WorldWideScience

Sample records for normalized noise power

  1. Normalized Noise Power Spectrum of Full Field Digital Mammography System

    International Nuclear Information System (INIS)

    Isa, Norriza Mohd; Wan Hassan, Wan Muhamad Saridan

    2010-01-01

    A method to measure noise power spectrum of a full field digital mammography system is presented. The effect of X-ray radiation dose, size and configuration of region of interest on normalized noise power spectrum (NNPS) was investigated. Flat field images were acquired using RQA-M2 beam quality technique (Mo/Mo anode-filter, 28 kV, 2 mm Al) with different clinical radiation doses. The images were cropped at about 4 cm from the edge of the breast wall and then divided into different size of non-overlapping or overlapping segments. NNPS was determined through detrending, 2-D fast Fourier transformation and normalization. Our measurement shows that high radiation dose gave lower NNPS at a specific beam quality.

  2. Normalized noise power spectrum of full field digital mammography system

    International Nuclear Information System (INIS)

    Norriza Mohd Isa; Wan Muhamad Saridan Wan Hassan

    2009-01-01

    A method to measure noise power spectrum of a full field digital mammography system is presented. The effect of X-ray radiation dose, size and configuration of region of interest on normalized noise power spectrum (NNPS) was investigated. Flat field images were acquired using RQA-M2 beam quality technique (Mo/Mo anode-filter, 28 kV, 2 mm Al) with different clinical radiation doses. The images were cropped at about 4 cm from the edge of the breast wall and then divided into different size of non-overlapping or overlapping segments. NNPS was determined through detrending, 2-D fast Fourier transformation and normalization. Our measurement shows that high radiation dose gave lower NNPS at a specific beam quality. (Author)

  3. Normalized noise power spectrum of full field digital mammography detector system

    International Nuclear Information System (INIS)

    Norriza Mohd Isa; Wan Muhamad Saridan Wan Hassan

    2009-01-01

    Full text: A method to measure noise power spectrum of a full field digital mammography system is presented. The effect of X-ray radiation dose, size and configuration of region of interest on normalized noise power spectrum (NNPS) was investigated. Flat field images were acquired using RQA-M2 beam quality technique (Mo/Mo anode-filter, 28 kV, 2 mm Al) with different clinical radiation doses. The images were cropped at about 4 cm from the edge of the breast wall and then divided into different size of non-overlapping or overlapping segments. NNPS was determined through de trending, 2-D fast Fourier transformation and normalization. Our measurement shows that high radiation dose gave lower NNPS at a specific beam quality. (author)

  4. Power reactor noise

    International Nuclear Information System (INIS)

    Thie, J.A.

    1981-01-01

    This book concentrates on the different types of noise present in power reactors and how the analysis of this noise can be used as a tool for reactor monitoring and diagnostics. Noise analysis is a growing field that offers advantages such as simplicity, low cost, and natural multivariable interactions. A major advantage, continuous and undisturbed monitoring, supplies a means of obtaining early warnings of possible reactor malfunctions thus preventing further complications by alerting operators to a problem - and aiding in the diagnosis of that problem - before it demands major repairs. Following an introductory chapter, the theoretical basis for the various methods of noise analysis is explained, and full chapters are devoted to the fundamentals of statistics for time-domain analysis and Fourier series and related topics for frequency-domain analysis. General experimental techniques and associated theoretical considerations are reviewed, leading to discussion of practical applications in the latter half of the book. Besides chapters giving examples of neutron noise and acoustical noise, chapters are also devoted to extensive examples from pressurized water reactor and boiling water reactor power plants

  5. Limit theorems for power variations of ambit field driven by white noise

    DEFF Research Database (Denmark)

    Pakkanen, Mikko S.

    2014-01-01

    We study the asymptotics of lattice power variations of two-parameter ambit fields driven by white noise. Our first result is a law of large numbers for power variations. Under a constraint on the memory of the ambit field, normalized power variations converge to certain integral functionals...

  6. Fractal characterization for noise signal validation in power reactors

    International Nuclear Information System (INIS)

    Aguilar Martinez, Omar

    2003-01-01

    Up to now, a great variety of methods is used for the dynamical characterization of different components of Nuclear Power Plants (NPPs). With this aim, time and spectral analysis are usually considered, and different tools of non-stationary and non-gaussian analysis are also presented. When applying non-lineal dynamics theory for noise signal validation purposes in power reactors, the extraction of fractal echoes plays a main role. Fractal characterization for noise signal validation purposes can be integrated to the task of processing and acquisition of time signals in noise (fluctuation parameters) analysis systems. The possibility of discrimination between deterministic chaotic signals and pure noise signals has been incorporated, as a complement; to noise signals analysis in normal and anomalous operational conditions in NPPs using a fractal approach. In this work the detailed analysis of a neutronic sensor response is considered and the fractal characterization of its dynamics state (i.e. sensor line) for noise signal classification, it is presented. The experiment from where the time series (signals) were obtained, was carried out at the Research Reactor of the Technical University of Budapest, Hungary, during a model experiment for ageing process study of in-core neutron detectors (author)

  7. Limit theorems for power variations of ambit fields driven by white noise

    DEFF Research Database (Denmark)

    Pakkanen, Mikko

    We study the asymptotic behavior of lattice power variations of two-parameter ambit fields that are driven by white noise. Our first result is a law of large numbers for such power variations. Under a constraint on the memory of the ambit field, normalized power variations are shown to converge...

  8. Application of the neutron noise analysis technique in nuclear power plants

    International Nuclear Information System (INIS)

    Lescano, Victor H.; Wentzeis, Luis M.

    1999-01-01

    Using the neutron noise analysis in nuclear power plants, and without producing any perturbation in the normal operation of the plant, information of the vibration state of the reactor internals and the behavior of the operating conditions of the reactor primary circuit can be obtained. In Argentina, the neutron noise analysis technique is applied in customary way in the nuclear power plants Atucha I and Embalse. A database was constructed and vibration frequencies corresponding to different reactor internals were characterized. Reactor internals with particular mechanical vibrations have been detected and localized. In the framing of a cooperation project between Argentina and Germany, we participated in the measurements, analysis and modelisation, using the neutron noise technique, in the Obrigheim and Gundremmingen nuclear power plants. In the nuclear power plant Obrigheim (PWR, 350 M We), correlations between the signals measured from self-power neutron detectors and accelerometers located inside the reactor core, were made. In the nuclear power plant Gundremmingen (BWR, 1200 M We) we participated in the study of a particular mechanical vibration detected in one of the instrumentation tube. (author)

  9. Normalized Minimum Error Entropy Algorithm with Recursive Power Estimation

    Directory of Open Access Journals (Sweden)

    Namyong Kim

    2016-06-01

    Full Text Available The minimum error entropy (MEE algorithm is known to be superior in signal processing applications under impulsive noise. In this paper, based on the analysis of behavior of the optimum weight and the properties of robustness against impulsive noise, a normalized version of the MEE algorithm is proposed. The step size of the MEE algorithm is normalized with the power of input entropy that is estimated recursively for reducing its computational complexity. The proposed algorithm yields lower minimum MSE (mean squared error and faster convergence speed simultaneously than the original MEE algorithm does in the equalization simulation. On the condition of the same convergence speed, its performance enhancement in steady state MSE is above 3 dB.

  10. Fractals in Power Reactor Noise

    International Nuclear Information System (INIS)

    Aguilar Martinez, O.

    1994-01-01

    In this work the non- lineal dynamic problem of power reactor is analyzed using classic concepts of fractal analysis as: attractors, Hausdorff-Besikovics dimension, phase space, etc. A new non-linear problem is also analyzed: the discrimination of chaotic signals from random neutron noise signals and processing for diagnosis purposes. The advantages of a fractal analysis approach in the power reactor noise are commented in details

  11. Community reaction to noise from power stations

    International Nuclear Information System (INIS)

    Job, R.F.S.; Hede, A.J.

    1989-01-01

    Community reaction is a major consideration in noise control. The relationship between noise exposure and community reaction has received considerable attention in relation to railway, traffic, aircraft and impulsive noise. The results have shown a number of features in common, including: similarly shaped noise/reaction functions; similar results across different measurement techniques and cultures, noise/reaction correlations based on individual respondent data are low (mean r = 0.42 ± 0.12: Job, 1988), although correlations of .58 and above have been reported correlations based on data grouped by noise exposure are generally high and relatively unaffected by the type of noise studied whereas correlations based on individual data tend to be lower for impulsive noise than for transportation noise attitude to the noise source and sensitivity to noise shows strong correlations with reaction. This paper reports that the present study was undertaken in order toe establish over a wider range of noise exposure whether community reaction to power station noise is similar to reaction to other types of non-impulsive noise. It is possible that reaction is different given important differences in the source of the noise which may affect attitude. Attitudes towards power stations may be more positive than attitudes to aircraft or rail noise for example, because almost all respondents use electricity regularly every day. Further, the power stations in the present study provided employment for the relatively small surrounding communities

  12. Power reactor noise

    International Nuclear Information System (INIS)

    Thie, J.A.

    1981-01-01

    Noise analysis is a growing field that offers advantages such as simplicity, low cost, and natural multivariable interactions. A major advantage, continuous and undisturbed monitoring, supplies a means of obtaining early warnings of possible reactor malfunctions, thus preventing further complications by alerting opeators to a problem - and aiding in the diagnosis of that problem - before it demands major repairs. Dr. Thie hopes to further, through detailed explanations and over 70 illustrations, the acceptance of the use of noise analysis by the nuclear utility industry. Following an introductory chapter, the theoretical basis for the various methods of noise analysis is explained, and full chapters are devoted to the fundamentals of statistics for time-domain analysis and Fourier series and related topics for frequency-domain analysis. General experimental techniques and associated theoretical considerations are reviewed, leading to discussions of practical applications in the latter half of the book. Besides chapters giving examples of neutron noise and acoustical noise, chapters are also devoted to extensive examples from pressurized water reactor and boiling water reactor power plants

  13. Power noise spectrum classification in the problem of the IBR-2 reactor

    International Nuclear Information System (INIS)

    Bargel, M.; Kitowski, J.; Pepelyshev, Yu.N.

    1988-01-01

    The classification spectrum results of random fluctuations in the IBR-2 energy pulse are presented. The work is performed for the application of the obtained results to the reactor diagnostics and the study of its noise uncontrolled states. For classification of the spectra the method of pattern recognition based upon the ISODATA heuristic algorithm is used. It is shown that a set of noise uncontrolled reactor states, registered during the reactor operation period at power of 0.4-2 MVt with the first variant of moving reflector (1983-1986) is formed into 4(5) most typical states. Each of the states corresponds to the general conditions of the reactor core cooling and provides the normal work of the moving reflector. However, these states differ in coolant flow, power level and peculiarities of the moving reflector rotation regime. One type of anomal power noise, connected with some disorder in the moving reflctor work, is isolated. This work also presents the possibility of control over the state of moving reflectors according to the change in the amplitude of power oscillations at some frequences. The reactor noise classification results can be used as the data bank for the IBR-2 reactor diagnostic system

  14. A simplified method of estimating noise power spectra

    International Nuclear Information System (INIS)

    Hanson, K.M.

    1998-01-01

    A technique to estimate the radial dependence of the noise power spectrum of images is proposed in which the calculations are conducted solely in the spatial domain of the noise image. The noise power spectrum averaged over a radial spatial-frequency interval is obtained form the variance of a noise image that has been convolved with a small kernel that approximates a Laplacian operator. Recursive consolidation of the image by factors of two in each dimension yields estimates of the noise power spectrum over that full range of spatial frequencies

  15. Tracking of Nonstationary Noise Based on Data-Driven Recursive Noise Power Estimation

    NARCIS (Netherlands)

    Erkelens, J.S.; Heusdens, R.

    2008-01-01

    This paper considers estimation of the noise spectral variance from speech signals contaminated by highly nonstationary noise sources. The method can accurately track fast changes in noise power level (up to about 10 dB/s). In each time frame, for each frequency bin, the noise variance estimate is

  16. Noise power spectrum of the fixed pattern noise in digital radiography detectors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Sik, E-mail: dskim@hufs.ac.kr [Department of Electronics Engineering, Hankuk University of Foreign Studies, Gyeonggi-do 449-791 (Korea, Republic of); Kim, Eun [R& D Center, DRTECH Co., Gyeonggi-do 13558 (Korea, Republic of)

    2016-06-15

    Purpose: The fixed pattern noise in radiography image detectors is caused by various sources. Multiple readout circuits with gate drivers and charge amplifiers are used to efficiently acquire the pixel voltage signals. However, the multiple circuits are not identical and thus yield nonuniform system gains. Nonuniform sensitivities are also produced from local variations in the charge collection elements. Furthermore, in phosphor-based detectors, the optical scattering at the top surface of the columnar CsI growth, the grain boundaries, and the disorder structure causes spatial sensitivity variations. These nonuniform gains or sensitivities cause fixed pattern noise and degrade the detector performance, even though the noise problem can be partially alleviated by using gain correction techniques. Hence, in order to develop good detectors, comparative analysis of the energy spectrum of the fixed pattern noise is important. Methods: In order to observe the energy spectrum of the fixed pattern noise, a normalized noise power spectrum (NNPS) of the fixed pattern noise is considered in this paper. Since the fixed pattern noise is mainly caused by the nonuniform gains, we call the spectrum the gain NNPS. We first asymptotically observe the gain NNPS and then formulate two relationships to calculate the gain NNPS based on a nonuniform-gain model. Since the gain NNPS values are quite low compared to the usual NNPS, measuring such a low NNPS value is difficult. By using the average of the uniform exposure images, a robust measuring method for the gain NNPS is proposed in this paper. Results: By using the proposed measuring method, the gain NNPS curves of several prototypes of general radiography and mammography detectors were measured to analyze their fixed pattern noise properties. We notice that a direct detector, which is based on the a-Se photoconductor, showed lower gain NNPS than the indirect-detector case, which is based on the CsI scintillator. By comparing the gain

  17. Noise from wind power plants

    International Nuclear Information System (INIS)

    Ljunggren, S.

    2001-12-01

    First, the generation of noise at wind power plants and the character of the sound is described. The propagation of the sound and its dependence on the structure of the ground and on wind and temperature is treated next. Models for calculation of the noise emission are reviewed and examples of applications are given. Different means for reducing the disturbances are described

  18. Noise from cooling towers of power parks

    International Nuclear Information System (INIS)

    Zakaria, J.; Moore, F.K.

    1975-01-01

    A study is presented of the noise pollution problem for large power parks proposed for the future. Such parks might have an area of about 75 sq. miles, and a generating capacity up to 48000 MW. A comparative analysis has been done for natural and mechanical-draft wet towers as the major sources of acoustic power. Noise radiation from single isolated towers as well as from a dispersed array of towers has been considered for both types of cooling systems. Major noise attenuation effects considered are due to the atmospheric absorption and A-weighting. Conditions of 60F and 70 percent relative humidity in a still atmosphere have been assumed

  19. High-powered CO2 -lasers and noise control

    Science.gov (United States)

    Honkasalo, Antero; Kuronen, Juhani

    High-power CO2 -lasers are being more and more widely used for welding, drilling and cutting in machine shops. In the near future, different kinds of surface treatments will also become routine practice with laser units. The industries benefitting most from high power lasers will be: the automotive industry, shipbuilding, the offshore industry, the aerospace industry, the nuclear and the chemical processing industries. Metal processing lasers are interesting from the point of view of noise control because the working tool is a laser beam. It is reasonable to suppose that the use of such laser beams will lead to lower noise levels than those connected with traditional metal processing methods and equipment. In the following presentation, the noise levels and possible noise-control problems attached to the use of high-powered CO2 -lasers are studied.

  20. Estimating achievable signal-to-noise ratios of MRI transmit-receive coils from radiofrequency power measurements: applications in quality control

    International Nuclear Information System (INIS)

    Redpath, T.W.

    2000-01-01

    The inverse relationship between the radiofrequency (RF) power needed to transmit a 90 deg. RF pulse, and the signal-to-noise ratio (SNR) available from a transmit-receive RF coil is well known. The theory is restated and a formula given for the signal-to-noise ratio from water, achievable from a single-shot MRI experiment, in terms of the net forward RF power needed for a rectangular 90 deg. RF pulse of known shape and duration. The result is normalized to a signal bandwidth of 1 Hz and a sample mass of 1 g. The RF power information needed is available on most commercial scanners, as it is used to calculate specific absorption rates for RF tissue heating. The achievable SNR figure will normally be larger that that actually observed, mainly because of receiver noise, but also because of inaccuracies in setting RF pulse angles, and relaxation effects. Phantom experiments were performed on the transmit-receive RF head coil of a commercial MRI system at 0.95 T using a projection method. The measured SNR agreed with that expected from the formula for achievable SNR once a correction was made for the noise figure of the receiving chain. Comparisons of measured SNR figures with those calculated from RF power measurements are expected to be of value in acceptance testing and quality control. (author)

  1. Noise study of all-normal dispersion supercontinuum sources for potential application in optical coherence tomography

    Science.gov (United States)

    Gonzalo, I. B.; Engelsholm, R. D.; Bang, O.

    2018-03-01

    Commercially available silica-fiber-based and ultra-broadband supercontinuum (SC) sources are typically generated by pumping close to the zero-dispersion wavelength (ZDW) of a photonic crystal fiber (PCF), using high-power picosecond or nanosecond laser pulses. Despite the extremely broad bandwidths, such sources are characterized by large intensity fluctuations, limiting their performance for applications in imaging such as optical coherence tomography (OCT). An approach to eliminate the influence of noise sensitive effects is to use a so-called all-normal dispersion (ANDi) fiber, in which the dispersion is normal for all the wavelengths of interest. Pumping these types of fibers with short enough femtosecond pulses allows to suppress stimulated Raman scattering (SRS), which is known to be as noisy process as modulation instability (MI), and coherent SC is generated through self-phase modulation (SPM) and optical wave breaking (OWB). In this study, we show the importance of the pump laser and fiber parameters in the design of low-noise ANDi based SC sources, for application in OCT. We numerically investigate the pulse-to-pulse fluctuations of the SC, calculating the relative intensity noise (RIN) as a function of the pump pulse duration and fiber length. Furthermore, we experimentally demonstrate the role of the fiber length on the RIN of the ANDi SC, validating the results calculated numerically. In the end, we compare the RIN of a commercial SC source based on MI and the ANDi SC source developed here, which shows better noise performance when it is carefully designed.

  2. TEDS Base Station Power Amplifier using Low-Noise Envelope Tracking Power Supply

    DEFF Research Database (Denmark)

    Høyerby, Mikkel Christian Wendelboe; Andersen, Michael A. E.

    2009-01-01

    This paper demonstrates a highly linear and efficient TETRA enhanced data service (TEDS) base-station RF power amplifier (RFPA). Based on the well-known combination of an envelope tracking (ET) power supply and a linear class-A/B RFPA, adequate adjacent channel power ratio (ACPR) and wideband noise...... experimentally with a 9.6-dB peak-to-average 50-kHz 16 quadrature amplitude modulation TEDS carrier, the setup providing 44-dBm (25 W) average RF output power at 400 MHz with 44% dc-to-RF efficiency state-of-the-art ACPR of less than ${-}$67 dBc, switching noise artifacts around ${-}$ 85 dBc, and an overall rms...

  3. Speech intelligibility of normal listeners and persons with impaired hearing in traffic noise

    Science.gov (United States)

    Aniansson, G.; Peterson, Y.

    1983-10-01

    Speech intelligibility (PB words) in traffic-like noise was investigated in a laboratory situation simulating three common listening situations, indoors at 1 and 4 m and outdoors at 1 m. The maximum noise levels still permitting 75% intelligibility of PB words in these three listening situations were also defined. A total of 269 persons were examined. Forty-six had normal hearing, 90 a presbycusis-type hearing loss, 95 a noise-induced hearing loss and 38 a conductive hearing loss. In the indoor situation the majority of the groups with impaired hearing retained good speech intelligibility in 40 dB(A) masking noise. Lowering the noise level to less than 40 dB(A) resulted in a minor, usually insignificant, improvement in speech intelligibility. Listeners with normal hearing maintained good speech intelligibility in the outdoor listening situation at noise levels up to 60 dB(A), without lip-reading (i.e., using non-auditory information). For groups with impaired hearing due to age and/or noise, representing 8% of the population in Sweden, the noise level outdoors had to be lowered to less than 50 dB(A), in order to achieve good speech intelligibility at 1 m without lip-reading.

  4. The Harmonoise/IMAGINE model for traction noise of powered railway vehicles

    NARCIS (Netherlands)

    Dittrich, M.G.; Zhang, X.

    2006-01-01

    Traction noise is one of the noise sources of powered railway vehicles such as locomotives, electric- and diesel-powered multiple unit trains and high-speed trains. Especially at speeds below 60 km/h and at idling, but also at acceleration conditions for a wide range of speeds, traction noise can be

  5. Impulsive Noise Characterization in Narrowband Power Line Communication

    Directory of Open Access Journals (Sweden)

    Li Bai

    2018-04-01

    Full Text Available Currently, narrowband Power line communication (PLC is considered an attractive communication system in smart grid environments for applications such as advanced metering infrastructure (AMI. In this paper, we will present a comprehensive comparison and analysis in time and frequency domain of noise measured in China and Italy. In addition, impulsive noise in these two countries are mainly analyzed and modeled using two probability based models, Middleton Class A (MCA model and α stable distribution model. The results prove that noise measured in China is rich in impulsive noise, and can be modeled well by α stable distribution model, while noise measured in Italy has less impulsive noise, and can be better modeled by the MCA model.

  6. Neural underpinnings of background acoustic noise in normal aging and mild cognitive impairment.

    Science.gov (United States)

    Sinanaj, Indrit; Montandon, Marie-Louise; Rodriguez, Cristelle; Herrmann, François; Santini, Francesco; Haller, Sven; Giannakopoulos, Panteleimon

    2015-12-03

    Previous contributions in younger cohorts have revealed that reallocation of cerebral resources, a crucial mechanism for working memory (WM), may be disrupted by parallel demands of background acoustic noise suppression. To date, no study has explored the impact of such disruption on brain activation in elderly individuals with or without subtle cognitive deficits. We performed a functional Magnetic Resonance Imaging (fMRI) study in 23 cases (mean age=75.7 y.o., 16 men) with mild cognitive impairment (MCI) and 16 elderly healthy controls (HC, mean age=70.1 y.o., three men) using a 2-back WM task, under two distinct MRI background acoustic noise conditions (louder vs. lower noise echo-planar imaging). General linear models were used to assess brain activation as a function of group and noise. In both groups, lower background noise is associated with increased activation of the working memory network (WMN). A decrease of the normally observed deactivation of the default mode network (DMN) is found under louder noise in both groups. Unlike HC, MCI cases also show decreased deactivation of the DMN under both louder and lower background noise. Under louder noise, this decrease is observed in anterior parts of the DMN in HC, and in the posterior cingulate cortex in MCI cases. Our results suggest that background acoustic noise has a differential impact on WMN activation in normal aging as a function of the cognitive status. Only louder noise has a disruptive effect on the usually observed DMN deactivation during WM task performance in HC. In contrast, MCI cases show altered DMN reactivity even in the presence of lower noise. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  7. Noise propagation issues in Belle II pixel detector power cable

    Science.gov (United States)

    Iglesias, M.; Arteche, F.; Echeverria, I.; Pradas, A.; Rivetta, C.; Moser, H.-G.; Kiesling, C.; Rummel, S.; Arcega, F. J.

    2018-04-01

    The vertex detector used in the upgrade of High-Energy physics experiment Belle II includes DEPFET pixel detector (PXD) technology. In this complex topology the power supply units and the front-end electronics are connected through a PXD power cable bundle which may propagate the output noise from the power supplies to the vertex area. This paper presents a study of the propagation of noise caused by power converters in the PXD cable bundle based on Multi-conductor Transmission Line (MTL) theory. The work exposes the effect of the complex cable topology and shield connections on the noise propagation, which has an impact on the requirements of the power supplies. This analysis is part of the electromagnetic compatibility based design focused on functional safety to define the shield connections and power supply specifications required to ensure the successful integration of the detector and, specifically, to achieve the designed performance of the front-end electronics.

  8. Human observer detection experiments with mammograms and power-law noise

    International Nuclear Information System (INIS)

    Burgess, Arthur E.; Jacobson, Francine L.; Judy, Philip F.

    2001-01-01

    We determined contrast thresholds for lesion detection as a function of lesion size in both mammograms and filtered noise backgrounds with the same average power spectrum, P(f )=B/f 3 . Experiments were done using hybrid images with digital images of tumors added to digitized normal backgrounds, displayed on a monochrome monitor. Four tumors were extracted from digitized specimen radiographs. The lesion sizes were varied by digital rescaling to cover the range from 0.5 to 16 mm. Amplitudes were varied to determine the value required for 92% correct detection in two-alternative forced-choice (2AFC) and 90% for search experiments. Three observers participated, two physicists and a radiologist. The 2AFC mammographic results demonstrated a novel contrast-detail (CD) diagram with threshold amplitudes that increased steadily (with slope of 0.3) with increasing size for lesions larger than 1 mm. The slopes for prewhitening model observers were about 0.4. Human efficiency relative to these models was as high as 90%. The CD diagram slopes for the 2AFC experiments with filtered noise were 0.44 for humans and 0.5 for models. Human efficiency relative to the ideal observer was about 40%. The difference in efficiencies for the two types of backgrounds indicates that breast structure cannot be considered to be pure random noise for 2AFC experiments. Instead, 2AFC human detection with mammographic backgrounds is limited by a combination of noise and deterministic masking effects. The search experiments also gave thresholds that increased with lesion size. However, there was no difference in human results for mammographic and filtered noise backgrounds, suggesting that breast structure can be considered to be pure random noise for this task. Our conclusion is that, in spite of the fact that mammographic backgrounds have nonstationary statistics, models based on statistical decision theory can still be applied successfully to estimate human performance

  9. Effects of noise exposure on young adults with normal audiograms I: Electrophysiology.

    Science.gov (United States)

    Prendergast, Garreth; Guest, Hannah; Munro, Kevin J; Kluk, Karolina; Léger, Agnès; Hall, Deborah A; Heinz, Michael G; Plack, Christopher J

    2017-02-01

    Noise-induced cochlear synaptopathy has been demonstrated in numerous rodent studies. In these animal models, the disorder is characterized by a reduction in amplitude of wave I of the auditory brainstem response (ABR) to high-level stimuli, whereas the response at threshold is unaffected. The aim of the present study was to determine if this disorder is prevalent in young adult humans with normal audiometric hearing. One hundred and twenty six participants (75 females) aged 18-36 were tested. Participants had a wide range of lifetime noise exposures as estimated by a structured interview. Audiometric thresholds did not differ across noise exposures up to 8 kHz, although 16-kHz audiometric thresholds were elevated with increasing noise exposure for females but not for males. ABRs were measured in response to high-pass (1.5 kHz) filtered clicks of 80 and 100 dB peSPL. Frequency-following responses (FFRs) were measured to 80 dB SPL pure tones from 240 to 285 Hz, and to 80 dB SPL 4 kHz pure tones amplitude modulated at frequencies from 240 to 285 Hz (transposed tones). The bandwidth of the ABR stimuli and the carrier frequency of the transposed tones were chosen to target the 3-6 kHz characteristic frequency region which is usually associated with noise damage in humans. The results indicate no relation between noise exposure and the amplitude of the ABR. In particular, wave I of the ABR did not decrease with increasing noise exposure as predicted. ABR wave V latency increased with increasing noise exposure for the 80 dB peSPL click. High carrier-frequency (envelope) FFR signal-to-noise ratios decreased as a function of noise exposure in males but not females. However, these correlations were not significant after the effects of age were controlled. The results suggest either that noise-induced cochlear synaptopathy is not a significant problem in young, audiometrically normal adults, or that the ABR and FFR are relatively insensitive to this disorder in

  10. Engine-propeller power plant aircraft community noise reduction key methods

    Science.gov (United States)

    Moshkov P., A.; Samokhin V., F.; Yakovlev A., A.

    2018-04-01

    Basic methods of aircraft-type flying vehicle engine-propeller power plant noise reduction were considered including single different-structure-and-arrangement propellers and piston engines. On the basis of a semiempirical model the expressions for blade diameter and number effect evaluation upon propeller noise tone components under thrust constancy condition were proposed. Acoustic tests performed at Moscow Aviation institute airfield on the whole qualitatively proved the obtained ratios. As an example of noise and detectability reduction provision a design-and-experimental estimation of propeller diameter effect upon unmanned aircraft audibility boundaries was performed. Future investigation ways were stated to solve a low-noise power plant design problem for light aircraft and unmanned aerial vehicles.

  11. Speech Recognition in Real-Life Background Noise by Young and Middle-Aged Adults with Normal Hearing

    OpenAIRE

    Lee, Ji Young; Lee, Jin Tae; Heo, Hye Jeong; Choi, Chul-Hee; Choi, Seong Hee; Lee, Kyungjae

    2015-01-01

    Background and Objectives People usually converse in real-life background noise. They experience more difficulty understanding speech in noise than in a quiet environment. The present study investigated how speech recognition in real-life background noise is affected by the type of noise, signal-to-noise ratio (SNR), and age. Subjects and Methods Eighteen young adults and fifteen middle-aged adults with normal hearing participated in the present study. Three types of noise [subway noise, vacu...

  12. Tinnitus with a normal audiogram: Relation to noise exposure but no evidence for cochlear synaptopathy.

    Science.gov (United States)

    Guest, Hannah; Munro, Kevin J; Prendergast, Garreth; Howe, Simon; Plack, Christopher J

    2017-02-01

    In rodents, exposure to high-level noise can destroy synapses between inner hair cells and auditory nerve fibers, without causing hair cell loss or permanent threshold elevation. Such "cochlear synaptopathy" is associated with amplitude reductions in wave I of the auditory brainstem response (ABR) at moderate-to-high sound levels. Similar ABR results have been reported in humans with tinnitus and normal audiometric thresholds, leading to the suggestion that tinnitus in these cases might be a consequence of synaptopathy. However, the ABR is an indirect measure of synaptopathy and it is unclear whether the results in humans reflect the same mechanisms demonstrated in rodents. Measures of noise exposure were not obtained in the human studies, and high frequency audiometric loss may have impacted ABR amplitudes. To clarify the role of cochlear synaptopathy in tinnitus with a normal audiogram, we recorded ABRs, envelope following responses (EFRs), and noise exposure histories in young adults with tinnitus and matched controls. Tinnitus was associated with significantly greater lifetime noise exposure, despite close matching for age, sex, and audiometric thresholds up to 14 kHz. However, tinnitus was not associated with reduced ABR wave I amplitude, nor with significant effects on EFR measures of synaptopathy. These electrophysiological measures were also uncorrelated with lifetime noise exposure, providing no evidence of noise-induced synaptopathy in this cohort, despite a wide range of exposures. In young adults with normal audiograms, tinnitus may be related not to cochlear synaptopathy but to other effects of noise exposure. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Renormalized powers of quantum white noise

    International Nuclear Information System (INIS)

    Accardi, L.; Boukas, A.

    2009-01-01

    Giving meaning to the powers of the creation and annihilation densities (quantum white noise) is an old and important problem in quantum field theory. In this paper we present an account of some new ideas that have recently emerged in the attempt to solve this problem. We emphasize the connection between the Lie algebra of the renormalized higher powers of quantum white noise (RHPWN), which can be interpreted as a suitably deformed (due to renormalization) current algebra over the 1-mode full oscillator algebra, and the current algebra over the centerless Virasoro (or Witt)-Zamolodchikov-ω ∞ Lie algebras of conformal field theory. Through a suitable definition of the action on the vacuum vector we describe how to obtain a Fock representation of all these algebras. We prove that the restriction of the vacuum to the abelian subalgebra generated by the field operators gives an infinitely divisible process whose marginal distribution is the beta (or continuous binomial). (authors)

  14. Power-law Exponent in Multiplicative Langevin Equation with Temporally Correlated Noise

    Science.gov (United States)

    Morita, Satoru

    2018-05-01

    Power-law distributions are ubiquitous in nature. Random multiplicative processes are a basic model for the generation of power-law distributions. For discrete-time systems, the power-law exponent is known to decrease as the autocorrelation time of the multiplier increases. However, for continuous-time systems, it is not yet clear how the temporal correlation affects the power-law behavior. Herein, we analytically investigated a multiplicative Langevin equation with colored noise. We show that the power-law exponent depends on the details of the multiplicative noise, in contrast to the case of discrete-time systems.

  15. On the performance of the noise power spectrum from the gain-corrected radiography images.

    Science.gov (United States)

    Kim, Dong Sik; Lee, Eunae

    2018-01-01

    Fixed pattern noise due to nonuniform amplifier gains and scintillator sensitivity should be alleviated in radiography imaging to acquire low-noise x-ray images from detectors. Here, the noise property of the detector is usually evaluated observing the noise power spectrum (NPS). A gain-correction scheme, in which uniformly illuminated images are averaged to design a gain map, can be applied to alleviate the fixed pattern noise problem. The normalized NPS (NNPS) of the gain-corrected image decreases as the number of images for the average increases and converges to an infimum, which can be achieved if the fixed pattern noise is completely removed. If we know the NNPS infimum of the detector, then we can determine the performance of the gain-corrected images compared with the achievable lower bound. We first construct an image-formation model considering the nonuniform gain and then consider two measurement methods based on subtraction and division to estimate the NNPS infimum of the detector. In order to obtain a high-precision NNPS infimum estimate, we consider a time-averaging method. For several flat-panel radiography detectors, we constructed the NNPS infimum measurements and compared them with NNPS values of the gain-corrected images. We observed that the NNPS values of the gain-corrected images approached the NNPS infimum as the number of images for the average increased.

  16. Low-power low-noise mixed-mode VLSI ASIC for infinite dynamic range imaging applications

    Science.gov (United States)

    Turchetta, Renato; Hu, Y.; Zinzius, Y.; Colledani, C.; Loge, A.

    1998-11-01

    Solid state solutions for imaging are mainly represented by CCDs and, more recently, by CMOS imagers. Both devices are based on the integration of the total charge generated by the impinging radiation, with no processing of the single photon information. The dynamic range of these devices is intrinsically limited by the finite value of noise. Here we present the design of an architecture which allows efficient, in-pixel, noise reduction to a practically zero level, thus allowing infinite dynamic range imaging. A detailed calculation of the dynamic range is worked out, showing that noise is efficiently suppressed. This architecture is based on the concept of single-photon counting. In each pixel, we integrate both the front-end, low-noise, low-power analog part and the digital part. The former consists of a charge preamplifier, an active filter for optimal noise bandwidth reduction, a buffer and a threshold comparator, and the latter is simply a counter, which can be programmed to act as a normal shift register for the readout of the counters' contents. Two different ASIC's based on this concept have been designed for different applications. The first one has been optimized for silicon edge-on microstrips detectors, used in a digital mammography R and D project. It is a 32-channel circuit, with a 16-bit binary static counter.It has been optimized for a relatively large detector capacitance of 5 pF. Noise has been measured to be equal to 100 + 7*Cd (pF) electron rms with the digital part, showing no degradation of the noise performances with respect to the design values. The power consumption is 3.8mW/channel for a peaking time of about 1 microsecond(s) . The second circuit is a prototype for pixel imaging. The total active area is about (250 micrometers )**2. The main differences of the electronic architecture with respect to the first prototype are: i) different optimization of the analog front-end part for low-capacitance detectors, ii) in- pixel 4-bit comparator

  17. Automated pattern recognition system for noise analysis

    International Nuclear Information System (INIS)

    Sides, W.H. Jr.; Piety, K.R.

    1980-01-01

    A pattern recognition system was developed at ORNL for on-line monitoring of noise signals from sensors in a nuclear power plant. The system continuousy measures the power spectral density (PSD) values of the signals and the statistical characteristics of the PSDs in unattended operation. Through statistical comparison of current with past PSDs (pattern recognition), the system detects changes in the noise signals. Because the noise signals contain information about the current operational condition of the plant, a change in these signals could indicate a change, either normal or abnormal, in the operational condition

  18. [The discrimination of mono-syllable words in noise in listeners with normal hearing].

    Science.gov (United States)

    Yoshida, M; Sagara, T; Nagano, M; Korenaga, K; Makishima, K

    1992-02-01

    The discrimination of mono-syllable words (67S word-list) pronounced by a male and a female speaker was investigated in noise in 39 normal hearing subjects. The subjects listened to the test words at a constant level of 62 dB together with white or weighted noise in four S/N conditions. By processing the data with logit transformation, S/N-discrimination curves were presumed for each combination of a speech material and a noise. Regardless of the type of noise, the discrimination scores for the female voice started to decrease gradually at a S/N ratio of +10 dB, and reached 10 to 20% at-10 dB. For the male voice in white noise, the discrimination curve was similar to those for the female voice. On the contrary, the discrimination score for the male voice in weighted noise declined rapidly from a S/N ratio of +5 dB, and went below 10% at -5 dB. The discrimination curves seem to be shaped by the interrelations between the spectrum of the speech material and that of the noise.

  19. Performance, fatigue and stress in open-plan offices: The effects of noise and restoration on hearing impaired and normal hearing individuals

    Directory of Open Access Journals (Sweden)

    Helena Jahncke

    2012-01-01

    Full Text Available Hearing impaired and normal hearing individuals were compared in two within-participant office noise conditions (high noise: 60 L Aeq and low noise: 30 L Aeq . Performance, subjective fatigue, and physiological stress were tested during working on a simulated open-plan office. We also tested two between-participants restoration conditions following the work period with high noise (nature movie or continued office noise. Participants with a hearing impairment (N = 20 were matched with normal hearing participants (N = 18 and undertook one practice session and two counterbalanced experimental sessions. In each experimental session they worked for two hours with basic memory and attention tasks. We also measured physiological stress indicators (cortisol and catecholamines and self-reports of mood and fatigue. The hearing impaired participants were more affected by high noise than the normal hearing participants, as shown by impaired performance for tasks that involve recall of semantic information. The hearing impaired participants were also more fatigued by high noise exposure than participants with normal hearing, and they tended to have higher stress hormone levels during the high noise compared to the low noise condition. Restoration with a movie increased performance and motivation for the normal hearing participants, while rest with continued noise did not. For the hearing impaired participants, continued noise during rest increased motivation and performance, while the movie did not. In summary, the impact of noise and restorative conditions varied with the hearing characteristics of the participants. The small sample size does however encourage caution when interpreting the results.

  20. Characterization of noise sources in nuclear power reactors

    International Nuclear Information System (INIS)

    Andhill, Gustav

    2004-03-01

    Algorithms for unfolding noise sources in nuclear power reactors are investigated. No preliminary knowledge of the functional form of the space dependence is assumed in contrast to the usual methods. The advantage of this is that the algorithms can be applied to various noise sources and the results can be interpreted without expert knowledge. The results can therefore be directly displayed to the plant operators. The precision will however be lower than that of the traditional methods because of the arbitrariness in the type of the noise source. Two different reactor models are studied. First a simple one-dimensional and homogeneous core is considered. Three methods for finding the noise source from the measured flux noise are investigated here. The first one is based on the inversion of an appropriate pre-calculated noise source-to-measured induced neutron noise transfer function. The second one relies on the use of the measured neutron noise as the solution of the equations giving the neutron noise induced by a given noise source. The advantage of this second method is that the noise source can be determined directly, i.e., without any Inversion of a transfer function. The second method is thus called the direct method. The last method is based on a reconstruction of the noise source by spatial Fourier expansion. The two latter techniques are found usable for different locations of the actual noise source in the 1D core. They are therefore tried on more sophisticated two-dimensional models of cores. The direct method is able both to determine the nature of the noise source and its location in 2D

  1. Characterization of noise sources in nuclear power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Andhill, Gustav

    2004-03-01

    Algorithms for unfolding noise sources in nuclear power reactors are investigated. No preliminary knowledge of the functional form of the space dependence is assumed in contrast to the usual methods. The advantage of this is that the algorithms can be applied to various noise sources and the results can be interpreted without expert knowledge. The results can therefore be directly displayed to the plant operators. The precision will however be lower than that of the traditional methods because of the arbitrariness in the type of the noise source. Two different reactor models are studied. First a simple one-dimensional and homogeneous core is considered. Three methods for finding the noise source from the measured flux noise are investigated here. The first one is based on the inversion of an appropriate pre-calculated noise source-to-measured induced neutron noise transfer function. The second one relies on the use of the measured neutron noise as the solution of the equations giving the neutron noise induced by a given noise source. The advantage of this second method is that the noise source can be determined directly, i.e., without any Inversion of a transfer function. The second method is thus called the direct method. The last method is based on a reconstruction of the noise source by spatial Fourier expansion. The two latter techniques are found usable for different locations of the actual noise source in the 1D core. They are therefore tried on more sophisticated two-dimensional models of cores. The direct method is able both to determine the nature of the noise source and its location in 2D.

  2. Speech Emotion Recognition Based on Power Normalized Cepstral Coefficients in Noisy Conditions

    Directory of Open Access Journals (Sweden)

    M. Bashirpour

    2016-09-01

    Full Text Available Automatic recognition of speech emotional states in noisy conditions has become an important research topic in the emotional speech recognition area, in recent years. This paper considers the recognition of emotional states via speech in real environments. For this task, we employ the power normalized cepstral coefficients (PNCC in a speech emotion recognition system. We investigate its performance in emotion recognition using clean and noisy speech materials and compare it with the performances of the well-known MFCC, LPCC, RASTA-PLP, and also TEMFCC features. Speech samples are extracted from the Berlin emotional speech database (Emo DB and Persian emotional speech database (Persian ESD which are corrupted with 4 different noise types under various SNR levels. The experiments are conducted in clean train/noisy test scenarios to simulate practical conditions with noise sources. Simulation results show that higher recognition rates are achieved for PNCC as compared with the conventional features under noisy conditions.

  3. Noise Sources, Effects and Countermeasures in Narrowband Power-Line Communications Networks: A Practical Approach

    Directory of Open Access Journals (Sweden)

    Gregorio López

    2017-08-01

    Full Text Available The integration of Distributed Generation, Electric Vehicles, and storage without compromising the quality of the power delivery requires the deployment of a communications overlay that allows monitoring and controlling low voltage networks in almost real time. Power Line Communications are gaining momentum for this purpose since they present a great trade-off between economic and technical features. However, the power lines also represent a harsh communications medium which presents different problems such as noise, which is indeed affected by Distributed Generation, Electric Vehicles, and storage. This paper provides a comprehensive overview of the types of noise that affects Narrowband Power Line Communications, including normative noises, noises coming from common electronic devices measured in actual operational power distribution networks, and noises coming from photovoltaic inverters and electric vehicle charging spots measured in a controlled environment. The paper also reviews several techniques to mitigate the effects of noise, paying special attention to passive filtering, as for being one of the most widely used solution to avoid this kind of problems in the field. In addition, the paper presents a set of tests carried out to evaluate the impact of some representative noises on Narrowband Power Line Communications network performance, as well as the effectiveness of different passive filter configurations to mitigate such an impact. In addition, the considered sources of noise can also bring value to further improve PLC communications in the new scenarios of the Smart Grid as an input to theoretical models or simulations.

  4. Power dependence of supercontinuum noise in uniform and tapered PCFs

    DEFF Research Database (Denmark)

    Møller, Uffe; Sørensen, Simon Toft; Jakobsen, C.

    2012-01-01

    We experimentally investigate the noise properties of picosecond supercontinuum spectra generated at different power levels in uniform and tapered photonic crystal fibers. We show that the noise at the spectral edges of the generated supercontinuum is at a constant level independent on the pump...

  5. Power Adaptive Feedback Communication over an Additive Individual Noise Sequence Channel

    OpenAIRE

    Lomnitz, Yuval; Feder, Meir

    2009-01-01

    We consider a real-valued additive channel with an individual unknown noise sequence. We present a simple sequential communication scheme based on the celebrated Schalkwijk-Kailath scheme, which varies the transmit power according to the power of the sequence, so that asymptotically the relation between the SNR and the rate matches the Gaussian channel capacity 1/2 log(1+SNR)for almost every noise sequence.

  6. Identification of reactor failure states using noise methods, and spatial power distribution

    International Nuclear Information System (INIS)

    Vavrin, J.; Blazek, J.

    1981-01-01

    A survey is given of the results achieved. Methodical means and programs were developed for the control computer which may be used in noise diagnostics and in the control of reactor power distribution. Statistical methods of processing the noise components of the signals of measured variables were used for identifying failures of reactors. The method of the synthesis of the neutron flux was used for modelling and evaluating the reactor power distribution. For monitoring and controlling the power distribution a mathematical model of the reactor was constructed suitable for control computers. The uses of noise analysis methods are recommended and directions of further development shown. (J.P.)

  7. Ground noise measurements during static and flyby operations of the Cessna 02-T turbine powered airplane

    Science.gov (United States)

    Hilton, D. A.; Henderson, H. R.; Lawton, B. W.

    1975-01-01

    The field noise measurements on the Cessna 02-T turbine powered propeller aircraft are presented. The objective of the study was to obtain the basic noise characteristics of the aircraft during static ground runs and flyover tests, to identify the sources of the noise, and to correlate the noises with the aircraft operating conditions. The results are presented in the form of a overall noise levels, radiation patterns, and frequency spectra. The noise characteristics of the turbine powered aircraft are compared with those of the reciprocating engine powered aircraft.

  8. Noise study of all-normal dispersion supercontinuum sources for potential application in optical coherence tomography

    DEFF Research Database (Denmark)

    Bravo Gonzalo, Ivan; Engelsholm, Rasmus Dybbro; Bang, Ole

    2017-01-01

    bandwidths, such sources are characterized by large intensity fluctuations, limiting their performance for applications in imaging such as optical coherence tomography (OCT). An approach to eliminate the influence of noise sensitive effects is to use a so-called all-normal dispersion (ANDi) fiber, in which...... the dispersion is normal for all the wavelengths of interest. Pumping these types of fibers with short enough femtosecond pulses allows to suppress stimulated Raman scattering (SRS), which is known to be as noisy process as modulation instability (MI), and coherent SC is generated through self-phase modulation...... (SPM) and optical wave breaking (OWB). In this study, we show the importance of the pump laser and fiber parameters in the design of low-noise ANDi based SC sources, for application in OCT. We numerically investigate the pulse-to-pulse fluctuations of the SC, calculating the relative intensity noise...

  9. Modeling speech intelligibility based on the signal-to-noise envelope power ratio

    DEFF Research Database (Denmark)

    Jørgensen, Søren

    of modulation frequency selectivity in the auditory processing of sound with a decision metric for intelligibility that is based on the signal-to-noise envelope power ratio (SNRenv). The proposed speech-based envelope power spectrum model (sEPSM) is demonstrated to account for the effects of stationary...... through three commercially available mobile phones. The model successfully accounts for the performance across the phones in conditions with a stationary speech-shaped background noise, whereas deviations were observed in conditions with “Traffic” and “Pub” noise. Overall, the results of this thesis...

  10. [Relationship between the Mandarin acceptable noise level and the personality traits in normal hearing adults].

    Science.gov (United States)

    Wu, Dan; Chen, Jian-yong; Wang, Shuo; Zhang, Man-hua; Chen, Jing; Li, Yu-ling; Zhang, Hua

    2013-03-01

    To evaluate the relationship between the Mandarin acceptable noise level (ANL) and the personality trait for normal-hearing adults. Eighty-five Mandarin speakers, aged from 21 to 27, participated in this study. ANL materials and the Eysenck Personality Questionnaire (EPQ) questionnaire were used to test the acceptable noise level and the personality trait for normal-hearing subjects. SPSS 17.0 was used to analyze the results. ANL were (7.8 ± 2.9) dB in normal hearing participants. The P and N scores in EPQ were significantly correlated with ANL (r = 0.284 and 0.318, P 0.05). Listeners with higher ANL were more likely to be eccentric, hostile, aggressive, and instabe, no ANL differences were found in listeners who were different in introvert-extravert or lying.

  11. Power reactor noise studies and applications

    Energy Technology Data Exchange (ETDEWEB)

    Arzhanov, V

    2002-03-01

    The present thesis deals with the neutron noise arising in power reactor systems. Generally, it can be divided into two major parts: first, neutron noise diagnostics, or more specifically, novel methods and algorithms to monitor nuclear industrial reactors; and second, contributions to neutron noise theory as applied to power reactor systems. Neutron noise diagnostics is presented by two topics. The first one is a theoretical study on the possibility to use a newly proposed current-flux (C/F) detector in Pressurised Water Reactors (PWR) for the localisation of anomalies. The second topic concerns various methods to detect guide tube impacting in Boiling Water Reactors (BWR). The significance of these problems comes from the operational experience. The thesis describes a novel method to localise vibrating control rods in a PWR by using only one C/F detector. Another novel method, based on wavelet analysis, is put forward to detect impacting guide tubes in a BWR. Neutron noise theory is developed for both Accelerator Driven Systems (ADS) and traditional reactors. By design the accelerator-driven systems would operate in a subcritical mode with a strong external source. This calls for a revision of many concepts and methods that have been developed for traditional reactors and also it poses a number of new problems. As for the latter, the thesis investigates the space-dependent neutron noise caused by a fluctuating source. It is shown that the frequency-dependent spatial behaviour exhibits some new properties that are different from those known in traditional critical systems. On the other hand, various reactor physics approximations (point kinetic, adiabatic etc.) have not been defined yet for the subcritical systems. In this respect the thesis presents a systematic formulation of the above mentioned approximations as well as investigations of their properties. Another important problem in neutron noise theory is the treatment of moving boundaries. In this case one

  12. Power reactor noise studies and applications

    International Nuclear Information System (INIS)

    Arzhanov, V.

    2002-03-01

    The present thesis deals with the neutron noise arising in power reactor systems. Generally, it can be divided into two major parts: first, neutron noise diagnostics, or more specifically, novel methods and algorithms to monitor nuclear industrial reactors; and second, contributions to neutron noise theory as applied to power reactor systems. Neutron noise diagnostics is presented by two topics. The first one is a theoretical study on the possibility to use a newly proposed current-flux (C/F) detector in Pressurised Water Reactors (PWR) for the localisation of anomalies. The second topic concerns various methods to detect guide tube impacting in Boiling Water Reactors (BWR). The significance of these problems comes from the operational experience. The thesis describes a novel method to localise vibrating control rods in a PWR by using only one C/F detector. Another novel method, based on wavelet analysis, is put forward to detect impacting guide tubes in a BWR. Neutron noise theory is developed for both Accelerator Driven Systems (ADS) and traditional reactors. By design the accelerator-driven systems would operate in a subcritical mode with a strong external source. This calls for a revision of many concepts and methods that have been developed for traditional reactors and also it poses a number of new problems. As for the latter, the thesis investigates the space-dependent neutron noise caused by a fluctuating source. It is shown that the frequency-dependent spatial behaviour exhibits some new properties that are different from those known in traditional critical systems. On the other hand, various reactor physics approximations (point kinetic, adiabatic etc.) have not been defined yet for the subcritical systems. In this respect the thesis presents a systematic formulation of the above mentioned approximations as well as investigations of their properties. Another important problem in neutron noise theory is the treatment of moving boundaries. In this case one

  13. Phase noise measurements with a cryogenic power-splitter to minimize the cross-spectral collapse effect

    Science.gov (United States)

    Hati, Archita; Nelson, Craig W.; Pappas, David P.; Howe, David A.

    2017-11-01

    The cross-spectrum noise measurement technique enables enhanced resolution of spectral measurements. However, it has disadvantages, namely, increased complexity, inability of making real-time measurements, and bias due to the "cross-spectral collapse" (CSC) effect. The CSC can occur when the spectral density of a random process under investigation approaches the thermal noise of the power splitter. This effect can severely bias results due to a differential measurement between the investigated noise and the anti-correlated (phase-inverted) noise of the power splitter. In this paper, we report an accurate measurement of the phase noise of a thermally limited electronic oscillator operating at room temperature (300 K) without significant CSC bias. We mitigated the problem by cooling the power splitter to liquid helium temperature (4 K). We quantify errors of greater than 1 dB that occur when the thermal noise of the oscillator at room temperature is measured with the power splitter at temperatures above 77 K.

  14. Results of theoretical studies on power noise of PWR type reactors

    International Nuclear Information System (INIS)

    Meyer, K.

    1979-12-01

    For evaluating noise measurements of neutron flux in power reactors position-dependent effects are taken into account. Based on an effective one-group diffusion model results are obtained for reactor noise due to vibrating control elements and disturbances in the coolant flow

  15. Normalizations of High Taylor Reynolds Number Power Spectra

    Science.gov (United States)

    Puga, Alejandro; Koster, Timothy; Larue, John C.

    2014-11-01

    The velocity power spectrum provides insight in how the turbulent kinetic energy is transferred from larger to smaller scales. Wind tunnel experiments are conducted where high intensity turbulence is generated by means of an active turbulence grid modeled after Makita's 1991 design (Makita, 1991) as implemented by Mydlarski and Warhaft (M&W, 1998). The goal of this study is to document the evolution of the scaling region and assess the relative collapse of several proposed normalizations over a range of Rλ from 185 to 997. As predicted by Kolmogorov (1963), an asymptotic approach of the slope (n) of the inertial subrange to - 5 / 3 with increasing Rλ is observed. There are three velocity power spectrum normalizations as presented by Kolmogorov (1963), Von Karman and Howarth (1938) and George (1992). Results show that the Von Karman and Howarth normalization does not collapse the velocity power spectrum as well as the Kolmogorov and George normalizations. The Kolmogorov normalization does a good job of collapsing the velocity power spectrum in the normalized high wavenumber range of 0 . 0002 University of California, Irvine Research Fund.

  16. Vibration and noise diagnostics of nuclear power plants Pt. 1

    International Nuclear Information System (INIS)

    Nagy, I.

    1991-01-01

    Development, tasks and methodology of vibration and noise testing of nuclear power plants are overviewed. Reactor noise diagnostics methods are presented and their utilization at various reactors is summarized. Acoustic testing of primary circuit is also considered. Special attention is paid to leak detection and loose parts monitoring by acoustical testing methods. (R.P.) 11 refs.; 18 figs.; 1 tab

  17. Analysis of a sub-shot-noise power recycled Michelson interferometer

    International Nuclear Information System (INIS)

    McKenzie, K; Buchler, B C; Shaddock, D A; Lam, P K; McClelland, D E

    2004-01-01

    The sensitivity of interferometric gravitational wave detectors is ultimately limited by the 'quantum noise' of light. In this paper we compare results from a bench-top experiment and a theoretical model which show how squeezed states of light may be used to modify the quantum noise behaviour of a power recycled Michelson interferometer. We develop a simple theoretical model of the experiment and find close agreement of theoretical and experimental results. We measure quantum noise suppression of 2.3 dB and demonstrate the lock stability of the experiment for long periods

  18. Vibration and noise analysis in nuclear power plants

    International Nuclear Information System (INIS)

    1974-12-01

    Results of the investigations on noise and vibration analysis are presented as a follow-up study of the work published in ''On-load Surveillance of Nuclear Power Plant Components by Noise and Vibration Analysis'' EUR 5036 e. The state of the art in on-load surveillance techniques of light water reactors is given by extending the preceding studies to investigations of boiling water reactors and by summarizing the latest results of pressurized water reactors, the basis being experimental and theoretical work performed by the different organizations involved in preparing this report. Finally, some developments with respect to measurement and identification methods are discussed

  19. A power transformer as a source of noise.

    Science.gov (United States)

    Zawieska, Wiktor Marek

    2007-01-01

    This article presents selected results of analyses and simulations carried out as part of research performed at the Central Institute of Labor Protection - the National Research Institute (CIOP-PIB) in connection with the development of a system for active reduction of noise emitted by high power electricity transformers. This analysis covers the transformer as a source of noise as well as a mathematical description of the phenomenon of radiation of vibroacoustic energy through a transformer enclosure modeled as a vibrating rectangular plate. Also described is an acoustic model of the transformer in the form of an array of loudspeakers.

  20. Effects of Age and Working Memory Capacity on Speech Recognition Performance in Noise Among Listeners With Normal Hearing.

    Science.gov (United States)

    Gordon-Salant, Sandra; Cole, Stacey Samuels

    2016-01-01

    This study aimed to determine if younger and older listeners with normal hearing who differ on working memory span perform differently on speech recognition tests in noise. Older adults typically exhibit poorer speech recognition scores in noise than younger adults, which is attributed primarily to poorer hearing sensitivity and more limited working memory capacity in older than younger adults. Previous studies typically tested older listeners with poorer hearing sensitivity and shorter working memory spans than younger listeners, making it difficult to discern the importance of working memory capacity on speech recognition. This investigation controlled for hearing sensitivity and compared speech recognition performance in noise by younger and older listeners who were subdivided into high and low working memory groups. Performance patterns were compared for different speech materials to assess whether or not the effect of working memory capacity varies with the demands of the specific speech test. The authors hypothesized that (1) normal-hearing listeners with low working memory span would exhibit poorer speech recognition performance in noise than those with high working memory span; (2) older listeners with normal hearing would show poorer speech recognition scores than younger listeners with normal hearing, when the two age groups were matched for working memory span; and (3) an interaction between age and working memory would be observed for speech materials that provide contextual cues. Twenty-eight older (61 to 75 years) and 25 younger (18 to 25 years) normal-hearing listeners were assigned to groups based on age and working memory status. Northwestern University Auditory Test No. 6 words and Institute of Electrical and Electronics Engineers sentences were presented in noise using an adaptive procedure to measure the signal-to-noise ratio corresponding to 50% correct performance. Cognitive ability was evaluated with two tests of working memory (Listening

  1. Prompt neutron decay constant estimation of RSG-GAS at high power noise experiment

    International Nuclear Information System (INIS)

    Jujuratisbela, U.; Kristedjo; Tukiran; Pinem, S.; Iman, J.; Puryono; Sanjaya, A.; Suwarno

    1998-01-01

    The determination of prompt neutron decay constant (α) of RGS-GAS by using low power noise experiment method at the equilibrium core indicated that the result is not good. The bad result was due to the small ratio of the noise signal to background which was caused by low detector efficiency or contaminated core after long time operation. To solve the problem is tried by using noise experiment technique at high power. The voltage output of neutron detectors at power of 5, 12, and 23 MW were connected to preamplifier and filter then to the Dynamic Signal Analyzer Version-2 and then the power spectral density of each channel of JKT04 and JKT03, the cut off frequency of each channel can be determined by using linear regression technique such that the prompt neutron decay constant can be estimated

  2. High-power noise-like pulse generation using a 1.56-µm all-fiber laser system.

    Science.gov (United States)

    Lin, Shih-Shian; Hwang, Sheng-Kwang; Liu, Jia-Ming

    2015-07-13

    We demonstrated an all-fiber, high-power noise-like pulse laser system at the 1.56-µm wavelength. A low-power noise-like pulse train generated by a ring oscillator was amplified using a two-stage amplifier, where the performance of the second-stage amplifier determined the final output power level. The optical intensity in the second-stage amplifier was managed well to avoid not only the excessive spectral broadening induced by nonlinearities but also any damage to the device. On the other hand, the power conversion efficiency of the amplifier was optimized through proper control of its pump wavelength. The pump wavelength determines the pump absorption and therefore the power conversion efficiency of the gain fiber. Through this approach, the average power of the noise-like pulse train was amplified considerably to an output of 13.1 W, resulting in a power conversion efficiency of 36.1% and a pulse energy of 0.85 µJ. To the best of our knowledge, these amplified pulses have the highest average power and pulse energy for noise-like pulses in the 1.56-µm wavelength region. As a result, the net gain in the cascaded amplifier reached 30 dB. With peak and pedestal widths of 168 fs and 61.3 ps, respectively, for the amplified pulses, the pedestal-to-peak intensity ratio of the autocorrelation trace remains at the value of 0.5 required for truly noise-like pulses.

  3. Methods for surveillance of noise signals from nuclear power plants using auto power spectra

    International Nuclear Information System (INIS)

    Streich, M.

    1988-01-01

    A survey of methods for noise diagnostics applied in the nuclear power plant 'Bruno Leuschner' for surveillance of primary circuit is given. Considering a special example concept of surveillance of standard deviations is explained. (author)

  4. Temporal and speech processing skills in normal hearing individuals exposed to occupational noise.

    Science.gov (United States)

    Kumar, U Ajith; Ameenudin, Syed; Sangamanatha, A V

    2012-01-01

    Prolonged exposure to high levels of occupational noise can cause damage to hair cells in the cochlea and result in permanent noise-induced cochlear hearing loss. Consequences of cochlear hearing loss on speech perception and psychophysical abilities have been well documented. Primary goal of this research was to explore temporal processing and speech perception Skills in individuals who are exposed to occupational noise of more than 80 dBA and not yet incurred clinically significant threshold shifts. Contribution of temporal processing skills to speech perception in adverse listening situation was also evaluated. A total of 118 participants took part in this research. Participants comprised three groups of train drivers in the age range of 30-40 (n= 13), 41 50 ( = 13), 41-50 (n = 9), and 51-60 (n = 6) years and their non-noise-exposed counterparts (n = 30 in each age group). Participants of all the groups including the train drivers had hearing sensitivity within 25 dB HL in the octave frequencies between 250 and 8 kHz. Temporal processing was evaluated using gap detection, modulation detection, and duration pattern tests. Speech recognition was tested in presence multi-talker babble at -5dB SNR. Differences between experimental and control groups were analyzed using ANOVA and independent sample t-tests. Results showed a trend of reduced temporal processing skills in individuals with noise exposure. These deficits were observed despite normal peripheral hearing sensitivity. Speech recognition scores in the presence of noise were also significantly poor in noise-exposed group. Furthermore, poor temporal processing skills partially accounted for the speech recognition difficulties exhibited by the noise-exposed individuals. These results suggest that noise can cause significant distortions in the processing of suprathreshold temporal cues which may add to difficulties in hearing in adverse listening conditions.

  5. Temporal and speech processing skills in normal hearing individuals exposed to occupational noise

    Directory of Open Access Journals (Sweden)

    U Ajith Kumar

    2012-01-01

    Full Text Available Prolonged exposure to high levels of occupational noise can cause damage to hair cells in the cochlea and result in permanent noise-induced cochlear hearing loss. Consequences of cochlear hearing loss on speech perception and psychophysical abilities have been well documented. Primary goal of this research was to explore temporal processing and speech perception Skills in individuals who are exposed to occupational noise of more than 80 dBA and not yet incurred clinically significant threshold shifts. Contribution of temporal processing skills to speech perception in adverse listening situation was also evaluated. A total of 118 participants took part in this research. Participants comprised three groups of train drivers in the age range of 30-40 (n= 13, 41 50 ( = 13, 41-50 (n = 9, and 51-60 (n = 6 years and their non-noise-exposed counterparts (n = 30 in each age group. Participants of all the groups including the train drivers had hearing sensitivity within 25 dB HL in the octave frequencies between 250 and 8 kHz. Temporal processing was evaluated using gap detection, modulation detection, and duration pattern tests. Speech recognition was tested in presence multi-talker babble at -5dB SNR. Differences between experimental and control groups were analyzed using ANOVA and independent sample t-tests. Results showed a trend of reduced temporal processing skills in individuals with noise exposure. These deficits were observed despite normal peripheral hearing sensitivity. Speech recognition scores in the presence of noise were also significantly poor in noise-exposed group. Furthermore, poor temporal processing skills partially accounted for the speech recognition difficulties exhibited by the noise-exposed individuals. These results suggest that noise can cause significant distortions in the processing of suprathreshold temporal cues which may add to difficulties in hearing in adverse listening conditions.

  6. Testable, fault-tolerant power interface circuit for normally de-energized loads

    International Nuclear Information System (INIS)

    Hager, R.E.

