Earth's history "critical" cli...

  20. Recent Advances in Atmospheric, Solar-Terrestrial Physics and Space Weather From a North-South network of scientists [2006-2016] PART A: TUTORIAL

    Science.gov (United States)

    Amory-Mazaudier, C.; Menvielle, M.; Curto, J-J.; Le Huy, M.

    2017-12-01

    This paper reviews scientific advances achieved by a North-South network between 2006 and 2016. These scientific advances concern Solar Terrestrial Physics, Atmospheric Physics and Space Weather. In this part A, we introduce knowledge on the Sun-Earth system. We consider the physical process of the dynamo which is present in the Sun, in the core of the Earth and also in the regions between the Sun and the Earth, the solar wind-magnetosphere and the ionosphere. Equations of plasma physics and Maxwell's equations will be recalled. In the Sun-Earth system there are permanent dynamos (Sun, Earth's core, solar wind - magnetosphere, neutral wind - ionosphere) and non-permanent dynamos that are activated during magnetic storms in the magnetosphere and in the ionosphere. All these dynamos have associated electric currents that affect the variations of the Earth's magnetic field which are easily measurable. That is why a part of the tutorial is also devoted to the magnetic indices which are indicators of the electric currents in the Sun-Earth system. In order to understand some results of the part B, we present some characteristics of the Equatorial region and of the electrodynamics coupling the Auroral and Equatorial regions.

  1. Potential for small-diameter sawtimber utilization by the current sawmill industry in western North America.

    Science.gov (United States)

    Francis G. Wagner; Charles E. Keegan; Roger D. Fight; Susan. Willits

    1998-01-01

    New silvicultural prescriptions for ecosystem management on both public and private timberlands in western North America will likely result in an influx of relatively small-diameter sawtimber for processing. Since sawmills currently process a majority of sawtimber harvested in western North America (more than 80% in some regions), this study concentrated on...

  2. Multiple embryos, multiple nepionts and multiple equatorial layers in Cycloclypeus carpenteri.

    Science.gov (United States)

    Briguglio, Antonino; Kinoshita, Shunichi; Wolfgring, Erik; Hohenegger, Johann

    2016-04-01

    In this study, 17 specimens of Cycloclypeus carpenteri have been analyzed by means of microCT scanning. We used CT scanning technique as it enables the visualization and the quantifications of internal structures of hollow specimens without their destruction. It has been observed that many specimens possessing the natural morphology of this taxon, actually contain multiple embryos (up to 16 in one single specimen) and, in some few cases, multiple nepionts each with its own heterosteginid chambers (up to three separated nepionts). The diameter of each proloculus has been measured, and as a result, they are very variable even within the same specimen, therefore questioning the long known theory that schizonts have smaller proloculi than gamonts and also questioning the fact that proloculi in the same species should all have comparable size. Furthermore, we have observed the presence of additional equatorial planes on several specimens. Such additional planes are always connected to what seems to be the main equatorial plane. Such connections are T-shaped and are located at the junction between two equatorial layers; these junctions are made by a chamberlet, which possesses an unusually higher number of apertures. The connections between equatorial planes are always perfectly synchronized with the relative growth step and the same chamber can be therefore followed along the multiple equatorial planes. Apparently there is a perfect geometric relationship between the creation of additional equatorial planes and the position of the nepionts. Whenever the nepionts are positioned on different planes, additional planes are created and the angle of the nepionts is related to the banding angle of the equatorial planes. The presence of additional planes do not hamper the life of the cell, on the contrary, it seems that the cell is still able to build nicely shaped chamberlets and, after volumetric calculations, it seems all specimens managed to keep their logistic growth

  3. Penetration of tritium into the Tropical Pacific

    International Nuclear Information System (INIS)

    Fine, R.A.; Peterson, W.H.; Ostlund, H.G.

    1987-01-01

    The persistence of subsurface tritium maxima coincident with the Equatorial Currents is used to show that advection along isopycnals by the mean wind-driven circulation is the dominant process in the at most 14-year time scale for the penetration of high northern latitude water to the equator (above 26.2 sigma-theta). Ventilation of the equatorial Pacific thermocline from the north contrasts sharply with the equatorial Atlantic thermocline which is ventilated from the south. The most striking manifestation of the North Pacific circulation is evidenced by a tritium maximum and salinity minimum at the equator between 145 0 and 125 0 W located above 25.6 sigma-theta. It shows that regardless of time of sampling the easter/central equator has received the highest latitude water, probably as a consequence of recirculation by the Equatorial Currents. Between the same meridians there is a tritium maximum on and north of the equator at the surface, which is interpreted as an expression of upwelling. Its coincidence with the cool tongue (Wyrtki) provides direct evidence that the upwelling process plays a dominant role in its maintenance on a decadal time scale

  4. North Korea's Trade Expansion with Western Countries in the Early 1970's and Its Implications on North Korea's Current Attempts at Economic Rehabilitation

    Directory of Open Access Journals (Sweden)

    Jong-Woon Lee

    2002-12-01

    Full Text Available The purpose of this study is to provide the analytical background of North Korea's trade expansion with Western countries in the early 1970's and examine in depth the resulting impacts on the North Korean economy. Indeed, this study explores the implications of the mechanism and consequences of North Korea's increased trade with Western countries in the 1970's for the current situation of the country's trade expansion based on the rapid increase in imports and large trade deficit. As a result of researching North Korea's economic trajectory during the 1970's within this focus, this study asserts that, despite some positive aspects, North Korea's rapid increase of foreign trade in recent years possesses the immanent possibility of generating serious obstacles to the process of economic recovery. In this vein, this paper intends to explore some policy options North Korea should choose in order to create conditions conducive to economic rehabilitation and prevent the recurrence of similar situation as experienced in the 1970's.

  5. Observation and analysis of tidal and residual current in the North Yellow Sea in the spring

    Science.gov (United States)

    Miao, Qingsheng; Yang, Jinkun; Yang, Yang; Wan, Fangfang; Yu, Jia

    2018-02-01

    In order to study the current characteristics of the North Yellow Sea (NYS), 4 moored ADCPs (Acoustic Doppler Current Profilers) were deployed and Current characteristics were analyzed based on the observations. Results show that tidal current is the dominant and M2 is the main constituent. Shallow water constituents are obvious in the near-shore area, and tidal current ellipses directions have relations with topography. Residual currents in the Bohai Strait point to the Bohai Sea interior and the magnitude have a connection with terrain. Residual current in south NYS can be divided into two layers, and energy of residual current only accounts for about 13% of the total energy. Barotropic eddy kinetic energy plays a major role and the average in NYS accounts for 87%, baroclinic mean kinetic energy is larger in north NYS, in other regions barotropic mean kinetic energy take the leading position.

  6. CONVECTIVE BURSTS AND THE COUPLING OF SATURN'S EQUATORIAL STORMS AND INTERIOR ROTATION

    International Nuclear Information System (INIS)

    Heimpel, Moritz; Aurnou, Jonathan M.

    2012-01-01

    Temporal variations of Saturn's equatorial jet and magnetic field hint at rich dynamics coupling the atmosphere and the deep interior. However, it has been assumed that rotation of the interior dynamo must be steady over tens of years of modern observations. Here we use a numerical convection model and scaling estimates to show how equatorial convective bursts can transfer angular momentum to the deeper interior. The numerical model allows angular momentum transfer between a fluid outer spherical shell and a rigid inner sphere. Convection drives a prograde equatorial jet exhibiting quasiperiodic bursts that fill the equatorial volume outside the tangent cylinder. For each burst strong changes in the equatorial surface velocity are associated with retrograde torque on the inner sphere. Our results suggest that Saturn's Great White Spot, a giant storm that was observed to fill the equatorial region in 1990, could mobilize a volume of fluid carrying roughly 15% of Saturn's moment of inertia. Conservation of angular momentum then implies that a 20% change in the equatorial jet angular velocity could change the average interior rotation rate by about 0.1%—roughly an order of magnitude less than the apparent rotation rate changes associated with Saturn's kilometric radio (SKR) signal. However, if the SKR signal originates outside the liquid metal core in a 'planetary tachocline' that separates the layer of fast zonal flow from the magnetically controlled and slowly convecting deep interior, then convective bursts can provide a possible mechanism for the observed ∼1% SKR changes.

  7. Longitudinal, seasonal and solar cycle variation in lunar tide influence on the equatorial electrojet

    International Nuclear Information System (INIS)

    Yizengaw, Endawoke; Carter, Brett A.

    2017-01-01

    It has been well documented that the lunar tidal waves can modulate the ionospheric electrodynamics and create a visible influence on the equatorial electrojet (EEJ). The lunar tide influence gets intensified around noon, primarily during new and full Moon periods. However, the longitudinal, seasonal and solar cycle variability in the lunar tide influence on ionospheric current systems is not well understood yet. In order to investigate this, 17 years (1998-2014) of extensive magnetometer observations at four longitudinal sectors (western American, western and eastern African, and Asian) have been analyzed. All observations performed during magnetically active periods (K p >3) have been excluded for this study to eliminate storm contributions to the geomagnetic field variation at the geomagnetic equator. This study's quantitative analysis revealed significant longitudinal, seasonal and solar cycle dependence of the lunar tide influence on the equatorial electrojet.

  8. Longitudinal, seasonal and solar cycle variation in lunar tide influence on the equatorial electrojet

    Energy Technology Data Exchange (ETDEWEB)

    Yizengaw, Endawoke [Boston College, Chestnut Hill, MA (United States). Inst. for Scientific Research; Carter, Brett A. [RMIT Univ., Melbourne, VIC (Australia). SPACE Research Centre

    2017-07-01

    It has been well documented that the lunar tidal waves can modulate the ionospheric electrodynamics and create a visible influence on the equatorial electrojet (EEJ). The lunar tide influence gets intensified around noon, primarily during new and full Moon periods. However, the longitudinal, seasonal and solar cycle variability in the lunar tide influence on ionospheric current systems is not well understood yet. In order to investigate this, 17 years (1998-2014) of extensive magnetometer observations at four longitudinal sectors (western American, western and eastern African, and Asian) have been analyzed. All observations performed during magnetically active periods (K{sub p}>3) have been excluded for this study to eliminate storm contributions to the geomagnetic field variation at the geomagnetic equator. This study's quantitative analysis revealed significant longitudinal, seasonal and solar cycle dependence of the lunar tide influence on the equatorial electrojet.

  9. Variability in the origins and pathways of Pacific Equatorial Undercurrent water

    NARCIS (Netherlands)

    Qin, Xuerong; Sen Gupta, Alex; Van Sebille, Erik

    2015-01-01

    The Pacific Equatorial Undercurrent (EUC) transports water originating from a number of distinct source regions, eastward across the Pacific Ocean. It is responsible for supplying nutrients to the productive eastern Equatorial Pacific Ocean. Of particular importance is the transport of iron by the

  10. Deciphering Equatorial Pacific Deep Sea Sediment Transport Regimes by Core-Log-Seismic Integration

    Science.gov (United States)

    Ortiz, E.; Tominaga, M.; Marcantonio, F.

    2017-12-01

    Investigating deep-sea sediment transportation and deposition regimes is a key to accurately understand implications from geological information recorded by pelagic sediments, e.g. climate signals. However, except for physical oceanographic particle trap experiments, geochemical analyses of in situsediments, and theoretical modeling of the relation between the bottom currents and sediment particle flux, it has remained a challenging task to document the movement of deep sea sediments, that takes place over time. We utilized high-resolution, multichannel reflection seismic data from the eastern equatorial Pacific region with drilling and logging results from two Integrated Ocean Drilling Program (IODP) sites, the Pacific Equatorial Age Transect (PEAT) 7 (Site U1337) and 8 (Site U1338), to characterize sediment transportation regimes on 18-24 Ma oceanic crust. Site U1337, constructed by a series of distinct abyssal hills and abyssal basins; Site U1338, located 570 km SE from Site U1337 site and constructed by a series of ridges, seamounts, and abyssal hills. These sites are of particular interest due to their proximity to the equatorial productivity zone, areas with high sedimentation rates and preservation of carbonate-bearing sediment that provide invaluable insights on equatorial Pacific ecosystems and carbon cycle. We integrate downhole geophysical logging data as well as geochemistry and physical properties measurements on recovered cores from IODP Sites U1337 and U1338 to comprehensively examine the mobility of deep-sea sediments and sediment diagenesis over times in a quasi-3D manner. We also examine 1100 km of high resolution underway seismic surveys from site survey lines in between PEAT 7 and 8 in order to investigate changes in sediment transportation between both sites. Integrating detailed seismic interpretations, high resolution core data, and 230Th flux measurements we aim to create a detailed chronological sedimentation and sediment diagenesis history

  11. Water mass spreading in the warm water sphere of the eastern subtropical North Atlantic. Wassermassenausbreitung in der Warmwassersphaere des subtropischen Nordostatlantiks

    Energy Technology Data Exchange (ETDEWEB)

    Stramma, L

    1984-01-01

    Geostrophic transports in the eastern subtropical North Atlantic computed from historic hydrographic data and recent CTD measurements show a mean transport in the subtropical gyre of 11(+-1.6) x 10/sup 6/m/sup 3/s/sup -1/ in the upper 1000 m between 35/sup 0/W and the African coast. The dynamic method was used in conjunction with a conservation of mass scheme to determine the level of no motion. This level lies at the 1200 m depth near the Azores and drops to 1500 m in the tropics. The main inflow enters south of the Azores as a relatively narrow current, turns southward at the latitude of Madeira and then widens. Three current bands transport the water southward. North of the Cape Verde Islands, the current turns westwards. This part of the North Equatorial Current extends more to the south in the upper 200 m than in the 200-800 m layer. The Portugal current, between the Azores and the Portuguese coast, which is thought by some authors to be strong, is seen here as a relatively weak flow. Maps of potential vorticity derived from smoothed density profiles are consistent with the general pattern of geostrophic transport. At 24/sup 0/N one third of the total geostrophic southward transport of the recirculation and one third of the temperature flux is transported in the eastern Atlantic east of 35/sup 0/W.

  12. Impact of North Atlantic Current changes on the Nordic Seas and the Arctic Ocean

    OpenAIRE

    Kauker, Frank; Gerdes, Rüdiger; Karcher, Michael; Köberle, Cornelia

    2005-01-01

    The impact of North Atlantic Current (NAC) volume, heat, and salt transport variability onto the NordicSeas and the Arctic Ocean is investigated using numerical hindcast and sensitivity experiments. Theocean-sea ice model reproduces observed propagation pathways and speeds of SST anomalies.Part of the signal reaching the entrance to the Nordic Seas between Iceland and Scotland originatesin the lower latitude North Atlantic. Response experiments with different prescribed conditionsat 50N show ...

  13. Saturn's equatorial jet structure from Cassini/ISS

    Science.gov (United States)

    García-Melendo, Enrique; Legarreta, Jon; Sánchez-Lavega, Agustín.; Pérez-Hoyos, Santiago; Hueso, Ricardo

    2010-05-01

    Detailed wind observations of the equatorial regions of the gaseous giant planets, Jupiter and Saturn, are crucial for understanding the basic problem of the global circulation and obtaining new detailed information on atmospheric phenomena. In this work we present high resolution data of Saturn's equatorial region wind profile from Cassini/ISS images. To retrieve wind measurements we applied an automatic cross correlator to image pairs taken by Cassini/ISS with the MT1, MT2, MT3 filters centred at the respective three methane absorbing bands of 619nm, 727nm, and 889nm, and with the adjacent continuum CB1, CB2, and CB3 filters. We obtained a complete high resolution coverage of Saturn's wind profile in the equatorial region. The equatorial jet displays an overall symmetric structure similar to that shown the by same region in Jupiter. This result suggests that, in accordance to some of the latest compressible atmosphere computer models, probably global winds in gaseous giants are deeply rooted in the molecular hydrogen layer. Wind profiles in the methane absorbing bands show the effect of strong vertical shear, ~40m/s per scale height, confirming previous results and an important decay in the wind intensity since the Voyager era (~100 m/s in the continuum and ~200 m/s in the methane absorbing band). We also report the discovery of a new feature, a very strong and narrow jet on the equator, about only 5 degrees wide, that despite the vertical shear maintains its intensity (~420 m/s) in both, the continuum and methane absorbing band filters. Acknowledgements: Work supported by the Spanish MICIIN AYA2009-10701 with FEDER and Grupos Gobierno Vasco IT-464-07.

  14. A study on ionospheric scintillation near the EIA crest in relation to equatorial electrodynamics

    Science.gov (United States)

    Chatterjee, S.; Chakraborty, S. K.; Veenadhari, B.; Banola, S.

    2014-02-01

    Equatorial electrojet (EEJ) data, which are considered as a proxy index of equatorial electric field, are analyzed in conjunction with equatorial ionosonde, total electron content (TEC) and scintillation data near the equatorial ionization anomaly (EIA) crest for the equinoctial months of high solar activity years (2011-2012) to identify any precursor index of postsunset evolution of equatorial electron density irregularities and subsequent occurrence of scintillation near the northern EIA crest. Only geomagnetically quiet and normal electrojet days are considered. The diurnal profiles of EEJ on the scintillation days exhibit a secondary enhancement in the afternoon to presunset hours following diurnal peaks. A series of electrodynamical processes conducive for generation of irregularities emerge following secondary enhancement of EEJ. Latitudinal profile of TEC exhibits resurgence in EIA structure around the postsunset period. Diurnal TEC profile near the EIA crest resembles postsunset secondary enhancement on the days with afternoon enhancement in EEJ. Occurrence of equatorial spread F and postsunset scintillation near the EIA crest seems to follow the secondary enhancement events in EEJ. Both the magnitude and duration of enhanced EEJ are found to be important for postsunset intensification of EIA structure and subsequent occurrence of equatorial irregularities. A critical value combining the two may be considered an important precursor for postsunset occurrence of scintillation near the EIA crest. The results are validated using archived data for the years 1989-1990 and explained in terms of modulation effects of enhanced equatorial fountain.

  15. Coral-inferred Variability of Upstream Kuroshio Current from 1953-2004 AD

    Science.gov (United States)

    Li, X.; Yi, L.; Shen, C. C.; Hsin, Y. C.

    2016-12-01

    The Kuroshio Current (KC), one of the most important western boundary currents in the North Pacific Ocean, strongly impacts regional climate in East Asia and upper-ocean thermal structure. However, the responses of KC to regional and remote climate forcing are poorly understood owing to lacking of long-term KC observations. Here, we present a sea surface temperature (SST) record from 1953 to 2004 AD derived from monthly skeletal δ18O data of a living coral Porites core, drilled in Nanwan, southern Taiwan (22°N, 121°E), located on the western front of the Upstream KC. The increased/reduced Kuroshio transport would generate stronger/weaker upwelling in Southern Taiwan, which can cause lower/higher SST. Agreement between dynamics of interannual coral δ18O and modern KC data shows that the regional coral δ18O can be used as a promising proxy for Upstream KC intensity. The KC-induced SST anomaly record reveals prominent interannual and decadal variability predominantly controlled by the bifurcation latitude of North Equatorial Current. We also find that the reconstructed KC intensity at east of Taiwan and south of Japan have nearly simultaneous interannual changes, suggesting the same dominant forcing(s) for the entire KC system. Additional work is needed to understand the KC system with respect to the interannual to decadal climate variability and the influences of global warming.

  16. No iron fertilization in the equatorial Pacific Ocean during the last ice age.

    Science.gov (United States)

    Costa, K M; McManus, J F; Anderson, R F; Ren, H; Sigman, D M; Winckler, G; Fleisher, M Q; Marcantonio, F; Ravelo, A C

    2016-01-28

    The equatorial Pacific Ocean is one of the major high-nutrient, low-chlorophyll regions in the global ocean. In such regions, the consumption of the available macro-nutrients such as nitrate and phosphate is thought to be limited in part by the low abundance of the critical micro-nutrient iron. Greater atmospheric dust deposition could have fertilized the equatorial Pacific with iron during the last ice age--the Last Glacial Period (LGP)--but the effect of increased ice-age dust fluxes on primary productivity in the equatorial Pacific remains uncertain. Here we present meridional transects of dust (derived from the (232)Th proxy), phytoplankton productivity (using opal, (231)Pa/(230)Th and excess Ba), and the degree of nitrate consumption (using foraminifera-bound δ(15)N) from six cores in the central equatorial Pacific for the Holocene (0-10,000 years ago) and the LGP (17,000-27,000 years ago). We find that, although dust deposition in the central equatorial Pacific was two to three times greater in the LGP than in the Holocene, productivity was the same or lower, and the degree of nitrate consumption was the same. These biogeochemical findings suggest that the relatively greater ice-age dust fluxes were not large enough to provide substantial iron fertilization to the central equatorial Pacific. This may have been because the absolute rate of dust deposition in the LGP (although greater than the Holocene rate) was very low. The lower productivity coupled with unchanged nitrate consumption suggests that the subsurface major nutrient concentrations were lower in the central equatorial Pacific during the LGP. As these nutrients are today dominantly sourced from the Subantarctic Zone of the Southern Ocean, we propose that the central equatorial Pacific data are consistent with more nutrient consumption in the Subantarctic Zone, possibly owing to iron fertilization as a result of higher absolute dust fluxes in this region. Thus, ice-age iron fertilization in the

  17. The D1 parameter for the equatorial F1 region

    International Nuclear Information System (INIS)

    Adeniyi, J.O.; Radicella, S.M.

    2002-01-01

    This work is a contribution to the effort at improving the representation of the F1 equatorial ionospheric region in the International Reference Ionosphere (IRI) model. The D1 parameter has been proposed for describing the F1 layer. We have therefore produced a maiden table of D1 parameter for an equatorial station. Diurnal and seasonal effects were considered. (author)

  18. Analysis of longitudinal variations in North Pacific alkalinity

    Science.gov (United States)

    Fry, C.; Tyrrell, T.; Achterberg, E. P.

    2016-02-01

    Carbon measurements in the ocean lack the coverage of physical measurements, so approximate alkalinity is predicted where data is unavailable. Surface alkalinity in the North Pacific is poorly characterised by predictive algorithms. Understanding the processes affecting alkalinity in this area can improve the equations. We investigated the causes of regional variations in alkalinity using GLODAPv2. We tested different hypotheses for the causes of three longitudinal phenomena in surface ocean values of Alk*, a tracer of calcium carbonate cycling. These phenomena are: (a) an increase in Alk* from east to west at 50°N, (b) an increase in Alk* from west to east at 30°N, and (c) a lack of a strong increase in Alk* from west to east in the equatorial upwelling area. We found that the most likely cause of higher Alk* on the western side of the subpolar North Pacific (at 50°N) is that denser isopycnals with higher Alk* lie at shallower depths on the western side than the eastern side. At 30°N, the main cause of higher Alk* on the eastern side of the basin is upwelling along the continental shelf of southwestern North America. Along the equator, our analyses suggest that the absence of a strong east-west trend is because the more intense upwelling on the eastern side of the basin does not, under normal conditions, lead to strong elevation of Alk*. However, surface Alk* is more strongly elevated in the eastern Equatorial Pacific during negative phases of the El-Nino-Southern Oscillation, probably because the upwelled water comes from greater depth at these times.

  19. Constraints on the magnitude of the deglacial migration of the ITCZ in the Central Equatorial Pacific Ocean

    Science.gov (United States)

    Reimi, Maria A.; Marcantonio, Franco

    2016-11-01

    Accurate paleo-latitudinal reconstructions of the Intertropical Convergence Zone (ITCZ) are necessary for understanding tropical hydroclimate and atmospheric circulation. Paleoclimate models and records suggest that as global temperatures increase, the ITCZ should migrate towards the warmer hemisphere. Many uncertainties remain regarding the magnitude of this migration, and few studies have focused on the Central Equatorial Pacific (CEP). Here, we use eolian dust records recovered from three locations in the CEP to address changes in dust provenance across the paleo ITCZ since the last glacial maximum (LGM). Radiogenic isotope compositions of Nd and Pb show that dust delivered to the CEP was sourced mainly from two regions: East Asia and South America. From these data we deduced that since Marine Oxygen Isotope Stage 2 (MIS2) the ITCZ has migrated north to its modern position, being displaced by as much as 7°, to as little as 2.5°. We find that the ITCZ migrated further north during the early Holocene (∼9 kyr), reaching its position furthest north during the mid-Holocene warm interval (∼7 kyr), based on an increase in South American dust at the northernmost sites.

  20. The Angola Current and its seasonal variability as observed at 11°S

    Science.gov (United States)

    Kopte, Robert; Brandt, Peter; Dengler, Marcus; Claus, Martin; Greatbatch, Richard J.

    2016-04-01

    The eastern boundary circulation off the coast of Angola has been described only sparsely to date. The region off Angola, which connects the equatorial Atlantic and the Angola-Benguela upwelling regime, is of particular interest to understand the relative importance of transient equatorial versus local forcing of the observed variability in the coastal upwelling region. For the first time multi-year velocity observations of the Angola Current at 11°S are available. From July 2013 to November 2015 a bottom shield equipped with an ADCP had been deployed at 500m water depth, accompanied by a mooring sitting on the 1200m-isobath with an ADCP being installed at 500m depth. Both upward-looking instruments measured the current speed up to about 50m below the sea surface. During the deployment period the Angola Current was characterized by a weak southward mean flow of 5-8 cm/s at 50m depth (slightly stronger at the in-shore mooring position), with the southward current penetrating down to about 200m depth. The alongshore velocity component reveals a pronounced seasonal variability. It is dominated by 120-day, semi-annual, and annual oscillations with distinct baroclinic structures. Here we apply a reduced gravity model of the tropical Atlantic for the first five baroclinic modes forced with interannually varying wind stress to investigate the seasonal variability along the equatorial and coastal waveguides. In the equatorial Atlantic the 120-day, semi-annual, and annual oscillations are associated with resonant basin modes of the 1st, 2nd, and 4th baroclinic mode, respectively. These basin modes are composed of equatorial Kelvin and Rossby waves as well as coastally trapped waves. The reduced gravity model is further used to study the respective role of the remote equatorial forcing, more specifically the influence of equatorial basin modes via coastally trapped waves, and the local forcing for the observed seasonal variability and associated baroclinic structure of the

  1. Enhanced Influence of the Tropical Atlantic SST on the Western North Pacific Subtropical High after late 1970s

    Science.gov (United States)

    Hong, C. C.

    2015-12-01

    The western North Pacific subtropical high (WNPSH) in boreal summer shows a remarkable enhancement after the late 1970s. Whereas the sea surface temperature (SST) in the North Indian Ocean (NIO) and the equatorial eastern Pacific (EEP) had been noted to have remarkable local or remote effects on enhancing the WNPSH, the influence of the Atlantic SST, so far, is hardly explored. This article reports a new finding: enhanced relationship between the tropical Atlantic (TA)-SST and the WNPSH after the late 1970s. Regression study suggests that the warm TA-SST produced a zonally overturning circulation anomaly, with descending over the central equatorial Pacific and ascending over the tropical Atlantic/eastern Pacific. The anomalous descending over the central equatorial Pacific likely induced low-level anticyclonic anomaly to the west and therefore enhanced the WNPSH. One implication of this new finding is for predictability. The well-known "spring predictability barrier" (i.e., the influence of El Niño and Southern Oscillation (ENSO) falls dramatically during boreal spring) does not apply to the TA-SST/WNPSH relationship. Conversely, the TA-SST shows consistently high correlation starting from boreal spring when the ENSO influence continues declining. The TA-SST pushes the predictability of the WNPSH in boreal summer approximately one season earlier to boreal spring.

  2. Occurrence of Equatorial Plasma Bubbles during Intense Magnetic Storms

    Directory of Open Access Journals (Sweden)

    Chao-Song Huang

    2011-01-01

    Full Text Available An important issue in low-latitude ionospheric space weather is how magnetic storms affect the generation of equatorial plasma bubbles. In this study, we present the measurements of the ion density and velocity in the evening equatorial ionosphere by the Defense Meteorological Satellite Program (DMSP satellites during 22 intense magnetic storms. The DMSP measurements show that deep ion density depletions (plasma bubbles are generated after the interplanetary magnetic field (IMF turns southward. The time delay between the IMF southward turning and the first DMSP detection of plasma depletions decreases with the minimum value of the IMF Bz, the maximum value of the interplanetary electric field (IEF Ey, and the magnitude of the Dst index. The results of this study provide strong evidence that penetration electric field associated with southward IMF during the main phase of magnetic storms increases the generation of equatorial plasma bubbles in the evening sector.

  3. Ocean dynamics, not dust, have controlled equatorial Pacific productivity over the past 500,000 years

    OpenAIRE

    Winckler, Gisela; Anderson, Robert F.; Jaccard, Samuel L.; Marcantonio, Franco

    2016-01-01

    Biological productivity in the equatorial Pacific is relatively high compared with other low latitude regimes especially east of the dateline where divergence driven by the trade winds brings nutrient rich waters of the Equatorial Undercurrent to the surface. The equatorial Pacific is one of the three principal high nutrient low chlorophyll ocean regimes where biological utilization of nitrate and phosphate is limited in part by the availability of iron. Throughout most of the equatorial Paci...

  4. Equatorially/globally conditioned meteorological analysis of heaviest monsoon rains over India during 23-28 July 2005

    Science.gov (United States)

    Ranade, Ashwini; Singh, Nityanand

    2018-06-01

    The heaviest monsoon rainstorm of the period 1951-2007 over India occurred during 23-28 July 2005, mostly the peninsula received rainfall, and each day the rainwater over the country was 40.0 bcm (billion cubic meter) or more, highest 98.4 bcm fell on 25 July 2005. Present premise of monsoon genesis is that it evolves in association with spreading and intensification of equatorial atmospheric condition over Afro-Eurasian landmass and adjoining Indian and Pacific Oceans during boreal summer. Robust natural criteria have been applied to demarcate monsoon and other global weather regimes (GWRs) at standard levels (1000‒100 hPa). Global atmospheric (1000‒100 hPa) thermal condition and monsoon and general circulations during 23-28 July 2005 have been compared with normal features of respective parameters. Over tropics-subtropics (45°S-45°N), troposphere (1000‒250 hPa) was warmer-thicker and pressure lower than normal and mixed conditions of positive/negative departures in temperature, height/thickness and pressure over northern and southern mid-high latitudes. Noticeable changes in 3D monsoon structure were: horizontally spread and eastward-southward shifted over western North Pacific and stretched further southeastward across equatorial Pacific; intense warm-low lower tropospheric confluence-convergence across Asia-Pacific with vertical depth extending beyond 400 hPa; and intense warm-high upper tropospheric anticyclonic circulation zonally stretched and divided into three interconnected cells. Outflows from anticyclonic cells over Tibetan plateau and western North Pacific were mostly directed westward/southwestward/southward. Troposphere was warmer-thicker and pressure higher over eastern part of both subpolars-polars and cooler-thinner and pressure lower over western part. During the period, a deep cyclonic circulation moved from Bay of Bengal through central India while near-stationary atmospheric condition prevailed across the globe.

  5. Longitudinal, seasonal and solar cycle variation in lunar tide influence on the equatorial electrojet

    Directory of Open Access Journals (Sweden)

    E. Yizengaw

    2017-04-01

    Full Text Available It has been well documented that the lunar tidal waves can modulate the ionospheric electrodynamics and create a visible influence on the equatorial electrojet (EEJ. The lunar tide influence gets intensified around noon, primarily during new and full Moon periods. However, the longitudinal, seasonal and solar cycle variability in the lunar tide influence on ionospheric current systems is not well understood yet. In order to investigate this, 17 years (1998–2014 of extensive magnetometer observations at four longitudinal sectors (western American, western and eastern African, and Asian have been analyzed. All observations performed during magnetically active periods (Kp>3 have been excluded for this study to eliminate storm contributions to the geomagnetic field variation at the geomagnetic equator. This study's quantitative analysis revealed significant longitudinal, seasonal and solar cycle dependence of the lunar tide influence on the equatorial electrojet.

  6. The physical and theoretical basis of solar-terrestrial relationships 1. Equatorial locations

    International Nuclear Information System (INIS)

    Njau, E.C.

    1988-07-01

    The theory of solar-terrestrial relationships developed earlier by the author is extended to incorporate expressions that represent the non-linear responses of the earth-atmosphere system to incoming solar radiation in a more detailed manner. Application of the extended theory to equatorial locations leads to new and interesting features that are consistent with past observations. It also predicts the existence of new oscillations in the equatorial atmosphere whose causative physical processes are given and explained. Non-equatorial locations are treated along similar lines in Part 2 of the series. (author). 44 refs

  7. Optimum launching of electron-cyclotron power for localized current drive in a hot tokamak

    International Nuclear Information System (INIS)

    Smith, G.R.

    1989-05-01

    Optimum launch parameters are determined for localized electron-cyclotron current drive near the magnetic axis and the q=2 surface by solving several minimization problems. For central current drive, equatorial and bottom launch are compared. Localized current drive near q=2 is studied for equatorial launch and for an alternative outside launch geometry that may be better for suppressing tearing modes and controlling disruptions. 6 refs., 2 figs

  8. The magnetic field of the equatorial magnetotail - AMPTE/CCE observations at R less than 8.8 earth radii

    Science.gov (United States)

    Fairfield, D. H.; Acuna, M. H.; Zanetti, L. J.; Potemra, T. A.

    1987-01-01

    The MPTE/CCE magnetic field experiment has been used to obtain a quantitative evaluation of the frequency and extent of magnetic field distortion in the near-tail region at less than 8.8 earth radii. The variation of this distortion with Kp, radial distance, longitude, and near-equatorial latitude is reported. It has been found that taillike distortions from the dipole field direction may reach 80 deg near the MPTE/CE apogee of 8.8 earth radii. The Bz field component in dipole coordinates was always positive within 0.5 earth radii of the equatorial current sheet, indicating the neutral lines were never seen inside of 8.8 earth radii. Fields were most taillike near midnight and during times of high Kp. At 8.5 earth radii the equatorial field magnitude depressions were roughly half the dipole field strength of 51 nT. These depressions are larger at lesser distances, reaching -40 nT at 3.4 earth radii for Kp of 2- or less and -80 nT and Kp of 3+ and greater.

  9. Relation of zonal plasma drift and wind in the equatorial F region as derived from CHAMP observations

    Directory of Open Access Journals (Sweden)

    J. Park

    2013-06-01

    Full Text Available In this paper we estimate zonal plasma drift in the equatorial ionospheric F region without counting on ion drift meters. From June 2001 to June 2004 zonal plasma drift velocity is estimated from electron, neutral, and magnetic field observations of Challenging Mini-satellite Payload (CHAMP in the 09:00–20:00 LT sector. The estimated velocities are validated against ion drift measurements by the Republic of China Satellite-1/Ionospheric Plasma and Electrodynamics Instrument (ROCSAT-1/IPEI during the same period. The correlation between the CHAMP (altitude ~ 400 km estimates and ROCSAT-1 (altitude ~ 600 km observations is reasonably high (R ≈ 0.8. The slope of the linear regression is close to unity. However, the maximum westward drift and the westward-to-eastward reversal occur earlier for CHAMP estimates than for ROCSAT-1 measurements. In the equatorial F region both zonal wind and plasma drift have the same direction. Both generate vertical currents but with opposite signs. The wind effect (F region wind dynamo is generally larger in magnitude than the plasma drift effect (Pedersen current generated by vertical E field, thus determining the direction of the F region vertical current.

  10. The response of the equatorial Pacific Ocean to a westerly wind burst in May 1986

    Science.gov (United States)

    McPhaden, Michael J.; Freitag, H. Paul; Hayes, Stanley P.; Taft, Bruce A.; Chen, Zeshi; Wyrtki, Klaus

    1988-09-01

    Western Pacific westerly wind bursts of 1- to 3-week duration are potentially important in triggering and sustaining El Niño-Southern Oscillation events. One such burst of 10-day duration and maximum speeds of greater than 10 m s-1 occurred in May 1986 west of the date line. The response to this westerly wind burst is documented from equatorial current meter moorings, thermistor chain moorings, and sea level and hydrographic data. At 0°, 165°E in the western Pacific the thermocline was depressed by 25 m, sea surface temperature dropped by 0.3°-0.4°C, and sea level rose by 10-15 cm a few days after the maximum in westerly wind speed. Likewise, the South Equatorial Current rapidly accelerated eastward and attained speeds in excess of 100 cm s-1. Vertical shear in an approximately 100 m deep surface layer reversed within a few days of the winds, consistent with a simple model of equatorial mixed layer dynamics in which vertical eddy viscosities are inferred to be O(100 cm2 s-1). A sharp Kelvin wavelike pulse in sea level propagated out of the directly forced region into the central and eastern Pacific. The pulse took 45 days to travel from Tarawa (1°N, 173°E) to La Libertad (2°S, 81°W) on the South American coast, at an average phase speed of about 300 cm s-1. This is of the same order of magnitude as, but significantly higher than, the phase speed of a first baroclinic mode Kelvin wave and is probably the result of Doppler shifting by the Equatorial Undercurrent. A rise in sea surface temperature of about 1°C in 2 days occurred at 0°N, 110°W with the passage of the pulse. However, coincidental meridional advection of a sharp sea surface temperature front, rather than zonal advection of downwelling associated with the pulse, appears to be responsible for this warming. The relevance of this wind-forced pulse to the subsequent evolution of the 1986-1987 El Niño-Southern Oscillation event is discussed in the light of these observations.

  11. Time dependent response of equatorial ionospheric electric fieldsto magnetospheric disturbances

    OpenAIRE

    Fejer, Bela G.; Scherliess, L.

    1995-01-01

    We use extensive radar measurements of F region vertical plasma drifts and auroral electrojet indices to determine the storm time dependence of equatorial zonal electric fields. These disturbance drifts result from the prompt penetration of high latitude electric fields and from the dynamo action of storm time winds which produce largest perturbations a few hours after the onset of magnetic activity. The signatures of the equatorial disturbance electric fields change significantly depending o...

  12. Coccolithophores in the equatorial Atlantic Ocean

    DEFF Research Database (Denmark)

    Kinkel, Hanno; Baumann, K.-H.; Cepek, M.

    2000-01-01

    with each other. In general, the living coccolithophores in the surface and subsurface waters show considerable variation in cell numbers and distribution patterns. Cell densities reached a maximum of up to 300 x 10 coccospheres/l in the upwelling area of the equatorial Atlantic. Here, Emiliania huxleyi...

  13. Water masses in the Humboldt Current System: Properties, distribution, and the nitrate deficit as a chemical water mass tracer for Equatorial Subsurface Water off Chile

    Science.gov (United States)

    Silva, Nelson; Rojas, Nora; Fedele, Aldo

    2009-07-01

    Three sections are used to analyze the physical and chemical characteristics of the water masses in the eastern South Pacific and their distributions. Oceanographic data were taken from the SCORPIO (May-June 1967), PIQUERO (May-June 1969), and KRILL (June 1974) cruises. Vertical sections of temperature, salinity, σ θ, dissolved oxygen, nitrate, nitrite, phosphate, and silicate were used to analyze the water column structure. Five water masses were identified in the zone through T- S diagrams: Subantarctic Water, Subtropical Water, Equatorial Subsurface Water, Antarctic Intermediate Water, and Pacific Deep Water. Their proportions in the sea water mixture are calculated using the mixing triangle method. Vertical sections were used to describe the geographical distributions of the water mass cores in the upper 1500 m. Several characteristic oceanographic features in the study area were analyzed: the shallow salinity minimum displacement towards the equator, the equatorial subsurface salinity maximum associated with a dissolved oxygen minimum zone and a high nutrient content displacement towards the south, and the equatorward intermediate Antarctic salinity minimum associated with a dissolved oxygen maximum. The nitrate deficit generated in the denitrification area off Peru and northern Chile is proposed as a conservative chemical tracer for the Equatorial Subsurface Waters off the coast of Chile, south of 25°S.

  14. Sexuality education in North American medical schools: current status and future directions.

    Science.gov (United States)

    Shindel, Alan W; Parish, Sharon J

    2013-01-01

    Both the general public and individual patients expect healthcare providers to be knowledgeable and approachable regarding sexual health. Despite this expectation there are no universal standards or expectations regarding the sexuality education of medical students. To review the current state of the art in sexuality education for North American medical students and to articulate future directions for improvement. Evaluation of: (i) peer-reviewed literature on sexuality education (focusing on undergraduate medical students); and (ii) recommendations for sexuality education from national and international public health organizations. Current status and future innovations for sexual health education in North American medical schools. Although the importance of sexuality to patients is recognized, there is wide variation in both the quantity and quality of education on this topic in North American medical schools. Many sexual health education programs in medical schools are focused on prevention of unwanted pregnancy and sexually transmitted infection. Educational material on sexual function and dysfunction, female sexuality, abortion, and sexual minority groups is generally scant or absent. A number of novel interventions, many student initiated, have been implemented at various medical schools to improve the student's training in sexual health matters. There is a tremendous opportunity to mold the next generation of healthcare providers to view healthy sexuality as a relevant patient concern. A comprehensive and uniform curriculum on human sexuality at the medical school level may substantially enhance the capacity of tomorrow's physicians to provide optimal care for their patients irrespective of gender, sexual orientation, and individual sexual mores/beliefs. © 2013 International Society for Sexual Medicine.

  15. Neutral carbohydrate geochemistry of particulate material in the central equatorial Pacific

    Science.gov (United States)

    Hernes, Peter J.; Hedges, John I.; Peterson, Michael L.; Wakeham, Stuart G.; Lee, Cindy

    Neutral carbohydrate compositions were determined for particulate samples from plankton net tows, shallow floating sediment traps, mid-depth and deep moored sediment traps, and sediment cores collected along a north-south transect in the central equatorial Pacific Ocean during the U.S. JGOFS EqPac program. Total neutral carbohydrate depth profiles and patterns along the transect follow essentially the same trends as bulk and organic carbon (OC) fluxes—attenuating with depth, high near the equator and decreasing poleward. OC-normalized total aldose (TCH 2,O) yields along the transect and with depth do not show any consitent patterns. Relative to a planktonic source, neutral carbohydrate compositions in sediment trap and sediment core samples reflect preferential loss of ribose and storage carbohydrates rich in glucose, and preferential preservation of structural carbohydrates rich in rhamnose, xylose, fucose, and mannose. There is also evidence for an intermediately labile component rich in galactose. It appears that compositional signatures of neutral carbohydrates in sediments are more dependent upon their planktonic source than on any particular diagenetic pathway. Relative to other types of organic matter, neutral carbohydrates are better preserved in calcareous oozes from 12°S to 5°N than in red clays at 9°N based on OC-normalized TCH 2O yields, due to either differing sources or sorption characteristics. Weight per cent glucose generally decreases with increased degradation of organic material in the central equatorial Pacific region. Based on weight per cent glucose, comparisons of samples between Survey I (El Niõn) and Survey II (non-El Niño) indicate that during Survey I, organic material in the epipelagic zone in the northern hemisphere may have undergone more degradation than organic material in the southern hemisphere.

  16. The Genesis of Tropical Cyclone Bilis (2000) Associated with Cross-equatorial Surges

    Institute of Scientific and Technical Information of China (English)

    XU Yamei

    2011-01-01

    The purpose of this paper is to explore how a tropical cyclone forms from a pre-existing large-scale depression which has been observed and associated with cross-equatorial surges in the western North Pacific. Tropical cyclone Bilis (2000) was selected as the case to study. The research data used are from the results of the non-hydrostatic mesoscale model (MM5), which has successfully simulated the transformation of a pre-existing weak large-scale tropical depression into a strong tropical storm. The scale separation technique is used to separate the synoptic-scale and sub-synoptic-scale fields from the model output fields. The scale-separated fields show that the pre-existing synoptic-scale tropical depression and the subsynoptic scale tropical cyclone formed later were different scale systems from beginning to end. It is also shown that the pre-existing synoptic-scale tropical depression did not contract to become the tropical cyclone. A series of weak, sub-synoptic-scale low and high pressure systems appeared and disappeared in the synopticscale depression, with one of the low systems near the center of the synoptic-scale depression having deepened to become the tropical cyclone. The roles of the synoptic-scale flow and the sub-synoptic scale disturbances in the formation of the tropical cyclone are investigated by diagnoses of the scale-separated vertical vorticity equation. The results show that the early development of the sub-synoptic scale vortex was fundamentally dependent on the strengthening synoptic-scale environmental depression. The depression was strengthened by cross-equatorial surges, which increased the convergence of the synoptic-scale depression at low levels and triggered the formation of the tropical cyclone.

  17. Central Equatorial Pacific Experiment (CEPEX)

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    The Earth's climate has varied significantly in the past, yet climate records reveal that in the tropics, sea surface temperatures seem to have been remarkably stable, varying by less than a few degrees Celsius over geologic time. Today, the large warm pool of the western Pacific shows similar characteristics. Its surface temperature always exceeds 27[degree]C, but never 31[degree]C. Heightened interest in this observation has been stimulated by questions of global climate change and the exploration of stabilizing climate feedback processes. Efforts to understand the observed weak sensitivity of tropical sea surface temperatures to climate forcing has led to a number of competing ideas about the nature of this apparent thermostat. Although there remains disagreement on the processes that regulate tropical sea surface temperature, most agree that further progress in resolving these differences requires comprehensive field observations of three-dimensional water vapor concentrations, solar and infrared radiative fluxes, surface fluxes of heat and water vapor, and cloud microphysical properties. This document describes the Central Equatorial Pacific Experiment (CEPEX) plan to collect such observations over the central equatorial Pacific Ocean during March of 1993.

  18. Space Weather Research in the Equatorial Region: A Philosophical Reinforcement

    Science.gov (United States)

    Chukwuma, Victor; Odunaike, Rasaki; Laoye, John

    Investigations using radio waves reflected from the ionosphere, at high-and mid-latitudes indicate that ionospheric absorption can strongly increase following geomagnetic storms; which appears to suggest some definite relationship between ionospheric radio wave absorption and geomagnetic storms at these latitudes. However, corresponding earlier studies in the equatorial region did not appear to show any explicit relationship between ionospheric radio wave absorption and geomagnetic storm activity. This position appeared acceptable to the existing scientific paradigm, until in an act of paradigm shift, by a change of storm selection criteria, some more recent space weather investigations in the low latitudes showed that ionospheric radio wave absorption in the equatorial region clearly increases after intense storms. Given that these results in the equatorial region stood against the earlier results, this paper presently attempts to highlight their philosophical underpinning and posit that they constitute a scientific statement.

  19. Post sunset equatorial spread-F at Kwajalein and interplanetary magnetic field

    Science.gov (United States)

    Rastogi, R. G.; Chandra, H.; Janardhan, P.; Reinisch, B. W.; Bisoi, Susanta Kumar

    2017-10-01

    We connect the time sequence of changes in the IMF-Bz to the development of spread-F at an equatorial station Kwajalein on three different nights in November 2004, one during a geomagnetic quiet period and other two during geomagnetic disturbed periods. The chosen days show clear and smooth variations of IMF-Bz without any large fluctuations thereby enabling one to correlate changes in equatorial spread-F with corresponding changes in IMF-Bz. It is shown that a slow and continuous increase in the IMF-Bz over a duration of few hours has a similar effect on the equatorial ionosphere as of a sudden northward turning of the IMF-Bz in causing an electric field through the polar region and then to the equator. We conclude that the Spread-F at equatorial and low latitudes are due to echoes from ionization irregularities that arise due to the plasma instabilities generated by an eastward electric field on the large plasma density gradient in or below the base of the F-layer during any period of the night time along with the gravity driven Rayleigh-Taylor instability.

  20. Bottomside sinusoidal irregularities in the equatorial F region

    Science.gov (United States)

    Valladares, C. E.; Hanson, W. B.; Mcclure, J. P.; Cragin, B. L.

    1983-01-01

    By using the Ogo 6 satellite, McClure and Hanson (1973) have discovered sinusoidal irregularities in the equatorial F region ion number density. In the present investigation, a description is provided of the properties of a distinct category of sinusoidal irregularities found in equatorial data from the AE-C and AE-E satellites. The observed scale sizes vary from about 300 m to 3 km in the direction perpendicular to B, overlapping with and extending the range observed by using Ogo 6. Attention is given to low and high resolution data, a comparison with Huancayo ionograms, the confinement of 'bottomside sinusoidal' (BSS) irregularities essentially to the bottomside of the F layer, spectral characteristics, and BSS, scintillation, and ionosonde observations.

  1. Westward ionospheric currents over the dip equator during geomagnetic disturbances

    International Nuclear Information System (INIS)

    Rastogi, R.G.

    1975-01-01

    During geomagnetic disturbed periods, the q type of sporadic E layer near the dip equator is shown to disappear with maximum error of five minutes during the period when the difference of the geomagnetic H field between the equatorial and non-equatorial station decreases below the night level. These periods are identified with the reversal to westward direction of the electrojet currents at the base of the E region around 100 km level irrespective of the changes in the S/subq/ current system which might be produced by the disturbance

  2. Self-reported adherence to antiretroviral therapy in HIV+ population from Bata, Equatorial Guinea.

    Science.gov (United States)

    Salmanton-García, Jon; Herrador, Zaida; Ruiz-Seco, Pilar; Nzang-Esono, Jesús; Bendomo, Veronica; Bashmakovic, Emma; Nseng-Nchama, Gloria; Benito, Agustín; Aparicio, Pilar

    2016-01-01

    The human immunodeficiency virus (HIV) and the acquired immune deficiency syndrome (AIDS) represent a serious public health problem in Equatorial Guinea, with a prevalence of 6.2% among adults. the high-activity antiretroviral treatment (HAART) coverage data is 10 points below the overall estimate for Sub-Saharan Africa, and only 61% patients continue with HAART 12 months after it started. This study aims to assess HAART adherence and related factors in Litoral Province of Equatorial Guinea. In this cross-sectional study, socio-demographic and clinical data were collected at Regional Hospital of Bata, during June-July 2014. Adherence to treatment was assessed by using the Spanish version of CEAT-VIH. Bivariate and linear regression analyses were employed to assess HAART adherence-related factors. We interviewed 50 men (35.5%) and 91 women (64.5%), with a mean age of 47.7 ± 8.9 and 36.2 ± 11.2, respectively (p VIH score varied by ethnic group (p = .005). There was a positive correlation between CEAT-VIH score and current CD4 T-cells count (p = .013). The Cronbach's α value was 0.52. To our knowledge, this is the first study to assess HAART adherence in Equatorial Guinea. Internal reliability for CEAT-VIH was low, nonetheless the positive correlation between the CEAT-VIH score and the immunological status of patients add value to our findings. Our results serve as baseline for future research and will also assist stakeholders in planning and undertaking contextual and evidence-based policy initiatives.

  3. Aerosol Transport Over Equatorial Africa

    Science.gov (United States)

    Gatebe, C. K.; Tyson, P. D.; Annegarn, H. J.; Kinyua, A. M.; Piketh, S.; King, M.; Helas, G.

    1999-01-01

    Long-range and inter-hemispheric transport of atmospheric aerosols over equatorial Africa has received little attention so far. Most aerosol studies in the region have focussed on emissions from rain forest and savanna (both natural and biomass burning) and were carried out in the framework of programs such as DECAFE (Dynamique et Chimie Atmospherique en Foret Equatoriale) and FOS (Fires of Savanna). Considering the importance of this topic, aerosols samples were measured in different seasons at 4420 meters on Mt Kenya and on the equator. The study is based on continuous aerosol sampling on a two stage (fine and coarse) streaker sampler and elemental analysis by Particle Induced X-ray Emission. Continuous samples were collected for two seasons coinciding with late austral winter and early austral spring of 1997 and austral summer of 1998. Source area identification is by trajectory analysis and sources types by statistical techniques. Major meridional transports of material are observed with fine-fraction silicon (31 to 68 %) in aeolian dust and anthropogenic sulfur (9 to 18 %) being the major constituents of the total aerosol loading for the two seasons. Marine aerosol chlorine (4 to 6 %), potassium (3 to 5 %) and iron (1 to 2 %) make up the important components of the total material transport over Kenya. Minimum sulfur fluxes are associated with recirculation of sulfur-free air over equatorial Africa, while maximum sulfur concentrations are observed following passage over the industrial heartland of South Africa or transport over the Zambian/Congo Copperbelt. Chlorine is advected from the ocean and is accompanied by aeolian dust recirculating back to land from mid-oceanic regions. Biomass burning products are transported from the horn of Africa. Mineral dust from the Sahara is transported towards the Far East and then transported back within equatorial easterlies to Mt Kenya. This was observed during austral summer and coincided with the dying phase of 1997/98 El

  4. Signatures of moderate (M-class) and low (C and B class) intensity solar flares on the equatorial electrojet current: Case studies

    Science.gov (United States)

    Chakrabarty, D.; Bagiya, Mala S.; Thampi, Smitha V.; Pathan, B. M.; Sekar, R.

    2013-12-01

    The present investigation brings out, in contrast to the earlier works, the changes in the equatorial electrojet (EEJ) current in response to a few moderate (M-class) and low (C and B class) intensity solar flares during 2005-2010. Special care is taken to pick these flare events in the absence of prompt electric field perturbations associated with geomagnetic storms and substorms that also affect the electrojet current. Interestingly, only the normalized (with respect to the pre-flare level) deviations of daytime EEJ (and not the deviations alone) change linearly with the increases in the EUV and X-ray fluxes. These linear relationships break down during local morning hours when the E-region electric field approaches zero before reversal of polarity. This elicits that the response of EEJ strength corresponding to less-intense flares can be appropriately gauged only when the local time variation of the quiet time E-region zonal electric field is taken into account. The flare events enhanced the EEJ strength irrespective of normal or counter electrojet (CEJ) conditions that shows that solar flares change the E-region ionization density and not the electric field. In addition, the enhancements in the X-ray and EUV fluxes, for these flares occurring during this solar minimum period, are found to be significantly correlated as opposed to the solar maximum period, indicating the differences in the solar processes in different solar epochs.

  5. A study of evolution/suppression parameters of equatorial postsunset plasma instability

    Directory of Open Access Journals (Sweden)

    O. S. Oyekola

    2009-01-01

    Full Text Available Evening equatorial pre-reversal vertical ion E×B drift (VZP and the peak of the ionospheric F2 maximum altitude (hmF2P of the postsunset equatorial F-layer, which are the essential parameters requisite for the generation or inhibition of postsunset bottomside equatorial irregularities were deduced from ionosonde observations made in the Africa region (Ouagadougou: ~3° N dip latitude between January 1987 and December 1990 for solar activity minimum, medium, and maxima (F10.7=85, 141, 214, and 190, respectively for quiet geomagnetic conditions. We investigate variations of evening equatorial pre-reversal drift and the corresponding altitude at four levels of solar activity. Our observations show strong variations with solar variability. Correlation analysis between these parameters indicates that the correlation coefficient value between hmF2P versus VZP decreases considerably with increasing solar flux value. There seems to be no significant link between these parameters under high solar activity, especially for solar intensity F10.7>200 units. We conclude that meridional neutral wind in the F-region contributes substantially to the variations of the pre-reversal vertical plasma drifts enhancement and the peak hmF2, particularly the electrodynamics during twilight high solar flux conditions.

  6. Effects of the equatorial ionosphere on L-band Earth-space transmissions

    Science.gov (United States)

    Smith, Ernest K.; Flock, Warren L.

    1993-01-01

    Ionosphere scintillation can effect satellite telecommunication up to Ku-band. Nighttime scintillation can be attributed to large-scale inhomogeneity in the F-region of the ionosphere predominantly between heights of 200 and 600 km. Daytime scintillation has been attributed to sporadic E. It can be thought of as occurring in three belts: equatorial, high-latitude, and mid-latitude, in order of severity. Equatorial scintillation occurs between magnetic latitudes +/- 25 degrees, peaking near +/- 10 degrees. It commonly starts abruptly near 2000 local time and dies out shortly after midnight. There is a strong solar cycle dependence and a seasonal preference for the equinoxes, particularly the vernal one. Equatorial scintillation occurs more frequently on magnetically quiet than on magnetically disturbed days in most longitudes. At the peak of the sunspot cycle scintillation depths as great as 20 dB were observed at L-band.

  7. A Numerical Modeling for Study Marine Current in the Manado Bay, North Sulawesi

    Directory of Open Access Journals (Sweden)

    Parabelem Tinno Dolf Rompas

    2018-02-01

    Full Text Available This study is investigating about marine currents provided electrical energy through the numerical model. The objective of this study is to know the available power distributions in the Manado Bay, North Sulawesi, Indonesia. The Manado Bay was width 2200 m with 79 m of depth. In computation, we are made grids in x and y horizontal were 7 m respectively, also for z vertical of four layers. The results shown that the available power distributions in the Manado Bay at 0.1 Sv were 0.00-20.00 kW/m2 when low tide currents and when high tide currents were 0.00-105 kW/m2. The values will enable for marine currents power plant in the Manado Bay to future.

