WorldWideScience

Sample records for normalized coupling parameter

  1. Normal Force Influence on 3D Texture Parameters Characterizing the Friction Couple Steel – PBT + 10 % PTFE

    Directory of Open Access Journals (Sweden)

    C. Georgescu

    2014-03-01

    Full Text Available This study presents the influence of the normal force on the surface quality of the friction couple steel – polybutylene terephthalate (PBT + 10 % polytetrafluoroethylene (PTFE. There were calculated the average values of the amplitude and functional parameters, as obtained from investigating square areas on the wear tracks, with the help of a proposed methodology, for initial and tested surfaces generated on the blocks and on counterpart ring made of rolling bearing steel, for the following test conditions: three normal forces (F = 1 N, F = 2.5 N and F =5 N, three sliding speeds (v = 0.25 m/s, v = 0.50 m/s and v = 0.75 m/s and a sliding distance of L = 7500 m. The conclusion of the research study was that the tested normal force range has an insignificant influence on the surface quality for the tested materials and parameters. This friction couple could be recommended for variable conditions (speed and load in dry regimes.

  2. Normal zone detectors for a large number of inductively coupled coils

    International Nuclear Information System (INIS)

    Owen, E.W.; Shimer, D.W.

    1983-01-01

    In order to protect a set of inductively coupled superconducting magnets, it is necessary to locate and measure normal zone voltages that are small compared with the mutual and self-induced voltages. The method described in this report uses two sets of voltage measurements to locate and measure one or more normal zones in any number of coupled coils. One set of voltages is the outputs of bridges that balance out the self-induced voltages The other set of voltages can be the voltages across the coils, although alternatives are possible. The two sets of equations form a single combined set of equations. Each normal zone location or combination of normal zones has a set of these combined equations associated with it. It is demonstrated that the normal zone can be located and the correct set chosen, allowing determination of the size of the normal zone. Only a few operations take plae in a working detector: multiplication of a constant, addition, and simple decision-making. In many cases the detector for each coil, although weakly linked to the other detectors, can be considered to be independent. An example of the detector design is given for four coils with realistic parameters. The effect on accuracy of changes in the system parameters is discussed

  3. The signal of mantle anisotropy in the coupling of normal modes

    Science.gov (United States)

    Beghein, Caroline; Resovsky, Joseph; van der Hilst, Robert D.

    2008-12-01

    We investigate whether the coupling of normal mode (NM) multiplets can help us constrain mantle anisotropy. We first derive explicit expressions of the generalized structure coefficients of coupled modes in terms of elastic coefficients, including the Love parameters describing radial anisotropy and the parameters describing azimuthal anisotropy (Jc, Js, Kc, Ks, Mc, Ms, Bc, Bs, Gc, Gs, Ec, Es, Hc, Hs, Dc and Ds). We detail the selection rules that describe which modes can couple together and which elastic parameters govern their coupling. We then focus on modes of type 0Sl - 0Tl+1 and determine whether they can be used to constrain mantle anisotropy. We show that they are sensitive to six elastic parameters describing azimuthal anisotropy, in addition to the two shear-wave elastic parameters L and N (i.e. VSV and VSH). We find that neither isotropic nor radially anisotropic mantle models can fully explain the observed degree two signal. We show that the NM signal that remains after correction for the effect of the crust and mantle radial anisotropy can be explained by the presence of azimuthal anisotropy in the upper mantle. Although the data favour locating azimuthal anisotropy below 400km, its depth extent and distribution is still not well constrained by the data. Consideration of NM coupling can thus help constrain azimuthal anisotropy in the mantle, but joint analyses with surface-wave phase velocities is needed to reduce the parameter trade-offs and improve our constraints on the individual elastic parameters and the depth location of the azimuthal anisotropy.

  4. Reduction of coupling parameters and duality

    International Nuclear Information System (INIS)

    Oehme, R.; Max-Planck-Institut fuer Physik, Muenchen

    2000-01-01

    The general method of the reduction in the number of coupling parameters is discussed. Using renormalization group invariance, theories with several independent couplings are related to a set of theories with a single coupling parameter. The reduced theories may have particular symmetries, or they may not be related to any known symmetry. The method is more general than the imposition of invariance properties. Usually, there are only a few reduced theories with an asymptotic power series expansion corresponding to a renormalizable Lagrangian. There also exist 'general' solutions containing non-integer powers and sometimes logarithmic factors. As an example for the use of the reduction method, the dual magnetic theories associated with certain supersymmetric gauge theories are discussed. They have a superpotential with a Yukawa coupling parameter. This parameter is expressed as a function of the gauge coupling. Given some standard conditions, a unique, isolated power series solution of the reduction equations is obtained. After reparameterization, the Yukawa coupling is proportional to the square of the gauge coupling parameter. The coefficient is given explicitly in terms of the numbers of colors and flavors. 'General' solutions with non-integer powers are also discussed. A brief list is given of other applications of the reduction method. (orig.)

  5. Normal zone detectors for a large number of inductively coupled coils. Revision 1

    International Nuclear Information System (INIS)

    Owen, E.W.; Shimer, D.W.

    1983-01-01

    In order to protect a set of inductively coupled superconducting magnets, it is necessary to locate and measure normal zone voltages that are small compared with the mutual and self-induced voltages. The method described in this paper uses two sets of voltage measurements to locate and measure one or more normal zones in any number of coupled coils. One set of voltages is the outputs of bridges that balance out the self-induced voltages. The other set of voltages can be the voltages across the coils, although alternatives are possible. The two sets of equations form a single combined set of equations. Each normal zone location or combination of normal zones has a set of these combined equations associated with it. It is demonstrated that the normal zone can be located and the correct set chosen, allowing determination of the size of the normal zone. Only a few operations take place in a working detector: multiplication of a constant, addition, and simple decision-making. In many cases the detector for each coil, although weakly linked to the other detectors, can be considered to be independent. The effect on accuracy of changes in the system parameters is discussed

  6. Comparing Brain Behavioral Systems in Couples Engaged in Infidelity and Normal Couples in Tabriz, Tehran and Karaj

    Directory of Open Access Journals (Sweden)

    Alireza Karimpour Vazifehkhorani

    2017-10-01

    Full Text Available Background and Objectives: This study aimed to compare Gary Behavioral Systems (behavioral activation system and behavioral inhibition system in normal couples and those engaged in marital infidelity. Material and Methods: The research was descriptive and causal-comparative. Study population consisted of normal couples and couples who were betrayed in the cities of Tehran, Karaj and Tabriz that were referred to counseling clinics. Study sample consisted of 100 clients; 50 normal couples and 50 couples who were involved in marital infidelity. Sampling was targeted. To collect data, Grey-Wilson's and wife infidelity questionnaires were used. Results: Inhibition of behavior in normal couples was higher than couples involved in marital infidelity which was significant at P Conclusion: Couples who have activation system of high sensitivity are more involved in the phenomenon of marital infidelity compared to the couples who are at high behavioral inhibition system.

  7. Normal-Mode Splitting in a Weakly Coupled Optomechanical System

    Science.gov (United States)

    Rossi, Massimiliano; Kralj, Nenad; Zippilli, Stefano; Natali, Riccardo; Borrielli, Antonio; Pandraud, Gregory; Serra, Enrico; Di Giuseppe, Giovanni; Vitali, David

    2018-02-01

    Normal-mode splitting is the most evident signature of strong coupling between two interacting subsystems. It occurs when two subsystems exchange energy between themselves faster than they dissipate it to the environment. Here we experimentally show that a weakly coupled optomechanical system at room temperature can manifest normal-mode splitting when the pump field fluctuations are antisquashed by a phase-sensitive feedback loop operating close to its instability threshold. Under these conditions the optical cavity exhibits an effectively reduced decay rate, so that the system is effectively promoted to the strong coupling regime.

  8. Shear-coupled grain-boundary migration dependence on normal strain/stress

    Science.gov (United States)

    Combe, N.; Mompiou, F.; Legros, M.

    2017-08-01

    In specific conditions, grain-boundary (GB) migration occurs in polycrystalline materials as an alternative vector of plasticity compared to the usual dislocation activity. The shear-coupled GB migration, the expected most efficient GB based mechanism, couples the GB motion to an applied shear stress. Stresses on GB in polycrystalline materials seldom have, however, a unique pure shear component. This work investigates the influence of a normal strain on the shear coupled migration of a Σ 13 (320 )[001 ] GB in a copper bicrystal using atomistic simulations. We show that the yield shear stress inducing the GB migration strongly depends on the applied normal stress. Beyond, the application of a normal stress on this GB qualitatively modifies the GB migration: while the Σ 13 (320 )[001 ] GB shear couples following the 〈110 〉 migration mode without normal stress, we report the observation of the 〈010 〉 mode under a sufficiently high tensile normal stress. Using the nudge elastic band method, we uncover the atomistic mechanism of this 〈010 〉 migration mode and energetically characterize it.

  9. Large enhancement of thermoelectric effects in a tunneling-coupled parallel DQD-AB ring attached to one normal and one superconducting lead

    Science.gov (United States)

    Yao, Hui; Zhang, Chao; Li, Zhi-Jian; Nie, Yi-Hang; Niu, Peng-bin

    2018-05-01

    We theoretically investigate the thermoelectric properties in a tunneling-coupled parallel DQD-AB ring attached to one normal and one superconducting lead. The role of the intrinsic and extrinsic parameters in improving thermoelectric properties is discussed. The peak value of figure of merit near gap edges increases with the asymmetry parameter decreasing, particularly, when asymmetry parameter is less than 0.5, the figure of merit near gap edges rapidly rises. When the interdot coupling strengh is less than the superconducting gap the thermopower spectrum presents a single-platform structure. While when the interdot coupling strengh is larger than the gap, a double-platform structure appears in thermopower spectrum. Outside the gap the peak values of figure of merit might reach the order of 102. On the basis of optimizing internal parameters the thermoelectric conversion efficiency of the device can be further improved by appropriately matching the total magnetic flux and the flux difference between two subrings.

  10. Hydrodynamics of Normal Atomic Gases with Spin-orbit Coupling.

    Science.gov (United States)

    Hou, Yan-Hua; Yu, Zhenhua

    2015-10-20

    Successful realization of spin-orbit coupling in atomic gases by the NIST scheme opens the prospect of studying the effects of spin-orbit coupling on many-body physics in an unprecedentedly controllable way. Here we derive the linearized hydrodynamic equations for the normal atomic gases of the spin-orbit coupling by the NIST scheme with zero detuning. We show that the hydrodynamics of the system crucially depends on the momentum susceptibilities which can be modified by the spin-orbit coupling. We reveal the effects of the spin-orbit coupling on the sound velocities and the dipole mode frequency of the gases by applying our formalism to the ideal Fermi gas. We also discuss the generalization of our results to other situations.

  11. Score Normalization using Logistic Regression with Expected Parameters

    NARCIS (Netherlands)

    Aly, Robin

    State-of-the-art score normalization methods use generative models that rely on sometimes unrealistic assumptions. We propose a novel parameter estimation method for score normalization based on logistic regression. Experiments on the Gov2 and CluewebA collection indicate that our method is

  12. Synchronization of coupled different chaotic FitzHugh-Nagumo neurons with unknown parameters under communication-direction-dependent coupling.

    Science.gov (United States)

    Iqbal, Muhammad; Rehan, Muhammad; Khaliq, Abdul; Saeed-ur-Rehman; Hong, Keum-Shik

    2014-01-01

    This paper investigates the chaotic behavior and synchronization of two different coupled chaotic FitzHugh-Nagumo (FHN) neurons with unknown parameters under external electrical stimulation (EES). The coupled FHN neurons of different parameters admit unidirectional and bidirectional gap junctions in the medium between them. Dynamical properties, such as the increase in synchronization error as a consequence of the deviation of neuronal parameters for unlike neurons, the effect of difference in coupling strengths caused by the unidirectional gap junctions, and the impact of large time-delay due to separation of neurons, are studied in exploring the behavior of the coupled system. A novel integral-based nonlinear adaptive control scheme, to cope with the infeasibility of the recovery variable, for synchronization of two coupled delayed chaotic FHN neurons of different and unknown parameters under uncertain EES is derived. Further, to guarantee robust synchronization of different neurons against disturbances, the proposed control methodology is modified to achieve the uniformly ultimately bounded synchronization. The parametric estimation errors can be reduced by selecting suitable control parameters. The effectiveness of the proposed control scheme is illustrated via numerical simulations.

  13. Parameters optimization for magnetic resonance coupling wireless power transmission.

    Science.gov (United States)

    Li, Changsheng; Zhang, He; Jiang, Xiaohua

    2014-01-01

    Taking maximum power transmission and power stable transmission as research objectives, optimal design for the wireless power transmission system based on magnetic resonance coupling is carried out in this paper. Firstly, based on the mutual coupling model, mathematical expressions of optimal coupling coefficients for the maximum power transmission target are deduced. Whereafter, methods of enhancing power transmission stability based on parameters optimal design are investigated. It is found that the sensitivity of the load power to the transmission parameters can be reduced and the power transmission stability can be enhanced by improving the system resonance frequency or coupling coefficient between the driving/pick-up coil and the transmission/receiving coil. Experiment results are well conformed to the theoretical analysis conclusions.

  14. Synchronization of Coupled Different Chaotic FitzHugh-Nagumo Neurons with Unknown Parameters under Communication-Direction-Dependent Coupling

    Directory of Open Access Journals (Sweden)

    Muhammad Iqbal

    2014-01-01

    Full Text Available This paper investigates the chaotic behavior and synchronization of two different coupled chaotic FitzHugh-Nagumo (FHN neurons with unknown parameters under external electrical stimulation (EES. The coupled FHN neurons of different parameters admit unidirectional and bidirectional gap junctions in the medium between them. Dynamical properties, such as the increase in synchronization error as a consequence of the deviation of neuronal parameters for unlike neurons, the effect of difference in coupling strengths caused by the unidirectional gap junctions, and the impact of large time-delay due to separation of neurons, are studied in exploring the behavior of the coupled system. A novel integral-based nonlinear adaptive control scheme, to cope with the infeasibility of the recovery variable, for synchronization of two coupled delayed chaotic FHN neurons of different and unknown parameters under uncertain EES is derived. Further, to guarantee robust synchronization of different neurons against disturbances, the proposed control methodology is modified to achieve the uniformly ultimately bounded synchronization. The parametric estimation errors can be reduced by selecting suitable control parameters. The effectiveness of the proposed control scheme is illustrated via numerical simulations.

  15. Coupling of order parameters, chirality, and interfacial structures in multiferroic materials.

    Science.gov (United States)

    Conti, Sergio; Müller, Stefan; Poliakovsky, Arkady; Salje, Ekhard K H

    2011-04-13

    We study optimal interfacial structures in multiferroic materials with a biquadratic coupling between two order parameters. We discover a new duality relation between the strong coupling and the weak coupling regime for the case of isotropic gradient terms. We analyze the phase diagram depending on the coupling constant and anisotropy of the gradient term, and show that in a certain regime the secondary order parameter becomes activated only in the interfacial region.

  16. Analysis of semen parameters in male referrals: impact of reference limits, stratification by fertility categories, predictors of change, and comparison of normal semen parameters in subfertile couples.

    Science.gov (United States)

    Baker, Karen; Li, Jianbo; Sabanegh, Edmund

    2015-01-01

    To [1] determine the impact of semen reference limits on referrals for male fertility evaluations, [2] analyze the stratification of subjects based on published "normal" thresholds, [3] analyze the odds of changing fertility categories during serial tests and thereby the potential impact of inherent variability of semen parameters on referrals, and [4] determine variable(s) predictive of change. Retrospective chart review. Academic referral center for male fertility. New encounters in a male fertility clinic over a 5-year period that straddles the publication of World Health Organization (WHO) 2010 reference values. None. Demographic and clinical variables, semen values, and fertility categories as follows: BE (below WHO 2010 criteria), BTWN (above WHO 2010 but below WHO 1999 criteria), and N (above WHO 1999 criteria). A total of 82.3% of initial semen tests were categorized as BE, and the predominance of this category was unchanged by publication of the WHO 2010 criteria. Men with initial semen analysis categorized as BTWN or N represented 16.2% and 1.5% of the referral population, respectively. Subjects initially categorized as BTWN were more likely to change fertility categories, and overwhelmingly this migration was downward. Analysis of normal individual semen parameters revealed statistically worse mean concentration and motility when at least one other parameter fell below the WHO 2010 criteria. Men with semen results above reference criteria are underrepresented, indicating that reference limits influence referral patterns for male fertility evaluations. Normal mean concentration and motility were lower in men with at least one other individual semen parameter below the 2010 criteria, suggesting global dysfunction in spermatogenesis. Published by Elsevier Inc.

  17. Normal zone detectors for a large number of inductively coupled coils

    International Nuclear Information System (INIS)

    Owen, E.W.; Shimer, D.W.

    1983-01-01

    In order to protect a set of inductively coupled superconducting magnets, it is necessary to locate and measure normal zone voltages that are small compared with the mutual and self-induced voltages. The method described in this paper uses two sets of voltage measurements to locate and measure one or more normal zones in any number of coupled coils. One set of voltages is the outputs of bridges that balance out the self-induced voltages. The other set of voltages can be the voltages across the coils, although alternatives are possible. The two sets of equations form a single combined set of equations. Each normal zone location or combination of normal zones has a set of these combined equations associated with it. It is demonstrated that the normal zone can be located and the correct set chosen, allowing determination of the size of the normal zone. Only a few operations take place in a working detector: multiplication of a constant, addition, and simple decision-making. In many cases the detector for each coil, although weakly linked to the other detectors, can be considered to be independent

  18. Coupling-parameter expansion in thermodynamic perturbation theory.

    Science.gov (United States)

    Ramana, A Sai Venkata; Menon, S V G

    2013-02-01

    An approach to the coupling-parameter expansion in the liquid state theory of simple fluids is presented by combining the ideas of thermodynamic perturbation theory and integral equation theories. This hybrid scheme avoids the problems of the latter in the two phase region. A method to compute the perturbation series to any arbitrary order is developed and applied to square well fluids. Apart from the Helmholtz free energy, the method also gives the radial distribution function and the direct correlation function of the perturbed system. The theory is applied for square well fluids of variable ranges and compared with simulation data. While the convergence of perturbation series and the overall performance of the theory is good, improvements are needed for potentials with shorter ranges. Possible directions for further developments in the coupling-parameter expansion are indicated.

  19. Universality for the parameter-mismatching effect on weak synchronization in coupled chaotic systems

    International Nuclear Information System (INIS)

    Lim, Woochang; Kim, Sang-Yoon

    2004-01-01

    To examine the universality for the parameter-mismatching effect on weak chaotic synchronization, we study coupled multidimensional invertible systems such as the coupled Henon maps and coupled pendula. By generalizing the method proposed in coupled one-dimensional (1D) noninvertible maps, we introduce the parameter sensitivity exponent δ to measure the degree of the parameter sensitivity of a weakly stable synchronous chaotic attractor. In terms of the parameter sensitivity exponents, we characterize the effect of the parameter mismatch on the intermittent bursting and the basin riddling occurring in the regime of weak synchronization. It is thus found that the scaling exponent μ for the average characteristic time (i.e., the average interburst time and the average chaotic transient lifetime) for both the bubbling and riddling cases is given by the reciprocal of the parameter sensitivity exponent, as in the simple system of coupled 1D maps. Hence, the reciprocal relation (i.e., μ = 1/δ) seems to be 'universal', in the sense that it holds in typical coupled chaotic systems of different nature

  20. Normal form of linear systems depending on parameters

    International Nuclear Information System (INIS)

    Nguyen Huynh Phan.

    1995-12-01

    In this paper we resolve completely the problem to find normal forms of linear systems depending on parameters for the feedback action that we have studied for the special case of controllable linear systems. (author). 24 refs

  1. Predictive value of semen parameters and age of the couple in pregnancy outcome after Intrauterine insemination

    Directory of Open Access Journals (Sweden)

    Marjan Sabbaghian

    2013-11-01

    Full Text Available Background: Intrauterine insemination (IUI is one the most common methods in infertility treatment, but its efficiency in infertile couples with male factor is controversial. This study is a retrospective study about correlation between semen parameters and male and female age with successful rate of IUI in patients attending to Royan Institute.Methods: A total of 998 consecutive couples in a period of 6 months undergoing IUI were included. They were classified into two groups: couples with successful and unsuccessful pregnancy. Main outcome was clinical pregnancy. Data about male and female ages and semen analysis including concentration, total sperm motility, class A motility, class B motility, class A+B motility and normal morphology was extracted from patients’ records. Semen samples were collected by masturbation or coitus after 2 to 7 days of abstinence. Their female partners were reported to have no chronic medi-cal conditions and have normal menstrual cycles.Results: One hundred and fifty seven of total 998 cycles (15.7% achieved pregnancy. The average of female age in successful and unsuccessful group was 28.95±4.19 and 30.00±4.56 years, respectively. Mean of male age was 33.97±4.85 years in successful group and 34.44±4.62 years in unsuccessful group. In successful and unsuccessful groups, average of sperm concentration was 53.62±38.45 and 46.26±26.59 (million sperm/ml, normal morphology of sperm was 8.98±4.31 (% and 8.68±4.81 (%, sperm total motility was 47.24±18.92 (% and 43.70±20.22 (% and total motile sperm count was 80.10±63.61 million and 78.57±68.22 million, respectively.Conclusion: There was no significant difference in mean of females’ age and males’ age between successful and unsuccessful groups (P<0.05. In addition, there was no significant difference in semen parameters including concentration, total sperm motility, class A motility, class B motility, class A+B motility and normal morphology between two

  2. Parameters assessment of the inductively-coupled circuit for wireless power transfer

    Science.gov (United States)

    Isaev, Yu N.; Vasileva, O. V.; Budko, A. A.; Lefebvre, S.

    2017-02-01

    In this paper, a wireless power transfer model through the example of inductively-coupled coils of irregular shape in software package COMSOL Multiphysics is studied. Circuit parameters, such as inductance, coil resistance and self-capacitance were defined through electromagnetic energy by the finite-element method. The study was carried out according to Helmholtz equation. Spatial distribution of current per unit depending on frequency and the coupling coefficient for analysis of resonant frequency and spatial distribution of the vector magnetic potential at different distances between coils were presented. The resulting algorithm allows simulating the wireless power transfer between the inductively coupled coils of irregular shape with the assessment of the optimal parameters.

  3. Constraining Unsaturated Hydraulic Parameters Using the Latin Hypercube Sampling Method and Coupled Hydrogeophysical Approach

    Science.gov (United States)

    Farzamian, Mohammad; Monteiro Santos, Fernando A.; Khalil, Mohamed A.

    2017-12-01

    The coupled hydrogeophysical approach has proved to be a valuable tool for improving the use of geoelectrical data for hydrological model parameterization. In the coupled approach, hydrological parameters are directly inferred from geoelectrical measurements in a forward manner to eliminate the uncertainty connected to the independent inversion of electrical resistivity data. Several numerical studies have been conducted to demonstrate the advantages of a coupled approach; however, only a few attempts have been made to apply the coupled approach to actual field data. In this study, we developed a 1D coupled hydrogeophysical code to estimate the van Genuchten-Mualem model parameters, K s, n, θ r and α, from time-lapse vertical electrical sounding data collected during a constant inflow infiltration experiment. van Genuchten-Mualem parameters were sampled using the Latin hypercube sampling method to provide a full coverage of the range of each parameter from their distributions. By applying the coupled approach, vertical electrical sounding data were coupled to hydrological models inferred from van Genuchten-Mualem parameter samples to investigate the feasibility of constraining the hydrological model. The key approaches taken in the study are to (1) integrate electrical resistivity and hydrological data and avoiding data inversion, (2) estimate the total water mass recovery of electrical resistivity data and consider it in van Genuchten-Mualem parameters evaluation and (3) correct the influence of subsurface temperature fluctuations during the infiltration experiment on electrical resistivity data. The results of the study revealed that the coupled hydrogeophysical approach can improve the value of geophysical measurements in hydrological model parameterization. However, the approach cannot overcome the technical limitations of the geoelectrical method associated with resolution and of water mass recovery.

  4. Jet quenching parameters in strongly coupled nonconformal gauge theories

    International Nuclear Information System (INIS)

    Buchel, Alex

    2006-01-01

    Recently Liu, Rajagopal, and Wiedemann (LRW) [H. Liu, K. Rajagopal, and U. A. Wiedemann, hep-ph/0605178.] proposed a first principle, nonperturbative quantum field theoretic definition of 'jet quenching parameter' q-circumflex used in models of medium-induced radiative parton energy loss in nucleus-nucleus collisions at RHIC. Relating q-circumflex to a short-distance behavior of a certain lightlike Wilson loop, they used gauge theory-string theory correspondence to evaluate q-circumflex for the strongly coupled N=4 SU(N c ) gauge theory plasma. We generalize analysis of LRW to strongly coupled nonconformal gauge theory plasma. We find that a jet quenching parameter is gauge theory specific (not universal). Furthermore, it appears its value increases as the number of effective adjoint degrees of freedom of a gauge theory plasma increases

  5. Identification of Constitutive Parameters Using Inverse Strategy Coupled to an ANN Model

    International Nuclear Information System (INIS)

    Aguir, H.; Chamekh, A.; BelHadjSalah, H.; Hambli, R.

    2007-01-01

    This paper deals with the identification of material parameters using an inverse strategy. In the classical methods, the inverse technique is generally coupled with a finite element code which leads to a long computing time. In this work an inverse strategy coupled with an ANN procedure is proposed. This method has the advantage of being faster than the classical one. To validate this approach an experimental plane tensile and bulge tests are used in order to identify material behavior. The ANN model is trained from finite element simulations of the two tests. In order to reduce the gap between the experimental responses and the numerical ones, the proposed method is coupled with an optimization procedure to identify material parameters for the AISI304. The identified material parameters are the hardening curve and the anisotropic coefficients

  6. The normative study of acoustic parameters in normal Egyptian ...

    African Journals Online (AJOL)

    Yehia A. Abo-Ras

    2013-03-21

    Mar 21, 2013 ... all children were subjected to computerized acoustic analysis using Multidimensional voice program ... cal quality is important for social relations to happen effectively. ... lish comparative parameters with the normal values of the acoustic ... from lower age ranges in the normative studies since the child's.