    1987-01-01

    A power interface circuit is described for supplying power from a power line to a normally de-energized process control apparatus in a pressurized light water nuclear power system in dependence upon three input signals, comprising: voter means for supplying power to the normally de-energized load when at least two of the three input signals indicate that the normally de-energized load should be activated; a normally closed switch, operatively connected to the power line and the voter means, for supplying power to the voter means during ordinary operation; a first resistor operatively connected to the power line; a current detector operatively connected to the first resistor and the voter means; a second resistor operatively connected to the current detector and ground; and current sensor means, operatively connected between the voter means and the normally de-energized load, for detecting the power supplied to the normally de-energized load by the voter means

  7. Lexical and age effects on word recognition in noise in normal-hearing children.

    Science.gov (United States)

    Ren, Cuncun; Liu, Sha; Liu, Haihong; Kong, Ying; Liu, Xin; Li, Shujing

    2015-12-01

    The purposes of the present study were (1) to examine the lexical and age effects on word recognition of normal-hearing (NH) children in noise, and (2) to compare the word-recognition performance in noise to that in quiet listening conditions. Participants were 213 NH children (age ranged between 3 and 6 years old). Eighty-nine and 124 of the participants were tested in noise and quiet listening conditions, respectively. The Standard-Chinese Lexical Neighborhood Test, which contains lists of words in four lexical categories (i.e., dissyllablic easy (DE), dissyllablic hard (DH), monosyllable easy (ME), and monosyllable hard (MH)) was used to evaluate the Mandarin Chinese word recognition in speech spectrum-shaped noise (SSN) with a signal-to-noise ratio (SNR) of 0dB. A two-way repeated-measures analysis of variance was conducted to examine the lexical effects with syllable length and difficulty level as the main factors on word recognition in the quiet and noise listening conditions. The effects of age on word-recognition performance were examined using a regression model. The word-recognition performance in noise was significantly poorer than that in quiet and the individual variations in performance in noise were much greater than those in quiet. Word recognition scores showed that the lexical effects were significant in the SSN. Children scored higher with dissyllabic words than with monosyllabic words; "easy" words scored higher than "hard" words in the noise condition. The scores of the NH children in the SSN (SNR=0dB) for the DE, DH, ME, and MH words were 85.4, 65.9, 71.7, and 46.2% correct, respectively. The word-recognition performance also increased with age in each lexical category for the NH children tested in noise. Both age and lexical characteristics of words had significant influences on the performance of Mandarin-Chinese word recognition in noise. The lexical effects were more obvious under noise listening conditions than in quiet. The word

  8. Temperature noise characteristics of pressurized water reactors

    International Nuclear Information System (INIS)

    Sweeney, F.J.; Upadhyaya, B.R.

    1984-01-01

    The core exit temperature noise RMS is linearly related to the core ΔT at a commercial PWR and LOFT. Test loop observations indicate that this linear behavior becomes nonlinear with blockages, boiling, or power skews. The linear neutron flux to temperature noise phase behavior is indicative of a pure time delay process, which has been shown to be related to coolant flow velocity in the core. Therefore, temperature noise could provide a valuable diagnostic tool for the detection of coolant blockages, boiling, and sensor malfunction under both normal and accident conditions in a PWR

  9. The Powers of Noise-Fitting: Reply to Barth and Paladino

    Science.gov (United States)

    Opfer, John E.; Siegler, Robert S.; Young, Christopher J.

    2011-01-01

    Barth and Paladino (2011) argue that changes in numerical representations are better modeled by a power function whose exponent gradually rises to 1 than as a shift from a logarithmic to a linear representation of numerical magnitude. However, the fit of the power function to number line estimation data may simply stem from fitting noise generated…

  10. Full Vehicle Vibration and Noise Analysis Based on Substructure Power Flow

    Directory of Open Access Journals (Sweden)

    Zhien Liu

    2017-01-01

    Full Text Available Combining substructure and power flow theory, in this paper an external program is written to control MSC. Nastran solution process and the substructure frequency response are also formulated accordingly. Based on a simple vehicle model, characteristics of vibration, noise, and power flow are studied, respectively. After being compared with the result of conventional FEM (finite element method, the new method is confirmed to be feasible. When it comes to a vehicle with the problem of low-frequency noise, finite element models of substructures for vehicle body and chassis are established, respectively. In addition, substructure power flow method is also employed to examine the transfer characteristics of multidimensional vibration energy for the whole vehicle system. By virtue of the adjustment stiffness of drive shaft support and bushes at rear suspension lower arm, the vehicle interior noise is decreased by about 3 dB when the engine speed is near 1050 rpm and 1650 rpm in experiment. At the same time, this method can increase the computation efficiency by 78%, 38%, and 98% when it comes to the optimization of chassis structure, body structure, and vibration isolation components, respectively.

  11. Investigating the Role of Working Memory in Speech-in-noise Identification for Listeners with Normal Hearing.

    Science.gov (United States)

    Füllgrabe, Christian; Rosen, Stuart

    2016-01-01

    With the advent of cognitive hearing science, increased attention has been given to individual differences in cognitive functioning and their explanatory power in accounting for inter-listener variability in understanding speech in noise (SiN). The psychological construct that has received most interest is working memory (WM), representing the ability to simultaneously store and process information. Common lore and theoretical models assume that WM-based processes subtend speech processing in adverse perceptual conditions, such as those associated with hearing loss or background noise. Empirical evidence confirms the association between WM capacity (WMC) and SiN identification in older hearing-impaired listeners. To assess whether WMC also plays a role when listeners without hearing loss process speech in acoustically adverse conditions, we surveyed published and unpublished studies in which the Reading-Span test (a widely used measure of WMC) was administered in conjunction with a measure of SiN identification. The survey revealed little or no evidence for an association between WMC and SiN performance. We also analysed new data from 132 normal-hearing participants sampled from across the adult lifespan (18-91 years), for a relationship between Reading-Span scores and identification of matrix sentences in noise. Performance on both tasks declined with age, and correlated weakly even after controlling for the effects of age and audibility (r = 0.39, p ≤ 0.001, one-tailed). However, separate analyses for different age groups revealed that the correlation was only significant for middle-aged and older groups but not for the young (< 40 years) participants.

  12. External noise when using biofuel

    International Nuclear Information System (INIS)

    Kotaleski, J.

    1994-08-01

    The aim of this study has been to cover sources of noise dealing with all steps in a biofuel chain; producing, transporting, storing and firing the biofuel. When the availability of relevant test results from noise surveys is not so good and mostly badly documented, the study has been concentrated on estimation of external noise for planning and design purposes, from a prospective biofuel-fired plant. A synoptic tabulation of estimated acoustic power levels from different noise sources, has been done. The results from measurements of external noise from different existing combined power and heating plants are tabulated. The Nordic model for simulation of external noise has been used for a prospective plant - VEGA - designed by Vattenfall. The aim has been to estimate its noise pollutions at critical points at the nearest residential area (250 m from the fenced industry area). The software - ILYD - is easy to handle, but knowledge about the model is necessary. A requisite for the reliability is the access to measurements or estimations of different sources of noise, at different levels of octaves from 63 to 8000 Hz. The degree of accuracy increases with the number of broad band sources, that are integrated. Using ILYD with available data, a night limit of 40 dB(A) should be possible to fulfill with good degree of accuracy at VEGA, between 10 pm and 7 am, with good planning and under normal operation conditions. A demand for 35 dB(A) as a limit can be harder to fulfill, especially at mornings from 6 to 7. Noise from heavy vehicles within the plant area is classified as industrial noise and not as road traffic noise. This type of noise depends very much on the way of driving and assumed acceleration. Concerning wheel-mounted loaders, they may then only be used during daytime. The simulations show, that even at daytime from 7 to 6 pm, it would be possible to use an acoustically damped chipping machine, inside the power industry area. 31 refs, 13 figs, tabs, 8

  13. Union Gas assessment protocol for power generator air and noise emissions

    International Nuclear Information System (INIS)

    Complin, P.

    2008-01-01

    This paper outlined a procedure for obtaining data to facilitate air and noise compliance assessments for emergency and other fuel-fired power generators. Facilities with the generators may contain additional sources of nitrogen oxides (NO x ). The assessments are required for each new or modified generator in order to ensure that regulatory requirements in the Air Pollution Local Air Quality Regulation and the Noise Pollution Control documents are met. The air emission assessments follow the Ontario Ministry of the Environment (MOE) report. The paper included a screening process to screen out generators with negligible emissions. A maximum power rating was calculated using AP-2 emission factors and a conservative heat rating assumption. Maximum power ratings for various types of generators were presented. The information requirements included a description of the type of engine used; sound power level data; octave band insertion loss data; and plan and section drawings of the generator room. 2 tabs.

  14. Detection threshold for sound distortion resulting from noise reduction in normal-hearing and hearing-impaired listeners.

    Science.gov (United States)

    Brons, Inge; Dreschler, Wouter A; Houben, Rolph

    2014-09-01

    Hearing-aid noise reduction should reduce background noise, but not disturb the target speech. This objective is difficult because noise reduction suffers from a trade-off between the amount of noise removed and signal distortion. It is unknown if this important trade-off differs between normal-hearing (NH) and hearing-impaired (HI) listeners. This study separated the negative effect of noise reduction (distortion) from the positive effect (reduction of noise) to allow the measurement of the detection threshold for noise-reduction (NR) distortion. Twelve NH subjects and 12 subjects with mild to moderate sensorineural hearing loss participated in this study. The detection thresholds for distortion were determined using an adaptive procedure with a three-interval, two-alternative forced-choice paradigm. Different levels of distortion were obtained by changing the maximum amount of noise reduction. Participants were also asked to indicate their preferred NR strength. The detection threshold for overall distortion was higher for HI subjects than for NH subjects, suggesting that stronger noise reduction can be applied for HI listeners without affecting the perceived sound quality. However, the preferred NR strength of HI listeners was closer to their individual detection threshold for distortion than in NH listeners. This implies that HI listeners tolerate fewer audible distortions than NH listeners.

  15. Reduction of noise influence during the periodical inspection of the nuclear power plant

    International Nuclear Information System (INIS)

    Hikono, Masaru

    2002-01-01

    At the nuclear power plant under the regular inspection, the sound level and the worker's impression of the environmental noises were measured. The environmental noise was the level with a possibility to cause the noise-induced deafness and have the psychological influence on the workers such as ''Get irritated''. These results imply the necessity of the noise countermeasure. For the noise influence relaxation, we examined the effectiveness of ear protections (e.g., ear plugs) and the intelligibility improvement of the paging system, prepared the noise management manual and the educational leaflet for the support of worker's self-defense. The results of the examinations showed that ear plug was effective especially in the high-noise environment and that the improvement of paging system increased the intelligibility. (author)

  16. Noise-optimised operation of vehicle power closures; Geraeuschoptimierte Ansteuerung von Kfz-Schliesssystemen

    Energy Technology Data Exchange (ETDEWEB)

    Schulter, Wolfgang [Hochschule Ravensburg-Weingarten (Germany). Fakultaet Elektrotechnik und Informatik; Vetter, Juergen [Continental, Regensburg (Germany). Bereich Body and Security/Power Closures

    2013-03-15

    The operation of electric power closures, such as electric window lifters, inevitably generates noise which is often perceived as disturbing. This type of insulation is mainly suitable for damping the higher frequency components within the noise spectrum. Designing such passive insulation for lower frequencies results in large, bulky and expensive devices. This paper explains how part of the noise originates from the drive motor. The example of a DC motor serves to demonstrate that a considerable share of the noise can be traced back to its commutation. Using optimised commutation in addition to design measures allows to refine the electronic motor control in order to make the motor run more smoothly.

  17. A high-efficiency, low-noise power solution for a dual-channel GNSS RF receiver

    International Nuclear Information System (INIS)

    Shi Jian; Mo Taishan; Gan Yebing; Ma Chengyan; Ye Tianchun; Le Jianlian

    2012-01-01

    A high-efficiency low-noise power solution for a dual-channel GNSS RF receiver is presented. The power solution involves a DC—DC buck converter and a followed low-dropout regulator (LDO). The pulse-width-modulation (PWM) control method is adopted for better noise performance. An improved low-power high-frequency PWM control circuit is proposed, which halves the average quiescent current of the buck converter to 80 μA by periodically shutting down the OTA. The size of the output stage has also been optimized to achieve high efficiency under a light load condition. In addition, a novel soft-start circuit based on a current limiter has been implemented to avoid inrush current. Fabricated with commercial 180-nm CMOS technology, the DC—DC converter achieves a peak efficiency of 93.1% under a 2 MHz working frequency. The whole receiver consumes only 20.2 mA from a 3.3 V power supply and has a noise figure of 2.5 dB. (semiconductor integrated circuits)

  18. Exploring conservative islands using correlated and uncorrelated noise

    Science.gov (United States)

    da Silva, Rafael M.; Manchein, Cesar; Beims, Marcus W.

    2018-02-01

    In this work, noise is used to analyze the penetration of regular islands in conservative dynamical systems. For this purpose we use the standard map choosing nonlinearity parameters for which a mixed phase space is present. The random variable which simulates noise assumes three distributions, namely equally distributed, normal or Gaussian, and power law (obtained from the same standard map but for other parameters). To investigate the penetration process and explore distinct dynamical behaviors which may occur, we use recurrence time statistics (RTS), Lyapunov exponents and the occupation rate of the phase space. Our main findings are as follows: (i) the standard deviations of the distributions are the most relevant quantity to induce the penetration; (ii) the penetration of islands induce power-law decays in the RTS as a consequence of enhanced trapping; (iii) for the power-law correlated noise an algebraic decay of the RTS is observed, even though sticky motion is absent; and (iv) although strong noise intensities induce an ergodic-like behavior with exponential decays of RTS, the largest Lyapunov exponent is reminiscent of the regular islands.

  19. Theoretical analysis of quantum dot amplifiers with high saturation power and low noise figure

    DEFF Research Database (Denmark)

    Berg, Tommy Winther; Mørk, Jesper

    2002-01-01

    Semiconductor quantum dot amplifiers are predicted to exhibit superior characteristics such as high gain, and output power and low noise. The analysis provides criteria and design guidelines for the realization of high quality amplifiers.......Semiconductor quantum dot amplifiers are predicted to exhibit superior characteristics such as high gain, and output power and low noise. The analysis provides criteria and design guidelines for the realization of high quality amplifiers....

  20. Protection of Hardware: Powering Systems (Power Converter, Normal Conducting, and Superconducting Magnets)

    Energy Technology Data Exchange (ETDEWEB)

    Pfeffer, H. [Fermilab; Flora, B. [Fermilab; Wolff, D. [Fermilab

    2016-01-01

    Along with the protection of magnets and power converters, we have added a section on personnel protection because this is our highest priority in the design and operation of power systems. Thus, our topics are the protection of people, power converters, and magnet loads (protected from the powering equipment), including normal conducting magnets and superconducting magnets.

  1. Reduction of noise influence during the periodical inspection of the nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Hikono, Masaru [Inst. of Nuclear Safety System Inc., Mihama, Fukui (Japan)

    2002-09-01

    At the nuclear power plant under the regular inspection, the sound level and the worker's impression of the environmental noises were measured. The environmental noise was the level with a possibility to cause the noise-induced deafness and have the psychological influence on the workers such as ''Get irritated''. These results imply the necessity of the noise countermeasure. For the noise influence relaxation, we examined the effectiveness of ear protections (e.g., ear plugs) and the intelligibility improvement of the paging system, prepared the noise management manual and the educational leaflet for the support of worker's self-defense. The results of the examinations showed that ear plug was effective especially in the high-noise environment and that the improvement of paging system increased the intelligibility. (author)

  2. Measurement and analysis of noise power spectrum of computerized tomography in images

    International Nuclear Information System (INIS)

    Castro Tejero, P.; Garayoa Roca, J.

    2013-01-01

    This paper examines the implementation of the spectrum of powers of the noise, NPS, as metric to characterize the noise, both in magnitude and in texture, for CT scans. The NPS found show that you for convolution filters that assume a greater softening in the reconstructed image, spectrum is concentrated in the low frequencies, while for filters sharp, the spectrum extends to high frequencies. In the analyzed cases, there is a low frequency component, largely due to the structure-borne noise, which can be a potential negative effect on the detectability of injuries. (Author)

  3. Measures of the zero power nuclear reactor's kinetic parameters with application of noise analysis

    International Nuclear Information System (INIS)

    Martins, F.R.

    1992-01-01

    The purpose of this work was to establish an experimental technique based on noise analysis for measuring the ratio of kinetic parameters β/ Λ and the power of the Zero Power Nuclear Reactor IPEN-MB 01. A through study of the microscopic and macroscopic noise analysis techniques has been carried out. The Langevin technique and the point kinetic model were chosen to describe the stochastic phenomena that occur in the zero power reactor. Measurements have been made using two compensated ionization chambers localized in the water reflector at symmetric positions in order to minimize spatial effects on the neutron flux fluctuation. Power calibrations based on the low frequency plateau of the cross-power spectral density has also been carried out. (author)

  4. 600W uninterruptible power supply

    Energy Technology Data Exchange (ETDEWEB)

    Frizell, C

    1988-01-01

    Although the mains power supply in western Europe is normally reliable, power failures, transients and noise can cause loss or corruption of data held on personal computers. The design of an uninterruptible power supply system (UPS) based on well proven technology, is described.

  5. Low-frequency noise characterization of single CuO nanowire gas sensor devices

    NARCIS (Netherlands)

    Steinhauer, S.; Köck, A.; Gspan, C.; Grogger, W.; Vandamme, L.K.J.; Pogany, D.

    2015-01-01

    Low-frequency noise properties of single CuO nanowire devices were investigated under gas sensor operation conditions in dry and humid synthetic air at 350¿°C. A 1/f noise spectrum was found with the normalized power spectral density of current fluctuations typically a factor of 2 higher for humid

  6. The Effect of Flywheel Unbalance on Gear Noise in the Hydraulic Power Plant Turbo-Generator

    Directory of Open Access Journals (Sweden)

    Tomeh Elias

    2017-01-01

    Full Text Available The Effect of Flywheel Unbalance on Gear Noise in the Hydraulic Power Plant Turbo-Generator. Hydraulic power plants are systems that produce electrical energy with high investment costs. In order to fulfil their goals, investments should create conditions for a safe production of energy in a long lasting and reliable way, and with the required power and quality. These goals are possible to reach by an optional control process linked to a systematic monitoring of the operating machinery state, using the method of vibration diagnostics. Lately, there has been an increase of noise level in the hydraulic power plants.

  7. A noise reconfigurable current-reuse resistive feedback amplifier with signal-dependent power consumption for fetal ECG monitoring

    NARCIS (Netherlands)

    Song, Shuang; Rooijakkers, M.J.; Harpe, P.; Rabotti, C.; Mischi, M.; Van Roermund, A.H.M.; Cantatore, E.

    2016-01-01

    This paper presents a noise-reconfigurable resistive feedback amplifier with current-reuse technique for fetal ECG monitoring. The proposed amplifier allows for both tuning of the noise level and changing the power consumption according to the signal properties, minimizing the total power

  8. Factors Affecting Sentence-in-Noise Recognition for Normal Hearing Listeners and Listeners with Hearing Loss.

    Science.gov (United States)

    Hwang, Jung Sun; Kim, Kyung Hyun; Lee, Jae Hee

    2017-07-01

    Despite amplified speech, listeners with hearing loss often report more difficulties understanding speech in background noise compared to normalhearing listeners. Various factors such as deteriorated hearing sensitivity, age, suprathreshold temporal resolution, and reduced capacity of working memory and attention can attribute to their sentence-in-noise problems. The present study aims to determine a primary explanatory factor for sentence-in-noise recognition difficulties in adults with or without hearing loss. Forty normal-hearing (NH) listeners (23-73 years) and thirty-four hearing-impaired (HI) listeners (24-80 years) participated for experimental testing. For both NH and HI group, the younger, middle-aged, older listeners were included. The sentence recognition score in noise was measured at 0 dB signal-to-noise ratio. The ability of temporal resolution was evaluated by gap detection performance using the Gaps-In-Noise test. Listeners' short-term auditory working memory span was measured by forward and backward digit spans. Overall, the HI listeners' sentence-in-noise recognition, temporal resolution abilities, and digit forward and backward spans were poorer compared to the NH listeners. Both NH and HI listeners had a substantial variability in performance. For NH listeners, only the digit backward span explained a small proportion of the variance in their sentence-in-noise performance. For the HI listeners, all the performance was influenced by age, and their sentence-in-noise difficulties were associated with various factors such as high-frequency hearing sensitivity, suprathreshold temporal resolution abilities, and working memory span. For the HI listeners, the critical predictors of the sentence-in-noise performance were composite measures of peripheral hearing sensitivity and suprathreshold temporal resolution abilities. The primary explanatory factors for the sentence-in-noise recognition performance differ between NH and HI listeners. Factors

  9. On-line adaptive line frequency noise cancellation from a nuclear power measuring channel

    Directory of Open Access Journals (Sweden)

    Qadir Javed

    2011-01-01

    Full Text Available On-line software for adaptively canceling 50 Hz line frequency noise has been designed and tested at Pakistan Research Reactor 1. Line frequency noise causes much problem in weak signals acquisition. Sometimes this noise is so dominant that original signal is totally corrupted. Although notch filter can be used for eliminating this noise, but if signal of interest is in close vicinity of 50 Hz, then original signal is also attenuated and hence overall performance is degraded. Adaptive noise removal is a technique which could be employed for removing line frequency without degrading the desired signal. In this paper line frequency noise has been eliminated on-line from a nuclear power measuring channel. The adaptive LMS algorithm has been used to cancel 50 Hz noise. The algorithm has been implemented in labVIEW with NI 6024 data acquisition card. The quality of the acquired signal has been improved much as can be seen in experimental results.

  10. Noise

    Science.gov (United States)

    Noise is all around you, from televisions and radios to lawn mowers and washing machines. Normally, you ... sensitive structures of the inner ear and cause noise-induced hearing loss. More than 30 million Americans ...

  11. EBG structures on high permittivity substrate to reduce noise in power distribution networks

    NARCIS (Netherlands)

    Tereshchenko, O.V.; Buesink, Frederik Johannes Karel; Leferink, Frank Bernardus Johannes

    2012-01-01

    The noise reduction effect in a Power Distribution Network (PDN) by implementing Electromagnetic Band Gap structures (EBG) on standard and high permittivity substrates has been investigated. Boards with different EBG structures have been modelled and designed. Using the EBG structures the Power

  12. Worst-case residual clipping noise power model for bit loading in LACO-OFDM

    KAUST Repository

    Zhang, Zhenyu; Chaaban, Anas; Shen, Chao; Elgala, Hany; Ng, Tien Khee; Ooi, Boon S.; Alouini, Mohamed-Slim

    2018-01-01

    Layered ACO-OFDM enjoys better spectral efficiency than ACO-OFDM, but its performance is challenged by residual clipping noise (RCN). In this paper, the power of RCN of LACO-OFDM is analyzed and modeled. As RCN is data-dependent, the worst-case situation is considered. A worst-case indicator is defined for relating the power of RCN and the power of noise at the receiver, wherein a linear relation is shown to be a practical approximation. An LACO-OFDM bit-loading experiment is performed to examine the proposed RCN power model for data rates of 6 to 7 Gbps. The experiment's results show that accounting for RCN has two advantages. First, it leads to better bit loading and achieves up to 59% lower overall bit-error rate (BER) than when the RCN is ignored. Second, it balances the BER across layers, which is a desired property from a channel coding perspective.

  13. Audible Noise Measurement and Analysis of the Main Power Apparatus in UHV GIS Substations

    Directory of Open Access Journals (Sweden)

    Zhou Nian Guang

    2016-01-01

    Full Text Available Investigation of audible noise characteristics of the main power apparatus in UHV GIS substations provides essential statistics for the noise prediction and control. Noise pressure level, spectrum and attenuation characteristics of the main transformers and high voltage (HV reactors are measured and analyzed in this paper. The result shows that the main transformer and HV reactor have identical A-weighted equivalent sound pressure level. The medium- and low-frequency noises are the primary components in the spectral. More attention should be paid to the low-frequency bands in the noise control process. The noise of cooling fan has a large influence on that of the main transformer. Without the consideration of corona noise, the average A-weighted sound pressure level shows an overall decreasing trend with the increase of the propagation distance. Obvious interference phenomenon of the noises at 100 and 200Hz exists in the noise propagation process.

  14. Cognitive skills and the effect of noise on perceived effort in employees with aided hearing impairment and normal hearing

    Directory of Open Access Journals (Sweden)

    Håkan Hua

    2014-01-01

    Full Text Available The aim of the following study was to examine the relationship between working memory capacity (WMC, executive functions (EFs and perceived effort (PE after completing a work-related task in quiet and in noise in employees with aided hearing impairment (HI and normal hearing. The study sample consisted of 20 hearing-impaired and 20 normally hearing participants. Measures of hearing ability, WMC and EFs were tested prior to performing a work-related task in quiet and in simulated traffic noise. PE of the work-related task was also measured. Analysis of variance was used to analyze within- and between-group differences in cognitive skills, performance on the work-related task and PE. The presence of noise yielded a significantly higher PE for both groups. However, no significant group differences were observed in WMC, EFs, PE and performance in the work-related task. Interestingly, significant negative correlations were only found between PE in the noise condition and the ability to update information for both groups. In summary, noise generates a significantly higher PE and brings explicit processing capacity into play, irrespective of hearing. This suggest that increased PE involves other factors such as type of task that is to be performed, performance in the cognitive skill required solving the task at hand and whether noise is present. We therefore suggest that special consideration in hearing care should be made to the individual′s prerequisites on these factors in the labor market.

  15. Investigation of power oscillation mechanisms based on noise analysis at Forsmark-1 BWR

    International Nuclear Information System (INIS)

    Oguma, Ritsuo

    1996-01-01

    Noise analysis has been performed for stability test data collected during reactor start-up in January 1989 at the boiling water reactor (BWR) Forsmark unit 1. A unique instrumentation to measure local coolant flow in this reactor allowed investigation of dynamic interactions between neutron flux and coolant flow noise signals at different radial positions in the core. The causal relationship for these signals was evaluated based on a method called signal transmission path (STP) analysis with the aim of identifying the principal mechanism of power oscillations in this reactor. The results of the present study indicated that large amplitude power oscillations were induced by two instability mechanisms concurrent in the core. The first is the global void reactivity feedback effect which played the most significant role to power oscillations at a resonant frequency of about 0.53 Hz. The second is the thermal-hydraulics coupling with neutron kinetics, inducing resonant oscillations at about 0.45 Hz. The latter was found to be active only in a certain core region. A peculiar phenomenon of amplitude modulations observed in some local power range monitor (LPRM) signals was also examined. It was interpreted to occur as the consequence of these two resonant power oscillations, the frequencies of which lie close to each other. The noise analysis technique applied in the present study is expected to be useful to get a deeper understanding of the power oscillation mechanism which is active in the reactor under evaluation. The technique may be applicable to BWRs with instruments to measure local channel flow together with in-core neutron detectors. (Author)

  16. Corrosion monitoring in a straw-fired power plant using an electrochemical noise probe

    DEFF Research Database (Denmark)

    Cappeln, Frederik Vilhelm; Bjerrum, Niels; Petrushina, Irina

    2007-01-01

    Electrochemical Noise Measurements have been carried out in situ in a straw-fired power plant using an experimental probe constructed from alumina and AlSl 347 steel. Based on a framework of controlled laboratory experiments it has been found that electrochemical noise has the unique ability...... to provide in-situ monitoring of intergranular corrosion in progress. The probe had a lifetime of two months. It was shown that down-time corrosion in the boiler was negligible. Electrochemical noise data indicated that metal temperatures around 590 degrees C should be avoided as the intergranular corrosion...

  17. Study of environmental noise in a BWR plant like the Nuclear Power Plant Laguna Verde

    International Nuclear Information System (INIS)

    Tijerina S, F.; Cruz G, M.; Amador C, C.

    2013-10-01

    In all industry type the health costs generated by the noise are high, because the noise can cause nuisance and to harm the capacity to work when causing tension and to perturb the concentration, and in more severe cases to reach to lose the sense of the hearing in the long term. The noise levels in the industry have been designated for the different types of use like residential, commercial, and industrial and silence areas. The noise can cause accidents when obstructing the communications and alarm signs. For this reason the noise should be controlled and mitigated, at a low level as reasonably is possible, taking into account that the noise is an acoustic contamination. The present study determines a bases line of the environmental noise levels in a nuclear power plant BWR-5 as Laguna Verde, (like reference) to be able to determine and to give pursuit to the possible solutions to eliminate or to limit the noise level in the different job areas. The noise levels were registered with a meter of integrative noise level (sonometer) and areas of noise exposure levels mapping the general areas in the buildings were established, being the registered maximum level of 96.94 dba in the building of the Reactor-elevation 0.65 m under the operation conditions of Extended Power Up rate (EPU) of 120% PTN. Knowing that the exposition to noises and the noise dose in the job place can influence in the health and in the safety of the workers, are extensive topics that they should be analyzed for separate as they are: to) the effects in the health of the exposure to the noise, b) how measuring the noise, c) the methods and technologies to combat and to control the noise in the industry by part of engineering area and d) the function of the industrial safety bodies as delegates of the health and safety in the task against the noise in the job. (author)

  18. Predicting the Noise of High Power Fluid Targets Using Computational Fluid Dynamics

    Science.gov (United States)

    Moore, Michael; Covrig Dusa, Silviu

    The 2.5 kW liquid hydrogen (LH2) target used in the Qweak parity violation experiment is the highest power LH2 target in the world and the first to be designed with Computational Fluid Dynamics (CFD) at Jefferson Lab. The Qweak experiment determined the weak charge of the proton by measuring the parity-violating elastic scattering asymmetry of longitudinally polarized electrons from unpolarized liquid hydrogen at small momentum transfer (Q2 = 0 . 025 GeV2). This target satisfied the design goals of bench-marked with the Qweak target data. This work is an essential component in future designs of very high power low noise targets like MOLLER (5 kW, target noise asymmetry contribution < 25 ppm) and MESA (4.5 kW).

  19. Active Vibration Control for Helicopter Interior Noise Reduction Using Power Minimization

    Science.gov (United States)

    Mendoza, J.; Chevva, K.; Sun, F.; Blanc, A.; Kim, S. B.

    2014-01-01

    This report describes work performed by United Technologies Research Center (UTRC) for NASA Langley Research Center (LaRC) under Contract NNL11AA06C. The objective of this program is to develop technology to reduce helicopter interior noise resulting from multiple gear meshing frequencies. A novel active vibration control approach called Minimum Actuation Power (MAP) is developed. MAP is an optimal control strategy that minimizes the total input power into a structure by monitoring and varying the input power of controlling sources. MAP control was implemented without explicit knowledge of the phasing and magnitude of the excitation sources by driving the real part of the input power from the controlling sources to zero. It is shown that this occurs when the total mechanical input power from the excitation and controlling sources is a minimum. MAP theory is developed for multiple excitation sources with arbitrary relative phasing for single or multiple discrete frequencies and controlled by a single or multiple controlling sources. Simulations and experimental results demonstrate the feasibility of MAP for structural vibration reduction of a realistic rotorcraft interior structure. MAP control resulted in significant average global vibration reduction of a single frequency and multiple frequency excitations with one controlling actuator. Simulations also demonstrate the potential effectiveness of the observed vibration reductions on interior radiated noise.

  20. Results and interpretation of noise measurements using in-core self powered neutron detector strings at Unit 2 of the Paks Nuclear Power Plant

    International Nuclear Information System (INIS)

    Gloeckler, O.; Por, G.; Valko, J.

    1986-11-01

    In-core neutron noise and fuel assembly outlet temperature noise measurements were performed at Unit 2 of Paks Nuclear Power Plant. Characteristics of the reactor and the noise measuring equipment are briefly described. The in-core Rhodium emitter selfpowered neutron detector strings positioned axially above the other show high coherence and linear phase at low frequencies indicating a marked transport effect, not regularly measured in PWRs. The coherence between horizontally placed neutron detectors is small and the phase is zero. A transport effect of different nature is obtained between neutron detectors (in-core and ex-core) and fuel assembly outlet thermocouples. The observed characteristics depend on reactor and fuel assembly power in a way supporting interpretation in terms of coolant density and void content changes and power feedback effects. During routine analysis vibration of 1.1 Hz appeared as a strong peak in the power spectra. The control assembly that was responsible for the observed behaviour could be localized with high certainty. (author)

  1. The noise power spectrum in CT with direct fan beam reconstruction

    International Nuclear Information System (INIS)

    Baek, Jongduk; Pelc, Norbert J.

    2010-01-01

    The noise power spectrum (NPS) is a useful metric for understanding the noise content in images. To examine some unique properties of the NPS of fan beam CT, the authors derived an analytical expression for the NPS of fan beam CT and validated it with computer simulations. The nonstationary noise behavior of fan beam CT was examined by analyzing local regions and the entire field-of-view (FOV). This was performed for cases with uniform as well as nonuniform noise across the detector cells and across views. The simulated NPS from the entire FOV and local regions showed good agreement with the analytically derived NPS. The analysis shows that whereas the NPS of a large FOV in parallel beam CT (using a ramp filter) is proportional to frequency, the NPS with direct fan beam FBP reconstruction shows a high frequency roll off. Even in small regions, the fan beam NPS can show a sharp transition (discontinuity) at high frequencies. These effects are due to the variable magnification and therefore are more pronounced as the fan angle increases. For cases with nonuniform noise, the NPS can show the directional dependence and additional effects.

  2. Worst-case residual clipping noise power model for bit loading in LACO-OFDM

    KAUST Repository

    Zhang, Zhenyu

    2018-03-19

    Layered ACO-OFDM enjoys better spectral efficiency than ACO-OFDM, but its performance is challenged by residual clipping noise (RCN). In this paper, the power of RCN of LACO-OFDM is analyzed and modeled. As RCN is data-dependent, the worst-case situation is considered. A worst-case indicator is defined for relating the power of RCN and the power of noise at the receiver, wherein a linear relation is shown to be a practical approximation. An LACO-OFDM bit-loading experiment is performed to examine the proposed RCN power model for data rates of 6 to 7 Gbps. The experiment\\'s results show that accounting for RCN has two advantages. First, it leads to better bit loading and achieves up to 59% lower overall bit-error rate (BER) than when the RCN is ignored. Second, it balances the BER across layers, which is a desired property from a channel coding perspective.

  3. Conducted noise analysis and protection of 45 kJ/s, ±50 kV capacitor charging power supply when interfaced with repetitive Marx based pulse power system

    Science.gov (United States)

    Naresh, P.; Patel, Ankur; Sharma, Archana

    2015-09-01

    Pulse power systems with highly dynamic loads like klystron, backward wave oscillator (BWO), and magnetron generate highly dynamic noise. This noise leads to frequent failure of controlled switches in the inverter stage of charging power supply. Designing a reliable and compatible power supply for pulse power applications is always a tricky job when charging rate is in multiples of 10 kJ/s. A ±50 kV and 45 kJ/s capacitor charging power supply based on 4th order LCLC resonant topology has been developed for a 10 Hz repetitive Marx based system. Conditions for load independent constant current and zero current switching (ZCS) are derived mathematically. Noise generated at load end due to dynamic load is tackled effectively and reduction in magnitude noise voltage is achieved by providing shielding between primary and secondary of high voltage high frequency transformer and with LCLC low pass filter. Shielding scales down the ratio between coupling capacitance (Cc) and the collector-emitter capacitance of insulated gate bi-polar transistor switch, which in turn reduces the common mode noise voltage magnitude. The proposed 4th order LCLC resonant network acts as a low pass filter for differential mode noise in the reverse direction (from load to source). Power supply has been tested repeatedly with 5 Hz repetition rate with repetitive Marx based system connected with BWO load working fine without failure of single switch in the inverter stage.

  4. Analysis of power tiller noise using diesel-biodiesel fuel blends

    Directory of Open Access Journals (Sweden)

    N Keramat Siavash

    2015-09-01

    Full Text Available Introduction: There are several sources of noise in an industrial and agriculture environment. Machines with rotating or reciprocating engines are sound-producing sources. Also, the audio signal can be analyzed to discover how well a machine operates. Diesel engines complex noise SPL and sound frequency content both strongly depend on fuel combustion, which produces the so-called combustion noise. Actually, the unpleasant sound signature of diesel engines is due to the harsh and irregular self-ignition of the fuel. Therefore, being able to extract combustion noise from the overall noise would be of prime interest. This would allow engineers to relate the sound quality back to the combustion parameters. The residual noise produced by various sources, is referred to as mechanical noise. Since diesel engine noise radiation is associated with the operators’ and pedestrians’ discomfort, more and more attention to being paid to it. The main sources of noise generation in a diesel engine are exhaust system, mechanical processes such as valve train and combustion that prevail over the other two. In the present work, experimental tests were conducted on a single cylinder diesel engine in order to investigate the combustion noise radiation during stationary state for various diesel and biodiesel fuel blends. Materials and Methods: The engine used in the current study is an ASHTAD DF120-RA70 that is a single cylinder 4 stroke water cooled diesel engine and its nominal power is 7.5 hp at 2200 rpm. The experiment has been done at three positions (Left ear of operator, 1.5 and 7.5 meter away from exhaust based on ISO-5131 and SAE-J1174 standards. For engine speed measurement the detector Lurton 2364 was utilized with a measurement accuracy of 0.001 rpm. To obtain the highest accuracy, contact mode of detector was used. The engine noise was measured by HT157 sound level meter and was digitalized and saved with Sound View software. HT157 uses alow impedance

  5. Passive coherent discriminator using phase diversity for the simultaneous measurement of frequency noise and intensity noise of a continuous-wave laser

    Science.gov (United States)

    Michaud-Belleau, V.; Bergeron, H.; Light, P. S.; Hébert, N. B.; Deschênes, J. D.; Luiten, A. N.; Genest, J.

    2016-10-01

    The frequency noise and intensity noise of a laser set the performance limits in many modern photonics applications and, consequently, must often be characterized. As lasers continue to improve, the measurement of these noises however becomes increasingly challenging. Current approaches for the characterization of very high-performance lasers often call for a second laser with equal or higher performance to the one that is to be measured, an incoherent interferometer having an extremely long delay-arm, or an interferometer that relies on an active device. These instrumental features can be impractical or problematic under certain experimental conditions. As an alternative, this paper presents an entirely passive coherent interferometer that employs an optical 90° hybrid coupler to perform in-phase and quadrature detection. We demonstrate the technique by measuring the frequency noise power spectral density of a highly-stable 192 THz (1560 nm) fiber laser over five frequency decades. Simultaneously, we are able to measure its relative intensity noise power spectral density and characterize the correlation between its amplitude noise and phase noise. We correct some common misconceptions through a detailed theoretical analysis and demonstrate the necessity to account for normal imperfections of the optical 90° hybrid coupler. We finally conclude that this passive coherent discriminator is suitable for reliable and simple noise characterization of highly-stable lasers, with bandwidth and dynamic range benefits but susceptibility to additive noise contamination.

  6. White Gaussian Noise - Models for Engineers

    Science.gov (United States)

    Jondral, Friedrich K.

    2018-04-01

    This paper assembles some information about white Gaussian noise (WGN) and its applications. It starts from a description of thermal noise, i. e. the irregular motion of free charge carriers in electronic devices. In a second step, mathematical models of WGN processes and their most important parameters, especially autocorrelation functions and power spectrum densities, are introduced. In order to proceed from mathematical models to simulations, we discuss the generation of normally distributed random numbers. The signal-to-noise ratio as the most important quality measure used in communications, control or measurement technology is accurately introduced. As a practical application of WGN, the transmission of quadrature amplitude modulated (QAM) signals over additive WGN channels together with the optimum maximum likelihood (ML) detector is considered in a demonstrative and intuitive way.

  7. A pixel segmented silicon strip detector for ultra fast shaping at low noise and low power consumption

    International Nuclear Information System (INIS)

    Misiakos, K.; Kavadias, S.

    1996-01-01

    A new radiation imaging device is proposed based on strips segmented into small pixels. Every pixel contains a submicron transistor that is normally biased in weak inversion. The ionization charge, upon collection by the pixel, changes the bias of the transistor to strong inversion and supplies a current up to several tens of a microA. This is a consequence of the small pixel capacitance (12 fF). The drains and sources of the transistors on the same row and column are shorted to bus lines that effectively become the Y and X coordinates. These bus lines are connected to the off chip ICON amplifiers to provide a 10 ns peaking time at a noise of about 150 electrons and 1 nW power consumption, for a 10x10 cm 2 detector and a MIP excitation. The noise performance is dominated by the ICON transistors. The cross talk between adjacent strips can be kept at a few percentage points provided a low transistor bias current is used

  8. 1/f noise: diffusive systems and music

    Energy Technology Data Exchange (ETDEWEB)

    Voss, R.F.

    1975-11-01

    Measurements of the 1/f voltage noise in continuous metal films are reported. At room temperature, samples of pure metals and bismuth (with a carrier density smaller by 10/sup 5/) of similar volume had comparable noise. The results suggest that the noise arises from equilibrium temperature fluctuations modulating the resistance. Spatial correlation of the noise implied that the fluctuations obey a diffusion equation. The empirical inclusion of an explicit 1/f region and appropriate normalization lead to excellent agreement with the measured noise. If the fluctuations are assumed to be spatially correlated, the diffusion equation can yield an extended 1/f region in the power spectrum. The temperature response of a sample to delta and step function power inputs is shown to have the same shape as the autocorrelation function for uncorrelated and correlated temperature fluctuations, respectively. The spectrum obtained from the cosine transform of the measured step function response is in excellent agreement with the measured 1/f voltage noise spectrum. Spatially correlated equilibrium temperature fluctuations are not the dominant source of 1/f noise in semiconductors and metal films. However, the agreement between the low-frequency spectrum of fluctuations in the mean-square Johnson noise voltage and the resistance fluctuation spectrum measured in the presence of a current demonstrates that in these systems the 1/f noise is also due to equilibrium resistance fluctuations. Loudness fluctuations in music and speech and pitch fluctuations in music also show the 1/f behavior. 1/f noise sources, consequently, are demonstrated to be the natural choice for stochastic composition. 26 figures, 1 table. (auth)

  9. Noise variation by compressive stress on the model core of power transformers

    Energy Technology Data Exchange (ETDEWEB)

    Mizokami, Masato, E-mail: mizokami.g76.masato@jp.nssmc.com; Kurosaki, Yousuke

    2015-05-01

    The reduction of audible noise generated by cores for power transformers has been required due to environmental concern. It is known that compressive stress in the rolling direction of electrical steel affects magnetostriction and it can result in an increase in noise level. In this research, the effect of compressive stress to noise was investigated on a 3-phase 3-limb model core. Compressive stress was applied in the rolling direction of the limbs from the outside of the core. It increased the sound pressure levels and the slope of the rise was about 2 dBA/MPa. Magnetostriction on single sheet samples was also measured under compressive stress and the harmonic components of the magnetostriction were compared with those of noise. It revealed that the variation in magnetostriction with compressive stress did not entirely correspond to that in noise. In one of the experiments, localized bending happened on one limb during compressing the core. While deformation of the core had not been intended, the noise was measured. The deformation increased the noise by more than 10 dBA and it occurred on most of the harmonic components. - Highlights: • Audible noise was measured on a model core to which compressive stress was applied. • The stress in the rolling direction of the steel causes a rise in noise level. • The slope of the rise in sound pressure level up to 2.5 MPa is about 2 dBA/MPa. • Variation in magnetostriction by stress does not entirely agree with that in noise. • Bend arisen in the core causes an extreme increase in noise.

  10. Noise variation by compressive stress on the model core of power transformers

    International Nuclear Information System (INIS)

    Mizokami, Masato; Kurosaki, Yousuke

    2015-01-01

    The reduction of audible noise generated by cores for power transformers has been required due to environmental concern. It is known that compressive stress in the rolling direction of electrical steel affects magnetostriction and it can result in an increase in noise level. In this research, the effect of compressive stress to noise was investigated on a 3-phase 3-limb model core. Compressive stress was applied in the rolling direction of the limbs from the outside of the core. It increased the sound pressure levels and the slope of the rise was about 2 dBA/MPa. Magnetostriction on single sheet samples was also measured under compressive stress and the harmonic components of the magnetostriction were compared with those of noise. It revealed that the variation in magnetostriction with compressive stress did not entirely correspond to that in noise. In one of the experiments, localized bending happened on one limb during compressing the core. While deformation of the core had not been intended, the noise was measured. The deformation increased the noise by more than 10 dBA and it occurred on most of the harmonic components. - Highlights: • Audible noise was measured on a model core to which compressive stress was applied. • The stress in the rolling direction of the steel causes a rise in noise level. • The slope of the rise in sound pressure level up to 2.5 MPa is about 2 dBA/MPa. • Variation in magnetostriction by stress does not entirely agree with that in noise. • Bend arisen in the core causes an extreme increase in noise

  11. The influence of noise on the design of horizontal axis wind turbines

    International Nuclear Information System (INIS)

    Watson, I.

    1993-01-01

    This wind turbine noise study was initiated and funded by ETSU to help to eliminate noise as an obstacle to the harnessing of wind energy for the clean generation of electrical power. There is an abundance of theoretical papers on aerodynamic noise, but very few contain meaningful, practical verification of the complex analysis by tests on wind turbines where mechanical noise has been eliminated. This serious shortcoming initiated comprehensive tests on the 1MW, three bladed wind turbine at Richborough Power Station. This investigation is an integral part of this project. A study of the available literature on blade induced noise is also part of this project. A report on gearbox noise which is normally the main source of mechanical and discrete noise is also given. Four reports have been written to fulfil the objectives listed by ETSU. This final report summarises and comments on some of the work in the other three reports and also includes an appraisal of the effect and cost of basic design strategy to create acceptably quiet wind turbines. (author)

  12. Lexical tone recognition in noise in normal-hearing children and prelingually deafened children with cochlear implants.

    Science.gov (United States)

    Mao, Yitao; Xu, Li

    2017-01-01

    The purpose of the present study was to investigate Mandarin tone recognition in background noise in children with cochlear implants (CIs), and to examine the potential factors contributing to their performance. Tone recognition was tested using a two-alternative forced-choice paradigm in various signal-to-noise ratio (SNR) conditions (i.e. quiet, +12, +6, 0, and -6 dB). Linear correlation analysis was performed to examine possible relationships between the tone-recognition performance of the CI children and the demographic factors. Sixty-six prelingually deafened children with CIs and 52 normal-hearing (NH) children as controls participated in the study. Children with CIs showed an overall poorer tone-recognition performance and were more susceptible to noise than their NH peers. Tone confusions between Mandarin tone 2 and tone 3 were most prominent in both CI and NH children except for in the poorest SNR conditions. Age at implantation was significantly correlated with tone-recognition performance of the CI children in noise. There is a marked deficit in tone recognition in prelingually deafened children with CIs, particularly in noise listening conditions. While factors that contribute to the large individual differences are still elusive, early implantation could be beneficial to tone development in pediatric CI users.

  13. Different effects of adding white noise on cognitive performance of sub-, normal and super-attentive school children.

    Directory of Open Access Journals (Sweden)

    Suzannah K Helps

    Full Text Available Noise often has detrimental effects on performance. However, because of the phenomenon of stochastic resonance (SR, auditory white noise (WN can alter the "signal to noise" ratio and improve performance. The Moderate Brain Arousal (MBA model postulates different levels of internal "neural noise" in individuals with different attentional capacities. This in turn determines the particular WN level most beneficial in each individual case-with one level of WN facilitating poor attenders but hindering super-attentive children. The objective of the present study is to find out if added WN affects cognitive performance differently in children that differ in attention ability.Participants were teacher-rated super- (N = 25; normal- (N = 29 and sub-attentive (N = 36 children (aged 8 to 10 years. Two non-executive function (EF tasks (a verbal episodic recall task and a delayed verbal recognition task and two EF tasks (a visuo-spatial working memory test and a Go-NoGo task were performed under three WN levels. The non-WN condition was only used to control for potential differences in background noise in the group testing situations.There were different effects of WN on performance in the three groups-adding moderate WN worsened the performance of super-attentive children for both task types and improved EF performance in sub-attentive children. The normal-attentive children's performance was unaffected by WN exposure. The shift from moderate to high levels of WN had little further effect on performance in any group.The predicted differential effect of WN on performance was confirmed. However, the failure to find evidence for an inverted U function challenges current theories. Alternative explanations are discussed. We propose that WN therapy should be further investigated as a possible non-pharmacological treatment for inattention.

  14. Different effects of adding white noise on cognitive performance of sub-, normal and super-attentive school children.

    Science.gov (United States)

    Helps, Suzannah K; Bamford, Susan; Sonuga-Barke, Edmund J S; Söderlund, Göran B W

    2014-01-01

    Noise often has detrimental effects on performance. However, because of the phenomenon of stochastic resonance (SR), auditory white noise (WN) can alter the "signal to noise" ratio and improve performance. The Moderate Brain Arousal (MBA) model postulates different levels of internal "neural noise" in individuals with different attentional capacities. This in turn determines the particular WN level most beneficial in each individual case-with one level of WN facilitating poor attenders but hindering super-attentive children. The objective of the present study is to find out if added WN affects cognitive performance differently in children that differ in attention ability. Participants were teacher-rated super- (N = 25); normal- (N = 29) and sub-attentive (N = 36) children (aged 8 to 10 years). Two non-executive function (EF) tasks (a verbal episodic recall task and a delayed verbal recognition task) and two EF tasks (a visuo-spatial working memory test and a Go-NoGo task) were performed under three WN levels. The non-WN condition was only used to control for potential differences in background noise in the group testing situations. There were different effects of WN on performance in the three groups-adding moderate WN worsened the performance of super-attentive children for both task types and improved EF performance in sub-attentive children. The normal-attentive children's performance was unaffected by WN exposure. The shift from moderate to high levels of WN had little further effect on performance in any group. The predicted differential effect of WN on performance was confirmed. However, the failure to find evidence for an inverted U function challenges current theories. Alternative explanations are discussed. We propose that WN therapy should be further investigated as a possible non-pharmacological treatment for inattention.

  15. Scaling model for a speed-dependent vehicle noise spectrum

    Directory of Open Access Journals (Sweden)

    Giovanni Zambon

    2017-06-01

    Full Text Available Considering the well-known features of the noise emitted by moving sources, a number of vehicle characteristics such as speed, unladen mass, engine size, year of registration, power and fuel were recorded in a dedicated monitoring campaign performed in three different places, each characterized by different number of lanes and the presence of nearby reflective surfaces. A full database of 144 vehicles (cars was used to identify statistically relevant features. In order to compare the vehicle transit noise in different environmental condition, all 1/3-octave band spectra were normalized and analysed. Unsupervised clustering algorithms were employed to group together spectrum levels with similar profiles. Our results corroborate the well-known fact that speed is the most relevant characteristic to discriminate between different vehicle noise spectrum. In keeping with this fact, we present a new approach to predict analytically noise spectra for a given vehicle speed. A set of speed-dependent analytical functions are suggested in order to fit the normalized average spectrum profile at different speeds. This approach can be useful for predicting vehicle speed based purely on its noise spectrum pattern. The present work is complementary to the accurate analysis of noise sources based on the beamforming technique.

  16. Estimating local noise power spectrum from a few FBP-reconstructed CT scans

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Rongping, E-mail: rongping.zeng@fda.hhs.gov; Gavrielides, Marios A.; Petrick, Nicholas; Sahiner, Berkman; Li, Qin; Myers, Kyle J. [Division of Imaging, Diagnostics, and Software Reliability, Office of Science and Engineering Laboratories, CDRH, FDA, Silver Spring, Maryland 20993 (United States)

    2016-01-15

    Purpose: Traditional ways to estimate 2D CT noise power spectrum (NPS) involve an ensemble average of the power spectrums of many noisy scans. When only a few scans are available, regions of interest are often extracted from different locations to obtain sufficient samples to estimate the NPS. Using image samples from different locations ignores the nonstationarity of CT noise and thus cannot accurately characterize its local properties. The purpose of this work is to develop a method to estimate local NPS using only a few fan-beam CT scans. Methods: As a result of FBP reconstruction, the CT NPS has the same radial profile shape for all projection angles, with the magnitude varying with the noise level in the raw data measurement. This allows a 2D CT NPS to be factored into products of a 1D angular and a 1D radial function in polar coordinates. The polar separability of CT NPS greatly reduces the data requirement for estimating the NPS. The authors use this property and derive a radial NPS estimation method: in brief, the radial profile shape is estimated from a traditional NPS based on image samples extracted at multiple locations. The amplitudes are estimated by fitting the traditional local NPS to the estimated radial profile shape. The estimated radial profile shape and amplitudes are then combined to form a final estimate of the local NPS. We evaluate the accuracy of the radial NPS method and compared it to traditional NPS methods in terms of normalized mean squared error (NMSE) and signal detectability index. Results: For both simulated and real CT data sets, the local NPS estimated with no more than six scans using the radial NPS method was very close to the reference NPS, according to the metrics of NMSE and detectability index. Even with only two scans, the radial NPS method was able to achieve a fairly good accuracy. Compared to those estimated using traditional NPS methods, the accuracy improvement was substantial when a few scans were available

  17. A low power low noise analog front end for portable healthcare system

    International Nuclear Information System (INIS)

    Wang Yanchao; Ke Keren; Qin Wenhui; Qin Yajie; Yi Ting; Hong Zhiliang

    2015-01-01

    The presented analog front end (AFE) used to process human bio-signals consists of chopping instrument amplifier (IA), chopping spikes filter and programmable gain and bandwidth amplifier. The capacitor-coupling input of AFE can reject the DC electrode offset. The power consumption of current-feedback based IA is reduced by adopting capacitor divider in the input and feedback network. Besides, IA's input thermal noise is decreased by utilizing complementary CMOS input pairs which can offer higher transconductance. Fabricated in Global Foundry 0.35 μm CMOS technology, the chip consumes 3.96 μA from 3.3 V supply. The measured input noise is 0.85 μVrms (0.5–100 Hz) and the achieved noise efficient factor is 6.48. (paper)

  18. Measurement and simulation of laser power noise in GEO 600

    International Nuclear Information System (INIS)

    Smith, J R; Degallaix, J; Freise, A; Grote, H; Hewitson, M; Hild, S; Lueck, H; Strain, K A; Willke, B

    2008-01-01

    This paper describes measurements and simulations related to power fluctuations of the laser light in the GEO 600 laser-interferometric gravitational wave detector. Measurements of the relative fluctuations of the light power at three different ports of the main interferometer are presented. In addition, measurements and simulations of the coupling transfer functions from power fluctuations at the input laser to these ports are shown. The transfer function from the input laser to the output port of the interferometer is found to be non-trivial. Despite this, the numerical simulation produces an excellent match to it and gives insight to the mechanisms leading to the complicated shape. Furthermore, the coupling transfer functions of power fluctuations to the main (heterodyne) detector outputs are measured and simulated. These are used to evaluate the level with which laser power fluctuations contribute to the overall noise level of the instrument

  19. 'Kazmer' a complex noise diagnostic system for 1000 MWe PWR WWER type nuclear power units

    International Nuclear Information System (INIS)

    Por, G.

    1992-06-01

    Noise diagnostic systems have previously been developed and installed for the WWER-440 type reactors at the Paks Nuclear Power Plant, Hungary. Based on the experiences, the system has been extended and modified for use in 1000 MWe, WWER-1000 type units. KAZMER consists of three subsystem, the KARD reactor noise diagnostic system, ARGUS vibration monitoring system for rotation machinery, and ALMOS acoustic monitoring system. The installation of the KAZMER system at the Kalinin Nuclear Power Station, Russia, and the first operational experiences are outlined. (R.P.) 15 refs.; 9 figs

  20. Effect of noise in computed tomographic reconstructions on detectability

    International Nuclear Information System (INIS)

    Hanson, K.M.

    1982-01-01

    The detectability of features in an image is ultimately limited by the random fluctuations in density or noise present in that image. The noise in CT reconstructions arising from the statistical fluctuations in the one-dimensional input projection measurements has an unusual character owing to the reconstruction procedure. Such CT image noise differs from the white noise normally found in images in its lack of low-frequency components. The noise power spectrum of CT reconstructions can be related to the effective density of x-ray quanta detected in the projection measurements, designated as NEQ (noise-equivalent quanta). The detectability of objects that are somewhat larger than the spatial resolution is directly related to NEQ. Since contrast resolution may be defined in terms of the ability to detect large, low-contrast objects, the measurement of a CT scanner's NEQ may be used to characterize its contrast sensitivity

  1. A Multilayer Perceptron-Based Impulsive Noise Detector with Application to Power-Line-Based Sensor Networks

    KAUST Repository

    Chien, Ying-Ren; Chen, Jie-Wei; Xu, Sendren Sheng-Dong

    2018-01-01

    For power-line-based sensor networks, impulsive noise (IN) will dramatically degrade the data transmission rate in the power line. In this paper, we present a multilayer perceptron (MLP)-based approach to detect IN in orthogonal frequency

  2. Swimming Behavior of Roach (Rutilus rutilus) and Three-spined Stickleback (Gasterosteus aculeatus) in Response to Wind Power Noise and Single-tone Frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Mathias H.; Dock-Aakerman, Emily; Ubral-Hedenberg, Ramona; Oehman, Marcus C. (Dept. of Zoology, Stockholm Univ., Stockholm (Sweden)); Sigray, Peter (Dept. of Underwater Research, Swedish Defense Research Agency, Stockholm (Sweden))

    2007-12-15

    There is an environmental concern of how fish may be influenced by the developments of wind power offshore installations (20-23). In this study, two different species of fish were exposed to single-tone frequencies and sound generated by an offshore wind power plant. Both species reacted to the wind power noise which indicate that the noise may cause stress. However, fish have been noticed to habituate to sound and to associate with windmills at sea. This study was a small scale experiment. For a comprehensive understanding on how fish respond to wind power noise, additional studies are needed involving more species and large scale laboratory and field experiments based on detailed measurements of the noise generated from wind power plants

  3. Comparison of vibrational noise, between thermal power station (T.P.S.) Jamshoro and thermal power plant (T.P.P.) Pakistan Steel Bin Qasim Karachi

    International Nuclear Information System (INIS)

    Zaheer-ud-Din Memon

    2003-01-01

    Vibrational Noise is one of the major environmental problems in Industrial Plants. The Noise study has been under taken in (Japanese Unit) Thermal Power Station (TPS) Jamshoro, which generates 250 MW since Jan: 1990 and Russian Unit Thermal Power Plant (TPP) Pak Steel Bin Qasim Karachi, generates 165 MW since 1984. The prevailing Noise has been recorded in detail; at Basement area feed pumps, Turbines, Boilers F.D.F, I.D.F and Compressor houses. Comparing these two Plants, the Noise Level found more Intensive i.e. 97- 114 dB(A) at TPP Pak Steel Bin Qasim as against 91.4 -96.3 dB(A) at TPS Jamshoro, which was even higher one in the light of ISO and other National Standards. In the light of permissible Occupational Noise exposure limits, as allowed by the ISO and other National Standards, some recommendations have been made to provide safety measures for workers against high level noise health hazards like head ache, hearing problem, irritation, accidents at work, tension, disturbance to work and so many psychological effects, along with guidelines to improve the efficiency of the plants. (author)

  4. Noise measurements of YBa2Cu3O7 thin film high-temperature superconductors

    International Nuclear Information System (INIS)

    Hall, J.J.

    1992-01-01

    The characteristics of thin-film YBa2Cu3O7 superconductors were studied from the superconducting region through the transition region and into the normal region. The properties studied included the resistance-temperature, current-voltage, and electrical noise with concentration of measurements in the transition region. The resistance vs. temperature measurements show a zero resistance followed by a small rise in magnitude at the onset of resistance followed by a sharp increase until the resistance tapers off in the fully normal region. The a-axis films had a larger normal resistivity, a lower critical temperature, and a broader transition than the similar c-axis films. The current(I) - voltage(V) measurements were concentrated in the transition region. A power relation between I and V was found to be V varies as I a(T) where a(T) is temperature dependent starting high the onset of vortex formation, approaches 3 at the vortex unbinding temperature, and goes to 1 when fully normal. This behavior was predicted by the Kosterlitz-Thouless theory and was found experimentally in all four films measured. The current-induced electrical noise characteristics were measured for four samples varying in thickness and axis orientation. Each film exhibited a widely varying magnitude of the noise voltage spectral density (S V ) in the transition region with a leveling off when fully normal. The normalized noise (S V /V squared) showed a sharp decrease in magnitude from the onset of measurable noise continually decreasing until flattening out when fully normal. The a-axis films exhibited S V /V squared over 3 order of magnitude larger than the c-axis films in the transition and normal regions. The normalized temperature coefficient of resistance (beta) was plotted against S V /V squared on a log-log scale to see if the noise generated was due to temperature fluctuations (slope = 2)

  5. A Ratiometric Method for Johnson Noise Thermometry Using a Quantized Voltage Noise Source

    Science.gov (United States)

    Nam, S. W.; Benz, S. P.; Martinis, J. M.; Dresselhaus, P.; Tew, W. L.; White, D. R.

    2003-09-01

    Johnson Noise Thermometry (JNT) involves the measurement of the statistical variance of a fluctuating voltage across a resistor in thermal equilibrium. Modern digital techniques make it now possible to perform many functions required for JNT in highly efficient and predictable ways. We describe the operational characteristics of a prototype JNT system which uses digital signal processing for filtering, real-time spectral cross-correlation for noise power measurement, and a digitally synthesized Quantized Voltage Noise Source (QVNS) as an AC voltage reference. The QVNS emulates noise with a constant spectral density that is stable, programmable, and calculable in terms of known parameters using digital synthesis techniques. Changes in analog gain are accounted for by alternating the inputs between the Johnson noise sensor and the QVNS. The Johnson noise power at a known temperature is first balanced with a synthesized noise power from the QVNS. The process is then repeated by balancing the noise power from the same resistor at an unknown temperature. When the two noise power ratios are combined, a thermodynamic temperature is derived using the ratio of the two QVNS spectral densities. We present preliminary results where the ratio between the gallium triple point and the water triple point is used to demonstrate the accuracy of the measurement system with a standard uncertainty of 0.04 %.

  6. Correlation of Noise Signature to Pulsed Power Events at the HERMES III Accelerator.

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Barbara [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Joseph, Nathan Ryan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Salazar, Juan Diego [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-11-01

    The HERMES III accelerator, which is located at Sandia National Laboratories' Tech Area IV, is the largest pulsed gamma X-ray source in the world. The accelerator is made up of 20 inductive cavities that are charged to 1 MV each by complex pulsed power circuitry. The firing time of the machine components ranges between the microsecond and nanosecond timescales. This results in a variety of electromagnetic frequencies when the accelerator fires. Testing was done to identify the HERMES electromagnetic noise signal and to map it to the various accelerator trigger events. This report will show the measurement methods used to capture the noise spectrum produced from the machine and correlate this noise signature with machine events.

  7. High level white noise generator

    International Nuclear Information System (INIS)

    Borkowski, C.J.; Blalock, T.V.

    1979-01-01

    A wide band, stable, random noise source with a high and well-defined output power spectral density is provided which may be used for accurate calibration of Johnson Noise Power Thermometers (JNPT) and other applications requiring a stable, wide band, well-defined noise power spectral density. The noise source is based on the fact that the open-circuit thermal noise voltage of a feedback resistor, connecting the output to the input of a special inverting amplifier, is available at the amplifier output from an equivalent low output impedance caused by the feedback mechanism. The noise power spectral density level at the noise source output is equivalent to the density of the open-circuit thermal noise or a 100 ohm resistor at a temperature of approximately 64,000 Kelvins. The noise source has an output power spectral density that is flat to within 0.1% (0.0043 db) in the frequency range of from 1 KHz to 100 KHz which brackets typical passbands of the signal-processing channels of JNPT's. Two embodiments, one of higher accuracy that is suitable for use as a standards instrument and another that is particularly adapted for ambient temperature operation, are illustrated in this application

  8. High level white noise generator

    Science.gov (United States)

    Borkowski, Casimer J.; Blalock, Theron V.

    1979-01-01

    A wide band, stable, random noise source with a high and well-defined output power spectral density is provided which may be used for accurate calibration of Johnson Noise Power Thermometers (JNPT) and other applications requiring a stable, wide band, well-defined noise power spectral density. The noise source is based on the fact that the open-circuit thermal noise voltage of a feedback resistor, connecting the output to the input of a special inverting amplifier, is available at the amplifier output from an equivalent low output impedance caused by the feedback mechanism. The noise power spectral density level at the noise source output is equivalent to the density of the open-circuit thermal noise or a 100 ohm resistor at a temperature of approximately 64,000 Kelvins. The noise source has an output power spectral density that is flat to within 0.1% (0.0043 db) in the frequency range of from 1 KHz to 100 KHz which brackets typical passbands of the signal-processing channels of JNPT's. Two embodiments, one of higher accuracy that is suitable for use as a standards instrument and another that is particularly adapted for ambient temperature operation, are illustrated in this application.

  9. Measurement of nuclear reactor noise at low power; Merenje nuklearnog reaktorskog suma na malim snagama

    Energy Technology Data Exchange (ETDEWEB)

    Velickovic, Lj [Boris Kidric Institute of nuclear sciences, Vinca, Belgrade (Yugoslavia)

    1968-07-01

    Theoretical interpretation of reactor noise experiments is based on stochastic model developed and described in this paper. Ratio l/{beta} as well as subcriticality level can be determined bu measuring transfer function. In this paper the ratio l/{beta} was determined directly from auto-correlation functions for different critical configurations of the RB zero power reactor core and not by transfer function. This simplified the procedure significantly. It was found that the 0.5 W power level is most suitable for experimental study of neutron fluctuations. In this case fluctuations are intense compared to noise of the detector and electronic devices used.