  8. Numerical simulation of the observed near-surface East India Coastal Current on the continental slope

    Science.gov (United States)

    Mukherjee, A.; Shankar, D.; Chatterjee, Abhisek; Vinayachandran, P. N.

    2018-06-01

    We simulate the East India Coastal Current (EICC) using two numerical models (resolution 0.1° × 0.1°), an oceanic general circulation model (OGCM) called Modular Ocean Model and a simpler, linear, continuously stratified (LCS) model, and compare the simulated current with observations from moorings equipped with acoustic Doppler current profilers deployed on the continental slope in the western Bay of Bengal (BoB). We also carry out numerical experiments to analyse the processes. Both models simulate well the annual cycle of the EICC, but the performance degrades for the intra-annual and intraseasonal components. In a model-resolution experiment, both models (run at a coarser resolution of 0.25° × 0.25°) simulate well the currents in the equatorial Indian Ocean (EIO), but the performance of the high-resolution LCS model as well as the coarse-resolution OGCM, which is good in the EICC regime, degrades in the eastern and northern BoB. An experiment on forcing mechanisms shows that the annual EICC is largely forced by the local alongshore winds in the western BoB and remote forcing due to Ekman pumping over the BoB, but forcing from the EIO has a strong impact on the intra-annual EICC. At intraseasonal periods, local (equatorial) forcing dominates in the south (north) because the Kelvin wave propagates equatorward in the western BoB. A stratification experiment with the LCS model shows that changing the background stratification from EIO to BoB leads to a stronger surface EICC owing to strong coupling of higher order vertical modes with wind forcing for the BoB profiles. These high-order modes, which lead to energy propagating down into the ocean in the form of beams, are important only for the current and do not contribute significantly to the sea level.

  9. Comments on the current status of aquaculture in heated effluents in North America

    International Nuclear Information System (INIS)

    Ayles, G.B.

    1976-01-01

    At the current rate of increase the world demand for fish protein will soon far exceed the supply. The culture of aquatic organisms in low-grade waste heat could be a significant source of animal protein. There are at present thriving trout culture and catfish culture industries in North America. There are a number of small-scale research and commercial aquaculture projects currently in operation and numerous studies have been carried out. However, the knowledge gained has not had a significant impact on waste heat aquaculture development. (author)

  10. Current direction, temperature, and salinity data from moored current meter casts in the North Pacific Ocean from 1983-06-01 to 1983-08-01 (NODC Accession 8500147)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current direction, temperature, and salinity data were collected using moored current meter casts in the North Pacific Ocean from June 1, 1983 to August 1, 1983....

  11. Autonomous Energy Sources in the North of the Far East: Current State and Directions of Diversification

    Directory of Open Access Journals (Sweden)

    Boris Grigorievich Saneev

    2018-03-01

    Full Text Available The paper presents the current state of autonomous energy sources in the north of the Far East. Consideration is given to the capacity structures with a focus on industrial and residential autonomous energy sources. One of the main problems facing power supply to residential consumers in the north of the Far East is the insufficiently developed transport infrastructure, which causes complicated fuel delivery patterns, fuel price rise, and hence high electricity generation cost. The changes in the installed capacity of renewable energy sources (RES in the north of the Far East are demonstrated for the period between 2011 and 2015. The research shows the main directions of power production diversification in the north of the Far East. The directions include the use of local fuel types, the development of cogeneration, the involvement of renewable energy sources and small-scale nuclear power plants. The paper presents a forecast for the renewable energy development in the north of the Far East up to 2035, made by the authors. The priority RES projects in the off-grid power supply in the north of the Far East are wind and solar power plants

  12. Priority areas for large mammal conservation in Equatorial Guinea.

    Directory of Open Access Journals (Sweden)

    Mizuki Murai

    Full Text Available Hunting is one of the main driving forces behind large mammal density distribution in many regions of the world. In tropical Africa, urban demand for bushmeat has been shown to dominate over subsistence hunting and its impact often overrides spatial-ecological species characteristics. To effectively protect remaining mammal populations the main factors that influence their distribution need to be integrated into conservation area prioritisation and management plans. This information has been lacking for Río Muni, Equatorial Guinea, as prior studies have been outdated or have not systematically covered the continental region of the country. In this study we evaluated: 1 the relative importance of local vs. commercial hunting; 2 wildlife density of protected vs. non-protected areas; and 3 the importance of ecological factors vs. human influence in driving mammal density distribution in Río Muni. We adopted a systematic countrywide line transect approach with particular focus on apes and elephants, but also including other mammal species. For analysis of field data we used generalised linear models with a set of predictor variables representing ecological conditions, anthropogenic pressure and protected areas. We estimate that there are currently 884 (437-1,789 elephants and 11,097 (8,719-13,592 chimpanzees and gorillas remaining in Río Muni. The results indicate strong hunting pressures on both local and commercial levels, with roads demonstrating a negative impact on elephants and overall mammal body mass. Protected areas played no role in determining any of the mammal species distributions and significant human hunting signs were found inside these protected areas, illustrating the lack of environmental law enforcement throughout the country. Río Muni is currently under-represented in conservation efforts in Western Equatorial Africa, and we recommend a focus on cross-boundary conservation, in particular in the Monte Alén-Monts de Cristal

  13. Priority areas for large mammal conservation in Equatorial Guinea.

    Science.gov (United States)

    Murai, Mizuki; Ruffler, Heidi; Berlemont, Antoine; Campbell, Genevieve; Esono, Fidel; Agbor, Anthony; Mbomio, Domingo; Ebana, Agustín; Nze, Antonio; Kühl, Hjalmar S

    2013-01-01

    Hunting is one of the main driving forces behind large mammal density distribution in many regions of the world. In tropical Africa, urban demand for bushmeat has been shown to dominate over subsistence hunting and its impact often overrides spatial-ecological species characteristics. To effectively protect remaining mammal populations the main factors that influence their distribution need to be integrated into conservation area prioritisation and management plans. This information has been lacking for Río Muni, Equatorial Guinea, as prior studies have been outdated or have not systematically covered the continental region of the country. In this study we evaluated: 1) the relative importance of local vs. commercial hunting; 2) wildlife density of protected vs. non-protected areas; and 3) the importance of ecological factors vs. human influence in driving mammal density distribution in Río Muni. We adopted a systematic countrywide line transect approach with particular focus on apes and elephants, but also including other mammal species. For analysis of field data we used generalised linear models with a set of predictor variables representing ecological conditions, anthropogenic pressure and protected areas. We estimate that there are currently 884 (437-1,789) elephants and 11,097 (8,719-13,592) chimpanzees and gorillas remaining in Río Muni. The results indicate strong hunting pressures on both local and commercial levels, with roads demonstrating a negative impact on elephants and overall mammal body mass. Protected areas played no role in determining any of the mammal species distributions and significant human hunting signs were found inside these protected areas, illustrating the lack of environmental law enforcement throughout the country. Río Muni is currently under-represented in conservation efforts in Western Equatorial Africa, and we recommend a focus on cross-boundary conservation, in particular in the Monte Alén-Monts de Cristal and Río Campo

  14. Disruption of Saturn's quasi-periodic equatorial oscillation by the great northern storm

    Science.gov (United States)

    Fletcher, Leigh N.; Guerlet, Sandrine; Orton, Glenn S.; Cosentino, Richard G.; Fouchet, Thierry; Irwin, Patrick G. J.; Li, Liming; Flasar, F. Michael; Gorius, Nicolas; Morales-Juberías, Raúl

    2017-11-01

    The equatorial middle atmospheres of the Earth1, Jupiter2 and Saturn3,4 all exhibit a remarkably similar phenomenon—a vertical, cyclic pattern of alternating temperatures and zonal (east-west) wind regimes that propagate slowly downwards with a well-defined multi-year period. Earth's quasi-biennial oscillation (QBO) (observed in the lower stratospheric winds with an average period of 28 months) is one of the most regular, repeatable cycles exhibited by our climate system1,5,6, and yet recent work has shown that this regularity can be disrupted by events occurring far away from the equatorial region, an example of a phenomenon known as atmospheric teleconnection7,8. Here, we reveal that Saturn's equatorial quasi-periodic oscillation (QPO) (with an 15-year period3,9) can also be dramatically perturbed. An intense springtime storm erupted at Saturn's northern mid-latitudes in December 201010-12, spawning a gigantic hot vortex in the stratosphere at 40° N that persisted for three years13. Far from the storm, the Cassini temperature measurements showed a dramatic 10 K cooling in the 0.5-5 mbar range across the entire equatorial region, disrupting the regular QPO pattern and significantly altering the middle-atmospheric wind structure, suggesting an injection of westward momentum into the equatorial wind system from waves generated by the northern storm. Hence, as on Earth, meteorological activity at mid-latitudes can have a profound effect on the regular atmospheric cycles in Saturn's tropics, demonstrating that waves can provide horizontal teleconnections between the phenomena shaping the middle atmospheres of giant planets.

  15. Input of particulate organic and dissolved inorganic carbon from the Amazon to the Atlantic Ocean

    OpenAIRE

    Druffel, E. R. M; Bauer, J. E; Griffin, S.

    2005-01-01

    We report concentrations and isotope measurements (radiocarbon and stable carbon) of dissolved inorganic carbon (DIC) and suspended particulate organic carbon (POC) in waters collected from the mouth of the Amazon River and the North Brazil Current. Samples were collected in November 1991, when the Amazon hydrograph was at its annual minimum and the North Brazil Current had retroflected into the equatorial North Atlantic. The DIC Δ14C results revealed postbomb carbon in river and ocean waters...

  16. Monitoring the deep western boundary current in the western North Pacific by echo intensity measured with lowered acoustic Doppler current profiler

    Science.gov (United States)

    Komaki, Kanae; Nagano, Akira

    2018-05-01

    Oxidation of iron and manganese ions is predominant in the oxygen-rich deep western boundary current (DWBC) within the Pacific Ocean. By the faster removal of particulate iron hydroxide and manganese oxide, densities of the particulate matters are considered to be lower in the DWBC than the interior region. To detect the density variation of suspended particles between the DWBC and interior regions, we analyzed echo intensity (EI) measured in the western North Pacific by hydrographic casts with a 300 kHz lowered acoustic Doppler current profiler (LADCP) in a whole water column. At depths greater than 3000 m ( 3000 dbar), EI is almost uniformly low between 12°N and 30°N but peaks sharply from 30°N to 35°N to a maximum north of 35°N. EI is found to be anomalously low in the DWBC compared to the background distribution. The DWBC pathways are identifiable by the low EI and high dissolved oxygen concentration. EI data by LADCPs and other acoustic instruments may be used to observe the temporal variations of the DWBC pathways.

  17. Molecular characterization of Cryptosporidium isolates from humans in Equatorial Guinea.

    Science.gov (United States)

    Blanco, María Alejandra; Iborra, Asunción; Vargas, Antonio; Nsie, Eugenia; Mbá, Luciano; Fuentes, Isabel

    2009-12-01

    The aim of the study was to perform a molecular characterization of clinical isolates of Cryptosporidium species from Equatorial Guinea. Standard laboratory methods were used to identify 35 cryptosporidiosis cases among 185 patients. PCR-RFLP successfully identified 34 Cryptosporidium species from these 35 cases, comprising C. parvum (52.9%), C. hominis (44.1%) and C. meleagridis (2.9%); over 90% of the species were isolated from HIV-positive patients. This is the first report of the molecular characterization of Cryptosporidium species isolated from humans in Equatorial Guinea and shows that zoonotic and anthroponotic transmission is present in this country.

  18. Geology of the Venus equatorial region from Pioneer Venus radar imaging

    International Nuclear Information System (INIS)

    Senske, D.A.; Head, J.W.

    1989-01-01

    The surface characteristics and morphology of the equatorial region of Venus were first described by Masursky et al. who showed this part of the planet to be characterized by two topographic provinces, rolling plains and highlands, and more recently by Schaber who described and interpreted tectonic zones in the highlands. Using Pioneer Venus (PV) radar image data (15 deg S to 45 deg N), Senske and Head examined the distribution, characteristics, and deposits of individual volcanic features in the equatorial region, and in addition classified major equatorial physiographic and tectonic units on the basis of morphology, topographic signature, and radar properties derived from the PV data. Included in this classification are: plains (undivided), inter-highland tectonic zones, tectonically segmented linear highlands, upland rises, tectonic junctions, dark halo plains, and upland plateaus. In addition to the physiographic units, features interpreted as coronae and volcanic mountains have also been mapped. The latter four of the physiographic units along with features interpreted to be coronae

  19. Vertical Rise Velocity of Equatorial Plasma Bubbles Estimated from Equatorial Atmosphere Radar Observations and High-Resolution Bubble Model Simulations

    Science.gov (United States)

    Yokoyama, T.; Ajith, K. K.; Yamamoto, M.; Niranjan, K.

    2017-12-01

    Equatorial plasma bubble (EPB) is a well-known phenomenon in the equatorial ionospheric F region. As it causes severe scintillation in the amplitude and phase of radio signals, it is important to understand and forecast the occurrence of EPBs from a space weather point of view. The development of EPBs is presently believed as an evolution of the generalized Rayleigh-Taylor instability. We have already developed a 3D high-resolution bubble (HIRB) model with a grid spacing of as small as 1 km and presented nonlinear growth of EPBs which shows very turbulent internal structures such as bifurcation and pinching. As EPBs have field-aligned structures, the latitude range that is affected by EPBs depends on the apex altitude of EPBs over the dip equator. However, it was not easy to observe the apex altitude and vertical rise velocity of EPBs. Equatorial Atmosphere Radar (EAR) in Indonesia is capable of steering radar beams quickly so that the growth phase of EPBs can be captured clearly. The vertical rise velocities of the EPBs observed around the midnight hours are significantly smaller compared to those observed in postsunset hours. Further, the vertical growth of the EPBs around midnight hours ceases at relatively lower altitudes, whereas the majority of EPBs at postsunset hours found to have grown beyond the maximum detectable altitude of the EAR. The HIRB model with varying background conditions are employed to investigate the possible factors that control the vertical rise velocity and maximum attainable altitudes of EPBs. The estimated rise velocities from EAR observations at both postsunset and midnight hours are, in general, consistent with the nonlinear evolution of EPBs from the HIRB model.

  20. An Enduring Rapidly Moving Storm as a Guide to Saturn's Equatorial Jet's Complex Structure

    Science.gov (United States)

    Sanchez-Lavega, A.; Garcia-Melendo, E.; Perez-Hoyos, S.; Hueso, R.; Wong, M. H.; Simon, A.; Sanz-Requena, J. F.; Antunano, A.; Barrado-Izagirre, N.; Garate-Lopez, I.; hide

    2016-01-01

    Saturn has an intense and broad eastward equatorial jet with a complex three-dimensional structure mixed with time variability. The equatorial region experiences strong seasonal insolation variations enhanced by ring shadowing, and three of the six known giant planetary-scale storms have developed in it. These factors make Saturn's equator a natural laboratory to test models of jets in giant planets. Here we report on a bright equatorial atmospheric feature imaged in 2015 that moved steadily at a high speed of 450/ms not measured since 1980-1981 with other equatorial clouds moving within an ample range of velocities. Radiative transfer models show that these motions occur at three altitude levels within the upper haze and clouds. We find that the peak of the jet (latitudes 10degN to 10degS) suffers intense vertical shears reaching + 2.5/ms/km, two orders of magnitude higher than meridional shears, and temporal variability above 1 bar altitude level.

  1. Current direction and CTD data from moored current meter and CTD casts in the North Pacific Ocean from 1979-02-05 to 1980-12-01 (NODC Accession 8300042)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current direction and CTD data were collected using moored current meter and CTD casts in the North Pacific Ocean from February 5, 1979 to December 1, 1980. Data...

  2. Larger CO2 source at the equatorial Pacific during the last deglaciation

    Science.gov (United States)

    Kubota, Kaoru; Yokoyama, Yusuke; Ishikawa, Tsuyoshi; Obrochta, Stephen; Suzuki, Atsushi

    2014-01-01

    While biogeochemical and physical processes in the Southern Ocean are thought to be central to atmospheric CO2 rise during the last deglaciation, the role of the equatorial Pacific, where the largest CO2 source exists at present, remains largely unconstrained. Here we present seawater pH and pCO2 variations from fossil Porites corals in the mid equatorial Pacific offshore Tahiti based on a newly calibrated boron isotope paleo-pH proxy. Our new data, together with recalibrated existing data, indicate that a significant pCO2 increase (pH decrease), accompanied by anomalously large marine 14C reservoir ages, occurred following not only the Younger Dryas, but also Heinrich Stadial 1. These findings indicate an expanded zone of equatorial upwelling and resultant CO2 emission, which may be derived from higher subsurface dissolved inorganic carbon concentration. PMID:24918354

  3. An overview on the equatorial electrojet theoretical grounds

    International Nuclear Information System (INIS)

    Zamlutti, C.J.; Sobral, J.H.A.; Abdu, M.A.

    1988-01-01

    The grounds on which the equatorial electrojet theory is based are reexamined in a way as to suggest specific additional implementations in the existing electrodynamical modeling of this phenomena, making use of now existing improved computer processing speeds. (author) [pt

  4. A study of evolution/suppression parameters of equatorial postsunset plasma instability

    Directory of Open Access Journals (Sweden)

    O. S. Oyekola

    2009-01-01

    Full Text Available Evening equatorial pre-reversal vertical ion E×B drift (VZP and the peak of the ionospheric F2 maximum altitude (hmF2P of the postsunset equatorial F-layer, which are the essential parameters requisite for the generation or inhibition of postsunset bottomside equatorial irregularities were deduced from ionosonde observations made in the Africa region (Ouagadougou: ~3° N dip latitude between January 1987 and December 1990 for solar activity minimum, medium, and maxima (F10.7=85, 141, 214, and 190, respectively for quiet geomagnetic conditions. We investigate variations of evening equatorial pre-reversal drift and the corresponding altitude at four levels of solar activity. Our observations show strong variations with solar variability. Correlation analysis between these parameters indicates that the correlation coefficient value between hmF2P versus VZP decreases considerably with increasing solar flux value. There seems to be no significant link between these parameters under high solar activity, especially for solar intensity F10.7>200 units. We conclude that meridional neutral wind in the F-region contributes substantially to the variations of the pre-reversal vertical plasma drifts enhancement and the peak hmF2, particularly the electrodynamics during twilight high solar flux conditions.

  5. ENSO-driven nutrient variability recorded by central equatorial Pacific corals

    Science.gov (United States)

    LaVigne, M.; Nurhati, I. S.; Cobb, K. M.; McGregor, H. V.; Sinclair, D. J.; Sherrell, R. M.

    2012-12-01

    Recent evidence for shifts in global ocean primary productivity suggests that surface ocean nutrient availability is a key link between global climate and ocean carbon cycling. Time-series records from satellite, in situ buoy sensors, and bottle sampling have documented the impact of the El Niño Southern Oscillation (ENSO) on equatorial Pacific hydrography and broad changes in biogeochemistry since the late 1990's, however, data are sparse prior to this. Here we use a new paleoceanographic nutrient proxy, coral P/Ca, to explore the impact of ENSO on nutrient availability in the central equatorial Pacific at higher-resolution than available from in situ nutrient data. Corals from Christmas (157°W 2°N) and Fanning (159°W 4°N) Islands recorded a well-documented decrease in equatorial upwelling as a ~40% decrease in P/Ca during the 1997-98 ENSO cycle, validating the application of this proxy to Pacific Porites corals. We compare the biogeochemical shifts observed through the 1997-98 event with two pre-TOGA-TAO ENSO cycles (1982-83 and 1986-87) reconstructed from a longer Christmas Island core. All three corals revealed ~30-40% P/Ca depletions during ENSO warming as a result of decreased regional wind stress, thermocline depth, and equatorial upwelling velocity. However, at the termination of each El Niño event, surface nutrients did not return to pre-ENSO levels for ~4-12 months after, SST as a result of increased biological draw down of surface nutrients. These records demonstrate the utility of high-resolution coral nutrient archives for understanding the impact of tropical Pacific climate on the nutrient and carbon cycling of this key region.

  6. Critical report of current fisheries management measures implemented for the North Sea mixed demersal fisheries

    DEFF Research Database (Denmark)

    Nielsen, J. Rasmus; Ulrich, Clara; Hegland, Troels J.

    The present report is an EU-FP7-SOCIOEC Report giving an overview and critical evaluation of the current management measures implemented for the North Sea mixed demersal fisheries and the fish stocks involved in this. Also, this involves review and critical evaluation of the scientific advice...

  7. Cloud and Wind Variability in Saturn's Equatorial Jet prior to the Cassini orbital tour

    Science.gov (United States)

    Sánchez-Lavega, A.; Pérez-Hoyos, S.; Hueso, R.; Rojas, J. F.; French, R. G.

    2004-11-01

    We use ground-based observations (going back to 1876), Pioneer-11 data (1979), Voyager 1 and 2 encounter images in 1980 and 1981, and HST 1990-2004 images, to study the changes that occurred in the vertical cloud structure and morphology and motions, in Saturn's Equatorial Region (approximately the band between latitudes 40 deg North and South). We compare ``calm periods" with ``stormy periods" i. e. those that occur during the development of the phenomenon known as the ``Great White Spots." We discuss different interpretations of the mechanisms that can be involved in the observed changes: vertical wind shears, waves, storm - mean flow interaction and changes in atmospheric angular momentum. Acknowledgements: This work was supported by the Spanish MCYT AYA 2003-03216. SPH acknowledges a PhD fellowship from the Spanish MECD and RH a post-doc fellowship from Gobierno Vasco. RGF was supported in part by NASA's Planetary Geology and Geophysics Program NAG5-10197 and STSCI Grant GO-08660.01A.

  8. Equatorial electrodynamics and neutral background in the Asian sector during the 2009 stratospheric sudden warming

    DEFF Research Database (Denmark)

    Liu, Huixin; Yamamoto, Mamoru; Ram, S. Tulasi

    2011-01-01

    Using ground observations of total electron content (TEC) and equatorial electrojet (EEJ) in the Asian sector, along with plasma and neutral densities obtained from the CHAMP satellite, we investigate the ionospheric electrodynamics and neutral background in this longitude sector during the major...... perturbation possesses a significant hemispheric asymmetry in terms of onset date and magnitude. It starts on the same day as the SSW peak in the Northern Hemisphere but 2 days later in the Southern Hemisphere. Its magnitude is twice as strong in the north than in the south. Third, strong counter electrojet...... occurs in the afternoon, following the strengthening of the eastward EEJ in the morning. Fourth, semidiurnal perturbation in both TEC and EEJ possesses a phase shift, at a rate of about 0.7 h/day. Comparisons with results reported in the Peruvian sector reveal clear longitude dependence in the amplitude...

  9. Longitudinal Variation and Waves in Jupiter's South Equatorial Wind Jet

    Science.gov (United States)

    Simon-Miller, A. A.; Rogers, John H.; Gierasch, Peter J.; Choi, David; Allison, Michael; Adamoli, Gianluigi; Mettig, Hans-Joerg

    2012-01-01

    We have conducted a detailed study of the cloud features in the strong southern equatorial wind jet near 7.5 S planetographic latitude. To understand the apparent variations in average zonal wind jet velocity at this latitude [e.g.. 1,2,3], we have searched for variations iIi both feature latitude and velocity with longitude and time. In particular, we focused on the repetitive chevron-shaped dark spots visible on most dates and the more transient large anticyclonic system known as the South Equatorial Disturbance (SED). These small dark spots are interpreted as cloud holes, and are often used as material tracers of the wind field.

  10. Circulation in the eastern North Pacific: results from a current meter array along 152°W

    Science.gov (United States)

    Hall, Melinda M.; Niiler, Pearn P.; Schmitz, William J.

    1997-07-01

    Data from four, 2-3 year long current meter records, at 28°N, 35°N, 39°N and 42°N, along 152°W in the eastern North Pacific, are used to describe the variability found in mesoscale period ( 200 days) motions. Energy in the mesoscale energy band of 40-200 day periodicity is found in the upper ocean at each location, generally decreasing to the north and with depth. The long period flow is not coherent among these locations. Record length mean velocities at 3-4 separate depths were used to provide estimates of reference level velocities for vertical profiles of geostrophic currents derived from historical hydrographic data. The vertical profile of measured east-west vertical shear agrees well with the geostrophically computed value; the north-south measured vertical shear is not in as good agreement. Assuming a vorticity balance of fwz= βv, and with w( z=0) as the Ekman pumping, the vertical velocity profiles were also calculated at 28°N and 42dgN. Using these three-dimensional referenced vertical profiles of mean currents, an examination of the mean advection of density in the thermocline revealed significant residuals in the net three-dimensional advection of density (or heat and salt) above 850 m at 28°N and above 240 m at 42°N. These results are relatively independent of the reference level velocities.

  11. MACSAT - A Near Equatorial Earth Observation Mission

    Science.gov (United States)

    Kim, B. J.; Park, S.; Kim, E.-E.; Park, W.; Chang, H.; Seon, J.

    MACSAT mission was initiated by Malaysia to launch a high-resolution remote sensing satellite into Near Equatorial Orbit (NEO). Due to its geographical location, Malaysia can have large benefits from NEO satellite operation. From the baseline circular orbit of 685 km altitude with 7 degrees of inclination, the neighboring regions around Malaysian territory can be frequently monitored. The equatorial environment around the globe can also be regularly observed with unique revisit characteristics. The primary mission objective of MACSAT program is to develop and validate technologies for a near equatorial orbit remote sensing satellite system. MACSAT is optimally designed to accommodate an electro-optic Earth observation payload, Medium-sized Aperture Camera (MAC). Malaysian and Korean joint engineering teams are formed for the effective implementation of the satellite system. An integrated team approach is adopted for the joint development for MACSAT. MAC is a pushbroom type camera with 2.5 m of Ground Sampling Distance (GSD) in panchromatic band and 5 m of GSD in four multi-spectral bands. The satellite platform is a mini-class satellite. Including MAC payload, the satellite weighs under 200 kg. Spacecraft bus is designed optimally to support payload operations during 3 years of mission life. The payload has 20 km of swath width with +/- 30 o of tilting capability. 32 Gbits of solid state recorder is implemented as the mass image storage. The ground element is an integrated ground station for mission control and payload operation. It is equipped with S- band up/down link for commanding and telemetry reception as well as 30 Mbps class X-band down link for image reception and processing. The MACSAT system is capable of generating 1:25,000-scale image maps. It is also anticipated to have capability for cross-track stereo imaging for Digital elevation Model (DEM) generation.

  12. Preliminary report: STOIC CGCM intercomparison - equatorial sections

    International Nuclear Information System (INIS)

    Davey, M; Huddleston, M; Sperber, K R.

    1999-01-01

    An intercomparison and assessment of the tropical behaviour of coupled general circulation models (CGCMs) is being carried out, to identify common strengths and weaknesses and thus guide future CGCM development. The work is being carried out as part of the CLIVAR climate research programme, as a WG-SIP (Working Group on Seasonal to Interannual Prediction) project called STOIC (Study of Tropical Oceans In CGCMs), organised by Michael Davey. This project complements a companion sub-project called ENSIP (El Ni no Simulation Intercomparison Project) organised by Mojib Latif (Max- Planck-Institute for Meteorology) that focusses on equatorial Pacific CGCM behaviour (Latif et al. 1999). Previous coupled model assessments (Mechoso et al. 1995, Neelin et al. 1992, and ENSIP) have focussed on tropical Pacific behaviour. The aim of STOIC is to look at model performance in all tropical ocean regions. This status report contains a sample of the STOIC assessment work, highlighting mean and inter- annual equatorial sea surface temperatures and zonal windstresses. The intention is to submit STOIC and ENSIP papers in mid-1999 for publication together in a refereed journal

  13. Shutdown dose rates at ITER equatorial ports considering radiation cross-talk from torus cryopump lower port

    Energy Technology Data Exchange (ETDEWEB)

    Juárez, Rafael, E-mail: rjuarez@ind.uned.es [Departamento de Ingeniería Energética, ETSII-UNED, Calle Juan del Rosal 12, Madrid 28040 (Spain); Pampin, Raul [F4E, Torres Diagonal Litoral B3, Josep Pla 2, Barcelona 08019 (Spain); Levesy, Bruno [ITER Organization, 13115 Route de Vinon sur Verdon, St Paul Lez Durance (France); Moro, Fabio [ENEA, Via Enrico Fermi 45, Frascati, Rome (Italy); Suarez, Alejandro [ITER Organization, 13115 Route de Vinon sur Verdon, St Paul Lez Durance (France); Sanz, Javier [Departamento de Ingeniería Energética, ETSII-UNED, Calle Juan del Rosal 12, Madrid 28040 (Spain)

    2015-11-15

    Shutdown dose rates for planned maintenance purposes is an active research field in ITER. In this work the radiation (neutron and gamma) cross-talk between ports in the most conservative case foreseen in ITER is investigated: the presence of a torus cryopump lower port, mostly empty for pumping efficiency reasons. There will be six of those ports: #4, #6, #10, #12, #16 and #18. The equatorial ports placed above them will receive a significant amount of additional radiation affecting the shutdown dose rates during in situ maintenance activities inside the cryostat, and particularly in the port interspace area. In this study a general situation to all the equatorial ports placed above torus cryopump lower ports is considered: a generic diagnostics equatorial port placed above the torus cryopump lower port (LP#4). In terms of shutdown dose rates at equatorial port interspace after 10{sup 6} s of cooling time, 405 μSv/h has been obtained, of which 160 μSv/h (40%) are exclusively due to radiation cross-talk from a torus cryopump lower port. Equatorial port activation due to only “local neutrons” contributes 166 μSv/h at port interspace, showing that radiation cross-talk from such a lower port is a phenomenon comparable in magnitude to the neutron leakage though the equatorial port plug.

  14. The Contribution of Soils to North America's Current and Future Climate

    Science.gov (United States)

    Mayes, M. A.; Reed, S.; Thornton, P. E.; Lajtha, K.; Bailey, V. L.; Shrestha, G.; Jastrow, J. D.; Torn, M. S.

    2015-12-01

    This presentation will cover key aspects of the terrestrial soil carbon cycle in North America and the US for the upcoming State of the Carbon Cycle Report (SOCCRII). SOCCRII seeks to summarize how natural processes and human interactions affect the global carbon cycle, how socio-economic trends affect greenhouse gas concentrations in the atmosphere, and how ecosystems are influenced by and respond to greenhouse gas emissions, management decisions, and concomitant climate effects. Here, we will summarize the contemporary understanding of carbon stocks, fluxes, and drivers in the soil ecosystem compartment. We will highlight recent advances in modeling the magnitude of soil carbon stocks and fluxes, as well as the importance of remaining uncertainties in predicting soil carbon cycling and its relationship with climate. Attention will be given to the role of uncertainties in predicting future fluxes from soils, and how those uncertainties vary by region and ecosystem. We will also address how climate feedbacks and management decisions can enhance or minimize future climatic effects based on current understanding and observations, and will highlight select research needs to improve our understanding of the balance of carbon in soils in North America.

  15. Influence of solar radiation absorbed by phytoplankton on the thermal structure and circulation of the tropical Atlantic Ocean

    Science.gov (United States)

    Frouin, Robert; Ueyoshi, Kyozo; Kampel, Milton

    2007-09-01

    Numerical experiments conducted with an ocean general ocean circulation model reveal the potential influence of solar radiation absorbed by phytoplankton on the thermal structure and currents of the Tropical Atlantic Ocean. In the model, solar radiation penetration is parameterized explicitly as a function of chlorophyll-a concentration, the major variable affecting water turbidity in the open ocean. Two types of runs are performed, a clear water (control) run with a constant minimum chlorophyll-a concentration of 0.02 mgm -3, and a turbid water (chlorophyll) run with space- and time-varying chlorophyll-a concentration from satellite data. The difference between results from the two runs yields the biological effects. In the chlorophyll run, nutrients and biology production are implicitly taken into account, even though biogeochemical processes are not explicitly included, since phytoplankton distribution, prescribed from observations, is the result of those processes. Due to phytoplankton-radiation forcing, the surface temperature is higher by 1-2 K on average annually in the region of the North Equatorial current, the Northern part of the South Equatorial current, and the Caribbean system, and by 3-4 K in the region of the Guinea current. In this region, upwelling is reduced, and heat trapped in the surface layers by phytoplankton is not easily removed. The surface temperature is lower by 1 K in the Northern region of the Benguela current, due to increased upwelling. At depth, the equatorial Atlantic is generally cooler, as well as the eastern part of the tropical basin (excluding the region of the sub-tropical gyres). The North and South equatorial currents, as well as the Equatorial undercurrent, are enhanced by as much as 3-4 cms -1, and the circulation of the subtropical gyres is increased. Pole-ward heat transport is slightly reduced North of 35°N, suggesting that phytoplankton, by increasing the horizontal return flow in the subtropical region, may exert a

  16. Characterisation of tectonic lineaments in the Central Equatorial ...

    African Journals Online (AJOL)

    Characterisation of tectonic lineaments in the Central Equatorial Atlantic region of Africa using Bouguer anomaly gravity data. ... Ife Journal of Science ... 3-D standard Euler deconvolution analysis was carried out on Bouguer anomaly gravity data for configuration definition and approximate depth estimate of tectonic ...

  17. Spatial relationship of 1-meter equatorial spread-F irregularities and depletions in total electron content

    International Nuclear Information System (INIS)

    Tsunoda, R.T.; Towle, D.M.

    1979-01-01

    An experiment was conducted at Kwajalein Atoll, Marshall Islands to investigate the spatial relationship of 1-m equatorial spread-F irregularities to total electron content (TEC) depletions. A high-power radar was operated (1) in a backscatter scan mode to spatially map the distribution of 1-m irregularities, and (2) in a dual-frequency, satellite-track mode to obtain the longitudinal TEC variations. We show that radar backscatter ''plumes'' found in the disturbed, nighttime equatorial ionosphere are longitudinally coincident with TEC depletions. We suggest that the TEC depletions are probably due to the presence of plasma ''bubbles'' in the equatorial F layer

  18. Meteorology of Jupiter's Equatorial Hot Spots and Plumes from Cassini

    Science.gov (United States)

    Choi, David Sanghun; Showman, Adam P.; Vasavada, Ashwin R.; Simon-Miller, Amy A.

    2013-01-01

    We present an updated analysis of Jupiter's equatorial meteorology from Cassini observations. For two months preceding the spacecraft's closest approach, the Imaging Science Subsystem (ISS) onboard regularly imaged the atmosphere. We created time-lapse movies from this period in order to analyze the dynamics of equatorial hot spots and their interactions with adjacent latitudes. Hot spots are relatively cloud-free regions that emit strongly at 5 lm; improved knowledge of these features is crucial for fully understanding Galileo probe measurements taken during its descent through one. Hot spots are quasistable, rectangular dark areas on visible-wavelength images, with defined eastern edges that sharply contrast with surrounding clouds, but diffuse western edges serving as nebulous boundaries with adjacent equatorial plumes. Hot spots exhibit significant variations in size and shape over timescales of days and weeks. Some of these changes correspond with passing vortex systems from adjacent latitudes interacting with hot spots. Strong anticyclonic gyres present to the south and southeast of the dark areas appear to circulate into hot spots. Impressive, bright white plumes occupy spaces in between hot spots. Compact cirrus-like 'scooter' clouds flow rapidly through the plumes before disappearing within the dark areas. These clouds travel at 150-200 m/s, much faster than the 100 m/s hot spot and plume drift speed. This raises the possibility that the scooter clouds may be more illustrative of the actual jet stream speed at these latitudes. Most previously published zonal wind profiles represent the drift speed of the hot spots at their latitude from pattern matching of the entire longitudinal image strip. If a downward branch of an equatorially-trapped Rossby wave controls the overall appearance of hot spots, however, the westward phase velocity of the wave leads to underestimates of the true jet stream speed.

  19. Influence of biomass burning emissions on precipitation chemistry in the equatorial forests of Africa

    International Nuclear Information System (INIS)

    Lacaux, J.P.; Lefeivre, B.; Delmas, R.A.; Cros, B.; Andreae, M.O.

    1991-01-01

    As part of the DESCAFE program (Dynamics and Chemistry of the Atmosphere in Equatorial Forest), measurements of precipitation chemistry were made at two sampling sites of the equatorial forest in the Republic of Congo. The measurements were made in order to identify and compare atmospheric sources of gases and particles (mainly biogenic sources and emissions from burning vegetation)

  20. Biogeochemical impact of a model western iron source in the Pacific Equatorial Undercurrent

    OpenAIRE

    Slemons, L.; Gorgues, T.; Aumont, Olivier; Menkès, Christophe; Murray, J. W.

    2009-01-01

    Trace element distributions in the source waters of the Pacific Equatorial Undercurrent (EUC) show the existence of elevated total acid-soluble iron concentrations. This region has been suggested to contribute enough bioavailable iron to regulate interannual and interglacial variability in biological productivity downstream in the high-nitrate low-chlorophyll upwelling zone of the eastern equatorial Pacific. We investigated the advection and first-order biogeochemical impact of an imposed, da...

  1. Characteristics of Volcanic Stratospheric Aerosol Layer Observed by CALIOP and Ground Based Lidar at Equatorial Atmosphere Radar Site

    Science.gov (United States)

    Abo, Makoto; Shibata, Yasukuni; Nagasawa, Chikao

    2018-04-01

    We investigated the relation between major tropical volcanic eruptions in the equatorial region and the stratospheric aerosol data, which have been collected by the ground based lidar observations at at Equatorial Atmosphere Radar site between 2004 and 2015 and the CALIOP observations in low latitude between 2006 and 2015. We found characteristic dynamic behavior of volcanic stratospheric aerosol layers over equatorial region.

  2. Survival probability of precipitations and rain attenuation in tropical and equatorial regions

    Science.gov (United States)

    Mohebbi Nia, Masoud; Din, Jafri; Panagopoulos, Athanasios D.; Lam, Hong Yin

    2015-08-01

    This contribution presents a stochastic model useful for the generation of a long-term tropospheric rain attenuation time series for Earth space or a terrestrial radio link in tropical and equatorial heavy rain regions based on the well-known Cox-Ingersoll-Ross model previously employed in research in the fields of finance and economics. This model assumes typical gamma distribution for rain attenuation in heavy rain climatic regions and utilises the temporal dynamic of precipitation collected in equatorial Johor, Malaysia. Different formations of survival probability are also discussed. Furthermore, the correlation between these probabilities and the Markov process is determined, and information on the variance and autocorrelation function of rain events with respect to the particular characteristics of precipitation in this area is presented. The proposed technique proved to preserve the peculiarities of precipitation for an equatorial region and reproduce fairly good statistics of the rain attenuation correlation function that could help to improve the prediction of dynamic characteristics of rain fade events.

  3. Collisional Rayleigh-Taylor instability and shear-flow in equatorial Spread-F plasma

    Directory of Open Access Journals (Sweden)

    N. Chakrabarti

    2003-05-01

    Full Text Available Collisional Rayleigh-Taylor (RT instability is considered in the bottom side of the equatorial F-region. By a novel nonmodal calculation it is shown that for an applied shear flow in equilibrium, the growth of the instability is considerably reduced. Finite but small amounts of diffusion enhances the stabilization process. The results may be relevant to the observations of long-lived irregularities at the bottom-side of the F-layer.Key words. Ionosphere (ionospheric irregularities, equatorial ionosphere, plasma waves and instabilities

  4. On the origin of pre-reversal enhancement of the zonal equatorial electric field

    Directory of Open Access Journals (Sweden)

    M. C. Kelley

    2009-05-01

    Full Text Available In November 2004, a large and variable interplanetary electric field (IEF was felt in the reference frame of the Earth. This electric field penetrated to the magnetic equator and, when the Jicamarca Radio Observatory (JRO was in the dusk sector, resulted in a reversal of the normal zonal component of the field. In turn, this caused a counter-electrojet (CEJ, a westward current rather than the usual eastward current. At the time of the normal pre-reversal enhancement (PRE of the eastward field, the Jicamarca incoherent scatter radar (ISR observed that the westward component became even more westward. Two of the three current explanations for the PRE depend on the neutral wind patterns. However, this unique event was such that the neutral wind-driven dynamos could not have changed. The implication is that the Haerendel-Eccles mechanism, which involves partial closure of the equatorial electrojet (EEJ after sunset, must be the dominant mechanism for the PRE.

  5. Temperature correlations between the eastern equatorial Pacific and Antarctica over the past 230,000 years

    Science.gov (United States)

    Koutavas, Athanasios

    2018-03-01

    Tropical sea surface temperatures (SSTs) warmed and cooled in step with the Pleistocene ice age cycles, but the mechanisms are not known. It is assumed that the answer must involve radiative forcing by CO2 but SST reconstructions have been too sparse for a conclusive test. Here I present a 230,000-yr tropical SST stack from the eastern equatorial Pacific (EEP) using two new Mg/Ca reconstructions combined with three earlier ones. The EEP stack shows persistent covariation with Antarctic temperature on orbital and millennial timescales indicating tight coupling between the two regions. This coupling however cannot be explained solely by CO2 forcing because in at least one important case, the Marine Isotope Stage (MIS) 5e-5d glacial inception, both regions cooled ∼5-6.5 thousand years before CO2 decreased. More likely, their covariation was due to advection of Antarctic climate signals to the EEP by the ocean. To explain the MIS 5e-5d event and glacial inception in general the hypothesis is advanced that the cooling signal spreads globally from the Northern Hemisphere with an active ocean circulation - first from the North Atlantic to the Southern Ocean with a colder North Atlantic Deep Water, and then to the Indian and Pacific Oceans with cooler Antarctic deep and intermediate waters.

  6. Equatorial enhancement of the nighttime OH mesospheric infrared airglow

    International Nuclear Information System (INIS)

    Baker, D J; Thurgood, B K; Harrison, W K; Mlynczak, M G; Russell, J M

    2007-01-01

    Global measurements of the hydroxyl mesospheric airglow over an extended period of time have been made possible by the NASA SABER infrared sensor aboard the TIMED satellite which has been functioning since December of 2001. The orbital mission has continued over a significant portion of a solar cycle. Experimental data from SABER for several years have exhibited equatorial enhancements of the nighttime mesospheric OH (Δv=2) airglow layer consistent with the high average diurnal solar flux. The brightening of the OH airglow typically means more H+O 3 is being reacted. At both the spring and autumn seasonal equinoxes when the equatorial solar UV irradiance mean is greatest, the peak volume emission rate (VER) of the nighttime Meinel infrared airglow typically appears to be both significantly brighter plus lower in altitude by several kilometres at low latitudes compared with midlatitude findings

  7. Central Equatorial Pacific Experiment (CEPEX). Design document

    Energy Technology Data Exchange (ETDEWEB)

    1993-04-01

    The Earth`s climate has varied significantly in the past, yet climate records reveal that in the tropics, sea surface temperatures seem to have been remarkably stable, varying by less than a few degrees Celsius over geologic time. Today, the large warm pool of the western Pacific shows similar characteristics. Its surface temperature always exceeds 27{degree}C, but never 31{degree}C. Heightened interest in this observation has been stimulated by questions of global climate change and the exploration of stabilizing climate feedback processes. Efforts to understand the observed weak sensitivity of tropical sea surface temperatures to climate forcing has led to a number of competing ideas about the nature of this apparent thermostat. Although there remains disagreement on the processes that regulate tropical sea surface temperature, most agree that further progress in resolving these differences requires comprehensive field observations of three-dimensional water vapor concentrations, solar and infrared radiative fluxes, surface fluxes of heat and water vapor, and cloud microphysical properties. This document describes the Central Equatorial Pacific Experiment (CEPEX) plan to collect such observations over the central equatorial Pacific Ocean during March of 1993.

  8. Paleoenvironmental Reconstruction of the North Atlantic Current Variations from MIS 3 to Holocene Based on Multiproxy Record from the North-East Scotland Continental Margin.

    Science.gov (United States)

    Ovsepyan, Y.; Tikhonova, A.; Novichkova, E.; Gupta, R. M.; Korsun, S.; Matul, A.

    2017-12-01

    In order to reconstruct the history of water mass interaction between the North Atlantic and the Nordic Seas since MIS 3 to the present, the sediment core from the North-East Scotland continental slope was investigated. The site of core AI-3521 (59°30.009 N, 7°20.062 E) from the 1051 m water depth is located beneath the pathway of the North Atlantic current which transports warm and saline Atlantic surface water to the Norwegian Sea. The age model of the sequence is based on stable isotope record of benthic Cassidulina neoteretis and planktic Neogloboquadrina pachyderma sin. and Globigerina bulloides. The Holocene interval of the upper 1.5 m is characterized by high sedimentation rates and the high biodiversity of microfauna. The distribution of ice rafted debris and CaCO3 content; benthic and planktic foraminiferal assemblages; oxygen, carbon and boron isotopes, Mg/Ca ratio were used to reconstruct the regional paleoceanographic conditions (bioproductivity, temperature, salinity) and to compare with the paleoclimatic events in the subpolar North Atlantic in the frame of the global environmental changes during the Late Pleistocene and Holocene. The research was supported by Russian Science Foundation projects 16-47-02009 and 14-50-00095.

  9. Blow-up of solutions to the rotation b-family system modeling equatorial water waves

    Directory of Open Access Journals (Sweden)

    Min Zhu

    2018-03-01

    Full Text Available We consider the blow-up mechanism to the periodic generalized rotation b-family system (R-b-family system. This model can be derived from the f-plane governing equations for the geographical water waves with a constant underlying current in the equatorial water waves with effect of the Coriolis force. When b=2, it is a rotation two-component Camassa-Holm (R2CH system. We consider the periodic R2CH system when linear dispersion is absent (which model is called r2CH system and derive two finite-time blow-up results.

  10. Effect of geomagnetic storm conditions on the equatorial ionization anomaly and equatorial temperature anomaly

    Science.gov (United States)

    Bharti, Gaurav; Bag, T.; Sunil Krishna, M. V.

    2018-03-01

    The effect of the geomagnetic storm on the equatorial ionization anomaly (EIA) and equatorial temperature anomaly (ETA) has been studied using the atomic oxygen dayglow emissions at 577.7 nm (OI 557.7 nm) and 732.0 nm (OII 732.0 nm). For the purpose of this study, four intense geomagnetic storms during the ascending phase of solar cycle 24 have been considered. This study is primarily based on the results obtained using photochemical models with necessary inputs from theoretical studies and experimental observations. The latest reaction rate coefficients, quantum yields and the corresponding cross-sections have also been incorporated in these models. The volume emission rate of airglow emissions has been calculated using the neutral densities from NRLMSISE-00 and charged densities from IRI-2012 model. The modeled volume emission rate (VER) for OI 557.7 nm shows a positive correlation with the Dst index at 150 km and negative correlation with Dst at 250 and 280 km altitudes. Latitudinal profile of the greenline emission rate at different altitudes show a distinct behaviour similar to what has been observed in EIA with crests on either sides of the equator. The EIA crests are found to show poleward movement in the higher altitude regions. The volume emission rate of 732.0 nm emission shows a strong enhancement during the main phase of the storm. The changes observed in the airglow emission rates are explained with the help of variations induced in neutral densities and parameters related to EIA and ETA. The latitudinal variation of 732.0 nm emission rate is correlated to the variability in EIA during the storm period.

  11. Global mode of Pi2 waves in the equatorial region

    International Nuclear Information System (INIS)

    Kitamura, Tai-ichi; Saka, Ousuke; Shimoizumi, Masashi

    1988-01-01

    Fluxgate magnetometers with accurate timing data logger were set up at two equatorial stations (Garous-Marous and Huancayo), and also at a middle latitude station (Kuju). The phase of Pi2 waves is compared among these stations. It is found that 1) Pi2 pulsations in low and equatorial latitudes are linearly polarized approximately along the magnetic meridian, 2) phase difference of the H component of Pi2 waves at different stations is much less than 1 - 10 of the pulsation period despite a large longitudinal separation (∼ 90 deg) of the stations, showing the so-called azimuthal wave number, m, to be much less than unity and 3) phase difference of the D component at different stations is variable. (author)

  12. Ongoing Analysis of Jupiter's Equatorial Hotspots and Plumes from Cassini

    Science.gov (United States)

    Choi, D. S.; Showmwn, A. P.; Vasavada, A. R.; Simon-Miller, A. A.

    2012-01-01

    We present updated results from our ongoing analysis of Cassini observations of Jupiter's equatorial meteorology. For two months preceding the spacecraft's closest approach of the planet, the ISS instrument onboard Cassini regularly imaged the atmosphere of Jupiter. We created time-lapse movies from this period that show the complex activity and interactions of the equatorial atmosphere. During this period, hot spots exhibited significant variations in size and shape over timescales of days and weeks. Some of these changes appear to be a result of interactions with passing vortex systems in adjacent latitudes. Strong anticyclonic gyres to the southeast of the dark areas converge with flow from the west and appear to circulate into a hot spot at its southwestern corner.

  13. Iron sources and pathways into the Pacific Equatorial Undercurrent

    NARCIS (Netherlands)

    Qin, Xuerong; Menviel, Laurie; Sen Gupta, Alex; van Sebille, Erik

    2016-01-01

    Using a novel observationally constrained Lagrangian iron model forced by outputs from an eddy-resolving biogeochemical ocean model, we examine the sensitivity of the Equatorial Undercurrent (EUC) iron distribution to EUC source region iron concentrations. We find that elevated iron concentrations

  14. Equatorial F region neutral winds and shears near sunset measured with chemical release techniques

    Science.gov (United States)

    Kiene, A.; Larsen, M. F.; Kudeki, E.

    2015-10-01

    The period near sunset is a dynamic and critical time for the daily development of the equatorial nighttime ionosphere and the instabilities that occur there. It is during these hours that the preconditions necessary for the later development of Equatorial Spread F (ESF) plasma instabilities occur. The neutral dynamics of the sunset ionosphere are also of critical importance to the generation of currents and electric fields; however, the behavior of the neutrals is experimentally understood primarily through very limited single-altitude measurements or measurements that provide weighted altitude means of the winds as a function of time. To date, there have been very few vertically resolved neutral wind measurements in the F region at sunset. We present two sets of sounding rocket chemical release measurements, one from a launch in the Marshall Islands on Kwajalein atoll and one from Alcantara, Brazil. Analysis of the release motions has yielded vertically resolved neutral wind profiles that show both the mean horizontal winds and the vertical shears in the winds. In both experiments, we observe significant vertical gradients in the zonal wind that are unexpected by classical assumptions about the behavior of the neutral wind at these altitudes at sunset near the geomagnetic equator.

  15. Gravimetric structure for the abyssal mantle massif of Saint Peter and Saint Paul peridotite ridge, Equatorial Atlantic Ocean, and its relation to active uplift

    Directory of Open Access Journals (Sweden)

    KENJI F. MOTOKI

    2014-06-01

    Full Text Available This paper presents gravimetric and morphologic analyses based on the satellite-derived data set of EGM2008 and TOPEX for the area of the oceanic mantle massif of the Saint Peter and Saint Paul peridotite ridge, Equatorial Atlantic Ocean. The free-air anomaly indicates that the present plate boundary is not situated along the longitudinal graben which cuts peridotite ridge, but about 20 km to the north of it. The high Bouguer anomaly of the peridotite ridge suggests that it is constituted mainly by unserpentinised ultramafic rocks. The absence of isostatic compensation and low-degree serpentinisation of the ultramafic rocks indicate that the peridotite ridge is sustained mainly by active tectonic uplift. The unparallel relation between the transform fault and the relative plate motion generates near north-south compression and the consequent tectonic uplift. In this sense, the peridotite massif is a pressure ridge due to the strike-slip displacement of the Saint Paul Transform Fault.

  16. Development of intermediate-scale structure at different altitudes within an equatorial plasma bubble: Implications for L-band scintillations

    Science.gov (United States)

    Bhattacharyya, A.; Kakad, B.; Gurram, P.; Sripathi, S.; Sunda, S.

    2017-01-01

    An important aspect of the development of intermediate-scale length (approximately hundred meters to few kilometers) irregularities in an equatorial plasma bubble (EPB) that has not been considered in the schemes to predict the occurrence pattern of L-band scintillations in low-latitude regions is how these structures develop at different heights within an EPB as it rises in the postsunset equatorial ionosphere due to the growth of the Rayleigh-Taylor instability. Irregularities at different heights over the dip equator map to different latitudes, and their spectrum as well as the background electron density determine the strength of L-band scintillations at different latitudes. In this paper, VHF and L-band scintillations recorded at different latitudes together with theoretical modeling of the scintillations are used to study the implications of this structuring of EPBs on the occurrence and strength of L-band scintillations at different latitudes. Theoretical modeling shows that while S4 index for scintillations on a VHF signal recorded at an equatorial station may be >1, S4 index for scintillations on a VHF signal recorded near the crest of the equatorial ionization anomaly (EIA) generally does not exceed the value of 1 because the intermediate-scale irregularity spectrum at F layer peak near the EIA crest is shallower than that found in the equatorial F layer peak. This also explains the latitudinal distribution of L-band scintillations. Thus, it is concluded that there is greater structuring of an EPB on the topside of the equatorial F region than near the equatorial F layer peak.

  17. Observations in equatorial anomaly region of total electron content enhancements and depletions

    Directory of Open Access Journals (Sweden)

    N. Dashora

    2005-10-01

    Full Text Available A GSV 4004A GPS receiver has been operational near the crest of the equatorial anomaly at Udaipur, India for some time now. The receiver provides the line-of-sight total electron content (TEC, the phase and amplitude scintillation index, σφ and S4, respectively. This paper presents the first results on the nighttime TEC depletions associated with the equatorial spread F in the Indian zone. The TEC depletions are found to be very well correlated with the increased S4 index. A new feature of low-latitude TEC is also reported, concerning the observation of isolated and localized TEC enhancements in the nighttime low-latitude ionosphere. The TEC enhancements are not correlated with the S4 index. The TEC enhancements have also been observed along with the TEC depletions. The TEC enhancements have been interpreted as the manifestation of the plasma density enhancements reported by Le et al. (2003.

    Keywords. Ionosphere (Equatorial ionosphere; Ionospheric irregularities

  18. The influence of Pacific Equatorial Water on fish diversity in the southern California Current System

    Science.gov (United States)

    McClatchie, Sam; Thompson, Andrew R.; Alin, Simone R.; Siedlecki, Samantha; Watson, William; Bograd, Steven J.

    2016-08-01

    The California Undercurrent transports Pacific Equatorial Water (PEW) into the Southern California Bight from the eastern tropical Pacific Ocean. PEW is characterized by higher temperatures and salinities, with lower pH, representing a source of potentially corrosive (aragonite,Ωaragonite saturation with depth. Although there is substantial variability in PEW presence as measured by spice on the 26.25-26.75 isopycnal layer, as well as in pH and aragonite saturation, we found fish diversity to be stable over the decades 1985-1996 and 1999-2011. We detected significant difference in species structure during the 1998 La Niña period, due to reduced species evenness. Species richness due to rare species was higher during the 1997/1998 El Niño compared to the La Niña but the effect on species structure was undetectable. Lack of difference in the species abundance structure in the decade before and after the 1997/1999 ENSO event showed that the assemblage reverted to its former structure following the ENSO perturbation, indicating resilience. While the interdecadal species structure remained stable, the long tail of the distributions shows that species richness increased between the decades consistent with intrusion of warm water with more diverse assemblages into the southern California region.

  19. Equatorial storm sudden commencements and interplanetary magnetic field

    International Nuclear Information System (INIS)

    Rastogi, R.G.

    1980-01-01

    A comparison is made of the signatures of interplanetary (IP) shocks in the B and theta plots of interplanetary magnetic field (IMF) data of satellites Explorer 33, 34 and 35 and in the H magnetograms at ground observatories within the equatorial electrojet belt, Huancayo, Addis Ababa and Trivandrum associated with major storm sudden commencements during 1967-70. The IP shocks showing sudden increase of the scalar value of IMF, i.e. B without any change of the latitude theta or with the southward turning of theta, were followed by a purely positive sudden increase of H, at any of the magnetic observatories, either on the dayside or the nightside of the earth. The IP shocks identified by a sudden increase of B and with the northward turning of the latitude theta (positive ΔBsub(z)) were associated with purely positive sudden commencement (SC) at the observatories in the nightside, but at the equatorial observatories in the dayside of the earth the signature of the shock was a SC in H with a preliminary negative impulse followed by the main positive excursion (SC-+). It is suggested that the SCs in H at low latitudes are composed of two effects, viz. (i) one due to hydromagnetic pressure on the magnetosphere by the solar plasma and (ii) the other due to the induced electric field associated with the solar wind velocity, V and the Z-component of the IP magnetic field (E = - V x Bsub(z)). The effect of magnetosphere electric field is faster than the effect due to the compression of the magnetosphere by the impinging solar plasma. The negative impulse of SC-+ at low latitude is seen at stations close to the dip equator and only during daytime due to the existence of high ionospheric conductivities in the equatorial electrojet region. (author)

  20. Nonlinear Rayleigh-Taylor instability in partially ionized plasma and the equatorial spread - F

    International Nuclear Information System (INIS)

    Jain, R.K.; Das, A.C.