  7. Critical features of coupling parameter in synchronization of small world neural networks

    International Nuclear Information System (INIS)

    Li Yanlong; Ma Jun; Xu Wenke; Li Hongbo; Wu Min

    2008-01-01

    The critical features of a coupling parameter in the synchronization of small world neural networks are investigated. A power law decay form is observed in this spatially extended system, the larger linked degree becomes, the larger critical coupling intensity. There exists maximal and minimal critical coupling intensity for synchronization in the extended system. An approximate synchronization diagram has been constructed. In the case of partial coupling, a primary result is presented about the critical coupling fraction for various linked degree of networks

  8. Reference tissue modeling with parameter coupling: application to a study of SERT binding in HIV

    Energy Technology Data Exchange (ETDEWEB)

    Endres, Christopher J; Pomper, Martin G [Russell H Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD 21231 (United States); Hammoud, Dima A, E-mail: endres@jhmi.edu [Radiology and Imaging Sciences, National Institutes of Health/Clinical Center, Bethesda, MD (United States)

    2011-04-21

    When applicable, it is generally preferred to evaluate positron emission tomography (PET) studies using a reference tissue-based approach as that avoids the need for invasive arterial blood sampling. However, most reference tissue methods have been shown to have a bias that is dependent on the level of tracer binding, and the variability of parameter estimates may be substantially affected by noise level. In a study of serotonin transporter (SERT) binding in HIV dementia, it was determined that applying parameter coupling to the simplified reference tissue model (SRTM) reduced the variability of parameter estimates and yielded the strongest between-group significant differences in SERT binding. The use of parameter coupling makes the application of SRTM more consistent with conventional blood input models and reduces the total number of fitted parameters, thus should yield more robust parameter estimates. Here, we provide a detailed evaluation of the application of parameter constraint and parameter coupling to [{sup 11}C]DASB PET studies. Five quantitative methods, including three methods that constrain the reference tissue clearance (k{sup r}{sub 2}) to a common value across regions were applied to the clinical and simulated data to compare measurement of the tracer binding potential (BP{sub ND}). Compared with standard SRTM, either coupling of k{sup r}{sub 2} across regions or constraining k{sup r}{sub 2} to a first-pass estimate improved the sensitivity of SRTM to measuring a significant difference in BP{sub ND} between patients and controls. Parameter coupling was particularly effective in reducing the variance of parameter estimates, which was less than 50% of the variance obtained with standard SRTM. A linear approach was also improved when constraining k{sup r}{sub 2} to a first-pass estimate, although the SRTM-based methods yielded stronger significant differences when applied to the clinical study. This work shows that parameter coupling reduces the

  9. Impact of Optimized Land Surface Parameters on the Land-Atmosphere Coupling in WRF Simulations of Dry and Wet Extremes

    Science.gov (United States)

    Kumar, S.; Santanello, J. A.; Peters-Lidard, C. D.; Harrison, K.

    2011-12-01

    Land-atmosphere (L-A) interactions play a critical role in determining the diurnal evolution of both planetary boundary layer (PBL) and land surface temperature and moisture budgets, as well as controlling feedbacks with clouds and precipitation that lead to the persistence of dry and wet regimes. Recent efforts to quantify the strength of L-A coupling in prediction models have produced diagnostics that integrate across both the land and PBL components of the system. In this study, we examine the impact of improved specification of land surface states, anomalies, and fluxes on coupled WRF forecasts during the summers of extreme dry (2006) and wet (2007) conditions in the U.S. Southern Great Plains. The improved land initialization and surface flux parameterizations are obtained through the use of a new optimization and uncertainty module in NASA's Land Information System (LIS-OPT), whereby parameter sets are calibrated in the Noah land surface model and classified according to the land cover and soil type mapping of the observations and the full domain. The impact of the calibrated parameters on the a) spinup of land surface states used as initial conditions, and b) heat and moisture fluxes of the coupled (LIS-WRF) simulations are then assessed in terms of ambient weather, PBL budgets, and precipitation along with L-A coupling diagnostics. In addition, the sensitivity of this approach to the period of calibration (dry, wet, normal) is investigated. Finally, tradeoffs of computational tractability and scientific validity (e.g.,. relating to the representation of the spatial dependence of parameters) and the feasibility of calibrating to multiple observational datasets are also discussed.

  10. Improving the security of optoelectronic delayed feedback system by parameter modulation and system coupling

    Science.gov (United States)

    Liu, Lingfeng; Miao, Suoxia; Cheng, Mengfan; Gao, Xiaojing

    2016-02-01

    A coupled system with varying parameters is proposed to improve the security of optoelectronic delayed feedback system. This system is coupled by two parameter-varied optoelectronic delayed feedback systems with chaotic modulation. Dynamics performance results show that this system has a higher complexity compared to the original one. Furthermore, this system can conceal the time delay effectively against the autocorrelation function and delayed mutual information method and can increase the dimension space of secure parameters to resist brute-force attack by introducing the digital chaotic systems.

  11. Correlation of normal-range FMR1 repeat length or genotypes and reproductive parameters.

    Science.gov (United States)

    Maslow, Bat-Sheva L; Davis, Stephanie; Engmann, Lawrence; Nulsen, John C; Benadiva, Claudio A

    2016-09-01

    This study aims to ascertain whether the length of normal-ranged CGG repeats on the FMR1 gene correlates with abnormal reproductive parameters. We performed a retrospective, cross-sectional study of all FMR1 carrier screening performed as part of routine care at a large university-based fertility center from January 2011 to March 2014. Correlations were performed between normal-range FMR1 length and baseline serum anti-Müllerian hormone (AMH), cycle day 3 follicle stimulating hormone (FSH), ovarian volumes (OV), antral follicle counts (AFC), and incidence of diminished ovarian reserve (DOR), while controlling for the effect of age. Six hundred three FMR1 screening results were collected. One subject was found to be a pre-mutation carrier and was excluded from the study. Baseline serum AMH, cycle day 3 FSH, OV, and AFC data were collected for the 602 subjects with normal-ranged CGG repeats. No significant difference in median age was noted amongst any of the FMR1 repeat genotypes. No significant correlation or association was found between any allele length or genotype, with any of the reproductive parameters or with incidence of DOR at any age (p > 0.05). However, subjects who were less than 35 years old with low/low genotype were significantly more likely to have below average AMH levels compared to those with normal/normal genotype (RR 3.82; 95 % CI 1.38-10.56). This large study did not demonstrate any substantial association between normal-range FMR1 repeat lengths and reproductive parameters.

  12. Effect of parameter mismatch on the dynamics of strongly coupled self sustained oscillators.

    Science.gov (United States)

    Chakrabarty, Nilaj; Jain, Aditya; Lal, Nijil; Das Gupta, Kantimay; Parmananda, Punit

    2017-01-01

    In this paper, we present an experimental setup and an associated mathematical model to study the synchronization of two self-sustained, strongly coupled, mechanical oscillators (metronomes). The effects of a small detuning in the internal parameters, namely, damping and frequency, have been studied. Our experimental system is a pair of spring wound mechanical metronomes; coupled by placing them on a common base, free to move along a horizontal direction. We designed a photodiode array based non-contact, non-magnetic position detection system driven by a microcontroller to record the instantaneous angular displacement of each oscillator and the small linear displacement of the base, coupling the two. In our system, the mass of the oscillating pendula forms a significant fraction of the total mass of the system, leading to strong coupling of the oscillators. We modified the internal mechanism of the spring-wound "clockwork" slightly, such that the natural frequency and the internal damping could be independently tuned. Stable synchronized and anti-synchronized states were observed as the difference in the parameters was varied in the experiments. The simulation results showed a rapid increase in the phase difference between the two oscillators beyond a certain threshold of parameter mismatch. Our simple model of the escapement mechanism did not reproduce a complete 180° out of phase state. However, the numerical simulations show that increased mismatch in parameters leads to a synchronized state with a large phase difference.

  13. On the relationship between input parameters in two-mass vocal-fold model with acoustical coupling an signal parameters of the glottal flow

    NARCIS (Netherlands)

    van Hirtum, Annemie; Lopez, Ines; Hirschberg, Abraham; Pelorson, Xavier

    2003-01-01

    In this paper the sensitivity of the two-mass model with acoustical coupling to the model input-parameters is assessed. The model-output or the glottal volume air flow is characterised by signal-parameters in the time-domain. The influence of changing input-parameters on the signal-parameters is

  14. Comparison of earthquake source parameters and interseismic plate coupling variations in global subduction zones (Invited)

    Science.gov (United States)

    Bilek, S. L.; Moyer, P. A.; Stankova-Pursley, J.

    2010-12-01

    Geodetically determined interseismic coupling variations have been found in subduction zones worldwide. These coupling variations have been linked to heterogeneities in interplate fault frictional conditions. These connections to fault friction imply that observed coupling variations are also important in influencing details in earthquake rupture behavior. Because of the wealth of newly available geodetic models along many subduction zones, it is now possible to examine detailed variations in coupling and compare to seismicity characteristics. Here we use a large catalog of earthquake source time functions and slip models for moderate to large magnitude earthquakes to explore these connections, comparing earthquake source parameters with available models of geodetic coupling along segments of the Japan, Kurile, Kamchatka, Peru, Chile, and Alaska subduction zones. In addition, we use published geodetic results along the Costa Rica margin to compare with source parameters of small magnitude earthquakes recorded with an onshore-offshore network of seismometers. For the moderate to large magnitude earthquakes, preliminary results suggest a complex relationship between earthquake parameters and estimates of strongly and weakly coupled segments of the plate interface. For example, along the Kamchatka subduction zone, these earthquakes occur primarily along the transition between strong and weak coupling, with significant heterogeneity in the pattern of moment scaled duration with respect to the coupling estimates. The longest scaled duration event in this catalog occurred in a region of strong coupling. Earthquakes along the transition between strong and weakly coupled exhibited the most complexity in the source time functions. Use of small magnitude (0.5 earthquake spectra, with higher corner frequencies and higher mean apparent stress for earthquakes that occur in along the Osa Peninsula relative to the Nicoya Peninsula, mimicking the along-strike variations in

  15. Normal form analysis of linear beam dynamics in a coupled storage ring

    International Nuclear Information System (INIS)

    Wolski, Andrzej; Woodley, Mark D.

    2004-01-01

    The techniques of normal form analysis, well known in the literature, can be used to provide a straightforward characterization of linear betatron dynamics in a coupled lattice. Here, we consider both the beam distribution and the betatron oscillations in a storage ring. We find that the beta functions for uncoupled motion generalize in a simple way to the coupled case. Defined in the way that we propose, the beta functions remain well behaved (positive and finite) under all circumstances, and have essentially the same physical significance for the beam size and betatron oscillation amplitude as in the uncoupled case. Application of this analysis to the online modeling of the PEP-II rings is also discussed

  16. On the relationship between input parameters in the two-mass vocal-fold model with acoustical coupling and signal parameters of the glottal flow

    NARCIS (Netherlands)

    Hirtum, van A.; Lopez Arteaga, I.; Hirschberg, A.; Pelorson, X.

    2003-01-01

    In this paper the sensitivity of the two-mass model with acoustical coupling to the model input-parameters is assessed. The model-output or the glottal volume air flow is characterised by signal-parameters in the time-domain. The influence of changing input-parameters on the signal-parameters is

  17. Cystic fibrosis transmembrane conductance regulator is correlated closely with sperm progressive motility and normal morphology in healthy and fertile men with normal sperm parameters.

    Science.gov (United States)

    Jiang, L-Y; Shan, J-J; Tong, X-M; Zhu, H-Y; Yang, L-Y; Zheng, Q; Luo, Y; Shi, Q-X; Zhang, S-Y

    2014-10-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) has been demonstrated to be expressed in mature spermatozoa and correlated with sperm quality. Sperm CFTR expression in fertile men is higher than that in infertile men suffering from teratospermia, asthenoteratospermia, asthenospermia and oligospermia, but it is unknown whether CFTR is correlated with sperm parameters when sperm parameters are normal. In this study, 282 healthy and fertile men with normal semen parameters were classified into three age groups, group (I): age group of 20-29 years (98 cases, 27.1 ± 6.2), group (II): age group of 30-39 years (142 cases, 33.7 ± 2.6) and group (III): age group of more than or equal to 40 years (42 cases, 44.1 ± 4.6). Sperm concentration, total count and progressive motility were analysed by computer-assisted sperm analysis. Sperm morphology was analysed by modified Papanicolaou staining. Sperm CFTR expression was conducted by indirect immunofluorescence staining. There was a significant positive correlation (P sperm progressive motility (r = 0.221) and normal morphology (r = 0.202), but there were no correlations between sperm CFTR expression and semen volume, sperm concentration, sperm total count as well as male age (P > 0.05). Our findings show that CFTR expression is associated with sperm progressive motility and normal morphology in healthy and fertile men with normal sperm parameters, but not associated with the number of spermatozoa and male age. © 2013 Blackwell Verlag GmbH.

  18. Comparative study; physiological and biochemical parameters of normal and induced dehydrated condition of rabbits

    International Nuclear Information System (INIS)

    Bashir, S.; Bukhari, I.

    2008-01-01

    Biochemical and physiological parameters like body weight, blood pH. Blood glucose, total lipids total protein, globulin, albumin and albumin/globulin ratio were determined in twelve rabbits each normal and after the induction of diseased condition i.e. dehydration. Statistically significant differences were identified when the comparison made between normal rabbits and their respective dehydrated group. Blood glucose total lipid packed cell. Volume and globulin increased significantly where where as body weight, albumin and albumin/globulin ratio decreased significantly. These differences in the physiological and biochemical parameters in disease induced condition require the necessity for analyzing this condition for the changes in the pharmacokinetics parameter like, absorption distribution metabolism and excretion leading to alteration in the pharmacokinetics of drug. (author)

  19. The networks scale and coupling parameter in synchronization of neural networks with diluted synapses

    International Nuclear Information System (INIS)

    Li Yanlong; Ma Jun; Chen Yuhong; Xu Wenke; Wang Yinghai

    2008-01-01

    In this paper the influence of the networks scale on the coupling parameter in the synchronization of neural networks with diluted synapses is investigated. Using numerical simulations, an exponential decay form is observed in the extreme case of global coupling among networks and full connection in each network; the larger linked degree becomes, the larger critical coupling intensity becomes; and the oscillation phenomena in the relationship of critical coupling intensity and the number of neural networks layers in the case of small-scale networks are found

  20. Normal-zone detectors for the MFTF-B coils. Revision 1

    International Nuclear Information System (INIS)

    Owen, E.W.; Shimer, D.W.

    1983-01-01

    In order to protect a set of inductively coupled superconducting magnets, it is necessary to locate and measure normal zone voltages that are small compared with the mutual and self-induced voltages. The method described in this report uses two sets of voltage measurements to locate and measure one or more normal zones in any number of coupled coils. One set of voltages is the outputs of bridges that balance out the self-induced voltages. The other set of voltages can be the voltages across the coils, although alternatives are possible. The two sets of equations form a single combined set of equations. Each normal zone location or combination of normal zones has a set of these combined equations associated with it. It is demonstrated that the normal zone can be located and the correct set chosen, allowing determination of the size of the normal zone. Only a few operations take place in a working detector: multiplication of a constant, addition, and simple decision-making. In many cases the detector for each coil, although weakly linked to the other detectors, can be considered to be independent. An example of the detector design is given for four coils with realistic parameters. The effect on accuracy of changes in the system parameters is discussed

  1. On the equivalence of the solar wind coupling parameter ε and the magnetospheric energy output parameter UT during intense geomagnetic storms

    International Nuclear Information System (INIS)

    Gonzalez, W.D.; Gonzalez, A.L.C.; Tsurutani, B.T.

    1990-01-01

    For intervals with intense geomagnetic activity it is shown that the solar wind coupling parameter ε and the magnetospheric output parameter U T are equivalent and that ranges of values of ε can be set up in terms of values of the ring current-time constant τ. (author)

  2. Influence of coupling parameter on current-voltage characteristics of intrinsic Josephson junctions in high-T c superconductors

    International Nuclear Information System (INIS)

    Shukrinov, Yu.M.; Mahfouzi, F.

    2006-01-01

    We study the current-voltage characteristics of intrinsic Josephson junctions in high-T c superconductors by numerical calculations and in framework of capacitively coupled Josephson junctions model we obtain the total number of branches. The influence of the coupling parameter α on the current-voltage characteristics at fixed parameter β (β 2 1/β c , where β c is McCumber parameter) and the influence of α on β-dependence of the current-voltage characteristics are investigated. We obtain the α-dependence of the branch's slopes and branch's endpoints. The presented results show new features of the coupling effect on the scheme of hysteresis jumps in current-voltage characteristics of intrinsic Josephson junctions in high-T c superconductors

  3. Sensitivity analysis of coupled processes and parameters on the performance of enhanced geothermal systems.

    Science.gov (United States)

    Pandey, S N; Vishal, Vikram

    2017-12-06

    3-D modeling of coupled thermo-hydro-mechanical (THM) processes in enhanced geothermal systems using the control volume finite element code was done. In a first, a comparative analysis on the effects of coupled processes, operational parameters and reservoir parameters on heat extraction was conducted. We found that significant temperature drop and fluid overpressure occurred inside the reservoirs/fracture that affected the transport behavior of the fracture. The spatio-temporal variations of fracture aperture greatly impacted the thermal drawdown and consequently the net energy output. The results showed that maximum aperture evolution occurred near the injection zone instead of the production zone. Opening of the fracture reduced the injection pressure required to circulate a fixed mass of water. The thermal breakthrough and heat extraction strongly depend on the injection mass flow rate, well distances, reservoir permeability and geothermal gradients. High permeability caused higher water loss, leading to reduced heat extraction. From the results of TH vs THM process simulations, we conclude that appropriate coupling is vital and can impact the estimates of net heat extraction. This study can help in identifying the critical operational parameters, and process optimization for enhanced energy extraction from a geothermal system.

  4. Effects of normal and extreme turbulence spectral parameters on wind turbine loads

    DEFF Research Database (Denmark)

    Dimitrov, Nikolay Krasimirov; Natarajan, Anand; Mann, Jakob

    2017-01-01

    the recommended values in the IEC 61400-1 Ed.3 that is used for wind turbine design. The present paper investigates the impact of Mann turbulence model parameter variations on the design loads envelope for 5 MW and 10 MW reference wind turbines. Specific focus is made on the blade root loads, tower top moments...... of design loads is investigated with a focus on the commonly used Mann turbulence model. Quantification of the Mann model parameters is made through wind measurements acquired from the Høvsøre site. The parameters of the Mann model fitted to site specific observations can differ significantly from...... and tower base loads under normal turbulence and extreme turbulence, whereby the change in operating extreme and fatigue design loads obtained through turbulence model parameter variations is compared with corresponding variations obtained from random seeds of turbulence. The investigations quantify...

  5. Recommended parameters for effect assessment of radioactive airborne effluents under normal condition of nuclear facilities

    International Nuclear Information System (INIS)

    Li Hong; Fang Dong; Sun Chengzhi; Xiao Naihong

    2003-01-01

    A set of models and default parameters are recommended for effect assessment of radioactive airborne effluents under normal condition of nuclear facilities in order to standardize the environmental effect assessment of nuclear facilities, and to simplify the observation and investigation in early phase. The paper introduces the input data and default parameters used in the model

  6. Verification of kinetic parameters of coupled fast-thermal core HERBE

    International Nuclear Information System (INIS)

    Pesic, M.; Marinkovic, P.; Milosevic, M.; Nikolic, D.; Zavaljevski, N.; Milovanovic, S.; Ljubenov, V.

    1997-03-01

    The HERBE system is a new coupled fast-thermal core constructed in 1989 at the RB critical heavy water assembly at the VINCA Institute. It was designed with the aim to improve experimental possibilities in fast neutron fields and for experimental verification of reactor design-oriented methods. This paper overviews experiments for kinetic parameters verification carried out at HERBE system. Their short description and comparison of experimental and calculation results are included. A brief introduction to the computer codes used in the calculations is presented too. (author)

  7. Coupled 1D-2D hydrodynamic inundation model for sewer overflow: Influence of modeling parameters

    Directory of Open Access Journals (Sweden)

    Adeniyi Ganiyu Adeogun

    2015-10-01

    Full Text Available This paper presents outcome of our investigation on the influence of modeling parameters on 1D-2D hydrodynamic inundation model for sewer overflow, developed through coupling of an existing 1D sewer network model (SWMM and 2D inundation model (BREZO. The 1D-2D hydrodynamic model was developed for the purpose of examining flood incidence due to surcharged water on overland surface. The investigation was carried out by performing sensitivity analysis on the developed model. For the sensitivity analysis, modeling parameters, such as mesh resolution Digital Elevation Model (DEM resolution and roughness were considered. The outcome of the study shows the model is sensitive to changes in these parameters. The performance of the model is significantly influenced, by the Manning's friction value, the DEM resolution and the area of the triangular mesh. Also, changes in the aforementioned modeling parameters influence the Flood characteristics, such as the inundation extent, the flow depth and the velocity across the model domain. Keywords: Inundation, DEM, Sensitivity analysis, Model coupling, Flooding

  8. Dynamic analysis of large structures with uncertain parameters based on coupling component mode synthesis and perturbation method

    Directory of Open Access Journals (Sweden)

    D. Sarsri

    2016-03-01

    Full Text Available This paper presents a methodological approach to compute the stochastic eigenmodes of large FE models with parameter uncertainties based on coupling of second order perturbation method and component mode synthesis methods. Various component mode synthesis methods are used to optimally reduce the size of the model. The statistical first two moments of dynamic response of the reduced system are obtained by the second order perturbation method. Numerical results illustrating the accuracy and efficiency of the proposed coupled methodological procedures for large FE models with uncertain parameters are presented.

  9. An empirical multivariate log-normal distribution representing uncertainty of biokinetic parameters for 137Cs

    International Nuclear Information System (INIS)

    Miller, G.; Martz, H.; Bertelli, L.; Melo, D.

    2008-01-01

    A simplified biokinetic model for 137 Cs has six parameters representing transfer of material to and from various compartments. Using a Bayesian analysis, the joint probability distribution of these six parameters is determined empirically for two cases with quite a lot of bioassay data. The distribution is found to be a multivariate log-normal. Correlations between different parameters are obtained. The method utilises a fairly large number of pre-determined forward biokinetic calculations, whose results are stored in interpolation tables. Four different methods to sample the multidimensional parameter space with a limited number of samples are investigated: random, stratified, Latin Hypercube sampling with a uniform distribution of parameters and importance sampling using a lognormal distribution that approximates the posterior distribution. The importance sampling method gives much smaller sampling uncertainty. No sampling method-dependent differences are perceptible for the uniform distribution methods. (authors)

  10. Optimum parameters in a model for tumour control probability, including interpatient heterogeneity: evaluation of the log-normal distribution

    International Nuclear Information System (INIS)

    Keall, P J; Webb, S

    2007-01-01

    The heterogeneity of human tumour radiation response is well known. Researchers have used the normal distribution to describe interpatient tumour radiosensitivity. However, many natural phenomena show a log-normal distribution. Log-normal distributions are common when mean values are low, variances are large and values cannot be negative. These conditions apply to radiosensitivity. The aim of this work was to evaluate the log-normal distribution to predict clinical tumour control probability (TCP) data and to compare the results with the homogeneous (δ-function with single α-value) and normal distributions. The clinically derived TCP data for four tumour types-melanoma, breast, squamous cell carcinoma and nodes-were used to fit the TCP models. Three forms of interpatient tumour radiosensitivity were considered: the log-normal, normal and δ-function. The free parameters in the models were the radiosensitivity mean, standard deviation and clonogenic cell density. The evaluation metric was the deviance of the maximum likelihood estimation of the fit of the TCP calculated using the predicted parameters to the clinical data. We conclude that (1) the log-normal and normal distributions of interpatient tumour radiosensitivity heterogeneity more closely describe clinical TCP data than a single radiosensitivity value and (2) the log-normal distribution has some theoretical and practical advantages over the normal distribution. Further work is needed to test these models on higher quality clinical outcome datasets

  11. CONNECTION BETWEEN DYNAMICALLY DERIVED INITIAL MASS FUNCTION NORMALIZATION AND STELLAR POPULATION PARAMETERS

    International Nuclear Information System (INIS)

    McDermid, Richard M.; Cappellari, Michele; Bayet, Estelle; Bureau, Martin; Davies, Roger L.; Alatalo, Katherine; Blitz, Leo; Bois, Maxime; Bournaud, Frédéric; Duc, Pierre-Alain; Crocker, Alison F.; Davis, Timothy A.; De Zeeuw, P. T.; Emsellem, Eric; Kuntschner, Harald; Khochfar, Sadegh; Krajnović, Davor; Morganti, Raffaella; Oosterloo, Tom; Naab, Thorsten

    2014-01-01

    We report on empirical trends between the dynamically determined stellar initial mass function (IMF) and stellar population properties for a complete, volume-limited sample of 260 early-type galaxies from the ATLAS 3D project. We study trends between our dynamically derived IMF normalization α dyn ≡ (M/L) stars /(M/L) Salp and absorption line strengths, and interpret these via single stellar population-equivalent ages, abundance ratios (measured as [α/Fe]), and total metallicity, [Z/H]. We find that old and alpha-enhanced galaxies tend to have on average heavier (Salpeter-like) mass normalization of the IMF, but stellar population does not appear to be a good predictor of the IMF, with a large range of α dyn at a given population parameter. As a result, we find weak α dyn -[α/Fe] and α dyn –Age correlations and no significant α dyn –[Z/H] correlation. The observed trends appear significantly weaker than those reported in studies that measure the IMF normalization via the low-mass star demographics inferred through stellar spectral analysis

  12. Connection between Dynamically Derived Initial Mass Function Normalization and Stellar Population Parameters

    Science.gov (United States)

    McDermid, Richard M.; Cappellari, Michele; Alatalo, Katherine; Bayet, Estelle; Blitz, Leo; Bois, Maxime; Bournaud, Frédéric; Bureau, Martin; Crocker, Alison F.; Davies, Roger L.; Davis, Timothy A.; de Zeeuw, P. T.; Duc, Pierre-Alain; Emsellem, Eric; Khochfar, Sadegh; Krajnović, Davor; Kuntschner, Harald; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Scott, Nicholas; Serra, Paolo; Weijmans, Anne-Marie; Young, Lisa M.

    2014-09-01

    We report on empirical trends between the dynamically determined stellar initial mass function (IMF) and stellar population properties for a complete, volume-limited sample of 260 early-type galaxies from the ATLAS3D project. We study trends between our dynamically derived IMF normalization αdyn ≡ (M/L)stars/(M/L)Salp and absorption line strengths, and interpret these via single stellar population-equivalent ages, abundance ratios (measured as [α/Fe]), and total metallicity, [Z/H]. We find that old and alpha-enhanced galaxies tend to have on average heavier (Salpeter-like) mass normalization of the IMF, but stellar population does not appear to be a good predictor of the IMF, with a large range of αdyn at a given population parameter. As a result, we find weak αdyn-[α/Fe] and αdyn -Age correlations and no significant αdyn -[Z/H] correlation. The observed trends appear significantly weaker than those reported in studies that measure the IMF normalization via the low-mass star demographics inferred through stellar spectral analysis.

  13. Twist–radial normal mode analysis in double-stranded DNA chains

    International Nuclear Information System (INIS)

    Torrellas, Germán; Maciá, Enrique

    2012-01-01

    We study the normal modes of a duplex DNA chain at low temperatures. We consider the coupling between the hydrogen-bond radial oscillations and the twisting motion of each base pair within the Peyrard–Bishop–Dauxois model. The coupling is mediated by the stacking interaction between adjacent base pairs along the helix. We explicitly consider different mass values for different nucleotides, extending previous works. We disclose several resonance conditions of interest, determined by the fine-tuning of certain model parameters. The role of these dynamical effects on the DNA chain charge transport properties is discussed.

  14. Parameter Estimation of a Closed Loop Coupled Tank Time Varying System using Recursive Methods

    International Nuclear Information System (INIS)

    Basir, Siti Nora; Yussof, Hanafiah; Shamsuddin, Syamimi; Selamat, Hazlina; Zahari, Nur Ismarrubie

    2013-01-01

    This project investigates the direct identification of closed loop plant using discrete-time approach. The uses of Recursive Least Squares (RLS), Recursive Instrumental Variable (RIV) and Recursive Instrumental Variable with Centre-Of-Triangle (RIV + COT) in the parameter estimation of closed loop time varying system have been considered. The algorithms were applied in a coupled tank system that employs covariance resetting technique where the time of parameter changes occur is unknown. The performances of all the parameter estimation methods, RLS, RIV and RIV + COT were compared. The estimation of the system whose output was corrupted with white and coloured noises were investigated. Covariance resetting technique successfully executed when the parameters change. RIV + COT gives better estimates than RLS and RIV in terms of convergence and maximum overshoot

  15. Analysis of Electrical Coupling Parameters in Superconducting Cables

    CERN Document Server

    Bottura, L; Rosso, C

    2003-01-01

    The analysis of current distribution and redistribution in superconducting cables requires the knowledge of the electric coupling among strands, and in particular the interstrand resistance and inductance values. In practice both parameters can have wide variations in cables commonly used such as Rutherford cables for accelerators or Cable-in-Conduits for fusion and SMES magnets. In this paper we describe a model of a multi-stage twisted cable with arbitrary geometry that can be used to study the range of interstrand resistances and inductances that is associated with variations of geometry. These variations can be due to cabling or compaction effects. To describe the variations from the nominal geometry we have adopted a cable model that resembles to the physical process of cabling and compaction. The inductance calculation part of the model is validated by comparison to semi-analytical results, showing excellent accuracy and execution speed.

