WorldWideScience

Sample records for normalizes tumor vasculature

  1. Selective alpha-particle mediated depletion of tumor vasculature with vascular normalization.

    Directory of Open Access Journals (Sweden)

    Jaspreet Singh Jaggi

    2007-03-01

    Full Text Available Abnormal regulation of angiogenesis in tumors results in the formation of vessels that are necessary for tumor growth, but compromised in structure and function. Abnormal tumor vasculature impairs oxygen and drug delivery and results in radiotherapy and chemotherapy resistance, respectively. Alpha particles are extraordinarily potent, short-ranged radiations with geometry uniquely suitable for selectively killing neovasculature.Actinium-225 ((225Ac-E4G10, an alpha-emitting antibody construct reactive with the unengaged form of vascular endothelial cadherin, is capable of potent, selective killing of tumor neovascular endothelium and late endothelial progenitors in bone-marrow and blood. No specific normal-tissue uptake of E4G10 was seen by imaging or post-mortem biodistribution studies in mice. In a mouse-model of prostatic carcinoma, (225Ac-E4G10 treatment resulted in inhibition of tumor growth, lower serum prostate specific antigen level and markedly prolonged survival, which was further enhanced by subsequent administration of paclitaxel. Immunohistochemistry revealed lower vessel density and enhanced tumor cell apoptosis in (225Ac-E4G10 treated tumors. Additionally, the residual tumor vasculature appeared normalized as evident by enhanced pericyte coverage following (225Ac-E4G10 therapy. However, no toxicity was observed in vascularized normal organs following (225Ac-E4G10 therapy.The data suggest that alpha-particle immunotherapy to neovasculature, alone or in combination with sequential chemotherapy, is an effective approach to cancer therapy.

  2. The Pleiotropic Role of L1CAM in Tumor Vasculature

    Directory of Open Access Journals (Sweden)

    Francesca Angiolini

    2017-01-01

    Full Text Available Angiogenesis, the formation of new vessels, is a key step in the development, invasion, and dissemination of solid tumors and, therefore, represents a viable target in the context of antitumor therapy. Indeed, antiangiogenic approaches have given promising results in preclinical models and entered the clinical practice. However, in patients, the results obtained so far with antiangiogenic drugs have not completely fulfilled expectations, especially because their effect has been transient with tumors developing resistance and evasion mechanisms. A better understanding of the mechanisms that underlie tumor vascularization and the functional regulation of cancer vessels is a prerequisite for the development of novel and alternative antiangiogenic treatments. The L1 cell adhesion molecule (L1CAM, a cell surface glycoprotein previously implicated in the development and plasticity of the nervous system, is aberrantly expressed in the vasculature of various cancer types. L1CAM plays multiple pro-angiogenic roles in the endothelial cells of tumor-associated vessels, thus emerging as a potential therapeutic target. In addition, L1CAM prevents the maturation of cancer vasculature and its inhibition promotes vessel normalization, a process that is thought to improve the therapeutic response of tumors to cytotoxic drugs. We here provide an overview on tumor angiogenesis and antiangiogenic therapies and summarize the current knowledge on the biological role of L1CAM in cancer vasculature. Finally, we highlight the clinical implications of targeting L1CAM as a novel antiangiogenic and vessel-normalizing approach.

  3. NORMALIZATION OF THE VASCULATURE FOR TREATMENT OF CANCER AND OTHER DISEASES

    Science.gov (United States)

    Goel, Shom; Duda, Dan G.; Xu, Lei; Munn, Lance L.; Boucher, Yves; Fukumura, Dai; Jain, Rakesh K.

    2012-01-01

    New vessel formation (angiogenesis) is an essential physiological process for embryologic development, normal growth, and tissue repair. Angiogenesis is tightly regulated at the molecular level. Dysregulation of angiogenesis occurs in various pathologies and is one of the hallmarks of cancer. The imbalance of pro- and anti-angiogenic signaling within tumors creates an abnormal vascular network that is characterized by dilated, tortuous, and hyperpermeable vessels. The physiological consequences of these vascular abnormalities include temporal and spatial heterogeneity in tumor blood flow and oxygenation and increased tumor interstitial fluid pressure. These abnormalities and the resultant microenvironment fuel tumor progression, and also lead to a reduction in the efficacy of chemotherapy, radiotherapy, and immunotherapy. With the discovery of vascular endothelial growth factor (VEGF) as a major driver of tumor angiogenesis, efforts have focused on novel therapeutics aimed at inhibiting VEGF activity, with the goal of regressing tumors by starvation. Unfortunately, clinical trials of anti-VEGF monotherapy in patients with solid tumors have been largely negative. Intriguingly, the combination of anti-VEGF therapy with conventional chemotherapy has improved survival in cancer patients compared with chemotherapy alone. These seemingly paradoxical results could be explained by a “normalization” of the tumor vasculature by anti-VEGF therapy. Preclinical studies have shown that anti-VEGF therapy changes tumor vasculature towards a more “mature” or “normal” phenotype. This “vascular normalization” is characterized by attenuation of hyperpermeability, increased vascular pericyte coverage, a more normal basement membrane, and a resultant reduction in tumor hypoxia and interstitial fluid pressure. These in turn can lead to an improvement in the metabolic profile of the tumor microenvironment, the delivery and efficacy of exogenously administered therapeutics

  4. Recombinant human endostatin improves tumor vasculature and alleviates hypoxia in Lewis lung carcinoma

    International Nuclear Information System (INIS)

    Peng Fang; Wang Jin; Zou Yi; Bao Yong; Huang Wenlin; Chen Guangming; Luo Xianrong; Chen Ming

    2011-01-01

    Objective: To investigate whether recombinant human endostatin can create a time window of vascular normalization prior to vascular pruning to alleviate hypoxia in Lewis lung carcinoma in mice. Methods: Kinetic changes in morphology of tumor vasculature in response to recombinant human endostatin were detected under a confocal microscope with immunofluorescent staining in Lewis lung carcinomas in mice. The hypoxic cell fraction of different time was assessed with immunohistochemical staining . Effects on tumor growth were monitored as indicated in the growth curve of tumors . Results: Compared with the control group vascularity of the tumors was reduced over time by recombinant human endostatin treatment and significantly regressed for 9 days. During the treatment, pericyte coverage increased at day 3, increased markedly at day 5, and fell again at day 7. The vascular basement membrane was thin and closely associated with endothelial cells after recombinant human endostatin treatment, but appeared thickened, loosely associated with endothelial cells in control tumors. The decrease in hypoxic cell fraction at day 5 after treatment was also found. Tumor growth was not accelerated 5 days after recombinant human endostatin treatment. Conclusions: Recombinant human endostatin can normalize tumor vasculature within day 3 to 7, leading to improved tumor oxygenation. The results provide important experimental basis for combining recombinant human endostatin with radiation therapy in human tumors. (authors)

  5. Characterization of tumor vasculature in mouse brain by USPIO contrast-enhanced MRI.

    NARCIS (Netherlands)

    Gambarota, G.; Leenders, W.P.J.

    2011-01-01

    Detailed characterization of the tumor vasculature provides a better understanding of the complex mechanisms associated with tumor development and is especially important to evaluate responses to current therapies which target the tumor vasculature. Magnetic resonance imaging (MRI) studies of tumors

  6. Functional Response of Tumor Vasculature to PaCO2: Determination of Total and Microvascular Blood Volume by MRI

    Directory of Open Access Journals (Sweden)

    Scott D. Packard

    2003-07-01

    Full Text Available In order to identify differences in functional activity, we compared the reactivity of glioma vasculature and the native cerebral vasculature to both dilate and constrict in response to altered PaCO2. Gliomas were generated by unilateral implantation of U87MGdEGFR human glioma tumor cells into the striatum of adult female athymic rats. Relative changes in total and microvascular cerebral blood volume were determined by steady state contrast agent-enhanced magnetic resonance imaging for transitions from normocarbia to hypercarbia and hypocarbia. Although hypercarbia induced a significant increase in both total and microvascular blood volume in normal brain and glioma, reactivity of glioma vasculature was significantly blunted in comparison to normal striatum; glioma total CBV increased by 0.6±0.1%/mm Hg CO2 whereas normal striatum increased by 1.5±0.2%/mm Hg CO2, (P < .0001, group t-test. Reactivity of microvascular blood volume was also significantly blunted. In contrast, hypocarbia decreased both total and microvascular blood volumes more in glioma than in normal striatum. These results indicate that cerebral blood vessels derived by tumor-directed angiogenesis do retain reactivity to CO2. Furthermore, reduced reactivity of tumor vessels to a single physiological perturbation, such as hypercarbia, should not be construed as a generalized reduction of functional activity of the tumor vascular bed.

  7. Development of Antibody-Based Vaccines Targeting the Tumor Vasculature.

    Science.gov (United States)

    Zhuang, Xiaodong; Bicknell, Roy

    2016-01-01

    A functional vasculature is essential for tumor progression and malignant cell metastasis. Endothelial cells lining blood vessels in the tumor are exposed to a unique microenvironment, which in turn induces expression of specific proteins designated as tumor endothelial markers (TEMs). TEMs either localized at the plasma membrane or secreted into the extracellular matrix are accessible for antibody targeting, which can be either infused or generated de novo via vaccination. Recent studies have demonstrated vaccines against several TEMs can induce a strong antibody response accompanied by a potent antitumor effect in animal models. These findings present an exciting field for novel anticancer therapy development. As most of the TEMs are self-antigens, breaking tolerance is necessary for a successful vaccine. This chapter describes approaches to efficiently induce a robust antibody response against the tumor vasculature.

  8. Immune Consequences of Decreasing Tumor Vasculature with Antiangiogenic Tyrosine Kinase Inhibitors in Combination with Therapeutic Vaccines

    Science.gov (United States)

    Farsaci, Benedetto; Donahue, Renee N.; Coplin, Michael A.; Grenga, Italia; Lepone, Lauren M.; Molinolo, Alfredo A.; Hodge, James W.

    2014-01-01

    This study investigated the effects on the tumor microenvironment of combining antiangiogenic tyrosine kinase inhibitors (TKI) with therapeutic vaccines, and in particular, how vascular changes affect tumor-infiltrating immune cells. We conducted studies using a TKI (sunitinib or sorafenib) in combination with recombinant vaccines in 2 murine tumor models: colon carcinoma (MC38-CEA) and breast cancer (4T1). Tumor vasculature was measured by immunohistochemistry using 3 endothelial cell markers: CD31 (mature), CD105 (immature/proliferating), and CD11b (monocytic). We assessed oxygenation, tight junctions, compactness, and pressure within tumors, along with the frequency and phenotype of tumor-infiltrating T lymphocytes (TIL), myeloid-derived suppressor cells (MDSC), and tumor-associated macrophages (TAM) following treatment with antiangiogenic TKIs alone, vaccine alone, or the combination of a TKI with vaccine. The combined regimen decreased tumor vasculature, compactness, tight junctions, and pressure, leading to vascular normalization and increased tumor oxygenation. This combination therapy also increased TILs, including tumor antigen-specific CD8 T cells, and elevated the expression of activation markers FAS-L, CXCL-9, CD31, and CD105 in MDSCs and TAMs, leading to reduced tumor volumes and an increase in the number of tumor-free animals. The improved antitumor activity induced by combining antiangiogenic TKIs with vaccine may be the result of activated lymphoid and myeloid cells in the tumor microenvironment, resulting from vascular normalization, decreased tumor-cell density, and the consequent improvement in vascular perfusion and oxygenation. Therapies that alter tumor architecture can thus have a dramatic impact on the effectiveness of cancer immunotherapy. PMID:25092771

  9. In vivo preclinical photoacoustic imaging of tumor vasculature development and therapy

    Science.gov (United States)

    Laufer, Jan; Johnson, Peter; Zhang, Edward; Treeby, Bradley; Cox, Ben; Pedley, Barbara; Beard, Paul

    2012-05-01

    The use of a novel all-optical photoacoustic scanner for imaging the development of tumor vasculature and its response to a therapeutic vascular disrupting agent is described. The scanner employs a Fabry-Perot polymer film ultrasound sensor for mapping the photoacoustic waves and an image reconstruction algorithm based upon attenuation-compensated acoustic time reversal. The system was used to noninvasively image human colorectal tumor xenografts implanted subcutaneously in mice. Label-free three-dimensional in vivo images of whole tumors to depths of almost 10 mm with sub-100-micron spatial resolution were acquired in a longitudinal manner. This enabled the development of tumor-related vascular features, such as vessel tortuosity, feeding vessel recruitment, and necrosis to be visualized over time. The system was also used to study the temporal evolution of the response of the tumor vasculature following the administration of a therapeutic vascular disrupting agent (OXi4503). This revealed the well-known destruction and recovery phases associated with this agent. These studies illustrate the broader potential of this technology as an imaging tool for the preclinical and clinical study of tumors and other pathologies characterized by changes in the vasculature.

  10. Tumor vessel normalization after aerobic exercise enhances chemotherapeutic efficacy.

    Science.gov (United States)

    Schadler, Keri L; Thomas, Nicholas J; Galie, Peter A; Bhang, Dong Ha; Roby, Kerry C; Addai, Prince; Till, Jacob E; Sturgeon, Kathleen; Zaslavsky, Alexander; Chen, Christopher S; Ryeom, Sandra

    2016-10-04

    Targeted therapies aimed at tumor vasculature are utilized in combination with chemotherapy to improve drug delivery and efficacy after tumor vascular normalization. Tumor vessels are highly disorganized with disrupted blood flow impeding drug delivery to cancer cells. Although pharmacologic anti-angiogenic therapy can remodel and normalize tumor vessels, there is a limited window of efficacy and these drugs are associated with severe side effects necessitating alternatives for vascular normalization. Recently, moderate aerobic exercise has been shown to induce vascular normalization in mouse models. Here, we provide a mechanistic explanation for the tumor vascular normalization induced by exercise. Shear stress, the mechanical stimuli exerted on endothelial cells by blood flow, modulates vascular integrity. Increasing vascular shear stress through aerobic exercise can alter and remodel blood vessels in normal tissues. Our data in mouse models indicate that activation of calcineurin-NFAT-TSP1 signaling in endothelial cells plays a critical role in exercise-induced shear stress mediated tumor vessel remodeling. We show that moderate aerobic exercise with chemotherapy caused a significantly greater decrease in tumor growth than chemotherapy alone through improved chemotherapy delivery after tumor vascular normalization. Our work suggests that the vascular normalizing effects of aerobic exercise can be an effective chemotherapy adjuvant.

  11. Phosphatidylserine is a marker of tumor vasculature and a potential target for cancer imaging and therapy

    International Nuclear Information System (INIS)

    Ran, Sophia; Thorpe, Philip E.

    2002-01-01

    Purpose: (1) To determine whether exposure of phosphatidylserine (PS) occurs on vascular endothelium in solid tumors in mice. (2) To determine whether PS exposure can be induced on viable endothelial cells in tissue culture by conditions present in the tumor microenvironment. Methods and Materials: Externalized PS in vivo was detected by injecting mice with a monoclonal anti-PS antibody and examining frozen sections of tumors and normal tissues for anti-PS antibody bound to vascular endothelium. Apoptotic cells were identified by anti-active caspase-3 antibody or by TUNEL assay. PS exposure on cultured endothelial cells was determined by 125 I-annexin V binding. Results: Anti-PS antibody bound specifically to vascular endothelium in six tumor models. The percentage of PS-positive vessels ranged from 4% to 40% in different tumor types. Vascular endothelium in normal organs was unstained. Very few tumor vessels expressed apoptotic markers. Hypoxia/reoxygenation, acidity, inflammatory cytokines, thrombin, or hydrogen peroxide induced PS exposure on cultured endothelial cells without causing loss of viability. Conclusions: Vascular endothelial cells in tumors, but not in normal tissues, externalize PS. PS exposure might be induced by tumor-associated oxidative stress and activating cytokines. PS is an abundant and accessible marker of tumor vasculature and could be used for tumor imaging and therapy

  12. Multidetector CT angiography of renal vasculature: normal anatomy and variants

    Energy Technology Data Exchange (ETDEWEB)

    Tuerkvatan, Aysel; Oezdemir, Mustafa; Cumhur, Turhan; Oelcer, Tuelay [Tuerkiye Yueksek ihtisas Hospital, Department of Radiology, Sihhiye, Ankara (Turkey)

    2009-01-15

    Knowledge of the variations in renal vascular anatomy is important before laparoscopic donor or partial nephrectomy and vascular reconstruction for renal artery stenosis or abdominal aortic aneurysm. Recently, multidetector computed tomographic (MDCT) angiography has become a principal imaging investigation for assessment of the renal vasculature and has challenged the role of conventional angiography. It is an excellent imaging technique because it is a fast and non-invasive tool that provides highly accurate and detailed evaluation of normal renal vascular anatomy and variants. The number, size and course of the renal arteries and veins are easily identified by MDCT angiography. The purpose of this pictorial essay is to illustrate MDCT angiographic appearance of normal anatomy and common variants of the renal vasculature. (orig.)

  13. Multidetector CT angiography of renal vasculature: normal anatomy and variants

    International Nuclear Information System (INIS)

    Tuerkvatan, Aysel; Oezdemir, Mustafa; Cumhur, Turhan; Oelcer, Tuelay

    2009-01-01

    Knowledge of the variations in renal vascular anatomy is important before laparoscopic donor or partial nephrectomy and vascular reconstruction for renal artery stenosis or abdominal aortic aneurysm. Recently, multidetector computed tomographic (MDCT) angiography has become a principal imaging investigation for assessment of the renal vasculature and has challenged the role of conventional angiography. It is an excellent imaging technique because it is a fast and non-invasive tool that provides highly accurate and detailed evaluation of normal renal vascular anatomy and variants. The number, size and course of the renal arteries and veins are easily identified by MDCT angiography. The purpose of this pictorial essay is to illustrate MDCT angiographic appearance of normal anatomy and common variants of the renal vasculature. (orig.)

  14. Vasculatures in Tumors Growing From Preirradiated Tissues: Formed by Vasculogenesis and Resistant to Radiation and Antiangiogenic Therapy

    International Nuclear Information System (INIS)

    Chen, Fang-Hsin; Chiang, Chi-Shiun; Wang, Chun-Chieh; Fu, Sheng-Yung; Tsai, Chien-Sheng; Jung, Shih-Ming; Wen, Chih-Jen; Lee, Chung-Chi; Hong, Ji-Hong

    2011-01-01

    Purpose: To investigate vasculatures and microenvironment in tumors growing from preirradiated tissues (pre-IR tumors) and study the vascular responses of pre-IR tumors to radiation and antiangiogenic therapy. Methods and Materials: Transgenic adenocarcinoma of the mouse prostate C1 tumors were implanted into unirradiated or preirradiated tissues and examined for vascularity, hypoxia, and tumor-associated macrophage (TAM) infiltrates by immunohistochemistry. The origin of tumor endothelial cells was studied by green fluorescent protein-tagged bone marrow (GFP-BM) transplantation. The response of tumor endothelial cells to radiation and antiangiogenic agent was evaluated by apoptotic assay. Results: The pre-IR tumors had obvious tumor bed effects (TBE), with slower growth rate, lower microvascular density (MVD), and more necrotic and hypoxic fraction compared with control tumors. The vessels were dilated, tightly adhered with pericytes, and incorporated with transplanted GFP-BM cells. In addition, hypoxic regions became aggregated with TAM. As pre-IR tumors developed, the TBE was overcome at the tumor edge where the MVD increased, TAM did not aggregate, and the GFP-BM cells did not incorporate into the vessels. The vessels at tumor edge were more sensitive to the following ionizing radiation and antiangiogenic agent than those in the central low MVD regions. Conclusions: This study demonstrates that vasculatures in regions with TBE are mainly formed by vasculogenesis and resistant to radiation and antiangiogenic therapy. Tumor bed effects could be overcome at the edge of larger tumors, but where vasculatures are formed by angiogenesis and sensitive to both treatments. Vasculatures formed by vasculogenesis should be the crucial target for the treatment of recurrent tumors after radiotherapy.

  15. Functional and morphological effects of diazepam and midazolam on tumor vasculature in the 9L gliosarcoma brain tumor model using dynamic susceptibility contrast MRI: a comparative study

    Directory of Open Access Journals (Sweden)

    Yan N

    2017-10-01

    Full Text Available Nuo Yan,1 Yuzhen Zheng,2 Cheng Yang1 1Second Department of Anesthesiology, The Affiliated Hospital to Logistics University of PAP, Tianjin, 2Department of Anesthesiology, Tianjin Huanhu Hospital, Tianjin, China Abstract: Antiangiogenic therapy attenuates tumor growth by reducing vascularization. Diazepam (DZP and midazolam (MZL have antiangiogenic properties in human umbilical vein endothelial cells. Thus, we investigated the antiangiogenic activity of DZP and MZL in the rat 9L gliosarcoma brain tumor model. The effect on tumor vasculature was evaluated using dynamic susceptibility contrast magnetic resonance imaging with gradient-echo (GE and spin-echo (SE to assess perfusion parameters, including cerebral blood volume (CBV, cerebral blood flow (CBF, mean transit time (MTT, and mean vessel diameter. The GE-normalized CBF (nCBF in the tumors of untreated controls was significantly lower than that in normal brain tissue, whereas the CBV and MTT were higher. DZP- and MZL-treated rats had higher CBF and lower CBV and MTT values than did untreated controls. The tumor size decreased significantly to 33.5% in DZP-treated rats (P<0.001 and 22.5% in MZL-treated rats (P<0.01 relative to controls. The SE-normalized CBV was lower in DZP-treated (32.9% and MZL-treated (10.6% rats compared with controls. The mean vessel diameter decreased significantly by 32.5% in DPZ-treated and by 24.9% in MZL-treated rats compared with controls (P<0.01. The GE and SE nCBF values were higher in DZP-treated (49.9% and 40.1%, respectively and MZL-treated (41.2% and 32.1%, respectively rats than in controls. The GE- and SE-normalized MTTs were lower in DZP-treated (48.2% and 59.8%, respectively and MZL-treated (40.5% and 51.2%, respectively rats than in controls. Both DZP and MZL had antiangiogenic effects on tumor perfusion and vasculature; however, the antiangiogenic activity of DZP is more promising than that of MZL. Keywords: diazepam, midazolam, 9L gliosarcoma

  16. Influence of vascular normalization on interstitial flow and delivery of liposomes in tumors

    International Nuclear Information System (INIS)

    Ozturk, Deniz; Yonucu, Sirin; Yilmaz, Defne; Unlu, Mehmet Burcin

    2015-01-01

    Elevated interstitial fluid pressure is one of the barriers of drug delivery in solid tumors. Recent studies have shown that normalization of tumor vasculature by anti-angiogenic factors may improve the delivery of conventional cytotoxic drugs, possibly by increasing blood flow, decreasing interstitial fluid pressure, and enhancing the convective transvascular transport of drug molecules. Delivery of large therapeutic agents such as nanoparticles and liposomes might also benefit from normalization therapy since their transport depends primarily on convection. In this study, a mathematical model is presented to provide supporting evidence that normalization therapy may improve the delivery of 100 nm liposomes into solid tumors, by both increasing the total drug extravasation and providing a more homogeneous drug distribution within the tumor. However these beneficial effects largely depend on tumor size and are stronger for tumors within a certain size range. It is shown that this size effect may persist under different microenvironmental conditions and for tumors with irregular margins or heterogeneous blood supply. (paper)

  17. Functional response of tumor vasculature in rats' glioma to hypercarbia evaluated by MR perfusion weighted imaging

    International Nuclear Information System (INIS)

    Zhang Qingbo; Feng Xiaoyuan; Liang Zonghui; Chen Shuan

    2008-01-01

    Objective: To evaluate the feasibility of MR PWI in judging maturity and variability of tumor vasculature in gliomas in rats. Methods: Twenty male SD rats were randomly assigned to tumor group and control group. Four weeks after implantation of C6 glioma cells in the brains of tumor group and injection of saline in the brains of control group, all rats were examined using MR PWI before and after inhalation of a mixture of 10% CO2 and 90% air. PaCO 2 and blood pH values of rats were monitored. Relative cerebral blood volume (rCBV) and relative cerebral blood flow(rCBF) values of tumors and normal brain tissue were measured. Brain sample were examined histologically using HE and immunohistochemical staining for smooth muscle actin(SMA). The histological features of gliomas were observed and SMA positively stained vessels of each tumor were counted manually using a light microscope. Perfusion data and pathological findings were analyzed statistically with SPSS for Windows. Results: PaCO 2 increased significantly [from(4.69±0.62)kPa to (7.62±0.81) kPa in tumor group and from (4.67±0.51) kPa to (7.63±0.78) kPa in control group, P 0.05), while changing rate of rCBV, rCBF in normal brain tissue correlated well with number of positive SMA labeled vessels (r=0.721 and 0.525, P 2 increase in the normal brain and in the tumor. It may be a useful technique to measure maturity of tumor vessels. (authors)

  18. High-Dose, Single-Fraction Irradiation Rapidly Reduces Tumor Vasculature and Perfusion in a Xenograft Model of Neuroblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Jani, Ashish; Shaikh, Fauzia; Barton, Sunjay [Department of Radiation Oncology, Columbia University Medical Center, New York, New York (United States); Willis, Callen [Department of Surgery, Columbia University Medical Center, New York, New York (United States); Banerjee, Debarshi [Department of Pediatrics, Columbia University Medical Center, New York, New York (United States); Mitchell, Jason [Department of Surgery, Columbia University Medical Center, New York, New York (United States); Hernandez, Sonia L. [Department of Surgery, University of Chicago, Chicago, Illinois (United States); Hei, Tom [Department of Radiation Oncology, Columbia University Medical Center, New York, New York (United States); Kadenhe-Chiweshe, Angela [Department of Surgery, Columbia University Medical Center, New York, New York (United States); Yamashiro, Darrell J. [Department of Surgery, Columbia University Medical Center, New York, New York (United States); Department of Pediatrics, Columbia University Medical Center, New York, New York (United States); Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York (United States); Connolly, Eileen P., E-mail: epc2116@cumc.columbia.edu [Department of Radiation Oncology, Columbia University Medical Center, New York, New York (United States)

    2016-04-01

    Purpose: To characterize the effects of high-dose radiation therapy (HDRT) on neuroblastoma tumor vasculature, including the endothelial cell (EC)–pericyte interaction as a potential target for combined treatment with antiangiogenic agents. Methods and Materials: The vascular effects of radiation therapy were examined in a xenograft model of high-risk neuroblastoma. In vivo 3-dimensional contrast-enhanced ultrasonography (3D-CEUS) imaging and immunohistochemistry (IHC) were performed. Results: HDRT significantly reduced tumor blood volume 6 hours after irradiation compared with the lower doses used in conventionally fractionated radiation. There was a 63% decrease in tumor blood volume after 12-Gy radiation compared with a 24% decrease after 2 Gy. Analysis of tumor vasculature by lectin angiography showed a significant loss of small vessel ends at 6 hours. IHC revealed a significant loss of ECs at 6 and 72 hours after HDRT, with an accompanying loss of immature and mature pericytes at 72 hours. Conclusions: HDRT affects tumor vasculature in a manner not observed at lower doses. The main observation was an early reduction in tumor perfusion resulting from a reduction of small vessel ends with a corresponding loss of endothelial cells and pericytes.

  19. Human CD34+ cells engineered to express membrane-bound tumor necrosis factor-related apoptosis-inducing ligand target both tumor cells and tumor vasculature.

    Science.gov (United States)

    Lavazza, Cristiana; Carlo-Stella, Carmelo; Giacomini, Arianna; Cleris, Loredana; Righi, Marco; Sia, Daniela; Di Nicola, Massimo; Magni, Michele; Longoni, Paolo; Milanesi, Marco; Francolini, Maura; Gloghini, Annunziata; Carbone, Antonino; Formelli, Franca; Gianni, Alessandro M

    2010-03-18

    Adenovirus-transduced CD34+ cells expressing membrane-bound tumor necrosis factor-related apoptosis-inducing ligand (CD34-TRAIL+ cells) exert potent antitumor activity. To further investigate the mechanism(s) of action of CD34-TRAIL+ cells, we analyzed their homing properties as well as antitumor and antivascular effects using a subcutaneous myeloma model in immunodeficient mice. After intravenous injection, transduced cells homed in the tumor peaking at 48 hours when 188 plus or minus 25 CD45+ cells per 10(5) tumor cells were detected. Inhibition experiments showed that tumor homing of CD34-TRAIL+ cells was largely mediated by vascular cell adhesion molecule-1 and stromal cell-derived factor-1. Both CD34-TRAIL+ cells and soluble (s)TRAIL significantly reduced tumor volume by 40% and 29%, respectively. Computer-aided analysis of TdT-mediated dUTP nick end-labeling-stained tumor sections demonstrated significantly greater effectiveness for CD34-TRAIL+ cells in increasing tumor cell apoptosis and necrosis over sTRAIL. Proteome array analysis indicated that CD34-TRAIL+ cells and sTRAIL activate similar apoptotic machinery. In vivo staining of tumor vasculature with sulfosuccinimidyl-6-(biotinamido) hexanoate-biotin revealed that CD34-TRAIL+ cells but not sTRAIL significantly damaged tumor vasculature, as shown by TdT-mediated dUTP nick end-labeling+ endothelial cells, appearance of hemorrhagic areas, and marked reduction of endothelial area. These results demonstrate that tumor homing of CD34-TRAIL+ cells induces early vascular disruption, resulting in hemorrhagic necrosis and tumor destruction.

  20. Cilengitide-induced temporal variations in transvascular transfer parameters of tumor vasculature in a rat glioma model: identifying potential MRI biomarkers of acute effects.

    Directory of Open Access Journals (Sweden)

    Tavarekere N Nagaraja

    Full Text Available Increased efficacy of radiotherapy (RT 4-8 h after Cilengitide treatment has been reported. We hypothesized that the effects of Cilengitide on tumor transvascular transfer parameters might underlie, and thus predict, this potentiation. Athymic rats with orthotopic U251 glioma were studied at ~21 days after implantation using dynamic contrast-enhanced (DCE-MRI. Vascular parameters, viz: plasma volume fraction (v(p, forward volume transfer constant (K(trans and interstitial volume fraction (v(e of a contrast agent, were determined in tumor vasculature once before, and again in cohorts 2, 4, 8, 12 and 24 h after Cilengitide administration (4 mg/kg; N = 31; 6-7 per cohort. Perfusion-fixed brain sections were stained for von Willebrand factor to visualize vascular segments. A comparison of pre- and post-treatment parameters showed that the differences between MR indices before and after Cilengitide treatment pivoted around the 8 h time point, with 2 and 4 h groups showing increases, 12 and 24 h groups showing decreases, and values at the 8 h time point close to the baseline. The vascular parameter differences between group of 2 and 4 h and group of 12 and 24 h were significant for K(trans (p = 0.0001 and v(e (p = 0,0271. Vascular staining showed little variation with time after Cilengitide. The vascular normalization occurring 8 h after Cilengitide treatment coincided with similar previous reports of increased treatment efficacy when RT followed Cilengitide by 8 h. Pharmacological normalization of vasculature has the potential to increase sensitivity to RT. Evaluating acute temporal responses of tumor vasculature to putative anti-angiogenic drugs may help in optimizing their combination with other treatment modalities.

  1. Imaging vasculature and lymphatic flow in mice using quantum dots

    DEFF Research Database (Denmark)

    Ballou, Byron; Ernst, Lauren A.; Andreko, Susan

    2009-01-01

    Quantum dots are ideal probes for fluorescent imaging of vascular and lymphatic tissues. On injection into appropriate sites, red- and near-infrared-emitting quantum dots provide excellent definition of vasculature, lymphoid organs, and lymph nodes draining both normal tissues and tumors. We detail...

  2. Biomimetic carriers mimicking leukocyte plasma membrane to increase tumor vasculature permeability

    Science.gov (United States)

    Palomba, R.; Parodi, A.; Evangelopoulos, M.; Acciardo, S.; Corbo, C.; De Rosa, E.; Yazdi, I. K.; Scaria, S.; Molinaro, R.; Furman, N. E. Toledano; You, J.; Ferrari, M.; Salvatore, F.; Tasciotti, E.

    2016-10-01

    Recent advances in the field of nanomedicine have demonstrated that biomimicry can further improve targeting properties of current nanotechnologies while simultaneously enable carriers with a biological identity to better interact with the biological environment. Immune cells for example employ membrane proteins to target inflamed vasculature, locally increase vascular permeability, and extravasate across inflamed endothelium. Inspired by the physiology of immune cells, we recently developed a procedure to transfer leukocyte membranes onto nanoporous silicon particles (NPS), yielding Leukolike Vectors (LLV). LLV are composed of a surface coating containing multiple receptors that are critical in the cross-talk with the endothelium, mediating cellular accumulation in the tumor microenvironment while decreasing vascular barrier function. We previously demonstrated that lymphocyte function-associated antigen (LFA-1) transferred onto LLV was able to trigger the clustering of intercellular adhesion molecule 1 (ICAM-1) on endothelial cells. Herein, we provide a more comprehensive analysis of the working mechanism of LLV in vitro in activating this pathway and in vivo in enhancing vascular permeability. Our results suggest the biological activity of the leukocyte membrane can be retained upon transplant onto NPS and is critical in providing the particles with complex biological functions towards tumor vasculature.

  3. Platelet-camouflaged nanococktail: Simultaneous inhibition of drug-resistant tumor growth and metastasis via a cancer cells and tumor vasculature dual-targeting strategy.

    Science.gov (United States)

    Jing, Lijia; Qu, Haijing; Wu, Dongqi; Zhu, Chaojian; Yang, Yongbo; Jin, Xing; Zheng, Jian; Shi, Xiangsheng; Yan, Xiufeng; Wang, Yang

    2018-01-01

    Multidrug resistance (MDR) poses a great challenge to cancer therapy. It is difficult to inhibit the growth of MDR cancer due to its chemoresistance. Furthermore, MDR cancers are more likely to metastasize, causing a high mortality among cancer patients. In this study, a nanomedicine RGD-NPVs@MNPs/DOX was developed by encapsulating melanin nanoparticles (MNPs) and doxorubicin (DOX) inside RGD peptide (c(RGDyC))-modified nanoscale platelet vesicles (RGD-NPVs) to efficiently inhibit the growth and metastasis of drug-resistant tumors via a cancer cells and tumor vasculature dual-targeting strategy. Methods: The in vitro immune evasion potential and the targeting performance of RGD-NPVs@MNPs/DOX were examined using RAW264.7, HUVECs, MDA-MB-231 and MDA-MB-231/ADR cells lines. We also evaluated the pharmacokinetic behavior and the in vivo therapeutic performance of RGD-NPVs@MNPs/DOX using a MDA-MB-231/ADR tumor-bearing nude mouse model. Results: By taking advantage of the self-recognizing property of the platelet membrane and the conjugated RGD peptides, RGD-NPVs@MNPs/DOX was found to evade immune clearance and target the αvβ3 integrin on tumor vasculature and resistant breast tumor cells. Under irradiation with a NIR laser, RGD-NPVs@MNPs/DOX produced a multipronged effect, including reversal of cancer MDR, efficient killing of resistant cells by chemo-photothermal therapy, elimination of tumor vasculature for blocking metastasis, and long-lasting inhibition of the expressions of VEGF, MMP2 and MMP9 within the tumor. Conclusion: This versatile nanomedicine of RGD-NPVs@MNPs/DOX integrating unique biomimetic properties, excellent targeting performance, and comprehensive therapeutic strategies in one formulation might bring opportunities to MDR cancer therapy.

  4. Irradiation promotes Akt-targeting therapeutic gene delivery to the tumor vasculature

    International Nuclear Information System (INIS)

    Sonveaux, Pierre; Frerart, Francoise; Bouzin, Caroline; Brouet, Agnes; Wever, Julie de; Jordan, Benedicte F.; Gallez, Bernard; Feron, Olivier

    2007-01-01

    Purpose: To determine whether radiation-induced increases in nitric oxide (NO) production can influence tumor blood flow and improve delivery of Akt-targeting therapeutic DNA lipocomplexes to the tumor. Methods and Materials: The contribution of NO to the endothelial response to radiation was identified using NO synthase (NOS) inhibitors and endothelial NOS (eNOS)-deficient mice. Reporter-encoding plasmids complexed with cationic lipids were used to document the tumor vascular specificity and the efficacy of in vivo lipofection after irradiation. A dominant-negative Akt gene construct was used to evaluate the facilitating effects of radiotherapy on the therapeutic transgene delivery. Results: The abundance of eNOS protein was increased in both irradiated tumor microvessels and endothelial cells, leading to a stimulation of NO release and an associated increase in tumor blood flow. Transgene expression was subsequently improved in the irradiated vs. nonirradiated tumor vasculature. This effect was not apparent in eNOS-deficient mice and could not be reproduced in irradiated cultured endothelial cells. Finally, we combined low-dose radiotherapy with a dominant-negative Akt gene construct and documented synergistic antitumor effects. Conclusions: This study offers a new rationale to combine radiotherapy with gene therapy, by directly exploiting the stimulatory effects of radiation on NO production by tumor endothelial cells. The preferential expression of the transgene in the tumor microvasculature underscores the potential of such an adjuvant strategy to limit the angiogenic response of irradiated tumors

  5. Deoxypodophyllotoxin suppresses tumor vasculature in HUVECs by promoting cytoskeleton remodeling through LKB1-AMPK dependent Rho A activatio.

    Science.gov (United States)

    Wang, Yurong; Wang, Bin; Guerram, Mounia; Sun, Li; Shi, Wei; Tian, Chongchong; Zhu, Xiong; Jiang, Zhenzhou; Zhang, Luyong

    2015-10-06

    Angiogenesis plays a critical role in the growth and metastasis of tumors, which makes it an attractive target for anti-tumor drug development. Deoxypodophyllotoxin (DPT), a natural product isolated from Anthriscus sylvestris, inhibits cell proliferation and migration in various cancer cell types. Our previous studies indicate that DPT possesses both anti-angiogenic and vascular-disrupting activities. Although the RhoA/ RhoA kinase (ROCK) signaling pathway is implicated in DPT-stimulated cytoskeleton remodeling and tumor vasculature suppressing, the detailed mechanisms by which DPT mediates these effects are poorly understood. In the current study, we found that DPT promotes cytoskeleton remodeling in human umbilical vein endothelial cells (HUVECs) via stimulation of AMP-activated protein kinase (AMPK) and that this effect is abolished by either treatment with a selective AMPK inhibitor or knockdown. Moreover, the cellular levels of LKB1, a kinase upstream of AMPK, were enhanced following DPT exposure. DPT-induced activation of AMPK in tumor vasculature effect was also verified by transgenic zebrafish (VEGFR2:GFP), Matrigel plug assay, and xenograft model in nude mice. The present findings may lay the groundwork for a novel therapeutic approach in treating cancer.

  6. Optical Coherence Tomography Angiography Characteristics of Iris Melanocytic Tumors

    Science.gov (United States)

    Skalet, Alison H.; Li, Yan; Lu, Chen D.; Jia, Yali; Lee, ByungKun; Husvogt, Lennart; Maier, Andreas; Fujimoto, James G.; Thomas, Charles R.; Huang, David

    2016-01-01

    Objective To evaluate tumor vasculature with optical coherence tomography (OCT) angiography (OCTA) in malignant iris melanomas and benign iris lesions. Design Cross-sectional observational clinical study. Participants Patients with iris lesions and healthy volunteers. Methods Eyes were imaged using OCTA systems operating at 1050 and 840 nm wavelengths. Three-dimensional OCTA scans were acquired. Iris melanomas patients treated with radiation therapy were imaged again after I-125 plaque brachytherapy at 6 and 18 months. Main Outcome Measures OCT and OCTA images, qualitative evaluation of iris and tumor vasculature and quantitative vessel density. Results One eye each of eight normal volunteers and nine patients with iris melanomas or benign iris lesions including freckles, nevi, and an iris pigment epithelial (IPE) cyst were imaged. The normal iris has radially-oriented vessels within the stroma on OCTA. Penetration of flow signal in normal iris depended on iris color, with best penetration seen in light to moderately pigmented irides. Iris melanomas demonstrated tortuous and disorganized intratumoral vasculature. In two eyes with nevi there was no increased vascularity; in another, fine vascular loops were noted near an area of ectropion uveae. Iris freckles and the IPE cyst did not have intrinsic vascularity. The vessel density was significantly higher within iris melanomas (34.5%±9.8%, piris nevi (8.0%±1.4%) or normal irides (8.0%±1.2%). Tumor regression after radiation therapy for melanomas was associated with decreased vessel density. OCTA at 1050 nm provided better visualization of tumor vasculature and penetration through thicker tumors than at 840 nm. But in very thick tumors and highly pigmented lesions even 1050 nm OCTA could not visualize their full thickness. Interpretable OCTA images were obtained in 82% participants in whom imaging was attempted. Conclusions This is the first demonstration of OCTA in iris tumors. OCTA may provide a dye-free, no

  7. Enhancing the radiation response of tumors but not early or late responding normal tissues using a vascular disrupting agent

    DEFF Research Database (Denmark)

    Horsman, Michael R

    2017-01-01

    INTRODUCTION: Vascular disrupting agents (VDAs) damage tumor vasculature and enhance tumor radiation response. In this pre-clinical study, we combined radiation with the leading VDA in clinical development, combretastatin A-4 phosphate (CA4P), and compared the effects seen in tumors and relevant...... normal tissues. MATERIAL AND METHODS: Radiation was applied locally to tissues in CDF1 mice to produce full radiation dose-response curves. CA4P (250 mg/kg) was intraperitoneally (i.p.) injected within 30 minutes after irradiating. Response of 200 mm3 foot implanted C3H mammary carcinomas was assessed......% increase in ventilation rate measured by plethysmography within 9 months). A Chi-squared test was used for statistical comparisons (significance level of p 4P. The radiation...

  8. EFFECTS OF IRRADIATION ON BRAIN VASCULATURE USING AN IN SITU TUMOR MODEL

    Science.gov (United States)

    Zawaski, Janice A.; Gaber, M. Waleed; Sabek, Omaima M.; Wilson, Christy M.; Duntsch, Christopher D.; Merchant, Thomas E.

    2013-01-01

    Purpose Damage to normal tissue is a limiting factor in clinical radiotherapy (RT). We tested the hypothesis that the presence of tumor alters the response of normal tissues to irradiation using a rat in situ brain tumor model. Methods and Materials Intravital microscopy was used with a rat cranial window to assess the in situ effect of rat C6 glioma on peritumoral tissue with and without RT. The RT regimen included 40 Gy at 8 Gy/day starting Day 5 after tumor implant. Endpoints included blood–brain barrier permeability, clearance index, leukocyte-endothelial interactions and staining for vascular endothelial growth factor (VEGF) glial fibrillary acidic protein, and apoptosis. To characterize the system response to RT, animal survival and tumor surface area and volume were measured. Sham experiments were performed on similar animals implanted with basement membrane matrix absent of tumor cells. Results The presence of tumor alone increases permeability but has little effect on leukocyte–endothelial interactions and astrogliosis. Radiation alone increases tissue permeability, leukocyte-endothelial interactions, and astrogliosis. The highest levels of permeability and cell adhesion were seen in the model that combined tumor and irradiation; however, the presence of tumor appeared to reduce the volume of rolling leukocytes. Unirradiated tumor and peritumoral tissue had poor clearance. Irradiated tumor and peritumoral tissue had a similar clearance index to irradiated and unirradiated sham-implanted animals. Radiation reduces the presence of VEGF in peritumoral normal tissues but did not affect the amount of apoptosis in the normal tissue. Apoptosis was identified in the tumor tissue with and without radiation. Conclusions We developed a novel approach to demonstrate that the presence of the tumor in a rat intracranial model alters the response of normal tissues to irradiation. PMID:22197233

  9. Effects of Irradiation on Brain Vasculature Using an In Situ Tumor Model

    Energy Technology Data Exchange (ETDEWEB)

    Zawaski, Janice A. [School of Biomedical Engineering and Imaging, University of Tennessee Health Science Center, Memphis, TN (United States); Gaber, M. Waleed, E-mail: gaber@bcm.edu [School of Biomedical Engineering and Imaging, University of Tennessee Health Science Center, Memphis, TN (United States); Department of Pediatrics, Baylor College of Medicine, Houston, TX (United States); Sabek, Omaima M. [Department of Surgery, Methodist Hospital Research Institute, Houston, TX (United States); Wilson, Christy M. [School of Biomedical Engineering and Imaging, University of Tennessee Health Science Center, Memphis, TN (United States); Duntsch, Christopher D. [Department of Neurosurgery, University of Tennessee Health Science Center, Memphis, TN (United States); Merchant, Thomas E. [School of Biomedical Engineering and Imaging, University of Tennessee Health Science Center, Memphis, TN (United States); Department of Radiation Oncology, St. Jude Children' s Research Hospital, Memphis, TN (United States)

    2012-03-01

    Purpose: Damage to normal tissue is a limiting factor in clinical radiotherapy (RT). We tested the hypothesis that the presence of tumor alters the response of normal tissues to irradiation using a rat in situ brain tumor model. Methods and Materials: Intravital microscopy was used with a rat cranial window to assess the in situ effect of rat C6 glioma on peritumoral tissue with and without RT. The RT regimen included 40 Gy at 8 Gy/day starting Day 5 after tumor implant. Endpoints included blood-brain barrier permeability, clearance index, leukocyte-endothelial interactions and staining for vascular endothelial growth factor (VEGF) glial fibrillary acidic protein, and apoptosis. To characterize the system response to RT, animal survival and tumor surface area and volume were measured. Sham experiments were performed on similar animals implanted with basement membrane matrix absent of tumor cells. Results: The presence of tumor alone increases permeability but has little effect on leukocyte-endothelial interactions and astrogliosis. Radiation alone increases tissue permeability, leukocyte-endothelial interactions, and astrogliosis. The highest levels of permeability and cell adhesion were seen in the model that combined tumor and irradiation; however, the presence of tumor appeared to reduce the volume of rolling leukocytes. Unirradiated tumor and peritumoral tissue had poor clearance. Irradiated tumor and peritumoral tissue had a similar clearance index to irradiated and unirradiated sham-implanted animals. Radiation reduces the presence of VEGF in peritumoral normal tissues but did not affect the amount of apoptosis in the normal tissue. Apoptosis was identified in the tumor tissue with and without radiation. Conclusions: We developed a novel approach to demonstrate that the presence of the tumor in a rat intracranial model alters the response of normal tissues to irradiation.

  10. TumorBoost: Normalization of allele-specific tumor copy numbers from a single pair of tumor-normal genotyping microarrays

    Directory of Open Access Journals (Sweden)

    Neuvial Pierre

    2010-05-01

    Full Text Available Abstract Background High-throughput genotyping microarrays assess both total DNA copy number and allelic composition, which makes them a tool of choice for copy number studies in cancer, including total copy number and loss of heterozygosity (LOH analyses. Even after state of the art preprocessing methods, allelic signal estimates from genotyping arrays still suffer from systematic effects that make them difficult to use effectively for such downstream analyses. Results We propose a method, TumorBoost, for normalizing allelic estimates of one tumor sample based on estimates from a single matched normal. The method applies to any paired tumor-normal estimates from any microarray-based technology, combined with any preprocessing method. We demonstrate that it increases the signal-to-noise ratio of allelic signals, making it significantly easier to detect allelic imbalances. Conclusions TumorBoost increases the power to detect somatic copy-number events (including copy-neutral LOH in the tumor from allelic signals of Affymetrix or Illumina origin. We also conclude that high-precision allelic estimates can be obtained from a single pair of tumor-normal hybridizations, if TumorBoost is combined with single-array preprocessing methods such as (allele-specific CRMA v2 for Affymetrix or BeadStudio's (proprietary XY-normalization method for Illumina. A bounded-memory implementation is available in the open-source and cross-platform R package aroma.cn, which is part of the Aroma Project (http://www.aroma-project.org/.

  11. Dual inhibition of Ang-2 and VEGF receptors normalizes tumor vasculature and prolongs survival in glioblastoma by altering macrophages

    Science.gov (United States)

    Peterson, Teresa E.; Kirkpatrick, Nathaniel D.; Huang, Yuhui; Farrar, Christian T.; Marijt, Koen A.; Kloepper, Jonas; Datta, Meenal; Amoozgar, Zohreh; Seano, Giorgio; Jung, Keehoon; Kamoun, Walid S.; Vardam, Trupti; Snuderl, Matija; Goveia, Jermaine; Chatterjee, Sampurna; Batista, Ana; Muzikansky, Alona; Leow, Ching Ching; Xu, Lei; Batchelor, Tracy T.; Duda, Dan G.; Fukumura, Dai; Jain, Rakesh K.

    2016-01-01

    Glioblastomas (GBMs) rapidly become refractory to anti-VEGF therapies. We previously demonstrated that ectopic overexpression of angiopoietin-2 (Ang-2) compromises the benefits of anti-VEGF receptor (VEGFR) treatment in murine GBM models and that circulating Ang-2 levels in GBM patients rebound after an initial decrease following cediranib (a pan-VEGFR tyrosine kinase inhibitor) administration. Here we tested whether dual inhibition of VEGFR/Ang-2 could improve survival in two orthotopic models of GBM, Gl261 and U87. Dual therapy using cediranib and MEDI3617 (an anti–Ang-2–neutralizing antibody) improved survival over each therapy alone by delaying Gl261 growth and increasing U87 necrosis, effectively reducing viable tumor burden. Consistent with their vascular-modulating function, the dual therapies enhanced morphological normalization of vessels. Dual therapy also led to changes in tumor-associated macrophages (TAMs). Inhibition of TAM recruitment using an anti–colony-stimulating factor-1 antibody compromised the survival benefit of dual therapy. Thus, dual inhibition of VEGFR/Ang-2 prolongs survival in preclinical GBM models by reducing tumor burden, improving normalization, and altering TAMs. This approach may represent a potential therapeutic strategy to overcome the limitations of anti-VEGFR monotherapy in GBM patients by integrating the complementary effects of anti-Ang2 treatment on vessels and immune cells. PMID:27044097

  12. Normal Doppler velocimetry of renal vasculature in Persian cats.

    Science.gov (United States)

    Carvalho, Cibele F; Chammas, Maria C

    2011-06-01

    Renal diseases are common in older cats. Decreased renal blood flow may be the first sign of dysfunction and can be evaluated by Doppler ultrasound. But previous studies suggest that the resistive index (RI) has a low sensitivity for detecting renal disease. Doppler waveforms of renal and intrarenal arteries demonstrate decreased blood flow before there are any changes in the RI. The purpose of this study was to evaluate the normal Doppler flowmetrics parameters of renal arteries (RAs), interlobar arteries (IAs) and abdominal aorta (AO) in adult healthy, Persian cats. Twenty-five Persian cats (13 females and 12 males with mean age of 30 months and an age range 12-60 months) with normal clinical examinations and biochemical tests and normal systemic blood pressure were given B-mode ultrasonographies in order to exclude all nephropathies, including polycystic kidney disease. All measurements were performed on both kidneys. Both kidneys (n=50) were examined by color mapping of the renal vasculature. Pulsed Doppler was used to examine both RAs, the IAs at cranial, middle and caudal sites, and the AO. The RI was calculated for all of the vessels. Early systolic acceleration (ESA) of RA and IA was obtained with Doppler spectral analysis. Furthermore, the ratio indices between RA/AO, and IA/RA velocities were calculated. The mean values of peak systolic velocity (PSV) and the diameter for AO were 53.17±13.46 cm/s and 0.38±0.08 cm, respectively. The mean RA diameter for all 50 kidneys was 0.15±0.02 cm. Considering the velocimetric values in both RAs, the mean PSV and RI that were obtained were 41.17±9.40 cm/s and 0.54±0.07. The RA had a mean ESA of 1.12±1.14 m/s(2) and the calculated upper limit of the reference value was 3.40 m/s(2). The mean renal-aortic ratio was 0.828±0.296. The IA showed PSV and RI values of 32.16±9.33 cm/s and 0.52±0.06, respectively. The mean ESA of all IAs was 0.73±0.61 m/s(2). The calculated upper limit of the reference value was 2.0m

  13. Cancer cells remodel themselves and vasculature to overcome the endothelial barrier.

    Science.gov (United States)

    Shenoy, Anitha K; Lu, Jianrong

    2016-10-01

    Metastasis refers to the spread of cancer cells from a primary tumor to distant organs mostly via the bloodstream. During the metastatic process, cancer cells invade blood vessels to enter circulation, and later exit the vasculature at a distant site. Endothelial cells that line blood vessels normally serve as a barrier to the movement of cells into or out of the blood. It is thus critical to understand how metastatic cancer cells overcome the endothelial barrier. Epithelial cancer cells acquire increased motility and invasiveness through epithelial-to-mesenchymal transition (EMT), which enables them to move toward vasculature. Cancer cells also express a variety of adhesion molecules that allow them to attach to vascular endothelium. Finally, cancer cells secrete or induce growth factors and cytokines to actively prompt vascular hyperpermeability that compromises endothelial barrier function and facilitates transmigration of cancer cells through the vascular wall. Elucidation of the mechanisms underlying metastatic dissemination may help develop new anti-metastasis therapeutics. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  14. Angiomodulin is a specific marker of vasculature and regulates VEGF-A dependent neo-angiogenesis

    Science.gov (United States)

    Hooper, Andrea T.; Shmelkov, Sergey V.; Gupta, Sunny; Milde, Till; Bambino, Kathryn; Gillen, Kelly; Goetz, Mollie; Chavala, Sai; Baljevic, Muhamed; Murphy, Andrew J.; Valenzuela, David M.; Gale, Nicholas W.; Thurston, Gavin; Yancopoulos, George D.; Vahdat, Linda; Evans, Todd; Rafii, Shahin

    2010-01-01

    Blood vessel formation is controlled by the balance between pro- and anti-angiogenic pathways. Although much is known about the factors that drive sprouting of neovessels, the factors that stabilize and pattern neovessels are undefined. The expression of angiomodulin (AGM), a VEGF-A binding protein, was increased in the vasculature of several human tumors as compared to normal tissue, raising the hypothesis that AGM may modulate VEGF-A-dependent vascular patterning. To elucidate the expression pattern of AGM, we developed an AGM knockin reporter mouse (AGMlacZ/+) wherein we demonstrate that AGM is predominantly expressed in the vasculature of developing embryos and adult organs. During physiological and pathological angiogenesis, AGM is upregulated in the angiogenic vasculature. Using the zebrafish model, we found that AGM is restricted to developing vasculature by 17-22 hpf. Blockade of AGM activity with morpholino oligomers (MO) results in prominent angiogenesis defects in vascular sprouting and remodeling. Concurrent knockdown of both AGM and VEGF-A results in synergistic angiogenesis defects. When VEGF-A is overexpressed, the compensatory induction of the VEGF-A receptor, VEGFR-2/flk-1, is blocked by the simultaneous injection of AGM MO. These results demonstrate that the vascular-specific marker AGM modulates vascular remodeling in part by temporizing the pro-angiogenic effects of VEGF-A. PMID:19542015

  15. Modulation of the tumor vasculature and oxygenation to improve therapy

    DEFF Research Database (Denmark)

    Siemann, Dietmar W; Horsman, Michael R

    2015-01-01

    The tumor microenvironment is increasingly recognized as a major factor influencing the success of therapeutic treatments and has become a key focus for cancer research. The progressive growth of a tumor results in an inability of normal tissue blood vessels to oxygenate and provide sufficient...... important are the functional consequences experienced by the tumor cells residing in such environments: adaptation to hypoxia, cell quiescence, modulation of transporters and critical signaling molecules, immune escape, and enhanced metastatic potential. Together these factors lead to therapeutic barriers...

  16. Effect of contrast leakage on the detection of abnormal brain tumor vasculature in high-grade glioma.

    Science.gov (United States)

    LaViolette, Peter S; Daun, Mitchell K; Paulson, Eric S; Schmainda, Kathleen M

    2014-02-01

    Abnormal brain tumor vasculature has recently been highlighted by a dynamic susceptibility contrast (DSC) MRI processing technique. The technique uses independent component analysis (ICA) to separate arterial and venous perfusion. The overlap of the two, i.e. arterio-venous overlap or AVOL, preferentially occurs in brain tumors and predicts response to anti-angiogenic therapy. The effects of contrast agent leakage on the AVOL biomarker have yet to be established. DSC was acquired during two separate contrast boluses in ten patients undergoing clinical imaging for brain tumor diagnosis. Three components were modeled with ICA, which included the arterial and venous components. The percentage of each component as well as a third component were determined within contrast enhancing tumor and compared. AVOL within enhancing tumor was also compared between doses. The percentage of enhancing tumor classified as not arterial or venous and instead into a third component with contrast agent leakage apparent in the time-series was significantly greater for the first contrast dose compared to the second. The amount of AVOL detected within enhancing tumor was also significantly greater with the second dose compared to the first. Contrast leakage results in large signal variance classified as a separate component by the ICA algorithm. The use of a second dose mitigates the effect and allows measurement of AVOL within enhancement.

  17. Deeper Penetration into Tumor Tissues and Enhanced in Vivo Antitumor Activity of Liposomal Paclitaxel by Pretreatment with Angiogenesis Inhibitor SU5416

    NARCIS (Netherlands)

    Yoshizawa, Yuta; Ogawara, Ken-ichi; Fushimi, Aya; Abe, Shigeki; Ishikawa, Keisuke; Araki, Tomoya; Molema, Grietje; Kimura, Toshikiro; Higaki, Kazutaka

    2012-01-01

    The recently emerged concept of "vessel normalization" implies that judicious blockade of vascular endothelial growth factor (VEGF) signaling may transiently "normalize" the tumor vasculature, making it more suitable for tumor disposition of subsequently administered drugs. In this study, therefore,

  18. Tumor Blood Vessel Dynamics

    Science.gov (United States)

    Munn, Lance

    2009-11-01

    ``Normalization'' of tumor blood vessels has shown promise to improve the efficacy of chemotherapeutics. In theory, anti-angiogenic drugs targeting endothelial VEGF signaling can improve vessel network structure and function, enhancing the transport of subsequent cytotoxic drugs to cancer cells. In practice, the effects are unpredictable, with varying levels of success. The predominant effects of anti-VEGF therapies are decreased vessel leakiness (hydraulic conductivity), decreased vessel diameters and pruning of the immature vessel network. It is thought that each of these can influence perfusion of the vessel network, inducing flow in regions that were previously sluggish or stagnant. Unfortunately, when anti-VEGF therapies affect vessel structure and function, the changes are dynamic and overlapping in time, and it has been difficult to identify a consistent and predictable normalization ``window'' during which perfusion and subsequent drug delivery is optimal. This is largely due to the non-linearity in the system, and the inability to distinguish the effects of decreased vessel leakiness from those due to network structural changes in clinical trials or animal studies. We have developed a mathematical model to calculate blood flow in complex tumor networks imaged by two-photon microscopy. The model incorporates the necessary and sufficient components for addressing the problem of normalization of tumor vasculature: i) lattice-Boltzmann calculations of the full flow field within the vasculature and within the tissue, ii) diffusion and convection of soluble species such as oxygen or drugs within vessels and the tissue domain, iii) distinct and spatially-resolved vessel hydraulic conductivities and permeabilities for each species, iv) erythrocyte particles advecting in the flow and delivering oxygen with real oxygen release kinetics, v) shear stress-mediated vascular remodeling. This model, guided by multi-parameter intravital imaging of tumor vessel structure

  19. 3D morphological measurement of whole slide histological vasculature reconstructions

    Science.gov (United States)

    Xu, Yiwen; Pickering, J. G.; Nong, Zengxuan; Ward, Aaron D.

    2016-03-01

    Properties of the microvasculature that contribute to tissue perfusion can be assessed using immunohistochemistry on 2D histology sections. However, the vasculature is inherently 3D and the ability to measure and visualize the vessel wall components in 3D will aid in detecting focal pathologies. Our objectives were (1) to develop a method for 3D measurement and visualization of microvasculature in 3D, (2) to compare the normal and regenerated post-ischemia mouse hind limb microvasculature, and (3) to compare the 2D and 3D vessel morphology measures. Vessels were stained for smooth muscle using 3,3'-Diaminobenzidine (DAB) immunostain for both normal (n = 6 mice) and regenerated vasculature (n = 5 mice). 2D vessel segmentations were reconstructed into 3D using landmark based registration. No substantial bias was found in the 2D measurements relative to 3D, but larger differences were observed for individual vessels oriented non-orthogonally to the plane of sectioning. A larger value of area, perimeter, and vessel wall thickness was found in the normal vasculature as compared to the regenerated vasculature, for both the 2D and 3D measurements (p pathologies on a whole slide level.

  20. Ablation of EIF5A2 induces tumor vasculature remodeling and improves tumor response to chemotherapy via regulation of matrix metalloproteinase 2 expression.

    Science.gov (United States)

    Wang, Feng-Wei; Cai, Mu-Yan; Mai, Shi-Juan; Chen, Jie-Wei; Bai, Hai-Yan; Li, Yan; Liao, Yi-Ji; Li, Chang-Peng; Tian, Xiao-Peng; Kung, Hsiang-Fu; Guan, Xin-Yuan; Xie, Dan

    2014-08-30

    Hepatocellular carcinoma (HCC) is a highly vascularized tumor with poor clinical outcome. Our previous work has shown that eukaryotic initiation factor 5A2 (EIF5A2) over-expression enhances HCC cell metastasis. In this study, EIF5A2 was identified to be an independent risk factor for poor disease-specific survival among HCC patients. Both in vitro and in vivo assays indicated that ablation of endogenous EIF5A2 inhibited tumor angiogenesis by reducing matrix metalloproteinase 2 (MMP-2) expression. Given that MMP-2 degrades collagen IV, a main component of the vascular basement membrane (BM), we subsequently investigated the effect of EIF5A2 on tumor vasculature remodeling using complementary approaches, including fluorescent immunostaining, transmission electron microscopy, tumor perfusion assays and tumor hypoxia assays. Taken together, our results indicate that EIF5A2 silencing increases tumor vessel wall continuity, increases blood perfusion and improves tumor oxygenation. Additionally, we found that ablation of EIF5A2 enhanced the chemosensitivity of HCC cells to 5-Fluorouracil (5-FU). Finally, we demonstrated that EIF5A2 might exert these functions by enhancing MMP-2 activity via activation of p38 MAPK and JNK/c-Jun pathways. This study highlights an important role of EIF5A2 in HCC tumor vessel remodeling and indicates that EIF5A2 represents a potential therapeutic target in the treatment of HCC.

  1. In vivo imaging of tumor vascular endothelial cells

    Science.gov (United States)

    Zhao, Dawen; Stafford, Jason H.; Zhou, Heling; Thorpe, Philip E.

    2013-02-01

    Phosphatidylserine (PS), normally restricted to the inner leaflet of the plasma membrane, becomes exposed on the outer surface of viable (non-apoptotic) endothelial cells in tumor blood vessels, probably in response to oxidative stresses present in the tumor microenvironment. In the present study, we optically imaged exposed PS on tumor vasculature in vivo using PGN635, a novel human monoclonal antibody that targets PS. PGN635 F(ab')2 was labeled with the near infrared (NIR) dye, IRDye 800CW. Human glioma U87 cells or breast cancer MDA-MB-231 cells were implanted subcutaneously or orthotopically into nude mice. When the tumors reached ~5 mm in diameter, 800CW- PGN635 was injected via a tail vein and in vivo dynamic NIR imaging was performed. For U87 gliomas, NIR imaging allowed clear detection of tumors as early as 4 h later, which improved over time to give a maximal tumor/normal ratio (TNR = 2.9 +/- 0.5) 24 h later. Similar results were observed for orthotopic MDA-MB-231 breast tumors. Localization of 800CW-PGN635 to tumors was antigen specific since 800CW-Aurexis, a control probe of irrelevant specificity, did not localize to the tumors, and pre-administration of unlabeled PGN635 blocked the uptake of 800CW-PGN635. Fluorescence microscopy confirmed that 800CW-PGN635 was binding to PS-positive tumor vascular endothelium. Our studies suggest that tumor vasculature can be successfully imaged in vivo to provide sensitive tumor detection.

  2. Pathway-specific differences between tumor cell lines and normal and tumor tissue cells

    Directory of Open Access Journals (Sweden)

    Tozeren Aydin

    2006-11-01

    Full Text Available Abstract Background Cell lines are used in experimental investigation of cancer but their capacity to represent tumor cells has yet to be quantified. The aim of the study was to identify significant alterations in pathway usage in cell lines in comparison with normal and tumor tissue. Methods This study utilized a pathway-specific enrichment analysis of publicly accessible microarray data and quantified the gene expression differences between cell lines, tumor, and normal tissue cells for six different tissue types. KEGG pathways that are significantly different between cell lines and tumors, cell lines and normal tissues and tumor and normal tissue were identified through enrichment tests on gene lists obtained using Significance Analysis of Microarrays (SAM. Results Cellular pathways that were significantly upregulated in cell lines compared to tumor cells and normal cells of the same tissue type included ATP synthesis, cell communication, cell cycle, oxidative phosphorylation, purine, pyrimidine and pyruvate metabolism, and proteasome. Results on metabolic pathways suggested an increase in the velocity nucleotide metabolism and RNA production. Pathways that were downregulated in cell lines compared to tumor and normal tissue included cell communication, cell adhesion molecules (CAMs, and ECM-receptor interaction. Only a fraction of the significantly altered genes in tumor-to-normal comparison had similar expressions in cancer cell lines and tumor cells. These genes were tissue-specific and were distributed sparsely among multiple pathways. Conclusion Significantly altered genes in tumors compared to normal tissue were largely tissue specific. Among these genes downregulation was a major trend. In contrast, cell lines contained large sets of significantly upregulated genes that were common to multiple tissue types. Pathway upregulation in cell lines was most pronounced over metabolic pathways including cell nucleotide metabolism and oxidative

  3. Identification of thioaptamer ligand against E-selectin: potential application for inflamed vasculature targeting.

    Directory of Open Access Journals (Sweden)

    Aman P Mann

    Full Text Available Active targeting of a drug carrier to a specific target site is crucial to provide a safe and efficient delivery of therapeutics and imaging contrast agents. E-selectin expression is induced on the endothelial cell surface of vessels in response to inflammatory stimuli but is absent in the normal vessels. Thus, E-selectin is an attractive molecular target, and high affinity ligands for E-selectin could be powerful tools for the delivery of therapeutics and/or imaging agents to inflamed vessels. In this study, we identified a thiophosphate modified aptamer (thioaptamer, TA against E-selectin (ESTA-1 by employing a two-step selection strategy: a recombinant protein-based TA binding selection from a combinatorial library followed by a cell-based TA binding selection using E-selectin expressing human microvascular endothelial cells. ESTA-1 selectively bound to E-selectin with nanomolar binding affinity (K(D = 47 nM while exhibiting minimal cross reactivity to P- and L-selectin. Furthermore, ESTA-1 binding to E-selectin on the endothelial cells markedly antagonized the adhesion (over 75% inhibition of sLe(x positive HL-60 cells at nanomolar concentration. ESTA-1 also bound specifically to the inflamed tumor-associated vasculature of human carcinomas derived from breast, ovarian, and skin but not to normal organs, and this binding was highly associated with the E-selectin expression level. Similarly, intravenously injected ESTA-1 demonstrated distinct binding to the tumor vasculature in a breast cancer xenograft model. Together, our data substantiates the discovery of a thioaptamer (ESTA-1 that binds to E-selectin with high affinity and specificity, thereby highlighting the potential application of ESTA-1 for E-selectin targeted delivery.

  4. Characterization of Receptors for Peptides Homing to the Vasculature of the Breast Carcinomas by Display Cloning

    National Research Council Canada - National Science Library

    Zhang, Lianglin

    2004-01-01

    .... The homing peptide technology provides a new targeting strategy that aims at physically concentrating therapeutic agents in tumor tissue by making use of the unique features of tumor vasculature...

  5. Vasculature analysis of patient derived tumor xenografts using species-specific PCR assays: evidence of tumor endothelial cells and atypical VEGFA-VEGFR1/2 signalings

    International Nuclear Information System (INIS)

    Bieche, Ivan; Marangoni, Elisabetta; Roman-Roman, Sergio; Decaudin, Didier; Dangles-Marie, Virginie; Vacher, Sophie; Vallerand, David; Richon, Sophie; Hatem, Rana; De Plater, Ludmilla; Dahmani, Ahmed; Némati, Fariba; Angevin, Eric

    2014-01-01

    Tumor endothelial transdifferentiation and VEGFR1/2 expression by cancer cells have been reported in glioblastoma but remain poorly documented for many other cancer types. To characterize vasculature of patient-derived tumor xenografts (PDXs), largely used in preclinical anti-angiogenic assays, we designed here species-specific real-time quantitative RT-PCR assays. Human and mouse PECAM1/CD31, ENG/CD105, FLT1/VEGFR1, KDR/VEGFR2 and VEGFA transcripts were analyzed in a large series of 150 PDXs established from 8 different tumor types (53 colorectal, 14 ovarian, 39 breast and 15 renal cell cancers, 6 small cell and 5 non small cell lung carcinomas, 13 cutaneous melanomas and 5 glioblastomas) and in two bevacizumab-treated non small cell lung carcinomas xenografts. As expected, mouse cell proportion in PDXs -evaluated by quantifying expression of the housekeeping gene TBP- correlated with all mouse endothelial markers and human VEGFA RNA levels. More interestingly, we observed human PECAM1/CD31 and ENG/CD105 expression in all tumor types, with higher rate in glioblastoma and renal cancer xenografts. Human VEGFR expression profile varied widely depending on tumor types with particularly high levels of human FLT1/VEGFR1 transcripts in colon cancers and non small cell lung carcinomas, and upper levels of human KDR/VEGFR2 transcripts in non small cell lung carcinomas. Bevacizumab treatment induced significant low expression of mouse Pecam1/Cd31, Eng/Cd105, Flt1/Vegfr1 and Kdr/Vefr2 while the human PECAM1/CD31 and VEGFA were upregulated. Taken together, our results strongly suggest existence of human tumor endothelial cells in all tumor types tested and of both stromal and tumoral autocrine VEGFA-VEGFR1/2 signalings. These findings should be considered when evaluating molecular mechanisms of preclinical response and resistance to tumor anti-angiogenic strategies

  6. Inhibition of colon cancer growth by methylselenocysteine-induced angiogenic chemomodulation is influenced by histologic characteristics of the tumor.

    Science.gov (United States)

    Bhattacharya, Arup; Tóth, Károly; Sen, Arindam; Seshadri, Mukund; Cao, Shousong; Durrani, Farukh A; Faber, Erik; Repasky, Elizabeth A; Rustum, Youcef M

    2009-07-01

    Despite an armamentarium that is wide in range, scope of action, and target, chemotherapy has limited success in colorectal cancer (CRC). Novel approaches are needed to overcome tumor barriers to chemotherapy that includes an abnormal tumor vasculature constituting a poor drug delivery system. We have previously shown that 5-methylselenocysteine (MSC) enhances therapeutic efficacy of irinotecan in various human tumor xenografts. We have recently demonstrated that MSC through vascular normalization leads to better tumor vascular function in vivo. In this study, we examined the role of MSC on tumor vasculature, interstitial fluid pressure (IFP) and drug delivery in 2 histologically distinct CRC xenografts, HCT-8 (uniformly poorly differentiated) and HT-29 (moderately differentiated tumor with avascular glandular regions). The presence of specific histologic structures as a barrier to therapy in these xenografts and their clinical relevance was studied using tissue microarray of human surgical samples of CRC. MSC led to a significant tumor growth inhibition, a reduced microvessel density, and a more normalized vasculature in both colorectal xenografts. While IFP was found to be significantly improved in HCT-8, an improved intratumoral doxorubicin delivery seen in both xenografts could explain the observed increase in therapeutic efficacy. Differentiated, glandular, avascular and hypoxic regions that contribute to tumor heterogeneity in HT-29 were also evident in the majority of surgical samples of CRC. Such regions constitute a physical barrier to chemotherapy and can confer drug resistance. Our results indicate that MSC could enhance chemotherapeutic efficacy in human CRC, especially in CRC with few or no hypoxic regions.

  7. From the Cover: Adipose tissue mass can be regulated through the vasculature

    Science.gov (United States)

    Rupnick, Maria A.; Panigrahy, Dipak; Zhang, Chen-Yu; Dallabrida, Susan M.; Lowell, Bradford B.; Langer, Robert; Judah Folkman, M.

    2002-08-01

    Tumor growth is angiogenesis dependent. We hypothesized that nonneoplastic tissue growth also depends on neovascularization. We chose adipose tissue as an experimental system because of its remodeling capacity. Mice from different obesity models received anti-angiogenic agents. Treatment resulted in dose-dependent, reversible weight reduction and adipose tissue loss. Marked vascular remodeling was evident in adipose tissue sections, which revealed decreased endothelial proliferation and increased apoptosis in treated mice compared with controls. Continuous treatment maintained mice near normal body weights for age without adverse effects. Metabolic adaptations in food intake, metabolic rate, and energy substrate utilization were associated with anti-angiogenic weight loss. We conclude that adipose tissue mass is sensitive to angiogenesis inhibitors and can be regulated by its vasculature.

  8. Synchrotron microbeam radiation therapy induces hypoxia in intracerebral gliosarcoma but not in the normal brain

    International Nuclear Information System (INIS)

    Bouchet, Audrey; Lemasson, Benjamin; Christen, Thomas; Potez, Marine; Rome, Claire; Coquery, Nicolas; Le Clec’h, Céline; Moisan, Anaick; Bräuer-Krisch, Elke; Leduc, Géraldine; Rémy, Chantal; Laissue, Jean A.; Barbier, Emmanuel L.; Brun, Emmanuel; Serduc, Raphaël

    2013-01-01

    Purpose: Synchrotron microbeam radiation therapy (MRT) is an innovative irradiation modality based on spatial fractionation of a high-dose X-ray beam into lattices of microbeams. The increase in lifespan of brain tumor-bearing rats is associated with vascular damage but the physiological consequences of MRT on blood vessels have not been described. In this manuscript, we evaluate the oxygenation changes induced by MRT in an intracerebral 9L gliosarcoma model. Methods: Tissue responses to MRT (two orthogonal arrays (2 × 400 Gy)) were studied using magnetic resonance-based measurements of local blood oxygen saturation (MR S O 2 ) and quantitative immunohistology of RECA-1, Type-IV collagen and GLUT-1, marker of hypoxia. Results: In tumors, MR S O 2 decreased by a factor of 2 in tumor between day 8 and day 45 after MRT. This correlated with tumor vascular remodeling, i.e. decrease in vessel density, increases in half-vessel distances (×5) and GLUT-1 immunoreactivity. Conversely, MRT did not change normal brain MR S O 2 , although vessel inter-distances increased slightly. Conclusion: We provide new evidence for the differential effect of MRT on tumor vasculature, an effect that leads to tumor hypoxia. As hypothesized formerly, the vasculature of the normal brain exposed to MRT remains sufficiently perfused to prevent any hypoxia

  9. Tracking Normalization of Brain Tumor Vasculature by Magnetic Imaging and Proangiogenic Biomarkers

    Science.gov (United States)

    Hormigo, Adília; Gutin, Philip H.; Rafii, Shahin

    2010-01-01

    Clinical assessment of the response to antiangiogenic therapy has been cumbersome. A study in this issue of Cancer Cell demonstrates that a combination of magnetic resonance imaging (MRI) for quantification of normalized vessels with measurements of circulating levels of proangiogenic factors, including FGF2, SDF1, and viable circulating endothelial cells, provides an effective means to evaluate the response of recurrent glioblastoma to a prototypical pan-VEGF receptor tyrosine kinase inhibitor, AZD2171. PMID:17222788

  10. Vascular thermal adaptation in tumors and normal tissue in rats

    International Nuclear Information System (INIS)

    Nah, Byung Sik; Choi, Ihl-Bohng; Oh, Won Young; Osborn, James L.; Song, Chang W.

    1996-01-01

    Purpose: The vascular thermal adaptation in the R3230 adenocarcinoma, skin and muscle in the legs of Fischer rats was studied. Methods and Materials: The legs of Fischer rats bearing the R3230 AC adenocarcinoma (subcutaneously) were heated once or twice with a water bath, and the blood flow in the tumor, skin and muscle of the legs was measured with the radioactive microsphere method. Results: The blood flow in control R3230 AC tumors was 23.9 ml/100 g/min. The tumor blood flow increased about 1.5 times in 30 min and then markedly decreased upon heating at 44.5 deg. C for 90 min. In the tumors preheated 16 h earlier at 42.5 deg. C for 60 min, reheating at 44.5 deg. C increased the tumor blood flow by 2.5-fold in 30 min. Contrary to the decline in blood flow following an initial increase during the 44.5 deg. C heating without preheating, the tumor blood flow remained elevated throughout the 90 min reheating at 44.5 deg. C. These results indicated that thermal adaptation or thermotolerance developed in the tumor vasculatures after the preheating at 42.5 deg. C for 60 min. The magnitude of vascular thermal adaptation in the tumors 24 h and 48 h after the preheating, as judged from the changes in blood flow, were smaller than that 16 h after the preheating. Heating at 42.5 deg. C for 60 min induced vascular thermal adaptation also in the skin and muscle, which peaked in 48 h and 24 h, respectively, after the heating. Conclusion: Heating at 42.5 deg. C for 1 h induced vascular thermal adaptation in the R3230 AC tumor, skin, and muscle of rats that peaked 16-48 h after the heating. When the tumor blood vessels were thermally adapted, the tumor blood flow increased upon heating at temperatures that would otherwise reduce the tumor blood flow. Such an increase in tumor blood flow may hinder raising the tumor temperature while it may increase tumor oxygenation.

  11. Radiolabeled, Antibody-Conjugated Manganese Oxide Nanoparticles for Tumor Vasculature Targeted Positron Emission Tomography and Magnetic Resonance Imaging.

    Science.gov (United States)

    Zhan, Yonghua; Shi, Sixiang; Ehlerding, Emily B; Graves, Stephen A; Goel, Shreya; Engle, Jonathan W; Liang, Jimin; Tian, Jie; Cai, Weibo

    2017-11-08

    Manganese oxide nanoparticles (Mn 3 O 4 NPs) have attracted a great deal of attention in the field of biomedical imaging because of their ability to create an enhanced imaging signal in MRI as novel potent T 1 contrast agents. In this study, we present tumor vasculature-targeted imaging in mice using Mn 3 O 4 NPs through conjugation to the anti-CD105 antibody TRC105 and radionuclide copper-64 ( 64 Cu, t 1/2 : 12.7 h). The Mn 3 O 4 conjugated NPs, 64 Cu-NOTA-Mn 3 O 4 @PEG-TRC105, exhibited sufficient stability in vitro and in vivo. Serial positron emission tomography (PET) and magnetic resonance imaging (MRI) studies evaluated the pharmacokinetics and demonstrated targeting of 64 Cu-NOTA-Mn 3 O 4 @PEG-TRC105 to 4T1 murine breast tumors in vivo, compared to 64 Cu-NOTA-Mn 3 O 4 @PEG. The specificity of 64 Cu-NOTA-Mn 3 O 4 @PEG-TRC105 for the vascular marker CD105 was confirmed through in vivo, in vitro, and ex vivo experiments. Since Mn 3 O 4 conjugated NPs exhibited desirable properties for T 1 enhanced imaging and low toxicity, the tumor-specific Mn 3 O 4 conjugated NPs reported in this study may serve as promising multifunctional nanoplatforms for precise cancer imaging and diagnosis.

  12. Targeted drug delivery and penetration into solid tumors.

    Science.gov (United States)

    Corti, Angelo; Pastorino, Fabio; Curnis, Flavio; Arap, Wadih; Ponzoni, Mirco; Pasqualini, Renata

    2012-09-01

    Delivery and penetration of chemotherapeutic drugs into tumors are limited by a number of factors related to abnormal vasculature and altered stroma composition in neoplastic tissues. Coupling of chemotherapeutic drugs with tumor vasculature-homing peptides or administration of drugs in combination with biological agents that affect the integrity of the endothelial lining of tumor vasculature is an appealing strategy to improve drug delivery to tumor cells. Promising approaches to achieve this goal are based on the use of Asn-Gly-Arg (NGR)-containing peptides as ligands for drug delivery and of NGR-TNF, a peptide-tumor necrosis factor-α fusion protein that selectively alters drug penetration barriers and that is currently tested in a randomized Phase III trial in patients with malignant pleural mesothelioma. © 2011 Wiley Periodicals, Inc.

  13. Sindbis Virus-Pseudotyped Lentiviral Vectors Carrying VEGFR2-Specific Nanobody for Potential Transductional Targeting of Tumor Vasculature.

    Science.gov (United States)

    Ahani, Roshank; Roohvand, Farzin; Cohan, Reza Ahangari; Etemadzadeh, Mohammad Hossein; Mohajel, Nasir; Behdani, Mahdi; Shahosseini, Zahra; Madani, Navid; Azadmanesh, Kayhan

    2016-11-01

    Introduction of selectivity/specificity into viral-based gene delivery systems, such as lentiviral vectors (LVs), is crucial in their systemic administration for cancer gene therapy. The pivotal role of tumor-associated endothelial cells (TAECs) in tumor angiogenesis and overexpression of vascular endothelial growth factor receptor-2 (VEGFR2 or KDR) in TAECs makes them a potent target in cancer treatment. Herein, we report the development of VEGFR2-targeted LVs pseudotyped with chimeric sindbis virus E2 glycoprotein (cSVE2s). For this purpose, either sequence of a VEGFR2-specific nanobody or its natural ligand (VEGF 121 ) was inserted into the binding site of sindbis virus E2 glycoprotein. In silico modeling data suggested that the inserted targeting motifs were exposed in the context of cSVE2s. Western blot analysis of LVs indicated the incorporation of cSVE2s into viral particles. Capture ELISA demonstrated the specificity/functionality of the incorporated cSVE2s. Transduction of 293/KDR (expressing VEGFR2) or 293T cells (negative control) by constructed LVs followed by fluorescent microscopy and flow cytometric analyses indicated selective transduction of 293/KDR cells (30 %) by both targeting motifs compared to 293T control cells (1-2 %). These results implied similar targeting properties of VEGFR2-specific nanobody compared to the VEGF 121 and indicated the potential for transductional targeting of tumor vasculature by the nanobody displaying LVs.

  14. X-ray phase contrast with injected gas for tumor microangiography

    International Nuclear Information System (INIS)

    Lundström, U; Larsson, D H; Burvall, A; Hertz, H M; Westermark, U K; Henriksson, M Arsenian

    2014-01-01

    We show that the microvasculature of mouse tumors can be visualized using propagation-based phase-contrast x-ray imaging with gas as the contrast agent. The large density difference over the gas–tissue interface provides high contrast, allowing the imaging of small-diameter blood vessels with relatively short exposure times and low dose using a compact liquid-metal-jet x-ray source. The method investigated is applied to tumors (E1A/Ras-transformed mouse embryonic fibroblasts) grown in mouse ears, demonstrating sub-15-µm-diameter imaging of their blood vessels. The exposure time for a 2D projection image is a few seconds and a full tomographic 3D map takes some minutes. The method relies on the strength of the vasculature to withstand the gas pressure. Given that tumor vessels are known to be more fragile than normal vessels, we investigate the tolerance of the vasculature of 12 tumors to gas injection and find that a majority withstand 200 mbar pressures, enough to fill 12-µm-diameter vessels with gas. A comparison of the elasticity of tumorous and non-tumorous vessels supports the assumption of tumor vessels being more fragile. Finally, we conclude that the method has the potential to be extended to the imaging of 15 µm vessels in thick tissue, including mouse imaging, making it of interest for, e.g., angiogenesis research. (paper)

  15. Antiangiogenic Therapy and Mechanisms of Tumor Resistance in Malignant Glioma

    Directory of Open Access Journals (Sweden)

    Ruman Rahman

    2010-01-01

    Full Text Available Despite advances in surgery, radiation therapy, and chemotherapeutics, patients with malignant glioma have a dismal prognosis. The formations of aberrant tumour vasculature and glioma cell invasion are major obstacles for effective treatment. Angiogenesis is a key event in the progression of malignant gliomas, a process involving endothelial cell proliferation, migration, reorganization of extracellular matrix and tube formation. Such processes are regulated by the homeostatic balance between proangiogenic and antiangiogenic factors, most notably vascular endothelial growth factors (VEGFs produced by glioma cells. Current strategies targeting VEGF-VEGF receptor signal transduction pathways, though effective in normalizing abnormal tumor vasculature, eventually result in tumor resistance whereby a highly infiltrative and invasive phenotype may be adopted. Here we review recent anti-angiogenic therapy for malignant glioma and highlight implantable devices and nano/microparticles as next-generation methods for chemotherapeutic delivery. Intrinsic and adaptive modes of glioma resistance to anti-angiogenic therapy will be discussed with particular focus on the glioma stem cell paradigm.

  16. Cranial vasculature in zebrafish forms by angioblast cluster-derived angiogenesis.

    Science.gov (United States)

    Proulx, Kira; Lu, Annie; Sumanas, Saulius

    2010-12-01

    Formation of embryonic vasculature involves vasculogenesis as endothelial cells differentiate and aggregate into vascular cords and angiogenesis which includes branching from the existing vessels. In the zebrafish which has emerged as an advantageous model to study vasculogenesis, cranial vasculature is thought to originate by a combination of vasculogenesis and angiogenesis, but how these processes are coordinated is not well understood. To determine how angioblasts assemble into cranial vasculature, we generated an etsrp:GFP transgenic line in which GFP reporter is expressed under the promoter control of an early regulator of vascular and myeloid development, etsrp/etv2. By utilizing time-lapse imaging we show that cranial vessels originate by angiogenesis from angioblast clusters, which themselves form by the mechanism of vasculogenesis. The two major pairs of bilateral clusters include the rostral organizing center (ROC) which gives rise to the most rostral cranial vessels and the midbrain organizing center (MOC) which gives rise to the posterior cranial vessels and to the myeloid and endocardial lineages. In Etsrp knockdown embryos initial cranial vasculogenesis proceeds normally but endothelial and myeloid progenitors fail to initiate differentiation, migration and angiogenesis. Such angioblast cluster-derived angiogenesis is likely to be involved during vasculature formation in other vertebrate systems as well. Copyright © 2010 Elsevier Inc. All rights reserved.

  17. Core temperature rhythms in normal and tumor-bearing mice.

    Science.gov (United States)

    Griffith, D J; Busot, J C; Lee, W E; Djeu, D J

    1993-01-01

    The core temperature temporal behavior of DBA/2 mice (11 normal and 13 with an ascites tumor) was studied using surgically implanted radio telemetry transmitters. Normal mice continuously displayed a stable 24 hour temperature rhythm. Tumor-bearers displayed a progressive deterioration of the temperature rhythm following inoculation with tumor cells. While such disruptions have been noted by others, details on the dynamics of the changes have been mostly qualitative, often due to time-averaging or steady-state analysis of the data. The present study attempts to quantify the dynamics of the disruption of temperature rhythm (when present) by continuously monitoring temperatures over periods up to a month. Analysis indicated that temperature regulation in tumor-bearers was adversely affected during the active period only. Furthermore, it appears that the malignancy may be influencing temperature regulation via pathways not directly attributable to the energy needs of the growing tumor.

  18. Vascular endothelial growth factor-D over-expressing tumor cells induce differential effects on uterine vasculature in a mouse model of endometrial cancer

    Directory of Open Access Journals (Sweden)

    Stacker Steven A

    2010-07-01

    Full Text Available Abstract Background It has been hypothesised that increased VEGF-D expression may be an independent prognostic factor for endometrial cancer progression and lymph node metastasis; however, the mechanism by which VEGF-D may promote disease progression in women with endometrial cancer has not been investigated. Our aim was to describe the distribution of lymphatic vessels in mouse uterus and to examine the effect of VEGF-D over-expression on these vessels in a model of endometrial cancer. We hypothesised that VEGF-D over-expression would stimulate growth of new lymphatic vessels into the endometrium, thereby contributing to cancer progression. Methods We initially described the distribution of lymphatic vessels (Lyve-1, podoplanin, VEGFR-3 and VEGF-D expression in the mouse uterus during the estrous cycle, early pregnancy and in response to estradiol-17beta and progesterone using immunohistochemistry. We also examined the effects of VEGF-D over-expression on uterine vasculature by inoculating uterine horns in NOD SCID mice with control or VEGF-D-expressing 293EBNA tumor cells. Results Lymphatic vessels positive for the lymphatic endothelial cell markers Lyve-1, podoplanin and VEGFR-3 profiles were largely restricted to the connective tissue between the myometrial circular and longitudinal muscle layers; very few lymphatic vessel profiles were observed in the endometrium. VEGF-D immunostaining was present in all uterine compartments (epithelium, stroma, myometrium, although expression was generally low. VEGF-D immunoexpression was slightly but significantly higher in estrus relative to diestrus; and in estradiol-17beta treated mice relative to vehicle or progesterone treated mice. The presence of VEGF-D over-expressing tumor cells did not induce endometrial lymphangiogenesis, although changes were observed in existing vessel profiles. For myometrial lymphatic and endometrial blood vessels, the percentage of profiles containing proliferating

  19. Periodicity in tumor vasculature targeting kinetics of ligand-functionalized nanoparticles studied by dynamic contrast enhanced magnetic resonance imaging and intravital microscopy

    DEFF Research Database (Denmark)

    Hak, Sjoerd; Cebulla, Jana; Huuse, Else Marie

    2014-01-01

    In the past two decades advances in the development of targeted nanoparticles have facilitated their application as molecular imaging agents and targeted drug delivery vehicles. Nanoparticle-enhanced molecular imaging of the angiogenic tumor vasculature has been of particular interest. Not only...... because angiogenesis plays an important role in various pathologies, but also since endothelial cell surface receptors are directly accessible for relatively large circulating nanoparticles. Typically, nanoparticle targeting towards these receptors is studied by analyzing the contrast distribution...... kinetics. These kinetics will not only depend on nanoparticle characteristics, but also on receptor binding and recycling. In this study, we monitored the in vivo targeting kinetics of αvβ3-integrin specific nanoparticles with intravital microscopy and dynamic contrast enhanced magnetic resonance imaging...

  20. WE-E-17A-01: Characterization of An Imaging-Based Model of Tumor Angiogenesis

    International Nuclear Information System (INIS)

    Adhikarla, V; Jeraj, R

    2014-01-01

    Purpose: Understanding the transient dynamics of tumor oxygenation is important when evaluating tumor-vasculature response to anti-angiogenic therapies. An imaging-based tumor-vasculature model was used to elucidate factors that affect these dynamics. Methods: Tumor growth depends on its doubling time (Td). Hypoxia increases pro-angiogenic factor (VEGF) concentration which is modeled to reduce vessel perfusion, attributing to its effect of increasing vascular permeability. Perfused vessel recruitment depends on the existing perfused vasculature, VEGF concentration and maximum VEGF concentration (VEGFmax) for vessel dysfunction. A convolution-based algorithm couples the tumor to the normal tissue vessel density (VD-nt). The parameters are benchmarked to published pre-clinical data and a sensitivity study evaluating the changes in the peak and time to peak tumor oxygenation characterizes them. The model is used to simulate changes in hypoxia and proliferation PET imaging data obtained using [Cu- 61]Cu-ATSM and [F-18]FLT respectively. Results: Td and VD-nt were found to be the most influential on peak tumor pO2 while VEGFmax was marginally influential. A +20 % change in Td, VD-nt and VEGFmax resulted in +50%, +25% and +5% increase in peak pO2. In contrast, Td was the most influential on the time to peak oxygenation with VD-nt and VEGFmax playing marginal roles. A +20% change in Td, VD-nt and VEGFmax increased the time to peak pO2 by +50%, +5% and +0%. A −20% change in the above parameters resulted in comparable decreases in the peak and time to peak pO2. Model application to the PET data was able to demonstrate the voxel-specific changes in hypoxia of the imaged tumor. Conclusion: Tumor-specific doubling time and vessel density are important parameters to be considered when evaluating hypoxia transients. While the current model simulates the oxygen dynamics of an untreated tumor, incorporation of therapeutic effects can make the model a potent tool for analyzing

  1. Role of tumor necrosis factor in flavone acetic acid-induced tumor vasculature shutdown

    International Nuclear Information System (INIS)

    Mahadevan, V.; Malik, S.T.; Meager, A.; Fiers, W.; Lewis, G.P.; Hart, I.R.