    1978-01-01

    The nonlinear evolution of the collisional gravitation induced Rayleigh-Taylor (R-T) instability in the equatorial F region is investigated taking into account the finite Larmor radius (FLR) effects and the complete ion inertial term in ion equation of motion. A special class of coherent weakly nonlinear modes as solutions to the wave equation describing R-T instability driven modes is obtained. The leading nonlinear effects in the wave equation are found to appear through Vsub(L), the ion diamagnetic drift which essentially gives the FLR corrections. It is shown that the R-T modes in the equatorial F region can evolve into coherent, nonlinear, almost sinusoidal, stationary wave structures. These structures are found to travel with a constant phase velocity and to have slightly distorted sinusoidal shapes. These results seem to have a good agreement with many of the recent rocket and satellite observations of the equatorial spread F irregularities. (author)

  1. Range expansion drives dispersal evolution in an equatorial three-species symbiosis.

    Science.gov (United States)

    Léotard, Guillaume; Debout, Gabriel; Dalecky, Ambroise; Guillot, Sylvain; Gaume, Laurence; McKey, Doyle; Kjellberg, Finn

    2009-01-01

    Recurrent climatic oscillations have produced dramatic changes in species distributions. This process has been proposed to be a major evolutionary force, shaping many life history traits of species, and to govern global patterns of biodiversity at different scales. During range expansions selection may favor the evolution of higher dispersal, and symbiotic interactions may be affected. It has been argued that a weakness of climate fluctuation-driven range dynamics at equatorial latitudes has facilitated the persistence there of more specialized species and interactions. However, how much the biology and ecology of species is changed by range dynamics has seldom been investigated, particularly in equatorial regions. We studied a three-species symbiosis endemic to coastal equatorial rainforests in Cameroon, where the impact of range dynamics is supposed to be limited, comprised of two species-specific obligate mutualists--an ant-plant and its protective ant--and a species-specific ant parasite of this mutualism. We combined analyses of within-species genetic diversity and of phenotypic variation in a transect at the southern range limit of this ant-plant system. All three species present congruent genetic signatures of recent gradual southward expansion, a result compatible with available regional paleoclimatic data. As predicted, this expansion has been accompanied by the evolution of more dispersive traits in the two ant species. In contrast, we detected no evidence of change in lifetime reproductive strategy in the tree, nor in its investment in food resources provided to its symbiotic ants. Despite the decreasing investment in protective workers and the increasing investment in dispersing females by both the mutualistic and the parasitic ant species, there was no evidence of destabilization of the symbiosis at the colonization front. To our knowledge, we provide here the first evidence at equatorial latitudes that biological traits associated with dispersal are

  2. Investigation of Jupiter's Equatorial Hotspots and Plumes Using Cassini ISS Observations

    Science.gov (United States)

    Choi, David S.; Showman, A. P.; Vasavada, A. R.; Simon-Miller, A. A.

    2012-01-01

    We present updated analysis of Jupiter's equatorial meteorology from Cassini observations. For two months preceding the spacecraft's closest approach, the ISS onboard regularly imaged the atmosphere. We created time-lapse movies from this period in order to analyze the dynamics of equatorial 5-micron hot spots and their interactions with adjacent latitudes. Hot spots are quasi-stable, rectangular dark areas on visible-wavelength images, with defined eastern edges that sharply contrast with surrounding clouds, but a diffuse western edge serving as a nebulous boundary with adjacent equatorial plumes. Hot spots exhibit significant variations in size and shape over timescales of days and weeks. Some of these changes correspond with passing vortex systems from adjacent latitudes interacting with hot spots. Strong anticyclonic gyres present to the south and southeast of the dark areas appear to circulate into hot spots. Impressive, bright white plumes occupy spaces in between hot spots. Compact cirrus-iike 'scooter' clouds flow rapidly through the plumes before disappearing within the dark areas. This raises the possibility that the plumes and fast-moving clouds are at higher altitudes, because their speed does not match previously published zonal wind profiles. Most profiles represent the drift speed of the hot spots at their latitude from pattern matching of the entire longitudinal image strip. If a downward branch of an equatorially-trapped Rossby waves controls the overall appearance of hot spots, however, the westward phase velocity of the wave leads to underestimates of the true jet stream speed. Instead, our expanded data set demonstrating the rapid flow of these scooter clouds may be more illustrative of the actual jet stream speed at these latitudes. This research was supported by a NASA JDAP grant and the NASA Postdoctoral Program.

  3. The study of equatorial plasma bubble during January to April 2012 over Kolhapur (India

    Directory of Open Access Journals (Sweden)

    Parashram T. Patil

    2016-05-01

    Full Text Available Over 53 nights of all sky airglow imager data collected during January-April 2012 from the low latitude station Kolhapur (16.68°N, 74.26°E; 10.6°N dip latitude have been analyzed to study the F-region dynamics through the imaging of OI 630 nm emission line. The observed night airglow data were supported by the ionosonde measurements from Tirunelveli (8.7°N, 77.8°E; 0.51°N dip latitude. Well defined magnetic field aligned depletions were observed during the observation period. Out of 53 nights, 40 nights exhibited the occurrence of north-south aligned equatorial plasma bubbles. These plasma bubbles were found moving towards east with drift speed in range between 70 to 200 m s-1. We have analyzed the zonal drift velocity variation and relation of bubble occurrence with the base height of the ionosphere together with the effects of the geomagnetic Ap and solar flux F10.7 cm index in its first appearance.

  4. equatorial electrojet strength in the african sector during high

    African Journals Online (AJOL)

    Preferred Customer

    shown to be consistent with the earlier similar work carried out for the American and ... reference to the quiet day night time level of H, ... February and July, and shifts equator ward to 27°N ... effect of the equatorial electrojet along this line is.

  5. Global equatorial sea-surface temperatures over the last 150,000 years: An update from foraminiferal elemental analysis

    Digital Repository Service at National Institute of Oceanography (India)

    Saraswat, R.

    for the warmest waters. However, how the equatorial SST affects global climate, is still not clear. Long-term past seawater temperature records are required to understand the effect of temporal changes in equatorial SST on the global climate. Various techniques...

  6. Current meter and other data from current meter casts from NOAA Ship RESEARCHER in the North and South Pacific Ocean from 1984-06-28 to 1984-07-01 (NODC Accession 8500226)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current meter and other data were collected using current meter casts from NOAA Ship RESEARCHER in the North/South Pacific Ocean from June 28, 1984 to July 1, 1984....

  7. Satellite-tracked drifting buoy observations in the south equatorial current in the Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Shetye, S.R.; Michael, G.S.

    two buoys moved north and the third moved south. Over the open sea regime the buoys moved with a speed of approximately 30 cm/s at an angle of about 35 degrees to the left of the wind. The overall tendencies seen in the buoy drift are similar to those...

  8. The effect of J2 on equatorial and halo orbits around a magnetic planet

    International Nuclear Information System (INIS)

    Inarrea, Manuel; Lanchares, Victor; Palacian, Jesus F.; Pascual, Ana I.; Pablo Salas, J.; Yanguas, Patricia

    2009-01-01

    We calculate equatorial and halo orbits around a non-spherical (both oblate and prolate) magnetic planet. It is known that circular equatorial and halo orbits exist for a dust grain orbiting a spherical magnetic planet. However, the frequency of the orbit is constrained by the charge-mass ratio of the particle. If the non-sphericity of the planet is taken into account this constraint is modified or, in some cases, it disappears.

  9. Serological markers suggest heterogeneity of effectiveness of malaria control interventions on Bioko Island, equatorial Guinea.

    Directory of Open Access Journals (Sweden)

    Jackie Cook

    Full Text Available In order to control and eliminate malaria, areas of on-going transmission need to be identified and targeted for malaria control interventions. Immediately following intense interventions, malaria transmission can become more heterogeneous if interventions are more successful in some areas than others. Bioko Island, Equatorial Guinea, has been subject to comprehensive malaria control interventions since 2004. This has resulted in substantial reductions in the parasite burden, although this drop has not been uniform across the island.In 2008, filter paper blood samples were collected from 7387 people in a cross-sectional study incorporating 18 sentinel sites across Bioko, Equatorial Guinea. Antibodies were measured to P. falciparum Apical Membrane Antigen-1 (AMA-1 by Enzyme Linked Immunosorbent Assay (ELISA. Age-specific seropositivity rates were used to estimate seroconversion rates (SCR. Analysis indicated there had been at least a 60% decline in SCR in four out of five regions on the island. Changes in SCR showed a high degree of congruence with changes in parasite rate (PR and with regional reductions in all cause child mortality. The mean age adjusted concentration of anti-AMA-1 antibodies was mapped to identify areas where individual antibody responses were higher than expected. This approach confirmed the North West of the island as a major focus of continuing infection and an area where control interventions need to be concentrated or re-evaluated.Both SCR and PR revealed heterogeneity in malaria transmission and demonstrated the variable effectiveness of malaria control measures. This work confirms the utility of serological analysis as an adjunct measure for monitoring transmission. Age-specific seroprevalence based evidence of changes in transmission over time will be of particular value when no baseline data are available. Importantly, SCR data provide additional evidence to link malaria control activities to contemporaneous

  10. Equatorial wave activity during 2007 over Gadanki, a tropical station

    Indian Academy of Sciences (India)

    been used to investigate the wave activity in the troposphere and lower stratosphere. Waves in the ...... Oltmans S J 2001 Water vapor control at the tropopause by equatorial Kelvin .... observed in UARS microwave limb sounder temperature.

  11. Examining current or future trade-offs for biodiversity conservation in north-eastern Australia.

    Science.gov (United States)

    Reside, April E; VanDerWal, Jeremy; Moilanen, Atte; Graham, Erin M

    2017-01-01

    With the high rate of ecosystem change already occurring and predicted to occur in the coming decades, long-term conservation has to account not only for current biodiversity but also for the biodiversity patterns anticipated for the future. The trade-offs between prioritising future biodiversity at the expense of current priorities must be understood to guide current conservation planning, but have been largely unexplored. To fill this gap, we compared the performance of four conservation planning solutions involving 662 vertebrate species in the Wet Tropics Natural Resource Management Cluster Region in north-eastern Australia. Input species data for the four planning solutions were: 1) current distributions; 2) projected distributions for 2055; 3) projected distributions for 2085; and 4) current, 2055 and 2085 projected distributions, and the connectivity between each of the three time periods for each species. The four planning solutions were remarkably similar (up to 85% overlap), suggesting that modelling for either current or future scenarios is sufficient for conversation planning for this region, with little obvious trade-off. Our analyses also revealed that overall, species with small ranges occurring across steep elevation gradients and at higher elevations were more likely to be better represented in all solutions. Given that species with these characteristics are of high conservation significance, our results provide confidence that conservation planning focused on either current, near- or distant-future biodiversity will account for these species.

  12. Long wavelength irregularities in the equatorial electrojet

    OpenAIRE

    Kudeki, E.; Farley, D. T.; Fejer, Bela G.

    1982-01-01

    We have used the radar interferometer technique at Jicamarca to study in detail irregularities with wavelengths of a few kilometers generated in the unstable equatorial electrojet plasma during strong type 1 conditions. In-situ rocket observations of the same instability process are discussed in a companion paper. These large scale primary waves travel essentially horizontally and have large amplitudes. The vertical electron drift velocities driven by the horizontal wave electric fields reach...

  13. The physical and theoretical basis of solar-terrestrial relationships 2. Non-equatorial locations

    International Nuclear Information System (INIS)

    Njau, E.C.

    1988-07-01

    The basic formulations presented in Part 1 of this series (hereinafter simply referred to as ''Paper 1'') are modified in order to mathematically represent the expected solar-terrestrial influences in non-equatorial regions. Analysis and interpretation of these formulations lead to the establishment of several new periodicities as well as other features associated with the non-equatorial atmosphere. Besides, we show through suitable examples that the physical processes that cause and influence some previously observed climatic and upper atmospheric variations in temperate and polar regions are easily deduced from our formulations. (author). 35 refs

  14. Examining the Electric Fields of the Evening Equatorial Ionosphere When the Solar Terminator is Aligned and Not Aligned with the Magnetic Meridian

    Science.gov (United States)

    Eccles, J. V.

    2014-12-01

    The electric field structure of the equatorial ionosphere near sunset has implications on the development of plasma irregularities. The details of the development of the electric fields are examined using a global ionosphere-electrodynamics model. The results of simulations of simplified conditions show the influence of the arrangement of the solar terminator with the magnetic meridian. The relationships of the Curl-Free mechanism, the Hall Current Divergence mechanism, and the role of the Equatorial Electorjet region control the magnitude and timing of the Prereversal Enhancement of the zonal electric field as well as its altitude profile above the F region bottomside. Realistic conditions for 'equinox' and 'solstice' solar terminator arrangments are presented. The stability of the low-latitude ionosphere has a demonstrated relationship with the solar terminator alignment [Tsunoda, JGR, 1981]. The profile of the vertical and zonal electric field below the bottomside is then examined using the global model to explore the controlling elements of the electric field structure and the growth rates of the Rayleigh-Taylor instability and Collisional Shear instability.Tsunoda, R. T. (1985), Control of the seasonal and longitudinal occurrence of equatorial scintillations by the longitudinal gradient in integrated E region Pedersen conductivity, J. Geophys. Res., 90(A1),447-456, doi:10.1029/JA090iA01p00447.

  15. Reflection of equatorial Kelvin waves at eastern ocean boundaries Part II: Pacific and Atlantic Oceans

    Directory of Open Access Journals (Sweden)

    J. Soares

    1999-06-01

    Full Text Available The effect of viscosity, non linearities, incident wave period and realistic eastern coastline geometry on energy fluxes are investigated using a shallow water model with a spatial resolution of 1/4 degree in both meridional and zonal directions. Equatorial and mid-latitude responses are considered. It is found that (1 the influence of the coastline geometry and the incident wave period is more important for the westward energy flux than for the poleward flux, and (2 the effect of the inclination of the eastern ocean boundary on the poleward energy flux, for the Pacific and Atlantic Oceans, decline as the period of the incident wave increases. Furthermore, the model simulations suggest that the poleward energy fluxes from meridional boundaries give plausible results for motions of seasonal and annual periods. For comparatively shorter periods, a realistic coastline geometry has to be included for more accurate results. It is recommended that any numerical model involving the reflection of baroclinic Rossby waves (of intraseasonal, seasonal or annual periods on the eastern Pacific or Atlantic Oceans, should consider the effect of the coastline geometry in order to improve the accuracy of the results.Key words. Oceanography: general (climate and interannual variability; equatorial oceanography. Oceanography: physical (eastern boundary currents.

  16. Implications of the permanent El Niño teleconnection "blueprint" for past global and North American hydroclimatology

    Directory of Open Access Journals (Sweden)

    A. Goldner

    2011-07-01

    Full Text Available Substantial evidence exists for wetter-than-modern continental conditions in North America during the pre-Quaternary warm climate intervals. This is in apparent conflict with the robust global prediction for future climate change of a northward expansion of the subtropical dry zones that should drive aridification of many semiarid regions. Indeed, areas of expected future aridification include much of western North America, where extensive paleoenvironmental records are documented to have been much wetter before the onset of Quaternary ice ages. It has also been proposed that climates previous to the Quaternary may have been characterized as being in a state with warmer-than-modern eastern equatorial sea surface temperatures (SSTs. Because equatorial Pacific SSTs exert strong controls on midlatitude atmospheric circulation and the global hydrologic cycle, the teleconnected response from this permanent El Niño-like mean state has been proposed as a useful analogue model, or "blueprint", for understanding global climatological anomalies in the past. The present study quantitatively explores the implications of this blueprint for past climates with a specific focus on the Miocene and Pliocene, using a global climate model (CAM3.0 and a nested high-resolution climate model (RegCM3 to study the hydrologic impacts on global and North American climate of a change in mean SSTs resembling that which occurs during modern El Niño events. We find that the global circulation response to a permanent El Niño resembles a large, long El Niño event. This state also exhibits equatorial super-rotation, which would represent a fundamental change to the tropical circulations. We also find a southward shift in winter storm tracks in the Pacific and Atlantic, which affects precipitation and temperature over the mid-latitudes. In addition, summertime precipitation increases over the majority of the continental United States. These increases in precipitation are

  17. Mid-Pliocene equatorial Pacific sea surface temperature reconstruction: a multi-proxy perspective

    Science.gov (United States)

    Dowsett, Harry J.; Robinson, Marci M.

    2009-01-01

    The Mid-Pliocene is the most recent interval of sustained global warmth, which can be used to examine conditions predicted for the near future. An accurate spatial representation of the low-latitude Mid-Pliocene Pacific surface ocean is necessary to understand past climate change in the light of forecasts of future change. Mid-Pliocene sea surface temperature (SST) anomalies show a strong contrast between the western equatorial Pacific (WEP) and eastern equatorial Pacific (EEP) regardless of proxy (faunal, alkenone and Mg/Ca). All WEP sites show small differences from modern mean annual temperature, but all EEP sites show significant positive deviation from present-day temperatures by as much as 4.4°C. Our reconstruction reflects SSTs similar to modern in the WEP, warmer than modern in the EEP and eastward extension of the WEP warm pool. The east-west equatorial Pacific SST gradient is decreased, but the pole to equator gradient does not change appreciably. We find it improbable that increased greenhouse gases (GHG) alone would cause such a heterogeneous warming and more likely that the cause of Mid-Pliocene warmth is a combination of several forcings including both increased meridional heat transport and increased GHG.

  18. On the how latitude scanning photometer signatures of equatorial ionosphere plasma bubbles

    International Nuclear Information System (INIS)

    Abdu, M.A.; Sobral, J.H.A.; Nakamura, Y.

    1985-01-01

    Meridional and east-west scan 6300 (angstrom) night airglow photometer are being extensively used at the low latitude station Cachoeira Paulista (23 0 S 45 0 W, dip latitude 14 0 ), Brazil, for investigation of trans-equatorial ionospheric plasma bubble dynamics. The zonal velocities of the flux aligned plasma bubbles can be determined, in a straingforward way, from the east-west displacement of the airglow intensity valleys observed by the east-west scan photometer. On the other hand, the determination of the other velocity component of the plasma bubble motion (namely, vertical motion in the equatorial plane) has to be based on the meridional propagation of the airglow valleys observed by the meriodinal scan photometer. Such determinatios of the bubbles vertical rise velocity should, however, involved considerations on different bubble parameters such as, for exemple, the phase of the bubble event (whether growth, mature or decay phase), the limited east-west extension, and the often observed westward tilt of the bubble. In this brief report there were condidered in some detail, possible influences of these different factors on the interpretation of low latitude scanning photometer data to infer trans-equatorial plasma bubble dynamics. (author) [pt

  19. Regulation of primary productivity rate in the equatorial Pacific

    International Nuclear Information System (INIS)

    Barber, R.T.; Chavez, F.P.

    1991-01-01

    Analysis of the Chl-specific rate of primary productivity (P B ) as a function of subsurface nutrient concentration at >300 equatorial stations provides an answer to the question: What processes regulate primary productivity rate in the high-nutrient, low-chlorophyll waters of the equatorial Pacific? In the western Pacific where there is a gradient in 60-m [NO 3 ] from 0 to ∼12 μM, the productivity rate is a linear function of nutrient concentration; in the eastern Pacific where the gradient is from 12 to 28 μM, the productivity rate is independent of nutrient concentration and limited to ∼36 mg C(mg Chl) -1 d -1 , or a mean euphotic zone C-specific growth rate (μ) of 0.47 d -1 . However, rates downstream of the Galapagos Islands are not limited; they are 46.4 mg C(mg Chl) -1 d -1 and μ = 0.57 d -1 , very close to the predicted nutrient-regulated rates in the absence of other limitation. This pattern of rate regulation can be accounted for by a combination of eolian Fe, subsurface nutrients, and sedimentary Fe derived from the Galapagos platform. In the low-nutrient western Pacific the eolian supply of Fe is adequate to allow productivity rate to be set by subsurface nutrient concentration. In the nutrient-rich easter equatorial region eolian Fe is inadequate to support productivity rates proportional to the higher nutrient concentrations, so in this region eolian Fe is rate limiting. Around the Galapagos Islands productivity rates reach levels consistent with nutrient concentrations; sedimentary Fe from the Galapagos platform seems adequate to support increased nutrient-regulated productivity rates in this region

  20. New Measurements Of Jupiter's Equatorial Region In Visible Wavelengths

    Science.gov (United States)

    Rojas, Jose; Arregi, J.; García-Melendo, E.; Barrado-Izagirre, N.; Hueso, R.; Gómez-Forrellad, J. M.; Pérez-Hoyos, S.; Sanz-Requena, J. F.; Sánchez-Lavega, A.

    2010-10-01

    We have studied the equatorial region of Jupiter, between 15ºS and 15ºN, on Cassini ISS images obtained during the Jupiter flyby at the end of 2000 and on HST images acquired in May and July 2008. We have found significant longitudinal variations in the intensity of the 6ºN eastward jet, up to 60 m s-1 in Cassini and HST observations. In the HST case we found that these longitudinal variations are associated to different cloud morphology. Photometric and radiative transfer analysis of the cloud features used as tracers in HST images shows that there is only a small height difference, no larger than 0.5 - 1 scale heights at most, between the slow ( 100 m s-1) and fast ( 150 m s-1) moving features. This suggests that speed variability at 6ºN is not dominated by vertical wind shears and we propose that Rossby wave activity is the responsible for the zonal variability. After removing this variability we found that Jupiter's equatorial jet is actually symmetric relative to the equator with two peaks of 140 - 150 m s-1 located at latitudes 6ºN and 6ºS and at a similar pressure level. We also studied a large, long-lived feature called the White Spot (WS) located at 6ºS that turns to form and desapear. The internal flow field in the White Spot indicates that it is a weakly rotating quasi-equatorial anticyclone relative to the ambient meridionally sheared flow. Acknowledgements: This work was supported by the Spanish MICIIN AYA2009-10701 with FEDER and Grupos Gobierno Vasco IT-464-07.

  1. Radium 226 in the deep north-eastern Atlantic Ocean

    International Nuclear Information System (INIS)

    Rhein, M.

    1986-01-01

    With reference to the distribution of radium-226 in the western equatorial and north-eastern deep Atlantic Ocean it was possible to establish structures in the correlations of radium-226 to its chemical homologue Ba and dissolved SiO 2 . An 11-box model of the deep Atlantic Ocean was used to obtain information on the size of the radium-226 and Ba sources. The soil source derives mainly from the dissolution of barite. For the first time, an evaluation of the radium-226 flow resulting from the dissolution of particulate matter is presented. The box model and the radium-226 concentrations measured put down the value as 23-46·10 -21 mol/m 2 s. (DG) [de

  2. Detection and Characterization of Equatorial Scintillation for Real-Time Operational Support

    National Research Council Canada - National Science Library

    McNeil, W

    1997-01-01

    The Phillips Laboratory Scintillation Network Decision Aid (PL-SCINDA) is a software tool which uses real-time data from remote sites to model ionospheric plasma depletions in the equatorial region...

  3. The Current Status and Prospects of the Economic Relationship between North Korea and China

    Directory of Open Access Journals (Sweden)

    Myoungchul Cho

    1998-06-01

    Full Text Available After the socialist market collapse after 1990s, the economic relationship of North Korea and China is becoming closer. It can be proven by the fact that economic relationship between this two countries are transferring from the national trade model to various models such as border trade, agency trade, the illicit trade and investment aid. In this progress, North Korea rely China more than in 1990. But after 1992, the economic relationship is falling from the political priority as before, blind support and assistance based on the nature of the economic benefits to the rapid changes in relationship. This thesis reviewed economic relations in the world environment which has changed. First it analyzed the national economy and trade policies adopted in the current situation of two countries, and on this basis, it looked forward to the economic relationship between the two countries, and point out the measures regarding the relationship between two countries.

  4. Seasonal-longitudinal variability of equatorial plasma bubbles

    Directory of Open Access Journals (Sweden)

    W. J. Burke

    2004-09-01

    Full Text Available We compare seasonal and longitudinal distributions of more than 8300 equatorial plasma bubbles (EPBs observed during a full solar cycle from 1989-2000 with predictions of two simple models. Both models are based on considerations of parameters that influence the linear growth rate, γRT, of the generalized Rayleigh-Taylor instability in the context of finite windows of opportunity available during the prereversal enhancement near sunset. These parameters are the strength of the equatorial magnetic field, Beq, and the angle, α, it makes with the dusk terminator line. The independence of α and Beq from the solar cycle phase justifies our comparisons.

    We have sorted data acquired during more than 75000 equatorial evening-sector passes of polar-orbiting Defense Meteorological Satellite Program (DMSP satellites into 24 longitude and 12 one-month bins, each containing ~250 samples. We show that: (1 in 44 out of 48 month-longitude bins EPB rates are largest within 30 days of when α=0°; (2 unpredicted phase shifts and asymmetries appear in occurrence rates at the two times per year when α≈0°; (3 While EPB occurrence rates vary inversely with Beq, the relationships are very different in regions where Beq is increasing and decreasing with longitude. Results (2 and (3 indicate that systematic forces not considered by the two models can become important. Damping by interhemispheric winds appears to be responsible for phase shifts in maximum rates of EPB occurrence from days when α=0°. Low EPB occurrence rates found at eastern Pacific longitudes suggest that radiation belt electrons in the drift loss cone reduce γRT by enhancing E-layer Pedersen conductances. Finally, we analyze an EPB event observed during a magnetic storm at a time and place where α≈-27°, to illustrate how electric-field penetration from

  5. The magnetic field of the equatorial magnetotail from 10 to 40 earth radii

    Science.gov (United States)

    Fairfield, D. H.

    1986-01-01

    A statistical study of IMP 6, 7, and 8 magnetotail magnetic field measurements near the equatorial plane reveals new information about various aspects of magnetospheric structure. More magnetic flux crosses the equatorial plane on the dawn and dusk flanks of the tail than near midnight, but no evidence is found for a dependence on the interplanetary magnetic field sector polarity. Field magnitudes within 3 earth radii of the equatorial plane near dawn are more than twice as large as those near dusk for Xsm = -20 to -10 earth radii. The frequency of occurrence of southward fields is greatest near midnight, and such fields are seen almost twice as often for Xsm = -20 to -10 earth radii as for Xsm beyond -20 earth radii. This latter result supports the idea that the midnight region of the tail between 10 and 20 is a special location where neutral lines are particularly apt to form. Such a neutral line will approach nearest the earth in the midnight and premidnight region, where substorms are thought to have their onset.

  6. F2 layer characteristics and electrojet strength over an equatorial station

    Science.gov (United States)

    Adebesin, B. O.; Adeniyi, J. O.; Adimula, I. A.; Reinisch, B. W.; Yumoto, K.

    2013-09-01

    The data presented in this work describes the diurnal and seasonal variation in hmF2, NmF2, and the electrojet current strength over an African equatorial station during a period of low solar activity. The F2 region horizontal magnetic element H revealed that the Solar quiet Sq(H) daily variation rises from early morning period to maximum around local noon and falls to lower values towards evening. The F2 ionospheric current responsible for the magnetic field variations is inferred to build up at the early morning hours, attaining maximum strength around 1200 LT. The Sq variation across the entire months was higher during the daytime than nighttime. This is ascribed to the variability of the ionospheric parameters like conductivity and winds structure in this region. Seasonal daytime electrojet (EEJ) current strength for June solstice, March and September equinoxes, respectively had peak values ranging within 27-35 nT (at 1400 LT) , 30-40 nT (at 1200 LT) and 35-45 nT (at 1500 LT). The different peak periods of the EEJ strength were attributed to the combined effects of the peak electron density and electric field. Lastly, the EEJ strength was observed to be higher during the equinoxes than the solstice period.

  7. Impact of convection over the equatorial trough on the summer monsoon activity over India

    Digital Repository Service at National Institute of Oceanography (India)

    RameshKumar, M.R.; Shenoi, S.S.C.; Schulz, J.

    . There have been studies (Cadet and Olory Togbe, 1981; Sadhuram and Sastry, 1987) on the role of Equatorial Trough (ET) as well as Southern Hemispheric Equatorial Trough (SHET) on the rainfall over central India. Most of these studies are related... the ET, WET and EET behave in a similar fashion during different monsoon and El Nino conditions ? c) What role do the synoptic systems play during the BM over the Indian subcontinent? 2. Data and Methodology The pentad precipitation data used...

  8. Rainfall Effects on the Kuroshio Current East of Taiwan

    Science.gov (United States)

    Hsu, Po-Chun; Lin, Chen-Chih; Ho, Chung-Ru

    2017-04-01

    Changes of sea surface salinity (SSS) in the open oceans are related to precipitation and evaporation. SSS has been an indicator of water cycle. It may be related to the global change. The Kuroshio Current, a western boundary current originating from the North Equatorial Current, transfers warm and higher salinity to higher latitudes. It flows northward along the east coasts of Luzon Island and Taiwan Island to Japan. In this study, effects of heavy rainfall on the Kuroshio surface salinity east of Taiwan are investigated. Sea surface salinity (SSS) data taken by conductivity temperature depth (CTD) sensor on R/V Ocean Researcher I cruises, conductivity sensor on eight glider cruises, and Aquarius satellite data are used in this study. The rain rate data derived from the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) are also employed. A glider is a kind of autonomous underwater vehicle, which uses small changes in its buoyancy in conjunction with wings to convert vertical motion to horizontal in the underwater without requiring input from an operator. It can take sensors to measure salinity, temperature, and pressure. The TRMM/TMI data from remote sensing system are daily and are mapped to 0.25-degree grid. The results show a good correlation between the rain rate and SSS with a correlation coefficient of 0.86. The rainfall causes SSS of the Kuroshio surface water drops 0.176 PSU per 1 mm/hr rain rate.

  9. Climate regulation of fire emissions and deforestation in equatorial Asia

    NARCIS (Netherlands)

    van der Werf, G. R.; Dempewolf, J.; Trigg, S. N.; Randerson, J. T.; Kasibhatla, P. S.; Giglio, L.; Murdiyarso, D.; Peters, W.; Morton, D. C.; Collatz, G. J.; Dolman, A. J.; Defries, R. S.

    2008-01-01

    Drainage of peatlands and deforestation have led to large-scale fires in equatorial Asia, affecting regional air quality and global concentrations of greenhouse gases. Here we used several sources of satellite data with biogeochemical and atmospheric modeling to better understand and constrain fire

  10. ASYMMETRIC SUNSPOT ACTIVITY AND THE SOUTHWARD DISPLACEMENT OF THE HELIOSPHERIC CURRENT SHEET

    International Nuclear Information System (INIS)

    Wang, Y.-M.; Robbrecht, E.

    2011-01-01

    Observations of the interplanetary magnetic field (IMF) have suggested a statistical tendency for the heliospheric current sheet (HCS) to be shifted a few degrees southward of the heliographic equator during the period 1965-2010, particularly in the years near sunspot minimum. Using potential-field source-surface extrapolations and photospheric flux-transport simulations, we demonstrate that this southward displacement follows from Joy's law and the observed hemispheric asymmetry in the sunspot numbers, with activity being stronger in the southern (northern) hemisphere during the declining (rising) phase of cycles 20-23. The hemispheric asymmetry gives rise to an axisymmetric quadrupole field, whose equatorial zone has the sign of the leading-polarity flux in the dominant hemisphere; during the last four cycles, the polarity of the IMF around the equator thus tended to match that of the north polar field both before and after polar field reversal. However, large fluctuations are introduced by the nonaxisymmetric field components, which depend on the longitudinal distribution of sunspot activity in either hemisphere. Consistent with this model, the HCS showed an average northward displacement during cycle 19, when the 'usual' alternation was reversed and the northern hemisphere became far more active than the southern hemisphere during the declining phase of the cycle. We propose a new method for determining the north-south displacement of the HCS from coronal streamer observations.

  11. Spatial and temporal variability in nutrients and carbon uptake during 2004 and 2005 in the eastern equatorial Pacific Ocean

    DEFF Research Database (Denmark)

    Palacz, A. P.; Chai, F.

    2012-01-01

    The eastern equatorial Pacific plays a great role in the global carbon budget due to its enhanced biological productivity linked to the equatorial upwelling. However, as confirmed by the Equatorial Biocomplexity cruises in 2004 and 2005, nutrient upwelling supply varies strongly, partly due...... and intraseasonal time scales. Here, high resolution Pacific ROMS-CoSiNE (Regional Ocean Modeling System-Carbon, Silicon, Nitrogen Ecosystem) model results were evaluated with in situ and remote sensing data. The results of model-data comparison revealed a good agreement in domain-average hydrographic....... In order to fully resolve the complexity of biological and physical interactions in the eastern equatorial Pacific, we recommended improving CoSiNE and other models by introducing more phytoplankton groups, variable Redfield and carbon to chlorophyll ratios, as well as resolving the Fe-Si co...

  12. On the Nocturnal Downward and Westward Equatorial Ionospheric Plasma Drifts During the 17 March 2015 Geomagnetic Storm

    Science.gov (United States)

    Bagiya, Mala S.; Vichare, Geeta; Sinha, A. K.; Sripathi, S.

    2018-02-01

    During quiet period, the nocturnal equatorial ionospheric plasma drifts eastward in the zonal direction and downward in the vertical direction. This quiet time drift pattern could be understood through dynamo processes in the nighttime equatorial ionosphere. The present case study reports the nocturnal simultaneous occurrence of the vertically downward and zonally westward plasma drifts over the Indian latitudes during the geomagnetic storm of 17 March 2015. After 17:00 UT ( 22:10 local time), the vertical plasma drift became downward and coincided with the westward zonal drift, a rarely observed feature of low latitude plasma drifts. The vertical drift turned upward after 18:00 UT, while the zonal drift became eastward. We mainly emphasize here the distinct bipolar type variations of vertical and zonal plasma drifts observed around 18:00 UT. We explain the vertical plasma drift in terms of the competing effects between the storm time prompt penetration and disturbance dynamo electric fields. Whereas, the westward drift is attributed to the storm time local electrodynamical changes mainly through the disturbance dynamo field in addition to the vertical Pedersen current arising from the spatial (longitudinal) gradient of the field aligned Pedersen conductivity.

  13. Dynamical variability in Saturn Equatorial Atmosphere

    Science.gov (United States)

    Sánchez-Lavega, A.; Pérez-Hoyos, S.; Hueso, R.; Rojas, J. F.; French, R. G.; Grupo Ciencias Planetarias Team

    2003-05-01

    Historical ground-based and recent HST observations show that Saturn's Equatorial Atmosphere is the region where the most intense large-scale dynamical variability took place at cloud level in the planet. Large-scale convective storms (nicknamed the ``Great White Spots") occurred in 1876, 1933 and 1990. The best studied case (the 1990 storm), produced a dramatic change in the cloud aspect in the years following the outburst of September 1990. Subsequently, a new large storm formed in 1994 and from 1996 to 2002 our HST observations showed periods of unusual cloud activity in the southern part of the Equator. This contrast with the aspect observed during the Voyager 1 and 2 encounters in 1980 and 1981 when the Equator was calm, except for some mid-scale plume-like features seen in 1981. Cloud-tracking of the features have revealed a dramatic slow down in the equatorial winds from maximum velocities of ˜ 475 m/s in 1980-1981 to ˜ 275 m/s during 1996-2002, as we have recently reported in Nature, Vol. 423, 623 (2003). We discuss the possibility that seasonal and ring-shadowing effects are involved in generating this activity and variability. Acknowledgements: This work was supported by the Spanish MCYT PNAYA 2000-0932. SPH acknowledges a PhD fellowship from the Spanish MECD and RH a post-doc fellowship from Gobierno Vasco. RGF was supported in part by NASA's Planetary Geology and Geophysics Program NAG5-10197 and STSCI Grant GO-08660.01A.

  14. Observation of low energy particle precipitation at low altitude in the equatorial zone

    Science.gov (United States)

    Miah, M. A.

    1989-01-01

    Precipitation of protons in the equatorial zone was investigated by the Phoenix-1 experiment on the S81-1 mission from May to November, 1982. The protons show a precipitation peak along the line of minimum magnetic field strength with a FWHM of 13 deg. The index of equatorial pitch angle distribution is about 19. The peak proton flux shows a fifth-power altitude dependence, and the proton flux shows approximately a factor of 3 times increase in 1982 compared to that in 1969 due, possibly, to the stronger solar maximum conditions of 10.7-cm radiation in 1982.

  15. Nighttime ionospheric D region: Equatorial and nonequatorial

    Science.gov (United States)

    Thomson, Neil R.; McRae, Wayne M.

    2009-08-01

    Nighttime ionospheric D region parameters are found to be generally well modeled by the traditional H‧ and β as used by Wait and by the U.S. Navy in their Earth-ionosphere VLF radio waveguide programs. New comparisons with nonequatorial, mainly all-sea VLF path observations reported over several decades are shown to be consistent with the previously determined height H‧ ˜ 85.0 km and sharpness β ˜ 0.63 km-1. These paths include NPM (Hawaii) to Washington, D. C., Omega Hawaii and NLK (Seattle) to Japan, NWC (N.W. Australia) to Madagascar, and NBA (Panama) to Colorado. In marked contrast, transequatorial path observations (even when nearly all-sea) are found to be often not well modeled: for example, for Omega Japan and JJI (Japan) to Dunedin, New Zealand, the observed amplitudes are markedly lower than those which would be expected from H‧ ˜ 85.0 km and β ˜ 0.63 km-1, or any other realistic values of H‧ and β. Other transequatorial observations compared with modeling include NWC to Japan, Omega Hawaii to Dunedin, and NPM (Hawaii) to Dunedin. It is suggested that the effects of irregularities in the equatorial electrojet may extend down into the nighttime D region and so account for the observed equatorial VLF perturbations through scattering or mode conversion.

  16. Glossina palpalis palpalis populations from Equatorial Guinea belong to distinct allopatric clades.

    Science.gov (United States)

    Cordon-Obras, Carlos; Cano, Jorge; Knapp, Jenny; Nebreda, Paloma; Ndong-Mabale, Nicolas; Ncogo-Ada, Policarpo Ricardo; Ndongo-Asumu, Pedro; Navarro, Miguel; Pinto, Joao; Benito, Agustin; Bart, Jean-Mathieu

    2014-01-17

    Luba is one of the four historical foci of Human African Trypanosomiasis (HAT) on Bioko Island, in Equatorial Guinea. Although no human cases have been detected since 1995, T. b. gambiense was recently observed in the vector Glossina palpalis palpalis. The existence of cryptic species within this vector taxon has been previously suggested, although no data are available regarding the evolutionary history of tsetse flies populations in Bioko. A phylogenetic analysis of 60 G. p. palpalis from Luba was performed sequencing three mitochondrial (COI, ND2 and 16S) and one nuclear (rDNA-ITS1) DNA markers. Phylogeny reconstruction was performed by Distance Based, Maximum Likelihood and Bayesian Inference methods. The COI and ND2 mitochondrial genes were concatenated and revealed 10 closely related haplotypes with a dominant one found in 61.1% of the flies. The sequence homology of the other 9 haplotypes compared to the former ranged from 99.6 to 99.9%. Phylogenetic analysis clearly clustered all island samples with flies coming from the Western African Clade (WAC), and separated from the flies belonging to the Central Africa Clade (CAC), including samples from Mbini and Kogo, two foci of mainland Equatorial Guinea. Consistent with mitochondrial data, analysis of the microsatellite motif present in the ITS1 sequence exhibited two closely related genotypes, clearly divergent from the genotypes previously identified in Mbini and Kogo. We report herein that tsetse flies populations circulating in Equatorial Guinea are composed of two allopatric subspecies, one insular and the other continental. The presence of these two G. p. palpalis cryptic taxa in Equatorial Guinea should be taken into account to accurately manage vector control strategy, in a country where trypanosomiasis transmission is controlled but not definitively eliminated yet.

  17. Range expansion drives dispersal evolution in an equatorial three-species symbiosis.

    Directory of Open Access Journals (Sweden)

    Guillaume Léotard

    Full Text Available Recurrent climatic oscillations have produced dramatic changes in species distributions. This process has been proposed to be a major evolutionary force, shaping many life history traits of species, and to govern global patterns of biodiversity at different scales. During range expansions selection may favor the evolution of higher dispersal, and symbiotic interactions may be affected. It has been argued that a weakness of climate fluctuation-driven range dynamics at equatorial latitudes has facilitated the persistence there of more specialized species and interactions. However, how much the biology and ecology of species is changed by range dynamics has seldom been investigated, particularly in equatorial regions.We studied a three-species symbiosis endemic to coastal equatorial rainforests in Cameroon, where the impact of range dynamics is supposed to be limited, comprised of two species-specific obligate mutualists--an ant-plant and its protective ant--and a species-specific ant parasite of this mutualism. We combined analyses of within-species genetic diversity and of phenotypic variation in a transect at the southern range limit of this ant-plant system. All three species present congruent genetic signatures of recent gradual southward expansion, a result compatible with available regional paleoclimatic data. As predicted, this expansion has been accompanied by the evolution of more dispersive traits in the two ant species. In contrast, we detected no evidence of change in lifetime reproductive strategy in the tree, nor in its investment in food resources provided to its symbiotic ants.Despite the decreasing investment in protective workers and the increasing investment in dispersing females by both the mutualistic and the parasitic ant species, there was no evidence of destabilization of the symbiosis at the colonization front. To our knowledge, we provide here the first evidence at equatorial latitudes that biological traits associated

  18. The effect of J{sub 2} on equatorial and halo orbits around a magnetic planet

    Energy Technology Data Exchange (ETDEWEB)

    Inarrea, Manuel [Universidad de la Rioja, Area de Fisica, 26006 Logrono (Spain); Lanchares, Victor [Dpto. de Matematicas y Computacion, CIEMUR: Centro de Investigacion en Informatica, Estadistica y Matematicas, Universidad de la Rioja, 26004 Logrono (Spain)], E-mail: vlancha@unirioja.es; Palacian, Jesus F. [Universidad Publica de Navarra, Departamento de Ingenieria Matematica e Informatica, 31006 Pamplona (Spain); Pascual, Ana I. [Dpto. de Matematicas y Computacion, CIEMUR: Centro de Investigacion en Informatica, Estadistica y Matematicas, Universidad de la Rioja, 26004 Logrono (Spain); Pablo Salas, J. [Universidad de la Rioja, Area de Fisica, 26006 Logrono (Spain); Yanguas, Patricia [Universidad Publica de Navarra, Departamento de Ingenieria Matematica e Informatica, 31006 Pamplona (Spain)

    2009-10-15

    We calculate equatorial and halo orbits around a non-spherical (both oblate and prolate) magnetic planet. It is known that circular equatorial and halo orbits exist for a dust grain orbiting a spherical magnetic planet. However, the frequency of the orbit is constrained by the charge-mass ratio of the particle. If the non-sphericity of the planet is taken into account this constraint is modified or, in some cases, it disappears.

  19. Equatorial electrojet in the Indian region during the geomagnetic ...

    Indian Academy of Sciences (India)

    1998-11-14

    Nov 14, 1998 ... In the recovery phase of the storm, the electric field due to shielding layer penetrates to equatorial latitudes as an overshielding electric field with opposite polarity, westward during day- side and eastward during night side (Kelley et al. 1979). In addition to the prompt penetration elec- tric fields, there are ...

  20. How do western abyssal currents cross the equator?

    Science.gov (United States)

    Nof, Doron; Olson, Donald B.

    1993-02-01

    Previous investigations of upper ocean currents on a β-plane have shown that it is quite difficult for a parcel of fluid to cross the equator in the open ocean. Boundary currents sometimes can cross the equator, but even this crossing is not easily achieved. The main barrier for equatorial crossing of inviscid western boundary currents is the presence of a front on the open ocean side ( NOF, 1990, Deep-Sea Research, 37, 853-875). One-and-a-half and 2 1/2 layer models are used to examine how this frontal blocking constraint is modified by bottom topography. Both models show that some topographic features, such as the Mid-Atlantic Ridge, may entirely relax the frontal blocking constraint. The single layer crossing is modeled in terms of a heavy double-fronted inertial current (overlaid by a stagnant infinitely deep upper layer) flowing northward in a parabolic channel. Analytic solutions show that the current's position "flips" as it crosses the equator, it is situated next to the left flank of the channel (i.e. the western boundary) in the southern hemisphere and next to the right flank (i.e. the eastern part of the channel corresponding to the western side of the the mid-ocean ridge) in the northern hemisphere. With the aid of the above model, a 2 1/2 layer model, which contains an additional intermediate current above the core, is considered. It is found that the nonfrontal southward (or northward) intermediate flow crosses the equator and remains adjacent to the western boundary. In contrast, the deep frontal flow underneath again "flips" from the left to the right boundary as it crosses the equator. Possible application of this theory to the dense Antarctic Bottom Water (AABW) and the Lower North Atlantic Deep Water (LNADW) is discussed.

  1. Planktonic foraminifera from core tops of western equatorial Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Naidu, P.D.; Guptha, M.V.S.

    distributional pattern showing upward trend in its abundance from 38 per cent at 21 degrees S latitude to 0.8 per cent at 6 degrees N latitude. Sub-tropical fauna is sparsely distributed in the Equatorial Indian Ocean. Based on these studies it is interpreted...

  2. Targeting Aurora B to the equatorial cortex by MKlp2 is required for cytokinesis.

    Directory of Open Access Journals (Sweden)

    Mayumi Kitagawa

    Full Text Available Although Aurora B is important in cleavage furrow ingression and completion during cytokinesis, the mechanism by which kinase activity is targeted to the cleavage furrow and the molecule(s responsible for this process have remained elusive. Here, we demonstrate that an essential mitotic kinesin MKlp2 requires myosin-II for its localization to the equatorial cortex, and this event is required to recruit Aurora B to the equatorial cortex in mammalian cells. This recruitment event is also required to promote the highly focused accumulation of active RhoA at the equatorial cortex and stable ingression of the cleavage furrow in bipolar cytokinesis. Specifically, in drug-induced monopolar cytokinesis, targeting Aurora B to the cell cortex by MKlp2 is essential for cell polarization and furrow formation. Once the furrow has formed, MKlp2 further recruits Aurora B to the growing furrow. This process together with continuous Aurora B kinase activity at the growing furrow is essential for stable furrow propagation and completion. In contrast, a MKlp2 mutant defective in binding myosin-II does not recruit Aurora B to the cell cortex and does not promote furrow formation during monopolar cytokinesis. This mutant is also defective in maintaining the ingressing furrow during bipolar cytokinesis. Together, these findings reveal that targeting Aurora B to the cell cortex (or the equatorial cortex by MKlp2 is essential for the maintenance of the ingressing furrow for successful cytokinesis.

  3. Relationship between vertical ExB drift and F2-layer characteristics in the equatorial ionosphere at solar minimum conditions

    Science.gov (United States)

    Oyekola, Oyedemi S.

    2012-07-01

    Equatorial and low-latitude electrodynamics plays a dominant role in determining the structure and dynamics of the equatorial and low-latitude ionospheric F-region. Thus, they constitute essential input parameters for quantitative global and regional modeling studies. In this work, hourly median value of ionosonde measurements namely, peak height F2-layer (hmF2), F2-layer critical frequency (foF2) and propagation factor M(3000)F2 made at near equatorial dip latitude, Ouagadougou, Burkina Faso (12oN, 1.5oW; dip: 1.5oN) and relevant F2-layer parameters such as thickness parameter (Bo), electron temperature (Te), ion temperature (Ti), total electron content (TEC) and electron density (Ne, at the fixed altitude of 300 km) provided by the International Reference Ionosphere (IRI) model for the longitude of Ouagadougou are contrasted with the IRI vertical drift model to explore in detail the monthly climatological behavior of equatorial ionosphere and the effects of equatorial vertical plasma drift velocities on the diurnal structure of F2-layer parameters. The analysis period covers four months representative of solstitial and equinoctial seasonal periods during solar minimum year of 1987 for geomagnetically quiet-day. We show that month-by-month morphological patterns between vertical E×B drifts and F2-layer parameters range from worst to reasonably good and are largely seasonally dependent. A cross-correlation analysis conducted between equatorial drift and F2-layer characteristics yield statistically significant correlations for equatorial vertical drift and IRI-Bo, IRI-Te and IRI-TEC, whereas little or no acceptable correlation is obtained with observational evidence. Assessment of the association between measured foF2, hmF2 and M(3000)F2 illustrates consistent much more smaller correlation coefficients with no systematic linkage. In general, our research indicates strong departure from simple electrodynamically controlled behavior.

  4. The MMS observation of an off-equatorial dipolarization front and associated wave characteristics in the near-Earth magnetotail

    Science.gov (United States)

    Li, H.; Guo, L.; Zhou, M.; Cheng, Q.; Yu, X.; Huang, S.; Pang, Y.

    2017-12-01

    In this paper, we report the observation of the off-equatorial depolarization front structures by Magnetospheric Multiscale (MMS) mission at around X -8Re in the Earth's magnetotail. The dipolarization front was located at the flow rebounce region associated with a parallel electron beam. A large lower frequency electromagnetic wave fluctuation at the depolarization front is observed with the frequency near the ion gyrofrequency, left-handed polarization and a parallel propagation. A parallel current attributed to an electron beam coexist with the wave. The wave is believed to be generated by the current-driven ion cyclotron instability. Such instability is important because of its potential contribution to global electromagnetic energy conversion at the dipolarization front.

  5. Current status, distribution, and conservation of the Burrowing Owl (Speotyto cunicularia) in midwestern and western North America

    Science.gov (United States)

    Steven R. Sheffield

    1997-01-01

    The Burrowing Owl (Speotyto cunicularia) inhabits open prairie grassland habitat in the midwestern and western US and Canada. For several years now, numbers of this species in North America have been declining at an alarming rate. Currently, Burrowing Owls are listed as endangered in Canada and threatened in Mexico. In the United States, the...

  6. Equatorial noise emissions with quasiperiodic modulation of wave intensity

    Czech Academy of Sciences Publication Activity Database

    Němec, F.; Santolík, Ondřej; Hrbáčková, Zuzana; Pickett, J. S.; Cornilleau-Wehrlin, N.

    2015-01-01

    Roč. 120, č. 4 (2015), s. 2649-2661 ISSN 2169-9380 R&D Projects: GA MŠk(CZ) LH11122 Institutional support: RVO:68378289 Keywords : equatorial noise * magnetosonic waves * quasiperiodic modulation Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.318, year: 2015 http://onlinelibrary.wiley.com/doi/10.1002/2014JA020816/full

  7. Typical disturbances of the daytime equatorial F region observed with a high-resolution HF radar

    Directory of Open Access Journals (Sweden)

    E. Blanc

    1998-06-01

    Full Text Available HF radar measurements were performed near the magnetic equator in Africa (Korhogo 9°24'63''N–5°37'38''W during the International Equatorial Electrojet Year (1993–1994. The HF radar is a high-resolution zenithal radar. It gives ionograms, Doppler spectra and echo parameters at several frequencies simultaneously. This paper presents a comparative study of the daytime ionospheric structures observed during 3 days selected as representative of different magnetic conditions, given by magnetometer measurements. Broad Doppler spectra, large echo width, and amplitude fluctuations revealed small-scale instability processes up to the F-region peak. The height variations measured at different altitudes showed gravity waves and larger-scale disturbances related to solar daytime influence and equatorial electric fields. The possibility of retrieving the ionospheric electric fields from these Doppler or height variation measurements in the presence of the other possible equatorial ionospheric disturbances is discussed.

  8. Searching for Terrain Softening near Mercury's North Pole

    Science.gov (United States)

    Cobian, P. S.; Vilas, F.; Lederer, S. M.; Barlow, N. G.

    2004-01-01

    In 1999, following the initial discovery of radar bright craters near both poles of Mercury measured the depth-todiameter (d/D) ratios of 170 impact craters in Mariner 10 images covering four different regions on Mercury s surface. Rapid softening of crater structure, indicated by lower d/D ratios, could indicate the possibility of subsurface water ice in Mercury's terrain originating from an internal source in the planet. Their study included 3 specific radar bright craters suggested to contain ice. They concluded that no terrain softening was apparent, and a rapidly emplaced exogenic water source was the most likely source for the proposed ice in these craters. Recent radar observations of the Mercurian North pole have pinpointed many additional radar bright areas with a resolution 10x better than previous radar measurements, and which correlate with craters imaged by Mariner 10. These craters are correlated with regions that are permanently shaded from direct sunlight, and are consistent with observations of clean water ice. We have expanded the initial study by Barlow et al. to include d/D measurements of 12 craters newly identified as radar bright at latitudes poleward of +80o. The radar reflectivity resemblances to Mars south polar cap and echoes from three icy Galilean satellites suggest that these craters too may have polar ice on Mercury. The effect of subsurface H20 on impact craters is a decrease in its d/D ratio, and softening of crater rims over a period of time. The study of Barlow et al., focused on determining the d/D ratios of 170 impact craters in the Borealis (north polar), Tolstoj (equatorial), Kuiper (equatorial), and Bach (south polar) quadrangles. This work focuses on the newly discovered radar bright craters, investigating their d/D ratios as an expansion of the earlier work..We compare our results to the statistical results from Barlow et al. here. With the upcoming Messenger spacecraft mission to Mercury, this is an especially timely study

  9. Study of the behaviour of the equatorial ionization anomaly (EIA) during solar flares

    Science.gov (United States)

    Aggarwal, Malini; Astafyeva, Elvira

    2014-05-01

    A solar flare occurring in the sun's chromosphere is observed in various wavebands (radio to x-rays). The response of the solar flare which causes sudden changes in the earth's ionosphere is not yet well understood though investigations suggested that its impact depends on the size and location of occurrence of solar flare on sun. Considering this, we have carried an investigation to study the response of two strong and gradual solar flares: 2 Apr 2001 (X20, limb) and 7 Feb 2010 (M6.4, disk) on the earth's equatorial-low latitude regions using multi-technique observations of satellite and ground-based instruments. We found a weakening of strength of equatorial ionization anomaly (EIA) in total electron content during both the flares as observed by TOPEX, JASON-1 and JASON-2 altimeter measurements. The H component of the geomagnetic field also shows a sudden change at equatorial and low latitude stations in the sunlit hemisphere during the flare. The observations of ionosonde at low-latitudes indicate a strong absorption of higher-frequency radio signals. The detail response of these flare on EIA of the earth's ionosphere will be presented and discussed.

  10. Preserving Astronomy's Photographic Legacy: Current State and the Future of North American Astronomical Plates

    Science.gov (United States)

    Osborn, W.; Robbins, L.

    2009-08-01

    This book contains articles on preserving astronomy's valuable heritage of photographic observations, most of which are on glass plates. It is intended to serve as a reference for institutions charged with preserving and managing plate archives and astronomers interested in using archival photographic plates in their research. The first portion of the book focuses on previous activities and recommendations related to plate archiving. These include actions taken by the International Astronomical Union, activities in Europe and a detailed account of a workshop on preserving astronomical photographic data held in 2007 at the Pisgah Astronomical Research Institute, North Carolina. The workshop discussions covered a wide range of issues that must be considered in any effort to archive plates and culminated in a set of recommendations on preserving, cataloging and making publicly available these irreplaceable data. The second part of the book reports on some recent efforts to implement the recommendations. These include essays on the recently established Astronomical Photographic Data Archive, projects to make photographic collections available electronically, evaluations of commercial scanners for digitization of astronomical plates and the case for the continuing value of these data along with a report on the census of astronomical plate collections in North America carried out in 2008. The census cataloged the locations, numbers, and types of astronomical plates in the US and Canada. Comprehensive appendices identify all the significant collections in North America and detail the current contents, state and status of their holdings.

  11. Tropical Dominance of N2 Fixation in the North Atlantic Ocean

    Science.gov (United States)

    Marconi, Dario; Sigman, Daniel M.; Casciotti, Karen L.; Campbell, Ethan C.; Alexandra Weigand, M.; Fawcett, Sarah E.; Knapp, Angela N.; Rafter, Patrick A.; Ward, Bess B.; Haug, Gerald H.