  16. Numerical simulation of electro-osmotic consolidation coupling non-linear variation of soil parameters

    Science.gov (United States)

    Wu, Hui; Hu, Liming; Wen, Qingbo

    2017-06-01

    Electro-osmotic consolidation is an effective method for soft ground improvement. A main limitation of previous numerical models on this technique is the ignorance of the non-linear variation of soil parameters. In the present study, a multi-field numerical model is developed with the consideration of the non-linear variation of soil parameters during electro-osmotic consolidation process. The numerical simulations on an axisymmetric model indicated that the non-linear variation of soil parameters showed remarkable impact on the development of the excess pore water pressure and degree of consolidation. A field experiment with complex geometry, boundary conditions, electrode configuration and voltage application was further simulated with the developed numerical model. The comparison between field and numerical data indicated that the numerical model coupling of the non-linear variation of soil parameters gave more reasonable results. The developed numerical model is capable to analyze engineering cases with complex operating conditions.

  17. Normal state Raman spectra of high-Tc cuprates

    International Nuclear Information System (INIS)

    Bishoyi, K.C.; Rout, G.C.; Behera, S.N.

    2003-01-01

    We present a microscopic theory to explain Raman spectra of high-T c cuprates R 2-x M x CuO 4 in the normal state. We used electronic Hamiltonian prescribed by Fulde in presence of anti-ferromagnetism. Phonon interaction to the hybridization between the conduction electrons of the system and the f-electrons has been incorporated in the calculation. The phonon spectral density is calculated by the Green function technique of Zubarev at zero wave vector and finite (room) temperature limit. Parameter dependence of Raman active phonon frequencies are studied by varying model parameters of the system i.e. the position of f-level (ε f ), the effective electron-phonon coupling strength (g), the staggered magnetic field (h 1 ), and the hybridization parameter (v). The four Raman active peaks (P 1 to P 4 ) represent the electronic states of the atomic sub-systems of the cuprate systems. They show up as phonon excitations due to the coupling of the phonon to the electrons and the anti-ferromagnetic gap. (author)

  18. Bonding in Mercury Molecules Described by the Normalized Elimination of the Small Component and Coupled Cluster Theory

    NARCIS (Netherlands)

    Cremer, Dieter; Kraka, Elfi; Filatov, Michael

    2008-01-01

    Bond dissociation energies (BDEs) of neutral HgX and cationic HgX(+) molecules range from less than a kcal mol(-1) to as much as 60 kcal mol(-1). Using NESCICCCSD(T) [normalized elimination of the small component and coupled-cluster theory with all single and double excitations and a perturbative

  19. On equivalence of high temperature series expansion and coupling parameter series expansion in thermodynamic perturbation theory of fluids

    International Nuclear Information System (INIS)

    Sai Venkata Ramana, A.

    2014-01-01

    The coupling parameter series expansion and the high temperature series expansion in the thermodynamic perturbation theory of fluids are shown to be equivalent if the interaction potential is pairwise additive. As a consequence, for the class of fluids with the potential having a hardcore repulsion, if the hard-sphere fluid is chosen as reference system, the terms of coupling parameter series expansion for radial distribution function, direct correlation function, and Helmholtz free energy follow a scaling law with temperature. The scaling law is confirmed by application to square-well fluids

  20. Integrable parameter regimes and stationary states of nonlinearly coupled electromagnetic and ion-acoustic waves

    International Nuclear Information System (INIS)

    Rao, N.N.

    1998-01-01

    A systematic analysis of the stationary propagation of nonlinearly coupled electromagnetic and ion-acoustic waves in an unmagnetized plasma via the ponderomotive force is carried out. For small but finite amplitudes, the governing equations have a Hamiltonian structure, but with a kinetic energy term that is not positive definite. The Hamiltonian is similar to the well-known Hacute enon endash Heiles Hamiltonian of nonlinear dynamics, and is completely integrable in three regimes of the allowed parameter space. The corresponding second invariants of motion are also explicitly obtained. The integrable parameter regimes correspond to supersonic values of the Mach number, which characterizes the propagation speed of the coupled waves. On the other hand, in the sub- as well as near-sonic regimes, the coupled mode equations admit different types of exact analytical solutions, which represent nonlinear localized eigenstates of the electromagnetic field trapped in the density cavity due to the ponderomotive potential. While the density cavity has always a single-dip structure, for larger amplitudes it can support higher-order modes having a larger number of nodes in the electromagnetic field. In particular, we show the existence of a new type of localized electromagnetic wave whose field intensity has a triple-hump structure. For typical parameter values, the triple-hump solitons propagate with larger Mach numbers that are closer to the sonic limit than the single- as well as the double-hump solitons, but carry a lesser amount of the electromagnetic field energy. A comparison between the different types of solutions is carried out. The possibility of the existence of trapped electromagnetic modes having a larger number of humps is also discussed. copyright 1998 American Institute of Physics

  1. CONNECTION BETWEEN DYNAMICALLY DERIVED INITIAL MASS FUNCTION NORMALIZATION AND STELLAR POPULATION PARAMETERS

    Energy Technology Data Exchange (ETDEWEB)

    McDermid, Richard M. [Department of Physics and Astronomy, Macquarie University, Sydney NSW 2109 (Australia); Cappellari, Michele; Bayet, Estelle; Bureau, Martin; Davies, Roger L. [Sub-Department of Astrophysics, Department of Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford, OX1 3RH (United Kingdom); Alatalo, Katherine [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Blitz, Leo [Department of Astronomy, Campbell Hall, University of California, Berkeley, CA 94720 (United States); Bois, Maxime [Observatoire de Paris, LERMA and CNRS, 61 Av. de l' Observatoire, F-75014 Paris (France); Bournaud, Frédéric; Duc, Pierre-Alain [Laboratoire AIM Paris-Saclay, CEA/IRFU/SAp- CNRS-Université Paris Diderot, F-91191 Gif-sur-Yvette Cedex (France); Crocker, Alison F. [Ritter Astrophysical Observatory, University of Toledo, Toledo, OH 43606 (United States); Davis, Timothy A.; De Zeeuw, P. T.; Emsellem, Eric; Kuntschner, Harald [European Southern Observatory, Karl-Schwarzschild-Str. 2, D-85748 Garching (Germany); Khochfar, Sadegh [Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh, EH9 3HJ (United Kingdom); Krajnović, Davor [Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, D-14482 Potsdam (Germany); Morganti, Raffaella; Oosterloo, Tom [Netherlands Institute for Radio Astronomy (ASTRON), Postbus 2, 7990 AA Dwingeloo (Netherlands); Naab, Thorsten, E-mail: richard.mcdermid@mq.edu.au [Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, D-85741 Garching (Germany); and others

    2014-09-10

    We report on empirical trends between the dynamically determined stellar initial mass function (IMF) and stellar population properties for a complete, volume-limited sample of 260 early-type galaxies from the ATLAS{sup 3D} project. We study trends between our dynamically derived IMF normalization α{sub dyn} ≡ (M/L){sub stars}/(M/L){sub Salp} and absorption line strengths, and interpret these via single stellar population-equivalent ages, abundance ratios (measured as [α/Fe]), and total metallicity, [Z/H]. We find that old and alpha-enhanced galaxies tend to have on average heavier (Salpeter-like) mass normalization of the IMF, but stellar population does not appear to be a good predictor of the IMF, with a large range of α{sub dyn} at a given population parameter. As a result, we find weak α{sub dyn}-[α/Fe] and α{sub dyn} –Age correlations and no significant α{sub dyn} –[Z/H] correlation. The observed trends appear significantly weaker than those reported in studies that measure the IMF normalization via the low-mass star demographics inferred through stellar spectral analysis.

  2. Low Density Lipoprotein and Non-Newtonian Oscillating Flow Biomechanical Parameters for Normal Human Aorta.

    Science.gov (United States)

    Soulis, Johannes V; Fytanidis, Dimitrios K; Lampri, Olga P; Giannoglou, George D

    2016-04-01

    The temporal variation of the hemodynamic mechanical parameters during cardiac pulse wave is considered as an important atherogenic factor. Applying non-Newtonian blood molecular viscosity simulation is crucial for hemodynamic analysis. Understanding low density lipoprotein (LDL) distribution in relation to flow parameters will possibly spot the prone to atherosclerosis aorta regions. The biomechanical parameters tested were averaged wall shear stress (AWSS), oscillatory shear index (OSI) and relative residence time (RRT) in relation to the LDL concentration. Four non-Newtonian molecular viscosity models and the Newtonian one were tested for the normal human aorta under oscillating flow. The analysis was performed via computational fluid dynamic. Tested viscosity blood flow models for the biomechanical parameters yield a consistent aorta pattern. High OSI and low AWSS develop at the concave aorta regions. This is most noticeable in downstream flow region of the left subclavian artery and at concave ascending aorta. Concave aorta regions exhibit high RRT and elevated LDL. For the concave aorta site, the peak LDL value is 35.0% higher than its entrance value. For the convex site, it is 18.0%. High LDL endothelium regions located at the aorta concave site are well predicted with high RRT. We are in favor of using the non-Newtonian power law model for analysis. It satisfactorily approximates the molecular viscosity, WSS, OSI, RRT and LDL distribution. Concave regions are mostly prone to atherosclerosis. The flow biomechanical factor RRT is a relatively useful tool for identifying the localization of the atheromatic plaques of the normal human aorta.

  3. Calculating luminosity for a coupled Tevatron lattice

    International Nuclear Information System (INIS)

    Holt, J.A.; Martens, M.A.; Michelotti, L.; Goderre, G.

    1995-05-01

    The traditional formula for calculating luminosity assumes an uncoupled lattice and makes use of one-degree-of-freedom lattice functions, β H and β v , for relating transverse beam widths to emittances. Strong coupling requires changing this approach. It is simplest to employ directly the linear normal form coordinates of the one turn map. An equilibrium distribution in phase space is expressed as a function of the Jacobian's eigenvectors and beam size parameters or emittances. Using the equilibrium distributions an expression for the luminosity was derived and applied to the Tevatron lattice, which was coupled due to a quadrupole roll

  4. Study on spatial distribution of plasma parameters in a magnetized inductively coupled plasma

    Energy Technology Data Exchange (ETDEWEB)

    Cheong, Hee-Woon; Lee, Woohyun; Kim, Ji-Won; Whang, Ki-Woong, E-mail: kwhang@snu.ac.kr [Plasma Laboratory, Inter-University Semiconductor Research Center, Department of Electrical and Computer Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of); Kim, Hyuk [Samsung Electronics Co., Banwol-dong, Hwaseong 445-701 (Korea, Republic of); Park, Wanjae [Tokyo Electron Miyagi Ltd., Taiwa-cho, Kurokawa-gun, Miyagi 981-3629 (Japan)

    2015-07-15

    Spatial distributions of various plasma parameters such as plasma density, electron temperature, and radical density in an inductively coupled plasma (ICP) and a magnetized inductively coupled plasma (M-ICP) were investigated and compared. Electron temperature in between the rf window and the substrate holder of M-ICP was higher than that of ICP, whereas the one just above the substrate holder of M-ICP was similar to that of ICP when a weak (<8 G) magnetic field was employed. As a result, radical densities in M-ICP were higher than those in ICP and the etch rate of oxide in M-ICP was faster than that in ICP without severe electron charging in 90 nm high aspect ratio contact hole etch.

  5. Semi-analytical quasi-normal mode theory for the local density of states in coupled photonic crystal cavity-waveguide structures

    DEFF Research Database (Denmark)

    de Lasson, Jakob Rosenkrantz; Kristensen, Philip Trøst; Mørk, Jesper

    2015-01-01

    We present and validate a semi-analytical quasi-normal mode (QNM) theory for the local density of states (LDOS) in coupled photonic crystal (PhC) cavity-waveguide structures. By means of an expansion of the Green's function on one or a few QNMs, a closed-form expression for the LDOS is obtained, ......-trivial spectrum with a peak and a dip is found, which is reproduced only when including both the two relevant QNMs in the theory. In both cases, we find relative errors below 1% in the bandwidth of interest.......We present and validate a semi-analytical quasi-normal mode (QNM) theory for the local density of states (LDOS) in coupled photonic crystal (PhC) cavity-waveguide structures. By means of an expansion of the Green's function on one or a few QNMs, a closed-form expression for the LDOS is obtained......, and for two types of two-dimensional PhCs, with one and two cavities side-coupled to an extended waveguide, the theory is validated against numerically exact computations. For the single cavity, a slightly asymmetric spectrum is found, which the QNM theory reproduces, and for two cavities a non...

  6. Normal Values for Heart Electrophysiology Parameters of Healthy Swine Determined on Electrophysiology Study.

    Science.gov (United States)

    Noszczyk-Nowak, Agnieszka; Cepiel, Alicja; Janiszewski, Adrian; Pasławski, Robert; Gajek, Jacek; Pasławska, Urszula; Nicpoń, Józef

    2016-01-01

    Swine are a well-recognized animal model for human cardiovascular diseases. Despite the widespread use of porcine model in experimental electrophysiology, still no reference values for intracardiac electrical activity and conduction parameters determined during an invasive electrophysiology study (EPS) have been developed in this species thus far. The aim of the study was to develop a set of normal values for intracardiac electrical activity and conduction parameters determined during an invasive EPS of swine. The study included 36 healthy domestic swine (24-40 kg body weight). EPS was performed under a general anesthesia with midazolam, propofol and isoflurane. The reference values for intracardiac electrical activity and conduction parameters were calculated as arithmetic means ± 2 standard deviations. The reference values were determined for AH, HV and PA intervals, interatrial conduction time at its own and imposed rhythm, sinus node recovery time (SNRT), corrected sinus node recovery time (CSNRT), anterograde and retrograde Wenckebach points, atrial, atrioventricular node and ventricular refractory periods. No significant correlations were found between body weight and heart rate of the examined pigs and their electrophysiological parameters. The hereby presented reference values can be helpful in comparing the results of various studies, as well as in more accurately estimating the values of electrophysiological parameters that can be expected in a given experiment.

  7. Strain and order-parameter coupling in Ni-Mn-Ga Heusler alloys from resonant ultrasound spectroscopy

    Science.gov (United States)

    Salazar Mejía, C.; Born, N.-O.; Schiemer, J. A.; Felser, C.; Carpenter, M. A.; Nicklas, M.

    2018-03-01

    Resonant ultrasound spectroscopy and magnetic susceptibility experiments have been used to characterize strain coupling phenomena associated with structural and magnetic properties of the shape-memory Heusler alloy series Ni50 +xMn25 -xGa25 (x =0 , 2.5, 5.0, and 7.5). All samples exhibit a martensitic transformation at temperature TM and ferromagnetic ordering at temperature TC, while the pure end member (x =0 ) also has a premartensitic transition at TP M, giving four different scenarios: TC>TP M>TM,TC>TM without premartensitic transition, TC≈TM , and TCcoupling of shear strains with three discrete order parameters relating to magnetic ordering, a soft mode, and the electronic instability responsible for the large strains typical of martensitic transitions. Linear-quadratic or biquadratic coupling between these order parameters, either directly or indirectly via the common strains, is then used to explain the stabilities of the different structures. Acoustic losses are attributed to critical slowing down at the premartensite transition, to the mobility of interphases between coexisting phases at the martensitic transition, and to mobility of some aspect of the twin walls under applied stress down to the lowest temperatures at which measurements were made.

  8. A mathematical theorem on the onset of Couple-Stress fluid permeated with suspended dust particles saturating a porous medium

    Directory of Open Access Journals (Sweden)

    G Rana

    2016-09-01

    Full Text Available In this paper, the effect of suspended particles on thermal convection in Couple-Stress fluid saturating a porous medium is considered. By applying linear stability theory and normal mode analysis method, a mathematical theorem is derived which states that the viscoelastic thermal convection at marginal state, cannot manifest as stationary convection if the thermal Rayleigh number R, the medium permeability parameter Pl, the couple-stress parameter F and suspended particles parameter B, satisfy the inequality

  9. Differences of Sagittal Lumbosacral Parameters between Patients with Lumbar Spondylolysis and Normal Adults.

    Science.gov (United States)

    Yin, Jin; Peng, Bao-Gan; Li, Yong-Chao; Zhang, Nai-Yang; Yang, Liang; Li, Duan-Ming

    2016-05-20

    Recent studies have suggested an association between elevated pelvic incidence (PI) and the development of lumbar spondylolysis. However, there is still lack of investigation for Han Chinese people concerning the normal range of spinopelvic parameters and relationship between abnormal sagittal parameters and lumbar diseases. The objective of the study was to investigate sagittal lumbosacral parameters of adult lumbar spondylolysis patients in Han Chinese population. A total of 52 adult patients with symptomatic lumbar spondylolysis treated in the General Hospital of Armed Police Force (Beijing, China) were identified as the spondylolysis group. All the 52 patients were divided into two subgroups, Subgroup A: 36 patients with simple lumbar spondylolysis, and Subgroup B: 16 patients with lumbar spondylolysis accompanying with mild lumbar spondylolisthesis (slip percentage spondylolysis group and the control group with independent-sample t- test. There were no statistically significant differences of all seven sagittal lumbosacral parameters between Subgroup A and Subgroup B. PI, PT, SS, and LL were higher (P spondylolysis group than those in the control group, but STA was lower (P spondylolysis group. Current study results suggest that increased PI and decreased STA may play important roles in the pathology of lumbar spondylolysis in Han Chinese population.

  10. Production of Single W Bosons at LEP and Measurement of $WW\\gamma$ Gauge Coupling Parameters

    CERN Document Server

    Achard, P; Aguilar-Benítez, M; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alviggi, M G; Anderhub, H; Andreev, V P; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Bajo, A; Baksay, G; Baksay, L; Baldew, S V; Banerjee, S; Banerjee, Sw; Barczyk, A; Barillère, R; Bartalini, P; Basile, M; Batalova, N; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Bellucci, L; Berbeco, R; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Biasini, M; Biglietti, M; Biland, A; Blaising, J J; Blyth, S C; Bobbink, Gerjan J; Böhm, A; Boldizsar, L; Borgia, B; Bottai, S; Bourilkov, D; Bourquin, Maurice; Braccini, S; Branson, J G; Brochu, F; Burger, J D; Burger, W J; Cai, X D; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A M; Casaus, J; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada, M; Chamizo-Llatas, M; Chang, Y H; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chiefari, G; Cifarelli, Luisa; Cindolo, F; Clare, I; Clare, R; Coignet, G; Colino, N; Costantini, S; de la Cruz, B; Cucciarelli, S; van Dalen, J A; De Asmundis, R; Déglon, P L; Debreczeni, J; Degré, A; Dehmelt, K; Deiters, K; Della Volpe, D; Delmeire, E; Denes, P; De Notaristefani, F; De Salvo, A; Diemoz, M; Dierckxsens, M; Dionisi, C; Dittmar, Michael; Doria, A; Dova, M T; Duchesneau, D; Echenard, B; Eline, A; El-Mamouni, H; Engler, A; Eppling, F J; Ewers, A; Extermann, Pierre; Falagán, M A; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, Marta; Ferguson, T; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, Frank; Fisher, P H; Fisher, W; Fisk, I; Forconi, G; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gataullin, M; Gentile, S; Giagu, S; Gong, Z F; Grenier, G; Grimm, O; Grünewald, M W; Guida, M; van Gulik, R; Gupta, V K; Gurtu, A; Gutay, L J; Haas, D; Hakobyan, R S; Hatzifotiadou, D; Hebbeker, T; Hervé, A; Hirschfelder, J; Hofer, H; Hohlmann, M; Holzner, G; Hou, S R; Hu, Y; Jin, B N; Jones, L W; de Jong, P; Josa-Mutuberria, I; Käfer, D; Kaur, M; Kienzle-Focacci, M N; Kim, J K; Kirkby, Jasper; Kittel, E W; Klimentov, A; König, A C; Kopal, M; Koutsenko, V F; Kräber, M H; Krämer, R W; Krenz, W; Krüger, A; Kunin, A; Ladrón de Guevara, P; Laktineh, I; Landi, G; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Le Goff, J M; Leiste, R; Levtchenko, M; Levchenko, P M; Li, C; Likhoded, S A; Lin, C H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lü, Y S; Lübelsmeyer, K; Luci, C; Luminari, L; Lustermann, W; Ma Wen Gan; Malgeri, L; Malinin, A; Maña, C; Mangeol, D J J; Mans, J; Martin, J P; Marzano, F; Mazumdar, K; McNeil, R R; Mele, S; Merola, L; Meschini, M; Metzger, W J; Mihul, A; Milcent, H; Mirabelli, G; Mnich, J; Mohanty, G B; Muanza, G S; Muijs, A J M; Musicar, B; Musy, M; Nagy, S; Natale, S; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Niessen, T; Nisati, A; Nowak, H; Ofierzynski, R A; Organtini, G; Palomares, C; Pandoulas, D; Paolucci, P; Paramatti, R; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Pedace, M; Pensotti, S; Perret-Gallix, D; Petersen, B; Piccolo, D; Pierella, F; Pioppi, M; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Pothier, J; Prokofiev, D O; Prokofev, D; Quartieri, J; Rahal-Callot, G; Rahaman, M A; Raics, P; Raja, N; Ramelli, R; Rancoita, P G; Ranieri, R; Raspereza, A V; Razis, P A; Ren, D; Rescigno, M; Reucroft, S; Riemann, S; Riles, K; Roe, B P; Romero, L; Rosca, A; Rosier-Lees, S; Roth, S; Rosenbleck, C; Roux, B; Rubio, Juan Antonio; Ruggiero, G; Rykaczewski, H; Sakharov, A; Saremi, S; Sarkar, S; Salicio, J; Sánchez, E; Sanders, M P; Schäfer, C; Shchegelskii, V; Schmidt-Kärst, S; Schmitz, D; Schopper, Herwig Franz; Schotanus, D J; Schwering, G; Sciacca, C; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shumilov, E; Shvorob, A V; Siedenburg, T; Son, D; Souga, C; Spillantini, P; Steuer, M; Stickland, D P; Stoyanov, B; Strässner, A; Sudhakar, K; Sultanov, G G; Sun, L Z; Sushkov, S V; Suter, H; Swain, J D; Szillási, Z; Tang, X W; Tarjan, P; Tauscher, Ludwig; Taylor, L; Tellili, B; Teyssier, D; Timmermans, C; Ting, Samuel C C; Ting, S M; Tonwar, S C; Tóth, J; Tully, C; Tung, K L; Ulbricht, J; Valente, E; Van de Walle, R T; Vásquez, R P; Veszpremi, V; Vesztergombi, G; Vetlitskii, I; Vicinanza, D; Viertel, Gert M; Villa, S; Vivargent, M; Vlachos, S; Vodopyanov, I; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Wadhwa, M; Wallraff, W; Wang, X L; Wang, Z M; Weber, M; Wienemann, P; Wilkens, H; Wynhoff, S; Xia, L; Xu, Z Z; Yamamoto, J; Yang, B Z; Yang, C G; Yang, H J; Yang, M; Yeh, S C; Zalite, A; Zalite, Yu; Zhang, Z P; Zhao, J; Zhu, G Y; Zhu, R Y; Zhuang, H L; Zichichi, A; Zimmermann, B; Zöller, M

    2002-01-01

    \\documentclass[12pt,a4paper,dvips]{article} \\begin{document} \\begin{center} {Production of Single W Bosons at LEP and \\\\ Measurement of \\boldmath$\\rm W W \\gamma$ Gauge Coupling Parameters} \\end{center} \\begin{abstract} Single W boson production in electron-positron collisions is studied with the L3 detector at centre-of-mass energies between $192\\mathrm{\\ Ge\\kern -0.1em V}$ and $209\\mathrm{\\ Ge\\kern -0.1em V}$. Events with two acoplanar hadronic jets or a single energetic lepton are selected, and the single W cross section is measured. Combining the results with measurements at lower centre-of-mass energies, the ratio of the measured cross section to the Standard Model expectation is found to be $1.12^{+0.11}_{-0.10}\\pm0.03$. From all single W data, the WW$\\gamma$ gauge coupling parameter $\\kappa_\\gamma$ is measured to be $1.116^{+0.082}_{-0.086}\\pm0.068$. \\end{abstract} \\end{document}

  11. Parameters optimization for wavelet denoising based on normalized spectral angle and threshold constraint machine learning

    Science.gov (United States)

    Li, Hao; Ma, Yong; Liang, Kun; Tian, Yong; Wang, Rui

    2012-01-01

    Wavelet parameters (e.g., wavelet type, level of decomposition) affect the performance of the wavelet denoising algorithm in hyperspectral applications. Current studies select the best wavelet parameters for a single spectral curve by comparing similarity criteria such as spectral angle (SA). However, the method to find the best parameters for a spectral library that contains multiple spectra has not been studied. In this paper, a criterion named normalized spectral angle (NSA) is proposed. By comparing NSA, the best combination of parameters for a spectral library can be selected. Moreover, a fast algorithm based on threshold constraint and machine learning is developed to reduce the time of a full search. After several iterations of learning, the combination of parameters that constantly surpasses a threshold is selected. The experiments proved that by using the NSA criterion, the SA values decreased significantly, and the fast algorithm could save 80% time consumption, while the denoising performance was not obviously impaired.

  12. Normalization of informatisation parameter on airfield light-signal bar at flights in complex meteorological conditions

    Directory of Open Access Journals (Sweden)

    П.В. Попов

    2005-03-01

    Full Text Available  The technique of maintenance of the set level of flights safetivness is developed by normalization of informatisation parameters functional groups of light-signal lightings at technological stages of interaction of crew of the airplane with the airfield light-signals bar at flights in a complex weathercast conditions.

  13. Terfenol-D/Pb(Zr,Ti)O{sub 3} disk-ring multiferroic heterostructures coupled through normal stresses

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lei; Chen, Xiang Ming [Zhejiang University, Laboratory of Dielectric Materials, Department of Materials Science and Engineering, Hangzhou (China)

    2010-03-15

    Disk-ring multiferroic heterostructures composed of Terfenol-D and Pb(Zr,Ti)O{sub 3} (PZT) were prepared and characterized, for which the ferromagnetic and ferroelectric phases were coupled through normal stresses instead of the shear stresses that acted in most of the previous multiferroic heterostructures. High low-frequency magnetoelectric coefficients of 0.10-0.75 V cm{sup -1} Oe{sup -1} were attained for the disk-ring heterostructures, which indicated the strong magnetoelectric coupling. Moreover, a symmetrical resonant peak was observed for dE{sub 3}/dH{sub 3} in the frequency range of 1-200 kHz, while another weak peak with asymmetrical shape also existed at a lower frequency for dE{sub 3}/dH{sub 1}, which was due to the combination of two vibration modes. (orig.)