    1990-01-01

    Flavone acetic acid (FAA), a novel investigational antitumor agent, has been shown to cause early vascular shutdown in several experimental murine tumors, and this phenomenon is believed to be crucial to FAA's antitumor effects. However, the basis of this FAA-induced tumor vascular shutdown is unknown. In this study a radioactive tracer-clearance technique has been used as an objective indication of tumor blood flow to show that i.p. administered FAA induces a progressive and sustained reduction in blood flow in a colon 26 tumor growing s.c. in syngeneic mice. As early as 1 h after administration, there was a significant increase in the t1/2 clearance value for intratumorally injected 133Xe, reaching a peak at 3 h (117.3 +/- 36.4 versus 7.8 +/- 0.85 min for controls). Significant inhibition of blood flow was still apparent 48 h after a single injection of drug. This FAA-induced vascular shutdown was virtually abolished in tumor-bearing mice pretreated with an antiserum against tumor necrosis factor, while no such effect was observed in controls pretreated with nonimmune serum (t1/2 of 10.8 +/- 1.2 versus 65.6 +/- 8.0 min for controls). Furthermore, in vitro FAA was seen to induce tumor necrosis factor secretion from murine peritoneal cells and splenocytes. These studies suggest that FAA-induced tumor vascular shutdown in the colon 26 tumor is mediated by tumor necrosis factor

  2. Angiogenesis for tumor vascular normalization of Endostar on hepatoma 22 tumor-bearing mice is involved in the immune response.

    Science.gov (United States)

    Xu, Qingyu; Gu, Junfei; Lv, You; Yuan, Jiarui; Yang, Nan; Chen, Juan; Wang, Chunfei; Hou, Xuefeng; Jia, Xiaobin; Feng, Liang; Yin, Guowen

    2018-03-01

    Tumor vascular normalization involved in immune response is beneficial to the chemotherapy of tumors. Recombinant human endostatin (Endostar), an angiogenesis inhibitor, has been demonstrated to be effective in hepatocellular cancer (HCC). However, its vascular normalization in HCC and the role of the immune response in angiogenesis were unclear. In the present study, effects of Endostar on tumor vascular normalization were evaluated in hepatoma 22 (H22) tumor-bearing mice. Endostar was able to inhibit the proliferation and infiltration of tumor cells and improve α-fetoprotein, tumor necrosis factor-α and cyclic adenosine 5'-phosphate levels in the serum of H22-bearing mice, as well as the protein expression levels of the immune factors interferon-γ and cluster of differentiation (CD)86 in liver tissue. Endostar also exhibited more marked downregulation of the levels of vascular endothelial growth factor, CD31, matrix metalloproteinase (MMP)-2, MMP-9 and interleukin-17 during day 3-9 treatment, resulting in short-term normalization of tumor blood vessels. The period of vascular normalization was 3-9 days. The results of the present study demonstrated that Endostar was able to induce the period of vascular normalization, contributing to a more efficacious means of HCC treatment combined with other chemotherapy, and this effect was associated with the immune response. It may be concluded that Endostar inhibited immunity-associated angiogenesis behaviors of vascular endothelial cells in response to HCC. The results of the present study provided more reasonable possibility for the combination therapy of Endostar for the treatment of HCC.

  3. Tumor and normal tissue responses to fractioned non-uniform dose delivery

    Energy Technology Data Exchange (ETDEWEB)

    Kaellman, P; Aegren, A; Brahme, A [Karolinska Inst., Stockholm (Sweden). Dept. of Radiation Physics

    1996-08-01

    The volume dependence of the radiation response of a tumor is straight forward to quantify because it depends primarily on the eradication of all its clonogenic cells. A tumor therefore has a parallel organization as any surviving clonogen in principle can repopulate the tumor. The difficulty with the response of the tumor is instead to know the density and sensitivity distribution of the most resistant clonogenic cells. The increase in the 50% tumor control dose and the decrease in the maximum normalized slope of the dose response relation, {gamma}, in presence of small compartments of resistant tumor cells have therefore been quantified to describe their influence on the dose response relation. Injury to normal tissue is a much more complex and gradual process. It depends on earlier effects induced long before depletion of the differentiated and clonogenic cells that in addition may have a complex structural and functional organization. The volume dependence of the dose response relation of normal tissues is therefore described here by the relative seriality, s, of the infrastructure of the organ. The model can also be generalized to describe the response of heterogeneous tissues to non uniform dose distributions. The new model is compared with clinical and experimental data on normal tissue response, and shows good agreement both with regard to the shape of dose response relation and the volume dependence of the isoeffect dose. The response of tumors and normal tissues are quantified for arbitrary dose fractionations using the linear quadratic cell survival parameters {alpha} and {beta}. The parameters of the dose response relation are derived both for a constant dose per fraction and a constant number of dose fractions, thus in the latter case accounting also for non uniform dose delivery. (author). 26 refs, 4 figs.

  4. III. Cellular ultrastructures in situ as key to understanding tumor energy metabolism: biological significance of the Warburg effect.

    Science.gov (United States)

    Witkiewicz, Halina; Oh, Phil; Schnitzer, Jan E

    2013-01-01

    Despite the universality of metabolic pathways, malignant cells were found to have their metabolism reprogrammed to generate energy by glycolysis even under normal oxygen concentrations (the Warburg effect). Therefore, the pathway energetically 18 times less efficient than oxidative phosphorylation was implicated to match increased energy requirements of growing tumors. The paradox was explained by an abnormally high rate of glucose uptake, assuming unlimited availability of substrates for tumor growth in vivo. However, ultrastructural analysis of tumor vasculature morphogenesis showed that the growing tissue regions did not have continuous blood supply and intermittently depended on autophagy for survival. Erythrogenic autophagy, and resulting ATP generation by glycolysis, appeared critical to initiating vasculature formation where it was missing. This study focused on ultrastructural features that reflected metabolic switch from aerobic to anaerobic. Morphological differences between and within different types of cells were evident in tissue sections. In cells undergoing nucleo-cytoplasmic conversion into erythrosomes (erythrogenesis), gradual changes led to replacing mitochondria with peroxisomes, through an intermediate form connected to endoplasmic reticulum. Those findings related to the issue of peroxisome biogenesis and to the phenomenon of hemogenic endothelium. Mitochondria were compacted also during mitosis. In vivo, cells that lost and others that retained capability to use oxygen coexisted side-by-side; both types were important for vasculature morphogenesis and tissue growth. Once passable, the new vasculature segment could deliver external oxygen and nutrients. Nutritional and redox status of microenvironment had similar effect on metabolism of malignant and non-malignant cells demonstrating the necessity to maintain structure-energy equivalence in all living cells. The role of glycolysis in initiating vasculature formation, and in progression of

  5. β class II tubulin predominates in normal and tumor breast tissues

    International Nuclear Information System (INIS)

    Dozier, James H; Hiser, Laree; Davis, Jennifer A; Thomas, Nancy Stubbs; Tucci, Michelle A; Benghuzzi, Hamed A; Frankfurter, Anthony; Correia, John J; Lobert, Sharon

    2003-01-01

    Antimitotic chemotherapeutic agents target tubulin, the major protein in mitotic spindles. Tubulin isotype composition is thought to be both diagnostic of tumor progression and a determinant of the cellular response to chemotherapy. This implies that there is a difference in isotype composition between normal and tumor tissues. To determine whether such a difference occurs in breast tissues, total tubulin was fractionated from lysates of paired normal and tumor breast tissues, and the amounts of β-tubulin classes I + IV, II, and III were measured by competitive enzyme-linked immunosorbent assay (ELISA). Only primary tumor tissues, before chemotherapy, were examined. Her2/neu protein amplification occurs in about 30% of breast tumors and is considered a marker for poor prognosis. To gain insight into whether tubulin isotype levels might be correlated with prognosis, ELISAs were used to quantify Her2/neu protein levels in these tissues. β-Tubulin isotype distributions in normal and tumor breast tissues were similar. The most abundant β-tubulin isotypes in these tissues were β-tubulin classes II and I + IV. Her2/neu levels in tumor tissues were 5–30-fold those in normal tissues, although there was no correlation between the Her2/neu biomarker and tubulin isotype levels. These results suggest that tubulin isotype levels, alone or in combination with Her2/neu protein levels, might not be diagnostic of tumorigenesis in breast cancer. However, the presence of a broad distribution of these tubulin isotypes (for example, 40–75% β-tubulin class II) in breast tissue, in conjunction with other factors, might still be relevant to disease progression and cellular response to antimitotic drugs

  6. Extravascular transport in normal and tumor tissues.

    Science.gov (United States)

    Jain, R K; Gerlowski, L E

    1986-01-01

    The transport characteristics of the normal and tumor tissue extravascular space provide the basis for the determination of the optimal dosage and schedule regimes of various pharmacological agents in detection and treatment of cancer. In order for the drug to reach the cellular space where most therapeutic action takes place, several transport steps must first occur: (1) tissue perfusion; (2) permeation across the capillary wall; (3) transport through interstitial space; and (4) transport across the cell membrane. Any of these steps including intracellular events such as metabolism can be the rate-limiting step to uptake of the drug, and these rate-limiting steps may be different in normal and tumor tissues. This review examines these transport limitations, first from an experimental point of view and then from a modeling point of view. Various types of experimental tumor models which have been used in animals to represent human tumors are discussed. Then, mathematical models of extravascular transport are discussed from the prespective of two approaches: compartmental and distributed. Compartmental models lump one or more sections of a tissue or body into a "compartment" to describe the time course of disposition of a substance. These models contain "effective" parameters which represent the entire compartment. Distributed models consider the structural and morphological aspects of the tissue to determine the transport properties of that tissue. These distributed models describe both the temporal and spatial distribution of a substance in tissues. Each of these modeling techniques is described in detail with applications for cancer detection and treatment in mind.

  7. Optical imaging of the chorioretinal vasculature in the living human eye.

    Science.gov (United States)

    Kim, Dae Yu; Fingler, Jeff; Zawadzki, Robert J; Park, Susanna S; Morse, Lawrence S; Schwartz, Daniel M; Fraser, Scott E; Werner, John S

    2013-08-27

    Detailed visualization of microvascular changes in the human retina is clinically limited by the capabilities of angiography imaging, a 2D fundus photograph that requires an intravenous injection of fluorescent dye. Whereas current angiography methods enable visualization of some retinal capillary detail, they do not adequately reveal the choriocapillaris or other microvascular features beneath the retina. We have developed a noninvasive microvascular imaging technique called phase-variance optical coherence tomography (pvOCT), which identifies vasculature three dimensionally through analysis of data acquired with OCT systems. The pvOCT imaging method is not only capable of generating capillary perfusion maps for the retina, but it can also use the 3D capabilities to segment the data in depth to isolate vasculature in different layers of the retina and choroid. This paper demonstrates some of the capabilities of pvOCT imaging of the anterior layers of choroidal vasculature of a healthy normal eye as well as of eyes with geographic atrophy (GA) secondary to age-related macular degeneration. The pvOCT data presented permit digital segmentation to produce 2D depth-resolved images of the retinal vasculature, the choriocapillaris, and the vessels in Sattler's and Haller's layers. Comparisons are presented between en face projections of pvOCT data within the superficial choroid and clinical angiography images for regions of GA. Abnormalities and vascular dropout observed within the choriocapillaris for pvOCT are compared with regional GA progression. The capability of pvOCT imaging of the microvasculature of the choriocapillaris and the anterior choroidal vasculature has the potential to become a unique tool to evaluate therapies and understand the underlying mechanisms of age-related macular degeneration progression.

  8. The tumor vasculature is a target for genetic radiotherapy

    International Nuclear Information System (INIS)

    Mauceri, Helena J.; Heimann, Ruth; Seetharam, Saraswathy; Beckett, Michael A.; Weichselbaum, Ralph R.

    1997-01-01

    Purpose: Tumor progression and metastasis require the growth of new capillaries from existing blood vessels. Tumor cells produce both activators and inhibitors of endothelial cell proliferation and migration. Changes in the balance between these regulators appear to govern an angiogenic switch which is activated during tumor development. Tumor necrosis factor-α (TNF-α) has a biphasic role in angiogenesis. It has been demonstrated that relatively low concentrations of TNF induce angiogenesis while high doses inhibit growth of blood vessels. In our previous studies, using the SQ-20B xenograft model system, we demonstrated increased tumor control when a virus containing the radiation-inducible promoter Egr-1 ligated to a cDNa for TNF-α was combined with radiation. The dominant histopathological feature of tumors receiving combined treatment with Ad.Egr-TNF and radiation was intratumoral vascular thrombosis. The present studies examine the role of TNF in tumor progression by investigating the effects of TNF on VEGF (vascular endothelial growth factor) production in vitro and on tumor vessel count in vivo. Methods: SQ-20B tumor cells in serum-free medium were exposed to hrTNF (10 ng/ml) 4 hours prior to a single dose of x-irradiation (10 Gy). 24 hrs. after treatment, the conditioned medium was harvested, centrifuged, diluted 1:10, and assayed for VEGF using a Quantikine TNF ELISA kit. For studies in vivo, female nude mice were injected sc in the right thigh with 10 6 SQ-20B cells. Xenografts were irradiated with four 5 Gy fractions (20 Gy) and injected twice with either Ad.Egr-TNF or Ad.null. Control tumors were injected with buffer. To highlight vessels, sections from paraffin embedded tissue were stained with anti-CD31 antibody using standard immunohistochemical techniques. Areas of high vascular density were identified and five high power fields (400X) were counted. Data are shown as the mean ± S.E.M. for each treatment group. Significance was evaluated using one

  9. Imaging angiogenesis.

    Science.gov (United States)

    Charnley, Natalie; Donaldson, Stephanie; Price, Pat

    2009-01-01

    There is a need for direct imaging of effects on tumor vasculature in assessment of response to antiangiogenic drugs and vascular disrupting agents. Imaging tumor vasculature depends on differences in permeability of vasculature of tumor and normal tissue, which cause changes in penetration of contrast agents. Angiogenesis imaging may be defined in terms of measurement of tumor perfusion and direct imaging of the molecules involved in angiogenesis. In addition, assessment of tumor hypoxia will give an indication of tumor vasculature. The range of imaging techniques available for these processes includes positron emission tomography (PET), dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), perfusion computed tomography (CT), and ultrasound (US).

  10. Tumor vessel normalization by the PI3K inhibitor HS-173 enhances drug delivery.

    Science.gov (United States)

    Kim, Soo Jung; Jung, Kyung Hee; Son, Mi Kwon; Park, Jung Hee; Yan, Hong Hua; Fang, Zhenghuan; Kang, Yeo Wool; Han, Boreum; Lim, Joo Han; Hong, Soon-Sun

    2017-09-10

    Tumor vessels are leaky and immature, which causes poor oxygen and nutrient supply to tumor vessels and results in cancer cell metastasis to distant organs. This instability of tumor blood vessels also makes it difficult for anticancer drugs to penetrate and reach tumors. Numerous tumor vessel normalization approaches have been investigated for improving drug delivery into tumors. In this study, we investigated whether phosphoinositide 3-kinase (PI3K) inhibitors are able to improve vascular structure and function over the prolonged period necessary to achieve effective vessel normalization. The PI3K inhibitors, HS-173 and BEZ235 potently suppressed tumor growth and hypoxia, and increased tumor apoptosis in animal models. PI3K inhibitors also induced a regular, flat monolayer of endothelial cells (ECs) in vessels, improving stability of vessel structure, and normalized tumor vessels by increasing vascular maturity, pericyte coverage, basement membrane thickness, and tight-junctions. These effects resulted in a decrease in tumor vessel tortuosity and vessel thinning, and improved vessel function and blood flow. The tumor vessel stabilization effect of the PI3K inhibitor HS-173 also decreased the number of metastatic lung nodules in vivo metastasis model. Furthermore, HS-173 improved the delivery of doxorubicin into the tumor region, enhancing its anticancer effects. Mechanistic studies suggested that PI3K inhibitor HS-173-induced vessel normalization reflected changes in endothelial Notch signaling. Taken together, our findings indicate that vessel normalization by PI3K inhibitors restrained tumor growth and metastasis while improving chemotherapy by enhancing drug delivery into the tumor, suggesting that HS-173 may have a therapeutic value as an enhancer or an anticancer drug. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. The Dynamics of Developmental and Tumor Angiogenesis—A Comparison

    International Nuclear Information System (INIS)

    Jin, Yi; Jakobsson, Lars

    2012-01-01

    The blood vasculature in cancers has been the subject of intense interest during the past four decades. Since the original ideas of targeting angiogenesis to treat cancer were proposed in the 1970s, it has become evident that more knowledge about the role of vessels in tumor biology is needed to fully take advantage of such strategies. The vasculature serves the surrounding tissue in a multitude of ways that all must be taken into consideration in therapeutic manipulation. Aspects of delivery of conventional cytostatic drugs, induction of hypoxia affecting treatment by radiotherapy, changes in tumor cell metabolism, vascular leak and trafficking of leukocytes are affected by interventions on vascular function. Many tumors constitute a highly interchangeable milieu undergoing proliferation, apoptosis, and necrosis with abundance of growth factors, enzymes and metabolites. These aspects are reflected by the abnormal tortuous, leaky vascular bed with detached mural cells (pericytes). The vascular bed of tumors is known to be unstable and undergoing remodeling, but it is not until recently that this has been dynamically demonstrated at high resolution, facilitated by technical advances in intravital microscopy. In this review we discuss developmental genetic loss-of-function experiments in the light of tumor angiogenesis. We find this a valid comparison since many studies phenocopy the vasculature in development and tumors

  12. The Dynamics of Developmental and Tumor Angiogenesis—A Comparison

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Yi; Jakobsson, Lars, E-mail: Lars.jakobsson@ki.se [Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm SE-17177 (Sweden)

    2012-04-11

    The blood vasculature in cancers has been the subject of intense interest during the past four decades. Since the original ideas of targeting angiogenesis to treat cancer were proposed in the 1970s, it has become evident that more knowledge about the role of vessels in tumor biology is needed to fully take advantage of such strategies. The vasculature serves the surrounding tissue in a multitude of ways that all must be taken into consideration in therapeutic manipulation. Aspects of delivery of conventional cytostatic drugs, induction of hypoxia affecting treatment by radiotherapy, changes in tumor cell metabolism, vascular leak and trafficking of leukocytes are affected by interventions on vascular function. Many tumors constitute a highly interchangeable milieu undergoing proliferation, apoptosis, and necrosis with abundance of growth factors, enzymes and metabolites. These aspects are reflected by the abnormal tortuous, leaky vascular bed with detached mural cells (pericytes). The vascular bed of tumors is known to be unstable and undergoing remodeling, but it is not until recently that this has been dynamically demonstrated at high resolution, facilitated by technical advances in intravital microscopy. In this review we discuss developmental genetic loss-of-function experiments in the light of tumor angiogenesis. We find this a valid comparison since many studies phenocopy the vasculature in development and tumors.

  13. Dual-modality optical and positron emission tomography imaging of vascular endothelial growth factor receptor on tumor vasculature using quantum dots

    International Nuclear Information System (INIS)

    Chen, Kai; Li, Zi-Bo; Wang, Hui; Cai, Weibo; Chen, Xiaoyuan

    2008-01-01

    To date, the in vivo imaging of quantum dots (QDs) has been mostly qualitative or semiquantitative. The development of a dual-function positron emission tomography (PET)/near-infrared fluorescence (NIRF) probe might allow the accurate assessment of the tumor-targeting efficacy of QDs. An amine-functionalized QD was conjugated with VEGF protein and DOTA chelator for VEGFR-targeted PET/NIRF imaging after 64 Cu-labeling. The targeting efficacy of this dual functional probe was evaluated in vitro and in vivo through cell-binding assay, cell staining, in vivo optical/PET imaging, ex vivo optical/PET imaging, and histology. The DOTA-QD-VEGF exhibited VEGFR-specific binding in both cell-binding assay and cell staining experiment. Both NIR fluorescence imaging and microPET showed VEGFR-specific delivery of conjugated DOTA-QD-VEGF nanoparticle and prominent reticuloendothelial system uptake. The U87MG tumor uptake of 64 Cu-labeled DOTA-QD was less than one percentage injected dose per gram (%ID/g), significantly lower than that of 64 Cu-labeled DOTA-QD-VEGF (1.52±0.6%ID/g, 2.81±0.3%ID/g, 3.84± 0.4%ID/g, and 4.16±0.5%ID/g at 1,4,16, and 24 h post injection, respectively; n=3). Good correlation was also observed between the results measured by ex vivo PET and NIRF organ imaging. Histologic examination revealed that DOTA-QD-VEGF primarily targets the tumor vasculature through a VEGF-VEGFR interaction. We have successfully developed a QD-based nanoprobe for dual PET and NIRF imaging of tumor VEGFR expression. The success of this bifunctional imaging approach may render higher degree of accuracy for the quantitative targeted NIRF imaging in deep tissue. (orig.)

  14. Gene expression signature of normal cell-of-origin predicts ovarian tumor outcomes.

    Directory of Open Access Journals (Sweden)

    Melissa A Merritt

    Full Text Available The potential role of the cell-of-origin in determining the tumor phenotype has been raised, but not adequately examined. We hypothesized that distinct cells-of-origin may play a role in determining ovarian tumor phenotype and outcome. Here we describe a new cell culture medium for in vitro culture of paired normal human ovarian (OV and fallopian tube (FT epithelial cells from donors without cancer. While these cells have been cultured individually for short periods of time, to our knowledge this is the first long-term culture of both cell types from the same donors. Through analysis of the gene expression profiles of the cultured OV/FT cells we identified a normal cell-of-origin gene signature that classified primary ovarian cancers into OV-like and FT-like subgroups; this classification correlated with significant differences in clinical outcomes. The identification of a prognostically significant gene expression signature derived solely from normal untransformed cells is consistent with the hypothesis that the normal cell-of-origin may be a source of ovarian tumor heterogeneity and the associated differences in tumor outcome.

  15. Tumor and Endothelial Cell Hybrids Participate in Glioblastoma Vasculature

    Directory of Open Access Journals (Sweden)

    Soufiane El Hallani

    2014-01-01

    Full Text Available Background. Recently antiangiogenic therapy with bevacizumab has shown a high but transient efficacy in glioblastoma (GBM. Indeed, GBM is one of the most angiogenic human tumors and endothelial proliferation is a hallmark of the disease. We therefore hypothesized that tumor cells may participate in endothelial proliferation of GBM. Materials and Methods. We used EGFR FISH Probe to detect EGFR amplification and anti-CD31, CD105, VE-cadherin, and vWF to identify endothelial cells. Endothelial and GBM cells were grown separately, labeled with GFP and DsRed lentiviruses, and then cocultured with or without contact. Results. In a subset of GBM tissues, we found that several tumor endothelial cells carry EGFR amplification, characteristic of GBM tumor cells. This observation was reproduced in vitro: when tumor stem cells derived from GBM were grown in the presence of human endothelial cells, a fraction of them acquired endothelial markers (CD31, CD105, VE-cadherin, and vWF. By transduction with GFP and DsRed expressing lentiviral vectors, we demonstrate that this phenomenon is due to cell fusion and not transdifferentiation. Conclusion. A fraction of GBM stem cells thus has the capacity to fuse with endothelial cells and the resulting hybrids may participate in tumor microvascular proliferation and in treatment resistance.

  16. Tumor vascular-targeted co-delivery of anti-angiogenesis and chemotherapeutic agents by mesoporous silica nanoparticle-based drug delivery system for synergetic therapy of tumor

    Directory of Open Access Journals (Sweden)

    Li X

    2015-12-01

    Full Text Available Xiaoyu Li, Meiying Wu, Limin Pan, Jianlin Shi State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, People’s Republic of China Abstract: To overcome the drawback of drug non-selectivity in traditional chemotherapy, the construction of multifunctional targeting drug delivery systems is one of the most effective and prevailing approaches. The intratumoral anti-angiogenesis and the tumor cell-killing are two basic approaches in fighting tumors. Herein we report a novel tumor vascular-targeting multidrug delivery system using mesoporous silica nanoparticles as carrier to co-load an antiangiogenic agent (combretastatin A4 and a chemotherapeutic drug (doxorubicin and conjugate with targeting molecules (iRGD peptide for combined anti-angiogenesis and chemotherapy. Such a dual-loaded drug delivery system is capable of delivering the two agents at tumor vasculature and then within tumors through a differentiated drug release strategy, which consequently results in greatly improved antitumor efficacy at a very low doxorubicin dose of 1.5 mg/kg. The fast release of the antiangiogenic agent at tumor vasculatures led to the disruption of vascular structure and had a synergetic effect with the chemotherapeutic drug slowly released in the following delivery of chemotherapeutic drug into tumors. Keywords: mesoporous silica nanoparticles, drug delivery, tumor vasculatures targeting, antiangiogenic agent

  17. Evaluation of uptake and distribution of gold nanoparticles in solid tumors

    Science.gov (United States)

    England, Christopheri G.; Gobin, André M.; Frieboes, Hermann B.

    2015-11-01

    Although nanotherapeutics offer a targeted and potentially less toxic alternative to systemic chemotherapy in cancer treatment, nanotherapeutic transport is typically hindered by abnormal characteristics of tumor tissue. Once nanoparticles targeted to tumor cells arrive in the circulation of tumor vasculature, they must extravasate from irregular vessels and diffuse through the tissue to ideally reach all malignant cells in cytotoxic concentrations. The enhanced permeability and retention effect can be leveraged to promote extravasation of appropriately sized particles from tumor vasculature; however, therapeutic success remains elusive partly due to inadequate intra-tumoral transport promoting heterogeneous nanoparticle uptake and distribution. Irregular tumor vasculature not only hinders particle transport but also sustains hypoxic tissue kregions with quiescent cells, which may be unaffected by cycle-dependent chemotherapeutics released from nanoparticles and thus regrow tumor tissue following nanotherapy. Furthermore, a large proportion of systemically injected nanoparticles may become sequestered by the reticulo-endothelial system, resulting in overall diminished efficacy. We review recent work evaluating the uptake and distribution of gold nanoparticles in pre-clinical tumor models, with the goal to help improve nanotherapy outcomes. We also examine the potential role of novel layered gold nanoparticles designed to address some of these critical issues, assessing their uptake and transport in cancerous tissue.

  18. Radioprotection of normal tissues in tumor-bearing mice by troxerutin

    International Nuclear Information System (INIS)

    Maurya, D.K.; Salvi, V.P.; Krishnan Nair, C.K.

    2004-01-01

    The flavanoid derivative troxerutin, used clinically for treating venous disorders, protected biomembranes and cellular DNA against the deleterious effects of γ-radiation. The peroxidation of lipids (measured as thiobarbituric acid-reacting substances, or TBARS) in rat liver microsomal and mitochondrial membranes resulting from γ-irradiation up to doses of 500 Gy in vitro was prevented by 0.2 mM troxerutin. The administration of troxerutin (175 mg/kg body weight) to tumor-bearing mice by intraperitoneal (ip) one hour prior to 4 Gy whole-body γ-irradiation significantly decreased the radiation-induced peroxidation of lipids in tissues such as liver and spleen, but there was no reduction of lipid peroxidation in tumor. The effect of troxerutin in γ-radiation-induced DNA strand breaks in different tissues of tumor-bearing mice was studied by comet assay. The administration of troxerutin to tumor-bearing animals protected cellular DNA against radiation-induced strand breaks. This was evidenced from decreases in comet tail length, tail moment, and percent of DNA in the tails in cells of normal tissues such as blood leukocytes and bone marrow, and these parameters were not altered in cells of fibrosarcoma tumor. The results revealed that troxerutin could preferentially protect normal tissues against radiation-induced damages in tumor-bearing animals. (author)

  19. Apelin as a marker for monitoring the tumor vessel normalization window during antiangiogenic therapy.

    Science.gov (United States)

    Zhang, Li; Takara, Kazuhiro; Yamakawa, Daishi; Kidoya, Hiroyasu; Takakura, Nobuyuki

    2016-01-01

    Antiangiogenic agents transiently normalize tumor vessel structure and improve vessel function, thereby providing a window of opportunity for enhancing the efficacy of chemotherapy or radiotherapy. Currently, there are no reliable predictors or markers reflecting this vessel normalization window during antiangiogenic therapy. Apelin, the expression of which is regulated by hypoxia, and which has well-described roles in tumor progression, is an easily measured secreted protein. Here, we show that apelin can be used as a marker for the vessel normalization window during antiangiogenic therapy. Mice bearing s.c. tumors resulting from inoculation of the colon adenocarcinoma cell line HT29 were treated with a single injection of bevacizumab, a mAb neutralizing vascular endothelial growth factor. Tumor growth, vessel density, pericyte coverage, tumor hypoxia, and small molecule delivery were determined at four different times after treatment with bevacizumab (days 1, 3, 5, and 8). Tumor growth and vessel density were significantly reduced after bevacizumab treatment, which also significantly increased tumor vessel maturity, and improved tumor hypoxia and small molecule delivery between days 3 and 5. These effects abated by day 8, suggesting that a time window for vessel normalization was opened between days 3 and 5 during bevacizumab treatment in this model. Apelin mRNA expression and plasma apelin levels decreased transiently at day 5 post-treatment, coinciding with vessel normalization. Thus, apelin is a potential indicator of the vessel normalization window during antiangiogenic therapy. © 2015 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.

  20. Brain tumor radiosurgery. Current status and strategies to enhance the effect of radiosurgery

    International Nuclear Information System (INIS)

    Niranjan, A.; Lunsford, L.D.; Gobbel, G.T.; Kondziolka, D.; Maitz, A.; Flickinger, J.C.

    2000-01-01

    First, the current status of brain tumor radiosurgery is reviewed, and radiosurgery for brain tumors, including benign tumors, malignant tumors, primary glial tumors, and metastatic tumors, is described. Rapid developments in neuroimaging, stereotactic techniques, and robotic technology in the last decade have contributed to improved results and wider applications of radiosurgery. Radiosurgery has become the preferred management modality for many intracranial tumors, including schwannomas, meningiomas, and metastatic tumors. Although radiosurgery provides survival benefits in patients with diffuse malignant brain tumors, cure is still not possible. Microscopic tumor infiltration into surrounding normal tissue is the main cause of recurrence. Additional strategies are needed to specifically target tumor cells. Next, strategies to enhance the effect of radiosurgery are reviewed. Whereas the long-term clinical results of radiosurgery have established its role in the treatment of benign tumors, additional strategies are needed to improve cell killing in malignant brain tumors and to protect normal surrounding brain. The first strategy included the use of various agents to protect normal brain while delivering a high dose to the tumor cells, but finding an effective radioprotective agent has been problematic. Pentobarbital and 21-aminosteroid (21-AS) are presented as examples. The second strategy for radiation protection aimed at the repair of radiation-induced damage to the normal brain. The cause of radiation-induced breakdown of normal tissue is unclear. The white matter and the cerebral vasculature appear to be particularly susceptible to radiation. Oligodendrocytes and endothelial cells may be critical targets of radiation. The authors hypothesize that radiation-induced damage to these cell types can be repaired by neural stem cells. They also describe the use of tumor necrosis factor alpha (TNF-alpha) and neural stem cells as a means of enhancing the effect of

  1. Galectin-1 Inhibitor OTX008 Induces Tumor Vessel Normalization and Tumor Growth Inhibition in Human Head and Neck Squamous Cell Carcinoma Models.

    Science.gov (United States)

    Koonce, Nathan A; Griffin, Robert J; Dings, Ruud P M

    2017-12-09

    Galectin-1 is a hypoxia-regulated protein and a prognostic marker in head and neck squamous cell carcinomas (HNSCC). Here we assessed the ability of non-peptidic galectin-1 inhibitor OTX008 to improve tumor oxygenation levels via tumor vessel normalization as well as tumor growth inhibition in two human HNSCC tumor models, the human laryngeal squamous carcinoma SQ20B and the human epithelial type 2 HEp-2. Tumor-bearing mice were treated with OTX008, Anginex, or Avastin and oxygen levels were determined by fiber-optics and molecular marker pimonidazole binding. Immuno-fluorescence was used to determine vessel normalization status. Continued OTX008 treatment caused a transient reoxygenation in SQ20B tumors peaking on day 14, while a steady increase in tumor oxygenation was observed over 21 days in the HEp-2 model. A >50% decrease in immunohistochemical staining for tumor hypoxia verified the oxygenation data measured using a partial pressure of oxygen (pO₂) probe. Additionally, OTX008 induced tumor vessel normalization as tumor pericyte coverage increased by approximately 40% without inducing any toxicity. Moreover, OTX008 inhibited tumor growth as effectively as Anginex and Avastin, except in the HEp-2 model where Avastin was found to suspend tumor growth. Galectin-1 inhibitor OTX008 transiently increased overall tumor oxygenation via vessel normalization to various degrees in both HNSCC models. These findings suggest that targeting galectin-1-e.g., by OTX008-may be an effective approach to treat cancer patients as stand-alone therapy or in combination with other standards of care.

  2. Dosimetric precision requirements and quantities for characterizing the response of tumors and normal tissues

    Energy Technology Data Exchange (ETDEWEB)

    Brahme, A [Karolinska Inst., Stockholm (Sweden). Dept. of Radiation Physics

    1996-08-01

    Based on simple radiobiological models the effect of the distribution of absorbed dose in therapy beams on the radiation response of tumor and normal tissue volumes are investigated. Under the assumption that the dose variation in the treated volume is small it is shown that the response of the tissue to radiation is determined mainly by the mean dose to the tumor or normal tissue volume in question. Quantitative expressions are also given for the increased probability of normal tissue complications and the decreased probability of tumor control as a function of increasing dose variations around the mean dose level to these tissues. When the dose variations are large the minimum tumor dose (to cm{sup 3} size volumes) will generally be better related to tumor control and the highest dose to significant portions of normal tissue correlates best to complications. In order not to lose more than one out of 20 curable patients (95% of highest possible treatment outcome) the required accuracy in the dose distribution delivered to the target volume should be 2.5% (1{sigma}) for a mean dose response gradient {gamma} in the range 2 - 3. For more steeply responding tumors and normal tissues even stricter requirements may be desirable. (author). 15 refs, 6 figs.

  3. Assessment of variability in cerebral vasculature for neuro-anatomical surgery planning in rodent brain

    Science.gov (United States)

    Rangarajan, J. R.; Van Kuyck, K.; Himmelreich, U.; Nuttin, B.; Maes, F.; Suetens, P.

    2011-03-01

    Clinical and pre-clinical studies show that deep brain stimulation (DBS) of targeted brain regions by neurosurgical techniques ameliorate psychiatric disorder such as anorexia nervosa. Neurosurgical interventions in preclinical rodent brain are mostly accomplished manually with a 2D atlas. Considering both the large number of animals subjected to stereotactic surgical experiments and the associated imaging cost, feasibility of sophisticated pre-operative imaging based surgical path planning and/or robotic guidance is limited. Here, we spatially normalize vasculature information and assess the intra-strain variability in cerebral vasculature for a neurosurgery planning. By co-registering and subsequently building a probabilistic vasculature template in a standard space, we evaluate the risk of a user defined electrode trajectory damaging a blood vessel on its path. The use of such a method may not only be confined to DBS therapy in small animals, but also could be readily applicable to a wide range of stereotactic small animal surgeries like targeted injection of contrast agents and cell labeling applications.

  4. The use of bispecific antibodies in tumor cell and tumor vasculature directed immunotherapy

    NARCIS (Netherlands)

    Molema, G; Kroesen, BJ; Helfrich, W; Meijer, DKF; de Leij, LFMH

    2000-01-01

    To overcome dose limiting toxicities and to increase efficacy of immunotherapy of cancer, a number of strategies are under development for selectively redirecting effector cells/molecules towards tumor cells. Many of these strategies exploit the specificity of tumor associated antigen recognition by

  5. Quantifying the effects of antiangiogenic and chemotherapy drug combinations on drug delivery and treatment efficacy.

    Science.gov (United States)

    Yonucu, Sirin; Yιlmaz, Defne; Phipps, Colin; Unlu, Mehmet Burcin; Kohandel, Mohammad

    2017-09-01

    Tumor-induced angiogenesis leads to the development of leaky tumor vessels devoid of structural and morphological integrity. Due to angiogenesis, elevated interstitial fluid pressure (IFP) and low blood perfusion emerge as common properties of the tumor microenvironment that act as barriers for drug delivery. In order to overcome these barriers, normalization of vasculature is considered to be a viable option. However, insight is needed into the phenomenon of normalization and in which conditions it can realize its promise. In order to explore the effect of microenvironmental conditions and drug scheduling on normalization benefit, we build a mathematical model that incorporates tumor growth, angiogenesis and IFP. We administer various theoretical combinations of antiangiogenic agents and cytotoxic nanoparticles through heterogeneous vasculature that displays a similar morphology to tumor vasculature. We observe differences in drug extravasation that depend on the scheduling of combined therapy; for concurrent therapy, total drug extravasation is increased but in adjuvant therapy, drugs can penetrate into deeper regions of tumor.

  6. The expression of Egfl7 in human normal tissues and epithelial tumors.

    Science.gov (United States)

    Fan, Chun; Yang, Lian-Yue; Wu, Fan; Tao, Yi-Ming; Liu, Lin-Sen; Zhang, Jin-Fan; He, Ya-Ning; Tang, Li-Li; Chen, Guo-Dong; Guo, Lei

    2013-04-23

    To investigate the expression of Egfl7 in normal adult human tissues and human epithelial tumors.
 RT-PCR and Western blot were employed to detect Egfl7 expression in normal adult human tissues and 10 human epithelial tumors including hepatocellular carcinoma (HCC), lung cancer, breast cancer, prostate cancer, colorectal cancer, gastric cancer, esophageal cancer, malignant glioma, ovarian cancer and renal cancer. Immunohistochemistry and cytoimmunofluorescence were subsequently used to determine the localization of Egfl7 in human epithelial tumor tissues and cell lines. ELISA was also carried out to examine the serum Egfl7 levels in cancer patients. In addition, correlations between Egfl7 expression and clinicopathological features as well as prognosis of HCC and breast cancer were also analyzed on the basis of immunohistochemistry results.
 Egfl7 was differentially expressed in 19 adult human normal tissues and was overexpressed in all 10 human epithelial tumor tissues. The serum Egfl7 level was also significantly elevated in cancer patients. The increased Egfl7 expression in HCC correlated with vein invasion, absence of capsule formation, multiple tumor nodes and poor prognosis. Similarly, upregulation of Egfl7 in breast cancer correlated strongly with TNM stage, lymphatic metastasis, estrogen receptor positivity, Her2 positivity and poor prognosis. 
 Egfl7 is significantly upregulated in human epithelial tumor tissues, suggesting Egfl7 to be a potential biomarker for human epithelial tumors, especially HCC and breast cancer.

  7. Overexpression of the duffy antigen receptor for chemokines (DARC) by NSCLC tumor cells results in increased tumor necrosis

    International Nuclear Information System (INIS)

    Addison, Christina L; Belperio, John A; Burdick, Marie D; Strieter, Robert M

    2004-01-01

    The Duffy antigen receptor for chemokines (DARC) is known to be a promiscuous chemokine receptor that binds a variety of CXC and CC chemokines in the absence of any detectable signal transduction events. Within the CXC group of chemokines, DARC binds the angiogenic CXC chemokines including IL-8 (CXCL8), GROα (CXCL1) and ENA-78 (CXCL5), all of which have previously been shown to be important in non-small cell lung carcinoma (NSCLC) tumor growth. We hypothesized that overexpression of DARC by a NSCLC tumor cell line would result in the binding of the angiogenic ELR+ CXC chemokines by the tumor cells themselves, and thus interfere with the stimulation of endothelial cells and induction of angiogenesis by the tumor cell-derived angiogenic chemokines. NSCLC tumor cells that constitutively expressed DARC were generated and their growth characteristics were compared to control transfected cells in vitro and in vivo in SCID animals. We found that tumors derived from DARC-expressing cells were significantly larger in size than tumors derived from control-transfected cells. However, upon histological examination we found that DARC-expressing tumors had significantly more necrosis and decreased tumor cellularity, as compared to control tumors. Expression of DARC by NSCLC cells was also associated with a decrease in tumor-associated vasculature and a reduction in metastatic potential. The expression of DARC in the context of NSCLC tumors may act as a chemokine decoy receptor and interferes with normal tumor growth and chemokine-induced tumor neovascularization

  8. Tumor control and normal tissue toxicity: The two faces of radiotherapy

    NARCIS (Netherlands)

    van Oorschot, B.

    2016-01-01

    This thesis discusses the two contrasting sides of radiotherapy: tumor control and normal tissue toxicity. On one hand, radiation treatment aims to target the tumor with the highest possible radiation dose, inducing as much lethal DNA damage as possible. On the other hand however, escalation of the

  9. Genetic determinants of hyaloid and retinal vasculature in zebrafish

    Directory of Open Access Journals (Sweden)

    Hyde David R

    2007-10-01

    Full Text Available Abstract Background The retinal vasculature is a capillary network of blood vessels that nourishes the inner retina of most mammals. Developmental abnormalities or microvascular complications in the retinal vasculature result in severe human eye diseases that lead to blindness. To exploit the advantages of zebrafish for genetic, developmental and pharmacological studies of retinal vasculature, we characterised the intraocular vasculature in zebrafish. Results We show a detailed morphological and developmental analysis of the retinal blood supply in zebrafish. Similar to the transient hyaloid vasculature in mammalian embryos, vessels are first found attached to the zebrafish lens at 2.5 days post fertilisation. These vessels progressively lose contact with the lens and by 30 days post fertilisation adhere to the inner limiting membrane of the juvenile retina. Ultrastructure analysis shows these vessels to exhibit distinctive hallmarks of mammalian retinal vasculature. For example, smooth muscle actin-expressing pericytes are ensheathed by the basal lamina of the blood vessel, and vesicle vacuolar organelles (VVO, subcellular mediators of vessel-retinal nourishment, are present. Finally, we identify 9 genes with cell membrane, extracellular matrix and unknown identity that are necessary for zebrafish hyaloid and retinal vasculature development. Conclusion Zebrafish have a retinal blood supply with a characteristic developmental and adult morphology. Abnormalities of these intraocular vessels are easily observed, enabling application of genetic and chemical approaches in zebrafish to identify molecular regulators of hyaloid and retinal vasculature in development and disease.

  10. Changes in regional blood flow of normal and tumor tissues following hyperthermia and combined X-ray irradiation

    International Nuclear Information System (INIS)

    Suga, Kazuyoshi

    1986-01-01

    Hyperthermia and X-ray irradiation were given to Ehrlich tumors, which were induced in the ventrum of the right hind foot of ICR mice, and to the normal tissues. Their effects on regional blood flow were examined using Xe-133 local clearance method. Blood flow of the normal tissues remained unchanged by heating at 41 deg C for 30 minutes, and increased by heating at 43 deg C and 45 deg C for 30 minutes. On the contrary, blood flow of the tumors decreased with an increase in temperature. When hypertermia (43 deg C for 30 minutes) was combined with irradiation of 30 Gy, decrease in blood flow of the tumors was greater than the normal tissues at 24 hours. Blood flow of the tumors depended on tumor size. The decreased amount of blood flow by hyperthermia was more for tumors > 250 mm 3 than tumors 3 . Blood flow ratios of tumor to normal tissues were also smaller in tumors > 250 mm 3 than tumors 3 . In the case of tumors 3 , blood flow tended to return to normal at 3 hr after heating at 43 deg C for 30 min. However, this was not seen in tumors > 250 mm 3 . (Namekawa, K.)

  11. Quantitative imaging of tumor vasculature using multispectral optoacoustic tomography (MSOT)

    Science.gov (United States)

    Tomaszewski, Michal R.; Quiros-Gonzalez, Isabel; Joseph, James; Bohndiek, Sarah E.

    2017-03-01

    The ability to evaluate tumor oxygenation in the clinic could indicate prognosis and enable treatment monitoring, since oxygen deficient cancer cells are often more resistant to chemotherapy and radiotherapy. MultiSpectral Optoacoustic Tomography (MSOT) is a hybrid technique combining the high contrast of optical imaging with spatial resolution and penetration depth similar to ultrasound. We hypothesized that MSOT could reveal both tumor vascular density and function based on modulation of blood oxygenation. We performed MSOT on nude mice (n=8) bearing subcutaneous xenograft PC3 tumors using an inVision 256 (iThera Medical). The mice were maintained under inhalation anesthesia during imaging and respired oxygen content was modified from 21% to 100% and back. After imaging, Hoechst 33348 was injected to indicate vascular perfusion and permeability. Tumors were then extracted for histopathological analysis and fluorescence microscopy. The acquired data was analyzed to extract a bulk measurement of blood oxygenation (SO2MSOT) from the whole tumor using different approaches. The tumors were also automatically segmented into 5 regions to investigate the effect of depth on SO2MSOT. Baseline SO2MSOT values at 21% and 100% oxygen breathing showed no relationship with ex vivo measures of vascular density or function, while the change in SO2MSOT showed a strong negative correlation to Hoechst intensity (r=- 0.92, p=0.0016). Tumor voxels responding to oxygen challenge were spatially heterogeneous. We observed a significant drop in SO2 MSOT value with tumor depth following a switch of respiratory gas from air to oxygen (0.323+/-0.017 vs. 0.11+/-0.05, p=0.009 between 0 and 1.5mm depth), but no such effect for air breathing (0.265+/-0.013 vs. 0.19+/-0.04, p=0.14 between 0 and 1.5mm depth). Our results indicate that in subcutaneous prostate tumors, baseline SO2MSOT levels do not correlate to tumor vascular density or function while the magnitude of the response to oxygen

  12. Plasmin-driven fibrinolysis facilitates skin tumor growth in a gender-dependent manner

    DEFF Research Database (Denmark)

    Hald, Andreas; Eickhardt, Hanne; Maerkedahl, Rasmus Baadsgaard

    2012-01-01

    deficiency was due to thrombosis and lost patency of the tumor vasculature, resulting in tumor necrosis. The connection between plasmin-dependent fibrinolysis, vascular patency, and tumor growth was further substantiated as the effect of plasminogen deficiency on tumor growth could be reverted...

  13. Germline Variants in Targeted Tumor Sequencing Using Matched Normal DNA.

    Science.gov (United States)

    Schrader, Kasmintan A; Cheng, Donavan T; Joseph, Vijai; Prasad, Meera; Walsh, Michael; Zehir, Ahmet; Ni, Ai; Thomas, Tinu; Benayed, Ryma; Ashraf, Asad; Lincoln, Annie; Arcila, Maria; Stadler, Zsofia; Solit, David; Hyman, David M; Hyman, David; Zhang, Liying; Klimstra, David; Ladanyi, Marc; Offit, Kenneth; Berger, Michael; Robson, Mark

    2016-01-01

    Tumor genetic sequencing identifies potentially targetable genetic alterations with therapeutic implications. Analysis has concentrated on detecting tumor-specific variants, but recognition of germline variants may prove valuable as well. To estimate the burden of germline variants identified through routine clinical tumor sequencing. Patients with advanced cancer diagnoses eligible for studies of targeted agents at Memorial Sloan Kettering Cancer Center are offered tumor-normal sequencing with MSK-IMPACT, a 341-gene panel. We surveyed the germline variants seen in 187 overlapping genes with Mendelian disease associations in 1566 patients who had undergone tumor profiling between March and October 2014. The number of presumed pathogenic germline variants (PPGVs) and variants of uncertain significance per person in 187 genes associated with single-gene disorders and the proportions of individuals with PPGVs in clinically relevant gene subsets, in genes consistent with known tumor phenotypes, and in genes with evidence of second somatic hits in their tumors. The mean age of the 1566 patients was 58 years, and 54% were women. Presumed pathogenic germline variants in known Mendelian disease-associated genes were identified in 246 of 1566 patients (15.7%; 95% CI, 14.0%-17.6%), including 198 individuals with mutations in genes associated with cancer susceptibility. Germline findings in cancer susceptibility genes were concordant with the individual's cancer type in only 81 of 198 cases (40.9%; 95% CI, 34.3%-47.9%). In individuals with PPGVs retained in the tumor, somatic alteration of the other allele was seen in 39 of 182 cases (21.4%; 95% CI, 16.1%-28.0%), of which 13 cases did not show a known correlation of the germline mutation and a known syndrome. Mutations in non-cancer-related Mendelian disease genes were seen in 55 of 1566 cases (3.5%; 95% CI, 27.1%-45.4%). Almost every individual had more than 1 variant of uncertain significance (1565 of 1566 patients; 99

  14. Strategies for improving chemotherapeutic delivery to solid tumors mediated by vascular permeability modulation

    Science.gov (United States)

    Roy Chaudhuri, Tista

    An essential mode of distribution of blood-borne chemotherapeutic agents within a solid tumor is via the micro-circulation. Poor tumor perfusion, because of a lack of functional vasculature or a lack of microvessels, as well as low tumor vascular permeability, can prevent adequate deposition of even low molecular-weight agents into the tumor. The modulation of tumor vascular function and density can provides numerous strategies for improving intratumor deposition of chemotherapeutic agents. Here we investigated strategies to improve drug delivery to two tumor types that share in common poor drug delivery, but differ in the underlying cause. First, in an angiogenesis-driven brain tumor model of Glioblastoma, the vascular permeability barrier, along with poorly-functional vasculature, hinders drug delivery. A strategy of nanoparticle-based tumor 'priming' to attack the vascular permeability barrier, employing sterically stabilized liposomal doxorubicin (SSL-DXR), was investigated. Functional and histological evaluation of tumor vasculature revealed that after an initial period of depressed vascular permeability and vascular pruning 3--4 days after SSL-DXR administration, vascular permeability and perfusion were restored and then elevated after 5--7 days. As a result of tumor priming, deposition of subsequently-administered nanoparticles was enhanced, and the efficacy of temozolomide (TMZ), if administered during the window of elevated permeability, was increased. The sequenced regimen resulted in a persistent reduction of the tumor proliferative index and a 40% suppression of tumor volume, compared to animals that received both agents simultaneously. Second, in a hypovascular, pancreatic ductal adenocarcinoma model, disruption of tumor-stromal communication via sonic hedgehog (sHH) signaling pathway inhibition mediated an indirect vascular proliferation and a more than 2-fold increase in intratumor nanoparticle deposition. Enhanced delivery of SSL-DXR in tumors pre

  15. Hypoxia and hydrogen sulfide differentially affect normal and tumor-derived vascular endothelium

    Directory of Open Access Journals (Sweden)

    Serena Bianco

    2017-08-01

    Full Text Available Background: endothelial cells play a key role in vessels formation both under physiological and pathological conditions. Their behavior is influenced by blood components including gasotransmitters (H2S, NO and CO. Tumor cells are subjected to a cyclic shift between pro-oxidative and hypoxic state and, in this scenario, H2S can be both cytoprotective and detrimental depending on its concentration. H2S effects on tumors onset and development is scarcely studied, particularly concerning tumor angiogenesis. We previously demonstrated that H2S is proangiogenic for tumoral but not for normal endothelium and this may represent a target for antiangiogenic therapeutical strategies. Methods: in this work, we investigate cell viability, migration and tubulogenesis on human EC derived from two different tumors, breast and renal carcinoma (BTEC and RTEC, compared to normal microvascular endothelium (HMEC under oxidative stress, hypoxia and treatment with exogenous H2S. Results: all EC types are similarly sensitive to oxidative stress induced by hydrogen peroxide; chemical hypoxia differentially affects endothelial viability, that results unaltered by real hypoxia. H2S neither affects cell viability nor prevents hypoxia and H2O2-induced damage. Endothelial migration is enhanced by hypoxia, while tubulogenesis is inhibited for all EC types. H2S acts differentially on EC migration and tubulogenesis. Conclusions: these data provide evidence for a great variability of normal and altered endothelium in response to the environmental conditions. Keywords: Hydrogen sulfide, Human microvascular endothelial cells, Human breast carcinoma-derived EC, Human renal carcinoma-derived EC, Tumor angiogenesis

  16. The combined effect of diabetes and ionising radiation on the retinal vasculature of the rat

    International Nuclear Information System (INIS)

    Gardiner, T.A.; Amoaku, W.M.K.; Archer, D.B.

    1993-01-01

    The clinical impression that pre-existing diabetes exacerbates radiation injury to the retinal vasculature was studied in STZ diabetic rats. Half of 2 groups of streptozotocin (STZ)-induced diabetic rats and 1 group of normal animals had their right eyes irradiated with 1000 cGy of 90 KVP x-rays. The prevalence of acellular capillaries in trypsin digests of the retinal vasculature was quantified for each of the 6 groups of animals at 6.5 months post-irradiation. The prevalence of acellular capillaries in both non-irradiated diabetic groups was significantly higher than in controls while the irradiated animals in each of the three main categories showed a statistically significant increase compared to their non-irradiated equivalents. (author)

  17. Liposomal cancer therapy: exploiting tumor characteristics

    DEFF Research Database (Denmark)

    Kaasgaard, Thomas; Andresen, Thomas Lars

    2010-01-01

    an overview of current strategies for improving the different stages of liposomal cancer therapy, which involve transporting drug-loaded liposomes through the bloodstream, increasing tumor accumulation, and improving drug release and cancer cell uptake after accumulation at the tumor target site. What...... the reader will gain: The review focuses on strategies that exploit characteristic features of solid tumors, such as abnormal vasculature, overexpression of receptors and enzymes, as well as acidic and thiolytic characteristics of the tumor microenvironment. Take home message: It is concluded that the design...

  18. Improved Intratumoral Oxygenation Through Vascular Normalization Increases Glioma Sensitivity to Ionizing Radiation

    International Nuclear Information System (INIS)

    McGee, Mackenzie C.; Hamner, J. Blair; Williams, Regan F.; Rosati, Shannon F.; Sims, Thomas L.; Ng, Catherine Y.; Gaber, M. Waleed; Calabrese, Christopher; Wu Jianrong; Nathwani, Amit C.; Duntsch, Christopher; Merchant, Thomas E.; Davidoff, Andrew M.

    2010-01-01

    Purpose: Ionizing radiation, an important component of glioma therapy, is critically dependent on tumor oxygenation. However, gliomas are notable for areas of necrosis and hypoxia, which foster radioresistance. We hypothesized that pharmacologic manipulation of the typically dysfunctional tumor vasculature would improve intratumoral oxygenation and, thus, the antiglioma efficacy of ionizing radiation. Methods and Materials: Orthotopic U87 xenografts were treated with either continuous interferon-β (IFN-β) or bevacizumab, alone, or combined with cranial irradiation (RT). Tumor growth was assessed by quantitative bioluminescence imaging; the tumor vasculature using immunohistochemical staining, and tumor oxygenation using hypoxyprobe staining. Results: Both IFN-β and bevaziumab profoundly affected the tumor vasculature, albeit with different cellular phenotypes. IFN-β caused a doubling in the percentage of area of perivascular cell staining, and bevacizumab caused a rapid decrease in the percentage of area of endothelial cell staining. However, both agents increased intratumoral oxygenation, although with bevacizumab, the effect was transient, being lost by 5 days. Administration of IFN-β or bevacizumab before RT was significantly more effective than any of the three modalities as monotherapy or when RT was administered concomitantly with IFN-β or bevacizumab or 5 days after bevacizumab. Conclusion: Bevacizumab and continuous delivery of IFN-β each induced significant changes in glioma vascular physiology, improving intratumoral oxygenation and enhancing the antitumor activity of ionizing radiation. Additional investigation into the use and timing of these and other agents that modify the vascular phenotype, combined with RT, is warranted to optimize cytotoxic activity.

  19. III. Cellular ultrastructures in situ as key to understanding tumor energy metabolism: biological significance of the Warburg effect [v1; ref status: indexed, http://f1000r.es/a0

    Directory of Open Access Journals (Sweden)

    Halina Witkiewicz

    2013-01-01

    Full Text Available Despite the universality of metabolic pathways, malignant cells were found to have their metabolism reprogrammed to generate energy by glycolysis even under normal oxygen concentrations (the Warburg effect. Therefore, the pathway energetically 18 times less efficient than oxidative phosphorylation was implicated to match increased energy requirements of growing tumors. The paradox was explained by an abnormally high rate of glucose uptake, assuming unlimited availability of substrates for tumor growth in vivo. However, ultrastructural analysis of tumor vasculature morphogenesis showed that the growing tissue regions did not have continuous blood supply and intermittently depended on autophagy for survival. Erythrogenic autophagy, and resulting ATP generation by glycolysis, appeared critical to initiating vasculature formation where it was missing. This study focused on ultrastructural features that reflected metabolic switch from aerobic to anaerobic. Morphological differences between and within different types of cells were evident in tissue sections. In cells undergoing nucleo-cytoplasmic conversion into erythrosomes (erythrogenesis, gradual changes led to replacing mitochondria with peroxisomes, through an intermediate form connected to endoplasmic reticulum. Those findings related to the issue of peroxisome biogenesis and to the phenomenon of hemogenic endothelium. Mitochondria were compacted also during mitosis. In vivo, cells that lost and others that retained capability to use oxygen coexisted side-by-side; both types were important for vasculature morphogenesis and tissue growth. Once passable, the new vasculature segment could deliver external oxygen and nutrients. Nutritional and redox status of microenvironment had similar effect on metabolism of malignant and non-malignant cells demonstrating the necessity to maintain structure-energy equivalence in all living cells. The role of glycolysis in initiating vasculature formation, and in

  20. Cryospectrophotometric determination of tumor intravascular oxyhemoglobin saturations: dependence on vascular geometry and tumor growth.

    Science.gov (United States)

    Fenton, B M; Rofstad, E K; Degner, F L; Sutherland, R M

    1988-12-21

    To delineate the complex relationships between overall tumor oxygenation and vascular configuration, intravascular oxyhemoglobin (HbO2) saturation distributions were measured with cryospectrophotometric techniques. Four factors related to vascular morphometry and tumor growth were evaluated: a) vessel diameter, b) distance of vessel from the tumor surface, c) tumor volume, and d) vascular density. To measure intertumor heterogeneity, two murine sarcomas (RIF-1 and KHT) and two human ovarian carcinoma xenografts (OWI and MLS) were utilized. In contrast to skeletal muscle, a preponderance of very low HbO2 saturations was observed for both large and small tumors of all lines. Saturations up to about 90% were also generally present, however, even in very large tumors. Variations in vascular configuration were predominantly tumor-line dependent rather than due to inherent characteristics of the host vasculature, and widely disparate HbO2 distributions were found for alternate lines implanted in identical host mice. Although peripheral saturations remained fairly constant with tumor growth, HbO2 values were markedly lower for vessels nearer the tumor center and further decreased with increasing tumor volume. HbO2 saturations did not change substantially with increasing vascular density (except for KHT tumors), although density did decrease with increasing distance from tumor surface. Combined effects of vessel diameter, tumor volume, and vessel location on HbO2 saturations were complex and varied markedly with both tumor line and vessel class. For specific classes, HbO2 distributions correlated closely with radiobiological hypoxic fractions, i.e., for tumor lines in which hypoxic fraction increased substantially with tumor volume, corresponding HbO2 values decreased, while for lines in which hypoxic fraction remained constant, HbO2 values also were unchanged. Although these trends may also be a function of differing oxygen consumption rates between tumor lines

  1. Inhibition of Vascular Endothelial Growth Factor A and Hypoxia-Inducible Factor 1α Maximizes the Effects of Radiation in Sarcoma Mouse Models Through Destruction of Tumor Vasculature

    International Nuclear Information System (INIS)

    Lee, Hae-June; Yoon, Changhwan; Park, Do Joong; Kim, Yeo-Jung; Schmidt, Benjamin; Lee, Yoon-Jin; Tap, William D.; Eisinger-Mathason, T.S. Karin; Choy, Edwin; Kirsch, David G.; Simon, M. Celeste

    2015-01-01

    Purpose: To examine the addition of genetic or pharmacologic inhibition of hypoxia-inducible factor 1α (HIF-1α) to radiation therapy (RT) and vascular endothelial growth factor A (VEGF-A) inhibition (ie trimodality therapy) for soft-tissue sarcoma. Methods and Materials: Hypoxia-inducible factor 1α was inhibited using short hairpin RNA or low metronomic doses of doxorubicin, which blocks HIF-1α binding to DNA. Trimodality therapy was examined in a mouse xenograft model and a genetically engineered mouse model of sarcoma, as well as in vitro in tumor endothelial cells (ECs) and 4 sarcoma cell lines. Results: In both mouse models, any monotherapy or bimodality therapy resulted in tumor growth beyond 250 mm 3 within the 12-day treatment period, but trimodality therapy with RT, VEGF-A inhibition, and HIF-1α inhibition kept tumors at <250 mm 3 for up to 30 days. Trimodality therapy on tumors reduced HIF-1α activity as measured by expression of nuclear HIF-1α by 87% to 95% compared with RT alone, and cytoplasmic carbonic anhydrase 9 by 79% to 82%. Trimodality therapy also increased EC-specific apoptosis 2- to 4-fold more than RT alone and reduced microvessel density by 75% to 82%. When tumor ECs were treated in vitro with trimodality therapy under hypoxia, there were significant decreases in proliferation and colony formation and increases in DNA damage (as measured by Comet assay and γH2AX expression) and apoptosis (as measured by cleaved caspase 3 expression). Trimodality therapy had much less pronounced effects when 4 sarcoma cell lines were examined in these same assays. Conclusions: Inhibition of HIF-1α is highly effective when combined with RT and VEGF-A inhibition in blocking sarcoma growth by maximizing DNA damage and apoptosis in tumor ECs, leading to loss of tumor vasculature

  2. Human endothelial precursor cells express tumor endothelial marker 1/endosialin/CD248.

    Science.gov (United States)

    Bagley, Rebecca G; Rouleau, Cecile; St Martin, Thia; Boutin, Paula; Weber, William; Ruzek, Melanie; Honma, Nakayuki; Nacht, Mariana; Shankara, Srinivas; Kataoka, Shiro; Ishida, Isao; Roberts, Bruce L; Teicher, Beverly A

    2008-08-01

    Angiogenesis occurs during normal physiologic processes as well as under pathologic conditions such as tumor growth. Serial analysis of gene expression profiling revealed genes [tumor endothelial markers (TEM)] that are overexpressed in tumor endothelial cells compared with normal adult endothelial cells. Because blood vessel development of malignant tumors under certain conditions may include endothelial precursor cells (EPC) recruited from bone marrow, we investigated TEM expression in EPC. The expression of TEM1 or endosialin (CD248) and other TEM has been discovered in a population of vascular endothelial growth factor receptor 2+/CD31+/CD45-/VE-cadherin+ EPC derived from human CD133+/CD34+ cells. EPC share some properties with fully differentiated endothelial cells from normal tissue, yet reverse transcription-PCR and flow cytometry reveal that EPC express higher levels of endosialin at the molecular and protein levels. The elevated expression of endosialin in EPC versus mature endothelial cells suggests that endosialin is involved in the earlier stages of tumor angiogenesis. Anti-endosialin antibodies inhibited EPC migration and tube formation in vitro. In vivo, immunohistochemistry indicated that human EPC continued to express endosialin protein in a Matrigel plug angiogenesis assay established in nude mice. Anti-endosialin antibodies delivered systemically at 25 mg/kg were also able to inhibit circulating murine EPC in nude mice bearing s.c. SKNAS tumors. EPC and bone marrow-derived cells have been shown previously to incorporate into malignant blood vessels in some instances, yet they remain controversial in the field. The data presented here on endothelial genes that are up-regulated in tumor vasculature and in EPC support the hypothesis that the angiogenesis process in cancer can involve EPC.

  3. Imaging Tumor Vasculature Noninvasively with Positron Emission Tomography and RGD Peptides Labeled with Copper 64 Using the Bifunctonal Chelates DOTA, Oxo-DO3A. and PCTA

    Directory of Open Access Journals (Sweden)

    Donald T.T. Yapp

    2013-06-01

    Full Text Available Two novel bifunctional chelates, 3,6,9,15-tetraazabicyclo[9.3.1]pentadeca-1(15,11,13-triene-3,6,9-triacetic acid (PCTA and 1-oxa-4,7,10-triazacyclododecane-4,7,10-triacetic acid (Oxo-DO3A, were found to radiolabel antibodies with copper 64 (64Cu well for positron emission tomography (PET. In this study, the same chelators were used to radiolabel peptides with 64Cu for PET imaging of angiogenesis. PCTA, Oxo-DO3A, and 1,4,7,10-tetraazacyclododecane-N,N‘,N“,N”’-tetraacetic acid (DOTA were conjugated to cyclic-(RGDyK, and their binding affinities were confirmed. Conditions for 64Cu radiolabeling were optimized for maximum yield and specific activity. The in vitro stability of the radiolabeled compounds was challenged with serum incubation. PET studies were carried out in a non-αvβ3-expressing tumor model to evaluate the compounds' specificity for proliferating tumor vasculature and their in vivo pharmacokinetics. The PCTA and Oxo-DO3A bioconjugates were labeled with 64Cu at higher effective specific activity and radiochemical yield than the DOTA bioconjugate. In the imaging studies, all the 64Cu bioconjugates could be used to visualize the tumor and the radiotracer uptake was blocked with cyclic-(RGDyK. Target uptake of each bioconjugate was similar, but differences in other tissues were observed. 64Cu-PCTA-RGD showed the best clearance from nontarget tissue and the highest tumor to nontarget ratios. PCTA was the most promising bifunctional chelate for 64Cu peptide imaging and warrants further investigation.

  4. Canine tumor and normal tissue response to heat and radiation

    International Nuclear Information System (INIS)

    Gillette, E.L.; McChesney, S.L.

    1985-01-01

    Oral squamous cell carcinomas of dogs were treated with either irradiation alone or combined with hyperthermia. Tumor control was assessed as no evidence of disease one year following treatment. Dogs were randomized to variable radiation doses which were given in ten fractions three times a week for three weeks. Heat was given three hours after the first and third radiation dose each week for seven treatments. The attempt was made to achieve a minimum tumor temperature of 42 0 C for thirty minutes with a maximum normal tissue temperature of 40 0 C. It was usually possible to selectively heat tumors. The TCD 50 for irradiation alone was about 400 rads greater than for heat plus irradiation. The dose response curve for heat plus radiation was much steeper than for radiation alone indicating less heterogeneity of tumor response. That also implies a much greater effectiveness of radiation combined with heat at higher tumor control probabilities. Early necrosis caused by heating healed with conservative management. No increase in late radiation necrosis was observed

  5. Disrupting established tumor blood vessels: an emerging therapeutic strategy for cancer.

    Science.gov (United States)

    McKeage, Mark J; Baguley, Bruce C

    2010-04-15

    The unique characteristics of tumor vasculature represent an attractive target that may be exploited by vascular-targeting anticancer agents. A promising strategy involves the selective disruption of established tumor blood vessels by tumor-vascular disrupting agents (tumor-VDAs), which exhibit antivascular activity, resulting in inhibition of tumor blood flow and extensive necrosis within the tumor core. The tumor-VDA class can be subdivided into flavonoid compounds, which are related to flavone acetic acid, and tubulin-binding compounds. ASA404, of the flavonoid class, is the most advanced tumor-VDA in clinical development and has been evaluated preclinically and in several phase 1 and phase 2 studies. Preclinical studies have demonstrated the selective apoptosis of tumor endothelial cells and the inhibition of tumor blood flow. Synergistic activity was observed with ASA404 and with several chemotherapeutic agents, particularly taxanes. In clinical trials, compared with chemotherapy alone, ASA404 was tolerated well and produced improved activity in patients with nonsmall cell lung cancer when combined with paclitaxel and carboplatin. Phase 3 clinical trials are ongoing. Selectively targeting established tumor vasculature with tumor-VDAs represents a promising and innovative approach to improving the efficacy of standard anticancer therapies. (c) 2010 American Cancer Society.

  6. Tumor blood vessel "normalization" improves the therapeutic efficacy of boron neutron capture therapy (BNCT) in experimental oral cancer

    Energy Technology Data Exchange (ETDEWEB)

    D. W. Nigg

    2012-01-01

    We previously demonstrated the efficacy of BNCT mediated by boronophenylalanine (BPA) to treat tumors in a hamster cheek pouch model of oral cancer with no normal tissue radiotoxicity and moderate, albeit reversible, mucositis in precancerous tissue around treated tumors. It is known that boron targeting of the largest possible proportion of tumor cells contributes to the success of BNCT and that tumor blood vessel normalization improves drug delivery to the tumor. Within this context, the aim of the present study was to evaluate the effect of blood vessel normalization on the therapeutic efficacy and potential radiotoxicity of BNCT in the hamster cheek pouch model of oral cancer.

  7. Tumor blood vessel 'normalization' improves the therapeutic efficacy of boron neutron capture therapy (BNCT) in experimental oral cancer

    International Nuclear Information System (INIS)

    Nigg, D.W.

    2012-01-01

    We previously demonstrated the efficacy of BNCT mediated by boronophenylalanine (BPA) to treat tumors in a hamster cheek pouch model of oral cancer with no normal tissue radiotoxicity and moderate, albeit reversible, mucositis in precancerous tissue around treated tumors. It is known that boron targeting of the largest possible proportion of tumor cells contributes to the success of BNCT and that tumor blood vessel normalization improves drug delivery to the tumor. Within this context, the aim of the present study was to evaluate the effect of blood vessel normalization on the therapeutic efficacy and potential radiotoxicity of BNCT in the hamster cheek pouch model of oral cancer.

  8. Tumor-derived circulating endothelial cell clusters in colorectal cancer.

    KAUST Repository

    Cima, Igor; Kong, Say Li; Sengupta, Debarka; Tan, Iain B; Phyo, Wai Min; Lee, Daniel; Hu, Min; Iliescu, Ciprian; Alexander, Irina; Goh, Wei Lin; Rahmani, Mehran; Suhaimi, Nur-Afidah Mohamed; Vo, Jess H; Tai, Joyce A; Tan, Joanna H; Chua, Clarinda; Ten, Rachel; Lim, Wan Jun; Chew, Min Hoe; Hauser, Charlotte; van Dam, Rob M; Lim, Wei-Yen; Prabhakar, Shyam; Lim, Bing; Koh, Poh Koon; Robson, Paul; Ying, Jackie Y; Hillmer, Axel M; Tan, Min-Han

    2016-01-01

    Clusters of tumor cells are often observed in the blood of cancer patients. These structures have been described as malignant entities for more than 50 years, although their comprehensive characterization is lacking. Contrary to current consensus, we demonstrate that a discrete population of circulating cell clusters isolated from the blood of colorectal cancer patients are not cancerous but consist of tumor-derived endothelial cells. These clusters express both epithelial and mesenchymal markers, consistent with previous reports on circulating tumor cell (CTC) phenotyping. However, unlike CTCs, they do not mirror the genetic variations of matched tumors. Transcriptomic analysis of single clusters revealed that these structures exhibit an endothelial phenotype and can be traced back to the tumor endothelium. Further results show that tumor-derived endothelial clusters do not form by coagulation or by outgrowth of single circulating endothelial cells, supporting a direct release of clusters from the tumor vasculature. The isolation and enumeration of these benign clusters distinguished healthy volunteers from treatment-naïve as well as pathological early-stage (≤IIA) colorectal cancer patients with high accuracy, suggesting that tumor-derived circulating endothelial cell clusters could be used as a means of noninvasive screening for colorectal cancer. In contrast to CTCs, tumor-derived endothelial cell clusters may also provide important information about the underlying tumor vasculature at the time of diagnosis, during treatment, and throughout the course of the disease.

  9. Tumor-derived circulating endothelial cell clusters in colorectal cancer.

    KAUST Repository

    Cima, Igor

    2016-06-29

    Clusters of tumor cells are often observed in the blood of cancer patients. These structures have been described as malignant entities for more than 50 years, although their comprehensive characterization is lacking. Contrary to current consensus, we demonstrate that a discrete population of circulating cell clusters isolated from the blood of colorectal cancer patients are not cancerous but consist of tumor-derived endothelial cells. These clusters express both epithelial and mesenchymal markers, consistent with previous reports on circulating tumor cell (CTC) phenotyping. However, unlike CTCs, they do not mirror the genetic variations of matched tumors. Transcriptomic analysis of single clusters revealed that these structures exhibit an endothelial phenotype and can be traced back to the tumor endothelium. Further results show that tumor-derived endothelial clusters do not form by coagulation or by outgrowth of single circulating endothelial cells, supporting a direct release of clusters from the tumor vasculature. The isolation and enumeration of these benign clusters distinguished healthy volunteers from treatment-naïve as well as pathological early-stage (≤IIA) colorectal cancer patients with high accuracy, suggesting that tumor-derived circulating endothelial cell clusters could be used as a means of noninvasive screening for colorectal cancer. In contrast to CTCs, tumor-derived endothelial cell clusters may also provide important information about the underlying tumor vasculature at the time of diagnosis, during treatment, and throughout the course of the disease.

  10. Differential Expression of Cytochrome P450 Enzymes in Normal and Tumor Tissues from Childhood Rhabdomyosarcoma

    Science.gov (United States)

    Molina-Ortiz, Dora; Camacho-Carranza, Rafael; González-Zamora, José Francisco; Shalkow-Kalincovstein, Jaime; Cárdenas-Cardós, Rocío; Ností-Palacios, Rosario; Vences-Mejía, Araceli

    2014-01-01

    Intratumoral expression of genes encoding Cytochrome P450 enzymes (CYP) might play a critical role not only in cancer development but also in the metabolism of anticancer drugs. The purpose of this study was to compare the mRNA expression patterns of seven representative CYPs in paired tumor and normal tissue of child patients with rabdomyosarcoma (RMS). Using real time quantitative RT-PCR, the gene expression pattern of CYP1A1, CYP1A2, CYP1B1, CYP2E1, CYP2W1, CYP3A4, and CYP3A5 were analyzed in tumor and adjacent non-tumor tissues from 13 child RMS patients. Protein concentration of CYPs was determined using Western blot. The expression levels were tested for correlation with the clinical and pathological data of the patients. Our data showed that the expression levels of CYP1A1 and CYP1A2 were negligible. Elevated expression of CYP1B1 mRNA and protein was detected in most RMS tumors and adjacent normal tissues. Most cancerous samples exhibit higher levels of both CYP3A4 and CYP3A5 compared with normal tissue samples. Expression of CYP2E1 mRNA was found to be significantly higher in tumor tissue, however no relation was found with protein levels. CYP2W1 mRNA and/or protein are mainly expressed in tumors. In conclusion, we defined the CYP gene expression profile in tumor and paired normal tissue of child patients with RMS. The overexpression of CYP2W1, CYP3A4 and CYP3A5 in tumor tissues suggests that they may be involved in RMS chemoresistance; furthermore, they may be exploited for the localized activation of anticancer prodrugs. PMID:24699256

  11. Loss of Serglycin Promotes Primary Tumor Growth and Vessel Functionality in the RIP1-Tag2 Mouse Model for Spontaneous Insulinoma Formation.

    Directory of Open Access Journals (Sweden)

    Andrew Hamilton

    Full Text Available The serglycin proteoglycan is mainly expressed by hematopoietic cells where the major function is to retain the content of storage granules and vesicles. In recent years, expression of serglycin has also been found in different forms of human malignancies and a high serglycin expression level has been correlated with a more migratory and invasive phenotype in the case of breast cancer and nasopharyngeal carcinoma. Serglycin has also been implicated in the development of the tumor vasculature in multiple myeloma and hepatocellular carcinoma where reduced expression of serglycin was correlated with a less extensive vasculature. To further investigate the contribution of serglycin to tumor development, we have used the immunocompetent RIP1-Tag2 mouse model of spontaneous insulinoma formation crossed into serglycin deficient mice. For the first time we show that serglycin-deficiency affects orthotopic primary tumor growth and tumor vascular functionality of late stage carcinomas. RIP1-Tag2 mice that lack serglycin develop larger tumors with a higher proliferative activity but unaltered apoptosis compared to normal RIP1-Tag2 mice. The absence of serglycin also enhances the tumor vessel functionality, which is better perfused than in tumors from serglycin wild type mice. The presence of the pro-angiogenic modulators vascular endothelial growth factor and hepatocyte growth factor were decreased in the serglycin deficient mice which suggests a less pro-angiogenic environment in the tumors of these animals. Taken together, we conclude that serglycin affects multiple aspects of spontaneous tumor formation, which strengthens the theory that serglycin acts as an important mediator in the formation and progression of tumors.

  12. Radiologic Assessment of Native Renal Vasculature: A Multimodality Review.

    Science.gov (United States)

    Al-Katib, Sayf; Shetty, Monisha; Jafri, Syed Mohammad A; Jafri, Syed Zafar H

    2017-01-01

    A wide range of clinically important anatomic variants and pathologic conditions may affect the renal vasculature, and radiologists have a pivotal role in the diagnosis and management of these processes. Because many of these entities may not be suspected clinically, renal artery and vein assessment is an essential application of all imaging modalities. An understanding of the normal vascular anatomy is essential for recognizing clinically important anatomic variants. An understanding of the protocols used to optimize imaging modalities also is necessary. Renal artery stenosis is the most common cause of secondary hypertension and is diagnosed by using both direct ultrasonographic (US) findings at the site of stenosis and indirect US findings distal to the stenosis. Fibromuscular dysplasia, while not as common as atherosclerosis, remains an important cause of renal artery hypertension, especially among young female individuals. Fibromuscular dysplasia also predisposes individuals to renal artery aneurysms and dissection. Although most renal artery dissections are extensions of aortic dissections, on rare occasion they occur in isolation. Renal artery aneurysms often are not suspected clinically before imaging, but they can lead to catastrophic outcomes if they are overlooked. Unlike true aneurysms, pseudoaneurysms are typically iatrogenic or posttraumatic. However, multiple small pseudoaneurysms may be seen with underlying vasculitis. Arteriovenous fistulas also are commonly iatrogenic, whereas arteriovenous malformations are developmental (ie, congenital). Both of these conditions involve a prominent feeding artery and draining vein; however, arteriovenous malformations contain a nidus of tangled vessels. Nutcracker syndrome should be suspected when there is distention of the left renal vein with abrupt narrowing as it passes posterior to the superior mesenteric artery. Filling defects in a renal vein can be due to a bland or tumor thrombus. A tumor thrombus is

  13. Radiotherapy and chemotherapy change vessel tree geometry and metastatic spread in a small cell lung cancer xenograft mouse tumor model.

    Directory of Open Access Journals (Sweden)

    Thorsten Frenzel

    Full Text Available Tumor vasculature is critical for tumor growth, formation of distant metastases and efficiency of radio- and chemotherapy treatments. However, how the vasculature itself is affected during cancer treatment regarding to the metastatic behavior has not been thoroughly investigated. Therefore, the aim of this study was to analyze the influence of hypofractionated radiotherapy and cisplatin chemotherapy on vessel tree geometry and metastasis formation in a small cell lung cancer xenograft mouse tumor model to investigate the spread of malignant cells during different treatments modalities.The biological data gained during these experiments were fed into our previously developed computer model "Cancer and Treatment Simulation Tool" (CaTSiT to model the growth of the primary tumor, its metastatic deposit and also the influence on different therapies. Furthermore, we performed quantitative histology analyses to verify our predictions in xenograft mouse tumor model.According to the computer simulation the number of cells engrafting must vary considerably to explain the different weights of the primary tumor at the end of the experiment. Once a primary tumor is established, the fractal dimension of its vasculature correlates with the tumor size. Furthermore, the fractal dimension of the tumor vasculature changes during treatment, indicating that the therapy affects the blood vessels' geometry. We corroborated these findings with a quantitative histological analysis showing that the blood vessel density is depleted during radiotherapy and cisplatin chemotherapy. The CaTSiT computer model reveals that chemotherapy influences the tumor's therapeutic susceptibility and its metastatic spreading behavior.Using a system biological approach in combination with xenograft models and computer simulations revealed that the usage of chemotherapy and radiation therapy determines the spreading behavior by changing the blood vessel geometry of the primary tumor.

  14. Gold nanoparticle induced vasculature damage in radiotherapy: Comparing protons, megavoltage photons, and kilovoltage photons

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yuting, E-mail: yutingl188@gmail.com; Paganetti, Harald; Schuemann, Jan [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114 (United States); McMahon, Stephen J. [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114 and Center for Cancer Research and Cell Biology, Queen’s University Belfast, 97 Lisburn Road, Belfast BT97AE, Northern Ireland (United Kingdom)

    2015-10-15

    to the inner vascular wall, the damage to the inner vascular wall can be up to 207% of the prescribed dose for the 250 kVp photon source, 4% for the 6 MV photon source, and 2% for the proton beam. Even though the average dose increase from the proton beam and MV photon beam was not large, there were high dose spikes that elevate the local dose of the parts of the blood vessel to be higher than 15 Gy even for 2 Gy prescribed dose, especially when the GNPs can be actively targeted to the endothelial cells. Conclusions: GNPs can potentially be used to enhance radiation therapy by causing vasculature damage through high dose spikes caused by the addition of GNPs especially for hypofractionated treatment. If GNPs are designed to actively accumulate at the tumor vasculature walls, vasculature damage can be increased significantly. The largest enhancement is seen using kilovoltage photons due to the photoelectric effect. Although no significant average dose enhancement was observed for the whole vasculature structure for both MV photons and protons, they can cause high local dose escalation (>15 Gy) to areas of the blood vessel that can potentially contribute to the disruption of the functionality of the blood vessels in the tumor.

  15. Tumor endothelial markers define novel subsets of cancer-specific circulating endothelial cells associated with antitumor efficacy

    Science.gov (United States)

    Mehran, Reza; Nilsson, Monique; Khajavi, Mehrdad; Du, Zhiqiang; Cascone, Tina; Wu, Hua Kang; Cortes, Andrea; Xu, Li; Zurita, Amado; Schier, Robert; Riedel, Bernhard; El-Zein, Randa; Heymach, John V.

    2014-01-01

    Circulating endothelial cells (CEC) are derived from multiple sources including bone marrow (circulating endothelial progenitors [CEP]) and established vasculature (mature CEC). Although CEC have shown promise as a biomarker for cancer patients, their utility has been limited in part by the lack of specificity for tumor vasculature and the different non-malignant causes that can impact CEC. Tumor endothelial markers (TEM) are antigens enriched in tumor vs non-malignant endothelia. We hypothesized that TEMs may be detectable on CEC and that these circulating TEM+ endothelial cells (CTEC) may be a more specific marker for cancer and tumor response than standard CEC. We found that tumor-bearing mice had a relative increase in numbers of circulating CTEC, specifically with increased levels of TEM7 and TEM8 expression. Following treatment with various vascular targeting agents, we observed a decrease in CTEC that correlated with the reductions in tumor growth. We extended these findings to human clinical samples and observed that CTEC were present in esophageal cancer and non-small cell lung cancer (NSCLC) patients (N=40) and their levels decreased after surgical resection. These results demonstrate that CTEC are detectable in preclinical cancer models and cancer patients. Further, they suggest that CTEC offer a novel cancer-associated marker that may be useful as a blood-based surrogate for assessing the presence of tumor vasculature and antiangiogenic drug activity. PMID:24626092

  16. Cell survival of human tumor cells compared with normal fibroblasts following 60Co gamma irradiation

    International Nuclear Information System (INIS)

    Lloyd, E.L.; Henning, C.B.; Reynolds, S.D.; Holmblad, G.L.; Trier, J.E.

    1982-01-01

    Three tumor cell lines, two of which were shown to be HeLa cells, were irradiated with 60 Co gamma irradiation, together with two cell cultures of normal human diploid fibroblasts. Cell survival was studied in three different experiments over a dose range of 2 to 14 gray. All the tumor cell lines showed a very wide shoulder in the dose response curves in contrast to the extremely narrow shoulder of the normal fibroblasts. In addition, the D/sub o/ values for the tumor cell lines were somewhat greater. These two characteristics of the dose response curves resulted in up to 2 orders of magnitude less sensitivity for cell inactivation of HeLa cells when compared with normal cells at high doses (10 gray). Because of these large differences, the extrapolation of results from the irradiation of HeLa cells concerning the mechanisms of normal cell killing should be interpreted with great caution

  17. Function of Maximal Microvessel Density in Breast Tumor Metastasis

    National Research Council Canada - National Science Library

    McLeskey, Sandra

    2000-01-01

    .... These data are gained by quantitating the number of microvessels in "hot spots" of high-density tumor vasculature, implying that such hot spots have functional significance in the process of metastasis...

  18. Persistent fetal vasculature: ocular features, management of cataract and outcomes

    Directory of Open Access Journals (Sweden)

    Marcia Beatriz Tartarella

    2013-06-01

    Full Text Available PURPOSES: To describe ocular features, management of cataract and functional outcomes in patients with persistent fetal vasculature. METHODS: Retrospective, descriptive case series of patients with persistent fetal vasculature. Data were recorded from the Congenital Cataract Section of Federal University of São Paulo, Brazil from 2001 to 2012. All patients were evaluated for sex, age at diagnosis, systemic findings, laterality, age at surgery, and initial and final follow-up visual acuities. Follow-up and complications after cataract surgery were recorded. Ultrasound was performed in all cases and ocular eco-Doppler was performed in most. RESULTS: The study comprised 53 eyes from 46 patients. Age at diagnosis ranged from 5 days of life to 10 years-old (mean 22.7 months. Twenty-seven patients were male (58.7%. Persistent fetal vasculature was bilateral in 7 patients (15.2%. Forty-two eyes (79.2% had combined (anterior and posterior forms PFV presentation, 5 eyes (9.4% had only anterior persistent fetal vasculature presentation and 6 eyes (11.3% had posterior persistent fetal vasculature presentation. Thirty-eight eyes (71.7% were submitted to cataract surgery. Lensectomy combined with anterior vitrectomy was performed in 18 eyes (47.4%. Phacoaspiration with intraocular lens implantation was performed in 15 eyes (39.5%, and without lens implantation in 5 eyes (13.2%. Mean follow-up after surgery was 44 months. Postoperative complications were posterior synechiae (3 cases, retinal detachment (2 cases, phthisis (3 cases, posterior capsular opacification (8 cases, inflammatory pupillary membrane (5 cases, glaucoma (4 cases, intraocular lens implantation displacement (1 case and vitreous hemorrhage (2 cases. Complications were identified in 19 (50% of the 38 operated eyes. Visual acuity improved after cataract surgery in 83% of the eyes. CONCLUSIONS: Patients with persistent fetal vasculature have variable clinical presentation. There is an

  19. Comparative study of rabbit VX2 hepatic implantation tumor and normal liver tissue on magnetic resonance perfusion weighted imaging

    International Nuclear Information System (INIS)

    Jiao Zimei; Wang Xizhen; Wang Bin; Liu Feng; Li Haiqing; Sun Yequan; Dong Peng

    2012-01-01

    Objective: To investigate the value of magnetic resonance (MR) perfusion weighted imaging (PWI) in evaluating the blood perfusion of tumor by analyzing the features and indexes of PWI on rabbit VX2 hepatic implantation tumor and normal liver tissue. Methods: Twenty-four New Zealand White rabbits with VX2 carcinoma were established under direct surgical vision embedding tumor tissue. MR examination was performed at 21 days after the tumor implantation. The signal intensity -time curve of hepatic tumor and normal liver tissue were obtained. Mean time to enhance (MTE), negative enhancement integral (NEI), time to minimum (TM), maximum slope of decrease (MSD) and maximum slope of increase (MSI) were measured. Results: MTE, NEI, TM, MSD, and MSI of the normal liver tissue were 208.341±2.226 ms, 78.334±8.152, 24.059±1.927 ms, 38.221±2.443, and 15.389±2.526, respectively. MTE, NEI, TM, MSD, and MSI of the tumor tissue were 175.437±4.182 ms, 123.203±19.455, 17.061±1.834 ms, 125.740±4.842, and 67.832±2.882, respectively. The MTE and TM of tumor were shorter than those of normal hepatic tissue (P<0.05). NEI, MSD, and MSI of tumor were higher than those of normal hepatic tissue (P<0.05). Conclusion: PWI can distinguish the normal liver tissue from the tumor tissue, which is helpful in evaluating blood perfusion of different hepatic tissues. (authors)

  20. Modeling tumor-associated edema in gliomas during anti-angiogenic therapy and its impact on imageable tumor

    Directory of Open Access Journals (Sweden)

    Andrea eHawkins-Daarud

    2013-04-01

    Full Text Available Glioblastoma, the most aggressive form of primary brain tumor is predominantly assessed with gadolinium-enhanced T1-weighted (T1Gd and T2-weighted magnetic resonance imaging (MRI. Pixel intensity enhancement on the T1Gd image is understood to correspond to the gadolinium contrast agent leaking from the tumor-induced neovasculature, while hyperintensity on the T2/FLAIR images corresponds with edema and infiltrated tumor cells. None of these modalities directly show tumor cells; rather, they capture abnormalities in the microenvironment caused by the presence of tumor cells. Thus, assessing disease response after treatments impacting the microenvironment remains challenging through the obscuring lens of MR imaging. Anti-angiogenic therapies have been used in the treatment of gliomas with spurious results ranging from no apparent response to significant imaging improvement with the potential for extremely diffuse patterns of tumor recurrence on imaging and autopsy. Anti-angiogenic treatment normalizes the vasculature, effectively decreasing vessel permeability and thus reducing tumor-induced edema, drastically altering T2-weighted MRI. We extend a previously developed mathematical model of glioma growth to explicitly incorporate edema formation allowing us to directly characterize and potentially predict the effects of anti-angiogenics on imageable tumor growth. A comparison of simulated glioma growth and imaging enhancement with and without bevacizumab supports the current understanding that anti-angiogenic treatment can serve as a surrogate for steroids and the clinically-driven hypothesis that anti-angiogenic treatment may not have any significant effect on the growth dynamics of the overall tumor-cell populations. However, the simulations do illustrate a potentially large impact on the level of edematous extracellular fluid, and thus on what would be imageable on T2/FLAIR MR for tumors with lower proliferation rates.

  1. Inhibition of Vascular Endothelial Growth Factor A and Hypoxia-Inducible Factor 1α Maximizes the Effects of Radiation in Sarcoma Mouse Models Through Destruction of Tumor Vasculature

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hae-June [Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (United States); Division of Radiation Effects, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Yoon, Changhwan [Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Park, Do Joong [Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Department of Surgery, Seoul National University Bundang Hospital, Sungnam (Korea, Republic of); Kim, Yeo-Jung [Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Schmidt, Benjamin [Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (United States); Lee, Yoon-Jin [Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (United States); Division of Radiation Effects, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Tap, William D. [Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Eisinger-Mathason, T.S. Karin [Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Choy, Edwin [Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (United States); Kirsch, David G. [Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina (United States); Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Simon, M. Celeste [Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Howard Hughes Medical Institute (United States); and others

    2015-03-01

    Purpose: To examine the addition of genetic or pharmacologic inhibition of hypoxia-inducible factor 1α (HIF-1α) to radiation therapy (RT) and vascular endothelial growth factor A (VEGF-A) inhibition (ie trimodality therapy) for soft-tissue sarcoma. Methods and Materials: Hypoxia-inducible factor 1α was inhibited using short hairpin RNA or low metronomic doses of doxorubicin, which blocks HIF-1α binding to DNA. Trimodality therapy was examined in a mouse xenograft model and a genetically engineered mouse model of sarcoma, as well as in vitro in tumor endothelial cells (ECs) and 4 sarcoma cell lines. Results: In both mouse models, any monotherapy or bimodality therapy resulted in tumor growth beyond 250 mm{sup 3} within the 12-day treatment period, but trimodality therapy with RT, VEGF-A inhibition, and HIF-1α inhibition kept tumors at <250 mm{sup 3} for up to 30 days. Trimodality therapy on tumors reduced HIF-1α activity as measured by expression of nuclear HIF-1α by 87% to 95% compared with RT alone, and cytoplasmic carbonic anhydrase 9 by 79% to 82%. Trimodality therapy also increased EC-specific apoptosis 2- to 4-fold more than RT alone and reduced microvessel density by 75% to 82%. When tumor ECs were treated in vitro with trimodality therapy under hypoxia, there were significant decreases in proliferation and colony formation and increases in DNA damage (as measured by Comet assay and γH2AX expression) and apoptosis (as measured by cleaved caspase 3 expression). Trimodality therapy had much less pronounced effects when 4 sarcoma cell lines were examined in these same assays. Conclusions: Inhibition of HIF-1α is highly effective when combined with RT and VEGF-A inhibition in blocking sarcoma growth by maximizing DNA damage and apoptosis in tumor ECs, leading to loss of tumor vasculature.

  2. Radionuclide investigation of the blood flow in tumor and normal rat tissues in induced hyperglycemia

    International Nuclear Information System (INIS)

    Istomin, Yu.P.; Shitikov, B.D.; Markova, L.V.

    1991-01-01

    Radionuclide angiography was performed in rats with transplantable tumors. Induced hyperglycemia was shown to result in blood flow inhibition in tumor and normal tissues of tumor-bearing rats. Some differences were revealed in a degree of reversibility of blood flow disorders in tissues of the above strains. The results obtained confirmed the advisability of radiation therapy at the height of a decrease in tumor blood

  3. Efficacy of NGR peptide-modified PEGylated quantum dots for crossing the blood-brain barrier and targeted fluorescence imaging of glioma and tumor vasculature.