    2017-10-01

    To investigate the controls on N2 fixation and the role of the Atlantic in the global ocean's fixed nitrogen (N) budget, Atlantic N2 fixation is calculated by combining meridional nitrate fluxes across World Ocean Circulation Experiment sections with observed nitrate 15N/14N differences between northward and southward transported nitrate. N2 fixation inputs of 27.1 ± 4.3 Tg N/yr and 3.0 ± 0.5 Tg N/yr are estimated north of 11°S and 24°N, respectively. That is, 90% of the N2 fixation in the Atlantic north of 11°S occurs south of 24°N in a region with upwelling that imports phosphorus (P) in excess of N relative to phytoplankton requirements. This suggests that, under the modern iron-rich conditions of the equatorial and North Atlantic, N2 fixation occurs predominantly in response to P-bearing, N-poor conditions. We estimate a N2 fixation rate of 30.5 ± 4.9 Tg N/yr north of 30°S, implying only 3 Tg N/yr between 30° and 11°S, despite evidence of P-bearing, N-poor surface waters in this region as well; this is consistent with iron limitation of N2 fixation in the South Atlantic. Since the ocean flows through the Atlantic surface in Pacific basins.

  12. Concept development for the ITER equatorial port visible/infrared wide angle viewing system

    International Nuclear Information System (INIS)

    Reichle, R.; Beaumont, B.; Boilson, D.; Bouhamou, R.; Direz, M.-F.; Encheva, A.; Henderson, M.; Kazarian, F.; Lamalle, Ph.; Lisgo, S.; Mitteau, R.; Patel, K. M.; Pitcher, C. S.; Pitts, R. A.; Prakash, A.; Raffray, R.; Schunke, B.; Snipes, J.; Diaz, A. Suarez; Udintsev, V. S.

    2012-01-01

    The ITER equatorial port visible/infrared wide angle viewing system concept is developed from the measurement requirements. The proposed solution situates 4 viewing systems in the equatorial ports 3, 9, 12, and 17 with 4 views each (looking at the upper target, the inner divertor, and tangentially left and right). This gives sufficient coverage. The spatial resolution of the divertor system is 2 times higher than the other views. For compensation of vacuum-vessel movements, an optical hinge concept is proposed. Compactness and low neutron streaming is achieved by orienting port plug doglegs horizontally. Calibration methods, risks, and R and D topics are outlined.

  13. Neodymium isotope ratios in fish debris as a tracer for a low oxygen water mass in the equatorial Pacific across the last glacial termination.

    Science.gov (United States)

    Reimi Sipala, M. A.; Marcantonio, F.

    2017-12-01

    The deep ocean has long been suggested as a potential sink of carbon during the LGM, providing storage for the drawdown of atmospheric CO2 observed in the climate record. However, the exact location, origin and pathway of this respired carbon pool remains largely unconstrained. The equatorial Pacific is an important player in the ocean biogeochemical cycling of carbon, with many researchers focusing on the changes in iron-limited systems and potential micronutrient supply changes throughout the Pleistocene glaciation. Here we attempt to isolate the role of deep water circulation changes that may be associated with changing bottom water oxygen conditions in the Central Equatorial Pacific during the last deglaciation. We measure the variability of the Nd isotopic composition of fish debris from three sites in the Central Equatorial Pacific (CEP) along a meridional transect at approximately 160° W -- 0° 28' N (ML1208-17PC), 4° 41' N (ML1208-31BB), and 7 ° 2'N (ML1208-31BB). Nd isotopic values in fish debris reflect the Nd isotopic composition of bottom water at the time of deposition and are insensitive to moderate changes in redox conditions or pore water oxygen levels. Nd isotope ratios can, therefore, be used as an effective deep-ocean water mass tracer. This work attempts to illuminate our current understanding of changes in bottom water oxygenation conditions throughout the Equatorial Pacific over the past 25 kyr. High authigenic U concentrations during peak glacial conditions have been attributed to deep-water suboxic conditions potentially associated with increased respired carbon storage. However, it is still unclear if these changes originate in the Southern Ocean, and propagate to the equatorial Pacific through an increased in penetration of Southern Ocean Intermediate water, or if they represent a change in the efficiency of the biological pump, permitting a drawdown of oxygen in bottom water without increased nutrient availability.

  14. Sensitivity of population smoke exposure to fire locations in Equatorial Asia

    Science.gov (United States)

    Kim, Patrick S.; Jacob, Daniel J.; Mickley, Loretta J.; Koplitz, Shannon N.; Marlier, Miriam E.; DeFries, Ruth S.; Myers, Samuel S.; Chew, Boon Ning; Mao, Yuhao H.

    2015-02-01

    High smoke concentrations in Equatorial Asia, primarily from land conversion to oil palm plantations, affect a densely populated region and represent a serious but poorly quantified air quality concern. Continued expansion of the oil palm industry is expected but the resulting population exposure to smoke is highly dependent on where this expansion takes place. We use the adjoint of the GEOS-Chem chemical transport model to map the sensitivity of smoke concentrations in major Equatorial Asian cities, and for the population-weighted region, to the locations of the fires. We find that fires in southern Sumatra are particularly detrimental, and that a land management policy protecting peatswamp forests in Southeast Sumatra would be of great air quality benefit. Our adjoint sensitivities can be used to immediately infer population exposure to smoke for any future fire emission scenario.

  15. Numerical simulations of type II gradient drift irregularities in the equatorial electrojet

    International Nuclear Information System (INIS)

    Ferch, R.L.; Sudan, R.N.

    1977-01-01

    Two-dimensional numerical studies of the development of type II irregularities in the equatorial electrojet have been carried out using a method similar to that of McDonald et al., (1974) except that ion inertia has been neglected. This simplification is shown to be a valid approximation whenever the electron drift velocity is small in comparison with the ion acoustic velocity and the values of the other parameters are those appropriate for the equatorial E layer. This code enables us to follow the development of quasi-steady state turbulence from appropriate initial pertubations. The two-dimensional turbulent spectrum of electron density perturbations excited is studied both for the case of devlopment from initial perturbations and for the case of a continuously pumped single driving wave

  16. Propagation of EMIC triggered emissions toward the magnetic equatorial plane

    Science.gov (United States)

    Grison, B.; Santolik, O.; Pickett, J. S.; Omura, Y.; Engebretson, M. J.; Dandouras, I. S.; Masson, A.; Decreau, P.; Cornilleau-Wehrlin, N.

    2011-12-01

    EMIC triggered emissions are observed close to the equatorial plane of the magnetosphere at locations where EMIC waves are commonly observed: close to the plasmapause region and in the dayside magnetosphere close to the magnetopause. Their overall characteristics (frequency with time dispersion, generation mechanism) make those waves the EMIC analogue of rising frequency whistler-mode chorus emissions. In our observations the Poynting flux of these emissions is usually clearly arriving from the equatorial region direction, especially when observations take place at more than 5 degrees of magnetic latitude. Simulations have also confirmed that the conditions of generation by interaction with energetic ions are at a maximum at the magnetic equator (lowest value of the background magnetic field along the field line). However in the Cluster case study presented here the Poynting flux of EMIC triggered emissions is propagating toward the equatorial region. The large angle between the wave vector and the background magnetic field is also unusual for this kind of emission. The rising tone starts just above half of the He+ gyrofrequency (Fhe+) and it disappears close to Fhe+. At the time of detection, the spacecraft magnetic latitude is larger than 10 degrees and L shell is about 4. The propagation sense of the emissions has been established using two independent methods: 1) sense of the parallel component of the Poynting flux for a single spacecraft and 2) timing of the emission detections at each of the four Cluster spacecraft which were in a relatively close configuration. We propose here to discuss this unexpected result considering a reflection of this emission at higher latitude.

  17. Longitudinal Variation of the Lunar Tide in the Equatorial Electrojet

    Science.gov (United States)

    Yamazaki, Yosuke; Stolle, Claudia; Matzka, Jürgen; Siddiqui, Tarique A.; Lühr, Hermann; Alken, Patrick

    2017-12-01

    The atmospheric lunar tide is one known source of ionospheric variability. The subject received renewed attention as recent studies found a link between stratospheric sudden warmings and amplified lunar tidal perturbations in the equatorial ionosphere. There is increasing evidence from ground observations that the lunar tidal influence on the ionosphere depends on longitude. We use magnetic field measurements from the CHAMP satellite during July 2000 to September 2010 and from the two Swarm satellites during November 2013 to February 2017 to determine, for the first time, the complete seasonal-longitudinal climatology of the semidiurnal lunar tidal variation in the equatorial electrojet intensity. Significant longitudinal variability is found in the amplitude of the lunar tidal variation, while the longitudinal variability in the phase is small. The amplitude peaks in the Peruvian sector (˜285°E) during the Northern Hemisphere winter and equinoxes, and in the Brazilian sector (˜325°E) during the Northern Hemisphere summer. There are also local amplitude maxima at ˜55°E and ˜120°E. The longitudinal variation is partly due to the modulation of ionospheric conductivities by the inhomogeneous geomagnetic field. Another possible cause of the longitudinal variability is neutral wind forcing by nonmigrating lunar tides. A tidal spectrum analysis of the semidiurnal lunar tidal variation in the equatorial electrojet reveals the dominance of the westward propagating mode with zonal wave number 2 (SW2), with secondary contributions by westward propagating modes with zonal wave numbers 3 (SW3) and 4 (SW4). Eastward propagating waves are largely absent from the tidal spectrum. Further study will be required for the relative importance of ionospheric conductivities and nonmigrating lunar tides.

  18. Effect of magnetic activity on plasma bubbles over equatorial and low-latitude regions in East Asia

    Directory of Open Access Journals (Sweden)

    G. Li

    2009-01-01

    Full Text Available The dependence of plasma bubble occurrence in the eveningside ionosphere, with magnetic activity during the period years 2001–2004, is studied here based on the TEC observations gathered by ground-based GPS receivers which are located in the equatorial and low-latitude regions in East Asia. The observed plasma bubbles consist of the plasma-bubble events in the equatorial (stations GUAM, PIMO and KAYT, and low-latitude regions (stations WUHN, DAEJ and SHAO. It is shown that most equatorial plasma-bubble events commence at 20:00 LT, and may last for >60 min. The magnetic activity appears to suppress the generation of equatorial plasma bubbles with a time delay of more than 3 h (4–9 h. While in the low-latitude regions, most plasma-bubble events commence at about 23:00 LT and last for <45 min. The best correlation between Kp and low-latitude plasma-bubble occurrence is found with an 8–9 h delay, a weak correlation exists for time delays of 6–7 h. This probably indicates that over 3 h delayed disturbance dynamo electric fields obviously inhibit the development of plasma bubbles in the pre-midnight sector.

  19. Spread F – an old equatorial aeronomy problem finally resolved?

    Directory of Open Access Journals (Sweden)

    R. F. Woodman

    2009-05-01

    Full Text Available One of the oldest scientific topics in Equatorial Aeronomy is related to Spread-F. It includes all our efforts to understand the physical mechanisms responsible for the existence of ionospheric F-region irregularities, the spread of the traces in a night-time equatorial ionogram – hence its name – and all other manifestations of the same. It was observed for the first time as an abnormal ionogram in Huancayo, about 70 years ago. But only recently are we coming to understand the physical mechanisms responsible for its occurrence and its capricious day to day variability. Several additional techniques have been used to reveal the spatial and temporal characteristics of the F-region irregularities responsible for the phenomenon. Among them we have, in chronological order, radio star scintillations, trans-equatorial radio propagation, satellite scintillations, radar backscatter, satellite and rocket in situ measurements, airglow, total electron content techniques using the propagation of satellite radio signals and, recently, radar imaging techniques. Theoretical efforts are as old as the observations. Nevertheless, 32 years after their discovery, Jicamarca radar observations showed that none of the theories that had been put forward could explain them completely. The observations showed that irregularities were detected at altitudes that were stable according to the mechanisms proposed. A breakthrough came a few years later, again from Jicamarca, by showing that some of the "stable" regions had become unstable by the non-linear propagation of the irregularities from the unstable to the stable region of the ionosphere in the form of bubbles of low density plasma. A problem remained, however; the primary instability mechanism proposed, an extended (generalized Rayleigh-Taylor instability, was too slow to explain the rapid development seen by the observations. Gravity waves in the neutral background have been proposed as a seeding mechanism to

  20. Nanosatellites constellation as an IoT communication platform for near equatorial countries

    Science.gov (United States)

    Narayanasamy, A.; Ahmad, Y. A.; Othman, M.

    2017-11-01

    Anytime, anywhere access for real-time intelligence by Internet of Things (IoT) is changing the way that the whole world will operate as it moves toward data driven technologies. Over the next five years, IoT related devices going to have a dramatic breakthrough in current and new applications, not just on increased efficiency and cost reduction on current system, but it also will make trillion-dollar revenue generation and improve customer satisfaction. IoT communications is the networking of intelligent devices which enables data collection from remote assets. It covers a broad range of technologies and applications which connect to the physical world while allowing key information to be transferred automatically. The current terrestrial wireless communications technologies used to enable this connectivity include GSM, GPRS, 3G, LTE, WIFI, WiMAX and LoRa. These connections occur short to medium range distance however, none of them can cover a whole country or continent and the networks are getting congested with the multiplication of IoT devices. In this study, we discuss a conceptual design of a nanosatellite constellation those can provide a space-based communication platform for IoT devices for near Equatorial countries. The constellation design i.e. the orbital plane and number of satellites and launch deployment concepts are presented.

  1. Surface temperature of the equatorial Pacific Ocean and the Indian rainfall

    Digital Repository Service at National Institute of Oceanography (India)

    Gopinathan, C.K.

    The time variation of the monthly mean surface temperature of the equatorial Pacific Ocean during 1982-1987 has been studied in relation to summer monsoon rainfall over India The ENSO events of 1982 and 1987 were related to a significant reduction...

  2. Effective potential for equatorial motion in the Tomimatsu-Sato space-times

    Energy Technology Data Exchange (ETDEWEB)

    Calvani, M [Padua Univ. (Italy). Ist. di Astronomia

    1978-01-28

    We give general rules to draw the effective potential curves for equatorial motion in the T-S space-times either with am. Some general properties of the potentials are pointed out and few examples shown.

  3. Correlation analysis between the occurrence of ionospheric scintillation at the magnetic equator and at the southern peak of the Equatorial Ionization Anomaly

    Science.gov (United States)

    de Lima, G. R. T.; Stephany, S.; de Paula, E. R.; Batista, I. S.; Abdu, M. A.; Rezende, L. F. C.; Aquino, M. G. S.; Dutra, A. P. S.

    2014-06-01

    Ionospheric scintillation refers to amplitude and phase fluctuations in radio signals due to electron density irregularities associated to structures named ionospheric plasma bubbles. The phenomenon is more pronounced around the magnetic equator where, after sunset, plasma bubbles of varying sizes and density depletions are generated by plasma instability mechanisms. The bubble depletions are aligned along Earth's magnetic field lines, and they develop vertically upward over the magnetic equator so that their extremities extend in latitude to north and south of the dip equator. Over Brazil, developing bubbles can extend to the southern peak of the Equatorial Ionization Anomaly, where high levels of ionospheric scintillation are common. Scintillation may seriously affect satellite navigation systems, such as the Global Navigation Satellite Systems. However, its effects may be mitigated by using a predictive model derived from a collection of extended databases on scintillation and its associated variables. This work proposes the use of a classification and regression decision tree to perform a study on the correlation between the occurrence of scintillation at the magnetic equator and that at the southern peak of the equatorial anomaly. Due to limited size of the original database, a novel resampling heuristic was applied to generate new training instances from the original ones in order to improve the accuracy of the decision tree. The correlation analysis presented in this work may serve as a starting point for the eventual development of a predictive model suitable for operational use.

  4. Equatorial Scintillation Study at Ilorin and Nsukka, Nigeria during Year 2011-2012

    Science.gov (United States)

    Akala, A.

    2017-12-01

    This study presents GNSS scintillations over Ilorin (8.48 oN, 4.54 oE, and mag lat: 1.83oS) and Nsukka (6.84 oN, 7.37 oE, and mag lat: 2.94oS), Nigeria during year 2011-2012. The two stations are located within the inner flank of the equatorial ionization anomaly. Firstly, we investigated the climatology of equatorial scintillations at the two stations. We suppressed multipath effects on the data by imposing a 300 elevation masking on the data. In addition, we investigated scintillation occurrences at the two locations on a satellite-by-satellite basis at varying elevation angles. The source of scintillation records at low-elevation angle is attributed to multipath, while that at high-elevation angle is attributed to ionospheric irregularities. Seasonally, scintillations recorded highest occurrences during March equinox, and the least during June solstice. The trend of scintillations, at both low- and high-elevation angles at the two stations were almost the same. EGNOS satellites signals scintillated at the two locations during the time intervals when GPS satellites signals experienced scintillations. These results could support the development of scintillation models for equatorial Africa, and could also be of benefit to GPS and EGNOS service providers and designers, with a view to providing robust services for GNSS user community in Africa.

  5. Assessing and Optimizing Argo profile mapping : An example in the Equatorial Pacific

    Science.gov (United States)

    Gasparin, Florent; Roemmich, Dean; Gilson, John; Sprintall, Janet

    2014-05-01

    Estimation of subsurface temperature, salinity and velocity has been revolutionized over the last decade as a result of development and deployment of the Argo Program. Argo products have become one of the major observational tools in Oceanography, used in a wide range of basic research, operational models, and education applications. To assess the skill of Argo in estimating oceanic conditions at different scales of variability in the Equatorial Pacific, we optimize Argo profile mapping by focusing on the covariance function. Decorrelation scales are discussed as well as impacts of several different interpolation schemes. The optimization is based on three points 1) Functional representation of the Argo sampled covariance, 2) Realism/Accuracy of the mapping errors and 3) Comparison with independent data such as TAO moorings and sea surface height. The last points show that Argo can represent more than 90% of the total TAO variance and around 80% of the intraseasonal TAO variability (between 10 and 100 days) at the Equator. As an illustration of the improvement, we show how Argo profiles can reveal the vertical structure and vertical phase propagation corresponding to the steric height annual cycle. We also discuss how this unique equatorial wave phenomena is modified during El Nino/La Nina events. This work anticipates a field experiment beginning in early 2014 and can be used for assessing and adapting the equatorial observational network.

  6. Study of equatorial Kelvin waves using the MST radar and radiosonde observations

    Directory of Open Access Journals (Sweden)

    P. Kishore

    2005-06-01

    Full Text Available In this paper an attempt has been made to study equatorial Kelvin waves using a high power coherent VHF radar located at Gadanki (13.5° N, 79.2° E, a tropical station in the Indian sub-continent. Simultaneous radiosonde observations taken from a nearby meteorological station located in Chennai (13.04° N, 80.17° E were also used to see the coherence in the observed structures. These data sets were analyzed to study the mean winds and equatorial waves in the troposphere and lower stratosphere. Equatorial waves with different periodicities were identified. In the present study, particular attention has been given to the fast Kelvin wave (6.5-day and slow Kelvin wave (16-day. Mean zonal wind structures were similar at both locations. The fast Kelvin wave amplitudes were somewhat similar in both observations and the maximum amplitude is about 8m/s. The phase profiles indicated a slow downward progression. The slow Kelvin wave (16-day amplitudes shown by the radiosonde measurements are a little larger than the radar derived amplitudes. The phase profiles showed downward phase progression and it translates into a vertical wavelength of ~10-12km. The radar and radiosonde derived amplitudes of fast and slow Kelvin waves are larger at altitudes near the tropopause (15-17km, where the mean wind attains westward maximum.

  7. Large-scale shifts in phytoplankton groups in the Equatorial Pacific during ENSO cycles

    Directory of Open Access Journals (Sweden)

    I. Masotti

    2011-03-01

    Full Text Available The El Niño Southern Oscillation (ENSO drives important changes in the marine productivity of the Equatorial Pacific, in particular during major El Niño/La Niña transitions. Changes in environmental conditions associated with these climatic events also likely impact phytoplankton composition. In this work, the distribution of four major phytoplankton groups (nanoeucaryotes, Prochlorococcus, Synechococcus, and diatoms was examined between 1996 and 2007 by applying the PHYSAT algorithm to the ocean color data archive from the Ocean Color and Temperature Sensor (OCTS and Sea-viewing Wide Field-of-view Sensor (SeaWiFS. Coincident with the decrease in chlorophyll concentrations, a large-scale shift in the phytoplankton composition of the Equatorial Pacific, that was characterized by a decrease in Synechococcus and an increase in nanoeucaryote dominance, was observed during the early stages of both the strong El Niño of 1997 and the moderate El Niño of 2006. A significant increase in diatoms dominance was observed in the Equatorial Pacific during the 1998 La Niña and was associated with elevated marine productivity. An analysis of the environmental variables using a coupled physical-biogeochemical model (NEMO-PISCES suggests that the Synechococcus dominance decrease during the two El Niño events was associated with an abrupt decline in nutrient availability (−0.9 to −2.5 μM NO3 month−1. Alternatively, increased nutrient availability (3 μM NO3 month−1 during the 1998 La Niña resulted in Equatorial Pacific dominance diatom increase. Despite these phytoplankton community shifts, the mean composition is restored after a few months, which suggests resilience in community structure.

  8. Rainforests north of the Tropic of Cancer: Physiognomy, floristics and diversity in ‘lowland rainforests’ of Meghalaya, India

    Directory of Open Access Journals (Sweden)

    Uma Shankar

    2017-02-01

    Full Text Available The lowland rainforests of Meghalaya, India represent the westernmost limit of the rainforests north of the Tropic of Cancer. These forests, on the Shillong plateau, are akin to Whitmore's ‘tropical lowland evergreen rainforest’ formation and exhibit striking similarities and conspicuous differences with the equatorial rainforests in Asia-Pacific as well as tropical seasonal rainforests in southwestern China near the Tropic of Cancer. We found these common attributes of the rainforests in Meghalaya: familial composition with predominance of Euphorbiaceae, Lauraceae, Meliaceae, Moraceae, Myrsiticaceae, Myrtaceae and Rubiaceae; deciduousness in evergreen physiognomy; dominance of mega- and mesophanerophytic life-forms; abundance of species with low frequency of occurrence (rare and aggregated species; low proportional abundance of the abundant species; and truncated lognormal abundance distribution. The levels of stand density and stand basal area were comparable with seasonal rainforests in southwestern China, but were lower than equatorial rainforests. Tropical Asian species predominated flora, commanding 95% of the abundance. The differences include overall low stature (height of the forest, inconspicuous stratification in canopy, fewer species and individuals of liana, thicker understory, higher proportion of rare species, absence of locally endemic species and relatively greater dominance of Fagaceae and Theaceae. The richness of species per hectare (S was considerably lower at higher latitudes in Meghalaya than in equatorial rainforests, but was comparable with seasonal rainforests. Shannon's diversity index (H′ = 4.40 nats for ≥10 cm gbh and 4.25 nats for ≥30 cm gbh was lower on higher latitudes in Meghalaya in comparison to species-rich equatorial rainforests, but it was the highest among all lowland rainforests near the Tropic of Cancer.

  9. Duffy Negative Antigen Is No Longer a Barrier to Plasmodium vivax – Molecular Evidences from the African West Coast (Angola and Equatorial Guinea)

    Science.gov (United States)

    Mendes, Cristina; Dias, Fernanda; Figueiredo, Joana; Mora, Vicenta Gonzalez; Cano, Jorge; de Sousa, Bruno; do Rosário, Virgílio E.; Benito, Agustin; Berzosa, Pedro; Arez, Ana Paula

    2011-01-01

    Background Plasmodium vivax shows a small prevalence in West and Central Africa due to the high prevalence of Duffy negative people. However, Duffy negative individuals infected with P. vivax have been reported in areas of high prevalence of Duffy positive people who may serve as supply of P. vivax strains able to invade Duffy negative erythrocytes. We investigated the presence of P. vivax in two West African countries, using blood samples and mosquitoes collected during two on-going studies. Methodology/Findings Blood samples from a total of 995 individuals were collected in seven villages in Angola and Equatorial Guinea, and 820 Anopheles mosquitoes were collected in Equatorial Guinea. Identification of the Plasmodium species was achieved by nested PCR amplification of the small-subunit rRNA genes; P. vivax was further characterized by csp gene analysis. Positive P. vivax-human isolates were genotyped for the Duffy blood group through the analysis of the DARC gene. Fifteen Duffy-negative individuals, 8 from Equatorial Guinea (out of 97) and 7 from Angola (out of 898), were infected with two different strains of P. vivax (VK210 and VK247). Conclusions In this study we demonstrated that P. vivax infections were found both in humans and mosquitoes, which means that active transmission is occurring. Given the high prevalence of infection in mosquitoes, we may speculate that this hypnozoite-forming species at liver may not be detected by the peripheral blood samples analysis. Also, this is the first report of Duffy negative individuals infected with two different strains of P. vivax (VK247 and classic strains) in Angola and Equatorial Guinea. This finding reinforces the idea that this parasite is able to use receptors other than Duffy to invade erythrocytes, which may have an enormous impact in P. vivax current distribution. PMID:21713024

  10. Observation of low energy particle precipitation at low altitude in the equatorial zone

    International Nuclear Information System (INIS)

    Miah, M.A.

    1989-01-01

    Precipitation of protons (∼ 1 MeV) in the equatorial zone was investigated by the Phoenix-1 experiment on board the S81-1 mission from May-November, 1982. The protons show a precipitation peak along the line of minimum magnetic field strength with a full width at half maximum (FWHM) of 13 0 . The index of equatorial pitch angle distribution is q ∼ 19. The peak proton flux shows a fifth-power altitude dependence, and the proton flux shows approximately a factor of 3 times increase in 1982 compared to that in 1969 due, possibly, to the stronger (∼ 1.2 times) solar maximum conditions of 10.7 cm radiation in 1982. (author)

  11. Spatial correlation of the ionsphere total electron content at the equatorial anomaly crest

    International Nuclear Information System (INIS)

    Huang, Y.

    1984-01-01

    The spatial correlation of the ionospheric total electron content (TEC) at the equatorial anomaly crest was studied by recording Faraday rotation angle of the ETS-II geostationary satellite at Lunping and Kaohsiung whose subionospheric points are located at 23.0 0 N, 121.0 0 N, and 20.9 0 N, 121.1 0 E, respectively, and are about 280 km apart. The results show that the spatial correlation of TEC at the equatorial crest region is smaller than that at other places. The day-to-day variabilities of TEC differences between two subionospheric points are quite large. The day-to-day variabilities of the fountain effect seem to play an important role

  12. Optimization of Saturn paraboloid magnetospheric field model parameters using Cassini equatorial magnetic field data

    Directory of Open Access Journals (Sweden)

    E. S. Belenkaya

    2016-07-01

    Full Text Available The paraboloid model of Saturn's magnetosphere describes the magnetic field as being due to the sum of contributions from the internal field of the planet, the ring current, and the tail current, all contained by surface currents inside a magnetopause boundary which is taken to be a paraboloid of revolution about the planet-Sun line. The parameters of the model have previously been determined by comparison with data from a few passes through Saturn's magnetosphere in compressed and expanded states, depending on the prevailing dynamic pressure of the solar wind. Here we significantly expand such comparisons through examination of Cassini magnetic field data from 18 near-equatorial passes that span wide ranges of local time, focusing on modelling the co-latitudinal field component that defines the magnetic flux passing through the equatorial plane. For 12 of these passes, spanning pre-dawn, via noon, to post-midnight, the spacecraft crossed the magnetopause during the pass, thus allowing an estimate of the concurrent subsolar radial distance of the magnetopause R1 to be made, considered to be the primary parameter defining the scale size of the system. The best-fit model parameters from these passes are then employed to determine how the parameters vary with R1, using least-squares linear fits, thus providing predictive model parameters for any value of R1 within the range. We show that the fits obtained using the linear approximation parameters are of the same order as those for the individually selected parameters. We also show that the magnetic flux mapping to the tail lobes in these models is generally in good accord with observations of the location of the open-closed field line boundary in Saturn's ionosphere, and the related position of the auroral oval. We then investigate the field data on six passes through the nightside magnetosphere, for which the spacecraft did not cross the magnetopause, such that in this case we compare the

  13. Redox Conditions and Related Color Change in Eastern Equatorial Pacific Sediments: IODP Site U1334

    Science.gov (United States)

    Kordesch, W. E.; Gussone, N. C.; Hathorne, E. C.; Kimoto, K.; Delaney, M. L.

    2011-12-01

    This study was prompted by a 65 m thick brown-green color change in deep-sea sediments of IODP Site U1334 (0-38 Ma, 4799 m water depth) that corresponds to its equatorial crossing (caused by the Northward movement of the pacific plate). Green sediment is a visual indicator of reducing conditions in sediment due to enhanced organic matter deposition and burial. Here we use geochemical redox indicators to characterize the effect of equatorial upwelling on bottom water. The modern redox signal is captured in porewater profiles (nitrate, manganese, iron, sulfate) while trace metal Enrichment Factors (EF) in bulk sediment (manganese, uranium, molybdenum, rhenium) normalized to the detrital component (titanium) record redox state at burial. To measure export productivity we also measure biogenic barium. Porewater profiles reveal suboxic diagenesis; profiles follow the expected sequence of nitrate, manganese oxide, and iron oxide reduction with increasing depth. Constant sulfate (~28 μM) implies anoxia has not occurred. Bulk sediment Mn EF are enriched (EF > 1) throughout the record (Mn EF = 15-200) while U and Mo enrichment corresponds to green color and equatorial proximity (U EF = 4-19; Mo EF = 0-7). Constant Mn enrichment implies continuous oxygenation. Uranium and Mo enrichment near the equator represents suboxic conditions also seen in the porewater. Low Re concentrations (below detection) provide additional evidence against anoxia. A comparison of Mn EF from total digestions to samples treated with an additional reductive cleaning step distinguishes between Mn-oxides and Mn-carbonates, indicating oxygenated and reducing conditions respectively. Mn-carbonate occurrence agrees with U and Mo EF; conditions were more reducing near the equator. Bio-Ba shows significant variability over this interval (22-99 mmol g-1). Our geochemical results indicate that bottom waters became suboxic at the equator as a result of equatorial upwelling-influenced increases in organic

  14. Pu isotopes in the western North Pacific Ocean before the accident at Fukushima Dai-ichi Nuclear Power Station

    Science.gov (United States)

    Yamada, M.; Zheng, J.; Aono, T.

    2011-12-01

    global fallout ratio of 0.180, proving the existence of close-in fallout Pu originating from the Pacific Proving Grounds. The North Equatorial Current and Kuroshio Current were proposed as pathways for transporting Pacific Proving Grounds-origin Pu to the western North Pacific Ocean.

  15. Discordant Early Miocene palaeomagnetic directions at the vicinity of the North Aegean Trough: tectonic or palaeofield feature?

    Science.gov (United States)

    Kontopoulou, D.; Valet, J. P.; Zananiri, I.; Voidomatis, P.

    2017-12-01

    The North Aegean Trough (N.A.T) is a major tectonic feature of North Aegean Sea. This is a large NE-SW transcurrent lineament that is interpreted as the continuation of the North Anatolian Fault, with a prominent dextral strike-slip motion. IAn intense igneous activity has developed along the N.A.T to its north through the presence of abundant plutonism and volcanism from Early Oligocene to Pliocene. A considerable amount of palaeomagnetic data display a systematic pattern of clockwise rotations with angles varying between 20°-40° since the Early Oligocene. In order to document the impact of the N.A.T to regional rotations, early Miocene lava flows have been extensively sampled in the islands of Samothrace and Lemnos located to the north and south of N.A.T, respectively. Two sets of directions have been defined from the palaeomagnetic studies. The first one corresponds to the expected North-East declinations with positive inclinations or to reversed South-West declinations with negative inclinations that were previously interpreted as a dextral rotations of this area. The second set, exhibits discordant and apparently erratic directions despite quite acceptable demagnetization behaviour and magnetic characteristics. In order to constrain further these directions we performed new samplings. The new measurements which include Thellier absolute palaeointensity experiments reveal that the intermediate directions are associated with low field values for Samothrace with a transitional field recorded between 21 and 17 Ma. The presence of single magnetization component and the variability of the lavas do not favor the possibility of self-reversal mechanisms. The consistency of the directions within each flow but also between lava flows of comparable ages in the two islands and the presence of normal and reverse polarities point to records of transitional directions. In both islands, the intermediate virtual geomagnetic poles exhibit a preference for equatorial latitudes

  16. Seasonal variations of thermocline circulation and ventilation in the Indian Ocean

    Science.gov (United States)

    You, Yuzhu

    1997-05-01

    Two seasonal hydrographic data sets, including temperature, salinity, dissolved oxygen, and nutrients, are used in a mixing model which combines cluster analysis with optimum multiparameter analysis to determine the spreading and mixing of the thermocline waters in the Indian Ocean. The mixing model comprises a system of four major source water masses, which were identified in the thermocline through cluster analysis. They are Indian Central Water (ICW), North Indian Central Water (NICW) interpreted as aged ICW, Australasian Mediterranean Water (AAMW), and Red Sea Water (RSW)/Persian Gulf Water (PGW). The mixing ratios of these water masses are quantified and mapped on four isopycnal surfaces which span the thermocline from 150 to 600 m in the northern Indian Ocean, on two meridional sections along 60°E and 90°E, and on two zonal sections along 10°S and 6°N. The mixing ratios and pathways of the thermocline water masses show large seasonal variations, particularly in the upper 400-500 m of the thermocline. The most prominent signal of seasonal variation occurs in the Somali Current, the western boundary current, which appears only during the SW (summer) monsoon. The northward spreading of ICW into the equatorial and northern Indian Ocean is by way of the Somali Current centered at 300-400 m on the σθ=26.7 isopycnal surface during the summer monsoon and of the Equatorial Countercurrent during the NE (winter) monsoon. More ICW carried into the northern Indian Ocean during the summer monsoon is seen clearly in the zonal section along 6°N. NICW spreads southward through the western Indian Ocean and is stronger during the winter monsoon. AAMW appears in both seasons but is slightly stronger during the summer in the upper thermocline. The westward flow of AAMW is by way of the South Equatorial Current and slightly bends to the north on the σθ=26.7 isopycnal surface during the summer monsoon, indicative of its contribution to the western boundary current. Outflow

  17. Linear theory of equatorial spread F

    International Nuclear Information System (INIS)

    Hudson, M.K.; Kennel, C.F.

    1975-01-01

    A fluid dispersion relation for the drift and interchange (Rayleigh-Taylor) modes in a collisional plasma forms the basis for a linear theory of equatorial spread F. The collisional drift mode growth rate will exceed the growth rate of the Rayleigh-Taylor mode at short perpendicular wavelengths and density gradient scale lengths, and the drift mode can grow on top side as well as on bottom side density gradients. However, below the F peak, where spread F predominates, it is concluded that both the drift and the Rayleigh-Taylor modes contribute to the total spread F spectrum, the Rayleigh-Taylor mode dominating at long and the drift mode at short perpendicular wavelengths above the ion Larmor radius

  18. Quasi-biennial variation of equatorial waves as seen in satellite remote sensing data

    Science.gov (United States)

    Chen, Zeyu

    The quasi-biennial oscillation (QBO) in zonal winds in the lower stratosphere at the Equator is the most prominent inter-annual variation signal in the middle atmosphere. Theoretically, it is driven by the drag from the damping of equatorial waves including the equatorially trapped planetary scale waves, such as Kelvin waves propagating eastward and Rossby-gravity waves propagating westward, inertio-gravity waves and gravity waves. In current research, the tem-perature data collected by the SABER/TIMED mission in 2002-2009 are used to investigate the equatorial waves activities. The Fast Fourier Synoptic Mapping (FFSM) method is applied to delineate planetary wave components with the zonal wavenumber spanning over -6 to +6, hereby, positive (negative) wavenumber is assigned to westward (eastward) propagating waves. Limited by the SABER/TIMED sampling scheme, only the waves with periods longer than one day can be resolved. Focusing on the height region 70-10 hPa where the QBO signal is most significant, it is clearly observed that the composite activity of all the eastward waves exhibit QBO like variation. Specifically, for each QBO cycle, the activity at 50 hPa level is characterized by the occurrence of a substantially clear minimum that coincides to the fast downward propagation of the westerly phase, the typical pattern of the QBO phenomenon. Phase speed spectra are derived by using the FFSM analysis results. And vertical shear of the zonal wind is derived by using the rawinsonde data at Singapore. Comparison of the phase speed spectra and the wind shear indicates that the minimum is due to the westerly shear below 30 hPa. Between the minimum, significant wave activities emerge, thus the property for the components are investigated. Results show that in height range 70-10 hPa, both wave 1 to wave 3 are prominent during the inter-minimum period for each QBO cycle. At 50 hPa level, wave 1 component exhibits amplitude spectral peak at three kinds of period, 8, 11

  19. Interannual Variations in the Synoptic-Scale Disturbances over the western North Pacific

    Science.gov (United States)

    Zhou, Xingyan; Lu, Riyu

    2017-04-01

    The present study investigates the interannual variation of synoptic disturbance activities over the western North Pacific (WNP) and its relationship with the large-scale circulation and tropical SST during June-November for the period 1958-2014. It is shown that the interannual variability of 850-hPa eddy kinetic energy (EKE) anomalies over the WNP could be well described by its two leading modes of EOF, i.e., northeast pattern and southwest pattern. The high value zone of former is located over the WNP, while latter around the Philippines, which just overlap a broad area of the WNP. Background flows play an important role in the formation of these two patterns, it could induce the cyclonic ( anticyclonic ) anomalies over the variation centers which favors ( disfavors) synoptic eddies to get kinetic energy from the mean flows through barotropic energy conversion. The SST anomalies of the equatorial central and eastern Pacific also contribute to these two patterns. When the SST of equatorial central and eastern Pacific above (below) the normal, a cyclonic (anticyclonic) anomaly appears in the Philippine Sea while an anticyclonic (cyclonic) anomaly happens in the South China Sea, which will induce positive (negative) EKE anomalies over the WNP but negative (positive) anomalies over the South China Sea and the Philippines.

  20. Recycled iron fuels new production in the eastern equatorial Pacific Ocean.

    Science.gov (United States)

    Rafter, Patrick A; Sigman, Daniel M; Mackey, Katherine R M

    2017-10-24

    Nitrate persists in eastern equatorial Pacific surface waters because phytoplankton growth fueled by nitrate (new production) is limited by iron. Nitrate isotope measurements provide a new constraint on the controls of surface nitrate concentration in this region and allow us to quantify the degree and temporal variability of nitrate consumption. Here we show that nitrate consumption in these waters cannot be fueled solely by the external supply of iron to these waters, which occurs by upwelling and dust deposition. Rather, a substantial fraction of nitrate consumption must be supported by the recycling of iron within surface waters. Given plausible iron recycling rates, seasonal variability in nitrate concentration on and off the equator can be explained by upwelling rate, with slower upwelling allowing for more cycles of iron regeneration and uptake. The efficiency of iron recycling in the equatorial Pacific implies the evolution of ecosystem-level mechanisms for retaining iron in surface ocean settings where it limits productivity.

  1. Global peak flux profile of proton precipitation in the equatorial zone

    International Nuclear Information System (INIS)

    Miah, M.A.

    1991-01-01

    Particle precipitation near the equator within ± 30deg geomagnetic latitude was investigated by the Phoenix-1 instrumentation on board the S81-1 mission. The monitor telescope on board the mission was sensitive to protons in the energy range 0.6-9.1 MeV, to alpha particles in the energy range 0.4-80 MeV/nucleon and Z→3 particles ( 12 C) of energy greater than 0.7 MeV/nucleon. The peak efficiency of the telescope was for particles of ∼88deg pitch angles at the line of minimum magnetic field. Careful separation of the magnetically quiet time equatorial particle data from global data coverage and subsequent analysis shows that the ML detector on board the mission detected mostly protons. The proton peak flux profile follows the line of minimum magnetic field. The full width at half maximum (FWHM) of the equatorial zone is ∼ 13deg, which is well within the EUV emission zone. (author). 14 refs., 9 figs

  2. Seaglider surveys at Ocean Station Papa: Circulation and water mass properties in a meander of the North Pacific Current

    Science.gov (United States)

    Pelland, Noel A.; Eriksen, Charles C.; Cronin, Meghan F.

    2016-09-01

    A Seaglider autonomous underwater vehicle augmented the Ocean Station Papa (OSP; 50°N, 145°W) surface mooring, measuring spatial structure on scales relevant to the monthly evolution of the moored time series. During each of three missions from June 2008 to January 2010, a Seaglider made biweekly 50 km × 50 km surveys in a bowtie-shaped survey track. Horizontal temperature and salinity gradients measured by these surveys were an order of magnitude stronger than climatological values and sometimes of opposite sign. Geostrophically inferred circulation was corroborated by moored acoustic Doppler current profiler measurements and AVISO satellite altimetry estimates of surface currents, confirming that glider surveys accurately resolved monthly scale mesoscale spatial structure. In contrast to climatological North Pacific Current circulation, upper-ocean flow was modestly northward during the first half of the 18 month survey period, and weakly westward during its latter half, with Rossby number O>(0.01>). This change in circulation coincided with a shift from cool and fresh to warm, saline, oxygen-rich water in the upper-ocean halocline, and an increase in vertical fine structure there and in the lower pycnocline. The anomalous flow and abrupt water mass transition were due to the slow growth of an anticyclonic meander within the North Pacific Current with radius comparable to the scale of the survey pattern, originating to the southeast of OSP.

  3. Study of Large-Scale Wave Structure and Development of Equatorial Plasma Bubbles Using the C/NOFS Satellite

    Science.gov (United States)

    2012-10-31

    scientific journals. The papers are listed below in chronological order. Kelley, M.C., F.S. Rodrigues, J.J. Makela, R. Tsunoda, P.A. Roddy, D.E. Hunton...source region be located on the dip equator. To illustrate, Figure 6 presents a sequence of satellite OLR maps, which were taken over Peru on 19-20...to large-scale wave structure and equatorial spread F, presented at the International Symposium for Equatorial Aeronomy, Paracas, Peru , March 2012

  4. Coccolithophore fluxes in the open tropical North Atlantic: influence of thermocline depth, Amazon water, and Saharan dust

    Science.gov (United States)

    Guerreiro, Catarina V.; Baumann, Karl-Heinz; Brummer, Geert-Jan A.; Fischer, Gerhard; Korte, Laura F.; Merkel, Ute; Sá, Carolina; de Stigter, Henko; Stuut, Jan-Berend W.

    2017-10-01

    Coccolithophores are calcifying phytoplankton and major contributors to both the organic and inorganic oceanic carbon pumps. Their export fluxes, species composition, and seasonal patterns were determined in two sediment trap moorings (M4 at 12° N, 49° W and M2 at 14° N, 37° W) collecting settling particles synchronously from October 2012 to November 2013 at 1200 m of water depth in the open equatorial North Atlantic. The two trap locations showed a similar seasonal pattern in total coccolith export fluxes and a predominantly tropical coccolithophore settling assemblage. Species fluxes were dominated throughout the year by lower photic zone (LPZ) taxa (Florisphaera profunda, Gladiolithus flabellatus) but also included upper photic zone (UPZ) taxa (Umbellosphaera spp., Rhabdosphaera spp., Umbilicosphaera spp., Helicosphaera spp.). The LPZ flora was most abundant during fall 2012, whereas the UPZ flora was more important during summer. In spite of these similarities, the western part of the study area produced persistently higher fluxes, averaging 241×107 ± 76×107 coccoliths m-2 d-1 at station M4 compared to only 66×107 ± 31×107 coccoliths m-2 d-1 at station M2. Higher fluxes at M4 were mainly produced by the LPZ species, favoured by the westward deepening of the thermocline and nutricline. Still, most UPZ species also contributed to higher fluxes, reflecting enhanced productivity in the western equatorial North Atlantic. Such was the case of two marked flux peaks of the more opportunistic species Gephyrocapsa muellerae and Emiliania huxleyi in January and April 2013 at M4, indicating a fast response to the nutrient enrichment of the UPZ, probably by wind-forced mixing. Later, increased fluxes of G. oceanica and E. huxleyi in October-November 2013 coincided with the occurrence of Amazon-River-affected surface waters. Since the spring and fall events of 2013 were also accompanied by two dust flux peaks, we propose a scenario in which atmospheric dust also

  5. Bioclimatic predictions of habitat suitability for the biofuel switchgrass in North America under current and future climate scenarios

    International Nuclear Information System (INIS)

    Barney, Jacob N.; DiTomaso, Joseph M.

    2010-01-01

    Dedicated biofuel crops, while providing economic and other benefits, may adversely impact biodiversity directly via land use conversion, or indirectly via creation of novel invasive species. To mitigate negative impacts bioclimatic envelope models (BEM) can be used to estimate the potential distribution and suitable habitat based on the climate and distribution in the native range. We used CLIMEX to evaluate the regions of North America suitable for agronomic production, as well as regions potentially susceptible to an invasion of switchgrass (Panicum virgatum) under both current and future climate scenarios. Model results show that >8.7 million km 2 of North America has suitable to very favorable habitat, most of which occurs east of the Rocky Mountains. The non-native range of western North America is largely unsuitable to switchgrass as a crop or potential weed unless irrigation or permanent water is available. Under both the CGCM2 and HadCM3 climate models and A2 and B2 emissions scenarios, an overall increase in suitable habitat is predicted over the coming century, although the western US remains unsuitable. Our results suggest that much of North America is suitable for switchgrass cultivation, although this is likely to shift north in the coming century. Our results also agree with field collections of switchgrass outside its native range, which indicate that switchgrass is unlikely to establish unless it has access to water throughout the year (e.g., along a stream). Thus, it is the potential invasion of switchgrass into riparian habitats in the West that requires further investigation. (author)

  6. Evidence for a continuous spectrum of equatorial waves in the Indian Ocean

    Science.gov (United States)

    Eriksen, Charles C.

    1980-06-01

    Seven-month records of current and temperature measurements from a moored array centered at 53°E on the equator in the Indian Ocean are consistent with a continuous spectrum of equatorially trapped internal inertial-gravity, mixed Rossby-gravity, and Kelvin waves. A model spectrum of free linear waves analogous to those for mid-latitude internal gravity waves is used to compute spectra of observed quantities at depths greater than about 2000 m. Model parameters are adjusted to fit general patterns in the observed spectra over periods from roughly 2 days to 1 month. Measurements at shallower depths presumably include forced motions which we have not attempted to model. This `straw-person' spectrum is consistent with the limited data available. The model spectru Ē (n, m, ω) = K · B(m) · C(n, ω), where Ē is an average local energy density in the equatorial wave guide which has amplitude K, wave number shape B(m) ∝ (1 + m/m*)-3, where m is vertical mode number and the bandwidth parameter m* is between 4 and 8, and frequency shape C(n, ω) ∝ [(2n + 1 + s2)½ · σ3]-1 where n is meridional mode number, and s and σ are dimensionless zonal wave number and frequency related by the usual dispersion relation. The scales are (β/cm)½ and (β · cm)½ for horizontal wave number and frequency, where cm is the Kelvin wave speed of the vertical mode m. At each frequency and vertical wave number, energy is partitioned equally among the available inertial gravity modes so that the field tends toward horizontal isotropy at high frequency. The transition between Kelvin and mixed Rossby-gravity motion at low frequency and inertial-gravity motion at high frequency occurs at a period of roughly 1 week. At periods in the range 1-3 weeks, the model spectrum which fits the observations suggests that mixed Rossby-gravity motion dominates; at shorter periods gravity motion dominates. The model results are consistent with the low vertical coherence lengths observed (roughly 80 m

  7. Preface: The International Reference Ionosphere (IRI) at equatorial latitudes

    Science.gov (United States)

    Reinisch, Bodo; Bilitza, Dieter

    2017-07-01

    This issue of Advances in Space Research includes papers that report and discuss improvements of the International Reference Ionosphere (IRI). IRI is the international standard for the representation of the plasma in Earth's ionosphere and recognized as such by the Committee on Space Research (COSPAR), the International Union of Radio Science (URSI), the International Telecommunication Union (ITU), and the International Standardization Organization (ISO). As requested, particularly by COSPAR and URSI, IRI is an empirical model relying on most of the available and reliable ground and space observations of the ionosphere. As new data become available and as older data sources are fully exploited the IRI model undergoes improvement cycles to stay as close to the existing data record as possible. The latest episode of this process is documented in the papers included in this issue using data from the worldwide network of ionosondes, from a few of the incoherent scatter radars, from the Alouette and ISIS topside sounders, and from the Global Navigation Satellite Systems (GNSS). The focus of this issue is on the equatorial and low latitude region that is of special importance for ionospheric physics because it includes the largest densities and steep density gradients in the double hump latitudinal structure, the Equatorial Ionization Anomaly (EIA), which is characteristic for this region.

  8. Circulation of the thermocline salinity maximum waters off the Northern Brazil as inferred from in situ measurements and numerical results

    Energy Technology Data Exchange (ETDEWEB)

    Silva, A.C. [Universidade Federal do Ceara, Fortaleza, CE (Brazil). Inst. de Ciencias do Mar; Bourles, B. [Inst. de Recherche pour le Developpement, Cotonou (Benin); Araujo, M. [UFPE, Recife, PE (Brazil). Lab. de Oceanografia Fisica Estuarina e Costeira

    2009-07-01

    High resolution hydrographic observations of temperature and salinity are used to analyse the subsurface circulation along the coast of North Brazil, off the Amazon mouth, between 2 S and 6 N. Observations are presented from four cruises carried out in different periods of the year (March-May 1995, May-June 1999, July-August 2001 and October-November 1997). Numerical model outputs complement the results of the shipboard measurements, and are used to complete the descriptions of mesoscale circulation. The Salinity Maximum Waters are here analyzed, principally in order to describe the penetration of waters originating in the Southern Hemisphere toward the Northern Hemisphere through the North Brazil Current (NBC)/North Brazil Undercurrent (NBUC). Our results show that, if the Equatorial Undercurrent (EUC) is fed by Northern Atlantic Waters, this contribution may only occur in the ocean interior, east of the western boundary around 100 m depth. Modeling results indicate a southward penetration of the Western Boundary Undercurrent (WBUC) below the thermocline, along the North Brazilian coast into the EUC or the North Equatorial Undercurrent (NEUC) (around 48 W-3 N). The WBUC in the region does not flow more south than 3 N. The northern waters are diverted eastward either by the NBC retroflection or by the northern edge of the associated clockwise rings. The existence of subsurface mesoscale rings associated to the NBC retroflection is evidenced, without any signature in the surface layer, so confirming earlier numerical model outputs. These subsurface anticyclones, linked to the NBC/NBUC retroflection into the North Equatorial Undercurrent and the EUC, contribute to the transport of South Atlantic high salinity water into the Northern Hemisphere. (orig.)

  9. Coral record of variability in the upstream Kuroshio Current during 1953-2004

    Science.gov (United States)

    Li, Xiaohua; Liu, Yi; Hsin, Yi-Chia; Liu, Weiguo; Shi, Zhengguo; Chiang, Hong-Wei; Shen, Chuan-Chou

    2017-08-01

    The Kuroshio Current (KC), one of the most important western boundary currents in the North Pacific Ocean, strongly affects regional hydroclimate in East Asia and upper ocean thermal structure. Limited by few on-site observations, the responses of the KC to regional and remote climate forcings are still poorly understood. Here we use monthly coral δ18O data to reconstruct a KC transport record with annual to interannual resolution for the interval 1953-2004. The field site is located in southern Taiwan on the western flank of the upstream KC. Increased (reduced) KC transport would generate strong (weak) upwelling, resulting in relatively high (low) local coral δ18O. The upstream KC transport and downstream transport, off Tatsukushi Bay, Japan, covary on interannual and decadal time scales. This suggests common forcings, such as meridional drift of the North Equatorial Current bifurcation, or zonal climatic oscillations in the Pacific. The intensities of KC transport off southeastern and northeastern Taiwan are in phase before 1990 and antiphase after 1990. This difference may be due to a poleward shift of the subtropical western boundary current as a response to global warming.Plain Language SummaryThe connection between climate and oceanic circulation has long been recognized, particularly with regard to western boundary currents such as the Gulf Stream and the Kuroshio Current (KC). These systems play a crucial role in transferring solar energy from the subtropical regions to the poles. As we begin to experience the impacts of global climate change, it is critical that we understand the affect global change has on variability leading to significant changes in the structure and heat transport of such currents. Current knowledge of the KC is limited to observations over individual 10 year periods or to paleorecords of very low resolution (one sample per roughly 1000 years). Neither data set allows for a detailed understanding of the natural variability of the KC

  10. Variability in equatorial B0 and B1

    International Nuclear Information System (INIS)

    Adeniyi, J.O.; Radicella, S.M.

    2002-01-01

    Variability of ionospheric profile parameters B0 and B1, below the F2 peak is investigated for an equatorial station at two levels of solar activities. The whole 24 hours of the day and the four seasons of the year are covered. Absolute and relative variability indices were utilized in the study. Some evidences of correlations of variability index and profiles parameters were observed. Daytime values of relative variability in B1 at solar minimum were found to be greater than those of solar maximum. (author)

  11. Deglacial Western Equatorial Pacific pCO2 Reconstruction Using Boron Isotopes of Planktonic Foraminiferas

    Science.gov (United States)

    Kubota, K.; Yokoyama, Y.; Ishikawa, T.; Sagawa, T.; Ikehara, M.; Yamazaki, T.

    2017-12-01

    During the last deglaciation (ca. 19 - 11 ka), partial pressure of CO2 (pCO2) of the atmosphere increased by 80 μatm. Many paleoceanographers point out that the ocean had played an important role in atmospheric CO2 rise, since the ocean have 60 times larger capacity to store carbon compared to the atmosphere. However, evidence on where carbon was transferred from the ocean to the atmosphere is still lacking, hampering our understanding of global carbon cycles in glacial-interglacial timescales. Boron isotope of skeletons of marine calcifying organisms such as corals and foraminiferas can pin down where CO2 source/sink existed, because boron isotopes of marine calcium carbonates is dependent on seawater pH, from which pCO2 of the past seawater can be reconstructed. In previous studies using the boron isotope teqnique, Martinez-Boti et al. (2015, Nature) and Kubota et al. (2014, Scientific Reports) revealed that central and eastern parts of the equatorial Pacific acted as a CO2 source (i.e., CO2 emission) during the last deglaciation, suggesting the equatorial Pacific's contribution to atmospheric CO2 rise. However, some conflicting results have been confirmed in a marine sediment record from the western part of the equatorial Pacific (Palmer & Pearson, 2003, Science), making the conclusion elusive. In this presentation, we will show new results of Mg/Ca, oxygen isotope, and boron isotope measurements during the last 35 ka on two species of surface dwelling foraminiferas (Globigerinoides ruber and G. sacculifer) which was hand-picked separatedly from a well-dated marine sediment core recovered from the West Caroline Basin (KR05-15 PC01) (Yamazaki et al., 2008, GRL). From the new records, we will discuss how the equatorial Pacific behaved during the last deglaciation and how it related to the global carbon cycles.

  12. Ocean Color and the Equatorial Annual Cycle in the Pacific

    Science.gov (United States)

    Hammann, A. C.; Gnanadesikan, A.

    2012-12-01

    The presence of chlorophyll, colored dissolved organic matter (CDOM) and other scatterers in ocean surface waters affect the flux divergence of solar radiation and thus the vertical distribution of radiant heating of the ocean. While this may directly alter the local mixed-layer depth and temperature (Martin 1985; Strutton & Chavez 2004), non-local changes are propagated through advection (Manizza et al. 2005; Murtugudde et al. 2002; Nakamoto et al. 2001; Sweeny et al. 2005). In and coupled feedbacks (Lengaigne et al. 2007; Marzeion & Timmermann 2005). Anderson et al. (2007), Anderson et al. (2009) and Gnanadesikan & Anderson (2009) have performed a series of experiments with a fully coupled climate model which parameterizes the e-folding depth of solar irradiance in terms of surface chlorophyll-a concentration. The results have so far been discussed with respect to the climatic mean state and ENSO variability in the tropical Pacific. We extend the discussion here to the Pacific equatorial annual cycle. The focus of the coupled experiments has been the sensitivity of the coupled system to regional differences in chlorophyll concentration. While runs have been completed with realistic SeaWiFS-derived monthly composite chlorophyll ('green') and with a globally chlorophyll-free ocean ('blue'), the concentrations in two additional runs have been selectively set to zero in specific regions: the oligotrophic subtropical gyres ('gyre') in one case and the mesotrophic gyre margins ('margin') in the other. The annual cycle of ocean temperatures exhibits distinctly reduced amplitudes in the 'blue' and 'margin' experiments, and a slight reduction in 'gyre' (while ENSO variability almost vanishes in 'blue' and 'gyre', but amplifies in 'margin' - thus the frequently quoted inverse correlation between ENSO and annual amplitudes holds only for the 'green' / 'margin' comparison). It is well-known that on annual time scales, the anomalous divergence of surface currents and vertical

  13. A New 50 MHz Phased-Array Radar on Pohnpei: A Fresh Perspective on Equatorial Plasma Bubbles

    Science.gov (United States)

    Tsunoda, R. T.