  14. Effects of spin-orbit activated interchannel coupling on dipole photoelectron angular distribution asymmetry parameters

    Energy Technology Data Exchange (ETDEWEB)

    Amusia, M Ya [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Baltenkov, A S [Arifov Institute of Electronics, Tashkent 70125 (Uzbekistan); Chernysheva, L V [A F Ioffe Physical-Technical Institute, St. Petersburg 194021 (Russian Federation); Felfli, Z [Center for Theoretical Studies of Physics Systems, Clark Atlanta University, Atlanta, GA 30314 (United States); Manson, S T [Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303 (United States); Msezane, A Z [Center for Theoretical Studies of Physics Systems, Clark Atlanta University, Atlanta, GA 30314 (United States)

    2004-02-28

    The effects of spin-orbit induced interchannel coupling on the dipole photoelectron angular asymmetry parameter {beta}{sub 3d} for Xe, Cs and Ba are explored using a modified version of the spin-polarized random phase approximation with exchange (SPRPAE) methodology. For Xe, {beta}{sub 3d{sub 5/2}} is modified somewhat by the interchannel coupling in the vicinity of the 3d{sub 3/2} {yields} {epsilon}f shape resonance, and this effect is significantly more pronounced in Cs where the resonance is larger. In Ba, however, where f-wave orbital collapse has occurred, the shape resonance has moved below threshold and the effect of interchannel coupling on {beta}{sub 3d{sub 5/2}} above the 3d{sub 3/2} threshold is negligible. But below the 3d{sub 3/2} threshold, {beta}{sub 3d{sub 5/2}} is dominated by the huge broad 3d{sub 3/2} {yields} 4f resonance.

  15. Online Identification and Verification of the Elastic Coupling Torsional Stiffness

    Directory of Open Access Journals (Sweden)

    Wanyou Li

    2016-01-01

    Full Text Available To analyze the torsional vibration of a diesel engine shaft, the torsional stiffness of the flexible coupling is a key kinetic parameter. Since the material properties of the elastic element of the coupling might change after a long-time operation due to the severe working environment or improper use and the variation of such properties will change dynamic feature of the coupling, it will cause a relative large calculation error of torsional vibration to the shaft system. Moreover, the torsional stiffness of the elastic coupling is difficult to be determined, and it is inappropriate to measure this parameter by disassembling the power unit while it is under normal operation. To solve these problems, this paper comes up with a method which combines the torsional vibration test with the calculation of the diesel shafting and uses the inherent characteristics of shaft torsional vibration to identify the dynamic stiffness of the elastic coupling without disassembling the unit. Analysis results show that it is reasonable and feasible to identify the elastic coupling dynamic torsional stiffness with this method and the identified stiffness is accurate. Besides, this method provides a convenient and practical approach to examine the dynamic behavior of the long running elastic coupling.

  16. Evaluation of slot-to-slot coupling between dielectric slot waveguides and metal-insulator-metal slot waveguides.

    Science.gov (United States)

    Kong, Deqing; Tsubokawa, Makoto

    2015-07-27

    We numerically analyzed the power-coupling characteristics between a high-index-contrast dielectric slot waveguide and a metal-insulator-metal (MIM) plasmonic slot waveguide as functions of structural parameters. Couplings due mainly to the transfer of evanescent components in two waveguides generated high transmission efficiencies of 62% when the slot widths of the two waveguides were the same and 73% when the waveguides were optimized by slightly different widths. The maximum transmission efficiency in the slot-to-slot coupling was about 10% higher than that in the coupling between a normal slab waveguide and an MIM waveguide. Large alignment tolerance of the slot-to-slot coupling was also proved. Moreover, a small gap inserted into the interface between two waveguides effectively enhances the transmission efficiency, as in the case of couplings between a normal slab waveguide and an MIM waveguide. In addition, couplings with very wideband transmissions over a wavelength region of a few hundred nanometers were validated.

  17. An iterative procedure for obtaining maximum-likelihood estimates of the parameters for a mixture of normal distributions, Addendum

    Science.gov (United States)

    Peters, B. C., Jr.; Walker, H. F.

    1975-01-01

    New results and insights concerning a previously published iterative procedure for obtaining maximum-likelihood estimates of the parameters for a mixture of normal distributions were discussed. It was shown that the procedure converges locally to the consistent maximum likelihood estimate as long as a specified parameter is bounded between two limits. Bound values were given to yield optimal local convergence.

  18. Experimental verification of internal parameter in magnetically coupled boost used as PV optimizer in parallel association

    Science.gov (United States)

    Sawicki, Jean-Paul; Saint-Eve, Frédéric; Petit, Pierre; Aillerie, Michel

    2017-02-01

    This paper presents results of experiments aimed to verify a formula able to compute duty cycle in the case of pulse width modulation control for a DC-DC converter designed and realized in laboratory. This converter, called Magnetically Coupled Boost (MCB) is sized to step up only one photovoltaic module voltage to supply directly grid inverters. Duty cycle formula will be checked in a first time by identifying internal parameter, auto-transformer ratio, and in a second time by checking stability of operating point on the side of photovoltaic module. Thinking on nature of generator source and load connected to converter leads to imagine additional experiments to decide if auto-transformer ratio parameter could be used with fixed value or on the contrary with adaptive value. Effects of load variations on converter behavior or impact of possible shading on photovoltaic module are also mentioned, with aim to design robust control laws, in the case of parallel association, designed to compensate unwanted effects due to output voltage coupling.

  19. Sensitivity testing practice on pre-processing parameters in hard and soft coupled modeling

    Directory of Open Access Journals (Sweden)

    Z. Ignaszak

    2010-01-01

    Full Text Available This paper pays attention to the problem of practical applicability of coupled modeling with the use of hard and soft models types and necessity of adapted to that models data base possession. The data base tests results for cylindrical 30 mm diameter casting made of AlSi7Mg alloy were presented. In simulation tests that were applied the Calcosoft system with CAFE (Cellular Automaton Finite Element module. This module which belongs to „multiphysics” models enables structure prediction of complete casting with division of columnar and equiaxed crystals zones of -phase. Sensitivity tests of coupled model on the particular values parameters changing were made. On these basis it was determined the relations of CET (columnar-to-equaiaxed transition zone position influence. The example of virtual structure validation based on real structure with CET zone location and grain size was shown.

  20. Tracheal sound parameters of respiratory cycle phases show differences between flow-limited and normal breathing during sleep

    International Nuclear Information System (INIS)

    Kulkas, A; Huupponen, E; Virkkala, J; Saastamoinen, A; Rauhala, E; Tenhunen, M; Himanen, S-L

    2010-01-01

    The objective of the present work was to develop new computational parameters to examine the characteristics of respiratory cycle phases from the tracheal breathing sound signal during sleep. Tracheal sound data from 14 patients (10 males and 4 females) were examined. From each patient, a 10 min long section of normal and a 10 min section of flow-limited breathing during sleep were analysed. The computationally determined proportional durations of the respiratory phases were first investigated. Moreover, the phase durations and breathing sound amplitude levels were used to calculate the area under the breathing sound envelope signal during inspiration and expiration phases. An inspiratory sound index was then developed to provide the percentage of this type of area during the inspiratory phase with respect to the combined area of inspiratory and expiratory phases. The proportional duration of the inspiratory phase showed statistically significantly higher values during flow-limited breathing than during normal breathing and inspiratory pause displayed an opposite difference. The inspiratory sound index showed statistically significantly higher values during flow-limited breathing than during normal breathing. The presented novel computational parameters could contribute to the examination of sleep-disordered breathing or as a screening tool

  1. Drag on a slip spherical particle moving in a couple stress fluid

    Directory of Open Access Journals (Sweden)

    E.A. Ashmawy

    2016-06-01

    Full Text Available The creeping motion of a rigid slip sphere in an unbounded couple stress fluid is investigated. The linear slip boundary condition and the vanishing couple stress condition are applied on the surface of the sphere. A simple formula for the drag force acting on a slip sphere translating in an unbounded couple stress fluid is obtained. Special cases of the deduced drag formula are concluded and compared with analogous results in the literature. The normalized drag force experienced by the fluid on the slip sphere is represented graphically and the effects of slip parameter and viscosity coefficients are discussed.

  2. Towards a new determination of the QCD Λ parameter from running couplings in the tree-flavour theory

    Energy Technology Data Exchange (ETDEWEB)

    Dalla Brida, M.; Sint, S. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Trinity College, Dublin (Ireland). School of Mathematics; Fritzsch, P.; Korzec, T. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Ramos, A.; Sommer, R. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC

    2014-12-15

    We review our new strategy and current status towards a high precision computation of the Λ parameter from three-flavour simulations in QCD. To reach this goal we combine specific advantages of the Schroedinger functional and gradient flow couplings.

  3. A Novel Coupled State/Input/Parameter Identification Method for Linear Structural Systems

    Directory of Open Access Journals (Sweden)

    Zhimin Wan

    2018-01-01

    Full Text Available In many engineering applications, unknown states, inputs, and parameters exist in the structures. However, most methods require one or two of these variables to be known in order to identify the other(s. Recently, the authors have proposed a method called EGDF for coupled state/input/parameter identification for nonlinear system in state space. However, the EGDF method based solely on acceleration measurements is found to be unstable, which can cause the drift of the identified inputs and displacements. Although some regularization methods can be adopted for solving the problem, they are not suitable for joint input-state identification in real time. In this paper, a strategy of data fusion of displacement and acceleration measurements is used to avoid the low-frequency drift in the identified inputs and structural displacements for linear structural systems. Two numerical examples about a plane truss and a single-stage isolation system are conducted to verify the effectiveness of the proposed modified EGDF algorithm.

  4. Normal modes and time evolution of a holographic superconductor after a quantum quench

    International Nuclear Information System (INIS)

    Gao, Xin; García-García, Antonio M.; Zeng, Hua Bi; Zhang, Hai-Qing

    2014-01-01

    We employ holographic techniques to investigate the dynamics of the order parameter of a strongly coupled superconductor after a perturbation that drives the system out of equilibrium. The gravity dual that we employ is the AdS_5 Soliton background at zero temperature. We first analyze the normal modes associated to the superconducting order parameter which are purely real since the background has no horizon. We then study the full time evolution of the order parameter after a quench. For sufficiently a weak and slow perturbation we show that the order parameter undergoes simple undamped oscillations in time with a frequency that agrees with the lowest normal model computed previously. This is expected as the soliton background has no horizon and therefore, at least in the probe and large N limits considered, the system will never return to equilibrium. For stronger and more abrupt perturbations higher normal modes are excited and the pattern of oscillations becomes increasingly intricate. We identify a range of parameters for which the time evolution of the order parameter become quasi chaotic. The details of the chaotic evolution depend on the type of perturbation used. Therefore it is plausible to expect that it is possible to engineer a perturbation that leads to the almost complete destruction of the oscillating pattern and consequently to quasi equilibration induced by superposition of modes with different frequencies

  5. The strong coupling from a nonperturbative determination of the Λ parameter in three-flavor QCD

    Energy Technology Data Exchange (ETDEWEB)

    Bruno, Mattia [Brookhaven National Laboratory, Upton, NY (United States). Physics Dept.; Dalla Brida, Mattia [Univ. di Milano-Bicocca (Italy). Dipt. di Fisica; INFN, Sezione di Milano-Bicocca (Italy); Fritzsch, Patrick; Ramos, Alberto [CERN, Geneva (Switzerland). Theoretical Physics Dept.; Korzec, Tomasz [Wuppertal Univ. (Germany). Dept. of Physics; Schaefer, Stefan; Simma, Hubert [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Sint, Stefan [Trinity College Dublin (Ireland). School of Mathematics and Hamilton Mathematics Inst.; Sommer, Rainer [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Collaboration: ALPHA Collaboration

    2017-07-15

    We present a lattice determination of the Λ parameter in three-flavor QCD and the strong coupling at the Z pole mass. Computing the nonperturbative running of the coupling in the range from 0.2 GeV to 70 GeV, and using experimental input values for the masses and decay constants of the pion and the kaon, we obtain Λ{sup (3)}{sub MS}=341(12) MeV. The nonperturbative running up to very high energies guarantees that systematic effects associated with perturbation theory are well under control. Using the four-loop prediction for Λ{sup (5)}{sub MS}/Λ{sup (3)}{sub MS} yields α{sup (5)}{sub MS}(m{sub Z})=0.11852(84).

  6. Evaluation of moving-coil loudspeaker and passive radiator parameters using normal-incidence sound transmission measurements: theoretical developments.

    Science.gov (United States)

    Leishman, Timothy W; Anderson, Brian E

    2013-07-01

    The parameters of moving-coil loudspeaker drivers are typically determined using direct electrical excitation and measurement. However, as electro-mechano-acoustical devices, their parameters should also follow from suitable mechanical or acoustical evaluations. This paper presents the theory of an acoustical method of excitation and measurement using normal-incidence sound transmission through a baffled driver as a plane-wave tube partition. Analogous circuits enable key parameters to be extracted from measurement results in terms of open and closed-circuit driver conditions. Associated tools are presented that facilitate adjacent field decompositions and derivations of sound transmission coefficients (in terms of driver parameters) directly from the circuits. The paper also clarifies the impact of nonanechoic receiving tube terminations and the specific benefits of downstream field decompositions.

  7. Compressible Analysis of Bénard Convection of Magneto Rotatory Couple-Stress Fluid

    Directory of Open Access Journals (Sweden)

    Mehta C.B.

    2018-02-01

    Full Text Available Thermal Instability (Benard’s Convection in the presence of uniform rotation and uniform magnetic field (separately is studied. Using the linearized stability theory and normal mode analyses the dispersion relation is obtained in each case. In the case of rotatory Benard’s stationary convection compressibility and rotation postpone the onset of convection whereas the couple-stress have duel character onset of convection depending on rotation parameter. While in the absence of rotation couple-stress always postpones the onset of convection. On the other hand, magnetic field on thermal instability problem on couple-stress fluid for stationary convection couple-stress parameter and magnetic field postpones the onset of convection. The effect of compressibility also postpones the onset of convection in both cases as rotation and magnetic field. Graphs have been plotted by giving numerical values to the parameters to depict the stationary characteristics. Further, the magnetic field and rotation are found to introduce oscillatory modes which were non-existent in their absence and then the principle of exchange of stability is valid. The sufficient conditions for non-existence of overstability are also obtained.

  8. Spin fluctuations in liquid 3He: a strong-coupling calculation of T/sub c/ and the normal-state distribution function

    International Nuclear Information System (INIS)

    Fay, D.; Layzer, A.

    1975-01-01

    The Berk--Schrieffer method of strong-coupling superconductivity for nearly ferromagnetic systems is generalized to arbitrary L-state pairing and realistic (hard-core) potentials. Application to 3 He yields a P-state transition but very low values for T/sub c/ and an unsatisfactory normal-state momentum distribution

  9. On Better Estimating and Normalizing the Relationship between Clinical Parameters: Comparing Respiratory Modulations in the Photoplethysmogram and Blood Pressure Signal (DPOP versus PPV

    Directory of Open Access Journals (Sweden)

    Paul S. Addison

    2015-01-01

    Full Text Available DPOP (ΔPOP or Delta-POP is a noninvasive parameter which measures the strength of respiratory modulations present in the pulse oximeter waveform. It has been proposed as a noninvasive alternative to pulse pressure variation (PPV used in the prediction of the response to volume expansion in hypovolemic patients. We considered a number of simple techniques for better determining the underlying relationship between the two parameters. It was shown numerically that baseline-induced signal errors were asymmetric in nature, which corresponded to observation, and we proposed a method which combines a least-median-of-squares estimator with the requirement that the relationship passes through the origin (the LMSO method. We further developed a method of normalization of the parameters through rescaling DPOP using the inverse gradient of the linear fitted relationship. We propose that this normalization method (LMSO-N is applicable to the matching of a wide range of clinical parameters. It is also generally applicable to the self-normalizing of parameters whose behaviour may change slightly due to algorithmic improvements.

  10. On better estimating and normalizing the relationship between clinical parameters: comparing respiratory modulations in the photoplethysmogram and blood pressure signal (DPOP versus PPV).

    Science.gov (United States)

    Addison, Paul S; Wang, Rui; Uribe, Alberto A; Bergese, Sergio D

    2015-01-01

    DPOP (ΔPOP or Delta-POP) is a noninvasive parameter which measures the strength of respiratory modulations present in the pulse oximeter waveform. It has been proposed as a noninvasive alternative to pulse pressure variation (PPV) used in the prediction of the response to volume expansion in hypovolemic patients. We considered a number of simple techniques for better determining the underlying relationship between the two parameters. It was shown numerically that baseline-induced signal errors were asymmetric in nature, which corresponded to observation, and we proposed a method which combines a least-median-of-squares estimator with the requirement that the relationship passes through the origin (the LMSO method). We further developed a method of normalization of the parameters through rescaling DPOP using the inverse gradient of the linear fitted relationship. We propose that this normalization method (LMSO-N) is applicable to the matching of a wide range of clinical parameters. It is also generally applicable to the self-normalizing of parameters whose behaviour may change slightly due to algorithmic improvements.

  11. Data analysis strategies for the characterization of normal: superconductor point contacts by barrier strength parameter

    Science.gov (United States)

    Smith, Charles W.; Reinertson, Randal C.; Dolan, P. J., Jr.

    1993-05-01

    The theoretical description by Blonder, Tinkham, and Klapwijk [Phys. Rev. B 25, 4515 (1982)] of the I-V curves of normal: superconductor point contacts encompasses a broad range of experimental behavior, from the tunnel junction case, on the one hand, to the clean metallic microconstriction limit on the other. The theory characterizes point contacts in terms of a single parameter, the barrier strength. The differential conductance of a point contact, at zero bias, as a function of temperature, offers a direct experimental method by which the barrier strength parameter can be evaluated. In view of the full range of phenomena incorporated by this theory, we suggest several different strategies for the evaluation of the barrier strength parameter from data in the low and intermediate barrier strength regimes and for measurements in the low temperature (near T=0 K) and high temperature (near T=Tc) limits.

  12. First-order exchange coefficient coupling for simulating surface water-groundwater interactions: Parameter sensitivity and consistency with a physics-based approach

    Science.gov (United States)

    Ebel, B.A.; Mirus, B.B.; Heppner, C.S.; VanderKwaak, J.E.; Loague, K.

    2009-01-01

    Distributed hydrologic models capable of simulating fully-coupled surface water and groundwater flow are increasingly used to examine problems in the hydrologic sciences. Several techniques are currently available to couple the surface and subsurface; the two most frequently employed approaches are first-order exchange coefficients (a.k.a., the surface conductance method) and enforced continuity of pressure and flux at the surface-subsurface boundary condition. The effort reported here examines the parameter sensitivity of simulated hydrologic response for the first-order exchange coefficients at a well-characterized field site using the fully coupled Integrated Hydrology Model (InHM). This investigation demonstrates that the first-order exchange coefficients can be selected such that the simulated hydrologic response is insensitive to the parameter choice, while simulation time is considerably reduced. Alternatively, the ability to choose a first-order exchange coefficient that intentionally decouples the surface and subsurface facilitates concept-development simulations to examine real-world situations where the surface-subsurface exchange is impaired. While the parameters comprising the first-order exchange coefficient cannot be directly estimated or measured, the insensitivity of the simulated flow system to these parameters (when chosen appropriately) combined with the ability to mimic actual physical processes suggests that the first-order exchange coefficient approach can be consistent with a physics-based framework. Copyright ?? 2009 John Wiley & Sons, Ltd.

  13. Fiber coupled diode laser beam parameter product calculation and rules for optimized design

    Science.gov (United States)

    Wang, Zuolan; Segref, Armin; Koenning, Tobias; Pandey, Rajiv

    2011-03-01

    The Beam Parameter Product (BPP) of a passive, lossless system is a constant and cannot be improved upon but the beams may be reshaped for enhanced coupling performance. The function of the optical designer of fiber coupled diode lasers is to preserve the brightness of the diode sources while maximizing the coupling efficiency. In coupling diode laser power into fiber output, the symmetrical geometry of the fiber core makes it highly desirable to have symmetrical BPPs at the fiber input surface, but this is not always practical. It is therefore desirable to be able to know the 'diagonal' (fiber) BPP, using the BPPs of the fast and slow axes, before detailed design and simulation processes. A commonly used expression for this purpose, i.e. the square root of the sum of the squares of the BPPs in the fast and slow axes, has been found to consistently under-predict the fiber BPP (i.e. better beam quality is predicted than is actually achievable in practice). In this paper, using a simplified model, we provide the proof of the proper calculation of the diagonal (i.e. the fiber) BPP using BPPs of the fast and slow axes as input. Using the same simplified model, we also offer the proof that the fiber BPP can be shown to have a minimum (optimal) value for given diode BPPs and this optimized condition can be obtained before any detailed design and simulation are carried out. Measured and simulated data confirms satisfactory correlation between the BPPs of the diode and the predicted fiber BPP.

  14. An efficient method to generate a perturbed parameter ensemble of a fully coupled AOGCM without flux-adjustment

    Directory of Open Access Journals (Sweden)

    P. J. Irvine

    2013-09-01

    Full Text Available We present a simple method to generate a perturbed parameter ensemble (PPE of a fully-coupled atmosphere-ocean general circulation model (AOGCM, HadCM3, without requiring flux-adjustment. The aim was to produce an ensemble that samples parametric uncertainty in some key variables and gives a plausible representation of the climate. Six atmospheric parameters, a sea-ice parameter and an ocean parameter were jointly perturbed within a reasonable range to generate an initial group of 200 members. To screen out implausible ensemble members, 20 yr pre-industrial control simulations were run and members whose temperature responses to the parameter perturbations were projected to be outside the range of 13.6 ± 2 °C, i.e. near to the observed pre-industrial global mean, were discarded. Twenty-one members, including the standard unperturbed model, were accepted, covering almost the entire span of the eight parameters, challenging the argument that without flux-adjustment parameter ranges would be unduly restricted. This ensemble was used in 2 experiments; an 800 yr pre-industrial and a 150 yr quadrupled CO2 simulation. The behaviour of the PPE for the pre-industrial control compared well to ERA-40 reanalysis data and the CMIP3 ensemble for a number of surface and atmospheric column variables with the exception of a few members in the Tropics. However, we find that members of the PPE with low values of the entrainment rate coefficient show very large increases in upper tropospheric and stratospheric water vapour concentrations in response to elevated CO2 and one member showed an implausible nonlinear climate response, and as such will be excluded from future experiments with this ensemble. The outcome of this study is a PPE of a fully-coupled AOGCM which samples parametric uncertainty and a simple methodology which would be applicable to other GCMs.

  15. Method for Measurement of Multi-Degrees-of-Freedom Motion Parameters Based on Polydimethylsiloxane Cross-Coupling Diffraction Gratings

    Science.gov (United States)

    Duan, Junping; Zhu, Qiang; Qian, Kun; Guo, Hao; Zhang, Binzhen

    2017-08-01

    This work presents a multi-degrees-of-freedom motion parameter measurement method based on the use of cross-coupling diffraction gratings that were prepared on the two sides of a polydimethylsiloxane (PDMS) substrate using oxygen plasma processing technology. The laser beam that travels pass the cross-coupling optical grating would be diffracted into a two-dimensional spot array. The displacement and the gap size of the spot-array were functions of the movement of the laser source, as explained by the Fraunhofer diffraction effect. A 480 × 640 pixel charge-coupled device (CCD) was used to acquire images of the two-dimensional spot-array in real time. A proposed algorithm was then used to obtain the motion parameters. Using this method and the CCD described above, the resolutions of the displacement and the deflection angle were 0.18 μm and 0.0075 rad, respectively. Additionally, a CCD with a higher pixel count could improve the resolutions of the displacement and the deflection angle to sub-nanometer and micro-radian scales, respectively. Finally, the dynamic positions of hovering rotorcraft have been tracked and checked using the proposed method, which can be used to correct the craft's position and provide a method for aircraft stabilization in the sky.

  16. Dehydroepiandrosterone substitution in female adrenal failure: no impact on endothelial function and cardiovascular parameters despite normalization of androgen status

    DEFF Research Database (Denmark)

    Christiansen, Jens Juel; Andersen, Niels Holmark; Sørensen, Keld E

    2007-01-01

    because of skin side effects and anxiety, respectively. All patients had low circulating androgens baseline and normal range androgens during DHEA treatment. We examined patients with noninvasive endothelial cell function, magnetic resonance imaging (MRI)-based cardiac output, echocardiography, ambulatory...... 24-h blood pressure and maximal oxygen consumption. RESULTS: DHEA treatment normalized androgen status to levels seen in healthy women. DHEA and placebo treatment had no effect on echocardiographic parameters of myocardial dimensions or systolic and diastolic function, noninvasive endothelial cell...... in vascular endothelium has been described and in vitro studies have shown involvement of DHEA in NO dependent pathways. AIM: To evaluate effects of DHEA substitution on cardiovascular parameters. DESIGN: Six months randomized, double-blind, placebo-controlled crossover study. Treatment consisted of DHEA 50...

  17. Development of neutronic models for the thermal hydraulics coupling of the MSFR and the calculation of effective kinetic parameters

    International Nuclear Information System (INIS)

    Laureau, Axel

    2015-01-01

    delayed neutrons or the effective generation time. The method was applied to various cases in order to verify it and demonstrate the approach for time dependent or kinetic parameter calculations. Finally, the TFM model was integrated in the OpenFOAM thermalhydraulic code. The coupling was first tested on a simple geometry numerical benchmark. Subsequently, it was applied to the MSFR to calculate normal (load-following) and accidental (reactivity insertion, over-cooling) transients. (author)

  18. Relativistic Normal Coupled-Cluster Theory for Accurate Determination of Electric Dipole Moments of Atoms: First Application to the ^{199}Hg Atom.

    Science.gov (United States)

    Sahoo, B K; Das, B P

    2018-05-18

    Recent relativistic coupled-cluster (RCC) calculations of electric dipole moments (EDMs) of diamagnetic atoms due to parity and time-reversal violating (P,T-odd) interactions, which are essential ingredients for probing new physics beyond the standard model of particle interactions, differ substantially from the previous theoretical results. It is therefore necessary to perform an independent test of the validity of these results. In view of this, the normal coupled-cluster method has been extended to the relativistic regime [relativistic normal coupled-cluster (RNCC) method] to calculate the EDMs of atoms by simultaneously incorporating the electrostatic and P,T-odd interactions in order to overcome the shortcomings of the ordinary RCC method. This new relativistic method has been applied to ^{199}Hg, which currently has a lower EDM limit than that of any other system. The results of our RNCC and self-consistent RCC calculations of the EDM of this atom are found to be close. The discrepancies between these two results on the one hand and those of previous calculations on the other are elucidated. Furthermore, the electric dipole polarizability of this atom, which has computational similarities with the EDM, is evaluated and it is in very good agreement with its measured value.

  19. Relativistic Normal Coupled-Cluster Theory for Accurate Determination of Electric Dipole Moments of Atoms: First Application to the 199Hg Atom

    Science.gov (United States)

    Sahoo, B. K.; Das, B. P.

    2018-05-01

    Recent relativistic coupled-cluster (RCC) calculations of electric dipole moments (EDMs) of diamagnetic atoms due to parity and time-reversal violating (P ,T -odd) interactions, which are essential ingredients for probing new physics beyond the standard model of particle interactions, differ substantially from the previous theoretical results. It is therefore necessary to perform an independent test of the validity of these results. In view of this, the normal coupled-cluster method has been extended to the relativistic regime [relativistic normal coupled-cluster (RNCC) method] to calculate the EDMs of atoms by simultaneously incorporating the electrostatic and P ,T -odd interactions in order to overcome the shortcomings of the ordinary RCC method. This new relativistic method has been applied to 199Hg, which currently has a lower EDM limit than that of any other system. The results of our RNCC and self-consistent RCC calculations of the EDM of this atom are found to be close. The discrepancies between these two results on the one hand and those of previous calculations on the other are elucidated. Furthermore, the electric dipole polarizability of this atom, which has computational similarities with the EDM, is evaluated and it is in very good agreement with its measured value.