    Science.gov (United States)

    Huang, Ning; Cheng, Si; Zhang, Xiang; Tian, Qi; Pi, Jiangli; Tang, Jun; Huang, Qing; Wang, Feng; Chen, Jin; Xie, Zongyi; Xu, Zhongye; Chen, Weifu; Zheng, Huzhi; Cheng, Yuan

    2017-01-01

    Delivery of imaging agents to brain glioma is challenging because the blood-brain barrier (BBB) functions as a physiological checkpoint guarding the central nervous system from circulating large molecules. Moreover, the ability of existing probes to target glioma has been insufficient and needs to be improved. In present study, PEG-based long circulation, CdSe/ZnS quantum dots (QDs)-based nanoscale and fluorescence, asparagines-glycine-arginine peptides (NGR)-based specific CD13 recognition were integrated to design and synthesize a novel nanoprobe by conjugating biotinylated NGR peptides to avidin-PEG-coated QDs. Our data showed that the NGR-PEG-QDs were nanoscale with less than 100 nm and were stable in various pH (4.0~8.0). These nanomaterials with non-toxic concentrations could cross the BBB and target CD13-overexpressing glioma and tumor vasculature in vitro and in vivo, contributing to fluorescence imaging of this brain malignancy. These achievements allowed groundbreaking technological advances in targeted fluorescence imaging for the diagnosis and surgical removal of glioma, facilitating potential transformation toward clinical nanomedicine. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Toxic effect of C60 fullerene-doxorubicin complex towards tumor and normal cells in vitro

    Directory of Open Access Journals (Sweden)

    Prylutska S. V.

    2014-09-01

    Full Text Available Creation of new nanostructures possessing high antitumor activity is an important problem of modern biotechnology. Aim. To evaluate cytotoxicity of created complex of pristine C60 fullerene with the anthracycline antibiotic doxorubicin (Dox, as well as of free C60 fullerene and Dox, towards different cell types – tumor, normal immunocompetent and hepatocytes. Methods. Measurement of size distribution for particles in C60 + Dox mixture was performed by a dynamic light scattering (DLS technique. Toxic effect of C60 + Dox complex in vitro towards tumor and normal cells was studied using the MTT assay. Results. DLS experiment demonstrated that the main fraction of the particles in C60 + Dox mixture had a diameter in the range of about 132 nm. The toxic effect of C60 + Dox complex towards normal (lymphocytes, macrophages, hepatocytes and tumor (Ehrlich ascites carcinoma, leukemia L1210, Lewis lung carcinoma cells was decreased by ~10–16 % and ~7–9 %, accordingly, compared with the same effect of free Dox. Conclusions. The created C60 + Dox composite may be considered as a new pharmacological agent that kills effectively tumor cells in vitro and simultaneously prevents a toxic effect of the free form of Dox on normal cells.

  5. An HRE-Binding Py-Im Polyamide Impairs Hypoxic Signaling in Tumors.

    Science.gov (United States)

    Szablowski, Jerzy O; Raskatov, Jevgenij A; Dervan, Peter B

    2016-04-01

    Hypoxic gene expression contributes to the pathogenesis of many diseases, including organ fibrosis, age-related macular degeneration, and cancer. Hypoxia-inducible factor-1 (HIF1), a transcription factor central to the hypoxic gene expression, mediates multiple processes including neovascularization, cancer metastasis, and cell survival. Pyrrole-imidazole polyamide 1: has been shown to inhibit HIF1-mediated gene expression in cell culture but its activity in vivo was unknown. This study reports activity of polyamide 1: in subcutaneous tumors capable of mounting a hypoxic response and showing neovascularization. We show that 1: distributes into subcutaneous tumor xenografts and normal tissues, reduces the expression of proangiogenic and prometastatic factors, inhibits the formation of new tumor blood vessels, and suppresses tumor growth. Tumors treated with 1: show no increase in HIF1α and have reduced ability to adapt to the hypoxic conditions, as evidenced by increased apoptosis in HIF1α-positive regions and the increased proximity of necrotic regions to vasculature. Overall, these results show that a molecule designed to block the transcriptional activity of HIF1 has potent antitumor activity in vivo, consistent with partial inhibition of the tumor hypoxic response. Mol Cancer Ther; 15(4); 608-17. ©2015 AACR. ©2015 American Association for Cancer Research.

  6. Morphological appearance, content of extracellular matrix and vascular density of lung metastases predicts permissiveness to infiltration by adoptively transferred natural killer and T cells

    DEFF Research Database (Denmark)

    Yang, Q.; Goding, S.; Hagenaars, M.

    2006-01-01

    . Analyses of tumors for extracellular matrix (ECM) components and PECAM-1(+) vasculature, revealed that the I-R lesions are hypovascularized and contain very little laminin, collagen and fibronectin. In contrast, the I-P loose tumors are well-vascularized and they contain high amounts of ECM components....... Interestingly, the distribution pattern of ECM components in the I-P loose tumors is almost identical to that of the normal lung tissue, indicating that these tumors develop around the alveolar walls which provide the loose tumors with both a supporting tissue and a rich blood supply. In conclusion, tumor...... infiltration by activated NK and T cells correlates with the presence of ECM components and PECAM-1(+) vasculature in the malignant tissue. Thus, analysis of the distribution of ECM and vasculature in tumor biopsies may help select patients most likely to benefit from cellular adoptive immunotherapy....

  7. Altered expression of estrogen receptor-α variant messenger RNAs between adjacent normal breast and breast tumor tissues

    International Nuclear Information System (INIS)

    Leygue, Etienne; Dotzlaw, Helmut; Watson, Peter H; Murphy, Leigh C

    2000-01-01

    Using semiquantitative reverse transcription-polymerase chain reaction assays, we investigated the expression of variant messenger RNAs relative to wild-type estrogen receptor (ER)-α messenger RNA in normal breast tissues and their adjacent matched breast tumor tissues. Higher ER variant truncated after sequences encoding exon 2 of the wild-type ER-α (ERC4) messenger RNA and a lower exon 3 deleted ER-α variant (ERD3) messenger RNA relative expression in the tumor compartment were observed in the ER-positive/PR-positive and the ER-positive subsets, respectively. A significantly higher relative expression of exon 5 deleted ER-α varient (ERD5) messenger RNA was observed in tumor components overall. These data demonstrate that changes in the relative expression of ER-α variant messenger RNAs occur between adjacent normal and neoplastic breast tissues. We suggest that these changes might be involved in the mechanisms that underlie breast tumorigenesis. Estrogen receptor (ER)-α and ER-β are believed to mediate the action of estradiol in target tissues. Several ER-α and ER-β variant messenger RNAs have been identified in both normal and neoplastic human tissues. Most of these variants contain a deletion of one or more exons of the wild-type (WT) ER messenger RNAs. The putative proteins that are encoded by these variant messenger RNAs would therefore be missing some functional domains of the WT receptors, and might interfere with WT-ER signaling pathways. The detection of ER-α variants in both normal and neoplastic human breast tissues raised the question of their possible role in breast tumorigenesis. We have previously reported an increased relative expression of exon 5 deleted ER-α variant (ERD5) messenger RNA and of another ER-α variant truncated of all sequences following the exon 2 of the WT ER-α (ERC4) messenger RNA in breast tumor samples versus independent normal breast tissues. In contrast, a decreased relative expression of exon 3 deleted ER

  8. Scintigraphy of the esophagus in normal and in its tumorous involvement

    International Nuclear Information System (INIS)

    Shishkina, V.V.; Piperkova, E.N.; Okulov, L.V.

    1988-01-01

    Esophagoscintigraphy with labelled liquid and solid food (water solution of radioactive colloid and mixture of egg with radioactive colloid coagulated by heating) was performed in patients without a history of esophageal diseases permitting qualitative and quantitative characterization of normal motor-evacuatory function of the esophagus and the lower esophageal sphincter (LES). In cancer of the esophagus its function failed with relation to a tumor site and was in direct proportion to a stage of tumor spreading. The method permitted the determination of the level of a pathological focus, a degree of esophageal permeability, quantification of a degree of esophageal disfunction, the improvement of functional diagnosis of the esophagus and LES, and the determination of motor disorders at the earliest stages of tumor development

  9. Hypoxic regulation of cytoglobin and neuroglobin expression in human normal and tumor tissues

    Directory of Open Access Journals (Sweden)

    Emara Marwan

    2010-09-01

    Full Text Available Abstract Background Cytoglobin (Cygb and neuroglobin (Ngb are recently identified globin molecules that are expressed in vertebrate tissues. Upregulation of Cygb and Ngb under hypoxic and/or ischemic conditions in vitro and in vivo increases cell survival, suggesting possible protective roles through prevention of oxidative damage. We have previously shown that Ngb is expressed in human glioblastoma multiforme (GBM cell lines, and that expression of its transcript and protein can be significantly increased after exposure to physiologically relevant levels of hypoxia. In this study, we extended this work to determine whether Cygb is also expressed in GBM cells, and whether its expression is enhanced under hypoxic conditions. We also compared Cygb and Ngb expression in human primary tumor specimens, including brain tumors, as well as in human normal tissues. Immunoreactivity of carbonic anhydrase IX (CA IX, a hypoxia-inducible metalloenzyme that catalyzes the hydration of CO2 to bicarbonate, was used as an endogenous marker of hypoxia. Results Cygb transcript and protein were expressed in human GBM cells, and this expression was significantly increased in most cells following 48 h incubation under hypoxia. We also showed that Cygb and Ngb are expressed in both normal tissues and human primary cancers, including GBM. Among normal tissues, Cygb and Ngb expression was restricted to distinct cell types and was especially prominent in ductal cells. Additionally, certain normal organs (e.g. stomach fundus, small bowel showed distinct regional co-localization of Ngb, Cygb and CA IX. In most tumors, Ngb immunoreactivity was significantly greater than that of Cygb. In keeping with previous in vitro results, tumor regions that were positively stained for CA IX were also positive for Ngb and Cygb, suggesting that hypoxic upregulation of Ngb and Cygb also occurs in vivo. Conclusions Our finding of hypoxic up-regulation of Cygb/Ngb in GBM cell lines and human

  10. Characterization of tumor heterogeneity using dynamic contrast enhanced CT and FDG-PET in non-small cell lung cancer

    International Nuclear Information System (INIS)

    Elmpt, Wouter van; Das, Marco; Hüllner, Martin; Sharifi, Hoda; Zegers, Catharina M.L.; Reymen, Bart; Lambin, Philippe; Wildberger, Joachim E.; Troost, Esther G.C.; Veit-Haibach, Patrick; De Ruysscher, Dirk

    2013-01-01

    Purpose: Dynamic contrast-enhanced CT (DCE-CT) quantifies vasculature properties of tumors, whereas static FDG-PET/CT defines metabolic activity. Both imaging modalities are capable of showing intra-tumor heterogeneity. We investigated differences in vasculature properties within primary non-small cell lung cancer (NSCLC) tumors measured by DCE-CT and metabolic activity from FDG-PET/CT. Methods: Thirty three NSCLC patients were analyzed prior to treatment. FDG-PET/CT and DCE-CT were co-registered. The tumor was delineated and metabolic activity was segmented on the FDG-PET/CT in two regions: low (<50% maximum SUV) and high (⩾50% maximum SUV) metabolic uptake. Blood flow, blood volume and permeability were calculated using a maximum slope, deconvolution algorithm and a Patlak model. Correlations were assessed between perfusion parameters for the regions of interest. Results: DCE-CT provided additional information on vasculature and tumor heterogeneity that was not correlated to metabolic tumor activity. There was no significant difference between low and high metabolic active regions for any of the DCE-CT parameters. Furthermore, only moderate correlations between maximum SUV and DCE-CT parameters were observed. Conclusions: No direct correlation was observed between FDG-uptake and parameters extracted from DCE-CT. DCE-CT may provide complementary information to the characterization of primary NSCLC tumors over FDG-PET/CT imaging

  11. Three-dimensional telomere architecture of esophageal squamous cell carcinoma: comparison of tumor and normal epithelial cells.

    Science.gov (United States)

    Sunpaweravong, S; Sunpaweravong, P; Sathitruangsak, C; Mai, S

    2016-05-01

    Telomeres are repetitive nucleotide sequences (TTAGGG)n located at the ends of chromosomes that function to preserve chromosomal integrity and prevent terminal end-to-end fusions. Telomere loss or dysfunction results in breakage-bridge-fusion cycles, aneuploidy, gene amplification and chromosomal rearrangements, which can lead to genomic instability and promote carcinogenesis. Evaluating the hypothesis that changes in telomeres contribute to the development of esophageal squamous cell carcinoma (ESCC) and to determine whether there are differences between young and old patients, we compared the three-dimensional (3D) nuclear telomere architecture in ESCC tumor cells with that of normal epithelial cells obtained from the same patient. Patients were equally divided by age into two groups, one comprising those less than 45 years of age and the other consisting of those over 80 years of age. Tumor and normal epithelial cells located at least 10 cm from the border of the tumor were biopsied in ESCC patients. Hematoxylin and eosin staining was performed for each sample to confirm and identify the cancer and normal epithelial cells. This study was based on quantitative 3D fluorescence in situ hybridization (Q-FISH), 3D imaging and 3D analysis of paraffin-embedded slides. The 3D telomere architecture data were computer analyzed using 100 nuclei per slide. The following were the main parameters compared: the number of signals (number of telomeres), signal intensity (telomere length), number of telomere aggregates, and nuclear volume. Tumor and normal epithelial samples from 16 patients were compared. The normal epithelial cells had more telomere signals and higher intensities than the tumor cells, with P-values of P architecture and found no statistically significant differences in any parameter tested between the young and old patients in either the tumor or epithelial cells. The 3D nuclear telomeric signature was able to detect differences in telomere architecture

  12. Inhibition of hypoxia-inducible factor 1 with acriflavine sensitizes hypoxic tumor cells to photodynamic therapy with zinc phthalocyanine-encapsulating cationic liposomes

    NARCIS (Netherlands)

    Broekgaarden, Mans; Weijer, Ruud; Krekorian, Massis; van den IJssel, Bas; Kos, Milan; Alles, Lindy K.; van Wijk, Albert C.; Bikadi, Zsolt; Hazai, Eszter; van Gulik, Thomas M.; Heger, Michal

    2016-01-01

    Photodynamic therapy (PDT) is a tumor treatment modality in which a tumorlocalized photosensitizer is excited with light, which results in local production of reactive oxygen species, destruction of tumor vasculature, tumor hypoxia, tumor cell death, and induction of an anti-tumor immune response.

  13. Role of vascular normalization in benefit from metronomic chemotherapy.

    Science.gov (United States)

    Mpekris, Fotios; Baish, James W; Stylianopoulos, Triantafyllos; Jain, Rakesh K

    2017-02-21

    Metronomic dosing of chemotherapy-defined as frequent administration at lower doses-has been shown to be more efficacious than maximum tolerated dose treatment in preclinical studies, and is currently being tested in the clinic. Although multiple mechanisms of benefit from metronomic chemotherapy have been proposed, how these mechanisms are related to one another and which one is dominant for a given tumor-drug combination is not known. To this end, we have developed a mathematical model that incorporates various proposed mechanisms, and report here that improved function of tumor vessels is a key determinant of benefit from metronomic chemotherapy. In our analysis, we used multiple dosage schedules and incorporated interactions among cancer cells, stem-like cancer cells, immune cells, and the tumor vasculature. We found that metronomic chemotherapy induces functional normalization of tumor blood vessels, resulting in improved tumor perfusion. Improved perfusion alleviates hypoxia, which reprograms the immunosuppressive tumor microenvironment toward immunostimulation and improves drug delivery and therapeutic outcomes. Indeed, in our model, improved vessel function enhanced the delivery of oxygen and drugs, increased the number of effector immune cells, and decreased the number of regulatory T cells, which in turn killed a larger number of cancer cells, including cancer stem-like cells. Vessel function was further improved owing to decompression of intratumoral vessels as a result of increased killing of cancer cells, setting up a positive feedback loop. Our model enables evaluation of the relative importance of these mechanisms, and suggests guidelines for the optimal use of metronomic therapy.

  14. Paradox between angiogenesis and oxygen effect in the treatment of tumor

    International Nuclear Information System (INIS)

    Hayashi, Masanobu

    2008-01-01

    The paradox in the title is described on recent findings concerning the effects of anti-angiogenetic drugs on possible radiation resistance and sensitivity of tumor tissue. Suppression of angiogenesis leads to inhibition of tumor growth, based on which anti-tumor drugs like anti- vascular endotherial growth factor (VEGF) antibody bevacizumab to suppress the genesis have been developed and clinically used, but they conceivably increase the population of hypoxic tumor cells. Those drugs are essentially used in combination with other chemotherapeutic agents and/or radiation. Hypoxic tumor cells present in the tissue are generally radioresistant. There are reported findings, however, that the drugs sometimes elevate the efficacy of radiotherapy, which hypothesizes that the drugs induces a proangiogenetic state, where increased level of growth factors in the tissue is reduced to normalize the vasculature and thereby reoxygenation occurs, the oxygen effect. Because copper is a cofactor of growth factors like VEGF and basic fibroblast growth factor (bFGF) and essential for angiogenesis, authors have studied the effect of a Cu-chelator, trientine, on transplanted mouse tumors which has been shown to induce apoptosis of the target cells. Combination of the chelator with X-ray irradiation is found effective in tumor growth inhibition and in survival increase. For more effective combination therapy, the interaction occurring in combinations of regimen should be elucidated. (R.T.)

  15. How necessary is the vasculature in the life of neural stem and progenitor cells? Evidence from evolution, development and the adult nervous system.

    Directory of Open Access Journals (Sweden)

    CHRISTOS eKOUTSAKIS

    2016-02-01

    Full Text Available Augmenting evidence suggests that such is the functional dependence of neural stem cells (NSCs on the vasculature that they normally reside in perivascular niches. Two examples are the neurovascular and the oligovascular niches of the adult brain, specialized microenvironments where NSCs or oligodendrocyte progenitor cells survive and remain mitotically active in close proximity to blood vessels. In addition, the often observed co-ordination of angiogenesis and neurogenesis led to these processes being described as coupled. Here, we adopt an evo-devo approach to argue that some stages in the life of a NSC, such as specification and commitment, are independent of the vasculature, while stages such as proliferation and migration are largely dependent on blood vessels. We also explore available evidence on the possible involvement of the vasculature in other phenomena such as the diversification of NSCs during evolution and we provide original data on the senescence of NSCs in the subependymal zone stem cell niche. Finally, we will comment on the other side of the story; on how much is the vasculature dependent on NSCs and their progeny.

  16. Targeting Mitochondrial Function to Treat Quiescent Tumor Cells in Solid Tumors

    Directory of Open Access Journals (Sweden)

    Xiaonan Zhang

    2015-11-01

    Full Text Available The disorganized nature of tumor vasculature results in the generation of microenvironments characterized by nutrient starvation, hypoxia and accumulation of acidic metabolites. Tumor cell populations in such areas are often slowly proliferating and thus refractory to chemotherapeutical drugs that are dependent on an active cell cycle. There is an urgent need for alternative therapeutic interventions that circumvent growth dependency. The screening of drug libraries using multicellular tumor spheroids (MCTS or glucose-starved tumor cells has led to the identification of several compounds with promising therapeutic potential and that display activity on quiescent tumor cells. Interestingly, a common theme of these drug screens is the recurrent identification of agents that affect mitochondrial function. Such data suggest that, contrary to the classical Warburg view, tumor cells in nutritionally-compromised microenvironments are dependent on mitochondrial function for energy metabolism and survival. These findings suggest that mitochondria may represent an “Achilles heel” for the survival of slowly-proliferating tumor cells and suggest strategies for the development of therapy to target these cell populations.

  17. Determination of Radiation Absorbed Dose to Primary Liver Tumors and Normal Liver Tissue Using Post Radioembolization 90Y PET

    Directory of Open Access Journals (Sweden)

    Shyam Mohan Srinivas

    2014-10-01

    Full Text Available Background: Radioembolization with Yttrium-90 (90Y microspheres is becoming a more widely used transcatheter treatment for unresectable hepatocellular carcinoma (HCC. Using post-treatment 90Y PET/CT scans,the distribution of microspheres within the liver can be determined and quantitatively assessesed . We studied the radiation dose of 90Y delivered to liver and treated tumors.Methods: This retrospective study of 56 patients with HCC, including analysis of 98 liver tumors, measured and correlated the dose of radiation delivered to liver tumors and normal liver tissue using glass microspheres (TheraSpheres® to the frequency of complications with mRECIST. 90Y PET/CT and triphasic liver CT scans were used to contour treated tumor and normal liver regions and determine their respective activity concentrations. An absorbed dose factor was used to convert the measured activity concentration (Bq/mL to an absorbed dose (Gy.Results: The 98 studied tumors received a mean dose of 169 Gy (mode 90-120 Gy;range 0-570 Gy. Tumor response by mRECIST criteria was performed for 48 tumors that had follow up scans. There were 21 responders (mean dose 215 Gy and 27 nonresponders (mean dose 167 Gy. The association between mean tumor absorbed dose and response suggests a trend but did not reach statistical significance (p=0.099. Normal liver tissue received a mean dose of 67 Gy (mode 60-70 Gy; range 10-120 Gy. There was a statistically significant association between absorbed dose to normal liver and the presence of two or more severe complications (p=0.036.Conclusion: Our cohort of patients showed a possible dose response trend for the tumors. Collateral dose to normal liver is nontrivial and can have clinical implications. These methods help us understand whether patient adverse events, treatment success, or treatment failure can be attributed to the dose which the tumor or normal liver received.

  18. Distribution of the anticancer drugs doxorubicin, mitoxantrone and topotecan in tumors and normal tissues.

    Science.gov (United States)

    Patel, Krupa J; Trédan, Olivier; Tannock, Ian F

    2013-07-01

    Pharmacokinetic analyses estimate the mean concentration of drug within a given tissue as a function of time, but do not give information about the spatial distribution of drugs within that tissue. Here, we compare the time-dependent spatial distribution of three anticancer drugs within tumors, heart, kidney, liver and brain. Mice bearing various xenografts were treated with doxorubicin, mitoxantrone or topotecan. At various times after injection, tumors and samples of heart, kidney, liver and brain were excised. Within solid tumors, the distribution of doxorubicin, mitoxantrone and topotecan was limited to perivascular regions at 10 min after administration and the distance from blood vessels at which drug intensity fell to half was ~25-75 μm. Although drug distribution improved after 3 and 24 h, there remained a significant decrease in drug fluorescence with increasing distance from tumor blood vessels. Drug distribution was relatively uniform in the heart, kidney and liver with substantially greater perivascular drug uptake than in tumors. There was significantly higher total drug fluorescence in the liver than in tumors after 10 min, 3 and 24 h. Little to no drug fluorescence was observed in the brain. There are marked differences in the spatial distributions of three anticancer drugs within tumor tissue and normal tissues over time, with greater exposure to most normal tissues and limited drug distribution to many cells in tumors. Studies of the spatial distribution of drugs are required to complement pharmacokinetic data in order to better understand and predict drug effects and toxicities.

  19. Mapping of Carboxypeptidase M in Normal Human Kidney and Renal Cell Carcinoma

    Science.gov (United States)

    Denis, Catherine J.; Van Acker, Nathalie; De Schepper, Stefanie; De Bie, Martine; Andries, Luc; Fransen, Erik; Hendriks, Dirk; Kockx, Mark M.

    2013-01-01

    Although the kidney generally has been regarded as an excellent source of carboxypeptidase M (CPM), little is known about its renal-specific expression level and distribution. This study provides a detailed localization of CPM in healthy and diseased human kidneys. The results indicate a broad distribution of CPM along the renal tubular structures in the healthy kidney. CPM was identified at the parietal epithelium beneath the Bowman’s basement membrane and in glomerular mesangial cells. Capillaries, podocytes, and most interstitial cells were CPM negative. Tumor cells of renal cell carcinoma subtypes lose CPM expression upon dedifferentiation. Tissue microarray analysis demonstrated a correlation between low CPM expression and tumor cell type. CPM staining was intense on phagocytotic tumor-associated macrophages. Immunoreactive CPM was also detected in the tumor-associated vasculature. The absence of CPM in normal renal blood vessels points toward a role for CPM in angiogenesis. Coexistence of CPM and the epidermal growth factor receptor (EGFR) was detected in papillary renal cell carcinoma. However, the different subcellular localization of CPM and EGFR argues against an interaction between these h proteins. The description of the distribution of CPM in human kidney forms the foundation for further study of the (patho)physiological activities of CPM in the kidney. PMID:23172796

  20. Utility of Normal Tissue-to-Tumor {alpha}/{beta} Ratio When Evaluating Isodoses of Isoeffective Radiation Therapy Treatment Plans

    Energy Technology Data Exchange (ETDEWEB)

    Gay, Hiram A., E-mail: hgay@radonc.wustl.edu [Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri (United States); Jin Jianyue [Department of Radiation Oncology, Henry Ford Hospital, Detroit, Michigan (United States); Chang, Albert J. [Department of Radiation Oncology, University of California, San Francisco, California (United States); Ten Haken, Randall K. [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States)

    2013-01-01

    Purpose: To achieve a better understanding of the effect of the number of fractions on normal tissue sparing for equivalent tumor control in radiation therapy plans by using equivalent biologically effective dose (BED) isoeffect calculations. Methods and Materials: The simple linear quadratic (LQ) model was assumed to be valid up to 10 Gy per fraction. Using the model, we formulated a well-known mathematical equality for the tumor prescription dose and probed and solved a second mathematical problem for normal tissue isoeffect. That is, for a given arbitrary relative isodose distribution (treatment plan in percentages), 2 isoeffective tumor treatment regimens (N fractions of the dose D and n fractions of the dose d) were denoted, which resulted in the same BED (corresponding to 100% prescription isodose). Given these situations, the LQ model was further exploited to mathematically establish a unique relative isodose level, z (%), for the same arbitrary treatment plan, where the BED to normal tissues was also isoeffective for both fractionation regimens. Results: For the previously stated problem, the relative isodose level z (%), where the BEDs to the normal tissue were also equal, was defined by the normal tissue {alpha}/{beta} ratio divided by the tumor {alpha}/{beta} times 100%. Fewer fractions offers a therapeutic advantage for those portions of the normal tissue located outside the isodose surface, z, whereas more fractions offer a therapeutic advantage for those portions of the normal tissue within the isodose surface, z. Conclusions: Relative isodose-based treatment plan evaluations may be useful for comparing isoeffective tumor regimens in terms of normal tissue effects. Regions of tissues that would benefit from hypofractionation or standard fractionation can be identified.

  1. The Effect of Irradiation on the Structure of Vasculature Experimentally Induced Rat Salivary Gland Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Hyo Shick [Dept. of Oral Radiology, College of Dentistry, Seoul National University, Seoul (Korea, Republic of)

    1990-02-15

    The aim of this study is to evaluate the microvascular alterations in salivary gland carcinoma after irradiations. Salivary gland carcinoma was induced in rats by inoculation of several amount of 7,12-dimethylbenzan thracene powder 2.5 mg, 5.0 mg and 7.5 mg respectively into rat submandibular gland. Microangiography was performed by taking soft x-ray with barium infusions, and by indian ink perfusion technique. The tumors were given a single dose of 20 Gy (to obtain comparatively low grade irradiation dose for isoeffect of dry desquamation of skin to enable the observation of the vascular changes of the tumor 39) using LINAC 4 MeV Mitsubishi unit with field size of 3 X 3 cm at 80 SSD. The dose rate was 2.5 Gy per minute. The microangiography was performed prior to irradiation and at one, two, and weeks after irradiation. The results are as follows: 1. The carcinoma was produced in all rats (100%) between 7 to 11 weeks, the amount of carcinogen was not always in proportion to the development of carcinogenesis, and the most appropriate group for the experiment was 5.0 mg inoculated one. 2. The course of the experimental carcinogensis was initiated by ductal proliferation and squamous metaplasia of ductal epithelium which was later transformed into keratocyst, and finally turned into squamous cell carcinoma. 3. Before irradiation, the basic vasculature consisted of peripheral vascular pattern with central penetrating vessels. The peripheral vascular pattern was always richer than that of the center. Irregular and tortuous vessels stretched from the periphery into the center of the tumor mass. 4. In an early stage following irradiation, an increase in the number of smaller, tortuous vessels and decreased intervascular distances were observed in the central portions of tumor nest mass. 5. Later changes of microvasculature after irradiation are increase in tortuousity, irregularity, narrowing, abrupt tapering, fragmentation, and extravasation. These findings progressed

  2. The Effect of Irradiation on the Structure of Vasculature Experimentally Induced Rat Salivary Gland Carcinoma

    International Nuclear Information System (INIS)

    Kang, Hyo Shick

    1990-01-01

    The aim of this study is to evaluate the microvascular alterations in salivary gland carcinoma after irradiations. Salivary gland carcinoma was induced in rats by inoculation of several amount of 7,12-dimethylbenzan thracene powder 2.5 mg, 5.0 mg and 7.5 mg respectively into rat submandibular gland. Microangiography was performed by taking soft x-ray with barium infusions, and by indian ink perfusion technique. The tumors were given a single dose of 20 Gy (to obtain comparatively low grade irradiation dose for isoeffect of dry desquamation of skin to enable the observation of the vascular changes of the tumor 39) using LINAC 4 MeV Mitsubishi unit with field size of 3 X 3 cm at 80 SSD. The dose rate was 2.5 Gy per minute. The microangiography was performed prior to irradiation and at one, two, and weeks after irradiation. The results are as follows: 1. The carcinoma was produced in all rats (100%) between 7 to 11 weeks, the amount of carcinogen was not always in proportion to the development of carcinogenesis, and the most appropriate group for the experiment was 5.0 mg inoculated one. 2. The course of the experimental carcinogensis was initiated by ductal proliferation and squamous metaplasia of ductal epithelium which was later transformed into keratocyst, and finally turned into squamous cell carcinoma. 3. Before irradiation, the basic vasculature consisted of peripheral vascular pattern with central penetrating vessels. The peripheral vascular pattern was always richer than that of the center. Irregular and tortuous vessels stretched from the periphery into the center of the tumor mass. 4. In an early stage following irradiation, an increase in the number of smaller, tortuous vessels and decreased intervascular distances were observed in the central portions of tumor nest mass. 5. Later changes of microvasculature after irradiation are increase in tortuousity, irregularity, narrowing, abrupt tapering, fragmentation, and extravasation. These findings progressed

  3. Genetically engineered endostatin-lidamycin fusion proteins effectively inhibit tumor growth and metastasis

    International Nuclear Information System (INIS)

    Jiang, Wen-guo; Zhen, Yong-su; Lu, Xin-an; Shang, Bo-yang; Fu, Yan; Zhang, Sheng-hua; Zhou, Daifu; Li, Liang; Li, Yi; Luo, Yongzhang

    2013-01-01

    Endostatin (ES) inhibits endothelial cell proliferation, migration, invasion, and tube formation. It also shows antiangiogenesis and antitumor activities in several animal models. Endostatin specifically targets tumor vasculature to block tumor growth. Lidamycin (LDM), which consists of an active enediyne chromophore (AE) and a non-covalently bound apo-protein (LDP), is a member of chromoprotein family of antitumor antibiotics with extremely potent cytotoxicity to cancer cells. Therefore, we reasoned that endostatin-lidamycin (ES-LDM) fusion proteins upon energizing with enediyne chromophore may obtain the combined capability targeting tumor vasculature and tumor cell by respective ES and LDM moiety. In this study, we designed and obtained two new endostatin-based fusion proteins, endostatin-LDP (ES-LDP) and LDP-endostatin (LDP-ES). In vitro, the antiangiogenic effect of fusion proteins was determined by the wound healing assay and tube formation assay and the cytotoxicity of their enediyne-energized analogs was evaluated by CCK-8 assay. Tissue microarray was used to analyze the binding affinity of LDP, ES or ES-LDP with specimens of human lung tissue and lung tumor. The in vivo efficacy of the fusion proteins was evaluated with human lung carcinoma PG-BE1 xenograft and the experimental metastasis model of 4T1-luc breast cancer. ES-LDP and LDP-ES disrupted the formation of endothelial tube structures and inhibited endothelial cell migration. Evidently, ES-LDP accumulated in the tumor and suppressed tumor growth and metastasis. ES-LDP and ES show higher binding capability than LDP to lung carcinoma; in addition, ES-LDP and ES share similar binding capability. Furthermore, the enediyne-energized fusion protein ES-LDP-AE demonstrated significant efficacy against lung carcinoma xenograft in athymic mice. The ES-based fusion protein therapy provides some fundamental information for further drug development. Targeting both tumor vasculature and tumor cells by endostatin

  4. Thermal modelling using discrete vasculature for thermal therapy: a review

    Science.gov (United States)

    Kok, H.P.; Gellermann, J.; van den Berg, C.A.T.; Stauffer, P.R.; Hand, J.W.; Crezee, J.

    2013-01-01

    Reliable temperature information during clinical hyperthermia and thermal ablation is essential for adequate treatment control, but conventional temperature measurements do not provide 3D temperature information. Treatment planning is a very useful tool to improve treatment quality and substantial progress has been made over the last decade. Thermal modelling is a very important and challenging aspect of hyperthermia treatment planning. Various thermal models have been developed for this purpose, with varying complexity. Since blood perfusion is such an important factor in thermal redistribution of energy in in vivo tissue, thermal simulations are most accurately performed by modelling discrete vasculature. This review describes the progress in thermal modelling with discrete vasculature for the purpose of hyperthermia treatment planning and thermal ablation. There has been significant progress in thermal modelling with discrete vasculature. Recent developments have made real-time simulations possible, which can provide feedback during treatment for improved therapy. Future clinical application of thermal modelling with discrete vasculature in hyperthermia treatment planning is expected to further improve treatment quality. PMID:23738700

  5. Homing pattern of indium-111 T-lymphocytes in normal and tumor bearing rats

    International Nuclear Information System (INIS)

    Kasi, L.P.; Glenn, H.J.; Mehta, K.; Teckemeyer, I.C.; Wong, W.; Haynie, T.P.

    1985-01-01

    T-lymphocytes play an important role in tumor immunology and possess cytotoxic capabilities. Purified T-lymphocytes were obtained by incubating mononuclear cells separated from peripheral blood of Fisher 344 rats in a nylon wool column at 37 0 C. The non-adherent T-lymphocytes which were eluted from the column had > 95% viability. About 1 x 10/sup 7/ purified T-lymphocytes were labeled with 30 μCi In-111 oxine (Labeling yield: 75 +-5%, viability >95%). The function of the labeled cells as estimated by their graft versus host reaction ability remained unaltered. To evaluate the distribution pattern, 1 x 10/sup 6/ In-111 T-lymphocytes (per 100g wt) were injected via tail vein in normal and in transplanted (right flank) solid hepatoma bearing Fisher 344 rats, and the percent uptake of activity of the total injected dose per organ and per gm tissue was estimated at 2, 24 and 48 hours post injection. In normal rats maximum uptakes were in the liver (24%-33%) with increasing uptakes in the spleen (6.8%-11%) and minimum uptakes in the kidneys, lungs, muscles, and blood from 2 to 48 hours after injection. The uptake pattern in tumor bearing rats were significantly different during the same time period: lower in the liver (17%-19%) and a decrease in the spleen (9%-0.4%). All other tissues displayed similar uptake patterns as in normal animals. Maximum tumor:muscle ratio (18.4) was found at 48 hours post injection. Further studies are indicated for the possible use of In-111 T-lymphocytes in T-lymphocyte disorders, inflammations, and as an additional tool in the diagnosis of tumors

  6. Modeling triple-negative breast cancer heterogeneity: effects of stromal macrophages, fibroblasts and tumor vasculature.

    Science.gov (United States)

    Norton, Kerri-Ann; Jin, Kideok; Popel, Aleksander S

    2018-05-08

    A hallmark of breast tumors is its spatial heterogeneity that includes its distribution of cancer stem cells and progenitor cells, but also heterogeneity in the tumor microenvironment. In this study we focus on the contributions of stromal cells, specifically macrophages, fibroblasts, and endothelial cells on tumor progression. We develop a computational model of triple-negative breast cancer based on our previous work and expand it to include macrophage infiltration, fibroblasts, and angiogenesis. In vitro studies have shown that the secretomes of tumor-educated macrophages and fibroblasts increase both the migration and proliferation rates of triple-negative breast cancer cells. In vivo studies also demonstrated that blocking signaling of selected secreted factors inhibits tumor growth and metastasis in mouse xenograft models. We investigate the influences of increased migration and proliferation rates on tumor growth, the effect of the presence on fibroblasts or macrophages on growth and morphology, and the contributions of macrophage infiltration on tumor growth. We find that while the presence of macrophages increases overall tumor growth, the increase in macrophage infiltration does not substantially increase tumor growth and can even stifle tumor growth at excessive rates. Copyright © 2018. Published by Elsevier Ltd.

  7. Chemical modification of conventional cancer radiotherapy. Tumor sensitization combined with normal tissue protection

    International Nuclear Information System (INIS)

    Kagiya, Tsutomu

    2006-01-01

    Nitrotriazole radiosensitizer, Sanazole (AK-2123, N-(2'-methoxyethyl)-2-(3''-nitro-1''-triazolyl) acetamide) developed by Kyoto University group was studied by 18 groups of 7 countries on fundamental aspects and clinical studies by 30 groups of 12 countries, and reported its effects on tumor sensitization of conventional cancer radiotherapy. On the other hand, the glucosides of vitamin C (Ascorbic acid glucoside, (AsAG) and water soluble derivative of vitamin-E (α-tocopherol glucoside, TMG) developed by Kyoto University group were studied fundamentally by 4 groups of 4 countries and clinically by 2 groups of 2 countries, and reported their effects on normal tissue protection in cancer treatments. These two studies of tumor sensitization and normal tissue protection were proposed as an advanced strategy of conventional cancer radiotherapy. (author)

  8. Effect of tamsulosin on iris vasculature and morphology

    Science.gov (United States)

    Shtein, Roni M.; Hussain, Munira T.; Cooney, Theresa M.; Elner, Victor M.; Hood, Christopher T.

    2015-01-01

    PURPOSE To determine whether preoperative iris vasculature and morphology are altered in patients who have taken tamsulosin (Flomax). SETTING Academic multispecialty practice. DESIGN Case series. METHODS Patients with current or past tamsulosin use and age- and sex-matched control patients were included. Anterior segment optical coherence tomography (AS-OCT) and iris fluorescein angiography were performed to measure iris vasculature and thickness before cataract surgery. Data collected at surgery included pupil diameter, clinical signs of intraoperative floppy-iris syndrome, and surgical complications. RESULTS Tamsulosin was currently used by 16 patients and in the past by 4 patients; the control group comprised 10 patients. Pharmacologically dilated pupil diameter was significantly smaller preoperatively and immediately postoperatively in the tamsulosin group than in the control group (P = .009 and P = .003, respectively). There was a statistically significant decrease in pupil size intraoperatively in the tamsulosin group (P = .05) but not in the control group (P = .3). Iris-vasculature parameters, specifically time to first vessel fill and percentage of vessel fill on iris fluorescein angiography, were not significantly different between the 2 groups. The AS-OCT measurements of iris morphology were not statistically significantly different between the groups. No surgical complications occurred. No fluorescein dye leakage, staining, or other vascular anomalies were observed. CONCLUSIONS Although there were differences in pupil measurements and intraoperative iris behavior between patients who had been on tamsulosin and control patients, there were no significant differences in iris vasculature on iris fluorescein angiography or in iris morphology on AS-OCT. PMID:24631201

  9. Immune cells in the normal ovary and spontaneous ovarian tumors in the laying hen (Gallus domesticus) model of human ovarian cancer.

    Science.gov (United States)

    Bradaric, Michael J; Penumatsa, Krishna; Barua, Animesh; Edassery, Seby L; Yu, Yi; Abramowicz, Jacques S; Bahr, Janice M; Luborsky, Judith L

    2013-01-01

    Spontaneous ovarian cancer in chickens resembles human tumors both histologically and biochemically. The goal was to determine if there are differences in lymphocyte content between normal ovaries and ovarian tumors in chickens as a basis for further studies to understand the role of immunity in human ovarian cancer progression. Hens were selected using grey scale and color Doppler ultrasound to determine if they had normal or tumor morphology. Cells were isolated from ovaries (n = 6 hens) and lymphocyte numbers were determined by flow cytometry using antibodies to avian CD4 and CD8 T and B (Bu1a) cells. Ovarian sections from another set of hens (n = 26) were assessed to verify tumor type and stage and to count CD4, CD8 and Bu1a immunostained cells by morphometric analysis. T and B cells were more numerous in ovarian tumors than in normal ovaries by flow cytometry and immunohistochemistry. There were less CD4+ cells than CD8+ and Bu1a+ cells in normal ovaries or ovarian tumors. CD8+ cells were the dominant T cell sub-type in both ovarian stroma and in ovarian follicles compared to CD4+ cells. Bu1a+ cells were consistently found in the stroma of normal ovaries and ovarian tumors but were not associated with follicles. The number of immune cells was highest in late stage serous tumors compared to endometrioid and mucinous tumors. The results suggest that similar to human ovarian cancer there are comparatively more immune cells in chicken ovarian tumors than in normal ovaries, and the highest immune cell content occurs in serous tumors. Thus, this study establishes a foundation for further study of tumor immune responses in a spontaneous model of ovarian cancer which will facilitate studies of the role of immunity in early ovarian cancer progression and use of the hen in pre-clinical vaccine trials.

  10. Integrated intravital microscopy and mathematical modeling to optimize nanotherapeutics delivery to tumors

    Directory of Open Access Journals (Sweden)

    Anne L. van de Ven

    2012-03-01

    Full Text Available Inefficient vascularization hinders the optimal transport of cell nutrients, oxygen, and drugs to cancer cells in solid tumors. Gradients of these substances maintain a heterogeneous cell-scale microenvironment through which drugs and their carriers must travel, significantly limiting optimal drug exposure. In this study, we integrate intravital microscopy with a mathematical model of cancer to evaluate the behavior of nanoparticle-based drug delivery systems designed to circumvent biophysical barriers. We simulate the effect of doxorubicin delivered via porous 1000 x 400 nm plateloid silicon particles to a solid tumor characterized by a realistic vasculature, and vary the parameters to determine how much drug per particle and how many particles need to be released within the vasculature in order to achieve remission of the tumor. We envision that this work will contribute to the development of quantitative measures of nanoparticle design and drug loading in order to optimize cancer treatment via nanotherapeutics.

  11. Do Tumors in the Lung Deform During Normal Respiration? An Image Registration Investigation

    International Nuclear Information System (INIS)

    Wu Jianzhou; Lei Peng; Shekhar, Raj; Li Huiling; Suntharalingam, Mohan; D'Souza, Warren D.

    2009-01-01

    Purpose: The purpose of this study was to investigate whether lung tumors may be described adequately using a rigid body assumption or whether they deform during normal respiration. Methods and Materials: Thirty patients with early stage non-small-cell lung cancer underwent four-dimensional (4D) computed tomography (CT) simulation. The gross tumor volume (GTV) was delineated on the 4D CT images. Image registration was performed in the vicinity of the GTV. The volume of interest for registration was the GTV and minimal volume of surrounding non-GTV tissue. Three types of registration were performed: translation only, translation + rotation, and deformable. The GTV contour from end-inhale was mapped to end-exhale using the registration-derived transformation field. The results were evaluated using three metrics: overlap index (OI), root-mean-squared distance (RMS), and Hausdorff distance (HD). Results: After translation only image registration, on average OI increased by 21.3%, RMS and HD reduced by 1.2 mm and 2.0 mm, respectively. The succeeding increases in OI after translation + rotation and deformable registration were 1.1% and 1.4% respectively. The succeeding reductions in RMS were 0.1 mm and 0.2 mm respectively. No reduction in HD was observed after translation + rotation and deformable image registration compared with translation only registration. The difference in the results from the three registration scenarios was independent of GTV size and motion amplitude. Conclusions: The primary effect of normal respiration on lung tumors was the translation of tumors. Rotation and deformation of lung tumors was determined to be minimal.

  12. Thermal dosimetry studies of ultrasonically induced hyperthermia in normal dog brain and in experimental brain tumors

    International Nuclear Information System (INIS)

    Britt, R.H.; Pounds, D.W.; Stuart, J.S.; Lyons, B.E.; Saxer, E.L.

    1984-01-01

    In a series of 16 acute experiments on pentobarbital anesthetized dogs, thermal distributions generated by ultrasonic heating using a 1 MHz PZT transducer were compared with intensity distributions mapped in a test tank. Relatively flat distributions from 1 to 3 cm have been mapped in normal dog brain using ''shaped'' intensity distributions generated from ultrasonic emission patterns which are formed by the interaction between compressional, transverse and flexural modes activated within the crystal. In contrast, these same intensity distributions generated marked temperature variations in 3 malignant brain tumors presumably due to variations in tumor blood flow. The results of this study suggest that a practical clinical system for uniform heating of large tumor volumes with varying volumes and geometries is not an achievable goal. The author's laboratory is developing a scanning ultrasonic rapid hyperthermia treatment system which will be able to sequentially heat small volume of tumor tissue either to temperatures which will sterilize tumor or to a more conventional thermal dose. Time-temperature studies of threshold for thermal damage in normal dog brain are currently in progress

  13. Molecular strategies targeting the host component of cancer to enhance tumor response to radiation therapy

    International Nuclear Information System (INIS)

    Kim, Dong Wook; Huamani, Jessica; Fu, Allie; Hallahan, Dennis E.

    2006-01-01

    The tumor microenvironment, in particular, the tumor vasculature, as an important target for the cytotoxic effects of radiation therapy is an established paradigm for cancer therapy. We review the evidence that the phosphoinositide 3-kinase (PI3K)/Akt pathway is activated in endothelial cells exposed to ionizing radiation (IR) and is a molecular target for the development of novel radiation sensitizing agents. On the basis of this premise, several promising preclinical studies that targeted the inhibition of the PI3K/Akt activation as a potential method of sensitizing the tumor vasculature to the cytotoxic effects of IR have been conducted. An innovative strategy to guide cytotoxic therapy in tumors treated with radiation and PI3K/Akt inhibitors is presented. The evidence supports a need for further investigation of combined-modality therapy that involves radiation therapy and inhibitors of PI3K/Akt pathway as a promising strategy for improving the treatment of patients with cancer

  14. Effect of x irradiation on the vascularization of experimental animal tumors

    Energy Technology Data Exchange (ETDEWEB)

    Saeki, Y; Ogawa, F; Nishiguchi, H; Tanaka, N; Murakami, K [Kyoto Prefectural Univ. of Medicine (Japan)

    1975-03-01

    The authors studied the effect of ionizing radiation on blood vessels and tumor growth in two animal tumor systems: a third generation isoplants of a mammary cancer and a spontaneously arising squamous cell carcinoma. Single cell suspensions were transplanted into a C3H and a C3Hf mouse respectively. They were irradiated once with 2000 rad when the tumors reached about 8 mm in diameter. Microangiography was performed at a constant temperature and pressure, and a contrast medium containing lead-oxide and gelatin was flushed the vena cava for 10 min. at 120 mmHg. Tumor shrinkage was followed by continuous regrowth. The basic vasculature of the mammary carcinoma consisted of abundant large and fine blood vessels corkscrewed or stretched from the periphery of the tumor to its center in complex reticular networks. One day after irradiation there were small scattered avascular areas which, by the third day formed a large central necrosis. Supervascularization was also observed, indicating that some hypoxic tumor cells could be reoxygenized. In 5 days vascularization was similar to that of a nonirradiated tumor. Conversely, The squamous cell carcinoma showed peripheral and central vascularization with abundant vascular and avascular areas and extravasion in the large avascular area. Two days after irradiation the vessels were dilated. At 3 days peripheral fine vessels were damaged but the central vasculature remained intact. Unlike the mammary carcinoma, supervascularization was not the typical finding. At 5 days, vascularization was similar to that of a nonirradiated tumor.

  15. Prototyping of cerebral vasculature physical models.

    Science.gov (United States)

    Khan, Imad S; Kelly, Patrick D; Singer, Robert J

    2014-01-01

    Prototyping of cerebral vasculature models through stereolithographic methods have the ability to accurately depict the 3D structures of complicated aneurysms with high accuracy. We describe the method to manufacture such a model and review some of its uses in the context of treatment planning, research, and surgical training. We prospectively used the data from the rotational angiography of a 40-year-old female who presented with an unruptured right paraclinoid aneurysm. The 3D virtual model was then converted to a physical life-sized model. The model constructed was shown to be a very accurate depiction of the aneurysm and its associated vasculature. It was found to be useful, among other things, for surgical training and as a patient education tool. With improving and more widespread printing options, these models have the potential to become an important part of research and training modalities.

  16. Quantitative ex-vivo micro-computed tomographic imaging of blood vessels and necrotic regions within tumors.

    Science.gov (United States)

    Downey, Charlene M; Singla, Arvind K; Villemaire, Michelle L; Buie, Helen R; Boyd, Steven K; Jirik, Frank R

    2012-01-01

    Techniques for visualizing and quantifying the microvasculature of tumors are essential not only for studying angiogenic processes but also for monitoring the effects of anti-angiogenic treatments. Given the relatively limited information that can be gleaned from conventional 2-D histological analyses, there has been considerable interest in methods that enable the 3-D assessment of the vasculature. To this end, we employed a polymerizing intravascular contrast medium (Microfil) and micro-computed tomography (micro-CT) in combination with a maximal spheres direct 3-D analysis method to visualize and quantify ex-vivo vessel structural features, and to define regions of hypoperfusion within tumors that would be indicative of necrosis. Employing these techniques we quantified the effects of a vascular disrupting agent on the tumor vasculature. The methods described herein for quantifying whole tumor vascularity represent a significant advance in the 3-D study of tumor angiogenesis and evaluation of novel therapeutics, and will also find potential application in other fields where quantification of blood vessel structure and necrosis are important outcome parameters.

  17. On Predicting lung cancer subtypes using ‘omic’ data from tumor and tumor-adjacent histologically-normal tissue

    International Nuclear Information System (INIS)

    Pineda, Arturo López; Ogoe, Henry Ato; Balasubramanian, Jeya Balaji; Rangel Escareño, Claudia; Visweswaran, Shyam; Herman, James Gordon; Gopalakrishnan, Vanathi

    2016-01-01

    Adenocarcinoma (ADC) and squamous cell carcinoma (SCC) are the most prevalent histological types among lung cancers. Distinguishing between these subtypes is critically important because they have different implications for prognosis and treatment. Normally, histopathological analyses are used to distinguish between the two, where the tissue samples are collected based on small endoscopic samples or needle aspirations. However, the lack of cell architecture in these small tissue samples hampers the process of distinguishing between the two subtypes. Molecular profiling can also be used to discriminate between the two lung cancer subtypes, on condition that the biopsy is composed of at least 50 % of tumor cells. However, for some cases, the tissue composition of a biopsy might be a mix of tumor and tumor-adjacent histologically normal tissue (TAHN). When this happens, a new biopsy is required, with associated cost, risks and discomfort to the patient. To avoid this problem, we hypothesize that a computational method can distinguish between lung cancer subtypes given tumor and TAHN tissue. Using publicly available datasets for gene expression and DNA methylation, we applied four classification tasks, depending on the possible combinations of tumor and TAHN tissue. First, we used a feature selector (ReliefF/Limma) to select relevant variables, which were then used to build a simple naïve Bayes classification model. Then, we evaluated the classification performance of our models by measuring the area under the receiver operating characteristic curve (AUC). Finally, we analyzed the relevance of the selected genes using hierarchical clustering and IPA® software for gene functional analysis. All Bayesian models achieved high classification performance (AUC > 0.94), which were confirmed by hierarchical cluster analysis. From the genes selected, 25 (93 %) were found to be related to cancer (19 were associated with ADC or SCC), confirming the biological relevance of our

  18. Influence of ICRF-159 and levamisole on the incidence of metastases following local irradiation of a solid tumor

    Energy Technology Data Exchange (ETDEWEB)

    Baker, D.; Constable, W.; Elkon, D.; Rinehart, L.

    1981-11-15

    Courses of irradiation consisting of 6000 rad in ten equal fractions over 12 days delivered to KHT sarcomas in mice controlled 55% of the local tumors but 83% of the mice died from metastases. Three strategies to reduce the risk of metastatic spread were tested. The fractionation scheme was changed to deliver the same total dose using a large initial fraction followed by seven equal portions with the same overall time. ICRF-159 was used with the intention of partially synchronizing the tumor growth fraction in a radiosensitive state of the growth cycle and of promoting normalization of the tumor vasculature. Levamisole was used to stimulate the immune system. The combination of ICRF-159 with the eight-fraction radiation course proved to be effective for both increasing local control and decreasing the incidence of metastases. The addition of levamisole did not improve the results obtained with a combination of ICRF-159 and irradiation.

  19. Combining antiangiogenic therapy with adoptive cell immunotherapy exerts better antitumor effects in non-small cell lung cancer models.

    Directory of Open Access Journals (Sweden)

    Shujing Shi

    Full Text Available INTRODUCTION: Cytokine-induced killer cells (CIK cells are a heterogeneous subset of ex-vivo expanded T lymphocytes which are characterized with a MHC-unrestricted tumor-killing activity and a mixed T-NK phenotype. Adoptive CIK cells transfer, one of the adoptive immunotherapy represents a promising nontoxic anticancer therapy. However, in clinical studies, the therapeutic activity of adoptive CIK cells transfer is not as efficient as anticipated. Possible explanations are that abnormal tumor vasculature and hypoxic tumor microenvironment could impede the infiltration and efficacy of lymphocytes. We hypothesized that antiangiogenesis therapy could improve the antitumor activity of CIK cells by normalizing tumor vasculature and modulating hypoxic tumor microenvironment. METHODS: We combined recombinant human endostatin (rh-endostatin and CIK cells in the treatment of lung carcinoma murine models. Intravital microscopy, dynamic contrast enhanced magnetic resonance imaging, immunohistochemistry, and flow cytometry were used to investigate the tumor vasculature and hypoxic microenvironment as well as the infiltration of immune cells. RESULTS: Our results indicated that rh-endostatin synergized with adoptive CIK cells transfer to inhibit the growth of lung carcinoma. We found that rh-endostatin normalized tumor vasculature and reduced hypoxic area in the tumor microenvironment. Hypoxia significantly inhibited the proliferation, cytotoxicity and migration of CIK cells in vitro and impeded the homing of CIK cells into tumor parenchyma ex vivo. Furthermore, we found that treatment with rh-endostatin significantly increased the homing of CIK cells and decreased the accumulation of suppressive immune cells in the tumor tissue. In addition, combination therapy produced higher level of tumor-infiltration lymphocytes compared with other treatments. CONCLUSIONS: Our results demonstrate that rh-endostatin improves the therapeutic effect of adoptive CIK cells

  20. Apolipoprotein A-I Limits the Negative Effect of Tumor Necrosis Factor on Lymphangiogenesis.

    Science.gov (United States)

    Bisoendial, Radjesh; Tabet, Fatiha; Tak, Paul P; Petrides, Francine; Cuesta Torres, Luisa F; Hou, Liming; Cook, Adam; Barter, Philip J; Weninger, Wolfgang; Rye, Kerry-Anne

    2015-11-01

    Lymphatic endothelial dysfunction underlies the pathogenesis of many chronic inflammatory disorders. The proinflammatory cytokine tumor necrosis factor (TNF) is known for its role in disrupting the function of the lymphatic vasculature. This study investigates the ability of apolipoprotein (apo) A-I, the principal apolipoprotein of high-density lipoproteins, to preserve the normal function of lymphatic endothelial cells treated with TNF. TNF decreased the ability of lymphatic endothelial cells to form tube-like structures. Preincubation of lymphatic endothelial cells with apoA-I attenuated the TNF-mediated inhibition of tube formation in a concentration-dependent manner. In addition, apoA-I reversed the TNF-mediated suppression of lymphatic endothelial cell migration and lymphatic outgrowth in thoracic duct rings. ApoA-I also abrogated the negative effect of TNF on lymphatic neovascularization in an ATP-binding cassette transporter A1-dependent manner. At the molecular level, this involved downregulation of TNF receptor-1 and the conservation of prospero-related homeobox gene-1 expression, a master regulator of lymphangiogenesis. ApoA-I also re-established the normal phenotype of the lymphatic network in the diaphragms of human TNF transgenic mice. ApoA-I restores the neovascularization capacity of the lymphatic system during TNF-mediated inflammation. This study provides a proof-of-concept that high-density lipoprotein-based therapeutic strategies may attenuate chronic inflammation via its action on lymphatic vasculature. © 2015 American Heart Association, Inc.

  1. Expression and function of the protein tyrosine phosphatase receptor J (PTPRJ in normal mammary epithelial cells and breast tumors.

    Directory of Open Access Journals (Sweden)

    Chanel E Smart

    Full Text Available The protein tyrosine phosphatase receptor J, PTPRJ, is a tumor suppressor gene that has been implicated in a range of cancers, including breast cancer, yet little is known about its role in normal breast physiology or in mammary gland tumorigenesis. In this paper we show that PTPRJ mRNA is expressed in normal breast tissue and reduced in corresponding tumors. Meta-analysis revealed that the gene encoding PTPRJ is frequently lost in breast tumors and that low expression of the transcript associated with poorer overall survival at 20 years. Immunohistochemistry of PTPRJ protein in normal human breast tissue revealed a distinctive apical localisation in the luminal cells of alveoli and ducts. Qualitative analysis of a cohort of invasive ductal carcinomas revealed retention of normal apical PTPRJ localization where tubule formation was maintained but that tumors mostly exhibited diffuse cytoplasmic staining, indicating that dysregulation of localisation associated with loss of tissue architecture in tumorigenesis. The murine ortholog, Ptprj, exhibited a similar localisation in normal mammary gland, and was differentially regulated throughout lactational development, and in an in vitro model of mammary epithelial differentiation. Furthermore, ectopic expression of human PTPRJ in HC11 murine mammary epithelial cells inhibited dome formation. These data indicate that PTPRJ may regulate differentiation of normal mammary epithelia and that dysregulation of protein localisation may be associated with tumorigenesis.

  2. Nanomedicine targeting the tumor microenvironment: Therapeutic strategies to inhibit angiogenesis, remodel matrix, and modulate immune responses

    Directory of Open Access Journals (Sweden)

    Elizabeth L. Siegler

    2016-11-01

    Full Text Available Increasing attention has been given to the tumor microenvironment (TME, which includes cellular and structural components such as fibroblasts, immune cells, vasculature, and extracellular matrix (ECM that surround tumor sites. These components contribute to tumor growth and metastasis and are one reason why traditional chemotherapy often is insufficient to eradicate the tumor completely. Newer treatments that target aspects of the TME, such as antiangiogenic and immunostimulatory therapies, have seen limited clinical success despite promising preclinical results. This can be attributed to a number of reasons, including a lack of drug penetration deeper into the necrotic tumor core, nonspecific delivery, rapid clearance from serum, or toxic side effects at high doses. Nanoparticles offer a potential solution to all of these obstacles, and many recent studies have shown encouraging results using nanomedicine to target TME vasculature, ECM, and immune response. While few of these platforms have made it to clinical trials to date, these strategies are relatively new and may offer a way to improve the effects of anticancer therapies.

  3. Spectral imaging based in vivo model system for characterization of tumor microvessel response to vascular targeting agents

    Science.gov (United States)

    Wankhede, Mamta

    Functional vasculature is vital for tumor growth, proliferation, and metastasis. Many tumor-specific vascular targeting agents (VTAs) aim to destroy this essential tumor vasculature to induce indirect tumor cell death via oxygen and nutrition deprivation. The tumor angiogenesis-inhibiting anti-angiogenics (AIs) and the established tumor vessel targeting vascular disrupting agents (VDAs) are the two major players in the vascular targeting field. Combination of VTAs with conventional therapies or with each other, have been shown to have additive or supra-additive effects on tumor control and treatment. Pathophysiological changes post-VTA treatment in terms of structural and vessel function changes are important parameters to characterize the treatment efficacy. Despite the abundance of information regarding these parameters acquired using various techniques, there remains a need for a quantitative, real-time, and direct observation of these phenomenon in live animals. Through this research we aspired to develop a spectral imaging based mouse tumor system for real-time in vivo microvessel structure and functional measurements for VTA characterization. A model tumor system for window chamber studies was identified, and then combinatorial effects of VDA and AI were characterized in model tumor system. (Full text of this dissertation may be available via the University of Florida Libraries web site. Please check http://www.uflib.ufl.edu/etd.html)

  4. The influence of ICRF-159 and levamisole on the incidence of metastases following local irradiation of a solid tumor

    Energy Technology Data Exchange (ETDEWEB)

    Baker, D.; Constable, W.; Elkon, D.; Rinehart, L.

    1981-11-15

    Courses of irradiation consisting of 6000 rad in ten equal fractions over 12 days delivered to KHT sarcomas in mice controlled 55% of the local tumors but 83% of the mice died from metastases. Three strategies to reduce the risk of metastatic spread were tested. The fractionation scheme was changed to deliver the same total dose using a large initial fraction followed by seven equal portions with the same overall time. ICRF-159 was used with the intention of partially synchronizing the tumor growth fraction in a radiosensitive state of the growth cycle and of promoting normalization of the tumor vasculature. Levamisole was used to stimulate the immune system. The combination of ICRF-159 with the eight-fraction radiation course proved to be effective for both increasing local control and decreasing the incidence of metastases. The addition of levamisole did not improve the results obtained with a combination of ICRF-159 and irradiation.

  5. Verteporfin heterogeneity in pancreatic adenocarcinoma and the relationship to tumor vasculature and collagen distribution

    Science.gov (United States)

    Vincent, Phuong; Xie, Rui; Nieskoski, Michael; Marra, Kayla; Gunn, Jason; Pogue, Brian W.

    2018-02-01

    Photodynamic therapy (PDT) has emerged as one promising treatment regimen for several cancer types, with a clinical trial ongoing in pancreatic adenocarcinoma (PDAC). PDT treatment efficacy mainly depends on the combination of light delivery, oxygen availability and photosensitizer uptake, each of which can be limited in pancreas cancer. Therefore, increasing drug uptake in the tumor would make an important impact on treatment outcome. This study was conducted to focus on the issue with drug resistance by examining the relationship between photosensitizer verteporfin and tissue parameters such as collagen and vascular patency. Verteporfin uptake in the tumors was assessed by fluorescence imaging while collagen content and patent vessel area fraction were quantified by evaluating Masson's Trichrome and Lectin pathology staining images. Two tumor cell lines - AsPC-1 and BxPC-3 - were modeled in nude mice to investigate the impact of different tumor microenvironments. Experimental results highlighted the correlation between vascular patency and verteporfin uptake. Collagen content was found to be an independent factor within each tumor line, but a comparison across two tumor types suggested that collagen area of greater than 10% of tumor cross section reflected a lower verteporfin uptake. It was observed that whole-slice tumor quantifications have showcased some interesting trends which could be greatly enhanced and further supported by regional analysis.

  6. Expression and lymphatic microvessel density in primary tumors of node-neagtive colorectal cancer patients predict disease recurrence

    NARCIS (Netherlands)

    Doekhie, F.S.; Morreau, H.; de Bock, G.H.; Speetjens, F.M.; Dekker-Ensink, N.G.; Putter, H.; vand e Velde, C.J.H.; Tollenaar, R.A.E.M.; Kuppen, P.J.K.; Sialyl lewis, X.

    2008-01-01

    Up to 30% of curatively resected colorectal cancer patients with tumor-negative lymph nodes, show disease recurrence. We assessed whether these high-risk patients can be identified by examining primary tumors for the following blood and lymphatic vasculature markers: A) sialyl Lewis X (sLeX),

  7. Gene methylation profiles of normal mucosa, and benign and malignant colorectal tumors identify early onset markers

    Directory of Open Access Journals (Sweden)

    Vatn Morten

    2008-12-01

    Full Text Available Abstract Background Multiple epigenetic and genetic changes have been reported in colorectal tumors, but few of these have clinical impact. This study aims to pinpoint epigenetic markers that can discriminate between non-malignant and malignant tissue from the large bowel, i.e. markers with diagnostic potential. The methylation status of eleven genes (ADAMTS1, CDKN2A, CRABP1, HOXA9, MAL, MGMT, MLH1, NR3C1, PTEN, RUNX3, and SCGB3A1 was determined in 154 tissue samples including normal mucosa, adenomas, and carcinomas of the colorectum. The gene-specific and widespread methylation status among the carcinomas was related to patient gender and age, and microsatellite instability status. Possible CIMP tumors were identified by comparing the methylation profile with microsatellite instability (MSI, BRAF-, KRAS-, and TP53 mutation status. Results The mean number of methylated genes per sample was 0.4 in normal colon mucosa from tumor-free individuals, 1.2 in mucosa from cancerous bowels, 2.2 in adenomas, and 3.9 in carcinomas. Widespread methylation was found in both adenomas and carcinomas. The promoters of ADAMTS1, MAL, and MGMT were frequently methylated in benign samples as well as in malignant tumors, independent of microsatellite instability. In contrast, normal mucosa samples taken from bowels without tumor were rarely methylated for the same genes. Hypermethylated CRABP1, MLH1, NR3C1, RUNX3, and SCGB3A1 were shown to be identifiers of carcinomas with microsatellite instability. In agreement with the CIMP concept, MSI and mutated BRAF were associated with samples harboring hypermethylation of several target genes. Conclusion Methylated ADAMTS1, MGMT, and MAL are suitable as markers for early tumor detection.

  8. Synergy between an antiangiogenic integrin αv antagonist and an antibody–cytokine fusion protein eradicates spontaneous tumor metastases

    OpenAIRE

    Lode, Holger N.; Moehler, Thomas; Xiang, Rong; Jonczyk, Alfred; Gillies, Stephen D.; Cheresh, David A.; Reisfeld, Ralph A.

    1999-01-01

    The suppression and eradication of primary tumors and distant metastases is a major goal of alternative treatment strategies for cancer, such as inhibition of angiogenesis and targeted immunotherapy. We report here a synergy between two novel monotherapies directed against vascular and tumor compartments, respectively, a tumor vasculature-specific antiangiogenic integrin αv antagonist and tumor-specific antibody–interleukin 2 (IL-2) fusion proteins. Simultaneous an...

  9. In-vivo imaging of retinal nerve fiber layer vasculature: imaging – histology comparison

    Directory of Open Access Journals (Sweden)

    Libby Richard T

    2009-08-01

    Full Text Available Abstract Background Although it has been suggested that alterations of nerve fiber layer vasculature may be involved in the etiology of eye diseases, including glaucoma, it has not been possible to examine this vasculature in-vivo. This report describes a novel imaging method, fluorescence adaptive optics (FAO scanning laser ophthalmoscopy (SLO, that makes possible for the first time in-vivo imaging of this vasculature in the living macaque, comparing in-vivo and ex-vivo imaging of this vascular bed. Methods We injected sodium fluorescein intravenously in two macaque monkeys while imaging the retina with an FAO-SLO. An argon laser provided the 488 nm excitation source for fluorescence imaging. Reflectance images, obtained simultaneously with near infrared light, permitted precise surface registration of individual frames of the fluorescence imaging. In-vivo imaging was then compared to ex-vivo confocal microscopy of the same tissue. Results Superficial focus (innermost retina at all depths within the NFL revealed a vasculature with extremely long capillaries, thin walls, little variation in caliber and parallel-linked structure oriented parallel to the NFL axons, typical of the radial peripapillary capillaries (RPCs. However, at a deeper focus beneath the NFL, (toward outer retina the polygonal pattern typical of the ganglion cell layer (inner and outer retinal vasculature was seen. These distinguishing patterns were also seen on histological examination of the same retinas. Furthermore, the thickness of the RPC beds and the caliber of individual RPCs determined by imaging closely matched that measured in histological sections. Conclusion This robust method demonstrates in-vivo, high-resolution, confocal imaging of the vasculature through the full thickness of the NFL in the living macaque, in precise agreement with histology. FAO provides a new tool to examine possible primary or secondary role of the nerve fiber layer vasculature in retinal

  10. Effect of tamsulosin on iris vasculature and morphology.

    Science.gov (United States)

    Shtein, Roni M; Hussain, Munira T; Cooney, Theresa M; Elner, Victor M; Hood, Christopher T

    2014-05-01

    To determine whether preoperative iris vasculature and morphology are altered in patients who have taken tamsulosin (Flomax). Academic multispecialty practice. Case series. Patients with current or past tamsulosin use and age- and sex-matched control patients were included. Anterior segment optical coherence tomography (AS-OCT) and iris fluorescein angiography were performed to measure iris vasculature and thickness before cataract surgery. Data collected at surgery included pupil diameter, clinical signs of intraoperative floppy-iris syndrome, and surgical complications. Tamsulosin was currently used by 16 patients and in the past by 4 patients; the control group comprised 10 patients. Pharmacologically dilated pupil diameter was statistically significantly smaller preoperatively and immediately postoperatively in the tamsulosin group than in the control group (P=.009 and P=.003, respectively). There was a statistically significant decrease in pupil size intraoperatively in the tamsulosin group (P=.05) but not in the control group (P=.3). Iris-vasculature parameters, specifically time to first vessel fill and percentage of vessel fill on iris fluorescein angiography, were not significantly different between the 2 groups. The AS-OCT measurements of iris morphology were not statistically significantly different between the groups. No surgical complications occurred. No fluorescein dye leakage, staining, or other vascular anomalies were observed. Although there were differences in pupil measurements and intraoperative iris behavior between patients who had been on tamsulosin and control patients, there were no significant differences in iris vasculature on iris fluorescein angiography or in iris morphology on AS-OCT. Copyright © 2014 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  11. Prognostic impact of normalization of serum tumor markers following neoadjuvant chemotherapy in patients with borderline resectable pancreatic carcinoma with arterial contact.

    Science.gov (United States)

    Murakami, Yoshiaki; Uemura, Kenichiro; Sudo, Takeshi; Hashimoto, Yasushi; Kondo, Naru; Nakagawa, Naoya; Okada, Kenjiro; Takahashi, Shinya; Sueda, Taijiro

    2017-04-01

    The survival benefit of neoadjuvant therapy for patients with borderline resectable pancreatic carcinoma has been reported recently. However, prognostic factors for this strategy have not been clearly elucidated. The aim of this study was to clarify prognostic factors for patients with borderline resectable pancreatic carcinoma who received neoadjuvant chemotherapy. Medical records of 66 patients with pancreatic carcinoma with arterial contact who intended to undergo tumor resection following neoadjuvant chemotherapy were analyzed retrospectively. Prognostic factors were investigated by analyzing the clinicopathological factors with univariate and multivariate survival analyses. Gemcitabine plus S-1 was generally used as neoadjuvant chemotherapy. The objective response rate was 24%, and normalization of serum tumor markers following neoadjuvant chemotherapy was achieved in 29 patients (44%). Of the 66 patients, 60 patients underwent tumor resection and the remaining six patients did not due to distant metastases following neoadjuvant chemotherapy. For all 66 patients, overall 1-, 2-, and 5-year survival rates were 87.8, 54.5, and 20.5%, respectively (median survival time, 27.1 months) and multivariate analysis revealed that normalization of serum tumor markers was found to be an independent prognostic factor of better overall survival (P = 0.023). Moreover, for 60 patients who undergo tumor resection, normalization of serum tumor markers (P = 0.005) was independently associated with better overall survival by multivariate analysis. Patients with pancreatic carcinoma with arterial contact who undergo neoadjuvant chemotherapy and experience normalization of serum tumor markers thereafter may be good candidates for tumor resection.

  12. Triptans and CGRP blockade - impact on the cranial vasculature

    DEFF Research Database (Denmark)

    Benemei, Silvia; Cortese, Francesca; Labastida-Ramírez, Alejandro

    2017-01-01

    and vascular tone. Thirty years after discovery of agonists for serotonin 5-HT1B and 5-HT1D receptors (triptans) and less than fifteen after the proof of concept of the gepant class of CGRP receptor antagonists, we are still a long way from understanding their precise site and mode of action in migraine....... The effect on cranial vasculature is relevant, because all specific anti-migraine drugs and migraine pharmacological triggers may act in perivascular space. This review reports the effects of triptans and CGRP blocking molecules on cranial vasculature in humans, focusing on their specific relevance...

  13. Evaluation of the "steal" phenomenon on the efficacy of hypoxia activated prodrug TH-302 in pancreatic cancer.

    Directory of Open Access Journals (Sweden)

    Kate M Bailey

    Full Text Available Pancreatic ductal adenocarcinomas are desmoplastic and hypoxic, both of which are associated with poor prognosis. Hypoxia-activated prodrugs (HAPs are specifically activated in hypoxic environments to release cytotoxic or cytostatic effectors. TH-302 is a HAP that is currently being evaluated in a Phase III clinical trial in pancreatic cancer. Using animal models, we show that tumor hypoxia can be exacerbated using a vasodilator, hydralazine, improving TH-302 efficacy. Hydralazine reduces tumor blood flow through the "steal" phenomenon, in which atonal immature tumor vasculature fails to dilate in coordination with normal vasculature. We show that MIA PaCa-2 tumors exhibit a "steal" effect in response to hydralazine, resulting in decreased tumor blood flow and subsequent tumor pH reduction. The effect is not observed in SU.86.86 tumors with mature tumor vasculature, as measured by CD31 and smooth muscle actin (SMA immunohistochemistry staining. Combination therapy of hydralazine and TH-302 resulted in a reduction in MIA PaCa-2 tumor volume growth after 18 days of treatment. These studies support a combination mechanism of action for TH-302 with a vasodilator that transiently increases tumor hypoxia.

  14. Evaluation of the “Steal” Phenomenon on the Efficacy of Hypoxia Activated Prodrug TH-302 in Pancreatic Cancer

    Science.gov (United States)

    Ibrahim-Hashim, Arig; Wojtkowiak, Jonathan W.; Hart, Charles P.; Zhang, Xiaomeng; Leos, Rafael; Martinez, Gary V.; Baker, Amanda F.; Gillies, Robert J.

    2014-01-01

    Pancreatic ductal adenocarcinomas are desmoplastic and hypoxic, both of which are associated with poor prognosis. Hypoxia-activated prodrugs (HAPs) are specifically activated in hypoxic environments to release cytotoxic or cytostatic effectors. TH-302 is a HAP that is currently being evaluated in a Phase III clinical trial in pancreatic cancer. Using animal models, we show that tumor hypoxia can be exacerbated using a vasodilator, hydralazine, improving TH-302 efficacy. Hydralazine reduces tumor blood flow through the “steal” phenomenon, in which atonal immature tumor vasculature fails to dilate in coordination with normal vasculature. We show that MIA PaCa-2 tumors exhibit a “steal” effect in response to hydralazine, resulting in decreased tumor blood flow and subsequent tumor pH reduction. The effect is not observed in SU.86.86 tumors with mature tumor vasculature, as measured by CD31 and smooth muscle actin (SMA) immunohistochemistry staining. Combination therapy of hydralazine and TH-302 resulted in a reduction in MIA PaCa-2 tumor volume growth after 18 days of treatment. These studies support a combination mechanism of action for TH-302 with a vasodilator that transiently increases tumor hypoxia. PMID:25532146

  15. Fatty acid and lipidomic data in normal and tumor colon tissues of rats fed diets with and without fish oil

    Directory of Open Access Journals (Sweden)

    Zora Djuric

    2017-08-01

    Full Text Available Data is provided to show the detailed fatty acid and lipidomic composition of normal and tumor rat colon tissues. Rats were fed either a Western fat diet or a fish oil diet, and half the rats from each diet group were treated with chemical carcinogens that induce colon cancer (azoxymethane and dextran sodium sulfate. The data show total fatty acid profiles of sera and of all the colon tissues, namely normal tissue from control rats and both normal and tumor tissues from carcinogen-treated rats, as obtained by gas chromatography with mass spectral detection. Data from lipidomic analyses of a representative subset of the colon tissue samples is also shown in heat maps generated from hierarchical cluster analysis. These data display the utility lipidomic analyses to enhance the interpretation of dietary feeding studies aimed at cancer prevention and support the findings published in the companion paper (Effects of fish oil supplementation on prostaglandins in normal and tumor colon tissue: modulation by the lipogenic phenotype of colon tumors, Djuric et al., 2017 [1].

  16. Radiobiological predictors of tumor and acute normal tissue response in radiotherapy for head and neck cancers

    International Nuclear Information System (INIS)

    Maciejewski, B.; Skladowski, K.; Zajusz, A.

    1991-01-01

    The importance of measurements of the potential doubling time (T pot. ) and of the survival fraction at 2.0 Gy (SF 2 ), and a method modifying acute radiation response of normal oral mucosa are discussed. Tumor clonogen repopulation accelerates around day 28 of the treatment, and the rate of repopulation is not constant but continuously increases from about 0.3 Gy/day to 1.0-1.3 Gy/day between day 28 and 65 of the treatment. This may suggest that T pot. values decrease correspondingly. The relevance of prior-to-treatment T pot. measurements to clinical situations is discussed. The SF 2 value reflects the intrinsic radiosensitivity of human tumors. The SF 2 values are expected to be valuable as predictors for tumor response to irradiation. Variations in the SF 2 values depending on tumor characteristics and assay methods are discussed in relation to the dose response and tumor cure probability. The effect of modifying the repopulation rate in the oral mucosa by stimulation with a 2% silver nitrate solution is discussed. Although these prognosticators are different in their nature, they might provide a rational basis for selecting patients into optimal irradiation treatment and might allow to modify the radiation response of dose-limiting normal tissues. (author). 5 figs., 1 tab., 28 refs

  17. Applying gold nanoparticles as tumor-vascular disrupting agents during brachytherapy: estimation of endothelial dose enhancement

    International Nuclear Information System (INIS)

    Ngwa, Wilfred; Makrigiorgos, G Mike; Berbeco, Ross I

    2010-01-01

    Tumor vascular disrupting agents (VDAs) represent a promising approach to the treatment of cancer, in view of the tumor vasculature's pivotal role in tumor survival, growth and metastasis. VDAs targeting the tumor's dysmorphic endothelial cells can cause selective and rapid occlusion of the tumor vasculature, leading to tumor cell death from ischemia and extensive hemorrhagic necrosis. In this study, the potential for applying gold nanoparticles (AuNPs) as VDAs, during brachytherapy, is examined. Analytic calculations based on the electron energy loss formula of Cole were carried out to estimate the endothelial dose enhancement caused by radiation-induced photo/Auger electrons originating from AuNPs targeting the tumor endothelium. The endothelial dose enhancement factor (EDEF), representing the ratio of the dose to the endothelium with and without gold nanoparticles was calculated for different AuNP local concentrations, and endothelial cell thicknesses. Four brachytherapy sources were investigated, I-125, Pd-103, Yb-169, as well as 50 kVp x-rays. The results reveal that, even at relatively low intra-vascular AuNP concentrations, ablative dose enhancement to tumor endothelial cells due to photo/Auger electrons from the AuNPs can be achieved. Pd-103 registered the highest EDEF values of 7.4-271.5 for local AuNP concentrations ranging from 7 to 350 mg g -1 , respectively. Over the same concentration range, I-125, 50 kVp and Yb-169 yielded values of 6.4-219.9, 6.3-214.5 and 4.0-99.7, respectively. Calculations of the EDEF as a function of endothelial cell thickness showed that lower energy sources like Pd-103 reach the maximum EDEF at smaller thicknesses. The results also reveal that the highest contribution to the EDEF comes from Auger electrons, apparently due to their shorter range. Overall, the data suggest that ablative dose enhancement to tumor endothelial cells can be achieved by applying tumor vasculature-targeted AuNPs as adjuvants to brachytherapy, with

  18. Applying gold nanoparticles as tumor-vascular disrupting agents during brachytherapy: estimation of endothelial dose enhancement

    Science.gov (United States)

    Ngwa, Wilfred; Makrigiorgos, G. Mike; Berbeco, Ross I.

    2010-11-01

    Tumor vascular disrupting agents (VDAs) represent a promising approach to the treatment of cancer, in view of the tumor vasculature's pivotal role in tumor survival, growth and metastasis. VDAs targeting the tumor's dysmorphic endothelial cells can cause selective and rapid occlusion of the tumor vasculature, leading to tumor cell death from ischemia and extensive hemorrhagic necrosis. In this study, the potential for applying gold nanoparticles (AuNPs) as VDAs, during brachytherapy, is examined. Analytic calculations based on the electron energy loss formula of Cole were carried out to estimate the endothelial dose enhancement caused by radiation-induced photo/Auger electrons originating from AuNPs targeting the tumor endothelium. The endothelial dose enhancement factor (EDEF), representing the ratio of the dose to the endothelium with and without gold nanoparticles was calculated for different AuNP local concentrations, and endothelial cell thicknesses. Four brachytherapy sources were investigated, I-125, Pd-103, Yb-169, as well as 50 kVp x-rays. The results reveal that, even at relatively low intra-vascular AuNP concentrations, ablative dose enhancement to tumor endothelial cells due to photo/Auger electrons from the AuNPs can be achieved. Pd-103 registered the highest EDEF values of 7.4-271.5 for local AuNP concentrations ranging from 7 to 350 mg g-1, respectively. Over the same concentration range, I-125, 50 kVp and Yb-169 yielded values of 6.4-219.9, 6.3-214.5 and 4.0-99.7, respectively. Calculations of the EDEF as a function of endothelial cell thickness showed that lower energy sources like Pd-103 reach the maximum EDEF at smaller thicknesses. The results also reveal that the highest contribution to the EDEF comes from Auger electrons, apparently due to their shorter range. Overall, the data suggest that ablative dose enhancement to tumor endothelial cells can be achieved by applying tumor vasculature-targeted AuNPs as adjuvants to brachytherapy, with lower

  19. Human adipose tissue from normal and tumoral breast regulates the behavior of mammary epithelial cells.

    Science.gov (United States)

    Pistone Creydt, Virginia; Fletcher, Sabrina Johanna; Giudice, Jimena; Bruzzone, Ariana; Chasseing, Norma Alejandra; Gonzalez, Eduardo Gustavo; Sacca, Paula Alejandra; Calvo, Juan Carlos

    2013-02-01

    Stromal-epithelial interactions mediate both breast development and breast cancer progression. In the present work, we evaluated the effects of conditioned media (CMs) of human adipose tissue explants from normal (hATN) and tumor (hATT) breast on proliferation, adhesion, migration and metalloproteases activity on tumor (MCF-7 and IBH-7) and non-tumor (MCF-10A) human breast epithelial cell lines. Human adipose tissues were obtained from patients and the conditioned medium from hATN and hATT collected after 24 h of incubation. MCF-10A, MCF-7 and IBH-7 cells were grown and incubated with CMs and proliferation and adhesion, as well as migration ability and metalloprotease activity, of epithelial cells after exposing cell cultures to hATN- or hATT-CMs were quantified. The statistical significance between different experimental conditions was evaluated by one-way ANOVA. Tukey's post hoc tests were performed. Tumor and non-tumor breast epithelial cells significantly increased their proliferation activity after 24 h of treatment with hATT-CMs compared to control-CMs. Furthermore, cellular adhesion of these two tumor cell lines was significantly lower with hATT-CMs than with hATN-CMs. Therefore, hATT-CMs seem to induce significantly lower expression or less activity of the components involved in cellular adhesion than hATN-CMs. In addition, hATT-CMs induced pro-MMP-9 and MMP-9 activity and increased the migration of MCF-7 and IBH-7 cells compared to hATN-CMs. We conclude that the microenvironment of the tumor interacts in a dynamic way with the mutated epithelium. This evidence leads to the possibility to modify the tumor behavior/phenotype through the regulation or modification of its microenvironment. We developed a model in which we obtained CMs from adipose tissue explants completely, either from normal or tumor breast. In this way, we studied the contribution of soluble factors independently of the possible effects of direct cell contact.

  20. The Effect of Electroacupuncture on Osteosarcoma Tumor Growth and Metastasis: Analysis of Different Treatment Regimens

    Directory of Open Access Journals (Sweden)

    Branden A. Smeester

    2013-01-01

    Full Text Available Osteosarcoma is the most common malignant bone tumor found in children and adolescents and is associated with many complications including cancer pain and metastasis. While cancer patients often seek complementary and alternative medicine (CAM approaches to treat cancer pain and fatigue or the side effects of chemotherapy and treatment, there is little known about the effect of acupuncture treatment on tumor growth and metastasis. Here we evaluate the effects of six different electroacupuncture (EA regimens on osteosarcoma tumor growth and metastasis in both male and female mice. The most significant positive effects were observed when EA was applied to the ST-36 acupoint twice weekly (EA-2X/3 beginning at postimplantation day 3 (PID 3. Twice weekly treatment produced robust reductions in tumor growth. Conversely, when EA was applied twice weekly (EA-2X/7, starting at PID 7, there was a significant increase in tumor growth. We further demonstrate that EA-2X/3 treatment elicits significant reductions in tumor lymphatics, vasculature, and innervation. Lastly, EA-2X/3 treatment produced a marked reduction in pulmonary metastasis, thus providing evidence for EA’s potential antimetastatic capabilities. Collectively, EA-2X/3 treatment was found to reduce both bone tumor growth and lung metastasis, which may be mediated in part through reductions in tumor-associated vasculature, lymphatics, and innervation.

  1. Cytotoxicity of Portuguese Propolis: The Proximity of the In Vitro Doses for Tumor and Normal Cell Lines

    Directory of Open Access Journals (Sweden)

    Ricardo C. Calhelha

    2014-01-01

    Full Text Available With a complex chemical composition rich in phenolic compounds, propolis (resinous substance collected by Apis mellifera from various tree buds exhibits a broad spectrum of biological activities. Recently, in vitro and in vivo data suggest that propolis has anticancer properties, but is the cytoxicity of propolis specific for tumor cells? To answer this question, the cytotoxicity of phenolic extracts from Portuguese propolis of different origins was evaluated using human tumor cell lines (MCF7—breast adenocarcinoma, NCI-H460—non-small cell lung carcinoma, HCT15—colon carcinoma, HeLa—cervical carcinoma, and HepG2—hepatocellular carcinoma, and non-tumor primary cells (PLP2. The studied propolis presented high cytotoxic potential for human tumor cell lines, mostly for HCT15. Nevertheless, excluding HCT15 cell line, the extracts at the GI50 obtained for tumor cell lines showed, in general, cytotoxicity for normal cells (PLP2. Propolis phenolic extracts comprise phytochemicals that should be further studied for their bioactive properties against human colon carcinoma. In the other cases, the proximity of the in vitro cytotoxic doses for tumor and normal cell lines should be confirmed by in vivo tests and may highlight the need for selection of specific compounds within the propolis extract.

  2. Apolipoprotein A-I Limits the Negative Effect of Tumor Necrosis Factor on Lymphangiogenesis

    NARCIS (Netherlands)

    Bisoendial, Radjesh; Tabet, Fatiha; Tak, Paul P.; Petrides, Francine; Cuesta Torres, Luisa F.; Hou, Liming; Cook, Adam; Barter, Philip J.; Weninger, Wolfgang; Rye, Kerry-Anne

    2015-01-01

    Lymphatic endothelial dysfunction underlies the pathogenesis of many chronic inflammatory disorders. The proinflammatory cytokine tumor necrosis factor (TNF) is known for its role in disrupting the function of the lymphatic vasculature. This study investigates the ability of apolipoprotein (apo)

  3. Study of intrarenal vasculature in cases of primary and secondary hypertension (by metallic impregnation technique on whole kidney section

    Directory of Open Access Journals (Sweden)

    Mittal B

    1992-10-01

    Full Text Available Study of intrarenal vasculature was carried out by using the metallic impregnation technique on whole kidney sections in 31 [corrected] cases of (primary and secondary hypertension and 10 normal controls. Distinct patterns of intrarenal vasculature were noted in controls and in cases of hypertension. Gradual tapering of vessels, absence of tortuosity and good peripheral vascularisation were noted in controls. Abrupt tapering, tortuosity of vessels and poor peripheral vascularisation were noted in hypertensive cases. In essential hypertension moderate to severe changes of dilatation of the segmental and/or arcuate arteries was noted. The degree of dilatation was related to the level of systolic BP rather than diastolic in cases of essential hypertension. Secondary hypertension even if severe, rarely showed significant dilatation lesions. Avascular zones and conglomeration of vessels at poles was seen only in cases of pyelonephritis. This helped in distinguishing these, from cases of glomerulonephritis.

  4. Brain Tumor Therapy-Induced Changes in Normal-Appearing Brainstem Measured With Longitudinal Diffusion Tensor Imaging

    International Nuclear Information System (INIS)

    Hua Chiaho; Merchant, Thomas E.; Gajjar, Amar; Broniscer, Alberto; Zhang, Yong; Li Yimei; Glenn, George R.; Kun, Larry E.; Ogg, Robert J.

    2012-01-01

    Purpose: To characterize therapy-induced changes in normal-appearing brainstems of childhood brain tumor patients by serial diffusion tensor imaging (DTI). Methods and Materials: We analyzed 109 DTI studies from 20 brain tumor patients, aged 4 to 23 years, with normal-appearing brainstems included in the treatment fields. Those with medulloblastomas, supratentorial primitive neuroectodermal tumors, and atypical teratoid rhabdoid tumors (n = 10) received postoperative craniospinal irradiation (23.4–39.6 Gy) and a cumulative dose of 55.8 Gy to the primary site, followed by four cycles of high-dose chemotherapy. Patients with high-grade gliomas (n = 10) received erlotinib during and after irradiation (54–59.4 Gy). Parametric maps of fractional anisotropy (FA) and apparent diffusion coefficient (ADC) were computed and spatially registered to three-dimensional radiation dose data. Volumes of interest included corticospinal tracts, medial lemnisci, and the pons. Serving as an age-related benchmark for comparison, 37 DTI studies from 20 healthy volunteers, aged 6 to 25 years, were included in the analysis. Results: The median DTI follow-up time was 3.5 years (range, 1.6–5.0 years). The median mean dose to the pons was 56 Gy (range, 7–59 Gy). Three patterns were seen in longitudinal FA and apparent diffusion coefficient changes: (1) a stable or normal developing time trend, (2) initial deviation from normal with subsequent recovery, and (3) progressive deviation without evidence of complete recovery. The maximal decline in FA often occurred 1.5 to 3.5 years after the start of radiation therapy. A full recovery time trend could be observed within 4 years. Patients with incomplete recovery often had a larger decline in FA within the first year. Radiation dose alone did not predict long-term recovery patterns. Conclusions: Variations existed among individual patients after therapy in longitudinal evolution of brainstem white matter injury and recovery. Early response

  5. Zoledronic acid enhances antitumor efficacy of liposomal doxorubicin.

    Science.gov (United States)

    Hattori, Yoshiyuki; Shibuya, Kazuhiko; Kojima, Kaori; Miatmoko, Andang; Kawano, Kumi; Ozaki, Kei-Ichi; Yonemochi, Etsuo

    2015-07-01

    Previously, we found that the injection of zoledronic acid (ZOL) into mice bearing tumor induced changes of the vascular structure in the tumor. In this study, we examined whether ZOL treatment could decrease interstitial fluid pressure (IFP) via change of tumor vasculature, and enhance the antitumor efficacy of liposomal doxorubicin (Doxil®). When ZOL solution was injected at 40 µg/mouse per day for three consecutive days into mice bearing murine Lewis lung carcinoma LLC tumor, depletion of macrophages in tumor tissue and decreased density of tumor vasculature were observed. Furthermore, ZOL treatments induced inflammatory cytokines such as interleukin (IL)-10 and -12, granulocyte-macrophage colony-stimulating factor (GM-CSF) and tumor necrosis factor (TNF)-α in serum of LLC tumor-bearing mice, but not in normal mice, indicating that ZOL treatments might induce an inflammatory response in tumor tissue. Furthermore, ZOL treatments increased antitumor activity by Doxil in mice bearing a subcutaneous LLC tumor, although they did not significantly increase the tumor accumulation of doxorubicin (DXR). These results suggest that ZOL treatments might increase the therapeutic efficacy of Doxil via improvement of DXR distribution in a tumor by changing the tumor vasculature. ZOL treatment can be an alternative approach to increase the antitumor effect of liposomal drugs.

  6. A 3-D model of tumor progression based on complex automata driven by particle dynamics.

    Science.gov (United States)

    Wcisło, Rafał; Dzwinel, Witold; Yuen, David A; Dudek, Arkadiusz Z

    2009-12-01

    The dynamics of a growing tumor involving mechanical remodeling of healthy tissue and vasculature is neglected in most of the existing tumor models. This is due to the lack of efficient computational framework allowing for simulation of mechanical interactions. Meanwhile, just these interactions trigger critical changes in tumor growth dynamics and are responsible for its volumetric and directional progression. We describe here a novel 3-D model of tumor growth, which combines particle dynamics with cellular automata concept. The particles represent both tissue cells and fragments of the vascular network. They interact with their closest neighbors via semi-harmonic central forces simulating mechanical resistance of the cell walls. The particle dynamics is governed by both the Newtonian laws of motion and the cellular automata rules. These rules can represent cell life-cycle and other biological interactions involving smaller spatio-temporal scales. We show that our complex automata, particle based model can reproduce realistic 3-D dynamics of the entire system consisting of the tumor, normal tissue cells, blood vessels and blood flow. It can explain phenomena such as the inward cell motion in avascular tumor, stabilization of tumor growth by the external pressure, tumor vascularization due to the process of angiogenesis, trapping of healthy cells by invading tumor, and influence of external (boundary) conditions on the direction of tumor progression. We conclude that the particle model can serve as a general framework for designing advanced multiscale models of tumor dynamics and it is very competitive to the modeling approaches presented before.