    2014-12-01

    A new, phased-array antenna-steering capability has recently been added to an existing 50-MHz radar on Pohnpei, Federated States of Micronesia, in the central Pacific region. This radar, which we refer to as PAR-50, is capable of scanning in the vertical east-west plane, ±60° about the zenith. The alignment in the magnetic east-west direction allows detection of radar backscatter from small-scale irregularities that develop in the equatorial ionosphere, including those associated with equatorial plasma bubbles (EPBs). The coverage, about ±800 km in zonal distance, at an altitude of 500 km, is essentially identical to that provided by ALTAIR, a fully-steerable incoherent-scatter radar, which has been used in a number of studies of EPBs. Unlike ALTAIR, which has only been operated for several hours on a handful of selected nights, the PAR-50 has already been operated continuously, while performing repeated scans, since April 2014. In this presentation, we describe the PAR-50, then, compare it to ALTAIR and the Equatorial Atmospheric Radar (EAR); the latter is the only other phased-array system in use for equatorial studies. We then assess what we have learned about EPBs from backscatter radar measurements, and discuss how the PAR-50 can provide a fresh perspective to our understanding. Clearly, the ability to sort out the space-time ambiguities in EPB development from sequences of spatial maps of EPBs is crucial to our understanding of how EPBs develop.

  14. Moving farther north

    International Nuclear Information System (INIS)

    Boswell, R.

    2000-01-01

    According to predictions by the National Petroleum Council, North American demand for natural gas is likely to increase from 20 Tcf currently to 29 Tcf by the year 2010 and could increase to beyond 31 Tcf by 2015. In view of this and other similar predictions it is prudent to examine the potential sources of supply and to assess their capacity to meet this ever increasing demand. This paper provides an overview of North America's gas potential, proved reserves and current production. One of the sources much depended upon to meet future demand is the deepwater Gulf of Mexico which, however, would have to grow at the compounded rate of 21 per cent annually to meet expectations of 4.5 Tcf per year by 2010, a staggering rate of growth that would require 250 to 300 completions per year (current rate is about 100 per year) and two to three times the number of rigs currently working in the Gulf. If the deepwater Gulf of Mexico cannot meet this target, the incremental supply will most likely come from the North, namely the Fort Liard, Norman Wells, and the Mackenzie Delta/Beaufort Sea regions of Canada and Alaska's Cook Inlet, Copper River, North Slope and Susitna Basin. The economics of developing each of these regions is examined, using field size, reserves per well, exploration and development costs and cycle time as the bases for comparison. Obstacles to development such as access to pipelines, government regulations, and opposition by environmental groups are also discussed

  15. Reinforcing the North Atlantic backbone: revision and extension of the composite splice at ODP Site 982

    Science.gov (United States)

    Drury, Anna Joy; Westerhold, Thomas; Hodell, David; Röhl, Ursula

    2018-03-01

    Ocean Drilling Program (ODP) Site 982 represents a key location for understanding the evolution of climate in the North Atlantic over the past 12 Ma. However, concerns exist about the validity and robustness of the underlying stratigraphy and astrochronology, which currently limits the adequacy of this site for high-resolution climate studies. To resolve this uncertainty, we verify and extend the early Pliocene to late Miocene shipboard composite splice at Site 982 using high-resolution XRF core scanning data and establish a robust high-resolution benthic foraminiferal stable isotope stratigraphy and astrochronology between 8.0 and 4.5 Ma. Splice revisions and verifications resulted in ˜ 11 m of gaps in the original Site 982 isotope stratigraphy, which were filled with 263 new isotope analyses. This new stratigraphy reveals previously unseen benthic δ18O excursions, particularly prior to 6.65 Ma. The benthic δ18O record displays distinct, asymmetric cycles between 7.7 and 6.65 Ma, confirming that high-latitude climate is a prevalent forcing during this interval. An intensification of the 41 kyr beat in both the benthic δ13C and δ18O is also observed ˜ 6.4 Ma, marking a strengthening in the cryosphere-carbon cycle coupling. A large ˜ 0.7 ‰ double excursion is revealed ˜ 6.4-6.3 Ma, which also marks the onset of an interval of average higher δ18O and large precession and obliquity-dominated δ18O excursions between 6.4 and 5.4 Ma, coincident with the culmination of the late Miocene cooling. The two largest benthic δ18O excursions ˜ 6.4-6.3 Ma and TG20/22 coincide with the coolest alkenone-derived sea surface temperature (SST) estimates from Site 982, suggesting a strong connection between the late Miocene global cooling, and deep-sea cooling and dynamic ice sheet expansion. The splice revisions and revised astrochronology resolve key stratigraphic issues that have hampered correlation between Site 982, the equatorial Atlantic and the Mediterranean

  16. A study of Sq(H) variations over equatorial electrojet regions | Okeke ...

    African Journals Online (AJOL)

    The newly established geomagnetic field observations in Japan, have enabled us to analyse the 1998 data of Huancayo, Kiritimati (Christmas Island) and Pohnpei where the geomagnetic Sq(H) variations of equatorial electrojet have been studied. The diurnal variation of the monthly means of Sq(H) on the five international ...

  17. Excitation of electromagnetic proton cyclotron instability by parallel electric field in the equatorial magnetosphere

    International Nuclear Information System (INIS)

    Dixit, S.K.; Azif, Z.A.; Gwal, A.K.

    1994-01-01

    The characteristics of the growth rate of electromagnetic ion cyclotron (EMIC) instability is investigated in a mixture of cold species of ions and warm proton in the presence of weak parallel static electric field. An attempt has been made to explain the excitation of EMIC waves through linear wave-particle (W-P) interaction in the equatorial magnetospheric region. The proton cyclotron instability is modified in presence of weak parallel electric field and the growth rate is computed for equatorial magnetospheric plasma parameters. The results of theoretical investigations of the growth rate are used to explain the excitation mechanism of extremely low frequency/very low frequency (ELF/VLF) waves as observed by satellites. (author). 29 refs., 4 figs

  18. Current oil and gas production from North American Upper Cretaceous chalks

    Science.gov (United States)

    Scholle, Peter A.

    1977-01-01

    Production of oil and natural gas from North American chalks has increased significantly during the past five years, spurred by the prolific production from North Sea chalks, as well as by higher prices and improved production technology. Chalk reservoirs have been discovered in the Gulf Coast in the Austin Group, Saratoga and Annona Chalks, Ozan Formation, Selma Group, Monroe gas rock (an informal unit of Navarro age), and other Upper Cretaceous units. In the Western Interior, production has been obtained from the Cretaceous Niobrara and Greenhorn Formations. Significant, though subcommercial, discoveries of natural gas and gas condensate also have been made in the Upper Cretaceous Wyandot Formation on the Scotian Shelf of eastern Canada. All North American chalk units share a similar depositional and diagenetic history. The chalks consist primarily of whole and fragmented coccoliths with subordinate planktonic and benthonic Foraminifera, inoceramid prisms, oysters, and other skeletal grains. Most have between 10 and 35 percent HCl-insoluble residue, predominantly clay. Deposition was principally below wave base in tens to hundreds of meters of water. The diagenetic history of a chalk is critical in determining its reservoir potential. All chalk has a stable composition (low-Mg calcite) and very high primary porosity. With subsequent burial, mechanical and chemical (solution-transfer) compaction can reduce or completely eliminate pore space. The degree of loss of primary porosity in chalk sections is normally a direct function of the maximum depth to which it has been buried. Pore-water chemistry, pore-fluid pressures, and tectonic stresses also influence rates of cementation. Oil or gas reservoirs of North American chalk fall into three main groups: 1. Areas with thin overburden and significant primary porosity retention (for example, Niobrara Formation of Kansas and eastern Colorado). 2. Areas with thicker overburden but considerable fracturing. Here primary

  19. Equatorial circular motion in Kerr spacetime

    International Nuclear Information System (INIS)

    Pugliese, Daniela; Quevedo, Hernando; Ruffini, Remo

    2011-01-01

    We analyze the properties of circular orbits of test particles on the equatorial plane of a rotating central mass whose gravitational field is described by the Kerr spacetime. For rotating black holes and naked singularities we explore all the spatial regions where circular orbits can exist and analyze the behavior of the energy and the angular momentum of the corresponding test particles. In particular, we find all the radii at which a test particle can have zero angular momentum due to the repulsive gravity effects generated by naked singularities. We classify all the stability zones of circular orbits. It is shown that the geometric structure of the stability zones of black holes is completely different from that of naked singularities.

  20. Population exposure to hazardous air quality due to the 2015 fires in Equatorial Asia.

    Science.gov (United States)

    Crippa, P; Castruccio, S; Archer-Nicholls, S; Lebron, G B; Kuwata, M; Thota, A; Sumin, S; Butt, E; Wiedinmyer, C; Spracklen, D V

    2016-11-16

    Vegetation and peatland fires cause poor air quality and thousands of premature deaths across densely populated regions in Equatorial Asia. Strong El-Niño and positive Indian Ocean Dipole conditions are associated with an increase in the frequency and intensity of wildfires in Indonesia and Borneo, enhancing population exposure to hazardous concentrations of smoke and air pollutants. Here we investigate the impact on air quality and population exposure of wildfires in Equatorial Asia during Fall 2015, which were the largest over the past two decades. We performed high-resolution simulations using the Weather Research and Forecasting model with Chemistry based on a new fire emission product. The model captures the spatio-temporal variability of extreme pollution episodes relative to space- and ground-based observations and allows for identification of pollution sources and transport over Equatorial Asia. We calculate that high particulate matter concentrations from fires during Fall 2015 were responsible for persistent exposure of 69 million people to unhealthy air quality conditions. Short-term exposure to this pollution may have caused 11,880 (6,153-17,270) excess mortalities. Results from this research provide decision-relevant information to policy makers regarding the impact of land use changes and human driven deforestation on fire frequency and population exposure to degraded air quality.

  1. Population exposure to hazardous air quality due to the 2015 fires in Equatorial Asia

    Science.gov (United States)

    Crippa, P.; Castruccio, S.; Archer-Nicholls, S.; Lebron, G. B.; Kuwata, M.; Thota, A.; Sumin, S.; Butt, E.; Wiedinmyer, C.; Spracklen, D. V.

    2016-11-01

    Vegetation and peatland fires cause poor air quality and thousands of premature deaths across densely populated regions in Equatorial Asia. Strong El-Niño and positive Indian Ocean Dipole conditions are associated with an increase in the frequency and intensity of wildfires in Indonesia and Borneo, enhancing population exposure to hazardous concentrations of smoke and air pollutants. Here we investigate the impact on air quality and population exposure of wildfires in Equatorial Asia during Fall 2015, which were the largest over the past two decades. We performed high-resolution simulations using the Weather Research and Forecasting model with Chemistry based on a new fire emission product. The model captures the spatio-temporal variability of extreme pollution episodes relative to space- and ground-based observations and allows for identification of pollution sources and transport over Equatorial Asia. We calculate that high particulate matter concentrations from fires during Fall 2015 were responsible for persistent exposure of 69 million people to unhealthy air quality conditions. Short-term exposure to this pollution may have caused 11,880 (6,153-17,270) excess mortalities. Results from this research provide decision-relevant information to policy makers regarding the impact of land use changes and human driven deforestation on fire frequency and population exposure to degraded air quality.

  2. Evidence of Enhanced Respired Carbon in Eastern Equatorial Pacific Deep-Waters over the last 30,000 years

    Science.gov (United States)

    Umling, N. E.; Thunell, R.

    2016-12-01

    Rapid decreases in glacial deep water reservoir ages have been observed in the Eastern Equatorial Pacific (EEP; this study), North Pacific (Rae et al., 2014), Southwest Pacific (Sikes et al., 2016), and North Atlantic (Skinner et al., 2013). It has been hypothesized that release of a deep ocean 14C-depleted, respired-carbon reservoir to the surface ocean and atmosphere is the most likely mechanism for the observed increases in atmospheric CO2 concentrations recorded in ice cores during the last glacial-interglacial transition (Broecker and Barker, 2007). This study examines whether oxygenation, organic carbon flux, and carbonate chemistry in the EEP deep-waters reflect an increase in respired carbon associated with recorded 14C-depletions using isotopic and trace element records from three Panama Basin cores (2,650-3,200 m water-depth). An increase in glacial deep-water respired carbon storage would result in a shift of DIC speciation towards lower carbonate ion concentrations along with deoxygenation of bottom waters. Specifically, we use the boron to calcium (B/Ca) and uranium to calcium (U/Ca) ratios of the benthic foraminifera Cibicidoides wuellerstorfi to reconstruct deep-water carbonate ion concentration (Yu and Elderfield, 2007; Raizsch et al., 2011). Additionally, bottom water oxygenation is estimated from the difference in δ13C of benthic foraminifera living in pore waters at the anoxic boundary and of those living in bottom water (Δ δ13C; Hoogakker et al., 2015, 2016), while carbon flux was assessed from the U/Ca and Cd/Ca of foraminiferal authigenic coatings.

  3. Multiscale Currents Observed by MMS in the Flow Braking Region

    Science.gov (United States)

    Nakamura, Rumi; Varsani, Ali; Genestreti, Kevin J.; Le Contel, Olivier; Nakamura, Takuma; Baumjohann, Wolfgang; Nagai, Tsugunobu; Artemyev, Anton; Birn, Joachim; Sergeev, Victor A.; Apatenkov, Sergey; Ergun, Robert E.; Fuselier, Stephen A.; Gershman, Daniel J.; Giles, Barbara J.; Khotyaintsev, Yuri V.; Lindqvist, Per-Arne; Magnes, Werner; Mauk, Barry; Petrukovich, Anatoli; Russell, Christopher T.; Stawarz, Julia; Strangeway, Robert J.; Anderson, Brian; Burch, James L.; Bromund, Ken R.; Cohen, Ian; Fischer, David; Jaynes, Allison; Kepko, Laurence; Le, Guan; Plaschke, Ferdinand; Reeves, Geoff; Singer, Howard J.; Slavin, James A.; Torbert, Roy B.; Turner, Drew L.

    2018-02-01

    We present characteristics of current layers in the off-equatorial near-Earth plasma sheet boundary observed with high time-resolution measurements from the Magnetospheric Multiscale mission during an intense substorm associated with multiple dipolarizations. The four Magnetospheric Multiscale spacecraft, separated by distances of about 50 km, were located in the southern hemisphere in the dusk portion of a substorm current wedge. They observed fast flow disturbances (up to about 500 km/s), most intense in the dawn-dusk direction. Field-aligned currents were observed initially within the expanding plasma sheet, where the flow and field disturbances showed the distinct pattern expected in the braking region of localized flows. Subsequently, intense thin field-aligned current layers were detected at the inner boundary of equatorward moving flux tubes together with Earthward streaming hot ions. Intense Hall current layers were found adjacent to the field-aligned currents. In particular, we found a Hall current structure in the vicinity of the Earthward streaming ion jet that consisted of mixed ion components, that is, hot unmagnetized ions, cold E × B drifting ions, and magnetized electrons. Our observations show that both the near-Earth plasma jet diversion and the thin Hall current layers formed around the reconnection jet boundary are the sites where diversion of the perpendicular currents take place that contribute to the observed field-aligned current pattern as predicted by simulations of reconnection jets. Hence, multiscale structure of flow braking is preserved in the field-aligned currents in the off-equatorial plasma sheet and is also translated to ionosphere to become a part of the substorm field-aligned current system.

  4. Determination of vertical velocities in the equatorial part of the western Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Bahulayan, N.; Varadachari, V.V.R.

    Using steady state two-dimensional turbulent diffusion equations of salt and heat some important characteristics of vertical circulation in the equatorial part of the Indian Ocean have been evaluated and discussed. Upwelling and sinking velocities...

  5. Asymmetric Response of the Equatorial Pacific SST to Climate Warming and Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Fukai [Physical Oceanography Laboratory/Qingdao Collaborative Innovation Center of Marine Science and Technology, Ocean University of China, and Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Luo, Yiyong [Physical Oceanography Laboratory/Qingdao Collaborative Innovation Center of Marine Science and Technology, Ocean University of China, and Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Lu, Jian [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington; Garuba, Oluwayemi [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington; Wan, Xiuquan [Physical Oceanography Laboratory/Qingdao Collaborative Innovation Center of Marine Science and Technology, Ocean University of China, and Qingdao National Laboratory for Marine Science and Technology, Qingdao, China

    2017-09-01

    The response of the equatorial Pacific Ocean to heat fluxes of equal amplitude but opposite sign is investigated using the Community Earth System Model (CESM). Results show a strong asymmetry in SST changes. In the eastern equatorial Pacific (EEP), the warming responding to the positive forcing exceeds the cooling to the negative forcing; while in the western equatorial Pacific (WEP), it is the other way around and the cooling surpasses the warming. This leads to a zonal dipole asymmetric structure, with positive values in the east and negative values in the west. A surface heat budget analysis suggests that the SST asymmetry is mainly resulted from the oceanic horizontal advection and vertical entrainment, with both of their linear and nonlinear components playing a role. For the linear component, its change appears to be more significant over the EEP (WEP) in the positive (negative) forcing scenario, favoring the seesaw pattern of the SST asymmetry. For the nonlinear component, its change acts to warm (cool) the EEP (WEP) in both scenarios, also favorable for the development of the SST asymmetry. Additional experiments with a slab ocean confirm the dominant role of ocean dynamical processes for this SST asymmetry. The net surface heat flux, in contrast, works to reduce the SST asymmetry through its shortwave radiation and latent heat flux components, with the former being related to the nonlinear relationship between SST and convection, and the latter being attributable to Newtonian damping and air-sea stability effects. The suppressing effect of shortwave radiation on SST asymmetry is further verified by partially coupled overriding experiments.

  6. Weight Percentage of Calcium Carbonate for 17 Equatorial Pacific Cores from Brown University

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Weight percentages of calcium carbonate in this file were compiled by J. Farrell and W. L. Prell of Brown University for 17 equatorial Pacific Ocean sediment cores....

  7. Terrestrial ring current - from in situ measurements to global images using energetic neutral atoms

    International Nuclear Information System (INIS)

    Roelof, E.C.; Williams, D.J.

    1988-01-01

    Electrical currents flowing in the equatorial magnetosphere, first inferred from ground-based magnetic disturbances, are carried by trapped energetic ions. Spacecraft measurements have determined the spectrum and composition of those currents, and the newly developed technique of energetic-neutral-atom imaging allows the global dynamics of that entire ion population to be viewed from a single spacecraft. 71 references

  8. Recent Advances in Atmospheric, Solar-Terrestrial Physics and Space Weather From a North-South network of scientists [2006-2016] PART B : Results and Capacity Building

    Science.gov (United States)

    Amory-Mazaudier, C.; Fleury, R.; Petitdidier, M.; Soula, S.; Masson, F.; Davila, J.; Doherty, P.; Elias, A.; Gadimova, S.; Makela, J.; Nava, B.; Radicella, S.; Richardson, J.; Touzani, A.; Girgea Team

    2017-12-01

    This paper reviews scientific advances achieved by a North-South network between 2006 and 2016. These scientific advances concern solar terrestrial physics, atmospheric physics and space weather. This part B is devoted to the results and capacity building. Our network began in 1991, in solar terrestrial physics, by our participation in the two projects: International Equatorial Electrojet Year IEEY [1992-1993] and International Heliophysical Year IHY [2007-2009]. These two projects were mainly focused on the equatorial ionosphere in Africa. In Atmospheric physics our research focused on gravity waves in the framework of the African Multidisciplinary Monsoon Analysis project n°1 [2005-2009 ], on hydrology in the Congo river basin and on lightning in Central Africa, the most lightning part of the world. In Vietnam the study of a broad climate data base highlighted global warming. In space weather, our results essentially concern the impact of solar events on global navigation satellite system GNSS and on the effects of solar events on the circulation of electric currents in the earth (GIC). This research began in the framework of the international space weather initiative project ISWI [2010-2012]. Finally, all these scientific projects have enabled young scientists from the South to publish original results and to obtain positions in their countries. These projects have also crossed disciplinary boundaries and defined a more diversified education which led to the training of specialists in a specific field with knowledge of related scientific fields.

  9. Evaluating climatic response to external radiative forcing during the late Miocene to early Pliocene: New perspectives from eastern equatorial Pacific (IODP U1338) and North Atlantic (ODP 982) locations

    Science.gov (United States)

    Drury, Anna Joy; John, Cédric M.; Shevenell, Amelia E.

    2016-01-01

    Orbital-scale climate variability during the latest Miocene-early Pliocene is poorly understood due to a lack of high-resolution records spanning 8.0-3.5 Ma, which resolve all orbital cycles. Assessing this variability improves understanding of how Earth's system sensitivity to insolation evolves and provides insight into the factors driving the Messinian Salinity Crisis (MSC) and the Late Miocene Carbon Isotope Shift (LMCIS). New high-resolution benthic foraminiferal Cibicidoides mundulus δ18O and δ13C records from equatorial Pacific International Ocean Drilling Program Site U1338 are correlated to North Atlantic Ocean Drilling Program Site 982 to obtain a global perspective. Four long-term benthic δ18O variations are identified: the Tortonian-Messinian, Miocene-Pliocene, and Early-Pliocene Oxygen Isotope Lows (8-7, 5.9-4.9, and 4.8-3.5 Ma) and the Messinian Oxygen Isotope High (MOH; 7-5.9 Ma). Obliquity-paced variability dominates throughout, except during the MOH. Eleven new orbital-scale isotopic stages are identified between 7.4 and 7.1 Ma. Cryosphere and carbon cycle sensitivities, estimated from δ18O and δ13C variability, suggest a weak cryosphere-carbon cycle coupling. The MSC termination coincided with moderate cryosphere sensitivity and reduced global ice sheets. The LMCIS coincided with reduced carbon cycle sensitivity, suggesting a driving force independent of insolation changes. The response of the cryosphere and carbon cycle to obliquity forcing is established, defined as Earth System Response (ESR). Observations reveal that two late Miocene-early Pliocene climate states existed. The first is a prevailing dynamic state with moderate ESR and obliquity-driven Antarctic ice variations, associated with reduced global ice volumes. The second is a stable state, which occurred during the MOH, with reduced ESR and lower obliquity-driven variability, associated with expanded global ice volumes.

  10. The chemistry and mineralogy of haloed burrows in pelagic sediment at DOMES Site A: The equatorial North Pacific

    Science.gov (United States)

    Piper, D.Z.; Rude, P.D.; Monteith, S.

    1987-01-01

    The chemical and mineralogical composition of burrowed sediment, recovered in 66 box cores at latitude 9??25???N and longitude 151??15???W in the equatorial Pacific, demonstrates the important role of infauna in determining the geochemistry of pelagic sediment. Haloed burrows, approximately 3 cm across, were present in many of the cores. Within early Tertiary sediment that was covered by less than 5 cm of surface Quaternary sediment in several cores, the burrows in cross-section consist of three units: (1) a dark yellowish-brown central zone of Quaternary sediment surrounded, by (2) a pale yellowish-orange zone (the halo) of Tertiary sediment, which is surrounded by (3) a metal-oxide precipitate; the enclosing Tertiary sediment is dusky brown. Several elements - Mn, Ni, Cu, Co, Zn, Sb and Ce - have been leached from the light-colored halo, whereas Cr, Cs, Hf, Rb, Sc, Ta, Th, U, the rare earth elements exclusive of Ce, and the major oxides have not been leached. The metal-oxide zone, 1-5 mm thick, contains as much as 16% MnO2, as the mineral todorokite. The composition of the todorokite, exclusive of the admixed Tertiary sediment, resembles the composition of the metal deficit of the halo and also the composition of surface ferromanganese nodules that have been interpreted as having a predominantly diagenetic origin. Thus bioturbation contributes not only to the redistribution of metals within pelagic sediment, but also to the accretion of ferromanganese nodules on the sea floor. ?? 1987.

  11. Morphology and distribution of Oligocene and Miocene pockmarks in the Danish North Sea -implications for bottom current activity and fluid migration

    DEFF Research Database (Denmark)

    Andresen, Katrine Juul; Huuse, Mads; Clausen, O.R.

    2008-01-01

    This study gives the first description of 33 mid-Oligocene and 646 late Miocene pockmarks mapped in the Danish part of the central North Sea. The pockmarks are all highly elongated, with average long- and short axes of 2.5 km and 700 m, and average internal depth of 30 m. The Miocene pockmarks...... the timing and location of the pockmarks. The pockmarks thus tell a story of thermogenic gas venting to the surface and paleo-current scour of the seabed in the eastern part of the central North Sea during the mid Oligocene and late Miocene....

  12. Equatorial dynamics observed by rocket, radar, and satellite during the CADRE/MALTED campaign 1. Programmatics and small-scale fluctuations

    Science.gov (United States)

    Goldberg, Richard A.; Lehmacher, Gerald A.; Schmidlin, Frank J.; Fritts, David C.; Mitchell, J. D.; Croskey, C. L.; Friedrich, M.; Swartz, W. E.

    1997-11-01

    In August 1994, the Mesospheric and Lower Thermospheric Equatorial Dynamics (MALTED) Program was conducted from the Alca‸ntara rocket site in northeastern Brazil as part of the International Guará Rocket Campaign to study equatorial dynamics, irregularities, and instabilities in the ionosphere. This site was selected because of its proximity to the geographic (2.3°S) and magnetic (~0.5°S) equators. MALTED was concerned with planetary wave modulation of the diurnal tidal amplitude, which exhibits considerable amplitude variability at equatorial and subtropical latitudes. Our goals were to study this global modulation of the tidal motions where tidal influences on the thermal structure are maximum, to study the interaction of these tidal structures with gravity waves and turbulence at mesopause altitudes, and to gain a better understanding of dynamic influences and variability on the equatorial middle atmosphere. Four (two daytime and two nighttime) identical Nike-Orion payloads designed to investigate small-scale turbulence and irregularities were coordinated with 20 meteorological falling-sphere rockets designed to measure temperature and wind fields during a 10-day period. These in situ measurements were coordinated with observations of global-scale mesospheric motions that were provided by various ground based radars and the Upper Atmosphere Research Satellite (UARS) through the Coupling and Dynamics of Regions Equatorial (CADRE) campaign. The ground-based observatories included the Jicamarca radar observatory near Lima, Peru, and medium frequency (MF) radars in Hawaii, Christmas Island, and Adelaide. Since all four Nike-Orion flights penetrated and overflew the electrojet with apogees near 125 km, these flights provided additional information about the electrodynamics and irregularities in the equatorial ionospheric E region and may provide information on wave coupling between the mesosphere and the electrojet. Simultaneous with these flights, the CUPRI 50

  13. Equatorial Dynamics Observed by Rocket, Radar, and Satellite During the CADRE/MALTED Campaign. 1; Programmatics and small-scale fluctuations

    Science.gov (United States)

    Goldberg, Richard A.; Lehmacher, Gerald A.; Schmidlin, Frank J.; Fritts, David C.; Mitchell, J. D.; Croskey, C. L.; Friedrich, M.; Swartz, W. E.

    1997-01-01

    In August 1994, the Mesospheric and Lower Thermospheric Equatorial Dynamics (MALTED) Program was conducted from the Alcantara rocket site in northeastern Brazil as part of the International Guard Rocket Campaign to study equatorial dynamics, irregularities, and instabilities in the ionosphere. This site was selected because of its proximity to the geographic (2.3 deg S) and magnetic (approx. 0.5 deg S) equators. MALTED was concerned with planetary wave modulation of the diurnal tidal amplitude, which exhibits considerable amplitude variability at equatorial and subtropical latitudes. Our goals were to study this global modulation of the tidal motions where tidal influences on the thermal structure are maximum, to study the interaction of these tidal structures with gravity waves and turbulence at mesopause altitudes, and to gain a better understanding of dynamic influences and variability on the equatorial middle atmosphere. Four (two daytime and two nighttime) identical Nike-Orion payloads designed to investigate small-scale turbulence and irregularities were coordinated with 20 meteorological falling-sphere rockets designed to measure temperature and wind fields during a 10-day period. These in situ measurements were coordinated with observations of global-scale mesospheric motions that were provided by various ground based radars and the Upper Atmosphere Research Satellite (UARS) through the Coupling and Dynamics of Regions Equatorial (CADRE) campaign. The ground-based observatories included the Jicamarca radar observatory near Lima, Peru, and medium frequency (MF) radars in Hawaii, Christmas Island, and Adelaide. Since all four Nike-Orion flights penetrated and overflew the electrojet with apogees near 125 km, these flights provided additional information about the electrodynamics and irregularities in the equatorial ionospheric E region and may provide information on wave coupling between the mesosphere and the electrojet. Simultaneous with these flights, the

  14. The prospection of uranium and thorium ores in desert country and in equatorial forest regions of the Union Francaise

    International Nuclear Information System (INIS)

    Lecoq, J.J.; Bigotte, G.; Hinault, J.; Leconte, J.R.

    1958-01-01

    Since it was founded, the D.R.E.M. has carried out important prospection work in the overseas territories which now make up the Communaute Francaise. This work, now involving almost a million km 2 , represents an experiment scarcely equalled throughout the world. Research in these territories presents both general and technical difficulties, which are especially severe in countries with extreme climates: deserts or dense equatorial forests. The adaptation of various methods of radioactive ore prospection to these regions is described, and also the results obtained. Three particular examples are given in detail: - general exploration in the Hoggar, and reconnoitring of particular indications; - general exploration in the equatorial forest of French Guyana; - detailed study of a sign of uraniferous occurrences and its surroundings in the equatorial zone (Mounana deposit near Franceville (Gabon)). (author) [fr

  15. Bacterial Diversity in Deep-Sea Sediments from Afanasy Nikitin Seamount, Equatorial Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Khandeparker, R.; Meena, R.M.; Deobagkar, D.D.

    Deep-sea sediments can reveal much about the last 200 million years of Earth history, including the history of ocean life and climate. Microbial diversity in Afanasy Nikitin seamount located at Equatorial East Indian Ocean (EEIO) was investigated...

  16. Effect of solar flare on the equatorial electrojet in eastern Brazil region

    Indian Academy of Sciences (India)

    R G Rastogi

    2017-06-07

    Jun 7, 2017 ... The effect of solar flare, sudden commencement of magnetic storm and of the disturbances ring current on the ... and measured east of geographic north. The ΔH .... Figure 2 shows the intensity of solar x-ray radiations in the ...

  17. The influence of paleo currents upon the Santaren Channel and the adjacent carbonate platforms, Bahamas.

    Science.gov (United States)

    Paulat, Marco; Lüdmann, Thomas; Betzler, Christian; Eberli, Gregor; Lindhorst, Sebastian

    2015-04-01

    The closure of the Central American Seaway and the reorganization of the ocean currents had a global impact on earth's climate. The sedimentation of the Great Bahama Bank (GBB) and the smaller Cay Sal Bank (CSB) are influenced by the Atlantic North Equatorial Current and the Florida Current. New high-resolution multichannel seismic data sets tied to the IODP leg 166 wells document that the shape of Bahama Banks and the sedimentation processes in the Santaren Channel (SC) between GBB and CSB are strongly related to changes in the strength of these currents. Since the Upper Miocene, the SC is filled up by a huge package of drift sediments, namely the Santaren Drift (SD). The buildup of the SD causes a local high in the recent bathymetry perpendicular to the surrounding steep platform slopes. The SD shows a typical mounded morphology and progrades northwards in direction of the Florida Channel. The SD was established during the late Miocene. Seismic facies and internal configuration indicate an environment of a stable north flowing current with a major depocenter related to the center of the SC. Additionally, a second depocenter at the central eastern flank of CSB established and preserved till early Pleistocene when the slope sedimentation starts to dominate. This depocenter points to a strengthened countercurrent component in the eastern SC. From the lower Pliocene to the upper Pleistocene the volume of the SD expanded, associated with an intensification of the current in the SC along its eastern flank, indicated by deep erosional channels parallel to the margin of GBB in the northern part of the survey area. This trend probably was initiated as a consequence of current reorganization due to the final closure of the Central American Seaway. Lower slope sediments from GBB are eroded or only minor parts are preserved from lower Pliocene to upper Pleistocene. With late Pliocene falling sea-level, gravitational slope sedimentation from GBB into the SC increased with

  18. Systematic study of intermediate-scale structures of equatorial plasma irregularities in the ionosphere based on CHAMP observations

    Directory of Open Access Journals (Sweden)

    Hermann eLühr

    2014-03-01

    Full Text Available Equatorial spread-F ionospheric plasma irregularities on the night-side, commonly called equatorial plasma bubbles (EPB, include electron density variations over a wide range of spatial scales. Here we focus on intermediate-scale structures ranging from 100 m to 10 km, which play an important role in the evolution of EPBs. High-resolution CHAMP magnetic field measurements sampled along north-south track at 50 Hz are interpreted in terms of diamagnetic effect for illustrating the details of electron density variations. We provide the first comprehensive study on intermediate-scale density structures associated with EPBs, covering a whole solar cycle from 2000 to 2010. The large number of detected events, almost 9000, allows us to draw a detailed picture of the plasma fine structure. The occurrence of intermediate-scale events is strongly favoured by high solar flux. During times of F10.7 < 100 sfu practically no events were observed. The longitudinal distribution of our events with respect to season or local time agrees well with that of the EPBs, qualifying the fine structure as a common feature, but the occurrence rates are smaller by a factor of 4 during the period 2000-2005. Largest amplitude electron density variations appear at the poleward boundaries of plasma bubbles. Above the dip-equator recorded amplitudes are small and fall commonly below our resolution. Events can generally be found at local times between 19 and 24 LT, with a peak lasting from 20 to 22 LT. The signal spectrum can be approximated by a power law. Over the frequency range 1 – 25 Hz we observe spectral indices between -1.4 and -2.6 with peak occurrence rates around -1.9. There is a weak dependence observed of the spectral index on local time. Towards later hours the spectrum becomes shallower. Similarly for the latitude dependence, there is a preference of shallower spectra for latitudes poleward of the ionisation anomaly crest. Our data suggest that the generation of

  19. Atmospheric solar tides and their electrodynamic effects. I. The global Ssub(q) current system

    Energy Technology Data Exchange (ETDEWEB)

    Forbes, J M; Lindzen, R S [Harvard Univ., Cambridge, Mass. (USA)

    1976-09-01

    This paper is Part I of a study dealing with the electrodynamic consequences of solar tides in the E-region of the Earth's atmosphere. The major result to emerge from Part I is that E-region dynamo action of combined diurnal and semidiurnal winds consistent with measurements is found to account for the Ssub(q) variations in ground magnetic data, without having to resort to electric fields of plasmaspheric origin as suggested in the recent literature. Real discrepancies of the order of 20% in amplitude and 1 to 2 h in phase still exist between the data and the present theoretical model. The model couples a global thin-shell dynamo solution which takes into account the vertical structure of the winds with a full three-dimensional model of the equatorial electrojet. Part I is primarily concerned with the classical thin-shell global solution, whereas Part II (Forbes et al., J. Atmos. Terr. Phys.; 38:911 (1976)) deals solely with the equatorial electrojet; however, the equatorial magnetic variations to be presented here are taken from Part II. Previous global dynamo models have utilized winds which are shown to be unrealistic by recent measurements and dissipative tidal theory, and do not include the important effects of vertical current flow at the magnetic equator. Inclusion of vertical current effects, which are discussed in detail in Part II, relaxes the need for E-region diurnal wind speeds as large as those required by previous workers to reproduce the Ssub(q) current system. Computed vertical structures of the Ssub(q) currents explain some puzzling features of the few midlatitude rocket magnetometer measurements that are available. The Joule heating by Ssub(q) currents is comparable to solar EUV heating above 60/sup 0/N, but contribute negligibly to the total heat budget of the thermosphere.

  20. Changes in opal flux and the rain ratio during the last 50,000 years in the equatorial Pacific

    Science.gov (United States)

    Richaud, Mathieu; Loubere, Paul; Pichat, Sylvain; Francois, Roger

    2007-03-01

    Changes in the orgC/CaCO 3 ratio in particles sinking from the surface to the deep ocean have the potential to alter the atmospheric pCO 2 over the span of a glacial/interglacial cycle. Recent paleoceanographic and modern observational studies suggest that silica is a key factor in the global carbon biogeochemical cycle that can influence the flux ratio, especially at low latitudes, through "silicic acid leakage" [Brzezinski, M., Pride, C., Franck, M., Sigman, D., Sarmiento, J., Matsumoto, K., Gruber, N., Rau, R., Coale, K., 2002. A switch from Si(OH) 4 to NO3- depletion in the glacial Southern Ocean. Geophysical Research Letters 29, 5]. To test this hypothesis, we reconstruct biogenic fluxes of CaCO 3, orgC and Si for three equatorial Pacific cores. We find evidence that a floral shift from a SiO 2-based community to a CaCO 3-based occurred, starting in mid-marine isotope stage (MIS) 3 (24-59 cal. ka) and declining toward MIS 2 (19-24 cal. ka). This could reflect the connection of the Peru upwelling system to the subantarctic region, and we postulate that excess silica was transported from the subantarctic via the deep Equatorial Undercurrent to the eastern equatorial Pacific. In the eastern equatorial Pacific only, we document a significant decrease in rain ratio starting mid-MIS 3 toward MIS 2. This decrease is concomitant with a significant decrease in silica accumulation rates at the seabed. This pattern is not observed in the Pacific influenced by equatorial divergence and shallow upwelling, where all reconstructed fluxes (CaCO 3, orgC, and opal) increase during MIS 2. We conclude that the overall calcium carbonate pump weakened in the EEP under Peru upwelling influence.

  1. The Pacific Equatorial Age Transect, IODP Expeditions 320 and 321: Building a 50-Million-Year-Long Environmental Record of the Equatorial Pacific Ocean

    Directory of Open Access Journals (Sweden)

    Kusali Gamage

    2010-04-01

    Full Text Available In March 2009, the R/V JOIDES Resolution returned to operations after its extended refit and began with a drilling program ideally suited to its drilling strengths, the Pacific Equatorial Age Transect (PEAT, IODP Exp 320/321; Fig. 1A. The PEAT drilling program was developed to understand how a major oceanic region evolved over the Cenozoic Era(65–0 Ma and how it interacted with global climate. It specifically targeted the interval between 52 Ma and 0 Ma and drilled a series of sites that originated on the paleoequator. These sites have since been moved to the northwest by plate tectonics.The equatorial Pacific is an important target for paleocean ographic study because it is a significant ‘cog’ in the Earth’s climate machine, representing roughly half of the total tropical oceans that in turn represent roughly half of the total global ocean area. Prior drilling in both the Deep Sea Drilling Project (DSDP and the Ocean Drilling Program (ODP outlined the changes that have occurred through the Cenozoic (e.g., van Andel et al., 1975; Pisias et al., 1995. Not only did the earlier work fail to cover sufficient timeintervals but also many of the sites were cored with ‘first-generation’ scientific drilling technology with incomplete and disturbed sediment recovery and thus cannot be used for detailed studies.

  2. Equatorial atmospheric Kelvin waves during El Niño episodes and their effect on stratospheric QBO

    International Nuclear Information System (INIS)

    Das, Uma; Pan, C.J.

    2016-01-01

    Equatorial atmospheric Kelvin waves are investigated during a positive El Niño Southern Oscillation (ENSO) episode using temperature data retrieved from GPS Radio Occultation (RO) observations of FORMOSAT-3/COSMIC during the period from August 2006 to December 2013. Enhanced Kelvin wave amplitudes are observed during the El Niño episode of 2009–2010 and it is also observed that these amplitudes correlate with the Niño 3.4 index and also with outgoing longwave radiation and trade wind index. This study indicates that the enhanced equatorial atmospheric Kelvin wave amplitudes might be produced by geophysical processes that were involved in the onset and development of the El Niño episode. Further, easterly winds above the tropopause during this period favored the vertically upward propagation of these waves that induced a fast descending westerly regime by the end of 2010, where the zero-wind line is observed to take only 5 months to descend from 10 to 50 hPa. The current study presents observational evidence of enhanced Kelvin wave amplitudes during El Niño that has affected the stratospheric quasi-biennial oscillation (QBO) through wave–mean flow interactions. Earlier El Niño episodes of 1987 and 1998 are also qualitatively investigated, using reanalysis data. It is found that there might have been an enhancement in the equatorial Kelvin wave amplitudes during almost all El Niño episodes, however, an effect of a fast descending westerly is observed in the QBO only when the ambient zonal winds in the lower stratosphere favor the upward propagation of the Kelvin waves and consequently they interact with the mean flow. This study indicates that the El Niño and QBO are not linearly related and wave mean flow interactions play a very important role in connecting these two geophysical phenomena. - Highlights: • Enhanced atmospheric Kelvin Wave amplitudes observed during El Nino of 2010. • The waves are probably produced by processes generating El Nino.

  3. Equatorial atmospheric Kelvin waves during El Niño episodes and their effect on stratospheric QBO

    Energy Technology Data Exchange (ETDEWEB)

    Das, Uma [Department of Physics, University of New Brunswick, Fredericton (Canada); Pan, C.J., E-mail: cjpan@jupiter.ss.ncu.edu.tw [Institute of Space Science, National Central University, Jhongli, Taiwan (China)

    2016-02-15

    Equatorial atmospheric Kelvin waves are investigated during a positive El Niño Southern Oscillation (ENSO) episode using temperature data retrieved from GPS Radio Occultation (RO) observations of FORMOSAT-3/COSMIC during the period from August 2006 to December 2013. Enhanced Kelvin wave amplitudes are observed during the El Niño episode of 2009–2010 and it is also observed that these amplitudes correlate with the Niño 3.4 index and also with outgoing longwave radiation and trade wind index. This study indicates that the enhanced equatorial atmospheric Kelvin wave amplitudes might be produced by geophysical processes that were involved in the onset and development of the El Niño episode. Further, easterly winds above the tropopause during this period favored the vertically upward propagation of these waves that induced a fast descending westerly regime by the end of 2010, where the zero-wind line is observed to take only 5 months to descend from 10 to 50 hPa. The current study presents observational evidence of enhanced Kelvin wave amplitudes during El Niño that has affected the stratospheric quasi-biennial oscillation (QBO) through wave–mean flow interactions. Earlier El Niño episodes of 1987 and 1998 are also qualitatively investigated, using reanalysis data. It is found that there might have been an enhancement in the equatorial Kelvin wave amplitudes during almost all El Niño episodes, however, an effect of a fast descending westerly is observed in the QBO only when the ambient zonal winds in the lower stratosphere favor the upward propagation of the Kelvin waves and consequently they interact with the mean flow. This study indicates that the El Niño and QBO are not linearly related and wave mean flow interactions play a very important role in connecting these two geophysical phenomena. - Highlights: • Enhanced atmospheric Kelvin Wave amplitudes observed during El Nino of 2010. • The waves are probably produced by processes generating El Nino.

  4. The Plasma Environment Associated With Equatorial Ionospheric Irregularities

    Science.gov (United States)

    Smith, Jonathon M.; Heelis, R. A.

    2018-02-01

    We examine the density structure of equatorial depletions referred to here as equatorial plasma bubbles (EPBs). Data recorded by the Ion Velocity Meter as part of the Coupled Ion Neutral Dynamics Investigation (CINDI) aboard the Communication/Navigation Outage Forecasting System (C/NOFS) satellite are used to study EPBs from 1600 to 0600 h local time at altitudes from 350 to 850 km. The data are taken during the 7 years from 2008 to 2014, more than one half of a magnetic solar cycle, that include solar minimum and a moderate solar maximum. Using a rolling ball algorithm, EPBs are identified by profiles in the plasma density, each having a depth measured as the percent change between the background and minimum density (ΔN/N). During solar moderate activity bubbles observed in the topside postsunset sector are more likely to have large depths compared to those observed in the topside postmidnight sector. Large bubble depths can be observed near 350 km in the bottomside F region in the postsunset period. Conversely at solar minimum the distribution of depths is similar in the postsunset and postmidnight sectors in all longitude sectors. Deep bubbles are rarely observed in the topside postsunset sector and never in the bottomside above 400 km in altitude. We suggest that these features result from the vertical drift of the plasma for these two solar activity levels. These drift conditions affect both the background density in which bubbles are embedded and the growth rate of perturbations in the bottomside where bubbles originate.

  5. Oligocene-Miocene magnetic stratigraphy carried by biogenic magnetite at sites U1334 and U1335 (equatorial Pacific Ocean)

    Science.gov (United States)

    Channell, J. E. T.; Ohneiser, C.; Yamamoto, Y.; Kesler, M. S.

    2013-02-01

    AbstractSediments from the equatorial Pacific Ocean, at the Integrated Ocean Drilling Program sites U1334 and U1335, record reliable magnetic polarity stratigraphies back to ~26.5 Ma (late Oligocene) at sedimentation rates usually in the 5-20 m/Myr range. Putative polarity subchrons that do not appear in current polarity timescales occur within Chrons C5ACr, C5ADn, and C5Bn.1r at Site U1335; and within Chrons C6AAr.2r, C6Br, C7Ar, and C8n.1n at Site U1334. Subchron C5Dr.1n (~17.5 Ma) is recorded at both sites, supporting its apparent recording in the South Atlantic Ocean, and has an estimated duration of ~40 kyr. The Oligocene-Miocene calcareous oozes have magnetizations carried by submicron magnetite, as indicated by thermal demagnetization of magnetic remanences, the anhysteretic remanence to susceptibility ratio, and magnetic hysteresis parameters. Transmission electron microscopy of magnetic separates indicates the presence of low-titanium iron oxide (magnetite) grains with size (50-100 nm) and shape similar to modern and fossil bacterial magnetite, supporting other evidence that biogenic submicron magnetite is the principal remanence carrier in these sediments. In the equatorial Pacific Ocean, low organic-carbon burial arrests microbial pore-water sulfate reduction, thereby aiding preservation of bacterial magnetite.

  6. Long wavelength irregularities in the equatorial electrojet

    International Nuclear Information System (INIS)

    Kudeki, E.; Farley, D.T.; Fejer, B.G.

    1982-01-01

    We have used the radar interferometer technique at Jicamarca to study in detail irregularities with wavelengths of a few kilometers generated in the unstable equatorial electrojet plasma during strong type 1 conditions. In-situ rocket observations of the same instability process are discussed in a companion paper. These large scale primary waves travel essentially horizontally and have large amplitudes. The vertical electron drift velocities driven by the horizontal wave electric fields reach or exceed the ion-acoustic velocity even though the horizontal phase velocity of the wave is considerably smaller. A straightforward extension to the long wavelength regime of the usual linear theory of the electrojet instability explains this and several other observed features of these dominant primary waves

  7. CLIL in the North: finding true north?

    NARCIS (Netherlands)

    Smit, Nienke

    CLIL teaching in the Netherlands is very popular: roughly 130 secondary schools offer CLIL education. But did you know that only nine secondary schools in the north of the Netherlands currently offer bilingual education? This means that CLIL education is still not at cycling distance for every

  8. Thermo-hydraulic analysis of the generic equatorial port plug design

    International Nuclear Information System (INIS)

    Rodríguez, E.; Guirao, J.; Ordieres, J.; Cortizo, J.L.; Iglesias, S.

    2012-01-01

    Highlights: ► Thermo-hydraulic transient performance evaluation and optimization of the GEPP structure cooling/heating system under neutronic heating and baking conditions. ► The optimization of the GEPP box structure's cooling system includes positioning and minimization of number and size of gun drilled channels, complying with the flow and functional requirements during operating and baking conditions. - Abstract: The port-based ITER diagnostic systems are housed primarily in two locations, the equatorial and upper port plugs. The port plug structure provides confinement function, maintains ultra-high vacuum quality and the first confinement barrier for radioactive materials at the ports. The port plug structure design, from the ITER International Organisation (IO), is cooled and heated by pressurized water which flows through a series of gun-drilled water channels and water pipes. The cooling function is required to remove nuclear heating due to radiation during operation of ITER, while the heating function is intended to heat up uniformly the machine during baking condition. The work presented provides coupled thermo-hydraulic analysis and optimization of a Generic Equatorial Port Plug (GEPP) structure cooling and heating system. The optimization performed includes positioning, minimization of number and size of gun drilled channels, complying with the flow and functional requirements during operating and baking conditions.

  9. Coccolithophore fluxes in the open tropical North Atlantic: influence of thermocline depth, Amazon water, and Saharan dust

    Directory of Open Access Journals (Sweden)

    C. V. Guerreiro

    2017-10-01

    Full Text Available Coccolithophores are calcifying phytoplankton and major contributors to both the organic and inorganic oceanic carbon pumps. Their export fluxes, species composition, and seasonal patterns were determined in two sediment trap moorings (M4 at 12° N, 49° W and M2 at 14° N, 37° W collecting settling particles synchronously from October 2012 to November 2013 at 1200 m of water depth in the open equatorial North Atlantic. The two trap locations showed a similar seasonal pattern in total coccolith export fluxes and a predominantly tropical coccolithophore settling assemblage. Species fluxes were dominated throughout the year by lower photic zone (LPZ taxa (Florisphaera profunda, Gladiolithus flabellatus but also included upper photic zone (UPZ taxa (Umbellosphaera spp., Rhabdosphaera spp., Umbilicosphaera spp., Helicosphaera spp.. The LPZ flora was most abundant during fall 2012, whereas the UPZ flora was more important during summer. In spite of these similarities, the western part of the study area produced persistently higher fluxes, averaging 241×107 ± 76×107 coccoliths m−2 d−1 at station M4 compared to only 66×107 ± 31×107 coccoliths m−2 d−1 at station M2. Higher fluxes at M4 were mainly produced by the LPZ species, favoured by the westward deepening of the thermocline and nutricline. Still, most UPZ species also contributed to higher fluxes, reflecting enhanced productivity in the western equatorial North Atlantic. Such was the case of two marked flux peaks of the more opportunistic species Gephyrocapsa muellerae and Emiliania huxleyi in January and April 2013 at M4, indicating a fast response to the nutrient enrichment of the UPZ, probably by wind-forced mixing. Later, increased fluxes of G. oceanica and E. huxleyi in October–November 2013 coincided with the occurrence of Amazon-River-affected surface waters. Since the spring and fall events of 2013 were also accompanied by two dust

  10. Polar and equatorial coronal hole winds at solar minima: From the heliosphere to the inner corona

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, L.; Landi, E., E-mail: lzh@umich.edu [Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, MI 48105 (United States)

    2014-02-01

    Fast solar wind can be accelerated from at least two different sources: polar coronal holes and equatorial coronal holes. Little is known about the relationship between the wind coming from these two different latitudes and whether these two subcategories of fast wind evolve in the same way during the solar cycle. Nineteen years of Ulysses observations, from 1990 to 2009, combined with ACE observations from 1998 to the present provide us with in situ measurements of solar wind properties that span two entire solar cycles. These missions provide an ideal data set to study the properties and evolution of the fast solar wind originating from equatorial and polar holes. In this work, we focus on these two types of fast solar wind during the minima between solar cycles 22 and 23 and 23 and 24. We use data from SWICS, SWOOPS, and VHM/FGM on board Ulysses and SWICS, SWEPAM, and MAG on board ACE to analyze the proton kinetic, thermal, and dynamic characteristics, heavy ion composition, and magnetic field properties of these two fast winds. The comparison shows that: (1) their kinetic, thermal, compositional, and magnetic properties are significantly different at any time during the two minima and (2) they respond differently to the changes in solar activity from cycle 23 to 24. These results indicate that equatorial and polar fast solar wind are two separate subcategories of fast wind. We discuss the implications of these results and relate them to remote-sensing measurements of the properties of polar and equatorial coronal holes carried out in the inner corona during these two solar minima.

  11. Repeated Storage of Respired Carbon in the Equatorial Pacific Ocean Over the Last Three Glacial Cycles

    Science.gov (United States)

    Jacobel, A. W.; McManus, J. F.; Anderson, R. F.; Winckler, G.

    2017-12-01

    As the largest reservoir of carbon actively exchanging with the atmosphere on glacial-interglacial timescales, the deep ocean has been implicated as the likely location of carbon dioxide sequestration during Pleistocene glaciations. Despite strong theoretical underpinnings for this expectation, it has been challenging to identify unequivocal evidence for respired carbon storage in the paleoceanographic record. Data on the rate of ocean ventilation derived from paired planktonic-benthic foraminifera radiocarbon ages conflict across the equatorial Pacific, and different proxy reconstructions contradict one another about the depth and origin of the watermass containing the respired carbon. Because any change in the storage of respiratory carbon must be accompanied by corresponding changes in dissolved oxygen concentrations, proxy data reflecting bottom water oxygenation are of value in addressing these apparent inconsistencies. We present new records of the redox sensitive metal uranium from the central equatorial Pacific to qualitatively identify intervals associated with respiratory carbon storage over the past 350 kyr. Our data reveal periods of deep ocean authigenic uranium deposition in association with each of the last three glacial maxima. Equatorial Pacific export productivity data show intervals with abundant authigenic uranium are not associated with local productivity increases, indicating episodic precipitation of authigenic uranium does not directly reflect increases in situ microbial respiration, but rather occurs in response to basin-wide decreases in deep water oxygen concentrations. We combine our new data with previously published results to propose a picture of glacial carbon storage and equatorial Pacific watermass structure that is internally consistent. We conclude that respired carbon storage in the Pacific was a persistent feature of Pleistocene glaciations.

  12. Polar and equatorial coronal hole winds at solar minima: From the heliosphere to the inner corona

    International Nuclear Information System (INIS)

    Zhao, L.; Landi, E.

    2014-01-01

    Fast solar wind can be accelerated from at least two different sources: polar coronal holes and equatorial coronal holes. Little is known about the relationship between the wind coming from these two different latitudes and whether these two subcategories of fast wind evolve in the same way during the solar cycle. Nineteen years of Ulysses observations, from 1990 to 2009, combined with ACE observations from 1998 to the present provide us with in situ measurements of solar wind properties that span two entire solar cycles. These missions provide an ideal data set to study the properties and evolution of the fast solar wind originating from equatorial and polar holes. In this work, we focus on these two types of fast solar wind during the minima between solar cycles 22 and 23 and 23 and 24. We use data from SWICS, SWOOPS, and VHM/FGM on board Ulysses and SWICS, SWEPAM, and MAG on board ACE to analyze the proton kinetic, thermal, and dynamic characteristics, heavy ion composition, and magnetic field properties of these two fast winds. The comparison shows that: (1) their kinetic, thermal, compositional, and magnetic properties are significantly different at any time during the two minima and (2) they respond differently to the changes in solar activity from cycle 23 to 24. These results indicate that equatorial and polar fast solar wind are two separate subcategories of fast wind. We discuss the implications of these results and relate them to remote-sensing measurements of the properties of polar and equatorial coronal holes carried out in the inner corona during these two solar minima.