  20. Optical-response properties in hybrid optomechanical systems with quadratic coupling

    Science.gov (United States)

    Sun, Xue-Jian; Wang, Xin; Liu, Li-Na; Liu, Wen-Xiao; Fang, Ai-Ping; Li, Hong-Rong

    2018-02-01

    We theoretically investigate the optical-response properties of the four-mode quadratically coupled optomechanical system (OMS), in which two standard OMSs with quadratic coupling are coupled to each other via a common waveguide. In the presence of a strong control field applied to one cavity and a weak probe field applied to the other, we show that by suitably tuning the system parameters, there appears the normal mode splitting, optomechanically induced absorption, and double or triple electromagnetically induced transparency phenomena in the probe absorption spectrum. In particular, the explicit physical explanations for those fantastic phenomena are detailed discussed. Moreover, we also show that our proposal can be exploited to implement the optical switch as well as the slow and fast light effects.

  1. Jeans instability of self-gravitating magnetized strongly coupled plasma

    International Nuclear Information System (INIS)

    Prajapati, R P; Sharma, P K; Sanghvi, R K; Chhajlani, R K

    2012-01-01

    We investigate the Jeans instability of self-gravitating magnetized strongly coupled plasma. The equations of the problem are formulated using the generalized hydrodynamic model and a general dispersion relation is obtained using the normal mode analysis. This dispersion relation is discussed for transverse and longitudinal mode of propagations. The modified condition of Jeans instability is obtained for magnetized strongly coupled plasma. We find that strong coupling of plasma particles modify the fundamental criterion of Jeans gravitational instability. In transverse mode it is found that Jeans instability criterion gets modified due to the presence of magnetic field, shear viscosity and fluid viscosity but in longitudinal mode it is unaffected due to the presence of magnetic field. From the curves we found that all these parameters have stabilizing influence on the growth rate of Jeans instability.

  2. Chaos in generically coupled phase oscillator networks with nonpairwise interactions.

    Science.gov (United States)

    Bick, Christian; Ashwin, Peter; Rodrigues, Ana

    2016-09-01

    The Kuramoto-Sakaguchi system of coupled phase oscillators, where interaction between oscillators is determined by a single harmonic of phase differences of pairs of oscillators, has very simple emergent dynamics in the case of identical oscillators that are globally coupled: there is a variational structure that means the only attractors are full synchrony (in-phase) or splay phase (rotating wave/full asynchrony) oscillations and the bifurcation between these states is highly degenerate. Here we show that nonpairwise coupling-including three and four-way interactions of the oscillator phases-that appears generically at the next order in normal-form based calculations can give rise to complex emergent dynamics in symmetric phase oscillator networks. In particular, we show that chaos can appear in the smallest possible dimension of four coupled phase oscillators for a range of parameter values.

  3. Correlated random sampling for multivariate normal and log-normal distributions

    International Nuclear Information System (INIS)

    Žerovnik, Gašper; Trkov, Andrej; Kodeli, Ivan A.

    2012-01-01

    A method for correlated random sampling is presented. Representative samples for multivariate normal or log-normal distribution can be produced. Furthermore, any combination of normally and log-normally distributed correlated variables may be sampled to any requested accuracy. Possible applications of the method include sampling of resonance parameters which are used for reactor calculations.

  4. Coupling structure in LED System-In-Package design: a physical responses-based critical parameter sheet like approach

    NARCIS (Netherlands)

    Borst, de E.C.M.; Gielen, A.W.J.; Etman, L.F.P.

    2012-01-01

    Abstract This paper introduces an approach to study the coupling structure between the design parameters and design objectives of a LED system-in-package (SiP) design concept [1]. The LED SiP is an integrated device that combines the LED chip with driver chips and potential other components in a

  5. Coupling structure in LED System-in-Package design: a physical responses-based critical parameter sheet like approach

    NARCIS (Netherlands)

    Borst, E.C.M. de; Gielen, A.W.J.; Etman, L.F.P.

    2012-01-01

    This paper introduces an approach to study the coupling structure between the design parameters and design objectives of a LED system-in-package (SiP) design concept [1]. The LED SiP is an integrated device that combines the LED chip with driver chips and potential other components in a single

  6. Frequency method for determining the parameters of the electromagnetic brakes and slip-type couplings with solid magnetic circuits

    Science.gov (United States)

    Guseynov, F. G.; Abbasova, E. M.

    1977-01-01

    The equivalent representation of brakes and coupling by lumped circuits is investigated. Analytical equations are derived for relating the indices of the transients to the parameters of the equivalent circuits for arbitrary rotor speed. A computer algorithm is given for the calculations.

  7. Blood coagulation parameters and platelet indices: changes in normal and preeclamptic pregnancies and predictive values for preeclampsia.

    Directory of Open Access Journals (Sweden)

    Lei Han

    Full Text Available Preeclampsia (PE is an obstetric disorder with high morbidity and mortality rates but without clear pathogeny. The dysfunction of the blood coagulation-fibrinolysis system is a salient characteristic of PE that varies in severity, and necessitates different treatments. Therefore, it is necessary to find suitable predictors for the onset and severity of PE.We aimed to evaluate blood coagulation parameters and platelet indices as potential predictors for the onset and severity of PE.Blood samples from 3 groups of subjects, normal pregnant women (n = 79, mild preeclampsia (mPE (n = 53 and severe preeclampsia (sPE (n = 42, were collected during early and late pregnancy. The levels of coagulative parameters and platelet indices were measured and compared among the groups. The receiver-operating characteristic (ROC curves of these indices were generated, and the area under the curve (AUC was calculated. The predictive values of the selected potential parameters were examined in binary regression analysis.During late pregnancy in the normal pregnancy group, the activated partial thromboplastin time (APTT, prothrombin time (PT, thrombin time (TT and platelet count decreased, while the fibrinogen level and mean platelet volume (MPV increased compared to early pregnancy (p<0.05. However, the PE patients presented with increased APTT, TT, MPV and D-dimer (DD during the third trimester. In the analysis of subjects with and without PE, TT showed the largest AUC (0.743 and high predictive value. In PE patients with different severities, MPV showed the largest AUC (0.671 and ideal predictive efficiency.Normal pregnancy causes a maternal physiological hypercoagulable state in late pregnancy. PE may trigger complex disorders in the endogenous coagulative pathways and consume platelets and FIB, subsequently activating thrombopoiesis and fibrinolysis. Thrombin time and MPV may serve as early monitoring markers for the onset and severity of PE

  8. Path coupling and aggregate path coupling

    CERN Document Server

    Kovchegov, Yevgeniy

    2018-01-01

    This book describes and characterizes an extension to the classical path coupling method applied to statistical mechanical models, referred to as aggregate path coupling. In conjunction with large deviations estimates, the aggregate path coupling method is used to prove rapid mixing of Glauber dynamics for a large class of statistical mechanical models, including models that exhibit discontinuous phase transitions which have traditionally been more difficult to analyze rigorously. The book shows how the parameter regions for rapid mixing for several classes of statistical mechanical models are derived using the aggregate path coupling method.

  9. Simulation Research of Magnetically-coupled Resonant Wireless Power Transfer System with Single Intermediate Coil Resonator Based on S Parameters Using ANSYS

    Directory of Open Access Journals (Sweden)

    Liu Cheng

    2016-01-01

    Full Text Available ANSYS can be a powerful tool to simulate the process of energy exchange in magnetically-coupled resonant wireless power transfer system. In this work, the MCR-WPT system with single intermediate coil resonator is simulated and researched based on scattering parameters using ANSYS Electromagnetics. The change rule of power transfer efficiency is reflected intuitively through the scattering parameters. A new method of calculating the coupling coefficient is proposed. A cascaded 2-port network model using scattering parameters is adopted to research the efficiency of transmission. By changing the relative position and the number of turns of the intermediate coil, we find some factors affecting the efficiency of transmission. Methods and principles of designing the MCR-WPT system with single intermediate coil resonator are obtained. And these methods have practical value with design and optimization of system efficiency.

  10. A coated rigid elliptical inclusion loaded by a couple in the presence of uniform interfacial and hoop stresses

    Science.gov (United States)

    Wang, Xu; Schiavone, Peter

    2018-06-01

    We consider a confocally coated rigid elliptical inclusion, loaded by a couple and introduced into a remote uniform stress field. We show that uniform interfacial and hoop stresses along the inclusion-coating interface can be achieved when the two remote normal stresses and the remote shear stress each satisfy certain conditions. Our analysis indicates that: (i) the uniform interfacial tangential stress depends only on the area of the inclusion and the moment of the couple; (ii) the rigid-body rotation of the rigid inclusion depends only on the area of the inclusion, the coating thickness, the shear moduli of the composite and the moment of the couple; (iii) for given remote normal stresses and material parameters, the coating thickness and the aspect ratio of the inclusion are required to satisfy a particular relationship; (iv) for prescribed remote shear stress, moment and given material parameters, the coating thickness, the size and aspect ratio of the inclusion are also related. Finally, a harmonic rigid inclusion emerges as a special case if the coating and the matrix have identical elastic properties.

  11. Determination of olanzapine and N-desmethyl-olanzapine in plasma using a reversed-phase HPLC coupled with coulochemical detection: correlation of olanzapine or N-desmethyl-olanzapine concentration with metabolic parameters.

    Directory of Open Access Journals (Sweden)

    Mong-Liang Lu

    Full Text Available Olanzapine (OLZ is one of the most prescribed atypical antipsychotic drugs but its use is associated with unfavorable metabolic abnormalities. N-desmethyl-olanzapine (DMO, one of the OLZ metabolites by CYP1A2, has been reported to have a normalizing action on metabolic abnormalities, but this remains unclear. Our aim was to explore the correlation between the concentrations of OLZ or DMO with various metabolic parameters in schizophrenic patients.The chromatographic analysis was carried out with a solvent delivery system coupled to a Coulochem III coulometric detector to determine OLZ and DMO simultaneously in OLZ-treated patients. The correlation between the concentration of OLZ or DMO and the metabolic parameters was analyzed by the Spearman rank order correlation method (r s.The established analytical method met proper standards for accuracy and reliability and the lower limitation of quantification for each injection of DMO or OLZ was 0.02 ng. The method was successfully used for the analysis of samples from nonsmoking patients (n = 48 treated with OLZ in the dosage range of 5-20 mg per day. There was no correlation between OLZ concentrations and tested metabolic parameters. DMO concentrations were negatively correlated with glucose (r s = -0.45 and DMO concentrations normalized by doses were also negatively correlated with insulin levels (r s = -0.39; however, there was a marginally positive correlation between DMO and homocysteine levels (r s = +0.38.The observed negative correlations between levels of DMO and glucose or insulin suggest a metabolic normalization role for DMO regardless of its positive correlation with a known cardiovascular risk factor, homocysteine. Additional studies of the mechanisms underlying DMO's metabolic effects are warranted.

  12. Sensitivity of fusion and quasi-elastic barrier distributions of {sub 16}O+{sub 144}Sm reaction on the coupling radius parameter

    Energy Technology Data Exchange (ETDEWEB)

    Zamrun, Muhammad; Usman, Ida; Variani, Viska Inda [Department of Physics, Haluoleo University, Kendari, Sulawesi Tengagra, 93232 (Indonesia); Kassim, Hasan Abu [Department of Physics, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2014-03-05

    We study the heavy-ion collision at sub-barrier energies of {sub 16}O+{sub 144}Sm system using full order coupled-channels formalism. We especially investigate the sensitivity of fusion and quasi-elastic barrier distributions for this system on the coupling radius parameter. We found that the coupled-channels calculations of the fusion and the quasi-elastic barrier distributions are sensitive to the coupling radius for this reaction in contrast to the fusion and quasi-elastic cross section. Our study indicates that the larger coupling radius, i.e., r{sub coup}=1.20, is required by the experimental quasi-elastic barrier distribution. However, the experimental fusion barrier distribution compulsory the small value, i.e., r{sub coup}=1.06.

  13. Magneto thermal convection in a compressible couple-stress fluid

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Mahinder [Lovely School of Science, Dept. of Mathematics, Lovely Professional Univ., Phagwara (India); Kumar, Pardeep [Dept. of Mathematics, ICDEOL, H.P. Univ., Shimla (India)

    2010-03-15

    The problem of thermal instability of compressible, electrically conducting couple-stress fluids in the presence of a uniform magnetic field is considered. Following the linearized stability theory and normal mode analysis, the dispersion relation is obtained. For stationary convection, the compressibility, couple-stress, and magnetic field postpone the onset of convection. Graphs have been plotted by giving numerical values of the parameters to depict the stability characteristics. The principle of exchange of stabilities is found to be satisfied. The magnetic field introduces oscillatory modes in the system that were non-existent in its absence. The case of overstability is also studied wherein a sufficient condition for the non-existence of overstability is obtained. (orig.)

  14. Coupled simulation of meteorological parameters and sound intensity in a narrow valley

    Energy Technology Data Exchange (ETDEWEB)

    Heimann, D. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Wessling (Germany). Inst. fuer Physik der Atmosphaere; Gross, G. [Hannover Univ. (Germany). Inst. fuer Meteorologie und Klimatologie

    1997-07-01

    A meteorological mesoscale model is used to simulate the inhomogeneous distribution of temperature and the appertaining development of thermal wind systems in a narrow two-dimensional valley during the course of a cloud-free day. A simple sound particle model takes up the simulated meteorological fields and calculates the propagation of noise which originates from a line source at one of the slopes of this valley. The coupled modeling system ensures consistency of topography, meteorological parameters and the sound field. The temporal behaviour of the sound intensity level across the valley is examined. It is only governed by the time-dependent meteorology. The results show remarkable variations of the sound intensity during the course of a day depending on the location in the valley. (orig.) 23 refs.

  15. Study of long-range orders of hard-core bosons coupled to cooperative normal modes in two-dimensional lattices

    Science.gov (United States)

    Ghosh, A.; Yarlagadda, S.

    2017-09-01

    Understanding the microscopic mechanism of coexisting long-range orders (such as lattice supersolidity) in strongly correlated systems is a subject of immense interest. We study the possible manifestations of long-range orders, including lattice-supersolid phases with differently broken symmetry, in a two-dimensional square lattice system of hard-core bosons (HCBs) coupled to archetypal cooperative/coherent normal-mode distortions such as those in perovskites. At strong HCB-phonon coupling, using a duality transformation to map the strong-coupling problem to a weak-coupling one, we obtain an effective Hamiltonian involving nearest-neighbor, next-nearest-neighbor, and next-to-next-nearest-neighbor hoppings and repulsions. Using stochastic series expansion quantum Monte Carlo, we construct the phase diagram of the system. As coupling strength is increased, we find that the system undergoes a first-order quantum phase transition from a superfluid to a checkerboard solid at half-filling and from a superfluid to a diagonal striped solid [with crystalline ordering wave vector Q ⃗=(2 π /3 ,2 π /3 ) or (2 π /3 ,4 π /3 )] at one-third filling without showing any evidence of supersolidity. On tuning the system away from these commensurate fillings, checkerboard supersolid is generated near half-filling whereas a rare diagonal striped supersolid is realized near one-third filling. Interestingly, there is an asymmetry in the extent of supersolidity about one-third filling. Within our framework, we also provide an explanation for the observed checkerboard and stripe formations in La2 -xSrxNiO4 at x =1 /2 and x =1 /3 .

  16. Multiple linear regression approach for the analysis of the relationships between joints mobility and regional pressure-based parameters in the normal-arched foot.

    Science.gov (United States)

    Caravaggi, Paolo; Leardini, Alberto; Giacomozzi, Claudia

    2016-10-03

    Plantar load can be considered as a measure of the foot ability to transmit forces at the foot/ground, or foot/footwear interface during ambulatory activities via the lower limb kinematic chain. While morphological and functional measures have been shown to be correlated with plantar load, no exhaustive data are currently available on the possible relationships between range of motion of foot joints and plantar load regional parameters. Joints' kinematics from a validated multi-segmental foot model were recorded together with plantar pressure parameters in 21 normal-arched healthy subjects during three barefoot walking trials. Plantar pressure maps were divided into six anatomically-based regions of interest associated to corresponding foot segments. A stepwise multiple regression analysis was performed to determine the relationships between pressure-based parameters, joints range of motion and normalized walking speed (speed/subject height). Sagittal- and frontal-plane joint motion were those most correlated to plantar load. Foot joints' range of motion and normalized walking speed explained between 6% and 43% of the model variance (adjusted R 2 ) for pressure-based parameters. In general, those joints' presenting lower mobility during stance were associated to lower vertical force at forefoot and to larger mean and peak pressure at hindfoot and forefoot. Normalized walking speed was always positively correlated to mean and peak pressure at hindfoot and forefoot. While a large variance in plantar pressure data is still not accounted for by the present models, this study provides statistical corroboration of the close relationship between joint mobility and plantar pressure during stance in the normal healthy foot. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Establishment of reference intervals for complete blood count parameters during normal pregnancy in Beijing.

    Science.gov (United States)

    Li, Aiwei; Yang, Shuo; Zhang, Jie; Qiao, Rui

    2017-11-01

    To observe the changes of complete blood count (CBC) parameters during pregnancy and establish appropriate reference intervals for healthy pregnant women. Healthy pregnant women took the blood tests at all trimesters. All blood samples were processed on Sysmex XE-2100. The following CBC parameters were analyzed: red blood cell count (RBC), hemoglobin (Hb), hematocrit (Hct), mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC), red blood cell distribution width (RDW), platelet count (PLT), mean platelet volume (MPV), platelet distribution width (PDW), white blood cell count (WBC), and leukocyte differential count. Reference intervals were established using the 2.5th and 97.5th percentile of the distribution. Complete blood count parameters showed dynamic changes during trimesters. RBC, Hb, Hct declined at trimester 1, reaching their lowest point at trimester 2, and began to rise again at trimester 3. WBC, neutrophil count (Neut), monocyte count (MONO), RDW, and PDW went up from trimester 1 to trimester 3. On the contrary, MCHC, lymphocyte count (LYMPH), PLT, and MPV gradually descended during pregnancy. There were statistical significances in all CBC parameters between pregnant women and normal women, regardless of the trimesters (Ppregnancy) as follows: RBC 4.50 vs 3.94×10 12 /L, Hb 137 vs 120 g/L, WBC 5.71 vs 9.06×10 9 /L, LYMPH% 32.2 vs 18.0, Neut% 58.7 vs 75.0, and PLT 251 vs 202×10 9 /L. The changes of CBC parameters during pregnancy are described, and reference intervals for Beijing pregnant women are demonstrated in this study. © 2017 Wiley Periodicals, Inc.

  18. The linear parameters and the decoupling matrix for linearly coupled motion in 6 dimensional phase space

    International Nuclear Information System (INIS)

    Parzen, G.

    1997-01-01

    It will be shown that starting from a coordinate system where the 6 phase space coordinates are linearly coupled, one can go to a new coordinate system, where the motion is uncoupled, by means of a linear transformation. The original coupled coordinates and the new uncoupled coordinates are related by a 6 x 6 matrix, R. It will be shown that of the 36 elements of the 6 x 6 decoupling matrix R, only 12 elements are independent. A set of equations is given from which the 12 elements of R can be computed form the one period transfer matrix. This set of equations also allows the linear parameters, the β i , α i , i = 1, 3, for the uncoupled coordinates, to be computed from the one period transfer matrix

  19. Age-related changes of the diffusion tensor imaging parameters of the normal cervical spinal cord

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Kun, E-mail: medsciwangkun@126.com [Orthopedics Department, Changhai Hospital Affiliated to Second Military Medical University, Shanghai (China); Song, Qingxin; Zhang, Fan; Chen, Zhi; Hou, Canglong; Tang, Yixing [Orthopedics Department, Changhai Hospital Affiliated to Second Military Medical University, Shanghai (China); Chen, Shiyue [Radiology Department, Changhai Hospital Affiliated to Second Military Medical University, Shanghai (China); Hao, Qiang, E-mail: haoqiang@189.cn [Radiology Department, Changhai Hospital Affiliated to Second Military Medical University, Shanghai (China); Shen, Hongxing, E-mail: shenhxgk@126.com [Orthopedics Department, Changhai Hospital Affiliated to Second Military Medical University, Shanghai (China)

    2014-12-15

    Highlights: • It is essential to determine the DTI parameters in the whole CSC. • To analyze DTI parameters in all intervertebral space levels of the CSC. • To study the impact of age on these parameters in healthy Chinese subjects. • Provide better insights in factors that could bias the diagnosis of CSC pathologies. - Abstract: Background: The diffusion tensor imaging (DTI) parameters of the cervical spinal cord (CSC) changes with age. However, previous studies only examined specific CSC areas. Objectives: To analyze the DTI parameters in all intervertebral space levels of the whole normal CSC and to study the impact of age on these parameters in a Chinese population. Methods: Thirty-six healthy subjects aged 20–77 years were recruited. DTI parameters were calculated for gray matter (GM) and white matter (WM) funiculi in all the CSC intervertebral spaces (C1/2-C6/7). Age-related changes of DTI parameters were analyzed for the GM and WM funiculi. Results: Fractional anisotropy (FA) and mean diffusivity (MD) were lower in GM than in WM. MD and FA values were lower in the WM in the lower CSC compared with the upper CSC (all P < 0.05), but no difference was observed in GM. In ventral funiculi, MD increased with age, while FA decreased (all P < 0.001). In lateral and dorsal funiculi, MD and FA decreased with age (all P < 0.001). In GM, MD and FA decreased with age (all P < 0.001). Significant age-related changes were observed in FA and MD from GM and WM funiculi. FA was correlated with age in all funiculi (ventral: r = −0.733; lateral: r = −0.468; dorsal: r = −0.607; GM: r = −0.724; all P < 0.01). Conclusion: Important changes in MD and FA were observed with advancing age at all levels of CSC in Chinese patients. DTI parameters may be useful to assess CSC pathology, but the influence of age and segments need to be taken into account in diagnosis.

  20. Age-related changes of the diffusion tensor imaging parameters of the normal cervical spinal cord

    International Nuclear Information System (INIS)

    Wang, Kun; Song, Qingxin; Zhang, Fan; Chen, Zhi; Hou, Canglong; Tang, Yixing; Chen, Shiyue; Hao, Qiang; Shen, Hongxing

    2014-01-01

    Highlights: • It is essential to determine the DTI parameters in the whole CSC. • To analyze DTI parameters in all intervertebral space levels of the CSC. • To study the impact of age on these parameters in healthy Chinese subjects. • Provide better insights in factors that could bias the diagnosis of CSC pathologies. - Abstract: Background: The diffusion tensor imaging (DTI) parameters of the cervical spinal cord (CSC) changes with age. However, previous studies only examined specific CSC areas. Objectives: To analyze the DTI parameters in all intervertebral space levels of the whole normal CSC and to study the impact of age on these parameters in a Chinese population. Methods: Thirty-six healthy subjects aged 20–77 years were recruited. DTI parameters were calculated for gray matter (GM) and white matter (WM) funiculi in all the CSC intervertebral spaces (C1/2-C6/7). Age-related changes of DTI parameters were analyzed for the GM and WM funiculi. Results: Fractional anisotropy (FA) and mean diffusivity (MD) were lower in GM than in WM. MD and FA values were lower in the WM in the lower CSC compared with the upper CSC (all P < 0.05), but no difference was observed in GM. In ventral funiculi, MD increased with age, while FA decreased (all P < 0.001). In lateral and dorsal funiculi, MD and FA decreased with age (all P < 0.001). In GM, MD and FA decreased with age (all P < 0.001). Significant age-related changes were observed in FA and MD from GM and WM funiculi. FA was correlated with age in all funiculi (ventral: r = −0.733; lateral: r = −0.468; dorsal: r = −0.607; GM: r = −0.724; all P < 0.01). Conclusion: Important changes in MD and FA were observed with advancing age at all levels of CSC in Chinese patients. DTI parameters may be useful to assess CSC pathology, but the influence of age and segments need to be taken into account in diagnosis

  1. Dynamical bifurcation in a system of coupled oscillators with slowly varying parameters

    Directory of Open Access Journals (Sweden)

    Igor Parasyuk

    2016-08-01

    Full Text Available This paper deals with a fast-slow system representing n nonlinearly coupled oscillators with slowly varying parameters. We find conditions which guarantee that all omega-limit sets near the slow surface of the system are equilibria and invariant tori of all dimensions not exceeding n, the tori of dimensions less then n being hyperbolic. We show that a typical trajectory demonstrates the following transient process: while its slow component is far from the stationary points of the slow vector field, the fast component exhibits damping oscillations; afterwards, the former component enters and stays in a small neighborhood of some stationary point, and the oscillation amplitude of the latter begins to increase; eventually the trajectory is attracted by an n-dimesional invariant torus and a multi-frequency oscillatory regime is established.

  2. Adaptive observer for the joint estimation of parameters and input for a coupled wave PDE and infinite dimensional ODE system

    KAUST Repository

    Belkhatir, Zehor; Mechhoud, Sarra; Laleg-Kirati, Taous-Meriem

    2016-01-01

    This paper deals with joint parameters and input estimation for coupled PDE-ODE system. The system consists of a damped wave equation and an infinite dimensional ODE. This model describes the spatiotemporal hemodynamic response in the brain

  3. A simple way to characterize linear coupling in a storage ring

    International Nuclear Information System (INIS)

    Wolski, Andrzej

    2004-01-01

    The techniques of normal form analysis, well known in the literature, can be used to provide a straightforward characterization of linear betatron dynamics in a coupled lattice. Here, we consider both the beam distribution and the betatron oscillations in a storage ring, assuming that the beam emittances and betatron actions respectively are provided as parameters. We find that the beta functions for uncoupled motion generalize in a simple way to the coupled case. Defined in the way that we propose, the beta functions remain well behaved (positive and finite) under all circumstances, and have essentially the same physical significance for the beam size and betatron oscillations as in the uncoupled case. We discuss a technique for making direct measurements of the ratio of the coupled lattice functions at different points in the lattice

  4. Chaos in generically coupled phase oscillator networks with nonpairwise interactions

    Energy Technology Data Exchange (ETDEWEB)

    Bick, Christian; Ashwin, Peter; Rodrigues, Ana [Centre for Systems, Dynamics and Control and Department of Mathematics, University of Exeter, Exeter EX4 4QF (United Kingdom)

    2016-09-15

    The Kuramoto–Sakaguchi system of coupled phase oscillators, where interaction between oscillators is determined by a single harmonic of phase differences of pairs of oscillators, has very simple emergent dynamics in the case of identical oscillators that are globally coupled: there is a variational structure that means the only attractors are full synchrony (in-phase) or splay phase (rotating wave/full asynchrony) oscillations and the bifurcation between these states is highly degenerate. Here we show that nonpairwise coupling—including three and four-way interactions of the oscillator phases—that appears generically at the next order in normal-form based calculations can give rise to complex emergent dynamics in symmetric phase oscillator networks. In particular, we show that chaos can appear in the smallest possible dimension of four coupled phase oscillators for a range of parameter values.