  7. Brief Communication: Tissue-engineered Microenvironment Systems for Modeling Human Vasculature

    Science.gov (United States)

    Tourovskaia, Anna; Fauver, Mark; Kramer, Gregory; Simonson, Sara; Neumann, Thomas

    2015-01-01

    The high attrition rate of drug candidates late in the development process has led to an increasing demand for test assays that predict clinical outcome better than conventional 2D cell culture systems and animal models. Government agencies, the military, and the pharmaceutical industry have started initiatives for the development of novel in-vitro systems that recapitulate functional units of human tissues and organs. There is growing evidence that 3D cell arrangement, co-culture of different cell types, and physico-chemical cues lead to improved predictive power. A key element of all tissue microenvironments is the vasculature. Beyond transporting blood the microvasculature assumes important organ-specific functions. It is also involved in pathologic conditions, such as inflammation, tumor growth, metastasis, and degenerative diseases. To provide a tool for modeling this important feature of human tissue microenvironments, we developed a microfluidic chip for creating tissue-engineered microenvironment systems (TEMS) composed of tubular cell structures. Our chip design encompasses a small chamber that is filled with an extracellular matrix (ECM) surrounding one or more tubular channels. Endothelial cells seeded into the channels adhere to the ECM walls and grow into perfusable tubular tissue structures that are fluidically connected to upstream and downstream fluid channels in the chip. Using these chips we created models of angiogenesis, the blood-brain-barrier (BBB), and tumor-cell extravasation. Our angiogenesis model recapitulates true angiogenesis, in which sprouting occurs from a “parent” vessel in response to a gradient of growth factors. Our BBB model is composed of a microvessel generated from brain-specific endothelial cells (ECs) within an ECM populated with astrocytes and pericytes. Our tumor-cell extravasation model can be utilized to visualize and measure tumor-cell migration through vessel walls into the surrounding matrix. The described

  8. SU-D-18A-04: Quantifying the Ability of Tumor Tracking to Spare Normal Tissue

    Energy Technology Data Exchange (ETDEWEB)

    Burger, A; Buzurovic, I; Hurwitz, M; Williams, C; Lewis, J [Brigham and Women' s Hospital, Dana-Farber Cancer Center, Harvard Medical Sc, Boston, MA (United States); Mishra, P [Varian Medical Systems, Palo Alto, CA (United States); Seco, J [Mass General Hospital, Harvard Medical, Boston, MA (United States)

    2014-06-01

    Purpose: Tumor tracking allows for smaller tissue volumes to be treated, potentially reducing normal tissue damage. However, tumor tracking is a more complex treatment and has little benefit in some scenarios. Here we quantify the benefit of tumor tracking for a range of patients by estimating the dose of radiation to organs at risk and the normal tissue complication probability (NTCP) for both standard and tracking treatment plans. This comparison is performed using both patient 4DCT data and extended Cardiac-Torso (XCAT) digital phantoms. Methods: We use 4DCT data for 10 patients. Additionally, we generate digital phantoms with motion derived from measured patient long tumor trajectories to compare standard and tracking treatment plans. The standard treatment is based on the average intensity projection (AIP) of 4DCT images taken over a breath cycle. The tracking treatment is based on doses calculated on images representing the anatomy at each time point. It is assumed that there are no errors in tracking the target. The NTCP values are calculated based on RTOG guidelines. Results: The mean reduction in the mean dose delivered was 5.5% to the lungs (from 7.3 Gy to 6.9 Gy) and 4.0% to the heart (from 12.5 Gy to 12.0 Gy). The mean reduction in the max dose delivered was 13% to the spinal cord (from 27.6 Gy to 24.0 Gy), 2.5% to the carina (from 31.7 Gy to 30.9 Gy), and 15% to the esophagus (from 69.6 Gy to 58.9 Gy). The mean reduction in the probability of 2nd degree radiation pneumonitis (RP) was 8.7% (3.1% to 2.8%) and the mean reduction in the effective volume was 6.8% (10.8% to 10.2%). Conclusions: Tumor tracking has the potential to reduce irradiation of organs at risk, and consequentially reduce the normal tissue complication probability. The benefits vary based on the clinical scenario. This study is supported by Varian Medical Systems, Inc.

  9. PDGFB as a vascular normalization agent in an ovarian cancer model treated with a gamma-secretase inhibitor.

    Science.gov (United States)

    Pazos, Maria C; Sequeira, Gonzalo; Bocchicchio, Sebastian; May, Maria; Abramovich, Dalhia; Parborell, Fernanda; Tesone, Marta; Irusta, Griselda

    2018-08-01

    Ovarian cancer is the fifth leading cause of cancer-related deaths in women. In the past 20 years, the canonical types of drugs used to treat ovarian cancer have not been replaced and the survival rates have not changed. These facts show the clear need to find new therapeutic strategies for this illness. Thus, the aim of the present study was to investigate the effect of a gamma-secretase inhibitor (DAPT) in combination with the Platelet-derived growth factor B (PDGFB) on an ovarian cancer xenograft model. To achieve this goal, we analyzed the effect of the administration of DAPT alone and the co-administration of DAPT and recombinant PDGFB on parameters associated with tumor growth and angiogenesis in an orthotopic experimental model of ovarian cancer. We observed that the dose of DAPT used was ineffective to reduce ovarian tumor growth, but showed anticancer activity when co-administered with recombinant PDGFB. The administration of PDGFB alone normalized tumor vasculature by increasing periendothelial coverage and vascular functionality. Interestingly, this effect exerted by PDGFB was also observed in the presence of DAPT. Our findings suggest that PDGFB is able to improve tumor vascularity and allows the anticancer action of DAPT in the tumor. We propose that this therapeutic strategy could be a new tool for ovarian cancer treatment and deserves further studies. © 2017 Wiley Periodicals, Inc.

  10. Comparison of incidences of normal tissue complications with tumor response in a phase III trial comparing heat plus radiation to radiation alone

    International Nuclear Information System (INIS)

    Dewhirst, M.W.; Sim, D.A.; Grochowski, K.J.

    1984-01-01

    The success of hyperthermia (/sup Δ/) as an adjuvant to radiation (XRT) will depend on whether the increase in tumor control is greater than that for normal tissue reactions. One hundred and thirty dogs and cats were stratified by histology and randomized to receive XRT (460 rads per fraction, two fractions per week, for eight fractions) or /sup Δ/ + XRT (30 min. at 44 +-2 0 C; one fraction per week, four fractions; immediately prior to XRT). Heat induced changes in tumor and normal tissue responses were made by comparing ratios of incidence for /sup Δ/ + XRT and XRT alone (TRR; Thermal Relative Risk). Change in tumor response duration was calculated from statistical analysis of response duration curves (RRR; Relative Relapse Rate). Heat increased early normal tissue reactions (moist desquamation and mucositis by a factor of 1.08. Tumor complete response, by comparison, was significantly improved (TRR = 2.12, p < .001). Late skin fibrosis was also increased (TRR = 1.51), but the prolongation in tumor response was greater (RRR 1.85). The degree of thermal enhancement for all tissues was dependent on the minimum temperature achieved on the first treatment, but the values for tumor were consistently greater than those achieved for normal tissues

  11. Combined Effects of Pericytes in the Tumor Microenvironment

    Directory of Open Access Journals (Sweden)

    Aline Lopes Ribeiro

    2015-01-01

    Full Text Available Pericytes are multipotent perivascular cells whose involvement in vasculature development is well established. Evidences in the literature also suggest that pericytes display immune properties and that these cells may serve as an in vivo reservoir of stem cells, contributing to the regeneration of diverse tissues. Pericytes are also capable of tumor homing and are important cellular components of the tumor microenvironment (TME. In this review, we highlight the contribution of pericytes to some classical hallmarks of cancer, namely, tumor angiogenesis, growth, metastasis, and evasion of immune destruction, and discuss how collectively these hallmarks could be tackled by therapies targeting pericytes, providing a rationale for cancer drugs aiming at the TME.

  12. Influence of low-energy laser radiation on normal skin and certain tumor tissues

    Energy Technology Data Exchange (ETDEWEB)

    Pletnev, S.D.; Karpenko, O.M.

    For some years, the authors' Institute has studied the influence of various types of low-energy laser radiation on normal tissue and the growth of tumors. Radiation at 3 and 30 J/cm/sup 2/ causes an increase in biological activity of various cell elements, manifested as an increase in mitotic activity of the cells in the basal layer of the epidermis, conglomeration of chromatin in the cell nuclei and an increase in degranulation of fat cells in the process of their migration to the reticular layer. Also noted was an increase in content of fibroblastic and lymphohistocytic elements in the dermis, as well as an increase in collagenization of connective tissue. It was found that irradiation of the skin by helium-neon, cadmium-helium and nitrogen lasers before and after grafting of the cells of various tumors modifies the course of the tumor process. This effect is apparently related to the fact that systematic irradiation results in changes creating a favorable background for survival and proliferation of tumor cells in the skin tissue medium. The changes facilitate an increase in survival and growth of both pigmented and nonpigmented tumors. Low power radiation stimulates the activity of the cells or cell structures; medium power stimulates their activity; high power suppresses activity.

  13. Remodeling of Tumor Stroma and Response to Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Anna; Ganss, Ruth, E-mail: ganss@waimr.uwa.edu.au [Western Australian Institute for Medical Research, Centre for Medical Research, University of Western Australia, Perth 6000 (Australia)

    2012-03-27

    Solid tumors are intrinsically resistant to therapy. Cancer progression occurs when tumor cells orchestrate responses from diverse stromal cell types such as blood vessels and their support cells, inflammatory cells, and fibroblasts; these cells collectively form the tumor microenvironment and provide direct support for tumor growth, but also evasion from cytotoxic, immune and radiation therapies. An indirect result of abnormal and leaky blood vessels in solid tumors is high interstitial fluid pressure, which reduces drug penetration, but also creates a hypoxic environment that further augments tumor cell growth and metastatic spread. Importantly however, studies during the last decade have shown that the tumor stroma, including the vasculature, can be modulated, or re-educated, to allow better delivery of chemotherapeutic drugs or enhance the efficiency of active immune therapy. Such remodeling of the tumor stroma using genetic, pharmacological and other therapeutic approaches not only enhances selective access into tumors but also reduces toxic side effects. This review focuses on recent novel concepts to modulate tumor stroma and thus locally increase therapeutic efficacy.

  14. Remodeling of Tumor Stroma and Response to Therapy

    International Nuclear Information System (INIS)

    Johansson, Anna; Ganss, Ruth

    2012-01-01

    Solid tumors are intrinsically resistant to therapy. Cancer progression occurs when tumor cells orchestrate responses from diverse stromal cell types such as blood vessels and their support cells, inflammatory cells, and fibroblasts; these cells collectively form the tumor microenvironment and provide direct support for tumor growth, but also evasion from cytotoxic, immune and radiation therapies. An indirect result of abnormal and leaky blood vessels in solid tumors is high interstitial fluid pressure, which reduces drug penetration, but also creates a hypoxic environment that further augments tumor cell growth and metastatic spread. Importantly however, studies during the last decade have shown that the tumor stroma, including the vasculature, can be modulated, or re-educated, to allow better delivery of chemotherapeutic drugs or enhance the efficiency of active immune therapy. Such remodeling of the tumor stroma using genetic, pharmacological and other therapeutic approaches not only enhances selective access into tumors but also reduces toxic side effects. This review focuses on recent novel concepts to modulate tumor stroma and thus locally increase therapeutic efficacy

  15. Therapeutic Implications from Sensitivity Analysis of Tumor Angiogenesis Models

    Science.gov (United States)

    Poleszczuk, Jan; Hahnfeldt, Philip; Enderling, Heiko

    2015-01-01

    Anti-angiogenic cancer treatments induce tumor starvation and regression by targeting the tumor vasculature that delivers oxygen and nutrients. Mathematical models prove valuable tools to study the proof-of-concept, efficacy and underlying mechanisms of such treatment approaches. The effects of parameter value uncertainties for two models of tumor development under angiogenic signaling and anti-angiogenic treatment are studied. Data fitting is performed to compare predictions of both models and to obtain nominal parameter values for sensitivity analysis. Sensitivity analysis reveals that the success of different cancer treatments depends on tumor size and tumor intrinsic parameters. In particular, we show that tumors with ample vascular support can be successfully targeted with conventional cytotoxic treatments. On the other hand, tumors with curtailed vascular support are not limited by their growth rate and therefore interruption of neovascularization emerges as the most promising treatment target. PMID:25785600

  16. Corpus callosum vasculature predicts white matter microstructure abnormalities following pediatric mild traumatic brain injury.

    Science.gov (United States)

    Wendel, Kara M; Lee, Jeong Bin; Affeldt, Bethann; Hamer, Mary; Harahap-Carrillo, Indira S; Pardo, Andrea C; Obenaus, Andre

    2018-05-09

    Emerging data suggest that pediatric traumatic brain injury (TBI) is associated with impaired developmental plasticity and poorer neuropsychological outcomes than adults with similar head injuries. Unlike adult mild TBI (mTBI), the effects of mTBI on white matter (WM) microstructure and vascular supply are not well-understood in the pediatric population. The cerebral vasculature plays an important role providing necessary nutrients and removing waste. To address this critical element, we examined the microstructure of the corpus callosum (CC) following pediatric mTBI using diffusion tensor imaging (DTI), and investigated myelin, oligodendrocytes, and vasculature of WM with immunohistochemistry. We hypothesized that pediatric mTBI leads to abnormal WM microstructure and impacts the vasculature within the CC, and that these alterations to WM vasculature contribute to the long-term altered microstructure. We induced a closed head injury mTBI at postnatal day 14, then at 4, 14, and 60 days post injury (DPI) mice were sacrificed for analysis. We observed persistent changes in apparent diffusion coefficient (ADC) within the ipsilateral CC following mTBI, indicating microstructural changes, but surprisingly changes in myelin and oligodendrocyte densities were minimal. However, vasculature features of the ipsilateral CC such as vessel density, length, and number of junctions were persistently altered following mTBI. Correlative analysis showed a strong inverse relationship between ADC and vessel density at 60 DPI, suggesting increased vessel density following mTBI may restrict WM diffusion characteristics. Our findings suggest that WM vasculature contributes to the long-term microstructural changes within the ipsilateral CC following mTBI.

  17. Inflammatory Cytokine Tumor Necrosis Factor α Confers Precancerous Phenotype in an Organoid Model of Normal Human Ovarian Surface Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Joseph Kwong

    2009-06-01

    Full Text Available In this study, we established an in vitro organoid model of normal human ovarian surface epithelial (HOSE cells. The spheroids of these normal HOSE cells resembled epithelial inclusion cysts in human ovarian cortex, which are the cells of origin of ovarian epithelial tumor. Because there are strong correlations between chronic inflammation and the incidence of ovarian cancer, we used the organoid model to test whether protumor inflammatory cytokine tumor necrosis factor α would induce malignant phenotype in normal HOSE cells. Prolonged treatment of tumor necrosis factor α induced phenotypic changes of the HOSE spheroids, which exhibited the characteristics of precancerous lesions of ovarian epithelial tumors, including reinitiation of cell proliferation, structural disorganization, epithelial stratification, loss of epithelial polarity, degradation of basement membrane, cell invasion, and overexpression of ovarian cancer markers. The result of this study provides not only an evidence supporting the link between chronic inflammation and ovarian cancer formation but also a relevant and novel in vitro model for studying of early events of ovarian cancer.

  18. Quantification of Estrogen Receptor Expression in Normal Breast Tissue in Postmenopausal Women With Breast Cancer and Association With Tumor Subtypes.

    Science.gov (United States)

    Gulbahce, H Evin; Blair, Cindy K; Sweeney, Carol; Salama, Mohamed E

    2017-09-01

    Estrogen exposure is important in the pathogenesis of breast cancer and is a contributing risk factor. In this study we quantified estrogen receptor (ER) alpha expression in normal breast epithelium (NBR) in women with breast cancer and correlated it with breast cancer subtypes. Tissue microarrays were constructed from 204 breast cancer patients for whom normal breast tissue away from tumor was available. Slides stained with ER were scanned and expression in normal terminal duct lobular epithelium was quantitated using computer-assisted image analysis. ER expression in normal terminal duct lobular epithelium of postmenopausal women with breast cancer was significantly associated with estrogen and triple (estrogen, progesterone receptors, and HER2) negative phenotypes. Also increased age at diagnosis was significantly associated with ER expression in NBR. ER positivity in normal epithelium did not vary by tumor size, lymph node status, tumor grade, or stage. On the basis of quantitative image analysis, we confirm that ER expression in NBR increases with age in women with breast cancer, and report for the first time, a significant association between ER expression in NBR with ER-negative and triple-negative cancers in postmenopausal women.

  19. Applying gold nanoparticles as tumor-vascular disrupting agents during brachytherapy: estimation of endothelial dose enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Ngwa, Wilfred; Makrigiorgos, G Mike; Berbeco, Ross I, E-mail: mmakrigiorgos@lroc.harvard.ed [Department of Radiation Oncology, Division of Medical Physics and Biophysics, Brigham and Women' s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115 (United States)

    2010-11-07

    Tumor vascular disrupting agents (VDAs) represent a promising approach to the treatment of cancer, in view of the tumor vasculature's pivotal role in tumor survival, growth and metastasis. VDAs targeting the tumor's dysmorphic endothelial cells can cause selective and rapid occlusion of the tumor vasculature, leading to tumor cell death from ischemia and extensive hemorrhagic necrosis. In this study, the potential for applying gold nanoparticles (AuNPs) as VDAs, during brachytherapy, is examined. Analytic calculations based on the electron energy loss formula of Cole were carried out to estimate the endothelial dose enhancement caused by radiation-induced photo/Auger electrons originating from AuNPs targeting the tumor endothelium. The endothelial dose enhancement factor (EDEF), representing the ratio of the dose to the endothelium with and without gold nanoparticles was calculated for different AuNP local concentrations, and endothelial cell thicknesses. Four brachytherapy sources were investigated, I-125, Pd-103, Yb-169, as well as 50 kVp x-rays. The results reveal that, even at relatively low intra-vascular AuNP concentrations, ablative dose enhancement to tumor endothelial cells due to photo/Auger electrons from the AuNPs can be achieved. Pd-103 registered the highest EDEF values of 7.4-271.5 for local AuNP concentrations ranging from 7 to 350 mg g{sup -1}, respectively. Over the same concentration range, I-125, 50 kVp and Yb-169 yielded values of 6.4-219.9, 6.3-214.5 and 4.0-99.7, respectively. Calculations of the EDEF as a function of endothelial cell thickness showed that lower energy sources like Pd-103 reach the maximum EDEF at smaller thicknesses. The results also reveal that the highest contribution to the EDEF comes from Auger electrons, apparently due to their shorter range. Overall, the data suggest that ablative dose enhancement to tumor endothelial cells can be achieved by applying tumor vasculature-targeted AuNPs as adjuvants to

  20. Characterization of TEM1/endosialin in human and murine brain tumors

    International Nuclear Information System (INIS)

    Carson-Walter, Eleanor B; Walter, Kevin A; Winans, Bethany N; Whiteman, Melissa C; Liu, Yang; Jarvela, Sally; Haapasalo, Hannu; Tyler, Betty M; Huso, David L; Johnson, Mahlon D

    2009-01-01

    TEM1/endosialin is an emerging microvascular marker of tumor angiogenesis. We characterized the expression pattern of TEM1/endosialin in astrocytic and metastatic brain tumors and investigated its role as a therapeutic target in human endothelial cells and mouse xenograft models. In situ hybridization (ISH), immunohistochemistry (IH) and immunofluorescence (IF) were used to localize TEM1/endosialin expression in grade II-IV astrocytomas and metastatic brain tumors on tissue microarrays. Changes in TEM1/endosialin expression in response to pro-angiogenic conditions were assessed in human endothelial cells grown in vitro. Intracranial U87MG glioblastoma (GBM) xenografts were analyzed in nude TEM1/endosialin knockout (KO) and wildtype (WT) mice. TEM1/endosialin was upregulated in primary and metastatic human brain tumors, where it localized primarily to the tumor vasculature and a subset of tumor stromal cells. Analysis of 275 arrayed grade II-IV astrocytomas demonstrated TEM1/endosialin expression in 79% of tumors. Robust TEM1/endosialin expression occurred in 31% of glioblastomas (grade IV astroctyomas). TEM1/endosialin expression was inversely correlated with patient age. TEM1/endosialin showed limited co-localization with CD31, αSMA and fibronectin in clinical specimens. In vitro, TEM1/endosialin was upregulated in human endothelial cells cultured in matrigel. Vascular Tem1/endosialin was induced in intracranial U87MG GBM xenografts grown in mice. Tem1/endosialin KO vs WT mice demonstrated equivalent survival and tumor growth when implanted with intracranial GBM xenografts, although Tem1/endosialin KO tumors were significantly more vascular than the WT counterparts. TEM1/endosialin was induced in the vasculature of high-grade brain tumors where its expression was inversely correlated with patient age. Although lack of TEM1/endosialin did not suppress growth of intracranial GBM xenografts, it did increase tumor vascularity. The cellular localization of TEM1

  1. Tumor-specific antivascular effect of TZT-1027 (Soblidotin) elucidated by magnetic resonance imaging and confocal laser scanning microscopy

    International Nuclear Information System (INIS)

    Natsume, Tsugitaka; Watanabe, Junichi; Kobayashi, Motohiro; Ogawa, Kenji; Yasumura, Kazuhiko

    2007-01-01

    TZT-1027 (soblidotin), an antimicrotubule agent, has previously been evaluated in terms of its antivascular effects. In this study, Evans blue perfusion, magnetic resonance imaging (MRI), and confocal laser scanning microscopy (CLSM) were utilized to further elucidate the antivascular effect of TZT-1027 in female nude mice and rats bearing human breast tumor MX-1, as well as in female Sprague-Dawley rats that developed breast tumors induced by dimethylbenz(a)anthracene (DMBA). Therapeutic doses of TZT-1027 caused nearly complete regression of implanted MX-1 tumors in nude mice and rats as well as DMBA-induced tumors in rats. The perfusion in MX-1 tumor implanted in nude mice was drastically reduced within 30 min after TZT-1027 administration and was completely inhibited after 6 h or more, although not reduced in normal tissue of kidney. The study using MRI demonstrated that rich blood flow within tumors was remarkably reduced 1-3 h after TZT-1027 administration both in nude rats bearing MX-1 tumors and in rats with DMBA-induced tumors. Furthermore, the study with CLSM in nude mice bearing MX-1 tumors revealed a disruption of tumor microvessels at 1 h and a destruction of tumor microvessel network at 3 h after TZT-1027 administration. In contrast, these types of vascular disorders were not observed in heart and kidney. These results suggest that TZT-1027 specifically damages tumor vasculatures, leading to extensive tumor necrosis within tolerable dose range, and confirms earlier observations that TZT-1027 exerts a considerable antivascular effect in addition to an excellent cytotoxic effect. (author)

  2. Cross-talk between cardiac muscle and coronary vasculature.

    Science.gov (United States)

    Westerhof, Nico; Boer, Christa; Lamberts, Regis R; Sipkema, Pieter

    2006-10-01

    The cardiac muscle and the coronary vasculature are in close proximity to each other, and a two-way interaction, called cross-talk, exists. Here we focus on the mechanical aspects of cross-talk including the role of the extracellular matrix. Cardiac muscle affects the coronary vasculature. In diastole, the effect of the cardiac muscle on the coronary vasculature depends on the (changes in) muscle length but appears to be small. In systole, coronary artery inflow is impeded, or even reversed, and venous outflow is augmented. These systolic effects are explained by two mechanisms. The waterfall model and the intramyocardial pump model are based on an intramyocardial pressure, assumed to be proportional to ventricular pressure. They explain the global effects of contraction on coronary flow and the effects of contraction in the layers of the heart wall. The varying elastance model, the muscle shortening and thickening model, and the vascular deformation model are based on direct contact between muscles and vessels. They predict global effects as well as differences on flow in layers and flow heterogeneity due to contraction. The relative contributions of these two mechanisms depend on the wall layer (epi- or endocardial) and type of contraction (isovolumic or shortening). Intramyocardial pressure results from (local) muscle contraction and to what extent the interstitial cavity contracts isovolumically. This explains why small arterioles and venules do not collapse in systole. Coronary vasculature affects the cardiac muscle. In diastole, at physiological ventricular volumes, an increase in coronary perfusion pressure increases ventricular stiffness, but the effect is small. In systole, there are two mechanisms by which coronary perfusion affects cardiac contractility. Increased perfusion pressure increases microvascular volume, thereby opening stretch-activated ion channels, resulting in an increased intracellular Ca2+ transient, which is followed by an increase in Ca

  3. Preparation, distribution, stability and tumor imaging properties of [62Zn] Bleomycin complex in normal and tumor-bearing mice

    International Nuclear Information System (INIS)

    Jalilian, A.R.; Fateh, B.; Ghergherehchi, M.; Karimian, A.; Matloobi, M.; Moradkhani, S.; Kamalidehghan, M.; Tabeie, F.

    2003-01-01

    Backgrounds: Bleomycin (BLM) has been labeled with radioisotopes and widely used in therapy and diagnosis. In this study BLM was labeled with [ 62 Zn] zinc chloride for oncologic PET studies. Materials and methods: The complex was obtained at the P H=2 normal saline at 90 d eg C in 60 min. Radio-TLC showed on overall radiochemical yield of 95-97% (radiochemical purity>97%). Stability of complex was checked in vitro in mice and human plasma/urine. Results: Preliminary in vitro studies performed to determined complex stability and distribution of [ 62 Zn] BLM in normal and fibrosarcoma tumors in mice according to bio-distribution/imaging studies. Conclusion: [ 62 Zn] BLM can be used in PET oncology studies due to its suitable physico-chemical propertied as a diagnostic complex behavior in higher animals

  4. [An improved case of bedridden mental impairment with normal pressure hydrocephalus associated with acoustic neurinoma after tumor resection].

    Science.gov (United States)

    Sugimoto, Seiichiro; Sugimoto, Akiko; Saita, Kazuko; Kishi, Masahiko; Shioya, Keiichi; Higa, Toshinobu

    2008-08-01

    A 67-year-old woman developed gait disturbance, dysarthria, cognitive impairment and incontinence at age 65, and became bedridden. She showed mutism, stupor and lower limb spasticity. Cranial CT and MRI revealed marked ventricular enlargement and a cerebellopontine angle tumor. CSF study showed normal pressure (125 mmH2O) and elevated protein (143 mg/dl). Radionuclide cisternography showed redistribution of radionuclide to the ventricles and intraventricular residual radionuclide after 72 hours, which allowed a diagnosis of normal pressure hydrocephalus. After removal of the tumor, ventricle size and CSF protein decreased, and the symptoms of cognitive impairment and motor dysfunction resolved. Histological examination showed acoustic neurinoma. Over the half of hydrocephalus following acoustic neurinoma shows a tendency to improve by surgical resection of the tumor. Neurologists who see cognitively impaired spastic bedridden patients should not overlook this pathology.

  5. Disruption of tumor neovasculature by microbubble enhanced ultrasound: a potential new physical therapy of anti-angiogenesis.

    Science.gov (United States)

    Liu, Zheng; Gao, Shunji; Zhao, Yang; Li, Peijing; Liu, Jia; Li, Peng; Tan, Kaibin; Xie, Feng

    2012-02-01

    Tumor angiogenesis is of vital importance to the growth and metastasis of solid tumors. The angiogenesis is featured with a defective, leaky and fragile vascular construction. Microbubble enhanced ultrasound (MEUS) cavitation is capable of mechanical disruption of small blood vessels depending on effective acoustic pressure amplitude. We hypothesized that acoustic cavitation combining high-pressure amplitude pulsed ultrasound (US) and circulating microbubble could potentially disrupt tumor vasculature. A high-pressure amplitude, pulsed ultrasound device was developed to induce inertial cavitation of circulating microbubbles. The tumor vasculature of rat Walker 256 was insonated percutaneously with two acoustic pressures, 2.6 MPa and 4.8 MPa, both with intravenous injection of a lipid microbubble. The controls were treated by the ultrasound only or sham ultrasound exposure. Contrast enhanced ultrasound (CEUS) and histology were performed to assess tumor circulation and pathological changes. The CEUS results showed that the circulation of Walker 256 tumors could be completely blocked off for 24 hours in 4.8 MPa treated tumors. The CEUS gray scale value (GSV) indicated that there was significant GSV drop-off in both of the two experimental groups but none in the controls. Histology showed that the tumor microvasculature was disrupted into diffuse hematomas accompanied by thrombosis, intercellular edema and multiple cysts formation. The 24 hours of tumor circulation blockage resulted in massive necrosis of the tumor. MEUS provides a new, simple physical method for anti-angiogenic therapy and may have great potential for clinical applications. Copyright © 2012 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  6. Using Non-Invasive Multi-Spectral Imaging to Quantitatively Assess Tissue Vasculature

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, A; Chernomordik, V; Riley, J; Hassan, M; Amyot, F; Dasgeb, B; Demos, S G; Pursley, R; Little, R; Yarchoan, R; Tao, Y; Gandjbakhche, A H

    2007-10-04

    This research describes a non-invasive, non-contact method used to quantitatively analyze the functional characteristics of tissue. Multi-spectral images collected at several near-infrared wavelengths are input into a mathematical optical skin model that considers the contributions from different analytes in the epidermis and dermis skin layers. Through a reconstruction algorithm, we can quantify the percent of blood in a given area of tissue and the fraction of that blood that is oxygenated. Imaging normal tissue confirms previously reported values for the percent of blood in tissue and the percent of blood that is oxygenated in tissue and surrounding vasculature, for the normal state and when ischemia is induced. This methodology has been applied to assess vascular Kaposi's sarcoma lesions and the surrounding tissue before and during experimental therapies. The multi-spectral imaging technique has been combined with laser Doppler imaging to gain additional information. Results indicate that these techniques are able to provide quantitative and functional information about tissue changes during experimental drug therapy and investigate progression of disease before changes are visibly apparent, suggesting a potential for them to be used as complementary imaging techniques to clinical assessment.

  7. Dietary Phosphate Restriction Normalizes Biochemical and Skeletal Abnormalities in a Murine Model of Tumoral Calcinosis

    OpenAIRE

    Ichikawa, Shoji; Austin, Anthony M.; Gray, Amie K.; Allen, Matthew R.; Econs, Michael J.

    2011-01-01

    Mutations in the GALNT3 gene cause tumoral calcinosis characterized by ectopic calcifications due to persistent hyperphosphatemia. We recently developed Galnt3 knockout mice in a mixed background, which had hyperphosphatemia with increased bone mineral density (BMD) and infertility in males. To test the effect of dietary phosphate intake on their phenotype, Galnt3 knockout mice were generated in the C57BL/6J strain and fed various phosphate diets: 0.1% (low), 0.3% (low normal), 0.6% (normal),...

  8. Three-dimensional stereotactic atlas of the extracranial vasculature correlated with the intracranial vasculature, cranial nerves, skull and muscles.

    Science.gov (United States)

    Nowinski, Wieslaw L; Shoon Let Thaung, Thant; Choon Chua, Beng; Hnin Wut Yi, Su; Yang, Yili; Urbanik, Andrzej

    2015-04-01

    Our objective was to construct a 3D, interactive, and reference atlas of the extracranial vasculature spatially correlated with the intracranial blood vessels, cranial nerves, skull, glands, and head muscles.The atlas has been constructed from multiple 3T and 7T magnetic resonance angiogram (MRA) brain scans, and 3T phase contrast and inflow MRA neck scans of the same specimen in the following steps: vessel extraction from the scans, building 3D tubular models of the vessels, spatial registration of the extra- and intracranial vessels, vessel editing, vessel naming and color-coding, vessel simplification, and atlas validation.This new atlas contains 48 names of the extracranial vessels (25 arterial and 23 venous) and it has been integrated with the existing brain atlas.The atlas is valuable for medical students and residents to easily get familiarized with the extracranial vasculature with a few clicks; is useful for educators to prepare teaching materials; and potentially can serve as a reference in the diagnosis of vascular disease and treatment, including craniomaxillofacial surgeries and radiologic interventions of the face and neck. © The Author(s) 2015 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  9. Expression of receptor-type protein tyrosine phosphatase in developing and adult renal vasculature.

    Directory of Open Access Journals (Sweden)

    Keiko Takahashi

    Full Text Available Renal vascular development is a coordinated process that requires ordered endothelial cell proliferation, migration, intercellular adhesion, and morphogenesis. In recent decades, studies have defined the pivotal role of endothelial receptor tyrosine kinases (RPTKs in the development and maintenance of renal vasculature. However, the expression and the role of receptor tyrosine phosphatases (RPTPs in renal endothelium are poorly understood, though coupled and counterbalancing roles of RPTKs and RPTPs are well defined in other systems. In this study, we evaluated the promoter activity and immunolocalization of two endothelial RPTPs, VE-PTP and PTPμ, in developing and adult renal vasculature using the heterozygous LacZ knock-in mice and specific antibodies. In adult kidneys, both VE-PTP and PTPμ were expressed in the endothelium of arterial, glomerular, and medullary vessels, while their expression was highly limited in peritubular capillaries and venous endothelium. VE-PTP and PTPμ promoter activity was also observed in medullary tubular segments in adult kidneys. In embryonic (E12.5, E13.5, E15.5, E17.5 and postnatal (P0, P3, P7 kidneys, these RPTPs were expressed in ingrowing renal arteries, developing glomerular microvasculature (as early as the S-shaped stage, and medullary vessels. Their expression became more evident as the vasculatures matured. Peritubular capillary expression of VE-PTP was also noted in embryonic and postnatal kidneys. Compared to VE-PTP, PTPμ immunoreactivity was relatively limited in embryonic and neonatal renal vasculature and evident immunoreactivity was observed from the P3 stage. These findings indicate 1 VE-PTP and PTPμ are expressed in endothelium of arterial, glomerular, and medullary renal vasculature, 2 their expression increases as renal vascular development proceeds, suggesting that these RPTPs play a role in maturation and maintenance of these vasculatures, and 3 peritubular capillary VE-PTP expression

  10. Suberoylanilide hydroxamic acid affects γH2AX expression in osteosarcoma, atypical teratoid rhabdoid tumor and normal tissue cell lines after irradiation

    International Nuclear Information System (INIS)

    Blattmann, C.; Oertel, S.; Thiemann, M.; Weber, K.J.; Schmezer, P.; Zelezny, O.; Lopez Perez, R.; Kulozik, A.E.; Debus, J.; Ehemann, V.

    2012-01-01

    Osteosarcoma and atypical teratoid rhabdoid tumors are tumor entities with varying response to common standard therapy protocols. Histone acetylation affects chromatin structure and gene expression which are considered to influence radiation sensitivity. The aim of this study was to investigate the effect of the combination therapy with the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) and irradiation on atypical teratoid rhabdoid tumors and osteosarcoma compared to normal tissue cell lines. Clonogenic assay was used to determine cell survival. DNA double-strand breaks (DSB) were examined by pulsed-field electrophoresis (PFGE) as well as by γH2AX immunostaining involving flow cytometry, fluorescence microscopy, and immunoblot analysis. SAHA lead to an increased radiosensitivity in tumor but not in normal tissue cell lines. γH2AX expression as an indicator for DSB was significantly increased when SAHA was applied 24 h before irradiation to the sarcoma cell cultures. In contrast, γH2AX expression in the normal tissue cell lines was significantly reduced when irradiation was combined with SAHA. Analysis of initial DNA fragmentation and fragment rejoining by PFGE, however, did not reveal differences in response to the SAHA pretreatment for either cell type. SAHA increases radiosensitivity in tumor but not normal tissue cell lines. The increased H2AX phosphorylation status of the SAHA-treated tumor cells post irradiation likely reflects its delayed dephosphorylation within the DNA damage signal decay rather than chromatin acetylation-dependent differences in the overall efficacy of DSB induction and rejoining. The results support the hypothesis that combining SAHA with irradiation may provide a promising strategy in the treatment of solid tumors. (orig.)

  11. Optical imaging of tumor hypoxia dynamics

    Science.gov (United States)

    Palmer, Gregory M.; Fontanella, Andrew N.; Zhang, Guoqing; Hanna, Gabi; Fraser, Cassandra L.; Dewhirst, Mark W.

    2010-11-01

    The influence of the tumor microenvironment and hypoxia plays a significant role in determining cancer progression, treatment response, and treatment resistance. That the tumor microenvironment is highly heterogeneous with significant intratumor and intertumor variability presents a significant challenge in developing effective cancer therapies. Critical to understanding the role of the tumor microenvironment is the ability to dynamically quantify oxygen levels in the vasculature and tissue in order to elucidate the roles of oxygen supply and consumption, spatially and temporally. To this end, we describe the use of hyperspectral imaging to characterize hemoglobin absorption to quantify hemoglobin content and oxygen saturation, as well as dual emissive fluorescent/phosphorescent boron nanoparticles, which serve as ratiometric indicators of tissue oxygen tension. Applying these techniques to a window-chamber tumor model illustrates the role of fluctuations in hemoglobin saturation in driving changes in tissue oxygenation, the two being significantly correlated (r = 0.77). Finally, a green-fluorescence-protein reporter for hypoxia inducible factor-1 (HIF-1) provides an endpoint for hypoxic stress in the tumor, which is used to demonstrate a significant association between tumor hypoxia dynamics and HIF-1 activity in an in vivo demonstration of the technique.

  12. ADAMTS-1 Is Found in the Nuclei of Normal and Tumoral Breast Cells.

    Directory of Open Access Journals (Sweden)

    Suély V Silva

    Full Text Available Proteins secreted in the extracellular matrix microenvironment (ECM by tumor cells are involved in cell adhesion, motility, intercellular communication and invasion. The tumor microenvironment is expansively modified and remodeled by proteases, resulting in important changes in both cell-cell and cell-ECM interactions and in the generation of new signals from the cell surface. Metalloproteinases belonging to the ADAMTS (a disintegrin and metalloprotease with thrombospondin motifs family have been implicated in tissue remodeling events observed in cancer development, growth and progression. Here we investigated the subcellular localization of ADAMTS-1 in normal-like (MCF10-A and tumoral (MCF7 and MDA-MB-231 human breast cells. ADAMTS-1 is a secreted protease found in the extracellular matrix. However, in this study we show for the first time that ADAMTS-1 is also present in the nuclei and nucleoli of the three mammary cell lines studied here. Our findings indicate that ADAMTS-1 has proteolytic functions in the nucleus through its interaction with aggrecan substrate.

  13. Active Roles of Tumor Stroma in Breast Cancer Metastasis

    International Nuclear Information System (INIS)

    Khamis, Z.I.; Sang, Q.A.; Sahab, Z.J.

    2012-01-01

    Metastasis is the major cause of death for breast cancer patients. Tumors are heterogenous cellular entities composed of cancer cells and cells of the microenvironment in which they reside. A reciprocal dynamic interaction occurs between the tumor cells and their surrounding stroma under physiological and pathological conditions. This tumor-host communication interface mediates the escape of tumor cells at the primary site, survival of circulating cancer cells in the vasculature, and growth of metastatic cancer at secondary site. Each step of the metastatic process is accompanied by recruitment of stromal cells from the microenvironment and production of unique array of growth factors and chemokines. Stromal microenvironment may play active roles in breast cancer metastasis. Elucidating the types of cells recruited and signal pathways involved in the crosstalk between tumor cells and stromal cells will help identify novel strategies for cotargeting cancer cells and tumor stromal cells to suppress metastasis and improve patient outcome

  14. Active Roles of Tumor Stroma in Breast Cancer Metastasis

    Directory of Open Access Journals (Sweden)

    Zahraa I. Khamis

    2012-01-01

    Full Text Available Metastasis is the major cause of death for breast cancer patients. Tumors are heterogenous cellular entities composed of cancer cells and cells of the microenvironment in which they reside. A reciprocal dynamic interaction occurs between the tumor cells and their surrounding stroma under physiological and pathological conditions. This tumor-host communication interface mediates the escape of tumor cells at the primary site, survival of circulating cancer cells in the vasculature, and growth of metastatic cancer at secondary site. Each step of the metastatic process is accompanied by recruitment of stromal cells from the microenvironment and production of unique array of growth factors and chemokines. Stromal microenvironment may play active roles in breast cancer metastasis. Elucidating the types of cells recruited and signal pathways involved in the crosstalk between tumor cells and stromal cells will help identify novel strategies for cotargeting cancer cells and tumor stromal cells to suppress metastasis and improve patient outcome.

  15. Short-term arginine deprivation results in large-scale modulation of hepatic gene expression in both normal and tumor cells: microarray bioinformatic analysis

    Directory of Open Access Journals (Sweden)

    Sabo Edmond

    2006-09-01

    Full Text Available Abstract Background We have reported arginine-sensitive regulation of LAT1 amino acid transporter (SLC 7A5 in normal rodent hepatic cells with loss of arginine sensitivity and high level constitutive expression in tumor cells. We hypothesized that liver cell gene expression is highly sensitive to alterations in the amino acid microenvironment and that tumor cells may differ substantially in gene sets sensitive to amino acid availability. To assess the potential number and classes of hepatic genes sensitive to arginine availability at the RNA level and compare these between normal and tumor cells, we used an Affymetrix microarray approach, a paired in vitro model of normal rat hepatic cells and a tumorigenic derivative with triplicate independent replicates. Cells were exposed to arginine-deficient or control conditions for 18 hours in medium formulated to maintain differentiated function. Results Initial two-way analysis with a p-value of 0.05 identified 1419 genes in normal cells versus 2175 in tumor cells whose expression was altered in arginine-deficient conditions relative to controls, representing 9–14% of the rat genome. More stringent bioinformatic analysis with 9-way comparisons and a minimum of 2-fold variation narrowed this set to 56 arginine-responsive genes in normal liver cells and 162 in tumor cells. Approximately half the arginine-responsive genes in normal cells overlap with those in tumor cells. Of these, the majority was increased in expression and included multiple growth, survival, and stress-related genes. GADD45, TA1/LAT1, and caspases 11 and 12 were among this group. Previously known amino acid regulated genes were among the pool in both cell types. Available cDNA probes allowed independent validation of microarray data for multiple genes. Among genes downregulated under arginine-deficient conditions were multiple genes involved in cholesterol and fatty acid metabolism. Expression of low-density lipoprotein receptor was

  16. Laser Therapy Inhibits Tumor Growth in Mice by Promoting Immune Surveillance and Vessel Normalization

    Directory of Open Access Journals (Sweden)

    Giulia Ottaviani

    2016-09-01

    Full Text Available Laser therapy, recently renamed as photobiomodulation, stands as a promising supportive treatment for oral mucositis induced by oncological therapies. However, its mechanisms of action and, more importantly, its safety in cancer patients, are still unclear. Here we explored the anti-cancer effect of 3 laser protocols, set at the most commonly used wavelengths, in B16F10 melanoma and oral carcinogenesis mouse models. While laser light increased cell metabolism in cultured cells, the in vivo outcome was reduced tumor progression. This striking, unexpected result, was paralleled by the recruitment of immune cells, in particular T lymphocytes and dendritic cells, which secreted type I interferons. Laser light also reduced the number of highly angiogenic macrophages within the tumor mass and promoted vessel normalization, an emerging strategy to control tumor progression. Collectively, these results set photobiomodulation as a safety procedure in oncological patients and open the way to its innovative use for cancer therapy.

  17. Occurrence of FSH, inhibin and other hypothalamic-pituitary-intestinal hormones in normal fertility, subfertility, and tumors of human testes.

    Science.gov (United States)

    Mehta, M K; Garde, S V; Sheth, A R

    1995-01-01

    To compare the distribution of peptide hormones in presumably normal human testicular tissues and specimens exhibiting any of five pathologies. Biopsies from patients having testicular malfunctions were prepared as sections and specifically immunohistochemically stained for inhibin, FSH, serotonin, AUP, and oxytocin. Immunocytochemical studies revealed the presence of various hypophysial-pituitary-intestinal hormones, viz., FSH, inhibin, arginine vasopressin (AVP), calcitonin, serotonin, oxytocin, adrenocorticotropin (ACTH), gastrin, secretin, and somatostatin in human testicular biopsies exhibiting normal spermatogenesis, Sertoli-cell-only syndrome, spermatogenic arrest, Leydig cell hyperplasia, Leydig cell tumor, and seminoma. Intensity of immunostaining for all peptides except FSH was stronger in cases of subfertile as compared to normal testis. Intensity of immunostaining with inhibin was maximum in Leydig cell tumor. These regulatory peptides may be involved in the pathophysiology of the testes.

  18. Variation in normal and tumor tissue sensitivity of mice to ionizing radiation-induced DNA strand breaks in vivo

    International Nuclear Information System (INIS)

    Meyn, R.E.; Jenkins, W.T.

    1983-01-01

    The efficiency of DNA strand break formation in normal and tumor tissues of mice was measured using the technique of alkaline elution coupled with a microfluorometric determination of DNA. This methodology allowed measurement of the DNA strand breaks produced in tissues irradiated in vivo with doses of radiation comparable to those used in radiotherapy (i.e., 1.0 gray) without the necessity for the cells to be dividing and incorporating radioactive precursors to label the DNA. The results showed that substantial differences existed among various tissues in terms of the amount of DNA strand break damage produced for a given dose of radiation. Of the normal tissues, the most breaks were produced in bone marrow and the least were produced in gut. Furthermore, strand break production was relatively inefficient in the tumor compared to the normal tissues. The efficiency of DNA strand break formation measured in the cells from the tissues irradiated in vitro was much more uniform and considerably greater than that measured in vivo, suggesting that the normal tissues in the animal may be radiobiologically hypoxic

  19. Wilms′ tumor with right heart extension: Report of a post-chemotherapeutic fatality

    Directory of Open Access Journals (Sweden)

    Pradeep Vaideeswar

    2012-01-01

    Full Text Available Wilms′ tumor (WT has a strong propensity to invade the vasculature in the form of tumor-thrombus, into the renal veins, and inferior vena cava and even into the right atrium. This cavo-atrial propagation does not alter the prognosis and pre-operative chemotherapy produces shrinkage to the extent of even disappearance of caval or atrial extensions. We present a case of sudden death due to hemorrhagic expansion of the intra-atrial component of WT, immediately after commencement of chemotherapy, an uncommon incident.

  20. Involvement of ERK-Nrf-2 signaling in ionizing radiation induced cell death in normal and tumor cells.

    Directory of Open Access Journals (Sweden)

    Raghavendra S Patwardhan

    Full Text Available Prolonged oxidative stress favors tumorigenic environment and inflammation. Oxidative stress may trigger redox adaptation mechanism(s in tumor cells but not normal cells. This may increase levels of intracellular antioxidants and establish a new redox homeostasis. Nrf-2, a master regulator of battery of antioxidant genes is constitutively activated in many tumor cells. Here we show that, murine T cell lymphoma EL-4 cells show constitutive and inducible radioresistance via activation of Nrf-2/ERK pathway. EL-4 cells contained lower levels of ROS than their normal counterpart murine splenic lymphocytes. In response to radiation, the thiol redox circuits, GSH and thioredoxin were modified in EL-4 cells. Pharmacological inhibitors of ERK and Nrf-2 significantly enhanced radiosensitivity and reduced clonogenic potential of EL-4 cells. Unirradiated lymphoma cells showed nuclear accumulation of Nrf-2, upregulation of its dependent genes and protein levels. Interestingly, MEK inhibitor abrogated its nuclear translocation suggesting role of ERK in basal and radiation induced Nrf-2 activation in tumor cells. Double knockdown of ERK and Nrf-2 resulted in higher sensitivity to radiation induced cell death as compared to individual knockdown cells. Importantly, NF-kB which is reported to be constitutively active in many tumors was not present at basal levels in EL-4 cells and its inhibition did not influence radiosensitivity of EL-4 cells. Thus our results reveal that, tumor cells which are subjected to heightened oxidative stress employ master regulator cellular redox homeostasis Nrf-2 for prevention of radiation induced cell death. Our study reveals the molecular basis of tumor radioresistance and highlights role of Nrf-2 and ERK.

  1. Diagnostic value of the digital subtraction angiography of brain tumors. With special reference to the significance of tumor stains

    Energy Technology Data Exchange (ETDEWEB)

    Hirata, Yoshifumi; Matsukado, Yasuhiko; Takahashi, Mutsumasa

    1986-10-01

    Digital subtraction angiography (DSA) in 110 cases of brain tumors were studied in comparison with conventional angiography (CA). The dural sinuses and tumor stains of meningiomas, particularly tuberculum sellae meningioma, were better shown by intravenous DSA (IV-DSA) than by CA. IV-DSA clearly demonstrated bilateral carotid arteries and was able to rule out the coexistence of the intracranial aneurysm in 88 % of 32 cases with pituitary adenomas. Combination of IV-DSA and high resolution computed tomography has replaced CA to determine surgical indication of patients with pituitary adenomas. Intra-arterial DSA (IA-DSA) was diagnostic and well comparable to CA in identifying main cerebral vasculature over 1 mm in diameter. As to the small arteries under 1 mm and fine tumor vessels, IA-DSA provided less information or none at all. However, IA-DSA was superior to CA for visualization of tumor stains. Not only in most of meningiomas and hemangioblastomas, but in some astrocytomas and oligodendrogliomas, marked tumor stains were well demonstrated on DSA, and DSA provided surgical anatomy for neurosurgeons because of high contrast resolutions. Careful attention should be paid because tumor stains may overestimate tumor vascularity.

  2. Fast neutron biological effects on normal and tumor chromatin

    International Nuclear Information System (INIS)

    Constantinescu, B.; Bugoi, Roxana; Paunica, Tatiana; Radu, Liliana

    1997-01-01

    Growing interest in neutron therapy and radioprotection requires complex studies on the mechanisms of neutron action on biological systems, especially on chromatin (the complex of deoxyribonucleic acid-DNA- with proteins in eukaryotic cells). Our study aims to investigate the fast neutrons induced damages in normal and tumor chromatin, studying thermal transition, intrinsic fluorescence and fluorescence of chromatin-ethidium bromide complexes behavior versus irradiation dose. The Bucharest U-120 variable energy Cyclotron was employed as an intense source of fast neutrons produced by 13.5 MeV deuterons on a thick beryllium target (166.5 mg/cm 2 ) placed at 20 angle against the incident beam. The average energy is 5.24 MeV. The total yield at 0 angle is 6.7 x 10 16 n/sr·C·MeV. To determine neutron and gamma irradiation doses, home made thermoluminescent detectors-TLD(γ) and TLD (γ + n) were used: for gamma MgF 2 : Mn mixed with Teflon pellets (φ 12.5 mm, 0.6±0.1 mm thick) and for gamma plus neutrons MgF 2 :Mn mixed with 6 LiF and Teflon pellets (same dimensions). Using a 8.022 x 10 -2 albedo factor value and the equivalence 1Gy (n)=2·10 10 fast neutron/cm 2 , the dose for the irradiation of 1.2 x 10 2 Gy/μC, with an estimated precision of 15% C for neutrons and 7.8 x 10 -4 Gy/μC for gamma, at 10 cm behind Be target, was found, respectively. A diminution of the negative fluorescence intensity for chromatin-ethidium bromide complexes with the increasing of neutron dose (from 0.98 at 5 Gy to 0.85 at 100 Gy) was observed for normal chromatin. This fact reflects chromatin DNA injuries, with the decrease of double helix DNA proportion. To study the influence of gyrostan, thyroxine and D3 vitamin treatments on fast neutron radiolysis in tumor chromatin,10 mg/kg of anticancer drug gyrostan, 40μg/kg of hormonal compound thyroxine and 30,000 IU/kg of D3 vitamin were administrated, separately or associated, to Wistar rats bearing Walker carcinosarcoma. Representing

  3. Brain Tumor Targeting of Magnetic Nanoparticles for Potential Drug Delivery: Effect of Administration Route and Magnetic Field Topography

    Science.gov (United States)

    Chertok, Beata; David, Allan E.; Yang, Victor C.

    2011-01-01

    Our previous studies demonstrated feasibility of magnetically-mediated retention of iron-oxide nanoparticles in brain tumors after intravascular administration. The purpose of this study was to elucidate strategies for further improvement of this promising approach. In particular, we explored administration of the nanoparticles via a non-occluded carotid artery as a way to increase the passive exposure of tumor vasculature to nanoparticles for subsequent magnetic entrapment. However, aggregation of nanoparticles in the afferent vasculature interfered with tumor targeting. The magnetic setup employed in our experiments was found to generate a relatively uniform magnetic flux density over a broad range, exposing the region of the afferent vasculature to high magnetic force. To overcome this problem, the magnetic setup was modified with a 9-mm diameter cylindrical NdFeB magnet to exhibit steeper magnetic field topography. Six-fold reduction of the magnetic force at the injection site, achieved with this modification, alleviated the aggregation problem under the conditions of intact carotid blood flow. Using this setup, carotid administration was found to present 1.8-fold increase in nanoparticle accumulation in glioma compared to the intravenous route at 350 mT. This increase was found to be in reasonable agreement with the theoretically estimated 1.9-fold advantage of carotid administration, Rd. The developed approach is expected to present an even greater advantage when applied to drug-loaded nanoparticles exhibiting higher values of Rd. PMID:21763736

  4. Assessment of the kidney tumor vascular supply by two-phase MDCT-angiography

    Energy Technology Data Exchange (ETDEWEB)

    Ferda, Jiri [Department of Radiology, Charles University Hospital Plzen, Alej Svobody 80, CZ-306 40 Plzen (Czech Republic)]. E-mail: ferda@fnplzen.cz; Hora, Milan [Department of Urology, Charles University Hospital Plzen, Dr. Edvarda Benese 13, CZ-306 40 Plzen (Czech Republic); Hes, Ondrej [Institute of Pathology, Charles University Hospital Plzen, Alej Svobody 80, CZ-306 40 Plzen (Czech Republic); Ferdova, Eva [Department of Radiology, Charles University Hospital Plzen, Alej Svobody 80, CZ-306 40 Plzen (Czech Republic); Kreuzberg, Boris [Department of Radiology, Charles University Hospital Plzen, Alej Svobody 80, CZ-306 40 Plzen (Czech Republic)

    2007-05-15

    Purpose: Current kidney surgery uses less invasive laparoscopic and nephron-sparring procedures. Thus, perfect imaging of the renal vasculature is essential for surgery planning. The aim of our retrospective study was to evaluate the accuracy of 16-detector-row CT-angiography in assessing the vascular anatomy of the kidney with a tumor. Subjects and methods: Referred for computed tomography (CT) because of a suspected renal tumor, 50 consecutive patients (mean age 58.6 years; range 43-82) were enrolled into our retrospective study. All examinations were performed with 16 x 0.75 mm collimation after the intravenous application of 80 ml of a non-ionic contrast material. The imaging protocol contained two-phase scanning in the arterial and then in the venous phase. The vascular anatomy of the kidney with tumor was evaluated using volume rendered (VRT) and maximum intensity images (MIP). Findings were compared with the anatomy found during surgery. Results: Forty-seven patients underwent nephrectomy, with an advanced clinical stage (IV) found in the three remaining ones. Correct topography of the renal hilus, including a number of arteries and veins, and the anatomy of their branching, was described in 46 patients. A very small upper polar artery was overlooked in one patient. The accuracy for the only-arterial was 97.9% and only-venous anatomy was 100%. The parasitic vasculature of the tumor was discovered in 10 cases and all of them were confirmed by surgery (100% accuracy). Macroscopic intravenous spread of the tumor was discovered in two cases, but microscopic intravenous invasion was confirmed during histology of the kidney specimens in another two cases, the overall tumor staging accuracy reaching 95.7%. Conclusion: Two-phase multidetector CT is a valuable tool for assessing vascular supply of the kidney before surgery due to the tumor and can fully replace catheter-based angiography.

  5. Assessment of the kidney tumor vascular supply by two-phase MDCT-angiography

    International Nuclear Information System (INIS)

    Ferda, Jiri; Hora, Milan; Hes, Ondrej; Ferdova, Eva; Kreuzberg, Boris

    2007-01-01

    Purpose: Current kidney surgery uses less invasive laparoscopic and nephron-sparring procedures. Thus, perfect imaging of the renal vasculature is essential for surgery planning. The aim of our retrospective study was to evaluate the accuracy of 16-detector-row CT-angiography in assessing the vascular anatomy of the kidney with a tumor. Subjects and methods: Referred for computed tomography (CT) because of a suspected renal tumor, 50 consecutive patients (mean age 58.6 years; range 43-82) were enrolled into our retrospective study. All examinations were performed with 16 x 0.75 mm collimation after the intravenous application of 80 ml of a non-ionic contrast material. The imaging protocol contained two-phase scanning in the arterial and then in the venous phase. The vascular anatomy of the kidney with tumor was evaluated using volume rendered (VRT) and maximum intensity images (MIP). Findings were compared with the anatomy found during surgery. Results: Forty-seven patients underwent nephrectomy, with an advanced clinical stage (IV) found in the three remaining ones. Correct topography of the renal hilus, including a number of arteries and veins, and the anatomy of their branching, was described in 46 patients. A very small upper polar artery was overlooked in one patient. The accuracy for the only-arterial was 97.9% and only-venous anatomy was 100%. The parasitic vasculature of the tumor was discovered in 10 cases and all of them were confirmed by surgery (100% accuracy). Macroscopic intravenous spread of the tumor was discovered in two cases, but microscopic intravenous invasion was confirmed during histology of the kidney specimens in another two cases, the overall tumor staging accuracy reaching 95.7%. Conclusion: Two-phase multidetector CT is a valuable tool for assessing vascular supply of the kidney before surgery due to the tumor and can fully replace catheter-based angiography

  6. Markers of fibrosis and epithelial to mesenchymal transition demonstrate field cancerization in histologically normal tissue adjacent to breast tumors

    Science.gov (United States)

    Trujillo, Kristina A.; Heaphy, Christopher M.; Mai, Minh; Vargas, Keith M.; Jones, Anna C.; Vo, Phung; Butler, Kimberly S.; Joste, Nancy E.; Bisoffi, Marco; Griffith, Jeffrey K

    2011-01-01

    Previous studies have shown that a field of genetically altered but histologically normal tissue extends 1 cm or more from the margins of human breast tumors. The extent, composition and biological significance of this field are only partially understood, but the molecular alterations in affected cells could provide mechanisms for limitless replicative capacity, genomic instability and a microenvironment that supports tumor initiation and progression. We demonstrate by microarray, qRT-PCR and immunohistochemistry a signature of differential gene expression that discriminates between patient-matched, tumor-adjacent histologically normal breast tissues located 1 cm and 5 cm from the margins of breast adenocarcinomas (TAHN-1 and TAHN-5, respectively). The signature includes genes involved in extracellular matrix remodeling, wound healing, fibrosis and epithelial to mesenchymal transition (EMT). Myofibroblasts, which are mediators of wound healing and fibrosis, and intra-lobular fibroblasts expressing MMP2, SPARC, TGF-β3, which are inducers of EMT, were both prevalent in TAHN-1 tissues, sparse in TAHN-5 tissues, and absent in normal tissues from reduction mammoplasty. Accordingly, EMT markers S100A4 and vimentin were elevated in both luminal and myoepithelial cells, and EMT markers α-smooth muscle actin and SNAIL were elevated in luminal epithelial cells of TAHN-1 tissues. These results identify cellular processes that are differentially activated between TAHN-1 and TAHN-5 breast tissues, implicate myofibroblasts as likely mediators of these processes, provide evidence that EMT is occurring in histologically normal tissues within the affected field and identify candidate biomarkers to investigate whether or how field cancerization contributes to the development of primary or recurrent breast tumors. PMID:21105047

  7. Contractile Changes in the Vasculature After Subchronic Smoking

    DEFF Research Database (Denmark)

    Haanes, Kristian Agmund; Kruse, Lars Schack; Johansson, Helle Wulf

    2016-01-01

    clearance in the lungs and knock-out (KO) mice for this protein develop emphysema. SP-D is also weakly expressed in the vasculature. We aimed to investigate whether SP-D was important in the cardiovascular response to cigarette smoke exposure (CSE), by utilizing SP-D KO mice and a myograph setup. METHODS...

  8. Molecular imaging of tumor blood vessels in prostate cancer.

    Science.gov (United States)

    Tilki, Derya; Seitz, Michael; Singer, Bernhard B; Irmak, Ster; Stief, Christian G; Reich, Oliver; Ergün, Süleyman

    2009-05-01

    In the past three decades many efforts have been undertaken to understand the mechanisms of tumor angiogenesis. The introduction of anti-angiogenic drugs in tumor therapy during the last few years necessitates the establishment of new techniques enabling molecular imaging of tumor vascular remodelling. The determination of tumor size as commonly used is not appropriate since the extended necrosis under anti-angiogenic therapy does not necessarily result in the reduction of tumor diameter. The basis for the molecular imaging of tumor blood vessels is the remodelling of the tumor vessels under anti-angiogenic therapy which obviously occurs at an early stage and seems to be a convincing parameter. Beside the enormous progress in this field during the last few years the resolution is still not high enough to evaluate the remodelling of the micro tumor vessels. New imaging approaches combining specific molecular markers for tumor vessels with the different imaging techniques are needed to overcome this issue as exemplarily discussed for prostate cancer in this review. Molecular contrast agents targeting the vasculature will allow clinicians the visualization of vascular remodelling processes taking place under anti-angiogenic therapy and improve tumor diagnosis and follow-up.

  9. Correlation of MRI Biomarkers with Tumor Necrosis in Hras5 Tumor Xenograft in Athymic Rats

    Directory of Open Access Journals (Sweden)

    Daniel P. Bradley

    2007-05-01

    Full Text Available Magnetic resonance imaging (MRI can measure the effects of therapies targeting the tumor vasculature and has demonstrated that vascular-damaging agents (VDA induce acute vascular shutdown in tumors in human and animal models. However, at subtherapeutic doses, blood flow may recover before the induction of significant levels of necrosis. We present the relationship between changes in MRI biomarkers and tumor necrosis. Multiple MRI measurements were taken at 4.7 T in athymic rats (n = 24 bearing 1.94 ± 0.2-cm3 subcutaneous Hras5 tumors (ATCC 41000 before and 24 hours after clinically relevant doses of the VDA, ZD6126 (0-10 mg/kg, i.v.. We measured effective transverse relaxation rate (R2*, initial area under the gadolinium concentration-time curve (IAUGC60/150, equivalent enhancing fractions (EHF60/150, time constant (Ktrans, proportion of hypoperfused voxels as estimated from fit failures in Ktrans analysis, and signal intensity (SI in T2-weighted MRI (T2W. ZD6126 treatment induced < 90% dose-dependent tumor necrosis at 10 mg/kg; correspondingly, SI changes were evident from T2W MRI. Although R2* did not correlate, other MRI biomarkers significantly correlated with necrosis at doses of ≥ 5 mg/kg ZD6126. These data on Hras5 tumors suggest that the quantification of hypoperfused voxels might provide a useful biomarker of tumor necrosis.

  10. Effects of Low Intensity Continuous Ultrasound (LICU on Mouse Pancreatic Tumor Explants

    Directory of Open Access Journals (Sweden)

    Despina Bazou

    2017-12-01

    Full Text Available This paper describes the effects of low intensity continuous ultrasound (LICU on the inflammatory response of mouse pancreatic tumor explants. While there are many reports focusing on the application of low-intensity pulsed ultrasound (LIPUS on cell cultures and tissues, the effects of continuous oscillations on biological tissues have never been investigated. Here we present an exploratory study of the effects induced by LICU on mouse pancreatic tumor explants. We show that LICU causes significant upregulation of IFN-γ, IL-1β, and TNF-α on tumor explants. No detectable effects were observed on tumor vasculature or collagen I deposition, while thermal and mechanical effects were not apparent. Tumor explants responded as a single unit to acoustic waves, with spatial pressure variations smaller than their size.

  11. Volume and dimensions of angiographically normal coronary arteries assessed by multidetector computed tomography

    DEFF Research Database (Denmark)

    Sørensen, Samuel Kiil; Kühl, Jørgen Tobias; Fuchs, Andreas

    2017-01-01

    BACKGROUND: The objective of this study was to determine normal values for coronary artery volume (CAV) and individual vasculature and segment dimensions. METHODS: We examined 200 healthy volunteers with an Agatston score of 0 and a normal, high quality coronary CTA. Using 320 slice multidetector...... administration and left ventricular mass. The respective contribution of the left and right coronary vascularture is influenced by coronary dominance....

  12. Vascular corrosion casting of normal and pre-eclamptic placentas.

    Science.gov (United States)

    Yin, Geping; Chen, Ming; Li, Juan; Zhao, Xiaoli; Yang, Shujun; Li, Xiuyun; Yuan, Zheng; Wu, Aifang

    2017-12-01

    Pre-eclampsia is an important cause of maternal and fetal morbidity and mortality that is associated with decreased placental perfusion. In the present study, vascular corrosion casting was used to investigate the differences in structural changes of the fetoplacental vasculature between normal and pre-eclamptic placentas. An improved epoxy resin vascular casting technique was used in the present study. Casting media were infused into 40 normal and 40 pre-eclamptic placentas through umbilical arteries and veins in order to construct three dimensional fetoplacental vasculatures. The number of branches, diameter, morphology and peripheral artery-to-vein ratio were measured for each specimen. The results indicated that the venous system of normal placentas was divided into 5-7 grades of branches and the volume of the vascular bed was 155.5±45.3 ml. In severe pre-eclamptic placentas, the volume was 106.4±36.1 ml, which was significantly lower compared with normal placentas (P<0.01). The venous system of pre-eclamptic placentas was divided into 4-5 grades of branches, which was much more sparse compared with normal placentas. In additions, the diameters of grade 1-3 veins and grade 2-3 arteries were significantly smaller in severe pre-eclampsia (P<0.05). In conclusion, pre-eclamptic placentas displayed a decreased volume of vascular bed, smaller diameters of grade 1-3 veins and grade 2-3 arteries, and an increased peripheral artery-to-vein ratio, which may be a cause of the placental dysfunction during severe pre-eclampsia.

  13. Clinical and pathological analysis of benign brain tumors resected after Gamma Knife surgery.

    Science.gov (United States)

    Liu, Ali; Wang, Jun-Mei; Li, Gui-Lin; Sun, Yi-Lin; Sun, Shi-Bin; Luo, Bin; Wang, Mei-Hua

    2014-12-01

    The goal of this study was to assess the clinical and pathological features of benign brain tumors that had been treated with Gamma Knife surgery (GKS) followed by resection. In this retrospective chart review, the authors identified 61 patients with intracranial benign tumors who had undergone neurosurgical intervention after GKS. Of these 61 patients, 27 were male and 34 were female; mean age was 49.1 years (range 19-73 years). There were 24 meningiomas, 18 schwannomas, 14 pituitary adenomas, 3 hemangioblastomas, and 2 craniopharyngiomas. The interval between GKS and craniotomy was 2-168 months, with a median of 24 months; for 7 patients, the interval was 10 years or longer. For 21 patients, a craniotomy was performed before and after GKS; in 9 patients, pathological specimens were obtained before and after GKS. A total of 29 patients underwent GKS at the Beijing Tiantan Hospital. All specimens obtained by surgical intervention underwent histopathological examination. Most patients underwent craniotomy because of tumor recurrence and/or exacerbation of clinical signs and symptoms. Neuroimaging analyses indicated tumor growth in 42 patients, hydrocephalus in 10 patients with vestibular schwannoma, cystic formation with mass effect in 7 patients, and tumor hemorrhage in 13 patients, of whom 10 had pituitary adenoma. Pathological examination demonstrated that, regardless of the type of tumor, GKS mainly induced coagulative necrosis of tumor parenchyma and stroma with some apoptosis and, ultimately, scar formation. In addition, irradiation induced vasculature stenosis and occlusion and tumor degeneration as a result of reduced blood supply. GKS-induced vasculature reaction was rarely observed in patients with pituitary adenoma. Pathological analysis of tumor specimens obtained before and after GKS did not indicate increased tumor proliferation after GKS. Radiosurgery is effective for intracranial benign tumors of small size and deep location and for tumor recurrence

  14. Complementary information from magnetic resonance imaging and 18F-fluoromisonidazole positron emission tomography in the assessment of the response to an antiangiogenic treatment in a rat brain tumor model

    International Nuclear Information System (INIS)

    Valable, Samuel; Petit, Edwige; Roussel, Simon; Marteau, Lena; Toutain, Jerome; Divoux, Didier; Sobrio, Franck; Delamare, Jerome; Barre, Louisa; Bernaudin, Myriam

    2011-01-01

    Introduction: No direct proof has been brought to light in a link between hypoxic changes in glioma models and the effects of antiangiogenic treatments. Here, we assessed the sensitivity of the detection of hypoxia through the use of 18 F-fluoromisonidazole positron emission tomography ([ 18 F]-FMISO PET) in response to the evolution of the tumor and its vasculature. Methods: Orthotopic glioma tumors were induced in rats after implantation of C6 or 9L cells. Sunitinib was administered from day (D) 17 to D24. At D17 and D24, multiparametric magnetic resonance imaging was performed to characterize tumor growth and vasculature. Hypoxia was assessed by [ 18 F]-FMISO PET. Results: We showed that brain hypoxic volumes are related to glioma volume and its vasculature and that an antiangiogenic treatment, leading to an increase in cerebral blood volume and a decrease in vessel permeability, is accompanied by a decrease in the degree of hypoxia. Conclusions: We propose that [ 18 F]-FMISO PET and multiparametric magnetic resonance imaging are pertinent complementary tools in the evaluation of the effects of an antiangiogenic treatment in glioma.

  15. In vivo 3-dimensional photoacoustic imaging of the renal vasculature in preclinical rodent models

    OpenAIRE

    Ogunlade, O.; Connell, J. J.; Huang, J. L.; Zhang, E.; Lythgoe, M. F.; Long, D. A.; Beard, P.

    2017-01-01

    Non-invasive imaging of the kidney vasculature in preclinical murine models is important for studying renal development, diseases and evaluating new therapies, but is challenging to achieve using existing imaging modalities. Photoacoustic imaging is a promising new technique that is particularly well suited to visualising the vasculature and could provide an alternative to existing preclinical imaging methods for studying renal vascular anatomy and function. To investigate this, an all-optica...

  16. Blocking Blood Flow to Solid Tumors by Destabilizing Tubulin: An Approach to Targeting Tumor Growth.

    Science.gov (United States)

    Pérez-Pérez, María-Jesús; Priego, Eva-María; Bueno, Oskía; Martins, Maria Solange; Canela, María-Dolores; Liekens, Sandra

    2016-10-13

    The unique characteristics of the tumor vasculature offer the possibility to selectively target tumor growth and vascularization using tubulin-destabilizing agents. Evidence accumulated with combretastatin A-4 (CA-4) and its prodrug CA-4P support the therapeutic value of compounds sharing this mechanism of action. However, the chemical instability and poor solubility of CA-4 demand alternative compounds that are able to surmount these limitations. This Perspective illustrates the different classes of compounds that behave similar to CA-4, analyzes their binding mode to αβ-tubulin according to recently available structural complexes, and includes described approaches to improve their delivery. In addition, dissecting the mechanism of action of CA-4 and analogues allows a closer insight into the advantages and drawbacks associated with these tubulin-destabilizing agents that behave as vascular disrupting agents (VDAs).

  17. Dietary phosphate restriction normalizes biochemical and skeletal abnormalities in a murine model of tumoral calcinosis.

    Science.gov (United States)

    Ichikawa, Shoji; Austin, Anthony M; Gray, Amie K; Allen, Matthew R; Econs, Michael J

    2011-12-01

    Mutations in the GALNT3 gene cause tumoral calcinosis characterized by ectopic calcifications due to persistent hyperphosphatemia. We recently developed Galnt3 knockout mice in a mixed background, which had hyperphosphatemia with increased bone mineral density (BMD) and infertility in males. To test the effect of dietary phosphate intake on their phenotype, Galnt3 knockout mice were generated in the C57BL/6J strain and fed various phosphate diets: 0.1% (low), 0.3% (low normal), 0.6% (normal), and 1.65% (high). Sera were analyzed for calcium, phosphorus, alkaline phosphatase, creatinine, blood urine nitrogen, 1,25-dihydroxyvitamin D, osteocalcin, tartrate-resistant acid phosphatase 5b, and fibroblast growth factor 23 (Fgf23). Femurs were evaluated by dual-energy x-ray absorptiometry, dynamic histomorphometry, and/or microcomputed tomography. Galnt3 knockout mice in C57BL/6J had the same biochemical phenotype observed in our previous study: hyperphosphatemia, inappropriately normal 1,25-dihydroxyvitamin D level, decreased alkaline phosphatase activity, and low intact Fgf23 concentration but high Fgf23 fragments. Skeletal analyses of their femurs revealed significantly high BMD with increased cortical bone area and trabecular bone volume. On all four phosphate diets, Galnt3 knockout mice had consistently higher phosphorus levels and lower alkaline phosphatase and intact Fgf23 concentrations than littermate controls. The low-phosphate diet normalized serum phosphorus, alkaline phosphatase, and areal BMD but failed to correct male infertility in Galnt3 knockout mice. The high-phosphate diet did not increase serum phosphorus concentration in either mutant or control mice due to a compensatory increase in circulating intact Fgf23 levels. In conclusion, dietary phosphate restriction normalizes biochemical and skeletal phenotypes of Galnt3 knockout mice and, thus, can be an effective therapy for tumoral calcinosis.

  18. CAVAREV-an open platform for evaluating 3D and 4D cardiac vasculature reconstruction

    International Nuclear Information System (INIS)

    Rohkohl, Christopher; Hornegger, Joachim; Lauritsch, Guenter; Keil, Andreas

    2010-01-01

    The 3D reconstruction of cardiac vasculature, e.g. the coronary arteries, using C-arm CT (rotational angiography) is an active and challenging field of research. There are numerous publications on different reconstruction techniques. However, there is still a lack of comparability of achieved results for several reasons: foremost, datasets used in publications are not open to public and thus experiments are not reproducible by other researchers. Further, the results highly depend on the vasculature motion, i.e. cardiac and breathing motion patterns which are also not comparable across publications. We aim to close this gap by providing an open platform, called Cavarev (CArdiac VAsculature Reconstruction EValuation). It features two simulated dynamic projection datasets based on the 4D XCAT phantom with contrasted coronary arteries which was derived from patient data. In the first dataset, the vasculature undergoes a continuous periodic motion. The second dataset contains aperiodic heart motion by including additional breathing motion. The geometry calibration and acquisition protocol were obtained from a real-world C-arm system. For qualitative evaluation of the reconstruction results, the correlation of the morphology is used. Two segmentation-based quality measures are introduced which allow us to assess the 3D and 4D reconstruction quality. They are based on the spatial overlap of the vasculature reconstruction with the ground truth. The measures enable a comprehensive analysis and comparison of reconstruction results independent from the utilized reconstruction algorithm. An online platform (www.cavarev.com) is provided where the datasets can be downloaded, researchers can manage and publish algorithm results and download a reference C++ and Matlab implementation.

  19. Laser-induced immune modulation inhibits tumor growth in vivo (Conference Presentation)

    Science.gov (United States)

    Ottaviani, Giulia; Martinelli, Valentina; Rupel, Katia; Caronni, Nicoletta; Naseem, Asma; Zandonà, Lorenzo; Perinetti, Giuseppe; Gobbo, Margherita; Di Lenarda, Roberto; Bussani, Rossana; Benvenuti, Federica; Giacca, Mauro; Biasotto, Matteo; Zacchigna, Serena

    2017-02-01

    Photobiomodulation stands as a recommended therapy for oral mucositis induced by oncological therapies. However, its mechanisms of action and, more importantly, its safety in cancer patients, are still unclear. We assessed cancer cell metabolism and proliferation in vitro and in vivo after exposure to different laser protocols. We exploited both ectopic melanoma and a more physiological oral carcinogenesis mouse model, followed by molecular, histological and immunohistochemical characterization. Laser irradiation resulted in a slightly increase in cell metabolism and proliferation in vitro, albeit each protocol exerted a difference response. Of notice, in vivo laser light reduced tumour growth and invasiveness, indicating e beneficial effect on tumor microenvironment. Laser-treated tumors were surrounded and infiltrated by immune cells, mainly lymphocytes and dendritic cells, paralleled by an enhanced secretion of type I interferons. In contrast, the number of pro-angiogenic macrophages was reduced in response to laser irradiation, with consequent normalization of the tumor vasculature. Based on these finding we have also started exploring the effect of photobiomodulation on lymphocyte response in an experimental model of vaccination. Preliminary data indicate that laser light induced antigen-specific CD8+ and CD4+ T cell responses. In conclusion, our data point toward photobiomodulation as an effective strategy to boost the immune response in vivo, with relevant, therapeutic activities in both cancer and vaccination experimental models. These results support the safe use of laser light on cancer patients and open the way to innovative therapeutic opportunities.

  20. Label-free imaging of developing vasculature in zebrafish with phase variance optical coherence microscopy

    Science.gov (United States)

    Chen, Yu; Fingler, Jeff; Trinh, Le A.; Fraser, Scott E.

    2016-03-01

    A phase variance optical coherence microscope (pvOCM) has been created to visualize blood flow in the vasculature of zebrafish embryos, without using exogenous labels. The pvOCM imaging system has axial and lateral resolutions of 2 μm in tissue, and imaging depth of more than 100 μm. Imaging of 2-5 days post-fertilization zebrafish embryos identified the detailed structures of somites, spinal cord, gut and notochord based on intensity contrast. Visualization of the blood flow in the aorta, veins and intersegmental vessels was achieved with phase variance contrast. The pvOCM vasculature images were confirmed with corresponding fluorescence microscopy of a zebrafish transgene that labels the vasculature with green fluorescent protein. The pvOCM images also revealed functional information of the blood flow activities that is crucial for the study of vascular development.

  1. Targeted Therapy of Cancer Using Photodynamic Therapy in Combination with Multi-faceted Anti-Tumor Modalities

    Directory of Open Access Journals (Sweden)

    Malini Olivo

    2010-05-01

    Full Text Available Photodynamic therapy (PDT has emerged as one of the important therapeutic options in the management of cancer and other diseases. PDT involves a tumor-localized photosensitizer (PS, which when appropriately illuminated by visible light converts oxygen into cytotoxic reactive oxygen species (ROS, that attack key structural entities within the targeted cells, ultimately resulting in necrosis or apoptosis. Though PDT is a selective modality, it can be further enhanced by combining other targeted therapeutic strategies that include the use of synthetic peptides and nanoparticles for selective delivery of photosensitizers. Another potentially promising strategy is the application of targeted therapeutics that exploit a myriad of critical pathways involved in tumorigenesis and metastasis. Vascular disrupting agents that eradicate tumor vasculature during PDT and anti-angiogenic agents that targets specific molecular pathways and prevent the formation of new blood vessels are novel therapeutic approaches that have been shown to improve treatment outcome. In addition to the well-documented mechanisms of direct cell killing and damage to the tumor vasculature, PDT can also activate the body’s immune response against tumors. Numerous pre-clinical studies and clinical observations have demonstrated the immuno-stimulatory capability of PDT. Herein, we aim to integrate the most important findings with regard to the combination of PDT and other novel targeted therapy approaches, detailing its potential in cancer photomedicine.

  2. A noninvasive multimodal technique to monitor brain tumor vascularization

    Science.gov (United States)

    Saxena, Vishal; Gonzalez-Gomez, Ignacio; Laug, Walter E.

    2007-09-01

    Determination of tumor oxygenation at the microvascular level will provide important insight into tumor growth, angiogenesis, necrosis and therapeutic response and will facilitate to develop protocols for studying tumor behavior. The non-ionizing near infrared spectroscopy (NIRS) technique has the potential to differentiate lesion and hemoglobin dynamics; however, it has a limited spatial resolution. On the other hand, magnetic resonance imaging (MRI) has achieved high spatial resolution with excellent tissue discrimination but is more susceptible to limited ability to monitor the hemoglobin dynamics. In the present work, the vascular status and the pathophysiological changes that occur during tumor vascularization are studied in an orthotopic brain tumor model. A noninvasive multimodal approach based on the NIRS technique, namely steady state diffuse optical spectroscopy (SSDOS) along with MRI, is applied for monitoring the concentrations of oxyhemoglobin, deoxyhemoglobin and water within tumor region. The concentrations of oxyhemoglobin, deoxyhemoglobin and water within tumor vasculature are extracted at 15 discrete wavelengths in a spectral window of 675-780 nm. We found a direct correlation between tumor size, intratumoral microvessel density and tumor oxygenation. The relative decrease in tumor oxygenation with growth indicates that though blood vessels infiltrate and proliferate the tumor region, a hypoxic trend is clearly present.

  3. A noninvasive multimodal technique to monitor brain tumor vascularization

    International Nuclear Information System (INIS)

    Saxena, Vishal; Gonzalez-Gomez, Ignacio; Laug, Walter E

    2007-01-01

    Determination of tumor oxygenation at the microvascular level will provide important insight into tumor growth, angiogenesis, necrosis and therapeutic response and will facilitate to develop protocols for studying tumor behavior. The non-ionizing near infrared spectroscopy (NIRS) technique has the potential to differentiate lesion and hemoglobin dynamics; however, it has a limited spatial resolution. On the other hand, magnetic resonance imaging (MRI) has achieved high spatial resolution with excellent tissue discrimination but is more susceptible to limited ability to monitor the hemoglobin dynamics. In the present work, the vascular status and the pathophysiological changes that occur during tumor vascularization are studied in an orthotopic brain tumor model. A noninvasive multimodal approach based on the NIRS technique, namely steady state diffuse optical spectroscopy (SSDOS) along with MRI, is applied for monitoring the concentrations of oxyhemoglobin, deoxyhemoglobin and water within tumor region. The concentrations of oxyhemoglobin, deoxyhemoglobin and water within tumor vasculature are extracted at 15 discrete wavelengths in a spectral window of 675-780 nm. We found a direct correlation between tumor size, intratumoral microvessel density and tumor oxygenation. The relative decrease in tumor oxygenation with growth indicates that though blood vessels infiltrate and proliferate the tumor region, a hypoxic trend is clearly present

  4. SU-E-J-212: MR Diffusion Tensor Imaging for Assessment of Tumor and Normal Brain Tissue Responses of Juvenile Pilocytic Astrocytoma Treated by Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Hou, P; Park, P; Li, H; Zhu, X; Mahajan, A; Grosshans, D [M.D. Anderson Cancer Center, Houston, TX (United States)

    2015-06-15

    Purpose: Diffusion tensor imaging (DTI) can measure molecular mobility at the cellular level, quantified by the apparent diffusion coefficient (ADC). DTI may also reveal axonal fiber directional information in the white matter, quantified by the fractional anisotropy (FA). Juvenile pilocytic astrocytoma (JPA) is a rare brain tumor that occurs in children and young adults. Proton therapy (PT) is increasingly used in the treatment of pediatric brain tumors including JPA. However, the response of both tumors and normal tissues to PT is currently under investigation. We report tumor and normal brain tissue responses for a pediatric case of JPA treated with PT assessed using DTI. Methods: A ten year old male with JPA of the left thalamus received passive scattered PT to a dose of 50.4 Gy (RBE) in 28 fractions. Post PT, the patient has been followed up in seven years. At each follow up, MRI imaging including DTI was performed to assess response. MR images were registered to the treatment planning CT and the GTV mapped onto each MRI. The GTV contour was then mirrored to the right side of brain through the patient’s middle line to represent normal brain tissue. ADC and FA were measured within the ROIs. Results: Proton therapy can completely spare contra lateral brain while the target volume received full prescribed dose. From a series of MRI ADC images before and after PT at different follow ups, the enhancement corresponding to GTV had nearly disappeared more than 2 years after PT. Both ADC and FA demonstrate that contralateral normal brain tissue were not affect by PT and the tumor volume reverted to normal ADC and FA values. Conclusion: DTI allowed quantitative evaluation of tumor and normal brain tissue responses to PT. Further study in a larger cohort is warranted.

  5. SU-E-J-212: MR Diffusion Tensor Imaging for Assessment of Tumor and Normal Brain Tissue Responses of Juvenile Pilocytic Astrocytoma Treated by Proton Therapy

    International Nuclear Information System (INIS)

    Hou, P; Park, P; Li, H; Zhu, X; Mahajan, A; Grosshans, D

    2015-01-01

    Purpose: Diffusion tensor imaging (DTI) can measure molecular mobility at the cellular level, quantified by the apparent diffusion coefficient (ADC). DTI may also reveal axonal fiber directional information in the white matter, quantified by the fractional anisotropy (FA). Juvenile pilocytic astrocytoma (JPA) is a rare brain tumor that occurs in children and young adults. Proton therapy (PT) is increasingly used in the treatment of pediatric brain tumors including JPA. However, the response of both tumors and normal tissues to PT is currently under investigation. We report tumor and normal brain tissue responses for a pediatric case of JPA treated with PT assessed using DTI. Methods: A ten year old male with JPA of the left thalamus received passive scattered PT to a dose of 50.4 Gy (RBE) in 28 fractions. Post PT, the patient has been followed up in seven years. At each follow up, MRI imaging including DTI was performed to assess response. MR images were registered to the treatment planning CT and the GTV mapped onto each MRI. The GTV contour was then mirrored to the right side of brain through the patient’s middle line to represent normal brain tissue. ADC and FA were measured within the ROIs. Results: Proton therapy can completely spare contra lateral brain while the target volume received full prescribed dose. From a series of MRI ADC images before and after PT at different follow ups, the enhancement corresponding to GTV had nearly disappeared more than 2 years after PT. Both ADC and FA demonstrate that contralateral normal brain tissue were not affect by PT and the tumor volume reverted to normal ADC and FA values. Conclusion: DTI allowed quantitative evaluation of tumor and normal brain tissue responses to PT. Further study in a larger cohort is warranted

  6. Studies on level of cytokines and expression of connexin43 in tumor and normal cells in culture conditions

    International Nuclear Information System (INIS)

    Asati, V.; Pandey, B.N.

    2016-01-01

    Factors secreted from the tumor cells in culture medium have been known to facilitate the growth of fresh cultures and also to affect the cellular radio-sensitivity. Moreover, expression of gap junction proteins like connexin-43 is known as a key player in cell survival and proliferation. The present study is aimed to evaluate the effects of conditioned medium on the growth of respective tumor/normal cells and the expression of connexin-43 in these cells

  7. Effects of dietary amines on the gut and its vasculature.

    Science.gov (United States)

    Broadley, Kenneth J; Akhtar Anwar, M; Herbert, Amy A; Fehler, Martina; Jones, Elen M; Davies, Wyn E; Kidd, Emma J; Ford, William R

    2009-06-01

    Trace amines, including tyramine and beta-phenylethylamine (beta-PEA), are constituents of many foods including chocolate, cheeses and wines and are generated by so-called 'friendly' bacteria such as Lactobacillus, Lactococcus and Enterococcus species, which are found in probiotics. We therefore examined whether these dietary amines could exert pharmacological effects on the gut and its vasculature. In the present study we examined the effects of tyramine and beta-PEA on the contractile activity of guinea-pig and rat ileum and upon the isolated mesenteric vasculature and other blood vessels. Traditionally, these amines are regarded as sympathomimetic amines, exerting effects through the release of noradrenaline from sympathetic nerve endings, which should relax the gut. A secondary aim was therefore to confirm this mechanism of action. However, contractile effects were observed in the gut and these were independent of noradrenaline, acetylcholine, histamine and serotonin receptors. They were therefore probably due to the recently described trace amine-associated receptors. These amines relaxed the mesenteric vasculature. In contrast, the aorta and coronary arteries were constricted, a response that was also independent of a sympathomimetic action. From these results, we propose that after ingestion, trace amines could stimulate the gut and improve intestinal blood flow. Restriction of blood flow elsewhere diverts blood to the gut to aid digestion. Thus, trace amines in the diet may promote the digestive process through stimulation of the gut and improved gastrointestinal circulation.

  8. Hypoxyradiotherapy: lack of experimental evidence for a preferential radioprotective effect on normal versus tumor tissue as shown by direct oxygenation measurements in experimental sarcomas

    International Nuclear Information System (INIS)

    Kelleher, Debra K.; Thews, Oliver; Vaupel, Peter

    1997-01-01

    Aim: In order to investigate possible pathophysiological mechanisms underlying the postulated preferential protective effect of hypoxia on normal tissue during radiotherapy, the impact of acute respiratory hypoxia (8.2% O 2 + 91.8% N 2 ) on tissue oxygenation was assessed. Methods: Tumor and normal tissue oxygenation was directly determined using O 2 -sensitive electrodes in two experimental rat tumors (DS and Yoshida sarcomas) and in the normal subcutis of the hind foot dorsum. Results: During respiratory hypoxia, arterial blood O 2 tension (pO 2 ), oxyhemoglobin saturation and mean arterial blood pressure decreased. Changes in the arterial blood gas status were accompanied by a reflex hyperventilation leading to hypocapnia and respiratory alkalosis. In the subcutis, tissue oxygenation worsened during acute hypoxia, with decreases in the mean and median pO 2 . Significant increases in the hypoxic fractions were, however, not seen. In tumor tissues, oxygenation also worsened upon hypoxic hypoxia with significant decreases in the mean and median pO 2 and increases in the size of the hypoxic fractions for both sarcomas. Conclusion: These results suggest that during respiratory hypoxia, radiobiologically relevant reductions in the oxygenation (and a subsequent selective radioprotection) of normal tissue may not be achieved. In addition, in the tumor models studied, a worsening of tumor oxygenation was seen which could result in an increased radioresistance

  9. A drug development perspective on targeting tumor-associated myeloid cells.

    Science.gov (United States)

    Majety, Meher; Runza, Valeria; Lehmann, Christian; Hoves, Sabine; Ries, Carola H

    2018-02-01

    Despite decades of research, cancer remains a devastating disease and new treatment options are needed. Today cancer is acknowledged as a multifactorial disease not only comprising of aberrant tumor cells but also the associated stroma including tumor vasculature, fibrotic plaques, and immune cells that interact in a complex heterotypic interplay. Myeloid cells represent one of the most abundant immune cell population within the tumor stroma and are equipped with a broad functional repertoire that promotes tumor growth by suppressing cytotoxic T cell activity, stimulating neoangiogenesis and tissue remodeling. Therefore, myeloid cells have become an attractive target for pharmacological intervention. In this review, we summarize the pharmacological approaches to therapeutically target tumor-associated myeloid cells with a focus on advanced programs that are clinically evaluated. In addition, for each therapeutic strategy, the preclinical rationale as well as advantages and challenges from a drug development perspective are discussed. © 2017 Federation of European Biochemical Societies.

  10. In vivo phage display screening for tumor vascular targets in glioblastoma identifies a llama nanobody against dynactin-1-p150Glued

    NARCIS (Netherlands)

    van Lith, Sanne A M; Roodink, Ilse; Verhoeff, Joost J C; Mäkinen, Petri I.; Lappalainen, Jari P.; Ylä-Herttuala, Seppo; Raats, Jos; van Wijk, Erwin; Roepman, Ronald; Letteboer, Stef J.; Verrijp, Kiek; Leenders, William P J

    2016-01-01

    Diffuse gliomas are primary brain cancers that are characterised by infiltrative growth. Whereas high-grade glioma characteristically presents with perinecrotic neovascularisation, large tumor areas thrive on pre-existent vasculature as well. Clinical studies have revealed that pharmacological

  11. Tumor stem cells: A new approach for tumor therapy (Review)

    Science.gov (United States)

    MENG, MIN; ZHAO, XIN-HAN; NING, QIAN; HOU, LEI; XIN, GUO-HONG; LIU, LI-FENG

    2012-01-01

    Recent studies have demonstrated the existence of a minority of tumor cells possessing the stem cell properties of self-renewal and differentiation in leukemia and several solid tumors. However, these cells do not possess the normal regulatory mechanisms of stem cells. Following transplantation, they are capable of initiating tumorigenesis and are therefore known as ‘tumor stem cells’. Cellular origin analysis of tumor stem cells has resulted in three hypotheses: Embryonal rest hypothesis, anaplasia and maturation arrest. Several signaling pathways which are involved in carcinogenesis, including Wnt/β-catenin, Notch and Oct-4 signaling pathways are crucial in normal stem cell self-renewal decisions, suggesting that breakdown in the regulation of self-renewal may be a key event in the development of tumors. Thus, tumors can be regarded as an abnormal organ in which stem cells have escaped from the normal constraints on self-renewal, thus, leading to abnormally differentiated tumor cells that lose the ability to form tumors. This new model for maligancies has significance for clinical research and treatment. PMID:22844351

  12. Anterior Segment Optical Coherence Tomography Angiography for Identification of Iris Vasculature and Staging of Iris Neovascularization: A Pilot Study.