  13. Shutdown dose rate analysis of European test blanket modules shields in ITER Equatorial Port #16

    Energy Technology Data Exchange (ETDEWEB)

    Juárez, Rafael, E-mail: rjuarez@ind.uned.es [Departamento de Ingeniería Energética, ETSII-UNED, Calle Juan del Rosal 12, Madrid 28040 (Spain); Sauvan, Patrick; Perez, Lucia [Departamento de Ingeniería Energética, ETSII-UNED, Calle Juan del Rosal 12, Madrid 28040 (Spain); Panayotov, Dobromir; Vallory, Joelle; Zmitko, Milan; Poitevin, Yves [Fusion for Energy (F4E), Torres Diagonal Litoral B3, Josep Pla 2, Barcelona 08019 (Spain); Sanz, Javier [Departamento de Ingeniería Energética, ETSII-UNED, Calle Juan del Rosal 12, Madrid 28040 (Spain)

    2016-11-01

    Highlights: • Nuclear analysis for European TBMs and shields, in ITER Equatorial Port #16, has been conducted in support of the ‘Concept Design Review’ from ITER. • The objective of the work is the characterization of the Shutdown Dose Rates at Equatorial Port #16 interspace. • The role played by the TBM and TBM shields, the equatorial port gaps and the vacuum vessel permeation, in terms of neutron flux transmission is assessed. • The role played by the TBM, TBM shields, Port Plug Frame, Pipe Forest and the machine in terms of activation is also investigated. - Abstract: ‘Fusion for Energy’ (F4E) is designing, developing, and implementing the European Helium-Cooled Lead-Lithium (HCLL) and Helium-Cooled Pebble-Bed (HCPB) Test Blanket Systems (TBSs) for ITER (Nuclear Facility INB-174). An essential element of the Conceptual Design Review (CDR) of these TBSs is the demonstration of capability of Test Blanket Modules (TBM) and their shields to fulfil their function and comply with the design requirements. One of the TBM shields highly relevant design aspects is the project target for shutdown dose rates (SDDR) in the interspace. We investigated two functions of the TBMs and TBM shields—the neutron flux attenuation along the shields, and the reduction of the activation of the components contributing to SDDR. It is shown that TBMs and TBM shields reduce significantly the neutron flux in the port plug (PP). In terms of neutron flux attenuation, the TBM shield provides sufficient neutron flux reduction, being responsible for 5 × 10{sup 6} n/cm{sup 2} s at port interspace, while the EPP gaps and BSM gaps are responsible for 5 × 10{sup 7} n/cm{sup 2} s each. When considering closed upper, lower and lateral neighbour equatorial ports (thus, excluding the cross-talk between ports), a SDDR of 121 μSv/h averaged near the port closure flange was obtained, out of which, only 4 μSv/h are due to the activation of TBMs and TBM shields. Maximum SDDR in the range

  14. Provenance and supply of Fe-enriched terrigenous sediments in the western equatorial Pacific and their relation to precipitation variations during the late Quaternary

    NARCIS (Netherlands)

    Wu, J.W.; Liu, Z.; Zhou, nn.

    2013-01-01

    Iron (Fe) deposition in the equatorial Pacific has important implications for the global carbon cycle, while the provenance of Fe supply and its change remain highly debated. Here, we geochemically characterize the provenance of terrigenous sediments deposited on the pathways of the Equatorial

  15. Conductivity data from moored current meter casts in the North Pacific Ocean from 1979-04-23 to 1981-10-01 (NODC Accession 8200163)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Conductivity data were collected using moored current meter casts in the North Pacific Ocean from April 23, 1979 to October 1, 1981. Data were submitted by...

  16. North Korea's Nuclear Weapons: Latest Developments

    National Research Council Canada - National Science Library

    Nikitin, Mary B

    2007-01-01

    .... The Six-Party Talks include the United States, South Korea, Japan, China, Russia, and North Korea, and were begun in August 2003 to attempt to resolve the current crisis over North Korean nuclear weapons...

  17. Equatorial Oscillation and Planetary Wave Activity in Saturn's Stratosphere Through the Cassini Epoch

    Science.gov (United States)

    Guerlet, S.; Fouchet, T.; Spiga, A.; Flasar, F. M.; Fletcher, L. N.; Hesman, B. E.; Gorius, N.

    2018-01-01

    Thermal infrared spectra acquired by Cassini/Composite InfraRed Spectrometer (CIRS) in limb-viewing geometry in 2015 are used to derive 2-D latitude-pressure temperature and thermal wind maps. These maps are used to study the vertical structure and evolution of Saturn's equatorial oscillation (SEO), a dynamical phenomenon presenting similarities with the Earth's quasi-biennal oscillation (QBO) and semi-annual oscillation (SAO). We report that a new local wind maximum has appeared in 2015 in the upper stratosphere and derive the descent rates of other wind extrema through time. The phase of the oscillation observed in 2015, as compared to 2005 and 2010, remains consistent with a ˜15 year period. The SEO does not propagate downward at a regular rate but exhibits faster descent rate in the upper stratosphere, combined with a greater vertical wind shear, compared to the lower stratosphere. Within the framework of a QBO-type oscillation, we estimate the absorbed wave momentum flux in the stratosphere to be on the order of ˜7 × 10-6 N m-2. On Earth, interactions between vertically propagating waves (both planetary and mesoscale) and the mean zonal flow drive the QBO and SAO. To broaden our knowledge on waves potentially driving Saturn's equatorial oscillation, we searched for thermal signatures of planetary waves in the tropical stratosphere using CIRS nadir spectra. Temperature anomalies of amplitude 1-4 K and zonal wave numbers 1 to 9 are frequently observed, and an equatorial Rossby (n = 1) wave of zonal wave number 3 is tentatively identified in November 2009.

  18. Genetic connectivity between north and south Mid-Atlantic Ridge chemosynthetic bivalves and their symbionts.

    Directory of Open Access Journals (Sweden)

    Karina van der Heijden

    Full Text Available Transform faults are geological structures that interrupt the continuity of mid-ocean ridges and can act as dispersal barriers for hydrothermal vent organisms. In the equatorial Atlantic Ocean, it has been hypothesized that long transform faults impede gene flow between the northern and the southern Mid-Atlantic Ridge (MAR and disconnect a northern from a southern biogeographic province. To test if there is a barrier effect in the equatorial Atlantic, we examined phylogenetic relationships of chemosynthetic bivalves and their bacterial symbionts from the recently discovered southern MAR hydrothermal vents at 5°S and 9°S. We examined Bathymodiolus spp. mussels and Abyssogena southwardae clams using the mitochondrial cytochrome c oxidase subunit I (COI gene as a phylogenetic marker for the hosts and the bacterial 16S rRNA gene as a marker for the symbionts. Bathymodiolus spp. from the two southern sites were genetically divergent from the northern MAR species B. azoricus and B. puteoserpentis but all four host lineages form a monophyletic group indicating that they radiated after divergence from their northern Atlantic sister group, the B. boomerang species complex. This suggests dispersal of Bathymodiolus species from north to south across the equatorial belt. 16S rRNA genealogies of chemoautotrophic and methanotrophic symbionts of Bathymodiolus spp. were inconsistent and did not match the host COI genealogy indicating disconnected biogeography patterns. The vesicomyid clam Abyssogena southwardae from 5°S shared an identical COI haplotype with A. southwardae from the Logatchev vent field on the northern MAR and their symbionts shared identical 16S phylotypes, suggesting gene flow across the Equator. Our results indicate genetic connectivity between the northern and southern MAR and suggest that a strict dispersal barrier does not exist.

  19. Conductivity data from moored current meter casts in the North Pacific Ocean from 1980-08-05 to 1981-08-01 (NODC Accession 8300053)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Conductivity data were collected using moored current meter casts in the North Pacific Ocean from August 5, 1980 to August 1, 1981. Data were submitted by University...

  20. The impact of shipping emissions on air pollution in the greater North Sea region - Part 1: Current emissions and concentrations

    Science.gov (United States)

    Aulinger, A.; Matthias, V.; Zeretzke, M.; Bieser, J.; Quante, M.; Backes, A.

    2016-01-01

    The North Sea is one of the areas with the highest ship traffic densities worldwide. At any time, about 3000 ships are sailing its waterways. Previous scientific publications have shown that ships contribute significantly to atmospheric concentrations of NOx, particulate matter and ozone. Especially in the case of particulate matter and ozone, this influence can even be seen in regions far away from the main shipping routes. In order to quantify the effects of North Sea shipping on air quality in its bordering states, it is essential to determine the emissions from shipping as accurately as possible. Within Interreg IVb project Clean North Sea Shipping (CNSS), a bottom-up approach was developed and used to thoroughly compile such an emission inventory for 2011 that served as the base year for the current emission situation. The innovative aspect of this approach was to use load-dependent functions to calculate emissions from the ships' current activities instead of averaged emission factors for the entire range of the engine loads. These functions were applied to ship activities that were derived from hourly records of Automatic Identification System signals together with a database containing the engine characteristics of the vessels that traveled the North Sea in 2011. The emission model yielded ship emissions among others of NOx and SO2 at high temporal and spatial resolution that were subsequently used in a chemistry transport model in order to simulate the impact of the emissions on pollutant concentration levels. The total emissions of nitrogen reached 540 Gg and those of sulfur oxides 123 Gg within the North Sea - including the adjacent western part of the Baltic Sea until 5° W. This was about twice as much of those of a medium-sized industrialized European state like the Netherlands. The relative contribution of ships to, for example, NO2 concentration levels ashore close to the sea can reach up to 25 % in summer and 15 % in winter. Some hundred kilometers

  1. Quantum jointly assisted cloning of an unknown three-dimensional equatorial state

    Science.gov (United States)

    Ma, Peng-Cheng; Chen, Gui-Bin; Li, Xiao-Wei; Zhan, You-Bang

    2018-02-01

    We present two schemes for perfectly cloning an unknown single-qutrit equatorial state with assistance from two and N state preparers, respectively. In the first scheme, the sender wishes to teleport an unknown single-qutrit equatorial state from two state preparers to a remote receiver, and then to create a perfect copy of the unknown state at her location. The scheme consists of two stages. The first stage of the scheme requires the usual teleportation. In the second stage, to help the sender realize the quantum cloning, two state preparers perform single-qutrit projective measurements on their own qutrits from the sender, then the sender can acquire a perfect copy of the unknown state. It is shown that, only if the two state preparers collaborate with each other, the sender can create a copy of the unknown state by means of some appropriate unitary operations. In the second scheme, we generalized the jointly assisted cloning in the first scheme to the case of N state prepares. In the present schemes, the total probability of success for assisted cloning of a perfect copy of the unknown state can reach 1.

  2. Contribution of CRUST2.0 components to the tri-axiality of the Earth and equatorial flattening of the core

    Directory of Open Access Journals (Sweden)

    Sun Rong

    2013-08-01

    Full Text Available Equatorial flattening of the core were previously estimated to be 5 × 10−4 by using seismically derived density anomaly, and 1.7748280 × 10−5 by assuming that the ratio of polar flattening to equatorial flattening of the core is the same as that of the whole Earth. In this study, we attempted to explain the difference by applying a density-contrast stripping process to the crust in the second method. We use the CRUST2.0 model to estimate the inertia-moment contribution resulted from the density-contrast structure in the crust to a tri-axial Earth. The contribution of the density contrast in the crust was removed layer by layer. The layers include topography, bathymetry, ice, soft sediment, hard sediment, upper crust, middle crust, lower crust and the reference crust. For the boundaries of the topography and bathymetry layers, we used ETOPO5 values with a resolution of 5'. For boundaries of other layers, we used values from the CRUST2.0 model with a resolution of 2°. After the contribution of density contrast is stripped, the equatorial flattening of the core was found to be 6.544 × 10−5, which is still one order of magnitude smaller than the result given by the first method. This suggests that at least one of the methods is not correct. The influence of the uncertainty in the equatorial flattening of the core on the Free Core Nutation frequency is small, but its effect on the gravitational torque acting on the tri-axial inner core cannot be ignored. So an accurate determination of the equatorial flattening of the core is still necessary.

  3. A perspective of Middle-Atmosphere Dynamics (MAD) studies at the New International Equatorial Observatory (NIEO)

    Science.gov (United States)

    Yamanaka, M. D.; Fukao, S.

    1989-01-01

    The equatorial region has attracted many MAD studies mainly based on data of limited locations and resolutions. Established at NIEO are: (1) Climatology of the equatorial middle atmosphere (all of the mean zonal flow, the meridional and/or east-west circulations and the planetary/gravity waves are described based on massive, reliable data statistics); (2) Troposphere-stratosphere coupling at the equator (the candidate location of NIEO is just at the stratospheric fountain area where the tracers and waves are pumped up into the middle atmosphere); and (3) Mesosphere-thermosphere coupling at the equator; thermospheric superrotation, which may be caused either by ion drag or by tidal breaking, is examined in detail by observations covering a wide altitude range from the mesosphere through the thermosphere.

  4. Equatorial F-region plasma depletion drifts: latitudinal and seasonal variations

    Directory of Open Access Journals (Sweden)

    A. A. Pimenta

    2003-12-01

    Full Text Available The equatorial ionospheric irregularities have been observed in the past few years by different techniques (e.g. ground-based radar, digisonde, GPS, optical instruments, in situ satellite and rocket instrumentation, and its time evolution and propagation characteristics can be used to study important aspects of ionospheric dynamics and thermosphere-ionosphere coupling. At present, one of the most powerful optical techniques to study the large-scale ionospheric irregularities is the all-sky imaging photometer system, which normally measures the strong F-region nightglow 630 nm emission from atomic oxygen. The monochromatic OI 630 nm emission images usually show quasi-north-south magnetic field-aligned intensity depletion bands, which are the bottomside optical signatures of large-scale F-region plasma irregularities (also called plasma bubbles. The zonal drift velocities of the plasma bubbles can be inferred from the space-time displacement of the dark structures (low intensity regions seen on the images. In this study, images obtained with an all-sky imaging photometer, using the OI 630 nm nightglow emission, from Cachoeira Paulista (22.7° S, 45° W, 15.8° S dip latitude, Brazil, have been used to determine the nocturnal monthly and latitudinal variation characteristics of the zonal plasma bubble drift velocities in the low latitude (16.7° S to 28.7° S region. The east and west walls of the plasma bubble show a different evolution with time. The method used here is based on the western wall of the bubble, which presents a more stable behavior. Also, the observed zonal plasma bubble drift velocities are compared with the thermospheric zonal neutral wind velocities obtained from the HWM-90 model (Hedin et al., 1991 to investigate the thermosphere-ionosphere coupling. Salient features from this study are presented and discussed.Key words. Ionosphere (ionosphere-atmosphere interactions; ionospheric irregularities; instruments and techniques

  5. El Niño and similar perturbation effects on the benthos of the Humboldt, California, and Benguela Current upwelling ecosystems

    Directory of Open Access Journals (Sweden)

    W. E. Arntz

    2006-01-01

    Full Text Available To a certain degree, Eastern Boundary Current (EBC ecosystems are similar: Cold bottom water from moderate depths, rich in nutrients, is transported to the euphotic zone by a combination of trade winds, Coriolis force and Ekman transport. The resultant high primary production fuels a rich secondary production in the upper pelagic and nearshore zones, but where O2 exchange is restricted, it creates oxygen minimum zones (OMZs at shelf and upper slope (Humboldt and Benguela Current or slope depths (California Current. These hypoxic zones host a specifically adapted, small macro- and meiofauna together with giant sulphur bacteria that use nitrate to oxydise H2S. In all EBC, small polychaetes, large nematodes and other opportunistic benthic species have adapted to the hypoxic conditions and co-exist with sulphur bacteria, which seem to be particularly dominant off Peru and Chile. However, a massive reduction of macrobenthos occurs in the core of the OMZ. In the Humboldt Current area the OMZ ranges between <100 and about 600 m, with decreasing thickness in a poleward direction. The OMZ merges into better oxygenated zones towards the deep sea, where large cold-water mega- and macrofauna occupy a dominant role as in the nearshore strip. The Benguela Current OMZ has a similar upper limit but remains shallower. It also hosts giant sulphur bacteria but little is known about the benthic fauna. However, sulphur eruptions and intense hypoxia might preclude the coexistence of significant mega- und macrobenthos. Conversely, off North America the upper limit of the OMZ is considerably deeper (e.g., 500–600 m off California and Oregon, and the lower boundary may exceed 1000m. The properties described are valid for very cold and cold (La Niña and "normal" ENSO conditions with effective upwelling of nutrient-rich bottom water. During warm (El Niño episodes, warm water masses of low oxygen concentration from oceanic and equatorial regions enter the upwelling

  6. The equatorial E-region and its plasma instabilities: a tutorial

    Directory of Open Access Journals (Sweden)

    D. T. Farley

    2009-04-01

    Full Text Available In this short tutorial we first briefly review the basic physics of the E-region of the equatorial ionosphere, with emphasis on the strong electrojet current system that drives plasma instabilities and generates strong plasma waves that are easily detected by radars and rocket probes. We then discuss the instabilities themselves, both the theory and some examples of the observational data. These instabilities have now been studied for about half a century (!, beginning with the IGY, particularly at the Jicamarca Radio Observatory in Peru. The linear fluid theory of the important processes is now well understood, but there are still questions about some kinetic effects, not to mention the considerable amount of work to be done before we have a full quantitative understanding of the limiting nonlinear processes that determine the details of what we actually observe. As our observational techniques, especially the radar techniques, improve, we find some answers, but also more and more questions. One difficulty with studying natural phenomena, such as these instabilities, is that we cannot perform active cause-and-effect experiments; we are limited to the inputs and responses that nature provides. The one hope here is the steadily growing capability of numerical plasma simulations. If we can accurately simulate the relevant plasma physics, we can control the inputs and measure the responses in great detail. Unfortunately, the problem is inherently three-dimensional, and we still need somewhat more computer power than is currently available, although we have come a long way.

  7. The Upper 1000-m Slope Currents North of the South Shetland Islands and Elephant Island Based on Ship Cruise Observations

    Science.gov (United States)

    Du, Guangqian; Zhang, Zhaoru; Zhou, Meng; Zhu, Yiwu; Zhong, Yisen

    2018-04-01

    While the Antarctic Slope Current (ASC) has been intensively studied for the East Antarctica slope area and the Weddell Sea, its fate in the western Antarctic Peninsula (WAP) region remains much less known. Data from two cruises conducted near the South Shetland Islands (SSIs) and the Elephant Island (EI), one in austral summer of 2004 and one in austral winter of 2006, were analyzed to provide a broad picture of the circulation pattern over the continental slope of the surveyed area, and an insight into the dynamical balance of the circulation. The results indicate that southwestward currents are present over the upper slope in the study area, indicating the ASC in the WAP region. Near the Shackleton Gap (SG) north of the EI, the southwestward slope currents near the shelf break are characterized by a water mass colder and fresher than the ambient water, which produces cross-slope density gradients and then vertical shear of the along-slope (or along-isobath) velocity. The vertical shear is associated with a reversal of the along-slope current from northeastward at surface to southwestward in deeper layers, or a depth-intensification of the southwestward slope currents. The water mass with temperature and salinity characteristics similar to the observed cold and fresh water is also revealed on the southern slope of the Scotia Sea, suggesting that this cold and fresh water is originated from the Scotia Sea slope and flows southwestward through the SG. Over the shelf north of the SSIs, the cold and fresh water mass is also observed and originates mainly from the Bransfield Strait. In this area, vertical structure of the southwestward slope currents is associated with the onshore intrusion of the upper Circumpolar Deep Water that creates cross-slope density gradients.

  8. Diagnosing the Growth of Equatorial Typhoon Vamei (2001 from an Energy Standpoint

    Directory of Open Access Journals (Sweden)

    Gin-Rong Liu

    2010-01-01

    Full Text Available Surprisingly, on 27 December 2001, a storm named Typhoon Vamei formed near in Singaporean waters. An examination on the SSM/I-derived rainfall rates and air-sea parameters showed that significant higher latent heat release and air-sea energy flux during convective rainfall activities played a key role in the typhoon¡¦s growth. A quantitative analysis revealed that the energy flux from the ocean to the atmosphere and the latent heat release during the rainfall activities both increased significantly during the initial growth stage. However, the values rapidly decreased just before the storm reached typhoon strength. Separately, in contrast to a case that occurred in 1999, the total thermal energy calculated from Typhoon Vamei¡¦s formation was two times higher. Thus, despite a very weak Coriolis force in the equatorial belt, the special terrain of Borneo Island and narrow channel in the equatorial South China Sea caused a Borneo vortex via northeasterly cold surges, together with the accumulated energy was sufficiently strong enough to induce the formation of Typhoon Vamei.

  9. Sub-kilometer Simulation of Equatorial Plasma Bubble and Comparison with Satellite Observations

    Science.gov (United States)

    Yokoyama, T.; Pfaff, R. F., Jr.; Stolle, C.; Su, S. Y.

    2016-12-01

    Equatorial plasma bubble (EPB) is a well-known phenomenon in the equatorial ionospheric F region. As it causes severe scintillation in the amplitude and phase of radio signals, it is important to understand and forecast the occurrence of EPB from a space weather point of view. The development of EPB is presently believed as an evolution of the generalized Rayleigh-Taylor instability. We have already developed a 3D high-resolution bubble (HIRB) model with a grid spacing of as small as 1 km and presented nonlinear growth of EPB which shows very turbulent internal structures such as bifurcation and pinching. Recent upgrade of the HIRB model has made it possible to conduct the simulation with sub-kilometer grid spacing. The simulation results can be compared with various in situ satellite observations such as plasma drift velocity, plasma density, magnetic field, and their structures and power spectra, e.g. from the C/NOFS, ROCSAT, CHAMP, or Swarm missions. Our initial results show encouraging agreement between model results and observational data.

  10. Current meter and bathythermograph data from moored current meter and xbt casts in the North American Coastline-South as part of the Outer Continental Shelf - South Atlantic (OCS-South Atlantic) project from 1982-02-16 to 1985-07-01 (NODC Accession 8600124)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current direction and bathythermograph (xbt) data were collected using moored current meter casts and other instruments in the North American Coastline-South from...

  11. Mechanism of seasonal eddy kinetic energy variability in the eastern equatorial Pacific Ocean

    Science.gov (United States)

    Wang, Minyang; Du, Yan; Qiu, Bo; Cheng, Xuhua; Luo, Yiyong; Chen, Xiao; Feng, Ming

    2017-04-01

    Enhanced mesoscale eddy activities or tropical instability waves (TIWs) exist along the northern front of the cold tongue in the eastern equatorial Pacific Ocean. In this study, we investigate seasonal variability of eddy kinetic energy (EKE) over this region and its associated dynamic mechanism using a global, eddy-resolving ocean general circulation model (OGCM) simulation, the equatorial mooring data, and satellite altimeter observations. The seasonal-varying enhanced EKE signals are found to expand westward from 100°W in June to 180°W in December between 0°N and 6°N. This westward expansion in EKE is closely connected to the barotropically-baroclinically unstable zonal flows that are in thermal-wind balance with the seasonal-varying thermocline trough along 4°N. By adopting an 1½-layer reduced-gravity model, we confirm that the seasonal perturbation of the thermocline trough is dominated by the anticyclonic wind stress curl forcing, which develops due to southerly winds along 4°N from June to December.

  12. Increases of equatorial total electron content (TEC) during magnetic storms

    International Nuclear Information System (INIS)

    Yeboah-Amankwah, D.

    1976-01-01

    This paper is a report on the analysis of equatorial electron content, TEC, during magnetic storms. Storms between 1969 and 1972 have been examined as part of an on-going study of TEC morphology during magnetically disturbed days. The published magnetic Ksup(p) indices and TEC data from the Legon abservatory have been employed. The general picture arising from the analysis is that the total electron content of the ionosphere is significantly enhanced during magnetic storms. (author)

  13. Nonlinear theory of the collisional Rayleigh-Taylor instability in equatorial spread F

    International Nuclear Information System (INIS)

    Chaturvedi, P.K.; Ossakow, S.L.

    1977-01-01

    The nonlinear behavior of the collisional Rayleigh-Taylor instability is studied in equatorial Spread F by including a dominant two-dimensional nonlinearity. It is found that on account of this nonlinearity the instability saturates by generating damped higher spatial harmonics. The saturated power spectrum for the density fluctuations is discussed. A comparison between experimental observations and theory is presented

  14. Current status of ITER EC design

    International Nuclear Information System (INIS)

    Bosia, G.

    2003-01-01

    The ITER-FEAT Electron Cyclotron System employs one equatorial launcher and three upper port launchers to inject 20 + 20 MW of mm-wave power at 170 GHz through slots in the plasma-facing neutron and radiation shield. The equatorial launcher includes 3 sets of toroidally steer-able mirrors, each collecting 8 RF beams from 24 circular cross-section corrugated wave-guides. In the upper-port launcher, eight beams, reflected in pairs by four toroidally angled (∼30 angle) and poloidally steer-able (∼ 10 angle) mirrors focus of the RF power on the plasma m = 2 and m = 3/2 plasma flux rational surfaces, for neo-classical tearing mode(s) (NTM) control. Conceptual studies of remote steering that would possibly allow removing the beam- steering equipment from the vacuum vessel and locating them in more protected positions have been carried out. All EC wave transmission is based on low losses circular cross section corrugated and evacuated wave guides each connected to a 170 GHz, 1 MW CW Gyrotron tube oscillator featuring an overall efficiency of ∼ 50%, obtained by depressed-collector energy recovery. In the paper, requirements, issues and the current status of the design is reviewed. (authors)

  15. Regulation of phytoplankton carbon to chlorophyll ratio by light, nutrients and temperature in the Equatorial Pacific Ocean: a basin-scale model

    Directory of Open Access Journals (Sweden)

    X. J. Wang

    2009-03-01

    Full Text Available The complex effects of light, nutrients and temperature lead to a variable carbon to chlorophyll (C:Chl ratio in phytoplankton cells. Using field data collected in the Equatorial Pacific, we derived a new dynamic model with a non-steady C:Chl ratio as a function of irradiance, nitrate, iron, and temperature. The dynamic model is implemented into a basin-scale ocean circulation-biogeochemistry model and tested in the Equatorial Pacific Ocean. The model reproduces well the general features of phytoplankton dynamics in this region. For instance, the simulated deep chlorophyll maximum (DCM is much deeper in the western warm pool (~100 m than in the Eastern Equatorial Pacific (~50 m. The model also shows the ability to reproduce chlorophyll, including not only the zonal, meridional and vertical variations, but also the interannual variability. This modeling study demonstrates that combination of nitrate and iron regulates the spatial and temporal variations in the phytoplankton C:Chl ratio in the Equatorial Pacific. Sensitivity simulations suggest that nitrate is mainly responsible for the high C:Chl ratio in the western warm pool while iron is responsible for the frontal features in the C:Chl ratio between the warm pool and the upwelling region. In addition, iron plays a dominant role in regulating the spatial and temporal variations of the C:Chl ratio in the Central and Eastern Equatorial Pacific. While temperature has a relatively small effect on the C:Chl ratio, light is primarily responsible for the vertical decrease of phytoplankton C:Chl ratio in the euphotic zone.

  16. Geomagnetic field variations at the equatorial electrojet station in Sri Lanka, Peredinia

    Directory of Open Access Journals (Sweden)

    R. G. Rastogi

    2004-09-01

    Full Text Available The paper discusses the variations of the horizontal (H, vertical (Z and eastward (Y components of the geomagnetic field at Peredinia (PRD, an electrojet station in Sri Lanka, with the time of the day, season, sudden commencement (SSC and during geomagnetic storms. The daily variation of H showed a large peak around midday. The daily variation of Z appeared to be almost a time gradient curve of the daily variation of H, showing a maximum around 09:00 LT (75° EMT when the H field was increasing fastest and not at noon when Δ H was the maximum. Storm time variation of H resembled the variation of the Dst index but that of Z showed a large minimum about 2-3h before the time of minimum Dst or at the time of maximum time gradient of Dst variation. These features are compared with corresponding variations at the equatorial stations Trivandrum (TRD in India, and remarkable similarity in all observations is noticed at PRD and TRD. It is suggested that the observed abnormal features of Z variations at electrojet stations in India-Sri Lanka are due to (i direct effect of the ionospheric electrojet current (ii the induction effect of the image current by the average spatially extended conductivity region and (iii the induction current in the local subsurface conductor. It is suggested that the conductor responsible for the observed features in Z in India and Sri Lanka has to have extended spatial domain to latitudes well south of India, rather than confined to narrow Palk Strait.

  17. The Açu Reef morphology, distribution, and inter reef sedimentation on the outer shelf of the NE Brazil equatorial margin

    Science.gov (United States)

    do Nascimento Silva, Luzia Liniane; Gomes, Moab Praxedes; Vital, Helenice

    2018-05-01

    Submerged reefs, referred to as the Açu Reefs, have been newly observed on both sides of the Açu Incised Valley on the northeastern equatorial Brazilian outer shelf. This study aims to understand the roles of shelf physiography, its antecedent morphologies, and its inter reef sedimentation on the different development stages of the biogenic reef during last deglacial sea-level rise. The data sets consist of side-scan sonar imagery, one sparker seismic profile, 76 sediment samples, and underwater photography. Seven backscatter patterns (P1 to P7) were identified and associated with eleven sedimentary carbonate and siliciclastic facies. The inherited relief, the mouth of the paleo incised valley, and the interreef sediment distribution play major controls on the deglacial reef evolution. The reefs occur in a depth-limited 25-55 m water depth range and in a 6 km wide narrow zone of the outer shelf. The reefs crop out in a surface area over 100 km2 and occur as a series of NW-SE preferentially orientated ridges composed of three parallel ridge sets at 45, 35, and 25 m of water depth. The reefs form a series of individual, roughly linear ridges, tens of km in length, acting as barriers in addition to scattered reef mounds or knolls, averaging 4 m in height and grouped in small patches and aggregates. The reefs, currently limited at the transition between the photic and mesophotic zones, are thinly covered by red algae and scattered coral heads and sponges. Taking into account the established sea-level curves from the equatorial Brazilian northeastern shelf / Rochas Atoll and Barbados, the shelf physiography, and the shallow bedrock, the optimal conditions for reef development had to occur during a time interval (11-9 kyr BP) characterized by a slowdown of the outer shelf flooding, immediately following Meltwater Pulse-1B. This 2 kyr short interval provided unique conditions for remarkable reef backstepping into distinct parallel ridge sets. Furthermore, the Açu Reefs

  18. Vesta: its shape and deformed equatorial belt predicted by the wave planetology

    Science.gov (United States)

    Kochemasov, G. G.

    2012-09-01

    destruction. At Saturn a wide tropical zone usually has higher albedo than extratropical ones. Relat ively heavier methane clouds in the H-He atmosphere are absent around the equator and concentrated on the higher latitudes. In the subsided tropical zone of Titan the darker methane lowlands (Fig. 6) are normally rippled in at least two directions with spacing a few km to 20 km. This planetary pattern is comparable with a behavior of the basalt floor of terrestrial oceans [5-7]. Asteroid (mini-planet) Vesta also demonstrates drastic structural difference between equatorial and extra-equatorial zones. Folded and subsided equator shows troughs encircling most of Vesta and being up to 20 kms wide (Fig. 4). The north-south dichotomy is obvious in subsided southern hemisphere (less cratered) and uplifted the northern one (more cratered). Mars shows the inverse dichotomy, Earth the east-west one. Vesta's positive Bouguer anomaly at the tropics (Fig. 5, [4]) is due to uplifted denser material compensating angular momentum loss because of subsiding equatorial belt (Fig. 4). Fig. 1. Vesta, PIA14315.JPG, south hemisphere with basin and central mound Fig. 2. Hyperion, PIA07761.JPG. 175 x 120 x 100 km. Hemisphere with depression and central mound (compare with the Vestan south hemisphere depression and central mound, Fig. 1).

  19. Post-Glacial Development of Western North Atlantic - Labrador Sea Oceanographic Circulation

    DEFF Research Database (Denmark)

    Sheldon, Christina

    2015-01-01

    The subpolar North Atlantic Ocean – Labrador Sea region is an important site for both oceanographic and atmospheric circulation. The convergence of ocean currents causes downwelling of cold, saline water in the subpolar gyre, helping to drive the world-wide thermohaline circulation system. The main......, the subpolar gyre weakened, which carried less Gulf Stream-derived water to the western North Atlantic Ocean via the West Greenland Current and the Slopewater Current, south of Newfoundland. Changes in the subpolar gyre circulation had developed to be analogous to the modern climate by approximately 2 cal kyr...... surface currents involved in the gyre are the south-flowing, cold and relatively fresh Labrador Current and the north-flowing, warm and relatively saline Gulf Stream. The oceanic front between these two major currents moves north and south, dependent on the relative strengths of the currents, impacting...

  20. The influence of tidal winds in the formation of blanketing sporadic e-layer over equatorial Brazilian region

    Science.gov (United States)

    Resende, Laysa Cristina Araujo; Batista, Inez Staciarini; Denardini, Clezio Marcos; Batista, Paulo Prado; Carrasco, Alexander José; Andrioli, Vânia Fátima; Moro, Juliano

    2018-06-01

    This work analysis the blanketing sporadic layers (Esb) behavior over São Luís, Brazil (2° 31‧ S, 44° 16‧ W, dip: -4.80) which is classified as a transition region between equatorial and low-latitude. Hence, some peculiarities can appear as Esb occurrence instead of the common Esq, which is a non-blanketing irregularity layer. The analysis presented here was obtained using a modified version of a theoretical model for the E region (MIRE), which computes the densities of the metallic ions (Fe+ and Mg+) and the densities of the main molecular ions (NO+, O2+, N2+) by solving the continuity and momentum equations for each one of them. In that model, the Es layer physics driven by both diurnal and semidiurnal tidal winds are taken into account and it was extended in height coverage by adding a novel neutral wind model derived from the all-sky meteor radar measurements. Thus, we provide more trustworthy results related to the Es layer formation in the equatorial region. We verified the contribution of each tidal wind component to the Esb layer formation in this equatorial region. Additionally, we compared the Es layer electron density computed by MIRE with the data obtained by using the blanketing frequency parameter (fbEs) deduced from ionograms. The results show that the diurnal component of the tidal wind is more important in the Esb layer formation whereas the semidiurnal component has a little contribution in our simulations. Finally, it was verified that the modified MIRE presented here can be used to study the Esb layers occurrence over the equatorial region in the Brazilian sector.

  1. Current meter and marine toxic substances data from moored current meter casts and other instruments in the North Pacific Ocean as part of the Deep Ocean Mining and Environmental Study (DOMES) project, 1975-08-29 to 1977-12-01 (NODC Accession 7800741)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current meter and marine toxic substances data were collected using moored current meter casts and other instruments in the North Pacific Ocean from August 29, 1975...

  2. Rocket in situ observation of equatorial plasma irregularities in the region between E and F layers over Brazil

    Directory of Open Access Journals (Sweden)

    S. Savio Odriozola

    2017-03-01

    Full Text Available A two-stage VS-30 Orion rocket was launched from the equatorial rocket launching station in Alcântara, Brazil, on 8 December 2012 soon after sunset (19:00 LT, carrying a Langmuir probe operating alternately in swept and constant bias modes. At the time of launch, ground equipment operated at equatorial stations showed rapid rise in the base of the F layer, indicating the pre-reversal enhancement of the F region vertical drift and creating ionospheric conditions favorable for the generation of plasma bubbles. Vertical profiles of electron density estimated from Langmuir probe data showed wave patterns and small- and medium-scale plasma irregularities in the valley region (100–300 km during the rocket upleg and downleg. These irregularities resemble those detected by the very high frequency (VHF radar installed at Jicamarca and so-called equatorial quasi-periodic echoes. We present evidence suggesting that these observations could be the first detection of this type of irregularity made by instruments onboard a rocket.

  3. Centennial changes in North Pacific anoxia linked to tropical trade winds

    Science.gov (United States)

    Deutsch, Curtis; Berelson, William; Thunell, Robert; Weber, Thomas; Tems, Caitlin; McManus, James; Crusius, John; Ito, Taka; Baumgartner, Timothy; Ferreira, Vicente; Mey, Jacob; van Geen, Alexander

    2014-01-01

    Climate warming is expected to reduce oxygen (O2) supply to the ocean and expand its oxygen minimum zones (OMZs). We reconstructed variations in the extent of North Pacific anoxia since 1850 using a geochemical proxy for denitrification (δ15N) from multiple sediment cores. Increasing δ15N since ~1990 records an expansion of anoxia, consistent with observed O2 trends. However, this was preceded by a longer declining δ15N trend that implies that the anoxic zone was shrinking for most of the 20th century. Both periods can be explained by changes in winds over the tropical Pacific that drive upwelling, biological productivity, and O2 demand within the OMZ. If equatorial Pacific winds resume their predicted weakening trend, the ocean’s largest anoxic zone will contract despite a global O2 decline.

  4. Study of the Equatorial and Low-Latitude Electrodynamic and Ionospheric Disturbances During the 22-23 June 2015 Geomagnetic Storm Using Ground-Based and Spaceborne Techniques

    Science.gov (United States)

    Astafyeva, E.; Zakharenkova, I.; Hozumi, K.; Alken, P.; Coïsson, P.; Hairston, M. R.; Coley, W. R.

    2018-03-01

    We use a set of ground-based instruments (Global Positioning System receivers, ionosondes, magnetometers) along with data of multiple satellite missions (Swarm, C/NOFS, DMSP, GUVI) to analyze the equatorial and low-latitude electrodynamic and ionospheric disturbances caused by the geomagnetic storm of 22-23 June 2015, which is the second largest storm in the current solar cycle. Our results show that at the beginning of the storm, the equatorial electrojet (EEJ) and the equatorial zonal electric fields were largely impacted by the prompt penetration electric fields (PPEF). The PPEF were first directed eastward and caused significant ionospheric uplift and positive ionospheric storm on the dayside, and downward drift on the nightside. Furthermore, about 45 min after the storm commencement, the interplanetary magnetic field (IMF) Bz component turned northward, leading to the EEJ changing sign to westward, and to overall decrease of the vertical total electron content (VTEC) and electron density on the dayside. At the end of the main phase of the storm, and with the second long-term IMF Bz southward turn, we observed several oscillations of the EEJ, which led us to conclude that at this stage of the storm, the disturbance dynamo effect was already in effect, competing with the PPEF and reducing it. Our analysis showed no significant upward or downward plasma motion during this period of time; however, the electron density and the VTEC drastically increased on the dayside (over the Asian region). We show that this second positive storm was largely influenced by the disturbed thermospheric conditions.

  5. Seasonal Variation of Diurnal Cycle of Rainfall in the Eastern Equatorial Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    RameshKumar, M.R.; Pednekar, S.; Katsumata, M.; Antony, M.K.; Kuroda, Y.; Unnikrishnan, A.S.

    The diurnal cycle of rainfall over the eastern equatorial Indian Ocean is studied for the period 23rd October 2001 to 31st October 2003 using the hourly data from the Triton buoy positioned at 1.5°S and 90°E. An analysis of the active and weak...

  6. Solar quiet day ionospheric source current in the West African region.

    Science.gov (United States)

    Obiekezie, Theresa N; Okeke, Francisca N

    2013-05-01

    The Solar Quiet (Sq) day source current were calculated using the magnetic data obtained from a chain of 10 magnetotelluric stations installed in the African sector during the French participation in the International Equatorial Electrojet Year (IEEY) experiment in Africa. The components of geomagnetic field recorded at the stations from January-December in 1993 during the experiment were separated into the source and (induced) components of Sq using Spherical Harmonics Analysis (SHA) method. The range of the source current was calculated and this enabled the viewing of a full year's change in the source current system of Sq.

  7. Solar quiet day ionospheric source current in the West African region

    Directory of Open Access Journals (Sweden)

    Theresa N. Obiekezie

    2013-05-01

    Full Text Available The Solar Quiet (Sq day source current were calculated using the magnetic data obtained from a chain of 10 magnetotelluric stations installed in the African sector during the French participation in the International Equatorial Electrojet Year (IEEY experiment in Africa. The components of geomagnetic field recorded at the stations from January–December in 1993 during the experiment were separated into the source and (induced components of Sq using Spherical Harmonics Analysis (SHA method. The range of the source current was calculated and this enabled the viewing of a full year’s change in the source current system of Sq.

  8. 10Be/230Th ratios as proxy for particle flux in the equatorial Pacific ocean

    International Nuclear Information System (INIS)

    Anderson, R.F.; Fleisher, M.Q.; Kubik, P.W.; Suter, M.

    1997-01-01

    Particulate 10 Be/ 230 Th ratios collected by sediment traps in the central equatorial Pacific Ocean exhibit a positive correlation with particle flux, but little or no correlation with particle composition. (author) 1 fig., 4 refs

  9. Seasonal climate prediction for North Eurasia

    International Nuclear Information System (INIS)

    Kryjov, Vladimir N

    2012-01-01

    An overview of the current status of the operational seasonal climate prediction for North Eurasia is presented. It is shown that the performance of existing climate models is rather poor in seasonal prediction for North Eurasia. Multi-model ensemble forecasts are more reliable than single-model ones; however, for North Eurasia they tend to be close to climatological ones. Application of downscaling methods may improve predictions for some locations (or regions). However, general improvement of the reliability of seasonal forecasts for North Eurasia requires improvement of the climate prediction models. (letter)

  10. Growth rates, grazing, sinking, and iron limitation of equatorial Pacific phytoplankton

    International Nuclear Information System (INIS)

    Chavez, F.P.; Buck, K.R.; Coale, K.H.; Martin, J.H.; DiTullio, G.R.; Welschmeyer, N.A.; Barber, R.T.; Jacobson, A.C.

    1991-01-01

    Concentrations of phytoplankton and NO 3 are consistently low and high in surface waters of the oceanic eastern and central equatorial Pacific, and phytoplankton populations are dominated by small solitary phytoplankton. Growth rates of natural phytoplankton populations, needed to assess the relative importance of many of the processes considered in the equatorial Pacific, were estimated by several methods. The growth rates of natural phytoplankton populations were found to be ∼0.7 d -1 or 1 biomass doubling d -1 and were similar for all methods. To keep this system in its observed balance requires that loss rates approximate observed growth rates. Grazing rates, measured with a dilution grazing experiment, were high, accounting for a large fraction of the daily production. Additions of various forms of Fe to 5-7-d incubations utilizing ultraclean techniques resulted in significant shifts in autotrophic and heterotrophic assemblages between initial samples, controls, and Fe enrichments, which were presumably due to Fe, grazing by both protistan and metazoan components, and incubation artifacts. Estimated growth rates of small pennate diatoms showed increases in Fe enrichments with respect to controls. The growth rates of the pennate diatoms were similar to those estimated for the larger size fraction of the natural populations

  11. Magnetosphere-ionosphere coupling currents in Jupiter's middle magnetosphere: effect of magnetosphere-ionosphere decoupling by field-aligned auroral voltages

    Directory of Open Access Journals (Sweden)

    J. D. Nichols

    2005-03-01

    Full Text Available We consider the effect of field-aligned voltages on the magnetosphere-ionosphere coupling current system associated with the breakdown of rigid corotation of equatorial plasma in Jupiter's middle magnetosphere. Previous analyses have assumed perfect mapping of the electric field and flow along equipotential field lines between the equatorial plane and the ionosphere, whereas it has been shown that substantial field-aligned voltages must exist to drive the field-aligned currents associated with the main auroral oval. The effect of these field-aligned voltages is to decouple the flow of the equatorial and ionospheric plasma, such that their angular velocities are in general different from each other. In this paper we self-consistently include the field-aligned voltages in computing the plasma flows and currents in the system. A third order differential equation is derived for the ionospheric plasma angular velocity, and a power series solution obtained which reduces to previous solutions in the limit that the field-aligned voltage is small. Results are obtained to second order in the power series, and are compared to the original zeroth order results with no parallel voltage. We find that for system parameters appropriate to Jupiter the effect of the field-aligned voltages on the solutions is small, thus validating the results of previously-published analyses.

  12. Fostering renewable electricity markets in North America

    International Nuclear Information System (INIS)

    Wingate, M.; Hamrin, J.; Kvale, L.; Alatorre, C.

    2007-04-01

    This paper provided an overview of key market demand and supply drivers for the renewable electricity in Canada, the United States and Mexico. The aim of the paper was to assist North American governments in supporting the development of renewable electricity by addressing barriers that currently contribute to higher costs as well as challenges related to policy implementation. The paper outlined regulatory mandates and discussed issues related to voluntary purchases, and financial incentives. Current policy frameworks for renewable electricity were also examined. Opportunities for developing the renewable electricity market North America were explored. Wind power environmental standards were reviewed. Various green pricing schemes were discussed. The paper also included recommendations for the current electricity market as well as for members of the North American Agreement on Environmental Cooperation. 84 refs., 4 tabs., 7 figs

  13. Reinforcing the North Atlantic backbone: revision and extension of the composite splice at ODP Site 982

    Directory of Open Access Journals (Sweden)

    A. J. Drury

    2018-03-01

    have hampered correlation between Site 982, the equatorial Atlantic and the Mediterranean. Comparisons of the revised Site 982 stratigraphy to high-resolution astronomically tuned benthic δ18O stratigraphies from ODP Site 926 (equatorial Atlantic and Ain el Beida (north-western Morocco show that prior inconsistencies in short-term excursions are now resolved. The identification of key new cycles at Site 982 further highlights the requirement for the current scheme for late Miocene marine isotope stages to be redefined. Our new integrated deep-sea benthic stable isotope stratigraphy and astrochronology from Site 982 will facilitate future high-resolution late Miocene to early Pliocene climate research.

  14. PLUMEX II: A second set of coincident radar and rocket observations of equatorial spread-F

    International Nuclear Information System (INIS)

    Szuszczewicz, E.P.; Tsunoda, R.T.; Narcisi, R.; Holmes, J.C.

    1981-01-01

    PLUMEX II, the second rocket in a two-rocket operation that successfully executed coincident rocket and radar measurements of backscatter plumes and plasma depletions, was launched into the mid-phase of well-developed equatorial spread-F. In contrast with the first operation, the PLUMEX II results show large scale F-region irregularities only on the bottomside gradient with smaller scale irregularities (i.e., small scale structure imbedded in larger scale features) less intense than corresponding observations in PLUMEX I. The latter result could support current interpretations of east-west plume asymmetry which suggests that during initial upwelling the western wall of a plume (the PLUMEX I case) is more unstable than its eastern counterpart (the PLUMEX II case). In addition, ion mass spectrometer results are found to provide further support for an ion transport model which ''captures'' bottomside ions in an upwelling bubble and transports them to high altitudes

  15. Deep-sea environment and biodiversity of the West African Equatorial margin

    OpenAIRE

    Sibuet, Myriam; Vangriesheim, Annick

    2009-01-01

    The long-term BIOZAIRE multidisciplinary deep-sea environmental program on the West Equatorial African margin organized in partnership between Ifremer and TOTAL aimed at characterizing the benthic community structure in relation with physical and chemical processes in a region of oil and gas interest. The morphology of the deep Congo submarine channel and the sedimentological structures of the deep-sea fan were established during the geological ZAIANGO project and helped to select study sites...

  16. Simulation studies on the tomographic reconstruction of the equatorial and low-latitude ionosphere in the context of the Indian tomography experiment: CRABEX

    Directory of Open Access Journals (Sweden)

    S. V. Thampi

    2004-11-01

    Full Text Available Equatorial ionosphere poses a challenge to any algorithm that is used for tomographic reconstruction because of the phenomena like the Equatorial Ionization Anomaly (EIA and Equatorial Spread F (ESF. Any tomographic reconstruction of ionospheric density distributions in the equatorial region is not acceptable if it does not image these phenomena, which exhibit large spatial and temporal variability, to a reasonable accuracy. The accuracy of the reconstructed image generally depends on many factors, such as the satellite-receiver configuration, the ray path modelling, grid intersections and finally, the reconstruction algorithm. The present simulation study is performed to examine these in the context of the operational Coherent Radio Beacon Experiment (CRABEX network just commenced in India. The feasibility of using this network for the studies of the equatorial and low-latitude ionosphere over Indian longitudes has been investigated through simulations. The electron density distributions that are characteristic of EIA and ESF are fed into various simulations and the reconstructed tomograms are investigated in terms of their reproducing capabilities. It is seen that, with the present receiver chain existing from 8.5° N to 34° N, it would be possible to obtain accurate images of EIA and the plasma bubbles. The Singular Value Decomposition (SVD algorithm has been used for the inversion procedure in this study. As is known, by the very nature of ionospheric tomography experiments, the received data contain various kinds of errors, like the measurement and discretization errors. The sensitivity of the inversion algorithm, SVD in the present case, to these errors has also been investigated and quantified.

  17. Analysis of longitudinal variations in North Pacific alkalinity to improve predictive algorithms

    Science.gov (United States)

    Fry, Claudia H.; Tyrrell, Toby; Achterberg, Eric P.

    2016-10-01

    The causes of natural variation in alkalinity in the North Pacific surface ocean need to be investigated to understand the carbon cycle and to improve predictive algorithms. We used GLODAPv2 to test hypotheses on the causes of three longitudinal phenomena in Alk*, a tracer of calcium carbonate cycling. These phenomena are (a) an increase from east to west between 45°N and 55°N, (b) an increase from west to east between 25°N and 40°N, and (c) a minor increase from west to east in the equatorial upwelling region. Between 45°N and 55°N, Alk* is higher on the western than on the eastern side, and this is associated with denser isopycnals with higher Alk* lying at shallower depths. Between 25°N and 40°N, upwelling along the North American continental shelf causes higher Alk* in the east. Along the equator, a strong east-west trend was not observed, even though the upwelling on the eastern side of the basin is more intense, because the water brought to the surface is not high in Alk*. We created two algorithms to predict alkalinity, one for the entire Pacific Ocean north of 30°S and one for the eastern margin. The Pacific Ocean algorithm is more accurate than the commonly used algorithm published by Lee et al. (2006), of similar accuracy to the best previously published algorithm by Sasse et al. (2013), and is less biased with longitude than other algorithms in the subpolar North Pacific. Our eastern margin algorithm is more accurate than previously published algorithms.

  18. Observation of proton chorus waves close to the equatorial plane by Cluster

    Science.gov (United States)

    Grison, B.; Pickett, J. S.; Santolik, O.; Robert, P.; Cornilleau-Wehrlin, N.; Engebretson, M. J.; Constantinescu, D. O.

    2009-12-01

    Whistler mode chorus waves are a widely studied phenomena. They are present in numerous regions of the magnetosphere and are presumed to originate in the magnetic equatorial region. In a spectrogram they are characterized by narrowband features with rise (or fall) in frequency over short periods of time. Being whistler mode waves around a few tenths of the electron cyclotron frequency they interact mainly with electrons. In the present study we report observations by the Cluster spacecraft of what we call proton chorus waves. They have spectral features with rising frequency, similar to the electron chorus waves, but they are detected in a frequency range that starts roughly at 0.50fH+ up to fH+ (the local proton gyro-frequency). The lower part of their spectrum seems to originate from monochromatic Pc 1 waves (1.5 Hz). Proton chorus waves are detected close to the magnetic equatorial plane in both hemispheres during the same event. Our interpretation of these waves as proton chorus is supported by polarization analysis with the Roproc procedures and the Prassadco software using both the magnetic (STAFF-SC) and electric (EFW) parts of the fluctuations spectrum.

  19. Tectonic setting of the Seychelles, Mascarene and Amirante Plateaus in the Western Equatorial Indian Ocean

    International Nuclear Information System (INIS)

    Mart, Y.

    1988-01-01

    A system of marine plateaus occurs in the western equatorial Indian Ocean, forming an arcuate series of wide and shallow banks with small islands in places. The oceanic basins that surround the Seychelles - Amirante region are of various ages and reflect a complex seafloor spreading pattern. The structural analysis of the Seychelle - Amirante - Mascarene region reflects the tectonic evolution of the western equatorial Indian Ocean. It is suggested that due to the seafloor spreading during a tectonic stage, the Seychelles continental block drifted southwestwards to collide with the oceanic crust of the Mascarene Basin, forming an elongated folded structure at first, and then a subduction zone. The morphological similarity, the lithological variability and the different origin of the Seychelles Bank, the Mascarene Plateau and the Amirante Arc emphasizes the significant convergent effects of various plate tectonic processes on the development of marine plateaus

  20. Japan contribution to studies of low-latitude and equatorial ionosphere over Southeast Asia

    Science.gov (United States)

    Yamamoto, M.; Ishii, M.; Otsuka, Y.; Shiokawa, K.; Saito, A.; Tsuda, T.; Fukao, S.

    2008-12-01

    A dense observation network to study ionosphere is deployed over Southeast Asian countries of Indonesia, Thailand, and Vietnam. The Equatorial Atmosphere Radar (EAR) at Kototabang, Indonesia is the center facility, and supporting instruments, i.e., an ionosonde, a VHF ionosphere radar, an optical imager, a GPS scintillation receiver, a magnetometer, a meteor radar, etc. are collocated. NICT operates the ionosonde network SEALION (South East Asian Low-latitude IOnosonde Network) that meridionally extends from the EAR site to Chumphong and Chiang Mai in Thailand, and two more sites (Baq Liu and Phy Thuy) in Vietnam. Additional facilities are an MF radar at Pameungpeuk, Indonesia, and an optical imager at Darwin, Australia. We have been observing plasma bubbles since 2001, that, for example, contributed clarification of time- spatial structures of the phenomena, their relationship to the pre-reversal enhancement, control of bubble occurrence by the meridional winds, etc. We are starting studies of their seeding by means of atmospheric waves that propages from the lower atmosphere, too. In 2008, Nagoya University will soon install three Fabry-Perot interferometers at the EAR site, Chiang Mai, and Darwin. We also have a plan to install digital beacon receivers in some of these sites. Next research program that follows CPEA (Coupling Processes in the Equatorial Atmosphere, 2001-2007) is under planning now. Our main facilities cover ± 10° of geomagnetic latitude, where the magnetic declination is relatively small, and the geomagnetic equator is in the geographic northern hemisphere. We will review our achievements, and show on-going efforts and future plans. Collaboration with the C/NOFS satellite, and comparisons to results from the American sector should be beneficial for global-scale understanding of the equatorial ionosphere/atmosphere.

  1. Intensities and spatiotemporal variability of equatorial noise emissions observed by the Cluster spacecraft

    Czech Academy of Sciences Publication Activity Database

    Němec, F.; Santolík, Ondřej; Hrbáčková, Zuzana; Cornilleau-Wehrlin, N.

    2015-01-01

    Roč. 120, č. 3 (2015), s. 1620-1632 ISSN 2169-9380 R&D Projects: GA MŠk(CZ) LH11122 Institutional support: RVO:68378289 Keywords : equatorial noise * magnetosonic waves Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.318, year: 2015 http://onlinelibrary.wiley.com/doi/10.1002/2014JA020814/full

  2. Daily observations of the development of the ionospheric equatorial anomaly by means of differential Doppler shift method

    International Nuclear Information System (INIS)

    Huang, Y.N.; Cheng, K.; Chen, S.W.

    1987-01-01

    The differential Doppler frequency shifts observed by receiving coherent radio signals at frequencies of 150 and 400 MHz transmitted from the polar orbiting satellites of U.S. Navy Navigation Satellite System have been used to deduce the latitudinal variations of the ionospheric total electron content (TEC) near the ionospheric equatorial anomaly crest region. All latitudinal variations of TEC thus obtained for each passage of an NNSS satellite are used to construct daily contour plots of TEC in a latitude versus local time coordinates. It has been shown that these contour plot of TEC can be used to investigate the behavior of TEC around equatorial anomaly crest region. Some results are presented and discussed. 18 references

  3. Temperature and conductivity data from moored current meter casts in the North Pacific Ocean from 1978-10-18 to 1980-08-01 (NODC Accession 8200188)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature and conductivity data were collected using moored current meter casts in the North Pacific Ocean from October 18, 1978 to August 1, 1980. Data were...

  4. The evolution of the equatorial thermocline and the early Pliocene El Padre mean state

    Science.gov (United States)

    Ford, Heather L.; Ravelo, A. Christina; Dekens, Petra S.; LaRiviere, Jonathan P.; Wara, Michael W.

    2015-06-01

    The tropical Pacific thermocline strength, depth, and tilt are critical to tropical mean state and variability. During the early Pliocene (~3.5 to 4.5 Ma), the Eastern Equatorial Pacific (EEP) thermocline was deeper and the cold tongue was warmer than today, which resulted in a mean state with a reduced zonal sea surface temperature gradient or El Padre. However, it is unclear whether the deep thermocline was a local feature of the EEP or a basin-wide condition with global implications. Our measurements of Mg/Ca of Globorotalia tumida in a western equatorial Pacific site indicate Pliocene subsurface temperatures warmer than today; thus, El Padre included a basin-wide thermocline that was relatively warm, deep, and weakly tilted. At ~4 Ma, thermocline steepening was coupled to cooling of the cold tongue. Since ~4 Ma, the basin-wide thermocline cooled/shoaled gradually, with implications for thermocline feedbacks in tropical dynamics and the interpretation of TEX86-derived temperatures.

  5. Equatorial spread F studies using SAMI3 with two-dimensional and three-dimensional electrostatics

    Directory of Open Access Journals (Sweden)

    H. C. Aveiro

    2013-12-01

    Full Text Available This letter presents a study of equatorial F region irregularities using the NRL SAMI3/ESF model, comparing results using a two-dimensional (2-D and a three-dimensional (3-D electrostatic potential solution. For the 3-D potential solution, two cases are considered for parallel plasma transport: (1 transport based on the parallel ambipolar field, and (2 transport based on the parallel electric field. The results show that the growth rate of the generalized Rayleigh–Taylor instability is not affected by the choice of the potential solution. However, differences are observed in the structures of the irregularities between the 2-D and 3-D solutions. Additionally, the plasma velocity along the geomagnetic field computed using the full 3-D solution shows complex structures that are not captured by the simplified model. This points out that only the full 3-D model is able to fully capture the complex physics of the equatorial F region.