  5. A quasiparticle-based multi-reference coupled-cluster method.

    Science.gov (United States)

    Rolik, Zoltán; Kállay, Mihály

    2014-10-07

    The purpose of this paper is to introduce a quasiparticle-based multi-reference coupled-cluster (MRCC) approach. The quasiparticles are introduced via a unitary transformation which allows us to represent a complete active space reference function and other elements of an orthonormal multi-reference (MR) basis in a determinant-like form. The quasiparticle creation and annihilation operators satisfy the fermion anti-commutation relations. On the basis of these quasiparticles, a generalization of the normal-ordered operator products for the MR case can be introduced as an alternative to the approach of Mukherjee and Kutzelnigg [Recent Prog. Many-Body Theor. 4, 127 (1995); Mukherjee and Kutzelnigg, J. Chem. Phys. 107, 432 (1997)]. Based on the new normal ordering any quasiparticle-based theory can be formulated using the well-known diagram techniques. Beyond the general quasiparticle framework we also present a possible realization of the unitary transformation. The suggested transformation has an exponential form where the parameters, holding exclusively active indices, are defined in a form similar to the wave operator of the unitary coupled-cluster approach. The definition of our quasiparticle-based MRCC approach strictly follows the form of the single-reference coupled-cluster method and retains several of its beneficial properties. Test results for small systems are presented using a pilot implementation of the new approach and compared to those obtained by other MR methods.

  6. Synchronizability of coupled PWL maps

    International Nuclear Information System (INIS)

    Polynikis, A.; Di Bernardo, M.; Hogan, S.J.

    2009-01-01

    In this paper we discuss the phenomenon of synchronization of chaotic systems in the case of coupled piecewise linear (PWL) continuous and discontinuous one-dimensional maps. We present numerical results for two examples of coupled systems consisting of two PWL maps. We illustrate how the coupled system can achieve synchronization and discuss the nature of the bifurcation that occurs at a critical value of the coupling strength. We then determine this critical coupling using linear stability analysis. We discuss the effects of variation of the parameters of the PWL maps on the critical coupling and present different bifurcation scenarios obtained for different sets of values of these parameters. Finally, we discuss an extension of our work to the synchronizability of networks consisting of two or more PWL maps. We show how the synchronizability of a network of PWL maps can be improved by tuning the map parameters.

  7. Inheritance of Properties of Normal and Non-Normal Distributions after Transformation of Scores to Ranks

    Science.gov (United States)

    Zimmerman, Donald W.

    2011-01-01

    This study investigated how population parameters representing heterogeneity of variance, skewness, kurtosis, bimodality, and outlier-proneness, drawn from normal and eleven non-normal distributions, also characterized the ranks corresponding to independent samples of scores. When the parameters of population distributions from which samples were…

  8. Assessing uncertainty and sensitivity of model parameterizations and parameters in WRF affecting simulated surface fluxes and land-atmosphere coupling over the Amazon region

    Science.gov (United States)

    Qian, Y.; Wang, C.; Huang, M.; Berg, L. K.; Duan, Q.; Feng, Z.; Shrivastava, M. B.; Shin, H. H.; Hong, S. Y.

    2016-12-01

    This study aims to quantify the relative importance and uncertainties of different physical processes and parameters in affecting simulated surface fluxes and land-atmosphere coupling strength over the Amazon region. We used two-legged coupling metrics, which include both terrestrial (soil moisture to surface fluxes) and atmospheric (surface fluxes to atmospheric state or precipitation) legs, to diagnose the land-atmosphere interaction and coupling strength. Observations made using the Department of Energy's Atmospheric Radiation Measurement (ARM) Mobile Facility during the GoAmazon field campaign together with satellite and reanalysis data are used to evaluate model performance. To quantify the uncertainty in physical parameterizations, we performed a 120 member ensemble of simulations with the WRF model using a stratified experimental design including 6 cloud microphysics, 3 convection, 6 PBL and surface layer, and 3 land surface schemes. A multiple-way analysis of variance approach is used to quantitatively analyze the inter- and intra-group (scheme) means and variances. To quantify parameter sensitivity, we conducted an additional 256 WRF simulations in which an efficient sampling algorithm is used to explore the multiple-dimensional parameter space. Three uncertainty quantification approaches are applied for sensitivity analysis (SA) of multiple variables of interest to 20 selected parameters in YSU PBL and MM5 surface layer schemes. Results show consistent parameter sensitivity across different SA methods. We found that 5 out of 20 parameters contribute more than 90% total variance, and first-order effects dominate comparing to the interaction effects. Results of this uncertainty quantification study serve as guidance for better understanding the roles of different physical processes in land-atmosphere interactions, quantifying model uncertainties from various sources such as physical processes, parameters and structural errors, and providing insights for

  9. Analysis of the diffusion tensor imaging parameters of a normal cervical spinal cord in a healthy population.

    Science.gov (United States)

    Wei, Liang-Feng; Wang, Shou-Sen; Zheng, Zhao-Cong; Tian, Jun; Xue, Liang

    2017-05-01

    Diffusion tensor imaging (DTI) shows great advantage in the diagnosis of brain diseases, including cervical spinal cord (CSC) disease. This study aims to obtain the normal values of the DTI parameters for a healthy population and to establish a baseline for CSC disease diagnosis using DTI. A total of 36 healthy adults were subjected to magnetic resonance imaging (MRI) for the entire CSC using the Siemens 3.0 T MR System. Sagittal DTI acquisition was carried out with a single-shot spin-echo echo-planar imaging (EPI) sequence along 12 non-collinear directions. Fractional anisotropy (FA) and apparent diffusion coefficient (ADC) values were determined at different cervical levels using a region of interest (ROI) method, following which they were correlated with parameters, like age and sex. Further, diffusion tensor tracking (DTT) was carried out to reconstruct the white matter fiber bundles of the CSC. The full and complete fiber bundle structure of a normal CSC was confirmed in both the T2-weighted and DTI images. The FA and ADC values were significantly negatively correlated with each other and showed strongly negative and positive correlations with age, respectively, but not with sex. Additionally, there was no significant difference between the FA and the ADC values at different cervical levels. The DTI technique can act as an important supplement to the conventional MRI technique for CSC observation. Moreover, the FA and ADC values can be used as sensitive parameters in the DTI study on the CSC by taking the effects of age into consideration.

  10. A non-minimally coupled quintom dark energy model on the warped DGP brane

    International Nuclear Information System (INIS)

    Nozari, K; Azizi, T; Setare, M R; Behrouz, N

    2009-01-01

    We construct a quintom dark energy model with two non-minimally coupled scalar fields, one quintessence and the other phantom field, confined to the warped Dvali-Gabadadze-Porrati (DGP) brane. We show that this model accounts for crossing of the phantom divide line in appropriate subspaces of the model parameter space. This crossing occurs for both normal and self-accelerating branches of this DGP-inspired setup.

  11. Delta space plot analysis of cardiovascular coupling in vasovagal syncope during orthostatic challenge.

    Science.gov (United States)

    Reulecke, S; Charleston-Villalobos, S; Voss, A; Gonzalez-Camarena, R; Gaitan-Gonzalez, M; Gonzalez-Hermosillo, J; Hernandez-Pacheco, G; Aljama-Corrales, T

    2016-08-01

    In this work, a graphical method to study cardiovascular coupling, called delta space plot analysis (DSPA), was introduced. The graphical representation is susceptible to be parameterized in shape and orientation. The usefulness of this technique was studied on cardiovascular data from patients with vasovagal syncope (VVS) and from controls. The study included 15 female patients diagnosed with VVS and 11 age-matched healthy female subjects. All subjects were enrolled in a head-up tilt (HUT) test, breathing normally, including 5 minutes of supine position (baseline) and 18 minutes of 70° orthostatic phase. The DSPA parameters were obtained at different times during the HUT test, i.e., at baseline, early (first 5 min) and late (10-15 min) orthostatic phases. In baseline there were no considerable differences between female controls and female patients. During the late orthostatic phase, parameters from DSPA showed highly significantly (p=0.000003) reduced cardiovascular coupling in patients. Findings indicated a loss of control on cardiovascular coupling in female patients susceptible to vasovagal syncope during orthostatic challenge. In addition, this study provided promising results for a new graphical method to investigate cardiovascular coupling.

  12. Comparisons of stomatal parameters between normal and abnormal ...

    African Journals Online (AJOL)

    Jane

    2011-07-18

    Jul 18, 2011 ... plant's different parts attract more people's attention. Bougainvillea ... When this plant flowered, leaf length was divided into six stages. Normal leaves which length ..... and driving environmental change. Nature. 424: 901-908.

  13. Estimating model parameters in nonautonomous chaotic systems using synchronization

    International Nuclear Information System (INIS)

    Yang, Xiaoli; Xu, Wei; Sun, Zhongkui

    2007-01-01

    In this Letter, a technique is addressed for estimating unknown model parameters of multivariate, in particular, nonautonomous chaotic systems from time series of state variables. This technique uses an adaptive strategy for tracking unknown parameters in addition to a linear feedback coupling for synchronizing systems, and then some general conditions, by means of the periodic version of the LaSalle invariance principle for differential equations, are analytically derived to ensure precise evaluation of unknown parameters and identical synchronization between the concerned experimental system and its corresponding receiver one. Exemplifies are presented by employing a parametrically excited 4D new oscillator and an additionally excited Ueda oscillator. The results of computer simulations reveal that the technique not only can quickly track the desired parameter values but also can rapidly respond to changes in operating parameters. In addition, the technique can be favorably robust against the effect of noise when the experimental system is corrupted by bounded disturbance and the normalized absolute error of parameter estimation grows almost linearly with the cutoff value of noise strength in simulation

  14. 3j Symbols: To Normalize or Not to Normalize?

    Science.gov (United States)

    van Veenendaal, Michel

    2011-01-01

    The systematic use of alternative normalization constants for 3j symbols can lead to a more natural expression of quantities, such as vector products and spherical tensor operators. The redefined coupling constants directly equate tensor products to the inner and outer products without any additional square roots. The approach is extended to…

  15. Association of Irisin Plasma Levels with Anthropometric Parameters in Children with Underweight, Normal Weight, Overweight, and Obesity

    Directory of Open Access Journals (Sweden)

    Leticia Elizondo-Montemayor

    2017-01-01

    Full Text Available The correlations between irisin levels, physical activity, and anthropometric measurements have been extensively described in adults with considerable controversy, but little evidence about these relationships has been found in children. The objective of this study is to correlate the plasma levels of irisin in underweight, normal weight, overweight, and obese children with anthropometric parameters and physical activity levels. A cross-sample of 40 children was divided into the following groups on the basis of body mass index (BMI percentile. The correlations of plasma irisin levels with physical activity, anthropometric, and metabolic measurements were determined. Plasma irisin levels (ng/mL were lower for the underweight group (164.2 ± 5.95 than for the normal weight and obese groups (182.8 ± 5.58; p<0.05. Irisin levels correlated positively with BMI percentile (0.387, waist circumference (0.373, and fat-free mass (0.353; p<0.05, but not with body muscle mass (−0.027. After a multiple linear regression analysis, only BMI percentile (0.564; p<0.008 showed a positive correlation with irisin. Our results indicated no association with metabolic parameters. A negative correlation with physical activity was observed. Interrelationships among body components might influence irisin levels in children.

  16. Comprehensive non-dimensional normalization of gait data.

    Science.gov (United States)

    Pinzone, Ornella; Schwartz, Michael H; Baker, Richard

    2016-02-01

    Normalizing clinical gait analysis data is required to remove variability due to physical characteristics such as leg length and weight. This is particularly important for children where both are associated with age. In most clinical centres conventional normalization (by mass only) is used whereas there is a stronger biomechanical argument for non-dimensional normalization. This study used data from 82 typically developing children to compare how the two schemes performed over a wide range of temporal-spatial and kinetic parameters by calculating the coefficients of determination with leg length, weight and height. 81% of the conventionally normalized parameters had a coefficient of determination above the threshold for a statistical association (pnormalized non-dimensionally. All the conventionally normalized parameters exceeding this threshold showed a reduced association with non-dimensional normalization. In conclusion, non-dimensional normalization is more effective that conventional normalization in reducing the effects of height, weight and age in a comprehensive range of temporal-spatial and kinetic parameters. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. How strong is the strong interaction? The πNN coupling constant and the shape and normalization of np scattering cross sections

    International Nuclear Information System (INIS)

    Blomgren, J.; Olsson, N.; Rahm, J.

    2000-01-01

    The world data base on np scattering differential cross section data from 100 to 1000 MeV incident neutron energy has been reviewed. In addition, the status of the np total cross section and the pp → dπ + total cross section is discussed, as these have frequently been used to normalize np scattering data. It appears that the shapes of the largest np data sets tend to fall into two groups, with different steepness at backward angles. Also, it seems as the two major techniques for normalizing data yield incompatible results. Both these effects have consequences when using np data to determine the pion-nucleon coupling constant, g 2 πNN , which is currently under debate. (orig.)

  18. Analysis of some coplanar transmission lines: coplanar coupled lines, coplanar coupled striplines, and coplanar coupled lines with rectangular microshield

    Science.gov (United States)

    Yuan, Naichang; He, Jianguo; Yao, Demiao; Dai, Qin; Lin, Weigan

    1995-06-01

    Two types of coplanar transmission lines, rectangular microshield coplanar coupled lines (RMCCL) and coplanar coupled rectangular microshield lines (CCRML), are proposed for MMIC applications. These are developed from coplanar coupled lines (CCL) and coplanar coupled strip lines (CCS). Analytic formulas are presented for calculating the quasistatic TEM parameters of these coupled lines by means of exact conformal mapping techniques. Numerical results are also presented to illustrate the properties of these coplanar transmission lines.

  19. Comparisons of stomatal parameters between normal and abnormal ...

    African Journals Online (AJOL)

    ED), guard cell length (GCL) and guard cell width (GCW) of normal and abnormal leaf of Bougainvillea spectabilis Willd were studied. This can be useful for further research of physical mechanism of abnormal leaf. Epidermal cells were ...

  20. General hybrid projective complete dislocated synchronization with non-derivative and derivative coupling based on parameter identification in several chaotic and hyperchaotic systems

    International Nuclear Information System (INIS)

    Sun Jun-Wei; Shen Yi; Zhang Guo-Dong; Wang Yan-Feng; Cui Guang-Zhao

    2013-01-01

    According to the Lyapunov stability theorem, a new general hybrid projective complete dislocated synchronization scheme with non-derivative and derivative coupling based on parameter identification is proposed under the framework of drive-response systems. Every state variable of the response system equals the summation of the hybrid drive systems in the previous hybrid synchronization. However, every state variable of the drive system equals the summation of the hybrid response systems while evolving with time in our method. Complete synchronization, hybrid dislocated synchronization, projective synchronization, non-derivative and derivative coupling, and parameter identification are included as its special item. The Lorenz chaotic system, Rössler chaotic system, memristor chaotic oscillator system, and hyperchaotic Lü system are discussed to show the effectiveness of the proposed methods. (general)

  1. Observations of the azimuthal dependence of normal mode coupling below 4 mHz at the South Pole and its nearby stations: Insights into the anisotropy beneath the Transantarctic Mountains

    Science.gov (United States)

    Hu, Xiao Gang

    2016-08-01

    Normal mode coupling pair 0S26-0T26 and 0S27-0T27 are significantly present at the South Pole station QSPA after the 2011/03/11 Mw9.1 Tohoku earthquake. In an attempt to determine the mechanisms responsible for the coupling pairs, I first investigate mode observations at 43 stations distributed along the polar great-circle path for the earthquake and observations at 32 Antarctic stations. I rule out the effect of Earth's rotation as well as the effect of global large-scale lateral heterogeneity, but argue instead for the effect of small-scale local azimuthal anisotropy in a depth extent about 300 km. The presence of quasi-Love waveform in 2-5 mHz at QSPA and its nearby stations confirms the predication. Secondly, I analyze normal mode observations at the South Pole location after 28 large earthquakes from 1998 to 2015. The result indicates that the presence of the mode coupling is azimuthal dependent, which is related to event azimuths in -46° to -18°. I also make a comparison between the shear-wave splitting measurements of previous studies and the mode coupling observations of this study, suggesting that their difference can be explained by a case that the anisotropy responsible for the mode coupling is not just below the South Pole location but located below region close to the Transantarctic Mountains (TAM). Furthermore, more signals of local azimuthal anisotropy in normal-mode observations at QSPA and SBA, such as coupling of 0S12-0T11 and vertical polarization anomaly for 0T10, confirms the existence of deep anisotropy close to TAM, which may be caused by asthenospheric mantle flow and edge convection around cratonic keel of TAM.

  2. Center manifolds, normal forms and bifurcations of vector fields with application to coupling between periodic and steady motions

    Science.gov (United States)

    Holmes, Philip J.

    1981-06-01

    We study the instabilities known to aeronautical engineers as flutter and divergence. Mathematically, these states correspond to bifurcations to limit cycles and multiple equilibrium points in a differential equation. Making use of the center manifold and normal form theorems, we concentrate on the situation in which flutter and divergence become coupled, and show that there are essentially two ways in which this is likely to occur. In the first case the system can be reduced to an essential model which takes the form of a single degree of freedom nonlinear oscillator. This system, which may be analyzed by conventional phase-plane techniques, captures all the qualitative features of the full system. We discuss the reduction and show how the nonlinear terms may be simplified and put into normal form. Invariant manifold theory and the normal form theorem play a major role in this work and this paper serves as an introduction to their application in mechanics. Repeating the approach in the second case, we show that the essential model is now three dimensional and that far more complex behavior is possible, including nonperiodic and ‘chaotic’ motions. Throughout, we take a two degree of freedom system as an example, but the general methods are applicable to multi- and even infinite degree of freedom problems.

  3. The role of Rashba spin-orbit coupling in valley-dependent transport of Dirac fermions

    Energy Technology Data Exchange (ETDEWEB)

    Hasanirok, Kobra; Mohammadpour, Hakimeh

    2017-01-01

    At this work, spin- and valley-dependent electron transport through graphene and silicene layers are studied in the presence of Rashba spin- orbit coupling. We find that the transport properties of the related ferromagnetic/normal/ferromagnetic structure depend on the relevant parameters. A fully valley- and spin- polarized current is obtained. As another result, Rashba spin-orbit interaction plays important role in controlling the transmission characteristics.

  4. Normal modes of weak colloidal gels

    Science.gov (United States)

    Varga, Zsigmond; Swan, James W.

    2018-01-01

    The normal modes and relaxation rates of weak colloidal gels are investigated in calculations using different models of the hydrodynamic interactions between suspended particles. The relaxation spectrum is computed for freely draining, Rotne-Prager-Yamakawa, and accelerated Stokesian dynamics approximations of the hydrodynamic mobility in a normal mode analysis of a harmonic network representing several colloidal gels. We find that the density of states and spatial structure of the normal modes are fundamentally altered by long-ranged hydrodynamic coupling among the particles. Short-ranged coupling due to hydrodynamic lubrication affects only the relaxation rates of short-wavelength modes. Hydrodynamic models accounting for long-ranged coupling exhibit a microscopic relaxation rate for each normal mode, λ that scales as l-2, where l is the spatial correlation length of the normal mode. For the freely draining approximation, which neglects long-ranged coupling, the microscopic relaxation rate scales as l-γ, where γ varies between three and two with increasing particle volume fraction. A simple phenomenological model of the internal elastic response to normal mode fluctuations is developed, which shows that long-ranged hydrodynamic interactions play a central role in the viscoelasticity of the gel network. Dynamic simulations of hard spheres that gel in response to short-ranged depletion attractions are used to test the applicability of the density of states predictions. For particle concentrations up to 30% by volume, the power law decay of the relaxation modulus in simulations accounting for long-ranged hydrodynamic interactions agrees with predictions generated by the density of states of the corresponding harmonic networks as well as experimental measurements. For higher volume fractions, excluded volume interactions dominate the stress response, and the prediction from the harmonic network density of states fails. Analogous to the Zimm model in polymer

  5. GEYSER/TONUS: a coupled multi-D lumped parameter code for reactor thermal hydraulics analysis in case of severe accidents

    Energy Technology Data Exchange (ETDEWEB)

    Petit, M.; Durin, M.; Gauvain, J.

    1995-12-31

    The safety requirements for future light water reactors include accounting for severe accidents in the design process. The design must now include mitigation features to limit pressure and temperature inside the building. Hydrogen concentration is also a major issue for severe accidents. Modelling the thermal hydraulics inside the containment requires the description of complex phenomena such as condensation, stratification, transport of gases and aerosols, heat transfers. The effect of mitigation systems will increase the heterogeneities in the building, and most of those phenomena can be coupled. The GEYSER/TONUS multi-dimensional computer code is under development at CEA Saclay to model this complex situation. It allow the coupling of parts of the containment described in a lumped parameter manner, together with meshed parts. Emphasis is put on the numerical methods used to solve the transient problem, and physical models of classical lumped parameters codes will be adapted for the spatially described zones. The code is developed in the environment of the CASTEM 2000/TRIO EF system which allows to construct sophisticated applications based upon it. (J.S.). 22 refs., 1 fig.

  6. GEYSER/TONUS: a coupled multi-D lumped parameter code for reactor thermal hydraulics analysis in case of severe accidents

    International Nuclear Information System (INIS)

    Petit, M.; Durin, M.; Gauvain, J.

    1995-01-01

    The safety requirements for future light water reactors include accounting for severe accidents in the design process. The design must now include mitigation features to limit pressure and temperature inside the building. Hydrogen concentration is also a major issue for severe accidents. Modelling the thermal hydraulics inside the containment requires the description of complex phenomena such as condensation, stratification, transport of gases and aerosols, heat transfers. The effect of mitigation systems will increase the heterogeneities in the building, and most of those phenomena can be coupled. The GEYSER/TONUS multi-dimensional computer code is under development at CEA Saclay to model this complex situation. It allow the coupling of parts of the containment described in a lumped parameter manner, together with meshed parts. Emphasis is put on the numerical methods used to solve the transient problem, and physical models of classical lumped parameters codes will be adapted for the spatially described zones. The code is developed in the environment of the CASTEM 2000/TRIO EF system which allows to construct sophisticated applications based upon it. (J.S.). 22 refs., 1 fig

  7. Acquired Immune Deficiency Syndrome: A Preliminary Examination of the Effects on Gay Couples and Coupling.

    Science.gov (United States)

    Carl, Douglas

    1986-01-01

    The Acquired Immune Deficiency Syndrome (AIDS) epidemic significantly influences attitudes about life and lifestyles. Homosexuals have to give increased consideration to coupling, the nature of coupled relationships, sex and intimacy, and death long before the normal time. Discusses impact of AIDS on the early stages of gay coupling and on the…

  8. Study of Baffle Boundary and System Parameters on Liquid-Solid Coupling Vibration of Rectangular Liquid-Storage Structure

    Directory of Open Access Journals (Sweden)

    Wei Jing

    2016-01-01

    Full Text Available In order to study the vibration problem of liquid-solid coupling of rectangular liquid-storage structure with horizontal elastic baffle, ignoring the influence of surface gravity wave, two different velocity potential functions corresponding to the liquid above and below the elastic baffle are assumed; based on the theory of mathematical equation and energy method, the formulas of basic frequency of liquid-solid coupling vibration system are derived, the baffle joined to the tank wall with 3 kinds of boundary conditions, namely, four edges simply supported, two opposite edges clamped and two opposite edges simply supported, and four edges clamped; the influence rules of baffle length-width ratio, the ratio of baffle height to liquid level, baffle elastic modulus, baffle density, baffle thickness, and liquid density on the coupling vibration performance are studied. The results show that the frequency of the clamped boundary is minimum; the influences of baffle length-width ratio and relative height on the basic frequency are much greater than that of the other system parameters; the relation between baffle length-width ratio and the frequency is exponential, while baffle relative height has a parabola relation with the frequency; the larger the baffle length-width ratio, the closer the baffle to the liquid level; the coupling frequency will be reduced more obviously.

  9. Inverse models of plate coupling and mantle rheology: Towards a direct link between large-scale mantle flow and mega thrust earthquakes

    Science.gov (United States)

    Gurnis, M.; Ratnaswamy, V.; Stadler, G.; Rudi, J.; Liu, X.; Ghattas, O.

    2017-12-01

    We are developing high-resolution inverse models for plate motions and mantle flow to recover the degree of mechanical coupling between plates and the non-linear and plastic parameters governing viscous flow within the lithosphere and mantle. We have developed adjoint versions of the Stokes equations with fully non-linear viscosity with a cost function that measures the fit with plate motions and with regional constrains on effective upper mantle viscosity (from post-glacial rebound and post seismic relaxation). In our earlier work, we demonstrate that when the temperature field is known, the strength of plate boundaries, the yield stress and strain rate exponent in the upper mantle are recoverable. As the plate boundary coupling drops below a threshold, the uncertainty of the inferred parameters increases due to insensitivity of plate motion to plate coupling. Comparing the trade-offs between inferred rheological parameters found from a Gaussian approximation of the parameter distribution and from MCMC sampling, we found that the Gaussian approximation—which is significantly cheaper to compute—is often a good approximation. We have extended our earlier method such that we can recover normal and shear stresses within the zones determining the interface between subducting and over-riding plates determined through seismic constraints (using the Slab1.0 model). We find that those subduction zones with low seismic coupling correspond with low inferred values of mechanical coupling. By fitting plate motion data in the optimization scheme, we find that Tonga and the Marianas have the lowest values of mechanical coupling while Chile and Sumatra the highest, among the subduction zones we have studies. Moreover, because of the nature of the high-resolution adjoint models, the subduction zones with the lowest coupling have back-arc extension. Globally we find that the non-linear stress-strain exponent, n, is about 3.0 +/- 0.25 (in the upper mantle and lithosphere) and a

  10. A New MRI-Based Model of Heart Function with Coupled Hemodynamics and Application to Normal and Diseased Canine Left Ventricles

    Science.gov (United States)

    Choi, Young Joon; Constantino, Jason; Vedula, Vijay; Trayanova, Natalia; Mittal, Rajat

    2015-01-01

    A methodology for the simulation of heart function that combines an MRI-based model of cardiac electromechanics (CE) with a Navier–Stokes-based hemodynamics model is presented. The CE model consists of two coupled components that simulate the electrical and the mechanical functions of the heart. Accurate representations of ventricular geometry and fiber orientations are constructed from the structural magnetic resonance and the diffusion tensor MR images, respectively. The deformation of the ventricle obtained from the electromechanical model serves as input to the hemodynamics model in this one-way coupled approach via imposed kinematic wall velocity boundary conditions and at the same time, governs the blood flow into and out of the ventricular volume. The time-dependent endocardial surfaces are registered using a diffeomorphic mapping algorithm, while the intraventricular blood flow patterns are simulated using a sharp-interface immersed boundary method-based flow solver. The utility of the combined heart-function model is demonstrated by comparing the hemodynamic characteristics of a normal canine heart beating in sinus rhythm against that of the dyssynchronously beating failing heart. We also discuss the potential of coupled CE and hemodynamics models for various clinical applications. PMID:26442254

  11. A hierarchical cluster analysis of normal-tension glaucoma using spectral-domain optical coherence tomography parameters.

    Science.gov (United States)

    Bae, Hyoung Won; Ji, Yongwoo; Lee, Hye Sun; Lee, Naeun; Hong, Samin; Seong, Gong Je; Sung, Kyung Rim; Kim, Chan Yun

    2015-01-01

    Normal-tension glaucoma (NTG) is a heterogenous disease, and there is still controversy about subclassifications of this disorder. On the basis of spectral-domain optical coherence tomography (SD-OCT), we subdivided NTG with hierarchical cluster analysis using optic nerve head (ONH) parameters and retinal nerve fiber layer (RNFL) thicknesses. A total of 200 eyes of 200 NTG patients between March 2011 and June 2012 underwent SD-OCT scans to measure ONH parameters and RNFL thicknesses. We classified NTG into homogenous subgroups based on these variables using a hierarchical cluster analysis, and compared clusters to evaluate diverse NTG characteristics. Three clusters were found after hierarchical cluster analysis. Cluster 1 (62 eyes) had the thickest RNFL and widest rim area, and showed early glaucoma features. Cluster 2 (60 eyes) was characterized by the largest cup/disc ratio and cup volume, and showed advanced glaucomatous damage. Cluster 3 (78 eyes) had small disc areas in SD-OCT and were comprised of patients with significantly younger age, longer axial length, and greater myopia than the other 2 groups. A hierarchical cluster analysis of SD-OCT scans divided NTG patients into 3 groups based upon ONH parameters and RNFL thicknesses. It is anticipated that the small disc area group comprised of younger and more myopic patients may show unique features unlike the other 2 groups.