  10. Subcortical amplitude modulation encoding deficits suggest evidence of cochlear synaptopathy in normal-hearing 18-19 year olds with higher lifetime noise exposure.

    Science.gov (United States)

    Paul, Brandon T; Waheed, Sajal; Bruce, Ian C; Roberts, Larry E

    2017-11-01

    Noise exposure and aging can damage cochlear synapses required for suprathreshold listening, even when cochlear structures needed for hearing at threshold remain unaffected. To control for effects of aging, behavioral amplitude modulation (AM) detection and subcortical envelope following responses (EFRs) to AM tones in 25 age-restricted (18-19 years) participants with normal thresholds, but different self-reported noise exposure histories were studied. Participants with more noise exposure had smaller EFRs and tended to have poorer AM detection than less-exposed individuals. Simulations of the EFR using a well-established cochlear model were consistent with more synaptopathy in participants reporting greater noise exposure.

  11. Speech Perception in Noise in Normally Hearing Children: Does Binaural Frequency Modulated Fitting Provide More Benefit than Monaural Frequency Modulated Fitting?

    Science.gov (United States)

    Mukari, Siti Zamratol-Mai Sarah; Umat, Cila; Razak, Ummu Athiyah Abdul

    2011-07-01

    The aim of the present study was to compare the benefit of monaural versus binaural ear-level frequency modulated (FM) fitting on speech perception in noise in children with normal hearing. Reception threshold for sentences (RTS) was measured in no-FM, monaural FM, and binaural FM conditions in 22 normally developing children with bilateral normal hearing, aged 8 to 9 years old. Data were gathered using the Pediatric Malay Hearing in Noise Test (P-MyHINT) with speech presented from front and multi-talker babble presented from 90°, 180°, 270° azimuths in a sound treated booth. The results revealed that the use of either monaural or binaural ear level FM receivers provided significantly better mean RTSs than the no-FM condition (Pbinaural FM did not produce a significantly greater benefit in mean RTS than monaural fitting. The benefit of binaural over monaural FM varies across individuals; while binaural fitting provided better RTSs in about 50% of study subjects, there were those in whom binaural fitting resulted in either deterioration or no additional improvement compared to monaural FM fitting. The present study suggests that the use of monaural ear-level FM receivers in children with normal hearing might provide similar benefit as binaural use. Individual subjects' variations of binaural FM benefit over monaural FM suggests that the decision to employ monaural or binaural fitting should be individualized. It should be noted however, that the current study recruits typically developing normal hearing children. Future studies involving normal hearing children with high risk of having difficulty listening in noise is indicated to see if similar findings are obtained.

  12. Residual stress measurements with barkhausen noise in power plant creep failure analysis

    Energy Technology Data Exchange (ETDEWEB)

    Karvonen, I. [CoMoTest Oy, Maentsaelae (Finland)] Suominen, L. [Stresstech Oy, Jyvaeskylae (Finland)

    1998-12-31

    Continuously developing power and process industry needs predictive maintenance inspection methods in order to prevent failures with correctly timed and properly specified measures. Materials` monitoring has traditionally been non-destructive inspection to detect growing cracks or other deficiencies. Recently, after the development of portable stress measurement systems, some advances has been reached. Based on stress anomalies due to creep, fatigue or corrosion, new applications have been found in the use of Barkhausen noise inspection. When the Barkhausen noise findings have been simultaneously confirmed with other stress measuring methods, a wider acceptance of the application of the method can be proposed. (orig.) 7 refs.

  13. Residual stress measurements with barkhausen noise in power plant creep failure analysis

    Energy Technology Data Exchange (ETDEWEB)

    Karvonen, I. [CoMoTest Oy, Maentsaelae (Finland)] Suominen, L. [Stresstech Oy, Jyvaeskylae (Finland)

    1997-12-31

    Continuously developing power and process industry needs predictive maintenance inspection methods in order to prevent failures with correctly timed and properly specified measures. Materials` monitoring has traditionally been non-destructive inspection to detect growing cracks or other deficiencies. Recently, after the development of portable stress measurement systems, some advances has been reached. Based on stress anomalies due to creep, fatigue or corrosion, new applications have been found in the use of Barkhausen noise inspection. When the Barkhausen noise findings have been simultaneously confirmed with other stress measuring methods, a wider acceptance of the application of the method can be proposed. (orig.) 7 refs.

  14. Measurements of noise from rotary coal unloading operations

    International Nuclear Information System (INIS)

    Adams, T.S.; Bilello, M.A.

    1991-01-01

    In the licensing effort for a coal-fired power plant in the northeast United States, noise related to delivery and unloading of coal by train was identified as a significant concern to the nearby community. Specific issues included locomotive noise, the banging noises caused by railcar couplings during the start and stop cycles of the unloading operation, wheel squeal in the curves of the rail loop, and rotary coal unloader noises. This paper reports that a literature review provided adequate information on idling locomotive noise but very little on the other noise sources. Coupling impact noise was well documented for railcars actually being coupled at various speeds but not for coupled trains during start and stop operations. Wheel squeal was well documented by subway trains travelling at normal speeds, but nothing could be found for wheel squeal during very slow train movement as occurs during unloading. Similarly, adequate information was available for unenclosed rotary unloaders but not for enclosed unloaders. Consequently, actual noise measurements of a similar enclosed facility, and the associated train movements, were undertaken to obtain data more directly applicable to the planned facility

  15. Memory performance on the Auditory Inference Span Test is independent of background noise type for young adults with normal hearing at high speech intelligibility.

    Science.gov (United States)

    Rönnberg, Niklas; Rudner, Mary; Lunner, Thomas; Stenfelt, Stefan

    2014-01-01

    Listening in noise is often perceived to be effortful. This is partly because cognitive resources are engaged in separating the target signal from background noise, leaving fewer resources for storage and processing of the content of the message in working memory. The Auditory Inference Span Test (AIST) is designed to assess listening effort by measuring the ability to maintain and process heard information. The aim of this study was to use AIST to investigate the effect of background noise types and signal-to-noise ratio (SNR) on listening effort, as a function of working memory capacity (WMC) and updating ability (UA). The AIST was administered in three types of background noise: steady-state speech-shaped noise, amplitude modulated speech-shaped noise, and unintelligible speech. Three SNRs targeting 90% speech intelligibility or better were used in each of the three noise types, giving nine different conditions. The reading span test assessed WMC, while UA was assessed with the letter memory test. Twenty young adults with normal hearing participated in the study. Results showed that AIST performance was not influenced by noise type at the same intelligibility level, but became worse with worse SNR when background noise was speech-like. Performance on AIST also decreased with increasing memory load level. Correlations between AIST performance and the cognitive measurements suggested that WMC is of more importance for listening when SNRs are worse, while UA is of more importance for listening in easier SNRs. The results indicated that in young adults with normal hearing, the effort involved in listening in noise at high intelligibility levels is independent of the noise type. However, when noise is speech-like and intelligibility decreases, listening effort increases, probably due to extra demands on cognitive resources added by the informational masking created by the speech fragments and vocal sounds in the background noise.

  16. Memory performance on the Auditory Inference Span Test is independent of background noise type for young adults with normal hearing at high speech intelligibility

    Directory of Open Access Journals (Sweden)

    Niklas eRönnberg

    2014-12-01

    Full Text Available Listening in noise is often perceived to be effortful. This is partly because cognitive resources are engaged in separating the target signal from background noise, leaving fewer resources for storage and processing of the content of the message in working memory. The Auditory Inference Span Test (AIST is designed to assess listening effort by measuring the ability to maintain and process heard information. The aim of this study was to use AIST to investigate the effect of background noise types and signal-to-noise ratio (SNR on listening effort, as a function of working memory capacity (WMC and updating ability (UA. The AIST was administered in three types of background noise: steady-state speech-shaped noise, amplitude modulated speech-shaped noise, and unintelligible speech. Three SNRs targeting 90% speech intelligibility or better were used in each of the three noise types, giving nine different conditions. The reading span test assessed WMC, while UA was assessed with the letter memory test. Twenty young adults with normal hearing participated in the study. Results showed that AIST performance was not influenced by noise type at the same intelligibility level, but became worse with worse SNR when background noise was speech-like. Performance on AIST also decreased with increasing MLL. Correlations between AIST performance and the cognitive measurements suggested that WMC is of more importance for listening when SNRs are worse, while UA is of more importance for listening in easier SNRs. The results indicated that in young adults with normal hearing, the effort involved in listening in noise at high intelligibility levels is independent of the noise type. However, when noise is speech-like and intelligibility decreases, listening effort increases, probably due to extra demands on cognitive resources added by the informational masking created by the speech-fragments and vocal sounds in the background noise.

  17. Evaluating new methods for direct measurement of the moderator temperature coefficient in nuclear power plants during normal operation

    International Nuclear Information System (INIS)

    Makai, M.; Kalya, Z.; Nemes, I.; Pos, I.; Por, G.

    2007-01-01

    Moderator temperature coefficient of reactivity is not monitored during fuel cycles in WWER reactors, because it is not very easy or impossible to measure it without disturbing the normal operation. Two new methods were tested in our WWER type nuclear power plant to try methodologies, which enable to measure that important to safety parameter during the fuel cycle. One is based on small perturbances, and only small changes are requested in operation, the other is based on noise methods, which means it is without interference with reactor operation. Both method is new that aspects that they uses the plant computer data(VERONA) based signals calculated by C P ORCA diffusion code (Authors)

  18. BWR noise spectra and application of noise analysis to FBR

    International Nuclear Information System (INIS)

    Nomura, T.

    1975-01-01

    Work related to noise analysis, in Tokyo Shibaura Electric Co. Ltd. (Toshiba) and Nippon Atomic Industry Group Co. Ltd. (NAIG) for the past several years is reviewed. After considering the Japan-United States Seminar on Reactor Noise Analysis in 1968, other subjects discussed were boiling water reactor noise analysis and work in relation to FBR. Parts of these are related to each other. For example, boiling detection and temperature fluctuations are problems pertinent to both fields. As the main problems in zero-power-reactor noise are now basically understood, only a brief description of the experiments involving the advanced two detector method is made. Focus is rather placed on the area of power plant noise. (author)

  19. Noise source analysis of nuclear ship Mutsu plant using multivariate autoregressive model

    International Nuclear Information System (INIS)

    Hayashi, K.; Shimazaki, J.; Shinohara, Y.

    1996-01-01

    The present study is concerned with the noise sources in N.S. Mutsu reactor plant. The noise experiments on the Mutsu plant were performed in order to investigate the plant dynamics and the effect of sea condition and and ship motion on the plant. The reactor noise signals as well as the ship motion signals were analyzed by a multivariable autoregressive (MAR) modeling method to clarify the noise sources in the reactor plant. It was confirmed from the analysis results that most of the plant variables were affected mainly by a horizontal component of the ship motion, that is the sway, through vibrations of the plant structures. Furthermore, the effect of ship motion on the reactor power was evaluated through the analysis of wave components extracted by a geometrical transform method. It was concluded that the amplitude of the reactor power oscillation was about 0.15% in normal sea condition, which was small enough for safe operation of the reactor plant. (authors)

  20. The Impact of Noise Models on Capacity Performance of Distribution Broadband over Power Lines Networks

    Directory of Open Access Journals (Sweden)

    Athanasios G. Lazaropoulos

    2016-01-01

    Full Text Available This paper considers broadband potential of distribution Broadband over Power Lines (BPL networks when different well-known noise models of the BPL literature are applied. The contribution of this paper is twofold. First, the seven most representative and used noise models of the BPL literature are synopsized in this paper. With reference to this set, the broadband performance of a great number of distribution BPL topologies either Overhead (OV or Underground (UN, either Medium-Voltage (MV or Low-Voltage (LV, is investigated in terms of suitable capacity metrics. Second, based on the proposed capacity metrics, a comparative capacity analysis is performed among various well-validated noise models. Through the careful study of its results, it is demonstrated that during capacity computations of distribution BPL networks, the flat Additive White Gaussian Noise (FL noise model can be comfortably assumed as an efficient noise model either in 3–30 MHz or in 3–88 MHz frequency range since its capacity differences with the other well-proven noise models are negligible.

  1. Theory and Measurement of Signal-to-Noise Ratio in Continuous-Wave Noise Radar.

    Science.gov (United States)

    Stec, Bronisław; Susek, Waldemar

    2018-05-06

    Determination of the signal power-to-noise power ratio on the input and output of reception systems is essential to the estimation of their quality and signal reception capability. This issue is especially important in the case when both signal and noise have the same characteristic as Gaussian white noise. This article considers the problem of how a signal-to-noise ratio is changed as a result of signal processing in the correlation receiver of a noise radar in order to determine the ability to detect weak features in the presence of strong clutter-type interference. These studies concern both theoretical analysis and practical measurements of a noise radar with a digital correlation receiver for 9.2 GHz bandwidth. Firstly, signals participating individually in the correlation process are defined and the terms signal and interference are ascribed to them. Further studies show that it is possible to distinguish a signal and a noise on the input and output of a correlation receiver, respectively, when all the considered noises are in the form of white noise. Considering the above, a measurement system is designed in which it is possible to represent the actual conditions of noise radar operation and power measurement of a useful noise signal and interference noise signals—in particular the power of an internal leakage signal between a transmitter and a receiver of the noise radar. The proposed measurement stands and the obtained results show that it is possible to optimize with the use of the equipment and not with the complex processing of a noise signal. The radar parameters depend on its prospective application, such as short- and medium-range radar, ground-penetrating radar, and through-the-wall detection radar.

  2. The normalized interaural correlation : accounting for NoSp thresholds obtained with Gaussian and 'low-noise' masking noise

    NARCIS (Netherlands)

    Bernstein, L.R.; Par, van de S.L.J.D.E.; Trahiotis, C.T.

    1999-01-01

    Recently, [J. Acoust. Soc. Am. 103, 2578–2589 (1998)] and [J. Acoust. Soc. Am. 103, 2573–2577 (1998)] independently reported that greater masking of interaurally phase-reversed (Sp) tones was produced by diotic low-noise noise than by diotic Gaussian noise. Based on quantitative analyses, Eddins and

  3. A study of power fluctuations in a flip fuel reactor using the technique of noise analysis

    Energy Technology Data Exchange (ETDEWEB)

    Randall, J D; Wood, G C; Edwards, M A [Texas A and M University (United States)

    1974-07-01

    The Nuclear Science Center Reactor at Texas A and M University has experienced minor power fluctuations when operating at or near 1 megawatt. A noise analysis system was developed to investigate these fluctuations assuming that void formation, primarily due to nucleate boiling, was the cause. Experiments were carried out to correlate boiling noise with power level, fission product poisoning, and pool temperature. Results show that void formation in the core is the probable cause of the fluctuations with the onset of boiling occurring at 400 Kw. Data was also obtained that indicated the presence of boiling in a standard TRIGA core. (author)

  4. A low power low noise analog front end for portable healthcare system

    Science.gov (United States)

    Yanchao, Wang; Keren, Ke; Wenhui, Qin; Yajie, Qin; Ting, Yi; Zhiliang, Hong

    2015-10-01

    The presented analog front end (AFE) used to process human bio-signals consists of chopping instrument amplifier (IA), chopping spikes filter and programmable gain and bandwidth amplifier. The capacitor-coupling input of AFE can reject the DC electrode offset. The power consumption of current-feedback based IA is reduced by adopting capacitor divider in the input and feedback network. Besides, IA's input thermal noise is decreased by utilizing complementary CMOS input pairs which can offer higher transconductance. Fabricated in Global Foundry 0.35 μm CMOS technology, the chip consumes 3.96 μA from 3.3 V supply. The measured input noise is 0.85 μVrms (0.5-100 Hz) and the achieved noise efficient factor is 6.48. Project supported by the Science and Technology Commission of Shanghai Municipality (No. 13511501100), the State Key Laboratory Project of China (No. 11MS002), and the State Key Laboratory of ASIC & System, Fudan University.

  5. Microscopic prediction of speech intelligibility in spatially distributed speech-shaped noise for normal-hearing listeners.

    Science.gov (United States)

    Geravanchizadeh, Masoud; Fallah, Ali

    2015-12-01

    A binaural and psychoacoustically motivated intelligibility model, based on a well-known monaural microscopic model is proposed. This model simulates a phoneme recognition task in the presence of spatially distributed speech-shaped noise in anechoic scenarios. In the proposed model, binaural advantage effects are considered by generating a feature vector for a dynamic-time-warping speech recognizer. This vector consists of three subvectors incorporating two monaural subvectors to model the better-ear hearing, and a binaural subvector to simulate the binaural unmasking effect. The binaural unit of the model is based on equalization-cancellation theory. This model operates blindly, which means separate recordings of speech and noise are not required for the predictions. Speech intelligibility tests were conducted with 12 normal hearing listeners by collecting speech reception thresholds (SRTs) in the presence of single and multiple sources of speech-shaped noise. The comparison of the model predictions with the measured binaural SRTs, and with the predictions of a macroscopic binaural model called extended equalization-cancellation, shows that this approach predicts the intelligibility in anechoic scenarios with good precision. The square of the correlation coefficient (r(2)) and the mean-absolute error between the model predictions and the measurements are 0.98 and 0.62 dB, respectively.

  6. A low-power and low-phase-noise LC digitally controlled oscillator featuring a novel capacitor bank

    Energy Technology Data Exchange (ETDEWEB)

    Tian Huanhuan; Li Zhiqiang; Chen Pufeng; Wu Rufei; Zhang Haiying, E-mail: thuan8@126.com [Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029 (China)

    2010-12-15

    A monolithic low-power and low-phase-noise digitally controlled oscillator (DCO) based on a symmetric spiral inductor with center-tap and novel capacitor bank was implemented in a 0.18 {mu}m CMOS process with six metal layers. A third new way to change capacitance is proposed and implemented in this work. Results show that the phase noise at 1 MHz offset frequency is below -122.5 dBc/Hz while drawing a current of only 4.8 mA from a 1.8 V supply. Also, the DCO can work at low supply voltage conditions with a 1.6 V power supply and 4.1 mA supply current for the DCO's core circuit, achieving a phase-noise of -21.5 dBc/Hz at offset of 1 MHz. It demonstrates that the supply pushing of DCO is less than 10 MHz/V. (semiconductor integrated circuits)

  7. Transistor-based filter for inhibiting load noise from entering a power supply

    Science.gov (United States)

    Taubman, Matthew S

    2013-07-02

    A transistor-based filter for inhibiting load noise from entering a power supply is disclosed. The filter includes a first transistor having an emitter coupled to a power supply, a collector coupled to a load, and a base. The filter also includes a first capacitor coupled between the base of the first transistor and a ground terminal. The filter further includes an impedance coupled between the base and a node between the collector and the load, or a second transistor and second capacitor. The impedance can be a resistor or an inductor.

  8. Comparison of power performance and noise between Aeolus 2 and Naesudden 2

    Energy Technology Data Exchange (ETDEWEB)

    Albers, C.; Hinsch, J.; Gabriel, J.; Klug, H. [Deutsches Windenergie-Institut gGmbH (DEWI), Wilhelmshaven (Germany); Ronsten, G. [Aeronautical Research Inst. of Sweden, Bromma (Sweden); Simonssen, B. [KM Akustikbyraan, Solna (Sweden)

    1996-12-01

    The German Wind Energy Institute DEWI and the Aeronautical Research Institute of Sweden FFA perform comparing measurements at the 3 MW sister turbines Aeolus II and Naesudden II in the framework of WEGA II (CAN-Project). Results exist concerning the comparison of power performance and noise emission. Load measurements have been carried out but no comparing results are available yet. In the case of Aeolus II interesting effects of different meteorological conditions on the power performance have been found. The project will continue till the end of 1996. 6 refs, 12 figs, 1 tab

  9. Investigations on the relationship between power spectrum and signal-to-noise ratio of frequency-swept pulses

    International Nuclear Information System (INIS)

    Zhang Zhuhong; Fan Diayuan

    1993-01-01

    The criterion for obtaining compressed chirp pulses with high signal-to-noise ratio is the shape of the power spectrum, a chirp pulse of Gaussian shaped power spectrum without modulation is needed in CPA system to get the clean compressed pulses. 4 refs., 2 figs

  10. Overview of en route noise prediction using a integrated noise model

    Science.gov (United States)

    2010-04-20

    En route aircraft noise is often ignored in aircraft noise modeling because large amounts of noise attenuation due to long propagation distances between the aircraft and the receivers on the ground, reduced power in cruise flight compared to takeoff ...

  11. Active Noise Control for Dishwasher noise

    Science.gov (United States)

    Lee, Nokhaeng; Park, Youngjin

    2016-09-01

    The dishwasher is a useful home appliance and continually used for automatically washing dishes. It's commonly placed in the kitchen with built-in style for practicality and better use of space. In this environment, people are easily exposed to dishwasher noise, so it is an important issue for the consumers, especially for the people living in open and narrow space. Recently, the sound power levels of the noise are about 40 - 50 dBA. It could be achieved by removal of noise sources and passive means of insulating acoustical path. For more reduction, such a quiet mode with the lower speed of cycle has been introduced, but this deteriorates the washing capacity. Under this background, we propose active noise control for dishwasher noise. It is observed that the noise is propagating mainly from the lower part of the front side. Control speakers are placed in the part for the collocation. Observation part of estimating sound field distribution and control part of generating the anti-noise are designed for active noise control. Simulation result shows proposed active noise control scheme could have a potential application for dishwasher noise reduction.

  12. Low-noise pulse-mode current power supply for magnetic field measurements of magnets for accelerators

    International Nuclear Information System (INIS)

    Omel'yanenko, M.M.; Borisov, V.V.; Donyagin, A.M.; Kostromin, S.A.; Makarov, A.A.; Khodzhibagiyan, G.G.; Shemchuk, A.V.

    2017-01-01

    The described pulse-mode current power supply has been designed and fabricated for the magnetic field measurement system of superconducting magnets for accelerators. The power supply is based on a current regulator with pass transistor bank in linear mode. The output current pulses (0-100 A) are produced by using the energy of preliminary charged capacitor bank (5-40 V), which is charged additionally after each pulse. There is no AC-line frequency and harmonics ripple in the output current, the relative noise level is less than -100 dB (or 10 -5 ) of RMS value (it is defined as the ratio of output RMS noise current to the maximal output current 100 A within the operating bandwidth, expressed in dB).

  13. Noise distribution of a peak track and hold circuit

    International Nuclear Information System (INIS)

    Seller, Paul; Hardie, Alec L.; Morrissey, Quentin

    2012-01-01

    Noise in linear electronic circuits is well characterised in terms of power spectral density in the frequency domain and the Normal probability density function in the time domain. For instance a charge preamplifier followed by a simple time independent pulse shaping circuit produces an output with a predictable, easily calculated Normal density function. By the Ergodic Principle this is true if the signal is sampled randomly in time or the experiment is run many times and measured at a fixed time after the circuit is released from reset. Apart from well defined cases, the time of the sample after release of reset does not affect the density function. If this signal is then passed through a peak track-and-hold circuit the situation is very different. The probability density function of the sampled signal is no longer Normal and the function changes with the time of the sample after release of reset. This density function can be classified by the Gumbel probability density function which characterises the Extreme Value Distribution of a defined number of Normally distributed values. The number of peaks in the signal is an important factor in the analysis. This issue is analysed theoretically and compared with a time domain noise simulation programme. This is then related to a real electronic circuit used for low-noise X-ray measurements and shows how the low-energy resolution of this system is significantly degraded when using a peak track-and-hold.

  14. Listening effort and perceived clarity for normal-hearing children with the use of digital noise reduction.

    Science.gov (United States)

    Gustafson, Samantha; McCreery, Ryan; Hoover, Brenda; Kopun, Judy G; Stelmachowicz, Pat

    2014-01-01

    The goal of this study was to evaluate how digital noise reduction (DNR) impacts listening effort and judgment of sound clarity in children with normal hearing. It was hypothesized that when two DNR algorithms differing in signal-to-noise ratio (SNR) output are compared, the algorithm that provides the greatest improvement in overall output SNR will reduce listening effort and receive a better clarity rating from child listeners. A secondary goal was to evaluate the relation between the inversion method measurements and listening effort with DNR processing. Twenty-four children with normal hearing (ages 7 to 12 years) participated in a speech recognition task in which consonant-vowel-consonant nonwords were presented in broadband background noise. Test stimuli were recorded through two hearing aids with DNR off and DNR on at 0 dB and +5 dB input SNR. Stimuli were presented to listeners and verbal response time (VRT) and phoneme recognition scores were measured. The underlying assumption was that an increase in VRT reflects an increase in listening effort. Children rated the sound clarity for each condition. The two commercially available HAs were chosen based on: (1) an inversion technique, which was used to quantify the magnitude of change in SNR with the activation of DNR, and (2) a measure of magnitude-squared coherence, which was used to ensure that DNR in both devices preserved the spectrum. One device provided a greater improvement in overall output SNR than the other. Both DNR algorithms resulted in minimal spectral distortion as measured using coherence. For both devices, VRT decreased for the DNR-on condition, suggesting that listening effort decreased with DNR in both devices. Clarity ratings were also better in the DNR-on condition for both devices. The device showing the greatest improvement in output SNR with DNR engaged improved phoneme recognition scores. The magnitude of this improved phoneme recognition was not accurately predicted with

  15. Advances in automated noise data acquisition and noise source modeling for power reactors

    International Nuclear Information System (INIS)

    Clapp, N.E. Jr.; Kryter, R.C.; Sweeney, F.J.; Renier, J.A.

    1981-01-01

    A newly expanded program, directed toward achieving a better appreciation of both the strengths and limitations of on-line, noise-based, long-term surveillance programs for nuclear reactors, is described. Initial results in the complementary experimental (acquisition and automated screening of noise signatures) and theoretical (stochastic modeling of likely noise sources) areas of investigation are given

  16. Coupling of relative intensity noise and pathlength noise to the length measurement in the optical metrology system of LISA Pathfinder

    Science.gov (United States)

    Wittchen, Andreas; the LPF Collaboration

    2017-05-01

    LISA Pathfinder is a technology demonstration mission for the space-based gravitational wave observatory, LISA. It demonstrated that the performance requirements for the interferometric measurement of two test masses in free fall can be met. An important part of the data analysis is to identify the limiting noise sources. [1] This measurement is performed with heterodyne interferometry. The performance of this optical metrology system (OMS) at high frequencies is limited by sensing noise. One such noise source is Relative Intensity Noise (RIN). RIN is a property of the laser, and the photodiode current generated by the interferometer signal contains frequency dependant RIN. From this electric signal the phasemeter calculates the phase change and laser power, and the coupling of RIN into the measurement signal depends on the noise frequency. RIN at DC, at the heterodyne frequency and at two times the heterodyne frequency couples into the phase. Another important noise at high frequencies is path length noise. To reduce the impact this noise is suppressed with a control loop. Path length noise not suppressed will couple directly into the length measurement. The subtraction techniques of both noise sources depend on the phase difference between the reference signal and the measurement signal, and thus on the test mass position. During normal operations we position the test mass at the interferometric zero, which is optimal for noise subtraction purposes. This paper will show results from an in-flight experiment where the test mass position was changed to make the position dependant noise visible.

  17. Design of a Low-Power VLSI Macrocell for Nonlinear Adaptive Video Noise Reduction

    Directory of Open Access Journals (Sweden)

    Sergio Saponara

    2004-09-01

    Full Text Available A VLSI macrocell for edge-preserving video noise reduction is proposed in the paper. It is based on a nonlinear rational filter enhanced by a noise estimator for blind and dynamic adaptation of the filtering parameters to the input signal statistics. The VLSI filter features a modular architecture allowing the extension of both mask size and filtering directions. Both spatial and spatiotemporal algorithms are supported. Simulation results with monochrome test videos prove its efficiency for many noise distributions with PSNR improvements up to 3.8 dB with respect to a nonadaptive solution. The VLSI macrocell has been realized in a 0.18 μm CMOS technology using a standard-cells library; it allows for real-time processing of main video formats, up to 30 fps (frames per second 4CIF, with a power consumption in the order of few mW.

  18. Frequency spectrum of Calder Hall reactor noise

    International Nuclear Information System (INIS)

    Cummins, J.D.

    1960-01-01

    The frequency spectrum of the noise power of Calder Hall reactor No. 1 has been obtained by analysing a tape recording of the backed off power. The root mean square noise power due to all frequencies above 0.001 cycles per second was found to be 0.13%. The noise power for this reactor, is due mainly to modulations of the power level by reactivity variations caused in turn by gas temperature changes. These gas temperature changes are caused by a Cyclic variation in the feedwater regulator to the heat exchanger. The apparatus and method used to determine the noise power are described in this memorandum. It is shown that for frequencies in the range 0.001 to 0.030 cycles per second the noise spectrum falls at 60 decibels per decade of frequency. (author)

  19. Status report on the application of process noise technique in nuclear power plants

    International Nuclear Information System (INIS)

    Espefaelt, R.; Aakerhielm, F.

    1979-09-01

    The report gives a survey of applications of noise technique reported for nuclear power plants. The scope has been limited to areas of interest for BWR and PWR plants of the types found in Sweden and with an emphasis on cases where the practical applicability has been clearly demonstrated. (author)

  20. Analysis of a simplified normalized covariance measure based on binary weighting functions for predicting the intelligibility of noise-suppressed speech.

    Science.gov (United States)

    Chen, Fei; Loizou, Philipos C

    2010-12-01

    The normalized covariance measure (NCM) has been shown previously to predict reliably the intelligibility of noise-suppressed speech containing non-linear distortions. This study analyzes a simplified NCM measure that requires only a small number of bands (not necessarily contiguous) and uses simple binary (1 or 0) weighting functions. The rationale behind the use of a small number of bands is to account for the fact that the spectral information contained in contiguous or nearby bands is correlated and redundant. The modified NCM measure was evaluated with speech intelligibility scores obtained by normal-hearing listeners in 72 noisy conditions involving noise-suppressed speech corrupted by four different types of maskers (car, babble, train, and street interferences). High correlation (r = 0.8) was obtained with the modified NCM measure even when only one band was used. Further analysis revealed a masker-specific pattern of correlations when only one band was used, and bands with low correlation signified the corresponding envelopes that have been severely distorted by the noise-suppression algorithm and/or the masker. Correlation improved to r = 0.84 when only two disjoint bands (centered at 325 and 1874 Hz) were used. Even further improvements in correlation (r = 0.85) were obtained when three or four lower-frequency (<700 Hz) bands were selected.

  1. Investigation of a glottal related harmonics-to-noise ratio and spectral tilt as indicators of glottal noise in synthesized and human voice signals.

    LENUS (Irish Health Repository)

    Murphy, Peter J

    2008-03-01

    The harmonics-to-noise ratio (HNR) of the voiced speech signal has implicitly been used to infer information regarding the turbulent noise level at the glottis. However, two problems exist for inferring glottal noise attributes from the HNR of the speech wave form: (i) the measure is fundamental frequency (f0) dependent for equal levels of glottal noise, and (ii) any deviation from signal periodicity affects the ratio, not just turbulent noise. An alternative harmonics-to-noise ratio formulation [glottal related HNR (GHNR\\')] is proposed to overcome the former problem. In GHNR\\' a mean over the spectral range of interest of the HNRs at specific harmonic\\/between-harmonic frequencies (expressed in linear scale) is calculated. For the latter issue [(ii)] two spectral tilt measures are shown, using synthesis data, to be sensitive to glottal noise while at the same time being comparatively insensitive to other glottal aperiodicities. The theoretical development predicts that the spectral tilt measures reduce as noise levels increase. A conventional HNR estimator, GHNR\\' and two spectral tilt measures are applied to a data set of 13 pathological and 12 normal voice samples. One of the tilt measures and GHNR\\' are shown to provide statistically significant differentiating power over a conventional HNR estimator.

  2. Current Mode Neutron Noise Measurements in the Zero Power Reactor CROCUS

    Science.gov (United States)

    Pakari, O.; Lamirand, V.; Perret, G.; Braun, L.; Frajtag, P.; Pautz, A.

    2018-01-01

    The present article is an overview of developments and results regarding neutron noise measurements in current mode at the CROCUS zero power facility. Neutron noise measurements offer a non-invasive method to determine kinetic reactor parameters such as the prompt decay constant at criticality α = βeff / λ, the effective delayed neutron fraction βeff, and the mean generation time λ for code validation efforts. At higher detection rates, i.e. above 2×104 cps in the used configuration at 0.1 W, the previously employed pulse charge amplification electronics with BF3 detectors yielded erroneous results due to dead time effects. Future experimental needs call for higher sensitivity in detectors, higher detection rates or higher reactor powers, and thus a generally more versatile measurement system. We, therefore, explored detectors operated with current mode acquisition electronics to accommodate the need. We approached the matter in two ways: 1) By using the two compensated 10B-coated ionization chambers available in CROCUS as operational monitors. The compensated current signal of these chambers was extracted from coremonitoring output channels. 2) By developing a new current mode amplification station to be used with other available detectors in core. Characteristics and first noise measurements of the new current system are presented. We implemented post-processing of the current signals from 1)and 2) with the APSD/CPSD method to determine α. At two critical states (0.5 and 1.5 W), using the 10B ionization chambers and their CPSD estimate, the prompt decay constant was measured after 1.5 hours to be α=(156.9 ± 4.3) s-1 (1σ). This result is within 1σ of statistical uncertainties of previous experiments and MCNPv5-1.6 predictions using the ENDF/B-7.1 library. The newsystem connected to a CFUL01 fission chamber using the APSDestimate at 100 mW after 33 min yielded α = (160.8 ± 6.3) s-1, also within 1σ agreement. The improvements to previous neutron noise

  3. Frequency tracking and variable bandwidth for line noise filtering without a reference.

    Science.gov (United States)

    Kelly, John W; Collinger, Jennifer L; Degenhart, Alan D; Siewiorek, Daniel P; Smailagic, Asim; Wang, Wei

    2011-01-01

    This paper presents a method for filtering line noise using an adaptive noise canceling (ANC) technique. This method effectively eliminates the sinusoidal contamination while achieving a narrower bandwidth than typical notch filters and without relying on the availability of a noise reference signal as ANC methods normally do. A sinusoidal reference is instead digitally generated and the filter efficiently tracks the power line frequency, which drifts around a known value. The filter's learning rate is also automatically adjusted to achieve faster and more accurate convergence and to control the filter's bandwidth. In this paper the focus of the discussion and the data will be electrocorticographic (ECoG) neural signals, but the presented technique is applicable to other recordings.

  4. Power reactor noise measurements in Hungary

    International Nuclear Information System (INIS)

    Pallagi, D.; Horanyi, S.; Hargitai, T.

    1975-01-01

    An outline is given of the history of reactor noise research in Hungary. A brief description is given of studies in the WWR-SM reactor, a modified version of the original WWR-S thermal reactor, for the detection of in-core simulated boiling by analysis of the noise of out-of-core ionization chambers. Coolant velocity measurements by transit time analysis of temperature fluctuations are described. (U.K.)

  5. A Fractional Lower Order Statistics-Based MIMO Detection Method in Impulse Noise for Power Line Channel

    Directory of Open Access Journals (Sweden)

    CHEN, Z.

    2014-11-01

    Full Text Available Impulse noise in power line communication (PLC channel seriously degrades the performance of Multiple-Input Multiple-Output (MIMO system. To remedy this problem, a MIMO detection method based on fractional lower order statistics (FLOS for PLC channel with impulse noise is proposed in this paper. The alpha stable distribution is used to model impulse noise, and FLOS is applied to construct the criteria of MIMO detection. Then the optimal detection solution is obtained by recursive least squares algorithm. Finally, the transmitted signals in PLC MIMO system are restored with the obtained detection matrix. The proposed method does not require channel estimation and has low computational complexity. The simulation results show that the proposed method has a better PLC MIMO detection performance than the existing ones under impulsive noise environment.

  6. Predicting word-recognition performance in noise by young listeners with normal hearing using acoustic, phonetic, and lexical variables.

    Science.gov (United States)

    McArdle, Rachel; Wilson, Richard H

    2008-06-01

    To analyze the 50% correct recognition data that were from the Wilson et al (this issue) study and that were obtained from 24 listeners with normal hearing; also to examine whether acoustic, phonetic, or lexical variables can predict recognition performance for monosyllabic words presented in speech-spectrum noise. The specific variables are as follows: (a) acoustic variables (i.e., effective root-mean-square sound pressure level, duration), (b) phonetic variables (i.e., consonant features such as manner, place, and voicing for initial and final phonemes; vowel phonemes), and (c) lexical variables (i.e., word frequency, word familiarity, neighborhood density, neighborhood frequency). The descriptive, correlational study will examine the influence of acoustic, phonetic, and lexical variables on speech recognition in noise performance. Regression analysis demonstrated that 45% of the variance in the 50% point was accounted for by acoustic and phonetic variables whereas only 3% of the variance was accounted for by lexical variables. These findings suggest that monosyllabic word-recognition-in-noise is more dependent on bottom-up processing than on top-down processing. The results suggest that when speech-in-noise testing is used in a pre- and post-hearing-aid-fitting format, the use of monosyllabic words may be sensitive to changes in audibility resulting from amplification.

  7. Super-delta: a new differential gene expression analysis procedure with robust data normalization.

    Science.gov (United States)

    Liu, Yuhang; Zhang, Jinfeng; Qiu, Xing

    2017-12-21

    Normalization is an important data preparation step in gene expression analyses, designed to remove various systematic noise. Sample variance is greatly reduced after normalization, hence the power of subsequent statistical analyses is likely to increase. On the other hand, variance reduction is made possible by borrowing information across all genes, including differentially expressed genes (DEGs) and outliers, which will inevitably introduce some bias. This bias typically inflates type I error; and can reduce statistical power in certain situations. In this study we propose a new differential expression analysis pipeline, dubbed as super-delta, that consists of a multivariate extension of the global normalization and a modified t-test. A robust procedure is designed to minimize the bias introduced by DEGs in the normalization step. The modified t-test is derived based on asymptotic theory for hypothesis testing that suitably pairs with the proposed robust normalization. We first compared super-delta with four commonly used normalization methods: global, median-IQR, quantile, and cyclic loess normalization in simulation studies. Super-delta was shown to have better statistical power with tighter control of type I error rate than its competitors. In many cases, the performance of super-delta is close to that of an oracle test in which datasets without technical noise were used. We then applied all methods to a collection of gene expression datasets on breast cancer patients who received neoadjuvant chemotherapy. While there is a substantial overlap of the DEGs identified by all of them, super-delta were able to identify comparatively more DEGs than its competitors. Downstream gene set enrichment analysis confirmed that all these methods selected largely consistent pathways. Detailed investigations on the relatively small differences showed that pathways identified by super-delta have better connections to breast cancer than other methods. As a new pipeline, super

  8. Utilization of noise analysis technique for mechanical vibrations estimation in the ATUCHA1 and Embalse Argentine NPP

    International Nuclear Information System (INIS)

    Lescano, V.H.; Wentzeis, L.M.; Guevara, M.; Moreno, C.; Pineyro, J.

    1996-01-01

    In Argentine, comprehensive noise measurements have been performed with the reactor instrumentation of the PHWR power plant Atucha I and Embalse. The Embalse reactor is a CANDU-600 (600 Mwe) type pressurized heavy water reactor. It's a heavy water moderator and heavy water cooled natural uranium fueled pressure tube system. Signal of vanadium and platinum type in core-self power neutron detectors of ex-core ion chambers and of a moderator pressure sensor have been recorded and analysed. The vibration of reactor internals as vertical and horizontal in-core neutron flux detectors units and the coolant channels systems, consisting of calandria and pressure tubes with fuel bundles, have been identified and monitored during normal reactor operation. Atucha I, is a PHWR reactor natural uranium fueled, and heavy water moderated and cooled. Neutron noise techniques using of ex-core ionization chambers and in-core Vanadium SPND's were implemented, among others, in order to produce early detection of anomalous vibrations in the reactor internals. Noise analysis was successfully performed to identify normal and peculiar vibrations in particular reactor internals. (author)

  9. Acceptable noise level

    DEFF Research Database (Denmark)

    Olsen, Steen Østergaard; Nielsen, Lars Holme; Lantz, Johannes

    2012-01-01

    The acceptable noise level (ANL) is used to quantify the amount of background noise that subjects can accept while listening to speech, and is suggested for prediction of individual hearing-aid use. The aim of this study was to assess the repeatability of the ANL measured in normal-hearing subjects...... using running Danish and non-semantic speech materials as stimuli and modulated speech-spectrum and multi-talker babble noises as competing stimuli....

  10. Acceptable noise level

    DEFF Research Database (Denmark)

    Olsen, Steen Østergaard; Nielsen, Lars Holme; Lantz, Johannes

    2012-01-01

    The acceptable noise level (ANL) is used to quantify the amount of background noise that subjects can accept while listening to speech, and is suggested for prediction of individual hearing-aid use. The aim of this study was to assess the repeatability of the ANL measured in normal-hearing subjec...... using running Danish and non-semantic speech materials as stimuli and modulated speech-spectrum and multi-talker babble noises as competing stimuli....

  11. S-band low noise amplifier and 40 kW high power amplifier subsystems of Japanese Deep Space Earth Station

    Science.gov (United States)

    Honma, K.; Handa, K.; Akinaga, W.; Doi, M.; Matsuzaki, O.

    This paper describes the design and the performance of the S-band low noise amplifier and the S-band high power amplifier that have been developed for the Usuda Deep Space Station of the Institute of Space and Astronautical Science (ISAS), Japan. The S-band low noise amplifier consists of a helium gas-cooled parametric amplifier followed by three-stage FET amplifiers and has a noise temperature of 8 K. The high power amplifier is composed of two 28 kW klystrons, capable of transmitting 40 kW continuously when two klystrons are combined. Both subsystems are operating quite satisfactorily in the tracking of Sakigake and Suisei, the Japanese interplanetary probes for Halley's comet exploration, launched by ISAS in 1985.

  12. An exact power series formula of the outage probability with noise and interference over generalized fading channels

    KAUST Repository

    Rached, Nadhir B.

    2016-12-24

    In this paper, we develop a generalized momentbased approach for the evaluation of the outage probability (OP) in the presence of co-channel interference and additive white Gaussian noise. The proposed method allows the evaluation of the OP of the signal-to-interference-plus-noise ratio by a power series expansion in the threshold value. Its main advantage is that it does not require a particular distribution for the interference channels. The only necessary ingredients are a power series expansion for the cumulative distribution function of the desired user power and the cross-moments of the interferers\\' powers. These requirements are easily met in many practical fading models, for which the OP might not be obtained in closed-form expression. For a sake of illustration, we consider the application of our method to the Rician fading environment. Under this setting, we carry out a convergence study of the proposed power series and corroborate the validity of our method for different values of fading parameters and various numbers of co-channel interferers.

  13. Correspondence normalized ghost imaging on compressive sensing

    International Nuclear Information System (INIS)

    Zhao Sheng-Mei; Zhuang Peng

    2014-01-01

    Ghost imaging (GI) offers great potential with respect to conventional imaging techniques. It is an open problem in GI systems that a long acquisition time is be required for reconstructing images with good visibility and signal-to-noise ratios (SNRs). In this paper, we propose a new scheme to get good performance with a shorter construction time. We call it correspondence normalized ghost imaging based on compressive sensing (CCNGI). In the scheme, we enhance the signal-to-noise performance by normalizing the reference beam intensity to eliminate the noise caused by laser power fluctuations, and reduce the reconstruction time by using both compressive sensing (CS) and time-correspondence imaging (CI) techniques. It is shown that the qualities of the images have been improved and the reconstruction time has been reduced using CCNGI scheme. For the two-grayscale ''double-slit'' image, the mean square error (MSE) by GI and the normalized GI (NGI) schemes with the measurement number of 5000 are 0.237 and 0.164, respectively, and that is 0.021 by CCNGI scheme with 2500 measurements. For the eight-grayscale ''lena'' object, the peak signal-to-noise rates (PSNRs) are 10.506 and 13.098, respectively using GI and NGI schemes while the value turns to 16.198 using CCNGI scheme. The results also show that a high-fidelity GI reconstruction has been achieved using only 44% of the number of measurements corresponding to the Nyquist limit for the two-grayscale “double-slit'' object. The qualities of the reconstructed images using CCNGI are almost the same as those from GI via sparsity constraints (GISC) with a shorter reconstruction time. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  14. Reactor noise analysis based on nonlinear dynamic theory - application to power oscillation

    International Nuclear Information System (INIS)

    Suzudo, Tomoaki

    1993-01-01

    The information dimension is one of the simplest quantities that can be used to determine the asymptotic motion of the time evolution of a nonlinear system. The application of this quantity to reactor noise analysis is proposed, and the possibility of its application to power oscillation analysis is examined. The information dimension of this regime is equal to the number of independent oscillating modes, which is an intuitive physical variable. Time series data from computer experiments and experiments with an actual physical system are used for the analysis. The results indicate that the method is useful for a detailed analysis of reactor power oscillation

  15. New applications of neutron noise theory in power reactor physics

    Energy Technology Data Exchange (ETDEWEB)

    Arzhanov, Vasiliy

    2000-04-01

    The present thesis deals with neutron noise theory as applied to three comparatively different topics (or problems) in power reactor physics. Namely they are: theoretical investigation of the possibility to use a newly proposed current-flux (C/F) detector in Pressurized Water Reactors (PWRs) for the localisation of anomalies; both definition and studies on the point kinetic and adiabatic approximations for the relatively recently proposed Accelerator Driven Systems (ADS); development of the general theory of linear reactor kinetics and neutron noise in systems with varying size. One important practical problem is to detect and localise a vibrating control rod pin. The significance comes from the operational experience which indicates that individual pins can execute excessive mechanical vibrations that may lead to damage. Such mechanical vibrations induce neutron noise that can be detected. While the detection is relatively easy, the localisation of a vibrating control rod is much more complicated because only one measuring position is available and one needs to have at least three measured quantities. Therefore it has currently been proposed that the fluctuations of the neutron current vector, called the current noise, can be used in addition to the scalar noise in reactor diagnostic problems. The thesis investigates the possibility of the localization of a vibrating control rod pin in a PWR control assembly by using the scalar neutron noise and the 2-D radial current noise as measured at one central point in the control assembly. An explicit localisation technique is elaborated in which the searched position is determined as the absolute minimum of a minimisation function. The technique is investigated in numerical simulations. The results of the simulation tests show the potential applicability of the method. By design accelerator-driven systems would operate in a subcritical mode with a strong external source. This calls for a revision of many concepts and

  16. New applications of neutron noise theory in power reactor physics

    International Nuclear Information System (INIS)

    Arzhanov, Vasiliy

    2000-04-01

    The present thesis deals with neutron noise theory as applied to three comparatively different topics (or problems) in power reactor physics. Namely they are: theoretical investigation of the possibility to use a newly proposed current-flux (C/F) detector in Pressurized Water Reactors (PWRs) for the localisation of anomalies; both definition and studies on the point kinetic and adiabatic approximations for the relatively recently proposed Accelerator Driven Systems (ADS); development of the general theory of linear reactor kinetics and neutron noise in systems with varying size. One important practical problem is to detect and localise a vibrating control rod pin. The significance comes from the operational experience which indicates that individual pins can execute excessive mechanical vibrations that may lead to damage. Such mechanical vibrations induce neutron noise that can be detected. While the detection is relatively easy, the localisation of a vibrating control rod is much more complicated because only one measuring position is available and one needs to have at least three measured quantities. Therefore it has currently been proposed that the fluctuations of the neutron current vector, called the current noise, can be used in addition to the scalar noise in reactor diagnostic problems. The thesis investigates the possibility of the localization of a vibrating control rod pin in a PWR control assembly by using the scalar neutron noise and the 2-D radial current noise as measured at one central point in the control assembly. An explicit localisation technique is elaborated in which the searched position is determined as the absolute minimum of a minimisation function. The technique is investigated in numerical simulations. The results of the simulation tests show the potential applicability of the method. By design accelerator-driven systems would operate in a subcritical mode with a strong external source. This calls for a revision of many concepts and

  17. Acceptance of background noise, working memory capacity, and auditory evoked potentials in subjects with normal hearing.

    Science.gov (United States)

    Brännström, K Jonas; Zunic, Edita; Borovac, Aida; Ibertsson, Tina

    2012-01-01

    The acceptable noise level (ANL) test is a method for quantifying the amount of background noise that subjects accept when listening to speech. Large variations in ANL have been seen between normal-hearing subjects and between studies of normal-hearing subjects, but few explanatory variables have been identified. To explore a possible relationship between a Swedish version of the ANL test, working memory capacity (WMC), and auditory evoked potentials (AEPs). ANL, WMC, and AEP were tested in a counterbalanced order across subjects. Twenty-one normal-hearing subjects participated in the study (14 females and 7 males; aged 20-39 yr with an average of 25.7 yr). Reported data consists of age, pure-tone average (PTA), most comfortable level (MCL), background noise level (BNL), ANL (i.e., MCL - BNL), AEP latencies, AEP amplitudes, and WMC. Spearman's rank correlation coefficient was calculated between the collected variables to investigate associations. A principal component analysis (PCA) with Varimax rotation was conducted on the collected variables to explore underlying factors and estimate interactions between the tested variables. Subjects were also pooled into two groups depending on their results on the WMC test, one group with a score lower than the average and one with a score higher than the average. Comparisons between these two groups were made using the Mann-Whitney U-test with Bonferroni correction for multiple comparisons. A negative association was found between ANL and WMC but not between AEP and ANL or WMC. Furthermore, ANL is derived from MCL and BNL, and a significant positive association was found between BNL and WMC. However, no significant associations were seen between AEP latencies and amplitudes and the demographic variables, MCL, and BNL. The PCA identified two underlying factors: One that contained MCL, BNL, ANL, and WMC and another that contained latency for wave Na and amplitudes for waves V and Na-Pa. Using the variables in the first factor

  18. Design study of a low-power, low-noise front-end for multianode silicon drift detectors

    International Nuclear Information System (INIS)

    Caponetto, L.; Presti, D. Lo; Randazzo, N.; Russo, G.V.; Leonora, E.; Lo Nigro, L.; Petta, C.; Reito, S.; Sipala, V.

    2005-01-01

    The read-out for Silicon Drift Detectors in the form of a VLSI chip is presented, with a view to applications in High Energy Physics and space experiments. It is characterised by extremely low power dissipation, small noise and size

  19. Gaps-in-Noise test: gap detection thresholds in 9-year-old normal-hearing children.

    Science.gov (United States)

    Marculino, Carolina Finetti; Rabelo, Camila Maia; Schochat, Eliane

    2011-12-01

    To establish the standard criteria for the Gaps-in-Noise (GIN) test in 9-year-old normal-hearing children; to obtain the mean gap detection thresholds; and to verify the influence of the variables gender and ear on the gap detection thresholds. Forty normal-hearing individuals, 20 male and 20 female, with ages ranging from 9 years to 9 years and 11 months, were evaluated. The procedures performed were: anamnesis, audiological evaluation, acoustic immittance measures (tympanometry and acoustic reflex), Dichotic Digits Test, and GIN test. The results obtained were statistically analyzed. The results revealed similar performance of right and left ears in the population studied. There was also no difference regarding the variable gender. In the subjects evaluated, the mean gap detection thresholds were 4.4 ms for the right ear, and 4.2 ms for the left ear. The values obtained for right and left ear, as well as their standard deviations, can be used as standard criteria for 9-year-old children, regardless of ear or gender.

  20. Progress in Noise Thermometry at 505 K and 693 K Using Quantized Voltage Noise Ratio Spectra

    Science.gov (United States)

    Tew, W. L.; Benz, S. P.; Dresselhaus, P. D.; Coakley, K. J.; Rogalla, H.; White, D. R.; Labenski, J. R.

    2010-09-01

    Technical advances and new results in noise thermometry at temperatures near the tin freezing point and the zinc freezing point using a quantized voltage noise source (QVNS) are reported. The temperatures are derived by comparing the power spectral density of QVNS synthesized noise with that of Johnson noise from a known resistance at both 505 K and 693 K. Reference noise is digitally synthesized so that the average power spectra of the QVNS match those of the thermal noise, resulting in ratios of power spectra close to unity in the low-frequency limit. Three-parameter models are used to account for differences in impedance-related time constants in the spectra. Direct comparison of noise temperatures to the International Temperature Scale of 1990 (ITS-90) is achieved in a comparison furnace with standard platinum resistance thermometers. The observed noise temperatures determined by operating the noise thermometer in both absolute and relative modes, and related statistics together with estimated uncertainties are reported. The relative noise thermometry results are combined with results from other thermodynamic determinations at temperatures near the tin freezing point to calculate a value of T - T 90 = +4(18) mK for temperatures near the zinc freezing point. These latest results achieve a lower uncertainty than that of our earlier efforts. The present value of T - T 90 is compared to other published determinations from noise thermometry and other methods.

  1. Low-frequency noise suppression of a fiber laser based on a round-trip EDFA power stabilizer

    International Nuclear Information System (INIS)

    Pan, Z Q; Zhou, J; Yang, F; Ye, Q; Cai, H W; Qu, R H; Fang, Z J

    2013-01-01

    We have designed a power stabilizer based on a round-trip erbium-doped fiber amplifier (EDFA) structure to suppress the low-frequency relative intensity noise (RIN) for a narrow linewidth fiber laser. The noise suppressor is analyzed theoretically and its feasibility is verified experimentally. For a short-cavity single-frequency fiber laser with this device, about 20 dB low-frequency RIN improvement is achieved (down to −120 dB Hz −1 at 10 Hz). The corresponding frequency noise is also reduced by a factor of 1.6. The proposed method is an effective solution to achieve a low-frequency low RIN laser source for highly coherent detection applications. (paper)

  2. Some properties of zero power neutron noise in a time-varying medium with delayed neutrons

    International Nuclear Information System (INIS)

    Kitamura, Y.; Pal, L.; Pazsit, I.; Yamamoto, A.; Yamane, Y.

    2008-01-01

    The temporal evolution of the distribution of the number of neutrons in a time-varying multiplying system, producing only prompt neutrons, was treated recently with the master equation technique by some of the present authors. Such a treatment gives account of both the so-called zero power reactor noise and the power reactor noise simultaneously. In particular, the first two moments of the neutron number, as well as the concept of criticality for time-varying systems, were investigated and discussed. The present paper extends these investigations to the case when delayed neutrons are also taken into account. Due to the complexity of the description, only the expectation of the neutron number is calculated. The concept of criticality of a time-varying system is also generalized to systems with delayed neutrons. The temporal behaviour of the expectation of the number of neutrons and its asymptotic properties are displayed and discussed

  3. Sound localization in noise in hearing-impaired listeners.

    Science.gov (United States)

    Lorenzi, C; Gatehouse, S; Lever, C

    1999-06-01

    The present study assesses the ability of four listeners with high-frequency, bilateral symmetrical sensorineural hearing loss to localize and detect a broadband click train in the frontal-horizontal plane, in quiet and in the presence of a white noise. The speaker array and stimuli are identical to those described by Lorenzi et al. (in press). The results show that: (1) localization performance is only slightly poorer in hearing-impaired listeners than in normal-hearing listeners when noise is at 0 deg azimuth, (2) localization performance begins to decrease at higher signal-to-noise ratios for hearing-impaired listeners than for normal-hearing listeners when noise is at +/- 90 deg azimuth, and (3) the performance of hearing-impaired listeners is less consistent when noise is at +/- 90 deg azimuth than at 0 deg azimuth. The effects of a high-frequency hearing loss were also studied by measuring the ability of normal-hearing listeners to localize the low-pass filtered version of the clicks. The data reproduce the effects of noise on three out of the four hearing-impaired listeners when noise is at 0 deg azimuth. They reproduce the effects of noise on only two out of the four hearing-impaired listeners when noise is at +/- 90 deg azimuth. The additional effects of a low-frequency hearing loss were investigated by attenuating the low-pass filtered clicks and the noise by 20 dB. The results show that attenuation does not strongly affect localization accuracy for normal-hearing listeners. Measurements of the clicks' detectability indicate that the hearing-impaired listeners who show the poorest localization accuracy also show the poorest ability to detect the clicks. The inaudibility of high frequencies, "distortions," and reduced detectability of the signal are assumed to have caused the poorer-than-normal localization accuracy for hearing-impaired listeners.

  4. Proceedings of the 1986 international conference on noise control engineering. Volume 1

    International Nuclear Information System (INIS)

    Lotz, R.

    1986-01-01

    These proceedings collect papers on noise pollution. Topics include: noise sources, noise of chain conveyors in mining, control of noise sources in power plants, noise control elements, vibration, a method of noise control in a nuclear power plant, biological effects of noise, statistical audio dosimetry, and power house noise control

  5. Fiber-distributed Ultra-wideband noise radar with steerable power spectrum and colorless base station.

    Science.gov (United States)

    Zheng, Jianyu; Wang, Hui; Fu, Jianbin; Wei, Li; Pan, Shilong; Wang, Lixian; Liu, Jianguo; Zhu, Ninghua

    2014-03-10

    A fiber-distributed Ultra-wideband (UWB) noise radar was achieved, which consists of a chaotic UWB noise source based on optoelectronic oscillator (OEO), a fiber-distributed transmission link, a colorless base station (BS), and a cross-correlation processing module. Due to a polarization modulation based microwave photonic filter and an electrical UWB pass-band filter embedded in the feedback loop of the OEO, the power spectrum of chaotic UWB signal could be shaped and notch-filtered to avoid the spectrum-overlay-induced interference to the narrow band signals. Meanwhile, the wavelength-reusing could be implemented in the BS by means of the distributed polarization modulation-to-intensity modulation conversion. The experimental comparison for range finding was carried out as the chaotic UWB signal was notch-filtered at 5.2 GHz and 7.8 GHz or not. Measured results indicate that space resolution with cm-level could be realized after 3-km fiber transmission thanks to the excellent self-correlation property of the UWB noise signal provided by the OEO. The performance deterioration of the radar raised by the energy loss of the notch-filtered noise signal was negligible.

  6. Programmable Low-Power Low-Noise Capacitance to Voltage Converter for MEMS Accelerometers.

    Science.gov (United States)

    Royo, Guillermo; Sánchez-Azqueta, Carlos; Gimeno, Cecilia; Aldea, Concepción; Celma, Santiago

    2016-12-30

    In this work, we present a capacitance-to-voltage converter (CVC) for capacitive accelerometers based on microelectromechanical systems (MEMS). Based on a fully-differential transimpedance amplifier (TIA), it features a 34-dB transimpedance gain control and over one decade programmable bandwidth, from 75 kHz to 1.2 MHz. The TIA is aimed for low-cost low-power capacitive sensor applications. It has been designed in a standard 0.18-μm CMOS technology and its power consumption is only 54 μW. At the maximum transimpedance configuration, the TIA shows an equivalent input noise of 42 fA/ Hz at 50 kHz, which corresponds to 100 μg/ Hz .

  7. Programmable Low-Power Low-Noise Capacitance to Voltage Converter for MEMS Accelerometers

    Directory of Open Access Journals (Sweden)

    Guillermo Royo

    2016-12-01

    Full Text Available In this work, we present a capacitance-to-voltage converter (CVC for capacitive accelerometers based on microelectromechanical systems (MEMS. Based on a fully-differential transimpedance amplifier (TIA, it features a 34-dB transimpedance gain control and over one decade programmable bandwidth, from 75 kHz to 1.2 MHz. The TIA is aimed for low-cost low-power capacitive sensor applications. It has been designed in a standard 0.18-μm CMOS technology and its power consumption is only 54 μW. At the maximum transimpedance configuration, the TIA shows an equivalent input noise of 42 fA/ Hz at 50 kHz, which corresponds to 100 μg/ Hz .

  8. Empirical Power Comparison Of Goodness of Fit Tests for Normality In The Presence of Outliers

    International Nuclear Information System (INIS)

    Saculinggan, Mayette; Balase, Emily Amor

    2013-01-01

    Most statistical tests such as t-tests, linear regression analysis and Analysis of Variance (ANOVA) require the normality assumptions. When the normality assumption is violated, interpretation and inferences may not be reliable. Therefore it is important to assess such assumption before using any appropriate statistical test. One of the commonly used procedures in determining whether a random sample of size n comes from a normal population are the goodness-of-fit tests for normality. Several studies have already been conducted on the comparison of the different goodness-of-fit(see, for example [2]) but it is generally limited to the sample size or to the number of GOF tests being compared(see, for example [2] [5] [6] [7] [8]). This paper compares the power of six formal tests of normality: Kolmogorov-Smirnov test (see [3]), Anderson-Darling test, Shapiro-Wilk test, Lilliefors test, Chi-Square test (see [1]) and D'Agostino-Pearson test. Small, moderate and large sample sizes and various contamination levels were used to obtain the power of each test via Monte Carlo simulation. Ten thousand samples of each sample size and contamination level at a fixed type I error rate α were generated from the given alternative distribution. The power of each test was then obtained by comparing the normality test statistics with the respective critical values. Results show that the power of all six tests is low for small sample size(see, for example [2]). But for n = 20, the Shapiro-Wilk test and Anderson – Darling test have achieved high power. For n = 60, Shapiro-Wilk test and Liliefors test are most powerful. For large sample size, Shapiro-Wilk test is most powerful (see, for example [5]). However, the test that achieves the highest power under all conditions for large sample size is D'Agostino-Pearson test (see, for example [9]).

  9. Normalized knee-extension strength or leg-press power after fast-track total knee arthroplasty

    DEFF Research Database (Denmark)

    Aalund, Peter K; Larsen, Kristian; Hansen, Torben Bæk

    2013-01-01

    OBJECTIVE: (s): To investigate which of the two muscle-impairment measures for the operated leg, normalized knee extension strength or leg press power, is more closely associated to performance-based and self-reported measures of function shortly following total knee arthroplasty (TKA). DESIGN...... and dynamic leg presses to determine their body-mass normalized knee extension strength and leg press power, respectively. The 10-m fast speed walking and 30-s chair stand tests were used to determine performance-based function, while the Western Ontario McMaster University Osteoarthritis Index (WOMAC......) and Oxford Knee scores were used to determine self-reported function. RESULTS: Normalized leg press power was more closely associated to both performance-based (r=.82, P...

  10. Elimination of noise peak for signal processing in Johnson noise thermometry development

    International Nuclear Information System (INIS)

    Hwang, I. G.; Moon, B. S.; Jeong, J. E.; Jeo, Y. H.; Kisner, Roger A.

    2003-01-01

    The internal and external noise is the most considering obstacle in development of Johnson Noise Thermometry system. This paper addresses an external noise elimination issue of the Johnson Noise Thermometry system which is underway of development in collaboration between KAERI and ORNL. Although internal random noise is canceled by Cross Power Spectral Density function, a continuous wave penetrating into the electronic circuit is eliminated by the difference of peaks between Johnson signal and external noise. The elimination logic using standard deviation of CPSD and energy leakage problem in discrete CPSD function are discussed in this paper

  11. 14 CFR 36.801 - Noise measurement.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Noise measurement. 36.801 Section 36.801 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT NOISE STANDARDS: AIRCRAFT TYPE AND AIRWORTHINESS CERTIFICATION Helicopters § 36.801 Noise measurement. For primary, normal...

  12. Low voltage excess noise and shot noise in YBCO bicrystal junctions

    DEFF Research Database (Denmark)

    Constantinian, K.Y.; Ovsyannikov, G.A.; Borisenko, I.V.

    2002-01-01

    The spectral density of background noise emitted by symmetric bicrystal YBaCuO Josephson junctions on sapphire substrates have been measured by a low noise cooled HEMT amplifier for bias voltages up to V approximate to 50 mV. At relatively low voltages V noise rise has been...... registered. At large bias voltages V > 30 mV a clear dependence of noise power. exactly coinciding to the asymptote of the Schottky shot noise function, has been observed for the first time. Experimental results are discussed in terms of multiple Andreev reflections which may take place in d...

  13. Investigation of Diesel’s Residual Noise on Predictive Vehicles Noise Cancelling using LMS Adaptive Algorithm

    Science.gov (United States)

    Arttini Dwi Prasetyowati, Sri; Susanto, Adhi; Widihastuti, Ida

    2017-04-01

    Every noise problems require different solution. In this research, the noise that must be cancelled comes from roadway. Least Mean Square (LMS) adaptive is one of the algorithm that can be used to cancel that noise. Residual noise always appears and could not be erased completely. This research aims to know the characteristic of residual noise from vehicle’s noise and analysis so that it is no longer appearing as a problem. LMS algorithm was used to predict the vehicle’s noise and minimize the error. The distribution of the residual noise could be observed to determine the specificity of the residual noise. The statistic of the residual noise close to normal distribution with = 0,0435, = 1,13 and the autocorrelation of the residual noise forming impulse. As a conclusion the residual noise is insignificant.