  6. Equatorial heat accumulation as a long-term trigger of permanent Antarctic ice sheets during the Cenozoic.

    Science.gov (United States)

    Tremblin, Maxime; Hermoso, Michaël; Minoletti, Fabrice

    2016-10-18

    Growth of the first permanent Antarctic ice sheets at the Eocene-Oligocene Transition (EOT), ∼33.7 million years ago, indicates a major climate shift within long-term Cenozoic cooling. The driving mechanisms that set the stage for this glaciation event are not well constrained, however, owing to large uncertainties in temperature reconstructions during the Eocene, especially at lower latitudes. To address this deficiency, we used recent developments in coccolith biogeochemistry to reconstruct equatorial Atlantic sea surface temperature (SST) and atmospheric pCO 2 values from pelagic sequences preceding and spanning the EOT. We found significantly more variability in equatorial SSTs than previously reported, with pronounced cooling from the Early to Middle Eocene and subsequent warming during the Late Eocene. Thus, we show that the Antarctic glaciation at the Eocene-Oligocene boundary was preceded by a period of heat accumulation in the low latitudes, likely focused in a progressively contracting South Atlantic gyre, which contributed to cooling high-latitude austral regions. This prominent redistribution of heat corresponds to the emplacement of a strong meridional temperature gradient that typifies icehouse climate conditions. Our equatorial coccolith-derived geochemical record thus highlights an important period of global climatic and oceanic upheaval, which began 4 million years before the EOT and, superimposed on a long-term pCO 2 decline, drove the Earth system toward a glacial tipping point in the Cenozoic.

  7. Currents in the Eastern Irish Sea

    International Nuclear Information System (INIS)

    Howarth, M.J.

    1983-01-01

    Low level radioactive waste is discharged from the nuclear re-processing plant at Sellafield, Cumbria. Its movement away from the discharge point is determined by the Irish Sea's dynamics, both for the soluble compounds and for those compounds which become attached to the sediment. Near Sellafield the tidal currents are weak and parallel to the shore, becoming stronger east/west to the north and south of the Isle of Man. Wind driven currents near Sellafield are predominantly north-westward, strongest near the coast, and oppose the other low frequency currents. Hence, the soluble effluent will initially be dispersed parallel to the shore by the weak tidal currents, moving episodically, southeastward during weak winds and northwestward during storms. Eventually it will leave the Irish Sea, flowing northward through the North Channel. (author)

  8. North American refining

    International Nuclear Information System (INIS)

    Osten, James; Haltmaier, Susan

    2000-01-01

    This article examines the current status of the North American refining industry, and considers the North American economy and the growth in demand in the petroleum industry, petroleum product demand and quality, crude oil upgrading to meet product standards, and changes in crude oil feedstocks such as the use of heavier crudes and bitumens. Refining expansion, the declining profits in refining, and changes due to environmental standards are discussed. The Gross Domestic Product and oil demand for the USA, Canada, Mexico, and Venezuela for the years 1995-2020 are tabulated

  9. A model study of the seasonality of sea surface temperature and circulation in the Atlantic North-Eastern Tropical Upwelling System.

    Directory of Open Access Journals (Sweden)

    Saliou eFaye

    2015-09-01

    Full Text Available The climatological seasonal cycle of the sea surface temperature (SST in the north-eastern tropical Atlantic (7-25°N, 26-12°W is studied using a mixed layer heat budget in a regional ocean general circulation model. The region, which experiences one of the larger SST cycle in the tropics, forms the main part of the Guinea Gyre. It is characterized by a seasonally varying open ocean and coastal upwelling system, driven by the movements of the intertropical convergence zone (ITCZ. The model annual mean heat budget has two regimes schematically. South of roughly 12°N, advection of equatorial waters, mostly warm, and warming by vertical mixing, is balanced by net air-sea flux. In the rest of the domain, a cooling by vertical mixing, reinforced by advection at the coast, is balanced by the air-sea fluxes. Regarding the seasonal cycle, within a narrow continental band, in zonal mean, the SST early decrease (from September, depending on latitude, until December is driven by upwelling dynamics off Senegal and Mauritania (15°-20°N, and instead by air-sea fluxes north and south of these latitudes. Paradoxically, the later peaks of upwelling intensity (from March to July, with increasing latitude essentially damp the warming phase, driven by air-sea fluxes. The open ocean cycle to the west, is entirely driven by the seasonal net air-sea fluxes. The oceanic processes significantly oppose it, but for winter north of ~18°N. Vertical mixing in summer-autumn tends to cool (warm the surface north (south of the ITCZ, and advective cooling or warming by the geostrophic Guinea Gyre currents and the Ekman drift. This analysis supports previous findings on the importance of air-sea fluxes offshore. It mainly offers quantitative elements on the modulation of the SST seasonal cycle by the ocean circulation, and particularly by the upwelling dynamics.Keywords: SST, upwelling, circulation, heat budget, observations, modeling

  10. Sporadic-E associated with the Leonid meteor shower event of November 1998 over low and equatorial latitudes

    Directory of Open Access Journals (Sweden)

    H. Chandra

    2001-01-01

    Full Text Available Rapid radio soundings were made over Ahmedabad, a low latitude station during the period 16–20 November 1998 to study the sporadic-E layer associated with the Leonid shower activity using the KEL Aerospace digital ionosonde. Hourly ionograms for the period 11 November to 24 November were also examined during the years from 1994 to 1998. A distinct increase in sporadic-E layer occurrence is noticed on 17, 18 and 19 November from 1996 to 1998. The diurnal variations  of  f0Es and fbEs also show significantly enhanced values for the morning hours of 18 and 19 November 1998. The ionograms clearly show strong sporadic-E reflections at times of peak shower activity with multiple traces in the altitude range of 100–140 km in few ionograms. Sporadic-E layers with multiple structures in altitude are also seen in some of the ionograms (quarter hourly at Thumba, situated near the magnetic equator. Few of ionograms recorded at Kodaikanal, another equatorial station, also show sporadic- E reflections in spite of the transmitter power being significantly lower. These new results highlighting the effect of intense meteor showers in the equatorial and low latitude E-region are presented.Key words. Ionosphere (equatorial ionosphere – Radio science (ionospheric physics

  11. Dynamical diagnostics of the SST annual cycle in the eastern equatorial Pacific: part I a linear coupled framework

    Science.gov (United States)

    Chen, Ying-Ying; Jin, Fei-Fei

    2018-03-01

    The eastern equatorial Pacific has a pronounced westward propagating SST annual cycle resulting from ocean-atmosphere interactions with equatorial semiannual solar forcing and off-equatorial annual solar forcing conveyed to the equator. In this two-part paper, a simple linear coupled framework is proposed to quantify the internal dynamics and external forcing for a better understanding of the linear part of the dynamics annual cycle. It is shown that an essential internal dynamical factor is the SST damping rate which measures the coupled stability in a similar way as the Bjerknes instability index for the El Niño-Southern Oscillation. It comprises three major negative terms (dynamic damping due to the Ekman pumping feedback, mean circulation advection, and thermodynamic feedback) and two positive terms (thermocline feedback and zonal advection). Another dynamical factor is the westward-propagation speed that is mainly determined by the thermodynamic feedback, the Ekman pumping feedback, and the mean circulation. The external forcing is measured by the annual and semiannual forcing factors. These linear internal and external factors, which can be estimated from data, determine the amplitude of the annual cycle.

  12. Acquisition of an Underway CTD System for the Flow Encountering Abrupt Topography DRI

    Science.gov (United States)

    2015-09-30

    Acquisition of an Underway CTD System for the Flow Encountering Abrupt Topography DRI T. M. Shaun Johnston Scripps Institution of Oceanography...westward flow in the North Equatorial Current (NEC) encounters tall, steep, submarine topography and islands. During the Flow Encountering Abrupt... Topography (FLEAT) DRI, investigators will determine: • Whether appreciable energy/momentum is lost from the large-scale NEC flow to smaller scales and

  13. Seasonal predictions of equatorial Atlantic SST in a low-resolution CGCM with surface heat flux correction

    Science.gov (United States)

    Dippe, Tina; Greatbatch, Richard; Ding, Hui

    2016-04-01

    The dominant mode of interannual variability in tropical Atlantic sea surface temperatures (SSTs) is the Atlantic Niño or Zonal Mode. Akin to the El Niño-Southern Oscillation in the Pacific sector, it is able to impact the climate both of the adjacent equatorial African continent and remote regions. Due to heavy biases in the mean state climate of the equatorial-to-subtropical Atlantic, however, most state-of-the-art coupled global climate models (CGCMs) are unable to realistically simulate equatorial Atlantic variability. In this study, the Kiel Climate Model (KCM) is used to investigate the impact of a simple bias alleviation technique on the predictability of equatorial Atlantic SSTs. Two sets of seasonal forecasting experiments are performed: An experiment using the standard KCM (STD), and an experiment with additional surface heat flux correction (FLX) that efficiently removes the SST bias from simulations. Initial conditions for both experiments are generated by the KCM run in partially coupled mode, a simple assimilation technique that forces the KCM with observed wind stress anomalies and preserves SST as a fully prognostic variable. Seasonal predictions for both sets of experiments are run four times yearly for 1981-2012. Results: Heat flux correction substantially improves the simulated variability in the initialization runs for boreal summer and fall (June-October). In boreal spring (March-May), however, neither the initialization runs of the STD or FLX-experiments are able to capture the observed variability. FLX-predictions show no consistent enhancement of skill relative to the predictions of the STD experiment over the course of the year. The skill of persistence forecasts is hardly beat by either of the two experiments in any season, limiting the usefulness of the few forecasts that show significant skill. However, FLX-forecasts initialized in May recover skill in July and August, the peak season of the Atlantic Niño (anomaly correlation

  14. Observations of unusual pre-dawn response of the equatorial F-region during geomagnetic disturbances

    Science.gov (United States)

    Lima, W.; Becker-Guedes, F.; Fagundes, P.; Sahai, Y.; Abalde, J.; Pillat, V.

    It is known that the disturbed solar wind-magnetosphere interactions have important effects on equatorial and low-latitude ionospheric electrodynamics. The response of equatorial ionosphere during storm-time is an important aspect of space weather studies. It has been observed that during geomagnetic disturbances both suppression as well as generation of equatorial spread-F (ESF) or plasma irregularities takes place. However, the mechanism(s) associated with the generation of ESF still needs further investigations. This work reports some unusual events of pre-dawn occurrence of ionospheric F-region satellite traces followed by spread-F and cusp-like spread-F from ionospheric sounding observations carried out by a Canadian Advanced Digital Ionosonde (CADI) localized at Palmas (10.2°, 48.2°W, dip latitude 5.7°S), Brazil during 2002, every 5 minutes. For the present work we have scaled and analyzed the ionospheric sounding data for three events (April 20, September 04 and 08, 2002), which are associated with geomagnetic disturbances. In the events studied, the ionograms show the occurrence of satellite trace followed by cusp-like spread. The cusp like features move up in frequency and height and finally attain the F-layer peak value (foF2) and then disappear. They had duration of about 30 min and always occurred in the early morning hours. Our studies involved seven geomagnetic disturbances as well as quiet days during the year 2002, but only on these three occasions we observed these features. We present and discuss these observations in this paper and suggest possible mechanisms for the occurrence of these unusual features.

  15. Smoking habits and nicotine dependence of North Korean male defectors.

    Science.gov (United States)

    Kim, Sei Won; Lee, Jong Min; Ban, Woo Ho; Park, Chan Kwon; Yoon, Hyoung Kyu; Lee, Sang Haak

    2016-07-01

    The smoking rates and patterns in the North Korean population are not well known. More than 20,000 North Korean defectors have settled in South Korea; thus, we can estimate the current North Korean smoking situation using this group. All North Korean defectors spend their first 3 months in a South Korean facility learning to adapt to their new home. We retrospectively analyzed the results from a questionnaire conducted among North Korean male defectors in this facility from August 2012 to February 2014. Of 272 men, 84.2% were current smokers, 12.5% were ex-smokers, and 3.3% were non-smokers. The mean age of this group was 35.9 ± 11.3 years, and smoking initiation occurred at a mean age of 18.2 ± 4.7 years. Among the subjects, 78.1% had a family member who smoked. Of the 221 current smokers, 67.4% responded that they intended to quit smoking. Fagerström test and Kano test for social nicotine dependence (KTSND) results for current smokers were 3.35 ± 2.26 and 13.76 ± 4.87, respectively. Question 9 on the KTSND (doctors exaggerate the ill effects of smoking) earned a significantly higher score relative to the other questions and a significantly higher score in current smokers compared with non-smokers. The smoking rate in North Korean male defectors was higher than that indicated previously. However, interest in smoking cessation was high and nicotine dependence was less severe than expected. Further investigation is needed to identify an efficient method for North Korean smokers to stop smoking.

  16. Empirical Modeling of the Storm Time Innermost Magnetosphere Using Van Allen Probes and THEMIS Data: Eastward and Banana Currents

    Science.gov (United States)

    Stephens, G. K.; Sitnov, M. I.; Ukhorskiy, A. Y.; Roelof, E. C.; Tsyganenko, N. A.; Le, G.

    2016-01-01

    The structure of storm time currents in the inner magnetosphere, including its innermost region inside 4R(sub E), is studied for the first time using a modification of the empirical geomagnetic field model TS07D and new data from Van Allen Probes and Time History of Events and Macroscale Interactions during Substorms missions. It is shown that the model, which uses basis-function expansions instead of ad hoc current modules to approximate the magnetic field, consistently improves its resolution and magnetic field reconstruction with the increase of the number of basis functions and resolves the spatial structure and evolution of the innermost eastward current. This includes a connection between the westward ring current flowing largely at R > or approx. 3R(sub E) and the eastward ring current concentrated at R banana current' was previously inferred from the pressure distributions based on the energetic neutral atom imaging and first-principles ring current simulations. The morphology of the equatorial currents is dependent on storm phase. During the main phase, it is complex, with several asymmetries forming banana currents. Near SYM-H minimum, the banana current is strongest, is localized in the evening-midnight sector, and is more structured compared to the main phase. It then weakens during the recovery phase resulting in the equatorial currents to become mostly azimuthally symmetric.

  17. Equatorial E Region Electric Fields and Sporadic E Layer Responses to the Recovery Phase of the November 2004 Geomagnetic Storm

    Science.gov (United States)

    Moro, J.; Resende, L. C. A.; Denardini, C. M.; Xu, J.; Batista, I. S.; Andrioli, V. F.; Carrasco, A. J.; Batista, P. P.; Schuch, N. J.

    2017-12-01

    Equatorial E region electric fields (EEFs) inferred from coherent radar data, sporadic-E (Es) layers observed from a digital ionosonde data, and modeling results are used to study the responses of the equatorial E region over São Luís (SLZ, 2.3°S, 44.2°W, -7° dip angle), Brazil, during the super storm of November 2004. The EEF is presented in terms of the zonal (Ey) and vertical (Ez) components in order to analyze the corresponding characteristics of different types of Es seen in ionograms and simulated with the E region ionospheric model. We bring out the variabilities of Ey and Ez components with storm time changes in the equatorial E region. In addition, some aspects of the electric fields and Es behavior in three cases of weak, very weak, and strong Type II occurrences during the recovery phase of the geomagnetic storm are discussed. The connection between the enhanced occurrence and suppressions of the Type II irregularities and the q-type Es (Esq) controlled by electric fields, with the development or disruption of the blanketing sporadic E (Esb) layers produced by wind shear mechanism, is also presented. The mutual presence of Esq along with the Esb occurrences is a clear indicator of the secular drift of the magnetic equator and hence that of the equatorial electrojet (EEJ) over SLZ. The results show evidence about the EEJ and Es layer electrodynamics and coupling during geomagnetic disturbance time electric fields.

  18. Propagation of equatorial noise to low altitudes: Decoupling from the magnetosonic mode

    Czech Academy of Sciences Publication Activity Database

    Santolík, Ondřej; Parrot, M.; Němec, F.

    2016-01-01

    Roč. 43, č. 13 (2016), s. 6694-6704 ISSN 0094-8276 R&D Projects: GA ČR(CZ) GA14-31899S; GA MŠk(CZ) LH15304 Institutional support: RVO:68378289 Keywords : equatorial noise * magnetosonic waves * polarization and propagation analysis * ray tracing Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 4.253, year: 2016 http://onlinelibrary.wiley.com/doi/10.1002/2016GL069582/full

  19. Response of equatorial, low- and mid-latitude F-region in the American sector during the intense geomagnetic storm on 24-25 October 2011

    Science.gov (United States)

    de Jesus, R.; Sahai, Y.; Fagundes, P. R.; de Abreu, A. J.; Brunini, C.; Gende, M.; Bittencourt, J. A.; Abalde, J. R.; Pillat, V. G.

    2013-07-01

    In this paper, we present and discuss the response of the ionospheric F-region in the American sector during the intense geomagnetic storm which occurred on 24-25 October 2011. In this investigation ionospheric sounding data obtained of 23, 24, 25, and 26 October 2011 at Puerto Rico (United States), Jicamarca (Peru), Palmas, São José dos Campos (Brazil), and Port Stanley, are presented. Also, the GPS observations obtained at 12 stations in the equatorial, low-, mid- and high-mid-latitude regions in the American sector are presented. During the fast decrease of Dst (about ˜54 nT/h between 23:00 and 01:00 UT) on the night of 24-25 October (main phase), there is a prompt penetration of electric field of magnetospheric origin resulting an unusual uplifting of the F region at equatorial stations. On the night of 24-25 October 2011 (recovery phase) equatorial, low- and mid-latitude stations show h'F variations much larger than the average variations possibly associated with traveling ionospheric disturbances (TIDs) caused by Joule heating at high latitudes. The foF2 variations at mid-latitude stations and the GPS-VTEC observations at mid- and low-latitude stations show a positive ionospheric storm on the night of 24-25 October, possibly due to changes in the large-scale wind circulation. The foF2 observations at mid-latitude station and the GPS-VTEC observations at mid- and high-mid-latitude stations show a negative ionospheric storm on the night of 24-25 October, probably associated with an increase in the density of molecular nitrogen. During the daytime on 25 October, the variations in foF2 at mid-latitude stations show large negative ionospheric storm, possibly due to changes in the O/N2 ratio. On the night of 24-25, ionospheric plasma bubbles (equatorial irregularities that extended to the low- and mid-latitude regions) are observed at equatorial, low- and mid-latitude stations. Also, on the night of 25-26, ionospheric plasma bubbles are observed at equatorial

  20. Poloidal polarimeter for current density measurements in ITER

    International Nuclear Information System (INIS)

    Donne, A.J.H.; Graswinckel, M.F.; Cavinato, M.; Giudicotti, L.; Zilli, E.; Gil, C.; Koslowski, H.R.; McCarthy, P.; Nyhan, C.; Prunty, S.; Spillane, M.; Walker, C.

    2004-01-01

    One of the systems envisaged for measuring the current density profile in the ITER is a 118 μm poloidal polarimeter system. The proposed system has two independent views: one fan of chords observes the plasma via an equatorial port and a second fan views down from an upper port. This article will present the status of the on-going work and will address issues as sensitivity and accuracy, refraction, Gaussian beam ray-tracing, alignment, and calibration as well as some specific design details

  1. Production and supply of radioisotopes with reactors in north america and europe current status and future prospects

    International Nuclear Information System (INIS)

    Trevena, I.

    1994-01-01

    Reactors have played a key pole in the production of radioactive isotopes for medical applications for the past 50 years. This paper reviews current and future capabilities for the production and supply of radioactive isotopes used in nuclear medicine. It focuses primarily on the supply of fission product molybdenum-99, which is used to produce technetium-99m, the radioisotope most widely employed in nuclear medicine procedures. The significant infrastructure required for the production and supply of molybdenum-99 is detailed, and the capabilities of the major commercial suppliers in North America and Europe are discussed. Plans for increasing production capabilities in the future are also reviewed. (author)

  2. Sudden post-midnight decrease in equatorial F-region electron densities associated with severe magnetic storms

    Directory of Open Access Journals (Sweden)

    D. R. Lakshmi

    1997-03-01

    Full Text Available A detailed analysis of the responses of the equatorial ionosphere to a large number of severe magnetic storms shows the rapid and remarkable collapse of F-region ionisation during post-midnight hours; this is at variance with the presently accepted general behaviour of the low-latitude ionosphere during magnetic storms. This paper discusses such responses as seen in the ionosonde data at Kodaikanal (Geomagn. Lat. 0.6 N. It is also observed that during magnetic storm periods the usual increase seen in the h'F at Kodaikanal during sunset hours is considerably suppressed and these periods are also characterised by increased foF2 values. It is suggested that the primary process responsible for these dramatic pre- and post-midnight changes in foF2 during magnetic storms could be due to changes in the magnitude as well as in the direction of usual equatorial electric fields. During the post-midnight periods the change in electric-field direction from westward to eastward for a short period causes an upward E × B plasma drift resulting in increased h'F and decreased electron densities in the equatorial region. In addition, it is also suggested that the enhanced storm-induced meridional winds in the thermosphere, from the poles towards the equator, may also cause the decreases in electron density seen during post-midnight hours by spatially transporting the F-region ionisation southwards away from Kodaikanal. The paper also includes a discussion on the effects of such decreases in ionisation on low-latitude HF communications.

  3. Evidence of late Palaeocene-early Eocene equatorial rain forest refugia in southern Western Ghats, India.

    Science.gov (United States)

    Prasad, V; Farooqui, A; Tripathi, S K M; Garg, R; Thakur, B

    2009-11-01

    Equatorial rain forests that maintain a balance between speciation and extinction are hot-spots for studies of biodiversity. Western Ghats in southern India have gained attention due to high tropical biodiversity and endemism in their southern most area. We attempted to track the affinities of the pollen fl ora of the endemic plants of Western Ghat area within the fossil palynoflora of late Palaeocene-early Eocene (approximately 55-50 Ma) sedimentary deposits of western and northeastern Indian region. The study shows striking similarity of extant pollen with twenty eight most common fossil pollen taxa of the early Palaeogene. Widespread occurrences of coal and lignite deposits during early Palaeogene provide evidence of existence of well diversified rain forest community and swampy vegetation in the coastal low lying areas all along the western and northeastern margins of the Indian subcontinent. Prevalence of excessive humid climate during this period has been seen as a result of equatorial positioning of Indian subcontinent, superimposed by a long term global warming phase (PETM and EECO) during the early Palaeogene. The study presents clear evidence that highly diversifi ed equatorial rain forest vegetation once widespread in the Indian subcontinent during early Palaeogene times, are now restricted in a small area as a refugia in the southernmost part of the Western Ghat area. High precipitation and shorter periods of dry months seem to have provided suitable environment to sustain lineages of ancient tropical vegetation in this area of Western Ghats in spite of dramatic climatic changes subsequent to the post India-Asia collision and during the Quaternary and Recent times.

  4. Nonlinear oscillation regime of electromagnetic disturbances in the equatorial F region

    International Nuclear Information System (INIS)

    Sazonov, S.V.

    1990-01-01

    Nonlinear oscillation regime of electromagnetic dicturbances within equatorial ionosphere F-region resulted from Rayleigh-Taylor instability, gradient-drift instability and recombination processes is investigated on the basis of two-liquid quasihydrodynamics equations. It is shown, that at positive linear increment the oscillations are developing in regime with aggregation and are terminated by increment the effect of threshold destabilization, when under certain initial conditions underlgoes oscillation nonlinear swinging, resulting, as well, in bubble formation in contrast to small damping oscillations, is detected

  5. Forest health conditions in North America

    International Nuclear Information System (INIS)

    Tkacz, Borys; Moody, Ben; Castillo, Jaime Villa; Fenn, Mark E.

    2008-01-01

    Some of the greatest forest health impacts in North America are caused by invasive forest insects and pathogens (e.g., emerald ash borer and sudden oak death in the US), by severe outbreaks of native pests (e.g., mountain pine beetle in Canada), and fires exacerbated by changing climate. Ozone and N and S pollutants continue to impact the health of forests in several regions of North America. Long-term monitoring of forest health indicators has facilitated the assessment of forest health and sustainability in North America. By linking a nationwide network of forest health plots with the more extensive forest inventory, forest health experts in the US have evaluated current trends for major forest health indicators and developed assessments of future risks. Canada and Mexico currently lack nationwide networks of forest health plots. Development and expansion of these networks is critical to effective assessment of future forest health impacts. - The forests of North America continue to face many biotic and abiotic stressors including fragmentation, fires, native and invasive pests, and air pollution

  6. Statistical summaries of water-quality data for selected streamflow-gaging stations in the Red River of the North basin, North Dakota, Minnesota, and South Dakota

    Science.gov (United States)

    Macek-Rowland, Kathleen M.; Dressler, Valerie M.

    2002-01-01

    The quantity and quality of current and future water resources in the Red River of the North Basin in North Dakota, Minnesota, and South Dakota are concerns of people who reside within the basin. Additional water resources are needed because of recent growth in population, industry, and agriculture. How the management of current and future water-resources will impact water quality within the basin is a critical issue. Water-quality data, particularly for surface-water sources, will help water-resources managers make decisions about current and future water resources in the Red River of the North Basin. Statistical summaries of water-quality data for 43 streamflow-gaging stations in the Red River of the North Basin in North Dakota, Minnesota, and South Dakota are presented in this report. Statistical summaries include sample size, maximum, minimum, mean, and values for the 95th, 75th, 50th, 25th, and 5th percentiles.

  7. Equatorial plasma bubbles in the ionosphere over Eritrea: occurrence and drift speed

    Directory of Open Access Journals (Sweden)

    R. H. Wiens

    2006-07-01

    Full Text Available An all-sky imager was installed in Asmara, Eritrea (15.4° N, 38.9° E, 7° N dip and used to monitor the OI 630-nm nightglow. Nine months of data were studied between September 2001 and May 2002, a time including the recent maximum in the solar activity cycle. Equatorial plasma bubbles (EPBs were recorded on 63% of nights with adequate viewing conditions. The station location within view of the equatorial ionization anomaly and with a magnetic declination near zero makes it an excellent test case for comparison with satellite studies of the seasonal variation of EPBs with longitude. The imager was accompanied by two Cornell GPS scintillation monitors, and the amplitude scintillation data are compared to the all-sky data. GPS scintillations indicate the beginning of EPBs, but die out sooner in the post-midnight period than the larger scale EPBs. Both phenomena exhibit clear occurrence maxima around the equinoxes. Ionospheric zonal drift speeds have been deduced from EPB and GPS scintillation pattern movement. Average near-midnight EPB drift speeds are between 100 and 120 m/s most months, with the GPS scintillation speeds being about the same. A winter drift speed maximum is evident in both EPB and GPS scintillation monthly means.

  8. Equatorial F-region plasma depletion drifts: latitudinal and seasonal variations

    Directory of Open Access Journals (Sweden)

    A. A. Pimenta

    Full Text Available The equatorial ionospheric irregularities have been observed in the past few years by different techniques (e.g. ground-based radar, digisonde, GPS, optical instruments, in situ satellite and rocket instrumentation, and its time evolution and propagation characteristics can be used to study important aspects of ionospheric dynamics and thermosphere-ionosphere coupling. At present, one of the most powerful optical techniques to study the large-scale ionospheric irregularities is the all-sky imaging photometer system, which normally measures the strong F-region nightglow 630 nm emission from atomic oxygen. The monochromatic OI 630 nm emission images usually show quasi-north-south magnetic field-aligned intensity depletion bands, which are the bottomside optical signatures of large-scale F-region plasma irregularities (also called plasma bubbles. The zonal drift velocities of the plasma bubbles can be inferred from the space-time displacement of the dark structures (low intensity regions seen on the images. In this study, images obtained with an all-sky imaging photometer, using the OI 630 nm nightglow emission, from Cachoeira Paulista (22.7° S, 45° W, 15.8° S dip latitude, Brazil, have been used to determine the nocturnal monthly and latitudinal variation characteristics of the zonal plasma bubble drift velocities in the low latitude (16.7° S to 28.7° S region. The east and west walls of the plasma bubble show a different evolution with time. The method used here is based on the western wall of the bubble, which presents a more stable behavior. Also, the observed zonal plasma bubble drift velocities are compared with the thermospheric zonal neutral wind velocities obtained from the HWM-90 model (Hedin et al., 1991 to investigate the thermosphere-ionosphere coupling. Salient features from this study are presented

  9. Examining historical and current mixed-severity fire regimes in ponderosa pine and mixed-conifer forests of western North America.

    Directory of Open Access Journals (Sweden)

    Dennis C Odion

    Full Text Available There is widespread concern that fire exclusion has led to an unprecedented threat of uncharacteristically severe fires in ponderosa pine (Pinus ponderosa Dougl. ex. Laws and mixed-conifer forests of western North America. These extensive montane forests are considered to be adapted to a low/moderate-severity fire regime that maintained stands of relatively old trees. However, there is increasing recognition from landscape-scale assessments that, prior to any significant effects of fire exclusion, fires and forest structure were more variable in these forests. Biota in these forests are also dependent on the resources made available by higher-severity fire. A better understanding of historical fire regimes in the ponderosa pine and mixed-conifer forests of western North America is therefore needed to define reference conditions and help maintain characteristic ecological diversity of these systems. We compiled landscape-scale evidence of historical fire severity patterns in the ponderosa pine and mixed-conifer forests from published literature sources and stand ages available from the Forest Inventory and Analysis program in the USA. The consensus from this evidence is that the traditional reference conditions of low-severity fire regimes are inaccurate for most forests of western North America. Instead, most forests appear to have been characterized by mixed-severity fire that included ecologically significant amounts of weather-driven, high-severity fire. Diverse forests in different stages of succession, with a high proportion in relatively young stages, occurred prior to fire exclusion. Over the past century, successional diversity created by fire decreased. Our findings suggest that ecological management goals that incorporate successional diversity created by fire may support characteristic biodiversity, whereas current attempts to "restore" forests to open, low-severity fire conditions may not align with historical reference conditions in

  10. Examining historical and current mixed-severity fire regimes in ponderosa pine and mixed-conifer forests of western North America.

    Science.gov (United States)

    Odion, Dennis C; Hanson, Chad T; Arsenault, André; Baker, William L; Dellasala, Dominick A; Hutto, Richard L; Klenner, Walt; Moritz, Max A; Sherriff, Rosemary L; Veblen, Thomas T; Williams, Mark A

    2014-01-01

    There is widespread concern that fire exclusion has led to an unprecedented threat of uncharacteristically severe fires in ponderosa pine (Pinus ponderosa Dougl. ex. Laws) and mixed-conifer forests of western North America. These extensive montane forests are considered to be adapted to a low/moderate-severity fire regime that maintained stands of relatively old trees. However, there is increasing recognition from landscape-scale assessments that, prior to any significant effects of fire exclusion, fires and forest structure were more variable in these forests. Biota in these forests are also dependent on the resources made available by higher-severity fire. A better understanding of historical fire regimes in the ponderosa pine and mixed-conifer forests of western North America is therefore needed to define reference conditions and help maintain characteristic ecological diversity of these systems. We compiled landscape-scale evidence of historical fire severity patterns in the ponderosa pine and mixed-conifer forests from published literature sources and stand ages available from the Forest Inventory and Analysis program in the USA. The consensus from this evidence is that the traditional reference conditions of low-severity fire regimes are inaccurate for most forests of western North America. Instead, most forests appear to have been characterized by mixed-severity fire that included ecologically significant amounts of weather-driven, high-severity fire. Diverse forests in different stages of succession, with a high proportion in relatively young stages, occurred prior to fire exclusion. Over the past century, successional diversity created by fire decreased. Our findings suggest that ecological management goals that incorporate successional diversity created by fire may support characteristic biodiversity, whereas current attempts to "restore" forests to open, low-severity fire conditions may not align with historical reference conditions in most ponderosa

  11. Air-Sea Interaction in the Somali Current Region

    Science.gov (United States)

    Jensen, T. G.; Rydbeck, A.

    2017-12-01

    The western Indian Ocean is an area of high eddy-kinetic energy generated by local wind-stress curl, instability of boundary currents as well as Rossby waves from the west coast of India and the equatorial wave guide as they reflect off the African coast. The presence of meso-scale eddies and coastal upwelling during the Southwest Monsoon affects the air-sea interaction on those scales. The U.S. Navy's Coupled Ocean-Atmosphere Mesoscale Prediction System (COAMPS) is used to understand and quantify the surface flux, effects on surface waves and the role of Sea Surface Temperature anomalies on ocean-atmosphere coupling in that area. The COAMPS atmosphere model component with 9 km resolution is fully coupled to the Navy Coastal Ocean Model (NCOM) with 3.5 km resolution and the Simulating WAves Nearshore (SWAN) wave model with 10 km resolution. Data assimilation using a 3D-variational approach is included in hindcast runs performed daily since June 1, 2015. An interesting result is that a westward jet associated with downwelling equatorial Rossy waves initiated the reversal from the southward Somali Current found during the northeast monsoon to a northward flow in March 2016 more than a month before the beginning of the southwest monsoon. It is also found that warm SST anomalies in the Somali Current eddies, locally increase surface wind speed due to an increase in the atmospheric boundary layer height. This results in an increase in significant wave height and also an increase in heat flux to the atmosphere. Cold SST anomalies over upwelling filaments have the opposite impacts on air-sea fluxes.

  12. Observations of EMIC Triggered Emissions off the Magnetic Equatorial Plane

    Science.gov (United States)

    Grison, B.; Breuillard, H.; Santolik, O.; Cornilleau-Wehrlin, N.

    2016-12-01

    On 19/08/2005 Cluster spacecraft had their perigee close to the dayside of the Earth magnetic equatorial plane, at about 14 hours Magnetic Local Time. The spacecraft crossed the equator from the southern hemisphere toward the northern hemisphere. In the Southern hemisphere, at about -23° magnetic latitude (MLAT) and at distance of 5.25 Earth Radii from Earth, Cluster 3 observes an EMIC triggered emission between the He+ and the proton local gyrofrequencies. The magnetic waveform (STAFF instrument data) is transformed into the Fourier space for a study based on single value decomposition (SVD) analysis. The emission lasts about 30s. The emission frequency rises from 1Hz up to 1.9Hz. The emission polarization is left-hand, its coherence value is high and the propagation angle is field aligned (lower than 30º). The Poynting flux orientation could not be established. Based on previous study results, these properties are indicative of an observation in vicinity of the source region of the triggered emission. From our knowledge this is the first time that EMIC triggered emission are observed off the magnetic equator. In order to identify the source region we study two possibilities: a source region at higher latitudes than the observations (and particles orbiting in "Shabansky" orbits) and a source region close to the magnetic equatorial plane, as reported in previous studies. We propose to identify the source region from ray tracing analysis and to compare the observed propagation angle in several frequency ranges to the ray tracing results.

  13. New direct estimates of Iceland-Scotland Overflow Water transport through the Charlie-Gibbs Fracture Zone and its relationship to the North Atlantic Current

    Science.gov (United States)

    Bower, Amy; Furey, Heather; Xu, Xiaobiao

    2015-04-01

    Detailed observations of the pathways, transports and water properties of dense overflows associated with the Atlantic Meridional Overturning Circulation (AMOC) provide critical benchmarks for climate models and mixing parameterizations. A recent two-year time series from eight moorings offers the first long-term simultaneous observations of the hydrographic properties and transport of Iceland-Scotland Overflow Water (ISOW) flowing westward through the Charlie-Gibbs Fracture Zone (CGFZ), a major deep gap in the Mid-Atlantic Ridge (MAR) connecting the eastern and western basins of the North Atlantic. In addition, current meters up to 500-m depth and satellite altimetry allow us to investigate the overlying North Atlantic Current (NAC) as a source of ISOW transport variability. Using the isohaline 34.94 to define the ISOW layer, the two year mean and standard deviation of ISOW transport was -1.7 ± 1.5 Sv, compared to -2.4 ± 3.0 Sv reported by Saunders for a 13-month period in 1988-1989 using the same isohaline. Differences in the two estimates are partly explained by limitations of the Saunders array, but more importantly reflect the strong low-frequency variability in ISOW transport through CGFZ (which includes complete reversals). Both the observations and output from a multi-decadal simulation of the North Atlantic using the Hybrid Coordinate Ocean Model (HYCOM) forced with interannually varying wind and buoyancy fields indicate a strong positive correlation between ISOW transport and the strength of the NAC through the CGFZ. This result raises new questions regarding the interaction of the upper and lower limbs of the AMOC, downstream propagation of ISOW transport variability in the Deep Western Boundary Current and alternative pathways of ISOW across the MAR.

  14. Relation of decorrelated transionospheric GPS signal fluctuations from two stations in the northern anomaly crest region with equatorial ionospheric dynamics

    Science.gov (United States)

    Paul, K. S.; Paul, A.

    2017-05-01

    The ionosphere around the northern crest of the equatorial ionization anomaly (EIA) and beyond exhibits rapid temporal as well as spatial development of ionization density irregularities during postsunset hours. A GPS campaign was conducted during September 2012 and April 2013 from the Institute of Radio Physics and Electronics, Calcutta (22.58°N, 88.38°E geographic; magnetic dip: 32°N), and North Bengal University (NBU), Siliguri (26.72°N, 88.39°E geographic, magnetic dip: 39.49°N) in India in order to assess and quantify differences, if any, in the nature of carrier to noise ratio (C/N0) fluctuations observed on the same satellite link around the same time interval from these stations. Significant decorrelation of the received signals was found when tracking the same satellite vehicle (SV) link from these stations during periods of scintillations. Low values of correlation coefficient of C/N0 at L1 frequency recorded on the same SV link at these two stations were found to correspond with high irregularity characteristic velocities. North-south spatial displacement rates of the impact of ionospheric irregularities were calculated based on coordinated GPS observations which followed an increasing trend with irregularity characteristic velocities measured at VHF. Values of characteristic velocities in excess of 36 m/s were also found to result in large receiver position deviations 3.5-4.0 m during periods of scintillations. Information related to time lag associated with occurrence of scintillations on the same SV link observed from two stations could be useful for improving performance of transionospheric satellite-based position determination techniques.

  15. Four-peak longitudinal distribution of the equatorial plasma bubbles observed in the topside ionosphere: Possible troposphere tide influence

    Science.gov (United States)

    Sidorova, L. N.; Filippov, S. V.

    2018-03-01

    In this paper we consider an idea of the troposphere tide influence on the character of the longitudinal variations in the distribution of the equatorial plasma bubbles (EPBs) observed in the topside ionosphere. For this purpose, the obtained EPB longitudinal patterns were compared with the thermosphere and ionosphere characteristics having the prominent "wave-like" longitudinal structures with wave number 4, which are uniquely associated with the influence of the troposphere DE3 tides. The characteristics of the equatorial mass density anomaly (EMA), equatorial ionization anomaly (EIA), zonal wind and pre-reversal E × B drift enhancement (PRE) were used for comparison. The equinox seasons during high solar activity were under consideration. It was obtained that the longitudinal patterns of the EMA and zonal wind show the surprising similarity with the EPB distributions (R ≅ 0.8, R ≅ 0.72). On the other hand, the resemblance with the ionosphere characteristics (EIA, PRE) is rather faint (R ≅ 0.37, R ≅ 0.12). It was shown that the thermosphere zonal winds are the most possible transfer mediator of the troposphere DE3 tide influence. The most successful moment for the transfer of the troposphere DE3 tide energy takes place in the beginning of the EPB production, namely, during the seed perturbation development.

  16. An Explanation of Jupiter's Equatorially Symmetric Gravitational Field using a Four-layer, Non-spheroidal Model with Zonal Flow

    Science.gov (United States)

    Kong, Dali; Zhang, Keke; Schubert, Gerald; Anderson, John

    2017-10-01

    The structure/amplitude of the Jovian equatorially symmetric gravitational field is affected by both rotational distortion and the fast equatorially symmetric zonal flow. We construct a fully self-consistent, four-layer, non-spheroidal (i.e, the shape is irregular) model of Jupiter that comprises an inner core, a metallic region, an outer molecular envelope and a thin transition layer between the metallic and molecular regions. While the core is assumed to have a uniform density, three different equations of state are adopted for the metallic, molecular and transition regions. We solve the governing equations via a perturbation approach. The leading-order problem accounts for the full effect of rotational distortion, and determines the density, size and shape of the core, the location and thickness of the transition layer, and the shape of the 1-bar pressure level; it also produces the mass, the equatorial and polar radii of Jupiter, and the even zonal gravitational coefficients caused by the rotational distortion. The next-order problem determines the corrections caused by the zonal flow which is assumed to be confined within the molecular envelope and on cylinders parallel to the rotation axis. Our model provides the total even gravitational coefficients that can be compared with those acquired by the Juno spacecraft.

  17. Nitrogen uptake and regeneration pathways in the equatorial Pacific: a basin scale modeling study

    Directory of Open Access Journals (Sweden)

    R. Le Borgne

    2009-11-01

    Full Text Available It is well known that most primary production is fueled by regenerated nitrogen in the open ocean. Therefore, studying the nitrogen cycle by focusing on uptake and regeneration pathways would advance our understanding of nitrogen dynamics in the marine ecosystem. Here, we carry out a basin-scale modeling study, by assessing model simulations of nitrate and ammonium, and rates of nitrate uptake, ammonium uptake and regeneration in the equatorial Pacific. Model-data comparisons show that the model is able to reproduce many observed features of nitrate, ammonium, such as the deep ammonium maximum (DAM. The model also reproduces the observed de-coupling of ammonium uptake and regeneration, i.e., regeneration rate greater than uptake rate in the lower euphotic zone. The de-coupling largely explains the observed DAM in the equatorial Pacific Ocean. Our study indicates that zooplankton excretion and remineralization of organic nitrogen play a different role in nitrogen regeneration. Rates of zooplankton excretion vary from <0.01 mmol m−3 d−1 to 0.1 mmol m−3 d−1 in the upper euphotic zone while rates of remineralization fall within a narrow range (0.015–0.025 mmol m−3 d−1 . Zooplankton excretion contributes up to 70% of total ammonium regeneration in the euphotic zone, and is largely responsible for the spatial variability of nitrogen regeneration. However, remineralization provides a steady supply of ammonium in the upper ocean, and is a major source of inorganic nitrogen for the oligotrophic regions. Overall, ammonium generation and removal are approximately balanced over the top 150 m in the equatorial Pacific.

  18. The ITER Equatorial Visible/Infra-Red Wide Angle Viewing System: Status of design and R&D

    Energy Technology Data Exchange (ETDEWEB)

    Salasca, Sophie, E-mail: sophie.salasca@cea.fr [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Aumeunier, Marie-Helene; Benoit, Fabrice; Cantone, Bruno; Corre, Yann; Delchambre, Elise; Ferlet, Marc; Gauthier, Eric; Guillon, Christophe; Houtte, Didier van; Keller, Delphine; Labasse, Florence; Larroque, Sebastien; Loarer, Thierry; Micolon, Frederic; Peluso, Bertrand; Proust, Maxime [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Blanchet, David; Peneliau, Yannick [CEA, DEN/DER, F-13108 Saint-Paul-lez-Durance (France); Alonso, Javier [CIEMAT, Avda. Complutense, 40, Madrid 28040 (Spain); and others

    2015-10-15

    Highlights: • The status of Equatorial Visible/Infra-Red Wide Angle Viewing System is presented. • An assessment of measurement parameters relevant for machine protection has been done. • Remaining uncertainties will be clarified during the System Level Design (SLD). • WAVS design is not considered mature enough to launch prototypes of subcomponents. • Mandatory prototypes and qualification tests are already identified. • Next stage (SLD) will enable to do trade-offs and address pending design issues. - Abstract: The Equatorial Visible/Infra-Red Wide Angle Viewing System (WAVS) is one of the ITER key diagnostics owing to its role in machine investment protection through the monitoring of Plasma Facing Components (PFCs) by Infra-Red thermography and visible imaging. Foreseen to be installed in 4 equatorial port plugs to maximize the coverage of divertor, first wall, heating antennas and upper strike zone, the WAVS will likely be composed of 15 lines of sight and 15 optical systems transferring the light along several meters from the PFCs through the port plug and interspace up to detectors located in the port cell. After a conceptual design phase led by ITER Organization, the design is being further developed through a Framework Partnership Agreement signed between the European Domestic Agency, Fusion for Energy, and a consortium gathering CEA, CIEMAT (with INTA as third party) and Bertin Technologies company. The next design step is the System Level Design (SLD) which will enable to consolidate the WAVS specifications as well as the performance realistically achievable (taking into account ITER and project constraints). The SLD has been preceded by a preparatory phase aiming at clarifying the WAVS functions and identifying critical prototyping. The outcomes of this preparatory phase are reported in this paper. First a review by the consortium of the WAVS measurement specifications is presented, for the purpose of a clearer separation of measurement

  19. Cooling in the Post-Sunrise Equatorial Topside Ionosphere During the 22-23 June 2015 Superstorm

    Science.gov (United States)

    Stoneback, R.; Hairston, M. R.; Coley, W. R.; Heelis, R. A.

    2015-12-01

    During the recovery phase of the 22-23 June 2015 superstorm multiple DMSP spacecraft observed two separate and short-lived (~ 30 minutes) events of localized cooling in the topside equatorial ionosphere (~840 km) in the post-sunrise region (between 6:15 and 7:30 local time). The ion temperatures dropped from the nominal 2000-3000° observed in these regions to 1000 to 1500°. This cooling effect was not observed on the corresponding duskside equatorial crossings of the DMSP spacecraft during this storm. Further, these cooling events do not normally occur during major storms; no such phenomenon was observed by DMSP during the March 2015 superstorm. Flow data from DMSP and the CINDI instruments on the C/NOFS spacecraft indicate these cooling events are associated with short-lived vertical flows bringing up cooler plasma from lower altitudes. The two cooling events correspond to large northward turnings of the IMF during the storm and these are being explored as a possible trigger mechanism.

  20. Corotation-driven magnetosphere-ionosphere coupling currents in Saturn’s magnetosphere and their relation to the auroras

    Directory of Open Access Journals (Sweden)

    S. W. H. Cowley

    2003-08-01

    -related currents. We thus conclude that Saturn’s ‘main oval’ auroras are not associated with corotation-enforcing currents as they are at Jupiter, but instead are most probably associated with coupling to the solar wind as at Earth. At the same time, the Voyager flow observations also suggest the presence of radially localized ‘dips’ in the plasma angular velocity associated with the moons Dione and Rhea, which are ~ 1–2 RS in radial extent in the equatorial plane. The presence of such small-scale flow features, assumed to be azimuthally extended, results in localized several-MA enhancements in the ionospheric Pedersen current, and narrow bi-polar signatures in the field-aligned currents which peak at values an order of magnitude larger than those associated with the large-scale currents. Narrow auroral rings (or partial rings ~ 0.25° co-latitude wide with intensities ~ 1 kiloRayleigh may be formed in the regions of upward field-aligned current under favourable circumstances, located at co-latitudes between ~ 17° and ~ 20° in the north, and ~ 19° and ~22° in the south.Key words. Magnetospheric physics (current systems; magnetosphere-ionosphere interactions; planetary magnetospheres

  1. Equatorial Ionospheric Anomaly (EIA) and comparison with IRI model during descending phase of solar activity (2005-2009)

    Science.gov (United States)

    Kumar, Sanjay; Singh, A. K.; Lee, Jiyun

    2014-03-01

    The ionospheric variability at equatorial and low latitude region is known to be extreme as compared to mid latitude region. In this study the ionospheric total electron content (TEC), is derived by analyzing dual frequency Global Positioning System (GPS) data recorded at two stations separated by 325 km near the Indian equatorial anomaly region, Varanasi (Geog latitude 25°, 16/ N, longitude 82°, 59/ E, Geomagnetic latitude 16°, 08/ N) and Kanpur (Geog latitude 26°, 18/ N, longitude 80°, 12/ E, Geomagnetic latitude 17°, 18/ N). Specifically, we studied monthly, seasonal and annual variations as well as solar and geomagnetic effects on the equatorial ionospheric anomaly (EIA) during the descending phase of solar activity from 2005 to 2009. It is found that the maximum TEC (EIA) near equatorial anomaly crest yield their maximum values during the equinox months and their minimum values during the summer. Using monthly averaged peak magnitude of TEC, a clear semi-annual variation is seen with two maxima occurring in both spring and autumn. Results also showed the presence of winter anomaly or seasonal anomaly in the EIA crest throughout the period 2005-2009 only except during the deep solar minimum year 2007-2008. The correlation analysis indicate that the variation of EIA crest is more affected by solar activity compared to geomagnetic activity with maximum dependence on the solar EUV flux, which is attributed to direct link of EUV flux on the formation of ionosphere and main agent of the ionization. The statistical mean occurrence of EIA crest in TEC during the year from 2005 to 2009 is found to around 12:54 LT hour and at 21.12° N geographic latitude. The crest of EIA shifts towards lower latitudes and the rate of shift of the crest latitude during this period is found to be 0.87° N/per year. The comparison between IRI models with observation during this period has been made and comparison is poor with increasing solar activity with maximum difference during

  2. 137Cs, 239+24Pu and 24Pu/239Pu atom ratios in the surface waters of the western North Pacific Ocean, eastern Indian Ocean and their adjacent seas

    International Nuclear Information System (INIS)

    Yamada, Masatoshi; Zheng Jian; Wang Zhongliang

    2006-01-01

    could be attributed to close-in fallout Pu delivered from the Enewetak and Bikini Atolls by ocean currents of branches of the North Equatorial Current to the Southeast Asian seas

  3. Design of ITER-FEAT RF heating and current drive systems

    International Nuclear Information System (INIS)

    Bosia, G.; Kobayashi, N.; Ioki, K.; Bibet, P.; Koch, R.; Chavan, R.; Tran, M.Q.; Takahashi, K.; Kuzikov, S.; Vdovin, V.

    2001-01-01

    Three radio frequency (RF) heating and current drive (H and CD) systems are being designed for ITER-FEAT: an electron cyclotron (EC), an ion cyclotron (IC) and a lower hybrid (LH) System. The launchers of the RF systems use four ITER equatorial ports and are fully interchangeable. They feature equal power outputs (20 MW/port), similar neutron shielding performance, and identical interfaces with the other machine components. An outline of the design is given in the paper. (author)

  4. The North Dakota lignite partnership

    International Nuclear Information System (INIS)

    Porter, C.R.

    1998-01-01

    The State of North Dakota and the Lignite Energy Council have formed a government/industry partnership to promote the use of North Dakota lignite. The partnership provides funding and management for the Lignite Research, Development and Marketing Program. The program funds activities which preserve and enhance jobs and lignite production; ensure economic growth, stability and opportunity; and maintain a stable and competitive tax base. Funding is provided for activities in three areas: marketing feasibility studies, small research projects, and demonstration projects. Funding is derived from the state coal severance tax. Approximately $3,000,000 annually is appropriated from coal severance revenues for program activities. North Dakota is the ninth largest coal producing state, with lignite as the only rank of coal found in the state. Energy is the second largest economic sector in North Dakota, and it currently comprises over 12% of the state's total economic base. This paper reviews the North Dakota lignite industry and describes studies and projects which have received funding from the program

  5. Oceanography. Centennial changes in North Pacific anoxia linked to tropical trade winds.

    Science.gov (United States)

    Deutsch, Curtis; Berelson, William; Thunell, Robert; Weber, Thomas; Tems, Caitlin; McManus, James; Crusius, John; Ito, Taka; Baumgartner, Timothy; Ferreira, Vicente; Mey, Jacob; van Geen, Alexander

    2014-08-08

    Climate warming is expected to reduce oxygen (O2) supply to the ocean and expand its oxygen minimum zones (OMZs). We reconstructed variations in the extent of North Pacific anoxia since 1850 using a geochemical proxy for denitrification (δ(15)N) from multiple sediment cores. Increasing δ(15)N since ~1990 records an expansion of anoxia, consistent with observed O2 trends. However, this was preceded by a longer declining δ(15)N trend that implies that the anoxic zone was shrinking for most of the 20th century. Both periods can be explained by changes in winds over the tropical Pacific that drive upwelling, biological productivity, and O2 demand within the OMZ. If equatorial Pacific winds resume their predicted weakening trend, the ocean's largest anoxic zone will contract despite a global O2 decline. Copyright © 2014, American Association for the Advancement of Science.

  6. The Effect of the Equatorial Environment on Oxo-Group Silylation of the Uranyl Dication: A Computational Study

    International Nuclear Information System (INIS)

    Yahia, A.; Maron, L.; Yahia, A.; Arnold, P.L.; Love, J.B.

    2010-01-01

    A theoretical investigation of the reductive oxo-group silylation reaction of the uranyl dication held in a Pacman macrocyclic environment has been carried out. The effect of the modeling of the Pacman ligand on the reaction profiles is found to be important, with the dipotassiation of a single oxo group identified as a key component in promoting the reaction between the Si-X and uranium-oxo bonds. This reductive silylation reaction is also proposed to occur in an aqueous environment but was found not to operate on bare ions; in this latter case, substitution of a ligand in the equatorial plane was the most likely reaction. These results demonstrate the importance of the presence but not the identity of the equatorial ligands upon the silylation of the uranyl U-O bond. (authors)

  7. Estimation of eddy diffusivity coefficient of heat in the upper layers of equatorial Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Zavialov, P.O.; Murty, V.S.N.

    in the Central Equatorial Arabian Sea (CEAS). A comparison of the model computed K sub(h) values with those estimated from the heat balance of the upper layer (50 m) of the sea shows good agreement in the region of weak winds (CEAS) or low turbulent mixing regime...

  8. Solar quiet day ionospheric source current in the West African region

    OpenAIRE

    Obiekezie, Theresa N.; Okeke, Francisca N.

    2012-01-01

    The Solar Quiet (Sq) day source current were calculated using the magnetic data obtained from a chain of 10 magnetotelluric stations installed in the African sector during the French participation in the International Equatorial Electrojet Year (IEEY) experiment in Africa. The components of geomagnetic field recorded at the stations from January–December in 1993 during the experiment were separated into the source and (induced) components of Sq using Spherical Harmonics Analysis (SHA) method....

  9. Response of the equatorial Pacific to chlorophyll pigment in a mixed layer isopycnal ocean general circulation model

    Digital Repository Service at National Institute of Oceanography (India)

    Nakamoto, S.; PrasannaKumar, S.; Oberhuber, J.M.; Ishizaka, J.; Muneyama, K.; Frouin, R.

    The influence of phytoplankton on the upper ocean dynamics and thermodynamics in the equatorial Pacific is investigated using an isopycnal ocean general circulation model (OPYC) coupled with a mixed layer model and remotely sensed chlorophyll...

  10. Structure and variances of equatorial zonal circulation in a multimodel ensemble

    Energy Technology Data Exchange (ETDEWEB)

    Yu, B. [Environment Canada, Climate Data and Analysis Section, Climate Research Division, Toronto, ON (Canada); Zwiers, F.W. [University of Victoria, Pacific Climate Impacts Consortium, Victoria, BC (Canada); Boer, G.J. [Environment Canada, Canadian Centre for Climate Modeling and Analysis, Climate Research Division, Victoria, BC (Canada); Ting, M.F. [Columbia University, Lamont-Doherty Earth Observatory, Palisades, NY (United States)

    2012-11-15

    The structure and variance of the equatorial zonal circulation, as characterized by the atmospheric mass flux in the equatorial zonal plane, is examined and inter-compared in simulations from 9 CMIP3 coupled climate models with multiple ensemble members and the NCEP-NCAR and ERA-40 reanalyses. The climate model simulations analyzed here include twentieth century (20C3M) and twenty-first century (SRES A1B) simulations. We evaluate the 20C3M modeled zonal circulations by comparing them with those in the reanalyses. We then examine the variability of the circulation, its changes with global warming, and the associated thermodynamic maintenance. The tropical zonal circulation involves three major components situated over the Pacific, Indian, and Atlantic oceans. The three cells are supported by the corresponding diabatic heating extending deeply throughout the troposphere, with heating centers apparent in the mid-troposphere. Seasonal features appear in the zonal circulation, including variations in its intensity and longitudinal migration. Most models, and hence the multi-model mean, represent the annual and seasonal features of the circulation and the associated heating reasonably well. The multi-model mean reproduces the observed climatology better than any individual model, as indicated by the spatial pattern correlation and mean square difference of the mass flux and the diabatic heating compared to the reanalysis based values. Projected changes in the zonal circulation under A1B forcing are dominated by mass flux changes over the Pacific and Indian oceans. An eastward shift of the Pacific Walker circulation is clearly evident with global warming, with anomalous rising motion apparent over the equatorial central Pacific and anomalous sinking motions in the west and east, which favors an overall strengthening of the Walker circulation. The zonal circulation weakens and shifts westwards over the Indian Ocean under external forcing, whereas it strengthens and shifts

  11. Features of highly structured equatorial plasma irregularities deduced from CHAMP observations

    Science.gov (United States)

    Xiong, C.; Lühr, H.; Ma, S. Y.; Stolle, C.; Fejer, B. G.