    Science.gov (United States)

    Roberts, Philipp K; Goldstein, Debra A; Fawzi, Amani A

    2017-08-01

    Purpose/Aim of the study: To assess the ability of optical coherence tomographic angiography (OCTA) to visualize the normal iris vasculature as well as neovascularization of the iris (NVI). Study participants with healthy eyes, patients at risk of NVI development and patients with active or regressed NVI were consecutively included in this cross-sectional observational study. Imaging was performed using a commercially available OCTA system (RTVue- XR Avanti, Optovue Inc., Fremont, CA, USA). Abnormal iris vessels were graded on OCTA according to a modified clinical staging system and compared to slitlamp and gonioscopic findings. Fifty eyes of 26 study participants (16 healthy eyes, 19 eyes at risk, 15 eyes with different stages of NVI) were imaged using OCTA. In 11 out of 16 healthy eyes (69%) with light or moderately dark iris pigmentation, we observed physiological, radially aligned iris vasculature on OCTA imaging, which could not be visualized in five eyes (31%) with darkly pigmented irides. One eye in the "eyes at risk" group was diagnosed with NVI based on OCTA, which was not observed clinically. Fifteen eyes with clinically active or regressed NVI were imaged. Different stages of NVI could be differentiated by OCTA, corresponding well to an established clinical grading system. Four eyes showed regressed NVI by OCTA, not seen clinically, and were graded as a newly defined stage 4. This pilot clinical study showed that OCTA for imaging of the iris vasculature in health and disease is highly dependent on iris pigmentation. Fine, clinically invisible iris vessels can be visualized by OCTA in the very early stages as well as in the regressed stage of NVI.

  13. Effective treatment of diverse medulloblastoma models with mebendazole and its impact on tumor angiogenesis.

    Science.gov (United States)

    Bai, Ren-Yuan; Staedtke, Verena; Rudin, Charles M; Bunz, Fred; Riggins, Gregory J

    2015-04-01

    Medulloblastoma is the most common malignant brain tumor in children. Current standard treatments cure 40%-60% of patients, while the majority of survivors suffer long-term neurological sequelae. The identification of 4 molecular groups of medulloblastoma improved the clinical management with the development of targeted therapies; however, the tumor acquires resistance quickly. Mebendazole (MBZ) has a long safety record as antiparasitic in children and has been recently implicated in inhibition of various tyrosine kinases in vitro. Here, we investigated the efficacy of MBZ in various medulloblastoma subtypes and MBZ's impact on vascular endothelial growth factor receptor 2 (VEGFR2) and tumor angiogenesis. The inhibition of MBZ on VEGFR2 kinase was investigated in an autophosphorylation assay and a cell-free kinase assay. Mice bearing orthotopic PTCH1-mutant medulloblastoma allografts, a group 3 medulloblastoma xenograft, and a PTCH1-mutant medulloblastoma with acquired resistance to the smoothened inhibitor vismodegib were treated with MBZ. The survival benefit and the impact on tumor angiogenesis and VEGFR2 kinase function were analyzed. We determined that MBZ interferes with VEGFR2 kinase by competing with ATP. MBZ selectively inhibited tumor angiogenesis but not the normal brain vasculatures in orthotopic medulloblastoma models and suppressed VEGFR2 kinase in vivo. MBZ significantly extended the survival of medulloblastoma models derived from different molecular backgrounds. Our findings support testing of MBZ as a possible low-toxicity therapy for medulloblastomas of various molecular subtypes, including tumors with acquired vismodegib resistance. Its antitumor mechanism may be partially explained by inhibition of tumor angiogenesis. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Estrogen responsiveness of the TFIID subunit TAF4B in the normal mouse ovary and in ovarian tumors.

    Science.gov (United States)

    Wardell, Jennifer R; Hodgkinson, Kendra M; Binder, April K; Seymour, Kimberly A; Korach, Kenneth S; Vanderhyden, Barbara C; Freiman, Richard N

    2013-11-01

    Estrogen signaling in the ovary is a fundamental component of normal ovarian function, and evidence also indicates that excessive estrogen is a risk factor for ovarian cancer. We have previously demonstrated that the gonadally enriched TFIID subunit TAF4B, a paralog of the general transcription factor TAF4A, is required for fertility in mice and for the proliferation of ovarian granulosa cells following hormonal stimulation. However, the relationship between TAF4B and estrogen signaling in the normal ovary or during ovarian tumor initiation and progression has yet to be defined. Herein, we show that Taf4b mRNA and TAF4B protein, but not Taf4a mRNA or TAF4A protein, are increased in whole ovaries and granulosa cells of the ovary after exposure to 17beta-estradiol or the synthetic estrogen diethylstilbestrol and that this response occurs within hours after stimulation. Furthermore, this increase occurs via nuclear estrogen receptors both in vivo and in a mouse granulosa cancer cell line, NT-1. We observe a significant increase in Taf4b mRNA in estrogen-supplemented mouse ovarian tumors, which correlates with diminished survival of these mice. These data highlight the novel response of the general transcription factor TAF4B to estrogen in the normal ovary and during ovarian tumor progression in the mouse, suggesting its potential role in regulating actions downstream of estrogen stimulation.

  15. Aging and insulin signaling differentially control normal and tumorous germline stem cells.

    Science.gov (United States)

    Kao, Shih-Han; Tseng, Chen-Yuan; Wan, Chih-Ling; Su, Yu-Han; Hsieh, Chang-Che; Pi, Haiwei; Hsu, Hwei-Jan

    2015-02-01

    Aging influences stem cells, but the processes involved remain unclear. Insulin signaling, which controls cellular nutrient sensing and organismal aging, regulates the G2 phase of Drosophila female germ line stem cell (GSC) division cycle in response to diet; furthermore, this signaling pathway is attenuated with age. The role of insulin signaling in GSCs as organisms age, however, is also unclear. Here, we report that aging results in the accumulation of tumorous GSCs, accompanied by a decline in GSC number and proliferation rate. Intriguingly, GSC loss with age is hastened by either accelerating (through eliminating expression of Myt1, a cell cycle inhibitory regulator) or delaying (through mutation of insulin receptor (dinR) GSC division, implying that disrupted cell cycle progression and insulin signaling contribute to age-dependent GSC loss. As flies age, DNA damage accumulates in GSCs, and the S phase of the GSC cell cycle is prolonged. In addition, GSC tumors (which escape the normal stem cell regulatory microenvironment, known as the niche) still respond to aging in a similar manner to normal GSCs, suggesting that niche signals are not required for GSCs to sense or respond to aging. Finally, we show that GSCs from mated and unmated females behave similarly, indicating that female GSC-male communication does not affect GSCs with age. Our results indicate the differential effects of aging and diet mediated by insulin signaling on the stem cell division cycle, highlight the complexity of the regulation of stem cell aging, and describe a link between ovarian cancer and aging. © 2014 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  16. Diltiazem enhances tumor blood flow: MRI study in a murine tumor

    International Nuclear Information System (INIS)

    Muruganandham, M.; Kasiviswanathan, A.; Jagannathan, N.R.; Raghunathan, P.; Jain, P.C.; Jain, V.

    1999-01-01

    Purpose: Diltiazem, a calcium-channel blocker, is known to differentially influence the radiation responses of normal and murine tumor tissues. To elucidate the underlying mechanisms, the effects of diltiazem on the radiation response of Ehrlich ascites tumor (EAT) in mice have been investigated, and the hemodynamic changes induced by diltiazem in tumor and normal muscle have been studied using magnetic resonance imaging (MRI) techniques. Methods and Materials: Ehrlich ascites tumors were grown subcutaneously in Swiss albino strain A mice. Dynamic gadodiamide and blood oxygen level dependent (BOLD) contrast enhanced 1 H MR imaging studies of EAT and normal muscle were performed after administration of diltiazem in mice using a 4.7 Tesla MR scanner. Tumor radiotherapy experiments (total dose = 10 Gy, 0.4-0.5 Gy/min, single fraction) were carried out with 30 min preadministration of diltiazem (27.5 or 55 mg/kg i.p.) to EAT-bearing mice using a teletherapy machine. Results: The diltiazem+ radiation treated group showed significant tumor regression (in congruent with 65% of the animals) and enhanced animal survival. MR-gadodiamide contrast kinetics revealed a higher magnitude of signal enhancement in diltiazem treated groups as compared to the controls. The observed changes in the magnitude of kinetic parameters were the same for both tumor and normal muscle. BOLD-MR images at 30 min after diltiazem administration showed a 25% and 8% (average) intensity enhancement from their basal values in tumor and normal muscle regions, respectively. The control group showed no significant changes. Conclusion: The present studies demonstrate the radiosensitization potential of diltiazem in the mice EAT model. The enhanced radiation response observed with diltiazem correlates with the diltiazem-induced increase in tumor blood flow (TBF) and tumor oxygenation. The present results also demonstrate the applications of BOLD-MR measurements in investigating the alterations in tumor

  17. Angiogenesis in Pituitary Adenomas: Human Studies and New Mutant Mouse Models

    OpenAIRE

    Cristina, Carolina; Luque, Guillermina María; Demarchi, Gianina; Lopez Vicchi, Felicitas; Zubeldia-Brenner, Lautaro; Perez Millan, Maria Ines; Perrone, Sofia; Ornstein, Ana Maria; Lacau-Mengido, Isabel M.; Berner, Silvia Inés; Becu-Villalobos, Damasia

    2014-01-01

    The role of angiogenesis in pituitary tumor development has been questioned, as pituitary tumors have been usually found to be less vascularized than the normal pituitary tissue. Nevertheless, a significantly higher degree of vasculature has been shown in invasive or macropituitary prolactinomas when compared to noninvasive and microprolactinomas. Many growth factors and their receptors are involved in pituitary tumor development. For example, VEGF, FGF-2, FGFR1, and PTTG, which give a partic...

  18. [Effect of Mn(II) on the error-prone DNA polymerase iota activity in extracts from human normal and tumor cells].

    Science.gov (United States)

    Lakhin, A V; Efremova, A S; Makarova, I V; Grishina, E E; Shram, S I; Tarantul, V Z; Gening, L V

    2013-01-01

    The DNA polymerase iota (Pol iota), which has some peculiar features and is characterized by an extremely error-prone DNA synthesis, belongs to the group of enzymes preferentially activated by Mn2+ instead of Mg2+. In this work, the effect of Mn2+ on DNA synthesis in cell extracts from a) normal human and murine tissues, b) human tumor (uveal melanoma), and c) cultured human tumor cell lines SKOV-3 and HL-60 was tested. Each group displayed characteristic features of Mn-dependent DNA synthesis. The changes in the Mn-dependent DNA synthesis caused by malignant transformation of normal tissues are described. It was also shown that the error-prone DNA synthesis catalyzed by Pol iota in extracts of all cell types was efficiently suppressed by an RNA aptamer (IKL5) against Pol iota obtained in our work earlier. The obtained results suggest that IKL5 might be used to suppress the enhanced activity of Pol iota in tumor cells.

  19. Tumor Oxygen Dynamics: Correlation of In Vivo MRI with Histological Findings

    Directory of Open Access Journals (Sweden)

    Dawen Zhao

    2003-07-01

    Full Text Available Tumor oxygenation has long been recognized as a significant factor influencing cancer therapy. We recently established a novel magnetic resonance in vivo approach to measuring regional tumor oxygen tension, FREDOM (Fluorocarbon Relaxometry Using Echo Planar Imaging for Dynamic Oxygen Mapping, using hexafluorobenzene (HFB as the reporter molecule. We have now investigated oxygen dynamics in the two Dunning prostate R3327 rat tumor sublines, AT1 and H. FREDOM revealed considerable intratumoral heterogeneity in the distribution of pO2 values in both sublines. The anaplastic fastergrowing AT1 tumors were more hypoxic compared with the size-matched, well-differentiated, and slower-growing H tumors. Respiratory challenge with oxygen produced significant increases in mean and median pO2 in all the H tumors (P3 cm3. Immunohistochemical studies using the hypoxia marker, pimonidazole, and the vascular endothelial cell marker, CD31, confirmed that the H tumors had more extensive vasculature and less hypoxia than the AT1 tumors. These results further validate the utilization of FREDOM to monitor tumor oxygenation and concur with the hypothesis that the level of hypoxia is related to tumor growth rate and poor vascularity.

  20. "Facilitated" amino acid transport is upregulated in brain tumors.

    Science.gov (United States)

    Miyagawa, T; Oku, T; Uehara, H; Desai, R; Beattie, B; Tjuvajev, J; Blasberg, R

    1998-05-01

    The goal of this study was to determine the magnitude of "facilitated" amino acid transport across tumor and brain capillaries and to evaluate whether amino acid transporter expression is "upregulated" in tumor vessels compared to capillaries in contralateral brain tissue. Aminocyclopentane carboxylic acid (ACPC), a non-metabolized [14C]-labeled amino acid, and a reference molecule for passive vascular permeability, [67Ga]-gallium-diethylenetriaminepentaacetic acid (Ga-DTPA), were used in these studies. Two experimental rat gliomas were studied (C6 and RG2). Brain tissue was rapidly processed for double label quantitative autoradiography 10 minutes after intravenous injection of ACPC and Ga-DTPA. Parametric images of blood-to-brain transport (K1ACPC and K1Ga-DTPA, microL/min/g) produced from the autoradiograms and the histology were obtained from the same tissue section. These three images were registered in an image array processor; regions of interest in tumor and contralateral brain were defined on morphologic criteria (histology) and were transferred to the autoradiographic images to obtain mean values. The facilitated component of ACPC transport (deltaK1ACPC) was calculated from the K1ACPC and K1Ga-DTPA data, and paired comparisons between tumor and contralateral brain were performed. ACPC flux, K1ACPC, across normal brain capillaries (22.6 +/- 8.1 microL/g/min) was >200-fold greater than that of Ga-DTPA (0.09 +/- 0.04 microL/g/min), and this difference was largely (approximately 90%) due to facilitated ACPC transport. Substantially higher K1ACPC values compared to corresponding K1DTPA values were also measured in C6 and RG2 gliomas. The deltaK1ACPC values for C6 glioma were more than twice that of contralateral brain cortex. K1ACPC and deltaK1ACPC values for RG2 gliomas was not significantly higher than that of contralateral cortex, although a approximately 2-fold difference in facilitated transport is obtained after normalization for differences in capillary

  1. Anticancer Role of PPARγ Agonists in Hematological Malignancies Found in the Vasculature, Marrow, and Eyes

    Directory of Open Access Journals (Sweden)

    P. J. Simpson-Haidaris

    2010-01-01

    Full Text Available The use of targeted cancer therapies in combination with conventional chemotherapeutic agents and/or radiation treatment has increased overall survival of cancer patients. However, longer survival is accompanied by increased incidence of comorbidities due, in part, to drug side effects and toxicities. It is well accepted that inflammation and tumorigenesis are linked. Because peroxisome proliferator-activated receptor (PPAR-γ agonists are potent mediators of anti-inflammatory responses, it was a logical extension to examine the role of PPARγ agonists in the treatment and prevention of cancer. This paper has two objectives: first to highlight the potential uses for PPARγ agonists in anticancer therapy with special emphasis on their role when used as adjuvant or combined therapy in the treatment of hematological malignancies found in the vasculature, marrow, and eyes, and second, to review the potential role PPARγ and/or its ligands may have in modulating cancer-associated angiogenesis and tumor-stromal microenvironment crosstalk in bone marrow.

  2. Comparison of anterior segment optical coherence tomography angiography and fluorescein angiography for iris vasculature analysis.

    Science.gov (United States)

    Zett, Claudio; Stina, Deborah M Rosa; Kato, Renata Tiemi; Novais, Eduardo Amorim; Allemann, Norma

    2018-04-01

    The aim of this study is to perform imaging of irises of different colors using spectral domain anterior segment optical coherence tomography angiography (AS-OCTA) and iris fluorescein angiography (IFA) and compare their effectiveness in examining iris vasculature. This is a cross-sectional observational clinical study. Patients with no vascular iris alterations and different pigmentation levels were recruited. Participants were imaged using OCTA adapted with an anterior segment lens and IFA with a confocal scanning laser ophthalmoscope (cSLO) adapted with an anterior segment lens. AS-OCTA and IFA images were then compared. Two blinded readers classified iris pigmentation and compared the percentage of visible vessels between OCTA and IFA images. Twenty eyes of 10 patients with different degrees of iris pigmentation were imaged using AS-OCTA and IFA. Significantly more visible iris vessels were observed using OCTA than using FA (W = 5.22; p Iris pigmentation was negatively correlated to the percentage of visible vessels in both imaging methods (OCTA, rho = - 0.73, p iris vasculature. In both AS-OCTA and IFA, iris pigmentation caused vasculature imaging blockage, but AS-OCTA provided more detailed iris vasculature images than IFA. Additional studies including different iris pathologies are needed to determine the most optimal scanning parameters in OCTA of the anterior segment.

  3. In Vitro Study of Directly Bioprinted Perfusable Vasculature Conduits.

    Science.gov (United States)

    Zhang, Yahui; Yu, Yin; Akkouch, Adil; Dababneh, Amer; Dolati, Farzaneh; Ozbolat, Ibrahim T

    2015-01-01

    The ability to create three dimensional (3D) thick tissues is still a major tissue engineering challenge. It requires the development of a suitable vascular supply for an efficient media exchange. An integrated vasculature network is particularly needed when building thick functional tissues and/or organs with high metabolic activities, such as the heart, liver and pancreas. In this work, human umbilical vein smooth muscle cells (HUVSMCs) were encapsulated in sodium alginate and printed in the form of vasculature conduits using a coaxial deposition system. Detailed investigations were performed to understand the dehydration, swelling and degradation characteristics of printed conduits. In addition, because perfusional, permeable and mechanical properties are unique characteristics of natural blood vessels, for printed conduits these properties were also explored in this work. The results show that cells encapsulated in conduits had good proliferation activities and that their viability increased during prolonged in vitro culture. Deposition of smooth muscle matrix and collagen was observed around the peripheral and luminal surface in long-term cultured cellular vascular conduit through histology studies.

  4. The effect of customized beam shaping on normal tissue complications in radiation therapy of parotid gland tumors

    International Nuclear Information System (INIS)

    Keus, R.; Boer, R. de; Lebesque, J.; Noach, P.

    1991-01-01

    The impact of customized beam shaping was studied for 5 patients with parotid tumors treated with a paired wedged field technique. For each patient 2 plans were generated. The standard plan had unblocked portals with field sizes defined by the largest target contour found in any CT slice. In the 2nd plan customized beam's view (BEV) designed blocks were added to both beams. The differences in those distributions between the 2 types of plans were evaluated using dose-volume histograms (DVH). As expected, the dose distribution within the target volume showed no difference. However, a considerable sparing of normal tissue was observed for the plans with customized blocks. The volume of un-necessary exposed normal tissue that received more than 90 percent of the prescribed dose, was reduced by a factor of about 4: from 165 to 44 percent on an average, if the volume is expressed as a percentage of the target volume in each patient. In particular, the homolateral mandible showed a mean decrease of 21 percent of integral dose when blocks were used. Normal tissue complication probabilities (NTCP) were calculated. For a tumor dose of 70 Gy, the average bone necrosis probability was reduced from 8.4 percent (no blocks) to 4.1. percent (blocks). For other normal tissues such as nervous tissue, other soft tissues and bones a substantial reduction of integral dose was found for al patients when individual blocks were used. (author). 10 refs.; 4 figs.; 2 tabs

  5. Relative expression of rRNA transcripts and 45S rDNA promoter methylation status are dysregulated in tumors in comparison with matched-normal tissues in breast cancer.

    Science.gov (United States)

    Karahan, Gurbet; Sayar, Nilufer; Gozum, Gokcen; Bozkurt, Betul; Konu, Ozlen; Yulug, Isik G

    2015-06-01

    Ribosomal RNA (rRNA) expression, one of the most important factors regulating ribosome production, is primarily controlled by a CG-rich 45 S rDNA promoter. However, the DNA methylation state of the 45 S rDNA promoter, as well as its effect on rRNA gene expression in types of human cancers is controversial. In the present study we analyzed the methylation status of the rDNA promoter (-380 to +53 bp) as well as associated rRNA expression levels in breast cancer cell lines and breast tumor-normal tissue pairs. We found that the aforementioned regulatory region was extensively methylated (74-96%) in all cell lines and in 68% (13/19 tumor-normal pairs) of the tumors. Expression levels of rRNA transcripts 18 S, 28 S, 5.8 S and 45 S external transcribed spacer (45 S ETS) greatly varied in the breast cancer cell lines regardless of their methylation status. Analyses of rRNA transcript expression levels in the breast tumor and normal matched tissues showed no significant difference when normalized with TBP. On the other hand, using the geometric mean of the rRNA expression values (GM-rRNA) as reference enabled us to identify significant changes in the relative expression of rRNAs in the tissue samples. We propose GM-rRNA normalization as a novel strategy to analyze expression differences between rRNA transcripts. Accordingly, the 18S rRNA/GM-rRNA ratio was significantly higher whereas the 5.8S rRNA/GM-rRNA ratio was significantly lower in breast tumor samples than this ratio in the matched normal samples. Moreover, the 18S rRNA/GM-rRNA ratio was negatively correlated with the 45 S rDNA promoter methylation level in the normal breast tissue samples, yet not in the breast tumors. Significant correlations observed between the expression levels of rRNA transcripts in the normal samples were lost in the tumor samples. We showed that the expression of rRNA transcripts may not be based solely on promoter methylation. Carcinogenesis may cause dysregulation of the correlation

  6. CXCL17 expression by tumor cells recruits CD11b+Gr1 high F4/80- cells and promotes tumor progression.

    Directory of Open Access Journals (Sweden)

    Aya Matsui

    Full Text Available BACKGROUND: Chemokines are involved in multiple aspects of pathogenesis and cellular trafficking in tumorigenesis. In this study, we report that the latest member of the C-X-C-type chemokines, CXCL17 (DMC/VCC-1, recruits immature myeloid-derived cells and enhances early tumor progression. METHODOLOGY/PRINCIPAL FINDINGS: CXCL17 was preferentially expressed in some aggressive types of gastrointestinal, breast, and lung cancer cells. CXCL17 expression did not impart NIH3T3 cells with oncogenic potential in vitro, but CXCL17-expressing NIH3T3 cells could form vasculature-rich tumors in immunodeficient mice. Our data showed that CXCL17-expressing tumor cells increased immature CD11b(+Gr1(+ myeloid-derived cells at tumor sites in mice and promoted CD31(+ tumor angiogenesis. Extensive chemotactic assays proved that CXCL17-responding cells were CD11b(+Gr1(highF4/80(- cells (≈ 90% with a neutrophil-like morphology in vitro. Although CXCL17 expression could not increase the number of CD11b(+Gr1(+ cells in tumor-burdened SCID mice or promote metastases of low metastatic colon cancer cells, the existence of CXCL17-responding myeloid-derived cells caused a striking enhancement of xenograft tumor formation. CONCLUSIONS/SIGNIFICANCE: These results suggest that aberrant expression of CXCL17 in tumor cells recruits immature myeloid-derived cells and promotes tumor progression through angiogenesis.

  7. Optimization of the tumor microenvironment and nanomedicine properties simultaneously to improve tumor therapy.

    Science.gov (United States)

    Zhang, Bo; Shi, Wei; Jiang, Ting; Wang, Lanting; Mei, Heng; Lu, Heng; Hu, Yu; Pang, Zhiqing

    2016-09-20

    Effective delivery of nanomedicines to tumor tissues depends on both the tumor microenvironment and nanomedicine properties. Accordingly, tumor microenvironment modification or advanced design of nanomedicine was emerging to improve nanomedicine delivery to tumors. However, few studies have emphasized the necessity to optimize the tumor microenvironment and nanomedicine properties simultaneously to improve tumor treatment. In the present study, imatinib mesylate (IMA) was used to normalize the tumor microenvironment including platelet-derived growth factor receptor-β expression inhibition, tumor vessel normalization, and tumor perfusion improvement as demonstrated by immunofluorescence staining. In addition, the effect of tumor microenvironment normalization on tumor delivery of nanomedicines with different sizes was carefully investigated. It was shown that IMA treatment significantly reduced the accumulation of nanoparticles (NPs) around 110 nm but enhanced the accumulation of micelles around 23 nm by in vivo fluorescence imaging experiment. Furthermore, IMA treatment limited the distribution of NPs inside tumors but increased that of micelles with a more homogeneous pattern. Finally, the anti-tumor efficacy study displayed that IMA pretreatment could significantly increase the therapeutic effects of paclitaxel-loaded micelles. All-together, a new strategy to improve nanomedicine delivery to tumor was provided by optimizing both nanomedicine size and the tumor microenvironment simultaneously, and it will have great potential in clinics for tumor treatment.

  8. Etonogestrel implant migration to the vasculature, chest wall, and distant body sites: cases from a pharmacovigilance database.

    Science.gov (United States)

    Kang, Sarah; Niak, Ali; Gada, Neha; Brinker, Allen; Jones, S Christopher

    2017-12-01

    To describe clinical outcomes of etonogestrel implant patients with migration to the vasculature, chest wall and other distant body sites spontaneously reported to the US Food and Drug Administration Adverse Event Reporting System (FAERS) database. We performed a standardized Medical Dictionary for Regulatory Activities (MedDRA) query in the FAERS database (through November 15, 2015), with reports coded with one or more MedDRA preferred terms that indicate complications with device placement or migration of the device from the original site of insertion to the vasculature, chest wall and other distant body sites. We excluded any cases previously described in the medical literature. We identified 38 cases of pronounced etonogestrel implant migration. Migration locations included the lung/pulmonary artery (n=9), chest wall (n=1), vasculature at locations other than the lung/pulmonary artery (n=14) and extravascular migrations (n=14) to other body sites (e.g., the axilla and clavicle/neck line/shoulder). The majority of cases were asymptomatic and detected when the patient desired implant removal; however, seven cases reported symptoms such as pain, discomfort and dyspnea in association with implant migration. Three cases also describe pulmonary fibrosis and skin reactions as a result of implant migration to the vasculature, chest wall and other distant body sites. Sixteen cases reported surgical removal in an operating room setting. Our FAERS case series demonstrates etonogestrel implant migration to the vasculature, chest wall and other body sites distant from the site of original insertion. As noted by the sponsor in current prescribing information, a key determinant in the risk for etonogestrel contraceptive implant migration appears to be improper insertion technique. Although migration of etonogestrel implants to the vasculature is rare, awareness of migration and education on proper insertion technique may reduce the risk. Published by Elsevier Inc.

  9. Optical coherence tomographic view of persistent primary fetal vasculature

    International Nuclear Information System (INIS)

    Shenoy, R.; Al-Kharousi, Nadia S.; Bialasiewicz, Alexander A.

    2006-01-01

    Purpose was to report on the posterior segment changes in a patient with bilateral persistent primary fetal vasculature as detected by optical coherence tomography. An 18-year-old lady with poor vision, left esotropia and bilateral posterior polar cataract was found to have dysplasia of the macula in the both eyes. Fundus fluorescein angiography, optical coherence tomography, ''A'' scan biometry and genetic work up was performed as a part of investigation. There was increase in thickness of the macular area in both the eyes (450-500mm). The left eye showed a ''sail like'' fold extending over macula, from nasal to temporal side. The tissue had the same sensitivity and thickness as inner the retinal layers (180-200). There was no detectable nerve fibre layer in the macula of either eye. Fundus fluorescein angiography was normal in the right eye, and showed hyperfluorescence at the inferior pole of the disk in the left eye corresponding to the Bergmeister papilla. There was no staining of the membrane with the dye. Evaluation of the posterior segment is important in predicting the visual outcome in patients with any from of PFV. Optical coherence tomography is an adjuvant to direct visualization and aids in further delineating posterior segment changes seen in this condition. (author)

  10. Overview of Methods Able to Overcome Impediments to tumor Drug Delivery with Special Attention to Tumor Interstitial Fluid.

    Directory of Open Access Journals (Sweden)

    Gianfranco eBaronzio

    2015-07-01

    Full Text Available Every drug used to treat cancer (chemotherapeutics, immunologic, monoclonal antibodies, nanoparticles, radionuclides must reach the targeted cells through the tumor environment at adequate concentrations, in order to exert their cell-killing effects. For any of these agents to reach the goal cells they must overcome a number of impediments created by the tumor microenvironment, beginning with tumor interstitial fluid pressure (TIFP and a multifactorial increase in composition of the extracellular matrix (ECM. A primary modifier of tumor microenvironment is hypoxia, which increases the production of growth factors such as vascular endothelial growth factor (VEGF and platelet-derived growth factor (PDGF. These growth factors released by both tumor cells and bone marrow recruited myeloid cells (MDS, form abnormal vasculature characterized by vessels that are tortuous and more permeable. Increased leakiness combined with increased inflammatory byproducts accumulates fluid within the tumor mass [tumor interstitial fluid (TIF], ultimately creating an increased pressure (TIFP. Fibroblasts are also up-regulated by the tumor microenvironment, and deposit fibers that further augment the density of the extracellular matrix (ECM, thus, further worsening the TIFP. Increased TIFP with the ECM are the major obstacles to adequate drug delivery. By decreasing TIFP and decreasing ECM density, we can expect an associated rise in drug concentration within the tumor itself. In this overview we will describe all the methods (drugs, nutraceuticals, physical methods of treatment able to lower TIFP and to modify ECM that can be used for increasing drug concentration within the tumor tissue.

  11. Magnetic resonance angiography of fetal vasculature at 3.0 T.

    Science.gov (United States)

    Neelavalli, Jaladhar; Krishnamurthy, Uday; Jella, Pavan K; Mody, Swati S; Yadav, Brijesh K; Hendershot, Kelly; Hernandez-Andrade, Edgar; Yeo, Lami; Cabrera, Maria D; Haacke, Ewart M; Hassan, Sonia S; Romero, Roberto

    2016-12-01

    Magnetic resonance angiography has not been used much previously for visualizing fetal vessels in utero for reasons that include a contraindication for the use of exogenous contrast agents, maternal respiratory motion and fetal motion. In this work, we report the feasibility of using an appropriately modified clinical time-of-flight magnetic resonance imaging sequence for non-contrast angiography of human fetal and placental vessels at 3.0 T. Using this 2D angiography technique, it is possible to visualize fetal vascular networks in late pregnancy. • 3D-visualization of fetal vasculature is feasible using non-contrast MRA at 3.0 T. • Visualization of placental vasculature is also possible with this method. • Fetal MRA can serve as a vascular localizer for quantitative MRI studies. • This method can be extended to 1.5 T.

  12. Estrogen Responsiveness of the TFIID Subunit TAF4B in the Normal Mouse Ovary and in Ovarian Tumors1

    Science.gov (United States)

    Wardell, Jennifer R.; Hodgkinson, Kendra M.; Binder, April K.; Seymour, Kimberly A.; Korach, Kenneth S.; Vanderhyden, Barbara C.; Freiman, Richard N.

    2013-01-01

    ABSTRACT Estrogen signaling in the ovary is a fundamental component of normal ovarian function, and evidence also indicates that excessive estrogen is a risk factor for ovarian cancer. We have previously demonstrated that the gonadally enriched TFIID subunit TAF4B, a paralog of the general transcription factor TAF4A, is required for fertility in mice and for the proliferation of ovarian granulosa cells following hormonal stimulation. However, the relationship between TAF4B and estrogen signaling in the normal ovary or during ovarian tumor initiation and progression has yet to be defined. Herein, we show that Taf4b mRNA and TAF4B protein, but not Taf4a mRNA or TAF4A protein, are increased in whole ovaries and granulosa cells of the ovary after exposure to 17beta-estradiol or the synthetic estrogen diethylstilbestrol and that this response occurs within hours after stimulation. Furthermore, this increase occurs via nuclear estrogen receptors both in vivo and in a mouse granulosa cancer cell line, NT-1. We observe a significant increase in Taf4b mRNA in estrogen-supplemented mouse ovarian tumors, which correlates with diminished survival of these mice. These data highlight the novel response of the general transcription factor TAF4B to estrogen in the normal ovary and during ovarian tumor progression in the mouse, suggesting its potential role in regulating actions downstream of estrogen stimulation. PMID:24068106

  13. Adoptively transferred immune T cells eradicate established tumors in spite of cancer-induced immune suppression

    Science.gov (United States)

    Arina, Ainhoa; Schreiber, Karin; Binder, David C.; Karrison, Theodore; Liu, Rebecca B.; Schreiber, Hans

    2014-01-01

    Myeloid-derived CD11b+Gr1+ suppressor cells (MDSC) and tumor-associated macrophages (TAM) are considered a major obstacle for effective adoptive T cell therapy. Myeloid cells suppress naive T cell proliferation ex vivo and can prevent the generation of T cell responses in vivo. We find, however, that immune T cells adoptively transferred eradicate well-established tumors in the presence of MDSC and TAM which are strongly immunosuppressive ex vivo. These MDSC and TAM were comparable in levels and immunosuppression among different tumor models. Longitudinal microscopy of tumors in vivo revealed that after T cell transfer tumor vasculature and cancer cells disappeared simultaneously. During T-cell mediated tumor destruction, the tumor stroma contained abundant myeloid cells (mainly TAM) that retained their suppressive properties. Preimmunized but not naive mice resisted immune suppression caused by an unrelated tumor-burden supporting the idea that in vivo, myeloid immunosuppressive cells can suppress naive but not memory T cell responses. PMID:24367029

  14. Magnetic Resonance Spectroscopic Imaging of Tumor Metabolic Markers for Cancer Diagnosis, Metabolic Phenotyping, and Characterization of Tumor Microenvironment

    Directory of Open Access Journals (Sweden)

    Qiuhong He

    2004-01-01

    Full Text Available Cancer cells display heterogeneous genetic characteristics, depending on the tumor dynamic microenvironment. Abnormal tumor vasculature and poor tissue oxygenation generate a fraction of hypoxic tumor cells that have selective advantages in metastasis and invasion and often resist chemo- and radiation therapies. The genetic alterations acquired by tumors modify their biochemical pathways, which results in abnormal tumor metabolism. An elevation in glycolysis known as the “Warburg effect” and changes in lipid synthesis and oxidation occur. Magnetic resonance spectroscopy (MRS has been used to study tumor metabolism in preclinical animal models and in clinical research on human breast, brain, and prostate cancers. This technique can identify specific genetic and metabolic changes that occur in malignant tumors. Therefore, the metabolic markers, detectable by MRS, not only provide information on biochemical changes but also define different metabolic tumor phenotypes. When combined with the contrast-enhanced Magnetic Resonance Imaging (MRI, which has a high sensitivity for cancer diagnosis, in vivo magnetic resonance spectroscopic imaging (MRSI improves the diagnostic specificity of malignant human cancers and is becoming an important clinical tool for cancer management and care. This article reviews the MRSI techniques as molecular imaging methods to detect and quantify metabolic changes in various tumor tissue types, especially in extracranial tumor tissues that contain high concentrations of fat. MRI/MRSI methods have been used to characterize tumor microenvironments in terms of blood volume and vessel permeability. Measurements of tissue oxygenation and glycolytic rates by MRS also are described to illustrate the capability of the MR technology in probing molecular information non-invasively in tumor tissues and its important potential for studying molecular mechanisms of human cancers in physiological conditions.

  15. Second harmonic generation reveals matrix alterations during breast tumor progression

    Science.gov (United States)

    Burke, Kathleen; Tang, Ping; Brown, Edward

    2013-03-01

    Alteration of the extracellular matrix in tumor stroma influences efficiency of cell locomotion away from the primary tumor into surrounding tissues and vasculature, thereby affecting metastatic potential. We study matrix changes in breast cancer through the use of second harmonic generation (SHG) of collagen in order to improve the current understanding of breast tumor stromal development. Specifically, we utilize a quantitative analysis of the ratio of forward to backward propagating SHG signal (F/B ratio) to monitor collagen throughout ductal and lobular carcinoma development. After detection of a significant decrease in the F/B ratio of invasive but not in situ ductal carcinoma compared with healthy tissue, the collagen F/B ratio is investigated to determine the evolution of fibrillar collagen changes throughout tumor progression. Results are compared with the progression of lobular carcinoma, whose F/B signature also underwent significant evolution during progression, albeit in a different manner, which offers insight into varying methods of tissue penetration and collagen manipulation between the carcinomas. This research provides insights into trends of stromal reorganization throughout breast tumor development.

  16. Diversity of radioprobes targeted to tumor angiogenesis on molecular functional imaging

    International Nuclear Information System (INIS)

    Lu Xia; Zhang Huabei

    2013-01-01

    Molecular functional imaging could visualize, characterize, and measure the bio- logical processes including tumor angiogenesis at the molecular and cellular levels in humans and other living systems. The molecular probes labeled by a variety of radionuclide used in the field of the nuclear medicine play pivotal roles in molecular imaging of tumor angiogenesis. However, the regulatory role of different probes in tumor angiogenesis has not been systematically illustrated. The current status of tumor angiogenesis imaging with radiolabeled probes of peptide, monoclonal antibody as well as its fragment, especially nanoparticle-based probes to gain insights into the robust tumor angiogenesis development were summarized. It was recognized that only the probes such as nanoparticle-based probes, which truly target the tumor vasculature rather than tumor cells because of poor extravasation, are really tumor angiogenesis imaging agent. The research of molecular probe targeted to angiogenesis would meet its flourish just after the outstanding improvements in the in vivo stability and biocompatibility, tumor-targeting efficacy, and pharmacokinetics of tumor angiogenesis imaging probes are made. Translation to clinical applications will also be critical for the maximize benefits of these novel agents. The future of tumor angiogenesis imaging lies in liable imaging probes and multiple imaging modalities, imaging of protein-protein interactions, and quantitative molecular imaging. (authors)

  17. Transcriptome profiling of the cancer, adjacent non-tumor and distant normal tissues from a colorectal cancer patient by deep sequencing.

    Directory of Open Access Journals (Sweden)

    Yan'an Wu

    Full Text Available Colorectal cancer (CRC is one of the most commonly diagnosed cancers in the world. A genome-wide screening of transcriptome dysregulation between cancer and normal tissue would provide insight into the molecular basis of CRC initiation and progression. Compared with microarray technology, which is commonly used to identify transcriptional changes, the recently developed RNA-seq technique has the ability to detect other abnormal regulations in the cancer transcriptome, such as alternative splicing, novel transcripts or gene fusion. In this study, we performed high-throughput transcriptome sequencing at ~50× coverage on CRC, adjacent non-tumor and distant normal tissue. The results revealed cancer-specific, differentially expressed genes and differential alternative splicing, suggesting that the extracellular matrix and metabolic pathways are activated and the genes related to cell homeostasis are suppressed in CRC. In addition, one tumor-restricted gene fusion, PRTEN-NOTCH2, was also detected and experimentally confirmed. This study reveals some common features in tumor invasion and provides a comprehensive survey of the CRC transcriptome, which provides better insight into the complexity of regulatory changes during tumorigenesis.

  18. Tumor and normal structures volume localization and quantitation in 3D radiotherapy treatment planning

    International Nuclear Information System (INIS)

    Anselmi, R.; Andreucci, L.

    1995-01-01

    Improvements in imaging technology have significantly enhanced the ability of the radiation oncologist to stage and to evaluate the response of tumor during and after treatment. Over the last few year, in fact, computed tomography (CT), magnetic resonance spectroscopy (MRS), positron emission tomography (PET), single photon emission computed tomography (SPECT) imaging radiolabelled monoclonal tumor antibodies have allowed tumor definition and evaluation. Concerning the above mentioned techniques accurate methods for the integration of morphological (CT, MRI) and functional (PET, SPECT, MRS) information can be very useful for volumes definition. In fact three-dimensional treatment planning depends heavily on volume displays and calculation based on volumes to convey information to the radiation oncologist, physicist and dosimetrist. The accuracy and reproducibility of the methods for creating these volumes are fundamental limitations of current treatment planning systems. Slice by slice manual contouring, which is extremely labor-intensive, and automatic edge detection, which has a high failure rate and requires human intervention are representative of the current standard of practice. The aim of our work is both to develop methods of image data integration and automatic segmentation, and to make the treatment planning system able to combine these multiple information in unified data set in order to get a better tumor volume definition and dose distribution calculation. Then the possibility of using morphological and functional images and other information coming from MR spectroscopy and electronic or confocal microscopy can allow the development into the treatment planning system of biological calculation models for evaluating tumor and normal tissue control probabilities (TCP, NTCP). The definitive use of these models into the 3-D treatment plannings will offer a considerable improvement in the biological efficacy of radiotherapy and it will constitute the object

  19. Effect of acetylation on monoclonal antibody ZCE-025 Fab': Distribution in normal and tumor-bearing mice

    International Nuclear Information System (INIS)

    Tarburton, J.P.; Halpern, S.E.; Hagan, P.L.; Sudora, E.; Chen, A.; Fridman, D.M.; Pfaff, A.E.

    1990-01-01

    Studies were performed to determine in vitro and in vivo effects of acetylation on Fab' fragments of ZCE-025, a monoclonal anti-CEA antibody. Isoelectric focusing revealed a drop in isoelectric point of 1.7 pI units following acetylation. Biodistribution studies of acetylated and nonacetylated [111In]Fab' were performed in normal BALB/c mice and in nude mice bearing the T-380 CEA-producing human colon tumor. The acetylated fragments remained in the vascular compartment longer and had significantly diminished renal uptake of 111In compared to controls. While acetylation itself effected a 50% drop in immunoreactivity, tumor uptake of the acetylated and nonacetylated 111In-labeled Fab' fragments was comparable, with the exception of one data point, through 72 h

  20. Albumin as a "Trojan Horse" for polymeric nanoconjugate transendothelial transport across tumor vasculatures for improved cancer targeting.

    Science.gov (United States)

    Yin, Qian; Tang, Li; Cai, Kaimin; Yang, Xujuan; Yin, Lichen; Zhang, Yanfeng; Dobrucki, Lawrence W; Helferich, William G; Fan, Timothy M; Cheng, Jianjun

    2018-05-01

    Although polymeric nanoconjugates (NCs) hold great promise for the treatment of cancer patients, their clinical utility has been hindered by the lack of efficient delivery of therapeutics to targeted tumor sites. Here, we describe an albumin-functionalized polymeric NC (Alb-NC) capable of crossing the endothelium barrier through a caveolae-mediated transcytosis pathway to better target cancer. The Alb-NC is prepared by nanoprecipitation of doxorubicin (Doxo) conjugates of poly(phenyl O-carboxyanhydrides) bearing aromatic albumin-binding domains followed by subsequent surface decoration of albumin. The administration of Alb-NCs into mice bearing MCF-7 human breast cancer xenografts with limited tumor vascular permeability resulted in markedly increased tumor accumulation and anti-tumor efficacy compared to their conventional counterpart PEGylated NCs (PEG-NCs). The Alb-NC provides a simple, low-cost and broadly applicable strategy to improve the cancer targeting efficiency and therapeutic effectiveness of polymeric nanomedicine.

  1. Vascular targeted therapy with anti-prostate-specific membrane antigen monoclonal antibody J591 in advanced solid tumors.

    Science.gov (United States)

    Milowsky, Matthew I; Nanus, David M; Kostakoglu, Lale; Sheehan, Christine E; Vallabhajosula, Shankar; Goldsmith, Stanley J; Ross, Jeffrey S; Bander, Neil H

    2007-02-10

    Based on prostate-specific membrane antigen (PSMA) expression on the vasculature of solid tumors, we performed a phase I trial of antibody J591, targeting the extracellular domain of PSMA, in patients with advanced solid tumor malignancies. This was a proof-of-principle evaluation of PSMA as a potential neovascular target. The primary end points were targeting,toxicity, maximum-tolerated dose, pharmacokinetics (PK), and human antihuman antibody (HAHA) response. Patients had advanced solid tumors previously shown to express PSMA on the neovasculature. They received 111Indium (111ln)-J591 for scintigraphy and PK, followed 2 weeks later by J591 with a reduced amount of 111In for additional PK measurements. J591 dose levels were 5, 10, 20, 40, and 80 mg. The protocol was amended for six weekly administrations of unchelated J591. Patients with a response or stable disease were eligible for re-treatment. Immunohistochemistry assessed PSMA expression in tumor tissues. Twenty-seven patients received monoclonal antibody (mAb) J591. Treatment was well tolerated. Twenty (74%) of 27 patients had at least one area of known metastatic disease targeted by 111In-J591, with positive imaging seen in patients with kidney, bladder, lung, breast, colorectal, and pancreatic cancers, and melanoma. Seven of 10 patient specimens available for immunohistochemical assessment of PSMA expression in tumor-associated vasculature demonstrated PSMA staining. No HAHA response was seen. Three patients of 27 with stable disease received re-treatment. Acceptable toxicity and excellent targeting of known sites of metastases were demonstrated in patients with multiple solid tumor types, highlighting a potential role for the anti-PSMA antibody J591 as a vascular-targeting agent.

  2. Maternal separation diminishes α-adrenergic receptor density and function in renal vasculature from male Wistar-Kyoto rats.

    Science.gov (United States)

    Loria, Analia S; Osborn, Jeffrey L

    2017-07-01

    Adult rats exposed to maternal separation (MatSep) are normotensive but display lower glomerular filtration rate and increased renal neuroadrenergic drive. The aim of this study was to determine the renal α-adrenergic receptor density and the renal vascular responsiveness to adrenergic stimulation in male rats exposed to MatSep. In addition, baroreflex sensitivity was assessed to determine a component of neural control of the vasculature. Using tissue collected from 4-mo-old MatSep and control rats, α 1 -adrenergic receptors (α 1 -ARs) were measured in renal cortex and isolated renal vasculature using receptor binding assay, and the α-AR subtype gene expression was determined by RT-PCR. Renal cortical α 1 -AR density was similar between MatSep and control tissues (B max = 44 ± 1 vs. 42 ± 2 fmol/mg protein, respectively); however, MatSep reduced α 1 -AR density in renal vasculature (B max = 47 ± 4 vs. 62 ± 4 fmol/mg protein, P adrenergic receptor expression and function in the renal vasculature could develop secondary to MatSep-induced overactivation of the renal neuroadrenergic tone. Copyright © 2017 the American Physiological Society.

  3. Tumor Necrosis Factor Antagonism Normalizes Rapid Eye Movement Sleep in Alcohol Dependence

    Science.gov (United States)

    Irwin, Michael R.; Olmstead, Richard; Valladares, Edwin M.; Breen, Elizabeth Crabb; Ehlers, Cindy L.

    2009-01-01

    Background In alcohol dependence, markers of inflammation are associated with increases in rapid eye movement (REM) sleep, which is thought to be a prognostic indicator of alcohol relapse. This study was undertaken to test whether blockade of biologically active tumor necrosis factor-α (TNF-α) normalizes REM sleep in alcohol-dependent adults. Methods In a randomized, placebo-controlled, double-blind, crossover trial, 18 abstinent alcohol-dependent male adults received a single dose of etanercept (25 mg) versus placebo in a counterbalanced order. Polysomnographic sleep was measured at baseline and for 3 nights after the acute dose of etanercept or placebo. Results Compared with placebo, administration of etanercept produced significant decreases in the amount and percentage of REM sleep. Decreases in REM sleep were robust and approached low levels typically found in age-comparable control subjects. Individual differences in biologically active drug as indexed by circulating levels of soluble tumor necrosis factor receptor II negatively correlated with the percentage of REM sleep. Conclusions Pharmacologic neutralization of TNF-α activity is associated with significant reductions in REM sleep in abstinent alcohol-dependent patients. These data suggest that circulating levels of TNF-α may have a physiologic role in the regulation of REM sleep in humans. PMID:19185287

  4. Inverse Relationship between 15-Lipoxygenase-2 and PPAR-γ Gene Expression in Normal Epithelia Compared with Tumor Epithelia

    Directory of Open Access Journals (Sweden)

    Vemparala Subbarayan

    2005-03-01

    Full Text Available 15-Lipoxygenase-2 (15-LOX-2 synthesizes 15-S-hydroxyeicosatetraenoic acid (15-S-HETE, an endogenous ligand for the nuclear receptor, peroxisome proliferator-activated receptor-γ (PPAR-γ. Several studies have described an inverse relationship between 15-LOX-2 and PPAR-γ expression in normal versus tumor samples. To systematically determine if this is a ubiquitous phenomenon, we used a variety of epithelial and nonepithelial cells and some tissues to further evaluate the extent of this inverse relationship. The levels of mRNA or protein were measured by reverse transcriptase polymerase chain reaction or Western gray level intensity, whereas distribution was determined by in situ hybridization or immunofluorescence. 15-S-HETE was measured by liquid chromatography/tandem mass spectrometry. Normal epithelial cells/samples generally expressed high levels of 15-LOX-2 along with the enzyme product 15-S-HETE, but both levels were reduced in cancer cells/samples. In contrast, most cancer cells expressed high levels of PPAR-γ mRNA and protein, which were absent from normal epithelial cells. Overall, the inverse relationship between these two genes was primarily restricted to epithelial samples. Forced expression of PPAR-γ reduced 15-LOX-2 protein levels in normal cells, whereas forced expression of 15-LOX-2 in tumor cells suppressed PPAR-y protein levels. These results suggest that feedback mechanisms may contribute to the loss of 15-LOX-2 pathway components, which coincide with an increase in PPAR-γ in many epithelial cancers.

  5. Tumor-related markers in histologically normal margins correlate with locally recurrent oral squamous cell carcinoma: a retrospective study.

    Science.gov (United States)

    Wang, Xinhong; Chen, Si; Chen, Xinming; Zhang, Cuicui; Liang, Xueyi

    2016-02-01

    Oral squamous cell carcinoma (OSCC) is characterized by a high rate of local recurrence (LR) even when the surgical margins are considered histopathologically 'normal'. The aim of our study was to determine the relationship between early tumor-related markers detected in histologically normal margins (HNM) and LR as well as disease-free survival in OSCC. The loss of heterozygosity (LOH) of markers on 9p21 (D9s1747, RPS6, D9s162) and 17p13 (TP53) and the immunostaining results of the corresponding mutant P53, P14, P15, and P16 proteins were assessed and correlated with LR and disease-free survival in 71 OSCC patients who had HNM. Fifteen of 71 patients with HNM developed LR. The presence of the following molecular markers in surgical margins was significantly correlated with the development of LR: LOH on chromosome 9p21 (D9s1747 + RPS6 + D9s162), any LOH, P16, and P53 (chi-square test, P tumor-related markers in histologically 'normal' resection margins may be a useful method for assessing LR in OSCC patients. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Tumor cell surface proteins

    International Nuclear Information System (INIS)

    Kennel, S.J.; Braslawsky, G.R.; Flynn, K.; Foote, L.J.; Friedman, E.; Hotchkiss, J.A.; Huang, A.H.L.; Lankford, P.K.

    1982-01-01

    Cell surface proteins mediate interaction between cells and their environment. Unique tumor cell surface proteins are being identified and quantified in several tumor systems to address the following questions: (i) how do tumor-specific proteins arise during cell transformation; (ii) can these proteins be used as markers of tumor cell distribution in vivo; (iii) can cytotoxic drugs be targeted specifically to tumor cells using antibody; and (iv) can solid state radioimmunoassay of these proteins provide a means to quantify transformation frequencies. A tumor surface protein of 180,000 M/sub r/ (TSP-180) has been identified on cells of several lung carcinomas of BALB/c mice. TSP-180 was not detected on normal lung tissue, embryonic tissue, or other epithelial or sarcoma tumors, but it was found on lung carcinomas of other strains of mice. Considerable amino acid sequence homology exists among TSP-180's from several cell sources, indicating that TSP-180 synthesis is directed by normal cellular genes although it is not expressed in normal cells. The regulation of synthesis of TSP-180 and its relationship to normal cell surface proteins are being studied. Monoclonal antibodies (MoAb) to TSP-180 have been developed. The antibodies have been used in immunoaffinity chromatography to isolate TSP-180 from tumor cell sources. This purified tumor antigen was used to immunize rats. Antibody produced by these animals reacted at different sites (epitopes) on the TSP-180 molecule than did the original MoAb. These sera and MoAb from these animals are being used to identify normal cell components related to the TSP-180 molecule

  7. The effect of interstitial pressure on therapeutic agent transport: coupling with the tumor blood and lymphatic vascular systems.

    Science.gov (United States)

    Wu, Min; Frieboes, Hermann B; Chaplain, Mark A J; McDougall, Steven R; Cristini, Vittorio; Lowengrub, John S

    2014-08-21

    slows down as the tumor shrinks due to the heterogeneity and low concentration of agents in the tumor interior compared with the cases where other pathological effects may combine to flatten the IFP and thus reduce the heterogeneity. We conclude that dual normalizations of the micronevironment - both the vasculature and the interstitium - are needed to maximize the effects of chemotherapy, while normalization of only one of these may be insufficient to overcome the physical resistance and may thus lead to sub-optimal outcomes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. A quantitative theory of solid tumor growth, metabolic rate and vascularization.

    Directory of Open Access Journals (Sweden)

    Alexander B Herman

    Full Text Available The relationships between cellular, structural and dynamical properties of tumors have traditionally been studied separately. Here, we construct a quantitative, predictive theory of solid tumor growth, metabolic rate, vascularization and necrosis that integrates the relationships between these properties. To accomplish this, we develop a comprehensive theory that describes the interface and integration of the tumor vascular network and resource supply with the cardiovascular system of the host. Our theory enables a quantitative understanding of how cells, tissues, and vascular networks act together across multiple scales by building on recent theoretical advances in modeling both healthy vasculature and the detailed processes of angiogenesis and tumor growth. The theory explicitly relates tumor vascularization and growth to metabolic rate, and yields extensive predictions for tumor properties, including growth rates, metabolic rates, degree of necrosis, blood flow rates and vessel sizes. Besides these quantitative predictions, we explain how growth rates depend on capillary density and metabolic rate, and why similar tumors grow slower and occur less frequently in larger animals, shedding light on Peto's paradox. Various implications for potential therapeutic strategies and further research are discussed.

  9. In vivo tumor angiogenesis imaging with site-specific labeled 99mTc-HYNIC-VEGF

    International Nuclear Information System (INIS)

    Blankenberg, Francis G.; Backer, Marina V.; Patel, Vimalkumar; Backer, Joseph M.; Levashova, Zoia

    2006-01-01

    We recently developed a cysteine-containing peptide tag (C-tag) that allows for site-specific modification of C-tag-containing fusion proteins with a bifunctional chelator, HYNIC (hydrazine nicotinamide)-maleimide. We then constructed and expressed C-tagged vascular endothelial growth factor (VEGF) and labeled it with HYNIC. We wished to test 99m Tc-HYNIC-C-tagged VEGF ( 99m Tc-HYNIC-VEGF) for the imaging of tumor vasculature before and after antiangiogenic (low continuous dosing, metronomic) and tumoricidal (high-dose) cyclophosphamide treatment. HYNIC-maleimide was reacted with the two thiol groups of C-tagged VEGF without any effect on biologic activity in vitro. 99m Tc-HYNIC-VEGF was prepared using tin/tricine as an exchange reagent, and injected via the tail vein (200-300 μCi, 1-2 μg protein) followed by microSPECT imaging 1 h later. Sequencing analysis of HYNIC-containing peptides obtained after digestion confirmed the site-specific labeling of the two accessible thiol groups of C-tagged VEGF. Tumor vascularity was easily visualized with 99m Tc/VEGF in Balb/c mice with 4T1 murine mammary carcinoma 10 days after implantation into the left axillary fat pad in controls (12.3±5.0 tumor/bkg, n=27) along with its decrease following treatment with high (150 mg/kg q.o.d. x 4; 1.14±0.48 tumor/bkg, n=9) or low (25 mg/kg q.d. x 7; 1.03±0.18 tumor/bkg, n=9) dose cyclophosphamide. Binding specificity was confirmed by observing a 75% decrease in tumor uptake of 99m Tc/biotin-inactivated VEGF, as compared with 99m Tc-HYNIC-VEGF. 99m Tc can be loaded onto C-tagged VEGF in a site-specific fashion without reducing its bioactivity. 99m Tc-HYNIC-VEGF can be rapidly prepared for the imaging of tumor vasculature and its response to different types of chemotherapy. (orig.)

  10. FOXP3+ regulatory T cells in normal prostate tissue, postatrophic hyperplasia, prostatic intraepithelial neoplasia, and tumor histological lesions in men with and without prostate cancer.

    Science.gov (United States)

    Davidsson, Sabina; Andren, Ove; Ohlson, Anna-Lena; Carlsson, Jessica; Andersson, Swen-Olof; Giunchi, Francesca; Rider, Jennifer R; Fiorentino, Michelangelo

    2018-01-01

    The tumor promoting or counteracting effects of the immune response to cancer development are thought to be mediated to some extent by the infiltration of regulatory T cells (T regs ). In the present study we evaluated the prevalence of T reg populations in stromal and epithelial compartments of normal, post atrophic hyperplasia (PAH), prostatic intraepithelial neoplasia (PIN), and tumor lesions in men with and without prostate cancer. Study subjects were 102 men consecutively diagnosed with localized prostate cancer undergoing radical prostatectomy and 38 men diagnosed with bladder cancer undergoing cystoprostatectomy without prostate cancer at the pathological examination. Whole mount sections from all patients were evaluated for the epithelial and stromal expression of CD4 + T regs and CD8 + T regs in normal, PAH, PIN, and tumor lesions. A Friedmańs test was used to investigate differences in the mean number of T regs across histological lesions. Logistic regression was used to estimate crude and adjusted odds ratios (OR) for prostate cancer for each histological area. In men with prostate cancer, similarly high numbers of stromal CD4 + T regs were identified in PAH and tumor, but CD4 + T regs were less common in PIN. Greater numbers of epithelial CD4+ T regs in normal prostatic tissue were positively associated with both Gleason score and pT-stage. We observed a fourfold increased risk of prostate cancer in men with epithelial CD4 + T regs in the normal prostatic tissue counterpart. Our results may suggest a possible pathway through which PAH develops directly into prostate cancer in the presence of CD4 + T regs and indicate that transformation of the anti-tumor immune response may be initiated even before the primary tumor is established. © 2017 The Authors. The Prostate Published by Wiley Periodicals Inc.

  11. Surface Functionalization and Targeting Strategies of Liposomes in Solid Tumor Therapy: A Review

    Science.gov (United States)

    Riaz, Muhammad Kashif; Riaz, Muhammad Adil; Zhang, Xue; Lin, Congcong; Wong, Ka Hong; Chen, Xiaoyu; Lu, Aiping

    2018-01-01

    Surface functionalization of liposomes can play a key role in overcoming the current limitations of nanocarriers to treat solid tumors, i.e., biological barriers and physiological factors. The phospholipid vesicles (liposomes) containing anticancer agents produce fewer side effects than non-liposomal anticancer formulations, and can effectively target the solid tumors. This article reviews information about the strategies for targeting of liposomes to solid tumors along with the possible targets in cancer cells, i.e., extracellular and intracellular targets and targets in tumor microenvironment or vasculature. Targeting ligands for functionalization of liposomes with relevant surface engineering techniques have been described. Stimuli strategies for enhanced delivery of anticancer agents at requisite location using stimuli-responsive functionalized liposomes have been discussed. Recent approaches for enhanced delivery of anticancer agents at tumor site with relevant surface functionalization techniques have been reviewed. Finally, current challenges of functionalized liposomes and future perspective of smart functionalized liposomes have been discussed. PMID:29315231

  12. Surface Functionalization and Targeting Strategies of Liposomes in Solid Tumor Therapy: A Review

    Directory of Open Access Journals (Sweden)

    Muhammad Kashif Riaz

    2018-01-01

    Full Text Available Surface functionalization of liposomes can play a key role in overcoming the current limitations of nanocarriers to treat solid tumors, i.e., biological barriers and physiological factors. The phospholipid vesicles (liposomes containing anticancer agents produce fewer side effects than non-liposomal anticancer formulations, and can effectively target the solid tumors. This article reviews information about the strategies for targeting of liposomes to solid tumors along with the possible targets in cancer cells, i.e., extracellular and intracellular targets and targets in tumor microenvironment or vasculature. Targeting ligands for functionalization of liposomes with relevant surface engineering techniques have been described. Stimuli strategies for enhanced delivery of anticancer agents at requisite location using stimuli-responsive functionalized liposomes have been discussed. Recent approaches for enhanced delivery of anticancer agents at tumor site with relevant surface functionalization techniques have been reviewed. Finally, current challenges of functionalized liposomes and future perspective of smart functionalized liposomes have been discussed.

  13. Vessel abnormalization: another hallmark of cancer? Molecular mechanisms and therapeutic implications.

    Science.gov (United States)

    De Bock, Katrien; Cauwenberghs, Sandra; Carmeliet, Peter

    2011-02-01

    As a result of excessive production of angiogenic molecules, tumor vessels become abnormal in structure and function. By impairing oxygen delivery, abnormal vessels fuel a vicious cycle of non-productive angiogenesis, which creates a hostile microenvironment from where tumor cells escape through leaky vessels and which renders tumors less responsive to chemoradiation. While anti-angiogenic strategies focused on inhibiting new vessel growth and destroying pre-existing vessels, clinical studies showed modest anti-tumor effects. For many solid tumors, anti-VEGF treatment offers greater clinical benefit when combined with chemotherapy. This is partly due to a normalization of the tumor vasculature, which improves cytotoxic drug delivery and efficacy and offers unprecedented opportunities for anti-cancer treatment. Here, we overview key novel molecular players that induce vessel normalization. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Increased Tumor Oxygenation and Drug Uptake During Anti-Angiogenic Weekly Low Dose Cyclophosphamide Enhances the Anti-Tumor Effect of Weekly Tirapazamine

    Science.gov (United States)

    Doloff, J.C.; Khan, N.; Ma, J.; Demidenko, E.; Swartz, H.M.; Jounaidi, Y.

    2010-01-01

    Metronomic cyclophosphamide treatment is associated with anti-angiogenic activity and is anticipated to generate exploitable hypoxia using hypoxia-activated prodrugs. Weekly administration of tirapazamine (TPZ; 5 mg/kg body weight i.p.) failed to inhibit the growth of 9L gliosarcoma tumors grown s.c. in scid mice. However, the anti-tumor effect of weekly cyclophosphamide (CPA) treatment (140 mg/kg BW i.p.) was substantially enhanced by weekly TPZ administration. An extended tumor free period and increased frequency of tumor eradication without overt toxicity were observed when TPZ was given 3, 4 or 5 days after each weekly CPA treatment. Following the 2nd CPA injection, Electron Paramagnetic Resonance (EPR) Oximetry indicated significant increases in tumor pO2, starting at 48 hr, which further increased after the 3rd CPA injection. pO2 levels were, however, stable in growing untreated tumors. A strong negative correlation (−0.81) between tumor pO2 and tumor volume during 21 days of weekly CPA chemotherapy was observed, indicating increasing tumor pO2 with decreasing tumor volume. Furthermore, CPA treatment resulted in increased tumor uptake of activated CPA. CPA induced increases in VEGF RNA, which reached a maximum on day 1, and in PLGF RNA which was sustained throughout the treatment, while anti-angiogenic host thrombospondin-1 increased dramatically through day 7 post-CPA treatment. Weekly cyclophosphamide treatment was anticipated to generate exploitable hypoxia. However, our findings suggest that weekly CPA treatment induces a functional improvement of tumor vasculature, which is characterized by increased tumor oxygenation and drug uptake in tumors, thus counter-intuitively, benefiting intratumoral activation of TPZ and perhaps other bioreductive drugs. PMID:19754361

  15. 3-D visualization and quantitation of microvessels in transparent human colorectal carcinoma [corrected].

    Directory of Open Access Journals (Sweden)

    Yuan-An Liu

    Full Text Available Microscopic analysis of tumor vasculature plays an important role in understanding the progression and malignancy of colorectal carcinoma. However, due to the geometry of blood vessels and their connections, standard microtome-based histology is limited in providing the spatial information of the vascular network with a 3-dimensional (3-D continuum. To facilitate 3-D tissue analysis, we prepared transparent human colorectal biopsies by optical clearing for in-depth confocal microscopy with CD34 immunohistochemistry. Full-depth colons were obtained from colectomies performed for colorectal carcinoma. Specimens were prepared away from (control and at the tumor site. Taking advantage of the transparent specimens, we acquired anatomic information up to 200 μm in depth for qualitative and quantitative analyses of the vasculature. Examples are given to illustrate: (1 the association between the tumor microstructure and vasculature in space, including the perivascular cuffs of tumor outgrowth, and (2 the difference between the 2-D and 3-D quantitation of microvessels. We also demonstrate that the optically cleared mucosa can be retrieved after 3-D microscopy to perform the standard microtome-based histology (H&E staining and immunohistochemistry for systematic integration of the two tissue imaging methods. Overall, we established a new tumor histological approach to integrate 3-D imaging, illustration, and quantitation of human colonic microvessels in normal and cancerous specimens. This approach has significant promise to work with the standard histology to better characterize the tumor microenvironment in colorectal carcinoma.

  16. TU-C-12A-11: Comparisons Between Cu-ATSM PET and DCE-CT Kinetic Parameters in Canine Sinonasal Tumors

    Energy Technology Data Exchange (ETDEWEB)

    La Fontaine, M; Bradshaw, T [University of Wisconsin, Madison, Wisconsin (United States); Kubicek, L [University of Florida, Gainesville, Florida (United States); Forrest, L [University of Wisconsin-Madison, Madison, Wisconsin (United States); Jeraj, R [University of Wisconsin, Madison, WI (United States)

    2014-06-15

    Purpose: Regions of poor perfusion within tumors may be associated with higher hypoxic levels. This study aimed to test this hypothesis by comparing measurements of hypoxia from Cu-ATSM PET to vasculature kinetic parameters from DCE-CT kinetic analysis. Methods: Ten canine patients with sinonasal tumors received one Cu-ATSM PET/CT scan and three DCE-CT scans prior to treatment. Cu-ATSM PET/CT and DCE-CT scans were registered and resampled to matching voxel dimensions. Kinetic analysis was performed on DCE-CT scans and for each patient, the resulting kinetic parameter values from the three DCE-CT scans were averaged together. Cu-ATSM SUVs were spatially correlated (r{sub spatial}) on a voxel-to-voxel basis against the following DCE-CT kinetic parameters: transit time (t{sub 1}), blood flow (F), vasculature fraction (v{sub 1}), and permeability (PS). In addition, whole-tumor comparisons were performed by correlating (r{sub ROI}) the mean Cu-ATSM SUV (SUV{sub mean}) with median kinetic parameter values. Results: The spatial correlations (r{sub spatial}) were poor and ranged from -0.04 to 0.21 for all kinetic parameters. These low spatial correlations may be due to high variability in the DCE-CT kinetic parameter voxel values between scans. In our hypothesis, t{sub 1} was expected to have a positive correlation, while F was expected to have a negative correlation to hypoxia. However, in wholetumor analysis the opposite was found for both t{sub 1} (r{sub ROI} = -0.25) and F (r{sub ROI} = 0.56). PS and v{sub 1} may depict angiogenic responses to hypoxia and found positive correlations to Cu-ATSM SUV for PS (r{sub ROI} = 0.41), and v{sub 1} (r{sub ROI} = 0.57). Conclusion: Low spatial correlations were found between Cu-ATSM uptake and DCE-CT vasculature parameters, implying that poor perfusion is not associated with higher hypoxic regions. Across patients, the most hypoxic tumors tended to have higher blood flow values, which is contrary to our initial hypothesis. Funding

  17. CT angiography of the renal arteries and veins: normal anatomy and variants.

    Science.gov (United States)

    Hazırolan, Tuncay; Öz, Meryem; Türkbey, Barış; Karaosmanoğlu, Ali Devrim; Oğuz, Berna Sayan; Canyiğit, Murat

    2011-03-01

    Conventional angiography has long been regarded as gold standard imaging modality for evaluation of the renal vasculature. Introduction of multidetector computed tomography (MDCT) angiography had a groundbreaking impact on evaluation of the renal vessels and is gradually replacing conventional angiography as standard imaging. Herein, we review and illustrate the normal and variant anatomy of renal vessels with special emphasis on imaging protocols and reconstruction techniques in MDCT.

  18. Magnetic resonance imaging of the normal and abnormal pulmonary hila

    International Nuclear Information System (INIS)

    Webb, W.R.; Gamsu, G.; Stark, D.D.; Moore, E.H.

    1984-01-01

    Magnetic resonance (MR) images of the hila were reviewed in 25 normal subjects and 12 patients with unilateral or bilateral hilar masses. On spin echo MR images in normal patients, collections of soft tissue large enough to be confused with an abnormally enlarged lymph node were seen in three locations. In patients with a hilar mass, the mass was differentiated from hilar vasculature more easily using MR than contrast-enhanced CT. However, because the spatial resolution of MR is inferior to that of CT, bronchi were difficult to evaulate using MR. Electrocardiographic-gated images showed better resolution of hilar structures but may not be necessary for large masses

  19. Marked differences in immunocytological localization of [3H]estradiol-binding protein in rat pancreatic acinar tumor cells compared to normal acinar cells

    International Nuclear Information System (INIS)

    Beaudoin, A.R.; Grondin, G.; St Jean, P.; Pettengill, O.; Longnecker, D.S.; Grossman, A.

    1991-01-01

    [ 3 H]Estradiol can bind to a specific protein in normal rat pancreatic acinar cells. Electron microscopic immunocytochemical analysis has shown this protein to be localized primarily in the rough endoplasmic reticulum and mitochondria. Rat exocrine pancreatic tumor cell lines, whether grown in tissue culture (AR42J) or as a tumor mass after sc injection into rats (DSL-2), lacked detectable amounts of this [ 3 H]estradiol-binding protein (EBP), as determined by the dextran-coated charcoal assay. Furthermore, primary exocrine pancreatic neoplasms induced with the carcinogen azaserine contained little or no detectable [ 3 H]estradiol-binding activity. However, electron immunocytochemical studies of transformed cells indicated the presence of material that cross-reacted with antibodies prepared against the [ 3 H]EBP. The immunopositive reaction in transformed cells was localized almost exclusively in lipid granules. Such lipid organelles in normal acinar cells, although present less frequently than in transformed cells, have never been observed to contain EBP-like immunopositive material. Presumably, the aberrant localization of EBP in these acinar tumor cells results in loss of function of this protein, which in normal pancreatic acinar cells appears to exert a modulating influence on zymogen granule formation and the process of secretion

  20. Combined effects of radiotherapy and chemotherapy normal tissue, 1

    International Nuclear Information System (INIS)

    Watanabe, Noriaki

    1983-01-01

    The combined effects of radiation and drugs on the fine vasculature of mouse liver were investigated by microangiography. The fine vasculature of the liver showed dilatations one day after 1000 rad of irradiation to the liver. The fine vasculature of the liver showed marked dilatations and slight extravasations one day after 1000 rad of irradiation to the whole body. The fine vasculature of the liver showed dilatations and partial narrowings after the administration of BLM, 2mg/kg/day ip for 5 days. The combined effects of BLM and radiation was greater than that with radiation alone. The fine vasculature of the liver showed marked dilatations and slight extravasation after the administration of BLM, 2mg/kg/day ip for 5 days and MMC 2mg/kg ip on day 6. This findings is about the same as that after the administration of BLM and 1000 rad of irradiation. The administration of urokinase did not diminish the effects of radiation on the fine vasculature of the liver. The administration of YM-08310 diminished the effects of irradiation on the fine vasculature of the liver. (author)

  1. A general native-state method for determination of proliferation capacity of human normal and tumor tissues in vitro

    International Nuclear Information System (INIS)

    Hoffman, R.M.; Connors, K.M.; Meerson-Monosov, A.Z.; Herrera, H.; Price, J.H.

    1989-01-01

    An important need in cancer research and treatment is a physiological means in vitro by which to assess the proliferation capacity of human tumors and corresponding normal tissue for comparison. The authors have recently developed a native-state, three-dimensional, gel-supported primary culture system that allows every type of human cancer to grow in vitro at more than 90% frequency, with maintenance of tissue architecture, tumor-stromal interaction, and differentiated functions. Here they demonstrate that the native-state culture system allows proliferation indices to be determined for all solid cancer types explanted directly from surgery into long-term culture. Normal tissues also proliferate readily in this system. The degree of resolution of measurement of cell proliferation by histological autoradiography within the cultured tissues is greatly enhanced with the use of epi-illumination polarization microscopy. The histological status of the cultured tissues can be assessed simultaneously with the proliferation status. Carcinomas generally have areas of high epithelial proliferation with quiescent stromal cells. Sarcomas have high proliferation of cells of mesenchymal organ. Normal tissues can also proliferate at high rates. An image analysis system has been developed to automate proliferation determination. The high-resolution physiological means described here to measure the proliferation capacity of tissues will be important in further understanding of the deregulation of cell proliferation in cancer as well as in cancer prognosis and treatment

  2. Pst I restriction fragment length polymorphism of the human placental alkaline phosphatase gene in normal placentae and tumors

    International Nuclear Information System (INIS)

    Tsavaler, L.; Penhallow, R.C.; Kam, W.; Sussman, H.H.

    1987-01-01

    The structure of the human placental alkaline phosphatase gene from normal term placentae was studied by restriction enzyme digestion and Southern blot analysis using a cDNA probe to the gene for the placental enzyme. The DNA digests fall into three distinct patterns based on the presence and intensity of an extra 1.1-kilobase Pst I Band. The extra 1.1-kilobase band is present in 9 of 27 placenta samples, and in 1 of these samples the extra band is present at double intensity. No polymorphism was revealed by digestion with restriction enzymes EcoRI, Sma I, BamHI, or Sac I. The extra Pst I-digestion site may lie in a noncoding region of the gene because no correlation was observed between the restriction fragment length polymorphism and the common placental alkaline phosphatase alleles identified by starch gel electrophoresis. In addition, because placental alkaline phosphatase is frequently re-expressed in neoplasms, the authors examined tissue from ovarian, testicular, and endometrial tumors and from BeWo choriocarcinoma cells in culture. The Pst I-DNA digestion patterns from these cells and tissues were identical to those seen in the normal ovary and term placentae. The consistent reproducible digestion patterns seen in DNA from normal and tumor tissue indicate that a major gene rearrangement is not the basis for the ectopic expression of placental alkaline phosphatase in neoplasia

  3. Anti-tumor activity of a novel HS-mimetic-vascular endothelial growth factor binding small molecule.

    Directory of Open Access Journals (Sweden)

    Kazuyuki Sugahara

    Full Text Available The angiogenic process is controlled by variety of factors of which the vascular endothelial growth factor (VEGF pathway plays a major role. A series of heparan sulfate mimetic small molecules targeting VEGF/VEGFR pathway has been synthesized. Among them, compound 8 (2-butyl-5-chloro-3-(4-nitro-benzyl-3H-imidazole-4-carbaldehyde was identified as a significant binding molecule for the heparin-binding domain of VEGF, determined by high-throughput-surface plasmon resonance assay. The data predicted strong binding of compound 8 with VEGF which may prevent the binding of VEGF to its receptor. We compared the structure of compound 8 with heparan sulfate (HS, which have in common the functional ionic groups such as sulfate, nitro and carbaldehyde that can be located in similar positions of the disaccharide structure of HS. Molecular docking studies predicted that compound 8 binds at the heparin binding domain of VEGF through strong hydrogen bonding with Lys-30 and Gln-20 amino acid residues, and consistent with the prediction, compound 8 inhibited binding of VEGF to immobilized heparin. In vitro studies showed that compound 8 inhibits the VEGF-induced proliferation migration and tube formation of mouse vascular endothelial cells, and finally the invasion of a murine osteosarcoma cell line (LM8G7 which secrets high levels of VEGF. In vivo, these effects produce significant decrease of tumor burden in an experimental model of liver metastasis. Collectively, these data indicate that compound 8 may prevent tumor growth through a direct effect on tumor cell proliferation and by inhibition of endothelial cell migration and angiogenesis mediated by VEGF. In conclusion, compound 8 may normalize the tumor vasculature and microenvironment in tumors probably by inhibiting the binding of VEGF to its receptor.

  4. CS2164, a novel multi-target inhibitor against tumor angiogenesis, mitosis and chronic inflammation with anti-tumor potency.

    Science.gov (United States)

    Zhou, You; Shan, Song; Li, Zhi-Bin; Xin, Li-Jun; Pan, De-Si; Yang, Qian-Jiao; Liu, Ying-Ping; Yue, Xu-Peng; Liu, Xiao-Rong; Gao, Ji-Zhou; Zhang, Jin-Wen; Ning, Zhi-Qiang; Lu, Xian-Ping

    2017-03-01

    Although inhibitors targeting tumor angiogenic pathway have provided improvement for clinical treatment in patients with various solid tumors, the still very limited anti-cancer efficacy and acquired drug resistance demand new agents that may offer better clinical benefits. In the effort to find a small molecule potentially targeting several key pathways for tumor development, we designed, discovered and evaluated a novel multi-kinase inhibitor, CS2164. CS2164 inhibited the angiogenesis-related kinases (VEGFR2, VEGFR1, VEGFR3, PDGFRα and c-Kit), mitosis-related kinase Aurora B and chronic inflammation-related kinase CSF-1R in a high potency manner with the IC 50 at a single-digit nanomolar range. Consequently, CS2164 displayed anti-angiogenic activities through suppression of VEGFR/PDGFR phosphorylation, inhibition of ligand-dependent cell proliferation and capillary tube formation, and prevention of vasculature formation in tumor tissues. CS2164 also showed induction of G2/M cell cycle arrest and suppression of cell proliferation in tumor tissues through the inhibition of Aurora B-mediated H3 phosphorylation. Furthermore, CS2164 demonstrated the inhibitory effect on CSF-1R phosphorylation that led to the suppression of ligand-stimulated monocyte-to-macrophage differentiation and reduced CSF-1R + cells in tumor tissues. The in vivo animal efficacy studies revealed that CS2164 induced remarkable regression or complete inhibition of tumor growth at well-tolerated oral doses in several human tumor xenograft models. Collectively, these results indicate that CS2164 is a highly selective multi-kinase inhibitor with potent anti-tumor activities against tumor angiogenesis, mitosis and chronic inflammation, which may provide the rationale for further clinical assessment of CS2164 as a therapeutic agent in the treatment of cancer. © 2016 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  5. Effect of SPG (Sonifilan) immunotherapy and PDT on murine tumor

    International Nuclear Information System (INIS)

    Korbelik, M.; Krosl, G.; Dougherty, G.J.; Chaplin, D.J.

    1992-01-01

    PhotoDynamic Therapy of solid tumors is unique in eliciting a strong host immune response unparalleled in other cancer therapies. This immune response is manifested as an acute inflammatory reaction, and can be readily seen as redness and edema around the treated area. Destruction of typical solid tumor cannot be accomplished solely by direct phototoxic action. This was shown to be the case even with drugs more potent in this direct killing effect than Photofrin, the photosensitizer presently used in clinical PDT. Limiting factors seem to be regional insufficiencies in supply of molecular oxygen, needed for generation of phototoxic species. They can be ascribed to the existence of chronically and acute hypoxic tumor regions, oxygen consumption by the photodynamic process, and vascular shutdown induced during PDT. The remaining tumor mass is eradicated by an indirect effect, necrosis induced by destruction of tumor vasculature. Since most events in PDT treated tumor that lead to vascular collapse are, in fact, typical inflammatory manifestations, it was suggested that PDT-induced acute inflammatory reaction actually leads to vascular damage. In a related report characteristics are shown of cellular inflammatory infiltrate in PDT-treated murine tumor. This work examines the effect of combining PDT with immunotherapy, in an attempt to investigate a possibility of amplification of immune reaction to PDT and its direction towards more pervasive destruction of treated tumors. (authors). 6 refs

  6. Combining vascular and cellular targeting regimens enhances the efficacy of photodynamic therapy

    International Nuclear Information System (INIS)

    Chen Bin; Pogue, Brian W.; Hoopes, P. Jack; Hasan, Tayyaba

    2005-01-01

    . Histologic studies confirmed that this combined treatment led to damage to both tumor vasculature and tumor cells. Importantly, the combined PDT treatment did not increase normal tissue damage and tissue recovered well at 60 days after treatment. Conclusions: Our results suggest that targeting both tumor vascular and cellular compartments by combining a long-interval PDT with a short-interval PDT can be an effective and safe way to enhance PDT damage to tumor tissue

  7. In Vivo Imaging Reveals Significant Tumor Vascular Dysfunction and Increased Tumor Hypoxia-Inducible Factor-1α Expression Induced by High Single-Dose Irradiation in a Pancreatic Tumor Model

    Energy Technology Data Exchange (ETDEWEB)

    Maeda, Azusa [Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario (Canada); Department of Medical Biophysics, University of Toronto, Toronto, Ontario (Canada); Chen, Yonghong; Bu, Jiachuan; Mujcic, Hilda [Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario (Canada); Wouters, Bradly G. [Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario (Canada); Department of Medical Biophysics, University of Toronto, Toronto, Ontario (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada); DaCosta, Ralph S., E-mail: rdacosta@uhnres.utoronto.ca [Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario (Canada); Department of Medical Biophysics, University of Toronto, Toronto, Ontario (Canada); Techna Institute, University Health Network, Toronto, Ontario (Canada)

    2017-01-01

    Purpose: To investigate the effect of high-dose irradiation on pancreatic tumor vasculature and microenvironment using in vivo imaging techniques. Methods and Materials: A BxPC3 pancreatic tumor xenograft was established in a dorsal skinfold window chamber model and a subcutaneous hind leg model. Tumors were irradiated with a single dose of 4, 12, or 24 Gy. The dorsal skinfold window chamber model was used to assess tumor response, vascular function and permeability, platelet and leukocyte adhesion to the vascular endothelium, and tumor hypoxia for up to 14 days after 24-Gy irradiation. The hind leg model was used to monitor tumor size, hypoxia, and vascularity for up to 65 days after 24-Gy irradiation. Tumors were assessed histologically to validate in vivo observations. Results: In vivo fluorescence imaging revealed temporary vascular dysfunction in tumors irradiated with a single dose of 4 to 24 Gy, but most significantly with a single dose of 24 Gy. Vascular functional recovery was observed by 14 days after irradiation in a dose-dependent manner. Furthermore, irradiation with 24 Gy caused platelet and leukocyte adhesion to the vascular endothelium within hours to days after irradiation. Vascular permeability was significantly higher in irradiated tumors compared with nonirradiated controls 14 days after irradiation. This observation corresponded with increased expression of hypoxia-inducible factor-1α in irradiated tumors. In the hind leg model, irradiation with a single dose of 24 Gy led to tumor growth delay, followed by tumor regrowth. Conclusions: Irradiation of the BxPC3 tumors with a single dose of 24 Gy caused transient vascular dysfunction and increased expression of hypoxia-inducible factor-1α. Such biological changes may impact tumor response to high single-dose and hypofractionated irradiation, and further investigations are needed to better understand the clinical outcomes of stereotactic body radiation therapy.

  8. Selective targeting of brain tumors with gold nanoparticle-induced radiosensitization.

    Directory of Open Access Journals (Sweden)

    Daniel Y Joh

    Full Text Available Successful treatment of brain tumors such as glioblastoma multiforme (GBM is limited in large part by the cumulative dose of Radiation Therapy (RT that can be safely given and the blood-brain barrier (BBB, which limits the delivery of systemic anticancer agents into tumor tissue. Consequently, the overall prognosis remains grim. Herein, we report our pilot studies in cell culture experiments and in an animal model of GBM in which RT is complemented by PEGylated-gold nanoparticles (GNPs. GNPs significantly increased cellular DNA damage inflicted by ionizing radiation in human GBM-derived cell lines and resulted in reduced clonogenic survival (with dose-enhancement ratio of ~1.3. Intriguingly, combined GNP and RT also resulted in markedly increased DNA damage to brain blood vessels. Follow-up in vitro experiments confirmed that the combination of GNP and RT resulted in considerably increased DNA damage in brain-derived endothelial cells. Finally, the combination of GNP and RT increased survival of mice with orthotopic GBM tumors. Prior treatment of mice with brain tumors resulted in increased extravasation and in-tumor deposition of GNP, suggesting that RT-induced BBB disruption can be leveraged to improve the tumor-tissue targeting of GNP and thus further optimize the radiosensitization of brain tumors by GNP. These exciting results together suggest that GNP may be usefully integrated into the RT treatment of brain tumors, with potential benefits resulting from increased tumor cell radiosensitization to preferential targeting of tumor-associated vasculature.

  9. Engineered Breast Cancer Cell Spheroids Reproduce Biologic Properties of Solid Tumors.

    Science.gov (United States)

    Ham, Stephanie L; Joshi, Ramila; Luker, Gary D; Tavana, Hossein

    2016-11-01

    Solid tumors develop as 3D tissue constructs. As tumors grow larger, spatial gradients of nutrients and oxygen and inadequate diffusive supply to cells distant from vasculature develops. Hypoxia initiates signaling and transcriptional alterations to promote survival of cancer cells and generation of cancer stem cells (CSCs) that have self-renewal and tumor-initiation capabilities. Both hypoxia and CSCs are associated with resistance to therapies and tumor relapse. This study demonstrates that 3D cancer cell models, known as tumor spheroids, generated with a polymeric aqueous two-phase system (ATPS) technology capture these important biological processes. Similar to solid tumors, spheroids of triple negative breast cancer cells deposit major extracellular matrix proteins. The molecular analysis establishes presence of hypoxic cells in the core region and expression of CSC gene and protein markers including CD24, CD133, and Nanog. Importantly, these spheroids resist treatment with chemotherapy drugs. A combination treatment approach using a hypoxia-activated prodrug, TH-302, and a chemotherapy drug, doxorubicin, successfully targets drug resistant spheroids. This study demonstrates that ATPS spheroids recapitulate important biological and functional properties of solid tumors and provide a unique model for studies in cancer research. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Dynamics of tumor growth and combination of anti-angiogenic and cytotoxic therapies

    Science.gov (United States)

    Kohandel, M.; Kardar, M.; Milosevic, M.; Sivaloganathan, S.

    2007-07-01

    Tumors cannot grow beyond a certain size (about 1-2 mm in diameter) through simple diffusion of oxygen and other essential nutrients into the tumor. Angiogenesis, the formation of blood vessels from pre-existing vessels, is a crucial and observed step, through which a tumor obtains its own blood supply. Thus, strategies that interfere with the development of this tumor vasculature, known as anti-angiogenic therapy, represent a novel approach to controlling tumor growth. Several pre-clinical studies have suggested that currently available angiogenesis inhibitors are unlikely to yield significant sustained improvements in tumor control on their own, but rather will need to be used in combination with conventional treatments to achieve maximal benefit. Optimal sequencing of anti-angiogenic treatment and radiotherapy or chemotherapy is essential to the success of these combined treatment strategies. Hence, a major challenge to mathematical modeling and computer simulations is to find appropriate dosages, schedules and sequencing of combination therapies to control or eliminate tumor growth. Here, we present a mathematical model that incorporates tumor cells and the vascular network, as well as their interplay. We can then include the effects of two different treatments, conventional cytotoxic therapy and anti-angiogenic therapy. The results are compared with available experimental and clinical data.

  11. Choroidal vasculature characteristics based choroid segmentation for enhanced depth imaging optical coherence tomography images

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Qiang; Niu, Sijie [School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Yuan, Songtao; Fan, Wen, E-mail: fanwen1029@163.com; Liu, Qinghuai [Department of Ophthalmology, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029 (China)

    2016-04-15

    Purpose: In clinical research, it is important to measure choroidal thickness when eyes are affected by various diseases. The main purpose is to automatically segment choroid for enhanced depth imaging optical coherence tomography (EDI-OCT) images with five B-scans averaging. Methods: The authors present an automated choroid segmentation method based on choroidal vasculature characteristics for EDI-OCT images with five B-scans averaging. By considering the large vascular of the Haller’s layer neighbor with the choroid-sclera junction (CSJ), the authors measured the intensity ascending distance and a maximum intensity image in the axial direction from a smoothed and normalized EDI-OCT image. Then, based on generated choroidal vessel image, the authors constructed the CSJ cost and constrain the CSJ search neighborhood. Finally, graph search with smooth constraints was utilized to obtain the CSJ boundary. Results: Experimental results with 49 images from 10 eyes in 8 normal persons and 270 images from 57 eyes in 44 patients with several stages of diabetic retinopathy and age-related macular degeneration demonstrate that the proposed method can accurately segment the choroid of EDI-OCT images with five B-scans averaging. The mean choroid thickness difference and overlap ratio between the authors’ proposed method and manual segmentation drawn by experts were −11.43 μm and 86.29%, respectively. Conclusions: Good performance was achieved for normal and pathologic eyes, which proves that the authors’ method is effective for the automated choroid segmentation of the EDI-OCT images with five B-scans averaging.

  12. Choroidal vasculature characteristics based choroid segmentation for enhanced depth imaging optical coherence tomography images

    International Nuclear Information System (INIS)

    Chen, Qiang; Niu, Sijie; Yuan, Songtao; Fan, Wen; Liu, Qinghuai

    2016-01-01

    Purpose: In clinical research, it is important to measure choroidal thickness when eyes are affected by various diseases. The main purpose is to automatically segment choroid for enhanced depth imaging optical coherence tomography (EDI-OCT) images with five B-scans averaging. Methods: The authors present an automated choroid segmentation method based on choroidal vasculature characteristics for EDI-OCT images with five B-scans averaging. By considering the large vascular of the Haller’s layer neighbor with the choroid-sclera junction (CSJ), the authors measured the intensity ascending distance and a maximum intensity image in the axial direction from a smoothed and normalized EDI-OCT image. Then, based on generated choroidal vessel image, the authors constructed the CSJ cost and constrain the CSJ search neighborhood. Finally, graph search with smooth constraints was utilized to obtain the CSJ boundary. Results: Experimental results with 49 images from 10 eyes in 8 normal persons and 270 images from 57 eyes in 44 patients with several stages of diabetic retinopathy and age-related macular degeneration demonstrate that the proposed method can accurately segment the choroid of EDI-OCT images with five B-scans averaging. The mean choroid thickness difference and overlap ratio between the authors’ proposed method and manual segmentation drawn by experts were −11.43 μm and 86.29%, respectively. Conclusions: Good performance was achieved for normal and pathologic eyes, which proves that the authors’ method is effective for the automated choroid segmentation of the EDI-OCT images with five B-scans averaging.

  13. Evaluation of biodistribution and anti-tumor effect of a dimeric RGD peptide-paclitaxel conjugate in mice with breast cancer

    International Nuclear Information System (INIS)

    Cao, Qizhen; Li, Zi-Bo; Chen, Kai; Wu, Zhanhong; He, Lina; Chen, Xiaoyuan; Neamati, Nouri

    2008-01-01

    Targeting drugs to receptors involved in tumor angiogenesis has been demonstrated as a novel and promising approach to improve cancer treatment. In this study, we evaluated the anti-tumor efficacy of a dimeric RGD peptide-paclitaxel conjugate (RGD2-PTX) in an orthotopic MDA-MB-435 breast cancer model. To assess the effect of conjugation and the presence of drug moiety on the MDA-MB-435 tumor and normal tissue uptake, the biodistribution of 3 H-RGD2-PTX was compared with that of 3 H-PTX. The treatment effect of RGD2-PTX and RGD2+PTX was measured by tumor size, 18 F-FDG/PET, 18 F-FLT/PET, and postmortem histopathology. By comparing the biodistribution of 3 H-RGD2-PTX and 3 H-PTX, we found that 3 H-RGD2-PTX had higher initial tumor exposure dose and prolonged tumor retention than 3 H-PTX. Metronomic low-dose treatment of breast cancer indicated that RGD2-PTX is significantly more effective than PTX+RGD2 combination and solvent control. Although in vivo 18 F-FLT/PET imaging and ex vivo Ki67 staining indicated little effect of the PTX-based drug on cell proliferation, 18 F-FDG/PET imaging showed significantly reduced tumor metabolism in the RGD2-PTX-treated mice versus those treated with RGD2+PTX and solvent control. Terminal uridine deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) staining also showed that RGD2-PTX treatment also had significantly higher cell apoptosis ratio than the other two groups. Moreover, the microvessel density was significantly reduced after RGD2-PTX treatment as determined by CD31 staining. Our results demonstrate that integrin-targeted delivery of paclitaxel allows preferential cytotoxicity to integrin-expressing tumor cells and tumor vasculature. The targeted delivery strategies developed in this study may also be applied to other chemotherapeutics for selective tumor killing. (orig.)