  14. Right-Ear Advantage for Speech-in-Noise Recognition in Patients with Nonlateralized Tinnitus and Normal Hearing Sensitivity.

    Science.gov (United States)

    Tai, Yihsin; Husain, Fatima T

    2018-04-01

    Despite having normal hearing sensitivity, patients with chronic tinnitus may experience more difficulty recognizing speech in adverse listening conditions as compared to controls. However, the association between the characteristics of tinnitus (severity and loudness) and speech recognition remains unclear. In this study, the Quick Speech-in-Noise test (QuickSIN) was conducted monaurally on 14 patients with bilateral tinnitus and 14 age- and hearing-matched adults to determine the relation between tinnitus characteristics and speech understanding. Further, Tinnitus Handicap Inventory (THI), tinnitus loudness magnitude estimation, and loudness matching were obtained to better characterize the perceptual and psychological aspects of tinnitus. The patients reported low THI scores, with most participants in the slight handicap category. Significant between-group differences in speech-in-noise performance were only found at the 5-dB signal-to-noise ratio (SNR) condition. The tinnitus group performed significantly worse in the left ear than in the right ear, even though bilateral tinnitus percept and symmetrical thresholds were reported in all patients. This between-ear difference is likely influenced by a right-ear advantage for speech sounds, as factors related to testing order and fatigue were ruled out. Additionally, significant correlations found between SNR loss in the left ear and tinnitus loudness matching suggest that perceptual factors related to tinnitus had an effect on speech-in-noise performance, pointing to a possible interaction between peripheral and cognitive factors in chronic tinnitus. Further studies, that take into account both hearing and cognitive abilities of patients, are needed to better parse out the effect of tinnitus in the absence of hearing impairment.

  15. Environmental noise and noise modelling-some aspects in Malaysian development

    International Nuclear Information System (INIS)

    Leong, Mohd Salman; Mohd Shafiek bin Hj Yaacob

    1994-01-01

    Environmental noise is of growing concern in Malaysia with the increasing awareness of the need for an environmental quality consistent with improved quality of life. While noise is one of the several elements in an Environmental Impact Assessment report, the degree of emphasis in the assessment is not as thorough as other aspects in the EIA study. The measurements, prediction (if at all any), and evaluation tended to be superficial. The paper presents a summary of correct noise descriptors and annoyance assessment parameters appropriate for the evaluation of environmental noise. The paper further highlights current inadequacies in the Environmental Quality Act for noise pollution, and annoyance assessment. Some examples of local noise pollution are presented. A discussion on environmental noise modelling is presented. Examples illustrating environmental noise modelling for a mining operation and a power station are given. It is the authors' recommendation that environmental noise modelling be made mandatory in all EIA studies such that a more definitive assessment could be realised

  16. Audio-frequency noise emissions from high-voltage overhead power lines

    International Nuclear Information System (INIS)

    Semmler, M.; Straumann, U.; Roero, C.; Teich, T. H.

    2005-01-01

    This article discusses the noise-emissions caused by high-voltage overhead power lines that can occur under certain atmospheric conditions. These emissions, caused by electric discharges around the conductors, can achieve disturbing values, depending on the conditions prevailing at the time in question. The causes of the discharges are examined and the ionisation processes involved are looked at. The parameters influencing the discharges are discussed and measures that can be taken to reduce such audio-frequency emissions are looked at. The authors note that a reduction of peripheral field strengths can reduce emissions and that hydrophilic coatings can lead to faster reduction of such effects after rainfall

  17. Coupled map lattice (CML) approach to power reactor dynamics (I) - preservation of normality

    International Nuclear Information System (INIS)

    Konno, H.

    1996-01-01

    An application of coupled map lattice (CML) model for simulating power fluctuations in nuclear power reactors is presented. (1) Preservation of Gaussianity in the point model is studied in a chaotic force driven Langevin equation in conjunction with the Gaussian-white noise driven Langevin equation. (2) Preservation of Guassianity is also studied in the space-dependent model with the use of a CML model near the onset of the Hopf bifurcation point. It is shown that the spatial dimensionality decreases as the maximum eigenvalue of the system increases. The result is consistent with the observation of neutron fluctuation in a BWR. (author)

  18. A noise power spectrum study of a new model-based iterative reconstruction system: Veo 3.0.

    Science.gov (United States)

    Li, Guang; Liu, Xinming; Dodge, Cristina T; Jensen, Corey T; Rong, X John

    2016-09-08

    The purpose of this study was to evaluate performance of the third generation of model-based iterative reconstruction (MBIR) system, Veo 3.0, based on noise power spectrum (NPS) analysis with various clinical presets over a wide range of clinically applicable dose levels. A CatPhan 600 surrounded by an oval, fat-equivalent ring to mimic patient size/shape was scanned 10 times at each of six dose levels on a GE HD 750 scanner. NPS analysis was performed on images reconstructed with various Veo 3.0 preset combinations for comparisons of those images reconstructed using Veo 2.0, filtered back projection (FBP) and adaptive statistical iterative reconstruc-tion (ASiR). The new Target Thickness setting resulted in higher noise in thicker axial images. The new Texture Enhancement function achieved a more isotropic noise behavior with less image artifacts. Veo 3.0 provides additional reconstruction options designed to allow the user choice of balance between spatial resolution and image noise, relative to Veo 2.0. Veo 3.0 provides more user selectable options and in general improved isotropic noise behavior in comparison to Veo 2.0. The overall noise reduction performance of both versions of MBIR was improved in comparison to FBP and ASiR, especially at low-dose levels. © 2016 The Authors.

  19. Computer model for estimating electric utility environmental noise

    International Nuclear Information System (INIS)

    Teplitzky, A.M.; Hahn, K.J.

    1991-01-01

    This paper reports on a computer code for estimating environmental noise emissions from the operation and the construction of electric power plants that was developed based on algorithms. The computer code (Model) is used to predict octave band sound power levels for power plant operation and construction activities on the basis of the equipment operating characteristics and calculates off-site sound levels for each noise source and for an entire plant. Estimated noise levels are presented either as A-weighted sound level contours around the power plant or as octave band levels at user defined receptor locations. Calculated sound levels can be compared with user designated noise criteria, and the program can assist the user in analyzing alternative noise control strategies

  20. Noise test system of rotating machinery in nuclear power station based on microphone array

    Science.gov (United States)

    Chang, Xincai; Guan, Jishi; Qi, Liangcai

    2017-12-01

    Rotating machinery plays an important role in all walks of life. Once the equipment fails, equipment maintenance and shutdown will cause great social harm and economic losses. Equipment safety operations at nuclear power stations have always been of top priority. It is prone to noise when the equipment is out of order or aging. Failure to find or develop equipment at the initial stage of equipment failure or ageing will pose a serious threat to the safety of the plant’s equipment. In this paper, sound imaging diagnosis technology is applied as a supplementary method to the condition monitoring and diagnosis system of rotating machinery in nuclear power stations. It provides a powerful guarantee for the condition monitoring and fault diagnosis of rotating machinery in nuclear power stations.

  1. Measurement of β/Λ ratio and calibration of IPEN-MB-01 power reactor using the noise technique

    International Nuclear Information System (INIS)

    Martins, F.R.; Moreira, J.M.L.

    1989-01-01

    The ratio β/Λ and power level for the IPEN-MB-01 critical facility are obtained experimentally through the noise analysis technique. This techniques is based on the determination of the auto and cross-power spectral density of two ionization chambers. The power measurement results obtained for channels 5 and 6 are shown in Table 2. For an effective neutron fraction of 0.00788 a prompt mean generation time of 65 microseconds was obtained. (author) [pt

  2. Noise from wind turbines

    International Nuclear Information System (INIS)

    Andersen, B.; Larsen, P.

    1993-01-01

    Denmark has 3200 wind turbines with an installed maximum capacity of 418MW. The most important Danish research projects into wind turbine noise and the main results are listed. These date from 1983. Two comprehensive studies are currently in progress. The first is an analytical and empirical investigation of aerodynamic noise from wind turbine rotors and has so far dealt mainly with tip noise. The measurement method, using a hard board mounted microphone on the ground near the turbine, is described. Four different tip designs have been tested. Some examples of reference sound power level spectra for three of the designs are presented. During the past two years a computerbased data acquisition system has been used for real-time determination of sound power levels. The second study, which has just commenced, is on annoyance from wind turbine noise. It will include noise measurements, masking calculations and a social survey on the perceived nuisance. (UK)

  3. Noise from wind turbines. Final report of project JOU2-CT92-0124

    International Nuclear Information System (INIS)

    Van der Borg, N.; Andersen, B.; Mackinnon, A.; Klug, H.; Theofiloyannakos, D.

    1995-04-01

    Part of the planning procedure for the erection of a wind turbine or a wind farm is the prediction of the acoustic noise due to the wind turbine(s) at the nearest dwelling. The noise is normally predicted using the acoustic characteristics of the regarded wind turbine as measured on a wind turbine of equal make and model and using a general noise propagation model. Both inputs introduce uncertainties in the predicted noise level: (a) turbines of equal make and model may have different acoustic characteristics; (b) the acoustic characteristics of a turbine may change in time - from day to day (repeatability of the measurement), - during the years (ageing of the turbine); (c) the general propagation model does not take into account the effects of source elevation and wind. The project aimed at the quantification of these uncertainties and at the development of a wind turbine noise propagation model. Statistical information has been collected on the individual differences of the sound power and tonality of turbines of equal make and model by measuring 6 different types of wind turbines. Of each type 5 individual turbines have been measured (total 30 turbines). Additionally the sound power of a series of 4 wind turbines and of a series of 29 wind turbines (from earlier measurements) have been introduced into the project. Statistical information has been collected on the day to day variations of the sound power and tonality of wind turbines by measuring 3 different turbines 5 times (total 15 measurements). Statistical information has been collected on the effect of ageing on the sound power and tonality of wind turbines by the repeated measurement of 5 wind turbines that have been measured in an identical situation 3 to 7 years earlier. A method for the prediction of wind turbine noise propagation has been developed based on measurements of sound propagation from an elevated noise source and theoretical calculations. (Abstract Truncated)

  4. TU-F-CAMPUS-I-05: Parameterization of the Noise Power Spectrum in X-Ray Computed Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Bujila, R; Poludniowski, G; Fransson, A [Dept. of Medical Physics, Karolinska University Hospital, Stockholm (Sweden)

    2015-06-15

    Purpose: The purpose of this work was to develop a method so that the noise power spectrum (NPS) can be approximated for arbitrary levels of mAs, from a single determination in CT. Methods: The NPS is factorized into 2 components, 1) a parameterized function representing the 1D normalized spatial frequency distribution and 2) a function to scale the magnitude of 1) for arbitrary values of mAs. The 1D NPS, normalized by image variance (NNPS), was determined for 2 FBP reconstruction kernels (smoothing and edge enhancing) for 400 mAs. The NNPS were fit to the parameterized function and a scaling function was established to approximate the image variance at arbitrary values of mAs. Using the root mean square error normalized by the maximum value (NRMSE), the NPS approximated with the factorization method was compared to the NPS determined at 5 different mAs levels. Results: The factorization resulted in a set of 7 coefficients that can be used to approximate the 1D NPS, for arbitrary levels of mAs, for the convolution kernels studied in this work. The approximated NPS (factorization) agreed well with the determined NPS for all mAs levels. The greatest NRMSE was 0.02 and was observed for the edge enhancing kernel. Conclusion: The proposed factorization method has been demonstrated as applicable for FBP reconstruction. It can be used to approximate the 1D NPS for arbitrary levels of mAs, from a single NPS determination. Furthermore, approximations of the 1D NPS can conveniently be distributed since the factorization method only used 7 coefficients in the approximation.

  5. Noise and noise disturbances from wind power plants - Tests with interactive control of sound parameters for more comfortable and less perceptible sounds

    International Nuclear Information System (INIS)

    Persson-Waye, K.; Oehrstroem, E.; Bjoerkman, M.; Agge, A.

    2001-12-01

    In experimental pilot studies, a methodology has been worked out for interactively varying sound parameters in wind power plants. In the tests, 24 persons varied the center frequency of different band-widths, the frequency of a sinus-tone and the amplitude-modulation of a sinus-tone in order to create as comfortable a sound as possible. The variations build on the noise from the two wind turbines Bonus and Wind World. The variations were performed with a constant dba level. The results showed that the majority preferred a low-frequency tone (94 Hz and 115 Hz for Wind World and Bonus, respectively). The mean of the most comfortable amplitude-modulation varied between 18 and 22 Hz, depending on the ground frequency. The mean of the center-frequency for the different band-widths varied from 785 to 1104 Hz. In order to study the influence of the wind velocity on the acoustic character of the noise, a long-time measurement program has been performed. A remotely controlled system has been developed, where wind velocity, wind direction, temperature and humidity are registered simultaneously with the noise. Long-time registrations have been performed for four different wing turbines

  6. Noise Enhances Action Potential Generation in Mouse Sensory Neurons via Stochastic Resonance.

    Science.gov (United States)

    Onorato, Irene; D'Alessandro, Giuseppina; Di Castro, Maria Amalia; Renzi, Massimiliano; Dobrowolny, Gabriella; Musarò, Antonio; Salvetti, Marco; Limatola, Cristina; Crisanti, Andrea; Grassi, Francesca

    2016-01-01

    Noise can enhance perception of tactile and proprioceptive stimuli by stochastic resonance processes. However, the mechanisms underlying this general phenomenon remain to be characterized. Here we studied how externally applied noise influences action potential firing in mouse primary sensory neurons of dorsal root ganglia, modelling a basic process in sensory perception. Since noisy mechanical stimuli may cause stochastic fluctuations in receptor potential, we examined the effects of sub-threshold depolarizing current steps with superimposed random fluctuations. We performed whole cell patch clamp recordings in cultured neurons of mouse dorsal root ganglia. Noise was added either before and during the step, or during the depolarizing step only, to focus onto the specific effects of external noise on action potential generation. In both cases, step + noise stimuli triggered significantly more action potentials than steps alone. The normalized power norm had a clear peak at intermediate noise levels, demonstrating that the phenomenon is driven by stochastic resonance. Spikes evoked in step + noise trials occur earlier and show faster rise time as compared to the occasional ones elicited by steps alone. These data suggest that external noise enhances, via stochastic resonance, the recruitment of transient voltage-gated Na channels, responsible for action potential firing in response to rapid step-wise depolarizing currents.

  7. Fock representation of the renormalized higher powers of White noise and the centreless Virasoro (or Witt)-Zamolodchikov-w∞*-Lie algebra

    International Nuclear Information System (INIS)

    Accardi, Luigi; Boukas, Andreas

    2008-01-01

    The identification of the *-Lie algebra of the renormalized higher powers of White noise (RHPWN) and the analytic continuation of the second quantized centreless Virasoro (or Witt)-Zamolodchikov-w ∞ *-Lie algebra of conformal field theory and high-energy physics, was recently established on results obtained. In the present paper, we show how the RHPWN Fock kernels must be truncated in order to be positive semi-definite and we obtain a Fock representation of the two algebras. We show that the truncated renormalized higher powers of White noise (TRHPWN) Fock spaces of order ≥2 host the continuous binomial and beta processes

  8. Measuring proton beam thermal noises on the NAP-M storage ring

    International Nuclear Information System (INIS)

    Dement'ev, E.N.; Dikanskij, N.S.; Medvedko, A.S.; Parkhomchuk, V.V.; Pestrikov, D.V.

    1980-01-01

    The data on experimental investigation of thermal noises of an asimuthally homogeneous proton beam on the NAP-M storage ring are given. The noise spectra are measured at the 5th and 8th harmonics of the ciculation frequency using pick-up electrodes. The dependencies of the noise power on the proton current for noncooled and cooled beams are presented. It is shown that as a result of electron cooling the noise power decreases by two orders and in the 0.5-10 μA current range the noise power of the cooled beam does not depend on the proton current. The noise power of the noncooled beam linearly increases with the proton current. It is also shown that with the modulation growth the noise power increases. The conclusions are made that while analyzing noises of the continuous beam in the storage ring the changes of the noise spectra due to particle interaction in the beam should be taken into account

  9. Interpretation of incore noise measurements in BWR's

    International Nuclear Information System (INIS)

    Dam, H. van

    1982-01-01

    A survey is given of the main incentives for power reactor noise research and the differences and similarities of noise in power and zero power systems are touched on. The basic characteristics of the adjoint method in reactor noise theory are treated. The detector adjoint functions describe the transfer functions between spatially distributed noise sources and a (neutron or gamma) detector. In particular, the spatial dependence of these functions explains the 'local' and 'global' effects in BWR noise measurements. By including thermal hydraulic feedback effects in the adjoint analysis, it is shown that the common idea of a dominant global effect at low frequencies which should result in point kinetic behaviour, is erroneous. The same analysis provides a method for nonperturbing on-line measurement of the reactor transfer function, which is demonstrated by results from measurements on a BWR in the Netherlands. In the final part of the paper some ideas are given for further research in the field of BWR noise. (author)

  10. Interpretation of incore noise measurements in BWR's

    International Nuclear Information System (INIS)

    Dam, H. van

    1983-01-01

    A survey is given of the main incentives for power reactor noise research, and the differences and similarities of noise in power and zero power systems are shown. After a short outline of historical developments the basic characteristics of the adjoint method in reactor noise theory are dealt with. The detector adjoint functions describe the transfer functions between spatially distributed noise sources and a (neutron or gamma) detector. In particular, the spatial dependence of these functions explains the 'local' and 'global' effects in BWR noise measurements. By including thermal hydraulic feedback effects in the adjoint analysis, it is shown that the common idea of a dominant global effect at low frequencies, which should result in point kinetic behaviour, is erroneous. The same analysis provides a method for nonperturbing on-line measurements on a BWR in The Netherlands. In the final part of the paper some ideas are given for further research in the field of BWR noise. (author)

  11. Electrochemical noise from corroding carbon steel and aluminium

    International Nuclear Information System (INIS)

    Singh, P.R.; Gaonkar, K.B.; De, P.K.; Banerjee, S.

    1997-05-01

    Electrochemical noise measurements were conducted on carbon steel and aluminium in sodium chloride solutions. Noise parameters like standard deviation of potential and current, noise resistance, pitting index, noise power were studied for the purpose of measuring corrosion rate. These parameters compared well with the corrosion rate. Pitting index was not very reliable. Current noise was more close to the corrosion rates. General corrosion gave rise to white noise type of power spectrum while flicker noise type of spectrum was obtained from pitting attack. Sodium nitrite is shown to inhibit the corrosion of carbon steel. Aluminium corrodes in the early period of exposure and passivates during long exposure

  12. Notes on power of normality tests of error terms in regression models

    International Nuclear Information System (INIS)

    Střelec, Luboš

    2015-01-01

    Normality is one of the basic assumptions in applying statistical procedures. For example in linear regression most of the inferential procedures are based on the assumption of normality, i.e. the disturbance vector is assumed to be normally distributed. Failure to assess non-normality of the error terms may lead to incorrect results of usual statistical inference techniques such as t-test or F-test. Thus, error terms should be normally distributed in order to allow us to make exact inferences. As a consequence, normally distributed stochastic errors are necessary in order to make a not misleading inferences which explains a necessity and importance of robust tests of normality. Therefore, the aim of this contribution is to discuss normality testing of error terms in regression models. In this contribution, we introduce the general RT class of robust tests for normality, and present and discuss the trade-off between power and robustness of selected classical and robust normality tests of error terms in regression models

  13. Notes on power of normality tests of error terms in regression models

    Energy Technology Data Exchange (ETDEWEB)

    Střelec, Luboš [Department of Statistics and Operation Analysis, Faculty of Business and Economics, Mendel University in Brno, Zemědělská 1, Brno, 61300 (Czech Republic)

    2015-03-10

    Normality is one of the basic assumptions in applying statistical procedures. For example in linear regression most of the inferential procedures are based on the assumption of normality, i.e. the disturbance vector is assumed to be normally distributed. Failure to assess non-normality of the error terms may lead to incorrect results of usual statistical inference techniques such as t-test or F-test. Thus, error terms should be normally distributed in order to allow us to make exact inferences. As a consequence, normally distributed stochastic errors are necessary in order to make a not misleading inferences which explains a necessity and importance of robust tests of normality. Therefore, the aim of this contribution is to discuss normality testing of error terms in regression models. In this contribution, we introduce the general RT class of robust tests for normality, and present and discuss the trade-off between power and robustness of selected classical and robust normality tests of error terms in regression models.

  14. Design of low power common-gate low noise amplifier for 2.4 GHz wireless sensor network applications

    International Nuclear Information System (INIS)

    Zhang Meng; Li Zhiqun

    2012-01-01

    This paper presents a differential low power low noise amplifier designed for the wireless sensor network (WSN) in a TSMC 0.18 μm RF CMOS process. A two-stage cross-coupling cascaded common-gate (CG) topology has been designed as the amplifier. The first stage is a capacitive cross-coupling topology. It can reduce the power and noise simultaneously. The second stage is a positive feedback cross-coupling topology, used to set up a negative resistance to enhance the equivalent Q factor of the inductor at the load to improve the gain of the LNA. A differential inductor has been designed as the load to achieve reasonable gain. This inductor has been simulated by the means of momentum electromagnetic simulation in ADS. A 'π' circuit model has been built as the inductor model by iteration in ADS. The inductor has been fabricated separately to verify the model. The LNA has been fabricated and measured. The LNA works well centered at 2.44 GHz. The measured gain S 21 is variable with high gain at 16.8 dB and low gain at 1 dB. The NF (noise figure) at high gain mode is 3.6 dB, the input referenced 1 dB compression point (IP1dB) is about −8 dBm and the IIP3 is 2 dBm at low gain mode. The LNA consumes about 1.2 mA current from 1.8 V power supply.

  15. Current correlations in superconductor - normal metal mesoscopic structures

    International Nuclear Information System (INIS)

    Bignon, Guillaume

    2005-01-01

    Thanks to the experimental progress in miniaturization and cryogenics over the last twenty years, it is now possible to build sufficiently small electric circuits where the wave like nature of electron becomes significant. In such electric circuit transport properties like current and noise are modified. It corresponds to the mesoscopic scale. Moreover, connecting a mesoscopic circuit to a superconductor enhances the effects due to interference between electrons since a superconductor is a macroscopic source of coherent electrons pairs: the Cooper pairs. In this thesis, we study current correlations in mesoscopic normal metal - superconductor structures. First, the energy dependence of current noise in a normal metal - superconductor tunnel junction is analysed taking into account weak disorder and interactions. We show that if the normal metal is out of equilibrium, current and noise become independent. Next, we consider the case of a superconductor connected to two normal metals by tunnel junctions. We show that it is possible to change the sign of current crossed correlation by tuning the voltages and that it can be used to probe the size of the Cooper pairs. Lastly, using Usadel's quasi-classic theory, we study the energy dependence of noise in a normal metal - normal metal - superconductor double junction. We show that barrier's transparencies modifies significantly both current and noise. (author) [fr

  16. Noise from wind power plants. A study in anticipation of the recommendation from the Swedish Environmental Protection Agency

    International Nuclear Information System (INIS)

    Almgren, Martin

    2006-03-01

    Noise from wind turbines are today treated as industrial noise sources according to the guidelines for external industry noise set by Naturvaardsverket (the Swedish Environmental Protection Agency) in RR 1978:5. A praxis has been established with recommended limit 40 dBA equivalent continuous sound pressure level outside dwellings day, evening and night. Naturvaardsverket is planning new guidelines specific for wind turbine noise. A draft was presented at an information meeting 13th May 2005. Special requirements, which in some cases may be far-reaching, are planned for wind turbines. The purpose of this investigation is to illustrate the fairness of the planned requirements. Application of the recommended prediction model for sound propagation above a sea surface in the draft of Naturvaardsverket may lead to serious consequences for the planning of wind power plants near the coast. Research with measurements on sound propagation above water is at present made by the Royal Institute of Technology in Kalmarsund in Sweden. The results of these measurements, which probably will be completed during the spring 2006, should be waited for before a prediction model is recommended. If the model would be valid for sound propagation from wind turbines at sea, there should be some reports on complaint on noise from offshore based wind power plants. We have not been able to locate such complaints in Sweden (Bockstigen), in Denmark (Middelgrunden, Nystedts havmoellepark and Horns rev) or in the Netherlands. For Middelgrund and Nysted, the sound level calculated with Naturvaardsverkets model at 4,5 km and 7 km respectively is around 48 dBA. According to Swedish studies, such a level is annoying to many people. Two methods to set out limits for wind turbine noise are used internationally. In the first an absolute limit for the equivalent continuous sound pressure level is set. In the other, the sound pressure level is related to the background noise level. Naturvaardsverket is

  17. Flux pinning and flux flow studies in superconductors using flux flow noise techniques. Progress report, April 1, 1976--December 17, 1976

    International Nuclear Information System (INIS)

    Joiner, W.C.H.

    1976-12-01

    Measurements of flux flow noise power spectra have been combined with critical current measurements and measurements of current-voltage characteristics to study flux flow and local pinning interactions effective during flux flow. A model of flux flow noise generation in the presence of local pinning interactions is developed and applied to situations where pinning is dominated by: (1) grain boundaries, (2) normal metal precipitates in a superconducting matrix, (3) gross deformation producing a critical current peak effect, and (4) surface grooves imposed on a sample surface. In the case of pinning caused by normal metal precipitates in a superconducting matrix, unusual training and hysterisis effects are observed in the flux flow characteristics. The greater sensitivity of noise spectra, as compared with bulk critical current measurements, in obtaining a detailed picture of flux flow is emphasized

  18. Noise frame duration, masking potency and whiteness of temporal noise.

    Science.gov (United States)

    Kukkonen, Heljä; Rovamo, Jyrki; Donner, Kristian; Tammikallio, Marja; Raninen, Antti

    2002-09-01

    Because of the limited contrast range, increasing the duration of the noise frame is often the only option for increasing the masking potency of external, white temporal noise. This, however, reduces the high-frequency cutoff beyond which noise is no longer white. This study was conducted to determine the longest noise frame duration that produces the strongest masking effect and still mimics white noise on the detection of sinusoidal flicker. Contrast energy thresholds (E(th)) were measured for flicker at 1.25 to 20 Hz in strong, purely temporal (spatially uniform), additive, external noise. The masking power of white external noise, characterized by its spectral density at zero frequency N0, increases with the duration of the noise frame. For short noise frame durations, E(th) increased in direct proportion to N0, keeping the nominal signal-to-noise ratio [SNR = (E(th)/N0)(0.5)] constant at threshold. The masking effect thus increased with the duration of the noise frame and the noise mimicked white noise. When noise frame duration and N0 increased further, the nominal SNR at threshold started to decrease, indicating that noise no longer mimicked white noise. The minimum number of noise frames per flicker cycle needed to mimic white noise decreased with increasing flicker frequency from 8.3 at 1.25 Hz to 1.6 at 20 Hz. The critical high-frequency cutoff of detection-limiting temporal noise in terms of noise frames per signal cycle depends on the temporal frequency of the signal. This is opposite to the situation in the spatial domain and must be taken into consideration when temporal signals are masked with temporal noise.

  19. Concept of voltage and frequency monitoring for a nuclear power plant normal power supply system - PWR 1300 MWe

    International Nuclear Information System (INIS)

    Andrade, R.B. de

    1990-01-01

    Voltage and frequency monitoring concept for a Nuclear Power Plant Normal Power Supply System (PWR 1300 MWe) is described based on the phylosophy adopted for Angra 2 and e NPP's. Some suggested setpoints are only guidance values and can be modified during plant commissioning for a better performance of the whole protection system. (author) [pt

  20. Quantitative electroencephalogram (QEEG) Spectrum Analysis of Patients with Schizoaffective Disorder Compared to Normal Subjects.

    Science.gov (United States)

    Moeini, Mahdi; Khaleghi, Ali; Amiri, Nasrin; Niknam, Zahra

    2014-10-01

    The aim of this study was to achieve a better understanding of schizoaffective disorder. Therefore, we obtained electroencephalogram (EEG) signals from patients with schizoaffective disorder and analyzed them in comparison to normal subjects. Forty patients with schizoaffective disorder and 40 normal subjects were selected randomly and their electroencephalogram signals were recorded based on 10-20 international system by 23 electrodes in open- and closed-eyes while they were sitting on a chair comfortably. After preprocessing for noise removal and artifact reduction, we took 60- second segments from each recorded signals. Then, the absolute and relative powers of these segments were evaluated in all channels and in 4 frequency bands (i.e., delta, theta, alpha and beta waves). Finally, Data were analyzed by independent t-test using SPSS software. A significant decrease in relative power in the alpha band, a significant decrease in power spectra in the alpha band and a significant increase in power spectra in the beta band were found in patients compared to normal subjects (P schizoaffective patients, it can be concluded that schizoaffective disorder can be seen in schizophrenia spectrum.

  1. Ranking TEM cameras by their response to electron shot noise

    International Nuclear Information System (INIS)

    Grob, Patricia; Bean, Derek; Typke, Dieter; Li, Xueming; Nogales, Eva; Glaeser, Robert M.

    2013-01-01

    We demonstrate two ways in which the Fourier transforms of images that consist solely of randomly distributed electrons (shot noise) can be used to compare the relative performance of different electronic cameras. The principle is to determine how closely the Fourier transform of a given image does, or does not, approach that of an image produced by an ideal camera, i.e. one for which single-electron events are modeled as Kronecker delta functions located at the same pixels where the electrons were incident on the camera. Experimentally, the average width of the single-electron response is characterized by fitting a single Lorentzian function to the azimuthally averaged amplitude of the Fourier transform. The reciprocal of the spatial frequency at which the Lorentzian function falls to a value of 0.5 provides an estimate of the number of pixels at which the corresponding line-spread function falls to a value of 1/e. In addition, the excess noise due to stochastic variations in the magnitude of the response of the camera (for single-electron events) is characterized by the amount to which the appropriately normalized power spectrum does, or does not, exceed the total number of electrons in the image. These simple measurements provide an easy way to evaluate the relative performance of different cameras. To illustrate this point we present data for three different types of scintillator–coupled camera plus a silicon-pixel (direct detection) camera. - Highlights: ► Fourier amplitude spectra of noise are well fitted by a single Lorentzian. ► This measures how closely, or not, the response approaches the single-pixel ideal. ► Noise in the Fourier amplitudes is (1−π/4) times the shot noise power spectrum. ► Finite variance in the single-electron responses adds to the output noise. ► This excess noise may be equal to or greater than shot noise itself

  2. Investigating properties of white noise in the undergraduate laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, Umer; Shamim, Sohaib; Anwar, M Sabieh [School of Science and Engineering, Lahore University of Management Sciences (LUMS), Opposite Sector U, D.H.A, Lahore 54792 (Pakistan)], E-mail: umersiddiqui@lums.edu.pk, E-mail: sohaibshamim@lums.edu.pk, E-mail: sabieh@lums.edu.pk

    2009-09-15

    This paper describes a simple noise circuit for the undergraduate physics laboratory. Students use this circuit to study the properties of electrical noise on a personal computer. This is made possible by using a data acquisition system that allows the experimenters to obtain large amounts of data on the computer, suitable for subsequent mathematical computations. Various properties such as mean, noise power, noise power density and the probability distribution of noise voltages are also explored.

  3. Sensor response time monitoring using noise analysis

    International Nuclear Information System (INIS)

    Hashemian, H.M.; Thie, J.A.; Upadhyaya, B.R.; Holbert, K.E.

    1988-01-01

    Random noise techniques in nuclear power plants have been developed for system surveillance and for analysis of reactor core dynamics. The noise signals also contain information about sensor dynamics, and this can be extracted using frequency, amplitude and time domain analyses. Even though noise analysis has been used for sensor response time testing in some nuclear power plants, an adequate validation of this method has never been carried out. This paper presents the results of limited work recently performed to examine the validity of the noise analysis for sensor response time testing in nuclear power plants. The conclusion is that noise analysis has the potential for detecting gross changes in sensor response but it cannot be used for reliable measurement of response time until more laboratory and field experience is accumulated. The method is more advantageous for testing pressure sensors than it is for temperature sensors. This is because: 1) for temperature sensors, a method called Loop Current Step Response test is available which is quantitatively more exact than noise analysis, 2) no method currently exists for on-line testing of pressure transmitters other than the Power-Interrupt test which is applicable only to force balance pressure transmitters, and 3) pressure sensor response time is affected by sensing line degradation which is inherently taken into account by testing with noise analysis. (author)

  4. A noise power spectrum study of a new model‐based iterative reconstruction system: Veo 3.0

    Science.gov (United States)

    Li, Guang; Liu, Xinming; Dodge, Cristina T.; Jensen, Corey T.

    2016-01-01

    The purpose of this study was to evaluate performance of the third generation of model‐based iterative reconstruction (MBIR) system, Veo 3.0, based on noise power spectrum (NPS) analysis with various clinical presets over a wide range of clinically applicable dose levels. A CatPhan 600 surrounded by an oval, fat‐equivalent ring to mimic patient size/shape was scanned 10 times at each of six dose levels on a GE HD 750 scanner. NPS analysis was performed on images reconstructed with various Veo 3.0 preset combinations for comparisons of those images reconstructed using Veo 2.0, filtered back projection (FBP) and adaptive statistical iterative reconstruction (ASiR). The new Target Thickness setting resulted in higher noise in thicker axial images. The new Texture Enhancement function achieved a more isotropic noise behavior with less image artifacts. Veo 3.0 provides additional reconstruction options designed to allow the user choice of balance between spatial resolution and image noise, relative to Veo 2.0. Veo 3.0 provides more user selectable options and in general improved isotropic noise behavior in comparison to Veo 2.0. The overall noise reduction performance of both versions of MBIR was improved in comparison to FBP and ASiR, especially at low‐dose levels. PACS number(s): 87.57.‐s, 87.57.Q‐, 87.57.C‐, 87.57.nf, 87.57.C‐, 87.57.cm PMID:27685118

  5. Study of white noise; Hakushoku zatsuon ni kansuru ichikosatsu

    Energy Technology Data Exchange (ETDEWEB)

    Kano, R; Tada, R [Teikoku Oil Co. Ltd., Tokyo (Japan)

    1996-05-01

    A study was made on conditions available for white noise belonging to a finite power function with the use of a power spectrum conception. It was defined that a real variable function with a finite waveform energy was a finite energy function while that with a finite waveform power was a finite power function. A noncorrelative white noise was defined as a real variable function in which an autocorrelation function took a specific value at a certain point; however, the autocorrelation function was different between the finite energy function and the finite power function. In other words, the definition of white noise was such that `an energy spectrum was a fixed value` in the finite energy function, and that `a power spectrum was a fixed value` in the finite power function. It was pointed out, by Matsuyama (1994) with the use of the energy spectrum conception, that the white noise belonging to the finite energy function took only the form of `an arbitrary impulse function that all turned to zero except a certain point`. The same conclusion was obtained with respect to the white noise belonging to the finite power function. 1 ref., 1 tab.

  6. Process sensors characterization based on noise analysis technique and artificial intelligence

    International Nuclear Information System (INIS)

    Mesquita, Roberto N. de; Perillo, Sergio R.P.; Santos, Roberto C. dos

    2005-01-01

    The time response of pressure and temperature sensors from the Reactor Protection System (RPS) is a requirement that must be satisfied in nuclear power plants, furthermore is an indicative of its degradation and its remaining life. The nuclear power industry and others have been eager to implement smart sensor technologies and digital instrumentation concepts to reduce manpower and effort currently spent on testing and calibration. Process parameters fluctuations during normal operation of a reactor are caused by random variations in neutron flux, heat transfer and other sources. The output sensor noise can be considered as the response of the system to an input representing the statistical nature of the underlying process which can be modeled using a time series model. Since the noise signal measurements are influenced by many factors, such as location of sensors, extraneous noise interference, and randomness in temperature and pressure fluctuation - the quantitative estimate of the time response using autoregressive noise modeling is subject to error. This technique has been used as means of sensor monitoring. In this work a set of pressure sensors installed in one experimental loop adapted from a flow calibration setup is used to test and analyze signals in a new approach using artificial intelligence techniques. A set of measurements of dynamic signals in different experimental conditions is used to distinguish and identify underlying process sources. A methodology that uses Blind Separation of Sources with a neural networks scheme is being developed to improve time response estimate reliability in noise analysis. (author)

  7. Process sensors characterization based on noise analysis technique and artificial intelligence

    Energy Technology Data Exchange (ETDEWEB)

    Mesquita, Roberto N. de; Perillo, Sergio R.P.; Santos, Roberto C. dos [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)]. E-mail: rnavarro@ipen.br; sperillo@ipen.br; rcsantos@ipen.br

    2005-07-01

    The time response of pressure and temperature sensors from the Reactor Protection System (RPS) is a requirement that must be satisfied in nuclear power plants, furthermore is an indicative of its degradation and its remaining life. The nuclear power industry and others have been eager to implement smart sensor technologies and digital instrumentation concepts to reduce manpower and effort currently spent on testing and calibration. Process parameters fluctuations during normal operation of a reactor are caused by random variations in neutron flux, heat transfer and other sources. The output sensor noise can be considered as the response of the system to an input representing the statistical nature of the underlying process which can be modeled using a time series model. Since the noise signal measurements are influenced by many factors, such as location of sensors, extraneous noise interference, and randomness in temperature and pressure fluctuation - the quantitative estimate of the time response using autoregressive noise modeling is subject to error. This technique has been used as means of sensor monitoring. In this work a set of pressure sensors installed in one experimental loop adapted from a flow calibration setup is used to test and analyze signals in a new approach using artificial intelligence techniques. A set of measurements of dynamic signals in different experimental conditions is used to distinguish and identify underlying process sources. A methodology that uses Blind Separation of Sources with a neural networks scheme is being developed to improve time response estimate reliability in noise analysis. (author)

  8. Signal-to-noise ratios of multiplexing spectrometers in high backgrounds

    Science.gov (United States)

    Knacke, R. F.

    1978-01-01

    Signal-to-noise ratios and the amount of multiplexing gain achieved with a Michelson spectrometer during detector and background noise are studied. Noise caused by the warm background is found in 10 and 20-micron atmospheric windows in high resolution Fourier spectroscopy. An equation is derived for the signal-to-noise ratio based on the number of channels, total time to obtain the complete spectrum, the signal power in one spectral element, and the detector noise equivalent power in the presence of negligible background. Similar expressions are derived for backgrounds yielding a noise equivalent power to a spectral element, and backgrounds having flat spectra in the frequency range under investigation.

  9. Noise-evoked otoacoustic emissions in humans

    NARCIS (Netherlands)

    Maat, B; Wit, HP; van Dijk, P

    2000-01-01

    Click-evoked otoacoustic emissions (CEOAEs) and acoustical responses evoked by bandlimited Gaussian noise (noise-evoked otoacoustic emissions; NEOAEs) were measured in three normal-hearing subjects. For the NEOAEs the first- and second-order Wiener kernel and polynomial correlation functions up to

  10. Systems for noise diagnostics of WWER nuclear power plants

    International Nuclear Information System (INIS)

    Por, G.

    1996-01-01

    The aim of this paper is to give a short overview of the noise diagnostics system developed by Hungarian firms which are in operation in WWER type NPP Units. Giving a list of systems developed for noise diagnostics of WWER reactors we present their main characteristics, their goal and some of their achievements. The second part deals with the problem of acceptance of noise system by NPP and regulations. (author). 24 refs

  11. Systems for noise diagnostics of WWER nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Por, G [Technical Univ. of Budapest, Budapest (Hungary)

    1997-12-31

    The aim of this paper is to give a short overview of the noise diagnostics system developed by Hungarian firms which are in operation in WWER type NPP Units. Giving a list of systems developed for noise diagnostics of WWER reactors we present their main characteristics, their goal and some of their achievements. The second part deals with the problem of acceptance of noise system by NPP and regulations. (author). 24 refs.

  12. Investigation of hydraulic transmission noise sources

    Science.gov (United States)

    Klop, Richard J.

    Advanced hydrostatic transmissions and hydraulic hybrids show potential in new market segments such as commercial vehicles and passenger cars. Such new applications regard low noise generation as a high priority, thus, demanding new quiet hydrostatic transmission designs. In this thesis, the aim is to investigate noise sources of hydrostatic transmissions to discover strategies for designing compact and quiet solutions. A model has been developed to capture the interaction of a pump and motor working in a hydrostatic transmission and to predict overall noise sources. This model allows a designer to compare noise sources for various configurations and to design compact and inherently quiet solutions. The model describes dynamics of the system by coupling lumped parameter pump and motor models with a one-dimensional unsteady compressible transmission line model. The model has been verified with dynamic pressure measurements in the line over a wide operating range for several system structures. Simulation studies were performed illustrating sensitivities of several design variables and the potential of the model to design transmissions with minimal noise sources. A semi-anechoic chamber has been designed and constructed suitable for sound intensity measurements that can be used to derive sound power. Measurements proved the potential to reduce audible noise by predicting and reducing both noise sources. Sound power measurements were conducted on a series hybrid transmission test bench to validate the model and compare predicted noise sources with sound power.

  13. The diversity and unity of reactor noise theory

    International Nuclear Information System (INIS)

    Kuang, Zhifeng

    2001-01-01

    The study of reactor noise theory concerns questions about cause and effect relationships, and the utilisation of random noise in nuclear reactor systems. The diversity of reactor noise theory arises from the variety of noise sources, the various mathematical treatments applied and the various practical purposes. The neutron noise in zero-energy systems arises from the fluctuations in the number of neutrons per fission, the time between nuclear events, and the type of reactions. It can be used to evaluate system parameters. The mathematical treatment is based on the master equation of stochastic branching processes. The noise in power reactor systems is given rise by random processes of technological origin such as vibration of mechanical parts, boiling of the coolant, fluctuations of temperature and pressure. It can be used to monitor the reactor behaviour with the possibility of detecting malfunctions at an early stage. The mathematical treatment is based on the Langevin equation. The unity of reactor noise theory arises from the fact that the useful information from noise is embedded in the second moments of random variables, which lends the possibility of building up a unified mathematical description and analysis of the various reactor noise sources. Exploring such possibilities is the main subject among the three major topics reported in this thesis. The first subject is within the zero power noise in steady media, and we reported on the extension of the existing theory to more general cases. In Paper I, by use of the master equation approach, we have derived the most general Feynman- and Rossi-alpha formulae so far by taking the full joint statistics of the prompt and all the six groups of delayed neutron precursors, and a multiple emission source into account. The involved problems are solved with a combination of effective analytical techniques and symbolic algebra codes. Paper II gives a numerical evaluation of these formulae. An assessment of the

  14. The diversity and unit of reactor noise theory

    Science.gov (United States)

    Kuang, Zhifeng

    The study of reactor noise theory concerns questions about cause and effect relationships, and utilisation of random noise in nuclear reactor systems. The diversity of reactor noise theory arises from the variety of noise sources, the various mathematical treatments applied and various practical purposes. The neutron noise in zero- energy systems arises from the fluctuations in the number of neutrons per fission, the time between nuclear events, and the type of reactions. It can be used to evaluate system parameters. The mathematical treatment is based on the master equation of stochastic branching processes. The noise in power reactor systems is given rise by random processes of technological origin such as vibration of mechanical parts, boiling of the coolant, fluctuations of temperature and pressure. It can be used to monitor reactor behaviour with the possibility of detecting malfunctions at an early stage. The mathematical treatment is based on the Langevin equation. The unity of reactor noise theory arises from the fact that useful information from noise is embedded in the second moments of random variables, which lends the possibility of building up a unified mathematical description and analysis of the various reactor noise sources. Exploring such possibilities is the main subject among the three major topics reported in this thesis. The first subject is within the zero power noise in steady media, and we reported on the extension of the existing theory to more general cases. In Paper I, by use of the master equation approach, we have derived the most general Feynman- and Rossi-alpha formulae so far by taking the full joint statistics of the prompt and all the six groups of delayed neutron precursors, and a multiple emission source into account. The involved problems are solved with a combination of effective analytical techniques and symbolic algebra codes (Mathematica). Paper II gives a numerical evaluation of these formulae. An assessment of the

  15. Traffic noise in Hyderabad city, part-II. vehicular contribution to road traffic noise

    International Nuclear Information System (INIS)

    Sheikh, G.H.

    2001-01-01

    The results of a road traffic noise survey carried out in Hyderabad city showed that the levels of traffic noise in the City are alarmingly high and much beyond the comfortable limits. There, in order to investigate the level of the noise emitted by different types of vehicles plying on the city roads and to assess their individual contribution to high level traffic noise, studies have been carried out on the measurement of noise emitted by motorcycles, buses, auto-rickshaws, and motor vehicle horns as they normally move on the city roads. The data collected has been analyzed for L/sub v99/, L/sub v90/, L/sub v50/, L/sub v10/ and L/sub v1/ and results are discussed with reference to the existing motor vehicle rules in Pakistan and motor vehicle noise emission limits set by the EEC and other developed countries. Some suggestion have also been made to limit high level traffic noise. (author)

  16. Some Neurocognitive Correlates of Noise-Vocoded Speech Perception in Children With Normal Hearing: A Replication and Extension of ).

    Science.gov (United States)

    Roman, Adrienne S; Pisoni, David B; Kronenberger, William G; Faulkner, Kathleen F

    Noise-vocoded speech is a valuable research tool for testing experimental hypotheses about the effects of spectral degradation on speech recognition in adults with normal hearing (NH). However, very little research has utilized noise-vocoded speech with children with NH. Earlier studies with children with NH focused primarily on the amount of spectral information needed for speech recognition without assessing the contribution of neurocognitive processes to speech perception and spoken word recognition. In this study, we first replicated the seminal findings reported by ) who investigated effects of lexical density and word frequency on noise-vocoded speech perception in a small group of children with NH. We then extended the research to investigate relations between noise-vocoded speech recognition abilities and five neurocognitive measures: auditory attention (AA) and response set, talker discrimination, and verbal and nonverbal short-term working memory. Thirty-one children with NH between 5 and 13 years of age were assessed on their ability to perceive lexically controlled words in isolation and in sentences that were noise-vocoded to four spectral channels. Children were also administered vocabulary assessments (Peabody Picture Vocabulary test-4th Edition and Expressive Vocabulary test-2nd Edition) and measures of AA (NEPSY AA and response set and a talker discrimination task) and short-term memory (visual digit and symbol spans). Consistent with the findings reported in the original ) study, we found that children perceived noise-vocoded lexically easy words better than lexically hard words. Words in sentences were also recognized better than the same words presented in isolation. No significant correlations were observed between noise-vocoded speech recognition scores and the Peabody Picture Vocabulary test-4th Edition using language quotients to control for age effects. However, children who scored higher on the Expressive Vocabulary test-2nd Edition

  17. Noise annoyances from wind power: Survey of the population living close to a wind power plant. Final report: Part 3 Main study

    International Nuclear Information System (INIS)

    Pedersen, Eja; Persson-Waye, K.

    2002-02-01

    To evaluate the occurrence of annoyance from wind turbines, a study was performed in Laholm in May 2000. The aim was to obtain dose response relationships between calculated sound levels and noise annoyance and appropriate sound description as well as analysing the influence of other variables on noise annoyance. A questionnaire survey was performed in 6 areas comprising 16 wind turbines, of which 14 had an effect of 600 kW. The purpose of the study was masked. Among questions on living conditions in the countryside, questions directly related to wind turbines were included. The study population (n=518) comprised one randomly selected subject between the ages of 18 to 75 years in each household living within a calculated wind turbine sound level of 25 to 40 dBA. The response rate was 68.7% (n=356). Calculated distributions of A-weighted sound level were performed for each area and plotted on geographical maps in 2.5 dBA steps. Each dwelling could thus be given a sound level within an interval of 2.5 dBA. The most frequently occurring source of noise annoyance was noise from rotor blades. The proportions of respondents annoyed by noise increased with calculated sound level. Among respondents exposed to sound levels of 35.0-37.5 dBA, 43% responded themselves to be rather or much annoyed. A-weighted sound level was only one variable explaining annoyance. Annoyance was correlated to a larger extent by the intrusiveness of the sound character swishing. Noise annoyance was interrelated to the respondents' opinion of the visual impact of wind turbines, while attitude towards wind power in general had no greater influence. Disturbance of spoilt view was reported to a similar degree as noise disturbance. Further investigations are needed to clarify factors of importance for the disturbance of view. All the wind turbines in the study had constant rotation speed. The greater wind turbines that are now erected often have variable speed, which may lead to a sound comprising

  18. Ambient noise levels in the Taiwan region

    Science.gov (United States)

    Liang, W.; Liu, C.; Chen, R.; Huang, B.; Wu, F. T.; Wang, C.

    2008-12-01

    To characterize the island-wide background seismic noise in Taiwan, we estimate the power spectral density (PSD) at broadband stations of both the BATS (Broadband Array in Taiwan for Seismology) and the TAIGER experiment (Apr. 2006~Apr. 2008) for periods ranging from ~0.2 to 100 seconds. A new approach to calculate the probability density functions of noise power (PDFs, MaNamara and Buland, 2004) is used in this study. The results indicate that the cultural noise at higher frequencies is significant at populated area, which shows diurnal and weekly variation as what we expected. The noise power for microseisms centered at a period of ~5 seconds around the western costal plain show ~20dB higher than what observed at eastern Taiwan. This observation supports the inference that the coastal regions having narrow shelf with irregular coastlines are know to be especially efficient at radiating the predominat microseisms. Results from the linear array across central Taiwan demonstrate that the average noise power is quietest at the eastern Central Range. We have mapped the PDF mode for stations at various periods to see the spatial distribution of ambient noise levels, which could be used as the basic information for future station siting. Temporal variation of noise PSD is also present to provide a quantitative description of the seismic data quality collected by both BATS and TAIGER experiment. Some operational problems like base tilt, sensitivity change can be identified easily as well.

  19. Noise estimation for remote sensing image data analysis

    Science.gov (United States)

    Du, Qian

    2004-01-01

    Noise estimation does not receive much attention in remote sensing society. It may be because normally noise is not large enough to impair image analysis result. Noise estimation is also very challenging due to the randomness nature of the noise (for random noise) and the difficulty of separating the noise component from the signal in each specific location. We review and propose seven different types of methods to estimate noise variance and noise covariance matrix in a remotely sensed image. In the experiment, it is demonstrated that a good noise estimate can improve the performance of an algorithm via noise whitening if this algorithm assumes white noise.

  20. ''1/f noise'' in music: Music from 1/f noise

    Energy Technology Data Exchange (ETDEWEB)

    Voss, R.F.; Clarke, J.

    1978-01-01

    The spectral density of fluctuations in the audio power of many musical selections and of English speech varies approximately as 1/f (f is the frequency) down to a frequency of 5 x 10/sup -4/ Hz. This result implies that the audio-power fluctuations are correlated over all times in the same manner as ''1/f noise'' in electronic components. The frequency fluctuations of music also have a 1/f spectral density at frequencies down to the inverse of the length of the piece of music. The frequency fluctuations of English speech have a quite different behavior, with a single characteristic time of about 0.1 s, the average length of a syllable. The observations on music suggest that 1/f noise is a good choice for stochastic composition. Compositions in which the frequency and duration of each note were determined by 1/f noise sources sounded pleasing. Those generated by white-noise sources sounded too random, while those generated by 1/f/sup 2/ noise sounded too correlated.

  1. Spin noise amplification and giant noise in optical microcavity

    Energy Technology Data Exchange (ETDEWEB)

    Ryzhov, I. I.; Poltavtsev, S. V.; Kozlov, G. G.; Zapasskii, V. S. [Spin-Optics Laboratory, St. Petersburg State University, 198504 St. Petersburg (Russian Federation); Kavokin, A. V. [Department of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ (United Kingdom); Spin-Optics Laboratory, St. Petersburg State University, 198504 St. Petersburg (Russian Federation); Lagoudakis, P. V. [Department of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ (United Kingdom)

    2015-06-14

    When studying the spin-noise-induced fluctuations of Kerr rotation in a quantum-well microcavity, we have found a dramatic increase of the noise signal (by more than two orders of magnitude) in the vicinity of anti-crossing of the polariton branches. The effect is explained by nonlinear optical instability of the microcavity giving rise to the light-power-controlled amplification of the polarization noise signal. In the framework of the developed model of built-in amplifier, we also interpret the nontrivial spectral and intensity-related properties of the observed noise signal below the region of anti-crossing of polariton branches. The discovered effect of optically controllable amplification of broadband polarization signals in microcavities in the regime of optical instability may be of interest for detecting weak oscillations of optical anisotropy in fundamental research and for other applications in optical information processing.

  2. Modeling Noise Sources and Propagation in External Gear Pumps

    Directory of Open Access Journals (Sweden)

    Sangbeom Woo

    2017-07-01

    Full Text Available As a key component in power transfer, positive displacement machines often represent the major source of noise in hydraulic systems. Thus, investigation into the sources of noise and discovering strategies to reduce noise is a key part of improving the performance of current hydraulic systems, as well as applying fluid power systems to a wider range of applications. The present work aims at developing modeling techniques on the topic of noise generation caused by external gear pumps for high pressure applications, which can be useful and effective in investigating the interaction between noise sources and radiated noise and establishing the design guide for a quiet pump. In particular, this study classifies the internal noise sources into four types of effective load functions and, in the proposed model, these load functions are applied to the corresponding areas of the pump case in a realistic way. Vibration and sound radiation can then be predicted using a combined finite element and boundary element vibro-acoustic model. The radiated sound power and sound pressure for the different operating conditions are presented as the main outcomes of the acoustic model. The noise prediction was validated through comparison with the experimentally measured sound power levels.

  3. Performance analysis of a low power low noise tunable band pass filter for multiband RF front end

    International Nuclear Information System (INIS)

    Manjula, J.; Malarvizhi, S.

    2014-01-01

    This paper presents a low power tunable active inductor and RF band pass filter suitable for multiband RF front end circuits. The active inductor circuit uses the PMOS cascode structure as the negative transconductor of a gyrator to reduce the noise voltage. Also, this structure provides possible negative resistance to reduce the inductor loss with wide inductive bandwidth and high resonance frequency. The RF band pass filter is realized using the proposed active inductor with suitable input and output buffer stages. The tuning of the center frequency for multiband operation is achieved through the controllable current source. The designed active inductor and RF band pass filter are simulated in 180 nm and 45 nm CMOS process using the Synopsys HSPICE simulation tool and their performances are compared. The parameters, such as resonance frequency, tuning capability, noise and power dissipation, are analyzed for these CMOS technologies and discussed. The design of a third order band pass filter using an active inductor is also presented. (semiconductor integrated circuits)

  4. Analysis of the noise of the jet pumps of the Unit 2 of the Laguna Verde nuclear power plant

    International Nuclear Information System (INIS)

    Castillo D, R.; Ortiz V, J.; Ruiz E, J.A.; Calleros M, G.

    2004-01-01

    The use of the analysis of noise for the detection of badly functioning of the components of a BWR it is a powerful tool in the determination of abnormal conditions of operation, during the life of a nuclear plant of power. From the eighties, some nuclear reactors have presented problems related with the jet pumps and the knots of the recirculation. The Regulatory Commission of the United States, in the I E bulletin 80-07, recommended to carry out a periodic supervision of the pressure drop of the jet pumps, to prevent structural failures. In this work, methods of analysis of noise are used for the detection of abnormal conditions of operation of the jet pumps of a BWR. Signals are analysed to low and high frequency of pressure drop with the NOISE software that is in development. The obtained results show the behavior of the jet pumps of jet 6 and 11 before and after a partial blockade in their throats where the pump 6 return to their condition of previous operation and the pump 11 present a new fall of pressure, inside the limit them permissible of operation. The methodology of the analysis of noise demonstrated to be an useful tool for the badly functioning detection, and you could apply to create a database to supervise the dynamic behavior of the jet pumps of an BWR. (Author)

  5. Association between power law coefficients of the anatomical noise power spectrum and lesion detectability in breast imaging modalities

    Science.gov (United States)

    Chen, Lin; Abbey, Craig K.; Boone, John M.

    2013-03-01

    Previous research has demonstrated that a parameter extracted from a power function fit to the anatomical noise power spectrum, β, may be predictive of breast mass lesion detectability in x-ray based medical images of the breast. In this investigation, the value of β was compared with a number of other more widely used parameters, in order to determine the relationship between β and these other parameters. This study made use of breast CT data sets, acquired on two breast CT systems developed in our laboratory. A total of 185 breast data sets in 183 women were used, and only the unaffected breast was used (where no lesion was suspected). The anatomical noise power spectrum computed from two-dimensional region of interests (ROIs), was fit to a power function (NPS(f) = α f-β), and the exponent parameter (β) was determined using log/log linear regression. Breast density for each of the volume data sets was characterized in previous work. The breast CT data sets analyzed in this study were part of a previous study which evaluated the receiver operating characteristic (ROC) curve performance using simulated spherical lesions and a pre-whitened matched filter computer observer. This ROC information was used to compute the detectability index as well as the sensitivity at 95% specificity. The fractal dimension was computed from the same ROIs which were used for the assessment of β. The value of β was compared to breast density, detectability index, sensitivity, and fractal dimension, and the slope of these relationships was investigated to assess statistical significance from zero slope. A statistically significant non-zero slope was considered to be a positive association in this investigation. All comparisons between β and breast density, detectability index, sensitivity at 95% specificity, and fractal dimension demonstrated statistically significant association with p performance. Specifically, lower values of β were associated with lower breast density

  6. Validation of a power-law noise model for simulating small-scale breast tissue

    International Nuclear Information System (INIS)

    Reiser, I; Edwards, A; Nishikawa, R M

    2013-01-01

    We have validated a small-scale breast tissue model based on power-law noise. A set of 110 patient images served as truth. The statistical model parameters were determined by matching the radially averaged power-spectrum of the projected simulated tissue with that of the central tomosynthesis patient breast projections. Observer performance in a signal-known exactly detection task in simulated and actual breast backgrounds was compared. Observers included human readers, a pre-whitening observer model and a channelized Hotelling observer model. For all observers, good agreement between performance in the simulated and actual backgrounds was found, both in the tomosynthesis central projections and the reconstructed images. This tissue model can be used for breast x-ray imaging system optimization. The complete statistical description of the model is provided. (paper)

  7. Aircrafts' taxi noise. Sound power level and directivity frequency band results

    NARCIS (Netherlands)

    Asensio, C.; Pavón, I.; Ruiz, M.; Pagan Munoz, Raul; Recuero, M.

    2009-01-01

    When noise mapping airports, the main noise sources are take offs and landings. But aircrafts' taxi noise can also be important, and should be considered, for instance when there are residential buildings near the airport's terminal. Main prediction tools, like Integrated Noise Model (INM), do not

  8. Short-term association between personal exposure to noise and heart rate variability: The RECORD MultiSensor Study.

    Science.gov (United States)

    El Aarbaoui, Tarik; Méline, Julie; Brondeel, Ruben; Chaix, Basile

    2017-12-01

    Studies revealed long-term associations between noise exposure and cardiovascular health, but the underlying short-term mechanisms remain uncertain. To explore the concomitant and lagged short-term associations between personal exposure to noise and heart rate variability (HRV) in a real life setting in the Île-de-France region. The RECORD MultiSensor Study collected between July 2014 and June 2015 noise and heart rate data for 75 participants, aged 34-74 years, in their living environments for 7 days using a personal dosimeter and electrocardiography (ECG) sensor on the chest. HRV parameters and noise levels were calculated for 5-min windows. Short-term relationships between noise level and log-transformed HRV parameters were assessed using mixed effects models with a random intercept for participants and a temporal autocorrelation structure, adjusted for heart rate, physical activity (accelerometry), and short-term trends. An increase by one dB(A) of A-weighted equivalent sound pressure level (Leq) was associated with a 0.97% concomitant increase of the Standard deviation of normal to normal intervals (SDNN) (95% CI: 0.92, 1.02), of 2.08% of the Low frequency band power (LF) (95% CI: 1.97, 2.18), of 1.30% of the High frequency band power (HF) (95% CI: 1.17, 1.43), and of 1.16% of the LF/HF ratio (95% CI: 1.10, 1.23). The analysis of lagged exposures to noise adjusted for the concomitant exposure illustrates the dynamic of recovery of the autonomic nervous system. Non-linear associations were documented with all HRV parameters with the exception of HF. Piecewise regression revealed that the association was almost 6 times stronger below than above 65 Leq dB(A) for the SDNN and LF/HF ratio. Personal noise exposure was found to be related to a concomitant increase of the overall HRV, with evidence of imbalance of the autonomic nervous system towards sympathetic activity, a pathway to increased cardiovascular morbidity and mortality. Copyright © 2017 Elsevier Ltd

  9. A CMOS power-efficient low-noise current-mode front-end amplifier for neural signal recording.

    Science.gov (United States)

    Wu, Chung-Yu; Chen, Wei-Ming; Kuo, Liang-Ting

    2013-04-01

    In this paper, a new current-mode front-end amplifier (CMFEA) for neural signal recording systems is proposed. In the proposed CMFEA, a current-mode preamplifier with an active feedback loop operated at very low frequency is designed as the first gain stage to bypass any dc offset current generated by the electrode-tissue interface and to achieve a low high-pass cutoff frequency below 0.5 Hz. No reset signal or ultra-large pseudo resistor is required. The current-mode preamplifier has low dc operation current to enhance low-noise performance and decrease power consumption. A programmable current gain stage is adopted to provide adjustable gain for adaptive signal scaling. A following current-mode filter is designed to adjust the low-pass cutoff frequency for different neural signals. The proposed CMFEA is designed and fabricated in 0.18-μm CMOS technology and the area of the core circuit is 0.076 mm(2). The measured high-pass cutoff frequency is as low as 0.3 Hz and the low-pass cutoff frequency is adjustable from 1 kHz to 10 kHz. The measured maximum current gain is 55.9 dB. The measured input-referred current noise density is 153 fA /√Hz , and the power consumption is 13 μW at 1-V power supply. The fabricated CMFEA has been successfully applied to the animal test for recording the seizure ECoG of Long-Evan rats.

  10. Designing and Manufacturing a Noise Controlling Silencer for the Cooling Tower Pump of Sarcheshmeh Copper Power Station

    Directory of Open Access Journals (Sweden)

    Sajad Zare

    2017-08-01

    Full Text Available Background One of the most common harmful factors in the workplace is noise. Noise control is a factor beneficial for health and safety in the workplace. Objectives The current study aimed to design and manufacture a silencer for the cooling tower pump of Sarcheshmeh Copper power station in order to control noise. Methods In this study, sound pressure level was measured by the use of a sound level meter (B & K 2260. Measurement was carried out in the light of ISO 1996 standard. After studying technical and acoustic features of the noise source, a dispersive-absorptive silencer was designed to control noise pollution generated by the cooling tower pump of the thermal station. After analyzing the frequencies of sound pressure level and using available data, a cylindrical silencer (with a diameter of 1.5 m and height of 3 m was designed and manufactured. The internal part of the silencer was filled with different columns of absorbent material covered with punched metal. Therefore, the silencer consisted of (1 acoustic diffuser, (2 acoustic chamber, and (3 acoustic channels. Results Measurements showed that, at a distance of 1 m from the source, sound pressure level reduced from 127 dBA before installing the silencer to 79 dBA after the installation, resulting in a reduction of 48 dBA. Conclusions Using a silencer with absorbent material (glass wool is very effective in reducing the noise generated by the pump.

  11. Noise from offshore wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Soendergaard, B.; Plovsing, B.

    2005-07-01

    Noise assessment of wind turbines through calculations is based on sound power levels measured according to e.g. IEC 61400-11. With larger wind turbines and distances some of the calculation models give erroneous results. Noise propagation over water is different from propagation over land. For that reason it is important be able to make valid noise assessments for offshore wind farms. A suggestion for an offshore measurement method is described and a survey of models for noise propagation offshore has been made. (au)

  12. Power measurement of the RA-3 reactor using the neutron noise technique and 16N

    International Nuclear Information System (INIS)

    Gomez, Angel

    2003-01-01

    This work describes a measurement method based on the neutron noise technique which is used for determining the relation between the power and the currents of two ionization chambers. These chambers are sensitive to the gamma radiation from the 16 N decay produced in the RA-3 reactor core. The power during operation is obtained from the calibration factors by measuring those currents. As this calibration factors depend on the cooler flow that circulates in the reactor core and in the 16 N measuring system, an estimator, that is a function of the ratio of this currents, is proposed in order to detect flow changes. (author)

  13. Identification of multivariate models for noise analysis of nuclear plant

    International Nuclear Information System (INIS)

    Zwingelstein, G.C.; Upadhyaya, B.R.