    2012-08-01

    In this study five years of CHAMP (Challenging Mini-satellite Payload) fluxgate magnetometer (FGM) data is used to investigate the characteristics of Equatorial Plasma Bubbles (EPBs). We filtered the FGM data by using band-passes with four different cut-off periods to get the EPBs with different maximum spatial scale sizes in the meridional plane ranging from 76-608 km. Associated with the EPB observations at about 400 km, the typical altitude of CHAMP during the year 2000-2005, we also investigate the post-sunset equatorial vertical plasma drift data from ROCSAT-1 (Republic of China Satellite 1). Since the height of the F-layer is highly correlated with the vertical plasma drift and solar flux, we sorted the ROCSAT-1 data into different groups by F10.7. From the integrated vertical drift we have estimated the post-sunset uplift of the ionosphere. By comparing the properties of EPB occurrence for different scale sizes with the global distribution of plasma vertical uplift, we have found that EPBs reaching higher altitudes are more structured than those which are sampled by CHAMP near the top side of the depleted fluxtube. Such a result is in accord with 3-D model simulations (Aveiro and Hysell, 2010). Small-scale EPB structures are observed by CHAMP when the irregularities reach apex heights of 800 km and more. Such events are encountered primarily in the Brazilian sector during the months around November, when the post-sunset vertical plasma drift is high.

  12. Equatorial Indian Ocean productivity during the last 33 kyr and possible linkage to Westerly Jet variability

    Digital Repository Service at National Institute of Oceanography (India)

    Punyu, V.R.; Banakar, V.K.; Garg, A.

    The top 1 m radiocarbon dated section of a 5.6 m long sediment core retrieved from the Equatorial Indian Ocean is studied for productivity changes in response to climate variability that have taken place during the last ~33 kyr. The robust...

  13. The heat and moisture budgets of the atmosphere over central equatorial Indian Ocean during summer monsoon

    Digital Repository Service at National Institute of Oceanography (India)

    Sadhuram, Y.; Gopalakrishna, V.V.; RameshBabu, V.; Sastry, J.S.

    The heat and moisture budgets of the atmosphere (surface to 100 mb) over the central equatorial Indian Ocean (2 degrees N to 2 degrees S; 76 degrees E to 80 degrees E) have been investigated utilising the surface and upper air data collected...

  14. Protein involvement in the fusion between the equatorial segment of acrosome-reacted human spermatozoa and liposomes

    NARCIS (Netherlands)

    Arts, EGJM; Wijchman, JG; Jager, S; Hoekstra, D

    1997-01-01

    Artificial membranes (liposomes) can interact with the equatorial segment (ES) of human spermatozoa, provided that the acrosome reaction (AR) has occurred [Arts, Kuiken, Jager and Hoekstra (1993) fur. J. Biochem. 217, 1001-1009]. Using fluorescently labelled liposomes, this interaction can be seen

  15. Singapore Haze in June 2013: Consequences of Land-Use Change, Fires, and Anomalous Meteorology for Air Quality in Equatorial Asia

    Science.gov (United States)

    Koplitz, S.; Mickley, L. J.; Jacob, D. J.; Kim, P. S.; DeFries, R. S.; Marlier, M. E.; Schwartz, J.; Buonocore, J.; Myers, S. S.

    2014-12-01

    Much of Equatorial Asia is currently undergoing extensive burning from agricultural fires and rapid land-use conversion to oil palm plantations, with substantial consequences for air quality and health. In June 2013, Singapore experienced severe smoke levels, with surface particulate matter concentrations greater than ten times average. Unlike past haze events in Singapore (e.g. September 1997 and October 2006), the June 2013 pollution event occurred during El Nino-neutral conditions. Using a combination of observations and chemical transport modeling, we examine relationships between sea surface temperatures, wind fields, fire patterns, and aerosol optical depth during the June 2013 haze event. We find reasonable agreement between satellite measurements of aerosol optical depth (AOD) from the MODIS and MISR instruments and in-situ measurements from the AERONET stations across Equatorial Asia for 2005-2010 (MODIS R2 = 0.39, bias = -1.6%; MISR R2 = 0.27, bias = -42%). However, AOD observations fail to capture the Singapore pollution event of June 2013. Simulations with the GEOS-Chem model suggest that anomalously high dust concentrations during June 2013 may have impaired the ability of MODIS to monitor the haze over Singapore. In contrast, we show that the OMI Aerosol Index can effectively capture these smoke events and may be used to monitor future haze episodes in Equatorial Asia. We find that the June 2013 haze in Singapore may be attributed to anomalously strong westerlies carrying smoke from Riau Province in Indonesia. These westerlies, 5 m s-1 faster than the 2005-2010 mean June winds, are consistent with the phase of the Madden-Julian Oscillation (MJO) crossing the Maritime Continent at that time. These westerlies may have been further enhanced by a negative phase of the Indian Ocean Dipole (IOD), an east-west gradient in sea surface temperature anomalies across the Indian Ocean, with cold sea surface temperature anomalies (-3 C°) off the Arabian coast and

  16. Prevalence of anemia and associated factors in children living in urban and rural settings from Bata District, Equatorial Guinea, 2013.

    Science.gov (United States)

    Ncogo, Policarpo; Romay-Barja, Maria; Benito, Agustin; Aparicio, Pilar; Nseng, Gloria; Berzosa, Pedro; Santana-Morales, Maria A; Riloha, Matilde; Valladares, Basilio; Herrador, Zaida

    2017-01-01

    Anemia in children under 5 years of age is a global public health problem. According to the World Health Organization the current rate of anemia among preschool aged children in Equatorial Guinea is 66%. No information is available above this age. The cross-sectional Prevamal Survey was conducted in 2013 aimed at providing baseline data on malaria prevalence in children aged 2 months-15 years old. Sampling was carried out with the use of a multistage, stratified cluster strategy in the district of Bata, Equatorial Guinea. The χ2 test and adjusted Poisson regression models were applied to assess the association between social-demographic and economic factors, malaria and anemia. A total of 1436 children were tested, out of which 1,421 children (99%) were tested for anemia. Over 85% were anemic; out of them, 284 (24%), 815 (67%) and 111 (9%) children had mild, moderate and severe anemia, respectively. Severe anemia was more frequent among children aged 2-12 months old and those living in rural sites. About 47% tested positive for malaria via a rapid diagnostic test (RDT). This rate was significantly higher in rural villages (66%; panemia and malaria was higher in rural settings (panemia in urban areas displayed a heterogeneity and complexity that differed from the rural environment: in urban neighbourhoods, children with concomitant malaria infection were more likely to be anemic (adjusted prevalence rate (aPR):1.19; CI 95%: 1.12-1.28). Moreover, the prevalence of anemia was higher in children aged above 13 months compared to younger children (pchildren' parents being employees (aPR: 0.86, 95% CI: 0.76-0.96) or self-employed (aPR: 0.86, 95% CI: 0.76-0.97) vs. working in agriculture and/or fishing negatively associated with anemia among urban children. This marked urban-rural variation indicates the importance of targeting specific areas or districts. Strategies aimed at reducing malaria are clearly paramount in this country. Prevention and treatment of other factors

  17. Towards an Accurate Orbital Calibration of Late Miocene Climate Events: Insights From a High-Resolution Chemo- and Magnetostratigraphy (8-6 Ma) from Equatorial Pacific IODP Sites U1337 and U1338

    Science.gov (United States)

    Drury, A. J.; Westerhold, T.; Frederichs, T.; Wilkens, R.; Channell, J. E. T.; Evans, H. F.; Hodell, D. A.; John, C. M.; Lyle, M. W.; Roehl, U.; Tian, J.

    2015-12-01

    In the 8-6 Ma interval, the late Miocene is characterised by a long-term -0.3 ‰ reduction in benthic foraminiferal δ18O and distinctive short-term δ18O cycles, possibly related to dynamic Antarctic ice sheet variability. In addition, the late Miocene carbon isotope shift (LMCIS) marks a permanent long-term -1 ‰ shift in oceanic δ13CDIC, which is the largest, long-term perturbation in the global marine carbon cycle since the mid Miocene Monterey excursion. Accurate age control is crucial to investigate the origin of the δ18O cyclicity and determine the precise onset of the LMCIS. The current Geological Time Scale in the 8-6 Ma interval is constructed using astronomical tuning of sedimentary cycles in Mediterranean outcrops. However, outside of the Mediterranean, a comparable high-resolution chemo-, magneto-, and cyclostratigraphy at a single DSDP/ODP/IODP site does not exist. Generating an accurate astronomically-calibrated chemo- and magneto-stratigraphy in the 8-6 Ma interval became possible with retrieval of equatorial Pacific IODP Sites U1337 and U1338, as both sites have sedimentation rates ~2 cm/kyr, high biogenic carbonate content, and magnetic polarity stratigraphies. Here we present high-resolution correlation of Sites U1337 and U1338 using Milankovitch-related cycles in core images and X-ray fluorescence core scanning data. By combining inclination and declination data from ~400 new discrete samples with shipboard measurements, we are able to identify 14 polarity reversals at Site U1337 from the young end of Chron C3An.1n (~6.03 Ma) to the onset of Chron C4n.2n (~8.11 Ma). New high-resolution (<1.5 kyr) stable isotope records from Site U1337 correlate highly with Site U1338 records, enabling construction of a high-resolution stack. Initial orbital tuning of the U1337-U1338 records show that the δ18O cyclicity is obliquity driven, indicating high-latitude climate forcing. The LMCIS starts ~7.55 Ma and is anchored in Chron C4n.1n, which is

  18. Gravitational self-force correction to the innermost stable circular equatorial orbit of a Kerr black hole.

    Science.gov (United States)

    Isoyama, Soichiro; Barack, Leor; Dolan, Sam R; Le Tiec, Alexandre; Nakano, Hiroyuki; Shah, Abhay G; Tanaka, Takahiro; Warburton, Niels

    2014-10-17

    For a self-gravitating particle of mass μ in orbit around a Kerr black hole of mass M ≫ μ, we compute the O(μ/M) shift in the frequency of the innermost stable circular equatorial orbit due to the conservative piece of the gravitational self-force acting on the particle. Our treatment is based on a Hamiltonian formulation of the dynamics in terms of geodesic motion in a certain locally defined effective smooth spacetime. We recover the same result using the so-called first law of binary black-hole mechanics. We give numerical results for the innermost stable circular equatorial orbit frequency shift as a function of the black hole's spin amplitude, and compare with predictions based on the post-Newtonian approximation and the effective one-body model. Our results provide an accurate strong-field benchmark for spin effects in the general-relativistic two-body problem.

  19. Hiss or equatorial noise? Ambiguities in analyzing suprathermal ion plasma wave resonance

    Czech Academy of Sciences Publication Activity Database

    Sarno-Smith, L. K.; Liemohn, M. W.; Skoug, R. M.; Santolík, Ondřej; Morley, S. K.; Breneman, A.; Larsen, B. A.; Reeves, G.; Wygant, J. R.; Hospodarsky, G.; Kletzing, C.; Moldwin, M. B.; Katus, R. M.; Zou, S.

    2016-01-01

    Roč. 121, č. 10 (2016), s. 9619-9631 ISSN 2169-9380 R&D Projects: GA MŠk(CZ) LH15304 Grant - others:AV ČR(CZ) AP1401 Program:Akademická prémie - Praemium Academiae Institutional support: RVO:68378289 Keywords : equatorial noise * low-energy ions * plasma waves * plasmasphere * plasmaspheric hiss Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.733, year: 2016 http://onlinelibrary.wiley.com/doi/10.1002/2016JA022975/abstract

  20. Scintillations associated with bottomside sinusoidal irregularities in the equatorial F region

    Science.gov (United States)

    Basu, S.; Basu, S.; Valladares, C. E.; Dasgupta, A.; Whitney, H. E.

    1986-01-01

    Multisatellite scintillation observations and spaced receiver drift measurements are presented for a category of equatorial F region plasma irregularities characterized by nearly sinusoidal waveforms in the ion number density. The observations were made at Huancayo, Peru, and the measurements at Ancon, Peru, associated with irregularities observed by the Atmospheric-Explorer-E satellite on a few nights in December 1979. Utilizing ray paths to various geostationary satellites, it was found that the irregularities grow and decay almost simultaneously in long-lived patches extending at least 1000 km in the east-west direction.

  1. Particle size traces modern Saharan dust transport and deposition across the equatorial North Atlantic

    Directory of Open Access Journals (Sweden)

    M. van der Does

    2016-11-01

    Full Text Available Mineral dust has a large impact on regional and global climate, depending on its particle size. Especially in the Atlantic Ocean downwind of the Sahara, the largest dust source on earth, the effects can be substantial but are poorly understood. This study focuses on seasonal and spatial variations in particle size of Saharan dust deposition across the Atlantic Ocean, using an array of submarine sediment traps moored along a transect at 12° N. We show that the particle size decreases downwind with increased distance from the Saharan source, due to higher gravitational settling velocities of coarse particles in the atmosphere. Modal grain sizes vary between 4 and 32 µm throughout the different seasons and at five locations along the transect. This is much coarser than previously suggested and incorporated into climate models. In addition, seasonal changes are prominent, with coarser dust in summer and finer dust in winter and spring. Such seasonal changes are caused by transport at higher altitudes and at greater wind velocities during summer than in winter. Also, the latitudinal migration of the dust cloud, associated with the Intertropical Convergence Zone, causes seasonal differences in deposition as the summer dust cloud is located more to the north and more directly above the sampled transect. Furthermore, increased precipitation and more frequent dust storms in summer coincide with coarser dust deposition. Our findings contribute to understanding Saharan dust transport and deposition relevant for the interpretation of sedimentary records for climate reconstructions, as well as for global and regional models for improved prediction of future climate.

  2. North Korea: a mercenary proliferator?

    International Nuclear Information System (INIS)

    Hemez, Remy

    2015-01-01

    After having recalled that North Korea possesses a rather advanced ballistic programme which has been started in the 1970 with the Chinese support, that North Korea is the fourth world producer of ballistic missiles, the author outlines that this country has become a major proliferator as it exports this production to different States and non-State actors. He recalls the long history of relationships between North Korea and terrorist organisations (even during the Cold War), comments the current and major support of North Korea to Hamas and Hezbollah in Gaza and in Lebanon. These relationships are then related with those these both organisations have with Syria and Iran who are in fact the relays between them and North Korea. The author explains why Hamas and Hezbollah must buy their weapons to such a far country: Iran is submitted to international sanctions, Iran and Syria want to avoid being banned from the international community for selling weapon to a terrorist (or so-said) organisation, and prices are rather competitive. If North Korea is also submitted to international sanctions, weapon smuggling seems to be institutional in this country. The author finally briefly evokes the issue of chemical weapons: North Korea possesses few thousand tonnes of these weapons, and could export them to non-state organisations

  3. Main Ionospheric Trough and Equatorial Ionization Anomaly During Substorms With the Different UT Onset Moments

    Science.gov (United States)

    Klimenko, M. V.; Klimenko, V. V.; Bryukhanov, V. V.

    2007-05-01

    In the given work the numerical calculation results of ionospheric effects of four modeling substorms which have begun in 00, 06, 12 and 18 UT are presented. Calculations are executed on the basis of Global Self-consistent Model of the Thermosphere, Ionosphere and Protonosphere (GSM TIP), developed in WD IZMIRAN, added by the new block of calculation of electric fields in the ionosphere of the Earth for vernal equinox conditions in the minimum of solar activity. In calculations we considered superposition of magnetospheric convection electric field (at set potential differences through polar caps and field aligned currents of the second zone with taking into account of particle precipitation) and dynamo field generated by thermospheric winds without taking into account the tides. It is shown, that in the given statement of problem the substorms cause strong positive disturbances in F-region of ionosphere in night sector. Negative disturbances are much less and arise, mainly, at night in the middle and low latitudes. During substorms longitudinal extent of main ionospheric trough increases. The substorm beginning in 18 UT, causes negative disturbances in high latitudes except for a southern polar cap. Besides there is "stratification" of the main ionospheric trough. As a result in southern hemisphere the additional high-latitude trough which is absent in quiet conditions is formed. "Stratification" of the main ionospheric trough occurs in northern hemisphere at 6 hours after the beginning of the substorm. These "stratifications" are consequence non-stationary magnetospheric convection. Distinction between these events consists that "stratification" in a southern hemisphere occurs in active phase of substorm, and in northern hemisphere in recovery phase. During a substorm beginning in 00 UT, foF2 increases in all northern polar cap. Positive disturbances of foF2 in the equatorial anomaly region cause all presented substorms, except for a substorm beginning in 18 UT

  4. Biological control of emerald ash borer in North America: current progress and potential for success

    Science.gov (United States)

    Jian J. Duan; Leah S. Bauer; Juli R. Gould; Jonathan P. Lelito

    2012-01-01

    The emerald ash borer (EAB) (Agrilus planipennis), a buprestid native to north-east Asia, was first discovered in North America near Detroit in 2002. EAB has since spread to at least 15 U.S. States and two Canadian provinces, threatening the existence of native ash trees (Fraxinus spp.). A classical biocontrol program was initiated...

  5. Changes in equatorial zonal circulations and precipitation in the context of the global warming and natural modes

    Science.gov (United States)

    Kim, B. H.; Ha, K. J.

    2017-12-01

    The strengthening and westward shift of Pacific Walker Circulation (PWC) is observed during the recent decades. However, the relative roles of global warming and natural variability on the change in PWC unclearly remain. By conducting numerical atmospheric general circulation model (AGCM) experiments using the spatial SST patterns in the global warming and natural modes which are obtained by the multi-variate EOF analysis from three variables including precipitation, sea surface temperature (SST), and divergent zonal wind, we indicated that the westward shift and strengthening of PWC are caused by the global warming SST pattern in the global warming mode and the negative Interdecadal Pacific Oscillation-like SST pattern in the natural mode. The SST distribution of the Pacific Ocean (PO) has more influence on the changes in equatorial zonal circulations and tropical precipitation than that of the Indian Ocean (IO) and Atlantic Ocean (AO). The change in precipitation is also related to the equatorial zonal circulations variation through the upward and downward motions of the circulations. The IO and AO SST anomalies in the global warming mode can affect on the changes in equatorial zonal circulations, but the influence of PO SST disturbs the Indian Walker circulation and Atlantic Walker circulation changes by the IO and AO. The zonal shift of PWC is found to be highly associated with a zonal gradient of SST over the PO through the idealized numerical AGCM experiments and predictions of CMIP5 models.

  6. Sporadic-E associated with the Leonid meteor shower event of November 1998 over low and equatorial latitudes

    Directory of Open Access Journals (Sweden)

    H. Chandra

    Full Text Available Rapid radio soundings were made over Ahmedabad, a low latitude station during the period 16–20 November 1998 to study the sporadic-E layer associated with the Leonid shower activity using the KEL Aerospace digital ionosonde. Hourly ionograms for the period 11 November to 24 November were also examined during the years from 1994 to 1998. A distinct increase in sporadic-E layer occurrence is noticed on 17, 18 and 19 November from 1996 to 1998. The diurnal variations 
    of  f0Es and fbEs also show significantly enhanced values for the morning hours of 18 and 19 November 1998. The ionograms clearly show strong sporadic-E reflections at times of peak shower activity with multiple traces in the altitude range of 100–140 km in few ionograms. Sporadic-E layers with multiple structures in altitude are also seen in some of the ionograms (quarter hourly at Thumba, situated near the magnetic equator. Few of ionograms recorded at Kodaikanal, another equatorial station, also show sporadic- E reflections in spite of the transmitter power being significantly lower. These new results highlighting the effect of intense meteor showers in the equatorial and low latitude E-region are presented.

    Key words. Ionosphere (equatorial ionosphere – Radio science (ionospheric physics

  7. Magnetic-field-aligned characteristics of plasma bubbles in the nighttime equatorial ionosphere

    International Nuclear Information System (INIS)

    Tsunoda, R.T.

    1980-01-01

    Measurements of both incoherent-scatter (IS) and backscatter from field-aligned irregularities (FAI) were made in 1978 with ALTAIR, a fully-steerable high-power radar, to investigate the magnetic-field-aligned characteristics of equatorial plasma bubbles. By operating the radar in a latitude-scan IS mode it was possible to map the location and percentage depletion of plasma bubbles as a function of altitude. By showing that backscatter from FAI is spatially collocated with the upper wall of plasma bubbles it was possible to use the spatial displacement of a field aligned backscatter region to estimate the upward bubble velocity. Besides showing that plasma bubbles are indeed aligned along magnetic field lines, this data set is used to show that a plasma bubble with a percentage depletion of as much as 90% does not have as large an upward velocity as predicted by two-dimensional models. Instead, the inferred bubble velocity is shown to be in better agreement with the bubble velocity predicted by theoretical models using flux-integrated values of electron density and Pedersen conductivity. The need to use flux-tube-integrated values when comparing theory and observation is further stressed by the presence of a non-uniform latitudinal distribution of electron density (i.e. the equatorial anomaly) that was found in the latitude-scan data. (author)

  8. {sup 10}Be/{sup 230}Th ratios as proxy for particle flux in the equatorial Pacific ocean

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, R.F.; Fleisher, M.Q. [LDEO of Columbia Univ. (United States); Kubik, P.W. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Suter, M. [Eidgenoessische Technische Hochschule, Zurich (Switzerland)

    1997-09-01

    Particulate {sup 10}Be/{sup 230}Th ratios collected by sediment traps in the central equatorial Pacific Ocean exhibit a positive correlation with particle flux, but little or no correlation with particle composition. (author) 1 fig., 4 refs.

  9. Variability in foF2 at an equatorial station and the influence of magnetic activity

    International Nuclear Information System (INIS)

    Adeniyi, J.O.; Radicella, S.M.

    2003-01-01

    Variability in foF2 is investigated for an equatorial station in the African region. Variability during the day time at high solar activity varies between 10 and 30 percent. It varies between 10 and 20 percent at high solar activity. Magnetic storms increase the variability at both solar activity periods. (author)

  10. Marine sedimentary environments on some parts of the tropical and equatorial Atlantic margins of Africa during the Late Quaternary

    Science.gov (United States)

    Barusseau, J. P.; Giresse, P.; Faure, H.; Lezine, A. M.; Masse, J. P.

    1988-01-01

    ultrafine sands is recorded in the surficial sediments. Carbonate biogenic deposition The main sedimentary unit of bioclastic origin formed during the first standstill of the Holocene sea-level rise (12,000 y B.P.). It is a belt of Amphistegina sands, recorded on the outer shelf between 80 and 120 m, which represents a fossil fauna. Recent bioclastic sands are more developed in the tropical region, north of the area which has been studied; they are more dependent on structural rocky shoals, than in the equatorial zone where terrigenous influxes impede their development. Glauconite deposition This kind of sediment is characteristic of the equatorial regions where two major conditions were satisfied during the low-stand phase: (1) the presence of faecal pellet substrates due to the increase of primary productivity related to the stronger upwellings and, (2) larger iron input releases by podzolic soil evolution. Northward of the Congo-Gabon shelf, effectiveness of both conditions decreased. Offshore from the Coˆte d'Ivoire, iron was trapped in ferralitic profiles and on the Senegal and Mauritania shelves the green grains are rare and berthierine occurs in a limited time and space range.

  11. Effects of solar eclipse on the electrodynamical processes of the equatorial ionosphere: a case study during 11 August 1999 dusk time total solar eclipse over India

    Directory of Open Access Journals (Sweden)

    R. Sridharan

    Full Text Available The effects on the electrodynamics of the equatorial E- and F-regions of the ionosphere, due to the occurrence of the solar eclipse during sunset hours on 11 August 1999, were investigated in a unique observational campaign involving ground based ionosondes, VHF and HF radars from the equatorial location of Trivandrum (8.5° N; 77° E; dip lat. 0.5° N, India. The study revealed the nature of changes brought about by the eclipse in the evening time E- and F-regions in terms of (i the sudden intensification of a weak blanketing ES-layer and the associated large enhancement of the VHF backscattered returns, (ii significant increase in h' F immediately following the eclipse and (iii distinctly different spatial and temporal structures in the spread-F irregularity drift velocities as observed by the HF radar. The significantly large enhancement of the backscattered returns from the E-region coincident with the onset of the eclipse is attributed to the generation of steep electron density gradients associated with the blanketing ES , possibly triggered by the eclipse phenomena. The increase in F-region base height immediately after the eclipse is explained as due to the reduction in the conductivity of the conjugate E-region in the path of totality connected to the F-region over the equator along the magnetic field lines, and this, with the peculiar local and regional conditions, seems to have reduced the E-region loading of the F-region dynamo, resulting in a larger post sunset F-region height (h' F rise. These aspects of E-and F-region behaviour on the eclipse day are discussed in relation to those observed on the control day.

    Key words. Ionosphere (electric fields and currents; equatorial ionosphere; ionospheric irregularities

  12. Effects of solar eclipse on the electrodynamical processes of the equatorial ionosphere: a case study during 11 August 1999 dusk time total solar eclipse over India

    Directory of Open Access Journals (Sweden)

    R. Sridharan

    2002-12-01

    Full Text Available The effects on the electrodynamics of the equatorial E- and F-regions of the ionosphere, due to the occurrence of the solar eclipse during sunset hours on 11 August 1999, were investigated in a unique observational campaign involving ground based ionosondes, VHF and HF radars from the equatorial location of Trivandrum (8.5° N; 77° E; dip lat. 0.5° N, India. The study revealed the nature of changes brought about by the eclipse in the evening time E- and F-regions in terms of (i the sudden intensification of a weak blanketing ES-layer and the associated large enhancement of the VHF backscattered returns, (ii significant increase in h' F immediately following the eclipse and (iii distinctly different spatial and temporal structures in the spread-F irregularity drift velocities as observed by the HF radar. The significantly large enhancement of the backscattered returns from the E-region coincident with the onset of the eclipse is attributed to the generation of steep electron density gradients associated with the blanketing ES , possibly triggered by the eclipse phenomena. The increase in F-region base height immediately after the eclipse is explained as due to the reduction in the conductivity of the conjugate E-region in the path of totality connected to the F-region over the equator along the magnetic field lines, and this, with the peculiar local and regional conditions, seems to have reduced the E-region loading of the F-region dynamo, resulting in a larger post sunset F-region height (h' F rise. These aspects of E-and F-region behaviour on the eclipse day are discussed in relation to those observed on the control day.Key words. Ionosphere (electric fields and currents; equatorial ionosphere; ionospheric irregularities

  13. Radar Observations of 8.3-m scale equatorial spread F irregularities over Trivandrum

    Directory of Open Access Journals (Sweden)

    D. Tiwari

    2004-03-01

    Full Text Available In this paper, we present observations of equatorial spread F (ESF irregularities made using a newly installed 18MHz radar located at Trivandrum. We characterize the morphology and the spectral parameters of the 8.3-m ESF irregularities which are found to be remarkably different from that observed so extensively at the 3-m scale size. We also present statistical results of the irregularities in the form of percentage occurrence of the echoes and spectral parameters (SNR, Doppler velocity, Spectral width. The Doppler spectra are narrower, less structured and less variable in time as compared to those observed for 3-m scale size. We have never observed the ESF irregularity velocities to be supersonic here unlike those at Jicamarca, and the velocities are found to be within ±200ms–1. The spectral widths are found to be less than 150ms–1. Hence, the velocities and spectral width both are smaller than those reported for 3-m scale size. The velocities and spectral widths are further found to be much smaller than those of the American sector. These observations are compared with those reported elsewhere and discussed in the light of present understanding on the ESF irregularities at different wavelengths. Key words. Ionoshphere (equatorial ionosphere, plasma waves and instabilities; ionospheric irregularities

  14. Economic Opening of the Hermit Kingdom: Current Status and Future Tasks of the New SEZs in North Korea

    Directory of Open Access Journals (Sweden)

    Jong-Woon Lee

    2004-12-01

    Full Text Available Establishing new SEZs, along with improving foreign relationships, is treated as the most important policy measure for opening the North Korean economy. Recently, North Korea has shown its interest in promoting two new SEZs, the Gaeseong industrial park and the Shinuiju special administrative region. Thanks to their locational merits, Gaeseong and Shinuiju have the potential to develop into thriving SEZs through subregional economic cooperation with bordering areas. Although the path toward success for North Korea's new SEZs is full of hurdles, it would result in a major boost to the country's economic rehabilitation and create a spillover effect for the rest of North Korea. In this context, this article examines the issues regarding North Korea's new special economic zones. It presents the recent progress and institutional arrangements of the Shinuiju SEZ and Gaeseong industrial park, while also exploring their potential to facilitate North Korea's economic rehabilitation and inter-Korean cooperation. This article also endeavors to address major problems that North Korea needs to resolve in order to activate its new SEZs.

  15. Antifouling effect of hydrogen peroxide release from enzymatic marine coatings: Exposure testing under equatorial and Mediterranean conditions

    DEFF Research Database (Denmark)

    Olsen, S.M.; Kristensen, J.B.; Laursen, B.S.

    2010-01-01

    Mediterranean and equatorial climatic conditions, is investigated. During seawater exposure of the coatings, starch is first converted to glucose by glucoamylase (rate-controlling step) and subsequently glucose is rapidly oxidised by hexose oxidase in a reaction producing hydrogen peroxide. The coatings...

  16. A near-infrared, optical, and ultraviolet polarimetric and timing investigation of complex equatorial dusty structures

    Science.gov (United States)

    Marin, F.; Rojas Lobos, P. A.; Hameury, J. M.; Goosmann, R. W.

    2018-05-01

    Context. From stars to active galactic nuclei, many astrophysical systems are surrounded by an equatorial distribution of dusty material that is, in a number of cases, spatially unresolved even with cutting edge facilities. Aims: In this paper, we investigate if and how one can determine the unresolved and heterogeneous morphology of dust distribution around a central bright source using time-resolved polarimetric observations. Methods: We used polarized radiative transfer simulations to study a sample of circumnuclear dusty morphologies. We explored a grid of geometrically variable models that are uniform, fragmented, and density stratified in the near-infrared, optical, and ultraviolet bands, and we present their distinctive time-dependent polarimetric signatures. Results: As expected, varying the structure of the obscuring equatorial disk has a deep impact on the inclination-dependent flux, polarization degree and angle, and time lags we observe. We find that stratified media are distinguishable by time-resolved polarimetric observations, and that the expected polarization is much higher in the infrared band than in the ultraviolet. However, because of the physical scales imposed by dust sublimation, the average time lags of months to years between the total and polarized fluxes are important; these time lags lengthens the observational campaigns necessary to break more sophisticated, and therefore also more degenerated, models. In the ultraviolet band, time lags are slightly shorter than in the infrared or optical bands, and, coupled to lower diluting starlight fluxes, time-resolved polarimetry in the UV appears more promising for future campaigns. Conclusions: Equatorial dusty disks differ in terms of inclination-dependent photometric, polarimetric, and timing observables, but only the coupling of these different markers can lead to inclination-independent constraints on the unresolved structures. Even though it is complex and time consuming, polarized

  17. Zonal asymmetry of daytime 150-km echoes observed by Equatorial Atmosphere Radar in Indonesia

    Directory of Open Access Journals (Sweden)

    T. Yokoyama

    2009-03-01

    Full Text Available Multi-beam observations of the daytime ionospheric E-region irregularities and the so-called 150-km echoes with the 47-MHz Equatorial Atmosphere Radar (EAR in West Sumatra, Indonesia (0.20° S, 100.32° E, 10.36° S dip latitude are presented. 150-km echoes have been frequently observed by the EAR, and their characteristics are basically the same as the equatorial ones, except for an intriguing zonal asymmetry; stronger echoes in lower altitudes in the east directions, and weaker echoes in higher altitudes in the west. The highest occurrence is seen at 5.7° east with respect to the magnetic meridian, and the altitude gradually increases as viewing from the east to west. Arc structures which return backscatter echoes are proposed to explain the asymmetry. While the strength of radar echoes below 105 km is uniform within the wide coverage of azimuthal directions, the upper E-region (105–120 km echoes also show a different type of zonal asymmetry, which should be generated by an essentially different mechanism from the lower E-region and 150-km echoes.

  18. Corporate philanthropy and conflicts of interest in public health: ExxonMobil, Equatorial Guinea, and malaria.

    Science.gov (United States)

    Shah, Naman K

    2013-01-01

    Equatorial Guinea, the most prosperous country in Africa, still bears a large malaria burden. With massive wealth from oil reserves, and nearly half its population living in island ecotypes favourable for malaria control, only poor governance can explain continued parasite burden. By financially backing the country's dictator and other officials through illicit payments, the oil company ExxonMobil contributed to the state's failure. Now ExxonMobil, having helped perpetuate malaria in Equatorial Guinea, gives money to non-governmental organizations, charitable foundations, and universities to advocate for and undertake malaria work. How, and on what terms, can public health engage with such an actor? We discuss challenges in the identification and management of conflicts of interest in public health activities. We reviewed the business and foundation activities of ExxonMobil and surveyed organizations that received ExxonMobil money about their conflict of interest policies. Reforms in ExxonMobil's business practices, as well as its charitable structure, and reforms in the way public health groups screen and manage conflicts of interest are needed to ensure that any relationship ultimately improves the health of citizens.

  19. Ring current proton decay by charge exchange

    Science.gov (United States)

    Smith, P. H.; Hoffman, R. A.; Fritz, T.

    1975-01-01

    Explorer 45 measurements during the recovery phase of a moderate magnetic storm have confirmed that the charge exchange decay mechanism can account for the decay of the storm-time proton ring current. Data from the moderate magnetic storm of 24 February 1972 was selected for study since a symmetrical ring current had developed and effects due to asymmetric ring current losses could be eliminated. It was found that after the initial rapid decay of the proton flux, the equatorially mirroring protons in the energy range 5 to 30 keV decayed throughout the L-value range of 3.5 to 5.0 at the charge exchange decay rate calculated by Liemohn. After several days of decay, the proton fluxes reached a lower limit where an apparent equilibrium was maintained, between weak particle source mechanisms and the loss mechanisms, until fresh protons were injected into the ring current region during substorms. While other proton loss mechanisms may also be operating, the results indicate that charge exchange can entirely account for the storm-time proton ring current decay, and that this mechanism must be considered in all studies involving the loss of proton ring current particles.

  20. The genetic landscape of Equatorial Guinea and the origin and migration routes of the Y chromosome haplogroup R-V88.

    Science.gov (United States)

    González, Miguel; Gomes, Verónica; López-Parra, Ana Maria; Amorim, António; Carracedo, Angel; Sánchez-Diz, Paula; Arroyo-Pardo, Eduardo; Gusmão, Leonor

    2013-03-01

    Human Y chromosomes belonging to the haplogroup R1b1-P25, although very common in Europe, are usually rare in Africa. However, recently published studies have reported high frequencies of this haplogroup in the central-western region of the African continent and proposed that this represents a 'back-to-Africa' migration during prehistoric times. To obtain a deeper insight into the history of these lineages, we characterised the paternal genetic background of a population in Equatorial Guinea, a Central-West African country located near the region in which the highest frequencies of the R1b1 haplogroup in Africa have been found to date. In our sample, the large majority (78.6%) of the sequences belong to subclades in haplogroup E, which are the most frequent in Bantu groups. However, the frequency of the R1b1 haplogroup in our sample (17.0%) was higher than that previously observed for the majority of the African continent. Of these R1b1 samples, nine are defined by the V88 marker, which was recently discovered in Africa. As high microsatellite variance was found inside this haplogroup in Central-West Africa and a decrease in this variance was observed towards Northeast Africa, our findings do not support the previously hypothesised movement of Chadic-speaking people from the North across the Sahara as the explanation for these R1b1 lineages in Central-West Africa. The present findings are also compatible with an origin of the V88-derived allele in the Central-West Africa, and its presence in North Africa may be better explained as the result of a migration from the south during the mid-Holocene.

  1. Features of highly structured equatorial plasma irregularities deduced from CHAMP observations

    Directory of Open Access Journals (Sweden)

    C. Xiong

    2012-08-01

    Full Text Available In this study five years of CHAMP (Challenging Mini-satellite Payload fluxgate magnetometer (FGM data is used to investigate the characteristics of Equatorial Plasma Bubbles (EPBs. We filtered the FGM data by using band-passes with four different cut-off periods to get the EPBs with different maximum spatial scale sizes in the meridional plane ranging from 76–608 km. Associated with the EPB observations at about 400 km, the typical altitude of CHAMP during the year 2000–2005, we also investigate the post-sunset equatorial vertical plasma drift data from ROCSAT-1 (Republic of China Satellite 1. Since the height of the F-layer is highly correlated with the vertical plasma drift and solar flux, we sorted the ROCSAT-1 data into different groups by F10.7. From the integrated vertical drift we have estimated the post-sunset uplift of the ionosphere. By comparing the properties of EPB occurrence for different scale sizes with the global distribution of plasma vertical uplift, we have found that EPBs reaching higher altitudes are more structured than those which are sampled by CHAMP near the top side of the depleted fluxtube. Such a result is in accord with 3-D model simulations (Aveiro and Hysell, 2010. Small-scale EPB structures are observed by CHAMP when the irregularities reach apex heights of 800 km and more. Such events are encountered primarily in the Brazilian sector during the months around November, when the post-sunset vertical plasma drift is high.

  2. Deep-sea environment and biodiversity of the West African Equatorial margin

    Science.gov (United States)

    Sibuet, Myriam; Vangriesheim, Annick

    2009-12-01

    The long-term BIOZAIRE multidisciplinary deep-sea environmental program on the West Equatorial African margin organized in partnership between Ifremer and TOTAL aimed at characterizing the benthic community structure in relation with physical and chemical processes in a region of oil and gas interest. The morphology of the deep Congo submarine channel and the sedimentological structures of the deep-sea fan were established during the geological ZAIANGO project and helped to select study sites ranging from 350 to 4800 m water depth inside or near the channel and away from its influence. Ifremer conducted eight deep-sea cruises on board research vessels between 2000 and 2005. Standardized methods of sampling together with new technologies such as the ROV Victor 6000 and its associated instrumentation were used to investigate this poorly known continental margin. In addition to the study of sedimentary environments more or less influenced by turbidity events, the discovery of one of the largest cold seeps near the Congo channel and deep coral reefs extends our knowledge of the different habitats of this margin. This paper presents the background, objectives and major results of the BIOZAIRE Program. It highlights the work achieved in the 16 papers in this special issue. This synthesis paper describes the knowledge acquired at a regional and local scale of the Equatorial East Atlantic margin, and tackles new interdisciplinary questions to be answered in the various domains of physics, chemistry, taxonomy and ecology to better understand the deep-sea environment in the Gulf of Guinea.

  3. Recent developments in the understanding of equatorial ionization anomaly: A review

    Science.gov (United States)

    Balan, N.; Souza, J.; Bailey, G. J.

    2018-06-01

    A brief review of the recent developments in the understanding of the equatorial plasma fountain (EPF) and equatorial ionization anomaly (EIA) under quiet and active conditions is presented. It is clarified that (1) the EPF is not upward ExB plasma drift at the equator followed by downward plasma diffusion, but it is field perpendicular ExB plasma drift and field-aligned plasma diffusion acting together all along the field lines at all altitudes and plasma flowing in the direction of the resultant. (2) The EIA is formed not from the accumulation of plasma at the crests but mainly from the removal of plasma from around the equator by the upward ExB drift with small accumulations when the crests are within approximately ±20° magnetic latitude. The accumulations reduce with increasing latitude and become zero by approximately ±25°. (3) An asymmetric neutral wind makes EPF and EIA asymmetric with stronger fountain and stronger crest usually occurring in opposite hemispheres especially at equinoxes when winter anomaly is absent. (4) During the early stages of daytime main phase of major geomagnetic storms, the plasma fountain becomes a super fountain and the EIA becomes strong not due to the eastward prompt penetration electric field (PPEF) alone but due to the combined effect of eastward PPEF and storm-time equatorward winds (SEW). (5) During the later stages of the storms when EIA gets inhibited a peak sometimes occurs around the equator not due to westward electric fields but mainly due to the convergence of plasma from both hemispheres due to SEW.

  4. Energy content of stormtime ring current from phase space mapping simulations

    International Nuclear Information System (INIS)

    Chen, M.W.; Schulz, M.; Lyons, L.R.

    1993-01-01

    The authors perform a model study to account for the increase in energy content of the trapped-particle population which occurs during the main phase of major geomagnetic storms. They consider stormtime particle transport in the equatorial region of the magnetosphere. They start with a phase space distribution of the ring current before the storm, created by a steady state transport model. They then use a previously developed guiding center particle simulation to map the stormtime ring current phase space, following Liouville's theorem. This model is able to account for the ten to twenty fold increase in energy content of magnetospheric ions during the storm

  5. Energy Relations between the European Union and North Africa

    Directory of Open Access Journals (Sweden)

    Sarah Kilpeläinen

    2013-06-01

    Full Text Available This article discusses European Union (EU-North Africa energy relations with a special focus on renewables in North Africa, arguing that the research so far has not taken due account of North African perceptions of EU external energy policy. It is argued that current research on EU-North African relations has not taken sufficient note of the multidimensionality of energy or addressed the inconsistent nature of EU policy making. However, addressing these issues is vital in approaching EU-North Africa energy relations and EU policy towards North Africa in general. The study of perceptions is introduced as one way to develop research further, to give further impetus on understanding how EU-North African energy relations develop and to understand energy relations in their complexity.

  6. Impacts of Interannual Ocean Circulation Variability on Japanese Eel Larval Migration in the Western North Pacific Ocean.

    Directory of Open Access Journals (Sweden)

    Yu-Lin Chang

    Full Text Available The Japanese eel larvae hatch near the West Mariana Ridge seamount chain and travel through the North Equatorial Current (NEC, the Kuroshio, and the Subtropical Countercurrent (STCC region during their shoreward migration toward East Asia. The interannual variability of circulation over the subtropical and tropical regions of the western North Pacific Ocean is affected by the Philippines-Taiwan Oscillation (PTO. This study examines the effect of the PTO on the Japanese eel larval migration routes using a three-dimensional (3D particle tracking method, including vertical and horizontal swimming behavior. The 3D circulation and hydrography used for particle tracking are from the ocean circulation reanalysis produced by the Japan Coastal Ocean Predictability Experiment 2 (JCOPE2. Our results demonstrate that bifurcation of the NEC and the strength and spatial variation of the Kuroshio affect the distribution and migration of eel larvae. During the positive phase of PTO, more virtual eels ("v-eels" can enter the Kuroshio to reach the south coast of Japan and more v-eels reach the South China Sea through the Luzon Strait; the stronger and more offshore swing of the Kuroshio in the East China Sea leads to fewer eels entering the East China Sea and the onshore movement of the Kuroshio to the south of Japan brings the eels closer to the Japanese coast. Significant differences in eel migration routes and distributions regulated by ocean circulation in different PTO phases can also affect the otolith increment. The estimated otolith increment suggests that eel age tends to be underestimated after six months of simulation due to the cooler lower layer temperature. Underestimation is more significant in the positive PTO years due to the wide distribution in higher latitudes than in the negative PTO years.

  7. Impacts of Interannual Ocean Circulation Variability on Japanese Eel Larval Migration in the Western North Pacific Ocean.

    Science.gov (United States)

    Chang, Yu-Lin; Sheng, Jinyu; Ohashi, Kyoko; Béguer-Pon, Mélanie; Miyazawa, Yasumasa

    2015-01-01

    The Japanese eel larvae hatch near the West Mariana Ridge seamount chain and travel through the North Equatorial Current (NEC), the Kuroshio, and the Subtropical Countercurrent (STCC) region during their shoreward migration toward East Asia. The interannual variability of circulation over the subtropical and tropical regions of the western North Pacific Ocean is affected by the Philippines-Taiwan Oscillation (PTO). This study examines the effect of the PTO on the Japanese eel larval migration routes using a three-dimensional (3D) particle tracking method, including vertical and horizontal swimming behavior. The 3D circulation and hydrography used for particle tracking are from the ocean circulation reanalysis produced by the Japan Coastal Ocean Predictability Experiment 2 (JCOPE2). Our results demonstrate that bifurcation of the NEC and the strength and spatial variation of the Kuroshio affect the distribution and migration of eel larvae. During the positive phase of PTO, more virtual eels ("v-eels") can enter the Kuroshio to reach the south coast of Japan and more v-eels reach the South China Sea through the Luzon Strait; the stronger and more offshore swing of the Kuroshio in the East China Sea leads to fewer eels entering the East China Sea and the onshore movement of the Kuroshio to the south of Japan brings the eels closer to the Japanese coast. Significant differences in eel migration routes and distributions regulated by ocean circulation in different PTO phases can also affect the otolith increment. The estimated otolith increment suggests that eel age tends to be underestimated after six months of simulation due to the cooler lower layer temperature. Underestimation is more significant in the positive PTO years due to the wide distribution in higher latitudes than in the negative PTO years.

  8. Current meter components and other data from FIXED PLATFORMS from the North Atlantic Ocean and others locations from 09 January 1977 to 01 July 1983 (NODC Accession 8600153)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current meter components data were collected from FIXED PLATFORMS from the North Atlantic Ocean and others locations from 09 January 1977 to 01 July 1983. Data were...

  9. Characteristics of equatorial gravity waves derived from mesospheric airglow imaging observations

    Directory of Open Access Journals (Sweden)

    S. Suzuki

    2009-04-01

    Full Text Available We present the characteristics of small-scale (<100 km gravity waves in the equatorial mesopause region derived from OH airglow imaging observations at Kototabang (100.3° E, 0.2° S, Indonesia, from 2002 to 2005. We adopted a method that could automatically detect gravity waves in the airglow images using two-dimensional cross power spectra of gravity waves. The propagation directions of the waves were likely controlled by zonal filtering due to stratospheric mean winds that show a quasi-biennial oscillation (QBO and the presence of many wave sources in the troposphere.

  10. Features of highly structured equatorial plasma irregularities deduced from CHAMP observations

    DEFF Research Database (Denmark)

    Xiong, C.; Luhr, H.; Ma, S. Y.

    2012-01-01

    In this study five years of CHAMP (Challenging Mini-satellite Payload) fluxgate magnetometer (FGM) data is used to investigate the characteristics of Equatorial Plasma Bubbles (EPBs). We filtered the FGM data by using bandpasses with four different cut-off periods to get the EPBs with different......). Since the height of the F-layer is highly correlated with the vertical plasma drift and solar flux, we sorted the ROCSAT-1 data into different groups by F10.7. From the integrated vertical drift we have estimated the post-sunset uplift of the ionosphere. By comparing the properties of EPB occurrence...

  11. A tropospheric ozone maximum over the equatorial Southern Indian Ocean

    Directory of Open Access Journals (Sweden)

    L. Zhang

    2012-05-01

    Full Text Available We examine the distribution of tropical tropospheric ozone (O3 from the Microwave Limb Sounder (MLS and the Tropospheric Emission Spectrometer (TES by using a global three-dimensional model of tropospheric chemistry (GEOS-Chem. MLS and TES observations of tropospheric O3 during 2005 to 2009 reveal a distinct, persistent O3 maximum, both in mixing ratio and tropospheric column, in May over the Equatorial Southern Indian Ocean (ESIO. The maximum is most pronounced in 2006 and 2008 and less evident in the other three years. This feature is also consistent with the total column O3 observations from the Ozone Mapping Instrument (OMI and the Atmospheric Infrared Sounder (AIRS. Model results reproduce the observed May O3 maximum and the associated interannual variability. The origin of the maximum reflects a complex interplay of chemical and dynamic factors. The O3 maximum is dominated by the O3 production driven by lightning nitrogen oxides (NOx emissions, which accounts for 62% of the tropospheric column O3 in May 2006. We find the contribution from biomass burning, soil, anthropogenic and biogenic sources to the O3 maximum are rather small. The O3 productions in the lightning outflow from Central Africa and South America both peak in May and are directly responsible for the O3 maximum over the western ESIO. The lightning outflow from Equatorial Asia dominates over the eastern ESIO. The interannual variability of the O3 maximum is driven largely by the anomalous anti-cyclones over the southern Indian Ocean in May 2006 and 2008. The lightning outflow from Central Africa and South America is effectively entrained by the anti-cyclones followed by northward transport to the ESIO.

  12. Platinum group elements and gold in ferromanganese crusts from Afanasiy-Nikitin seamount, equatorial Indian Ocean: Sources and fractionation

    Digital Repository Service at National Institute of Oceanography (India)

    Banakar, V.K.; Hein, J.R.; Rajani, R.P.; Chodankar, A.R.

    The major element relationships in ferromanganese (Fe–Mn) crusts from Afanasiy–Nikitin seamount (ANS), eastern equatorial Indian Ocean, appear to be atypical. High positive correlations (r = 0.99) between Mn/Co and Fe/Co ratios, and lack...

  13. A Generalized Equatorial Model for the Accelerating Solar Wind

    Science.gov (United States)

    Tasnim, S.; Cairns, Iver H.; Wheatland, M. S.

    2018-02-01

    A new theoretical model for the solar wind is developed that includes the wind's acceleration, conservation of angular momentum, deviations from corotation, and nonradial velocity and magnetic field components from an inner boundary (corresponding to the onset of the solar wind) to beyond 1 AU. The model uses a solution of the time-steady isothermal equation of motion to describe the acceleration and analytically predicts the Alfvénic critical radius. We fit the model to near-Earth observations of the Wind spacecraft during the solar rotation period of 1-27 August 2010. The resulting data-driven model demonstrates the existence of noncorotating, nonradial flows and fields from the inner boundary (r = rs) outward and predicts the magnetic field B = (Br,Bϕ), velocity v = (vr,vϕ), and density n(r,ϕ,t), which vary with heliocentric distance r, heliolatitude ϕ, and time t in a Sun-centered standard inertial plane. The description applies formally only in the equatorial plane. In a frame corotating with the Sun, the transformed velocity v' and a field B' are not parallel, resulting in an electric field with a component Ez' along the z axis. The resulting E'×B'=E'×B drift lies in the equatorial plane, while the ∇B and curvature drifts are out of the plane. Together these may lead to enhanced scattering/heating of sufficiently energetic particles. The model predicts that deviations δvϕ from corotation at the inner boundary are common, with δvϕ(rs,ϕs,ts) comparable to the transverse velocities due to granulation and supergranulation motions. Abrupt changes in δvϕ(rs,ϕs,ts) are interpreted in terms of converging and diverging flows at the cell boundaries and centers, respectively. Large-scale variations in the predicted angular momentum demonstrate that the solar wind can drive vorticity and turbulence from near the Sun to 1 AU and beyond.

  14. Vertical and longitudinal electron density structures of equatorial E- and F-regions

    Directory of Open Access Journals (Sweden)

    P. S. Brahmanandam

    2011-01-01

    Full Text Available From global soundings of ionospheric electron density made with FORMOSAT 3/COSMIC satellites for September 2006–August 2009, day-night variations in vertical and longitudinal structures of the electron densities in equatorial E- and F-regions for different seasons are investigated for the first time. The results reveal that the wavenumber-3 and wavenumber-4 patterns dominated the nighttime (22:00–04:00 LT F-region longitudinal structures in solstice and in equinox seasons, respectively. In daytime (08:00–18:00 LT F-region, the wavenumber-4 patterns governed the longitudinal structures in the September equinox and December solstice, and wavenumber-3 in March equinox and June solstice respectively. A comparison of the daytime and nighttime longitudinal electron density structures indicates that they are approximately 180° out of phase with each other. It is believed that this out of phase relation is very likely the result of the opposite phase relation between daytime and nighttime nonmigrating diurnal tidal winds that modulate background E-region dynamo electric field at different places, leading to the day-night change in the locations of the equatorial plasma fountains that are responsible for the formation of the F-region longitudinal structures. Further, a good consistency between the locations of the density structures in the same seasons of the different years for both daytime and nighttime epochs has been noticed indicating that the source mechanism for these structures could be the same.

  15. Radiation protection in hospitals of Equatorial Guinea

    International Nuclear Information System (INIS)

    Rabat Macambo, P.

    2001-01-01

    With a population of four hundred thousand (400.000) inhabitants and distributed in a territory of 28 thousand (28.000) km 2 , the use of ionizing radiations for medical practice in Equatorial Guinea is few and decreasing. It is used for diagnostic practices in the main hospitals of the country, where the work burden is not over 20 patients per day. The political, social and economical embryonic development of the country until recently had a negative influence on indicators and health organisations, so that even now the country does not have any radiological protection law, this shortness, in addition with the old architectural structure that x ray tools is lodging, as well as dosimetrical lack of employed staff, put this staff under risk of electromagnetic energy. This is to show the present survey of medical activities with ionizing radiation and to request technical support for implementing suitably the basic standards of radiation protection which will help us as basis for the elaboration outline law, on radiological protection in accordance with the new guidelines of the International Atomic Energy Agency. (author)

  16. Salinity and sigma-t data from moored current meter and CTD casts in the North Pacific Ocean from 1979-08-26 to 1982-06-07 (NODC Accession 8200146)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Salinity and sigma-t data were collected using moored current meter and CTD casts in the North Pacific Ocean from August 26, 1979 to June 7, 1982. Data were...

  17. Estimating the North Atlantic mean dynamic topography and geostrophic currents with GOCE

    DEFF Research Database (Denmark)

    Bingham, Rory J.; Knudsen, Per; Andersen, Ole Baltazar

    2011-01-01

    Three GOCE gravity models were released in July 2010 based on two months of observations. Subsequently, two second generation models, based on 8 months of observations, were released in March 2011. This paper compares these five models in terms of the mean North Atlantic circulation that can be d...

  18. Is there a hole in the topside, equatorial ionosphere?

    Directory of Open Access Journals (Sweden)

    D. Gallagher

    Full Text Available A paper in 2000 (Huba, 2000 found a depression in electron density in the topside ionosphere near the magnetic equator, based on the SAMI-2 physical ionospheric model. The model showed, for the first time, the formation of a hole in electron density in the altitude range 1500–2500 km at geomagnetic equatorial latitudes. The model produced the hole because of transhemispheric O+ flows that collisionally couple to H+, transporting it to lower altitudes, and thereby reducing the electron density at high altitudes. At that time and until now, no published observations have been reported to confirm or refute this numerical result. Recent, new analysis of Dynamics Explorer 1 Retarding Ion Mass Spectrometer measurements provides the first tentative experimental support for this model result. Keywords: Ionosphere, Topside, Magnetic equator, Plasmasphere

  19. The earth's equatorial principal axes and moments of inertia

    Science.gov (United States)

    Liu, H. S.; Chao, B. F.

    1991-01-01

    The earth's equatorial principal moments of inertia are given as A and B, where A is less than B, and the corresponding principal axes are given as a and b. Explicit formulas are derived for determining the orientation of a and b axes and the difference B - A using C(22) and S(22), the two gravitational harmonic coefficients of degree 2 and order 2. For the earth, the a axis lies along the (14.93 deg W, 165.07 deg E) diameter, and the b axis lies perpendicular to it along the (75.07 deg E, 104.93 deg W) diameter. The difference B - A is 7.260 x 10 to the -6th MR2. These quantities for other planets are contrasted, and geophysical implications are discussed.

  20. Combined radar observations of equatorial electrojet irregularities at Jicamarca

    Directory of Open Access Journals (Sweden)

    D. L. Hysell

    2007-03-01

    Full Text Available Daytime equatorial electrojet plasma irregularities were investigated using five distinct radar diagnostics at Jicamarca including range-time-intensity (RTI mapping, Faraday rotation, radar imaging, oblique scattering, and multiple-frequency scattering using the new AMISR prototype UHF radar. Data suggest the existence of plasma density striations separated by 3–5 km and propagating slowly downward. The striations may be caused by neutral atmospheric turbulence, and a possible scenario for their formation is discussed. The Doppler shifts of type 1 echoes observed at VHF and UHF frequencies are compared and interpreted in light of a model of Farley Buneman waves based on kinetic ions and fluid electrons with thermal effects included. Finally, the up-down and east-west asymmetries evident in the radar observations are described and quantified.