  14. Imaging and modification of the tumor vascular barrier for improvement in magnetic nanoparticle uptake and hyperthermia treatment efficacy

    Science.gov (United States)

    Hoopes, P. Jack; Petryk, Alicia A.; Tate, Jennifer A.; Savellano, Mark S.; Strawbridge, Rendall R.; Giustini, Andrew J.; Stan, Radu V.; Gimi, Barjor; Garwood, Michael

    2013-02-01

    The predicted success of nanoparticle based cancer therapy is due in part to the presence of the inherent leakiness of the tumor vascular barrier, the so called enhanced permeability and retention (EPR) effect. Although the EPR effect is present in varying degrees in many tumors, it has not resulted in the consistent level of nanoparticle-tumor uptake enhancement that was initially predicted. Magnetic/iron oxide nanoparticles (mNPs) have many positive qualities, including their inert/nontoxic nature, the ability to be produced in various sizes, the ability to be activated by a deeply penetrating and nontoxic magnetic field resulting in cell-specific cytotoxic heating, and the ability to be successfully coated with a wide variety of functional coatings. However, at this time, the delivery of adequate numbers of nanoparticles to the tumor site via systemic administration remains challenging. Ionizing radiation, cisplatinum chemotherapy, external static magnetic fields and vascular disrupting agents are being used to modify the tumor environment/vasculature barrier to improve mNP uptake in tumors and subsequently tumor treatment. Preliminary studies suggest use of these modalities, individually, can result in mNP uptake improvements in the 3-10 fold range. Ongoing studies show promise of even greater tumor uptake enhancement when these methods are combined. The level and location of mNP/Fe in blood and normal/tumor tissue is assessed via histopathological methods (confocal, light and electron microscopy, histochemical iron staining, fluorescent labeling, TEM) and ICP-MS. In order to accurately plan and assess mNP-based therapies in clinical patients, a noninvasive and quantitative imaging technique for the assessment of mNP uptake and biodistribution will be necessary. To address this issue, we examined the use of computed tomography (CT), magnetic resonance imaging (MRI), and Sweep Imaging With Fourier Transformation (SWIFT), an MRI technique which provides a

  15. Rice Ovate Family Protein 2 (OFP2) alters hormonal homeostasis and vasculature development.

    Science.gov (United States)

    Schmitz, Aaron J; Begcy, Kevin; Sarath, Gautam; Walia, Harkamal

    2015-12-01

    OFP (Ovate Family Protein) is a transcription factor family found only in plants. In dicots, OFPs control fruit shape and secondary cell wall biosynthesis. OFPs are also thought to function through interactions with KNOX and BELL transcription factors. Here, we have functionally characterized OsOFP2, a member of the OFP subgroup associated with regulating fruit shape. OsOFP2 was found to localize to the nucleus and to the cytosol. A putative nuclear export signal was identified within the OVATE domain and was required for the localization of OsOFP2 to distinct cytosolic spots. Rice plants overexpressing OsOFP2 were reduced in height and exhibited altered leaf morphology, seed shape, and positioning of vascular bundles in stems. Transcriptome analysis indicated disruptions of genes associated with vasculature development, lignin biosynthesis, and hormone homeostasis. Reduced expression of the gibberellin biosynthesis gene GA 20-oxidase 7 coincided with lower gibberellin content in OsOFP2 overexpression lines. Also, we found that OsOFP2 was expressed in plant vasculature and determined that putative vascular development KNOX and BELL proteins interact with OsOFP2. KNOX and BELL genes are known to suppress gibberellin biosynthesis through GA20ox gene regulation and can restrict lignin biosynthesis. We propose that OsOFP2 could modulate KNOX-BELL function to control diverse aspects of development including vasculature development. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. First-In-Class Small Molecule ONC201 Induces DR5 and Cell Death in Tumor but Not Normal Cells to Provide a Wide Therapeutic Index as an Anti-Cancer Agent.

    Science.gov (United States)

    Allen, Joshua E; Crowder, Roslyn N; Crowder, Roslyn; El-Deiry, Wafik S

    2015-01-01

    We previously identified ONC201 (TIC10) as a first-in-class orally active small molecule with robust antitumor activity that is currently in clinical trials in advanced cancers. Here, we further investigate the safety characteristics of ONC201 in preclinical models that reveal an excellent safety profile at doses that exceed efficacious doses by 10-fold. In vitro studies indicated a strikingly different dose-response relationship when comparing tumor and normal cells where maximal effects are much stronger in tumor cells than in normal cells. In further support of a wide therapeutic index, investigation of tumor and normal cell responses under identical conditions demonstrated large apoptotic effects in tumor cells and modest anti-proliferative effects in normal cells that were non-apoptotic and reversible. Probing the underlying mechanism of apoptosis indicated that ONC201 does not induce DR5 in normal cells under conditions that induce DR5 in tumor cells; DR5 is a pro-apoptotic TRAIL receptor previously linked to the anti-tumor mechanism of ONC201. GLP toxicology studies in Sprague-Dawley rats and beagle dogs at therapeutic and exaggerated doses revealed no dose-limiting toxicities. Observations in both species at the highest doses were mild and reversible at doses above 10-fold the expected therapeutic dose. The no observed adverse event level (NOAEL) was ≥42 mg/kg in dogs and ≥125 mg/kg in rats, which both correspond to a human dose of approximately 1.25 g assuming standard allometric scaling. These results provided the rationale for the 125 mg starting dose in dose escalation clinical trials that began in 2015 in patients with advanced cancer.

  17. First-In-Class Small Molecule ONC201 Induces DR5 and Cell Death in Tumor but Not Normal Cells to Provide a Wide Therapeutic Index as an Anti-Cancer Agent.

    Directory of Open Access Journals (Sweden)

    Joshua E Allen

    Full Text Available We previously identified ONC201 (TIC10 as a first-in-class orally active small molecule with robust antitumor activity that is currently in clinical trials in advanced cancers. Here, we further investigate the safety characteristics of ONC201 in preclinical models that reveal an excellent safety profile at doses that exceed efficacious doses by 10-fold. In vitro studies indicated a strikingly different dose-response relationship when comparing tumor and normal cells where maximal effects are much stronger in tumor cells than in normal cells. In further support of a wide therapeutic index, investigation of tumor and normal cell responses under identical conditions demonstrated large apoptotic effects in tumor cells and modest anti-proliferative effects in normal cells that were non-apoptotic and reversible. Probing the underlying mechanism of apoptosis indicated that ONC201 does not induce DR5 in normal cells under conditions that induce DR5 in tumor cells; DR5 is a pro-apoptotic TRAIL receptor previously linked to the anti-tumor mechanism of ONC201. GLP toxicology studies in Sprague-Dawley rats and beagle dogs at therapeutic and exaggerated doses revealed no dose-limiting toxicities. Observations in both species at the highest doses were mild and reversible at doses above 10-fold the expected therapeutic dose. The no observed adverse event level (NOAEL was ≥42 mg/kg in dogs and ≥125 mg/kg in rats, which both correspond to a human dose of approximately 1.25 g assuming standard allometric scaling. These results provided the rationale for the 125 mg starting dose in dose escalation clinical trials that began in 2015 in patients with advanced cancer.

  18. Role of the Norrie disease pseudoglioma gene in sprouting angiogenesis during development of the retinal vasculature.

    Science.gov (United States)

    Luhmann, Ulrich F O; Lin, Jihong; Acar, Niyazi; Lammel, Stefanie; Feil, Silke; Grimm, Christian; Seeliger, Mathias W; Hammes, Hans-Peter; Berger, Wolfgang

    2005-09-01

    To characterize developmental defects and the time course of Norrie disease in retinal and hyaloid vasculature during retinal development and to identify underlying molecular angiogenic pathways that may be affected in Norrie disease, exudative vitreoretinopathy, retinopathy of prematurity, and Coats' disease. Norrie disease pseudoglioma homologue (Ndph)-knockout mice were studied during retinal development at early postnatal (p) stages (p5, p10, p15, and p21). Histologic techniques, quantitative RT-PCR, ELISA, and Western blot analyses provided molecular data, and scanning laser ophthalmoscopy (SLO) angiography and electroretinography (ERG) were used to obtain in vivo data. The data showed that regression of the hyaloid vasculature of Ndph-knockout mice occurred but was drastically delayed. The development of the superficial retinal vasculature was strongly delayed, whereas the deep retinal vasculature did not form because of the blockage of vessel outgrowth into the deep retinal layers. Subsequently, microaneurysm-like lesions formed. Several angiogenic factors were differentially transcribed during retinal development. Increased levels of hypoxia inducible factor-1alpha (HIF1alpha) and VEGFA, as well as a characteristic ERG pattern, confirmed hypoxic conditions in the inner retina of the Ndph-knockout mouse. These data provide evidence for a crucial role of Norrin in hyaloid vessel regression and in sprouting angiogenesis during retinal vascular development, especially in the development of the deep retinal capillary networks. They also suggest an early and a late phase of Norrie disease and may provide an explanation for similar phenotypic features of allelic retinal diseases in mice and patients as secondary consequences of pathologic hypoxia.

  19. Pericytes and endothelial precursor cells: cellular interactions and contributions to malignancy.

    Science.gov (United States)

    Bagley, Rebecca G; Weber, William; Rouleau, Cecile; Teicher, Beverly A

    2005-11-01

    Tumor vasculature is irregular, abnormal, and essential for tumor growth. Pericytes and endothelial precursor cells (EPC) contribute to the formation of blood vessels under angiogenic conditions. As primary cells in culture, pericytes and EPC share many properties such as tube/network formation and response to kinase inhibitors selective for angiogenic pathways. Expression of cell surface proteins including platelet-derived growth factor receptor, vascular cell adhesion molecule, intercellular adhesion molecule, CD105, desmin, and neural growth proteoglycan 2 was similar between pericytes and EPC, whereas expression of P1H12 and lymphocyte function-associated antigen-1 clearly differentiates the cell types. Further distinction was observed in the molecular profiles for expression of angiogenic genes. Pericytes or EPC enhanced the invasion of MDA-MB-231 breast cancer cells in a coculture assay system. The s.c. coinjection of live pericytes or EPC along with MDA-MB-231 cells resulted in an increased rate of tumor growth compared with coinjection of irradiated pericytes or EPC. Microvessel density analysis indicated there was no difference in MDA-MB-231 tumors with or without EPC or pericytes. However, immunohistochemical staining of vasculature suggested that EPC and pericytes may stabilize or normalize vasculature rather than initiate vasculogenesis. In addition, tumors arising from the coinjection of EPC and cancer cells were more likely to develop lymphatic vessels. These results support the notion that pericytes and EPC contribute to malignancy and that these cell types can be useful as cell-based models for tumor vascular development and selection of agents that may provide therapeutic benefit.

  20. The shell vasculature of Trachemys turtles investigated by modern 3D imaging techniques

    DEFF Research Database (Denmark)

    Hansen, Kasper; Thygesen, Jesper; Nielsen, Tobias Wang

    Many freshwater turtles are extremely tolerant to the lack of oxygen and can survive the winter submerged in anoxic mud in ice-covered lakes. The pronounced anoxia-tolerance resides with a considerable depression of cellular metabolism and the ability to use the shell to buffer the acidosis arising...... from anaerobic metabolism (1). Infusion of microspheres has shown that the shell receives almost half of the cardiac output in turtles made anoxic at low temperatures (2). However, the vasculature of the turtle shell remains to be described. To visualise the vasculature within the carapace and plastron...... of the turtle Trachemys scripta, we perfused terminally anaesthetised turtles with different contrast enhancing agents (Microfil [lead n/a]), barium sulphate [250 mg/kg], and iodine [15-250 mg/kg]), and the animals were then scanned by both single source as well as dual energy Computed Tomographic systems...

  1. Hypoxia-induced mitogenic factor (HIMF/FIZZ1/RELM alpha recruits bone marrow-derived cells to the murine pulmonary vasculature.

    Directory of Open Access Journals (Sweden)

    Daniel J Angelini

    2010-06-01

    Full Text Available Pulmonary hypertension (PH is a disease of multiple etiologies with several common pathological features, including inflammation and pulmonary vascular remodeling. Recent evidence has suggested a potential role for the recruitment of bone marrow-derived (BMD progenitor cells to this remodeling process. We recently demonstrated that hypoxia-induced mitogenic factor (HIMF/FIZZ1/RELM alpha is chemotactic to murine bone marrow cells in vitro and involved in pulmonary vascular remodeling in vivo.We used a mouse bone marrow transplant model in which lethally irradiated mice were rescued with bone marrow transplanted from green fluorescent protein (GFP(+ transgenic mice to determine the role of HIMF in recruiting BMD cells to the lung vasculature during PH development. Exposure to chronic hypoxia and pulmonary gene transfer of HIMF were used to induce PH. Both models resulted in markedly increased numbers of BMD cells in and around the pulmonary vasculature; in several neomuscularized small (approximately 20 microm capillary-like vessels, an entirely new medial wall was made up of these cells. We found these GFP(+ BMD cells to be positive for stem cell antigen-1 and c-kit, but negative for CD31 and CD34. Several of the GFP(+ cells that localized to the pulmonary vasculature were alpha-smooth muscle actin(+ and localized to the media layer of the vessels. This finding suggests that these cells are of mesenchymal origin and differentiate toward myofibroblast and vascular smooth muscle. Structural location in the media of small vessels suggests a functional role in the lung vasculature. To examine a potential mechanism for HIMF-dependent recruitment of mesenchymal stem cells to the pulmonary vasculature, we performed a cell migration assay using cultured human mesenchymal stem cells (HMSCs. The addition of recombinant HIMF induced migration of HMSCs in a phosphoinosotide-3-kinase-dependent manner.These results demonstrate HIMF-dependent recruitment of BMD

  2. Maximum-intensity-projection CT angiography for evaluating head and neck tumors. Usefulness of helical CT and auto bone masking method

    International Nuclear Information System (INIS)

    Sakai, Osamu; Nakashima, Noriko; Ogawa, Chiaki; Shen, Yun; Takata, Yasunori; Azemoto, Shougo.

    1994-01-01

    Angiographic images of 10 adult patients with head and neck tumors were obtained by helical computed tomography (CT) using maximum intensity projection (MIP). In all cases, the vasculature of the head and neck region was directly demonstrated. In the head and neck, bone masking is a more important problem than in other regions. We developed an effective automatic bone masking method (ABM) using 2D/3D connectivity. Helical CT angiography with MIP and ABM provided accurate anatomic depiction, and was considered to be helpful in preoperative evaluation of head and neck tumors. (author)

  3. Noise-immune complex correlation for vasculature imaging based on standard and Jones-matrix optical coherence tomography

    Science.gov (United States)

    Makita, Shuichi; Kurokawa, Kazuhiro; Hong, Young-Joo; Li, En; Miura, Masahiro; Yasuno, Yoshiaki

    2016-03-01

    A new optical coherence angiography (OCA) method, called correlation mapping OCA (cmOCA), is presented by using the SNR-corrected complex correlation. An SNR-correction theory for the complex correlation calculation is presented. The method also integrates a motion-artifact-removal method for the sample motion induced decorrelation artifact. The theory is further extended to compute more reliable correlation by using multi- channel OCT systems, such as Jones-matrix OCT. The high contrast vasculature imaging of in vivo human posterior eye has been obtained. Composite imaging of cmOCA and degree of polarization uniformity indicates abnormalities of vasculature and pigmented tissues simultaneously.

  4. [Trace elements of bone tumors].

    Science.gov (United States)

    Kalashnikov, V M; Zaĭchik, V E; Bizer, V A

    1983-01-01

    Due to activation analysis involving the use of neutrons from a nuclear reactor, the concentrations of 11 trace elements: scandium, iron, cobalt, mercury, rubidium, selenium, silver, antimony, chrome, zinc and terbium in intact bone and skeletal tumors were measured. 76 specimens of bioptates and resected material of operations for bone tumors and 10 specimens of normal bone tissue obtained in autopsies of cases of sudden death were examined. The concentrations of trace elements and their dispersion patterns in tumor tissue were found to be significantly higher than those in normal bone tissue. Also, the concentrations of some trace elements in tumor differed significantly from those in normal tissue; moreover, they were found to depend on the type and histogenesis of the neoplasm.

  5. Feasibility of a novel deformable image registration technique to facilitate classification, targeting, and monitoring of tumor and normal tissue

    International Nuclear Information System (INIS)

    Brock, Kristy K.; Dawson, Laura A.; Sharpe, Michael B.; Moseley, Douglas J.; Jaffray, David A.

    2006-01-01

    Purpose: To investigate the feasibility of a biomechanical-based deformable image registration technique for the integration of multimodality imaging, image guided treatment, and response monitoring. Methods and Materials: A multiorgan deformable image registration technique based on finite element modeling (FEM) and surface projection alignment of selected regions of interest with biomechanical material and interface models has been developed. FEM also provides an inherent method for direct tracking specified regions through treatment and follow-up. Results: The technique was demonstrated on 5 liver cancer patients. Differences of up to 1 cm of motion were seen between the diaphragm and the tumor center of mass after deformable image registration of exhale and inhale CT scans. Spatial differences of 5 mm or more were observed for up to 86% of the surface of the defined tumor after deformable image registration of the computed tomography (CT) and magnetic resonance images. Up to 6.8 mm of motion was observed for the tumor after deformable image registration of the CT and cone-beam CT scan after rigid registration of the liver. Deformable registration of the CT to the follow-up CT allowed a more accurate assessment of tumor response. Conclusions: This biomechanical-based deformable image registration technique incorporates classification, targeting, and monitoring of tumor and normal tissue using one methodology

  6. Complete adrenocorticotropin deficiency after radiation therapy for brain tumor with a normal growth hormone reserve

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Haruna; Yoshioka, Katsunobu; Yamagami, Keiko [Osaka City General Hospital (Japan)] (and others)

    2002-06-01

    A 34-year-old man with neurofibromatosis type 1, who had received radiation therapy after the excision of a brain tumor 5 years earlier, was admitted to our hospital with vomiting and weight loss. Cortisol and adrenocorticotropin (ACTH) were undetectable before and after administration of 100 {mu}g corticotropin releasing hormone. The level of growth hormone without stimulation was 24.7 ng/ml. We diagnosed him to have complete ACTH deficiency attributable to radiation therapy. This is the first known case of a patient with complete ACTH deficiency after radiation therapy and a growth hormone reserve that remained normal. (author)

  7. Complete adrenocorticotropin deficiency after radiation therapy for brain tumor with a normal growth hormone reserve

    International Nuclear Information System (INIS)

    Sakai, Haruna; Yoshioka, Katsunobu; Yamagami, Keiko

    2002-01-01

    A 34-year-old man with neurofibromatosis type 1, who had received radiation therapy after the excision of a brain tumor 5 years earlier, was admitted to our hospital with vomiting and weight loss. Cortisol and adrenocorticotropin (ACTH) were undetectable before and after administration of 100 μg corticotropin releasing hormone. The level of growth hormone without stimulation was 24.7 ng/ml. We diagnosed him to have complete ACTH deficiency attributable to radiation therapy. This is the first known case of a patient with complete ACTH deficiency after radiation therapy and a growth hormone reserve that remained normal. (author)

  8. Pharmacologic Activation of Wnt Signaling by Lithium Normalizes Retinal Vasculature in a Murine Model of Familial Exudative Vitreoretinopathy.

    Science.gov (United States)

    Wang, Zhongxiao; Liu, Chi-Hsiu; Sun, Ye; Gong, Yan; Favazza, Tara L; Morss, Peyton C; Saba, Nicholas J; Fredrick, Thomas W; He, Xi; Akula, James D; Chen, Jing

    2016-10-01

    Familial exudative vitreoretinopathy (FEVR) is characterized by delayed retinal vascular development, which promotes hypoxia-induced pathologic vessels. In severe cases FEVR may lead to retinal detachment and visual impairment. Genetic studies linked FEVR with mutations in Wnt signaling ligand or receptors, including low-density lipoprotein receptor-related protein 5 (LRP5) gene. Here, we investigated ocular pathologies in a Lrp5 knockout (Lrp5(-/-)) mouse model of FEVR and explored whether treatment with a pharmacologic Wnt activator lithium could bypass the genetic defects, thereby protecting against eye pathologies. Lrp5(-/-) mice displayed significantly delayed retinal vascular development, absence of deep layer retinal vessels, leading to increased levels of vascular endothelial growth factor and subsequent pathologic glomeruloid vessels, as well as decreased inner retinal visual function. Lithium treatment in Lrp5(-/-) mice significantly restored the delayed development of retinal vasculature and the intralaminar capillary networks, suppressed formation of pathologic glomeruloid structures, and promoted hyaloid vessel regression. Moreover, lithium treatment partially rescued inner-retinal visual function and increased retinal thickness. These protective effects of lithium were largely mediated through restoration of canonical Wnt signaling in Lrp5(-/-) retina. Lithium treatment also substantially increased vascular tubular formation in LRP5-deficient endothelial cells. These findings suggest that pharmacologic activation of Wnt signaling may help treat ocular pathologies in FEVR and potentially other defective Wnt signaling-related diseases. Copyright © 2016 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  9. In vivo phage display screening for tumor vascular targets in glioblastoma identifies a llama nanobody against dynactin-1-p150Glued.

    Science.gov (United States)

    van Lith, Sanne A M; Roodink, Ilse; Verhoeff, Joost J C; Mäkinen, Petri I; Lappalainen, Jari P; Ylä-Herttuala, Seppo; Raats, Jos; van Wijk, Erwin; Roepman, Ronald; Letteboer, Stef J; Verrijp, Kiek; Leenders, William P J

    2016-11-01

    Diffuse gliomas are primary brain cancers that are characterised by infiltrative growth. Whereas high-grade glioma characteristically presents with perinecrotic neovascularisation, large tumor areas thrive on pre-existent vasculature as well. Clinical studies have revealed that pharmacological inhibition of the angiogenic process does not improve survival of glioblastoma patients. Direct targeting of tumor vessels may however still be an interesting therapeutic approach as it allows pinching off the blood supply to tumor cells. Such tumor vessel targeting requires the identification of tumor-specific vascular targeting agents (TVTAs).Here we describe a novel TVTA, C-C7, which we identified via in vivo biopanning of a llama nanobody phage display library in an orthotopic mouse model of diffuse glioma. We show that C-C7 recognizes a subpopulation of tumor blood vessels in glioma xenografts and clinical glioma samples. Additionally, C-C7 recognizes macrophages and activated endothelial cells in atherosclerotic lesions. By using C-C7 as bait in yeast-2-hybrid (Y2H) screens we identified dynactin-1-p150Glued as its binding partner. The interaction was confirmed by co-immunostainings with C-C7 and a commercial anti-dynactin-1-p150Glued antibody, and via co-immunoprecipitation/western blot studies. Normal brain vessels do not express dynactin-1-p150Glued and its expression is reduced under anti-VEGF therapy, suggesting that dynactin-1-p150Glued is a marker for activated endothelial cells.In conclusion, we show that in vivo phage display combined with Y2H screenings provides a powerful approach to identify tumor-targeting nanobodies and their binding partners. Using this combination of methods we identify dynactin-1-p150Glued as a novel targetable protein on activated endothelial cells and macrophages.

  10. Trading in your spindles for blebs: the amoeboid tumor cell phenotype in prostate cancer

    Directory of Open Access Journals (Sweden)

    Samantha Morley

    2014-08-01

    Full Text Available Prostate cancer (PCa remains a principal cause of mortality in developed countries. Because no clinical interventions overcome resistance to androgen ablation therapy, management of castration resistance and metastatic disease remains largely untreatable. Metastasis is a multistep process in which tumor cells lose cell-cell contacts, egress from the primary tumor, intravasate, survive shear stress within the vasculature and extravasate into tissues to colonize ectopic sites. Tumor cells reestablish migratory behaviors employed during nonneoplastic processes such as embryonic development, leukocyte trafficking and wound healing. While mesenchymal motility is an established paradigm of dissemination, an alternate, 'amoeboid' phenotype is increasingly appreciated as relevant to human cancer. Here we discuss characteristics and pathways underlying the phenotype, and highlight our findings that the cytoskeletal regulator DIAPH3 governs the mesenchymal-amoeboid transition. We also describe our identification of a new class of tumor-derived microvesicles, large oncosomes, produced by amoeboid cells and with potential clinical utility in prostate and other cancers.

  11. Noninvasive Multimodality Imaging of the Tumor Microenvironment: Registered Dynamic Magnetic Resonance Imaging and Positron Emission Tomography Studies of a Preclinical Tumor Model of Tumor Hypoxia

    Directory of Open Access Journals (Sweden)

    HyungJoon Cho

    2009-03-01

    Full Text Available In vivo knowledge of the spatial distribution of viable, necrotic, and hypoxic areas can provide prognostic information about the risk of developing metastases and regional radiation sensitivity and may be used potentially for localized dose escalation in radiation treatment. In this study, multimodality in vivo magnetic resonance imaging (MRI and positron emission tomography (PET imaging using stereotactic fiduciary markers in the Dunning R3327AT prostate tumor were performed, focusing on the relationship between dynamic contrast-enhanced (DCE MRI using Magnevist (Gd-DTPA and dynamic 18F-fluoromisonidazole (18F-Fmiso PET. The noninvasive measurements were verified using tumor tissue sections stained for hematoxylin/eosin and pimonidazole. To further validate the relationship between 18F-Fmiso and pimonidazole uptake, 18F digital autoradiography was performed on a selected tumor and compared with the corresponding pimonidazole-stained slices. The comparison of Akep values (kep = rate constant of movement of Gd-DTPA between the interstitial space and plasma and A = amplitude in the two-compartment model (Hoffmann U, Brix G, Knopp MV, Hess T and Lorenz WJ (1995. Magn Reson Med 33, 506– 514 derived from DCE-MRI studies and from early 18F-Fmiso uptake PET studies showed that tumor vasculature is a major determinant of early 18F-Fmiso uptake. A negative correlation between the spatial map of Akep and the slope map of late (last 1 hour of the dynamic PET scan 18F-Fmiso uptake was observed. The relationships between DCE-MRI and hematoxylin/eosin slices and between 18F-Fmiso PET and pimonidazole slices confirm the validity of MRI/PET measurements to image the tumor microenvironment and to identify regions of tumor necrosis, hypoxia, and well-perfused tissue.

  12. Normal foot and ankle

    International Nuclear Information System (INIS)

    Weissman, S.D.

    1989-01-01

    The foot may be thought of as a bag of bones tied tightly together and functioning as a unit. The bones re expected to maintain their alignment without causing symptomatology to the patient. The author discusses a normal radiograph. The bones must have normal shape and normal alignment. The density of the soft tissues should be normal and there should be no fractures, tumors, or foreign bodies

  13. Cytotoxic and toxicological effects of phthalimide derivatives on tumor and normal murine cells

    Directory of Open Access Journals (Sweden)

    PAULO MICHEL PINHEIRO FERREIRA

    2015-03-01

    Full Text Available Eleven phthalimide derivatives were evaluated with regards to their antiproliferative activity on tumor and normal cells and possible toxic effects. Cytotoxic analyses were performed against murine tumors (Sarcoma 180 and B-16/F-10 cells and peripheral blood mononuclear cells (PBMC using MTT and Alamar Blue assays. Following, the investigation of cytotoxicity was executed by flow cytometry analysis and antitumoral and toxicological potential by in vivo techniques. The molecules 3b, 3c, 4 and 5 revealed in vitro cytotoxicity against Sarcoma 180, B-16/F-10 and PBMC. Since compound 4 was the most effective derivative, it was chosen to detail the mechanism of action after 24, 48 and 72 h exposure (22.5 and 45 µM. Sarcoma 180 cells treated with compound 4 showed membrane disruption, DNA fragmentation and mitochondrial depolarization in a time- and dose-dependent way. Compounds 3c, 4 and 5 (50 mg/kg/day did not inhibit in vivotumor growth. Compound 4-treated animals exhibited an increase in total leukocytes, lymphocytes and spleen relative weight, a decreasing in neutrophils and hyperplasia of spleen white pulp. Treated animals presented reversible histological changes. Molecule 4 had in vitro antiproliferative action possibly triggered by apoptosis, reversible toxic effects on kidneys, spleen and livers and exhibited immunostimulant properties that can be explored to attack neoplasic cells.

  14. Glycosaminoglycan-sac formation in vitro. Interactions between normal and malignant cells

    OpenAIRE

    Logothetou-Rella, H.

    1994-01-01

    The interaction of monolayer normal human or normal rat cells with suspension Walker rat tumor cells was demonstrated cytologically, during a cocultivation period of thirty days. At ten days, Walker rat tumor cells were interiorized in the cytoplasm of the normal monolayer host cells. At twenty days, degeneration of the interiorized tumor cells followed by mucification led to glycosaminoglycan-sac formation. At thirty days, tumor nodules and protease (a,- c...

  15. Perfusion kinetics in human brain tumor with DCE-MRI derived model and CFD analysis.

    Science.gov (United States)

    Bhandari, A; Bansal, A; Singh, A; Sinha, N

    2017-07-05

    Cancer is one of the leading causes of death all over the world. Among the strategies that are used for cancer treatment, the effectiveness of chemotherapy is often hindered by factors such as irregular and non-uniform uptake of drugs inside tumor. Thus, accurate prediction of drug transport and deposition inside tumor is crucial for increasing the effectiveness of chemotherapeutic treatment. In this study, a computational model of human brain tumor is developed that incorporates dynamic contrast enhanced-magnetic resonance imaging (DCE-MRI) data into a voxelized porous media model. The model takes into account realistic transport and perfusion kinetics parameters together with realistic heterogeneous tumor vasculature and accurate arterial input function (AIF), which makes it patient specific. The computational results for interstitial fluid pressure (IFP), interstitial fluid velocity (IFV) and tracer concentration show good agreement with the experimental results. The computational model can be extended further for predicting the deposition of chemotherapeutic drugs in tumor environment as well as selection of the best chemotherapeutic drug for a specific patient. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Angiography in tumors of cartilaginous genesis

    International Nuclear Information System (INIS)

    Korolev, V.I.

    1986-01-01

    Angiography was used for 122 patients with tumors and tumor-like processes of the cartilage. Angiography was carried out by the S. Seldinger method. Normal angioarchitecture was observed in 16 patients with benign tumors (20 patients), characters of malignant tumor are determined in 4 patients. Normal angioarchitecture is determined in 9.4% of patients with chondrosarcoma (102 patients). The examination carried out showed that angiographic symptotics in chondrosarcomas varied depending on the stage, localization and the degree of morphologic differentiation

  17. Scaling of the surface vasculature on the human placenta

    Science.gov (United States)

    Leonard, A. S.; Lee, J.; Schubert, D.; Croen, L. A.; Fallin, M. D.; Newschaffer, C. J.; Walker, C. K.; Salafia, C. M.; Morgan, S. P.; Vvedensky, D. D.

    2017-10-01

    The networks of veins and arteries on the chorionic plate of the human placenta are analyzed in terms of Voronoi cells derived from these networks. Two groups of placentas from the United States are studied: a population cohort with no prescreening, and a cohort from newborns with an elevated risk of developing autistic spectrum disorder. Scaled distributions of the Voronoi cell areas in the two cohorts collapse onto a single distribution, indicating common mechanisms for the formation of the complete vasculatures, but which have different levels of activity in the two cohorts.

  18. Unusual persistent fetal vasculature presentation in a premature baby

    Directory of Open Access Journals (Sweden)

    Alon Zahavi

    2015-11-01

    Full Text Available Persistent fetal vasculature (PFV is a congenital developmental disorder manifesting as a fibrovascular remnant of the embryonal hyaloid vascular system within the vitreal space. Retinopathy of prematurity (ROP presents as varying degrees of non-vascularized retinal tissue with potentially devastating ocular complications. Both pathologies arise from ocular vascular system abnormalities, and various treatment modalities have been attempted in the past. In this report we describe a unique case of a late manifesting PFV that may be associated with the development of ROP, complicated by a visually significant cataract.

  19. Cycling hypoxia: A key feature of the tumor microenvironment.

    Science.gov (United States)

    Michiels, Carine; Tellier, Céline; Feron, Olivier

    2016-08-01

    A compelling body of evidence indicates that most human solid tumors contain hypoxic areas. Hypoxia is the consequence not only of the chaotic proliferation of cancer cells that places them at distance from the nearest capillary but also of the abnormal structure of the new vasculature network resulting in transient blood flow. Hence two types of hypoxia are observed in tumors: chronic and cycling (intermittent) hypoxia. Most of the current work aims at understanding the role of chronic hypoxia in tumor growth, response to treatment and metastasis. Only recently, cycling hypoxia, with spatial and temporal fluctuations in oxygen levels, has emerged as another key feature of the tumor environment that triggers different responses in comparison to chronic hypoxia. Either type of hypoxia is associated with distinct effects not only in cancer cells but also in stromal cells. In particular, cycling hypoxia has been demonstrated to favor, to a higher extent than chronic hypoxia, angiogenesis, resistance to anti-cancer treatments, intratumoral inflammation and tumor metastasis. These review details these effects as well as the signaling pathway it triggers to switch on specific transcriptomic programs. Understanding the signaling pathways through which cycling hypoxia induces these processes that support the development of an aggressive cancer could convey to the emergence of promising new cancer treatments. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Telomere length in normal and neoplastic canine tissues.

    Science.gov (United States)

    Cadile, Casey D; Kitchell, Barbara E; Newman, Rebecca G; Biller, Barbara J; Hetler, Elizabeth R

    2007-12-01

    To determine the mean telomere restriction fragment (TRF) length in normal and neoplastic canine tissues. 57 solid-tissue tumor specimens collected from client-owned dogs, 40 samples of normal tissue collected from 12 clinically normal dogs, and blood samples collected from 4 healthy blood donor dogs. Tumor specimens were collected from client-owned dogs during diagnostic or therapeutic procedures at the University of Illinois Veterinary Medical Teaching Hospital, whereas 40 normal tissue samples were collected from 12 control dogs. Telomere restriction fragment length was determined by use of an assay kit. A histologic diagnosis was provided for each tumor by personnel at the Veterinary Diagnostic Laboratory at the University of Illinois. Mean of the mean TRF length for 44 normal samples was 19.0 kilobases (kb; range, 15.4 to 21.4 kb), and the mean of the mean TRF length for 57 malignant tumors was 19.0 kb (range, 12.9 to 23.5 kb). Although the mean of the mean TRF length for tumors and normal tissues was identical, tumor samples had more variability in TRF length. Telomerase, which represents the main mechanism by which cancer cells achieve immortality, is an attractive therapeutic target. The ability to measure telomere length is crucial to monitoring the efficacy of telomerase inhibition. In contrast to many other mammalian species, the length of canine telomeres and the rate of telomeric DNA loss are similar to those reported in humans, making dogs a compelling choice for use in the study of human anti-telomerase strategies.

  1. Antiangiogenic Effects of Noscapine Enhance Radioresponse for GL261 Tumors

    International Nuclear Information System (INIS)

    Newcomb, Elizabeth W.; Lukyanov, Yevgeniy; Alonso-Basanta, Michelle; Esencay, Min; Smirnova, Iva; Schnee, Tona; Shao Yongzhao; Devitt, Mary Louise; Zagzag, David; McBride, William; Formenti, Silvia C.

    2008-01-01

    Purpose: To assess the effects of noscapine, a tubulin-binding drug, in combination with radiation in a murine glioma model. Methods and Materials: The human T98G and murine GL261 glioma cell lines treated with noscapine, radiation, or both were assayed for clonogenic survival. Mice with established GL261 hind limb tumors were treated with noscapine, radiation, or both to evaluate the effect of noscapine on radioresponse. In a separate experiment with the same treatment groups, 7 days after radiation, tumors were resected and immunostained to measure proliferation rate, apoptosis, and angiogenic activity. Results: Noscapine reduced clonogenic survival without enhancement of radiosensitivity in vitro. Noscapine combined with radiation significantly increased tumor growth delay: 5, 8, 13, and 18 days for control, noscapine alone, radiation alone, and the combination treatment, respectively (p < 0.001). To assess the effect of the combination of noscapine plus radiation on the tumor vasculature, tubule formation by the murine endothelial 2H11 cells was tested. Noscapine with radiation significantly inhibited tubule formation compared with radiation alone. By immunohistochemistry, tumors treated with the combination of noscapine plus radiation showed a decrease in BrdU incorporation, an increase in apoptosis by terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling, and a decrease in tumor vessel density compared with tumors treated with radiation alone. Conclusion: Noscapine enhanced the sensitivity of GL261 glioma tumors to radiation, resulting in a significant tumor growth delay. An antiangiogenic mechanism contributed to the effect. These findings are clinically relevant, particularly in view of the mild toxicity profile of this drug

  2. The effect of defibrotide on thromboembolism in the pulmonary vasculature of mice and rabbits and in the cerebral vasculature of rabbits.

    Science.gov (United States)

    Paul, W.; Gresele, P.; Momi, S.; Bianchi, G.; Page, C. P.

    1993-01-01

    1. Administration of bovine thrombin (100 u kg-1) into the carotid artery of rabbits induces a sustained accumulation of 111 Indium-labelled platelets within the cranial vasculature over the subsequent 3 h. 2. Intracarotid (i.c.) administration of defibrotide (64 mg kg-1 bolus plus 64 mg kg-1 h-1 for 1 h) prior to i.c. thrombin (100 u kg-1) significantly reduces the ability of thrombin to induce cranial thromboembolism in rabbits. 3. Intravenous (i.v.) administration of thrombin (20 u kg-1) in rabbits induces a reversible accumulation of radiolabelled platelets into the thoracic circulation which is significantly reduced by i.v. administration of defibrotide (64 mg kg-1 bolus plus 64 mg kg-1 h-1 for 1 h) prior to i.v. thrombin. In contrast, platelet accumulation in response to adenosine diphosphate (ADP; 20 micrograms kg-1, i.v.) or platelet activating factor (PAF; 50 ng kg-1, i.v.) is not significantly affected by this treatment. 4. Intravenous administration of the nitric oxide (NO)-synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME; 10 mg kg-1) potentiates platelet accumulation induced by low dose thrombin (10 u kg-1, i.v.) within the pulmonary vasculature of rabbits. The potentiated response is significantly abrogated following pretreatment with defibrotide (64 mg kg-1 bolus plus 64 mg kg-1 h-1 for 1 h, i.v.). 5. Intravenous injection of human thrombin (1250 u kg-1) to mice induces death within the majority of animals which is significantly reduced by pretreatment with defibrotide (150-175 mg kg-1, i.v.).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8306102

  3. Effects of dietary amines on the gut and its vasculature

    OpenAIRE

    Broadley, Kenneth John; Anwar, Mohammad Akhtar; Herbert, Amy Angharad; Fehler, Martina; Jones, Elen M.; Davies, W. E.; Kidd, Emma Jane; Ford, William Richard

    2009-01-01

    Trace amines, including tyramine and β-phenylethylamine (β-PEA), are constituents of many foods including chocolate, cheeses and wines and are generated by so-called ‘friendly’ bacteria such as Lactobacillus, Lactococcus and Enterococcus species, which are found in probiotics. We therefore examined whether these dietary amines could exert pharmacological effects on the gut and its vasculature. In the present study we examined the effects of tyramine and β-PEA on the contractile activity of gu...

  4. A hybrid discrete-continuum mathematical model of pattern prediction in the developing retinal vasculature.

    Science.gov (United States)

    McDougall, S R; Watson, M G; Devlin, A H; Mitchell, C A; Chaplain, M A J

    2012-10-01

    Pathological angiogenesis has been extensively explored by the mathematical modelling community over the past few decades, specifically in the contexts of tumour-induced vascularisation and wound healing. However, there have been relatively few attempts to model angiogenesis associated with normal development, despite the availability of animal models with experimentally accessible and highly ordered vascular topologies: for example, growth and development of the vascular plexus layers in the murine retina. The current study aims to address this issue through the development of a hybrid discrete-continuum mathematical model of the developing retinal vasculature in neonatal mice that is closely coupled with an ongoing experimental programme. The model of the functional vasculature is informed by a range of morphological and molecular data obtained over a period of several days, from 6 days prior to birth to approximately 8 days after birth. The spatio-temporal formation of the superficial retinal vascular plexus (RVP) in wild-type mice occurs in a well-defined sequence. Prior to birth, astrocytes migrate from the optic nerve over the surface of the inner retina in response to a chemotactic gradient of PDGF-A, formed at an earlier stage by migrating retinal ganglion cells (RGCs). Astrocytes express a variety of chemotactic and haptotactic proteins, including VEGF and fibronectin (respectively), which subsequently induce endothelial cell sprouting and modulate growth of the RVP. The developing RVP is not an inert structure; however, the vascular bed adapts and remodels in response to a wide variety of metabolic and biomolecular stimuli. The main focus of this investigation is to understand how these interacting cellular, molecular, and metabolic cues regulate RVP growth and formation. In an earlier one-dimensional continuum model of astrocyte and endothelial migration, we showed that the measured frontal velocities of the two cell types could be accurately reproduced

  5. Optically measured microvascular blood flow contrast of malignant breast tumors.

    Directory of Open Access Journals (Sweden)

    Regine Choe

    Full Text Available Microvascular blood flow contrast is an important hemodynamic and metabolic parameter with potential to enhance in vivo breast cancer detection and therapy monitoring. Here we report on non-invasive line-scan measurements of malignant breast tumors with a hand-held optical probe in the remission geometry. The probe employs diffuse correlation spectroscopy (DCS, a near-infrared optical method that quantifies deep tissue microvascular blood flow. Tumor-to-normal perfusion ratios are derived from thirty-two human subjects. Mean (95% confidence interval tumor-to-normal ratio using surrounding normal tissue was 2.25 (1.92-2.63; tumor-to-normal ratio using normal tissues at the corresponding tumor location in the contralateral breast was 2.27 (1.94-2.66, and using normal tissue in the contralateral breast was 2.27 (1.90-2.70. Thus, the mean tumor-to-normal ratios were significantly different from unity irrespective of the normal tissue chosen, implying that tumors have significantly higher blood flow than normal tissues. Therefore, the study demonstrates existence of breast cancer contrast in blood flow measured by DCS. The new, optically accessible cancer contrast holds potential for cancer detection and therapy monitoring applications, and it is likely to be especially useful when combined with diffuse optical spectroscopy/tomography.

  6. Hemocoagulase Combined with Microbubble-Enhanced Ultrasound Cavitation for Augmented Ablation of Microvasculature in Rabbit VX2 Liver Tumors.

    Science.gov (United States)

    Yang, Qian; Tang, Peng; He, Guangbin; Ge, Shuping; Liu, Liwen; Zhou, Xiaodong

    2017-08-01

    We investigated a new method for combining microbubble-enhanced ultrasound cavitation (MEUC) with hemocoagulase (HC) atrox. Our goal was to induce embolic effects in the vasculature and combine these with an anti-angiogenic treatment strategy. Fourteen days after being implanted with a single slice of the liver VX2 tumor, rabbits were randomly divided into five groups: (i) a control group injected intra-venously with saline using a micropump; (ii) a group given only an injection of HC; (iii) a group treated only with ultrasound cavitation; (iv) a group treated with MEUC; (v) a group treated with MEUC + HC. Contrast-enhanced ultrasound was performed before treatment and 1 h and 7 d post-treatment to measure tumor size, enhancement and necrosis range. QontraXt software was used to determine the time-intensity curve of tumor blood perfusion and microvascular changes. At 1 h and 7 d after treatment with MEUC + HC, the parameters of the time-intensity curve, which included peak value, regional blood volume, regional blood flow and area under the curve value and which were measured using contrast-enhanced ultrasound, were significantly lower than those of the other treatment groups. The MEUC + HC treatment group exhibited significant growth inhibition relative to the ultrasound cavitation only, HC and MEUC treatment groups. No damage was observed in the surrounding normal tissues. These results support the feasibility of reducing the blood perfusion of rabbit VX2 liver tumors using a new method that combines MEUC and HC. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. All rights reserved.

  7. Residual motion compensation in ECG-gated interventional cardiac vasculature reconstruction

    Science.gov (United States)

    Schwemmer, C.; Rohkohl, C.; Lauritsch, G.; Müller, K.; Hornegger, J.

    2013-06-01

    Three-dimensional reconstruction of cardiac vasculature from angiographic C-arm CT (rotational angiography) data is a major challenge. Motion artefacts corrupt image quality, reducing usability for diagnosis and guidance. Many state-of-the-art approaches depend on retrospective ECG-gating of projection data for image reconstruction. A trade-off has to be made regarding the size of the ECG-gating window. A large temporal window is desirable to avoid undersampling. However, residual motion will occur in a large window, causing motion artefacts. We present an algorithm to correct for residual motion. Our approach is based on a deformable 2D-2D registration between the forward projection of an initial, ECG-gated reconstruction, and the original projection data. The approach is fully automatic and does not require any complex segmentation of vasculature, or landmarks. The estimated motion is compensated for during the backprojection step of a subsequent reconstruction. We evaluated the method using the publicly available CAVAREV platform and on six human clinical datasets. We found a better visibility of structure, reduced motion artefacts, and increased sharpness of the vessels in the compensated reconstructions compared to the initial reconstructions. At the time of writing, our algorithm outperforms the leading result of the CAVAREV ranking list. For the clinical datasets, we found an average reduction of motion artefacts by 13 ± 6%. Vessel sharpness was improved by 25 ± 12% on average.

  8. Neem leaf glycoprotein prophylaxis transduces immune dependent stop signal for tumor angiogenic switch within tumor microenvironment.

    Directory of Open Access Journals (Sweden)

    Saptak Banerjee

    Full Text Available We have reported that prophylactic as well as therapeutic administration of neem leaf glycoprotein (NLGP induces significant restriction of solid tumor growth in mice. Here, we investigate whether the effect of such pretreatment (25µg/mice; weekly, 4 times benefits regulation of tumor angiogenesis, an obligate factor for tumor progression. We show that NLGP pretreatment results in vascular normalization in melanoma and carcinoma bearing mice along with downregulation of CD31, VEGF and VEGFR2. NLGP pretreatment facilitates profound infiltration of CD8+ T cells within tumor parenchyma, which subsequently regulates VEGF-VEGFR2 signaling in CD31+ vascular endothelial cells to prevent aberrant neovascularization. Pericyte stabilization, VEGF dependent inhibition of VEC proliferation and subsequent vascular normalization are also experienced. Studies in immune compromised mice confirmed that these vascular and intratumoral changes in angiogenic profile are dependent upon active adoptive immunity particularly those mediated by CD8+ T cells. Accumulated evidences suggest that NLGP regulated immunomodulation is active in tumor growth restriction and normalization of tumor angiogenesis as well, thereby, signifying its clinical translation.

  9. Interplay of tumor vascular oxygenation and tumor pO2 observed using near-infrared spectroscopy, an oxygen needle electrode, and 19F MR pO2 mapping.

    Science.gov (United States)

    Kim, Jae G; Zhao, Dawen; Song, Yulin; Constantinescu, Anca; Mason, Ralph P; Liu, Hanli

    2003-01-01

    This study investigates the correlation of tumor blood oxygenation and tumor pO(2) with respect to carbogen inhalation. After having refined and validated the algorithms for calculating hemoglobin concentrations, we used near-infrared spectroscopy (NIRS) to measure changes of oxygenated hemoglobin concentration (delta[HbO(2)]) and used an oxygen needle electrode and (19)F MRI for pO(2) measurements in tumors. The measurements were taken from Dunning prostate R3327 tumors implanted in rats, while the anesthetized rats breathed air or carbogen. The NIRS results from tumor measurements showed significant changes in tumor vascular oxygenation in response to carbogen inhalation, while the pO(2) electrode results showed an apparent heterogeneity for tumor pO(2) response to carbogen inhalation, which was also confirmed by (19)F MR pO(2) mapping. Furthermore, we developed algorithms to estimate hemoglobin oxygen saturation, sO(2), during gas intervention based on the measured values of delta[HbO(2)] and pO(2). The algorithms have been validated through a tissue-simulating phantom and used to estimate the values of sO(2) in the animal tumor measurement based on the NIRS and global mean pO(2) values. This study demonstrates that the NIRS technology can provide an efficient, real-time, noninvasive approach to monitoring tumor physiology and is complementary to other techniques, while it also demonstrates the need for an NIR imaging technique to study spatial heterogeneity of tumor vasculature under therapeutic interventions. Copyright 2003 Society of Photo-Optical Instrumentation Engineers

  10. Functional transient receptor potential vanilloid 1 and transient receptor potential vanilloid 4 channels along different segments of the renal vasculature

    DEFF Research Database (Denmark)

    Chen, L; Kaßmann, M; Sendeski, M

    2015-01-01

    with functional TRPV1 having a narrow, discrete distribution in the resistance vasculature and TRPV4 having more universal, widespread distribution along different vascular segments. We suggest that TRPV1/4 channels are potent therapeutic targets for site-specific vasodilation in the kidney.......AIM: Transient receptor potential vanilloid 1 (TRPV1) and vanilloid 4 (TRPV4) cation channels have been recently identified to promote endothelium-dependent relaxation of mouse mesenteric arteries. However, the role of TRPV1 and TRPV4 in the renal vasculature is largely unknown. We hypothesized...... that TRPV1/4 plays a role in endothelium-dependent vasodilation of renal blood vessels. METHODS: We studied the distribution of functional TRPV1/4 along different segments of the renal vasculature. Mesenteric arteries were studied as control vessels. RESULTS: The TRPV1 agonist capsaicin relaxed mouse...

  11. In Vitro Tumor Models: Advantages, Disadvantages, Variables, and Selecting the Right Platform.

    Science.gov (United States)

    Katt, Moriah E; Placone, Amanda L; Wong, Andrew D; Xu, Zinnia S; Searson, Peter C

    2016-01-01

    In vitro tumor models have provided important tools for cancer research and serve as low-cost screening platforms for drug therapies; however, cancer recurrence remains largely unchecked due to metastasis, which is the cause of the majority of cancer-related deaths. The need for an improved understanding of the progression and treatment of cancer has pushed for increased accuracy and physiological relevance of in vitro tumor models. As a result, in vitro tumor models have concurrently increased in complexity and their output parameters further diversified, since these models have progressed beyond simple proliferation, invasion, and cytotoxicity screens and have begun recapitulating critical steps in the metastatic cascade, such as intravasation, extravasation, angiogenesis, matrix remodeling, and tumor cell dormancy. Advances in tumor cell biology, 3D cell culture, tissue engineering, biomaterials, microfabrication, and microfluidics have enabled rapid development of new in vitro tumor models that often incorporate multiple cell types, extracellular matrix materials, and spatial and temporal introduction of soluble factors. Other innovations include the incorporation of perfusable microvessels to simulate the tumor vasculature and model intravasation and extravasation. The drive toward precision medicine has increased interest in adapting in vitro tumor models for patient-specific therapies, clinical management, and assessment of metastatic potential. Here, we review the wide range of current in vitro tumor models and summarize their advantages, disadvantages, and suitability in modeling specific aspects of the metastatic cascade and drug treatment.

  12. Super enhanced permeability and retention (SUPR) effects in tumors following near infrared photoimmunotherapy

    Science.gov (United States)

    Kobayashi, Hisataka; Choyke, Peter L.

    2016-06-01

    To date, the delivery of nano-sized therapeutic agents to cancers largely relies on enhanced permeability and retention (EPR) effects that are caused by the leaky nature of cancer vasculature. However, nano-sized agents delivered in this way have demonstrated limited success in oncology due to the relatively small magnitude of the EPR effect. For achieving superior delivery of nano-sized agents, super-enhanced permeability and retention (SUPR) effects are needed. Near infrared photo-immunotherapy (NIR-PIT) is a recently reported therapy that treats tumors with light therapy and subsequently causes an increase in nano-drug delivery up to 24-fold compared with untreated tumors in which only the EPR effect is present. SUPR effects could enhance delivery into tumor beds of a wide variety of nano-sized agents including particles, antibodies, and protein binding small molecular agents. Therefore, taking advantage of the SUPR effects after NIR-PIT may be a promising avenue to utilize a wide variety of nano-drugs in a highly effective manner.

  13. Radiation-Induced Changes in Normal-Appearing White Matter in Patients With Cerebral Tumors: A Diffusion Tensor Imaging Study

    International Nuclear Information System (INIS)

    Nagesh, Vijaya; Tsien, Christina I.; Chenevert, Thomas L.; Ross, Brian D.; Lawrence, Theodore S.; Junick, Larry; Cao Yue

    2008-01-01

    Purpose: To quantify the radiation-induced changes in normal-appearing white matter before, during, and after radiotherapy (RT) in cerebral tumor patients. Methods and Materials: Twenty-five patients with low-grade glioma, high-grade glioma, or benign tumor treated with RT were studied using diffusion tensor magnetic resonance imaging. The biologically corrected doses ranged from 50 to 81 Gy. The temporal changes were assessed before, during, and to 45 weeks after the start of RT. The mean diffusivity of water ( ), fractional anisotropy of diffusion, diffusivity perpendicular (λ perpendicular ) and parallel (λ parallel ) to white matter fibers were calculated in normal-appearing genu and splenium of the corpus callosum. Results: In the genu and splenium, fractional anisotropy decreased and , λ parallel , λ -perpendicular increased linearly and significantly with time (p -perpendicular had increased ∼30% in the genu and splenium, and λ parallel had increased 5% in the genu and 9% in the splenium, suggesting that demyelination is predominant. The increases in λ perpendicular and λ parallel were dose dependent, starting at 3 weeks and continuing to 32 weeks from the start of RT. The dose-dependent increase in λ perpendicular and λ parallel was not sustained after 32 weeks, indicating the transition from focal to diffuse effects. Conclusion: The acute and subacute changes in normal-appearing white matter fibers indicate radiation-induced demyelination and mild structural degradation of axonal fibers. The structural changes after RT are progressive, with early dose-dependent demyelination and subsequent diffuse dose-independent demyelination and mild axonal degradation. Diffusion tensor magnetic resonance imaging is potentially a biomarker for the assessment of radiation-induced white matter injury

  14. Evaluating changes in brain vasculature of murine embryos in utero due to maternal alcohol consumption using optical coherence tomography

    Science.gov (United States)

    Raghunathan, Raksha; Wu, Chen; Singh, Manmohan; Liu, Chih-Hao; Miranda, Rajesh C.; Larin, Kirill V.

    2017-04-01

    Fetal Alcohol Syndrome (FAS) refers to the broad spectrum of developmental and behavioral effects caused due to prenatal alcohol exposure (PAE). Wide range of abnormalities vary depending on the amount of alcohol consumed and the period of consumption during gestation. PAE during early stages of pregnancy is very common. However a large number of women continue to consume alcohol even during the second trimester, a critical period for fetal neurogenesis and angiogenesis. Optical coherence tomography (OCT) has shown to be extremely useful in embryonic imaging. Our previous work showed that OCT is capable of quantitative assessment of ventriculomegaly caused by maternal alcohol consumption. Although structural changes and changes in blood flow in the fetal brain after maternal alcohol consumption have been studied, acute vasculature changes are not well documented. Speckle variance OCT (SVOCT), is a functional extension of OCT that has been used to study vasculature development in embryos. We use SVOCT, to detect vasculature changes in the embryonic brain in utero, minutes after maternal alcohol consumption.

  15. Reduced blood flow increases the in vivo ammonium ion concentration in the RIF-1 tumor

    International Nuclear Information System (INIS)

    Constantinidis, Ioannis; Gamcsik, Michael P.

    1995-01-01

    Purpose: Previous studies from our laboratory have suggested that pooling of ammonium in tumor tissues may be caused by its inefficient removal due to the poor vasculature commonly found in tumors. The purpose of these experiments was to validate the relationship between tumor ammonium ion concentration and tumor blood flow, and to determine whether large concentrations of ammonium ion detected by Nuclear Magnetic Resonance (NMR) spectroscopy are either produced within the tumor or simply imported into the tumor through the blood stream. Methods and Materials: To test this hypothesis, we reduced blood flow in subcutaneously grown Radiation Induced Fibrosarcoma-1 (RIF-1) tumors, either by creating partial ischemia with a bolus injection of hydralazine or by occlusion with surgical sutures. 14 N and 31 P NMR spectroscopy were used to detect the presence of ammonium, and to assess the bioenergetic status of the tumors, respectively. Results: A correlation between ammonium ion concentration and (PCr(P i )) ratio was established for untreated tumors. An increase in the in vivo tumor ammonium ion concentration was observed for every tumor that experienced a reduction in blood flow caused by either hydralazine injection or suture ligation. Changes in ammonium ion concentration paralleled changes in the bioenergetics of hydralazine-treated tumors. Conclusion: Our results support the hypothesis that a reduction in tumor blood flow is responsible for the accumulation of ammonium in tumors, and that detected ammonium originated from within the tumor

  16. iNKT Cell Emigration out of the Lung Vasculature Requires Neutrophils and Monocyte-Derived Dendritic Cells in Inflammation

    Directory of Open Access Journals (Sweden)

    Ajitha Thanabalasuriar

    2016-09-01

    Full Text Available iNKT cells are a subset of innate T cells that recognize glycolipids presented on CD1d molecules and protect against bacterial infections, including S. pneumoniae. Using lung intravital imaging, we examined the behavior and mechanism of pulmonary iNKT cell activation in response to the specific iNKT cell ligand α-galactosylceramide or S. pneumoniae infection. In untreated mice, the major fraction of iNKT cells resided in the vasculature, but a small critical population resided in the extravascular space in proximity to monocyte-derived DCs. Administration of either α-GalCer or S. pneumoniae induced CD1d-dependent rapid recruitment of neutrophils out of the vasculature. The neutrophils guided iNKT cells from the lung vasculature via CCL17. Depletion of monocyte-derived DCs abrogated both the neutrophil and subsequent iNKT cell extravasation. Moreover, impairing iNKT cell recruitment by blocking CCL17 increased susceptibility to S. pneumoniae infection, suggesting a critical role for the influx of iNKT cells in host defense.

  17. Combination therapy with gefitinib and doxorubicin inhibits tumor growth in transgenic mice with adrenal neuroblastoma

    International Nuclear Information System (INIS)

    Kawano, Kumi; Hattori, Yoshiyuki; Iwakura, Hiroshi; Akamizu, Takashi; Maitani, Yoshie

    2013-01-01

    Highly relevant mouse models of human neuroblastoma (NB) are needed to evaluate new therapeutic strategies against NB. In this study, we characterized transgenic mice with bilateral adrenal tumors. On the basis of information from the tumoral gene expression profiles, we examined the antitumor effects of unencapsulated and liposomal doxorubicin (DXR), alone and in combination with gefitinib, on adrenal NB. We showed that intravenous injection of unencapsulated or liposomal DXR alone inhibited tumor growth in a dose-dependent manner, as assessed by magnetic resonance imaging (MRI). However, liposomal DXR did not exhibit greater antitumor effect than unencapsulated DXR. Immunohistochemical analysis revealed that the adrenal tumor vasculature with abundant pericyte coverage was a less leaky structure for liposomes. Combination therapy with unencapsulated or liposomal DXR plus gefitinib strongly suppressed tumor growth and delayed tumor regrowth than treatment with unencapsulated or liposomal DXR alone, even at a lower dose of DXR. Dynamic contrast-enhanced MRI analysis revealed that gefitinib treatment increased blood flow in the tumor, indicating that gefitinib treatment changes the tumor vascular environment in a manner that may increase the antitumor effect of DXR. In conclusion, the combination of gefitinib and DXR induces growth inhibition of adrenal NBs in transgenic mice. These findings will provide helpful insights into new treatments for NB

  18. Tumor radiation responses and tumor oxygenation in aging mice

    International Nuclear Information System (INIS)

    Rockwell, S.

    1989-01-01

    EMT6 mouse mammary tumors transplanted into aging mice are less sensitive to radiation than tumors growing in young adult animals. The experiments reported here compare the radiation dose-response curves defining the survivals of tumor cells in aging mice and in young adult mice. Cell survival curves were assessed in normal air-breathing mice and in mice asphyxiated with N 2 to produce uniform hypoxia throughout the tumors. Analyses of survival curves revealed that 41% of viable malignant cells were severely hypoxic in tumors in aging mice, while only 19% of the tumor cells in young adult animals were radiobiologically hypoxic. This did not appear to reflect anaemia in the old animals. Treatment of aging animals with a perfluorochemical emulsion plus carbogen (95% O 2 /5% CO 2 ) increased radiation response of the tumors, apparently by improving tumor oxygenation and decreasing the number of severely hypoxic, radiation resistant cells in the tumors. (author)

  19. Contributions of Cell Metabolism and H+ Diffusion to the Acidic pH of Tumors

    Directory of Open Access Journals (Sweden)

    Paul A. Schornack

    2003-03-01

    Full Text Available The tumor microenvironment is hypoxic and acidic. These conditions have a significant impact on tumor progression and response to therapies. There is strong evidence that tumor hypoxia results from inefficient perfusion due to a chaotic vasculature. Consequently, some tumor regions are well oxygenated and others are hypoxic. It is commonly believed that hypoxic regions are acidic due to a stimulation of glycolysis through hypoxia, yet this is not yet demonstrated. The current study investigates the causes of tumor acidity by determining acid production rates and the mechanism of diffusion for H+ equivalents through model systems. Two breast cancer cell lines were investigated with divergent metabolic profiles: nonmetastatic MCF-7/s and highly metastatic MDA-mb-435 cells. Glycolysis and acid production are inhibited by oxygen in MCF-7/s cells, but not in MDA-mb-435 cells. Tumors of MDAmb-435 cells are significantly more acidic than are tumors of MCF-7/s cells, suggesting that tumor acidity is primarily caused by endogenous metabolism, not the lack of oxygen. Metabolically produced protons are shown to diffuse in association with mobile buffers, in concordance with previous studies. The metabolic and diffusion data were analyzed using a reaction-diffusion model to demonstrate that the consequent pH profiles conform well to measured pH values for tumors of these two cell lines.

  20. Turnover rate of hypoxic cells in solid tumors

    International Nuclear Information System (INIS)

    Ljungkvist, A.S.E.; Bussink, J.; Rijken, P.F.J.W.; Van Der Kogel, A.J.

    2003-01-01

    Most solid tumors contain hypoxic cells, and both the amount and duration of tumor hypoxia has been shown to influence the effect of radiation treatment negatively. It is important to understand the dynamic processes within the hypoxic cell population in non-treated tumors, and the effect of different treatment modalities on the kinetics of hypoxic cells to be able to design optimal combined modality treatments. The turnover rate of hypoxic cells was analyzed in three different solid tumor models with a double bio-reductive hypoxic marker assay with sequential injection of the two hypoxic markers. Previously it was shown that this assay could be used to detect both a decrease and an increase of tumor hypoxia in relation to the tumor vasculature with high spatial resolution. In this study the first hypoxic marker, pimonidazole, was administered at variable times relative to tumor harvest, and the second hypoxic marker, CCI-103F, was injected at a fixed time before harvest. The hypoxic cell turnover rate was calculated as the loss of pimonidazole positive cells relative to CCI-103F. The murine C38 line had the fastest hypoxic turnover rate of 60% /24h and the human xenograft line SCCNij3 had the slowest hypoxic turnover rate of 30% /24 h. The hypoxic turnover rate was most heterogeneous in the SCCNij3 line that even contained viable groups of cells that had been hypoxic for at least 5 days. The human xenograft line MEC82 fell in between with a hypoxic turnover rate of 50% /24 h. The hypoxic cell turnover was related to the potential tumor volume doubling time (Tpot) with a Tpot of 26h in C38 and 103h in SCCNij3. The dynamics of hypoxic cells, quantified with a double hypoxic marker method, showed large differences in hypoxic cell turnover rate and were related to Tpot

  1. Radiation treatment of brain tumors: Concepts and strategies

    International Nuclear Information System (INIS)

    Marks, J.E.

    1989-01-01

    Ionizing radiation has demonstrated clinical value for a multitude of CNS tumors. Application of the different physical modalities available has made it possible for the radiotherapist to concentrate the radiation in the region of the tumor with relative sparing of the surrounding normal tissues. Correlation of radiation dose with effect on cranial soft tissues, normal brain, and tumor has shown increasing effect with increasing dose. By using different physical modalities to alter the distribution of radiation dose, it is possible to increase the dose to the tumor and reduce the dose to the normal tissues. Alteration of the volume irradiated and the dose delivered to cranial soft tissues, normal brain, and tumor are strategies that have been effective in improving survival and decreasing complications. The quest for therapeutic gain using hyperbaric oxygen, neutrons, radiation sensitizers, chemotherapeutic agents, and BNCT has met with limited success. Both neoplastic and normal cells are affected simultaneously by all modalities of treatment, including ionizing radiation. Consequently, one is unable to totally depopulate a tumor without irreversibly damaging the normal tissues. In the case of radiation, it is the brain that limits delivery of curative doses, and in the case of chemical additives, it is other organ systems, such as bone marrow, liver, lung, kidneys, and peripheral nerves. Thus, the major obstacle in the treatment of malignant gliomas is our inability to preferentially affect the tumor with the modalities available. Until it is possible to directly target the neoplastic cell without affecting so many of the adjacent normal cells, the quest for therapeutic gain will go unrealized.72 references

  2. Extravascular red blood cells and hemoglobin promote tumor growth and therapeutic resistance as endogenous danger signals.

    Science.gov (United States)

    Yin, Tao; He, Sisi; Liu, Xiaoling; Jiang, Wei; Ye, Tinghong; Lin, Ziqiang; Sang, Yaxiong; Su, Chao; Wan, Yang; Shen, Guobo; Ma, Xuelei; Yu, Min; Guo, Fuchun; Liu, Yanyang; Li, Ling; Hu, Qiancheng; Wang, Yongsheng; Wei, Yuquan

    2015-01-01

    Hemorrhage is a common clinical manifestation in patients with cancer. Intratumor hemorrhage has been demonstrated to be a poor prognostic factor for cancer patients. In this study, we investigated the role of RBCs and hemoglobin (Hb) in the process of tumor progression and therapeutical response. RBCs and Hb potently promoted tumor cell proliferation and syngenic tumor growth. RBCs and Hb activated the reactive oxygen species-NF-κB pathway in both tumor cells and macrophages. RBCs and Hb also induced chemoresistance mediated, in part, by upregulating ABCB1 gene expression. Tumor growth induced by RBCs was accompanied by an inflammatory signature, increased tumor vasculature, and influx of M2 macrophages. In both the peritoneal cavity and tumor microenvironment, extravascular RBCs rapidly recruited monocyte-macrophages into the lesion sites. In addition, RBCs and Hb increased several nucleotide-binding oligomerization domain-like receptors' expression and induced IL-1β release. Our results provide novel insights into the protumor function of RBCs and Hb as endogenous danger signals, which can promote tumor cell proliferation, macrophage recruitment, and polarization. Hemorrhage may represent a useful prognostic factor for cancer patients because of its role in tumor promotion and chemoresistance. Copyright © 2014 by The American Association of Immunologists, Inc.

  3. SU-E-T-630: Predictive Modeling of Mortality, Tumor Control, and Normal Tissue Complications After Stereotactic Body Radiotherapy for Stage I Non-Small Cell Lung Cancer

    International Nuclear Information System (INIS)

    Lindsay, WD; Berlind, CG; Gee, JC; Simone, CB

    2015-01-01

    Purpose: While rates of local control have been well characterized after stereotactic body radiotherapy (SBRT) for stage I non-small cell lung cancer (NSCLC), less data are available characterizing survival and normal tissue toxicities, and no validated models exist assessing these parameters after SBRT. We evaluate the reliability of various machine learning techniques when applied to radiation oncology datasets to create predictive models of mortality, tumor control, and normal tissue complications. Methods: A dataset of 204 consecutive patients with stage I non-small cell lung cancer (NSCLC) treated with stereotactic body radiotherapy (SBRT) at the University of Pennsylvania between 2009 and 2013 was used to create predictive models of tumor control, normal tissue complications, and mortality in this IRB-approved study. Nearly 200 data fields of detailed patient- and tumor-specific information, radiotherapy dosimetric measurements, and clinical outcomes data were collected. Predictive models were created for local tumor control, 1- and 3-year overall survival, and nodal failure using 60% of the data (leaving the remainder as a test set). After applying feature selection and dimensionality reduction, nonlinear support vector classification was applied to the resulting features. Models were evaluated for accuracy and area under ROC curve on the 81-patient test set. Results: Models for common events in the dataset (such as mortality at one year) had the highest predictive power (AUC = .67, p < 0.05). For rare occurrences such as radiation pneumonitis and local failure (each occurring in less than 10% of patients), too few events were present to create reliable models. Conclusion: Although this study demonstrates the validity of predictive analytics using information extracted from patient medical records and can most reliably predict for survival after SBRT, larger sample sizes are needed to develop predictive models for normal tissue toxicities and more advanced

  4. SU-E-T-630: Predictive Modeling of Mortality, Tumor Control, and Normal Tissue Complications After Stereotactic Body Radiotherapy for Stage I Non-Small Cell Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Lindsay, WD [University of Pennsylvania, Philadelphia, PA (United States); Oncora Medical, LLC, Philadelphia, PA (United States); Berlind, CG [Georgia Institute of Technology, Atlanta, GA (Georgia); Oncora Medical, LLC, Philadelphia, PA (United States); Gee, JC; Simone, CB [University of Pennsylvania, Philadelphia, PA (United States)

    2015-06-15

    Purpose: While rates of local control have been well characterized after stereotactic body radiotherapy (SBRT) for stage I non-small cell lung cancer (NSCLC), less data are available characterizing survival and normal tissue toxicities, and no validated models exist assessing these parameters after SBRT. We evaluate the reliability of various machine learning techniques when applied to radiation oncology datasets to create predictive models of mortality, tumor control, and normal tissue complications. Methods: A dataset of 204 consecutive patients with stage I non-small cell lung cancer (NSCLC) treated with stereotactic body radiotherapy (SBRT) at the University of Pennsylvania between 2009 and 2013 was used to create predictive models of tumor control, normal tissue complications, and mortality in this IRB-approved study. Nearly 200 data fields of detailed patient- and tumor-specific information, radiotherapy dosimetric measurements, and clinical outcomes data were collected. Predictive models were created for local tumor control, 1- and 3-year overall survival, and nodal failure using 60% of the data (leaving the remainder as a test set). After applying feature selection and dimensionality reduction, nonlinear support vector classification was applied to the resulting features. Models were evaluated for accuracy and area under ROC curve on the 81-patient test set. Results: Models for common events in the dataset (such as mortality at one year) had the highest predictive power (AUC = .67, p < 0.05). For rare occurrences such as radiation pneumonitis and local failure (each occurring in less than 10% of patients), too few events were present to create reliable models. Conclusion: Although this study demonstrates the validity of predictive analytics using information extracted from patient medical records and can most reliably predict for survival after SBRT, larger sample sizes are needed to develop predictive models for normal tissue toxicities and more advanced

  5. Interstitial ultrasound ablation of tumors within or adjacent to bone: Contributions of preferential heating at the bone surface

    Science.gov (United States)

    Scott, Serena J.; Prakash, Punit; Salgaonkar, Vasant; Jones, Peter D.; Cam, Richard N.; Han, Misung; Rieke, Viola; Burdette, E. Clif; Diederich, Chris J.

    2013-02-01

    Preferential heating of bone due to high ultrasound attenuation may enhance thermal ablation performed with cathetercooled interstitial ultrasound applicators in or near bone. At the same time, thermally and acoustically insulating cortical bone may protect sensitive structures nearby. 3D acoustic and biothermal transient finite element models were developed to simulate temperature and thermal dose distributions during catheter-cooled interstitial ultrasound ablation near bone. Experiments in ex vivo tissues and tissue-mimicking phantoms were performed to validate the models and to quantify the temperature profiles and ablated volumes for various distances between the interstitial applicator and the bone surface. 3D patient-specific models selected to bracket the range of clinical usage were developed to investigate what types of tumors could be treated, applicator configurations, insertion paths, safety margins, and other parameters. Experiments show that preferential heating at the bone surface decreases treatment times compared to when bone is absent and that all tissue between an applicator and bone can be ablated when they are up to 2 cm apart. Simulations indicate that a 5-7 mm safety margin of normal bone is needed to protect (thermal dose tumors 1.0-3.8 cm (L) and 1.3-3.0 cm (D) near or within bone were ablated (thermal dose > 240 CEM43°C) within 10 min without damaging the nearby spinal cord, lungs, esophagus, trachea, or major vasculature. Preferential absorption of ultrasound by bone may provide improved localization, faster treatment times, and larger treatment zones in tumors in and near bone compared to other heating modalities.

  6. Specificity of tumor necrosis factor toxicity for human mammary carcinomas relative to normal mammary epithelium and correlation with response to doxorubicin

    International Nuclear Information System (INIS)

    Dollbaum, C.; Creasey, A.A.; Dairkee, S.H.; Hiller, A.J.; Rudolph, A.R.; Lin, L.; Vitt, C.; Smith, H.S.

    1988-01-01

    By using a unique short-term culture system capable of growing both normal and malignant breast epithelial tissue, human recombinant tumor necrosis factor (TNF) showed preferential cytotoxicity to malignant cells as compared to the corresponding nonmalignant cells. Most of the malignant specimens were sensitive to TNF with 13 of 18 specimens showing 90% inhibition of clonal growth (ID 90 ). In contrast, all 13 nonmalignant specimens tested clustered at the resistant end of the TNF response spectrum. This differential sensitivity to TNF was seen in three cases in which malignant and nonmalignant breast epithelial tissues from the same patient were studied. To investigate the mechanism of resistance to TNF by normal cells, the presence of receptors for TNF was determined. Five of six cultures showed specific binding of 125 I-labeled TNF and there was no relationship between the degree of resistance and the degree of specific binding. Simultaneous comparison of tumor responsiveness to doxorubicin and TNF revealed a positive correlation in ID 90 values; these results may have important implications for the clinical use of TNF in cancer patients heavily pretreated with doxorubicin

  7. Expression of EGFR Under Tumor Hypoxia: Identification of a Subpopulation of Tumor Cells Responsible for Aggressiveness and Treatment Resistance

    Energy Technology Data Exchange (ETDEWEB)

    Hoogsteen, Ilse J., E-mail: i.hoogsteen@rther.umcn.nl [Department of Radiation Oncology, Radboud University Nijmegen Medical Centre, Nijmegen (Netherlands); Marres, Henri A.M.; Hoogen, Franciscus J.A. van den [Department of Otorhinolaryngology/Head-Neck Surgery, Radboud University Nijmegen Medical Centre, Nijmegen (Netherlands); Rijken, Paul F.J.W.; Lok, Jasper; Bussink, Johan; Kaanders, Johannes H.A.M. [Department of Radiation Oncology, Radboud University Nijmegen Medical Centre, Nijmegen (Netherlands)

    2012-11-01

    Purpose: Overexpression of epidermal growth factor receptor (EGFR) and tumor hypoxia have been shown to correlate with worse outcome in several types of cancer including head-and-neck squamous cell carcinoma. Little is known about the combination and possible interactions between the two phenomena. Methods and Materials: In this study, 45 cases of histologically confirmed squamous cell carcinomas of the head and neck were analyzed. All patients received intravenous infusions of the exogenous hypoxia marker pimonidazole prior to biopsy. Presence of EGFR, pimonidazole binding, and colocalization between EGFR and tumor hypoxia were examined using immunohistochemistry. Results: Of all biopsies examined, respectively, 91% and 60% demonstrated EGFR- and pimonidazole-positive areas. A weak but significant association was found between the hypoxic fractions of pimonidazole (HFpimo) and EGFR fractions (F-EGFR) and between F-EGFR and relative vascular area. Various degrees of colocalization between hypoxia and EGFR were found, increasing with distance from the vasculature. A high fraction of EGFR was correlated with better disease-free and metastasis-free survival, whereas a high degree of colocalization correlated with poor outcome. Conclusions: Colocalization of hypoxia and EGFR was demonstrated in head-and-neck squamous cell carcinomas, predominantly at longer distances from vessels. A large amount of colocalization was associated with poor outcome, which points to a survival advantage of hypoxic cells that are also able to express EGFR. This subpopulation of tumor cells might be indicative of tumor aggressiveness and be partly responsible for treatment resistance.

  8. Detection of metastatic tumor in normal-sized retroperitoneal lymph nodes by monoclonal-antibody imaging

    International Nuclear Information System (INIS)

    Moldofsky, P.J.; Sears, H.F.; Mulhern, C.B. Jr.; Hammond, N.D.; Powe, J.; Gatenby, R.A.; Steplewski, Z.; Koprowski, H.

    1984-01-01

    Detection of metastatic colon carcinoma is reported in retroperitoneal lymph nodes that were visible but normal in size (less than 1 cm) and number on CT scanning and at surgery. A case history is presented of 1 of 27 patients with colon carcinoma, metastatic or primary, evaluated with intravenously administered, radiolabeled monoclonal-antibody fragments and subsequent nuclear medicine imaging. Images of /sup 99m/Tc-labeled red cells corresponding to each [ 131 I]antibody view of the abdomen were obtained as a control, to avoid interpretation of simple blood-pool radioactivity as specific localization of antibody on tumor. Antibody images were evaluated both without and with computer blood-pool image substraction. Directed to the level of the left renal hilum by the antibody scan, the surgeon removed the largest palpable node, which measured slightly less than 1 cm in diameter and was not palpably or visibly abnormal to the surgeon until it was removed and sectioned. Pathological evaluation of frozen and permanent sections revealed microscopic foci of adenocarcinoma consistent with a colonic primary tumor. Immunoperoxidase staining for the 1083-17-1A colorectal-carcinoma antigen demonstrated the presence of the antigen in the lymph node. As a result of the detection of this metastasis outside the liver, the patient did not receive the planned hepatic-artery chemotherapy pump but instead received intravenous chemotherapy

  9. Early Effects of Combretastatin A4 Phosphate Assessed by Anatomic and Carbogen-Based Functional Magnetic Resonance Imaging on Rat Bladder Tumors Implanted in Nude Mice

    Directory of Open Access Journals (Sweden)

    Carole D. Thomas

    2006-07-01

    Full Text Available Combretastatin A4 phosphate (CA4P causes rapid disruption of the tumor vasculature and is currently being evaluated for antivascular therapy. We describe the initial results obtained with a noninvasive multiparametric magnetic resonance imaging (MRI approach to assess the early effects of CA4P on rat bladder tumors implanted on nude mice. MRI (4.7 T comprised a fast spin-echo sequence for growth curve assessment; a multislice multiecho sequence for T2 measurement before, 15 minutes after, 24 hours after CA4P (100 mg/kg; and a fast T2W* gradient-echo sequence to assess MR signal modification under carbogen breathing before, 35 minutes after, 24 hours after CA4P. The tumor fraction with increased T2W* signal intensity under carbogen (T+ was used to quantify CA4P effect on functional vasculature. CA4P slowed tumor growth over 24 hours and accelerated necrosis development. T+ decrease was observed already at 35 minutes post-CA4P. Early T2 increase was observed in regions becoming necrotic at 24 hours post-CA4P, as confirmed by high T2 and histology. These regions exhibited, under carbogen, a switch from T2W* signal increase before CA4P to a decrease postCA4P. The combination of carbogen-based functional MRI and T2 measurement may be useful for the early follow-up of antivascular therapy without the administration of contrast agents.

  10. Early effects of combretastatin A4 phosphate assessed by anatomic and carbogen-based functional magnetic resonance imaging on rat bladder tumors implanted in nude mice.

    Science.gov (United States)

    Thomas, Carole D; Walczak, Christine; Kaffy, Julia; Pontikis, Renée; Jouanneau, Jacqueline; Volk, Andreas

    2006-07-01

    Combretastatin A4 phosphate (CA4P) causes rapid disruption of the tumor vasculature and is currently being evaluated for antivascular therapy. We describe the initial results obtained with a noninvasive multiparametric magnetic resonance imaging (MRI) approach to assess the early effects of CA4P on rat bladder tumors implanted on nude mice. MRI (4.7 T) comprised a fast spin-echo sequence for growth curve assessment; a multislice multiecho sequence for T2 measurement before, 15 minutes after, and 24 hours after CA4P (100 mg/kg); and a fast T2w* gradient-echo sequence to assess MR signal modification under carbogen breathing before, 35 minutes after, and 24 hours after CA4P. The tumor fraction with increased T2w* signal intensity under carbogen (T+) was used to quantify CA4P effect on functional vasculature. CA4P slowed tumor growth over 24 hours and accelerated necrosis development. T+ decrease was observed already at 35 minutes post-CA4P. Early T2 increase was observed in regions becoming necrotic at 24 hours post-CA4P, as confirmed by high T2 and histology. These regions exhibited, under carbogen, a switch from T2w* signal increase before CA4P to a decrease postCA4P. The combination of carbogen-based functional MRI and T2 measurement may be useful for the early follow-up of antivascular therapy without the administration of contrast agents.

  11. Tumor suppressor function of Syk in human MCF10A in vitro and normal mouse mammary epithelium in vivo.

    Directory of Open Access Journals (Sweden)

    You Me Sung

    2009-10-01

    Full Text Available The normal function of Syk in epithelium of the developing or adult breast is not known, however, Syk suppresses tumor growth, invasion, and metastasis in breast cancer cells. Here, we demonstrate that in the mouse mammary gland, loss of one Syk allele profoundly increases proliferation and ductal branching and invasion of epithelial cells through the mammary fat pad during puberty. Mammary carcinomas develop by one year. Syk also suppresses proliferation and invasion in vitro. siRNA or shRNA knockdown of Syk in MCF10A breast epithelial cells dramatically increased proliferation, anchorage independent growth, cellular motility, and invasion, with formation of functional, extracellular matrix-degrading invadopodia. Morphological and gene microarray analysis following Syk knockdown revealed a loss of luminal and differentiated epithelial features with epithelial to mesenchymal transition and a gain in invadopodial cell surface markers CD44, CD49F, and MMP14. These results support the role of Syk in limiting proliferation and invasion of epithelial cells during normal morphogenesis, and emphasize the critical role of Syk as a tumor suppressor for breast cancer. The question of breast cancer risk following systemic anti-Syk therapy is raised since only partial loss of Syk was sufficient to induce mammary carcinomas.

  12. A fundamental study of dynamic CT for hemodynamics in experimental hepatic tumors

    International Nuclear Information System (INIS)

    Yamakawa, Fumiko

    1991-01-01

    Dynamic CT was performed using iodamide meglumine (2 ml/kg) to investigate hemodynamics in experimental hepatic tumors, tumor margins and in normal hepatic tissue as well in rabbits with VX 2 -induced hepatic tumors. Peak time (PT) and first moment (M1) were calculated from a time density curve prepared by eight consecutive 3-second scans over a period of 55 seconds. PT and M1 in tumors were significantly shorter than those in tumor margins and normal tissue, but were not influenced by tumor size. PT and M1 in tumor margins and normal tissue became longer with enlargement of the tumor. Ligation of the hepatic artery caused (1) no change in PT or M1 in normal tissue and tumor margins and (2) difficulty in measuring PT and M1 in tumors. Ligation of the portal vein caused (1) difficulty in measuring PT and M1 in normal tissue and tumor margins and (2) no change in PT or M1 in tumors. Pathological studies of specimens taken from each region of interest (ROI) showed that hemodynamics in the tumors reflected tumor-specific vascular structures. (author)

  13. Tumor-Infiltrating Immune Cells Promoting Tumor Invasion and Metastasis: Existing Theories

    Directory of Open Access Journals (Sweden)

    Yan-gao Man, Alexander Stojadinovic, Jeffrey Mason, Itzhak Avital, Anton Bilchik, Bjoern Bruecher, Mladjan Protic, Aviram Nissan, Mina Izadjoo, Xichen Zhang, Anahid Jewett

    2013-01-01

    Full Text Available It is a commonly held belief that infiltration of immune cells into tumor tissues and direct physical contact between tumor cells and infiltrated immune cells is associated with physical destructions of the tumor cells, reduction of the tumor burden, and improved clinical prognosis. An increasing number of studies, however, have suggested that aberrant infiltration of immune cells into tumor or normal tissues may promote tumor progression, invasion, and metastasis. Neither the primary reason for these contradictory observations, nor the mechanism for the reported diverse impact of tumor-infiltrating immune cells has been elucidated, making it difficult to judge the clinical implications of infiltration of immune cells within tumor tissues. This mini-review presents several existing hypotheses and models that favor the promoting impact of tumor-infiltrating immune cells on tumor invasion and metastasis, and also analyzes their strength and weakness.

  14. A microfluidic device for study of the effect of tumor vascular structures on the flow field and HepG2 cellular flow behaviors.

    Science.gov (United States)

    Ke, Ming; Cai, Shaoxi; Zou, Misha; Zhao, Yi; Li, Bo; Chen, Sijia; Chen, Longcong

    2018-01-29

    To build a microfluidic device with various morphological features of the tumor vasculature for study of the effects of tumor vascular structures on the flow field and tumor cellular flow behaviors. The designed microfluidic device was able to approximatively simulate the in vivo structures of tumor vessels and the flow within it. In this models, the influences of the angle of bifurcation, the number of branches, and the narrow channels on the flow field and the influence of vorticity on the retention of HepG2 cells were significant. Additionally, shear stress below physiological conditions of blood circulation has considerable effect on the formation of the lumen-like structures (LLSs) of HepG2 cells. These results can provide some data and reference in the understanding of the interaction between hemorheological properties and tumor vascular structures in solid tumors. Copyright © 2018. Published by Elsevier Inc.

  15. Pituitary tumors containing cholecystokinin

    DEFF Research Database (Denmark)

    Rehfeld, J F; Lindholm, J; Andersen, B N

    1987-01-01

    We found small amounts of cholecystokinin in the normal human adenohypophysis and therefore examined pituitary tumors from 87 patients with acromegaly, Cushing's disease, Nelson's syndrome, prolactinoma, or inactive pituitary adenomas. Five adenomas associated with Nelson's syndrome contained......'s disease and 7 acromegaly with adenomas containing ACTH. The cholecystokinin peptides from the tumors were smaller and less sulfated than cholecystokinin from normal pituitary glands. We conclude that ACTH-producing pituitary cells may also produce an altered form of cholecystokinin....

  16. Effects of the tumor-vasculature-disrupting agent verubulin and two heteroaryl analogues on cancer cells, endothelial cells, and blood vessels.

    Science.gov (United States)

    Mahal, Katharina; Resch, Marcus; Ficner, Ralf; Schobert, Rainer; Biersack, Bernhard; Mueller, Thomas

    2014-04-01

    Two analogues of the discontinued tumor vascular-disrupting agent verubulin (Azixa®, MPC-6827, 1) featuring benzo-1,4-dioxan-6-yl (compound 5 a) and N-methylindol-5-yl (compound 10) residues instead of the para-anisyl group on the 4-(methylamino)-2-methylquinazoline pharmacophore, were prepared and found to exceed the antitumor efficacy of the lead compound. They were antiproliferative with single-digit nanomolar IC50 values against a panel of nine tumor cell lines, while not affecting nonmalignant fibroblasts. Indole 10 surpassed verubulin in seven tumor cell lines including colon, breast, ovarian, and germ cell cancer cell lines. In line with docking studies indicating that compound 10 may bind the colchicine binding site of tubulin more tightly (Ebind =-9.8 kcal mol(-1) ) than verubulin (Ebind =-8.3 kcal mol(-1) ), 10 suppressed the formation of vessel-like tubes in endothelial cells and destroyed the blood vessels in the chorioallantoic membrane of fertilized chicken eggs at nanomolar concentrations. When applied to nude mice bearing a highly vascularized 1411HP germ cell xenograft tumor, compound 10 displayed pronounced vascular-disrupting effects that led to hemorrhages and extensive central necrosis in the tumor. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Residual motion compensation in ECG-gated interventional cardiac vasculature reconstruction

    International Nuclear Information System (INIS)

    Schwemmer, C; Müller, K; Hornegger, J; Rohkohl, C; Lauritsch, G

    2013-01-01

    Three-dimensional reconstruction of cardiac vasculature from angiographic C-arm CT (rotational angiography) data is a major challenge. Motion artefacts corrupt image quality, reducing usability for diagnosis and guidance. Many state-of-the-art approaches depend on retrospective ECG-gating of projection data for image reconstruction. A trade-off has to be made regarding the size of the ECG-gating window. A large temporal window is desirable to avoid undersampling. However, residual motion will occur in a large window, causing motion artefacts. We present an algorithm to correct for residual motion. Our approach is based on a deformable 2D–2D registration between the forward projection of an initial, ECG-gated reconstruction, and the original projection data. The approach is fully automatic and does not require any complex segmentation of vasculature, or landmarks. The estimated motion is compensated for during the backprojection step of a subsequent reconstruction. We evaluated the method using the publicly available CAVAREV platform and on six human clinical datasets. We found a better visibility of structure, reduced motion artefacts, and increased sharpness of the vessels in the compensated reconstructions compared to the initial reconstructions. At the time of writing, our algorithm outperforms the leading result of the CAVAREV ranking list. For the clinical datasets, we found an average reduction of motion artefacts by 13 ± 6%. Vessel sharpness was improved by 25 ± 12% on average. (paper)

  18. Expression and activity of the urokinase plasminogen activator system in canine primary brain tumors

    Directory of Open Access Journals (Sweden)

    Rossmeisl JH

    2017-04-01

    -time quantitative polymerase chain reaction analyses, and by the assay of the activity of uPA using casein–plasminogen zymography.Results: Expression of uPAR was observed in multiple tumoral microenvironmental niches, including neoplastic cells, stroma, and the vasculature of canine brain tumors. Relative to normal brain tissues, uPAR protein and mRNA expression were significantly greater in canine meningiomas, gliomas, and choroid plexus tumors. Increased activity of uPA was documented in all tumor types.Conclusions: uPAR is overexpressed and uPA activity increased in canine meningiomas, gliomas, and choroid plexus tumors. This study illustrates the potential of uPAR/uPA molecularly targeted approaches for canine brain tumor therapeutics and reinforces the translational significance of canines with spontaneous brain tumors as models for human disease. Keywords: brain tumor, neuro-oncology, dog, animal model, protease, meningioma, glioma

  19. Partial corrosion casting to assess cochlear vasculature in mouse models of presbycusis and CMV infection.

    Science.gov (United States)

    Carraro, Mattia; Park, Albert H; Harrison, Robert V

    2016-02-01

    Some forms of sensorineural hearing loss involve damage or degenerative changes to the stria vascularis and/or other vascular structures in the cochlea. In animal models, many methods for anatomical assessment of cochlear vasculature exist, each with advantages and limitations. One methodology, corrosion casting, has proved useful in some species, however in the mouse model this technique is difficult to achieve because digestion of non vascular tissue results in collapse of the delicate cast specimen. We have developed a partial corrosion cast method that allows visualization of vasculature along much of the cochlear length but maintains some structural integrity of the specimen. We provide a detailed step-by-step description of this novel technique. We give some illustrative examples of the use of the method in mouse models of presbycusis and cytomegalovirus (CMV) infection. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Gold nanoparticle-aided brachytherapy with vascular dose painting: estimation of dose enhancement to the tumor endothelial cell nucleus.

    Science.gov (United States)

    Ngwa, Wilfred; Makrigiorgos, G Mike; Berbeco, Ross I

    2012-01-01

    Theoretical microdosimetry at the subcellular level is employed in this study to estimate the dose enhancement to tumor endothelial cell nuclei, caused by radiation-induced photo/Auger electrons originating from gold nanoparticles (AuNPs) targeting the tumor endothelium, during brachytherapy. A tumor vascular endothelial cell (EC) is modeled as a slab of 2 μm (thickness) × 10 μm (length) × 10 μm (width). The EC contains a nucleus of 5 μm diameter and thickness of 0.5-1 μm, corresponding to nucleus size 5%-10% of cellular volume, respectively. Analytic calculations based on the electron energy loss formula of Cole were carried out to estimate the dose enhancement to the nucleus caused by photo/Auger electrons from AuNPs attached to the exterior surface of the EC. The nucleus dose enhancement factor (nDEF), representing the ratio of the dose to the nucleus with and without the presence of gold nanoparticles was calculated for different AuNP local concentrations. The investigated concentration range considers the potential for significantly higher local concentration near the EC due to preferential accumulation of AuNP in the tumor vasculature. Four brachytherapy sources: I-125, Pd-103, Yb-169, and 50 kVp x-rays were investigated. For nucleus size of 10% of the cellular volume and AuNP concentrations ranging from 7 to 140 mg/g, brachytherapy sources Pd-103, I-125, 50 kVp, and Yb-169 yielded nDEF values of 5.6-73, 4.8-58.3, 4.7-56.6, and 3.2-25.8, respectively. Meanwhile, for nucleus size 5% of the cellular volume in the same concentration range, Pd-103, I-125, 50 kVp, and Yb-169 yielded nDEF values of 6.9-79.2, 5.1-63.2, 5.0-61.5, and 3.3-28.3, respectively. The results predict that a substantial dose boost to the nucleus of endothelial cells can be achieved by applying tumor vasculature-targeted AuNPs in combination with brachytherapy. Such vascular dose boosts could induce tumor vascular shutdown, prompting extensive tumor cell death.