    1979-01-01

    During the normal operation of a pressurized water reactor, neutron noise analysis with multivariate autoregressive procedures in a valuable diagnostic tool to extract dynamic characteristics for incipient failure detection. The first part of the paper will describe in details the equations for estimating the multivariate autoregressive model matrices and the structure of various matrices. The matrices are estimated by solving a set of matrix operations, called Yule-Walker equations. The selection of optimal model order will also be discussed. Once the optimal parameter set is obtained, simple and fast calculations are used to determine the auto power spectral density, cross spectra, coherence function, phase. In addition the spectra may be decomposed into components being contributed from different noise sources. An application using neutron flux data collected on a nuclear plant will illustrate the efficiency of the method

  14. Predicting speech intelligibility in adverse conditions: evaluation of the speech-based envelope power spectrum model

    DEFF Research Database (Denmark)

    Jørgensen, Søren; Dau, Torsten

    2011-01-01

    conditions by comparing predictions to measured data from [Kjems et al. (2009). J. Acoust. Soc. Am. 126 (3), 1415-1426] where speech is mixed with four different interferers, including speech-shaped noise, bottle noise, car noise, and cafe noise. The model accounts well for the differences in intelligibility......The speech-based envelope power spectrum model (sEPSM) [Jørgensen and Dau (2011). J. Acoust. Soc. Am., 130 (3), 1475–1487] estimates the envelope signal-to-noise ratio (SNRenv) of distorted speech and accurately describes the speech recognition thresholds (SRT) for normal-hearing listeners...... observed for the different interferers. None of the standardized models successfully describe these data....

  15. A Tunable Low Noise Active Bandpass Filter Using a Noise Canceling Technique

    OpenAIRE

    Soltani, N.

    2016-01-01

    A monolithic tunable low noise active bandpass filter is presented in this study. Biasing voltages can control the center frequency and quality factor. By keeping the gain constant, the center frequency shift is 300 MHz. The quality factor can range from 90 to 290 at the center frequency. By using a noise cancelling circuit, noise is kept lower than 2.8 dB. The proposed filter is designed using MMIC technology with a center frequency of 2.4 GHz and a power consumption of 180 mW. ED02AH techno...

  16. Evaluation of cochlear function in normal-hearing young adults exposed to MP3 player noise by analyzing transient evoked otoacoustic emissions and distortion products.

    Science.gov (United States)

    Santaolalla Montoya, Francisco; Ibargüen, Agustín Martinez; Vences, Ana Rodriguez; del Rey, Ana Sanchez; Fernandez, Jose Maria Sanchez

    2008-10-01

    Exposure to recreational noise may cause injuries to the inner ear, and transient evoked (TEOAEs) and distortion product otoacoustic emissions (DPOAEs) may identify these cochlear alterations. The goal of this study was to evaluate TEOAEs and DPOAEs as a method to diagnose early cochlear alterations in young adults exposed to MP3 player noise. We performed a prospective study of the cochlear function in normal-hearing MP3 player users by analyzing TEOAE and DPOAE incidence, amplitude, and spectral content. We gathered a sample of 40 ears from patients between 19 and 29 years old (mean age 24.09 years, SD 3.9 years). We compared the results with those of a control group of 232 ears not exposed to MP3 noise from patients aged 18 to 32 years (mean age 23.35 years, SD 2.7 years). Fifty percent of ears were from females and 50% were from males. Subjects who had used MP3 players for most years and for more hours each week exhibited a reduction in TEOAE and DPOAE incidence and amplitudes and an increase in DPOAE thresholds. TEOAEs showed a statistically significant lower incidence and amplitudes for normal-hearing subjects using MP3 players at frequencies of 2000, 3000, and 4000 Hz. DPOAE incidence was lower at 700, 1000, 1500, and 2000 Hz; the amplitudes were lower at frequencies between 1500 and 6000 Hz; and the thresholds were higher for all frequency bands, statistically significant at frequencies from 1500 to 6000 Hz, p MP3 player noise exposure may be detectable by analyzing TEOAEs and DPOAEs before the impairment becomes clinically apparent.

  17. Ultra-low noise supercontinuum source for ultra-high resolution optical coherence tomography at 1300 nm

    Science.gov (United States)

    Gonzalo, I. B.; Maria, M.; Engelsholm, R. D.; Feuchter, T.; Leick, L.; Moselund, P. M.; Podoleanu, A.; Bang, O.

    2018-02-01

    Supercontinuum (SC) sources are of great interest for many applications due to their ultra-broad optical bandwidth, good beam quality and high power spectral density [1]. In particular, the high average power over large bandwidths makes SC light sources excellent candidates for ultra-high resolution optical coherence tomography (UHR-OCT) [2-5]. However, conventional SC sources suffer from high pulse-to-pulse intensity fluctuations as a result of the noise-sensitive nonlinear effects involved in the SC generation process [6-9]. This intensity noise from the SC source can limit the performance of OCT, resulting in a reduced signal-to-noise ratio (SNR) [10-12]. Much work has been done to reduce the noise of the SC sources for instance with fiber tapers [7,8] or increasing the repetition rate of the pump laser for averaging in the spectrometer [10,12]. An alternative approach is to use all-normal dispersion (ANDi) fibers [13,14] to generate SC light from well-known coherent nonlinear processes [15-17]. In fact, reduction of SC noise using ANDi fibers compared to anomalous dispersion SC pumped by sub-picosecond pulses has been recently demonstrated [18], but a cladding mode was used to stabilize the ANDi SC. In this work, we characterize the noise performance of a femtosecond pumped ANDi based SC and a commercial SC source in an UHR-OCT system at 1300 nm. We show that the ANDi based SC presents exceptional noise properties compared to a commercial source. An improvement of 5 dB in SNR is measured in the UHR-OCT system, and the noise behavior resembles that of a superluminiscent diode. This preliminary study is a step forward towards development of an ultra-low noise SC source at 1300 nm for ultra-high resolution OCT.

  18. Time response measurements of pressure sensors using pink noise technique

    International Nuclear Information System (INIS)

    Pereira, Iraci Martinez; Santos, Roberto Carlos dos

    2009-01-01

    This work presents an experimental setup for Pink Noise method application on pressure transmitters' response times. The Pink Noise method consists on injecting artificial pressure noise into the pressure transmitter. The artificial pressure noise is generated using a current-to-pressure (I-to-P) converter, which is driven by a random noise signal generator. The output pressure transmitter noise is then analyzed using conventional Noise Analysis Technique. Noise signals may be interpreted using spectral techniques or empirical time series models. The frequency domain method consists of evaluating the Power Spectral Density (PSD) function. The information needed for time constant estimation can be obtained by fitting an all-pole transfer function to this power spectral density. (author)

  19. Finite-size effects in transcript sequencing count distribution: its power-law correction necessarily precedes downstream normalization and comparative analysis.

    Science.gov (United States)

    Wong, Wing-Cheong; Ng, Hong-Kiat; Tantoso, Erwin; Soong, Richie; Eisenhaber, Frank

    2018-02-12

    signal-to-noise ratio by 50% and the statistical/detection sensitivity by as high as 30% regardless of the downstream mapping and normalization methods. Most importantly, the power-law correction improves concordance in significant calls among different normalization methods of a data series averagely by 22%. When presented with a higher sequence depth (4 times difference), the improvement in concordance is asymmetrical (32% for the higher sequencing depth instance versus 13% for the lower instance) and demonstrates that the simple power-law correction can increase significant detection with higher sequencing depths. Finally, the correction dramatically enhances the statistical conclusions and eludes the metastasis potential of the NUGC3 cell line against AGS of our dilution analysis. The finite-size effects due to undersampling generally plagues transcript count data with reproducibility issues but can be minimized through a simple power-law correction of the count distribution. This distribution correction has direct implication on the biological interpretation of the study and the rigor of the scientific findings. This article was reviewed by Oliviero Carugo, Thomas Dandekar and Sandor Pongor.

  20. On the low SNR capacity of log-normal turbulence channels with full CSI

    KAUST Repository

    Benkhelifa, Fatma; Tall, Abdoulaye; Rezki, Zouheir; Alouini, Mohamed-Slim

    2014-01-01

    In this paper, we characterize the low signal-To-noise ratio (SNR) capacity of wireless links undergoing the log-normal turbulence when the channel state information (CSI) is perfectly known at both the transmitter and the receiver. We derive a closed form asymptotic expression of the capacity and we show that it scales essentially as λ SNR where λ is the water-filling level satisfying the power constraint. An asymptotically closed-form expression of λ is also provided. Using this framework, we also propose an on-off power control scheme which is capacity-achieving in the low SNR regime.

  1. On the low SNR capacity of log-normal turbulence channels with full CSI

    KAUST Repository

    Benkhelifa, Fatma

    2014-09-01

    In this paper, we characterize the low signal-To-noise ratio (SNR) capacity of wireless links undergoing the log-normal turbulence when the channel state information (CSI) is perfectly known at both the transmitter and the receiver. We derive a closed form asymptotic expression of the capacity and we show that it scales essentially as λ SNR where λ is the water-filling level satisfying the power constraint. An asymptotically closed-form expression of λ is also provided. Using this framework, we also propose an on-off power control scheme which is capacity-achieving in the low SNR regime.

  2. Evoked response of heart rate variability using short-duration white noise.

    Science.gov (United States)

    Lee, Guo-She; Chen, Mei-Ling; Wang, Gin-You

    2010-06-24

    To investigate and to establish a model for evaluation of the instant cardiovascular responses to the noises of low-to-moderate intensity, sixteen healthy subjects were enrolled. The white noises were binaurally presented with a supra-aural earphone. The test intensities of noises were no noise, 50, 60, 70 and 80 dBA. Each noise was continued for 5 min and the electrocardiogram was simultaneously recorded. The cardiac autonomic responses were evaluated using power spectral analysis of the R-R contour obtained from digital signal processing of the ECG tracings. The result showed that the mean heart rate and mean blood pressure did not change significantly with the noises. However, the low-frequency power (LF) which represents cardiac autonomic modulations and the ratio (LHR) of LF to high-frequency power (HF) which reflects cardiac sympathetic modulations were significantly greater in the noise intensity of 50, 60, 70 and 80dBA (pnoise intensity (rho=0.90, pwhite noises can be detected using power spectral analysis of heart rate variability and the evoked responses may provide a sensitive way to evaluate the instant effect of noise to humans.

  3. Enhanced ground bounce noise reduction in a low-leakage CMOS multiplier

    Science.gov (United States)

    Verma, Bipin Kumar; Akashe, Shyam; Sharma, Sanjay

    2015-09-01

    In this paper, various parameters are used to reduce leakage power, leakage current and noise margin of circuits to enhance their performance. A multiplier is proposed with low-leakage current and low ground bounce noise for the microprocessor, digital signal processors (DSP) and graphics engines. The ground bounce noise problem appears when a conventional power-gating circuit transits from sleep-to-active mode. This paper discusses a reduction in leakage current in the stacking power-gating technique by three modes - sleep, active and sleep-to-active. The simulation results are performed on a 4 × 4 carry-save multiplier for leakage current, active power, leakage power and ground bounce noise, and comparison made for different nanoscales. Ground bounce noise is limited to 90%. The leakage current of the circuit is decimated up to 80% and the active power is reduced to 31%. We performed simulations using cadence virtuoso 180 and 45 nm at room temperature at various supply voltages.

  4. Filtering Performance Comparison of Kernel and Wavelet Filters for Reactivity Signal Noise

    International Nuclear Information System (INIS)

    Park, Moon Ghu; Shin, Ho Cheol; Lee, Yong Kwan; You, Skin

    2006-01-01

    Nuclear reactor power deviation from the critical state is a parameter of specific interest defined by the reactivity measuring neutron population. Reactivity is an extremely important quantity used to define many of the reactor startup physics parameters. The time dependent reactivity is normally determined by solving the using inverse neutron kinetics equation. The reactivity computer is a device to provide an on-line solution of the inverse kinetics equation. The measurement signal of the neutron density is normally noise corrupted and the control rods movement typically gives reactivity variation with edge signals like saw teeth. Those edge regions should be precisely preserved since the measured signal is used to estimate the reactivity wroth which is a crucial parameter to assure the safety of the nuclear reactors. In this paper, three kind of edge preserving noise filters are proposed and their performance is demonstrated using stepwise signals. The tested filters are based on the unilateral, bilateral kernel and wavelet filters which are known to be effective in edge preservation. The bilateral filter shows a remarkable improvement compared with unilateral kernel and wavelet filters

  5. An Integrated Approach for RNA-seq Data Normalization.

    Science.gov (United States)

    Yang, Shengping; Mercante, Donald E; Zhang, Kun; Fang, Zhide

    2016-01-01

    DNA copy number alteration is common in many cancers. Studies have shown that insertion or deletion of DNA sequences can directly alter gene expression, and significant correlation exists between DNA copy number and gene expression. Data normalization is a critical step in the analysis of gene expression generated by RNA-seq technology. Successful normalization reduces/removes unwanted nonbiological variations in the data, while keeping meaningful information intact. However, as far as we know, no attempt has been made to adjust for the variation due to DNA copy number changes in RNA-seq data normalization. In this article, we propose an integrated approach for RNA-seq data normalization. Comparisons show that the proposed normalization can improve power for downstream differentially expressed gene detection and generate more biologically meaningful results in gene profiling. In addition, our findings show that due to the effects of copy number changes, some housekeeping genes are not always suitable internal controls for studying gene expression. Using information from DNA copy number, integrated approach is successful in reducing noises due to both biological and nonbiological causes in RNA-seq data, thus increasing the accuracy of gene profiling.

  6. Predicting the effect of spectral subtraction on the speech recognition threshold based on the signal-to-noise ratio in the envelope domain

    DEFF Research Database (Denmark)

    Jørgensen, Søren; Dau, Torsten

    2011-01-01

    rarely been evaluated perceptually in terms of speech intelligibility. This study analyzed the effects of the spectral subtraction strategy proposed by Berouti at al. [ICASSP 4 (1979), 208-211] on the speech recognition threshold (SRT) obtained with sentences presented in stationary speech-shaped noise....... The SRT was measured in five normal-hearing listeners in six conditions of spectral subtraction. The results showed an increase of the SRT after processing, i.e. a decreased speech intelligibility, in contrast to what is predicted by the Speech Transmission Index (STI). Here, another approach is proposed......, denoted the speech-based envelope power spectrum model (sEPSM) which predicts the intelligibility based on the signal-to-noise ratio in the envelope domain. In contrast to the STI, the sEPSM is sensitive to the increased amount of the noise envelope power as a consequence of the spectral subtraction...

  7. Development of a perceptually calibrated objective metric of noise

    Science.gov (United States)

    Keelan, Brian W.; Jin, Elaine W.; Prokushkin, Sergey

    2011-01-01

    A system simulation model was used to create scene-dependent noise masks that reflect current performance of mobile phone cameras. Stimuli with different overall magnitudes of noise and with varying mixtures of red, green, blue, and luminance noises were included in the study. Eleven treatments in each of ten pictorial scenes were evaluated by twenty observers using the softcopy ruler method. In addition to determining the quality loss function in just noticeable differences (JNDs) for the average observer and scene, transformations for different combinations of observer sensitivity and scene susceptibility were derived. The psychophysical results were used to optimize an objective metric of isotropic noise based on system noise power spectra (NPS), which were integrated over a visual frequency weighting function to yield perceptually relevant variances and covariances in CIE L*a*b* space. Because the frequency weighting function is expressed in terms of cycles per degree at the retina, it accounts for display pixel size and viewing distance effects, so application-specific predictions can be made. Excellent results were obtained using only L* and a* variances and L*a* covariance, with relative weights of 100, 5, and 12, respectively. The positive a* weight suggests that the luminance (photopic) weighting is slightly narrow on the long wavelength side for predicting perceived noisiness. The L*a* covariance term, which is normally negative, reflects masking between L* and a* noise, as confirmed in informal evaluations. Test targets in linear sRGB and rendered L*a*b* spaces for each treatment are available at http://www.aptina.com/ImArch/ to enable other researchers to test metrics of their own design and calibrate them to JNDs of quality loss without performing additional observer experiments. Such JND-calibrated noise metrics are particularly valuable for comparing the impact of noise and other attributes, and for computing overall image quality.

  8. A framework for noise-power spectrum analysis of multidimensional images

    International Nuclear Information System (INIS)

    Siewerdsen, J.H.; Cunningham, I.A.; Jaffray, D.A.

    2002-01-01

    A methodological framework for experimental analysis of the noise-power spectrum (NPS) of multidimensional images is presented that employs well-known properties of the n-dimensional (nD) Fourier transform. The approach is generalized to n dimensions, reducing to familiar cases for n=1 (e.g., time series) and n=2 (e.g., projection radiography) and demonstrated experimentally for two cases in which n=3 (viz., using an active matrix flat-panel imager for x-ray fluoroscopy and cone-beam CT to form three-dimensional (3D) images in spatiotemporal and volumetric domains, respectively). The relationship between fully nD NPS analysis and various techniques for analyzing a 'central slice' of the NPS is formulated in a manner that is directly applicable to measured nD data, highlights the effects of correlation, and renders issues of NPS normalization transparent. The spatiotemporal NPS of fluoroscopic images is analyzed under varying conditions of temporal correlation (image lag) to investigate the degree to which the NPS is reduced by such correlation. For first-frame image lag of ∼5-8 %, the NPS is reduced by ∼20% compared to the lag-free case. A simple model is presented that results in an approximate rule of thumb for computing the effect of image lag on NPS under conditions of spatiotemporal separability. The volumetric NPS of cone-beam CT images is analyzed under varying conditions of spatial correlation, controlled by adjustment of the reconstruction filter. The volumetric NPS is found to be highly asymmetric, exhibiting a ramp characteristic in transverse planes (typical of filtered back-projection) and a band-limited characteristic in the longitudinal direction (resulting from low-pass characteristics of the imager). Such asymmetry could have implications regarding the detectability of structures visualized in transverse versus sagittal or coronal planes. In all cases, appreciation of the full dimensionality of the image data is essential to obtaining

  9. Measured Noise from Small Unmanned Aerial Vehicles

    Science.gov (United States)

    Cabell, Randolph; McSwain, Robert; Grosveld, Ferdinand

    2016-01-01

    Proposed uses of small unmanned aerial vehicles (UAVs), including home package delivery, have the potential to expose large portions of communities to a new noise source. This paper discusses results of flyover noise measurements of four small UAVs, including an internal combustion-powered model airplane and three battery-powered multicopters. Basic noise characteristics of these vehicles are discussed, including spectral properties and sound level metrics such as sound pressure level, effective perceived noise level, and sound exposure level. The size and aerodynamic characteristics of the multicopters in particular make their flight path susceptible to atmospheric disturbances such as wind gusts. These gusts, coupled with a flight control system that varies rotor speed to maintain vehicle stability, create an unsteady acoustic signature. The spectral variations resulting from this unsteadiness are explored, in both hover and flyover conditions for the multicopters. The time varying noise, which differs from the relatively steady noise generated by large transport aircraft, may complicate the prediction of human annoyance using conventional sound level metrics.

  10. A Multilayer Perceptron-Based Impulsive Noise Detector with Application to Power-Line-Based Sensor Networks

    KAUST Repository

    Chien, Ying-Ren

    2018-04-10

    For power-line-based sensor networks, impulsive noise (IN) will dramatically degrade the data transmission rate in the power line. In this paper, we present a multilayer perceptron (MLP)-based approach to detect IN in orthogonal frequency-division multiplexing (OFDM)-based baseband power line communications (PLCs). Combining the MLP-based IN detection method with the outlier detection theory allows more accurate identification of the harmful residual IN. For OFDM-based PLC systems, the high peak-to-average power ratio (PAPR) of the received signal makes detection of harmful residual IN more challenging. The detection mechanism works in an iterative receiver that contains a pre-IN mitigation and a post-IN mitigation. The pre-IN mitigation is meant to null the stronger portion of IN, while the post-IN mitigation suppresses the residual portion of IN using an iterative process. Compared with previously reported IN detectors, the simulation results show that our MLP-based IN detector improves the resulting bit error rate (BER) performance.

  11. Design of a Front– End Amplifier for the Maximum Power Delivery and Required Noise by HBMO with Support Vector Microstrip Model

    Directory of Open Access Journals (Sweden)

    F. Guneş

    2014-04-01

    Full Text Available Honey Bee Mating Optimization (HBMO is a recent swarm-based optimization algorithm to solve highly nonlinear problems, whose based approach combines the powers of simulated annealing, genetic algorithms, and an effective local search heuristic to search for the best possible solution to the problem under investigation within a reasonable computing time. In this work, the HBMO- based design is carried out for a front-end amplifier subject to be a subunit of a radar system in conjunction with a cost effective 3-D SONNET-based Support Vector Regression Machine (SVRM microstrip model. All the matching microstrip widths, lengths are obtained on a chosen substrate to satisfy the maximum power delivery and the required noise over the required bandwidth of a selected transistor. The proposed HBMO- based design is applied to the design of a typical ultra-wide-band low noise amplifier with NE3512S02 on a substrate of Rogers 4350 for the maximum output power and the noise figure F(f=1dB within the 5-12 GHz using the T- type of microstrip matching circuits. Furthermore, the effectiveness and efficiency of the proposed HBMO based design are manifested by comparing it with the Genetic Algorithm (GA, Particle Swarm Optimization (PSO and the simple HBMO based designs.

  12. Improved Noise Minimum Statistics Estimation Algorithm for Using in a Speech-Passing Noise-Rejecting Headset

    Directory of Open Access Journals (Sweden)

    Seyedtabaee Saeed

    2010-01-01

    Full Text Available This paper deals with configuration of an algorithm to be used in a speech-passing angle grinder noise-canceling headset. Angle grinder noise is annoying and interrupts ordinary oral communication. Meaning that, low SNR noisy condition is ahead. Since variation in angle grinder working condition changes noise statistics, the noise will be nonstationary with possible jumps in its power. Studies are conducted for picking an appropriate algorithm. A modified version of the well-known spectral subtraction shows superior performance against alternate methods. Noise estimation is calculated through a multi-band fast adapting scheme. The algorithm is adapted very quickly to the non-stationary noise environment while inflecting minimum musical noise and speech distortion on the processed signal. Objective and subjective measures illustrating the performance of the proposed method are introduced.

  13. An inductorless wideband LNA with a new noise canceling technique

    OpenAIRE

    MOGHADAM, POURIA PAZHOUHESH; ABRISHAMIFAR, ADIB

    2017-01-01

    An inductorless wideband low-noise amplifier (LNA) employing a new noise canceling technique for multistandard applications is presented. The main amplifier has a cascode common gate structure, which provides good input impedance matching and isolation. The proposed noise canceling technique not only improves the noise figure and power gain but also embeds a g$_{m}$-boosting technique in itself, which reduces the power consumption of the main amplifier. Using current-steering and ...

  14. Analysis of power tiller noise using diesel-biodiesel fuel blends

    OpenAIRE

    N Keramat Siavash; Gh Najafi; S. R Hassan Beigi Bidgoli; B Ghobadian

    2015-01-01

    Introduction: There are several sources of noise in an industrial and agriculture environment. Machines with rotating or reciprocating engines are sound-producing sources. Also, the audio signal can be analyzed to discover how well a machine operates. Diesel engines complex noise SPL and sound frequency content both strongly depend on fuel combustion, which produces the so-called combustion noise. Actually, the unpleasant sound signature of diesel engines is due to the harsh and irregular sel...

  15. The effects of noise exposure and musical training on suprathreshold auditory processing and speech perception in noise.

    Science.gov (United States)

    Yeend, Ingrid; Beach, Elizabeth Francis; Sharma, Mridula; Dillon, Harvey

    2017-09-01

    Recent animal research has shown that exposure to single episodes of intense noise causes cochlear synaptopathy without affecting hearing thresholds. It has been suggested that the same may occur in humans. If so, it is hypothesized that this would result in impaired encoding of sound and lead to difficulties hearing at suprathreshold levels, particularly in challenging listening environments. The primary aim of this study was to investigate the effect of noise exposure on auditory processing, including the perception of speech in noise, in adult humans. A secondary aim was to explore whether musical training might improve some aspects of auditory processing and thus counteract or ameliorate any negative impacts of noise exposure. In a sample of 122 participants (63 female) aged 30-57 years with normal or near-normal hearing thresholds, we conducted audiometric tests, including tympanometry, audiometry, acoustic reflexes, otoacoustic emissions and medial olivocochlear responses. We also assessed temporal and spectral processing, by determining thresholds for detection of amplitude modulation and temporal fine structure. We assessed speech-in-noise perception, and conducted tests of attention, memory and sentence closure. We also calculated participants' accumulated lifetime noise exposure and administered questionnaires to assess self-reported listening difficulty and musical training. The results showed no clear link between participants' lifetime noise exposure and performance on any of the auditory processing or speech-in-noise tasks. Musical training was associated with better performance on the auditory processing tasks, but not the on the speech-in-noise perception tasks. The results indicate that sentence closure skills, working memory, attention, extended high frequency hearing thresholds and medial olivocochlear suppression strength are important factors that are related to the ability to process speech in noise. Crown Copyright © 2017. Published by

  16. 34. Meeting of Experts. Noise immission

    International Nuclear Information System (INIS)

    2001-01-01

    In quiet areas there is a risk that wind turbine noise will exceed the background level even if it is lower than the immission limit. It will however be quite unpractical to take special notice to such areas and since the immission limit is respected the noise level will still be acceptable. Complaints from neighbours can unfortunately be expected no matter where the wind power plants are built. A small study in Denmark shows that about 10% of the population will feel disturbed by the immission limits that they have. Some of the participants pointed out that it would be simpler if wind power noise was included in other noise immission regulations. Within the European Union the Commission has made a proposal for common noise immission level descriptions and evaluation methods. It is primarily intended for traffic noise but can be expanded to include other areas, such as wind power noise. It suggests an equivalent annual average sound level (Lden) where the night level has a penalty of 10 dB(A) and the evening level of 5 dB(A). It should be emphasised that the proposal is not concerned with the specific values of the noise level limits, only with how they are defined. In some countries the limit varies with the time of the day. The night limit is the lowest and therefore the determining value in most cases. Wind turbines with variable RPM can however alter their speed to fit the limits and hence increase the energy output during the day and lower it at night. The result will be that a turbine with variable RPM can produce more energy than a similar one with fixed RPM but still fulfil the noise regulations. Though there are not many of these wind turbines installed today the number is likely to increase in the near future. As said when different day and night limits were discussed, having different immission limits at different hours will increase the possible energy output of a wind power plant with variable RPM. The new regulation in Holland uses a wind speed

  17. Noise in distributed erbium-doped fibers

    DEFF Research Database (Denmark)

    Rottwitt, Karsten; Povlsen, Jørn Hedegaard; Bjarklev, Anders Overgaard

    1993-01-01

    Theoretical limits in noise figure for a long-haul transmission line based on lumped amplification are contrasted with distributed amplification. The latter results in a reduction of approximately 60% of the required number of pump power stations. The distributed optical amplification is provided...... by an erbium-doped fiber and comparisons of aluminum and germanium as codopant materials are shown. The pump power consumption and noise figure are analyzed with respect to the background loss...

  18. Detection threshold for sound distortion resulting from noise reduction in normal-hearing and hearing-impaired listeners

    NARCIS (Netherlands)

    Brons, Inge; Dreschler, Wouter A.; Houben, Rolph

    2014-01-01

    Hearing-aid noise reduction should reduce background noise, but not disturb the target speech. This objective is difficult because noise reduction suffers from a trade-off between the amount of noise removed and signal distortion. It is unknown if this important trade-off differs between

  19. Integrated ensemble noise-reconstructed empirical mode decomposition for mechanical fault detection

    Science.gov (United States)

    Yuan, Jing; Ji, Feng; Gao, Yuan; Zhu, Jun; Wei, Chenjun; Zhou, Yu

    2018-05-01

    A new branch of fault detection is utilizing the noise such as enhancing, adding or estimating the noise so as to improve the signal-to-noise ratio (SNR) and extract the fault signatures. Hereinto, ensemble noise-reconstructed empirical mode decomposition (ENEMD) is a novel noise utilization method to ameliorate the mode mixing and denoised the intrinsic mode functions (IMFs). Despite the possibility of superior performance in detecting weak and multiple faults, the method still suffers from the major problems of the user-defined parameter and the powerless capability for a high SNR case. Hence, integrated ensemble noise-reconstructed empirical mode decomposition is proposed to overcome the drawbacks, improved by two noise estimation techniques for different SNRs as well as the noise estimation strategy. Independent from the artificial setup, the noise estimation by the minimax thresholding is improved for a low SNR case, which especially shows an outstanding interpretation for signature enhancement. For approximating the weak noise precisely, the noise estimation by the local reconfiguration using singular value decomposition (SVD) is proposed for a high SNR case, which is particularly powerful for reducing the mode mixing. Thereinto, the sliding window for projecting the phase space is optimally designed by the correlation minimization. Meanwhile, the reasonable singular order for the local reconfiguration to estimate the noise is determined by the inflection point of the increment trend of normalized singular entropy. Furthermore, the noise estimation strategy, i.e. the selection approaches of the two estimation techniques along with the critical case, is developed and discussed for different SNRs by means of the possible noise-only IMF family. The method is validated by the repeatable simulations to demonstrate the synthetical performance and especially confirm the capability of noise estimation. Finally, the method is applied to detect the local wear fault

  20. Time-Distance Helioseismology: Noise Estimation

    Science.gov (United States)

    Gizon, L.; Birch, A. C.

    2004-10-01

    As in global helioseismology, the dominant source of noise in time-distance helioseismology measurements is realization noise due to the stochastic nature of the excitation mechanism of solar oscillations. Characterizing noise is important for the interpretation and inversion of time-distance measurements. In this paper we introduce a robust definition of travel time that can be applied to very noisy data. We then derive a simple model for the full covariance matrix of the travel-time measurements. This model depends only on the expectation value of the filtered power spectrum and assumes that solar oscillations are stationary and homogeneous on the solar surface. The validity of the model is confirmed through comparison with SOHO MDI measurements in a quiet-Sun region. We show that the correlation length of the noise in the travel times is about half the dominant wavelength of the filtered power spectrum. We also show that the signal-to-noise ratio in quiet-Sun travel-time maps increases roughly as the square root of the observation time and is at maximum for a distance near half the length scale of supergranulation.

  1. A Tunable Low Noise Active Bandpass Filter Using a Noise Canceling Technique

    Directory of Open Access Journals (Sweden)

    N. Soltani

    2016-12-01

    Full Text Available A monolithic tunable low noise active bandpass filter is presented in this study. Biasing voltages can control the center frequency and quality factor. By keeping the gain constant, the center frequency shift is 300 MHz. The quality factor can range from 90 to 290 at the center frequency. By using a noise cancelling circuit, noise is kept lower than 2.8 dB. The proposed filter is designed using MMIC technology with a center frequency of 2.4 GHz and a power consumption of 180 mW. ED02AH technology is used to simulate the circuit elements.

  2. Electronic quantum noise and microwave photons

    International Nuclear Information System (INIS)

    Bize-Reydellet, L.H.

    2003-06-01

    This work is devoted to the experimental study of quantum electronic noise in mesoscopic conductors. In the first part of this thesis, we studied shot noise in a one-dimensional ballistic conductor: a quantum point contact (QPC). We showed experimentally that, when one of the QPC contacts is irradiated with microwave photons, we observe partition noise in the absence of net current flowing through the sample. Thus, we validate the scattering theory of photo-assisted shot noise first by measuring the Fano factor without bias voltage across the conductor, and then by measuring shot noise in the doubly non equilibrium situation, where both a bias voltage and a microwave modulation are applied. In the second part, we realized the first tests of a new experimental set-up which will be able to measure high frequency noise of a mesoscopic conductor and the photon statistics emitted by this conductor in the measurement circuit. These tests consist in realizing Hanbury-Brown and Twiss type experiments (intensity interferometry) with two kinds of microwave photon source. First, we used a thermal incoherent source (macroscopic 50 Ohms resistor). It showed super-Poissonian noise, since the power fluctuations are proportional to the square of the mean photon power. Secondly, we studied a classical monochromatic source, which shows a Poissonian statistics. The giant Fano factor measured is perfectly explained by the attenuator and amplifier noise. (author)

  3. Noise aliasing in interline-video-based fluoroscopy systems

    International Nuclear Information System (INIS)

    Lai, H.; Cunningham, I.A.

    2002-01-01

    Video-based imaging systems for continuous (nonpulsed) x-ray fluoroscopy use a variety of video formats. Conventional video-camera systems may operate in either interlaced or progressive-scan modes, and CCD systems may operate in interline- or frame-transfer modes. A theoretical model of the image noise power spectrum corresponding to these formats is described. It is shown that with respect to frame-transfer or progressive-readout modes, interline or interlaced cameras operating in a frame-integration mode will result in a spectral shift of 25% of the total image noise power from low spatial frequencies to high. In a field-integration mode, noise power is doubled with most of the increase occurring at high spatial frequencies. The differences are due primarily to the effect of noise aliasing. In interline or interlaced formats, alternate lines are obtained with each video field resulting in a vertical sampling frequency for noise that is one half of the physical sampling frequency. The extent of noise aliasing is modified by differences in the statistical correlations between video fields in the different modes. The theoretical model is validated with experiments using an x-ray image intensifier and CCD-camera system. It is shown that different video modes affect the shape of the noise-power spectrum and therefore the detective quantum efficiency. While the effect on observer performance is not addressed, it is concluded that in order to minimize image noise at the critical mid-to-high spatial frequencies for a specified x-ray exposure, fluoroscopic systems should use only frame-transfer (CCD camera) or progressive-scan (conventional video) formats

  4. Improvement of road noise by reduction of acoustic radiation from body panels; Panel no hoshaon teigen ni yoru road noise no kaizen

    Energy Technology Data Exchange (ETDEWEB)

    Kamura, T; Utsunomiya, A; Sugihara, T; Tobita, K [Mazda Motor Corp., Hiroshima (Japan)

    1997-10-01

    This paper describes road noise reduction methods accomplished by reducing acoustic power radiated from body panels. Fundamental study of acoustic and dynamic characteristics with rectangular panels revealed following results: (1) The lower stiffness panel had lower radiation efficiency and made damping materials work more effective to reduce the acoustic power. (2) The acoustic power was also reduced by designing the panel so that it can generate the vibration of (2, 2) mode, which has the lowest radiation efficiency, in road noise frequency region. By applying these methods to a vehicle floor, we confirmed the improvement of road noise performance. 3 refs., 12 figs.

  5. Noise-control needs in the developing energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Keast, D.N.

    1978-03-01

    The noise characteristics of existing energy conversion technologies, e.g., from obtaining and processing fossil fuels to power plants operations, and of developing energy technologies (wind, geothermal sources, solar energy or fusion systems) are discussed in terms of the effects of noise on humans, animals, structures, and equipment and methods for noise control. Regulations for noise control are described. Recommendations are made for further research on noise control and noise effects. (LCL)

  6. Predicting the Inflow Distortion Tone Noise of the NASA Glenn Advanced Noise Control Fan with a Combined Quadrupole-Dipole Model

    Science.gov (United States)

    Koch, L. Danielle

    2012-01-01

    A combined quadrupole-dipole model of fan inflow distortion tone noise has been extended to calculate tone sound power levels generated by obstructions arranged in circumferentially asymmetric locations upstream of a rotor. Trends in calculated sound power level agreed well with measurements from tests conducted in 2007 in the NASA Glenn Advanced Noise Control Fan. Calculated values of sound power levels radiated upstream were demonstrated to be sensitive to the accuracy of the modeled wakes from the cylindrical rods that were placed upstream of the fan to distort the inflow. Results indicate a continued need to obtain accurate aerodynamic predictions and measurements at the fan inlet plane as engineers work towards developing fan inflow distortion tone noise prediction tools.

  7. Design of a 1 _s real-time low-noise data acquisition for power converters control loop

    CERN Document Server

    AUTHOR|(SzGeCERN)712364; Arpaia, Pasquale; Cerqueira Bastos, Miguel; Martino, Michele

    2015-01-01

    The proof of principle of a real-time data acquisition system to be integrated into a digital control loop for controlling the power converters of the Compact LInear Collider is presented. The system is based on an ultra low noise analogue front-end with 1:1 ppm RMS noise (referred to input), and about 1 _s of real-time delay. After the analogue conditioning, a fully-differential analogue-todigital converter is foreseen. The requirements of this system, directly derived from the accelerator performance, are discussed and translated into design specification. The results obtained by means of Pspice simulations are reported in order to prove that the design is feasible with the proposed architecture. Finally, the results of the experimental validation of the prototype, currently under design, will be included in the final paper.

  8. Natural and man-made terrestrial electromagnetic noise: an outlook

    Directory of Open Access Journals (Sweden)

    A. Meloni

    2007-06-01

    Full Text Available The terrestrial environment is continuously exposed to electromagnetic radiations which set up a «background» electromagnetic noise. Within the Non Ionizing Radiation band (NIR, i.e. for frequencies lower than 300 GHz, this background can have a natural or an artificial origin. Natural origins of electromagnetic radiations are generally atmospheric or cosmic while artificial origins are technological applications, power transmission, communications, etc. This paper briefly describes the natural and man-made electromagnetic noise in the NIR band. Natural noise comes from a large variety of sources involving different physical phenomena and covering a wide range of frequencies and showing various propagation characteristics with an extremely broad range of power levels. Due to technological growth man-made electromagnetic noise is nowadays superimposed on natural noise almost everywhere on Earth. In the last decades man-made noise has increased dramatically over and above the natural noise in residential and business areas. This increase has led some scientists to consider possible negative effects of electromagnetic waves on human life and living systems in general. Accurate measurements of natural and man-made electromagnetic noise are necessary to understand the relative power levels in the different bands and their influence on life.

  9. Integrated low noise low power interface for neural bio-potentials recording and conditioning

    Science.gov (United States)

    Bottino, Emanuele; Martinoia, Sergio; Valle, Maurizio

    2005-06-01

    The recent progress in both neurobiology and microelectronics suggests the creation of new, powerful tools to investigate the basic mechanisms of brain functionality. In particular, a lot of efforts are spent by scientific community to define new frameworks devoted to the analysis of in-vitro cultured neurons. One possible approach is recording their spiking activity to monitor the coordinated cellular behaviour and get insights about neural plasticity. Due to the nature of neurons action-potentials, when considering the design of an integrated microelectronic-based recording system, a number of problems arise. First, one would desire to have a high number of recording sites (i.e. several hundreds): this poses constraints on silicon area and power consumption. In this regard, our aim is to integrate-through on-chip post-processing techniques-hundreds of bio-compatible microsensors together with CMOS standard-process low-power (i.e. some tenths of uW per channel) conditioning electronics. Each recording channel is provided with sampling electronics to insure synchronous recording so that, for example, cross-correlation between signals coming from different sites can be performed. Extra-cellular potentials are in the range of [50-150] uV, so a comparison in terms of noise-efficiency was carried out among different architectures and very low-noise pre-amplification electronics (i.e. less than 5 uVrms) was designed. As spikes measurements are made with respect to the voltage of a reference electrode, we opted for an AC-coupled differential-input preamplifier provided with band-pass filtering capability. To achieve this, we implemented large time-constant (up to seconds) integrated components in the preamp feedback path. Thus, we got rid also of random slow-drifting DC-offsets and common mode signals. The paper will present our achievements in the design and implementation of a fully integrated bio-abio interface to record neural spiking activity. In particular

  10. Human-Machine interface for off normal and emergency situations in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Kee Choon [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-01-01

    Many nuclear power plants (NPPs) have reported that a high percentage of all major failures in the plants are caused by human errors. Therefore, there has been much focus on elimination of human errors, enhancement of human performance, and general improvement of human machine interface (HMI). Both the utility management and the regulators are demanding improvement in this area. The International Atomic Energy Agency (IAEA) Specialists' Meeting on 'Human-Machine Interface for Off Normal and Emergency Situations in Nuclear Power Plants' was co-organized by the Korea Atomic Energy Research Institute (KAERI) and the Korea Power Engineering Company, INC (KOPEC), and took place in Taejeon, Republic of Korea, 1999 October 26-28. Fifty eight participants, representing nine member countries reviewed recent developments and discussed directions for future efforts in the Human-Machine Interface for Off Normal and Emergency Situations in NPPs. Twenty papers were presented, covering a wide spectrum of technical and scientific subjects including recent experience and benefits from Operational Experience with HMI, Development of HMI System, Licensing Issues for HMI and Future Development and Trends. (Author)

  11. Human-Machine interface for off normal and emergency situations in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Kee Choon [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-01-01

    Many nuclear power plants (NPPs) have reported that a high percentage of all major failures in the plants are caused by human errors. Therefore, there has been much focus on elimination of human errors, enhancement of human performance, and general improvement of human machine interface (HMI). Both the utility management and the regulators are demanding improvement in this area. The International Atomic Energy Agency (IAEA) Specialists' Meeting on 'Human-Machine Interface for Off Normal and Emergency Situations in Nuclear Power Plants' was co-organized by the Korea Atomic Energy Research Institute (KAERI) and the Korea Power Engineering Company, INC (KOPEC), and took place in Taejeon, Republic of Korea, 1999 October 26-28. Fifty eight participants, representing nine member countries reviewed recent developments and discussed directions for future efforts in the Human-Machine Interface for Off Normal and Emergency Situations in NPPs. Twenty papers were presented, covering a wide spectrum of technical and scientific subjects including recent experience and benefits from Operational Experience with HMI, Development of HMI System, Licensing Issues for HMI and Future Development and Trends. (Author)

  12. Signatures of nonlinearity in single cell noise-induced oscillations.

    Science.gov (United States)

    Thomas, Philipp; Straube, Arthur V; Timmer, Jens; Fleck, Christian; Grima, Ramon

    2013-10-21

    A class of theoretical models seeks to explain rhythmic single cell data by postulating that they are generated by intrinsic noise in biochemical systems whose deterministic models exhibit only damped oscillations. The main features of such noise-induced oscillations are quantified by the power spectrum which measures the dependence of the oscillatory signal's power with frequency. In this paper we derive an approximate closed-form expression for the power spectrum of any monostable biochemical system close to a Hopf bifurcation, where noise-induced oscillations are most pronounced. Unlike the commonly used linear noise approximation which is valid in the macroscopic limit of large volumes, our theory is valid over a wide range of volumes and hence affords a more suitable description of single cell noise-induced oscillations. Our theory predicts that the spectra have three universal features: (i) a dominant peak at some frequency, (ii) a smaller peak at twice the frequency of the dominant peak and (iii) a peak at zero frequency. Of these, the linear noise approximation predicts only the first feature while the remaining two stem from the combination of intrinsic noise and nonlinearity in the law of mass action. The theoretical expressions are shown to accurately match the power spectra determined from stochastic simulations of mitotic and circadian oscillators. Furthermore it is shown how recently acquired single cell rhythmic fibroblast data displays all the features predicted by our theory and that the experimental spectrum is well described by our theory but not by the conventional linear noise approximation. © 2013 Elsevier Ltd. All rights reserved.

  13. Joint Use of Adaptive Equalization and Cyclic Noise Cancellation for Band-Limited OQAM Based Multi-Carrier Transmission in Power-Line Communication Systems

    Science.gov (United States)

    Kunishima, Hiromitsu; Koga, Hisao; Muta, Osamu; Akaiwa, Yoshihiko

    Power-line communication (PLC) technique is one method to realize high-speed communications in a home network. In PLC channels, the transmission signal quality is degraded by colored non-Gaussian noise as well as frequency-selectivity of the channels. In this paper, we describe our investigation of the performance of a OQAM-MCT system in which a noise canceller is used jointly with a time-domain per-subcarrier adaptive equalizer. Furthermore, we propose a noise cancellation method designed for the OQAM-MCT system. The performance of the OQAM-MCT system is evaluated in PLC channels with measured impulse responses in the presence of measured noise. Computer simulation results show that the bit rate of the OQAM-MCT system is improved using both an adaptive equalizer and noise canceller, and that the OQAM-MCT system achieves better performance than an OFDM system with an insufficient length of the guard interval.

  14. Propagation of waves in a randomly inhomogeneous medium with strongly developed fluctuations. III. Arbitrary power-law noise correlation function

    International Nuclear Information System (INIS)

    Adzhemyan, L.Ts.; Vasil'ev, A.N.; Pis'mak, Yu.M.

    1988-01-01

    The investigation of the infrared behavior of the propagator of a light wave in a randomly inhomogeneous medium with massless Gaussian noise is continued. The infrared representation of the propagator for correlation function D varphi (k)∼k -2 is generalized to the case of an arbitrary power-law noise correlation function is rigorously established in the first two orders of the infrared asymptotic behavior by construction of a suitable R operation. As a consequence, the results are generalized to the case of critical opalescence, when D varphi (k)∼k -2+η , where η ∼ 0.03 is the Fisher index

  15. Efficient Substrate Noise Coupling Verification and Failure Analysis Methodology for Smart Power ICs in Automotive Applications

    OpenAIRE

    Moursy , Yasser; Zou , Hao; Khalil , Raouf; Iskander , Ramy; Tisserand , Pierre; Ton , Dieu-My; Pasetti , Giuseppe; Louërat , Marie-Minerve

    2016-01-01

    International audience; This paper presents a methodology to analyze the substrate noise coupling and reduce their effects in smart power integrated circuits. This methodology considers the propagation of minority carriers in the substrate. Hence, it models the lateral bipolar junction transistors that are layout dependent and are not modeled in conventional substrate extraction tools. It allows the designer to simulate substrate currents and check their effects on circuits functionality. The...

  16. Use of local noise power spectrum and wavelet analysis in quantitative image quality assurance for EPIDs

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Soyoung [Department of Radiation Oncology, University Hospitals Case and Medical Center, Cleveland, Ohio 44106 (United States); Yan, Guanghua; Bassett, Philip; Samant, Sanjiv, E-mail: samant@ufl.edu [Department of Radiation Oncology, University of Florida College of Medicine, Gainesville, Florida 32608 (United States); Gopal, Arun [Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland 21201 (United States)

    2016-09-15

    Purpose: To investigate the use of local noise power spectrum (NPS) to characterize image noise and wavelet analysis to isolate defective pixels and inter-subpanel flat-fielding artifacts for quantitative quality assurance (QA) of electronic portal imaging devices (EPIDs). Methods: A total of 93 image sets including custom-made bar-pattern images and open exposure images were collected from four iViewGT a-Si EPID systems over three years. Global quantitative metrics such as modulation transform function (MTF), NPS, and detective quantum efficiency (DQE) were computed for each image set. Local NPS was also calculated for individual subpanels by sampling region of interests within each subpanel of the EPID. The 1D NPS, obtained by radially averaging the 2D NPS, was fitted to a power-law function. The r-square value of the linear regression analysis was used as a singular metric to characterize the noise properties of individual subpanels of the EPID. The sensitivity of the local NPS was first compared with the global quantitative metrics using historical image sets. It was then compared with two commonly used commercial QA systems with images collected after applying two different EPID calibration methods (single-level gain and multilevel gain). To detect isolated defective pixels and inter-subpanel flat-fielding artifacts, Haar wavelet transform was applied on the images. Results: Global quantitative metrics including MTF, NPS, and DQE showed little change over the period of data collection. On the contrary, a strong correlation between the local NPS (r-square values) and the variation of the EPID noise condition was observed. The local NPS analysis indicated image quality improvement with the r-square values increased from 0.80 ± 0.03 (before calibration) to 0.85 ± 0.03 (after single-level gain calibration) and to 0.96 ± 0.03 (after multilevel gain calibration), while the commercial QA systems failed to distinguish the image quality improvement between the two

  17. Evaluation of a speaker identification system with and without fusion using three databases in the presence of noise and handset effects

    Science.gov (United States)

    S. Al-Kaltakchi, Musab T.; Woo, Wai L.; Dlay, Satnam; Chambers, Jonathon A.

    2017-12-01

    In this study, a speaker identification system is considered consisting of a feature extraction stage which utilizes both power normalized cepstral coefficients (PNCCs) and Mel frequency cepstral coefficients (MFCC). Normalization is applied by employing cepstral mean and variance normalization (CMVN) and feature warping (FW), together with acoustic modeling using a Gaussian mixture model-universal background model (GMM-UBM). The main contributions are comprehensive evaluations of the effect of both additive white Gaussian noise (AWGN) and non-stationary noise (NSN) (with and without a G.712 type handset) upon identification performance. In particular, three NSN types with varying signal to noise ratios (SNRs) were tested corresponding to street traffic, a bus interior, and a crowded talking environment. The performance evaluation also considered the effect of late fusion techniques based on score fusion, namely, mean, maximum, and linear weighted sum fusion. The databases employed were TIMIT, SITW, and NIST 2008; and 120 speakers were selected from each database to yield 3600 speech utterances. As recommendations from the study, mean fusion is found to yield overall best performance in terms of speaker identification accuracy (SIA) with noisy speech, whereas linear weighted sum fusion is overall best for original database recordings.

  18. RB reactor noise analysis; Analiza sumova reaktora RB

    Energy Technology Data Exchange (ETDEWEB)

    Petrovic, M; Velickovic, Lj; Markovic, V; Jovanovic, S [Institut za nuklearne nauke Boris Kidric, Vinca, Beograd (Yugoslavia)

    1964-07-01

    Statistical fluctuations of reactivity represent reactor noise. Analysis of reactor noise enables determining a series of reactor kinetic parameters. Fluctuations of power was measured by ionization chamber placed next to the tank of the RB reactor. The signal was digitized by an analog-digital converter. After calculation of the mean power, 3000 data obtained by sampling were analysed.

  19. The effects of limited bandwidth and noise on verbal processing time and word recall in normal-hearing children.

    Science.gov (United States)

    McCreery, Ryan W; Stelmachowicz, Patricia G

    2013-09-01

    Understanding speech in acoustically degraded environments can place significant cognitive demands on school-age children who are developing the cognitive and linguistic skills needed to support this process. Previous studies suggest the speech understanding, word learning, and academic performance can be negatively impacted by background noise, but the effect of limited audibility on cognitive processes in children has not been directly studied. The aim of the present study was to evaluate the impact of limited audibility on speech understanding and working memory tasks in school-age children with normal hearing. Seventeen children with normal hearing between 6 and 12 years of age participated in the present study. Repetition of nonword consonant-vowel-consonant stimuli was measured under conditions with combinations of two different signal to noise ratios (SNRs; 3 and 9 dB) and two low-pass filter settings (3.2 and 5.6 kHz). Verbal processing time was calculated based on the time from the onset of the stimulus to the onset of the child's response. Monosyllabic word repetition and recall were also measured in conditions with a full bandwidth and 5.6 kHz low-pass cutoff. Nonword repetition scores decreased as audibility decreased. Verbal processing time increased as audibility decreased, consistent with predictions based on increased listening effort. Although monosyllabic word repetition did not vary between the full bandwidth and 5.6 kHz low-pass filter condition, recall was significantly poorer in the condition with limited bandwidth (low pass at 5.6 kHz). Age and expressive language scores predicted performance on word recall tasks, but did not predict nonword repetition accuracy or verbal processing time. Decreased audibility was associated with reduced accuracy for nonword repetition and increased verbal processing time in children with normal hearing. Deficits in free recall were observed even under conditions where word repetition was not affected

  20. Noise guidelines across Canada : a practical look at the key inputs

    International Nuclear Information System (INIS)

    Marshall, J.

    2010-01-01

    Methods of applying noise guidelines in Canada to wind turbine siting plans were discussed. A noise impact analysis is a critical feature of wind turbine siting. However, noise impacts at the receptor (dBA) and their relation to the sound power levels emitted from wind turbines are not well-understood by wind power operators. Decibel and perceived sound levels were discussed, and issues related to noise modelling at the basic component level were reviewed. The inputs defined by different noise guidelines across Canada were outlined in order to determine the impact that inputs may have on the results of noise modelling studies. Various Canadian noise models were evaluated and compared. Noise modelling techniques were also discussed in relation to constraint maps and turbine siting strategies. tabs., figs.

  1. Noise and Vibrations Measurements. External noise and vibrations measurements for offshore SODAR application

    International Nuclear Information System (INIS)

    Ormel, F.T.; Eecen, P.J.; Herman, S.A.

    2003-10-01

    The partners in the WISE project investigate whether application of the SODAR (sonic detection and ranging) measurement technique in wind energy experimental work is feasible as a replacement for cup anemometers, wind direction sensors and tall meteorological masts. In Work Package 2 of the WISE project extensive controlled experiments with the SODAR are performed. For example SODAR measurements are compared with measurements from nearby masts and different brands of SODARs are compared. Part of the work package is the measurement of vibration and noise on an offshore SODAR system. The results of these measurements are presented in this report. ECN performed measurements at an offshore location to investigate the influence of noise and vibrations on the performance of a MiniSODAR measurement system. The aim of the measurements is to quantify the effect of these external noise and vibrations disturbances on the MiniSODAR's performance. Measurements on an identical SODAR system onshore are carried out to compare the disturbances of offshore and onshore external conditions. The effect of background noise on SODAR operation has clearly been established in literature. Therefore, measurements have been performed only to establish the absolute sound pressure levels. This is done at the Measuring Platform Noordwijk (MPN) located in the North Sea, nine kilometres out of the coast at Noordwijk, The Netherlands, and at two locations onshore. At the MPN-platform, the SODAR has been moved from the middle deck to the upper deck to diminish the influence of the diesel generator needed for the electric powering of the island. Although the absolute sound pressure level became higher at the new location, this level became lower at the most important frequencies inside the SODAR, due to the use of absorbing foam. With regards to the sound pressure level the move improved the situation. The sound pressure levels measured offshore were 6 to 15 dB higher than for the two locations

  2. The Multi一physics Research on I ron一Core Vibration Noise of Power Reactor

    Directory of Open Access Journals (Sweden)

    LI U Ja

    2017-02-01

    Full Text Available On the basis of theoretical research releted to the magnetostriction and maxwell’.s equations,the fi- nite element coupling in the transient electromagnetic field coupling,structure and sound field coupling has been developed In thts paper by using the flnlte element sOftWare CO}IS01., Whleh establish a serles three-phase COT’e re- actor model, to analyzing the power frequency magnetic field distribution,core magnetostrictive displacement,max- well force displacement and sound pressure level of the three-phase series core reactor under the power frequency working state. According to transient magnetic field distribution in the simulation of the reactor,the magnetic flux density distribution inside the reactor and the vibration displacement distribution are calculated,the acoustic field distribution is measured alao. It is shown that physical field simulation results and measured data are basically in consisent by experiment,it is proved multi-physics coupling is an effective method for forecast of noise.

  3. Image simulation and a model of noise power spectra across a range of mammographic beam qualities

    Energy Technology Data Exchange (ETDEWEB)

    Mackenzie, Alistair, E-mail: alistairmackenzie@nhs.net; Dance, David R.; Young, Kenneth C. [National Coordinating Centre for the Physics of Mammography, Royal Surrey County Hospital, Guildford GU2 7XX, United Kingdom and Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); Diaz, Oliver [Centre for Vision, Speech and Signal Processing, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom and Computer Vision and Robotics Research Institute, University of Girona, Girona 17071 (Spain)

    2014-12-15

    Purpose: The aim of this work is to create a model to predict the noise power spectra (NPS) for a range of mammographic radiographic factors. The noise model was necessary to degrade images acquired on one system to match the image quality of different systems for a range of beam qualities. Methods: Five detectors and x-ray systems [Hologic Selenia (ASEh), Carestream computed radiography CR900 (CRc), GE Essential (CSI), Carestream NIP (NIPc), and Siemens Inspiration (ASEs)] were characterized for this study. The signal transfer property was measured as the pixel value against absorbed energy per unit area (E) at a reference beam quality of 28 kV, Mo/Mo or 29 kV, W/Rh with 45 mm polymethyl methacrylate (PMMA) at the tube head. The contributions of the three noise sources (electronic, quantum, and structure) to the NPS were calculated by fitting a quadratic at each spatial frequency of the NPS against E. A quantum noise correction factor which was dependent on beam quality was quantified using a set of images acquired over a range of radiographic factors with different thicknesses of PMMA. The noise model was tested for images acquired at 26 kV, Mo/Mo with 20 mm PMMA and 34 kV, Mo/Rh with 70 mm PMMA for three detectors (ASEh, CRc, and CSI) over a range of exposures. The NPS were modeled with and without the noise correction factor and compared with the measured NPS. A previous method for adapting an image to appear as if acquired on a different system was modified to allow the reference beam quality to be different from the beam quality of the image. The method was validated by adapting the ASEh flat field images with two thicknesses of PMMA (20 and 70 mm) to appear with the imaging characteristics of the CSI and CRc systems. Results: The quantum noise correction factor rises with higher beam qualities, except for CR systems at high spatial frequencies, where a flat response was found against mean photon energy. This is due to the dominance of secondary quantum noise

  4. Signal processing in noise waveform radar

    CERN Document Server

    Kulpa, Krzysztof

    2013-01-01

    This book is devoted to the emerging technology of noise waveform radar and its signal processing aspects. It is a new kind of radar, which use noise-like waveform to illuminate the target. The book includes an introduction to basic radar theory, starting from classical pulse radar, signal compression, and wave radar. The book then discusses the properties, difficulties and potential of noise radar systems, primarily for low-power and short-range civil applications. The contribution of modern signal processing techniques to making noise radar practical are emphasized, and application examples

  5. Noise masking of S-cone increments and decrements.

    Science.gov (United States)

    Wang, Quanhong; Richters, David P; Eskew, Rhea T

    2014-11-12

    S-cone increment and decrement detection thresholds were measured in the presence of bipolar, dynamic noise masks. Noise chromaticities were the L-, M-, and S-cone directions, as well as L-M, L+M, and achromatic (L+M+S) directions. Noise contrast power was varied to measure threshold Energy versus Noise (EvN) functions. S+ and S- thresholds were similarly, and weakly, raised by achromatic noise. However, S+ thresholds were much more elevated by S, L+M, L-M, L- and M-cone noises than were S- thresholds, even though the noises consisted of two symmetric chromatic polarities of equal contrast power. A linear cone combination model accounts for the overall pattern of masking of a single test polarity well. L and M cones have opposite signs in their effects upon raising S+ and S- thresholds. The results strongly indicate that the psychophysical mechanisms responsible for S+ and S- detection, presumably based on S-ON and S-OFF pathways, are distinct, unipolar mechanisms, and that they have different spatiotemporal sampling characteristics, or contrast gains, or both. © 2014 ARVO.

  6. Implementation of New Reactivity Measurement System and New Reactor Noise Analysis Equipment in a VVER-440 Nuclear Power Plant

    Science.gov (United States)

    Vegh, János; Kiss, Sándor; Lipcsei, Sándor; Horvath, Csaba; Pos, István; Kiss, Gábor

    2010-10-01

    The paper deals with two recently developed, high-precision nuclear measurement systems installed at the VVER-440 units of the Hungarian Paks NPP. Both developments were motivated by the reactor power increase to 108%, and by the planned plant service time extension. The first part describes the RMR start-up reactivity measurement system with advanced services. High-precision picoampere meters were installed at each reactor unit and measured ionization chamber current signals are handled by a portable computer providing data acquisition and online reactivity calculation service. Detailed offline evaluation and analysis of reactor start-up measurements can be performed on the portable unit, too. The second part of the paper describes a new reactor noise diagnostics system using state-of-the-art data acquisition hardware and signal processing methods. Details of the new reactor noise measurement evaluation software are also outlined. Noise diagnostics at Paks NPP is a standard tool for core anomaly detection and for long-term noise trend monitoring. Regular application of these systems is illustrated by real plant data, e.g., results of standard reactivity measurements during a reactor startup session are given. Noise applications are also illustrated by real plant measurements; results of core anomaly detection are presented.

  7. Cross correlation measurement of low frequency conductivity noise

    Science.gov (United States)

    Jain, Aditya Kumar; Nigudkar, Himanshu; Chakraborti, Himadri; Udupa, Aditi; Gupta, Kantimay Das

    2018-04-01

    In order to study the low frequency noise(1/f noise)an experimental technique based on cross correlation of two channels is presented. In this method the device under test (DUT)is connected to the two independently powered preamplifiers in parallel. The amplified signals from the two preamplifiers are fed to two channels of a digitizer. Subsequent data processing largelyeliminates the uncorrelated noise of the two channels. This method is tested for various commercial carbon/metal film resistors by measuring equilibrium thermal noise (4kBTR). The method is then modified to study the non-equilibrium low frequency noise of heterostructure samples using fiveprobe configuration. Five contact probes allow two parts of the sample to become two arms of a balanced bridge. This configuration helps in suppressing the effect of power supply fluctuations, bath temperature fluctuations and contact resistances.

  8. The analysis of transient noise of PCB P/G network based on PI/SI co-simulation

    Science.gov (United States)

    Haohang, Su

    2018-02-01

    With the frequency of the space camera become higher than before, the power noise of the imaging electronic system become the important factor. Much more power noise would disturb the transmissions signal, and even influence the image sharpness and system noise. "Target impedance method" is one of the traditional design method of P/G network (power and ground network), which is shorted of transient power noise analysis and often made "over design". In this paper, a new design method of P/G network is provided which simulated by PI/SI co-simulation. The transient power noise can be simulated and then applied in the design of noise reduction, thus effectively controlling the change of the noise in the P/G network. The method can efficiently control the number of adding decoupling capacitor, and is very efficient and feasible to keep the power integrity.

  9. Helicopter Flight Procedures for Community Noise Reduction

    Science.gov (United States)

    Greenwood, Eric

    2017-01-01

    A computationally efficient, semiempirical noise model suitable for maneuvering flight noise prediction is used to evaluate the community noise impact of practical variations on several helicopter flight procedures typical of normal operations. Turns, "quick-stops," approaches, climbs, and combinations of these maneuvers are assessed. Relatively small variations in flight procedures are shown to cause significant changes to Sound Exposure Levels over a wide area. Guidelines are developed for helicopter pilots intended to provide effective strategies for reducing the negative effects of helicopter noise on the community. Finally, direct optimization of flight trajectories is conducted to identify low noise optimal flight procedures and quantify the magnitude of community noise reductions that can be obtained through tailored helicopter flight procedures. Physically realizable optimal turns and approaches are identified that achieve global noise reductions of as much as 10 dBA Sound Exposure Level.

  10. Quantitative electroencephalogram (QEEG Spectrum Analysis of Patients with Schizoaffective Disorder Compared to Normal Subjects.

    Directory of Open Access Journals (Sweden)

    Mahdi Moeini

    2014-12-01

    Full Text Available The aim of this study was to achieve a better understanding of schizoaffective disorder. Therefore, we obtained electroencephalogram (EEG signals from patients with schizoaffective disorder and analyzed them in comparison to normal subjects.Forty patients with schizoaffective disorder and 40 normal subjects were selected randomly and their electroencephalogram signals were recorded based on 10-20 international system by 23 electrodes in open- and closed-eyes while they were sitting on a chair comfortably. After preprocessing for noise removal and artifact reduction, we took 60- second segments from each recorded signals. Then, the absolute and relative powers of these segments were evaluated in all channels and in 4 frequency bands (i.e., delta, theta, alpha and beta waves. Finally, Data were analyzed by independent t-test using SPSS software.A significant decrease in relative power in the alpha band, a significant decrease in power spectra in the alpha band and a significant increase in power spectra in the beta band were found in patients compared to normal subjects (P < 0.05. The predominant wave in the centro-parietal region was the beta wave in patients, but it was the alpha band in normal subjects (P = 0.048. Also, the predominant wave of the occipital region in patients was the delta wave, while it was the alpha wave in normal subjects (P = 0.038.Considering the findings, particularly based on the significant decrease of the alpha waves in schizoaffective patients, it can be concluded that schizoaffective disorder can be seen in schizophrenia spectrum.

  11. Signal processing method for Johnson noise thermometry

    International Nuclear Information System (INIS)

    Hwang, I. G.; Moon, B. S.; Kinser, Rpger

    2003-01-01

    The development of Johnson Noise Thermometry requires a high sensitive preamplifier circuit to pick up the temperature-related noise on the sensing element. However, the random noise generated in this amplification circuit causes a significant erroneous influence to the measurement. This paper describes signal processing mechanism of the Johnson Noise Thermometry system which is underway of development in collaboration between KAERI and ORNL. It adopts two identical amplifier channels and utilizes a digital signal processing technique to remove the independent noise of each channel. The CPSD(Cross Power Spectral Density) function is used to cancel the independent noise and the differentiation of narrow or single frequency peak from the CPSD data separates the common mode electromagnetic interference noise

  12. Acoustic plane waves normally incident on a clamped panel in a rectangular duct. [to explain noise reduction curves for reducing interior noise in aircraft

    Science.gov (United States)

    Unz, H.; Roskam, J.