  12. Comparison of Corneal Deformation Parameters in Keratoconic and Normal Eyes Using a Non-contact Tonometer With a Dynamic Ultra-High-Speed Scheimpflug Camera.

    Science.gov (United States)

    Mercer, Ryan N; Waring, George O; Roberts, Cynthia J; Jhanji, Vishal; Wang, Yumeng; Filho, Joao S; Hemings, Richard A; Rocha, Karolinne M

    2017-09-01

    To evaluate and compare biomechanical properties in normal and keratoconic eyes using a dynamic ultra-high-speed Scheimpflug camera equipped with a non-contact tonometer (Corvis ST; Oculus Optikgeräte GmbH, Wetzlar, Germany). This retrospective study evaluated 89 eyes (47 normal, 42 keratoconic) and a validation arm of 72 eyes (33 normal, 39 keratoconic) using the Corvis ST. A diagnosis of keratoconus was established by clinical findings confirmed by topography and tomography. Dynamic corneal response parameters collected by the Corvis ST (A1 velocity, deformation amplitude [DA], DA Ratio Max 1mm, and Max Inverse Radius) and a stiffness parameter at first applanation (SP-A1) were incorporated into a novel logistic regression equation (DCR index). Area under the receiver operating curve (AUC) was used to assess the sensitivity and specificity of the DCR index. DA, DA Ratio Max 1mm, Max Inverse Radius, and SP-A1 were each found to be statistically significantly different between normal and keratoconic eyes (Mann-Whitney test [independent samples]; P = .0077, < .0001, < .0001, and < .0001, respectively; significance level: P < .05). DCR index demonstrated high sensitivity, specificity, and overall correct detection rate (92.9%, 95.7%, and 94.4%, respectively; AUC = 98.5). The sensitivity and overall correct detection rate improved when eyes with Topographical Keratoconus Classification grades (TKC) greater than 0 were reevaluated (from 92.9% to 96.6% and from 94.4% to 96.1%, respectively). Combining multiple biomechanical parameters (A1 velocity, DA, DA Ratio Max 1mm, Max Inverse Radius, and SP-A1) into a logistic regression equation allows for high sensitivity and specificity for distinguishing keratoconic from normal eyes. [J Refract Surg. 2017;33(9):625-631.]. Copyright 2017, SLACK Incorporated.

  13. Comparative analysis of morphological and topometric parameters of lumbar spine in normal state and in degenerative-dystrophic changes

    Directory of Open Access Journals (Sweden)

    Anisimova Е.А.

    2015-12-01

    Full Text Available Objective: to carry out comparative analysis and identify patterns of topographic variation patterns of lumbar spine in normal and degenerative changes. Material and methods. CT- and MRT-grams for men and women I (M1-22-35 years; W — 21-35 years and II (M2-36-60 years; W2-36-55 years periods of mature age with no signs of trauma, scoliosis and systemic diseases of the spine (n=140 and CT- and MRT-grams in patients with revealed degenerative changes in the lumbar spine degree II-III (n=120. The pictures with digital PACS system measure the height of the vertebral body, intervertebral disc height, vertical, horizontal diameter and the area of intervertebral foramen. Results. The height of the lumbar vertebral bodies normally increased from27,90±0,38mmatthe level of L, to 29,93±0,33 mm Lm, and then decreased to 24,35±0,27 mm at level L^, in osteochondrosis it is statistically significantly lower at all levels on average by 20%. The height of the intervertebral disc with osteochondrosis below at all levels by an average of 25% of its value in the range 5,27±0,19 to 6,13±0,17mm, while the normal disc height varies from 6,88±030 to 9,36±0,28mm. The area of intervertebral holes normally ranging from 103,29±5,78 to 127,99±5,92mm2, with osteochondrosis aperture area is reduced to a greater extent by decreasing the vertical diameter in comparison with the horizontal. Conclusion. For the studied parameters characteristic topographic variability has been determined. The maximum values parameters are marked at the top of the lumbar lordosis, at chest height, lumbar and lumbosacral junctions sizes are reduced. In osteochondrosis the intervertebral disc height and the height of lumbar vertebral bodies are reduced; intervertebral foramina area is also reduced to a greater extent by reducing the vertical diameter than the horizontal one.

  14. Quantum oscillation amplification of the ultrasound polarization parameters in tungsten during coupling with the spiral wave

    International Nuclear Information System (INIS)

    Gudkov, V.V.; Zhevstovskikh, I.V.; Zimbovskaya, N.A.; Okulov, V.I.

    1991-01-01

    The quantum oscillations are studied of ellipcity, the rotation angle of the ultrasound polarization plane, the velocity and absorption of waves polarized circularly at the 196 MHz frequency in a tungsten single crystal in magnetic field of 30-80 kOe at temperature 1,8 K. The oscillation amplitudes of ellipticity and rotation angle of the ultrasound polarization plane beyond the Doppler-shifted cyclotron resonance are found to vary nonmonotonously with field and to be large enough, so that they are not described by the simple expressions for high fields. The explanation for the oscillation amplification of the polarization parameters is given within the theory involving the ultrasound-spiral wave coupling predicted by Kaner and Skobov. The quantitative comparison in details demonstrates a good agreement in the theory and experimental data and allows to find the numerical values of new parameters characterizing the Fermi surface, electron relaxation frequency, and deformation potential

  15. Exact scaling solutions in normal and Brans-Dicke models of dark energy

    International Nuclear Information System (INIS)

    Arias, Olga; Gonzalez, Tame; Leyva, Yoelsy; Quiros, Israel

    2003-01-01

    A linear relationship between the Hubble expansion parameter and the time derivative of the scalar field is explored in order to derive exact cosmological, attractor-like solutions, both in Einstein's theory and in Brans-Dicke gravity with two fluids: a background fluid of ordinary matter and a self-interacting scalar-field fluid accounting for the dark energy in the universe. A priori assumptions about the functional form of the self-interaction potential or about the scale factor behaviour are not necessary. These are obtained as outputs of the assumed relationship between the Hubble parameter and the time derivative of the scalar field. A parametric class of scaling quintessence models given by a self-interaction potential of a peculiar form, a combination of exponentials with dependence on the barotropic index of the background fluid, arises. Both normal quintessence described by a self-interacting scalar field minimally coupled to gravity and Brans-Dicke quintessence given by a non-minimally coupled scalar field are then analysed and the relevance of these models for the description of the cosmic evolution is discussed in some detail. The stability of these solutions is also briefly commented on

  16. Coupled-resonator optical waveguides

    DEFF Research Database (Denmark)

    Raza, Søren; Grgic, Jure; Pedersen, Jesper Goor

    2010-01-01

    Coupled-resonator optical waveguides hold potential for slow-light propagation of optical pulses. The dispersion properties may adequately be analyzed within the framework of coupled-mode theory. We extend the standard coupled-mode theory for such structures to also include complex-valued paramet......Coupled-resonator optical waveguides hold potential for slow-light propagation of optical pulses. The dispersion properties may adequately be analyzed within the framework of coupled-mode theory. We extend the standard coupled-mode theory for such structures to also include complex...

  17. Calculation, normalization and perturbation of quasinormal modes in coupled cavity-waveguide systems

    DEFF Research Database (Denmark)

    Kristensen, Philip Trøst; de Lasson, Jakob Rosenkrantz; Gregersen, Niels

    2014-01-01

    of divergent series to provide a framework for modeling of optical phenomena in such coupled cavity-waveguide systems. As an example, we apply the framework to study perturbative changes in the resonance frequency and Q value of a photonic crystal cavity coupled to a defect waveguide....

  18. Numerical Evaluation and Optimization of Multiple Hydraulically Fractured Parameters Using a Flow-Stress-Damage Coupled Approach

    Directory of Open Access Journals (Sweden)

    Yu Wang

    2016-04-01

    Full Text Available Multiple-factor analysis and optimization play a critical role in the the ability to maximizethe stimulated reservoir volume (SRV and the success of economic shale gas production. In this paper, taking the typical continental naturally fractured silty laminae shale in China as anexample, response surface methodology (RSM was employed to optimize multiple hydraulic fracturing parameters to maximize the stimulated area in combination with numerical modeling based on the coupled flow-stress-damage (FSD approach. This paper demonstrates hydraulic fracturing effectiveness by defining two indicesnamelythe stimulated reservoir area (SRA and stimulated silty laminae area (SLA. Seven uncertain parameters, such as laminae thickness, spacing, dip angle, cohesion, internal friction angle (IFA, in situ stress difference (SD, and an operational parameter-injection rate (IR with a reasonable range based on silty Laminae Shale, Southeastern Ordos Basin, are used to fit a response of SRA and SLA as the objective function, and finally identity the optimum design under the parameters based on simultaneously maximizingSRA and SLA. In addition, asensitivity analysis of the influential factors is conducted for SRA and SLA. The aim of the study is to improve the artificial ability to control the fracturing network by means of multi-parameteroptimization. This work promises to provide insights into the effective exploitation of unconventional shale gas reservoirs via optimization of the fracturing design for continental shale, Southeastern Ordos Basin, China.

  19. Proximity-induced superconductivity in all-silicon superconductor /normal-metal junctions

    Science.gov (United States)

    Chiodi, F.; Duvauchelle, J.-E.; Marcenat, C.; Débarre, D.; Lefloch, F.

    2017-07-01

    We have realized laser-doped all-silicon superconducting (S)/normal metal (N) bilayers of tunable thickness and dopant concentration. We observed a strong reduction of the bilayers' critical temperature when increasing the normal metal thickness, a signature of the highly transparent S/N interface associated to the epitaxial sharp laser doping profile. We extracted the interface resistance by fitting with the linearized Usadel equations, demonstrating a reduction of 1 order of magnitude from previous superconductor/doped Si interfaces. In this well-controlled crystalline system we exploited the low-resistance S/N interfaces to elaborate all-silicon lateral SNS junctions with long-range proximity effect. Their dc transport properties, such as the critical and retrapping currents, could be well understood in the diffusive regime. Furthermore, this work led to the estimation of important parameters in ultradoped superconducting Si, such as the Fermi velocity, the coherence length, or the electron-phonon coupling constant, fundamental to conceive all-silicon superconducting electronics.

  20. An iterative procedure for obtaining maximum-likelihood estimates of the parameters for a mixture of normal distributions

    Science.gov (United States)

    Peters, B. C., Jr.; Walker, H. F.

    1978-01-01

    This paper addresses the problem of obtaining numerically maximum-likelihood estimates of the parameters for a mixture of normal distributions. In recent literature, a certain successive-approximations procedure, based on the likelihood equations, was shown empirically to be effective in numerically approximating such maximum-likelihood estimates; however, the reliability of this procedure was not established theoretically. Here, we introduce a general iterative procedure, of the generalized steepest-ascent (deflected-gradient) type, which is just the procedure known in the literature when the step-size is taken to be 1. We show that, with probability 1 as the sample size grows large, this procedure converges locally to the strongly consistent maximum-likelihood estimate whenever the step-size lies between 0 and 2. We also show that the step-size which yields optimal local convergence rates for large samples is determined in a sense by the 'separation' of the component normal densities and is bounded below by a number between 1 and 2.

  1. Adaptive observer for the joint estimation of parameters and input for a coupled wave PDE and infinite dimensional ODE system

    KAUST Repository

    Belkhatir, Zehor

    2016-08-05

    This paper deals with joint parameters and input estimation for coupled PDE-ODE system. The system consists of a damped wave equation and an infinite dimensional ODE. This model describes the spatiotemporal hemodynamic response in the brain and the objective is to characterize brain regions using functional Magnetic Resonance Imaging (fMRI) data. For this reason, we propose an adaptive estimator and prove the asymptotic convergence of the state, the unknown input and the unknown parameters. The proof is based on a Lyapunov approach combined with a priori identifiability assumptions. The performance of the proposed observer is illustrated through some simulation results.

  2. Towards the blackbox computation of magnetic exchange coupling parameters in polynuclear transition-metal complexes: theory, implementation, and application.

    Science.gov (United States)

    Phillips, Jordan J; Peralta, Juan E

    2013-05-07

    We present a method for calculating magnetic coupling parameters from a single spin-configuration via analytic derivatives of the electronic energy with respect to the local spin direction. This method does not introduce new approximations beyond those found in the Heisenberg-Dirac Hamiltonian and a standard Kohn-Sham Density Functional Theory calculation, and in the limit of an ideal Heisenberg system it reproduces the coupling as determined from spin-projected energy-differences. Our method employs a generalized perturbative approach to constrained density functional theory, where exact expressions for the energy to second order in the constraints are obtained by analytic derivatives from coupled-perturbed theory. When the relative angle between magnetization vectors of metal atoms enters as a constraint, this allows us to calculate all the magnetic exchange couplings of a system from derivatives with respect to local spin directions from the high-spin configuration. Because of the favorable computational scaling of our method with respect to the number of spin-centers, as compared to the broken-symmetry energy-differences approach, this opens the possibility for the blackbox exploration of magnetic properties in large polynuclear transition-metal complexes. In this work we outline the motivation, theory, and implementation of this method, and present results for several model systems and transition-metal complexes with a variety of density functional approximations and Hartree-Fock.

  3. Current transfer between superconductor and normal layer in coated conductors

    International Nuclear Information System (INIS)

    Takacs, S

    2007-01-01

    The current transfer between superconducting stripes coated with normal layer is examined in detail. It is shown that, in present YBCO coated conductors with striations, a considerable amount of the current flowing in the normal layer is not transferred into the superconducting stripes. This effect also influences the eddy currents and the coupling currents between the stripes. The effective resistance for the coupling currents is calculated. The maximum allowable twist length of such a striated structure is given, which ensures lower losses than in the corresponding normal conductor of the same volume as the total YBCO cable (including substrate, buffer layer, superconductor and normal coating). In addition, a new simple method for determining the transfer resistance between superconducting and normal parts is proposed

  4. Superconducting and Normal State Properties of OsB2*

    Science.gov (United States)

    Singh, Yogesh; Niazi, A.; Zong, X.; Suh, B. J.; Vannette, M. W.; Prozorov, R.; Johnston, D. C.

    2007-03-01

    OsB2 is a layered superhard metallic material that was found to superconduct below Tc= 2.1 K.^1 We report the first detailed measurements of the static and dynamic magnetic susceptibilities χ, electrical resistivity, heat capacity Cp, penetration depth, and ^11B NMR on OsB2 to characterize its superconducting and normal state properties. The results confirm that OsB2 is a bulk superconductor below Tc= 2.1 K@. Its properties can be described by a close to weak-coupling s-wave BCS model with an electron-phonon coupling constant λ= 0.4--0.5, δ(0)/(kBTc) 1.9, a small Ginzburg-Landau parameter κ of order 5 or less, and a small zero-temperature critical magnetic field of roughly 500 Oe. The ^11B NMR measurements in the normal state show a nuclear spin-lattice relaxation time T1= 2.1 s at room temperature and a Korringa law with T1T = 610 s.K at lower T, and a correspondingly small T-independent Knight shift. These results indicate a small s character of the conduction electron wave function at the B site at the Fermi level. Our results will be compared to corresponding data for MgB2.1. J. K. Vandenberg et al., Mater. Res. Bull. 10, 889 (1975).^*Supported by the USDOE under Contract No. W-7405-Eng-82. Permanent address: Dept. Phys., The Catholic Univ. Korea.

  5. Coupled oscillators with parity-time symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Tsoy, Eduard N., E-mail: etsoy@uzsci.net

    2017-02-05

    Different models of coupled oscillators with parity-time (PT) symmetry are studied. Hamiltonian functions for two and three linear oscillators coupled via coordinates and accelerations are derived. Regions of stable dynamics for two coupled oscillators are obtained. It is found that in some cases, an increase of the gain-loss parameter can stabilize the system. A family of Hamiltonians for two coupled nonlinear oscillators with PT-symmetry is obtained. An extension to high-dimensional PT-symmetric systems is discussed. - Highlights: • A generalization of a Hamiltonian system of linear coupled oscillators with the parity-time (PT) symmetry is suggested. • It is found that an increase of the gain-loss parameter can stabilize the system. • A family of Hamiltonian functions for two coupled nonlinear oscillators with PT-symmetry is obtained.

  6. Stability Switches, Hopf Bifurcations, and Spatio-temporal Patterns in a Delayed Neural Model with Bidirectional Coupling

    Science.gov (United States)

    Song, Yongli; Zhang, Tonghua; Tadé, Moses O.

    2009-12-01

    The dynamical behavior of a delayed neural network with bi-directional coupling is investigated by taking the delay as the bifurcating parameter. Some parameter regions are given for conditional/absolute stability and Hopf bifurcations by using the theory of functional differential equations. As the propagation time delay in the coupling varies, stability switches for the trivial solution are found. Conditions ensuring the stability and direction of the Hopf bifurcation are determined by applying the normal form theory and the center manifold theorem. We also discuss the spatio-temporal patterns of bifurcating periodic oscillations by using the symmetric bifurcation theory of delay differential equations combined with representation theory of Lie groups. In particular, we obtain that the spatio-temporal patterns of bifurcating periodic oscillations will alternate according to the change of the propagation time delay in the coupling, i.e., different ranges of delays correspond to different patterns of neural activities. Numerical simulations are given to illustrate the obtained results and show the existence of bursts in some interval of the time for large enough delay.

  7. Parameter Estimation

    DEFF Research Database (Denmark)

    Sales-Cruz, Mauricio; Heitzig, Martina; Cameron, Ian

    2011-01-01

    of optimisation techniques coupled with dynamic solution of the underlying model. Linear and nonlinear approaches to parameter estimation are investigated. There is also the application of maximum likelihood principles in the estimation of parameters, as well as the use of orthogonal collocation to generate a set......In this chapter the importance of parameter estimation in model development is illustrated through various applications related to reaction systems. In particular, rate constants in a reaction system are obtained through parameter estimation methods. These approaches often require the application...... of algebraic equations as the basis for parameter estimation.These approaches are illustrated using estimations of kinetic constants from reaction system models....

  8. Suppression of seizures based on the multi-coupled neural mass model.

    Science.gov (United States)

    Cao, Yuzhen; Ren, Kaili; Su, Fei; Deng, Bin; Wei, Xile; Wang, Jiang

    2015-10-01

    Epilepsy is one of the most common serious neurological disorders, which affects approximately 1% of population in the world. In order to effectively control the seizures, we propose a novel control methodology, which combines the feedback linearization control (FLC) with the underlying mechanism of epilepsy, to achieve the suppression of seizures. The three coupled neural mass model is constructed to study the property of the electroencephalographs (EEGs). Meanwhile, with the model we research on the propagation of epileptiform waves and the synchronization of populations, which are taken as the foundation of our control method. Results show that the proposed approach not only yields excellent performances in clamping the pathological spiking patterns to the reference signals derived under the normal state but also achieves the normalization of the pathological parameter, where the parameters are estimated from EEGs with Unscented Kalman Filter. The specific contribution of this paper is to treat the epilepsy from its pathogenesis with the FLC, which provides critical theoretical basis for the clinical treatment of neurological disorders.

  9. In vitro fertilisation when normal sperm morphology is less than ...

    African Journals Online (AJOL)

    1990-08-18

    Aug 18, 1990 ... couples where the husband's normal sperm morphology was less than 15% ... gonadotrophin (HCG) 5000 ID was given when the average size of three ... have a normal sperm count and motility but have lower than normal ...

  10. A preliminary study for investigating idiopatic normal pressure hydrocephalus by means of statistical parameters classification of intracranial pressure recordings.

    Science.gov (United States)

    Calisto, A; Bramanti, A; Galeano, M; Angileri, F; Campobello, G; Serrano, S; Azzerboni, B

    2009-01-01

    The objective of this study is to investigate Id-iopatic Normal Pressure Hydrocephalus (INPH) through a multidimensional and multiparameter analysis of statistical data obtained from accurate analysis of Intracranial Pressure (ICP) recordings. Such a study could permit to detect new factors, correlated with therapeutic response, which are able to validate a predicting significance for infusion test. The algorithm developed by the authors computes 13 ICP parameter trends on each of the recording, afterward 9 statistical information from each trend is determined. All data are transferred to the datamining software WEKA. According to the exploited feature-selection techniques, the WEKA has revealed that the most significant statistical parameter is the maximum of Single-Wave-Amplitude: setting a 27 mmHg threshold leads to over 90% of correct classification.

  11. Tribological characterization of the drill collars and casing friction couples

    Science.gov (United States)

    Ripeanu, R. G.; Badicioiu, M.; Caltaru, M.; Dinita, A.; Laudacescu, E.

    2018-01-01

    Drill collars are special pipes used in the drilling of wells for weighting the drill bit, enabling it to drill through the rock. In the drilling process, the drill collars are exposed to an intensive wear due to friction on inner surface of casing wall. In order to evaluate the tribological behaviour of this friction couple, paper presents the drill collars parent material, reconditioned and casing pipe chemical composition, microstructures, hardness and friction tests. For friction tests were prepared samples extracted from new and reconditioned drill collars and from casing pipes and tested on a universal tribometer. Were used plane-on-disk surface friction couples and tests were conducted at two sliding speeds and three normal loads for each materials couple. Plane static partner samples were extracted from casing pipes and disks samples were extracted from new and reconditioned drill collars. Were obtained friction coefficients values and also the temperatures increasing values due to friction working tests parameters. The temperature increasing values were obtained by measuring it with an infrared thermographic camera.

  12. Comparison of malnutrition inflammation score, anthropometry and biochemical parameters in assessing the difference in protein-energy wasting between normal weight and obese patients undergoing haemodialysis.

    Science.gov (United States)

    Alipoor, Elham; Hosseinzadeh-Attar, Mohammad Javad; Mahdavi-Mazdeh, Mitra; Yaseri, Mehdi; Zahed, Narges S

    2017-07-01

    Protein-energy wasting (PEW) is prevalent in haemodialysis. Obesity is an independent risk factor of kidney insufficiency, but it is proposed to have beneficial roles in better outcomes in the final stage of disease. Better nutritional status and body reserves are among probable mechanisms, but direct examinations are limited. The present study aimed to investigate whether obese patients have preferable nutritional status compared to normal weight patients based on malnutrition inflammation score (MIS) and other PEW parameters in haemodialysis. This case-control study investigated 52 normal weight (18.5 < body mass index (BMI) < 25 kg/m 2 ) and 48 obese (BMI≥30 kg/m 2 ) patients on regular haemodialysis. PEW was assessed based on anthropometric and biochemical factors, recent weight changes, appetite, anorexia, dietary intake and MIS. Obese patients had better MIS compared with the normal weight group (P < 0.001), although varying degrees of wasting were prevalent among this group too (75% mild and 25% moderate wasting). The obese group had less significant weight loss (4.2 vs 8%) and anorexia and better appetite. However, a considerable percentage of patients in both groups showed muscle (94.6% of normal weight and 19.5% of obese) and peripheral fat tissue (89.2% of normal weight and 31.7% of obese) losses compared to the 50th percentile. Biochemical parameters were not significantly different between groups except for triglyceride (P = 0.001), transferrin and total iron-binding capacity (P = 0.028). MIS was significantly better in obese patients; however, both groups showed degrees of wasting based on MIS and other PEW parameters. Nutritional status of obese haemodialysis patients should be monitored regularly because of high risk of PEW like other BMI categories. © 2017 Dietitians Association of Australia.

  13. Automatic design of permanent magnet coupling

    International Nuclear Information System (INIS)

    Yonnet, J.-P.; Pandele, P.; Coutel, C.; Wurtz, F.

    1998-01-01

    Up to now, two main methods have been used to design permanent magnet couplings : finite element calculation, and analytical expressions of the forces between the magnets. The two methods use the same starting point, the permanent magnet coupling dimensions. The calculated parameters are the forces and the torques. The optimization of the couplings shape is generally done by using different curves describing torque variations as a function of the different geometrical parameters. We have developed a very new approach solving the reverse problem. Choosing the value of the torque, the airgap and an optimization criterium, the new method automatically calculates the size of the magnets and the ideal number of poles. It is based on a software, PASCOSMA, using an analytical model of the coupling which can be eventually corrected by a finite element method like FLUX2D. The coupling optimization is automatically made, keeping the parameters between predefined values. For a given application, it is very easy to obtain the best design, for example with the minimum magnet volume. (orig.)

  14. Quantum turbulence in superfluids with wall-clamped normal component.

    Science.gov (United States)

    Eltsov, Vladimir; Hänninen, Risto; Krusius, Matti

    2014-03-25

    In Fermi superfluids, such as superfluid (3)He, the viscous normal component can be considered to be stationary with respect to the container. The normal component interacts with the superfluid component via mutual friction, which damps the motion of quantized vortex lines and eventually couples the superfluid component to the container. With decreasing temperature and mutual friction, the internal dynamics of the superfluid component becomes more important compared with the damping and coupling effects from the normal component. As a result profound changes in superfluid dynamics are observed: the temperature-dependent transition from laminar to turbulent vortex motion and the decoupling from the reference frame of the container at even lower temperatures.

  15. Automated Land Cover Change Detection and Mapping from Hidden Parameter Estimates of Normalized Difference Vegetation Index (NDVI) Time-Series

    Science.gov (United States)

    Chakraborty, S.; Banerjee, A.; Gupta, S. K. S.; Christensen, P. R.; Papandreou-Suppappola, A.

    2017-12-01

    Multitemporal observations acquired frequently by satellites with short revisit periods such as the Moderate Resolution Imaging Spectroradiometer (MODIS), is an important source for modeling land cover. Due to the inherent seasonality of the land cover, harmonic modeling reveals hidden state parameters characteristic to it, which is used in classifying different land cover types and in detecting changes due to natural or anthropogenic factors. In this work, we use an eight day MODIS composite to create a Normalized Difference Vegetation Index (NDVI) time-series of ten years. Improved hidden parameter estimates of the nonlinear harmonic NDVI model are obtained using the Particle Filter (PF), a sequential Monte Carlo estimator. The nonlinear estimation based on PF is shown to improve parameter estimation for different land cover types compared to existing techniques that use the Extended Kalman Filter (EKF), due to linearization of the harmonic model. As these parameters are representative of a given land cover, its applicability in near real-time detection of land cover change is also studied by formulating a metric that captures parameter deviation due to change. The detection methodology is evaluated by considering change as a rare class problem. This approach is shown to detect change with minimum delay. Additionally, the degree of change within the change perimeter is non-uniform. By clustering the deviation in parameters due to change, this spatial variation in change severity is effectively mapped and validated with high spatial resolution change maps of the given regions.

  16. An iterative procedure for obtaining maximum-likelihood estimates of the parameters for a mixture of normal distributions, 2

    Science.gov (United States)

    Peters, B. C., Jr.; Walker, H. F.

    1976-01-01

    The problem of obtaining numerically maximum likelihood estimates of the parameters for a mixture of normal distributions is addressed. In recent literature, a certain successive approximations procedure, based on the likelihood equations, is shown empirically to be effective in numerically approximating such maximum-likelihood estimates; however, the reliability of this procedure was not established theoretically. Here, a general iterative procedure is introduced, of the generalized steepest-ascent (deflected-gradient) type, which is just the procedure known in the literature when the step-size is taken to be 1. With probability 1 as the sample size grows large, it is shown that this procedure converges locally to the strongly consistent maximum-likelihood estimate whenever the step-size lies between 0 and 2. The step-size which yields optimal local convergence rates for large samples is determined in a sense by the separation of the component normal densities and is bounded below by a number between 1 and 2.