  1. Gold nanoparticle-aided brachytherapy with vascular dose painting: Estimation of dose enhancement to the tumor endothelial cell nucleus

    Energy Technology Data Exchange (ETDEWEB)

    Ngwa, Wilfred; Makrigiorgos, G. Mike; Berbeco, Ross I. [Department of Radiation Oncology, Division of Medical Physics and Biophysics, Brigham and Women' s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115 (United States)

    2012-01-15

    Purpose: Theoretical microdosimetry at the subcellular level is employed in this study to estimate the dose enhancement to tumor endothelial cell nuclei, caused by radiation-induced photo/Auger electrons originating from gold nanoparticles (AuNPs) targeting the tumor endothelium, during brachytherapy. Methods: A tumor vascular endothelial cell (EC) is modeled as a slab of 2 {mu}m (thickness) x 10 {mu}m (length) x 10 {mu}m (width). The EC contains a nucleus of 5 {mu}m diameter and thickness of 0.5-1 {mu}m, corresponding to nucleus size 5%-10% of cellular volume, respectively. Analytic calculations based on the electron energy loss formula of Cole were carried out to estimate the dose enhancement to the nucleus caused by photo/Auger electrons from AuNPs attached to the exterior surface of the EC. The nucleus dose enhancement factor (nDEF), representing the ratio of the dose to the nucleus with and without the presence of gold nanoparticles was calculated for different AuNP local concentrations. The investigated concentration range considers the potential for significantly higher local concentration near the EC due to preferential accumulation of AuNP in the tumor vasculature. Four brachytherapy sources: I-125, Pd-103, Yb-169, and 50 kVp x-rays were investigated. Results: For nucleus size of 10% of the cellular volume and AuNP concentrations ranging from 7 to 140 mg/g, brachytherapy sources Pd-103, I-125, 50 kVp, and Yb-169 yielded nDEF values of 5.6-73, 4.8-58.3, 4.7-56.6, and 3.2-25.8, respectively. Meanwhile, for nucleus size 5% of the cellular volume in the same concentration range, Pd-103, I-125, 50 kVp, and Yb-169 yielded nDEF values of 6.9-79.2, 5.1-63.2, 5.0-61.5, and 3.3-28.3, respectively. Conclusions: The results predict that a substantial dose boost to the nucleus of endothelial cells can be achieved by applying tumor vasculature-targeted AuNPs in combination with brachytherapy. Such vascular dose boosts could induce tumor vascular shutdown, prompting

  2. Tumor cell killing effect of boronated dipeptide. Boromethylglycylphenylalanine on boron neutron capture therapy for malignant brain tumors

    International Nuclear Information System (INIS)

    Takagaki, Masao; Ono, Koji; Masunaga, Shinichiro; Kinashi, Yuko; Kobayashi, Toru; Oda, Yoshifumi; Kikuchi, Haruhiko; Spielvogel, B.F.

    1994-01-01

    The killing effect of Boron Neutron Capture Therapy; BNCT, is dependant on the boron concentration ratio of tumor to normal brain (T/N ratio), and also that of tumor to blood (T/B ratio). The clinical boron carrier of boro-captate (BSH) showed the large T/N ratio of ca. 8, however the T/B ratio was around 1, which indicated nonselective accumulation into tumor. Indeed high boron concentration of blood restrict the neutron irradiation dose in order to circumvent the normal endothelial damage, especially in the case of deeply seated tumor. Phenylalanine analogue of para borono-phenylalanine (BPA) is an effective boron carrier on BNCT for malignant melanoma. For the BNCT on brain tumors, however, BPA concentration in normal brain was reported to be intolerably high. In order to improve the T/N ratio of BPA in brain, therefore, a dipeptide of boromethylglycylphenylalanine (BMGP) was synthesized deriving from trimethylglycine conjugated with BPA. It is expected to be selectively accumulated into tumor with little uptake into normal brain. Because a dipeptide might not pass through the normal blood brain barrier (BBB). Its killing effect on cultured glioma cell, T98G, and its distribution in rat brain bearing 9L glioma have been investigated in this paper. The BNCT effect of BMGP on cultured cells was nearly triple in comparison with DL-BPA. The neutron dose yielding 1% survival ratio were 7x10 12 nvt for BMGP and 2x10 13 nvt for BPA respectively on BNCT after boron loading for 16 hrs in the same B-10 concentration of 20ppm. Quantitative study of boron concentration via the α-auto radiography and the prompt gamma ray assay on 9L brain tumor rats revealed that T/N ratio and T/B ratio are 12.0 and 3.0 respectively. Those values are excellent for BNCT use. (author)

  3. Exploiting tumor shrinkage through temporal optimization of radiotherapy

    International Nuclear Information System (INIS)

    Unkelbach, Jan; Craft, David; Hong, Theodore; Papp, Dávid; Wolfgang, John; Bortfeld, Thomas; Ramakrishnan, Jagdish; Salari, Ehsan

    2014-01-01

    In multi-stage radiotherapy, a patient is treated in several stages separated by weeks or months. This regimen has been motivated mostly by radiobiological considerations, but also provides an approach to reduce normal tissue dose by exploiting tumor shrinkage. The paper considers the optimal design of multi-stage treatments, motivated by the clinical management of large liver tumors for which normal liver dose constraints prohibit the administration of an ablative radiation dose in a single treatment. We introduce a dynamic tumor model that incorporates three factors: radiation induced cell kill, tumor shrinkage, and tumor cell repopulation. The design of multi-stage radiotherapy is formulated as a mathematical optimization problem in which the total dose to the normal tissue is minimized, subject to delivering the prescribed dose to the tumor. Based on the model, we gain insight into the optimal administration of radiation over time, i.e. the optimal treatment gaps and dose levels. We analyze treatments consisting of two stages in detail. The analysis confirms the intuition that the second stage should be delivered just before the tumor size reaches a minimum and repopulation overcompensates shrinking. Furthermore, it was found that, for a large range of model parameters, approximately one-third of the dose should be delivered in the first stage. The projected benefit of multi-stage treatments in terms of normal tissue sparing depends on model assumptions. However, the model predicts large dose reductions by more than a factor of 2 for plausible model parameters. The analysis of the tumor model suggests that substantial reduction in normal tissue dose can be achieved by exploiting tumor shrinkage via an optimal design of multi-stage treatments. This suggests taking a fresh look at multi-stage radiotherapy for selected disease sites where substantial tumor regression translates into reduced target volumes. (paper)

  4. Tumour vasculature and angiogenic profile of paediatric pilocytic astrocytoma; is it much different from glioblastoma?

    NARCIS (Netherlands)

    Sie, M.; de Bont, E. S. J. M.; Scherpen, F. J. G.; Hoving, E. W.; den Dunnen, W. F. A.

    2010-01-01

    Aims: Pilocytic astrocytomas are the most frequent brain tumours in children. Because of their high vascularity, this study aimed to obtain insights into potential angiogenic related therapeutic targets in these tumours by characterization of the vasculature and the angiogenic profile. In this study

  5. Tumor-associated endothelial cells display GSTP1 and RARβ2 promoter methylation in human prostate cancer

    Directory of Open Access Journals (Sweden)

    Pohida Thomas J

    2006-03-01

    Full Text Available Abstract Background A functional blood supply is essential for tumor growth and proliferation. However, the mechanism of blood vessel recruitment to the tumor is still poorly understood. Ideally, a thorough molecular assessment of blood vessel cells would be critical in our comprehension of this process. Yet, to date, there is little known about the molecular makeup of the endothelial cells of tumor-associated blood vessels, due in part to the difficulty of isolating a pure population of endothelial cells from the heterogeneous tissue environment. Methods Here we describe the use of a recently developed technique, Expression Microdissection, to isolate endothelial cells from the tumor microenvironment. The methylation status of the dissected samples was evaluated for GSTP1 and RARβ2 promoters via the QMS-PCR method. Results Comparing GSTP1 and RARβ2 promoter methylation data, we show that 100% and 88% methylation is detected, respectively, in the tumor areas, both in epithelium and endothelium. Little to no methylation is observed in non-tumor tissue areas. Conclusion We applied an accurate microdissection technique to isolate endothelial cells from tissues, enabling DNA analysis such as promoter methylation status. The observations suggest that epigenetic alterations may play a role in determining the phenotype of tumor-associated vasculature.

  6. White Adipose Tissue Cells Are Recruited by Experimental Tumors and Promote Cancer Progression in Mouse Models

    Science.gov (United States)

    Zhang, Yan; Daquinag, Alexes; Traktuev, Dmitry O.; Amaya-Manzanares, Felipe; Simmons, Paul J.; March, Keith L.; Pasqualini, Renata; Arap, Wadih; Kolonin, Mikhail G.

    2010-01-01

    The connection between obesity and accelerated cancer progression has been established, but the mediating mechanisms are not well understood. We have shown that stromal cells from white adipose tissue (WAT) cooperate with the endothelium to promote blood vessel formation through the secretion of soluble trophic factors. Here, we hypothesize that WAT directly mediates cancer progression by serving as a source of cells that migrate to tumors and promote neovascularization. To test this hypothesis, we have evaluated the recruitment of WAT-derived cells by tumors and the effect of their engraftment on tumor growth by integrating a transgenic mouse strain engineered for expansion of traceable cells with established allograft and xenograft cancer models. Our studies show that entry of adipose stromal and endothelial cells into systemic circulation leads to their homing to and engraftment into tumor stroma and vasculature, respectively. We show that recruitment of adipose stromal cells by tumors is sufficient to promote tumor growth. Finally, we show that migration of stromal and vascular progenitor cells from WAT grafts to tumors is also associated with acceleration of cancer progression. These results provide a biological insight for the clinical association between obesity and cancer, thus outlining potential avenues for preventive and therapeutic strategies. PMID:19491274

  7. 68Ga-DOTA-NGR as a novel molecular probe for APN-positive tumor imaging using MicroPET.

    Science.gov (United States)

    Zhang, Jun; Lu, Xiaoli; Wan, Nan; Hua, Zichun; Wang, Zizheng; Huang, Hongbo; Yang, Min; Wang, Feng

    2014-03-01

    Aminopeptidase N (APN) is selectively expressed on many tumors and the endothelium of tumor neovasculature, and may serve as a promising target for cancer diagnosis and therapy. Asparagine-glycine-arginine (NGR) peptides have been shown to bind specifically to the APN receptor and have served as vehicles for the delivery of various therapeutic drugs in previous studies. The purpose of this study was to synthesize and evaluate the efficacy of a (68)Ga-labeled NGR peptide as a new molecular probe that binds to APN. NGR peptide was conjugated with 1,4,7,10-tetraazacyclododecane-N,N',N",N"'-tetraacetic acid (DOTA) and labeled with (68)Ga at 95°C for 10 min. In vitro uptake and binding analysis was performed with A549 and MDA-MB231 cells. Biodistribution of (68)Ga-DOTA-NGR was determined in normal mice by dissection method. (68)Ga-DOTA-NGR PET was performed in A549 and MDA-MB231 xenografts, and included dynamic and static imaging. APN expression in tumors and new vasculatures was analyzed by immunohistochemistry. The radiochemical purity of (68)Ga-DOTA-NGR was 98.0% ± 1.4% with a specific activity of about 17.49 MBq/nmol. The uptake of (68)Ga-DOTA-NGR in A549 cells increased with longer incubation times, and could be blocked by cold DOTA-NGR, while no specific uptake was found in MDA-MB231 cells. In vivo biodistribution studies showed that (68)Ga-DOTA-NGR was mainly excreted from the kidney, and rapidly cleared from blood and nonspecific organs. MicroPET imaging showed that high focal accumulation had occurred in the tumor site at 1 h post-injection (pi) in A549 tumor xenografts. A significant reduction of tumor uptake was observed following coinjection with a blocking dose of DOTA-NGR, whereas only mild uptake was found in MDA-MB231 tumor xenografts. Tumor uptake, measured as the tumor/lung ratio, increased with time peaking at 12.58 ± 1.26 at 1.5 h pi. Immunohistochemical staining confirmed that APN was overexpressed on A549 cells and neovasculature. (68)Ga

  8. Hypoxic cell turnover in different solid tumor lines

    International Nuclear Information System (INIS)

    Ljungkvist, Anna S.E.; Bussink, Johan; Kaanders, Johannes H.A.M.; Rijken, Paulus F.J.W.; Begg, Adrian C.; Raleigh, James A.; Kogel, Albert J. van der

    2005-01-01

    Purpose: Most solid tumors contain hypoxic cells, and the amount of tumor hypoxia has been shown to have a negative impact on the outcome of radiotherapy. The efficacy of combined modality treatments depends both on the sequence and timing of the treatments. Hypoxic cell turnover in tumors may be important for optimal scheduling of combined modality treatments, especially when hypoxic cell targeting is involved. Methods and Materials: Previously we have shown that a double bioreductive hypoxic marker assay could be used to detect changes of tumor hypoxia in relation to the tumor vasculature after carbogen and hydralazine treatments. This assay was used in the current study to establish the turnover rate of hypoxic cells in three different tumor models. The first hypoxic marker, pimonidazole, was administered at variable times before tumor harvest, and the second hypoxic marker, CCI-103F, was injected at a fixed time before harvest. Hypoxic cell turnover was defined as loss of pimonidazole (first marker) relative to CCI-103F (second marker). Results: The half-life of hypoxic cell turnover was 17 h in the murine C38 colon carcinoma line, 23 h and 49 h in the human xenograft lines MEC82 and SCCNij3, respectively. Within 24 h, loss of pimonidazole-stained areas in C38 and MEC82 occurred concurrent with the appearance of pimonidazole positive cell debris in necrotic regions. In C38 and MEC82, most of the hypoxic cells had disappeared after 48 h, whereas in SCCNij3, viable cells that had been labeled with pimonidazole were still observed after 5 days. Conclusions: The present study demonstrates that the double hypoxia marker assay can be used to study changes in both the proportion of hypoxic tumor cells and their lifespan at the same time. The present study shows that large differences in hypoxic cell turnover rates may exist among tumor lines, with half-lives ranging from 17-49 h

  9. The role of vasculature in bone development, regeneration and proper systemic functioning.

    Science.gov (United States)

    Filipowska, Joanna; Tomaszewski, Krzysztof A; Niedźwiedzki, Łukasz; Walocha, Jerzy A; Niedźwiedzki, Tadeusz

    2017-08-01

    Bone is a richly vascularized connective tissue. As the main source of oxygen, nutrients, hormones, neurotransmitters and growth factors delivered to the bone cells, vasculature is indispensable for appropriate bone development, regeneration and remodeling. Bone vasculature also orchestrates the process of hematopoiesis. Blood supply to the skeletal system is provided by the networks of arteries and arterioles, having distinct molecular characteristics and localizations within the bone structures. Blood vessels of the bone develop through the process of angiogenesis, taking place through different, bone-specific mechanisms. Impaired functioning of the bone blood vessels may be associated with the occurrence of some skeletal and systemic diseases, i.e., osteonecrosis, osteoporosis, atherosclerosis or diabetes mellitus. When a disease or trauma-related large bone defects appear, bone grafting or bone tissue engineering-based strategies are required. However, a successful bone regeneration in both approaches largely depends on a proper blood supply. In this paper, we review the most recent data on the functions, molecular characteristics and significance of the bone blood vessels, with a particular emphasis on the role of angiogenesis and blood vessel functioning in bone development and regeneration, as well as the consequences of its impairment in the course of different skeletal and systemic diseases.

  10. Radiolabeled bivalent haptens for tumor immunodetection and radioimmunotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Gruaz-Guyon, A.; Janevik-Ivanovska, E.; Raguin, O. [Hopital Saint-Antoine, Faculte' de Medecine, Paris (France); De Labriolle-Vaylet, C. [Hopital Saint-Antoine, Faculte' de Medecine, Paris (France); Hopital Saint-Antoine, Service de Medecine Nucleaire, Paris (France); Barbet, J. [Universite' de la Mediterranee, Faculte' de Medecine, Marseille (France)

    2001-06-01

    The pre targeting technique referred to as the Affinity Enhancement System (AES) uses bispecific antibodies and radiolabeled bivalent haptens that bind cooperatively to target cells in vivo. Experimental and clinical data demonstrate that DTPA bivalent haptens can deliver large radiation doses to tumor cells with high tumor to normal tissue contrast ratios and long activity residence time in tumors. Preliminary clinical results of radioimmunotherapy of medullary thyroid carcinomas and lung cancers look promising. Very encouraging results in biodistribution and radioimmunotherapy experiments in animals have been obtained with new haptens bearing two histamine-hemisuccinate suitable for {sup 131}I, {sup 99m}Tc and {sup 188}Re labeling. Targeting isotopes to double antigen positive tumor cells provides a binding enhancement that increases specificity for tumor cells as compared to single antigen targeting on normal cells. This approach may be beneficial for targeting isotopes to B type acute lymphoblastic leukemia and Burkitt lymphoma, as well as others tumors co-expressing two markers of low specificity, and might increase tumor irradiation with minimal irradiation of normal cells.

  11. Radiolabeled bivalent haptens for tumor immunodetection and radioimmunotherapy

    International Nuclear Information System (INIS)

    Gruaz-Guyon, A.; Janevik-Ivanovska, E.; Raguin, O.; De Labriolle-Vaylet, C.; Barbet, J.

    2001-01-01

    The pre targeting technique referred to as the Affinity Enhancement System (AES) uses bispecific antibodies and radiolabeled bivalent haptens that bind cooperatively to target cells in vivo. Experimental and clinical data demonstrate that DTPA bivalent haptens can deliver large radiation doses to tumor cells with high tumor to normal tissue contrast ratios and long activity residence time in tumors. Preliminary clinical results of radioimmunotherapy of medullary thyroid carcinomas and lung cancers look promising. Very encouraging results in biodistribution and radioimmunotherapy experiments in animals have been obtained with new haptens bearing two histamine-hemisuccinate suitable for 131 I, 99m Tc and 188 Re labeling. Targeting isotopes to double antigen positive tumor cells provides a binding enhancement that increases specificity for tumor cells as compared to single antigen targeting on normal cells. This approach may be beneficial for targeting isotopes to B type acute lymphoblastic leukemia and Burkitt lymphoma, as well as others tumors co-expressing two markers of low specificity, and might increase tumor irradiation with minimal irradiation of normal cells

  12. Feasibility of boron neutron capture therapy for malignant spinal tumors

    International Nuclear Information System (INIS)

    Nakai, Kei; Kumada, Hiroaki; Yamamoto, Tetsuya; Tsurubuchi, Takao; Zaboronok, Alexander; Matsumura, Akira

    2009-01-01

    Treatment of malignant spinal cord tumors is currently ineffective. The characteristics of the spine are its seriality, small volume, and vulnerability: severe QOL impairment can be brought about by small neuronal damage. The present study aimed to investigate the feasibility of BNCT as a tumor-selective charged particle therapy for spinal cord tumors from the viewpoint of protecting the normal spine. A previous report suggested the tolerance dose of the spinal cord was 13.8 Gy-Eq for radiation myelopathy; a dose as high as 11 Gy-Eq demonstrated no spinal cord damage in an experimental animal model. We calculated the tumor dose and the normal spinal cord dose on a virtual model of a spinal cord tumor patient with a JAEA computational dosimetry system (JCDS) treatment planning system. The present study made use of boronophenylalanine (BPA). In these calculations, conditions were set as follows: tumor/normal (T/N) ratio of 3.5, blood boron concentration of 12 ppm, tumor boron concentration of 42 ppm, and relative biological effectiveness (RBE) values for tumor and normal spinal cord of 3.8 and 1.35, respectively. We examined how to optimize neutron irradiation by changing the beam direction and number. In our theoretical example, simple opposed two-field irradiation achieved 28.0 Gy-Eq as a minimum tumor dose and 7.3 Gy-Eq as a maximum normal spinal dose. The BNCT for the spinal cord tumor was therefore feasible when a sufficient T/N ratio could be achieved. The use of F-BPA PET imaging for spinal tumor patients is supported by this study.

  13. SU-F-J-220: Micro-CT Based Quantification of Mouse Brain Vasculature: The Effects of Acquisition Technique and Contrast Material

    International Nuclear Information System (INIS)

    Tipton, C; Lamba, M; Qi, Z; LaSance, K; Tipton, C

    2016-01-01

    Purpose: Cognitive impairment from radiation therapy to the brain may be linked to the loss of total blood volume in the brain. To account for brain injury, it is crucial to develop an understanding of blood volume loss as a result of radiation therapy. This study investigates µCT based quantification of mouse brain vasculature, focusing on the effect of acquisition technique and contrast material. Methods: Four mice were scanned on a µCT scanner (Siemens Inveon). The reconstructed voxel size was 18µm3 and all protocols were Hounsfield Unit (HU) calibrated. The mice were injected with 40mg of gold nanoparticles (MediLumine) or 100µl of Exitron 12000 (Miltenyi Biotec). Two acquisition techniques were also performed. A single kVp technique scanned the mouse once using an x-ray beam of 80kVp and segmentation was completed based on a threshold of HU values. The dual kVp technique scanned the mouse twice using 50kVp and 80kVp, this segmentation was based on the ratio of the HU value of the two kVps. After image reconstruction and segmentation, the brain blood volume was determined as a percentage of the total brain volume. Results: For the single kVp acquisition at 80kVp, the brain blood volume had an average of 3.5% for gold and 4.0% for Exitron 12000. Also at 80kVp, the contrast-noise ratio was significantly better for images acquired with the gold nanoparticles (2.0) than for those acquired with the Exitron 12000 (1.4). The dual kVp acquisition shows improved separation of skull from vasculature, but increased image noise. Conclusion: In summary, the effects of acquisition technique and contrast material for quantification of mouse brain vasculature showed that gold nanoparticles produced more consistent segmentation of brain vasculature than Exitron 12000. Also, dual kVp acquisition may improve the accuracy of brain vasculature quantification, although the effect of noise amplification warrants further study.

  14. SU-F-J-220: Micro-CT Based Quantification of Mouse Brain Vasculature: The Effects of Acquisition Technique and Contrast Material

    Energy Technology Data Exchange (ETDEWEB)

    Tipton, C; Lamba, M; Qi, Z; LaSance, K; Tipton, C [University of Cincinnati College of Medicine, Cincinnati, OH (United States)

    2016-06-15

    Purpose: Cognitive impairment from radiation therapy to the brain may be linked to the loss of total blood volume in the brain. To account for brain injury, it is crucial to develop an understanding of blood volume loss as a result of radiation therapy. This study investigates µCT based quantification of mouse brain vasculature, focusing on the effect of acquisition technique and contrast material. Methods: Four mice were scanned on a µCT scanner (Siemens Inveon). The reconstructed voxel size was 18µm3 and all protocols were Hounsfield Unit (HU) calibrated. The mice were injected with 40mg of gold nanoparticles (MediLumine) or 100µl of Exitron 12000 (Miltenyi Biotec). Two acquisition techniques were also performed. A single kVp technique scanned the mouse once using an x-ray beam of 80kVp and segmentation was completed based on a threshold of HU values. The dual kVp technique scanned the mouse twice using 50kVp and 80kVp, this segmentation was based on the ratio of the HU value of the two kVps. After image reconstruction and segmentation, the brain blood volume was determined as a percentage of the total brain volume. Results: For the single kVp acquisition at 80kVp, the brain blood volume had an average of 3.5% for gold and 4.0% for Exitron 12000. Also at 80kVp, the contrast-noise ratio was significantly better for images acquired with the gold nanoparticles (2.0) than for those acquired with the Exitron 12000 (1.4). The dual kVp acquisition shows improved separation of skull from vasculature, but increased image noise. Conclusion: In summary, the effects of acquisition technique and contrast material for quantification of mouse brain vasculature showed that gold nanoparticles produced more consistent segmentation of brain vasculature than Exitron 12000. Also, dual kVp acquisition may improve the accuracy of brain vasculature quantification, although the effect of noise amplification warrants further study.

  15. Number and location of mouse mammary tumor virus proviral DNA in mouse DNA of normal tissue and of mammary tumors.

    Science.gov (United States)

    Groner, B; Hynes, N E

    1980-01-01

    The Southern DNA filter transfer technique was used to characterize the genomic location of the mouse mammary tumor proviral DNA in different inbred strains of mice. Two of the strains (C3H and CBA) arose from a cross of a Bagg albino (BALB/c) mouse and a DBA mouse. The mouse mammary tumor virus-containing restriction enzyme DNA fragments of these strains had similar patterns, suggesting that the proviruses of these mice are in similar genomic locations. Conversely, the pattern arising from the DNA of the GR mouse, a strain genetically unrelated to the others, appeared different, suggesting that its mouse mammary tumor proviruses are located in different genomic sites. The structure of another gene, that coding for beta-globin, was also compared. The mice strains which we studied can be categorized into two classes, expressing either one or two beta-globin proteins. The macroenvironment of the beta-globin gene appeared similar among the mice strains belonging to one genetic class. Female mice of the C3H strain exogenously transmit mouse mammary tumor virus via the milk, and their offspring have a high incidence of mammary tumor occurrence. DNA isolated from individual mammary tumors taken from C3H mice or from BALB/c mice foster nursed on C3H mothers was analyzed by the DNA filter transfer technique. Additional mouse mammary tumor virus-containing fragments were found in the DNA isolated from each mammary tumor. These proviral sequences were integrated into different genomic sites in each tumor. Images PMID:6245257

  16. Computer tomographic examination of the thymus. Normal and pathological findings

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, C.; Dinkel, E.; Wimmer, B.; Grosser, G.; Schildge, J.

    1987-09-01

    The diagnostic value of CT in follicular thymic hyperplasia and in thymomas in 8 patients with myasthenia gravis and in 12 patients without myasthenia gravis suffering from thymic tumors was evaluated by correlating CT-findings to surgical results and pathological-histological findings. Thymic size of the six patients with histologically proven follicular hyperplasia were scattered within the normal range, but half of them were at the upper limit. Thymic tumors were differentiated between invasive and non invasive tumors by CT staging. Solid tumors with different histology could not be further classified; the attenuation values ranging from 15-55 HU were the same in tumors, follicular hyperplasia and normal thymus.

  17. Effect of sodium nitroprusside-induced hypotension on the blood flow in subcutaneous and intramuscular BT4An tumors and normal tissues in rats

    International Nuclear Information System (INIS)

    Krossnes, Baard Kronen; Mella, Olav; Tyssebotn, Ingvald

    1996-01-01

    Purpose: To examine the effect of infusion of the vasodilator sodium nitroprusside (SNP) on the blood flow in normal tissues and BT 4 An tumors growing subcutaneously or intramusculary in BD IX rats. Methods and Materials: Sodium nitroprusside was given as a continuous intravenous infusion to keep the mean arterial pressure stable at 60 mmHg. The cardiac output, organ blood flow, and perfusion of the BT 4 An tumors were measured by injection of radiolabelled microspheres at control conditions and after 20 min SNP infusion in each animal. Two series of experiments were performed with two anesthetics with different mechanisms of action, Inactin and the midazolam-fentanyl-fluanisone combination (MFF), to secure reliable conclusions. Results: Cardiac output, heart rate, and blood flow to the skeletal muscles, heart, and liver increased during SNP infusion in either anesthetic group. In the kidneys and particularly in the skin, decreased blood flow by SNP was observed. When located subcutaneously on the foot, the blood flow in the tumor fell to 23.4% and 21.4% of the control values in the MFF- and Inactin-anesthetized animals, respectively. This was accompanied by a similar fall in the blood flow in the foot (tumor bed) itself. In the intramuscular tumor the blood flow fell to 24.8% of the control value in the MFF group, whereas the corresponding figure was 36.2% in the Inactin group. In the surrounding muscle (tumor bed) the blood flow increased significantly, most pronounced in the MFF experiment, where it was tripled. Conclusion: The fall in the tumor perfusion by SNP may be exploited therapeutically to increase the tumor temperature during hyperthermia. Predominant heating of the tumor compared to the tumor bed can be expected if the tumor is growing in or near skeletal muscles

  18. Mechanism and Natural Course of Tumor Involution in Hepatocellular Carcinoma Following Transarterial Ethanol Ablation

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Simon Chun Ho, E-mail: simonyu@cuhk.edu.hk; Lau, Tiffany Wing Wa; Tang, Peggy; Chan, Stephen Ka Chi; Chu, Charmant Cheuk Man; Hui, Joyce Wai Yi [The Chinese University of Hong Kong, Department of Imaging and Interventional Radiology, Prince of Wales Hospital (Hong Kong); Lee, Kit Fai [Prince of Wales Hospital, Department of Surgery (Hong Kong); Chan, Anthony [The Chinese University of Hong Kong, Department of Anatomical and Cellular Pathology (Hong Kong)

    2016-08-15

    PurposeTo evaluate the microvascular distribution of lipiodol–ethanol, the histological change of the tumor lesion, and the status of tumor involution over time in hepatocellular carcinoma (HCC) following transarterial ethanol ablation (TEA), in lesions that showed CT evidence of complete tumor response.Materials and methodsPatients with unresectable HCC were treated (183 patients, 242 lesions) with TEA using lipiodol–ethanol mixture (LEM) mixed in 2:1 ratio by volume and followed with CT at 3-month intervals for a median of 14.1 months. Liver tumors (n = 131) that showed CT evidence of complete tumor response, defined as the absence of any enhancing tumor throughout the follow-up period, were included. The surgical specimens of five patients who subsequently received partial hepatectomy were available for histological assessment. The microvascular distribution of LEM and the degree of tumor necrosis were analyzed. Tumor involution over time was assessed with CT in lesions that showed complete response.ResultsLipid stain revealed lipiodol infiltration throughout arterioles, intratumoral sinusoidal spaces, tumor capsule, and peritumoral portal venules. Complete tumor necrosis (100 %) occurred in all 5 surgical specimens. The median (IQR) percentage tumor volume compared to baseline volumes at 12, 36, and 60 months was 32 % (23.5–52.5 %), 22 % (8–31 %), and 13.5 % (6–21.5 %), respectively.ConclusionIntrahepatic HCC lesion that showed CT evidence of complete tumor response following TEA is associated with histological evidence of LEM infiltration throughout the intratumoral and peritumoral vasculature and complete tumor necrosis, as well as sustained reduction in tumor volume over time.

  19. Probenecid inhibits α-adrenergic receptor-mediated vasoconstriction in the human leg vasculature

    DEFF Research Database (Denmark)

    Nyberg, Michael Permin; Piil, Peter Bergmann; Kiehn, Oliver Thistrup

    2018-01-01

    to α1- and α2-adrenergic receptor stimulation in the human forearm and leg vasculature of young healthy male subjects (23±3 years). By use of immunolabeling and confocal microscopy, Panx1 channels were found to be expressed in vascular smooth muscle cells of arterioles in human leg skeletal muscle....... Probenecid treatment increased (Padrenergic receptor stimulation) by ≈15%, whereas the response to the α1-agonist phenylephrine was unchanged. Inhibition...

  20. Central nervous system tumors

    International Nuclear Information System (INIS)

    Curran, W.J. Jr.

    1991-01-01

    Intrinsic tumors of the central nervous system (CNS) pose a particularly challenging problem to practicing oncologists. These tumors rarely metastasize outside the CNS, yet even histologically benign tumors can be life-threatening due to their local invasiveness and strategic location. The surrounding normal tissues of the nervous system is often incapable of full functional regeneration, therefore prohibiting aggressive attempts to use either complete surgical resection or high doses of irradiation. Despite these limitations, notable achievements have recently been recorded in the management of these tumors

  1. Studies into the transplantation biology of ultraviolet light-induced tumors

    International Nuclear Information System (INIS)

    Daynes, R.A.; Spellman, C.W.; Woodward, J.G.; Stewart, D.A.

    1977-01-01

    The majority of skin tumors induced in mice by ultraviolet (uv) light are rejected when implanted into normal syngeneic recipients. Subcarcinogenic levels of uv light exposure render the normally resistant mice susceptible to tumor challenge. The immunoregulatory effect of uv light appears to be additive, since the growth rate of a tumor transplant is dependent upon the length of uv exposure administered prior to implantation. This suppressive influence does not appear to be directly mediated by the uv light, because the amputation of uv-irradiated tail skin allows for a retention of tumor resistance in otherwise tumor-susceptible hosts. uv-irradiated mice could also be immunized against uv tumors, which suggests that immune recognition of tumor-specific transplantation antigens has not been inhibited. The ability of uv exposure to alter normal immunological reactivity to uv-induced tumors is possibly an integral factor in the mechanism underlying uv carcinogenesis

  2. RGD-based strategies for selective delivery of therapeutics and imaging agents to the tumour vasculature

    NARCIS (Netherlands)

    Temming, K; Molema, G; Kok, RJ

    2005-01-01

    During the past decade, RGD-peptides have become a popular tool for the targeting of drugs and imaging agents to a(v)beta(3)-integrin expressing tumour vasculature. RGD-peptides have been introduced by recombinant means into therapeutic proteins and viruses. Chemical means have been applied to

  3. Hypofractionation Regimens for Stereotactic Radiotherapy for Large Brain Tumors

    International Nuclear Information System (INIS)

    Yuan Jiankui; Wang, Jian Z.; Lo, Simon; Grecula, John C.; Ammirati, Mario; Montebello, Joseph F.; Zhang Hualin; Gupta, Nilendu; Yuh, William T.C.; Mayr, Nina A.

    2008-01-01

    Purpose: To investigate equivalent regimens for hypofractionated stereotactic radiotherapy (HSRT) for brain tumor treatment and to provide dose-escalation guidance to maximize the tumor control within the normal brain tolerance. Methods and Materials: The linear-quadratic model, including the effect of nonuniform dose distributions, was used to evaluate the HSRT regimens. The α/β ratio was estimated using the Gammaknife stereotactic radiosurgery (GKSRS) and whole-brain radiotherapy experience for large brain tumors. The HSRT regimens were derived using two methods: (1) an equivalent tumor control approach, which matches the whole-brain radiotherapy experience for many fractions and merges it with the GKSRS data for few fractions; and (2) a normal-tissue tolerance approach, which takes advantages of the dose conformity and fractionation of HSRT to approach the maximal dose tolerance of the normal brain. Results: A plausible α/β ratio of 12 Gy for brain tumor and a volume parameter n of 0.23 for normal brain were derived from the GKSRS and whole-brain radiotherapy data. The HSRT prescription regimens for the isoeffect of tumor irradiation were calculated. The normal-brain equivalent uniform dose decreased as the number of fractions increased, because of the advantage of fractionation. The regimens for potential dose escalation of HSRT within the limits of normal-brain tolerance were derived. Conclusions: The designed hypofractionated regimens could be used as a preliminary guide for HSRT dose prescription for large brain tumors to mimic the GKSRS experience and for dose escalation trials. Clinical studies are necessary to further tune the model parameters and validate these regimens

  4. CT differentiation of solid ovarian tumor and uterine subserosal leiomyoma

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung Rae; Cho, Kyoung Sik [Asan Medical Center, Ulsan Univ. College of Medicine, Seoul (Korea, Republic of); Sohn, Chul Ho [Dongsan Medical Center, Keimyung Univ. College of Medicine, Taegu (Korea, Republic of); Ji, Eun Kyung [Bombit Hospital, Seoul (Korea, Republic of)

    1999-06-01

    On the basis of CT findings, to differentiate between solid ovarian tumor and uterine subserosal myoma. In eight surgically proven cases of solid ovarian tumor and in ten uterine subserosal myoma patients, contrast-enhanced CT images were obtained. Two genitourinary radiologists reviewed the findings with regard to degree of enhancement of the mass as compared with enhancement of uterine myometrium, thickening of round ligaments, visualization of normal ovaries, contour of the mass, and the presence of ascites in the pelvic cavity. Six of eight ovarian tumors but only two of ten uterine myomas were less enhanced than normal uterine myometrium (p<0.05). Pelvic ascites were seen in six of eight ovarian tumors, but in only one of ten uterine myomas (P<0.05). Three of 16 ovaries in ovarian tumor patients, but 12 of 20 ovaries in uterine myoma patients, were normal (p<0.05). Six of 16 round ligaments of the uterus in ovarian tumor patients, were thichened but 11 of 20 round ligaments in uterine myoma patients, were thickened (p>0.05). The contour of the mass was lobulated in two of eight ovarian tumor patients, but in five of ten uterine myoma patients (p>0.05). CT findings suggestive of solid ovarian tumor were less contrast enhancement of the mass than of normal uterine myometrium, pelvic ascites, and nonvisualization of normal ovary.

  5. Functional malignant cell heterogeneity in pancreatic neuroendocrine tumors revealed by targeting of PDGF-DD.

    Science.gov (United States)

    Cortez, Eliane; Gladh, Hanna; Braun, Sebastian; Bocci, Matteo; Cordero, Eugenia; Björkström, Niklas K; Miyazaki, Hideki; Michael, Iacovos P; Eriksson, Ulf; Folestad, Erika; Pietras, Kristian

    2016-02-16

    Intratumoral heterogeneity is an inherent feature of most human cancers and has profound implications for cancer therapy. As a result, there is an emergent need to explore previously unmapped mechanisms regulating distinct subpopulations of tumor cells and to understand their contribution to tumor progression and treatment response. Aberrant platelet-derived growth factor receptor beta (PDGFRβ) signaling in cancer has motivated the development of several antagonists currently in clinical use, including imatinib, sunitinib, and sorafenib. The discovery of a novel ligand for PDGFRβ, platelet-derived growth factor (PDGF)-DD, opened the possibility of a previously unidentified signaling pathway involved in tumor development. However, the precise function of PDGF-DD in tumor growth and invasion remains elusive. Here, making use of a newly generated Pdgfd knockout mouse, we reveal a functionally important malignant cell heterogeneity modulated by PDGF-DD signaling in pancreatic neuroendocrine tumors (PanNET). Our analyses demonstrate that tumor growth was delayed in the absence of signaling by PDGF-DD. Surprisingly, ablation of PDGF-DD did not affect the vasculature or stroma of PanNET; instead, we found that PDGF-DD stimulated bulk tumor cell proliferation by induction of paracrine mitogenic signaling between heterogeneous malignant cell clones, some of which expressed PDGFRβ. The presence of a subclonal population of tumor cells characterized by PDGFRβ expression was further validated in a cohort of human PanNET. In conclusion, we demonstrate a previously unrecognized heterogeneity in PanNET characterized by signaling through the PDGF-DD/PDGFRβ axis.

  6. Use of computed tomography and automated software for quantitative analysis of the vasculature of patients with pulmonary hypertension

    Energy Technology Data Exchange (ETDEWEB)

    Wada, Danilo Tadao; Pádua, Adriana Ignácio de; Lima Filho, Moyses Oliveira; Marin Neto, José Antonio; Elias Júnior, Jorge; Baddini-Martinez, José; Santos, Marcel Koenigkam, E-mail: danilowada@yahoo.com.br [Universidade de São Paulo (HCFMRP/USP), Ribeirão Preto, SP (Brazil). Faculdade de Medicina. Hospital das Clínicas

    2017-11-15

    Objective: To perform a quantitative analysis of the lung parenchyma and pulmonary vasculature of patients with pulmonary hypertension (PH) on computed tomography angiography (CTA) images, using automated software. Materials And Methods: We retrospectively analyzed the CTA findings and clinical records of 45 patients with PH (17 males and 28 females), in comparison with a control group of 20 healthy individuals (7 males and 13 females); the mean age differed significantly between the two groups (53 ± 14.7 vs. 35 ± 9.6 years; p = 0.0001). Results: The automated analysis showed that, in comparison with the controls, the patients with PH showed lower 10{sup th} percentile values for lung density, higher vascular volumes in the right upper lung lobe, and higher vascular volume ratios between the upper and lower lobes. In our quantitative analysis, we found no differences among the various PH subgroups. We inferred that a difference in the 10{sup th} percentile values indicates areas of hypovolaemia in patients with PH and that a difference in pulmonary vascular volumes indicates redistribution of the pulmonary vasculature and an increase in pulmonary vasculature resistance. Conclusion: Automated analysis of pulmonary vessels on CTA images revealed alterations and could represent an objective diagnostic tool for the evaluation of patients with PH. (author)

  7. Quantitative Methylation Profiles for Multiple Tumor Suppressor Gene Promoters in Salivary Gland Tumors

    Science.gov (United States)

    Durr, Megan L.; Mydlarz, Wojciech K.; Shao, Chunbo; Zahurak, Marianna L.; Chuang, Alice Y.; Hoque, Mohammad O.; Westra, William H.; Liegeois, Nanette J.; Califano, Joseph A.; Sidransky, David; Ha, Patrick K.

    2010-01-01

    Background Methylation profiling of tumor suppressor gene (TSGs) promoters is quickly becoming a powerful diagnostic tool for the early detection, prognosis, and even prediction of clinical response to treatment. Few studies address this in salivary gland tumors (SGTs); hence the promoter methylation profile of various TSGs was quantitatively assessed in primary SGT tissue to determine if tumor-specific alterations could be detected. Methodology DNA isolated from 78 tumor and 17 normal parotid gland specimens was assayed for promoter methylation status of 19 TSGs by fluorescence-based, quantitative methylation-specific PCR (qMSP). The data were utilized in a binary fashion as well as quantitatively (using a methylation quotient) allowing for better profiling and interpretation of results. Principal Findings The average number of methylation events across the studied genes was highest in salivary duct carcinoma (SDC), with a methylation value of 9.6, compared to the normal 4.5 (ptrend for increasing methylation in APC, Mint 1, PGP9.5, RAR-β, and Timp3. Conclusions/Significance Screening promoter methylation profiles in SGTs showed considerable heterogeneity. The methylation status of certain markers was surprisingly high in even normal salivary tissue, confirming the need for such controls. Several TSGs were found to be associated with malignant SGTs, especially SDC. Further study is needed to evaluate the potential use of these associations in the detection, prognosis, and therapeutic outcome of these rare tumors. PMID:20520817

  8. Surgical treatment of tumor-induced osteomalacia: a retrospective review of 40 cases with extremity tumors.

    Science.gov (United States)

    Sun, Zhi-jian; Jin, Jin; Qiu, Gui-xing; Gao, Peng; Liu, Yong

    2015-02-26

    Tumor-induced osteomalacia (TIO) is a rare syndrome typically caused by mesenchymal tumors. It has been shown that complete tumor resection may be curative. However, to our knowledge, there has been no report of a large cohort to exam different surgical approaches. This study was aimed to assess outcomes of different surgical options of patients with tumor-induced osteomalacia at a single institution. Patients with extremity tumors treated in our hospital from January, 2004 to July, 2012 were identified. The minimum follow-up period was 12 months. Patient's demography, tumor location, preoperative preparation, type of surgeries were summarized, and clinical outcomes were recorded. Successful treatment was defined as significant symptom improvement, normal serum phosphorus and significant improvement or normalization of bone mineral density at the last follow-up. Differences between patients with soft tissue tumors and bone tumors were compared. There were 40 (24 male and 16 female) patients identified, with an average age of 44 years. The tumors were isolated in either soft tissue (25 patients) or bone (12 patients) and combined soft tissue and bone invasion was observed in 3 patients. For the primary surgery, tumor resection and tumor curettage were performed. After initial surgical treatment, six patients then received a second surgery. Four patients were found to have malignant tumors base on histopathology. With a minimum follow-up period of 12 months, 80% of patients (32/40) were treated successfully, including 50% of patients (2/4) with malignant tumors. Compared to patients with bone tumor, surgical results were better in patient with soft tissue tumor. Surgical treatment was an effective way for TIO. Other than tumor curettage surgery, tumor resection is the preferred options for these tumors.

  9. Angiofibroma of soft tissue: clinicopathologic study of 2 cases of a recently characterized benign soft tissue tumor.

    Science.gov (United States)

    Zhao, Ming; Sun, Ke; Li, Changshui; Zheng, Jiangjiang; Yu, Jingjing; Jin, Jie; Xia, Wenping

    2013-01-01

    Angiofibroma of soft tissue is a very recently characterized, histologically distinctive benign mesenchymal neoplasm of unknown cellular origin composed of 2 principal components, the spindle cell component and very prominent stromal vasculatures. It usually occurs in middle-aged adults, with a female predominance. Herein, we describe the clinical and pathologic details of 2 other examples of this benign tumor. Both patients were middle-aged male and presented with a slow-growing, painless mass located in the deep-seated soft tissue of thigh and left posterior neck region, respectively. Grossly, both tumors were well-demarcated, partial encapsulated of a grayish-white color with firm consistence. Histologically, one case showed morphology otherwise identical to those have been described before, whereas the other case showed in areas being more cellular than most examples of this subtype tumor had, with the lesional cells frequently exhibiting short fascicular, vaguely storiform and occasionally swirling arrangements, which posed a challenging differential diagnosis. Immunostains performed on both tumors did not confirm any specific cell differentiation with lesional cells only reactive for vimentin and focally desmin and negative for all the other markers tested. This report serves to broaden the morphologic spectrum of angiofibroma of soft tumor. Awareness of this tumor is important to prevent misdiagnosis as other more aggressive soft tissue tumor.

  10. Detecting Vascular-Targeting Effects of the Hypoxic Cytotoxin Tirapazamine in Tumor Xenografts Using Magnetic Resonance Imaging

    International Nuclear Information System (INIS)

    Bains, Lauren J.; Baker, Jennifer; Kyle, Alastair H.; Minchinton, Andrew I.; Reinsberg, Stefan A.

    2009-01-01

    Purpose: To determine whether vascular-targeting effects can be detected in vivo using magnetic resonance imaging (MRI). Methods and Materials: MR images of HCT-116 xenograft-bearing mice were acquired at 7 Tesla before and 24 hours after intraperitoneal injections of tirapazamine. Quantitative dynamic contrast-enhanced MRI analyses were performed to evaluate changes in tumor perfusion using two biomarkers: the volume transfer constant (K trans ) and the initial area under the concentration-time curve (IAUC). We used novel implanted fiducial markers to obtain cryosections that corresponded to MR image planes from excised tumors; quantitative immunohistochemical mapping of tumor vasculature, perfusion, and necrosis enabled correlative analysis between these and MR images. Results: Conventional histological analysis showed lower vascular perfusion or greater amounts of necrosis in the central regions of five of eight tirapazamine-treated tumors, with three treated tumors showing no vascular dysfunction response. MRI data reflected this result, and a striking decrease in both K trans and IAUC values was seen with the responsive tumors. Retrospective evaluation of pretreatment MRI parameters revealed that those tumors that did not respond to the vascular-targeting effects of tirapazamine had significantly higher pretreatment K trans and IAUC values. Conclusions: MRI-derived parameter maps showed good agreement with histological tumor mapping. MRI was found to be an effective tool for noninvasively monitoring and predicting tirapazamine-mediated central vascular dysfunction.

  11. Central nervous system tumors

    International Nuclear Information System (INIS)

    Gavin, P.R.; Fike, J.R.; Hoopes, P.J.

    1995-01-01

    Central nervous system (CNS) tumors are relatively common in veterinary medicine, with most diagnoses occurring in the canine and feline species. Numerous tumor types from various cells or origins have been identified with the most common tumors being meningiomas and glial cell tumors. Radiation therapy is often used as an aid to control the clinical signs associated with these neoplasms. In general, these tumors have a very low metastatic potential, such that local control offers substantial benefit. Experience in veterinary radiation oncology would indicate that many patients benefit from radiation treatment. Current practice indicates the need for computed tomography or magnetic resonance imaging studies. These highly beneficial studies are used for diagnosis, treatment planning, and to monitor treatment response. Improvements in treatment planning and radiation delivered to the tumor, while sparing the normal tissues, should improve local control and decrease potential radiation related problems to the CNS. When possible, multiple fractions of 3 Gy or less should be used. The tolerance dose to the normal tissue with this fractionation schedule is 50 to 55 Gy. The most common and serious complications of radiation for CNS tumors is delayed radiation myelopathy and necrosis. Medical management of the patient during radiation therapy requires careful attention to anesthetic protocols, and medications to reduce intracranial pressure that is often elevated in these patients. Canine brain tumors have served as an experimental model to test numerous new treatments. Increased availability of advanced imaging modalities has spawned increased detection of these neoplasms. Early detection of these tumors with appropriate aggressive therapy should prove beneficial to many patients

  12. Early Effects of Combretastatin A4 Phosphate Assessed by Anatomic and Carbogen-Based Functional Magnetic Resonance Imaging on Rat Bladder Tumors Implanted in Nude Mice1

    Science.gov (United States)

    Thomas, Carole D.; Walczak, Christine; Kaffy, Julia; Pontikis, Renée; Jouanneau, Jacqueline; Volk, Andreas

    2006-01-01

    Abstract Combretastatin A4 phosphate (CA4P) causes rapid disruption of the tumor vasculature and is currently being evaluated for antivascular therapy. We describe the initial results obtained with a noninvasive multi-parametric magnetic resonance imaging (MRI) approach to assess the early effects of CA4P on rat bladder tumors implanted on nude mice. MRI (4.7 T) comprised a fast spin-echo sequence for growth curve assessment; a multislice multiecho sequence for T2 measurement before, 15 minutes after, and 24 hours after CA4P (100 mg/kg); and a fast T2w* gradient-echo sequence to assess MR signal modification under carbogen breathing before, 35 minutes after, and 24 hours after CA4P. The tumor fraction with increased T2w* signal intensity under carbogen (T+) was used to quantify CA4P effect on functional vasculature. CA4P slowed tumor growth over 24 hours and accelerated necrosis development. T+ decrease was observed already at 35 minutes post-CA4P. Early T2 increase was observed in regions becoming necrotic at 24 hours post-CA4P, as confirmed by high T2 and histology. These regions exhibited, under carbogen, a switch from T2w* signal increase before CA4P to a decrease post-CA4P. The combination of carbogen-based functional MRI and T2 measurement may be useful for the early follow-up of antivascular therapy without the administration of contrast agents. PMID:16867221

  13. Groupwise registration of MR brain images with tumors

    Science.gov (United States)

    Tang, Zhenyu; Wu, Yihong; Fan, Yong

    2017-09-01

    A novel groupwise image registration framework is developed for registering MR brain images with tumors. Our method iteratively estimates a normal-appearance counterpart for each tumor image to be registered and constructs a directed graph (digraph) of normal-appearance images to guide the groupwise image registration. Particularly, our method maps each tumor image to its normal appearance counterpart by identifying and inpainting brain tumor regions with intensity information estimated using a low-rank plus sparse matrix decomposition based image representation technique. The estimated normal-appearance images are groupwisely registered to a group center image guided by a digraph of images so that the total length of ‘image registration paths’ to be the minimum, and then the original tumor images are warped to the group center image using the resulting deformation fields. We have evaluated our method based on both simulated and real MR brain tumor images. The registration results were evaluated with overlap measures of corresponding brain regions and average entropy of image intensity information, and Wilcoxon signed rank tests were adopted to compare different methods with respect to their regional overlap measures. Compared with a groupwise image registration method that is applied to normal-appearance images estimated using the traditional low-rank plus sparse matrix decomposition based image inpainting, our method achieved higher image registration accuracy with statistical significance (p  =  7.02  ×  10-9).

  14. Video-rate resonant scanning multiphoton microscopy: An emerging technique for intravital imaging of the tumor microenvironment.

    Science.gov (United States)

    Kirkpatrick, Nathaniel D; Chung, Euiheon; Cook, Daniel C; Han, Xiaoxing; Gruionu, Gabriel; Liao, Shan; Munn, Lance L; Padera, Timothy P; Fukumura, Dai; Jain, Rakesh K

    2012-01-01

    The abnormal tumor microenvironment fuels tumor progression, metastasis, immune suppression, and treatment resistance. Over last several decades, developments in and applications of intravital microscopy have provided unprecedented insights into the dynamics of the tumor microenvironment. In particular, intravital multiphoton microscopy has revealed the abnormal structure and function of tumor-associated blood and lymphatic vessels, the role of aberrant tumor matrix in drug delivery, invasion and metastasis of tumor cells, the dynamics of immune cell trafficking to and within tumors, and gene expression in tumors. However, traditional multiphoton microscopy suffers from inherently slow imaging rates-only a few frames per second, thus unable to capture more rapid events such as blood flow, lymphatic flow, and cell movement within vessels. Here, we report the development and implementation of a video-rate multiphoton microscope (VR-MPLSM) based on resonant galvanometer mirror scanning that is capable of recording at 30 frames per second and acquiring intravital multispectral images. We show that the design of the system can be readily implemented and is adaptable to various experimental models. As examples, we demonstrate the utility of the system to directly measure flow within tumors, capture metastatic cancer cells moving within the brain vasculature and cells in lymphatic vessels, and image acute responses to changes in a vascular network. VR-MPLSM thus has the potential to further advance intravital imaging and provide new insight into the biology of the tumor microenvironment.

  15. Mutation Detection in Patients With Advanced Cancer by Universal Sequencing of Cancer-Related Genes in Tumor and Normal DNA vs Guideline-Based Germline Testing.

    Science.gov (United States)

    Mandelker, Diana; Zhang, Liying; Kemel, Yelena; Stadler, Zsofia K; Joseph, Vijai; Zehir, Ahmet; Pradhan, Nisha; Arnold, Angela; Walsh, Michael F; Li, Yirong; Balakrishnan, Anoop R; Syed, Aijazuddin; Prasad, Meera; Nafa, Khedoudja; Carlo, Maria I; Cadoo, Karen A; Sheehan, Meg; Fleischut, Megan H; Salo-Mullen, Erin; Trottier, Magan; Lipkin, Steven M; Lincoln, Anne; Mukherjee, Semanti; Ravichandran, Vignesh; Cambria, Roy; Galle, Jesse; Abida, Wassim; Arcila, Marcia E; Benayed, Ryma; Shah, Ronak; Yu, Kenneth; Bajorin, Dean F; Coleman, Jonathan A; Leach, Steven D; Lowery, Maeve A; Garcia-Aguilar, Julio; Kantoff, Philip W; Sawyers, Charles L; Dickler, Maura N; Saltz, Leonard; Motzer, Robert J; O'Reilly, Eileen M; Scher, Howard I; Baselga, Jose; Klimstra, David S; Solit, David B; Hyman, David M; Berger, Michael F; Ladanyi, Marc; Robson, Mark E; Offit, Kenneth

    2017-09-05

    Guidelines for cancer genetic testing based on family history may miss clinically actionable genetic changes with established implications for cancer screening or prevention. To determine the proportion and potential clinical implications of inherited variants detected using simultaneous sequencing of the tumor and normal tissue ("tumor-normal sequencing") compared with genetic test results based on current guidelines. From January 2014 until May 2016 at Memorial Sloan Kettering Cancer Center, 10 336 patients consented to tumor DNA sequencing. Since May 2015, 1040 of these patients with advanced cancer were referred by their oncologists for germline analysis of 76 cancer predisposition genes. Patients with clinically actionable inherited mutations whose genetic test results would not have been predicted by published decision rules were identified. Follow-up for potential clinical implications of mutation detection was through May 2017. Tumor and germline sequencing compared with the predicted yield of targeted germline sequencing based on clinical guidelines. Proportion of clinically actionable germline mutations detected by universal tumor-normal sequencing that would not have been detected by guideline-directed testing. Of 1040 patients, the median age was 58 years (interquartile range, 50.5-66 years), 65.3% were male, and 81.3% had stage IV disease at the time of genomic analysis, with prostate, renal, pancreatic, breast, and colon cancer as the most common diagnoses. Of the 1040 patients, 182 (17.5%; 95% CI, 15.3%-19.9%) had clinically actionable mutations conferring cancer susceptibility, including 149 with moderate- to high-penetrance mutations; 101 patients tested (9.7%; 95% CI, 8.1%-11.7%) would not have had these mutations detected using clinical guidelines, including 65 with moderate- to high-penetrance mutations. Frequency of inherited mutations was related to case mix, stage, and founder mutations. Germline findings led to discussion or initiation of

  16. Intraoperative radiotherapy in combination with misonidazole. In special reference to the drug concentration in tumors and normal tissues and to the initial effect of the treatment

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Masaji; Ono, Kouji; Hamanaka, Daizaburo; Dodo, Yoshihiro; Hiraoka, Masahiro [Kyoto Univ. (Japan). Faculty of Medicine

    1983-03-01

    A hypoxic cell radiosensitizer, misonidazole, was applied to 28 patients with carcinoma who received intraoperative radiotherapy. A single dose of 2-3g/m/sup 2/ of the drug was given orally to each patient three hours prior to the start of general anesthesia. The levels of misonidazole and its metabolite, desmethylmisonidazole, in blood, tumors and normal tissues taken from excised materials were measured by a high performance liquid chromatography. The results showed that the concentration levels of misonidazole and desmethylmisonidazole in blood correlated neither to oral doses of 2-3g/m/sup 2/ nor to the function of time after drug ingestion until eight hours. The mean value of blood levels was 77.1 +- 10.9..mu..g/ml. A wide range of 10-96% of the blood level was found in tumors. High levels were observed in gastric cancer and brain tumor (glioblastoma) but not in colorectal cancer and osteosarcoma. It was, however, likely that the concentrations in tumors depended on tumor sizes and/or necrotic areas rather than histologic types and/or sites of tumors. It was also noted that the concentration in normal tissues ranged widely from 11 to 87% of the blood level. Higher concentrations showing more than 75% were found in the ulnar nerve, the stomach and the skin. However, 3 of 4 materials for the stomach and 2 of 3 materials for the skin showed low levels of less than 30% and less than 22% respectively. In 27 of 28 cases different doses of 28-50 Gy with different energies of electrons were delivered intraoperatively. It is impossible so far to derive conclusive results of this study, really because of the short period of observation following the treatment.

  17. What is a pediatric tumor?

    Directory of Open Access Journals (Sweden)

    Mora J

    2012-11-01

    Full Text Available Jaume Mora1,21Department of Oncology, 2Developmental Tumor Biology Laboratory, Hospital Sant Joan de Deu, Fundacio Sant Joan de Deu, Barcelona, SpainAbstract: Working together with medical oncologists, the question of whether a Ewing sarcoma in a 25-year-old is a pediatric tumor comes up repeatedly. Like Ewing's, some tumors present characteristically at ages that cross over what has been set as the definition of pediatrics (15 years, 18 years, or 21 years?. Pediatric oncology textbooks, surprisingly, do not address the subject of defining a pediatric tumor. They all begin with an epidemiology chapter defining the types of tumors appearing at distinct stages of childhood, adolescence, and young adulthood. Describing the epidemiology of tumors in relation to age, it becomes clear that the disease is related to the phenomenon of aging. The question, however, remains: is there a biological definition of what pediatric age is? And if so, will tumors occurring during this period of life have anything to do with such biological definition? With the aim of finding an objective definition, the fundamental concepts of what defines "pediatrics" was reviewed and then the major features of tumors arising during development were analyzed. The tumors were explored from the perspective of a host immersed in the normal process of growth and development. This physiological process, from pluripotential and undifferentiated cells, makes possible the differentiation, maturation, organization, and function of tissues, organs, and apparatus. A biological definition of pediatric tumors and the infancy–childhood–puberty classification of developmental tumors according to the infancy–childhood–puberty model of normal human development are proposed.Keywords: growth and development, pediatric tumor, infant, childhood and adolescence, pubertal tumors

  18. A New Presentation and Exploration of Human Cerebral Vasculature Correlated with Surface and Sectional Neuroanatomy

    Science.gov (United States)

    Nowinski, Wieslaw L.; Thirunavuukarasuu, Arumugam; Volkau, Ihar; Marchenko, Yevgen; Aminah, Bivi; Gelas, Arnaud; Huang, Su; Lee, Looi Chow; Liu, Jimin; Ng, Ting Ting; Nowinska, Natalia G.; Qian, Guoyu Yu; Puspitasari, Fiftarina; Runge, Val M.

    2009-01-01

    The increasing complexity of human body models enabled by advances in diagnostic imaging, computing, and growing knowledge calls for the development of a new generation of systems for intelligent exploration of these models. Here, we introduce a novel paradigm for the exploration of digital body models illustrating cerebral vasculature. It enables…

  19. Functional photoacoustic microscopy of diabetic vasculature

    Science.gov (United States)

    Krumholz, Arie; Wang, Lidai; Yao, Junjie; Wang, Lihong V.

    2012-06-01

    We used functional photoacoustic microscopy to image diabetes-induced damage to the microvasculature. To produce an animal model for Type 1 diabetes, we used streptozotocin (STZ), which is particularly toxic to the insulin-producing beta cells of the pancreas in mammals. A set number of ND4 Swiss Webster mice received intraperitoneal injections of STZ for five consecutive days at 50 mg/kg. Most mice developed a significant rise in blood glucose level (~400 mg/dL) within three weeks of the first injection. Changes in vasculature and hemodynamics were monitored for six weeks. The mouse ear was imaged with an optical-resolution photoacoustic microscope at a main blood vessel branch from the root of the ear. There are noticeable and measurable changes associated with the disease, including decreased vessel diameter and possible occlusion due to vessel damage and polyurea. We also observed an increase in the blood flow speed in the vein and a decrease in the artery, which could be due to compensation for the dehydration and vessel diameter changes. Functional and metabolic parameters such as hemoglobin oxygen saturation, oxygen extraction fraction, and oxygen consumption rate were also measured, but showed no significant change.

  20. Regional cerebral blood flow measurement in brain tumors

    International Nuclear Information System (INIS)

    Izunaga, Hiroshi; Hirota, Yoshihisa; Takahashi, Mutsumasa; Fuwa, Isao; Kodama, Takafumi; Matsukado, Yasuhiko

    1986-01-01

    The regional cerebral blood flow (CBF) was determined on seventeen patients with brain tumors. Ring type single photon emission CT (SPECT) was used following intravenous injection of 133 Xe. Case materials included eleven meningiomas and six malignant gliomas. Evaluation was performed with emphasis on the following points; 1. Correlation of the flow data within tumors to the angiographic tumor stains, 2. Influence of tumors on the cerebral blood flow of the normal brain tissue, 3. Correlation between degree of peripheral edema and the flow data of the affected hemispheres. There was significant correlation between flow data within tumors and angiographic tumor stains in meningiomas. Influence of tumors on cerebral blood flow of the normal tissue was greater in meningiomas than in gliomas. There was negative correlation between the degree of peripheral edema and the flow data of the affected hemisphere. It has been concluded that the measurement of CBF in brain tumors is a valuable method in evaluation of brain tumors. (author)

  1. Regional cerebral blood flow measurement in brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Izunaga, Hiroshi; Hirota, Yoshihisa; Takahashi, Mutsumasa; Fuwa, Isao; Kodama, Takafumi; Matsukado, Yasuhiko

    1986-10-01

    The regional cerebral blood flow (CBF) was determined on seventeen patients with brain tumors. Ring type single photon emission CT (SPECT) was used following intravenous injection of /sup 133/Xe. Case materials included eleven meningiomas and six malignant gliomas. Evaluation was performed with emphasis on the following points; 1. Correlation of the flow data within tumors to the angiographic tumor stains, 2. Influence of tumors on the cerebral blood flow of the normal brain tissue, 3. Correlation between degree of peripheral edema and the flow data of the affected hemispheres. There was significant correlation between flow data within tumors and angiographic tumor stains in meningiomas. Influence of tumors on cerebral blood flow of the normal tissue was greater in meningiomas than in gliomas. There was negative correlation between the degree of peripheral edema and the flow data of the affected hemisphere. It has been concluded that the measurement of CBF in brain tumors is a valuable method in evaluation of brain tumors.

  2. Cytotoxic T lymphocyte-dependent tumor growth inhibition by a vascular endothelial growth factor-superantigen conjugate

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Qingwen [Shanghai Chest Hospital, Shanghai 200433 (China); State Key Laboratory of Genetic Engineering, Fudan University, Shanghai 200433 (China); Jiang, Songmin [State Key Laboratory of Genetic Engineering, Fudan University, Shanghai 200433 (China); Han, Baohui [Shanghai Chest Hospital, Shanghai 200433 (China); Sun, Tongwen [Wuhan Junyu Innovation Pharmaceuticals, Inc., Wuhan 430079 (China); Li, Zhengnan; Zhao, Lina; Gao, Qiang [College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457 (China); Sun, Jialin, E-mail: jialin_sun@126.com [Wuhan Junyu Innovation Pharmaceuticals, Inc., Wuhan 430079 (China)

    2012-11-02

    Highlights: Black-Right-Pointing-Pointer We construct and purify a fusion protein VEGF-SEA. Black-Right-Pointing-Pointer VEGF-SEA strongly repressed the growth of murine solid sarcoma 180 (S180) tumors. Black-Right-Pointing-Pointer T cells driven by VEGF-SEA were accumulated around tumor cells bearing VEGFR by mice image model. Black-Right-Pointing-Pointer VEGF-SEA can serve as a tumor targeting agent and sequester CTLs into the tumor site. Black-Right-Pointing-Pointer The induced CTLs could release the cytokines, perforins and granzyme B to kill the tumor cells. -- Abstract: T cells are major lymphocytes in the blood and passengers across the tumor vasculature. If these T cells are retained in the tumor site, a therapeutic potential will be gained by turning them into tumor-reactive cytotoxic T lymphocytes (CTLs). A fusion protein composed of human vascular endothelial growth factor (VEGF) and staphylococcal enterotoxin A (SEA) with a D227A mutation strongly repressed the growth of murine solid sarcoma 180 (S180) tumors (control versus VEGF-SEA treated with 15 {mu}g, mean tumor weight: 1.128 g versus 0.252 g, difference = 0.876 g). CD4{sup +} and CD8{sup +} T cells driven by VEGF-SEA were accumulated around VEGFR expressing tumor cells and the induced CTLs could release the tumoricidal cytokines, such as interferon-gamma (IFN-gamma) and tumor necrosis factor-alpha (TNF-alpha). Meanwhile, intratumoral CTLs secreted cytolytic pore-forming perforin and granzyme B proteins around tumor cells, leading to the death of tumor cells. The labeled fusion proteins were gradually targeted to the tumor site in an imaging mice model. These results show that VEGF-SEA can serve as a tumor targeting agent and sequester active infiltrating CTLs into the tumor site to kill tumor cells, and could therefore be a potential therapeutical drug for a variety of cancers.

  3. Cytotoxic T lymphocyte-dependent tumor growth inhibition by a vascular endothelial growth factor–superantigen conjugate

    International Nuclear Information System (INIS)

    Sun, Qingwen; Jiang, Songmin; Han, Baohui; Sun, Tongwen; Li, Zhengnan; Zhao, Lina; Gao, Qiang; Sun, Jialin

    2012-01-01

    Highlights: ► We construct and purify a fusion protein VEGF–SEA. ► VEGF–SEA strongly repressed the growth of murine solid sarcoma 180 (S180) tumors. ► T cells driven by VEGF–SEA were accumulated around tumor cells bearing VEGFR by mice image model. ► VEGF–SEA can serve as a tumor targeting agent and sequester CTLs into the tumor site. ► The induced CTLs could release the cytokines, perforins and granzyme B to kill the tumor cells. -- Abstract: T cells are major lymphocytes in the blood and passengers across the tumor vasculature. If these T cells are retained in the tumor site, a therapeutic potential will be gained by turning them into tumor-reactive cytotoxic T lymphocytes (CTLs). A fusion protein composed of human vascular endothelial growth factor (VEGF) and staphylococcal enterotoxin A (SEA) with a D227A mutation strongly repressed the growth of murine solid sarcoma 180 (S180) tumors (control versus VEGF–SEA treated with 15 μg, mean tumor weight: 1.128 g versus 0.252 g, difference = 0.876 g). CD4 + and CD8 + T cells driven by VEGF–SEA were accumulated around VEGFR expressing tumor cells and the induced CTLs could release the tumoricidal cytokines, such as interferon-gamma (IFN-gamma) and tumor necrosis factor-alpha (TNF-alpha). Meanwhile, intratumoral CTLs secreted cytolytic pore-forming perforin and granzyme B proteins around tumor cells, leading to the death of tumor cells. The labeled fusion proteins were gradually targeted to the tumor site in an imaging mice model. These results show that VEGF–SEA can serve as a tumor targeting agent and sequester active infiltrating CTLs into the tumor site to kill tumor cells, and could therefore be a potential therapeutical drug for a variety of cancers.

  4. Endothelial cells provide a notch-dependent pro-tumoral niche for enhancing breast cancer survival, stemness and pro-metastatic properties.

    Directory of Open Access Journals (Sweden)

    Pegah Ghiabi

    Full Text Available Treating metastasis has been challenging due to tumors complexity and heterogeneity. This complexity is partly related to the crosstalk between tumor and its microenvironment. Endothelial cells -the building blocks of tumor vasculature- have been shown to have additional roles in cancer progression than angiogenesis and supplying oxygen and nutrients. Here, we show an alternative role for endothelial cells in supporting breast cancer growth and spreading independent of their vascular functions. Using endothelial cells and breast cancer cell lines MDA-MB231 and MCF-7, we developed co-culture systems to study the influence of tumor endothelium on breast tumor development by both in vitro and in vivo approaches. Our results demonstrated that endothelial cells conferred survival advantage to tumor cells under complete starvation and enriched the CD44HighCD24Low/- stem cell population in tumor cells. Moreover, endothelial cells enhanced the pro-metastatic potential of breast cancer cells. The in vitro and in vivo results concordantly confirmed a role for endothelial Jagged1 to promote breast tumor through notch activation. Here, we propose a role for endothelial cells in enhancing breast cancer progression, stemness, and pro-metastatic traits through a perfusion-independent manner. Our findings may be beneficial in developing novel therapeutic approaches.

  5. Mandatory chromosomal segment balance in aneuploid tumor cells

    International Nuclear Information System (INIS)

    Kost-Alimova, Maria; Stanbridge, Eric; Klein, George; Imreh, Stefan; Darai-Ramqvist, Eva; Yau, Wing Lung; Sandlund, Agneta; Fedorova, Ludmila; Yang, Ying; Kholodnyuk, Irina; Cheng, Yue; Li Lung, Maria

    2007-01-01

    Euploid chromosome balance is vitally important for normal development, but is profoundly changed in many tumors. Is each tumor dependent on its own structurally and numerically changed chromosome complement that has evolved during its development and progression? We have previously shown that normal chromosome 3 transfer into the KH39 renal cell carcinoma line and into the Hone1 nasopharyngeal carcinoma line inhibited their tumorigenicity. The aim of the present study was to distinguish between a qualitative and a quantitative model of this suppression. According to the former, a damaged or deleted tumor suppressor gene would be restored by the transfer of a normal chromosome. If so, suppression would be released only when the corresponding sequences of the exogenous normal chromosome are lost or inactivated. According to the alternative quantitative model, the tumor cell would not tolerate an increased dosage of the relevant gene or segment. If so, either a normal cell derived, or, a tumor derived endogenous segment could be lost. Fluorescence in Situ Hybridization based methods, as well as analysis of polymorphic microsatellite markers were used to follow chromosome 3 constitution changes in monochromosomal hybrids. In both tumor lines with introduced supernumerary chromosomes 3, the copy number of 3p21 or the entire 3p tended to fall back to the original level during both in vitro and in vivo growth. An exogenous, normal cell derived, or an endogenous, tumor derived, chromosome segment was lost with similar probability. Identification of the lost versus retained segments showed that the intolerance for increased copy number was particularly strong for 3p14-p21, and weaker for other 3p regions. Gains in copy number were, on the other hand, well tolerated in the long arm and particularly the 3q26-q27 region. The inability of the cell to tolerate an experimentally imposed gain in 3p14-p21 in contrast to the well tolerated gain in 3q26-q27 is consistent with the

  6. SU-F-T-681: Does the Biophysical Modeling for Immunological Aspects in Radiotherapy Precisely Predict Tumor and Normal Tissue Responses?

    Energy Technology Data Exchange (ETDEWEB)

    Oita, M [Graduate School of Health Sciences, Okayama University, Okayama, Okayama (Japan); Nakata, K [Tokyo University of Science, Noda, Chiba (Japan); Sasaki, M [Tokushima University Hospital, Tokushima, Tokushima (Japan); Tominaga, M [Tokushima University Graduate School, Tokushima, Tokushima (Japan); Aoyama, H [Okayama University Hospital, Okayama, Okayama (Japan); Honda, H [Ehime University Hospital, Tohon, Ehime (Japan); Uto, Y [Tokushima University, Tokushima, Tokushima (Japan)

    2016-06-15

    Purpose: Recent advances in immunotherapy make possible to combine with radiotherapy. The aim of this study was to assess the TCP/NTCP model with immunological aspects including stochastic distribution as intercellular uncertainties. Methods: In the clinical treatment planning system (Eclipse ver.11.0, Varian medical systems, US), biological parameters such as α/β, D50, γ, n, m, TD50 including repair parameters (bi-exponential repair) can be set as any given values to calculate the TCP/NTCP. Using a prostate cancer patient data with VMAT commissioned as a 6-MV photon beam of Novalis-Tx (BrainLab, US) in clinical use, the fraction schedule were hypothesized as 70–78Gy/35–39fr, 72–81Gy/40–45fr, 52.5–66Gy/16–22fr, 35–40Gy/5fr of 5–7 fractions in a week. By use of stochastic biological model applying for Gaussian distribution, the effects of the TCP/NTCP variation of repair parameters of the immune system as well as the intercellular uncertainty of tumor and normal tissues have been evaluated. Results: As respect to the difference of the α/β, the changes of the TCP/NTCP were increased in hypo-fraction regimens. The difference between the values of n and m affect the variation of the NTCP with the fraction schedules, independently. The elongation of repair half-time (long) increased the TCP/NTCP twice or much higher in the case of hypo-fraction scheme. For tumor, the repopulation parameters such as Tpot and Tstart, which is immunologically working to the tumor, improved TCP. Conclusion: Compared to default fixed value, which has affected by the probability of cell death and cure, hypo-fractionation schemes seemed to have advantages for the variations of the values of m. The possibility of an increase of the α/β or TD50 and repair parameters in tumor and normal tissue by immunological aspects were highly expected. For more precise prediction, treatment planning systems should be incorporated the complicated biological optimization in clinical

  7. The relationship between elevated interstitial fluid pressure and blood flow in tumors: a bioengineering analysis

    International Nuclear Information System (INIS)

    Milosevic, Michael F.; Fyles, Anthony W.; Hill, Richard P.

    1999-01-01

    Purpose: To examine the hypothesis that elevated interstitial fluid pressure (IFP) is a cause of reduced blood flow in tumors. Materials and Methods: A physiologic model of tumor blood flow was developed based on a semipermeable, compliant capillary in the center of a spherical tumor. The model incorporates the interaction between the tumor vasculature and the interstitium, as mediated by IFP. It also incorporates the dynamic behavior of the capillary wall in response to changes in transmural pressure, and the effect of viscosity on blood flow. Results: The model predicted elevated tumor IFP in the range of 0 to 56 mmHg. The capillary diameter in the setting of elevated IFP was greatest at the arterial end, and constricted to between 3.2 and 4.4 μm at the venous end. This corresponded to a 2.4- to 3.5-fold reduction in diameter along the length of the capillary. The IFP exceeded the intravascular pressure distally in the capillary, but vascular collapse did not occur. Capillary diameter constriction resulted in a 2.3- to 9.1-fold steady-state reduction in tumor blood flow relative to a state of near-zero IFP. Conclusion: The results suggest that steady-state vascular constriction occurs in the setting of elevated IFP, and leads to reduced tumor blood flow. This may in turn contribute to the development of hypoxia, which is an important cause of radiation treatment failure in many tumors

  8. Longitudinal imaging studies of tumor microenvironment in mice treated with the mTOR inhibitor rapamycin.

    Directory of Open Access Journals (Sweden)

    Keita Saito

    Full Text Available Rapamycin is an allosteric inhibitor of mammalian target of rapamycin, and inhibits tumor growth and angiogenesis. Recent studies suggested a possibility that rapamycin renormalizes aberrant tumor vasculature and improves tumor oxygenation. The longitudinal effects of rapamycin on angiogenesis and tumor oxygenation were evaluated in murine squamous cell carcinoma (SCCVII by electron paramagnetic resonance imaging (EPRI and magnetic resonance imaging (MRI to identify an optimal time after rapamycin treatment for enhanced tumor radioresponse. Rapamycin treatment was initiated on SCCVII solid tumors 8 days after implantation (500-750 mm(3 and measurements of tumor pO(2 and blood volume were conducted from day 8 to 14 by EPRI/MRI. Microvessel density was evaluated over the same time period by immunohistochemical analysis. Tumor blood volume as measured by MRI significantly decreased 2 days after rapamycin treatment. Tumor pO(2 levels modestly but significantly increased 2 days after rapamycin treatment; whereas, it decreased in non-treated control tumors. Furthermore, the fraction of hypoxic area (pixels with pO(2<10 mm Hg in the tumor region decreased 2 days after rapamycin treatments. Immunohistochemical analysis of tumor microvessel density and pericyte coverage revealed that microvessel density decreased 2 days after rapamycin treatment, but pericyte coverage did not change, similar to what was seen with anti-angiogenic agents such as sunitinib which cause vascular renormalization. Collectively, EPRI/MRI co-imaging can provide non-invasive evidence of rapamycin-induced vascular renormalization and resultant transient increase in tumor oxygenation. Improved oxygenation by rapamycin treatment provides a temporal window for anti-cancer therapies to realize enhanced response to radiotherapy.

  9. Human tumor cells induce angiogenesis through positive feedback between CD147 and insulin-like growth factor-I.

    Directory of Open Access Journals (Sweden)

    Yanke Chen

    Full Text Available Tumor angiogenesis is a complex process based upon a sequence of interactions between tumor cells and endothelial cells. Previous studies have shown that CD147 was correlated with tumor angiogenesis through increasing tumor cell secretion of vascular endothelial growth factor (VEGF and matrix metalloproteinases (MMPs. In this study, we made a three-dimensional (3D tumor angiogenesis model using a co-culture system of human hepatocellular carcinoma cells SMMC-7721 and humanumbilical vein endothelial cells (HUVECs in vitro. We found that CD147-expressing cancer cells could promote HUVECs to form net-like structures resembling the neo-vasculature, whereas the ability of proliferation, migration and tube formation of HUVECs was significantly decreased in tumor conditioned medium (TCM of SMMC-7721 cells transfected with specific CD147-siRNA. Furthermore, by assaying the change of pro-angiogenic factors in TCM, we found that the inhibition of CD147 expression led to significant decrease of VEGF and insulin-like growth factor-I (IGF-I secretion. Interestingly, we also found that IGF-I up-regulated the expression of CD147 in both tumor cells and HUVECs. These findings suggest that there is a positive feedback between CD147 and IGF-I at the tumor-endothelial interface and CD147 initiates the formation of an angiogenesis niche.

  10. Photoacoustic imaging to assess pixel-based sO2 distributions in experimental prostate tumors

    Science.gov (United States)

    Bendinger, Alina L.; Glowa, Christin; Peter, Jörg; Karger, Christian P.

    2018-03-01

    A protocol for photoacoustic imaging (PAI) has been developed to assess pixel-based oxygen saturation (sO2) distributions of experimental tumor models. The protocol was applied to evaluate the dependence of PAI results on measurement settings, reproducibility of PAI, and for the characterization of the oxygenation status of experimental prostate tumor sublines (Dunning R3327-H, -HI, -AT1) implanted subcutaneously in male Copenhagen rats. The three-dimensional (3-D) PA data employing two wavelengths were used to estimate sO2 distributions. If the PA signal was sufficiently strong, the distributions were independent from signal gain, threshold, and positioning of animals. Reproducibility of sO2 distributions with respect to shape and median values was demonstrated over several days. The three tumor sublines were characterized by the shapes of their sO2 distributions and their temporal response after external changes of the oxygen supply (100% O2 or air breathing and clamping of tumor-supplying artery). The established protocol showed to be suitable for detecting temporal changes in tumor oxygenation as well as differences in oxygenation between tumor sublines. PA results were in accordance with histology for hypoxia, perfusion, and vasculature. The presented protocol for the assessment of pixel-based sO2 distributions provides more detailed information as compared to conventional region-of-interest-based analysis of PAI, especially with respect to the detection of temporal changes and tumor heterogeneity.

  11. Photoacoustic imaging to assess pixel-based sO2 distributions in experimental prostate tumors.

    Science.gov (United States)

    Bendinger, Alina L; Glowa, Christin; Peter, Jörg; Karger, Christian P

    2018-03-01

    A protocol for photoacoustic imaging (PAI) has been developed to assess pixel-based oxygen saturation (sO2) distributions of experimental tumor models. The protocol was applied to evaluate the dependence of PAI results on measurement settings, reproducibility of PAI, and for the characterization of the oxygenation status of experimental prostate tumor sublines (Dunning R3327-H, -HI, -AT1) implanted subcutaneously in male Copenhagen rats. The three-dimensional (3-D) PA data employing two wavelengths were used to estimate sO2 distributions. If the PA signal was sufficiently strong, the distributions were independent from signal gain, threshold, and positioning of animals. Reproducibility of sO2 distributions with respect to shape and median values was demonstrated over several days. The three tumor sublines were characterized by the shapes of their sO2 distributions and their temporal response after external changes of the oxygen supply (100% O2 or air breathing and clamping of tumor-supplying artery). The established protocol showed to be suitable for detecting temporal changes in tumor oxygenation as well as differences in oxygenation between tumor sublines. PA results were in accordance with histology for hypoxia, perfusion, and vasculature. The presented protocol for the assessment of pixel-based sO2 distributions provides more detailed information as compared to conventional region-of-interest-based analysis of PAI, especially with respect to the detection of temporal changes and tumor heterogeneity. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  12. Caveolin-1 overexpression in benign and malignant salivary gland tumors.

    Science.gov (United States)

    Jaafari-Ashkavandi, Zohreh; Ashraf, Mohammad Javad; Nazhvani, Ali Dehghani; Azizi, Zahra

    2016-02-01

    Caveolin-1, a tyrosine-phosphorylated protein, is supposed to have different regulatory roles as promoter or suppressor in many human cancers. However, no published study concerned its expression in benign and malignant salivary gland tumors. The aim of this study was to evaluate and compare the expression of Cav-1 in the most common benign and malignant salivary gland tumors and evaluate its correlation with proliferation activity. In this cross-sectional retrospective study, immunohistochemical expression of caveolin-1 and Ki67 were evaluated in 49 samples, including 11 normal salivary glands, 15 cases of pleomorphic adenoma (PA), 13 adenoid cystic carcinomas (AdCC), and 10 mucoepidermoid carcinomas (MEC). The expression of Cav-1 was seen in 18 % of normal salivary glands and 85 % of tumors. The immunoreaction in the tumors was significantly higher than normal tissues (P = 0.001), but the difference between benign and malignant tumors was not significant (P = 0.07). Expression of Cav-1 was correlated with Ki67 labeling index in PAs, but not in malignant tumors. Cav-1 expression was not in association with tumor size and stage. Overexpression of Cav-1 was found in salivary gland tumors in comparison with normal tissues, but no significant difference was observed between benign and malignant tumors. Cav-1 was inversely correlated with proliferation in PA. Therefore, this marker may participate in tumorigenesis of salivary gland tumors and may be a potential biomarker for cancer treatments.

  13. Gliomas: Application of Cumulative Histogram Analysis of Normalized Cerebral Blood Volume on 3 T MRI to Tumor Grading

    Science.gov (United States)

    Kim, Hyungjin; Choi, Seung Hong; Kim, Ji-Hoon; Ryoo, Inseon; Kim, Soo Chin; Yeom, Jeong A.; Shin, Hwaseon; Jung, Seung Chai; Lee, A. Leum; Yun, Tae Jin; Park, Chul-Kee; Sohn, Chul-Ho; Park, Sung-Hye

    2013-01-01

    Background Glioma grading assumes significant importance in that low- and high-grade gliomas display different prognoses and are treated with dissimilar therapeutic strategies. The objective of our study was to retrospectively assess the usefulness of a cumulative normalized cerebral blood volume (nCBV) histogram for glioma grading based on 3 T MRI. Methods From February 2010 to April 2012, 63 patients with astrocytic tumors underwent 3 T MRI with dynamic susceptibility contrast perfusion-weighted imaging. Regions of interest containing the entire tumor volume were drawn on every section of the co-registered relative CBV (rCBV) maps and T2-weighted images. The percentile values from the cumulative nCBV histograms and the other histogram parameters were correlated with tumor grades. Cochran’s Q test and the McNemar test were used to compare the diagnostic accuracies of the histogram parameters after the receiver operating characteristic curve analysis. Using the parameter offering the highest diagnostic accuracy, a validation process was performed with an independent test set of nine patients. Results The 99th percentile of the cumulative nCBV histogram (nCBV C99), mean and peak height differed significantly between low- and high-grade gliomas (P = histogram analysis of nCBV using 3 T MRI can be a useful method for preoperative glioma grading. The nCBV C99 value is helpful in distinguishing high- from low-grade gliomas and grade IV from III gliomas. PMID:23704910

  14. Variables affecting the tumor localization of 131I-antiferritin in experimental hepatoma

    International Nuclear Information System (INIS)

    Rostock, R.A.; Klein, J.L.; Kopher, K.A.; Order, S.E.

    1984-01-01

    Ferritin is both a normal tissue- and tumor-associated protein. The in vivo localization of 131 I-radiolabeled antitumor ferritin and normal IgG antibodies in the H-4-II-E rat hepatoma model was investigated in both tumor and normal tissues over a dose range of 0.67 micrograms to 5 mg of normal and antiferritin IgG and at labeling ratios (microCi 131 I per micrograms IgG) of 15:1, 5:1, and 1:10. The total dose from nonpenetrating radiation in rads was calculated and demonstrated a maximum of 2.9 times greater dose deposition (rads) of antiferritin than normal IgG in hepatoma without specific increase in binding in normal tissues. The maximum tumor targeting achieved was dependent on the amount of injected IgG and not on the labeling ratio or procedure. The binding in tumor could be inhibited by unlabeled antiferritin but not by unlabeled normal rabbit IgG and demonstrated the requirement of specificity for tumor binding. Normal tissues did not target with antiferritin. Most normal tissues have a capacity to bind normal and antiferritin IgG nonspecifically that is linear in relationship to the amount of injected IgG. The results demonstrate that 131 I-antiferritin selectively targets ferritin-secreting hepatoma over normal tissues and that the amount of targeting is dependent on the amount of antiferritin injected. The physiologic reasons for such selective localization is not known, but the term ''biologic window'' has been used to describe the differential availability of tumor ferritin for binding

  15. Spatial relationship between tumor perfusion and endogeneous glucose distribution

    International Nuclear Information System (INIS)

    Schroeder, T.; Larrier, N.; Viglianti, B.; Rabbani, Z.N.; Peltz, C.; Vujascovic, Z.; Dewhirst, M.W.

    2003-01-01

    Earlier studies detecting glucose in tissue and solid tumors by bioluminescence imaging suggested, that glucose distribution patterns may be spatially related to functional vascularity. The purpose of this study was to evaluate this relationship by comparing glucose distribution patterns as determined by bioluminescence imaging to perfusion patterns of endogeneous Hoechst 33342 in rats bearing mammary carcinomas. R 3230 mammary carcinoma cells have been implanted subcutaneously into 7 female Fischer 344 rats. Two months post implantation, after injection of Hoechst 33342 the tumors were removed and snap frozen to conserve metabolite levels. Concomitantly, blood was sampled from the animals for analysis of glucose concentrations using a micodialysis analyzer. Cryosections of the tumors have been prepared, and every slice has been analyzed for both, Hoechst binding by fluorescence microscopy, and for glucose distribution patterns using bioluminescence imaging. In many cases vascular structures could be retrieved by the spatial pattern of glucose distribution. In some cases however, higher glucose concentrations could be found independent from Hoechst signal. On the other hand, regions of high Hoechst signal are not necessarily correlated with high glucose concentrations. When comparing blood and tissue glucose levels, tissue glucose content as measured with bioluminescence imaging (1.9-3.5 mM) is considerably lower than blood glucose (5.6-8.0 mM), demonstrating the expected gradient from blood to tissue. This study demonstrates the feasibility of monitoring glucose gradients in relation to functional vasculature throughout the body, from blood down to tissue or tumor and further, throughout the microenvironment of the solid tumor. Glucose distribution patterns may be an important tool in perfusion studies, e. g. in detecting the direction of blood flow in ex-vivo samples or in estimating glucose consumption rates of tumor cells adjacent to or in between perfused

  16. Magnetic resonance imaging textural evaluation of posterior cranial fossa tumors in childhood; Avaliacao textural por ressonancia magnetica dos tumores da fossa posterior em criancas

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Joelson Alves dos; Costa, Maria Olivia Rodrigues da; Otaduy, Maria Concepcion Garcia; Lacerda, Maria Teresa Carvalho de; Leite, Claudia da Costa [Sao Paulo Univ., SP (Brazil). Faculdade de Medicina. Dept. de Radiologia]. E-mail: joelson_alves@ig.com.br; Matsushita, Hamilton [Sao Paulo Univ., SP (Brazil). Faculdade de Medicina. Dept. de Neurologia

    2004-08-01

    Objective: To distinguish healthy from pathological tissues in pediatric patients with posterior cranial fossa tumors using calculated textural parameters from magnetic resonance images. Materials And Methods: We evaluated 14 pediatric patients with posterior cranial fossa tumors using the software MaZda to define the texture parameters in selected regions of interest representing healthy and pathological tissues based on T2-weighted magnetic resonance images. Results: There was a statistically significant difference between normal and tumoral tissues as well as between supposedly normal tissues adjacent and distant from the tumoral lesion. Conclusion: Magnetic resonance textural evaluation is an useful tool for determining differences among various tissues, including tissues that appear apparently normal on visual analysis. (author)

  17. Breaching the Castle Walls: Hyaluronan-Depletion as a Therapeutic Approach to Cancer Therapy

    Directory of Open Access Journals (Sweden)

    H Michael eShepard

    2015-08-01

    Full Text Available Hyaluronan (HA has many functions in the extracellular milieu of normal and diseased tissues. Disease-associated HA accumulation has been shown to predict a worsened prognosis in cancer patients, with tumors having a high extracellular HA content (HA-high being more aggressive than their HA-low counterparts. HA-high tumor aggressiveness is derived from the specialized biomechanical and molecular properties of the HA-based assembly of HA binding proteins and the growth-promoting factors that accumulate in it. Biophysical characteristics of an HA-high tumor microenvironment include high tumor interstitial pressure, compression of tumor vasculature, and resulting tumor hypoxia. Within the tumor cell membrane, HA receptors, primarily CD44 and RHAMM, anchor the HA-high extracellular network. HA-CD44 association on the tumor cell surface enhances receptor tyrosine kinase activity to drive tumor progression and treatment resistance. Together, malignant cells in this HA-high matrix may evolve dependency on it for growth. This yields the hypothesis that depleting HA in HA-high tumors may be associated with a therapeutic benefit. A pegylated form of recombinant human hyaluronidase PH20 (PEGPH20 has been deployed as a potential cancer therapeutic in HA-high tumors. PEGPH20 can collapse this matrix by degrading the HA-assembled tumor extracellular framework, leading to tumor growth inhibition, preferentially in HA-high tumors. Enzymatic depletion of HA by PEGPH20 results in re-expansion of the tumor vasculature, reduction in tumor hypoxia, and increased penetration of therapeutic molecules into the tumor. Finally, HA depletion results in reduced signaling via CD44/RHAMM. Taken together, HA-depletion strategies accomplish their antitumor effects by multiple mechanisms that include targeting both biophysical and molecular signaling pathways. Ongoing clinical trials are examining the potential of PEGPH20 in combination with partner therapeutics in several

  18. Transient mild hyperthermia induces E-selectin mediated localization of mesoporous silicon vectors in solid tumors.

    Directory of Open Access Journals (Sweden)

    Dickson K Kirui

    Full Text Available BACKGROUND: Hyperthermia treatment has been explored as a strategy to overcome biological barriers that hinder effective drug delivery in solid tumors. Most studies have used mild hyperthermia treatment (MHT to target the delivery of thermo-sensitive liposomes carriers. Others have studied its application to permeabilize tumor vessels and improve tumor interstitial transport. However, the role of MHT in altering tumor vessel interfacial and adhesion properties and its relationship to improved delivery has not been established. In the present study, we evaluated effects of MHT treatment on tumor vessel flow dynamics and expression of adhesion molecules and assessed enhancement in particle localization using mesoporous silicon vectors (MSVs. We also determined the optimal time window at which maximal accumulation occur. RESULTS: In this study, using intravital microscopy analyses, we showed that temporal mild hyperthermia (∼1 W/cm(2 amplified delivery and accumulation of MSVs in orthotopic breast cancer tumors. The number of discoidal MSVs (1000×400 nm adhering to tumor vasculature increased 6-fold for SUM159 tumors and 3-fold for MCF-7 breast cancer tumors. By flow chamber experiments and Western blotting, we established that a temporal increase in E-selectin expression correlated with enhanced particle accumulation. Furthermore, MHT treatment was shown to increase tumor perfusion in a time-dependent fashion. CONCLUSIONS: Our findings reveal that well-timed mild hyperthermia treatment can transiently elevate tumor transport and alter vascular adhesion properties and thereby provides a means to enhance tumor localization of non-thermally sensitive particles such as MSVs. Such enhancement in accumulation could be leveraged to increase therapeutic efficacy and reduce drug dosing in cancer therapy.