    1979-01-01

    The theory of acoustic plane wave normally incident on a clamped panel in a rectangular duct is developed. The coupling theory between the elastic vibrations of the panel (plate) and the acoustic wave propagation in infinite space and in the rectangular duct is considered. The partial differential equation which governs the vibration of the panel (plate) is modified by adding to its stiffness (spring) forces and damping forces, and the fundamental resonance frequency and the attenuation factor are discussed. The noise reduction expression based on the theory is found to agree well with the corresponding experimental data of a sample aluminum panel in the mass controlled region, the damping controlled region, and the stiffness controlled region. All the frequency positions of the upward and downward resonance spikes in the sample experimental data are identified theoretically as resulting from four cross interacting major resonance phenomena: the cavity resonance, the acoustic resonance, the plate resonance, and the wooden back panel resonance.

  13. Parallel feedback active noise control of MRI acoustic noise with signal decomposition using hybrid RLS-NLMS adaptive algorithms.

    Science.gov (United States)

    Ganguly, Anshuman; Krishna Vemuri, Sri Hari; Panahi, Issa

    2014-01-01

    This paper presents a cost-effective adaptive feedback Active Noise Control (FANC) method for controlling functional Magnetic Resonance Imaging (fMRI) acoustic noise by decomposing it into dominant periodic components and residual random components. Periodicity of fMRI acoustic noise is exploited by using linear prediction (LP) filtering to achieve signal decomposition. A hybrid combination of adaptive filters-Recursive Least Squares (RLS) and Normalized Least Mean Squares (NLMS) are then used to effectively control each component separately. Performance of the proposed FANC system is analyzed and Noise attenuation levels (NAL) up to 32.27 dB obtained by simulation are presented which confirm the effectiveness of the proposed FANC method.

  14. Noise from Two-Blade Propellers

    Science.gov (United States)

    Stowell, E Z; Deming, A F

    1936-01-01

    The two-blade propeller, one of the most powerful sources of sound known, has been studied with the view of obtaining fundamental information concerning the noise emission. In order to eliminate engine noise, the propeller was mounted on an electric motor. A microphone was used to pick up the sound whose characteristics were studied electrically. The distribution of noise throughout the frequency range, as well as the spatial distribution about the propeller, was studied. The results are given in the form of polar diagrams. An appendix of common acoustical terms is included.

  15. Pooling of cross-cultural PRO data in multinational clinical trials: how much can poor measurement affect statistical power?

    Science.gov (United States)

    Regnault, Antoine; Hamel, Jean-François; Patrick, Donald L

    2015-02-01

    Cultural differences and/or poor linguistic validation of patient-reported outcome (PRO) instruments may result in differences in the assessment of the targeted concept across languages. In the context of multinational clinical trials, these measurement differences may add noise and potentially measurement bias to treatment effect estimation. Our objective was to explore the potential effect on treatment effect estimation of the "contamination" of a cultural subgroup by a flawed PRO measurement. We ran a simulation exercise in which the distribution of the score in the overall sample was considered a mixture of two normal distributions: a standard normal distribution was assumed in a "main" subgroup and a normal distribution which differed either in mean (bias) or in variance (noise) in a "contaminated" subgroup (the subgroup with potential flaws in the PRO measurement). The observed power was compared to the expected power (i.e., the power that would have been observed if the subgroup had not been contaminated). Even if differences between the expected and observed power were small, some substantial differences were obtained (up to a 0.375 point drop in power). No situation was systematically protected against loss of power. The impact of poor PRO measurement in a cultural subgroup may induce a notable drop in the study power and consequently reduce the chance of showing an actual treatment effect. These results illustrate the importance of the efforts to optimize conceptual and linguistic equivalence of PRO measures when pooling data in international clinical trials.

  16. Effect of Low-Level Laser Stimulation on EEG Power in Normal Subjects with Closed Eyes

    Directory of Open Access Journals (Sweden)

    Jih-Huah Wu

    2013-01-01

    Full Text Available In a previous study, we found that the low-level laser (LLL stimulation at the palm with a frequency of 10 Hz was able to induce significant brain activation in normal subjects with opened eyes. However, the electroencephalography (EEG changes to LLL stimulation in subjects with closed eyes have not been studied. In the present study, the laser array stimulator was applied to deliver insensible laser stimulations to the palm of the tested subjects with closed eyes (the laser group. The EEG activities before, during, and after the laser stimulation were collected. The EEG amplitude powers of each EEG frequency band at 19 locations were calculated. These power data were then analyzed by SPSS software using repeated-measure ANOVAs and appropriate posthoc tests. We found a pronounced decrease in the EEG power in alpha-bandwidth during laser simulation and then less decrease in the EEG power in delta-bandwidth in normal subjects with laser stimulation. The EEG power in beta-bandwidth in the right occipital area also decreased significantly in the laser group. We suggest that LLL stimulation might be conducive to falling into sleep in patients with sleep problems.

  17. An estimation of population doses from a nuclear power plant during normal operation

    International Nuclear Information System (INIS)

    Nowicki, K.

    1975-07-01

    A model is presented for estimation of the potential submersion and inhalation radiation doses to people located within a distance of 1000 km from a nuclear power plant during normal operation. The model was used to calculate doses for people living 200-1000 km from hypothetical nuclear power facility sited near the geographical centre of Denmark. Two kinds of sources are considered for this situation: - unit release of 15 isotopes of noble gases and iodines, - effluent releases from two types of 1000 MWe Light Water Power Reactors: PWR and BWR. Parameter variations were made and analyzed in order to obtain a better understanding of the mechanisms of the model. (author)

  18. Contralateral Noise Stimulation Delays P300 Latency in School-Aged Children.

    Science.gov (United States)

    Ubiali, Thalita; Sanfins, Milaine Dominici; Borges, Leticia Reis; Colella-Santos, Maria Francisca

    2016-01-01

    The auditory cortex modulates auditory afferents through the olivocochlear system, which innervates the outer hair cells and the afferent neurons under the inner hair cells in the cochlea. Most of the studies that investigated the efferent activity in humans focused on evaluating the suppression of the otoacoustic emissions by stimulating the contralateral ear with noise, which assesses the activation of the medial olivocochlear bundle. The neurophysiology and the mechanisms involving efferent activity on higher regions of the auditory pathway, however, are still unknown. Also, the lack of studies investigating the effects of noise on human auditory cortex, especially in peadiatric population, points to the need for recording the late auditory potentials in noise conditions. Assessing the auditory efferents in schoolaged children is highly important due to some of its attributed functions such as selective attention and signal detection in noise, which are important abilities related to the development of language and academic skills. For this reason, the aim of the present study was to evaluate the effects of noise on P300 responses of children with normal hearing. P300 was recorded in 27 children aged from 8 to 14 years with normal hearing in two conditions: with and whitout contralateral white noise stimulation. P300 latencies were significantly longer at the presence of contralateral noise. No significant changes were observed for the amplitude values. Contralateral white noise stimulation delayed P300 latency in a group of school-aged children with normal hearing. These results suggest a possible influence of the medial olivocochlear activation on P300 responses under noise condition.

  19. Investigation of neural network paradigms for the development of automatic noise diagnostic/reactor surveillance systems

    International Nuclear Information System (INIS)

    Korsah, K.; Uhrig, R.E.

    1991-01-01

    The use of artificial intelligence (AI) techniques as an aid in the maintenance and operation of nuclear power plant systems has been recognized for the past several years, and several applications using expert systems technology currently exist. The authors investigated the backpropagation paradigm for the recognition of neutron noise power spectral density (PSD) signatures as a possible alternative to current methods based on statistical techniques. The goal is to advance the state of the art in the application of noise analysis techniques to monitor nuclear reactor internals. Continuous surveillance of reactor systems for structural degradation can be quite cost-effective because (1) the loss of mechanical integrity of the reactor internal components can be detected at an early stage before severe damage occurs, (2) unnecessary periodic maintenance can be avoided, (3) plant downtime can be reduced to a minimum, (4) a high level of plant safety can be maintained, and (5) it can be used to help justify the extension of a plant's operating license. The initial objectives were to use neutron noise PSD data from a pressurized water reactor, acquired over a period of ∼2 years by the Oak Ridge National Laboratory (ORNL) Power Spectral Density RECognition (PSDREC) system to develop networks that can (1) differentiate between normal neutron spectral data and anomalous spectral data (e.g., malfunctioning instrumentation); and (2) detect significant shifts in the positions of spectral resonances while reducing the effect of small, random shifts (in neutron noise analysis, shifts in the resonance(s) present in a neutron PSD spectrum are the primary means for diagnosing degradation of reactor internals). 11 refs, 8 figs

  20. Model-based temperature noise monitoring methods for LMFBR core anomaly detection

    International Nuclear Information System (INIS)

    Tamaoki, Tetsuo; Sonoda, Yukio; Sato, Masuo; Takahashi, Ryoichi.

    1994-01-01

    Temperature noise, measured by thermocouples mounted at each core fuel subassembly, is considered to be the most useful signal for detecting and locating local cooling anomalies in an LMFBR core. However, the core outlet temperature noise contains background noise due to fluctuations in the operating parameters including reactor power. It is therefore necessary to reduce this background noise for highly sensitive anomaly detection by subtracting predictable components from the measured signal. In the present study, both a physical model and an autoregressive model were applied to noise data measured in the experimental fast reactor JOYO. The results indicate that the autoregressive model has a higher precision than the physical model in background noise prediction. Based on these results, an 'autoregressive model modification method' is proposed, in which a temporary autoregressive model is generated by interpolation or extrapolation of reference models identified under a small number of different operating conditions. The generated autoregressive model has shown sufficient precision over a wide range of reactor power in applications to artificial noise data produced by an LMFBR noise simulator even when the coolant flow rate was changed to keep a constant power-to-flow ratio. (author)

  1. Reduction of external noise of mobile energy facilities by using active noise control system in muffler

    Science.gov (United States)

    Polivaev, O. I.; Kuznetsov, A. N.; Larionov, A. N.; Beliansky, R. G.

    2018-03-01

    The paper describes a method for the reducing emission of low-frequency noise of modern automotive vehicles into the environment. The importance of reducing the external noise of modern mobile energy facilities made in Russia is substantiated. Standard methods for controlling external noise in technology are of low efficiency when low-frequency sound waves are reduced. In this case, it is in the low-frequency zone of the sound range that the main power of the noise emitted by the machinery lies. The most effective way to reduce such sound waves is to use active noise control systems. A design of a muffler using a similar system is presented. This muffler allowed one to reduce the emission of increased noise levels into the environment by 7-11 dB and to increase acoustic comfort at the operator's workplace by 3-5 dB.

  2. Measurement and analyses of spectral noise power in computed tomography; Medida y analisis del espectro de potencias del ruido en imagenes de tomografia computarizada

    Energy Technology Data Exchange (ETDEWEB)

    Castro Tejero, P.; Garayoa Roca, J.

    2014-07-01

    Noise is an important feature of image quality. The standard deviation of pixel value in a uniform region has been frequently used as a metric to characterize noise. However, this measure does not provide any information about the noise spatial distribution. A more complete description is given by the Noise Power Spectrum (NPS) which provides both the amount and the spatial correlation of noise. The objective of the present work is to present a methodology and a computing tool to obtain the NPS, in order to analyze its components and study their behaviour for computed tomography (TC) images. Our results show that the major contribution to NPS is a random source for all the explored working conditions. The structural component is constrained to the low frequency region, where it can be as important as the random component. Moreover, we observe that the reconstruction filter and the acquisition technique, axial or helical, have a clear impact on the image noise. (Author)

  3. Period analysis at high noise level

    International Nuclear Information System (INIS)

    Kovacs, G.

    1980-01-01

    Analytical expressions are derived for the variances of some types of the periodograms due to normal-distributed noise present in the data. The equivalence of the Jurkevich and the Warner and Robinson methods is proved. The optimum phase cell number of the Warner and Robinson method is given; this number depends on the data length, signal form and noise level. The results are illustrated by numerical examples. (orig.)

  4. Background noise of acoustic emission signals in sodium piping loop

    International Nuclear Information System (INIS)

    Mori, Y.; Aoki, K.; Kuribayashi, K.; Kishi, T.; Sakakibara, Y.

    1985-01-01

    Background noise measurement in the frequency range of acoustic emission (AE) signals was made on the sodium piping loops of a 50 MW steam generator test facility in the Power Reactor and Nuclear Fuel Development Corporation (PNC). During the dynamic characteristics test of the steam generator over a wide range of operating conditions, the background noise generated on the pipe surface was measured using wideband AE sensor externally mounted with waveguide. Data were obtained for the effect of power loads of steam generator on both amplitude and frequency spectra of background noise signals. Source and nature of background noise were established

  5. Prediction of flyover jet noise spectra from static tests

    Science.gov (United States)

    Michel, U.; Michalke, A.

    A scaling law for predicting the overall flyover noise of a single stream shock-free circular jet from static experiments is outlined. It is valid for isothermal and hot jets. It assumes that the jet flow and turbulence field are axially stretched in flight. Effects of the boundary layer within the nozzle and along the engine nacelle are neglected. The scaling laws for the power spectral density and spectra with constant relative bandwidth can be derived. In order to compare static and inflight directivities, the far field point relative to the source position must be denoted by the emission angle and the wave normal distance. From the solution of the convective Lighthill equation in a coordinate system fixed to the jet nozzle (wind tunnel case), the power spectral density of sound pressure at a given frequency is found. Predictions for Aerotrain compare well with measured values.

  6. Application of a coupled kinetics-thermalhydraulic computer model to noise analysis

    International Nuclear Information System (INIS)

    Miguel Cecenas Falcon; Rina M Campos-Gonzalez; Edmundo del Valle Gallegos

    2005-01-01

    Full text of publication follows: Noise analysis is a common tool to evaluate dynamic properties of a Boiling Water Reactor using the power measurements provided by the nuclear instrumentation, such as LPRMs. Stability monitors use noise analysis to evaluate the system decay ratio, and they require a large amount of data in order to test and validate the algorithms and produce reliable monitoring. Because a nuclear reactor normally operates at or near nominal conditions, the amount of interesting stationary data at relatively low power is limited. There are very important stability benchmarks that recorded power for a number of cases involving operation close to the stability boundary, and even during a fully developed limit cycle, but in general there is a limited amount of data at points of interest in the power and flow map, to be used for stability studies. Under this limitation, a model that can generate all the required information for any point in the power and flow map is useful. Particular importance has the capacity to generate time series equivalent to noisy LPRM signals close to the natural circulation line, and test the early detection of still incipient out of phase oscillations in the core. In order to generate these signals, a model of 36 parallel boiling channels is prepared to reproduce the benchmark conditions of the Ringhals core at test point 9 during cycle 14. Each channel considers one phase region, subcooled boiling and bulk boiling. The power, flow and average void fraction at each of the 36 channel were reproduced to define a stationary model which is perturbed with additive white noise in order to generate void fraction fluctuations. The cross sections are a function of void fractions, hence the fluctuations are transmitted to the neutronics and finally to the power. The power fluctuations are analog to those produced by bubble generation and collapsing during the boiling process. The neutronics is modeled with a two-dimensional nodal

  7. Physiologic correlates to background noise acceptance

    Science.gov (United States)

    Tampas, Joanna; Harkrider, Ashley; Nabelek, Anna

    2004-05-01

    Acceptance of background noise can be evaluated by having listeners indicate the highest background noise level (BNL) they are willing to accept while following the words of a story presented at their most comfortable listening level (MCL). The difference between the selected MCL and BNL is termed the acceptable noise level (ANL). One of the consistent findings in previous studies of ANL is large intersubject variability in acceptance of background noise. This variability is not related to age, gender, hearing sensitivity, personality, type of background noise, or speech perception in noise performance. The purpose of the current experiment was to determine if individual differences in physiological activity measured from the peripheral and central auditory systems of young female adults with normal hearing can account for the variability observed in ANL. Correlations between ANL and various physiological responses, including spontaneous, click-evoked, and distortion-product otoacoustic emissions, auditory brainstem and middle latency evoked potentials, and electroencephalography will be presented. Results may increase understanding of the regions of the auditory system that contribute to individual noise acceptance.

  8. Berry phase and shot noise for spin-polarized and entangled electrons

    International Nuclear Information System (INIS)

    Wang Pei; Tang Weihua; Lu Dinghui; Jiang Lixia; Zhao Xuean

    2007-01-01

    Shot noise for entangled and spin-polarized states in a four-probe geometric setup has been studied by adding two rotating magnetic fields in an incoming channel. Our results show that the noise power oscillates as the magnetic fields vary. The singlet, entangled triplet and polarized states can be distinguished by adjusting the magnetic fields. The Berry phase can be derived by measuring the shot noise power

  9. Phase Noise and Intensity Noise of the Pulse Train Generated from Mode-locked Lasers in the Demodulation Measurement

    OpenAIRE

    Wu, Kan; Shum, Ping

    2010-01-01

    The phase noise and intensity noise of a pulse train are theoretically analyzed in the demodulation measurement. The effect of pulse asymmetry is discussed for the first time using Fourier series. Experimentally, photodetectors with different bandwidth and incident power levels are compared to achieve minimum pulse distortion.

  10. Study on electromagnetic noise reduction in building spaces. Propagation of electromagnetic noise generated by an elevator and its countermeasurement; Kenchiku kukan no denjiha noise hogyo no kenkyu. Elevator kara hasseisuru denjiha noise no denpa jokyo to taisaku ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Y.; Yoshida, K.; Zama, A. [Obayashi Corp., Tokyo (Japan)

    1995-08-10

    With the progress of power-electronics, a inverter has been generally applied to building facility equipment. This equipment go by chapping a current in high frequency, so secondarily generates electromagnetic noise. The characteristics and propagation of electromagnetic noise generated by an elevator machine were measured. From this, it was recognized that high-level spectrum was included in the frequencies under 100kHz, and electromagnetic noise was scattered a wide area on the roof and the highest floor of the building. By intercepting the conductive noise on the motor main distribution line, the area influenced by the noise was restricted to only a small area around the elevator machine room. 4 refs., 8 figs., 2 tabs.

  11. Wireless Power Transfer in Cooperative DF Relaying Networks with Log-Normal Fading

    KAUST Repository

    Rabie, Khaled M.; Adebisi, Bamidele; Alouini, Mohamed-Slim

    2017-01-01

    Energy-harvesting (EH) and wireless power transfer in cooperative relaying networks have recently attracted a considerable amount of research attention. Most of the existing work on this topic however focuses on Rayleigh fading channels which represents outdoor environments. Unlike these studies, in this paper we analyze the performance of wireless power transfer in two-hop decode-and- forward (DF) cooperative relaying systems in indoor channels characterized by log-normal fading. Three well-known EH protocols are considered in our evaluations: a) time switching relaying (TSR), b) power splitting relaying (PSR) and c) ideal relaying receiver (IRR). The performance is evaluated in terms of the ergodic outage probability for which we derive accurate analytical expressions for the three systems under consideration. Results reveal that careful selection of the EH time and power splitting factors in the TSR- and PSR-based system are important to optimize performance. It is also presented that the optimized PSR system has near- ideal performance and that increasing the source transmit power and/or the energy harvester efficiency can further improve performance.

  12. Wireless Power Transfer in Cooperative DF Relaying Networks with Log-Normal Fading

    KAUST Repository

    Rabie, Khaled M.

    2017-02-07

    Energy-harvesting (EH) and wireless power transfer in cooperative relaying networks have recently attracted a considerable amount of research attention. Most of the existing work on this topic however focuses on Rayleigh fading channels which represents outdoor environments. Unlike these studies, in this paper we analyze the performance of wireless power transfer in two-hop decode-and- forward (DF) cooperative relaying systems in indoor channels characterized by log-normal fading. Three well-known EH protocols are considered in our evaluations: a) time switching relaying (TSR), b) power splitting relaying (PSR) and c) ideal relaying receiver (IRR). The performance is evaluated in terms of the ergodic outage probability for which we derive accurate analytical expressions for the three systems under consideration. Results reveal that careful selection of the EH time and power splitting factors in the TSR- and PSR-based system are important to optimize performance. It is also presented that the optimized PSR system has near- ideal performance and that increasing the source transmit power and/or the energy harvester efficiency can further improve performance.

  13. Normalized power transmission between ABP and ICP in TBI.

    Science.gov (United States)

    Shahsavari, S; Hallen, T; McKelvey, T; Ritzen, C; Rydenhag, B

    2009-01-01

    A new approach to study the pulse transmission between the cerebrovascular bed and the intracranial space is presented. In the proposed approach, the normalized power transmission between ABP and ICP has got the main attention rather than the actual power transmission. Evaluating the gain of the proposed transfer function at any single frequency can reveal how the percentage of contribution of that specific frequency component has been changed through the cerebrospinal system. The gain of the new transfer function at the fundamental cardiac frequency was utilized to evaluate the state of the brain in three TBI patients. Results were assessed using the reference evaluations achieved by a novel CT scan-based scoring scheme. In all three study cases, the gain of the transfer function showed a good capability to follow the trend of the CT scores and describe the brain state. Comparing the new transfer function with the traditional one and also the index of compensatory reserve, the proposed transfer function was found more informative about the state of the brain in the patients under study.

  14. Spectrogram Image Analysis of Error Signals for Minimizing Impulse Noise

    Directory of Open Access Journals (Sweden)

    Jeakwan Kim

    2016-01-01

    Full Text Available This paper presents the theoretical and experimental study on the spectrogram image analysis of error signals for minimizing the impulse input noises in the active suppression of noise. Impulse inputs of some specific wave patterns as primary noises to a one-dimensional duct with the length of 1800 mm are shown. The convergence speed of the adaptive feedforward algorithm based on the least mean square approach was controlled by a normalized step size which was incorporated into the algorithm. The variations of the step size govern the stability as well as the convergence speed. Because of this reason, a normalized step size is introduced as a new method for the control of impulse noise. The spectrogram images which indicate the degree of the attenuation of the impulse input noises are considered to represent the attenuation with the new method. The algorithm is extensively investigated in both simulation and real-time control experiment. It is demonstrated that the suggested algorithm worked with a nice stability and performance against impulse noises. The results in this study can be used for practical active noise control systems.

  15. The Design and Research of the Operation Status Detector for Marine Engine Room Power Plant Based on Noise

    Directory of Open Access Journals (Sweden)

    Li Hang

    2016-01-01

    Full Text Available Designed in this paper, based on the noise of ship engine room power plant running status of detector, is mainly used in the operation of the power plant of acoustic shell size to determine when the machine running state, this device is composed of signal disposal and alarm display adjustment part of two parts. Detector that can show the size of the voice, if exceed the set limit alarm value, the detector can sound an alarm, to remind staff equipment fails, it shall timely inspection maintenance, improve the safety of the operation of the ship.

  16. 3D noise power spectrum applied on clinical MDCT scanners: effects of reconstruction algorithms and reconstruction filters

    Science.gov (United States)

    Miéville, Frédéric A.; Bolard, Gregory; Benkreira, Mohamed; Ayestaran, Paul; Gudinchet, François; Bochud, François; Verdun, Francis R.

    2011-03-01

    The noise power spectrum (NPS) is the reference metric for understanding the noise content in computed tomography (CT) images. To evaluate the noise properties of clinical multidetector (MDCT) scanners, local 2D and 3D NPSs were computed for different acquisition reconstruction parameters. A 64- and a 128-MDCT scanners were employed. Measurements were performed on a water phantom in axial and helical acquisition modes. CT dose index was identical for both installations. Influence of parameters such as the pitch, the reconstruction filter (soft, standard and bone) and the reconstruction algorithm (filtered-back projection (FBP), adaptive statistical iterative reconstruction (ASIR)) were investigated. Images were also reconstructed in the coronal plane using a reformat process. Then 2D and 3D NPS methods were computed. In axial acquisition mode, the 2D axial NPS showed an important magnitude variation as a function of the z-direction when measured at the phantom center. In helical mode, a directional dependency with lobular shape was observed while the magnitude of the NPS was kept constant. Important effects of the reconstruction filter, pitch and reconstruction algorithm were observed on 3D NPS results for both MDCTs. With ASIR, a reduction of the NPS magnitude and a shift of the NPS peak to the low frequency range were visible. 2D coronal NPS obtained from the reformat images was impacted by the interpolation when compared to 2D coronal NPS obtained from 3D measurements. The noise properties of volume measured in last generation MDCTs was studied using local 3D NPS metric. However, impact of the non-stationarity noise effect may need further investigations.

  17. A Low Noise Amplifier for Neural Spike Recording Interfaces

    Directory of Open Access Journals (Sweden)

    Jesus Ruiz-Amaya

    2015-09-01

    Full Text Available This paper presents a Low Noise Amplifier (LNA for neural spike recording applications. The proposed topology, based on a capacitive feedback network using a two-stage OTA, efficiently solves the triple trade-off between power, area and noise. Additionally, this work introduces a novel transistor-level synthesis methodology for LNAs tailored for the minimization of their noise efficiency factor under area and noise constraints. The proposed LNA has been implemented in a 130 nm CMOS technology and occupies 0.053 mm-sq. Experimental results show that the LNA offers a noise efficiency factor of 2.16 and an input referred noise of 3.8 μVrms for 1.2 V power supply. It provides a gain of 46 dB over a nominal bandwidth of 192 Hz–7.4 kHz and consumes 1.92 μW. The performance of the proposed LNA has been validated through in vivo experiments with animal models.

  18. Aircraft noise in the region of the Bucharest-Otopeni Airport. [noise pollution in airport environment

    Science.gov (United States)

    Costescu, M.; Gherghel, C.; Curtoglu, A.

    1974-01-01

    Aircraft noise, especially in the region adjoining airports, constitutes a problem that will be aggravated in the near future because of increasing aircraft traffic and the appearance of new types of large tonnage aircraft with continuously increasing powers and speeds. Criteria for the evaluation of aircraft noise are reported and some results of studies carried out in the region of Bucharest-Otopeni Airport are detailed.

  19. TumorBoost: Normalization of allele-specific tumor copy numbers from a single pair of tumor-normal genotyping microarrays

    Directory of Open Access Journals (Sweden)

    Neuvial Pierre

    2010-05-01

    Full Text Available Abstract Background High-throughput genotyping microarrays assess both total DNA copy number and allelic composition, which makes them a tool of choice for copy number studies in cancer, including total copy number and loss of heterozygosity (LOH analyses. Even after state of the art preprocessing methods, allelic signal estimates from genotyping arrays still suffer from systematic effects that make them difficult to use effectively for such downstream analyses. Results We propose a method, TumorBoost, for normalizing allelic estimates of one tumor sample based on estimates from a single matched normal. The method applies to any paired tumor-normal estimates from any microarray-based technology, combined with any preprocessing method. We demonstrate that it increases the signal-to-noise ratio of allelic signals, making it significantly easier to detect allelic imbalances. Conclusions TumorBoost increases the power to detect somatic copy-number events (including copy-neutral LOH in the tumor from allelic signals of Affymetrix or Illumina origin. We also conclude that high-precision allelic estimates can be obtained from a single pair of tumor-normal hybridizations, if TumorBoost is combined with single-array preprocessing methods such as (allele-specific CRMA v2 for Affymetrix or BeadStudio's (proprietary XY-normalization method for Illumina. A bounded-memory implementation is available in the open-source and cross-platform R package aroma.cn, which is part of the Aroma Project (http://www.aroma-project.org/.

  20. Multivariate statistical pattern recognition system for reactor noise analysis

    International Nuclear Information System (INIS)

    Gonzalez, R.C.; Howington, L.C.; Sides, W.H. Jr.; Kryter, R.C.

    1976-01-01

    A multivariate statistical pattern recognition system for reactor noise analysis was developed. The basis of the system is a transformation for decoupling correlated variables and algorithms for inferring probability density functions. The system is adaptable to a variety of statistical properties of the data, and it has learning, tracking, and updating capabilities. System design emphasizes control of the false-alarm rate. The ability of the system to learn normal patterns of reactor behavior and to recognize deviations from these patterns was evaluated by experiments at the ORNL High-Flux Isotope Reactor (HFIR). Power perturbations of less than 0.1 percent of the mean value in selected frequency ranges were detected by the system

  1. Multivariate statistical pattern recognition system for reactor noise analysis

    International Nuclear Information System (INIS)

    Gonzalez, R.C.; Howington, L.C.; Sides, W.H. Jr.; Kryter, R.C.

    1975-01-01

    A multivariate statistical pattern recognition system for reactor noise analysis was developed. The basis of the system is a transformation for decoupling correlated variables and algorithms for inferring probability density functions. The system is adaptable to a variety of statistical properties of the data, and it has learning, tracking, and updating capabilities. System design emphasizes control of the false-alarm rate. The ability of the system to learn normal patterns of reactor behavior and to recognize deviations from these patterns was evaluated by experiments at the ORNL High-Flux Isotope Reactor (HFIR). Power perturbations of less than 0.1 percent of the mean value in selected frequency ranges were detected by the system. 19 references

  2. Reactor noise analysis by statistical pattern recognition methods

    International Nuclear Information System (INIS)

    Howington, L.C.; Gonzalez, R.C.

    1976-01-01

    A multivariate statistical pattern recognition system for reactor noise analysis is presented. The basis of the system is a transformation for decoupling correlated variables and algorithms for inferring probability density functions. The system is adaptable to a variety of statistical properties of the data, and it has learning, tracking, updating, and data compacting capabilities. System design emphasizes control of the false-alarm rate. Its abilities to learn normal patterns, to recognize deviations from these patterns, and to reduce the dimensionality of data with minimum error were evaluated by experiments at the Oak Ridge National Laboratory (ORNL) High-Flux Isotope Reactor. Power perturbations of less than 0.1 percent of the mean value in selected frequency ranges were detected by the pattern recognition system

  3. Visuo-manual tracking: does intermittent control with aperiodic sampling explain linear power and non-linear remnant without sensorimotor noise?

    Science.gov (United States)

    Gollee, Henrik; Gawthrop, Peter J; Lakie, Martin; Loram, Ian D

    2017-11-01

    ways) manually controlled two systems (1st and 2nd order) subject to a periodic multi-sine disturbance. Joystick power was analysed using three models, continuous-linear-control (CC), continuous-linear-control with calculated noise spectrum (CCN), and intermittent control with aperiodic sampling triggered by prediction error thresholds (IC). Unlike the linear mechanism, the intermittent control mechanism explained the majority of total power (linear and remnant) (77-87% vs. 8-48%, IC vs. CC). Between conditions, IC used thresholds and distributions of open loop intervals consistent with, respectively, instructions and previous measured, model independent values; whereas CCN required changes in noise spectrum deviating from broadband, signal dependent noise. We conclude that manual tracking uses open loop predictive control with aperiodic sampling. Because aperiodic sampling is inherent to serial decision making within previously identified, specific frontal, striatal and parietal networks we suggest that these structures are intimately involved in visuo-manual tracking. © 2017 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.

  4. Noise caused by semiconductor lasers in high-speed fiber-optic links

    DEFF Research Database (Denmark)

    Olsen, C. M.; Stubkjær, Kristian; Olesen, H.

    1989-01-01

    Theoretical and experimental results are presented for the signal-to-noise (S/N) ratio caused by mode partition noise, intensity noise, and reflection-induced noise in optical data links. Under given conditions an additional noise source with a S /N ratio of 20 dB will cause a power penalty of 1 d...

  5. Effects of internal noise in mesoscopic chemical systems near Hopf bifurcation

    International Nuclear Information System (INIS)

    Xiao Tiejun; Ma Juan; Hou Zhonghuai; Xin Houwen

    2007-01-01

    The effects of internal noise in mesoscopic chemical oscillation systems have been studied analytically, in the parameter region close to the deterministic Hopf bifurcation. Starting from chemical Langevin equations, stochastic normal form equations are obtained, governing the evolution of the radius and phase of the stochastic oscillation. By stochastic averaging, the normal form equation can be solved analytically. Stationary distributions of the radius and auto-correlation functions of the phase variable are obtained. It is shown that internal noise can induce oscillation; even no deterministic oscillation exists. The radius of the noise-induced oscillation (NIO) becomes larger when the internal noise increases, but the correlation time becomes shorter. The trade-off between the strength and regularity of the NIO leads to a clear maximum in its signal-to-noise ratio when the internal noise changes, demonstrating the occurrence of internal noise coherent resonance. Since the intensity of the internal noise is inversely proportional to the system size, the phenomenon also indicates the existence of an optimal system size. These theoretical results are applied to a circadian clock system and excellent agreement with the numerical results is obtained

  6. Contralateral Noise Stimulation Delays P300 Latency in School-Aged Children.

    Directory of Open Access Journals (Sweden)

    Thalita Ubiali

    Full Text Available The auditory cortex modulates auditory afferents through the olivocochlear system, which innervates the outer hair cells and the afferent neurons under the inner hair cells in the cochlea. Most of the studies that investigated the efferent activity in humans focused on evaluating the suppression of the otoacoustic emissions by stimulating the contralateral ear with noise, which assesses the activation of the medial olivocochlear bundle. The neurophysiology and the mechanisms involving efferent activity on higher regions of the auditory pathway, however, are still unknown. Also, the lack of studies investigating the effects of noise on human auditory cortex, especially in peadiatric population, points to the need for recording the late auditory potentials in noise conditions. Assessing the auditory efferents in schoolaged children is highly important due to some of its attributed functions such as selective attention and signal detection in noise, which are important abilities related to the development of language and academic skills. For this reason, the aim of the present study was to evaluate the effects of noise on P300 responses of children with normal hearing.P300 was recorded in 27 children aged from 8 to 14 years with normal hearing in two conditions: with and whitout contralateral white noise stimulation.P300 latencies were significantly longer at the presence of contralateral noise. No significant changes were observed for the amplitude values.Contralateral white noise stimulation delayed P300 latency in a group of school-aged children with normal hearing. These results suggest a possible influence of the medial olivocochlear activation on P300 responses under noise condition.

  7. A high speed digital noise generator

    Science.gov (United States)

    Obrien, J.; Gaffney, B.; Liu, B.

    In testing of digital signal processing hardware, a high speed pseudo-random noise generator is often required to simulate an input noise source to the hardware. This allows the hardware to be exercised in a manner analogous to actual operating conditions. In certain radar and communication environments, a noise generator operating at speeds in excess of 60 MHz may be required. In this paper, a method of generating high speed pseudo-random numbers from an arbitrarily specified distribution (Gaussian, Log-Normal, etc.) using a transformation from a uniform noise source is described. A noise generator operating at 80 MHz has been constructed. Different distributions can be readily obtained by simply changing the ROM set. The hardware and test results will be described. Using this approach, the generation of pseudo-random sequences with arbitrary distributions at word rates in excess of 200 MHz can be readily achieved.

  8. MICROWAVE NOISE MEASUREMENT OF ELECTRON TEMPERATURES IN AFTERGLOW PLASMAS

    Energy Technology Data Exchange (ETDEWEB)

    Leiby, Jr., C. C.; McBee, W. D.

    1963-10-15

    Transient electron temperatures in afterglow plasmas were determined for He (5 and 10 torr), Ne, and Ne plus or minus 5% Ar (2.4 and 24 torr) by combining measurements of plasma microwave noise power, and plasma reflectivity and absorptivity. Use of a low-noise parametric preamplifier permitted continuous detection during the afterglow of noise power at 5.5 Bc in a 1 Mc bandwidth. Electron temperature decays were a function of pressure and gas but were slower than predicted by electron energy loss mechanisms. The addition of argon altered the electron density decay in the neon afterglow but the electron temperature decay was not appreciably changed. Resonances in detected noise power vs time in the afterglow were observed for two of the three plasma waveguide geometries studied. These resonances correlate with observed resonances in absorptivity and occur over the same range of electron densities for a given geometry independent of gas type and pressure. (auth)

  9. Stochastic resonance for signal-modulated pump noise in a single-mode laser

    Institute of Scientific and Technical Information of China (English)

    Liangying Zhang; Li Cao; Fahui Zhu

    2006-01-01

    By adopting the gain-noise model of the single-mode laser in which with bias and periodical signals serve as inputs, combining with the effect of coloured pump noise, we use the linear approximation method to calculate the power spectrum and signal-to-noise ratio (SNR) of the laser intensity under the condition of pump noise and quantum noise cross-related in the form of δ function. It is found that with the change of pump noise correlation time, both SNR and the output power will occur stochastic resonance (SR). If the bias signal α is very small, changing the intensities of pump noise and quantum noise respectively does not lead to the appearance of SR in the SNR; while α increases to a certain number, SR appears.

  10. Nonlinear GARCH model and 1 / f noise

    Science.gov (United States)

    Kononovicius, A.; Ruseckas, J.

    2015-06-01

    Auto-regressive conditionally heteroskedastic (ARCH) family models are still used, by practitioners in business and economic policy making, as a conditional volatility forecasting models. Furthermore ARCH models still are attracting an interest of the researchers. In this contribution we consider the well known GARCH(1,1) process and its nonlinear modifications, reminiscent of NGARCH model. We investigate the possibility to reproduce power law statistics, probability density function and power spectral density, using ARCH family models. For this purpose we derive stochastic differential equations from the GARCH processes in consideration. We find the obtained equations to be similar to a general class of stochastic differential equations known to reproduce power law statistics. We show that linear GARCH(1,1) process has power law distribution, but its power spectral density is Brownian noise-like. However, the nonlinear modifications exhibit both power law distribution and power spectral density of the 1 /fβ form, including 1 / f noise.

  11. Base neutron noise in PWRs

    International Nuclear Information System (INIS)

    Kosaly, G.; Albrecht, R.W.; Dailey, D.J.; Fry, D.N.

    1981-01-01

    Considerable activity has been devoted in recent years to the use of neutron noise for investigation of problems in pressurized-water reactors (PWRs). The investigators have found that neutron noise provides an effective way to monitor reactor internal vibrations such as vertical and lateral core motion; core support barrel and thermal shield shell modes, bending modes of fuel assemblies, and control rod vibrations. However, noise analysts have also concluded that diagnosis of a problem is easier if baseline data for normal plant operation is available. Therefore, the authors have obtained ex-core neutron noise signatures from eight PWRs to determine the similarity of signatures between plants and to build a base of data to determine the sources of neutron noise and thus the potential diagnostic information contained in the data. It is concluded that: (1) ex-core neutron noise contains information about the vibration of components in the pressure vessel; (2) baseline signature acquisition can aid understanding of plant specific vibration frequencies and provide a bases for diagnosis of future problems if they occur; and (3) abnormal core support barrel vibration can most likely be detected over and above the plant-to-plant signature variation observed thus far

  12. PLNoise: a package for exact numerical simulation of power-law noises

    Science.gov (United States)

    Milotti, Edoardo

    2006-08-01

    Many simulations of stochastic processes require colored noises: here I describe a small program library that generates samples with a tunable power-law spectral density: the algorithm can be modified to generate more general colored noises, and is exact for all time steps, even when they are unevenly spaced (as may often happen in the case of astronomical data, see e.g. [N.R. Lomb, Astrophys. Space Sci. 39 (1976) 447]. The method is exact in the sense that it reproduces a process that is theoretically guaranteed to produce a range-limited power-law spectrum 1/f with -1uk/summaries/ADXV_v1_0.html Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions: none Programming language used: ANSI C Computer: Any computer with an ANSI C compiler: the package has been tested with gcc version 3.2.3 on Red Hat Linux 3.2.3-52 and gcc version 4.0.0 and 4.0.1 on Apple Mac OS X-10.4 Operating system: All operating systems capable of running an ANSI C compiler No. of lines in distributed program, including test data, etc.:6238 No. of bytes in distributed program, including test data, etc.:52 387 Distribution format:tar.gz RAM: The code of the test program is very compact (about 50 Kbytes), but the program works with list management and allocates memory dynamically; in a typical run (like the one discussed in Section 4 in the long write-up) with average list length 2ṡ10, the RAM taken by the list is 200 Kbytes. External routines: The package needs external routines to generate uniform and exponential deviates. The implementation described here uses the random number generation library ranlib freely available from Netlib [B.W. Brown, J. Lovato, K. Russell, ranlib, available from Netlib, http://www.netlib.org/random/index.html, select the C version ranlib.c], but it has also been successfully tested with the random number routines in Numerical Recipes [W.H. Press, S.A. Teulkolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes

  13. To the analysis of reactor noise in boiling water reactors

    International Nuclear Information System (INIS)

    Seifritz, W.

    1972-01-01

    The paper contains some basic thoughts on the problem of neutron flux oscillations in power reactors. The advantages of self-powered detectors and their function are explained. In addition, noise measurements of the boiling water reactors at Lingen and Holden are described, and the possibilities of an employment of vanadium detectors for the analysis of reactor noise are discussed. The final pages of the paper contain a complete list of the author's publications in the field of reactor noise analysis. (RW/AK) [de

  14. Study of environmental noise in a BWR plant like the Nuclear Power Plant Laguna Verde; Estudio de ruido ambiental en una planta BWR como la Central Nuclear Laguna Verde

    Energy Technology Data Exchange (ETDEWEB)

    Tijerina S, F.; Cruz G, M.; Amador C, C., E-mail: francisco.tijerina@cfe.gob.mx [Comision Federal de Electricidad, Central Nucleoelectrica Laguna Verde, Subgerencia de Ingenieria, Carretera Cardel-Nautla Km. 42.5, Alto Lucero, Veracruz (Mexico)

    2013-10-15

    In all industry type the health costs generated by the noise are high, because the noise can cause nuisance and to harm the capacity to work when causing tension and to perturb the concentration, and in more severe cases to reach to lose the sense of the hearing in the long term. The noise levels in the industry have been designated for the different types of use like residential, commercial, and industrial and silence areas. The noise can cause accidents when obstructing the communications and alarm signs. For this reason the noise should be controlled and mitigated, at a low level as reasonably is possible, taking into account that the noise is an acoustic contamination. The present study determines a bases line of the environmental noise levels in a nuclear power plant BWR-5 as Laguna Verde, (like reference) to be able to determine and to give pursuit to the possible solutions to eliminate or to limit the noise level in the different job areas. The noise levels were registered with a meter of integrative noise level (sonometer) and areas of noise exposure levels mapping the general areas in the buildings were established, being the registered maximum level of 96.94 dba in the building of the Reactor-elevation 0.65 m under the operation conditions of Extended Power Up rate (EPU) of 120% PTN. Knowing that the exposition to noises and the noise dose in the job place can influence in the health and in the safety of the workers, are extensive topics that they should be analyzed for separate as they are: to) the effects in the health of the exposure to the noise, b) how measuring the noise, c) the methods and technologies to combat and to control the noise in the industry by part of engineering area and d) the function of the industrial safety bodies as delegates of the health and safety in the task against the noise in the job. (author)

  15. Jet Noise Scaling in Dual Stream Nozzles

    Science.gov (United States)

    Khavaran, Abbas; Bridges, James

    2010-01-01

    Power spectral laws in dual stream jets are studied by considering such flows a superposition of appropriate single-stream coaxial jets. Noise generation in each mixing region is modeled using spectral power laws developed earlier for single stream jets as a function of jet temperature and observer angle. Similarity arguments indicate that jet noise in dual stream nozzles may be considered as a composite of four single stream jets representing primary/secondary, secondary/ambient, transition, and fully mixed zones. Frequency filter are designed to highlight spectral contribution from each jet. Predictions are provided at an area ratio of 2.0--bypass ratio from 0.80 to 3.40, and are compared with measurements within a wide range of velocity and temperature ratios. These models suggest that the low frequency noise in unheated jets is dominated by the fully mixed region at all velocity ratios, while the high frequency noise is dominated by the secondary when the velocity ratio is larger than 0.80. Transition and fully mixed jets equally dominate the low frequency noise in heated jets. At velocity ratios less than 0.50, the high frequency noise from primary/bypass becomes a significant contributing factor similar to that in the secondary/ambient jet.

  16. An experimental evaluation of a new approach to aircraft noise modelling

    NARCIS (Netherlands)

    Roo, F. de; Salomons, E.M.

    2008-01-01

    Common engineering models for aircraft noise, such as INM, yield noise levels by interpolation of Noise Power Distance (NPD) tables. In the European project Imagine (2004 - 2006), a different approach was proposed: the source is characterized by an emission spectrum and the received noise spectrum

  17. Tinnitus and other auditory problems - occupational noise exposure below risk limits may cause inner ear dysfunction.

    Science.gov (United States)

    Lindblad, Ann-Cathrine; Rosenhall, Ulf; Olofsson, Åke; Hagerman, Björn

    2014-01-01

    The aim of the investigation was to study if dysfunctions associated to the cochlea or its regulatory system can be found, and possibly explain hearing problems in subjects with normal or near-normal audiograms. The design was a prospective study of subjects recruited from the general population. The included subjects were persons with auditory problems who had normal, or near-normal, pure tone hearing thresholds, who could be included in one of three subgroups: teachers, Education; people working with music, Music; and people with moderate or negligible noise exposure, Other. A fourth group included people with poorer pure tone hearing thresholds and a history of severe occupational noise, Industry. Ntotal = 193. The following hearing tests were used: - pure tone audiometry with Békésy technique, - transient evoked otoacoustic emissions and distortion product otoacoustic emissions, without and with contralateral noise; - psychoacoustical modulation transfer function, - forward masking, - speech recognition in noise, - tinnitus matching. A questionnaire about occupations, noise exposure, stress/anxiety, muscular problems, medication, and heredity, was addressed to the participants. Forward masking results were significantly worse for Education and Industry than for the other groups, possibly associated to the inner hair cell area. Forward masking results were significantly correlated to louder matched tinnitus. For many subjects speech recognition in noise, left ear, did not increase in a normal way when the listening level was increased. Subjects hypersensitive to loud sound had significantly better speech recognition in noise at the lower test level than subjects not hypersensitive. Self-reported stress/anxiety was similar for all groups. In conclusion, hearing dysfunctions were found in subjects with tinnitus and other auditory problems, combined with normal or near-normal pure tone thresholds. The teachers, mostly regarded as a group exposed to noise

  18. Tinnitus and other auditory problems - occupational noise exposure below risk limits may cause inner ear dysfunction.

    Directory of Open Access Journals (Sweden)

    Ann-Cathrine Lindblad

    Full Text Available The aim of the investigation was to study if dysfunctions associated to the cochlea or its regulatory system can be found, and possibly explain hearing problems in subjects with normal or near-normal audiograms. The design was a prospective study of subjects recruited from the general population. The included subjects were persons with auditory problems who had normal, or near-normal, pure tone hearing thresholds, who could be included in one of three subgroups: teachers, Education; people working with music, Music; and people with moderate or negligible noise exposure, Other. A fourth group included people with poorer pure tone hearing thresholds and a history of severe occupational noise, Industry. Ntotal = 193. The following hearing tests were used: - pure tone audiometry with Békésy technique, - transient evoked otoacoustic emissions and distortion product otoacoustic emissions, without and with contralateral noise; - psychoacoustical modulation transfer function, - forward masking, - speech recognition in noise, - tinnitus matching. A questionnaire about occupations, noise exposure, stress/anxiety, muscular problems, medication, and heredity, was addressed to the participants. Forward masking results were significantly worse for Education and Industry than for the other groups, possibly associated to the inner hair cell area. Forward masking results were significantly correlated to louder matched tinnitus. For many subjects speech recognition in noise, left ear, did not increase in a normal way when the listening level was increased. Subjects hypersensitive to loud sound had significantly better speech recognition in noise at the lower test level than subjects not hypersensitive. Self-reported stress/anxiety was similar for all groups. In conclusion, hearing dysfunctions were found in subjects with tinnitus and other auditory problems, combined with normal or near-normal pure tone thresholds. The teachers, mostly regarded as a group

  19. Investigation of Noise in Photonic Links and Components

    Science.gov (United States)

    2017-10-24

    and had its generated DC photocurrent measured by, a source meter. Between the output of the CW laser and the outputs of the free-space polarization...the photodiodes and measuring the DC photocurrents directly with source meters (SMA & SMB), as in the setup in Fig. 3.1, because the noise generated ...meters (power supplies) used to bias the photodiodes and measure their generated DC photocurrents. Power supply noise is shown by the orange trace

  20. Inductive Sensor Performance in Partial Discharges and Noise Separation by Means of Spectral Power Ratios

    Directory of Open Access Journals (Sweden)

    Jorge Alfredo Ardila-Rey

    2014-02-01

    Full Text Available Partial discharge (PD detection is a standardized technique to qualify electrical insulation in machines and power cables. Several techniques that analyze the waveform of the pulses have been proposed to discriminate noise from PD activity. Among them, spectral power ratio representation shows great flexibility in the separation of the sources of PD. Mapping spectral power ratios in two-dimensional plots leads to clusters of points which group pulses with similar characteristics. The position in the map depends on the nature of the partial discharge, the setup and the frequency response of the sensors. If these clusters are clearly separated, the subsequent task of identifying the source of the discharge is straightforward so the distance between clusters can be a figure of merit to suggest the best option for PD recognition. In this paper, two inductive sensors with different frequency responses to pulsed signals, a high frequency current transformer and an inductive loop sensor, are analyzed to test their performance in detecting and separating the sources of partial discharges.

  1. Suppression of excess noise in Transition-Edge Sensors using magnetic field and geometry

    International Nuclear Information System (INIS)

    Ullom, J.N.; Doriese, W.B.; Hilton, G.C.; Beall, J.A.; Deiker, S.; Irwin, K.D.; Reintsema, C.D.; Vale, L.R.; Xu, Y.

    2004-01-01

    We report recent progress at NIST on Mo/Cu Transition-Edge Sensors (TESs). While the signal-band noise of our sensors agrees with theory, we observe excess high-frequency noise. We describe this noise and demonstrate that it can be strongly suppressed by a magnetic field perpendicular to the plane of the sensor. Both the excess noise and α=(T/R)(dR/dT) depend strongly on field so our results show that accurate comparisons between devices are only possible when the field is well known or constant. We also present results showing the noise performance of TES designs incorporating parallel and perpendicular normal metal bars, an array of normal metal islands, and in wedge-shaped devices. We demonstrate significant reduction of high-frequency noise with the perpendicular bar devices at the cost of reduced α. Both the bars and the magnetic field are useful noise reduction techniques for bolometers

  2. The impact of twenty years of noise research on nuclear power plant design, instrumentation and control

    International Nuclear Information System (INIS)

    Kemeny, L.G.

    1975-01-01

    Early investigations demonstrated that time constants and the dynamic characteristics of low energy nuclear systems could be elegantly determined by correlation of spectral analysis of fluctuating signals from ion chambers and proportional counters. Analyses of the time series information and the multi-filtering operations in the frequency domain were time consuming and tedious projects due to the lack of suitable data processing equipment. During the last decade, the significant advances were the recognition of the advantages of the two-channel cross-correlation technique and the realisation that the dynamic behaviour of nuclear power plant at power could be monitored and studied in depth by the cross-correlation of mechanical, thermal and hydrodynamic signals with neutronic information. The former concept led to the development of theoretical models for spatial and energy-dependent noise fields within a nuclear system. The latter opened a floodgate of potential advances in nuclear power plant design optimization, control and safety instrumentation, and control and safety diagnostic systems. (U.K.)

  3. Design and construction of a high-stability, low-noise power supply for use with high-resolution electron energy loss spectrometers

    International Nuclear Information System (INIS)

    Katz, J.E.; Davies, P.W.; Crowell, J.E.; Somorjai, G.A.

    1982-01-01

    The design and construction of a high-stability, low-noise power supply which provides potentials for the lens and analyzer elements of a 127 0 Ehrhardt-type high-resolution electron energy loss spectrometer (HREELS) is described. The supply incorporates a filament emission-control circuit and facilities for measuring electron beam current at each spectrometer element, thus facilitating optimal tuning of the spectrometer. Spectra obtained using this supply are shown to have a four-fold improvement in signal-to-noise ratio and a higher resolution of the vibrational loss features when compared with spectra taken using a previously existing supply based on passive potential divider networks

  4. On the Etiology of Listening Difficulties in Noise Despite Clinically Normal Audiograms

    Science.gov (United States)

    2017-01-01

    Many people with difficulties following conversations in noisy settings have “clinically normal” audiograms, that is, tone thresholds better than 20 dB HL from 0.1 to 8 kHz. This review summarizes the possible causes of such difficulties, and examines established as well as promising new psychoacoustic and electrophysiologic approaches to differentiate between them. Deficits at the level of the auditory periphery are possible even if thresholds remain around 0 dB HL, and become probable when they reach 10 to 20 dB HL. Extending the audiogram beyond 8 kHz can identify early signs of noise-induced trauma to the vulnerable basal turn of the cochlea, and might point to “hidden” losses at lower frequencies that could compromise speech reception in noise. Listening difficulties can also be a consequence of impaired central auditory processing, resulting from lesions affecting the auditory brainstem or cortex, or from abnormal patterns of sound input during developmental sensitive periods and even in adulthood. Such auditory processing disorders should be distinguished from (cognitive) linguistic deficits, and from problems with attention or working memory that may not be specific to the auditory modality. Improved diagnosis of the causes of listening difficulties in noise should lead to better treatment outcomes, by optimizing auditory training procedures to the specific deficits of individual patients, for example. PMID:28002080

  5. Enhanced Core Noise Modeling for Turbofan Engines

    Science.gov (United States)

    Stone, James R.; Krejsa, Eugene A.; Clark, Bruce J.

    2011-01-01

    This report describes work performed by MTC Technologies (MTCT) for NASA Glenn Research Center (GRC) under Contract NAS3-00178, Task Order No. 15. MTCT previously developed a first-generation empirical model that correlates the core/combustion noise of four GE engines, the CF6, CF34, CFM56, and GE90 for General Electric (GE) under Contract No. 200-1X-14W53048, in support of GRC Contract NAS3-01135. MTCT has demonstrated in earlier noise modeling efforts that the improvement of predictive modeling is greatly enhanced by an iterative approach, so in support of NASA's Quiet Aircraft Technology Project, GRC sponsored this effort to improve the model. Since the noise data available for correlation are total engine noise spectra, it is total engine noise that must be predicted. Since the scope of this effort was not sufficient to explore fan and turbine noise, the most meaningful comparisons must be restricted to frequencies below the blade passage frequency. Below the blade passage frequency and at relatively high power settings jet noise is expected to be the dominant source, and comparisons are shown that demonstrate the accuracy of the jet noise model recently developed by MTCT for NASA under Contract NAS3-00178, Task Order No. 10. At lower power settings the core noise became most apparent, and these data corrected for the contribution of jet noise were then used to establish the characteristics of core noise. There is clearly more than one spectral range where core noise is evident, so the spectral approach developed by von Glahn and Krejsa in 1982 wherein four spectral regions overlap, was used in the GE effort. Further analysis indicates that the two higher frequency components, which are often somewhat masked by turbomachinery noise, can be treated as one component, and it is on that basis that the current model is formulated. The frequency scaling relationships are improved and are now based on combustor and core nozzle geometries. In conjunction with the Task

  6. On the dominant noise components of tactical aircraft: Laboratory to full scale

    Science.gov (United States)

    Tam, Christopher K. W.; Aubert, Allan C.; Spyropoulos, John T.; Powers, Russell W.

    2018-05-01

    This paper investigates the dominant noise components of a full-scale high performance tactical aircraft. The present study uses acoustic measurements of the exhaust jet from a single General Electric F414-400 turbofan engine installed in a Boeing F/A-18E Super Hornet aircraft operating from flight idle to maximum afterburner. The full-scale measurements are to the ANSI S12.75-2012 standard employing about 200 microphones. By comparing measured noise spectra with those from hot supersonic jets observed in the laboratory, the dominant noise components specific to the F/A-18E aircraft at different operating power levels are identified. At intermediate power, it is found that the dominant noise components of an F/A-18E aircraft are essentially the same as those of high temperature supersonic laboratory jets. However, at military and afterburner powers, there are new dominant noise components. Their characteristics are then documented and analyzed. This is followed by an investigation of their origin and noise generation mechanisms.

  7. 76 FR 36864 - Special Conditions: Gulfstream Model GVI Airplane; Operation Without Normal Electric Power

    Science.gov (United States)

    2011-06-23

    ... Normal Electric Power AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final special... Interface Branch, ANM-111, Transport Standards Staff, Transport Airplane Directorate, Aircraft Certification... Model GVI airplane will be an all-new, two- engine jet transport airplane. The maximum takeoff weight...

  8. Cavitation noise studies on marine propellers

    Science.gov (United States)

    Sharma, S. D.; Mani, K.; Arakeri, V. H.

    1990-04-01

    Experimental observations are described of cavitation inception and noise from five model propellers, three basic and two modified, tested in the open jet section of the Indian Institute of Science high-speed water tunnel facility. Extensive experiments on the three basic propellers of different design, which included visualization of cavitation and measurements of noise, showed that the dominant type of cavitation was in the form of tip vortex cavitation, accompanied by leading edge suction side sheet cavitation in its close vicinity, and the resultant noise depended on parameters such as the advance coefficient, the cavitation number, and the propeller geometry. Of these, advance coefficient was found to have the maximum influence not only on cavitation noise but also on the inception of cavitation. Noise levels and frequencies of spectra obtained from all the three basic propellers at conditions near inception and different advance coefficient values, when plotted in the normalized form as suggested by Blake, resulted in a universal spectrum which would be useful for predicting cavitation noise at prototype scales when a limited extent of cavitation is expected in the same form as observed on the present models. In an attempt to delay the onset of tip vortex cavitation, the blades of two of the three basic propellers were modified by drilling small holes in the tip and leading edge areas. Studies on the modified propellers showed that the effectiveness of the blade modification was apparently stronger at low advance coefficient values and depended on the blade sectional profile. Measurements of cavitation noise indicated that the modification also improved the acoustic performance of the propellers as it resulted in a complete attenuation of the low-frequency spectral peaks, which were prominent with the basic propellers. In addition to the above studies, which were conducted under uniform flow conditions, one of the basic propellers was tested in the simulated

  9. Individual differences in language and working memory affect children's speech recognition in noise.

    Science.gov (United States)

    McCreery, Ryan W; Spratford, Meredith; Kirby, Benjamin; Brennan, Marc

    2017-05-01

    We examined how cognitive and linguistic skills affect speech recognition in noise for children with normal hearing. Children with better working memory and language abilities were expected to have better speech recognition in noise than peers with poorer skills in these domains. As part of a prospective, cross-sectional study, children with normal hearing completed speech recognition in noise for three types of stimuli: (1) monosyllabic words, (2) syntactically correct but semantically anomalous sentences and (3) semantically and syntactically anomalous word sequences. Measures of vocabulary, syntax and working memory were used to predict individual differences in speech recognition in noise. Ninety-six children with normal hearing, who were between 5 and 12 years of age. Higher working memory was associated with better speech recognition in noise for all three stimulus types. Higher vocabulary abilities were associated with better recognition in noise for sentences and word sequences, but not for words. Working memory and language both influence children's speech recognition in noise, but the relationships vary across types of stimuli. These findings suggest that clinical assessment of speech recognition is likely to reflect underlying cognitive and linguistic abilities, in addition to a child's auditory skills, consistent with the Ease of Language Understanding model.

  10. Annoyance rating of wind turbine noise

    International Nuclear Information System (INIS)

    Iredale, R.

    1993-01-01

    Annoyance rating is important, but more important still is agreement on techniques for formulating minimal complaint criteria for design and specification purposes thus integrating noise control into the plant at the outset. A minimal complaint design criteria is suggested that finds its origin in the logic and techniques used successfully over many years for a wide range of power plant and other installations. The criterion is based on the masking of the wind turbine noise by the wind generated background noise. Satisfactory use of the criterion depends on the specification of inaudibility for the tones generated by the mechanical plant. Wind turbines generate more drive train noise than is realized and this contains many tones which tend to characterize the noise. Reduction of drive train noise would not only reduce the overall noise level but also give it a more acceptable character providing a margin against complaint in unusual circumstances of propagation. This requires very careful design of noise and vibration control in individual components. Vibration isolation between the support structures and the nacelle also requires careful attention. (UK)

  11. Determination of fuel assembly vibrational modes through analysis of incore detector noise

    International Nuclear Information System (INIS)

    Johnson, R.S.

    1986-01-01

    In order to better characterize fuel assembly vibration at Duke Power Company's Oconee Nuclear Station, incore noise data were acquired an analyzed from prompt responding detectors incorporated in the Oconee 2, Cycle 7 core. Duke Power Company began actively pursuing an inhouse Neutron Noise Analysis program for routine surveillance of reactor internals vibration in 1979. Noise data has since been acquired and analyzed for twelve cycles of operation for the three Oconee units. Duke Power's Oconee Unit 2 is a Babcock and Wilcoxs pressurized water reactor with a rate thermal power of 2568MW. For Oconee 2, Cycle 7 operation, two test assemblies, each employing a string of seven axially-spaced, prompt responding hafnium detectors, were included in the final core design. Incore detector noise data were obtained during Cycle 7 at approximately 281 and 430 effective full power days (EFPD). In addition to the incore test detector signals, noise signals from the upper and lower chambers of the four excore power range detectors were recorded to aid in the analysis. The comparison of RMS signal levels for each incore detector and the phase relationships between detector locations within two test assemblies identified the first four fuel assembly bending modes associated with fixed end conditions

  12. [Restoration filtering based on projection power spectrum for single-photon emission computed tomography].

    Science.gov (United States)

    Kubo, N

    1995-04-01

    To improve the quality of single-photon emission computed tomographic (SPECT) images, a restoration filter has been developed. This filter was designed according to practical "least squares filter" theory. It is necessary to know the object power spectrum and the noise power spectrum. The power spectrum is estimated from the power spectrum of a projection, when the high-frequency power spectrum of a projection is adequately approximated as a polynomial exponential expression. A study of the restoration with the filter based on a projection power spectrum was conducted, and compared with that of the "Butterworth" filtering method (cut-off frequency of 0.15 cycles/pixel), and "Wiener" filtering (signal-to-noise power spectrum ratio was a constant). Normalized mean-squared errors (NMSE) of the phantom, two line sources located in a 99mTc filled cylinder, were used. NMSE of the "Butterworth" filter, "Wiener" filter, and filtering based on a power spectrum were 0.77, 0.83, and 0.76 respectively. Clinically, brain SPECT images utilizing this new restoration filter improved the contrast. Thus, this filter may be useful in diagnosis of SPECT images.

  13. Restoration filtering based on projection power spectrum for single-photon emission computed tomography

    International Nuclear Information System (INIS)

    Kubo, Naoki

    1995-01-01

    To improve the quality of single-photon emission computed tomographic (SPECT) images, a restoration filter has been developed. This filter was designed according to practical 'least squares filter' theory. It is necessary to know the object power spectrum and the noise power spectrum. The power spectrum is estimated from the power spectrum of a projection, when the high-frequency power spectrum of a projection is adequately approximated as a polynomial exponential expression. A study of the restoration with the filter based on a projection power spectrum was conducted, and compared with that of the 'Butterworth' filtering method (cut-off frequency of 0.15 cycles/pixel), and 'Wiener' filtering (signal-to-noise power spectrum ratio was a constant). Normalized mean-squared errors (NMSE) of the phantom, two line sources located in a 99m Tc filled cylinder, were used. NMSE of the 'Butterworth' filter, 'Wiener' filter, and filtering based on a power spectrum were 0.77, 0.83, and 0.76 respectively. Clinically, brain SPECT images utilizing this new restoration filter improved the contrast. Thus, this filter may be useful in diagnosis of SPECT images. (author)

  14. An excess noise measurement system for weak responsivity avalanche photodiodes

    Science.gov (United States)

    Qiao, Liang; Dimler, Simon J.; Baharuddin, Aina N. A. P.; Green, James E.; David, John P. R.

    2018-06-01

    A system for measuring, with reduced photocurrent, the excess noise associated with the gain in avalanche photodiodes (APDs), using a transimpedance amplifier front-end and based on phase-sensitive detection is described. The system can reliably measure the excess noise power of devices, even when the un-multiplied photocurrent is low (~10 nA). This is more than one order of magnitude better than previously reported systems and represents a significantly better noise signal to noise ratio. This improvement in performance has been achieved by increasing the value of the feedback resistor and reducing the op-amp bandwidth. The ability to characterise APD performance with such low photocurrents enables the use of low power light sources such as light emitting diode rather than lasers to investigate the APD noise performance.