  19. Tumor and normal tissue motion in the thorax during respiration: Analysis of volumetric and positional variations using 4D CT

    International Nuclear Information System (INIS)

    Weiss, Elisabeth; Wijesooriya, Krishni; Dill, S. Vaughn; Keall, Paul J.

    2007-01-01

    Purpose: To investigate temporospatial variations of tumor and normal tissue during respiration in lung cancer patients. Methods and Materials: In 14 patients, gross tumor volume (GTV) and normal tissue structures were manually contoured on four-dimensional computed tomography (4D-CT) scans. Structures were evaluated for volume changes, centroid (center of mass) motion, and phase dependence of variations relative to inspiration. Only volumetrically complete structures were used for analysis (lung in 2, heart in 8, all other structures in >10 patients). Results: During respiration, the magnitude of contoured volumes varied up to 62.5% for GTVs, 25.5% for lungs, and 12.6% for hearts. The range of maximum three-dimensional centroid movement for individual patients was 1.3-24.0 mm for GTV, 2.4-7.9 mm for heart, 5.2-12.0 mm for lungs, 0.3-5.5 mm for skin markers, 2.9-10.0 mm for trachea, and 6.6-21.7 mm for diaphragm. During respiration, the centroid positions of normal structures varied relative to the centroid position of the respective GTV by 1.5-8.1 mm for heart, 2.9-9.3 mm for lungs, 1.2-9.2 mm for skin markers, 0.9-7.1 mm for trachea, and 2.7-16.4 mm for diaphragm. Conclusion: Using 4D-CT, volumetric changes, positional alterations as well as changes in the position of contoured structures relative to the GTV were observed with large variations between individual patients. Although the interpretation of 4D-CT data has considerable uncertainty because of 4D-CT artifacts, observer variations, and the limited acquisition time, the findings might have a significant impact on treatment planning

  20. Radiation therapy of 9L rat brain tumors

    International Nuclear Information System (INIS)

    Henderson, S.D.; Kimler, B.F.; Morantz, R.A.

    1981-01-01

    The effects of radiation therapy on normal rats and on rats burdened with 9L brain tumors have been studied. The heads of normal rats were x-irradiated with single exposures ranging from 1000 R to 2700 R. Following acute exposures greater than 2100 R, all animals died in 8 to 12 days. Approximately 30% of the animals survived beyond 12 days over the range of 1850 to 1950 R; following exposures less than 1850 R, all animals survived the acute radiation effects, and median survival times increased with decreasing exposure. Three fractionated radiation schedules were also studied: 2100 R or 3000 R in 10 equal fractions, and 3000 R in 6 equal fractions, each schedule being administered over a 2 week period. The first schedule produced a MST of greater than 1 1/2 years; the other schedules produced MSTs that were lower. It was determined that by applying a factor of 1.9, similar survival responses of normal rats were obtained with single as with fractionated radiation exposures. Animals burdened with 9L gliosarcoma brain tumors normally died of the disease process within 18 to 28 days ater tumor inoculation. Both single and fractionated radiation therapy resulted in a prolongation of survival of tumor-burdened rats. This prolongation was found to be linearly dependent upon the dose; but only minimally dependent upon the time after inoculation at which therapy was initiated, or upon the fractionation schedule that was used. As with normal animals, similar responses were obtained with single as with fractionated exposures when a factor (1.9) was applied. All tumor-bearing animals died prior to the time that death was observed in normal, irradiated rats. Thus, the 9L gliosarcoma rat brain tumor model can be used for the pre-clinical experimental investigation of new therapeutic schedules involving radiation therapy and adjuvant therapies

  1. Clinical significance of serum thymosin α1 assay in tumor patients

    International Nuclear Information System (INIS)

    Wang Jiamin; Lv Ming'en; Zhao Xiaojuan; Gao Weiqiang; Bai Xia; Wang Zhaoyue

    2003-01-01

    Objective: To investigate the clinical significance of thymosin α1(Tα1) measurement in evaluating clinical status of patients with solid malignant tumors. Methods: Tα1 levels in serum of 50 normal adults, 20 patients with benign tumors and 63 patients with malignant tumors were measured by enzyme linked immunosorbent assay (ELISA). The association of Tα1 level with tumor invasion, metastasis and its alteration after different treatment in patients with malignant tumors were also studied. Results: The serum Tα1 level was 0.69±0.35 μg/L in normal adults, 0.96±0.37 μg/L in patients with benign tumors and 1.46±0.90 μg/L in patients with malignant tumors. In comparison it was both increased between patients with benign and malignant tumors and the normal adults (P<0.01 and P<0.001). And its increasing extent in malignant tumors was much greater than that in benign tumors (P<0.05). The serum Tα1 level in patients with malignant tumors was correlated with tumor invasion, metastasis and different treatment intervention. Conclusions: Our findings suggest that the serum Tα1 level be increased in tumor patients, and that it may be used as a new tumor marker in clinic

  2. Monitoring Prostate Tumor Growth in an Orthotopic Mouse Model Using Three-Dimensional Ultrasound Imaging Technique

    Directory of Open Access Journals (Sweden)

    Jie Ni

    2016-02-01

    Full Text Available Prostate cancer (CaP is the most commonly diagnosed and the second leading cause of death from cancer in males in USA. Prostate orthotopic mouse model has been widely used to study human CaP in preclinical settings. Measurement of changes in tumor size obtained from noninvasive diagnostic images is a standard method for monitoring responses to anticancer modalities. This article reports for the first time the usage of a three-dimensional (3D ultrasound system equipped with photoacoustic (PA imaging in monitoring longitudinal prostate tumor growth in a PC-3 orthotopic NODSCID mouse model (n = 8. Two-dimensional and 3D modes of ultrasound show great ability in accurately depicting the size and shape of prostate tumors. PA function on two-dimensional and 3D images showed average oxygen saturation and average hemoglobin concentration of the tumor. Results showed a good fit in representative exponential tumor growth curves (n = 3; r2 = 0.948, 0.955, and 0.953, respectively and a good correlation of tumor volume measurements performed in vivo with autopsy (n = 8, r = 0.95, P < .001. The application of 3D ultrasound imaging proved to be a useful imaging modality in monitoring tumor growth in an orthotopic mouse model, with advantages such as high contrast, uncomplicated protocols, economical equipment, and nonharmfulness to animals. PA mode also enabled display of blood oxygenation surrounding the tumor and tumor vasculature and angiogenesis, making 3D ultrasound imaging an ideal tool for preclinical cancer research.

  3. NMR relaxation times in human brain tumors (preliminary results)

    International Nuclear Information System (INIS)

    Benoist, L.; Certaines, J. de; Chatel, M.; Menault, F.

    1981-01-01

    Since the early work of Damadian in 1971, proton NMR studies of tumors has been well documented. Present study concerns the spin-lattice T 1 and spin-spin T 2 relaxation times of normal dog brain according to the histological differentiation and of 35 human benignant or malignant tumors. The results principally show T 2 important variations between white and gray substance in normal brain but no discrimination between malignant and benignant tumors [fr

  4. 'Papillary' solitary fibrous tumor/hemangiopericytoma with nuclear STAT6 expression and NAB2-STAT6 fusion.

    Science.gov (United States)

    Ishizawa, Keisuke; Tsukamoto, Yoshitane; Ikeda, Shunsuke; Suzuki, Tomonari; Homma, Taku; Mishima, Kazuhiko; Nishikawa, Ryo; Sasaki, Atsushi

    2016-04-01

    This report describes clinicopathological findings, including genetic data of STAT6, in a solitary fibrous tumor (SFT)/hemangiopericytoma (HPC) of the central nervous system in an 83-year-old woman with a bulge in the left forehead. She noticed it about 5 months before, and it had grown rapidly for the past 1 month. Neuroradiological studies disclosed a well-demarcated tumor that accompanied the destruction of the skull. The excised tumor showed a prominent papillary structure, where atypical cells were compactly arranged along the fibrovascular core ('pseudopapillary'). There was rich vasculature, some of which resembled 'staghorn' vessels. Mitotic figures were occasionally found. Whorls, psammoma bodies, or intra-nuclear pseudoinclusions were not identified. By immunohistochemistry, CD34 was strongly positive in the tumor cells, and STAT6 was localized in their nuclei. By reverse transcription-polymerase chain reaction (RT-PCR), an NAB2-STAT6 fusion gene, NAB2 exon6-STAT6 exon17, was detected, establishing a definite diagnosis of SFT/HPC. 'Papillary' SFT/HPC needs to be recognized as a possible morphological variant of SFT/HPC, and should be borne in mind in its diagnostic practice.

  5. Radiation effects on tumor-specific DTH response, 2

    International Nuclear Information System (INIS)

    Nobusawa, Hiroshi; Hachisu, Reiko.

    1991-01-01

    Tumor-specific immunity was induced in C3H mice by immunizing with syngeneic MH134 hepatoma cells. Radiation sensitivity of anti-tumor activity of immunized spleen cells were examined and compared with the radiation sensitivity of the delayed-type hypersensitivity (DTH)-response. The spleen cells were irradiated in vitro, then mixed with the tumor cells. DTH-response intensity was determined from the footpad increment twenty-four hours after inoculation of tumor cells with immunized spleen cells. Anti-tumor activity of the spleen cells, based on growth inhibition of tumor cells, was measured by a cytostatic test in vivo with diffusion chambers. Tumor-specific DTH response was suppressed dose-dependently in the range of 12-24 Gy irradiation. No suppression was observed below 12 Gy. Without irradiation, growth of tumor cells was inhibited by immunized spleen cells more effectively than by normal spleen cells. Anti-tumor activity of immunized and normal spleen cells was diminished by irradiation doses of 20 Gy and 10 Gy, respectively. Comparing our report with others that analyzed the type of anti-tumor effector cells induced in this experimental system, we concluded that tumor-specific anti-tumor activity (tumor growth inhibition in vivo) that was radiosensitive at 10-20 Gy depended on a DTH-response. (author)

  6. Characterization of an Isolated Kidney's Vasculature for Use in Bio-Thermal Modeling

    Science.gov (United States)

    Payne, Allison H.; Parker, Dennis L.; Moellmer, Jeff; Roemer, Robert B.; Clifford, Sarah

    2007-05-01

    Accurate bio-thermal modeling requires site-specific modeling of discrete vascular anatomy. Presented herewith are several steps that have been developed to describe the vessel network of isolated canine and bovine kidneys. These perfused, isolated kidneys provide an environment to repeatedly test and improve acquisition methods to visualize the vascular anatomy, as well as providing a method to experimentally validate discrete vasculature thermal models. The organs are preserved using a previously developed methodology that keeps the vasculature intact, allowing for the organ to be perfused. It also allows for the repeated fixation and re-hydration of the same organ, permitting the comparison of various methods and models. The organ extraction, alcohol preservation, and perfusion of the organ are described. The vessel locations were obtained through a high-resolution time-of-flight (TOF) magnetic resonance angiography (MRA) technique. Sequential improvements of both the experimental setup used for this acquisition, as well as MR sequence development are presented. The improvements in MR acquisition and experimental setup improved the number of vessels seen in both the raw data and segmented images by 50%. An automatic vessel centerline extraction algorithm describes both vessel location and genealogy. Centerline descriptions also allows for vessel diameter and flow rate determination, providing valuable input parameters for the discrete vascular thermal model. Characterized vessels networks of both canine and bovine kidneys are presented. While these tools have been developed in an ex vivo environment, all steps can be applied to in vivo applications.

  7. Functional imaging to monitor vascular and metabolic response in canine head and neck tumors during fractionated radiotherapy.

    Science.gov (United States)

    Rødal, Jan; Rusten, Espen; Søvik, Åste; Skogmo, Hege Kippenes; Malinen, Eirik

    2013-10-01

    Radiotherapy causes alterations in tumor biology, and non-invasive early assessment of such alterations may become useful for identifying treatment resistant disease. The purpose of the current work is to assess changes in vascular and metabolic features derived from functional imaging of canine head and neck tumors during fractionated radiotherapy. Material and methods. Three dogs with spontaneous head and neck tumors received intensity-modulated radiotherapy (IMRT). Contrast-enhanced cone beam computed tomography (CE-CBCT) at the treatment unit was performed at five treatment fractions. Dynamic (18)FDG-PET (D-PET) was performed prior to the start of radiotherapy, at mid-treatment and at 3-12 weeks after the completion of treatment. Tumor contrast enhancement in the CE-CBCT images was used as a surrogate for tumor vasculature. Vascular and metabolic tumor parameters were further obtained from the D-PET images. Changes in these tumor parameters were assessed, with emphasis on intra-tumoral distributions. Results. For all three patients, metabolic imaging parameters obtained from D-PET decreased from the pre- to the inter-therapy session. Correspondingly, for two of three patients, vascular imaging parameters obtained from both CE-CBCT and D-PET increased. Only one of the tumors showed a clear metabolic response after therapy. No systematic changes in the intra-tumor heterogeneity in the imaging parameters were found. Conclusion. Changes in vascular and metabolic parameters could be detected by the current functional imaging methods. Vascular tumor features from CE-CBCT and D-PET corresponded well. CE-CBCT is a potential method for easy response assessment when the patient is at the treatment unit.

  8. Management of Recurrent Post-partum Pregnancy Tumor with Localized Chronic Periodontitis.

    Science.gov (United States)

    Reddy, N Raghavendra; Kumar, P Mohan; Selvi, Tamil; Nalini, H Esther

    2014-05-01

    Pregnancy tumor is a benign, hyperplastic lesion of the gingiva, considered to be reactive or traumatic rather than neoplastic in nature. The term pyogenic granuloma is a misnomer as it is not filled with pus or granulomatous tissue histologically. It is multi factorial in nature, which shows an exaggerated response to stimuli such as low grade or chronic irritation, trauma or hormonal variations. Higher levels of sex hormones during pregnancy produce effects on sub gingival microflora, the immune system, the vasculature and specific cells of periodontium which in turn in the presence of local irritants exaggerate the lesion. Since the lesion is clinically indistinguishable from other type of hyperplastic conditions, histological findings are required for proper diagnosis. We present a case report of recurrent pyogenic tumor which showed the evidence of pre-existing localized periodontitis with extensive horizontal bone destruction. The lesion was excised by electrocautery combined with conventional flap procedure after parturition period. During 3 and 6 months follow-up period post-operative healing showed satisfactory results without recurrence.

  9. Management of Recurrent Post-partum Pregnancy Tumor with Localized Chronic Periodontitis

    Directory of Open Access Journals (Sweden)

    N. Raghavendra Reddy

    2014-01-01

    Full Text Available Pregnancy tumor is a benign, hyperplastic lesion of the gingiva, considered to be reactive or traumatic rather than neoplastic in nature. The term pyogenic granuloma is a misnomer as it is not filled with pus or granulomatous tissue histologically. It is multi factorial in nature, which shows an exaggerated response to stimuli such as low grade or chronic irritation, trauma or hormonal variations. Higher levels of sex hormones during pregnancy produce effects on sub gingival microflora, the immune system, the vasculature and specific cells of periodontium which in turn in the presence of local irritants exaggerate the lesion. Since the lesion is clinically indistinguishable from other type of hyperplastic conditions, histological findings are required for proper diagnosis. We present a case report of recurrent pyogenic tumor which showed the evidence of pre-existing localized periodontitis with extensive horizontal bone destruction. The lesion was excised by electrocautery combined with conventional flap procedure after parturition period. During 3 and 6 months follow-up period post-operative healing showed satisfactory results without recurrence.

  10. Cell-mediated immune response to syngeneic uv induced tumors. I. The presence of tumor associated macrophages and their possible role in the in vitro generation of cytotoxic lymphocytes

    International Nuclear Information System (INIS)

    Woodward, J.G.; Daynes, R.A.

    1978-01-01

    A primary in vitro sensitization system employing a chromium release assay was utilized to investigate reactivity of murine spleen cells toward syngeneic ultraviolet (uv) light induced fibrosarcomas. These tumors are immunologically rejected in vivo when implanted into normal syngeneic mice but grow progressively when implanted into syngeneic mice that had previously been irradiated with subcarcinogenic levels of uv light. Following appropriate sensitization, spleen cells from both normal and uv irradiated mice are capable of developing cytotoxic lymphocytes in vitro against the uv induced tumors. It was subsequently discovered that in situ uv induced tumors all contained macrophages of host origin that became demonstrable only after enzymatic dissociation of the tumor tissue. These macrophages were immunologically active in vitro as their presence in the stimulator cell population was necessary to achieve an optimum anti-tumor cytotoxic response following in vitro sensitization. Anti-tumor reactivity generated by mixing spleen cells and tumor cells in the absence of tumor derived macrophages could be greatly enhanced by the addition of normal syngeneic peritoneal macrophages. When in vitro anti-tumor reactivity of spleen cells from normal and uv treated mice was compared under these conditions we again found no significant difference in the magnitude of the responses. In addition, the cytotoxic cells generated in response to uv induced tumors appeared to be highly cross reactive with respect to their killing potential

  11. Theranostic GO-based nanohybrid for tumor induced imaging and potential combinational tumor therapy.

    Science.gov (United States)

    Qin, Si-Yong; Feng, Jun; Rong, Lei; Jia, Hui-Zhen; Chen, Si; Liu, Xiang-Ji; Luo, Guo-Feng; Zhuo, Ren-Xi; Zhang, Xian-Zheng

    2014-02-12

    Graphene oxide (GO)-based theranostic nanohybrid is designed for tumor induced imaging and potential combinational tumor therapy. The anti-tumor drug, Doxorubicin (DOX) is chemically conjugated to the poly(ethylenimine)-co-poly(ethylene glycol) (PEI-PEG) grafted GO via a MMP2-cleavable PLGLAG peptide linkage. The therapeutic efficacy of DOX is chemically locked and its intrinsic fluorescence is quenched by GO under normal physiological condition. Once stimulated by the MMP2 enzyme over-expressed in tumor tissues, the resulting peptide cleavage permits the unloading of DOX for tumor therapy and concurrent fluorescence recovery of DOX for in situ tumor cell imaging. Attractively, this PEI-bearing nanohybrid can mediate efficient DNA transfection and shows great potential for combinational drug/gene therapy. This tumor induced imaging and potential combinational therapy will open a window for tumor treatment by offering a unique theranostic approach through merging the diagnostic capability and pathology-responsive therapeutic function. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Selective anti-tumor activity of the novel fluoropyrimidine polymer F10 towards G48a orthotopic GBM tumors.

    Science.gov (United States)

    Gmeiner, William H; Lema-Tome, Carla; Gibo, Denise; Jennings-Gee, Jamie; Milligan, Carol; Debinski, Waldemar

    2014-02-01

    F10 is a novel anti-tumor agent with minimal systemic toxicity in vivo and which displays strong cytotoxicity towards glioblastoma (GBM) cells in vitro. Here we investigate the cytotoxicity of F10 towards GBM cells and evaluate the anti-tumor activity of locally-administered F10 towards an orthotopic xenograft model of GBM. The effects of F10 on thymidylate synthase (TS) inhibition and Topoisomerase 1 (Top1) cleavage complex formation were evaluated using TS activity assays and in vivo complex of enzyme bioassays. Cytotoxicity of F10 towards normal brain was evaluated using cortices from embryonic (day 18) mice. F10 displays minimal penetrance of the blood-brain barrier and was delivered by intra-cerebral (i.c.) administration and prospective anti-tumor response towards luciferase-expressing G48a human GBM tumors in nude mice was evaluated using IVIS imaging. Histological examination of tumor and normal brain tissue was used to assess the selectivity of anti-tumor activity. F10 is cytotoxic towards G48a, SNB-19, and U-251 MG GBM cells through dual targeting of TS and Top1. F10 is not toxic to murine primary neuronal cultures. F10 is well-tolerated upon i.c. administration and induces significant regression of G48a tumors that is dose-dependent. Histological analysis from F10-treated mice revealed tumors were essentially completely eradicated in F10-treated mice while vehicle-treated mice displayed substantial infiltration into normal tissue. F10 displays strong efficacy for GBM treatment with minimal toxicity upon i.c. administration establishing F10 as a promising drug-candidate for treating GBM in human patients.

  13. Analysis of homeobox gene action may reveal novel angiogenic pathways in normal placental vasculature and in clinical pregnancy disorders associated with abnormal placental angiogenesis.

    Directory of Open Access Journals (Sweden)

    Padma eMurthi

    2014-06-01

    Full Text Available Homeobox genes are essential for both the development of the blood and lymphatic vascular systems, as well as for their maintenance in the adult. Homeobox genes comprise an important family of transcription factors, which are characterised by a well conserved DNA binding motif; the homeodomain. The specificity of the homeodomain allows the transcription factor to bind to the promoter regions of batteries of target genes and thereby regulates their expression. Target genes identified for homeodomain proteins have been shown to control fundamental cell processes such as proliferation, differentiation and apoptosis. We and others have reported that homeobox genes are expressed in the placental vasculature, but our knowledge of their downstream target genes is limited. This review highlights the importance of studying the cellular and molecular mechanisms by which homeobox genes and their downstream targets may regulate important vascular cellular processes such as proliferation, migration, and endothelial tube formation, which are essential for placental vasculogenesis and angiogenesis. A better understanding of the molecular targets of homeobox genes may lead to new therapies for aberrant angiogenesis associated with clinically important pregnancy pathologies, including fetal growth restriction and preeclampsia.

  14. Decreased decorin expression in the tumor microenvironment

    International Nuclear Information System (INIS)

    Bozoky, Benedek; Savchenko, Andrii; Guven, Hayrettin; Ponten, Fredrik; Klein, George; Szekely, Laszlo

    2014-01-01

    Decorin is a small leucine-rich proteoglycan, synthesized and deposited by fibroblasts in the stroma where it binds to collagen I. It sequesters several growth factors and antagonizes numerous members of the receptor tyrosine kinase family. In experimental murine systems, it acted as a potent tumor suppressor. Examining the Human Protein Atlas online database of immunostained tissue samples we have surveyed decorin expression in silico in several different tumor types, comparing them with corresponding normal tissues. We found that decorin is abundantly secreted and deposited in normal connective tissue but its expression is consistently decreased in the tumor microenvironment. We developed a software to quantitate the difference in expression. The presence of two closely related proteoglycans in the newly formed tumor stroma indicated that the decreased decorin expression was not caused by the delay in proteoglycan deposition in the newly formed connective tissue surrounding the tumor

  15. H+ stoichiometry of sites 1 + 2 of the respiratory chain of normal and tumor mitochondria

    Energy Technology Data Exchange (ETDEWEB)

    Villalobo, A.; Alexandre, A.; Lehninger, A.L.

    1984-09-01

    The mechanistic stoichiometry for vectorial H+ ejection coupled to electron transport through energy-conserving segments 1 + 2 was determined on cyanide-inhibited mitochondria from rat liver, rat heart, and Ehrlich ascites tumor cells, and on rat liver mitoplasts with ferricyanide or ferricytochrome c as electron acceptors. K+ (+ valinomycin) and Ca2+ were employed as permeant cations. Three different methods were employed. In the first, known pulses of ferricyanide were added, and the total H+ ejected was determined with a glass electrode. Such measurements gave H+/2e-values exceeding 7.0 for both normal and tumor mitochondria with beta-hydroxybutyrate and other NAD-linked substrates; uptake of Ca2+ was also measured and gave the expected q+/2e-ratios. The second type of measurement was initiated by addition of ferricytochrome c to rat liver mitoplasts, with H+ ejection monitored with the glass electrode and ferricytochrome c reduction by dual-wavelength spectrophotometry; the H+/2e-ratios generally exceeded 7.0. In the third type of measurement, mixing and dilution artifacts were eliminated by oxidizing ferrocytochrome c in situ with a small amount of ferricyanide. H+/2e-ratios for rat liver mitoplasts oxidizing beta-hydroxybutyrate consistently approached or exceeded 7.5. Over 150 measurements made under a variety of conditions gave observed H+/2e-ejection ratios significantly exceeding 7.0, which correlated closely with H+/2e-measurements on sites 1 + 2 + 3, sites 2 + 3, and site 2. Factors leading to the deficit of the observed ratios from the integral value 8 for sites 1 + 2 were discussed.

  16. Intensity-Modulated Proton Therapy Further Reduces Normal Tissue Exposure During Definitive Therapy for Locally Advanced Distal Esophageal Tumors: A Dosimetric Study

    Energy Technology Data Exchange (ETDEWEB)

    Welsh, James, E-mail: jwelsh@mdanderson.org [Department of Radiation Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Gomez, Daniel; Palmer, Matthew B.; Riley, Beverly A.; Mayankkumar, Amin V.; Komaki, Ritsuko [Department of Radiation Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Dong, Lei; Zhu, X. Ronald [Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Likhacheva, Anna; Liao, Zhongxing [Department of Radiation Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Hofstetter, Wayne L. [Department of Thoracic and Cardiovascular Surgery, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Ajani, Jaffer A. [Department of Gastrointestinal Medical Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Cox, James D. [Department of Radiation Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States)

    2011-12-01

    Purpose: We have previously found that {<=} 75% of treatment failures after chemoradiotherapy for unresectable esophageal cancer appear within the gross tumor volume and that intensity-modulated (photon) radiotherapy (IMRT) might allow dose escalation to the tumor without increasing normal tissue toxicity. Proton therapy might allow additional dose escalation, with even lower normal tissue toxicity. In the present study, we compared the dosimetric parameters for photon IMRT with that for intensity-modulated proton therapy (IMPT) for unresectable, locally advanced, distal esophageal cancer. Patients and Methods: Four plans were created for each of 10 patients. IMPT was delivered using anteroposterior (AP)/posteroanterior beams, left posterior oblique/right posterior oblique (LPO/RPO) beams, or AP/LPO/RPO beams. IMRT was delivered with a concomitant boost to the gross tumor volume. The dose was 65.8 Gy to the gross tumor volume and 50.4 Gy to the planning target volume in 28 fractions. Results: Relative to IMRT, the IMPT (AP/posteroanterior) plan led to considerable reductions in the mean lung dose (3.18 vs. 8.27 Gy, p < .0001) and the percentage of lung volume receiving 5, 10, and 20 Gy (p {<=} .0006) but did not reduce the cardiac dose. The IMPT LPO/RPO plan also reduced the mean lung dose (4.9 Gy vs. 8.2 Gy, p < .001), the heart dose (mean cardiac dose and percentage of the cardiac volume receiving 10, 20, and 30 Gy, p {<=} .02), and the liver dose (mean hepatic dose 5 Gy vs. 14.9 Gy, p < .0001). The IMPT AP/LPO/RPO plan led to considerable reductions in the dose to the lung (p {<=} .005), heart (p {<=} .003), and liver (p {<=} .04). Conclusions: Compared with IMRT, IMPT for distal esophageal cancer lowered the dose to the heart, lung, and liver. The AP/LPO/RPO beam arrangement was optimal for sparing all three organs. The dosimetric benefits of protons will need to be tailored to each patient according to their specific cardiac and pulmonary risks. IMPT for

  17. A visual description of the dissection of the cerebral surface vasculature and associated meninges and the choroid plexus from rat brain.

    Science.gov (United States)

    Bowyer, John F; Thomas, Monzy; Patterson, Tucker A; George, Nysia I; Runnells, Jeffrey A; Levi, Mark S

    2012-11-14

    This video presentation was created to show a method of harvesting the two most important highly vascular structures, not residing within the brain proper, that support forebrain function. They are the cerebral surface (superficial) vasculature along with associated meninges (MAV) and the choroid plexus which are necessary for cerebral blood flow and cerebrospinal fluid (CSF) homeostasis. The tissue harvested is suitable for biochemical and physiological analysis, and the MAV has been shown to be sensitive to damage produced by amphetamine and hyperthermia. As well, the major and minor cerebral vasculatures harvested in MAV are of potentially high interest when investigating concussive types of head trauma. The MAV dissected in this presentation consists of the pial and some of the arachnoid membrane (less dura) of the meninges and the major and minor cerebral surface vasculature. The choroid plexus dissected is the structure that resides in the lateral ventricles as described by Oldfield and McKinley. The methods used for harvesting these two tissues also facilitate the harvesting of regional cortical tissue devoid of meninges and larger cerebral surface vasculature, and is compatible with harvesting other brain tissues such as striatum, hypothalamus, hippocampus, etc. The dissection of the two tissues takes from 5 to 10 min total. The gene expression levels for the dissected MAV and choroid plexus, as shown and described in this presentation can be found at GSE23093 (MAV) and GSE29733 (choroid plexus) at the NCBI GEO repository. This data has been, and is being, used to help further understand the functioning of the MAV and choroid plexus and how neurotoxic events such as severe hyperthermia and AMPH adversely affect their function.

  18. TH-EF-207A-06: High-Resolution Optical-CT/ECT Imaging of Unstained Mice Femur, Brain, Spleen, and Tumor

    International Nuclear Information System (INIS)

    Yoon, S; Dewhirst, M; Oldham, M; Boss, M; Birer, S

    2016-01-01

    Purpose: Optical transmission and emission computed tomography (optical-CT/ECT) provides high-resolution 3D attenuation and emission maps in unsectioned large (∼1cm 3 ) ex vivo tissue samples at a resolution of 12.9µm 3 per voxel. Here we apply optical-CT/ECT to investigate high-resolution structure and auto-fluorescence in a range of optically cleared mice organs, including, for the first time, mouse bone (femur), opening the potential for study of bone metastasis and bone-mediated immune response. Methods: Three BALBc mice containing 4T1 flank tumors were sacrificed to obtain spleen, brain, tumor, and femur. Tissues were washed in 4% PFA, fixed in EtOH solution (for 5, 10, 10, and 2 days respectively), and then optically cleared for 3 days in BABBs. The femur was also placed in 0.25M aqueous EDTA for 15–30 days to remove calcium. Optical-CT/ECT attenuation and emission maps at 633nm (the latter using 530nm excitation light) were obtained for all samples. Bi-telecentric optical-CT was compared side-by-side with conventional optical projection tomography (OPT) imaging to evaluate imaging capability of these two rival techniques. Results: Auto-fluorescence mapping of femurs reveals vasculatures and fluorescence heterogeneity. High signals (A.U.=10) are reported in the medullary cavity but not in the cortical bone (A.U.=1). The brain strongly and uniform auto-fluoresces (A.U.=5). Thick, optically dense organs such as the spleen and the tumor (0.12, 0.46OD/mm) are reconstructed at depth without significant loss of resolution, which we attribute to the bi-telecentric optics of optical-CT. The attenuation map of tumor reveals vasculature, attenuation heterogeneity, and possibly necrotic tissue. Conclusion: We demonstrate the feasibility of optical-CT/ECT imaging of un-sectioned mice bones (femurs) and spleen with high resolution. This result, and the characterization of unstained organs, are important steps enabling future studies involving optical-CT/ECT applied

  19. Tumor-induced osteomalacia

    Directory of Open Access Journals (Sweden)

    Pablo Florenzano

    2017-12-01

    Full Text Available Tumor-induced osteomalacia (TIO is a rare paraneoplastic syndrome clinically characterized by bone pain, fractures and muscle weakness. It is caused by tumoral overproduction of fibroblast growth factor 23 (FGF23 that acts primarily at the proximal renal tubule, decreasing phosphate reabsorption and 1α-hydroxylation of 25 hydroxyvitamin D, thus producing hypophosphatemia and osteomalacia. Lesions are typically small, benign mesenchymal tumors that may be found in bone or soft tissue, anywhere in the body. In up to 60% of these tumors, a fibronectin-1(FN1 and fibroblast growth factor receptor-1 (FGFR1 fusion gene has been identified that may serve as a tumoral driver. The diagnosis is established by the finding of acquired chronic hypophosphatemia due to isolated renal phosphate wasting with concomitant elevated or inappropriately normal blood levels of FGF23 and decreased or inappropriately normal 1,25-OH2-Vitamin D (1,25(OH2D. Locating the tumor is critical, as complete removal is curative. For this purpose, a step-wise approach is recommended, starting with a thorough medical history and physical examination, followed by functional imaging. Suspicious lesions should be confirmed by anatomical imaging, and if needed, selective venous sampling with measurement of FGF23. If the tumor is not localized, or surgical resection is not possible, medical therapy with phosphate and active vitamin D is usually successful in healing the osteomalacia and reducing symptoms. However, compliance is often poor due to the frequent dosing regimen and side effects. Furthermore, careful monitoring is needed to avoid complications such us secondary/tertiary hyperparathyroidism, hypercalciuria, and nephrocalcinosis. Novel therapeutical approaches are being developed for TIO patients, such as image-guided tumor ablation and medical treatment with the anti-FGF23 monoclonal antibody KRN23 or anti FGFR medications. The case of a patient with TIO is presented to

  20. Morphologic alterations in normal and neoplastic tissues following hyperthermia treatment

    International Nuclear Information System (INIS)

    Badylak, S.F.; Babbs, C.F.

    1984-01-01

    The sequential morphologic alterations in normal skeletal muscle in rats, Walker 256 tumors in rats, and transmissible venereal tumors (TVT) in dogs following microwave-induced hyperthermia (43 0 C and 45 0 for 20 minutes) were studied by light and electron microscopy. Normal muscle and Walker 256 tumors showed vascular damage at 5 minutes post-heating (PH), followed by suppuration and thrombosis at 6 and 48 hours PH, and by regeneration and repair at 7 days PH. Endothelial damage and parenchymal degeneration were present 5 minutes PH. Progressive ischemic injury occurred for at least 48 hours PH. Two hyperthermia treatments, separated by a 30 or 60 minute cooling interval, were applied to rats implanted with Walker 256 tumors. Increased selective heating of tumor tissue versus surrounding normal tissue, and increased intratumoral temperatures were found during the second hyperthermia treatment. Canine TVTs were resistant to hyperthermia damage. These results characterized the sequential morphologic alterations following hyperthermia treatment and showed that: 1) vascular damage contributed to the immediate and latent cytotoxic effects of hyperthermia, 2) selective heating occurred in the neoplastic tissue disrupted by prior heat treatment, and 3) not all neoplasms are responsive to hyperthermia treatment

  1. Shared liver-like transcriptional characteristics in liver metastases and corresponding primary colorectal tumors.

    Science.gov (United States)

    Cheng, Jun; Song, Xuekun; Ao, Lu; Chen, Rou; Chi, Meirong; Guo, You; Zhang, Jiahui; Li, Hongdong; Zhao, Wenyuan; Guo, Zheng; Wang, Xianlong

    2018-01-01

    Background & Aims : Primary tumors of colorectal carcinoma (CRC) with liver metastasis might gain some liver-specific characteristics to adapt the liver micro-environment. This study aims to reveal potential liver-like transcriptional characteristics associated with the liver metastasis in primary colorectal carcinoma. Methods: Among the genes up-regulated in normal liver tissues versus normal colorectal tissues, we identified "liver-specific" genes whose expression levels ranked among the bottom 10% ("unexpressed") of all measured genes in both normal colorectal tissues and primary colorectal tumors without metastasis. These liver-specific genes were investigated for their expressions in both the primary tumors and the corresponding liver metastases of seven primary CRC patients with liver metastasis using microdissected samples. Results: Among the 3958 genes detected to be up-regulated in normal liver tissues versus normal colorectal tissues, we identified 12 liver-specific genes and found two of them, ANGPTL3 and CFHR5 , were unexpressed in microdissected primary colorectal tumors without metastasis but expressed in both microdissected liver metastases and corresponding primary colorectal tumors (Fisher's exact test, P colorectal tumors may express some liver-specific genes which may help the tumor cells adapt the liver micro-environment.

  2. Oxygen distribution in tumors: A qualitative analysis and modeling study providing a novel Monte Carlo approach

    International Nuclear Information System (INIS)

    Lagerlöf, Jakob H.; Kindblom, Jon; Bernhardt, Peter

    2014-01-01

    Purpose: To construct a Monte Carlo (MC)-based simulation model for analyzing the dependence of tumor oxygen distribution on different variables related to tumor vasculature [blood velocity, vessel-to-vessel proximity (vessel proximity), and inflowing oxygen partial pressure (pO 2 )]. Methods: A voxel-based tissue model containing parallel capillaries with square cross-sections (sides of 10 μm) was constructed. Green's function was used for diffusion calculations and Michaelis-Menten's kinetics to manage oxygen consumption. The model was tuned to approximately reproduce the oxygenational status of a renal carcinoma; the depth oxygenation curves (DOC) were fitted with an analytical expression to facilitate rapid MC simulations of tumor oxygen distribution. DOCs were simulated with three variables at three settings each (blood velocity, vessel proximity, and inflowing pO 2 ), which resulted in 27 combinations of conditions. To create a model that simulated variable oxygen distributions, the oxygen tension at a specific point was randomly sampled with trilinear interpolation in the dataset from the first simulation. Six correlations between blood velocity, vessel proximity, and inflowing pO 2 were hypothesized. Variable models with correlated parameters were compared to each other and to a nonvariable, DOC-based model to evaluate the differences in simulated oxygen distributions and tumor radiosensitivities for different tumor sizes. Results: For tumors with radii ranging from 5 to 30 mm, the nonvariable DOC model tended to generate normal or log-normal oxygen distributions, with a cut-off at zero. The pO 2 distributions simulated with the six-variable DOC models were quite different from the distributions generated with the nonvariable DOC model; in the former case the variable models simulated oxygen distributions that were more similar to in vivo results found in the literature. For larger tumors, the oxygen distributions became truncated in the lower

  3. ADAM12 produced by tumor cells rather than stromal cells accelerates breast tumor progression

    DEFF Research Database (Denmark)

    Frohlich, Camilla; Nehammer, Camilla; Albrechtsen, Reidar

    2011-01-01

    that ADAM12 deficiency reduces breast tumor progression in the PyMT model. However, the catalytic activity of ADAM12 appears to be dispensable for its tumor-promoting effect. Interestingly, we demonstrate that ADAM12 endogenously expressed in tumor-associated stroma in the PyMT model does not influence......Expression of ADAM12 is low in most normal tissues, but is markedly increased in numerous human cancers, including breast carcinomas. We have previously shown that overexpression of ADAM12 accelerates tumor progression in a mouse model of breast cancer (PyMT). In the present study, we found...... hypothesized, however, that the tumor-associated stroma may stimulate ADAM12 expression in tumor cells, based on the fact that TGF-ß1 stimulates ADAM12 expression and is a well-known growth factor released from tumor-associated stroma. TGF-ß1 stimulation of ADAM12-negative Lewis lung tumor cells induced ADAM12...

  4. Histopathological investigation of radiation necrosis. Coagulation necrosis in the irradiated and non-irradiated brain tumors and in the normal brain tissue

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, N [Niigata Univ. (Japan). Brain Research Inst.

    1977-01-01

    Eighty four irradiated tumors (including 59 gliomas) and the surrounding brain tissue were analyzed. In 'normal' brain tissue, typical coagulation necrosis attributable to irradiation was observed in the cerebral white matter, presenting a whitish-yellow color but no remarkable changes in volume. Histologically there was complete desintegration of myelin and axon. Vascular changes included hyalinous thickening, concentric cleavage, fibrinoid degeneration, adventitial fibrosis and edema of small arteries, fibrin thrombi or occlusion of arterioles and capillaries, and telangiectasia of small veins and venules. While other tumors showed hyalinous or fibrous scar tissue and decrease in volume, the gliomas maintained their original volume without residual tumor cells. Massive coagulation necrosis was occasionally found even in full volume, non-irradiated gliomas (controls), although the changes were fewer and not so varied as in typical radiation necrosis. With small dosages, it was difficult to judge whether the necrosis was caused by irradiation or occurred spontaneously. Coagulation necrosis in tumor tissue was found in 25 of 59 cases (42%) of irradiated gliomas, but in only 2 of 49 cases (4%) of the nonirradiated gliomas. In 49 cases no coagulation necrosis of the surrounding tissue was found. Although histopathological judgement is difficult, it is suggested that there is a significant correlation between coagulation necrosis and irradiation. Discussion of the relationship between coagulation necrosis and NSD (nominal standard dose) led to the conclusion that coagulation necrosis will not be caused by irradiation of less than 1400 rets in NSD.

  5. In vivo 31P MR spectroscopy of breast tumors: preliminary results

    International Nuclear Information System (INIS)

    Choe, Bo Young; Kim, Hak Hee; Suh, Tae Suk; Shinn, Kyung Sub; Jung, Sang Seol

    1995-01-01

    To evaluate the various phosphorus metabolism of breast tumors with use of in vivo phosphorus-31 ( 31 P) MR spectroscopy (MRS). Five patients with breast tumor (benign in two, malignant in three) and three normal healthy volunteers participated in this study. All in vivo 31 P MRS examinations were performed on 1.5T whole-body MRI/MRS system by using a Free Induction Decay (FID) pulse sequence. T1-weighted MR images were used for localization of tumors. Peak areas for each phosphorus metabolite were measured using a Marquart algorithm. Breast carcinoma had a substantially larger phosphomonoester (PME) and a smaller phosphocreatine (PCr) peak intensity than normal breast tissue. This was reflected in the relatively higher PME/PCr ratio of breast carcinomas as well as phosphodiester (PDE)/PCr, inorganic phosphate (Pi)/PCr, and adenosine triphosphate (ATP)/PCr ratios, compared with normal controls. The mean pH value of breast tumor demonstrating the alkaline nature was higher than that of normal controls. Spectral patterns between benign breast disease and normal breast tissue were quite similar, and differentiation was not established. Our preliminary study suggests that in vivo 31 P MRS is a noninvasive examination which may be useful in the early differentiation of malignant breast tumors from normal and benign conditions. However, normal control and benign conditions could not be characterized on the basis of the phosphorus metabolite ratios

  6. Tumor vascularity under hypertension induced by intravenous infusion of angiotensin II

    International Nuclear Information System (INIS)

    Kato, Toshio

    1986-01-01

    We studied whether or not the blood flow of tumors was increased by AT-II-induced hypertension in patients. Angiograms of 51 patients before and after intravenous infusion of AT-II were compared carefully from 5 points of view which suggested increased tumor blood flow. These were, 1) Contraction of small arteries feeding normal tissue, 2) Enhanced visualization of tumor vessels, 3) Enhanced visualization of tumor stain, 4) Increase of venous return from tumor-bearing region, and 5) Enhanced visualization of metastatic lymph nodes. The results were as follows. Contractions of small arteries feeding normal tissue [Finding 1)] were observed in 34 cases (66.6 %) and enhanced visualization of tumor vessels, tumor stain and so on [Finding 2)-5] were observed in 18 cases (35.3 %). Concequently, an increase of tumor blood flow was suggested in 40 cases (78.4 %). Blood flow of human tumors and normal tissue during the full course of induced hypertension with AT-II were measures by means of radionuclide angiography ( 99m Tc-RBC) and laser Doppler velocimetry. Activities of the tumor-bearing region and the mid-portion of the thigh (selected as normal tissue) were measured continuously by collimated scintillation detectors. In 26 measurements out of 31 (83.8 %), the activity in the thigh decreased promptly and returned to the baseline synchronously with the rise and fall of blood pressure. In contrast, in 11 measurements (34.4 %) the activity of the tumor-bearing region increased and returned to the baseline accompanying the change of blood pressure. Preliminary observations using laser Doppler velocimetry revealed an increase of blood flow in 5 tumors. In conclusion, the blood flow of human tumors was increased by AT-II, in agreement with the findings in animal tumors. (J.P.N.)

  7. Blood Vessel Normalization in the Hamster Oral Cancer Model for Experimental Cancer Therapy Studies

    Energy Technology Data Exchange (ETDEWEB)

    Ana J. Molinari; Romina F. Aromando; Maria E. Itoiz; Marcela A. Garabalino; Andrea Monti Hughes; Elisa M. Heber; Emiliano C. C. Pozzi; David W. Nigg; Veronica A. Trivillin; Amanda E. Schwint

    2012-07-01

    Normalization of tumor blood vessels improves drug and oxygen delivery to cancer cells. The aim of this study was to develop a technique to normalize blood vessels in the hamster cheek pouch model of oral cancer. Materials and Methods: Tumor-bearing hamsters were treated with thalidomide and were compared with controls. Results: Twenty eight hours after treatment with thalidomide, the blood vessels of premalignant tissue observable in vivo became narrower and less tortuous than those of controls; Evans Blue Dye extravasation in tumor was significantly reduced (indicating a reduction in aberrant tumor vascular hyperpermeability that compromises blood flow), and tumor blood vessel morphology in histological sections, labeled for Factor VIII, revealed a significant reduction in compressive forces. These findings indicated blood vessel normalization with a window of 48 h. Conclusion: The technique developed herein has rendered the hamster oral cancer model amenable to research, with the potential benefit of vascular normalization in head and neck cancer therapy.

  8. Congenital juvenile granulosa cell tumor of the testis: Case report and literature review

    Directory of Open Access Journals (Sweden)

    Carolina Talini

    2016-07-01

    Full Text Available Juvenile granulosa cell tumor (JGCT is a very rarely diagnosed benign tumor, accounting for 1.2% of all prepubertal testicular tumors. A full-term healthy neonate was diagnosed with a painless left scrotal mass. During evaluation it was identified to have about two times the volume of the contralateral testis, presenting a firm consistency, not as hard as the consistency of a prenatal testicular torsion. Doppler ultrasound detected a multicystic left testicular mass, with normal blood flow, but failed in detecting normal-appearing testis. Human chorionic gonadotropin (β-HCG and serum alpha-fetoprotein (AFP were normal. Inguinal approach was performed, section of the lesion was sent to frozen biopsy and excluded yolk sac tumor, and however the impossibility of detecting normal testis tissue indicated orchiectomy with high ligation of the spermatic cord. Histological evaluation demonstrated gray testicular parenchyma with multicystic aspect fulfilled with yellow fluid. The usual clinical presentation of JGCT is a painless scrotal mass, radiological imaging demonstrates a multicystic tumor. Tumoral markers levels are normal and the standard treatment is the inguinal orchiectomy.

  9. IL-6 trans-signaling licenses mouse and human tumor microvascular gateways for trafficking of cytotoxic T cells

    Science.gov (United States)

    Fisher, Daniel T.; Chen, Qing; Skitzki, Joseph J.; Muhitch, Jason B.; Zhou, Lei; Appenheimer, Michelle M.; Vardam, Trupti D.; Weis, Emily L.; Passanese, Jessica; Wang, Wan-Chao; Gollnick, Sandra O.; Dewhirst, Mark W.; Rose-John, Stefan; Repasky, Elizabeth A.; Baumann, Heinz; Evans, Sharon S.

    2011-01-01

    Immune cells are key regulators of neoplastic progression, which is often mediated through their release of cytokines. Inflammatory cytokines such as IL-6 exert tumor-promoting activities by driving growth and survival of neoplastic cells. However, whether these cytokines also have a role in recruiting mediators of adaptive anticancer immunity has not been investigated. Here, we report that homeostatic trafficking of tumor-reactive CD8+ T cells across microvascular checkpoints is limited in tumors despite the presence of inflammatory cytokines. Intravital imaging in tumor-bearing mice revealed that systemic thermal therapy (core temperature elevated to 39.5°C ± 0.5°C for 6 hours) activated an IL-6 trans-signaling program in the tumor blood vessels that modified the vasculature such that it could support enhanced trafficking of CD8+ effector/memory T cells (Tems) into tumors. A concomitant decrease in tumor infiltration by Tregs during systemic thermal therapy resulted in substantial enhancement of Tem/Treg ratios. Mechanistically, IL-6 produced by nonhematopoietic stromal cells acted cooperatively with soluble IL-6 receptor–α and thermally induced gp130 to promote E/P-selectin– and ICAM-1–dependent extravasation of cytotoxic T cells in tumors. Parallel increases in vascular adhesion were induced by IL-6/soluble IL-6 receptor–α fusion protein in mouse tumors and patient tumor explants. Finally, a causal link was established between IL-6–dependent licensing of tumor vessels for Tem trafficking and apoptosis of tumor targets. These findings suggest that the unique IL-6–rich tumor microenvironment can be exploited to create a therapeutic window to boost T cell–mediated antitumor immunity and immunotherapy. PMID:21926464

  10. Impact of hypoxia and the metabolic microenvironment on radiotherapy of solid tumors. Introduction of a multiinstitutional research project

    International Nuclear Information System (INIS)

    Zips, D.; Petersen, C.; Adam, M.; Molls, M.; Philbrook, C.; Flentje, M.; Haase, A.; Schmitt, P.; Mueller-Klieser, W.; Thews, O.; Walenta, S.; Baumann, M.

    2004-01-01

    Background: recent developments in imaging technology and tumor biology have led to new techniques to detect hypoxia and related alterations of the metabolic microenvironment in tumors. However, whether these new methods can predict radiobiological hypoxia and outcome after fractionated radiotherapy still awaits experimental evaluation. Material and methods: the present article will introduce a multiinstitutional research project addressing the impact of hypoxia and the metabolic microenvironment on radiotherapy of solid tumors. The four laboratories involved are situated at the universities of Dresden, Mainz, Munich and Wuerzburg, Germany. Results: the joint scientific project started to collect data obtained on a set of ten different human tumor xenografts growing in nude mice by applying various imaging techniques to detect tumor hypoxia and related parameters of the metabolic microenvironment. These techniques include magnetic resonance imaging and spectroscopy, metabolic mapping with quantitative bioluminescence and single-photon imaging, histological multiparameter analysis of biochemical hypoxia, perfusion and vasculature, and immunohistochemistry of factors related to angiogenesis, invasion and metastasis. To evaluate the different methods, baseline functional radiobiological data including radiobiological hypoxic fraction and outcome after fractionated irradiation will be determined. Conclusion: besides increasing our understanding of tumor biology, the project will focus on new, clinically applicable strategies for microenvironment profiling and will help to identify those patients that might benefit from targeted interventions to improve tumor oxygenation. (orig.)

  11. DNA amplification is rare in normal human cells

    International Nuclear Information System (INIS)

    Wright, J.A.; Watt, F.M.; Hudson, D.L.; Stark, G.R.; Smith, H.S.; Hancock, M.C.

    1990-01-01

    Three types of normal human cells were selected in tissue culture with three drugs without observing a single amplification event from a total of 5 x 10 8 cells. No drug-resistant colonies were observed when normal foreskin keratinocytes were selected with N-(phosphonacetyl)-L-aspartate or with hydroxyurea or when normal mammary epithelial cells were selected with methotrexate. Some slightly resistant colonies with limited potential for growth were obtained when normal diploid fibroblast cells derived from fetal lung were selected with methotrexate or hydroxyurea but careful copy-number analysis of the dihydrofolate reductase and ribonucleotide reductase genes revealed no evidence of amplification. The rarity of DNA amplification in normal human cells contrasts strongly with the situation in tumors and in established cell lines, where amplification of onogenes and of genes mediating drug resistance is frequent. The results suggest that tumors and cell lines have acquired the abnormal ability to amplify DNA with high frequency

  12. INHIBIN IMMUNOREACTIVITY IN GONADAL AND NON-GONADAL TUMORS

    NARCIS (Netherlands)

    DEJONG, FH; GROOTENHUIS, AJ; STEENBERGEN, J; VANSLUIJS, FJ; FOEKENS, JA; TENKATE, FJW; OOSTERHUIS, JW; LAMBERTS, SWJ; KLIJN, JGM

    1990-01-01

    Inhibin immunoreactivity was estimated in a number of gonadal and non-gonadal tumors. Dog Sertoli cell tumors and human granulosa cell and Leydig cell tumors contained high concentrations of inhibin-like material. Levels, comparable with those in normal testes and ovaries were detected in human

  13. Epigenetic alterations of the SERPINE1 gene in oral squamous cell carcinomas and normal oral mucosa

    DEFF Research Database (Denmark)

    Gao, Shan; Nielsen, Boye Schnack; Krogdahl, Annelise

    2010-01-01

    , 17 of 20 patients with oral carcinoma were found to have between 2.5- and 50-fold increased tumor PAI-1 mRNA level, as compared with the matched tumor-adjacent normal tissues. The PAI-1 mRNA level in connective tissues from 15 healthy volunteers was similar to the level in tumor-adjacent normal...... tissues, but the level in epithelium was 5- to 10-fold lower. Analyzing DNA methylation of 25 CpG sites within 960 bp around the transcription initiation site of the SERPINE1 gene by bisulfite sequencing, we did the surprising observation that both tumors and tumor-adjacent normal tissue had a significant...... level of methylation, whereas there was very little methylation in tissue from healthy volunteers, suggesting that tumor-adjacent normal tissue already contains transformation-associated epigenetic changes. However, there was no general inverse correlation between PAI-1 mRNA levels and SERPINE1 gene...

  14. pH distribution in human tumors

    International Nuclear Information System (INIS)

    Thistlethwaite, A.J.; Leeper, D.B.; Moylan, D.J.; Nerlinger, R.E.

    1984-01-01

    pH distribution in human tumors is being determined to evaluate this parameter as a prognostic indicator of hyperthermia response. pH is measured by a modified glass pH electrode (21g, model MI 408, Microelectrodes, Inc., Londonderry, NH) inserted through an 18g open-ended Angiocath. Eight tumors have been evaluated to date; and of those, 3 were also assayed after the first heat treatment coincident with determination of blood flow. Tumors were between 2-5 cm, of various histologies, and of primary, recurrent, or metastatic origin. 2-4 measurements were made per tumor. Pretreatment readings were between 6.4 and 7.2 pH units. As tumor blood flow increased after 1 hr heating (41.5 - 43 0 ) pH rose 0.1 - 0.3 units. Normal rat muscle yields pH readings of 7.35 - 7.45. Although there was considerable heterogeneity of pH within tumors, accuracy and drift were not a problem. 5-15 min were required for pH stabilization after catheter insertion and <5 min after electrode insertion. A saline wheal was used for anesthesia to preclude modification of pH by anesthetics. Patient tolerance has not been a problems. This study suggests that human tumor tissue has a preponderance of areas more acidic than normal tissue. This may serve to sensitize tumor cells to hyperthermia and provide a prognostic indicator of tumor response

  15. Brain tumor-targeted drug delivery strategies

    Directory of Open Access Journals (Sweden)

    Xiaoli Wei

    2014-06-01

    Full Text Available Despite the application of aggressive surgery, radiotherapy and chemotherapy in clinics, brain tumors are still a difficult health challenge due to their fast development and poor prognosis. Brain tumor-targeted drug delivery systems, which increase drug accumulation in the tumor region and reduce toxicity in normal brain and peripheral tissue, are a promising new approach to brain tumor treatments. Since brain tumors exhibit many distinctive characteristics relative to tumors growing in peripheral tissues, potential targets based on continuously changing vascular characteristics and the microenvironment can be utilized to facilitate effective brain tumor-targeted drug delivery. In this review, we briefly describe the physiological characteristics of brain tumors, including blood–brain/brain tumor barriers, the tumor microenvironment, and tumor stem cells. We also review targeted delivery strategies and introduce a systematic targeted drug delivery strategy to overcome the challenges.

  16. Functional histology of tumors as a basis of molecular imaging

    International Nuclear Information System (INIS)

    Ljungkvist, A.S.; Bussink, J.; Rijken, P.F.; Van Der Kogel, A.; Kaanders, J.H.

    2003-01-01

    The aim of this study was to characterize the various elements of the microenvironment and their interrelationships by quantitative image analysis. Tumor cell proliferation, hypoxia, and apoptosis are detected by immunohistochemical methods, and mapped in relation to the vasculature. This allows quantitative relationships to be measured in the context of tissue structure. Guided by e.g., gene expression profiles for hypoxia induced-genes, several molecular markers of tumor hypoxia were identified and are immunohistochemically detectable. We have thus far concentrated on the glucose transporters glut-1 and glut-3, as well as a pH-regulating enzyme, carbonic anhydrase IX. The extent and distribution of hypoxia is assessed by administering nitroimidazole-based markers such as pimonidazole, that can be detected immunohistochemically. Multiple hypoxia markers (CCI-103F, pimonidazole) can be used to study the effects of modifiers of perfusion or oxygenation on the distribution and dynamics of hypoxic cells in the same tumor. Proliferating cells are detected by thymidine analogues. Apoptotic cells are imaged by TUNEL and caspase-3 detection. In xenografted human tumors, examples of the use of quantitative imaging of hypoxia and proliferation are the study of reoxygenation after irradiation, or the investigation of the lifespan and dynamics of hypoxic cell populations over time. Perturbation of the microenvironment after cytotoxic treatments has been investigated by co-registration of the various markers, e.g. after treatment with the hypoxic cytotoxin tirapazamine. The combination of well-timed administration of external markers of hypoxia and proliferation with the detection of intrinsic molecular markers followed by quantitative image-registration yields a comprehensive view of the dynamics of the microenvironment in individual tumors

  17. Cell adhesion-mediated radioresistance (CAM-RR). Extracellular matrix-dependent improvement of cell survival in human tumor and normal cells in vitro

    International Nuclear Information System (INIS)

    Cordes, N.; Meineke, V.

    2003-01-01

    Background: Cell-extracellular matrix (ECM) contact is thought to have great impact on cellular mechanisms resulting in increased cell survival upon exposure to ionizing radiation. Several human tumor cell lines and normal human fibroblastic cell strains of different origin, all of them expressing the wide-spread and important integrin subunit β1, were irradiated, and clonogenic cell survival, β1-integrin cell surface expression, and adhesive functionality were investigated. Material and Methods: Human tumor cell lines A172 (glioblastoma), PATU8902 (pancreas carcinoma), SKMES1 (lung carcinoma), A549 (lung carcinoma), and IPC298 (melanoma) as well as normal human skin (HSF1) and lung fibroblasts (CCD32) and human keratinocytes (HaCaT) were irradiated with 0-8 Gy. Besides colony formation assays, β1-integrin cell surface expression by flow cytometry and adhesive functionality by adhesion assays were analyzed. Results: All cell lines showed improved clonogenic survival after irradiation in the presence of fibronectin as compared to plastic. Irradiated cells exhibited a significant, dose-dependent increase in β1-integrin cell surface expression following irradiation. As a parameter of the adhesive functionality of the β1-integrin, a radiation-dependent elevation of cell adhesion to fibronectin in comparison with adhesion to plastic was demonstrated. Conclusion: The in vitro cellular radiosensitivity is highly influenced by fibronectin according to the phenomenon of cell adhesion-mediated radioresistance. Additionally, our emerging data question the results of former and current in vitro cytotoxicity studies performed in the absence of an ECM. These findings might also be important for the understanding of malignant transformation, anchorage-independent cell growth, optimization of radiotherapeutic regimes and the prevention of normal tissue side effects on the basis of experimental radiobiological data. (orig.)

  18. Acidity generated by the tumor microenvironment drives local invasion.

    Science.gov (United States)

    Estrella, Veronica; Chen, Tingan; Lloyd, Mark; Wojtkowiak, Jonathan; Cornnell, Heather H; Ibrahim-Hashim, Arig; Bailey, Kate; Balagurunathan, Yoganand; Rothberg, Jennifer M; Sloane, Bonnie F; Johnson, Joseph; Gatenby, Robert A; Gillies, Robert J

    2013-03-01

    The pH of solid tumors is acidic due to increased fermentative metabolism and poor perfusion. It has been hypothesized that acid pH promotes local invasive growth and metastasis. The hypothesis that acid mediates invasion proposes that H(+) diffuses from the proximal tumor microenvironment into adjacent normal tissues where it causes tissue remodeling that permits local invasion. In the current work, tumor invasion and peritumoral pH were monitored over time using intravital microscopy. In every case, the peritumoral pH was acidic and heterogeneous and the regions of highest tumor invasion corresponded to areas of lowest pH. Tumor invasion did not occur into regions with normal or near-normal extracellular pH. Immunohistochemical analyses revealed that cells in the invasive edges expressed the glucose transporter-1 and the sodium-hydrogen exchanger-1, both of which were associated with peritumoral acidosis. In support of the functional importance of our findings, oral administration of sodium bicarbonate was sufficient to increase peritumoral pH and inhibit tumor growth and local invasion in a preclinical model, supporting the acid-mediated invasion hypothesis. Cancer Res; 73(5); 1524-35. ©2012 AACR. ©2012 AACR.

  19. Single and 30 fraction tumor control doses correlate in xenografted tumor models: implications for predictive assays

    International Nuclear Information System (INIS)

    Gerweck, Leo E.; Dubois, Willum; Baumann, Michael; Suit, Herman D.

    1995-01-01

    Purpose/Objective: In a previous publication we reported that laboratory assays of tumor clonogen number, in combination with intrinsic radiosensitivity measured in-vitro, accurately predicted the rank-order of single fraction 50% tumor control doses, in six rodent and xenografted human tumors. In these studies, tumor hypoxia influenced the absolute value of the tumor control doses across tumor types, but not their rank-order. In the present study we hypothesize that determinants of the single fraction tumor control dose, may also strongly influence the fractionaled tumor control doses, and that knowledge of tumor clonogen number and their sensitivity to fractionated irradiation, may be useful for predicting the relative sensitivity of tumors treated by conventional fractionated irradiation. Methods/Materials: Five tumors of human origin were used for these studies. Special care was taken to ensure that all tumor control dose assays were performed over the same time frame, i.e., in-vitro cells of a similar passage were used to initiate tumor sources which were expanded and used in the 3rd or 4th generation. Thirty fraction tumor control doses were performed in air breathing mice, under normal blood flow conditions (two fractions/day). The results of these studies have been previously published. For studies under uniformly (clamp) hypoxic conditions, tumors arising from the same transplantation were randomized into single or fractionated dose protocols. For estimation of the fractionated TCD50 under hypoxic conditions, tumors were exposed to six 5.4 Gy fractions (∼ 2 Gy equivalent under air), followed by graded 'top-up' dose irradiation for determination of the TCD50; the time interval between doses was 6-9 hours. The single dose equivalent of the six 5.4 Gy doses was used to calculate an extrapolated 30 fraction hypoxic TCD50. Results: Fractionation substantially increased the dose required for tumor control in 4 of the 5 tumors investigated. For these 4 tumors

  20. Selective tumor irradiation without normal tissue exposure in non-resectable pancreatic cancer

    International Nuclear Information System (INIS)

    Order, S.E.; Siegel, J.A.; Lustig, R.A.; Principato, L.S.; Zeiger, L.; Lang, P.; Wallner, P.E.

    1996-01-01

    Purpose: To determine the maximum dose of colloidal 32 P that may be interstitially infused in non-resectable pancreatic cancer prior to external radiation [60 Gy + 5FU]. Materials and Methods: Forty-seven patients with non-resectable pancreatic cancer with and without metastasis entered a dose escalation Phase I study beginning at a specific activity of 4 mCi. Under CT guidance the center of the pancreatic tumor was localized by computer the distance and angle from a grid on the abdomen to the center of the tumor mass determined. Three drugs were infused: 4 mg Decadron - 10 minute delay; 2.5 million particles of macroaggregated albumin [MAA]; and with final dose escalation two infusions of 30 mCi colloidal chromic phosphate 32 P [3.5 ml] followed by a needle cleansing dose of .25 ml of macroaggregated albumin. Bremsstrahlung scans on three separate days determined tumor localization and radiation dose. One week later infusional brachytherapy was repeated, that is Decadron, MAA, colloidal 32 P, followed by three additional bremsstrahlung scans. Two weeks later a course of 60 Gy external radiation was initiated with four doses of 5FU [500 mg] administered with every other radiation treatment day. Toxicity was recorded using RTOG cooperative group criteria. CA19-9 and CEA were used as biomarkers to evaluate tumor progression or remission in conjunction with CT scans and clinical course. Results: Completion of the Phase I study was limited, not by toxicity, but by the volume of colloidal 32 P that could be infused into the stroma of the tumor, i.e. 3.5 ml containing 30 mCi. No significant (grade 3-4) toxicity occurred in patients with pancreatic cancer only. Patients without metastasis had reduction and, in some cases, elimination of CA19-9, etc. The median survival in 28 patients within the Phase I non-resectable pancreas cancer study without metastasis was one year in 19 patients; with metastasis was 6.9 months. The two infusions of 30 mCi 32 P ordinarily yields a

  1. Fibroblast-derived CXCL12 promotes breast cancer metastasis by facilitating tumor cell intravasation.

    Science.gov (United States)

    Ahirwar, Dinesh K; Nasser, Mohd W; Ouseph, Madhu M; Elbaz, Mohamad; Cuitiño, Maria C; Kladney, Raleigh D; Varikuti, Sanjay; Kaul, Kirti; Satoskar, Abhay R; Ramaswamy, Bhuvaneswari; Zhang, Xiaoli; Ostrowski, Michael C; Leone, Gustavo; Ganju, Ramesh K

    2018-05-03

    The chemokine CXCL12 has been shown to regulate breast tumor growth, however, its mechanism in initiating distant metastasis is not well understood. Here, we generated a novel conditional allele of Cxcl12 in mice and used a fibroblast-specific Cre transgene along with various mammary tumor models to evaluate CXCL12 function in the breast cancer metastasis. Ablation of CXCL12 in stromal fibroblasts of mice significantly delayed the time to tumor onset and inhibited distant metastasis in different mouse models. Elucidation of mechanisms using in vitro and in vivo model systems revealed that CXCL12 enhances tumor cell intravasation by increasing vascular permeability and expansion of a leaky tumor vasculature. Furthermore, our studies revealed CXCL12 enhances permeability by recruiting endothelial precursor cells and decreasing endothelial tight junction and adherence junction proteins. High expression of stromal CXCL12 in large cohort of breast cancer patients was directly correlated to blood vessel density and inversely correlated to recurrence and overall patient survival. In addition, our analysis revealed that stromal CXCL12 levels in combination with number of CD31+ blood vessels confers poorer patient survival compared to individual protein level. However, no correlation was observed between epithelial CXCL12 and patient survival or blood vessel density. Our findings describe the novel interactions between fibroblasts-derived CXCL12 and endothelial cells in facilitating tumor cell intrvasation, leading to distant metastasis. Overall, our studies indicate that cross-talk between fibroblast-derived CXCL12 and endothelial cells could be used as novel biomarker and strategy for developing tumor microenvironment based therapies against aggressive and metastatic breast cancer.

  2. Changes in cross-sectional area of pulmonary vessels on chest computed tomography after chemotherapy in patients with advanced non-squamous non-small-cell lung cancer.

    Science.gov (United States)

    Karayama, Masato; Inui, Naoki; Kusagaya, Hideki; Suzuki, Seiichiro; Inoue, Yusuke; Enomoto, Noriyuki; Fujisawa, Tomoyuki; Nakamura, Yutaro; Suda, Takafumi

    2016-05-01

    Chemotherapy is associated with a risk of vascular damage. Novel anti-angiogenic agents, which can directly affect tumor angiogenesis, are increasingly being used. However, the effects of these agents on normal vasculature are not well understood. Here, we evaluated the effects of chemotherapy in general, and the anti-angiogenic agent bevacizumab, more specifically, on the pulmonary vasculature in patients with advanced non-squamous non-small-cell lung cancer (NSCLC). For this, we used the cross-sectional area of pulmonary vessels (CSA), which is an easily measurable indicator of small pulmonary vasculature on non-contrast chest computed tomography (CT). We retrospectively reviewed CT scans of the lungs of 75 chemo-naïve patients with advanced non-squamous NSCLC, for measurement of CSA, before and after first-line platinum-based chemotherapy, using a semi-automatic image-processing program. Measured vessels were classified in two groups: small vessels with CSA area (%CSAsmall-diameter vessels, with a significant decrease in %CSAsmall pulmonary vascular damage. Use of bevacizumab does not enhance the reduction in area of pulmonary vessels.

  3. Relevance of tumor angiogenesis patterns as a diagnostic value and prognostic indicator in oral precancer and cancer.

    Science.gov (United States)

    Shetty, Devi Charan; Ahuja, Puneet; Taneja, D K; Rathore, Ajit Singh; Chhina, Shivjot; Ahuja, Upasana Sethi; Kumar, Kiran; Ahuja, Anshuman; Rastogi, Priyanka

    2011-01-27

    Tumor angiogenesis occurs by recruitment of endothelial cell precursors or by sprouting of existing capillaries, which differ from the normal vasculature by having an altered morphology that can be exploited for diagnosis and as a prognostic indicator. Improved technologies have propelled diagnosis into a new era. These technologies have to be used with great precision. The diagnosis of a dysplastic premalignant lesion of the oral mucosa cannot be based solely on clinical findings. Therefore histologic evaluation of a representative biopsy specimen is necessary. Accurate judgment of the proper site for biopsy is essential for reaching a correct diagnosis. The aim of this report is to analyze the vascular patterns with the help of direct oral microscopy and the technique of stereo-optical microscopy in the oral cavity to select biopsy sites, and compare the outcome of a directed biopsy with that of biopsy specimens obtained from sites selected solely on the basis of clinical criteria. The study sample comprised 50 oral mucosal lesions. A statistically significant difference was noted between samples judged to be microscopically representative sites. We conclude that this method would aid in early and better diagnosis and treatment planning of oral premalignant and malignant lesions by assessing the various vascular patterns in the mucosa.

  4. Tumors of the optic nerve

    DEFF Research Database (Denmark)

    Lindegaard, Jens; Heegaard, Steffen

    2009-01-01

    A variety of lesions may involve the optic nerve. Mainly, these lesions are inflammatory or vascular lesions that rarely necessitate surgery but may induce significant visual morbidity. Orbital tumors may induce proptosis, visual loss, relative afferent pupillary defect, disc edema and optic...... atrophy, but less than one-tenth of these tumors are confined to the optic nerve or its sheaths. No signs or symptoms are pathognomonic for tumors of the optic nerve. The tumors of the optic nerve may originate from the optic nerve itself (primary tumors) as a proliferation of cells normally present...... in the nerve (e.g., astrocytes and meningothelial cells). The optic nerve may also be invaded from tumors originating elsewhere (secondary tumors), invading the nerve from adjacent structures (e.g., choroidal melanoma and retinoblastoma) or from distant sites (e.g., lymphocytic infiltration and distant...

  5. Differential control of the cholesterol biosynthetic pathway in tumor versus liver: evidence for decontrolled tumor cholesterogenesis in a cell-free system

    International Nuclear Information System (INIS)

    Azrolan, N.

    1987-01-01

    Cholesterol biosynthesis was characterized in cell-free post-mitochondrial supernatant (PMS) systems prepared from both normal rat liver and Morris hepatoma 3924A. Per cell, the rate of cholesterol synthesis from either 14 C-citrate of 14 -acetate in the hepatoma system was 9-fold greater than that observed in the liver system. Furthermore, the ratio of sterol-to-fatty acid synthesis rates from 14 C-citrate was more than 3-fold greater in the tumor than in the normal liver system. Incubations using radiolabeled acetate and mevalonate have demonstrated the loss of a normally rate-limiting control site within the early portion of the cholesterol biosynthetic pathway in the tumor system. Upon analysis of the steady-state levels of early lipogenic intermediates, the specific site of decontrol in the tumor was identified as the 3-hydroxy-3-methylglutaryl-CoA → mevalonate site of this pathway. In contrast, this reaction appeared to retain its rate-limiting properties in the cell-free system from normal liver

  6. Three-Dimensional Segmentation of the Tumor in Computed Tomographic Images of Neuroblastoma

    OpenAIRE

    Deglint, Hanford J.; Rangayyan, Rangaraj M.; Ayres, Fábio J.; Boag, Graham S.; Zuffo, Marcelo K.

    2006-01-01

    Segmentation of the tumor in neuroblastoma is complicated by the fact that the mass is almost always heterogeneous in nature; furthermore, viable tumor, necrosis, and normal tissue are often intermixed. Tumor definition and diagnosis require the analysis of the spatial distribution and Hounsfield unit (HU) values of voxels in computed tomography (CT) images, coupled with a knowledge of normal anatomy. Segmentation and analysis of the tissue composition of the tumor can assist in quantitative ...

  7. Interstitial hydraulic conductivity and interstitial fluid pressure for avascular or poorly vascularized tumors.

    Science.gov (United States)

    Liu, L J; Schlesinger, M

    2015-09-07

    A correct description of the hydraulic conductivity is essential for determining the actual tumor interstitial fluid pressure (TIFP) distribution. Traditionally, it has been assumed that the hydraulic conductivities both in a tumor and normal tissue are constant, and that a tumor has a much larger interstitial hydraulic conductivity than normal tissue. The abrupt transition of the hydraulic conductivity at the tumor surface leads to non-physical results (the hydraulic conductivity and the slope of the TIFP are not continuous at tumor surface). For the sake of simplicity and the need to represent reality, we focus our analysis on avascular or poorly vascularized tumors, which have a necrosis that is mostly in the center and vascularization that is mostly on the periphery. We suggest that there is an intermediary region between the tumor surface and normal tissue. Through this region, the interstitium (including the structure and composition of solid components and interstitial fluid) transitions from tumor to normal tissue. This process also causes the hydraulic conductivity to do the same. We introduce a continuous variation of the hydraulic conductivity, and show that the interstitial hydraulic conductivity in the intermediary region should be monotonically increasing up to the value of hydraulic conductivity in the normal tissue in order for the model to correspond to the actual TIFP distribution. The value of the hydraulic conductivity at the tumor surface should be the lowest in value. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. hESC Differentiation toward an Autonomic Neuronal Cell Fate Depends on Distinct Cues from the Co-Patterning Vasculature

    Directory of Open Access Journals (Sweden)

    Lisette M. Acevedo

    2015-06-01

    Full Text Available To gain insight into the cellular and molecular cues that promote neurovascular co-patterning at the earliest stages of human embryogenesis, we developed a human embryonic stem cell model to mimic the developing epiblast. Contact of ectoderm-derived neural cells with mesoderm-derived vasculature is initiated via the neural crest (NC, not the neural tube (NT. Neurovascular co-patterning then ensues with specification of NC toward an autonomic fate requiring vascular endothelial cell (EC-secreted nitric oxide (NO and direct contact with vascular smooth muscle cells (VSMCs via T-cadherin-mediated homotypic interactions. Once a neurovascular template has been established, NT-derived central neurons then align themselves with the vasculature. Our findings reveal that, in early human development, the autonomic nervous system forms in response to distinct molecular cues from VSMCs and ECs, providing a model for how other developing lineages might coordinate their co-patterning.

  9. The dissociation of tumor-induced weight loss from hypoglycemia in a transplantable pluripotent rat islet tumor results in the segregation of stable alpha- and beta-cell tumor phenotypes

    DEFF Research Database (Denmark)

    Madsen, O D; Karlsen, C; Nielsen, E

    1993-01-01

    that of starved rats until death results from cachexia. After tumor resection, animals immediately resume normal feeding behavior. Comparative studies of hormone release and mRNA content in anorectic lines, MSL-G-AN and NHI-5B-AN, vs. those in the insulinoma line, MSL-G2-IN, revealed selective glucagon gene...... in animals carrying tumor necrosis factor-producing experimental tumors....... markers. By selective transplantation, it was possible to segregate stable anorectic normoglycemic tumor lines, MSL-G-AN and NHI-5B-AN, from both clones. These tumors cause an abrupt onset of anorexia when they reach a size of 400-500 mg (

  10. Radiosensitization effects of nicotinamide on malignant and normal mouse tissue

    International Nuclear Information System (INIS)

    Jonsson, G.G.; Kjellen, E.; Pero, R.W.; Cameron, R.

    1985-01-01

    Inhibitors of the chromatin-associated enzyme adenosine diphosphate ribosyltransferase have been found to inhibit DNA strand rejoining and to potentiate lethality of DNA-damaging agents both in vivo and in vitro. The authors have in this work examined the radiosensitizing potential of one such inhibitor, nicotinamide, on tumor tissue by using transplanted C3H mouse mammary adenocarcinomas and on normal tissue in a tail-stunting experiment using BALB/cA mice. The data indicate a radiosensitizing effect of nicotinamide on tumor cells as well as on normal tissue. The data indicate a possible role of adenosine diphosphate ribosyltransferase inhibitors as a sensitizing agent in the radiotherapy of malignant tumors

  11. Dichloroacetate induces tumor-specific radiosensitivity in vitro but attenuates radiation-induced tumor growth delay in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Zwicker, F.; Roeder, F.; Debus, J.; Huber, P.E. [University Hospital Center Heidelberg, Heidelberg (Germany). Dept. of Radiation Oncology; Deutsches Krebsforschungszentrum (DKFZ), Heidelberg (Germany). Clinical Cooperation Unit Molecular Radiation Oncology; Kirsner, A.; Weber, K.J. [University Hospital Center Heidelberg, Heidelberg (Germany). Dept. of Radiation Oncology; Peschke, P. [Deutsches Krebsforschungszentrum (DKFZ), Heidelberg (Germany). Clinical Cooperation Unit Molecular Radiation Oncology

    2013-08-15

    Background: Inhibition of pyruvate dehydrogenase kinase (PDK) by dichloroacetate (DCA) can shift tumor cell metabolism from anaerobic glycolysis to glucose oxidation, with activation of mitochondrial activity and chemotherapy-dependent apoptosis. In radiotherapy, DCA could thus potentially enhance the frequently moderate apoptotic response of cancer cells that results from their mitochondrial dysfunction. The aim of this study was to investigate tumor-specific radiosensitization by DCA in vitro and in a human tumor xenograft mouse model in vivo. Materials and methods: The interaction of DCA with photon beam radiation was investigated in the human tumor cell lines WIDR (colorectal) and LN18 (glioma), as well as in the human normal tissue cell lines HUVEC (endothelial), MRC5 (lung fibroblasts) and TK6 (lymphoblastoid). Apoptosis induction in vitro was assessed by DAPI staining and sub-G1 flow cytometry; cell survival was quantified by clonogenic assay. The effect of DCA in vivo was investigated in WIDR xenograft tumors growing subcutaneously on BALB/c-nu/nu mice, with and without fractionated irradiation. Histological examination included TUNEL and Ki67 staining for apoptosis and proliferation, respectively, as well as pinomidazole labeling for hypoxia. Results: DCA treatment led to decreased clonogenic survival and increased specific apoptosis rates in tumor cell lines (LN18, WIDR) but not in normal tissue cells (HUVEC, MRC5, TK6). However, this significant tumor-specific radiosensitization by DCA in vitro was not reflected by the situation in vivo: The growth suppression of WIDR xenograft tumors after irradiation was reduced upon additional DCA treatment (reflected by Ki67 expression levels), although early tumor cell apoptosis rates were significantly increased by DCA. This apparently paradoxical effect was accompanied by a marked DCA-dependent induction of hypoxia in tumor-tissue. Conclusion: DCA induced tumor-specific radiosensitization in vitro but not in vivo

  12. Radioimmunotherapy of small cell lung cancer xenograft mice with a 90Y anti-ROBO1 monoclonal antibody: Pathological study of effects on tumor and normal organs

    International Nuclear Information System (INIS)

    Fujiwara, K.; Koyama, K.; Kitada, T.; Takahashi, M.; Momose, T.; Suga, K.

    2015-01-01

    Full text of publication follows. ROBO1 is a membrane protein that is concerned about axon guidance. It is reported that ROBO1 contributes to tumor metastasis and angio genesis. ROBO1 is specifically expressed at high levels in small cell lung cancer (SCLC). In this study, we performed radioimmunotherapy (RIT) to SCLC models, and analyzed pathological alteration of tumor and organs. Methods: For the biodistribution study, 111 In-DOTA anti-ROBO1 IgG (about 370 kBq, 111 In anti-ROBO1) was injected into NCI-H69 xenograft mice via tail vein. To evaluate antitumor effect, RIT study was performed. 90 Y-DOTA anti-ROBO1 IgG (about 7.4 MBq, 90 Y anti-ROBO1) was injected. The experiments measured tumor volume, mouse weights and blood cell counts periodically. The tumors and organs (liver, kidney, intestine, spleen, femoral and sternum) of mice were obtained, and histopathologic analysis were carried out. Results: as a result of biodistribution study, the specific accumulation in the tumor of 111 In anti-ROBO1 was observed. Liver, kidney, spleen and lung showed comparatively high accumulation of 111 In anti-ROBO1. In the RIT study, 90 Y anti-ROBO1 significantly reduced tumor volume compared with original volume and increased median survival time to 58 days (p<0.01, versus saline, 28 days), while 90 Y anti-ROBO1 induced transient pancytopenia. Histopathologic analysis of tumors and organs further validated the therapeutic efficacy and the systemic toxicity of 90 Y anti-ROBO1. In day 7 when tumor volume reduced to 60% compared with original volume, irreversible nuclear denaturation and fibrosis were observed. The percentage of TUNEL-positive cells increased to 11.4%±5.1 in the day 7 (p<0.01, versus control, 4.14%±1.4), which showed increase of DNA fragmentation and apoptosis in the tumor tissues. Normal organs excluding spleen and sternum showed no significant injury. In day 7 post injection, spleen showed transient reduction of hematopoietic cells. Hematopoietic cells in

  13. Interstitial fluid flow and drug delivery in vascularized tumors: a computational model.

    Directory of Open Access Journals (Sweden)

    Michael Welter

    Full Text Available Interstitial fluid is a solution that bathes and surrounds the human cells and provides them with nutrients and a way of waste removal. It is generally believed that elevated tumor interstitial fluid pressure (IFP is partly responsible for the poor penetration and distribution of therapeutic agents in solid tumors, but the complex interplay of extravasation, permeabilities, vascular heterogeneities and diffusive and convective drug transport remains poorly understood. Here we consider-with the help of a theoretical model-the tumor IFP, interstitial fluid flow (IFF and its impact upon drug delivery within tumor depending on biophysical determinants such as vessel network morphology, permeabilities and diffusive vs. convective transport. We developed a vascular tumor growth model, including vessel co-option, regression, and angiogenesis, that we extend here by the interstitium (represented by a porous medium obeying Darcy's law and sources (vessels and sinks (lymphatics for IFF. With it we compute the spatial variation of the IFP and IFF and determine its correlation with the vascular network morphology and physiological parameters like vessel wall permeability, tissue conductivity, distribution of lymphatics etc. We find that an increased vascular wall conductivity together with a reduction of lymph function leads to increased tumor IFP, but also that the latter does not necessarily imply a decreased extravasation rate: Generally the IF flow rate is positively correlated with the various conductivities in the system. The IFF field is then used to determine the drug distribution after an injection via a convection diffusion reaction equation for intra- and extracellular concentrations with parameters guided by experimental data for the drug Doxorubicin. We observe that the interplay of convective and diffusive drug transport can lead to quite unexpected effects in the presence of a heterogeneous, compartmentalized vasculature. Finally we discuss

  14. Interstitial fluid flow and drug delivery in vascularized tumors: a computational model.

    Science.gov (United States)

    Welter, Michael; Rieger, Heiko

    2013-01-01

    Interstitial fluid is a solution that bathes and surrounds the human cells and provides them with nutrients and a way of waste removal. It is generally believed that elevated tumor interstitial fluid pressure (IFP) is partly responsible for the poor penetration and distribution of therapeutic agents in solid tumors, but the complex interplay of extravasation, permeabilities, vascular heterogeneities and diffusive and convective drug transport remains poorly understood. Here we consider-with the help of a theoretical model-the tumor IFP, interstitial fluid flow (IFF) and its impact upon drug delivery within tumor depending on biophysical determinants such as vessel network morphology, permeabilities and diffusive vs. convective transport. We developed a vascular tumor growth model, including vessel co-option, regression, and angiogenesis, that we extend here by the interstitium (represented by a porous medium obeying Darcy's law) and sources (vessels) and sinks (lymphatics) for IFF. With it we compute the spatial variation of the IFP and IFF and determine its correlation with the vascular network morphology and physiological parameters like vessel wall permeability, tissue conductivity, distribution of lymphatics etc. We find that an increased vascular wall conductivity together with a reduction of lymph function leads to increased tumor IFP, but also that the latter does not necessarily imply a decreased extravasation rate: Generally the IF flow rate is positively correlated with the various conductivities in the system. The IFF field is then used to determine the drug distribution after an injection via a convection diffusion reaction equation for intra- and extracellular concentrations with parameters guided by experimental data for the drug Doxorubicin. We observe that the interplay of convective and diffusive drug transport can lead to quite unexpected effects in the presence of a heterogeneous, compartmentalized vasculature. Finally we discuss various

  15. Heme synthesis in normal mouse liver and mouse liver tumors

    International Nuclear Information System (INIS)

    Stout, D.L.; Becker, F.F.

    1990-01-01

    Hepatic cancers from mice and rats demonstrate decreased levels of delta-aminolevulinic acid synthase, the rate-limiting enzyme in the heme synthetic pathway, and increased heme oxygenase, the heme-catabolizing enzyme. These findings suggest that diminution of P-450, b5, and catalase in these lesions may result from a heme supply that is limited by decreased heme synthesis and increased heme catabolism. Heme synthesis was measured in mouse liver tumors (MLT) and adjacent tumor-free lobes (BKG) by administering the radiolabeled heme precursors 55 FeCl3 and [2- 14 C]glycine and subsequently extracting the heme for determination of specific activity. Despite reduced delta-aminolevulinic acid synthase activity in MLT, both tissues incorporated [2-14C]glycine into heme at similar rates. At early time points, heme extracted from MLT contained less 55Fe than that from BKG. This was attributed to the findings that MLT took up 55Fe at a slower rate than BKG and had larger iron stores than BKG. The amount of heme per milligram of protein was also similar in both tissues. These findings militate against the hypothesis that diminished hemoprotein levels in MLT result from limited availability of heme. It is probable, therefore, that decreased hemoprotein levels in hepatic tumors are linked to a general program of dedifferentiation associated with the cancer phenotype. Diminution of hemoprotein in MLT may result in a relatively increased intracellular heme pool. delta-Aminolevulinic acid synthase and heme oxygenase are, respectively, negatively and positively regulated by heme. Thus, their alteration in MLT may be due to the regulatory influences of the heme pool

  16. Exposure of tumor-bearing mice to extremely high-frequency electromagnetic radiation modifies the composition of fatty acids in thymocytes and tumor tissue.

    Science.gov (United States)

    Gapeyev, Andrew B; Kulagina, Tatiana P; Aripovsky, Alexander V

    2013-08-01

    To test the participation of fatty acids (FA) in antitumor effects of extremely high-frequency electromagnetic radiation (EHF EMR), the changes in the FA composition in the thymus, liver, blood plasma, muscle tissue, and tumor tissue in mice with Ehrlich solid carcinoma exposed to EHF EMR were studied. Normal and tumor-bearing mice were exposed to EHF EMR with effective parameters (42.2 GHz, 0.1 mW/cm2, 20 min daily during five consecutive days beginning the first day after the inoculation of tumor cells). Fatty acid composition of various organs and tissues of mice were determined using a gas chromatography. It was shown that the exposure of normal mice to EHF EMR or tumor growth significantly increased the content of monounsaturated FA (MUFA) and decreased the content of polyunsaturated FA (PUFA) in all tissues examined. Exposure of tumor-bearing mice to EHF EMR led to the recovery of FA composition in thymocytes to the state that is typical for normal animals. In other tissues of tumor-bearing mice, the exposure to EHF EMR did not induce considerable changes that would be significantly distinguished between disturbances caused by EHF EMR exposure or tumor growth separately. In tumor tissue which is characterized by elevated level of MUFA, the exposure to EHF EMR significantly decreased the summary content of MUFA and increased the summary content of PUFA. The recovery of the FA composition in thymocytes and the modification of the FA composition in the tumor under the influence of EHF EMR on tumor-bearing animals may have crucial importance for elucidating the mechanisms of antitumor effects of the electromagnetic radiation.

  17. Progress in radiotherapy of diencephalohypophyseal tumor

    Energy Technology Data Exchange (ETDEWEB)

    Takakura, Kintomo; Kubo, Osami [Tokyo Women`s Medical Coll. (Japan). Neurological Inst.

    1997-12-01

    The patients with hypophyseal adenoma (36 patients) were treated with peripheral irradiation (between 10 and 35 Gy) using gamma unit. The results are shown as follows: GH producing hypophyseal tumor (8 patients); tumor volume did not reduce rapidly. Growth hormone level fell, but it took more than 12 months to recover to normal level. PRL producing hypophyseal tumor (5 patients); five intractable patients were irradiated. Tumor contraction was not obvious, but the increase of tumor size was restrained. ACTH producing hypophyseal tumor (4 patients); ACTH level dropped gradually, and tumor size was reduced. However, there were 2 intractable cases. Non-functional hypophyseal tumor (19 patients); local tumor control rate was 100% in all patients and visual field was recovered. The size of craniopharyngioma was obviously reduced with peripheral irradiation of 10 Gy dimension about 10 months later. (K.H.)

  18. Association of Tumor Growth Factor-β and Interferon-γ Serum Levels With Insulin Resistance in Normal Pregnancy.

    Science.gov (United States)

    Sotoodeh Jahromi, Abdolreza; Sanie, Mohammad Sadegh; Yusefi, Alireza; Zabetian, Hassan; Zareian, Parvin; Hakimelahi, Hossein; Madani, Abdolhossien; Hojjat-Farsangi, Mohammad

    2015-09-28

    Pregnancy is related to change in glucose metabolism and insulin production. The aim of our study was to determine the association of serum IFN-γ and TGF- β levels with insulin resistance during normal pregnancy. This cross sectional study was carried out on 97 healthy pregnant (in different trimesters) and 28 healthy non-pregnant women. Serum TGF-β and IFN- γ level were measured by ELISA method. Pregnant women had high level TGF-β and low level IFN-γ as compared non-pregnant women. Maternal serum TGF-β concentration significantly increased in third trimester as compared first and second trimester of pregnancy. Maternal serum IFN-γ concentration significantly decreased in third trimester as compared first and second trimester of pregnancy. Pregnant women exhibited higher score of HOMA IR as compared non-pregnant women. There were association between gestational age with body mass index (r=0.28, P=0.005), TGF-β (r=0.45, PInsulin resistance and TGF-β (r=0.17, p=0.05). Our findings suggest that changes in maternal cytokine level in healthy pregnant women were anti-inflammatory. Furthermore, Tumor Growth Factor-β appears has a role in induction insulin resistance in healthy pregnant women. However, further studies needed to evaluate role of different cytokines on insulin resistance in normal pregnancy.

  19. An activated form of ADAM10 is tumor selective and regulates cancer stem-like cells and tumor growth

    Science.gov (United States)

    Saha, Nayanendu; Eissman, Moritz F.; Xu, Kai; Llerena, Carmen; Kusebauch, Ulrike; Ding, Bi-Sen; Cao, Zhongwei; Rafii, Shahin; Ernst, Matthias; Scott, Andrew M.; Nikolov, Dimitar B.; Lackmann, Martin

    2016-01-01

    The transmembrane metalloprotease ADAM10 sheds a range of cell surface proteins, including ligands and receptors of the Notch, Eph, and erbB families, thereby activating signaling pathways critical for tumor initiation and maintenance. ADAM10 is thus a promising therapeutic target. Although widely expressed, its activity is normally tightly regulated. We now report prevalence of an active form of ADAM10 in tumors compared with normal tissues, in mouse models and humans, identified by our conformation-specific antibody mAb 8C7. Structure/function experiments indicate mAb 8C7 binds an active conformation dependent on disulfide isomerization and oxidative conditions, common in tumors. Moreover, this active ADAM10 form marks cancer stem-like cells with active Notch signaling, known to mediate chemoresistance. Importantly, specific targeting of active ADAM10 with 8C7 inhibits Notch activity and tumor growth in mouse models, particularly regrowth after chemotherapy. Our results indicate targeted inhibition of active ADAM10 as a potential therapy for ADAM10-dependent tumor development and drug resistance. PMID:27503072

  20. Detection of EWS/FLI-1 fusion in non-Ewing soft tissue tumors.

    Science.gov (United States)

    Trancău, I O; Huică, R; Surcel, M; Munteanu, A; Ursaciuc, C

    2015-01-01

    EWS/FLI-1 fusion mainly appears in Ewing's sarcoma or the primitive neuroectodermal tumors and represents a genomic marker for these tumors. However, it can appear with lower frequency in other soft tissue tumors. The paper investigates the presence of EWS/FLI-1 fusion in clinically diagnosed sarcoma belonging to different non-Ewing connective tissue tumors in order to search for a possible new biomarker valuable for investigators. 20 patients with soft tissue tumors, who underwent surgery, were tested. Intra-operative samples of normal and tumor tissue were collected for histopathological diagnosis and genetics determinations. The patients' RNA from tumor and normal peritumoral tissue was extracted and EWS/FLI-1 fusion screened by quantitative real-time PCR. The relative expression of the fusion in the tumor sample was compared to the similar expression in normal tissue. The amplification in the threshold zone was shown by 5 samples (25%): 2 clear cell sarcoma, 1 fibrosarcoma, 1 malignant tumor of nerve sheath, 1 metastatic adenocarcinoma. We differentiated between the unspecific amplification and concluded that these are weak positive results. Genomic investigation may establish the tumor malignancy and its possible affiliation earlier than histopathology. It can support the screening of EWS/FLI-1 fusion in a larger variety of clinically diagnosed soft tissue tumors.