  15. The Use of Noise Dampening Mats to Reduce Heavy-Equipment Noise Exposures in Construction

    Directory of Open Access Journals (Sweden)

    Sabah Saleh

    2017-06-01

    Full Text Available The performance of sound barriers was evaluated to determine their technical effectiveness and practicality in reducing noise exposures to operating engineers in construction. Commercially purchased sound dampening mats (SDMats were installed inside three heavy-equipment engine compartments. Sound pressure levels (SPLs were measured before and after installing the SDMats while the equipment was on idle and full-throttle settings where it normally operates. SPLs inside the heavy-equipment operator cabs were significantly reduced by 5.6–7.6 dBA on the full-throttle setting following installation of the SDMats (p<0.01. The evaluated engineering control intervention was simple to install, affordable, and substantially reduced the engine noise reaching the heavy-equipment operator, potentially reducing reliance on hearing-protection devices to protect construction workers from noise exposures.

  16. Assessment of Environmental Effects of Noise Pollution in Auchi, Nigeria

    Directory of Open Access Journals (Sweden)

    Oyati E.N.

    2017-11-01

    Full Text Available It is obvious that we are living in a noise-polluted environment. This pollution has been linked to a number of health related ailments such as depression, anger, weak concentration and hearing defects. Growing global population, increase in technological advancement and some human activities are major causes of this noise-related pollution. This study investigates environmental effects of noise pollution on man for possible mitigation strategies. Sound level meter (SLM was used to obtain the level of noise pollution in decibel (dB. Selected noisegenerating centres were used such as mosques, churches, markets, schools and household appliance-loudspeakers. Noise pollution variables (NPV were mathematically-modelled and analysed using statistical metrics. Sound powers (SP, total power level (SPL and total sound pressure level (SPL were computed using empirical relationship. Reference power (RF and pressure (RFP values of 10 -12 watt and 2.0 * 10 -5 N/M 2 were computed. 230.65dB and 106.3 dB values of SWL were obtained. These values indicate serious health hazard because it is far above acceptable standard. The output of the resultant mathematical iterations indicates that the impact of noise pollution is a cumulative function of population increase, human activity and technological advancement at 1% and 5% level of significance. Generally, obtained results showed that the impacts noise pollution on man and his entire environment are obviously on the negative side. Hence, possible mitigation measures such as noise pollution regulatory policy enactment and design of noise absorbing structures are strongly recommended.

  17. Analysis of Noise Mechanisms in Cell-Size Control.

    Science.gov (United States)

    Modi, Saurabh; Vargas-Garcia, Cesar Augusto; Ghusinga, Khem Raj; Singh, Abhyudai

    2017-06-06

    At the single-cell level, noise arises from multiple sources, such as inherent stochasticity of biomolecular processes, random partitioning of resources at division, and fluctuations in cellular growth rates. How these diverse noise mechanisms combine to drive variations in cell size within an isoclonal population is not well understood. Here, we investigate the contributions of different noise sources in well-known paradigms of cell-size control, such as adder (division occurs after adding a fixed size from birth), sizer (division occurs after reaching a size threshold), and timer (division occurs after a fixed time from birth). Analysis reveals that variation in cell size is most sensitive to errors in partitioning of volume among daughter cells, and not surprisingly, this process is well regulated among microbes. Moreover, depending on the dominant noise mechanism, different size-control strategies (or a combination of them) provide efficient buffering of size variations. We further explore mixer models of size control, where a timer phase precedes/follows an adder, as has been proposed in Caulobacter crescentus. Although mixing a timer and an adder can sometimes attenuate size variations, it invariably leads to higher-order moments growing unboundedly over time. This results in a power-law distribution for the cell size, with an exponent that depends inversely on the noise in the timer phase. Consistent with theory, we find evidence of power-law statistics in the tail of C. crescentus cell-size distribution, although there is a discrepancy between the observed power-law exponent and that predicted from the noise parameters. The discrepancy, however, is removed after data reveal that the size added by individual newborns in the adder phase itself exhibits power-law statistics. Taken together, this study provides key insights into the role of noise mechanisms in size homeostasis, and suggests an inextricable link between timer-based models of size control and

  18. Noise from wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Fegeant, Olivier [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Building Sciences

    2002-02-01

    A rapid growth of installed wind power capacity is expected in the next few years. However, the siting of wind turbines on a large scale raises concerns about their environmental impact, notably with respect to noise. To this end, variable speed wind turbines offer a promising solution for applications in densely populated areas like the European countries, as this design would enable an efficient utilisation of the masking effect due to ambient noise. In rural and recreational areas where wind turbines are sited, the ambient noise originates from the action of wind on the vegetation and about the listener's ear (pseudo-noise). It shows a wind speed dependence similar to that of the noise from a variable speed wind turbine and can therefore mask the latter for a wide range of conditions. However, a problem inherent to the design of these machines is their proclivity to pure tone generation, because of the enhanced difficulty of avoiding structural resonances in the mechanical parts. Pure tones are deemed highly annoying and are severely regulated by most noise policies. In relation to this problem, the vibration transmission of structure-borne sound to the tower of the turbine is investigated, in particular when the tower is stiffened at its upper end. Furthermore, since noise annoyance due to wind turbine is mostly a masking issue, the wind-related sources of ambient noise are studied and their masking potentials assessed. With this aim, prediction models for wind-induced vegetation noise and pseudo-noise have been developed. Finally, closely related to the effect of masking, is the difficulty, regularly encountered by local authorities and wind farm developers, to measure noise immission from wind turbines. A new measurement technique has thus been developed in the course of this work. Through improving the signal-to-noise ratio between wind turbine noise and ambient noise, the new technique yields more accurate measurement results.

  19. Reactor sensor surveillance using noise analysis

    International Nuclear Information System (INIS)

    Hashemian, H.M.; Thie, J.A.; Upadhyaya, B.R.

    1986-01-01

    Reactor noise signals, as measured by neutron detectors and process sensors, contain information about the dynamics of the process and sensor characteristics. The extent of sensor characteristics that can be determined from such measurements depends on the sensor type, the property of the process noise exciting the sensor and its location. This paper addresses degradation monitoring of temperature and pressure sensors, analysis methods and results of application to operating pressurized water reactors. In addition, the use of noise analysis for monitoring of pressure sensing lines in nuclear power plants is discussed

  20. Noise and vibration analysis system

    International Nuclear Information System (INIS)

    Johnsen, J.R.; Williams, R.L.

    1985-01-01

    The analysis of noise and vibration data from an operating nuclear plant can provide valuable information that can identify and characterize abnormal conditions. Existing plant monitoring equipment, such as loose parts monitoring systems (LPMS) and neutron flux detectors, may be capable of gathering noise data, but may lack the analytical capability to extract useful meanings hidden in the noise. By analyzing neutron noise signals, the structural motion and integrity of core components can be assessed. Computer analysis makes trending of frequency spectra within a fuel cycle and from one cycle to another a practical means of core internals monitoring. The Babcock and Wilcox Noise and Vibration Analysis System (NVAS) is a powerful, compact system that can automatically perform complex data analysis. The system can acquire, process, and store data, then produce report-quality plots of the important parameter. Software to perform neutron noise analysis and loose parts analysis operates on the same hardware package. Since the system is compact, inexpensive, and easy to operate, it allows utilities to perform more frequency analyses without incurring high costs and provides immediate results

  1. Investigation of the resonant power oscillation in the Halden Boiling Water Reactor by autoregressive modeling

    International Nuclear Information System (INIS)

    Oguma, Ritsuo

    1980-01-01

    In the HBWR (Halden Boiling Water Reactor), there exists a resonant power oscillation with period about 0.04 Hz at power levels higher than about 9.5 MWt. While the resonant oscillation in not so large as to affect the normal reactor operation, it is significant, from the viewpoint of reactor diagnosis, to grasp its characteristics and find the cause. Noise analysis based on the autoregressive (AR) modeling technique has been made to reveal the driving source for this oscillation which led to the suggestion that it is attributed to the dynamic interference of heat exchange process between two parallel-connected steam transformers against the reactor. The present study demonstrates that the method used here is highly effective for tracing back to a noise source inducing the variation of quantities in a system, and also applicable to problems of reactor noise analysis and diagnosis. (author)

  2. Intensity Noise Transfer Through a Diode-pumped Titanium Sapphire Laser System

    DEFF Research Database (Denmark)

    Tawfieq, Mahmoud; Hansen, Anders Kragh; Jensen, Ole Bjarlin

    2017-01-01

    higher RIN than a setup with only a single nonlinear crystal. The Ti:S is shown to have a cut-off frequency around 500 kHz, which means that noise structures of the pump laser above this frequency are strongly suppressed. Finally, the majority of the Ti:S noise seems to originate from the laser itself......In this paper, we investigate the noise performance and transfer in a titanium sapphire (Ti:S) laser system. This system consists of a DBR tapered diode laser, which is frequency doubled in two cascaded nonlinear crystals and used to pump the Ti:S laser oscillator. This investigation includes...... electrical noise characterizations of the utilized power supplies, the optical noise of the fundamental light, the second harmonic light, and finally the optical noise of the femtosecond pulses emitted by the Ti:S laser. Noise features originating from the electric power supply are evident throughout...

  3. Sensor response time calculation with no stationary signals from a Nuclear Power Plant

    International Nuclear Information System (INIS)

    Vela, O.; Vallejo, I.

    1998-01-01

    Protection systems in a Nuclear Power Plant have to response in a specific time fixed by design requirements. This time includes the event detection (sensor delay) and the actuation time system. This time is obtained in refuel simulating the physics event, which trigger the protection system, with an electric signal and measuring the protection system actuation time. Nowadays sensor delay is calculated with noise analysis techniques. The signals are measured in Control Room during the normal operation of the Plant, decreasing both the cost in time and personal radioactive exposure. The noise analysis techniques require stationary signals but normally the data collected are mixed with process signals that are no stationary. This work shows the signals processing to avoid no-stationary components using conventional filters and new wavelets analysis. (Author) 2 refs

  4. Linear phase formation by noise simulator

    International Nuclear Information System (INIS)

    Hazi, G.; Por, G.

    1998-01-01

    A new simulation technique is introduced to study noise propagation in nuclear power plants. Noise processes are considered as time functions, and the dynamic behaviour of the reactor core is modelled by ordinary and partial differential equations. The equations are solved by numerical methods and the results (time series) are considered as virtual measurements. The auto power spectral density and the cross power spectral density of these time series are calculated by traditional techniques. The spectrum obtained is compared with the analytical solution to validate the new simulation approach. After validation, the simulator is expanded to investigate some physical phenomena which are unmanageable by analytical calculations. Propagating disturbances are studied, and the effect of non-flat flux shape on phase curves is demonstrated. Numerical problems also are briefly discussed. (author)

  5. Reactor surveillance by noise analysis

    International Nuclear Information System (INIS)

    Ciftcioglu, Ozer

    1988-01-01

    A real-time noise analysis system is designed for the TRIGA reactor at Istanbul Technical University. By means of the noise techniques, reactor surveillance is performed together with failure diagnosis. The fast data processing is carried out by FFT in real-time so that malfunction or non-stationary operation of the reactor in long term can be identified by comparing the noise power spectra with the corresponding reference patterns while the decision making procedure is accomplished by the method of hypothesis testing. The system being computer based safety instrumentation involves CAMAC in conjunction with the RT-11 (PDP-11) single user dedicated environment. (author)

  6. Measurement and analysis of noise power spectrum of computerized tomography in images; Medida y analysis del espectro de potencias del ruido en imagenes de tomografia computarizada

    Energy Technology Data Exchange (ETDEWEB)

    Castro Tejero, P.; Garayoa Roca, J.

    2013-07-01

    This paper examines the implementation of the spectrum of powers of the noise, NPS, as metric to characterize the noise, both in magnitude and in texture, for CT scans. The NPS found show that you for convolution filters that assume a greater softening in the reconstructed image, spectrum is concentrated in the low frequencies, while for filters sharp, the spectrum extends to high frequencies. In the analyzed cases, there is a low frequency component, largely due to the structure-borne noise, which can be a potential negative effect on the detectability of injuries. (Author)

  7. The Impact of Listening Condition on Background Noise Acceptance for Young Adults with Normal Hearing

    Science.gov (United States)

    Gordon-Hickey, Susan; Moore, Robert E.; Estis, Julie M.

    2012-01-01

    Purpose: To evaluate the effect of different speech conditions on background noise acceptance. A total of 23 stimulus pairings, differing in primary talker gender (female, male, conventional), number of background talkers (1, 4, 12), and gender composition of the background noise (female, male, mixed) were used to evaluate background noise…

  8. Molecular Electronic Angular Motion Transducer Broad Band Self-Noise

    Science.gov (United States)

    Zaitsev, Dmitry; Agafonov, Vadim; Egorov, Egor; Antonov, Alexander; Shabalina, Anna

    2015-01-01

    Modern molecular electronic transfer (MET) angular motion sensors combine high technical characteristics with low cost. Self-noise is one of the key characteristics which determine applications for MET sensors. However, until the present there has not been a model describing the sensor noise in the complete operating frequency range. The present work reports the results of an experimental study of the self-noise level of such sensors in the frequency range of 0.01–200 Hz. Based on the experimental data, a theoretical model is developed. According to the model, self-noise is conditioned by thermal hydrodynamic fluctuations of the operating fluid flow in the frequency range of 0.01–2 Hz. At the frequency range of 2–100 Hz, the noise power spectral density has a specific inversely proportional dependence of the power spectral density on the frequency that could be attributed to convective processes. In the high frequency range of 100–200 Hz, the noise is conditioned by the voltage noise of the electronics module input stage operational amplifiers and is heavily reliant to the sensor electrical impedance. The presented results allow a deeper understanding of the molecular electronic sensor noise nature to suggest the ways to reduce it. PMID:26610502

  9. Towards a better understanding of helicopter external noise

    Science.gov (United States)

    Damongeot, A.; Dambra, F.; Masure, B.

    The problem of helicopter external noise generation is studied taking into consideration simultaneously the multiple noise sources: rotor rotational-, rotor broadband -, and engine noise. The main data are obtained during flight tests of the rather quiet AS 332 Super Puma. The flight procedures settled by ICAO for noise regulations are used: horizontal flyover at 90 percent of the maximum speed, approach at minimum power velocity, take-off at best rate of climb. Noise source levels are assessed through narrow band analysis of ground microphone recordings, ground measurements of engine noise and theoretical means. With the perceived noise level unit used throughout the study, relative magnitude of noise sources is shown to be different from that obtained with linear noise unit. A parametric study of the influence of some helicopter parameters on external noise has shown that thickness-tapered, chord-tapered, and swept-back blade tips are good means to reduce the overall noise level in flyover and approach.

  10. Objective measures of listening effort: effects of background noise and noise reduction.

    Science.gov (United States)

    Sarampalis, Anastasios; Kalluri, Sridhar; Edwards, Brent; Hafter, Ervin

    2009-10-01

    This work is aimed at addressing a seeming contradiction related to the use of noise-reduction (NR) algorithms in hearing aids. The problem is that although some listeners claim a subjective improvement from NR, it has not been shown to improve speech intelligibility, often even making it worse. To address this, the hypothesis tested here is that the positive effects of NR might be to reduce cognitive effort directed toward speech reception, making it available for other tasks. Normal-hearing individuals participated in 2 dual-task experiments, in which 1 task was to report sentences or words in noise set to various signal-to-noise ratios. Secondary tasks involved either holding words in short-term memory or responding in a complex visual reaction-time task. At low values of signal-to-noise ratio, although NR had no positive effect on speech reception thresholds, it led to better performance on the word-memory task and quicker responses in visual reaction times. Results from both dual tasks support the hypothesis that NR reduces listening effort and frees up cognitive resources for other tasks. Future hearing aid research should incorporate objective measurements of cognitive benefits.

  11. Resolution and noise measurements of five CRT and LCD medical displays

    International Nuclear Information System (INIS)

    Saunders, Robert S. Jr.; Samei, Ehsan

    2006-01-01

    The performance of soft-copy displays plays a significant role in the overall image quality of a digital radiographic system. In this work, we discuss methods to characterize the resolution and noise of both cathode ray tube (CRT) and liquid crystal display (LCD) devices. We measured the image quality of five different commercial display devices, representing both CRT and LCD technologies, using a high-quality charge-coupled device (CCD) camera. The modulation transfer function (MTF) was calculated using the line technique, correcting for the MTF of the CCD camera and the display pixel size. The normalized noise power spectrum (NPS) was computed from two-dimensional Fourier analysis of uniform images. To separate the effects of pixel structure from interpixel luminance variations, we created structure-free images by eliminating the pixel structures of the display device. The NPS was then computed from these structure-free images to isolate interpixel luminance variations. We found that the MTF of LCDs remained close to the theoretical limit dictated by their inherent pixel size (0.85±0.08 at Nyquist frequency), in contrast to the MTF for the two CRT displays, which dropped to 0.15±0.08 at the Nyquist frequency. However, the NPS of LCDs showed significant peaks due to the subpixel structure, while the NPS of CRT displays exhibited a nearly flat power spectrum. After removing the pixel structure, the structured noise peaks for LCDs were eliminated and the overall noise magnitude was significantly reduced. The average total noise-to-signal ratio for CRT displays was 6.55%±0.59%, of which 6.03%±0.24% was due to interpixel luminance variations, while LCD displays had total noise to signal ratios of 46.1%±5.1% of which 1.50%±0.41% were due to interpixel luminance variations. Depending on the extent of the blurring and prewhitening processes of the human visual system, the magnitude of the display noise (including pixel structure) potentially perceived by the

  12. Comparison of noise power spectrum methodologies in measurements by using various electronic portal imaging devices in radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Son, Soon Yong [Dept. of Radiological Technology, Wonkwang Health Science University, Iksan (Korea, Republic of); Choi, Kwan Woo [Dept. of Radiology, Asan Medical Center, Seoul (Korea, Republic of); Jeong, Hoi Woun [Dept. of Radiological Technology, Baekseok Culture University College, Cheonan (Korea, Republic of); Kwon, Kyung Tae [Dep. of Radiological Technology, Dongnam Health University, Suwon (Korea, Republic of); Kim, Ki Won [Dept. of Radiology, Kyung Hee University Hospital at Gang-dong, Seoul (Korea, Republic of); Lee, Young Ah; Son, Jin Hyun; Min, Jung Whan [Shingu University College, Sungnam (Korea, Republic of)

    2016-03-15

    The noise power spectrum (NPS) is one of the most general methods for measuring the noise amplitude and the quality of an image acquired from a uniform radiation field. The purpose of this study was to compare different NPS methodologies by using megavoltage X-ray energies. The NPS evaluation methods in diagnostic radiation were applied to therapy using the International Electro-technical Commission standard (IEC 62220-1). Various radiation therapy (RT) devices such as TrueBeamTM(Varian), BEAMVIEWPLUS(Siemens), iViewGT(Elekta) and ClinacR iX (Varian) were used. In order to measure the region of interest (ROI) of the NPS, we used the following four factors: the overlapping impact, the non-overlapping impact, the flatness and penumbra. As for NPS results, iViewGT(Elekta) had the higher amplitude of noise, compared to BEAMVIEWPLUS (Siemens), TrueBeamTM(Varian) flattening filter, ClinacRiXaS1000(Varian) and TrueBeamTM(Varian) flattening filter free. The present study revealed that various factors could be employed to produce megavoltage imaging (MVI) of the NPS and as a baseline standard for NPS methodologies control in MVI.

  13. Anechoic wind tunnel tests on high-speed train bogie aerodynamic noise

    OpenAIRE

    Latorre Iglesias, E.; Thompson, D.; Smith, M.; Kitagawa, T.; Yamazaki, N.

    2016-01-01

    Aerodynamic noise becomes a significant noise source at speeds normally reached by high-speed trains. The train bogies are identified as important sources of aerodynamic noise. Due to the difficulty to assess this noise source carrying out field tests, wind tunnel tests offer many advantages. Tests were performed in the large-scale low-noise anechoic wind tunnel at Maibara, Japan, using a 1/7 scale train car and bogie model for a range of flow speeds between 50, 76, 89 and 100 m/s. The depend...

  14. Identification of long-duration noise transients in LIGO and Virgo

    International Nuclear Information System (INIS)

    Coughlin, Michael W

    2011-01-01

    The LIGO and Virgo detectors are sensitive to a variety of noise sources, such as instrumental artifacts and environmental disturbances. The Stochastic Transient Analysis Multi-detector Pipeline has been developed to search for long-duration (t ≥ 1 s) gravitational-wave (GW) signals. This pipeline can also be used to identify environmental noise transients. Here, we present an algorithm to determine when long-duration noise sources couple into the interferometers, as well as identify what these noise sources are. We analyze the cross-power between a GW strain channel and an environmental sensor, using pattern recognition tools to identify statistically significant structure in cross-power time-frequency maps. We identify interferometer noise from airplanes, helicopters, thunderstorms and other sources. Examples from LIGO's sixth science run, S6, and Virgo's third scientific run, VSR3, are presented. (paper)

  15. Vibration noise control in laser satellite communication

    Science.gov (United States)

    Saksonov, Avigdor; Shlomi, Arnon; Kopeika, Norman S.

    2001-08-01

    Laser satellite communication has become especially attractive in recent years. Because the laser beam width is narrow than in the RF or microwave range, the transmitted optical power may be significantly reduced. This leads to development of miniature communication systems with extremely low power consumption. On the other hand, the laser communication channel is very sensitive to vibrations of the optical platform. These vibrations cause angular noise in laser beam pointing, comparable to the laser beam width. As result, as significant portion of the optical power between transmitter and receiver is lost and the bit error rate is increased. Consequently, vibration noise control is a critical problem in laser satellite communication. The direction of the laser beam is corrected with a fast steering mirror (FSM). In this paper are presented two approaches for the FSM control. One is the feedback control that uses an LQG algorithm. The second is the direct feed- forward control when vibration noise is measured by three orthogonal accelerometers and drives directly the F SM. The performances of each approach are evaluated using MATLAB simulations.

  16. Development of a magnet power supply with sub-ppm ripple performance for J-PARC with a novel common-mode rejection method with an NPC inverter

    International Nuclear Information System (INIS)

    Koseki, K.; Kurimoto, Y.

    2014-01-01

    The mechanism that generates common-mode noise in inverter circuits, which are widely used in magnet power supplies, was evaluated by a circuit simulation. By following asymmetric operational sequences, pulsed voltage is applied to the parasitic capacitance of power cables that causes a common-mode current at each switching period of the semiconductor switches. Common-mode noise was also found to disturb the normal-mode excitation current by inducing higher frequency components in the applied voltage to the magnet. To eliminate the disturbing effect by the common-mode noise, a newly developed operational method that uses a neutral point clamped, NPC, inverter with reduced switching sequences was evaluated both by a circuit simulation and experimentally. The operational method for the NPC inverter could sufficiently reduce the common-mode noise. A high-power test operation performed using 16 bending magnets at the J-PARC facility achieved a ripple of less than 1 ppm in the excitation current

  17. Development of a magnet power supply with sub-ppm ripple performance for J-PARC with a novel common-mode rejection method with an NPC inverter

    Energy Technology Data Exchange (ETDEWEB)

    Koseki, K., E-mail: kunio.koseki@kek.jp; Kurimoto, Y.

    2014-05-21

    The mechanism that generates common-mode noise in inverter circuits, which are widely used in magnet power supplies, was evaluated by a circuit simulation. By following asymmetric operational sequences, pulsed voltage is applied to the parasitic capacitance of power cables that causes a common-mode current at each switching period of the semiconductor switches. Common-mode noise was also found to disturb the normal-mode excitation current by inducing higher frequency components in the applied voltage to the magnet. To eliminate the disturbing effect by the common-mode noise, a newly developed operational method that uses a neutral point clamped, NPC, inverter with reduced switching sequences was evaluated both by a circuit simulation and experimentally. The operational method for the NPC inverter could sufficiently reduce the common-mode noise. A high-power test operation performed using 16 bending magnets at the J-PARC facility achieved a ripple of less than 1 ppm in the excitation current.

  18. Individual differences in language and working memory affect children’s speech recognition in noise

    Science.gov (United States)

    McCreery, Ryan W.; Spratford, Meredith; Kirby, Benjamin; Brennan, Marc

    2017-01-01

    Objective We examined how cognitive and linguistic skills affect speech recognition in noise for children with normal hearing. Children with better working memory and language abilities were expected to have better speech recognition in noise than peers with poorer skills in these domains. Design As part of a prospective, cross-sectional study, children with normal hearing completed speech recognition in noise for three types of stimuli: (1) monosyllabic words, (2) syntactically correct but semantically anomalous sentences and (3) semantically and syntactically anomalous word sequences. Measures of vocabulary, syntax and working memory were used to predict individual differences in speech recognition in noise. Study sample Ninety-six children with normal hearing, who were between 5 and 12 years of age. Results Higher working memory was associated with better speech recognition in noise for all three stimulus types. Higher vocabulary abilities were associated with better recognition in noise for sentences and word sequences, but not for words. Conclusions Working memory and language both influence children’s speech recognition in noise, but the relationships vary across types of stimuli. These findings suggest that clinical assessment of speech recognition is likely to reflect underlying cognitive and linguistic abilities, in addition to a child’s auditory skills, consistent with the Ease of Language Understanding model. PMID:27981855

  19. Quantum noise of a Michelson-Sagnac interferometer with a translucent mechanical oscillator

    International Nuclear Information System (INIS)

    Yamamoto, Kazuhiro; Friedrich, Daniel; Westphal, Tobias; Gossler, Stefan; Danzmann, Karsten; Schnabel, Roman; Somiya, Kentaro; Danilishin, Stefan L.

    2010-01-01

    Quantum fluctuations in the radiation pressure of light can excite stochastic motions of mechanical oscillators thereby realizing a linear quantum opto-mechanical coupling. When performing a precise measurement of the position of an oscillator, this coupling results in quantum radiation pressure noise. Up to now this effect has not been observed yet. Generally speaking, the strength of radiation pressure noise increases when the effective mass of the oscillator is decreased or when the power of the reflected light is increased. Recently, extremely light SiN membranes (≅100 ng) with high mechanical Q values at room temperature (≥10 6 ) have attracted attention as low thermal noise mechanical oscillators. However, the power reflectance of these membranes is much lower than unity (<0.4 at a wavelength of 1064 nm) which makes the use of advanced interferometer recycling techniques to amplify the radiation pressure noise in a standard Michelson interferometer inefficient. Here, we propose and theoretically analyze a Michelson-Sagnac interferometer that includes the membrane as a common end mirror for the Michelson interferometer part. In this topology, both power and signal recycling can be used even if the reflectance of the membrane is much lower than unity. In particular, signal recycling is a useful tool because it does not involve a power increase at the membrane. We derive the formulas for the quantum radiation pressure noise and the shot noise of an oscillator position measurement and compare them with theoretical models of the thermal noise of a SiN membrane with a fundamental resonant frequency of 75 kHz and an effective mass of125 ng. We find that quantum radiation pressure noise should be observable with a power of 1 W at the central beam splitter of the interferometer and a membrane temperature of 1 K.

  20. Model/data comparison of typhoon-generated noise

    International Nuclear Information System (INIS)

    Wang Jing-Yan; Li Feng-Hua

    2016-01-01

    Ocean noise recorded during a typhoon can be used to monitor the typhoon and investigate the mechanism of the wind-generated noise. An analytical expression for the typhoon-generated noise intensity is derived as a function of wind speed. A “bi-peak” structure was observed in an experiment during which typhoon-generated noise was recorded. Wind speed dependence and frequency dependence were also observed in the frequency range of 100 Hz–1000 Hz. The model/data comparison shows that results of the present model of 500 Hz and 1000 Hz are in reasonable agreement with the experimental data, and the typhoon-generated noise intensity has a dependence on frequency and a power-law dependence on wind speed. (special topic)

  1. Low-power low-noise analog circuits for on-focal-plane signal processing of infrared sensors

    Science.gov (United States)

    Pain, Bedabrata; Mendis, Sunetra K.; Schober, Robert C.; Nixon, Robert H.; Fossum, Eric R.

    1993-10-01

    On-focal-plane signal processing circuits for enhancement of IR imager performance are presented. To enable the detection of high background IR images, an in-pixel current-mode background suppression scheme is presented. The background suppression circuit consists of a current memory placed in the feedback loop of a CTIA and is designed for a thousand-fold suppression of the background flux, thereby easing circuit design constraints, and assuring BLIP operation even with detectors having large response non-uniformities. For improving the performance of low-background IR imagers, an on-chip column-parallel analog-to-digital converter (ADC) is presented. The design of a 10-bit ADC with 50 micrometers pitch and based on sigma-delta ((Sigma) -(Delta) ) modulation is presented. A novel IR imager readout technique featuring photoelectron counting in the unit cell is presented for ultra-low background applications. The output of the unit cell is a digital word corresponding to the incident flux density and the readout is noise free. The design of low-power (noise, high-gain (> 100,000), small real estate (60 micrometers pitch) self-biased CMOS amplifiers required for photon counting are presented.

  2. Photon-noise limited sensitivity in titanium nitride kinetic inductance detectors

    Energy Technology Data Exchange (ETDEWEB)

    Hubmayr, J., E-mail: hubmayr@nist.gov; Beall, J.; Becker, D.; Cho, H.-M.; Hilton, G. C.; Li, D.; Pappas, D. P.; Van Lanen, J.; Vissers, M. R.; Gao, J. [National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80305 (United States); Devlin, M.; Dober, B. [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd St., Philadelphia, Pennsylvania 19104 (United States); Groppi, C.; Mauskopf, P. [School of Earth and Space Exploration, Arizona State University, 781 S Terrace Rd., Tempe, Arizona 85281 (United States); Irwin, K. D. [Department of Physics, Stanford University, Stanford, California 94305 (United States); Wang, Y. [National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80305 (United States); Quantum Optoelectronics Laboratory, Southwest Jiaotong University, Chengdu (China); Wei, L. F. [Quantum Optoelectronics Laboratory, Southwest Jiaotong University, Chengdu (China)

    2015-02-16

    We demonstrate photon-noise limited performance at sub-millimeter wavelengths in feedhorn-coupled, microwave kinetic inductance detectors made of a TiN/Ti/TiN trilayer superconducting film, tuned to have a transition temperature of 1.4 K. Micro-machining of the silicon-on-insulator wafer backside creates a quarter-wavelength backshort optimized for efficient coupling at 250 μm. Using frequency read out and when viewing a variable temperature blackbody source, we measure device noise consistent with photon noise when the incident optical power is >0.5 pW, corresponding to noise equivalent powers >3×10{sup −17} W/√(Hz). This sensitivity makes these devices suitable for broadband photometric applications at these wavelengths.

  3. Cascaded analysis of signal and noise propagation through a heterogeneous breast model

    International Nuclear Information System (INIS)

    Mainprize, James G.; Yaffe, Martin J.

    2010-01-01

    Purpose: The detectability of lesions in radiographic images can be impaired by patterns caused by the surrounding anatomic structures. The presence of such patterns is often referred to as anatomic noise. Others have previously extended signal and noise propagation theory to include variable background structure as an additional noise term and used in simulations for analysis by human and ideal observers. Here, the analytic forms of the signal and noise transfer are derived to obtain an exact expression for any input random distribution and the ''power law'' filter used to generate the texture of the tissue distribution. Methods: A cascaded analysis of propagation through a heterogeneous model is derived for x-ray projection through simulated heterogeneous backgrounds. This is achieved by considering transmission through the breast as a correlated amplification point process. The analytic forms of the cascaded analysis were compared to monoenergetic Monte Carlo simulations of x-ray propagation through power law structured backgrounds. Results: As expected, it was found that although the quantum noise power component scales linearly with the x-ray signal, the anatomic noise will scale with the square of the x-ray signal. There was a good agreement between results obtained using analytic expressions for the noise power and those from Monte Carlo simulations for different background textures, random input functions, and x-ray fluence. Conclusions: Analytic equations for the signal and noise properties of heterogeneous backgrounds were derived. These may be used in direct analysis or as a tool to validate simulations in evaluating detectability.

  4. Applications of aero-acoustic analysis to wind turbine noise control

    International Nuclear Information System (INIS)

    Lowson, M.V.

    1992-01-01

    Wind turbine noise generation mechanisms are essentially equivalent to the aero-acoustic mechanisms of other rotors, which have been studied in depth for many years. Basic sources for the wind turbine noise radiation process are defined, and their significance assessed. From the analysis, areas of potential improvement in wind turbine noise prediction are defined. Suggestions are made for approaches to wind turbine noise control which separate the noise problems at cut-in from those at rated power. Some of these offer the possibility of noise reduction without unfavourable effects on performance. (author)

  5. Applications of aero-acoustic analysis to wind turbine noise control

    International Nuclear Information System (INIS)

    Lowson, M.

    1993-01-01

    Wind turbine noise generation mechanisms are essentially equivalent to the aero-acoustic mechanisms of other rotors, which have been studied in depth for many years. Basic sources for the wind turbine noise radiation process are defined, and their significance assessed. From the analysis, areas of potential improvement in wind turbine noise prediction are defined. Suggestions are made for approaches to wind turbine noise control which separate the noise problems at cut-in from those at rated power. Some of these offer the possibility of noise reduction without unfavourable effects on performance. (author)

  6. Long-term exposure to road traffic noise and incident diabetes

    DEFF Research Database (Denmark)

    Sørensen, Mette; Andersen, Zorana Jovanovic; Nordsborg, Rikke B

    2013-01-01

    Road traffic noise at normal urban levels can lead to stress and sleep disturbances. Both excess of stress hormones and reduction in sleep quality and duration may lead to higher risk for type 2 diabetes.Objective: We investigated whether long-term exposure to residential road traffic noise...

  7. Some Neurocognitive Correlates of Noise-Vocoded Speech Perception in Children with Normal Hearing: A Replication and Extension of Eisenberg et al., 2002

    Science.gov (United States)

    Roman, Adrienne S.; Pisoni, David B.; Kronenberger, William G.; Faulkner, Kathleen F.

    2016-01-01

    Objectives Noise-vocoded speech is a valuable research tool for testing experimental hypotheses about the effects of spectral-degradation on speech recognition in adults with normal hearing (NH). However, very little research has utilized noise-vocoded speech with children with NH. Earlier studies with children with NH focused primarily on the amount of spectral information needed for speech recognition without assessing the contribution of neurocognitive processes to speech perception and spoken word recognition. In this study, we first replicated the seminal findings reported by Eisenberg et al. (2002) who investigated effects of lexical density and word frequency on noise-vocoded speech perception in a small group of children with NH. We then extended the research to investigate relations between noise-vocoded speech recognition abilities and five neurocognitive measures: auditory attention and response set, talker discrimination and verbal and nonverbal short-term working memory. Design Thirty-one children with NH between 5 and 13 years of age were assessed on their ability to perceive lexically controlled words in isolation and in sentences that were noise-vocoded to four spectral channels. Children were also administered vocabulary assessments (PPVT-4 and EVT-2) and measures of auditory attention (NEPSY Auditory Attention (AA) and Response Set (RS) and a talker discrimination task (TD)) and short-term memory (visual digit and symbol spans). Results Consistent with the findings reported in the original Eisenberg et al. (2002) study, we found that children perceived noise-vocoded lexically easy words better than lexically hard words. Words in sentences were also recognized better than the same words presented in isolation. No significant correlations were observed between noise-vocoded speech recognition scores and the PPVT-4 using language quotients to control for age effects. However, children who scored higher on the EVT-2 recognized lexically easy words

  8. Understanding noise suppression in heterojunction field-effect transistors

    International Nuclear Information System (INIS)

    Green, F.

    1996-01-01

    Full text: The enhanced transport properties displayed by quantum-well-confined, two-dimensional, electron systems underpin the success of heterojunction, field-effect transistors. At cryogenic temperatures, these devices exhibit impressive mobilities and, as a result, high signal gain and low noise. Conventional wisdom has it that the same favourable conditions also hold for normal room-temperature operation. In that case, however, high mobilities are precluded by abundant electron-phonon scattering. Our recent study of nonequilibrium current noise shows that quantum confinement, not high mobility, is the principal source of noise in these devices; this opens up new and exciting opportunities in low-noise transistor design. As trends in millimetre-wave technology push frequencies beyond 100 GHz, it is essential to develop a genuine understanding of noise processes in heterojunction devices

  9. Low-Noise Operation of All-Fiber Femtosecond Cherenkov Laser

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Villanueva Ibáñez, Guillermo Eduardo; Lægsgaard, Jesper

    2013-01-01

    We investigate the noise properties of a femtosecond all-fiber Cherenkov radiation source with emission wavelength around 600 nm, based on an Yb-fiber laser and a highly-nonlinear photonic crystal fiber. A relative intensity noise as low as - 103 dBc/Hz, corresponding to 2.48 % pulse-to-pulse...... fluctuation in energy, was observed at the Cherenkov radiation output power of 4.3 mW, or 150 pJ pulse energy. This pulse-to-pulse fluctuation is at least 10.6 dB lower compared to spectrally-sliced supercontinuum sources traditionally used for ultrafast fiberbased generation at visible wavelengths. Low noise...... makes allfiber Cherenkov sources promising for biophotonics applications such as multi-photon microscopy, where minimum pulse-to-pulse energy fluctuation is required. We present the dependency of the noise figure on both the Cherenkov radiation output power and its spectrum....

  10. A robust power spectrum split cancellation-based spectrum sensing method for cognitive radio systems

    International Nuclear Information System (INIS)

    Qi Pei-Han; Li Zan; Si Jiang-Bo; Gao Rui

    2014-01-01

    Spectrum sensing is an essential component to realize the cognitive radio, and the requirement for real-time spectrum sensing in the case of lacking prior information, fading channel, and noise uncertainty, indeed poses a major challenge to the classical spectrum sensing algorithms. Based on the stochastic properties of scalar transformation of power spectral density (PSD), a novel spectrum sensing algorithm, referred to as the power spectral density split cancellation method (PSC), is proposed in this paper. The PSC makes use of a scalar value as a test statistic, which is the ratio of each subband power to the full band power. Besides, by exploiting the asymptotic normality and independence of Fourier transform, the distribution of the ratio and the mathematical expressions for the probabilities of false alarm and detection in different channel models are derived. Further, the exact closed-form expression of decision threshold is calculated in accordance with Neyman—Pearson criterion. Analytical and simulation results show that the PSC is invulnerable to noise uncertainty, and can achive excellent detection performance without prior knowledge in additive white Gaussian noise and flat slow fading channels. In addition, the PSC benefits from a low computational cost, which can be completed in microseconds. (interdisciplinary physics and related areas of science and technology)

  11. A robust power spectrum split cancellation-based spectrum sensing method for cognitive radio systems

    Science.gov (United States)

    Qi, Pei-Han; Li, Zan; Si, Jiang-Bo; Gao, Rui

    2014-12-01

    Spectrum sensing is an essential component to realize the cognitive radio, and the requirement for real-time spectrum sensing in the case of lacking prior information, fading channel, and noise uncertainty, indeed poses a major challenge to the classical spectrum sensing algorithms. Based on the stochastic properties of scalar transformation of power spectral density (PSD), a novel spectrum sensing algorithm, referred to as the power spectral density split cancellation method (PSC), is proposed in this paper. The PSC makes use of a scalar value as a test statistic, which is the ratio of each subband power to the full band power. Besides, by exploiting the asymptotic normality and independence of Fourier transform, the distribution of the ratio and the mathematical expressions for the probabilities of false alarm and detection in different channel models are derived. Further, the exact closed-form expression of decision threshold is calculated in accordance with Neyman—Pearson criterion. Analytical and simulation results show that the PSC is invulnerable to noise uncertainty, and can achive excellent detection performance without prior knowledge in additive white Gaussian noise and flat slow fading channels. In addition, the PSC benefits from a low computational cost, which can be completed in microseconds.

  12. Reactor noise analysis applications in NPP I and C systems

    Energy Technology Data Exchange (ETDEWEB)

    Gloeckler, O. [International Atomic Energy Agency, Wagramer Strosse 5, A-1400 Vienna, Austria Ontario Power Generation, 230 Westney Road South, Ajax, Ont. L1S 7R3 (Canada)

    2006-07-01

    Reactor noise analysis techniques are used in many NPPs on a routine basis as 'inspection tools' to get information on the dynamics of reactor processes and their instrumentation in a passive, non-intrusive way. The paper discusses some of the tasks and requirements an NPP has to take to implement and to use the full advantages of reactor noise analysis techniques. Typical signal noise analysis applications developed for the monitoring of the reactor shutdown system and control system instrumentation of the Candu units of Ontario Power Generation and Bruce Power are also presented. (authors)

  13. Predicting speech intelligibility based on the signal-to-noise envelope power ratio after modulation-frequency selective processing

    DEFF Research Database (Denmark)

    Jørgensen, Søren; Dau, Torsten

    2011-01-01

    A model for predicting the intelligibility of processed noisy speech is proposed. The speech-based envelope power spectrum model has a similar structure as the model of Ewert and Dau [(2000). J. Acoust. Soc. Am. 108, 1181-1196], developed to account for modulation detection and masking data. The ...... process provides a key measure of speech intelligibility. © 2011 Acoustical Society of America.......A model for predicting the intelligibility of processed noisy speech is proposed. The speech-based envelope power spectrum model has a similar structure as the model of Ewert and Dau [(2000). J. Acoust. Soc. Am. 108, 1181-1196], developed to account for modulation detection and masking data....... The model estimates the speech-to-noise envelope power ratio, SNR env, at the output of a modulation filterbank and relates this metric to speech intelligibility using the concept of an ideal observer. Predictions were compared to data on the intelligibility of speech presented in stationary speech...

  14. Comparison of power Doppler and color Doppler ultrasonography in the detection of intrasticular blood flow of normal infants

    International Nuclear Information System (INIS)

    Shin, Sung Ran; Lee, Ho Kyoung; Lee, Won Gyun; Youk, Dong Joon; Rho, Taek Soo; Lee, Min Jin; Lee, Sang Chun

    1999-01-01

    To compare color Doppler ultrasonography (US) and power Doppler US in the detection of intratesticular blood flow in normal infants and to asses the symmetry of blood flow. Testicular blood flow was assessed prospectively in 100 testes of 50 infants with both power and color Doppler US. We compared the power Doppler with color Doppler to detect intratesticular blood. When the flow was detected, intratesticular blood flow was graded as follows: grade 1: single intratesticular Doppler signal ; grade 2: multiple intratesticular Doppler signals. The symmetry of intratesticular flow was assessed by using the same method. Intratesticular flow was detected in 72 (72%) and 68 (68%) testes on power and color Doppler US, respectively. In 76 testes (76%), intratesticular flow was detected in either one or both techniques. On power Doppler US, grade 1 was seen in 40 tests and grade 2 in 32 testes. On color Doppler US, grade 1 was noted in 52 testes and grade 2 in 16 testes. Testicular blood flow was symmetric on both power and color Doppler US in each patient. There was no difference between power Doppler and color Doppler ultrasonography in detecting intratesticular blood flow in normal infants.

  15. Nuisance levels of noise effects radiologists' performance

    Science.gov (United States)

    McEntee, Mark F.; Coffey, Amina; Ryan, John; O'Beirne, Aaron; Toomey, Rachel; Evanoff, Micheal; Manning, David; Brennan, Patrick C.

    2010-02-01

    This study aimed to measure the sound levels in Irish x-ray departments. The study then established whether these levels of noise have an impact on radiologists performance Noise levels were recorded 10 times within each of 14 environments in 4 hospitals, 11 of which were locations where radiologic images are judged. Thirty chest images were then presented to 26 senior radiologists, who were asked to detect up to three nodular lesions within 30 posteroanterior chest x-ray images in the absence and presence of noise at amplitude demonstrated in the clinical environment. The results demonstrated that noise amplitudes rarely exceeded that encountered with normal conversation with the maximum mean value for an image-viewing environment being 56.1 dB. This level of noise had no impact on the ability of radiologists to identify chest lesions with figure of merits of 0.68, 0.69, and 0.68 with noise and 0.65, 0.68, and 0.67 without noise for chest radiologists, non-chest radiologists, and all radiologists, respectively. the difference in their performance using the DBM MRMC method was significantly better with noise than in the absence of noise at the 90% confidence interval (p=0.077). Further studies are required to establish whether other aspects of diagnosis are impaired such as recall and attention and the effects of more unexpected noise on performance.

  16. Applications of digital processing for noise removal from plasma diagnostics

    International Nuclear Information System (INIS)

    Kane, R.J.; Candy, J.V.; Casper, T.A.

    1985-01-01

    The use of digital signal techniques for removal of noise components present in plasma diagnostic signals is discussed, particularly with reference to diamagnetic loop signals. These signals contain noise due to power supply ripple in addition to plasma characteristics. The application of noise canceling techniques, such as adaptive noise canceling and model-based estimation, will be discussed. The use of computer codes such as SIG is described. 19 refs., 5 figs

  17. Survey on Johnson noise thermometry for temperature instrumentation

    International Nuclear Information System (INIS)

    Hwang, I. K.; Kim, Y. K.; Kim, J. S.; Moon, B. S.

    2002-01-01

    Johnson Noise Thermometry is an drift-free temperature measurement method which is able to maintain the best accuracy without calibration for a long period. Resistance Temperature Detectors (RTDs) and Thermocouples used widely in power plants have the drift problem which causes a measurement error. Despite the advantage of Johnson Noise thermometry, it has not been used because it is very sensitive to electromagnetic noise and environment. It also requires more complicated signal processing methods. This paper presents the characteristics of Johnson Noise thermometry and various implementation method proposed over the past decades time period. The key factor in development of a noise thermometer is how to extract the tiny noise signal from the sensor and discriminate out the unnecessary noise interference from the environments. The new digital technology of fast signal processing skill will useful to challenge the existing problems fir commercialization of noise thermometry

  18. Investigation of noise sources and propagation in external gear pumps

    Science.gov (United States)

    Opperwall, Timothy J.

    Oil hydraulics is widely accepted as the best technology for transmitting power in many engineering applications due to its advantages in power density, control, layout flexibility, and efficiency. Due to these advantages, hydraulic systems are present in many different applications including construction, agriculture, aerospace, automotive, forestry, medical, and manufacturing, just to identify a few. Many of these applications involve the systems in close proximity to human operators and passengers where noise is one of the main constraints to the acceptance and spread of this technology. As a key component in power transfer, displacement machines can be major sources of noise in hydraulic systems. Thus, investigation into the sources of noise and discovering strategies to reduce noise is a key part of applying fluid power systems to a wider range of applications, as well as improving the performance of current hydraulic systems. The present research aims to leverage previous efforts and develop new models and experimental techniques in the topic of noise generation caused by hydrostatic units. This requires challenging and surpassing current accepted methods in the understanding of noise in fluid power systems. This research seeks to expand on the previous experimental and modeling efforts by directly considering the effect that system and component design changes apply on the total sound power and the sound frequency components emitted from displacement machines and the attached lines. The case of external gear pumps is taken as reference for a new model to understand the generation and transmission of noise from the sources out to the environment. The lumped parameter model HYGESim (HYdraulic GEar machine Simulator) was expanded to investigate the dynamic forces on the solid bodies caused by the pump operation and to predict interactions with the attached system. Vibration and sound radiation were then predicted using a combined finite element and boundary

  19. Common mode noise on the main Tevatron bus and associated beam emittance growth

    International Nuclear Information System (INIS)

    Zhang, P.; Johnson, R.P.; Kuchnir, M.; Siergiej, D.; Wolff, D.

    1991-05-01

    Overlap of betatron tune frequencies with the power supply noise spectrum can cause transverse beam emittance growth in a storage ring. We have studied this effect for tunes near the integer, where the betatron frequency is low. By injecting noise onto the main power supply bus, it was determined that common mode noise was the dominant source of emittance growth. A noise suppression feed-back loop was then used to reduce the noise and the emittance growth. These experiments are described as are investigations of the common mode propagation along the Tevatron bus and measurements of the fields generated by common mode excitation of isolated Tevatron magnets. 3 refs., 4 figs

  20. Bit-rate reduction strategies for noise suppression with a remote wireless microphone

    NARCIS (Netherlands)

    Cvijanovic, N.; Sadiq, O.; Srinivasan, S.

    2012-01-01

    In single channel non-stationary noise reduction it is paramount that a good noise reference is available in a timely manner to maintaina high quality speech signal. Using a remote wireless microphone placed close to a noise source, a good estimate of the noise power spectral density (PSD) can be

  1. Bit rate reduction strategies for noise suppression using a remote wireless microphone

    NARCIS (Netherlands)

    Cvijanovic, N.; Sadiq, O.; Srinivasan, S.

    2012-01-01

    In single-channel non-stationary noise reduction it is paramount that a good noise reference is available in a timely manner to maintain a high quality speech signal. Using a remote wireless microphone placed close to a noise source, a good estimate of the noise power spectral density (PSD) can be

  2. Early continuous white noise exposure alters auditory spatial sensitivity and expression of GAD65 and GABAA receptor subunits in rat auditory cortex.

    Science.gov (United States)

    Xu, Jinghong; Yu, Liping; Cai, Rui; Zhang, Jiping; Sun, Xinde

    2010-04-01

    Sensory experiences have important roles in the functional development of the mammalian auditory cortex. Here, we show how early continuous noise rearing influences spatial sensitivity in the rat primary auditory cortex (A1) and its underlying mechanisms. By rearing infant rat pups under conditions of continuous, moderate level white noise, we found that noise rearing markedly attenuated the spatial sensitivity of A1 neurons. Compared with rats reared under normal conditions, spike counts of A1 neurons were more poorly modulated by changes in stimulus location, and their preferred locations were distributed over a larger area. We further show that early continuous noise rearing induced significant decreases in glutamic acid decarboxylase 65 and gamma-aminobutyric acid (GABA)(A) receptor alpha1 subunit expression, and an increase in GABA(A) receptor alpha3 expression, which indicates a returned to the juvenile form of GABA(A) receptor, with no effect on the expression of N-methyl-D-aspartate receptors. These observations indicate that noise rearing has powerful adverse effects on the maturation of cortical GABAergic inhibition, which might be responsible for the reduced spatial sensitivity.

  3. Neural Spike-Train Analyses of the Speech-Based Envelope Power Spectrum Model

    Science.gov (United States)

    Rallapalli, Varsha H.

    2016-01-01

    Diagnosing and treating hearing impairment is challenging because people with similar degrees of sensorineural hearing loss (SNHL) often have different speech-recognition abilities. The speech-based envelope power spectrum model (sEPSM) has demonstrated that the signal-to-noise ratio (SNRENV) from a modulation filter bank provides a robust speech-intelligibility measure across a wider range of degraded conditions than many long-standing models. In the sEPSM, noise (N) is assumed to: (a) reduce S + N envelope power by filling in dips within clean speech (S) and (b) introduce an envelope noise floor from intrinsic fluctuations in the noise itself. While the promise of SNRENV has been demonstrated for normal-hearing listeners, it has not been thoroughly extended to hearing-impaired listeners because of limited physiological knowledge of how SNHL affects speech-in-noise envelope coding relative to noise alone. Here, envelope coding to speech-in-noise stimuli was quantified from auditory-nerve model spike trains using shuffled correlograms, which were analyzed in the modulation-frequency domain to compute modulation-band estimates of neural SNRENV. Preliminary spike-train analyses show strong similarities to the sEPSM, demonstrating feasibility of neural SNRENV computations. Results suggest that individual differences can occur based on differential degrees of outer- and inner-hair-cell dysfunction in listeners currently diagnosed into the single audiological SNHL category. The predicted acoustic-SNR dependence in individual differences suggests that the SNR-dependent rate of susceptibility could be an important metric in diagnosing individual differences. Future measurements of the neural SNRENV in animal studies with various forms of SNHL will provide valuable insight for understanding individual differences in speech-in-noise intelligibility.

  4. Musical noise reduction using an adaptive filter

    Science.gov (United States)

    Hanada, Takeshi; Murakami, Takahiro; Ishida, Yoshihisa; Hoya, Tetsuya

    2003-10-01

    This paper presents a method for reducing a particular noise (musical noise). The musical noise is artificially produced by Spectral Subtraction (SS), which is one of the most conventional methods for speech enhancement. The musical noise is the tin-like sound and annoying in human auditory. We know that the duration of the musical noise is considerably short in comparison with that of speech, and that the frequency components of the musical noise are random and isolated. In the ordinary SS-based methods, the musical noise is removed by the post-processing. However, the output of the ordinary post-processing is delayed since the post-processing uses the succeeding frames. In order to improve this problem, we propose a novel method using an adaptive filter. In the proposed system, the observed noisy signal is used as the input signal to the adaptive filter and the output of SS is used as the reference signal. In this paper we exploit the normalized LMS (Least Mean Square) algorithm for the adaptive filter. Simulation results show that the proposed method has improved the intelligibility of the enhanced speech in comparison with the conventional method.

  5. State dependent pseudo-resonances and excess noise

    OpenAIRE

    Papoff, F.; D'Alessandro, G.; Oppo, G.Luca

    2008-01-01

    We show that strong response to nonresonant modulations and excess noise are state dependent in generic nonlinear systems; i.e., they affect some output states but are absent from others. This is demonstrated in complex Swift-Hohenberg models relevant to optics, where it is caused by the non-normality of the linearized stability operators around selected output states, even though the cavity modes are orthogonal. In particular, we find the effective parameters that control excess noise and th...

  6. Assessment of risks of accidents and normal operation at nuclear power plants

    International Nuclear Information System (INIS)

    Savolainen, Ilkka; Vuori, Seppo.

    1977-01-01

    A probabilistic assessment model for the analysis of risks involved in the operation of nuclear power plants is described. With the computer code ARANO it is possible to estimate the health and economic consequences of reactor accidents both in probabilistic and deterministic sense. In addition the code is applicable to the calculation of individual and collective doses caused by the releases during normal operation. The estimation of release probabilities and magnitudes is not included in the model. (author)

  7. Low noise monolithic CMOS front end electronics

    International Nuclear Information System (INIS)

    Lutz, G.; Bergmann, H.; Holl, P.; Manfredi, P.F.

    1987-01-01

    Design considerations for low noise charge measurement and their application in CMOS electronics are described. The amplifier driver combination whose noise performance has been measured in detail as well as the analog multiplexing silicon strip detector readout electronics are designed with low power consumption and can be operated in pulsed mode so as to reduce heat dissipation even further in many applications. (orig.)

  8. Noise diagnostic: An advanced technique in Cuba

    International Nuclear Information System (INIS)

    Aguilar, O.

    1992-01-01

    This paper examines the main steps of the noise analysis technique implementation in our country from 1988. The review identifies two main areas, improvements of Nuclear Power Plant operational surveillance techniques and non-nuclear industrial applications. Also reported are some of the on going researches programs including projects on noise analysis instrumentation developments at the Higher Institute for Nuclear Sciences and Technology

  9. Parameter Estimation for Traffic Noise Models Using a Harmony Search Algorithm

    Directory of Open Access Journals (Sweden)

    Deok-Soon An

    2013-01-01

    Full Text Available A technique has been developed for predicting road traffic noise for environmental assessment, taking into account traffic volume as well as road surface conditions. The ASJ model (ASJ Prediction Model for Road Traffic Noise, 1999, which is based on the sound power level of the noise emitted by the interaction between the road surface and tires, employs regression models for two road surface types: dense-graded asphalt (DGA and permeable asphalt (PA. However, these models are not applicable to other types of road surfaces. Accordingly, this paper introduces a parameter estimation procedure for ASJ-based noise prediction models, utilizing a harmony search (HS algorithm. Traffic noise measurement data for four different vehicle types were used in the algorithm to determine the regression parameters for several road surface types. The parameters of the traffic noise prediction models were evaluated using another measurement set, and good agreement was observed between the predicted and measured sound power levels.

  10. The Effects of Audiovisual Stimulation on the Acceptance of Background Noise.

    Science.gov (United States)

    Plyler, Patrick N; Lang, Rowan; Monroe, Amy L; Gaudiano, Paul

    2015-05-01

    Previous examinations of noise acceptance have been conducted using an auditory stimulus only; however, the effect of visual speech supplementation of the auditory stimulus on acceptance of noise remains limited. The purpose of the present study was to determine the effect of audiovisual stimulation on the acceptance of noise in listeners with normal and impaired hearing. A repeated measures design was utilized. A total of 92 adult participants were recruited for this experiment. Of these participants, 54 were listeners with normal hearing and 38 were listeners with sensorineural hearing impairment. Most comfortable levels and acceptable noise levels (ANL) were obtained using auditory and auditory-visual stimulation modes for the unaided listening condition for each participant and for the aided listening condition for 35 of the participants with impaired hearing that owned hearing aids. Speech reading ability was assessed using the Utley test for each participant. The addition of visual input did not impact the most comfortable level values for listeners in either group; however, visual input improved unaided ANL values for listeners with normal hearing and aided ANL values in listeners with impaired hearing. ANL benefit received from visual speech input was related to the auditory ANL in listeners in each group; however, it was not related to speech reading ability for either listener group in any experimental condition. Visual speech input can significantly impact measures of noise acceptance. The current ANL measure may not accurately reflect acceptance of noise values when in more realistic environments, where the signal of interest is both audible and visible to the listener. American Academy of Audiology.

  11. Reactor noise analysis of experimental fast reactor 'JOYO'

    International Nuclear Information System (INIS)

    Ohtani, Hideji; Yamamoto, Hisashi

    1980-01-01

    As a part of dynamics tests in experimental fast reactor ''JOYO'', reactor noise tests were carried out. The reactor noise analysis techniques are effective for study of plant characteristics by determining fluctuations of process signals (neutron signal, reactor inlet temperature signals, etc.), which are able to be measured without disturbances for reactor operations. The aims of reactor noise tests were to confirm that no unstable phenomenon exists in ''JOYO'' and to gain initial data of the plant for reference of the future data. Data for the reactor noise tests treated in this paper were obtained at 50 MW power level. Fluctuations of process signals were amplified and recorded on analogue tapes. The analysis was performed using noise code (NOISA) of digital computer, with which statistical values of ASPD (auto power spectral density), CPSD (cross power spectral density), and CF (coherence function) were calculated. The primary points of the results are as follows. 1. RMS value of neutron signal at 50 MW power level is about 0.03 MW. This neutron fluctuation is not disturbing reactor operations. 2. The fluctuations of A loop reactor inlet temperatures (T sub(AI)) are larger than the fluctuations of B loop reactor inlet temperature (T sub(BI)). For this reason, the major driving force of neutron fluctuations seems to be the fluctuations of T sub(AI). 3. Core and blanket subassemblies can be divided into two halves (A and B region), with respect to the spacial motion of temperature in the reactor core. A or B region means the region in which sodium temperature fluctuations in subassembly are significantly affected by T sub(AI) or T sub(BI), respectively. This phenomenon seems to be due to the lack of mixing of A and B loop sodium in lower plenum of reactor vessel. (author)

  12. An Integrated Real-Time Beamforming and Postfiltering System for Nonstationary Noise Environments

    Directory of Open Access Journals (Sweden)

    Gannot Sharon

    2003-01-01

    Full Text Available We present a novel approach for real-time multichannel speech enhancement in environments of nonstationary noise and time-varying acoustical transfer functions (ATFs. The proposed system integrates adaptive beamforming, ATF identification, soft signal detection, and multichannel postfiltering. The noise canceller branch of the beamformer and the ATF identification are adaptively updated online, based on hypothesis test results. The noise canceller is updated only during stationary noise frames, and the ATF identification is carried out only when desired source components have been detected. The hypothesis testing is based on the nonstationarity of the signals and the transient power ratio between the beamformer primary output and its reference noise signals. Following the beamforming and the hypothesis testing, estimates for the signal presence probability and for the noise power spectral density are derived. Subsequently, an optimal spectral gain function that minimizes the mean square error of the log-spectral amplitude (LSA is applied. Experimental results demonstrate the usefulness of the proposed system in nonstationary noise environments.

  13. Research on the properties of ZnO films by 1/f noise measurement

    NARCIS (Netherlands)

    Leroy, G.; Gest, J.; Yang, L.; Vandamme, L.K.J.

    2013-01-01

    ZnO films were deposited by de sputtering technique on glass and Pt/Si substrates. The effect of growth parameters is investigated on sheet resistance and noise. The 1/f noise normalized for bias, frequency and unit area, Cus is proportional with the sheet resistance Rsh. We found that the noise

  14. Utilization of noise analysis technique for mechanical vibrations estimation in the ATUCHA{sub 1} and Embalse Argentine NPP; Uso de la tecnica de analisis de ruido para la estimacion de vibraciones mecanicas en las centrales nucleares argentinas Atucha I y Embalse

    Energy Technology Data Exchange (ETDEWEB)

    Lescano, V.H.; Wentzeis, L.M. [Comision Nacional de Energia Atomica, Buenos Aires (Argentina). Centro Atomico Constituyentes; Guevara, M.; Moreno, C. [Nucleoelectrica Argentina S.A., Cordoba (Argentina). Central Nuclear Embalse; Pineyro, J. [Nucleoelectrica Argentina S.A., Buenos Aires (Argentina). Central Nuclear Atucha I

    1996-07-01

    In Argentine, comprehensive noise measurements have been performed with the reactor instrumentation of the PHWR power plant Atucha I and Embalse. The Embalse reactor is a CANDU-600 (600 Mwe) type pressurized heavy water reactor. It's a heavy water moderator and heavy water cooled natural uranium fueled pressure tube system. Signal of vanadium and platinum type in core-self power neutron detectors of ex-core ion chambers and of a moderator pressure sensor have been recorded and analysed. The vibration of reactor internals as vertical and horizontal in-core neutron flux detectors units and the coolant channels systems, consisting of calandria and pressure tubes with fuel bundles, have been identified and monitored during normal reactor operation. Atucha I, is a PHWR reactor natural uranium fueled, and heavy water moderated and cooled. Neutron noise techniques using of ex-core ionization chambers and in-core Vanadium SPND's were implemented, among others, in order to produce early detection of anomalous vibrations in the reactor internals. Noise analysis was successfully performed to identify normal and peculiar vibrations in particular reactor internals. (author)

  15. Speech perception in noise in unilateral hearing loss

    OpenAIRE

    Mondelli, Maria Fernanda Capoani Garcia; dos Santos, Marina de Marchi; José, Maria Renata

    2016-01-01

    ABSTRACT INTRODUCTION: Unilateral hearing loss is characterized by a decrease of hearing in one ear only. In the presence of ambient noise, individuals with unilateral hearing loss are faced with greater difficulties understanding speech than normal listeners. OBJECTIVE: To evaluate the speech perception of individuals with unilateral hearing loss in speech perception with and without competitive noise, before and after the hearing aid fitting process. METHODS: The study included 30 adu...

  16. The Danish hearing in noise test

    DEFF Research Database (Denmark)

    Nielsen, Jens Bo; Dau, Torsten

    2010-01-01

    Objective : A Danish version of the hearing in noise test (HINT) has been developed and evaluated in normal-hearing (NH) and hearing-impaired (HI) listeners. The speech material originated from Nielsen & Dau (2009) where a sentence-based intelligibility equalization method was presented. Design...

  17. New version of PLNoise: a package for exact numerical simulation of power-law noises

    Science.gov (United States)

    Milotti, Edoardo

    2007-08-01

    In a recent paper I have introduced a package for the exact simulation of power-law noises and other colored noises [E. Milotti, Comput. Phys. Comm. 175 (2006) 212]: in particular, the algorithm generates 1/f noises with 0law spectrum for any arbitrary sequence of sampling intervals, i.e. the sampling times may be unevenly spaced. Program summaryTitle of program: PLNoise Catalogue identifier:ADXV_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADXV_v2_0.html Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Programming language used: ANSI C Computer: Any computer with an ANSI C compiler: the package has been tested with gcc version 3.2.3 on Red Hat Linux 3.2.3-52 and gcc version 4.0.0 and 4.0.1 on Apple Mac OS X-10.4 Operating system: All operating systems capable of running an ANSI C compiler RAM: The code of the test program is very compact (about 60 Kbytes), but the program works with list management and allocates memory dynamically; in a typical run with average list length 2ṡ10, the RAM taken by the list is 200 Kbytes External routines: The package needs external routines to generate uniform and exponential deviates. The implementation described here uses the random number generation library ranlib freely available from Netlib [B.W. Brown, J. Lovato, K. Russell: ranlib, available from Netlib, http://www.netlib.org/random/index.html, select the C version ranlib.c], but it has also been successfully tested with the random number routines in Numerical Recipes [W.H. Press, S.A. Teulkolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes in C: The Art of Scientific Computing, second ed., Cambridge Univ. Press., Cambridge, 1992, pp. 274-290]. Notice that ranlib requires a pair of routines from the linear algebra package LINPACK, and that the distribution of ranlib includes the C source of these routines, in case LINPACK is not

  18. Receive-Noise Analysis of Capacitive Micromachined Ultrasonic Transducers.

    Science.gov (United States)

    Bozkurt, Ayhan; Yaralioglu, G Goksenin

    2016-11-01

    This paper presents an analysis of thermal (Johnson) noise received from the radiation medium by otherwise noiseless capacitive micromachined ultrasonic transducer (CMUT) membranes operating in their fundamental resonance mode. Determination of thermal noise received by multiple numbers of transducers or a transducer array requires the assessment of cross-coupling through the radiation medium, as well as the self-radiation impedance of the individual transducer. We show that the total thermal noise received by the cells of a CMUT has insignificant correlation, and is independent of the radiation impedance, but is only determined by the mass of each membrane and the electromechanical transformer ratio. The proof is based on the analytical derivations for a simple transducer with two cells, and extended to transducers with numerous cells using circuit simulators. We used a first-order model, which incorporates the fundamental resonance of the CMUT. Noise power is calculated by integrating over the entire spectrum; hence, the presented figures are an upper bound for the noise. The presented analyses are valid for a transimpedance amplifier in the receive path. We use the analysis results to calculate the minimum detectable pressure of a CMUT. We also provide an analysis based on the experimental data to show that output noise power is limited by and comparable to the theoretical upper limit.

  19. Signatures of nonlinearity in single cell noise-induced oscillations

    NARCIS (Netherlands)

    Thomas, P.; Straube, A.V.; Timmer, J.; Fleck, C.; Grima, R.

    2013-01-01

    A class of theoretical models seeks to explain rhythmic single cell data by postulating that they are generated by intrinsic noise in biochemical systems whose deterministic models exhibit only damped oscillations. The main features of such noise-induced oscillations are quantified by the power

  20. Field noise near ferromagnetic films

    Science.gov (United States)

    McMichael, Robert; Liu, Hau-Jian; Yoon, Seungha

    Thermally driven magnetization fluctuations can be viewed as a nuisance noise source or as interesting physics. For example, mag noise in a field sensor may set the minimum detectable field of that sensor. On the other hand, the field noise spectrum reflects the dynamics of the magnetic components, which are essential for device operation. Here, we model the field noise spectrum near the surface of a magnetic film due to thermal spin waves, and we calculate its effect on the T1 relaxation rate of a nearby nitrogen-vacancy (NV) center spin. The model incorporates four components: the spin wave dispersion of the magnetization in a finite-thickness film, thermal excitation of spin waves, the coupling geometry between waves in the film and an external point dipole and finally, the relaxation dynamics of the NV spin. At a distance of 100 nm above a 50 nm thick permalloy film, we find that the strongest stray fields are along the film normal and parallel to the magnetization, on the order of 1 mA m-1 Hz- 1 / 2 or 1 nT Hz- 1 / 2, yielding relaxation times on the order of 10 μs. The spin wave field noise can dominate the intrinsic relaxation, (T1 1 ms) of the NV center spin.

  1. Search for Long Period Solar Normal Modes in Ambient Seismic Noise

    Science.gov (United States)

    Caton, R.; Pavlis, G. L.

    2016-12-01

    We search for evidence of solar free oscillations (normal modes) in long period seismic data through multitaper spectral analysis of array stacks. This analysis is similar to that of Thomson & Vernon (2015), who used data from the most quiet single stations of the global seismic network. Our approach is to use stacks of large arrays of noisier stations to reduce noise. Arrays have the added advantage of permitting the use of nonparametic statistics (jackknife errors) to provide objective error estimates. We used data from the Transportable Array, the broadband borehole array at Pinyon Flat, and the 3D broadband array in Homestake Mine in Lead, SD. The Homestake Mine array has 15 STS-2 sensors deployed in the mine that are extremely quiet at long periods due to stable temperatures and stable piers anchored to hard rock. The length of time series used ranged from 50 days to 85 days. We processed the data by low-pass filtering with a corner frequency of 10 mHz, followed by an autoregressive prewhitening filter and median stack. We elected to use the median instead of the mean in order to get a more robust stack. We then used G. Prieto's mtspec library to compute multitaper spectrum estimates on the data. We produce delete-one jackknife error estimates of the uncertainty at each frequency by computing median stacks of all data with one station removed. The results from the TA data show tentative evidence for several lines between 290 μHz and 400 μHz, including a recurring line near 379 μHz. This 379 μHz line is near the Earth mode 0T2 and the solar mode 5g5, suggesting that 5g5 could be coupling into the Earth mode. Current results suggest more statistically significant lines may be present in Pinyon Flat data, but additional processing of the data is underway to confirm this observation.

  2. On self-propagating methodological flaws in performance normalization for strength and power sports.

    Science.gov (United States)

    Arandjelović, Ognjen

    2013-06-01

    Performance in strength and power sports is greatly affected by a variety of anthropometric factors. The goal of performance normalization is to factor out the effects of confounding factors and compute a canonical (normalized) performance measure from the observed absolute performance. Performance normalization is applied in the ranking of elite athletes, as well as in the early stages of youth talent selection. Consequently, it is crucial that the process is principled and fair. The corpus of previous work on this topic, which is significant, is uniform in the methodology adopted. Performance normalization is universally reduced to a regression task: the collected performance data are used to fit a regression function that is then used to scale future performances. The present article demonstrates that this approach is fundamentally flawed. It inherently creates a bias that unfairly penalizes athletes with certain allometric characteristics, and, by virtue of its adoption in the ranking and selection of elite athletes, propagates and strengthens this bias over time. The main flaws are shown to originate in the criteria for selecting the data used for regression, as well as in the manner in which the regression model is applied in normalization. This analysis brings into light the aforesaid methodological flaws and motivates further work on the development of principled methods, the foundations of which are also laid out in this work.

  3. Global noise studies for CMS Tracker upgrade

    CERN Document Server

    Arteche, F; Echevarria, I; Iglesias, M; Rivetta, C; Vila, I; 10.1088/1748-0221/5/12/C12029

    2010-01-01

    The characterization of the noise emissions of DC-DC converters at system level is critical to optimize the design of the detector and define rules for the integration strategy. This paper presents the impedance effects on the noise emissions of DC-DC converters at system level. Conducted and radiated noise emissions at the input and at the output from DC-DC converters have been simulated for different types of power network and FEE impedances. System aspects as granularity, stray capacitances of the system and different working conditions of the DC-DC converters are presented too. This study has been carried out using simulation models of noise emissions of DC-DC converters in the real scenario. The results of these studies show important recommendations and criteria to be applied to integrate the DC-DC converters and decrease the system noise level

  4. Uncorrelated Noise in Turbulence Measurements

    DEFF Research Database (Denmark)

    Kristensen, Leif; Lenschow, D. H.

    1985-01-01

    of atmospheric variability. The authors assume that the measured signal is a representation of a variable that is continuous on the scale of interest in the atmosphere. Uncorrelated noise affects the autovariance function (or, equivalently, the structure function) only between zero and the first lag, while its...... effect is smeared across the entire power spectrum. For this reason, quantities such as variance dissipation may be more conveniently estimated from the structure function than from the spectrum. The modeling results are confirmed by artificially modifying a test time series with Poisson noise...

  5. Phase noise in RF and microwave amplifiers.

    Science.gov (United States)

    Boudot, Rodolphe; Rubiola, Enrico

    2012-12-01

    Understanding amplifier phase noise is a critical issue in many fields of engineering and physics, such as oscillators, frequency synthesis, telecommunication, radar, and spectroscopy; in the emerging domain of microwave photonics; and in exotic fields, such as radio astronomy, particle accelerators, etc. Focusing on the two main types of base noise in amplifiers, white and flicker, the power spectral density of the random phase φ(t) is Sφ(f) = b(0) + b(-1)/f. White phase noise results from adding white noise to the RF spectrum in the carrier region. For a given RF noise level, b(0) is proportional to the reciprocal of the carrier power P(0). By contrast, flicker results from a near-dc 1/f noise-present in all electronic devices-which modulates the carrier through some parametric effect in the semiconductor. Thus, b(-1) is a parameter of the amplifier, constant in a wide range of P(0). The consequences are the following: Connecting m equal amplifiers in parallel, b(-1) is 1/m times that of one device. Cascading m equal amplifiers, b(-1) is m times that of one amplifier. Recirculating the signal in an amplifier so that the gain increases by a power of m (a factor of m in decibels) as a result of positive feedback (regeneration), we find that b(-1) is m(2) times that of the amplifier alone. The feedforward amplifier exhibits extremely low b(-1) because the carrier is ideally nulled at the input of its internal error amplifier. Starting with an extensive review of the literature, this article introduces a system-oriented model which describes the phase flickering. Several amplifier architectures (cascaded, parallel, etc.) are analyzed systematically, deriving the phase noise from the general model. There follow numerous measurements of amplifiers using different technologies, including some old samples, and in a wide frequency range (HF to microwaves), which validate the theory. In turn, theory and results provide design guidelines and give suggestions for CAD and

  6. Quasi-periodic oscillations and noise in low-mass X-ray binaries

    International Nuclear Information System (INIS)

    Van der Klis, M.

    1989-01-01

    The phenomenology of quasi-periodic oscillations (QPOs) and noise in low-mass X-ray binaries (LMXBs) is discussed. Signal analysis aspects of QPO and noise are addressed along with the relationship between LMXBs and millisecond radio pulsars. The history and prehistory of QPOs and noise in LMXBs are examined. Universal noise components and normal and flaring branch QPOs in Z sources are described and the phenomenology of Z sources is discussed. Bright LMXBs known as atoll sources are considered, as are nonpersistently bright LMXBs accreting pulsars and black hole candidates. 162 refs

  7. Noise suppression by noise

    OpenAIRE

    Vilar, J. M. G. (José M. G.), 1972-; Rubí Capaceti, José Miguel

    2001-01-01

    We have analyzed the interplay between an externally added noise and the intrinsic noise of systems that relax fast towards a stationary state, and found that increasing the intensity of the external noise can reduce the total noise of the system. We have established a general criterion for the appearance of this phenomenon and discussed two examples in detail.

  8. Noise in nonlinear nanoelectromechanical resonators

    Science.gov (United States)

    Guerra Vidal, Diego N.

    Nano-Electro-Mechanical Systems (NEMS), due to their nanometer scale size, possess a number of desirable attributes: high sensitivity to applied forces, fast response times, high resonance frequencies and low power consumption. However, ultra small size and low power handling result in unwanted consequences: smaller signal size and higher dissipation, making the NEMS devices more susceptible to external and intrinsic noise. The simplest version of a NEMS, a suspended nanomechanical structure with two distinct excitation states, can be used as an archetypal two state system to study a plethora of fundamental phenomena such as Duffing nonlinearity, stochastic resonance, and macroscopic quantum tunneling at low temperatures. From a technical perspective, there are numerous applications such nanomechanical memory elements, microwave switches and nanomechanical computation. The control and manipulation of the mechanical response of these two state systems can be realized by exploiting a (seemingly) counterintuitive physical phenomenon, Stochastic Resonance: in a noisy nonlinear mechanical system, the presence of noise can enhance the system response to an external stimulus. This Thesis is mainly dedicated to study possible applications of Stochastic Resonance in two-state nanomechanical systems. First, on chip signal amplification by 1/falpha is observed. The effectiveness of the noise assisted amplification is observed to decrease with increasing a. Experimental evidence shows an increase in asymmetry between the two states with increasing noise color. Considering the prevalence of 1/f alpha noise in the materials in integrated circuits, the signal enhancement demonstrated here, suggests beneficial use of the otherwise detrimental noise. Finally, a nanomechanical device, operating as a reprogrammable logic gate, and performing fundamental logic functions such as AND/OR and NAND/NOR is presented. The logic function can be programmed (from AND to OR) dynamically, by

  9. Investigation into the Dependence of Noise Generated By Standing Cars on the Engine Power

    Directory of Open Access Journals (Sweden)

    Julius Gineika

    2012-12-01

    Full Text Available Ambient noise harms a number of citizens in Europe. The major sources of environmental noise are that generated by cars in streets, parking lots, railway lines and airports as well as noise from local sources (fans, transformers. According to the methodology for noise measurement, engine testing has been carried out. The conducted analysis has been focused on engine capacity and the distance between vehicles and equipment. Equivalent, maximum and minimum sound levels at different frequencies have been measured accepting that errors may range up to 2 %. Maximum sound level has been reached using the engine of 2000 cm3 petrol capacity. At a half-meter distance, the equivalent sound level reaches 89 dB(A, whereas the noise level decreases moving away from the car. The obtained results of tested cars disclose that according to engine capacity, the majority of the investigated cars are technically faulty and therefore significantly exceed noise levels.Article in Lithuanian

  10. Microscopic prediction of speech recognition for listeners with normal hearing in noise using an auditory model.

    Science.gov (United States)

    Jürgens, Tim; Brand, Thomas

    2009-11-01

    This study compares the phoneme recognition performance in speech-shaped noise of a microscopic model for speech recognition with the performance of normal-hearing listeners. "Microscopic" is defined in terms of this model twofold. First, the speech recognition rate is predicted on a phoneme-by-phoneme basis. Second, microscopic modeling means that the signal waveforms to be recognized are processed by mimicking elementary parts of human's auditory processing. The model is based on an approach by Holube and Kollmeier [J. Acoust. Soc. Am. 100, 1703-1716 (1996)] and consists of a psychoacoustically and physiologically motivated preprocessing and a simple dynamic-time-warp speech recognizer. The model is evaluated while presenting nonsense speech in a closed-set paradigm. Averaged phoneme recognition rates, specific phoneme recognition rates, and phoneme confusions are analyzed. The influence of different perceptual distance measures and of the model's a-priori knowledge is investigated. The results show that human performance can be predicted by this model using an optimal detector, i.e., identical speech waveforms for both training of the recognizer and testing. The best model performance is yielded by distance measures which focus mainly on small perceptual distances and neglect outliers.

  11. White Noise Assumptions Revisited : Regression Models and Statistical Designs for Simulation Practice

    NARCIS (Netherlands)

    Kleijnen, J.P.C.

    2006-01-01

    Classic linear regression models and their concomitant statistical designs assume a univariate response and white noise.By definition, white noise is normally, independently, and identically distributed with zero mean.This survey tries to answer the following questions: (i) How realistic are these

  12. The Acceptance of Background Noise in Adult Cochlear Implant Users

    Science.gov (United States)

    Plyler, Patrick N.; Bahng, Junghwa; von Hapsburg, Deborah

    2008-01-01

    Purpose: The purpose of this study was to determine (a) if acceptable noise levels (ANLs) are different in cochlear implant (CI) users than in listeners with normal hearing, (b) if ANLs are related to sentence reception thresholds in noise in CI users, and (c) if ANLs and subjective outcome measures are related in CI users. Method: ANLs and the…

  13. Atmospheric dispersion and the radiological consequences of normal airborne effluents from a nuclear power plant

    International Nuclear Information System (INIS)

    Fang, D.; Yang, L.; Sun, C.Z.

    1995-01-01

    The relationship between the consequences of the normal exhaust of radioactive materials in air from nuclear power plants and atmospheric dispersion is studied. Because the source terms of the exhaust from a nuclear power plant are relatively low and their radiological consequences are far less than the corresponding authoritative limits, the atmospheric dispersion models, their various modifications, and selections of relevant parameters have few effects on those consequences. In the environmental assessment and siting, the emphasis should not be placed on the consequence evaluation of routine exhaust of nuclear power plants, and the calculation of consequences of the exhaust and atmospheric field measurements should be appropriately, simplified. 12 refs., 5 figs., 7 tabs

  14. Assessment and prediction of wind turbine noise

    International Nuclear Information System (INIS)

    Lowson, M.V.

    1993-01-01

    The significance of basic aerodynamic noise sources for wind turbine noise are assessed, using information on the aero-acoustic mechanisms of other rotors, which have been studied in depth for many years. From the analysis, areas of potential improvement in wind turbine noise prediction are defined. Suggestions are made for approaches to wind turbine noise control which separate the noise problems at cut-in from those at rated power. Some of these offer the possibility of noise reduction without unfavourable effects on performance. Based on this analysis, a new model for prediction of wind turbine noise is presented and comparisons made between prediction and experiment. The model is based on well established aeroacoustic theory and published laboratory data for the two principal sources, inflow turbulence and boundary layer trailing edge interaction. The new method gives good agreement with experiment with the case studied so far. Parametric trends and sensitivities for the model are presented. Comparisons with previous prediction methods are also given. A consequence of the new model is to put more emphasis on boundary layer trailing edge interaction as a noise source. There are prospects for reducing noise from this source detail changes to the wind turbine design. (author)

  15. Conducted and radiated noise in detection devices

    International Nuclear Information System (INIS)

    Moisa, D.

    2001-01-01

    Conducted and radiated noise is an external noise which affects the quality of the signals of the detectors. An external noise can be reduced, usually, by shielding. This was the situation with 'older fashion' devices which uses boxes and coaxial cables. As the devices becomes more complex, the shielding of the detectors is more and more difficult and the transmission lines evolves from coaxial cables to twisted pair cables which are no more shielded. In such situation, the conducted and radiated noise (C and R noise) becomes important. Due to complexity of a real detector, the main work is based on experiments with components and simulations of some specific problems, associated with CDC detector. The first experiment was done to understand how the C and R noise is propagated. The emission device was a set of coils (between 3 and 5 turns with diameter from 10 to 50 mm) feed by an 74S140 driver. A pulse of about 8 ns width was generated. A coil of reception of about the same physical characteristics was used to see the emitted pulse. When the two coils are separated by about 80 cm, the receiver generated no signal. But, if along the two coils, a conductive material is introduced (a wire for instance), the receiver senses a signal. This signal is not changed too much if the wire is or not connected to ground. The explanation is simple: the pulse in the emitting coil produces an EM pulse which spreads in space. If a conductive material is around, the EM energy is received by that conductor and it is propagated at tens of meters with small attenuation. When this energy reaches the end of the conductor, it is radiated in space. If some other conductors are around, the energy is received and propagated by that conductors. This experiment was done for about 20 kinds of conductors (different coax cables, twisted-pair ribbons, power cables, metallic bars) and with many coils (different diameters and numbers of turns). It was measured the pk-to-pk level, decay constant and

  16. Investigation of the resistive transition of MgB2 thin film through current noise

    International Nuclear Information System (INIS)

    Gandini, C; Rajteri, M; Portesi, C; Monticone, E; Masoero, A; Mazzetti, P

    2006-01-01

    In this paper we present measurements concerning the current noise produced during the resistive transition in a MgB 2 polycrystalline thin film. The power spectrum of the current noise, observed when the temperature is slowly changed across its critical value, presents a large electrical noise of the 1/f n type (n ≅ 3) over a quite wide range of frequencies. This noise may be considered as generated by the abrupt creation of resistive strips across the specimen constituted by grains which have undergone the resistive transition. A computer model that takes into account fluctations of the grain critical currents and of the number of grain per strips, has been developed to simulate the resistive transition and to evaluate the noise power spectrum. When the temperature is incresed and reaches its critical value, resistive strips are formed according to a percolative process, giving rise to resistance steps which are at the origin of the noise. The theoretical results obtained by this model are in good agreement, concerning both the shape and intensity of the noise power spectrum, with the experimental data directly measured on the specimen

  17. Study on optimization of normal plant outage work plan for nuclear power plants

    International Nuclear Information System (INIS)

    Aoki, Takayuki; Kodama, Noriko; Takase, Kentaro; Miya, Kenzo

    2011-01-01

    This paper discusses maintenance optimization in maintenance implementation stage following maintenance planning stage in nuclear power plants and proposes a methodology to get an optimum maintenance work plan. As a result of consideration, the followings were obtained. (1) The quantitative evaluation methodology for optimizing maintenance work plan in nuclear power plants was developed. (2) Utilizing the above methodology, a simulation analysis of maintenance work planning for BWR's PLR and RHR systems in a normal plant outage was performed. Maintenance cost calculation in several cases was carried out on the condition of smoothening man loading over the plant outage schedule as much as possible. (3) As a result of the simulation, the economical work plans having a flat man loading over the plant outage schedule were obtained. (author)

  18. Noise as a Probe of Ising Spin Glass Transitions

    Science.gov (United States)

    Chen, Zhi; Yu, Clare

    2009-03-01

    Noise is ubiquitous and and is often viewed as a nuisance. However, we propose that noise can be used as a probe of the fluctuations of microscopic entities, especially in the vicinity of a phase transition. In recent work we have used simulations to show that the noise increases in the vicinity of phase transitions of ordered systems. We have recently turned our attention to noise near the phase transitions of disordered systems. In particular, we are studying the noise near Ising spin glass transitions using Monte Carlo simulations. We monitor the system as a function of temperature. At each temperature, we obtain the time series of quantities characterizing the properties of the system, i.e., the energy and magnetization. We look at different quantities, such as the noise power spectrum and the second spectrum of the noise, to analyze the fluctuations.

  19. Effects of noise in excitable systems

    International Nuclear Information System (INIS)

    Lindner, B.; Garcia-Ojalvo, J.; Neiman, A.; Schimansky-Geier, L.

    2004-01-01

    We review the behavior of theoretical models of excitable systems driven by Gaussian white noise. We focus mainly on those general properties of such systems that are due to noise, and present several applications of our findings in biophysics and lasers. As prototypes of excitable stochastic dynamics we consider the FitzHugh-Nagumo and the leaky integrate-and-fire model, as well as cellular automata and phase models. In these systems, taken as individual units or as networks of globally or locally coupled elements, we study various phenomena due to noise, such as noise-induced oscillations, stochastic resonance, stochastic synchronization, noise-induced phase transitions and noise-induced pulse and spiral dynamics. Our approach is based on stochastic differential equations and their corresponding Fokker-Planck equations, treated by both analytical calculations and/or numerical simulations. We calculate and/or measure the rate and diffusion coefficient of the excitation process, as well as spectral quantities like power spectra and degree of coherence. Combined with a multiparametric bifurcation analysis of the corresponding cumulant equations, these approaches provide a comprehensive picture of the multifaceted dynamical behaviour of noisy excitable systems

  20. Longitudinal Schottky noise of intense beam

    International Nuclear Information System (INIS)

    Pestrikov, D.V.

    1990-01-01

    Some phenomena, which can be observed in the longitudinal Schottky spectra in storage ring with electron cooling as well as some technical details, which can be useful for the models of fitting are reviewed. Results shows that both the spectra and the power of the Schottky noise of the coasting beam are very sensitive to collective behaviour of the beam. This can be used for fitting of Schottky noise measurements and recalculation of beam parameters, parameters of cooling device. 9 refs.; 4 figs

  1. Stochastic memory: getting memory out of noise

    Science.gov (United States)

    Stotland, Alexander; di Ventra, Massimiliano

    2011-03-01

    Memory circuit elements, namely memristors, memcapacitors and meminductors, can store information without the need of a power source. These systems are generally defined in terms of deterministic equations of motion for the state variables that are responsible for memory. However, in real systems noise sources can never be eliminated completely. One would then expect noise to be detrimental for memory. Here, we show that under specific conditions on the noise intensity memory can actually be enhanced. We illustrate this phenomenon using a physical model of a memristor in which the addition of white noise into the state variable equation improves the memory and helps the operation of the system. We discuss under which conditions this effect can be realized experimentally, discuss its implications on existing memory systems discussed in the literature, and also analyze the effects of colored noise. Work supported in part by NSF.

  2. Weak noise in neurons may powerfully inhibit the generation of repetitive spiking but not its propagation.

    Directory of Open Access Journals (Sweden)

    Henry C Tuckwell

    2010-05-01

    Full Text Available Many neurons have epochs in which they fire action potentials in an approximately periodic fashion. To see what effects noise of relatively small amplitude has on such repetitive activity we recently examined the response of the Hodgkin-Huxley (HH space-clamped system to such noise as the mean and variance of the applied current vary, near the bifurcation to periodic firing. This article is concerned with a more realistic neuron model which includes spatial extent. Employing the Hodgkin-Huxley partial differential equation system, the deterministic component of the input current is restricted to a small segment whereas the stochastic component extends over a region which may or may not overlap the deterministic component. For mean values below, near and above the critical values for repetitive spiking, the effects of weak noise of increasing strength is ascertained by simulation. As in the point model, small amplitude noise near the critical value dampens the spiking activity and leads to a minimum as noise level increases. This was the case for both additive noise and conductance-based noise. Uniform noise along the whole neuron is only marginally more effective in silencing the cell than noise which occurs near the region of excitation. In fact it is found that if signal and noise overlap in spatial extent, then weak noise may inhibit spiking. If, however, signal and noise are applied on disjoint intervals, then the noise has no effect on the spiking activity, no matter how large its region of application, though the trajectories are naturally altered slightly by noise. Such effects could not be discerned in a point model and are important for real neuron behavior. Interference with the spike train does nevertheless occur when the noise amplitude is larger, even when noise and signal do not overlap, being due to the instigation of secondary noise-induced wave phenomena rather than switching the system from one attractor (firing regularly to

  3. Ambient Noise in an Urbanized Tidal Channel

    Science.gov (United States)

    Bassett, Christopher

    In coastal environments, when topographic and bathymetric constrictions are combined with large tidal amplitudes, strong currents (> 2 m/s) can occur. Because such environments are relatively rare and difficult to study, until recently, they have received little attention from the scientific community. However, in recent years, interest in developing tidal hydrokinetic power projects in these environments has motivated studies to improve this understanding. In order to support an analysis of the acoustic effects of tidal power generation, a multi-year study was conducted at a proposed project site in Puget Sound (WA) are analyzed at a site where peak currents exceeded 3.5 m/s. From these analyses, three noise sources are shown to dominate the observed variability in ambient noise between 0.02-30 kHz: anthropogenic noise from vessel traffic, sediment-generated noise during periods of strong currents, and flow-noise resulting from turbulence advected over the hydrophones. To assess the contribution of vessel traffic noise, one calendar year of Automatic Identification System (AIS) ship-traffic data was paired with hydrophone recordings. The study region included inland waters of the Salish Sea within a 20 km radius of the hydrophone deployment site in northern Admiralty Inlet. The variability in spectra and hourly, daily, and monthly ambient noise statistics for unweighted broadband and M-weighted sound pressure levels is driven largely by vessel traffic. Within the one-year study period, at least one AIS transmitting vessel is present in the study area 90% of the time and over 1,363 unique vessels are recorded. A noise budget for vessels equipped with AIS transponders identifies cargo ships, tugs, and passenger vessels as the largest contributors to noise levels. A simple model to predict received levels at the site based on an incoherent summation of noise from different vessel types yields a cumulative probability density function of broadband sound pressure

  4. Entropy-Based Method of Choosing the Decomposition Level in Wavelet Threshold De-noising

    Directory of Open Access Journals (Sweden)

    Yan-Fang Sang

    2010-06-01

    Full Text Available In this paper, the energy distributions of various noises following normal, log-normal and Pearson-III distributions are first described quantitatively using the wavelet energy entropy (WEE, and the results are compared and discussed. Then, on the basis of these analytic results, a method for use in choosing the decomposition level (DL in wavelet threshold de-noising (WTD is put forward. Finally, the performance of the proposed method is verified by analysis of both synthetic and observed series. Analytic results indicate that the proposed method is easy to operate and suitable for various signals. Moreover, contrary to traditional white noise testing which depends on “autocorrelations”, the proposed method uses energy distributions to distinguish real signals and noise in noisy series, therefore the chosen DL is reliable, and the WTD results of time series can be improved.

  5. IIR digital filter design for powerline noise cancellation of ECG signal using arduino platform

    Science.gov (United States)

    Rahmatillah, Akif; Ataulkarim

    2017-05-01

    Powerline noise has been one of significant noises of Electrocardiogram (ECG) signal measurement. This noise is characterized by a sinusoidal signal which has 50 Hz of noise and 0.3 mV of maximum amplitude. This paper describes the design of IIR Notch filter design to reject a 50 Hz power line noise. IIR filter coefficients were calculated using pole placement method with three variations of band stop cut off frequencies of (49-51)Hz, (48 - 52)Hz, and (47 - 53)Hz. The algorithm and coefficients of filter were embedded to Arduino DUE (ARM 32 bit microcontroller). IIR notch filter designed has been able to reject power line noise with average square of error value of 0.225 on (49-51) Hz filter design and 0.2831 on (48 - 52)Hz filter design.

  6. Seismic noise level variation in South Korea

    Science.gov (United States)

    Sheen, D.; Shin, J.

    2008-12-01

    The variations of seismic background noise in South Korea have been investigated by means of power spectral analysis. The Korea Institute of Geoscience and Mineral Resources (KIGAM) and the Korea Meteorological Administation (KMA) have national wide seismic networks in South Korea, and, in the end of 2007, there are 30 broadband stations which have been operating for more than a year. In this study, we have estimated the power spectral density of seismic noise for 30 broadband stations from 2005 to 2007. Since we estimate PSDs from a large dataset of continuous waveform in this study, a robust PSD estimate of McNamara and Buland (2004) is used. In the frequency range 1-5 Hz, the diurnal variations of noise are observed at most of stations, which are especially larger at coastal stations and at insular than at inland. Some stations shows daily difference of diurnal variations, which represents that cultural activities contribute to the noise level of a station. The variation of number of triggered stations, however, shows that cultural noise has little influence on the detection capability of seismic network in South Korea. Seasonal variations are observed well in the range 0.1-0.5 Hz, while much less found in the frequency range 1-5 Hz. We observed that strong peaks in the range 0.1-0.5 Hz occur at the summer when Pacific typhoons are close to the Korean Peninsula.

  7. A new neutron noise technique for fast reactors

    International Nuclear Information System (INIS)

    Zhuo Fengguan; Jin Manyi; Yao Shigui; Su Zhuting

    1987-12-01

    This paper gives a new neutron noise technique for fast reactors, which is known as thermalization measurement technique of the neutron noise. The theoretical formulas of the technique were developed, and a digital delayed coincidence time analyzer consisted of TTL integrated circuits was constructed for the study of this technique. The technique has been tested and applied practically at Df-VI fast zero power reactor. It was shown that the provided technique in this work has a number of significant advantages in comparison with the conventional neutron noise method

  8. Your brain on bikes: P3, MMN/N2b, and baseline noise while pedaling a stationary bike.

    Science.gov (United States)

    Scanlon, Joanna E M; Sieben, Alex J; Holyk, Kevin R; Mathewson, Kyle E

    2017-06-01

    Increasingly, there is a trend to measure brain activity in more ecologically realistic scenarios. Normally, the confines of the laboratory and sedentary tasks mitigate sources of electrical noise on EEG measurement. Moving EEG outside of the lab requires understanding of the impact of complex movements and activities on traditional EEG and ERP measures. Here, we recorded EEG with active electrodes while participants were either riding or sitting on a stationary bike in an electrical and sound-attenuated chamber in the lab. Participants performed an auditory oddball task, pressing a button when they detected rare target tones in a series of standard frequent tones. We quantified both the levels of spectral, single-trial baseline, and ERP baseline noise, as well as classic MMN/N2b and P3 ERP components measured during both biking and sitting still. We observed slight increases in posterior high frequency noise in the spectra, and increased noise in the baseline period during biking. However, morphologically and topographically similar MMN/N2b and P3 components were measured reliably while both biking and sitting. A quantification of the power to reliably measure ERPs as a function of the number of trials revealed slight increases in the number of trials needed during biking to achieve the same level of power. Taken in sum, our results confirm that classic ERPs can be measured reliably during biking activities in the lab. Future directions will employ these techniques outside the lab in ecologically valid situations. © 2017 Society for Psychophysiological Research.

  9. Noise exposure under hyperbaric conditions

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-01

    Objective evidence exists that divers demonstrate a hearing deficit greater than would be expected from ageing effects alone. Deafness in divers may be caused by a number of factors other than exposure to excessive noise levels, eg barotrauma, ear infection etc. This review concentrates on the concern that exposure of commercial divers to noise while at work may cause a hearing deficit. Sound pressure levels recorded both underwater and in diving chambers often exceed those allowable to workers onshore. However, the sound perceived by the diver is modified both in amplitude and in frequency when he is either underwater or in pressurised chambers. Broadly the effect of this modification is to attenuate the sound and thus offer some protection from high noise levels. The degree of attentuation varies with the frequency of the sound, however it is also possible under specific conditions associated with gas density for the sensitivity to particular frequencies to be amplified above that for normal atmospheric air. The levels of sound observed from some underwater tools are of concern even after allowing for a significant de-sensitisation of the divers` hearing. Reports of tinnitus and temporary hearing loss following a dive are sure signs that the noise levels have been harmful. It is not possible at present to describe risk criteria for hearing damage due to noise exposure associated with diving. (author)

  10. Noise source emissions, Richton Dome site, Mississippi

    International Nuclear Information System (INIS)

    1987-01-01

    Noise source data and use factors for modeling the environmental noise environment expected from salt-site repository activity were provided by Battelle Columbus Division. This report has been prepared for the purpose of documenting the development of the data provided to the Repository Project Management (RPM) organization. The data provided encompasses all phases of activity, from site preparation through construction of the exploratory shaft facility (ESF). Noise environments expected from construction and operation of transportation corridors associated with the activity were also modeled. Data for the construction of transportation corridors were provided. The equipment inventory, including sound-power levels for each item is included as Appendix A. Emission source terms provided by Parsons Brinckerhoff/PB-KBB for the ESF were used as a basis for the noise source emission inventory development. Where available, research results containing complete spectra were used. In cases where complete data were not available, a sound-pressure spectrum was synthesized from a characteristic spectrum shape from a similar piece of equipment. For example, a front-shovel excavator might be approximated by data from a front-end loader of similar horsepower range. Sound-power-level spectra were then calculated from the sound-pressure-level data. 14 refs

  11. Progressive evolution and a measure for its noise-dependent complexity

    Science.gov (United States)

    Fussy, Siegfried; Grössing, Gerhard; Schwabl, Herbert

    1999-03-01

    A recently introduced model of macroevolution is studied on two different levels of systems analysis. Firstly, the systems dynamics and properties, above all the growth of complexity of the evolutionary units during the long-term evolution, are discussed, and, secondly, the complexity of the model itself, i.e. the richness of its various features, is studied with regard to a control parameter representing a background noise within the systems dynamics. The same is done with a randomized version of the model. The model is based on a normalized one-dimensional coupled map lattice with locally interacting sites representing different species. The evolution of the sites' values representing the fitness of the species is governed by a usual diffusion rule and an additional memory- or random-based feedback loop. The introduction of a realistic background noise limiting the range of the feedback operation yields a pattern signature in fitness space with a distribution of temporal boost/mutation distances similar to a punctuated equilibrium behavior. Furthermore, the behavior of the mean lifetimes of "high" fitness values is correlated with the resolution-like parameter ɛ via a power law, a phenomenon called "fractal evolution." Based on simple functional properties of the power law, an additional feedback loop is introduced to use the intrinsic fluctuations of the whole fitness landscape as a driving force to change adaptively the systems resolution. On long-term scales, the dynamical system properties exhibit a clear tendency towards progressive evolution potentials for each species. For both model versions, the memory-based and the random-based one, we achieve some basic mechanisms of evolutionary dynamics like coevolution, punctuated equilibrium with regard to internal or external changes during evolution, coordinated stasis for groups of species, and self-organized growth of complexity for all evolutionary units of the array leading to a kind of "Red

  12. Noise filtering and nonparametric analysis of microarray data underscores discriminating markers of oral, prostate, lung, ovarian and breast cancer

    Directory of Open Access Journals (Sweden)

    Dermody James J

    2004-11-01

    Full Text Available Abstract Background A major goal of cancer research is to identify discrete biomarkers that specifically characterize a given malignancy. These markers are useful in diagnosis, may identify potential targets for drug development, and can aid in evaluating treatment efficacy and predicting patient outcome. Microarray technology has enabled marker discovery from human cells by permitting measurement of steady-state mRNA levels derived from thousands of genes. However many challenging and unresolved issues regarding the acquisition and analysis of microarray data remain, such as accounting for both experimental and biological noise, transcripts whose expression profiles are not normally distributed, guidelines for statistical assessment of false positive/negative rates and comparing data derived from different research groups. This study addresses these issues using Affymetrix HG-U95A and HG-U133 GeneChip data derived from different research groups. Results We present here a simple non parametric approach coupled with noise filtering to identify sets of genes differentially expressed between the normal and cancer states in oral, breast, lung, prostate and ovarian tumors. An important feature of this study is the ability to integrate data from different laboratories, improving the analytical power of the individual results. One of the most interesting findings is the down regulation of genes involved in tissue differentiation. Conclusions This study presents the development and application of a noise model that suppresses noise, limits false positives in the results, and allows integration of results from individual studies derived from different research groups.

  13. Noise reduction techniques used on the high power klystron modulators at Argonne National Laboratory

    International Nuclear Information System (INIS)

    Russell, T.J.

    1993-01-01

    The modulators used in the Advanced Photon Source at Argonne National Laboratory have been redesigned with an emphasis on electrical noise reduction. Since the modulators are 100 MW modulators with <700 ns rise time, electrical noise can be coupled very easily to other electronic equipment in the area. This paper will detail the efforts made to reduce noise coupled to surrounding equipment. Shielding and sound grounding techniques accomplished the goal of drastically reducing the noise induced in surrounding equipment. The approach used in grounding and shielding will be discussed, and data will be presented comparing earlier designs to the improved design

  14. Shot noise in YBCO bicrystal Josephson junctions

    DEFF Research Database (Denmark)

    Constantinian, K.Y.; Ovsyannikov, G.A.; Borisenko, I.V.

    2003-01-01

    We measured spectral noise density in YBCO symmetric bicrystal Josephson junctions on sapphire substrates at bias voltages up to 100 mV and T 4.2 K. Normal state resistance of the Josephson junctions, R-N = 20-90 Omega and ICRN up to 2.2 mV have been observed in the experimental samples. Noise...... may explain the experimentally measured linewidth broadening of Josephson oscillations at mm and submm wave frequencies in high-Tc superconducting junctions. Experimental results are discussed in terms of bound states existing at surfaces of d-wave superconducting electrodes....

  15. Fast flux test facility noise data management

    International Nuclear Information System (INIS)

    Thie, J.A.

    1988-01-01

    An extensive collection of spectra from an automated data collection system at the Fast Flux Facility has features from neutron data extracted and managed by database software. Inquiry techniques, including screening, applied to database results show the influences of control rods on wideband noise and, more generally, abilities to detect diverse types of off-normal noise. Uncovering a temporary 0.1-Hz resonance shift gave additional diagnostic information on a 13-Hz mechanical motion characterized by the interference of two resonances. The latter phenomenon is discussed generically for possible application to other reactor types. (author)

  16. A Noise Reduction Preprocessor for Mobile Voice Communication

    Directory of Open Access Journals (Sweden)

    Rainer Martin

    2004-07-01

    Full Text Available We describe a speech enhancement algorithm which leads to significant quality and intelligibility improvements when used as a preprocessor to a low bit rate speech coder. This algorithm was developed in conjunction with the mixed excitation linear prediction (MELP coder which, by itself, is highly susceptible to environmental noise. The paper presents novel as well as known speech and noise estimation techniques and combines them into a highly effective speech enhancement system. The algorithm is based on short-time spectral amplitude estimation, soft-decision gain modification, tracking of the a priori probability of speech absence, and minimum statistics noise power estimation. Special emphasis is placed on enhancing the performance of the preprocessor in nonstationary noise environments.

  17. Effect of flow parameters on flare stack generator noise

    International Nuclear Information System (INIS)

    Dinn, T.S.

    1998-01-01

    The SoundPLAN Computer Noise Model was used to determine the general effect of flare noise in a community adjacent to a petrochemical plant. Tests were conducted to determine the effect of process flow conditions and the pulsating flame on the flare stack generator noise from both a refinery flare and process flare. Flaring under normal plant operations, the flaring of fuel gas and the flaring of hydrogen were the three conditions that were tested. It was shown that the steam flow rate was the determining factor in the flare stack generated noise. Variations in the water seal level in the flare line surge tank increased or decreased the gas flowrate, which resulted in a pulsating flame. The period and amplitude of the pulsating noise from the flare stacks was determined by measuring several parameters. Flare stack noise oscillations were found to be greater for the process flare than for the refinery flare stack. It was suggested that minimizing the amount of steam fed to the flare and improving the burner design would minimize noise. 2 tabs., 6 figs

  18. A single-ended CMOS sensing circuit for MEMS gyroscope with noise cancellation

    KAUST Repository

    Elsayed, Mohannad Yomn

    2010-06-01

    In this work, a complete single-ended readout circuit for capacitive MEMS gyroscope using chopper stabilization technique is presented. A novel noise cancellation technique is used to get rid of the bias noise. The circuit offers superior performance over state of the art readout circuits in terms of cost, gain, and noise for the given area and power consumption. The full circuit exhibits a gain of 58dB, a power dissipation of 1.3mW and an input referred noise of 12nV/√Hz. This would significantly improve the overall sensitivity of the gyroscope. The full circuit has been fabricated in 0.6um CMOS technology and it occupies an area of 0.4mm × 1mm. © 2010 IEEE.

  19. A single-ended CMOS sensing circuit for MEMS gyroscope with noise cancellation

    KAUST Repository

    Elsayed, Mohannad Yomn; Emira, Ahmed; Sedky, Sherif M.; Habib, S. E. D.

    2010-01-01

    In this work, a complete single-ended readout circuit for capacitive MEMS gyroscope using chopper stabilization technique is presented. A novel noise cancellation technique is used to get rid of the bias noise. The circuit offers superior performance over state of the art readout circuits in terms of cost, gain, and noise for the given area and power consumption. The full circuit exhibits a gain of 58dB, a power dissipation of 1.3mW and an input referred noise of 12nV/√Hz. This would significantly improve the overall sensitivity of the gyroscope. The full circuit has been fabricated in 0.6um CMOS technology and it occupies an area of 0.4mm × 1mm. © 2010 IEEE.

  20. Chatter, reverberation, and the static in the system: Noise in American cinema culture

    Science.gov (United States)

    Ward, Meredith C.

    Noise is unwelcome in film culture; it has long been associated with disruption, counter-productivity, and discord. Yet taking a historical approach to noise and connecting its various manifestations to American auditory culture at large reveals noise to be a historiographically productive category for study. Approaching noise through its effects on four areas of American cinema culture---the social, technological, acoustical, and aesthetic---in four key historical moments, this dissertation demonstrates that listening to noise can explain conflicts in the history of film sound and audiences. Examples include silencing the social noise of rowdy spectators during the nickelodeon period; the Academy of Motion Picture Arts and Science's attempt to compete with Bell Laboratories with technological, noise-based research during film's transition to sound; the rise of acoustical design in film theaters to quash noise and produce contemplative listening in film spectators; and the user's current navigation of her attention between the sounds of media and urban life while viewing films on smartphones. In each case, the presence of noise has produced tensions that reveal the power structure of film culture. Terming sound "noise" is an act of judgment that has social ramifications, and the struggle against noise is also a struggle between groups vying for power within cinema culture: conflict over who may determine whose sound is "noise"; competition between industries regarding who owns sound knowledge; debates about which sounds are "noise" and which are legitimate components of the cinema experience; and tensions between our established expectations of noisy public space and the ways in which we create quiet spheres via mobile listening. Looking to the aural historical dialogues in which cinema culture partook, this project outlines the conditions of possibility within which listening to the cinema emerged in these periods. Understanding these historical contexts, we can

  1. Environmental propagation of noise in mines and nearby villages: A study through noise mapping

    Directory of Open Access Journals (Sweden)

    Veena D Manwar

    2016-01-01

    Full Text Available Background: Noise mapping being an established practice in Europe is hardly practiced for noise management in India although it is mandatory in Indian mines as per guidelines of the Directorate General of Mines Safety (DGMS. As a pilot study, noise mapping was conducted in an opencast mine with three different models; one based on the baseline operating conditions in two shifts (Situation A, and two other virtual situations where either production targets were enhanced by extending working hours to three shifts (Situation B or only by increased mechanization and not changing the duration of work (Situation C. Methods: Noise sources were categorized as point, line, area, and moving sources. Considering measured power of the sources, specific meteorological and geographical parameters, noise maps were generated using Predictor LimA software. Results: In all three situations, Lden values were 95 dB(A and 70–80 dB(A near drill machine and haul roads, respectively. Noise contours were wider in Situation C due to increase in frequency of dumpers. Lden values near Shovel 1 and Shovel 2 under Situation B increased by 5 dB and 3 dB, respectively due to expansion of working hours. In Situation C, noise levels were >82 dB(A around shovels. Noise levels on both sides of conveyor belts were in the range of 80–85 dB(A in Situations A and C whereas it was 85–90 dB(A in Situation B. Near crusher plants, it ranged from 80 to 90 dB(A in Situations A and C and between 85 and 95 dB(A in Situation B. In all situations, noise levels near residential areas exceeded the Central Pollution Control Board (CPCB limits, i.e., 55 dB(A. Conclusions: For all situations, predicted noise levels exceeded CPCB limits within the mine and nearby residential area. Residential areas near the crusher plants are vulnerable to increased noise propagation. It is recommended to put an acoustic barrier near the crusher plant to attenuate the noise propagation.

  2. Comparison between hybrid feedforward-feedback, feedforward, and feedback structures for active noise control of fMRI noise.

    Science.gov (United States)

    Reddy, Rajiv M; Panahi, Issa M S

    2008-01-01

    The performance of FIR feedforward, IIR feedforward, FIR feedback, hybrid FIR feedforward--FIR feedback, and hybrid IIR feedforward - FIR feedback structures for active noise control (ANC) are compared for an fMRI noise application. The filtered-input normalized least squares (FxNLMS) algorithm is used to update the coefficients of the adaptive filters in all these structures. Realistic primary and secondary paths of an fMRI bore are used by estimating them on a half cylindrical acrylic bore of 0.76 m (D)x1.52 m (L). Detailed results of the performance of the ANC system are presented in the paper for each of these structures. We find that the IIR feedforward structure produces most of the performance improvement in the hybrid IIR feedforward - FIR feedback structure and adding the feedback structure becomes almost redundant in the case of fMRI noise.

  3. Linearizing of Low Noise Power Amplifier Using 5.8GHz Double Loop Feedforward Linearization Technique

    Directory of Open Access Journals (Sweden)

    Abdulkareem Mokif Obais

    2017-05-01

    Full Text Available In this paper, a double loop feedforward linearization technique is analyzed and built with a MMIC low noise amplifier “HMC753” as main amplifier and a two-stage class-A power amplifier as error amplifier. The system is operated with 5V DC supply at a center frequency of 5.8GHz and a bandwidth of 500MHz. The proposed technique, increases the linearity of the MMIC amplifier from 18dBm at 1dB compression point to more than 26dBm. In addition, the proposed system is tested with OFDM signal and it reveals good response in maximizing the linearity region and eliminating distortions. The proposed system is designed and simulated onAdvanced Wave Research-Microwave Office (AWR-MWO.

  4. Noise reduction in a Mach 5 wind tunnel with a rectangular rod-wall sound shield

    Science.gov (United States)

    Creel, T. R., Jr.; Keyes, J. W.; Beckwith, I. E.

    1980-01-01

    A rod wall sound shield was tested over a range of Reynolds numbers of 0.5 x 10 to the 7th power to 8.0 x 10 to the 7th power per meter. The model consisted of a rectangular array of longitudinal rods with boundary-layer suction through gaps between the rods. Suitable measurement techniques were used to determine properties of the flow and acoustic disturbance in the shield and transition in the rod boundary layers. Measurements indicated that for a Reynolds number of 1.5 x 10 to the 9th power the noise in the shielded region was significantly reduced, but only when the flow is mostly laminar on the rods. Actual nozzle input noise measured on the nozzle centerline before reflection at the shield walls was attenuated only slightly even when the rod boundary layer were laminar. At a lower Reynolds number, nozzle input noise at noise levels in the shield were still too high for application to a quiet tunnel. At Reynolds numbers above 2.0 x 10 the the 7th power per meter, measured noise levels were generally higher than nozzle input levels, probably due to transition in the rod boundary layers. The small attenuation of nozzle input noise at intermediate Reynolds numbers for laminar rod layers at the acoustic origins is apparently due to high frequencies of noise.

  5. Noise source emissions, Deaf Smith County site, Texas

    International Nuclear Information System (INIS)

    1987-01-01

    Noise source data and use factors for modeling the noise environment expected from salt site repository activity were provided by Battelle Columbus Division. This report has been prepared for the purpose of documenting the development of the data provided to the Repository Project Management (RPM) organization. The data provided encompass all phases of activity from site preparation through construction of the exploratory shaft facility (ESF). Noise environments expected from construction and operation of transportation corridors associated with the activity were also modeled. The equipment inventory, including sound-power levels for each item, is included. Emission source terms provided by Parsons Brinckerhoff/PB-KBB for the ESF were used as a basis for the noise-source emission inventory development. Where available, research results containing complete spectra were used. In cases where complete data were not available, a sound-pressure spectrum was synthesized from a characteristic spectrum shape from a similar piece of equipment. For example, a front-shovel excavator might be approximated by data from a front-end loader of similar horsepower range. Sound-power-level spectra were then calculated from the sound-pressure-level data. 2 refs

  6. Measurements of Low Frequency Noise of Infrared Photo-Detectors with Transimpedance Detection System

    Directory of Open Access Journals (Sweden)

    Ciura Łukasz

    2014-08-01

    Full Text Available The paper presents the method and results of low-frequency noise measurements of modern mid-wavelength infrared photodetectors. A type-II InAs/GaSb superlattice based detector with nBn barrier architecture is compared with a high operating temperature (HOT heterojunction HgCdTe detector. All experiments were made in the range 1 Hz - 10 kHz at various temperatures by using a transimpedance detection system, which is examined in detail. The power spectral density of the nBn’s dark current noise includes Lorentzians with different time constants while the HgCdTe photodiode has more uniform 1/f - shaped spectra. For small bias, the low-frequency noise power spectra of both devices were found to scale linearly with bias voltage squared and were connected with the fluctuations of the leakage resistance. Leakage resistance noise defines the lower noise limit of a photodetector. Other dark current components give raise to the increase of low-frequency noise above this limit. For the same voltage biasing devices, the absolute noise power densities at 1 Hz in nBn are 1 to 2 orders of magnitude lower than in a MCT HgCdTe detector. In spite of this, low-frequency performance of the HgCdTe detector at ~ 230K is still better than that of InAs/GaSb superlattice nBn detector.

  7. Low-frequency noise from large wind turbines

    DEFF Research Database (Denmark)

    Møller, Henrik; Pedersen, Christian Sejer

    2011-01-01

    As wind turbines get larger, worries have emerged that the turbine noise would move down in frequency and that the low-frequency noise would cause annoyance for the neighbors. The noise emission from 48 wind turbines with nominal electric power up to 3.6 MW is analyzed and discussed. The relative...... amount of low-frequency noise is higher for large turbines (2.3–3.6 MW) than for small turbines (≤ 2 MW), and the difference is statistically significant. The difference can also be expressed as a downward shift of the spectrum of approximately one-third of an octave. A further shift of similar size...... is suggested for future turbines in the 10-MW range. Due to the air absorption, the higher low-frequency content becomes even more pronounced, when sound pressure levels in relevant neighbor distances are considered. Even when A-weighted levels are considered, a substantial part of the noise is at low...

  8. Robust shot-noise measurement for continuous-variable quantum key distribution

    Science.gov (United States)

    Kunz-Jacques, Sébastien; Jouguet, Paul

    2015-02-01

    We study a practical method to measure the shot noise in real time in continuous-variable quantum key distribution systems. The amount of secret key that can be extracted from the raw statistics depends strongly on this quantity since it affects in particular the computation of the excess noise (i.e., noise in excess of the shot noise) added by an eavesdropper on the quantum channel. Some powerful quantum hacking attacks relying on faking the estimated value of the shot noise to hide an intercept and resend strategy were proposed. Here, we provide experimental evidence that our method can defeat the saturation attack and the wavelength attack.

  9. Noise-aware dictionary-learning-based sparse representation framework for detection and removal of single and combined noises from ECG signal.

    Science.gov (United States)

    Satija, Udit; Ramkumar, Barathram; Sabarimalai Manikandan, M

    2017-02-01

    Automatic electrocardiogram (ECG) signal enhancement has become a crucial pre-processing step in most ECG signal analysis applications. In this Letter, the authors propose an automated noise-aware dictionary learning-based generalised ECG signal enhancement framework which can automatically learn the dictionaries based on the ECG noise type for effective representation of ECG signal and noises, and can reduce the computational load of sparse representation-based ECG enhancement system. The proposed framework consists of noise detection and identification, noise-aware dictionary learning, sparse signal decomposition and reconstruction. The noise detection and identification is performed based on the moving average filter, first-order difference, and temporal features such as number of turning points, maximum absolute amplitude, zerocrossings, and autocorrelation features. The representation dictionary is learned based on the type of noise identified in the previous stage. The proposed framework is evaluated using noise-free and noisy ECG signals. Results demonstrate that the proposed method can significantly reduce computational load as compared with conventional dictionary learning-based ECG denoising approaches. Further, comparative results show that the method outperforms existing methods in automatically removing noises such as baseline wanders, power-line interference, muscle artefacts and their combinations without distorting the morphological content of local waves of ECG signal.

  10. Database of air and noise pollution in Lebanon. Final report

    International Nuclear Information System (INIS)

    Chaaban, Farid; Ayoub, George

    1996-01-01

    The growing global public concern over deteriorating air quality and greenhouse gases emissions released from various combustion processes, and particularly power plants and transportation system, led governments and local authorities, especially in industrialised countries into taking these issues seriously and establishing standards to reduce air pollution down to acceptable levels, (clean air act, earth summit,...). The transportation sector has another unwanted product, noise pollution caused by different segments of this sector including the noise produced by the engine, tires noise and exhaust noise, in addition to the noise product by private standby generals operating during electricity cut-off periods. To be able to estimate the environmental impacts of the national power plants and the transportation sector, it is necessary to collect enough data (samples of lead emissions, SO 2 concentration, sulfur dioxide, nitrogen oxides, hydrocarbons, ozone and carbon monoxide) using specified planning procedures. These samples will then be analyzed and the results will be compared to international standards to assess the implication of these pollutants. For this purpose, the proposed project is aimed at developing data base, over a period of two or more years, for air and noise pollution based on results to be obtained from extensive sampling procedure and under different atmospheric conditions (author)

  11. Linear signal noise summer accurately determines and controls S/N ratio

    Science.gov (United States)

    Sundry, J. L.

    1966-01-01

    Linear signal noise summer precisely controls the relative power levels of signal and noise, and mixes them linearly in accurately known ratios. The S/N ratio accuracy and stability are greatly improved by this technique and are attained simultaneously.

  12. Research on the Method of Noise Error Estimation of Atomic Clocks

    Science.gov (United States)

    Song, H. J.; Dong, S. W.; Li, W.; Zhang, J. H.; Jing, Y. J.

    2017-05-01

    The simulation methods of different noises of atomic clocks are given. The frequency flicker noise of atomic clock is studied by using the Markov process theory. The method for estimating the maximum interval error of the frequency white noise is studied by using the Wiener process theory. Based on the operation of 9 cesium atomic clocks in the time frequency reference laboratory of NTSC (National Time Service Center), the noise coefficients of the power-law spectrum model are estimated, and the simulations are carried out according to the noise models. Finally, the maximum interval error estimates of the frequency white noises generated by the 9 cesium atomic clocks have been acquired.

  13. Study on phase noise induced by 1/f noise of the modulator drive circuit in high-sensitivity fiber optic gyroscope

    Science.gov (United States)

    Teng, Fei; Jin, Jing; Li, Yong; Zhang, Chunxi

    2018-05-01

    The contribution of modulator drive circuit noise as a 1/f noise source to the output noise of the high-sensitivity interferometric fiber optic gyroscope (IFOG) was studied here. A noise model of closed-loop IFOG was built. By applying the simulated 1/f noise sequence into the model, a gyroscope output data series was acquired, and the corresponding power spectrum density (PSD) and the Allan variance curve were calculated to analyze the noise characteristic. The PSD curve was in the spectral shape of 1/f, which verifies that the modulator drive circuit induced a low frequency 1/f phase noise into the gyroscope. The random walk coefficient (RWC), a standard metric to characterize the noise performance of the IFOG, was calculated according to the Allan variance curve. Using an operational amplifier with an input 1/f noise of 520 nV/√Hz at 1 Hz, the RWC induced by this 1/f noise was 2 × 10-4°/√h, which accounts for 63% of the total RWC. To verify the correctness of the noise model we proposed, a high-sensitivity gyroscope prototype was built and tested. The simulated Allan variance curve gave a good rendition of the prototype actual measured curve. The error percentage between the simulated RWC and the measured value was less than 13%. According to the model, a noise reduction method is proposed and the effectiveness is verified by the experiment.

  14. Optimal noise reduction in 3D reconstructions of single particles using a volume-normalized filter

    Science.gov (United States)

    Sindelar, Charles V.; Grigorieff, Nikolaus

    2012-01-01

    The high noise level found in single-particle electron cryo-microscopy (cryo-EM) image data presents a special challenge for three-dimensional (3D) reconstruction of the imaged molecules. The spectral signal-to-noise ratio (SSNR) and related Fourier shell correlation (FSC) functions are commonly used to assess and mitigate the noise-generated error in the reconstruction. Calculation of the SSNR and FSC usually includes the noise in the solvent region surrounding the particle and therefore does not accurately reflect the signal in the particle density itself. Here we show that the SSNR in a reconstructed 3D particle map is linearly proportional to the fractional volume occupied by the particle. Using this relationship, we devise a novel filter (the “single-particle Wiener filter”) to minimize the error in a reconstructed particle map, if the particle volume is known. Moreover, we show how to approximate this filter even when the volume of the particle is not known, by optimizing the signal within a representative interior region of the particle. We show that the new filter improves on previously proposed error-reduction schemes, including the conventional Wiener filter as well as figure-of-merit weighting, and quantify the relationship between all of these methods by theoretical analysis as well as numeric evaluation of both simulated and experimentally collected data. The single-particle Wiener filter is applicable across a broad range of existing 3D reconstruction techniques, but is particularly well suited to the Fourier inversion method, leading to an efficient and accurate implementation. PMID:22613568

  15. Annoyance, detection and recognition of wind turbine noise.

    Science.gov (United States)

    Van Renterghem, Timothy; Bockstael, Annelies; De Weirt, Valentine; Botteldooren, Dick

    2013-07-01

    Annoyance, recognition and detection of noise from a single wind turbine were studied by means of a two-stage listening experiment with 50 participants with normal hearing abilities. In-situ recordings made at close distance from a 1.8-MW wind turbine operating at 22 rpm were mixed with road traffic noise, and processed to simulate indoor sound pressure levels at LAeq 40 dBA. In a first part, where people were unaware of the true purpose of the experiment, samples were played during a quiet leisure activity. Under these conditions, pure wind turbine noise gave very similar annoyance ratings as unmixed highway noise at the same equivalent level, while annoyance by local road traffic noise was significantly higher. In a second experiment, listeners were asked to identify the sample containing wind turbine noise in a paired comparison test. The detection limit of wind turbine noise in presence of highway noise was estimated to be as low as a signal-to-noise ratio of -23 dBA. When mixed with local road traffic, such a detection limit could not be determined. These findings support that noticing the sound could be an important aspect of wind turbine noise annoyance at the low equivalent levels typically observed indoors in practice. Participants that easily recognized wind-turbine(-like) sounds could detect wind turbine noise better when submersed in road traffic noise. Recognition of wind turbine sounds is also linked to higher annoyance. Awareness of the source is therefore a relevant aspect of wind turbine noise perception which is consistent with previous research. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Noise measurement at wind power plants; Geraeuschmessung an Windenergieanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Schoene, Ralph [Cirrus Research plc, Frankfurt am Main (Germany)

    2012-09-15

    Wind energy is a supporting pillar of the energy transition. For further expansion, it is important to reduce prejudices, for example by measurements as precise as possible and assessments of the often unobjectively discussed noise emissions. These measurements are based on instruments which can analyze and measure low-frequency sound.

  17. Assessment of noise exposure during commuting in the Madrid subway.

    Science.gov (United States)

    Tabacchi, M; Pavón, I; Ausejo, M; Asensio, C; Recuero, M

    2011-09-01

    Because noise-induced hearing impairment is the result not only of occupational noise exposure but also of total daily noise exposure, it is important to take the non-occupational exposure of individuals (during commuting to and from their jobs, at home, and during recreational activities) into account. Mass transit is one of the main contributors to non-occupational noise exposure. We developed a new methodology to estimate a representative commuting noise exposure. The methodology was put into practice for the Madrid subway because of all Spanish subway systems it covers the highest percentage of worker journeys (22.6%). The results of the application highlight that, for Madrid subway passengers, noise exposure level normalized to a nominal 8 hr (L(Ex,8h-cj) ) depends strongly on the type of train, the presence of squealing noise, and the public address audio system, ranging from 68.6 dBA to 72.8 dBA. These values play an important role in a more complete evaluation of a relationship between noise dose and worker health response.

  18. Relation between nonlinear or 'not-linear' characteristics in nuclear kinetics and noise analysis of neutron flux

    International Nuclear Information System (INIS)

    Kataoka, H.

    1975-01-01

    The 'not-linear' or '2nd-class-nonlinear' characteristics in nuclear reactor kinetics with the feedback effect in the high-power operation and induce the increase in the amplitude of the neutron flux noise, specially in the very low frequency region. The fundamental behaviour of 'not-linear' characteristics and its effect for the reactor noise was investigated. Application of the reactor noise analysis technique to power reactors has not been successful because of unknown large disagreement between the result of the conventional theoretical analysis and the experimental facts. When the cause of this discrepancy is clear, reactor noise analysis techniques can be effectively applied to instrumentation, control, monitoring and diagnosis of power reactors. (author)

  19. Development and applications of reactor noise analysis at Ontario Hydro's CANDU reactors

    International Nuclear Information System (INIS)

    Gloeckler, O.; Tulett, M.V.

    1995-01-01

    In 1992 a program was initiated to establish reactor noise analysis as a practical tool for plant performance monitoring and system diagnostics in Ontario Hydro's CANDU reactors. Since then, various CANDU-specific noise analysis applications have been developed and validated. The noise-based statistical techniques are being successfully applied as powerful troubleshooting and diagnostic tools to a wide variety of actual operational I and C problems. The dynamic characteristics of critical plant components, instrumentation and processes are monitored on a regular basis. Recent applications of noise analysis include (1) validating the dynamics of in-core flux detectors (ICFDS) and ion chambers, (2) estimating the prompt fraction ICFDs in noise measurements at full power and in power rundown tests, (3) identifying the cause of excessive signal fluctuations in certain flux detectors, (4) validating the dynamic coupling between liquid zone control signals, (5) detecting and monitoring mechanical vibrations of detector tubes induced by moderator flow, (6) estimating the dynamics and response time of RTD (Resistance Temperature Detector) temperature signals, (7) isolating the cause of RTD signal anomalies, (8) investigating the source of abnormal flow signal behaviour, (9) estimating the overall response time of flow and pressure signals, (10) detecting coolant boiling in fully instrumented fuel channels, (11) monitoring moderator circulation via temperature noise, and (12) predicting the performance of shut-off rods. Some of these applications are performed on an as-needed basis. The noise analysis program, in the Pickering-B station alone, has saved Ontario Hydro millions of dollars during its first three years. The results of the noise analysis program have been also reviewed by the regulator (Atomic Energy Control Board of Canada) with favorable results. The AECB have expressed interest in Ontario Hydro further exploiting the use of noise analysis technology. (author

  20. Summary of the benchmark test on artificial noise data

    Energy Technology Data Exchange (ETDEWEB)

    Hoogenboom, J.E.; Ciftcioglu, O.; Dam, H. van

    1988-01-01

    A survey is given of the SMORN-V artificial noise benchmark test for checking autoregressive modelling of noise and testing anomaly detection methods. A detailed description of the system used to generate the signals is given. Contributions from 7 participants have been received. Not all participants executed both the tests on the stationary data and the anomaly data. Comparison of plots of transfer functions, noise contribution ratios and the spectrum of a noise source obtained from AR-analysis partly shows satisfactory agreement (except for normalization), partly distinct disagreement. This was also the case for the several parameters to be determined numerically. The covariance matrices of the intrinsic noise sources showed considerable differences. Participants dealing with the anomaly data used very different methods for anomaly detection. Two of them detected both anomalies present in the signals. One participant the first anomaly and the other participant the second anomaly only.