  17. Temperature dependence of velocity of sound in high-Tc superconductors in normal state

    International Nuclear Information System (INIS)

    Bishoyi, K.C.; Rout, G.C.; Behera, S.N.

    2002-01-01

    A microscopic theoretical calculation of temperature dependence of velocity of sound in high temperature superconductors is addressed in this paper. The influence of model parameters of the system in its normal phase is investigated through numerical calculations. The results at the room temperature as well as low temperatures (∼ 25 K), are discussed. The dimensionless parameters involved in the calculations are the electron-phonon coupling (g), staggered magnetic field (h), hybridization (V), position of the f-level (d), temperature (t) and the conduction band width (ω). The model Hamiltonian contains the antiferromagnetism in conduction electrons of cooper and the electron-phonon interaction through the hybridization between conduction electrons and f-electrons of impurity atoms. The phonon Green's functions are calculated by Zubarev's technique. The velocity of sound is calculated in the long wavelength and finite temperature limit. (author)

  18. Factors predictive of abnormal semen parameters in male partners of couples attending the infertility clinic of a tertiary hospital in southwestern Nigeria

    Directory of Open Access Journals (Sweden)

    Peter Aduloju

    2016-12-01

    Full Text Available Background: Infertility is a common gynaecological problem and male factor contributes significantly in the aetiology of infertility. Semen analysis has remained a useful investigation in the search for male factor infertility.Aim: This study assessed the pattern of semen parameters and predictive factors associated with abnormal parameters in male partners of infertile couples attending a Nigerian tertiary hospital.Methods: A descriptive study of infertile couples presenting at the clinic between January 2012and December 2015 was done at Ekiti State University Teaching Hospital, Ado-Ekiti.  Seminal fluid from the male partners were analysed in the laboratory using the WHO 2010 criteria for human semen characteristics. Data was analysed using SPSS 17 and logistic regression analysis was used to determine the predictive factors associated with abnormal semen parameters.Results: A total of 443 men participated in the study and 38.2% had abnormal sperm parameters. Oligozoospermia (34.8% and asthenozoospermia (26.9% are leading single factor abnormality found, astheno-oligozoospermia occurred in 14.2% and oligo-astheno-teratozoospermia in 3.6% of cases. The prevalence of azoospermia was 3.4%. Smoking habit, past infection with mumps and previous groin surgery significantly predicted abnormal semen parameters with p values of 0.025, 0.040 and 0.017 respectively. Positive cultures were recorded in 36.2% of cases and staph aureus was the commonest organism.Conclusion: Male factor abnormalities remain significant contributors to infertility and men should be encouraged through advocacy to participate in investigation of infertility to reduce the level of stigmatization and ostracizing of women with infertility especially in sub-Saharan Africa.

  19. Derivation of Path Independent Coupled Mix Mode Cohesive Laws from Fracture Resistance Curves

    DEFF Research Database (Denmark)

    Goutianos, Stergios

    2016-01-01

    A generalised approach is presented to derive coupled mixed mode cohesive laws described with physical parameters such as peak traction, critical opening, fracture energy and cohesive shape. The approach is based on deriving mix mode fracture resistance curves from an effective mix mode cohesive...... law at different mode mixities. From the fracture resistance curves, the normal and shear stresses of the cohesive laws can be obtained by differentiation. Since, the mixed mode cohesive laws are obtained from a fracture resistance curve (potential function), path independence is automatically...

  20. Survey of Saccadic Parameters Using Videonystagmography in Patients with Idiopathic Parkinson's Disease and Normal Subjects

    Directory of Open Access Journals (Sweden)

    Reza Hosseinabadi

    2008-06-01

    Full Text Available Background and Aim: Patients with Parkinson’s disease manifest oculomotor abnormalities. This is the consequence of basal ganglia impairment. The most common abnormalities include increased saccade latency, hypometric saccades and decreased saccade velocity. The purpose of this study was comparison of saccadic parameters using videonystagmography in patients with idiopathic Parkinson’s disease and normal subjects.Materials and Methods: In this cross sectional study, saccadic movements were investigated in thirty patients with idiopathic Parkinson’s disease and thirty age matched subjects were 35-70 years old. Saccade latency, velocity and accuracy were quantitatively analyzed. Results: Results of this study indicated increased saccade latency, reduction of saccade velocity and accuracy in patients with Parkinson’s disease(P<0.001.Conclusion: This study showed that patients with Parkinson’s disease manifest saccadic deficits. This suggests dopaminergic control of these ocular movements.

  1. Coupled Langmuir oscillations in 2-dimensional quantum plasmas

    International Nuclear Information System (INIS)

    Akbari-Moghanjoughi, M.

    2014-01-01

    In this work, we present a hydrodynamic model to study the coupled quantum electron plasma oscillations (QEPO) for two dimensional (2D) degenerate plasmas, which incorporates all the essential quantum ingredients such as the statistical degeneracy pressure, electron-exchange, and electron quantum diffraction effect. Effects of diverse physical aspects like the electronic band-dispersion effect, the electron exchange-correlations and the quantum Bohm-potential as well as other important plasma parameters such as the coupling parameter (plasma separation) and the plasma electron number-densities on the linear response of the coupled system are investigated. By studying three different 2D plasma coupling types, namely, graphene-graphene, graphene-metalfilm, and metalfilm-metalfilm coupling configurations, it is remarked that the collective quantum effects can influence the coupled modes quite differently, depending on the type of the plasma configuration. It is also found that the slow and fast QEPO frequency modes respond very differently to the change in plasma parameters. Current findings can help in understanding of the coupled density oscillations in multilayer graphene, graphene-based heterojunctions, or nanofabricated integrated circuits

  2. Couplings

    Science.gov (United States)

    Stošić, Dušan; Auroux, Aline

    Basic principles of calorimetry coupled with other techniques are introduced. These methods are used in heterogeneous catalysis for characterization of acidic, basic and red-ox properties of solid catalysts. Estimation of these features is achieved by monitoring the interaction of various probe molecules with the surface of such materials. Overview of gas phase, as well as liquid phase techniques is given. Special attention is devoted to coupled calorimetry-volumetry method. Furthermore, the influence of different experimental parameters on the results of these techniques is discussed, since it is known that they can significantly influence the evaluation of catalytic properties of investigated materials.

  3. Parameter and state estimation in nonlinear dynamical systems

    Science.gov (United States)

    Creveling, Daniel R.

    This thesis is concerned with the problem of state and parameter estimation in nonlinear systems. The need to evaluate unknown parameters in models of nonlinear physical, biophysical and engineering systems occurs throughout the development of phenomenological or reduced models of dynamics. When verifying and validating these models, it is important to incorporate information from observations in an efficient manner. Using the idea of synchronization of nonlinear dynamical systems, this thesis develops a framework for presenting data to a candidate model of a physical process in a way that makes efficient use of the measured data while allowing for estimation of the unknown parameters in the model. The approach presented here builds on existing work that uses synchronization as a tool for parameter estimation. Some critical issues of stability in that work are addressed and a practical framework is developed for overcoming these difficulties. The central issue is the choice of coupling strength between the model and data. If the coupling is too strong, the model will reproduce the measured data regardless of the adequacy of the model or correctness of the parameters. If the coupling is too weak, nonlinearities in the dynamics could lead to complex dynamics rendering any cost function comparing the model to the data inadequate for the determination of model parameters. Two methods are introduced which seek to balance the need for coupling with the desire to allow the model to evolve in its natural manner without coupling. One method, 'balanced' synchronization, adds to the synchronization cost function a requirement that the conditional Lyapunov exponents of the model system, conditioned on being driven by the data, remain negative but small in magnitude. Another method allows the coupling between the data and the model to vary in time according to a specific form of differential equation. The coupling dynamics is damped to allow for a tendency toward zero coupling

  4. Multiple parameters anomalies for verifying the geosystem spheres coupling effect: a case study of the 2010 Ms7.1 Yushu earthquake in China

    Directory of Open Access Journals (Sweden)

    Shuo Zheng

    2014-08-01

    Full Text Available In the research of earthquake anomaly recognition, the coupling effect of multiple geosystem spheres can be expected to reasonably interpretating the correlation between various anomalous signals before strong earthquake. Specially, the development of the Lithosphere–Atmosphere–Ionosphere (LAI coupling model has been accepted as verified by some experimental, thermal and electromagnetic data. However, quasi-synchronous anomalies of the multiple parameters, including thermal, radon and electromagnetic data, have not been reported in a single event case for verifying the geosystem spheres coupling effect. In this paper, we firstly summarized the reported studies on the power spectrum density (PSD in the ELF/VLF band and radon data recorded from Guza seismic station. Then, historical surface latent heat flux (SLHF data from the NCEP/NCAR Reanalysis Project was employed for investigating anomalous change in a month before the April 14, 2010, Ms7.1 Yushu earthquake which is one of the typical intra-continental earthquakes in Tibet Plateau. The results from spatial and temporal analysis revealed that anomalous fields of PSD and SLHF data were located close to the epicenter and the ends of some active faults at Bayan Har Block and all anomalous dates converged between April 8 and 11 (6 to 3 days before the Yushu earthquake. Therefore, we suggest that the anomalies of multiple parameters before the main shock are related with the Yushu earthquake. This paper could give an ideal case study to verify the geosystem spheres coupling effect happened in a single event.

  5. A general approach to double-moment normalization of drop size distributions

    NARCIS (Netherlands)

    Lee, G.W.; Zawadzki, I.; Szyrmer, W.; Sempere Torres, D.; Uijlenhoet, R.

    2004-01-01

    Normalization of drop size distributions (DSDs) is reexamined here. First, an extension of the scaling normalization that uses one moment of the DSD as a scaling parameter to a more general scaling normalization that uses two moments as scaling parameters of the normalization is presented. In

  6. Relating pressure tuned coupled column ensembles with the solvation parameter model for tunable selectivity in gas chromatography.

    Science.gov (United States)

    Sharif, Khan M; Kulsing, Chadin; Chin, Sung-Tong; Marriott, Philip J

    2016-07-15

    The differential pressure drop of carrier gas by tuning the junction point pressure of a coupled column gas chromatographic system leads to a unique selectivity of the overall separation, which can be tested using a mixture of compounds with a wide range of polarity. This study demonstrates a pressure tuning (PT) GC system employing a microfluidic Deans switch located at the mid-point of the two capillary columns. This PT system allowed variations of inlet-outlet pressure differences of the two columns in a range of 52-17psi for the upstream column and 31-11psi for the downstream column. Peak shifting (differential migration) of compounds due to PT difference are related to a first order regression equation in a Plackett-Burman factorial study. Increased first (upstream) column pressure drop makes the second column characteristics more significant in the coupled column retention behavior, and conversely increased second (downstream) column pressure drop makes the first column characteristics more apparent; such variation can result in component swapping between polar and non-polar compounds. The coupled column system selectivity was evaluated in terms of linear solvation energy relationship (LSER) parameters, and their relation with different pressure drop effects has been constructed by applying multivariate principle component analysis (PCA). It has been found that the coupled column PT system descriptors provide a result that shows a clear clustering of different pressure settings, somewhat intermediate between those of the two commercial columns. This is equivalent to that obtained from a conventional single-column GC analysis where the interaction energy contributed from the stationary phases can be significantly adjusted by choice of midpoint PT. This result provides a foundation for pressure differentiation for selectivity enhancement. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Synchronizing spiral waves in a coupled Rössler system

    International Nuclear Information System (INIS)

    Gao Jia-Zhen; Yang Shu-Xin; Xie Ling-Ling; Gao Ji-Hua

    2011-01-01

    The synchronisation of spiral patterns in a drive-response Rössler system is studied. The existence of three types of synchronisation is revealed by inspecting the coupling parameter space. Two transient stages of phase synchronisation and partial synchronisation are observed in a comparatively weak feedback coupling parameter regime, whilst complete synchronisation of spirals is found with strong negative couplings. Detailed observations of the synchronous process, such as oscillatory frequencies, parameters mismatches and amplitude variations, etc, are investigated via numerical simulations. (general)

  8. In vitro fertilisation when normal sperm morphology is less than ...

    African Journals Online (AJOL)

    The outcome of in vitro fertilisation and embryo transfer in 90 couples where the husband's normal sperm morphology was less than 15% were analysed. Based on the percentage of morphologically normal spermatozoa the patients were divided into three groups: group A - normal morphological features 0 - 5%; group B - 6 ...

  9. Coupling between minimum scattering antennas

    DEFF Research Database (Denmark)

    Andersen, J.; Lessow, H; Schjær-Jacobsen, Hans

    1974-01-01

    Coupling between minimum scattering antennas (MSA's) is investigated by the coupling theory developed by Wasylkiwskyj and Kahn. Only rotationally symmetric power patterns are considered, and graphs of relative mutual impedance are presented as a function of distance and pattern parameters. Crossed...

  10. Kuramoto model of coupled oscillators with positive and negative coupling parameters: an example of conformist and contrarian oscillators.

    Science.gov (United States)

    Hong, Hyunsuk; Strogatz, Steven H

    2011-02-04

    We consider a generalization of the Kuramoto model in which the oscillators are coupled to the mean field with random signs. Oscillators with positive coupling are "conformists"; they are attracted to the mean field and tend to synchronize with it. Oscillators with negative coupling are "contrarians"; they are repelled by the mean field and prefer a phase diametrically opposed to it. The model is simple and exactly solvable, yet some of its behavior is surprising. Along with the stationary states one might have expected (a desynchronized state, and a partially-synchronized state, with conformists and contrarians locked in antiphase), it also displays a traveling wave, in which the mean field oscillates at a frequency different from the population's mean natural frequency.

  11. Condensation of bosons with Rashba-Dresselhaus spin-orbit coupling

    International Nuclear Information System (INIS)

    Baym, Gordon; Ozawa, Tomoki

    2014-01-01

    Cold atomic Bose-Einstein systems in the presence of simulated Rashba- Dresselhaus spin-orbit coupling exhibit novel physical features. With pure in-plane Rashba coupling the system is predicted in Bogoliubov-Hartree-Fock to have a stable Bose condensate below a critical temperature, even though the effective density of states is two-dimensional. In addition the system has a normal state at all temperatures. We review here the new physics when the system has such spin-orbit coupling, and discuss the nature of the finite temperature condensation phase transition from the normal to condensed phases.

  12. Coupled Lugiato-Lefever equation for nonlinear frequency comb generation at an avoided crossing of a microresonator

    Science.gov (United States)

    D'Aguanno, Giuseppe; Menyuk, Curtis R.

    2017-03-01

    Guided-mode coupling in a microresonator generally manifests itself through avoided crossings of the corresponding resonances. This coupling can strongly modify the resonator local effective dispersion by creating two branches that have dispersions of opposite sign in spectral regions that would otherwise be characterized by either positive (normal) or negative (anomalous) dispersion. In this paper, we study, both analytically and computationally, the general properties of nonlinear frequency comb generation at an avoided crossing using the coupled Lugiato-Lefever equation. In particular, we find that bright solitons and broadband frequency combs can be excited when both branches are pumped for a suitable choice of the pump powers and the detuning parameters. A deterministic path for soliton generation is found. Contribution to the Topical Issue "Theory and applications of the Lugiato-Lefever Equation", edited by Yanne K. Chembo, Damia Gomila, Mustapha Tlidi, Curtis R. Menyuk.

  13. Inflationary magneto-(non)genesis, increasing kinetic couplings, and the strong coupling problem

    Science.gov (United States)

    Bazrafshan Moghaddam, Hossein; McDonough, Evan; Namba, Ryo; Brandenberger, Robert H.

    2018-05-01

    We study the generation of magnetic fields during inflation making use of a coupling of the inflaton and moduli fields to electromagnetism via the photon kinetic term, and assuming that the coupling is an increasing function of time. We demonstrate that the strong coupling problem of inflationary magnetogenesis can be avoided by incorporating the destabilization of moduli fields after inflation. The magnetic field always dominates over the electric one, and thus the severe constraints on the latter from backreaction, which are the demanding obstacles in the case of a decreasing coupling function, do not apply to the current scenario. However, we show that this loophole to the strong coupling problem comes at a price: the normalization of the amplitude of magnetic fields is determined by this coupling term and is therefore suppressed by a large factor after the moduli destabilization completes. From this we conclude that there is no self-consistent and generic realization of primordial magnetogenesis producing scale-invariant fields in the case of an increasing kinetic coupling.

  14. Elastic coupling of limb joints enables faster bipedal walking

    Science.gov (United States)

    Dean, J.C.; Kuo, A.D.

    2008-01-01

    The passive dynamics of bipedal limbs alone are sufficient to produce a walking motion, without need for control. Humans augment these dynamics with muscles, actively coordinated to produce stable and economical walking. Present robots using passive dynamics walk much slower, perhaps because they lack elastic muscles that couple the joints. Elastic properties are well known to enhance running gaits, but their effect on walking has yet to be explored. Here we use a computational model of dynamic walking to show that elastic joint coupling can help to coordinate faster walking. In walking powered by trailing leg push-off, the model's speed is normally limited by a swing leg that moves too slowly to avoid stumbling. A uni-articular spring about the knee allows faster but uneconomical walking. A combination of uni-articular hip and knee springs can speed the legs for improved speed and economy, but not without the swing foot scuffing the ground. Bi-articular springs coupling the hips and knees can yield high economy and good ground clearance similar to humans. An important parameter is the knee-to-hip moment arm that greatly affects the existence and stability of gaits, and when selected appropriately can allow for a wide range of speeds. Elastic joint coupling may contribute to the economy and stability of human gait. PMID:18957360

  15. Seizure Dynamics of Coupled Oscillators with Epileptor Field Model

    Science.gov (United States)

    Zhang, Honghui; Xiao, Pengcheng

    The focus of this paper is to investigate the dynamics of seizure activities by using the Epileptor coupled model. Based on the coexistence of seizure-like event (SLE), refractory status epilepticus (RSE), depolarization block (DB), and normal state, we first study the dynamical behaviors of two coupled oscillators in different activity states with Epileptor model by linking them with slow permittivity coupling. Our research has found that when one oscillator in normal states is coupled with any oscillator in SLE, RSE or DB states, these two oscillators can both evolve into SLE states under appropriate coupling strength. And then these two SLE oscillators can perform epileptiform synchronization or epileptiform anti-synchronization. Meanwhile, SLE can be depressed when considering the fast electrical or chemical coupling in Epileptor model. Additionally, a two-dimensional reduced model is also given to show the effect of coupling number on seizures. Those results can help to understand the dynamical mechanism of the initiation, maintenance, propagation and termination of seizures in focal epilepsy.

  16. Inflationary magnetogenesis, derivative couplings and relativistic Van der Waals interactions

    CERN Document Server

    Giovannini, Massimo

    2015-01-01

    When the gauge fields have derivative couplings to scalars, like in the case of the relativistic theory of Van der Waals (or Casimir-Polder) interactions, conformal invariance is broken but the magnetic and electric susceptibilities are not bound to coincide. We analyze the formation of large-scale magnetic fields in slow-roll inflation and find that they are generated at the level of a few hundredths of a nG and over typical length scales between few Mpc and $100$ Mpc. Using a new time parametrization that reduces to conformal time but only for coincident susceptibilities, the gauge action is quantized while the evolution equations of the corresponding mode functions are more easily solvable. The power spectra depend on the normalized rates of variation of the two susceptibilities (or of the corresponding gauge couplings) and on the absolute value of their ratio at the beginning of inflation. We pin down explicit regions in the parameter space where all the physical requirements (i.e. the backreaction constr...

  17. Treatment of heartwater : potential adverse effects of furosemide administration on certain homeostatic parameters in normal sheep

    Directory of Open Access Journals (Sweden)

    A.S. Shakespeare

    1998-07-01

    Full Text Available Diuretics, in particular furosemide, are generally recommended as a supportive treatment in the advanced stages of heartwater in ruminants. However, after what appeared to be possible adverse effects accompanying its use in field cases of heartwater, the effects of this drug on certain blood and urine parameters were investigated in normal sheep at the same dose rates. Diuresis with concomitant natriuresis was significant after furosemide administration, as was the expected plasma volume decrease. Other significant changes included metabolic alkalosis, hypokalaemia and reduced blood ionised calcium. The difference in duration of the diuretic effect and the duration of the changes in blood parameters from c. 3 h and c. 6 h respectively make it difficult to determine a time interval between successive treatments with furosemide. It appears that the probable cause of death of sheep with heartwater is a drastic reduction in blood volume and decreased cardiac output that leads to general circulatory failure. A therapeutic approach that involves further loss of plasma volume due to diuresis appears contradictory. The added effects of potentiating respiratory alkalosis and the terminal drop in blood ionised calcium seen in heartwater-affected animals indicate that the use of furosemide in supportive treatment of this disease is not warranted.

  18. Factors predictive of abnormal semen parameters in male partners of couples attending the infertility clinic of a tertiary hospital in south-western Nigeria

    Directory of Open Access Journals (Sweden)

    Peter Olusola Aduloju

    2016-11-01

    Full Text Available Background: Infertility is a common gynaecological problem and male factor contributes significantly in the aetiology of infertility. Semen analysis has remained a useful investigation in the search for male factor infertility. Aim: This study assessed the pattern of semen parameters and predictive factors associated with abnormal parameters in male partners of infertile couples attending a Nigerian tertiary hospital. Methods: A descriptive study of infertile couples presenting at the clinic between January 2012and December 2015 was done at Ekiti State University Teaching Hospital, Ado-Ekiti. Seminal fluid from the male partners were analysed in the laboratory using the WHO 2010 criteria for human semen characteristics. Data was analysed using SPSS 17 and logistic regression analysis was used to determine the predictive factors associated with abnormal semen parameters. Results: A total of 443 men participated in the study and 38.2% had abnormal sperm parameters. Oligozoospermia (34.8% and asthenozoospermia (26.9% are leading single factor abnormality found, astheno-oligozoospermia occurred in 14.2% and oligo-astheno-teratozoospermia in 3.6% of cases. The prevalence of azoospermia was 3.4%. Smoking habit, past infection with mumps and previous groin surgery significantly predicted abnormal semen parameters with p values of 0.025, 0.040 and 0.017 respectively. Positive cultures were recorded in 36.2% of cases and staph aureus was the commonest organism. Conclusion: Male factor abnormalities remain significant contributors to infertility and men should be encouraged through advocacy to participate in investigation of infertility to reduce the level of stigmatization and ostracizing of women with infertility especially in sub-Saharan Africa.

  19. Analysis of Interrelationships among Voluntary and Prosthetic Leg Joint Parameters Using Cyclograms.

    Science.gov (United States)

    Jasni, Farahiyah; Hamzaid, Nur Azah; Mohd Syah, Nor Elleeiana; Chung, Tze Y; Abu Osman, Noor Azuan

    2017-01-01

    The walking mechanism of a prosthetic leg user is a tightly coordinated movement of several joints and limb segments. The interaction among the voluntary and mechanical joints and segments requires particular biomechanical insight. This study aims to analyze the inter-relationship between amputees' voluntary and mechanical coupled leg joints variables using cyclograms. From this analysis, the critical gait parameters in each gait phase were determined and analyzed if they contribute to a better powered prosthetic knee control design. To develop the cyclogram model, 20 healthy able-bodied subjects and 25 prosthesis and orthosis users (10 transtibial amputees, 5 transfemoral amputees, and 10 different pathological profiles of orthosis users) walked at their comfortable speed in a 3D motion analysis lab setting. The gait parameters (i.e., angle, moment and power for the ankle, knee and hip joints) were coupled to form 36 cyclograms relationship. The model was validated by quantifying the gait disparities of all the pathological walking by analyzing each cyclograms pairs using feed-forward neural network with backpropagation. Subsequently, the cyclogram pairs that contributed to the highest gait disparity of each gait phase were manipulated by replacing it with normal values and re-analyzed. The manipulated cyclograms relationship that showed highest improvement in terms of gait disparity calculation suggested that they are the most dominant parameters in powered-knee control. In case of transfemoral amputee walking, it was identified using this approach that at each gait sub-phase, the knee variables most responsible for closest to normal walking were: knee power during loading response and mid-stance, knee moment and knee angle during terminal stance phase, knee angle and knee power during pre-swing, knee angle at initial swing, and knee power at terminal swing. No variable was dominant during mid-swing phase implying natural pendulum effect of the lower limb between

  20. Analysis of Interrelationships among Voluntary and Prosthetic Leg Joint Parameters Using Cyclograms

    Directory of Open Access Journals (Sweden)

    Nur Azah Hamzaid

    2017-04-01

    Full Text Available The walking mechanism of a prosthetic leg user is a tightly coordinated movement of several joints and limb segments. The interaction among the voluntary and mechanical joints and segments requires particular biomechanical insight. This study aims to analyze the inter-relationship between amputees' voluntary and mechanical coupled leg joints variables using cyclograms. From this analysis, the critical gait parameters in each gait phase were determined and analyzed if they contribute to a better powered prosthetic knee control design. To develop the cyclogram model, 20 healthy able-bodied subjects and 25 prosthesis and orthosis users (10 transtibial amputees, 5 transfemoral amputees, and 10 different pathological profiles of orthosis users walked at their comfortable speed in a 3D motion analysis lab setting. The gait parameters (i.e., angle, moment and power for the ankle, knee and hip joints were coupled to form 36 cyclograms relationship. The model was validated by quantifying the gait disparities of all the pathological walking by analyzing each cyclograms pairs using feed-forward neural network with backpropagation. Subsequently, the cyclogram pairs that contributed to the highest gait disparity of each gait phase were manipulated by replacing it with normal values and re-analyzed. The manipulated cyclograms relationship that showed highest improvement in terms of gait disparity calculation suggested that they are the most dominant parameters in powered-knee control. In case of transfemoral amputee walking, it was identified using this approach that at each gait sub-phase, the knee variables most responsible for closest to normal walking were: knee power during loading response and mid-stance, knee moment and knee angle during terminal stance phase, knee angle and knee power during pre-swing, knee angle at initial swing, and knee power at terminal swing. No variable was dominant during mid-swing phase implying natural pendulum effect of the

  1. Coupling Strength and System Size Induce Firing Activity of Globally Coupled Neural Network

    International Nuclear Information System (INIS)

    Wei Duqu; Luo Xiaoshu; Zou Yanli

    2008-01-01

    We investigate how firing activity of globally coupled neural network depends on the coupling strength C and system size N. Network elements are described by space-clamped FitzHugh-Nagumo (SCFHN) neurons with the values of parameters at which no firing activity occurs. It is found that for a given appropriate coupling strength, there is an intermediate range of system size where the firing activity of globally coupled SCFHN neural network is induced and enhanced. On the other hand, for a given intermediate system size level, there exists an optimal value of coupling strength such that the intensity of firing activity reaches its maximum. These phenomena imply that the coupling strength and system size play a vital role in firing activity of neural network

  2. Cytoskeletal Tropomyosin Tm5NM1 Is Required for Normal Excitation–Contraction Coupling in Skeletal Muscle

    Science.gov (United States)

    Vlahovich, Nicole; Kee, Anthony J.; Van der Poel, Chris; Kettle, Emma; Hernandez-Deviez, Delia; Lucas, Christine; Lynch, Gordon S.; Parton, Robert G.; Gunning, Peter W.

    2009-01-01

    The functional diversity of the actin microfilaments relies in part on the actin binding protein tropomyosin (Tm). The muscle-specific Tms regulate actin-myosin interactions and hence contraction. However, there is less known about the roles of the numerous cytoskeletal isoforms. We have shown previously that a cytoskeletal Tm, Tm5NM1, defines a Z-line adjacent cytoskeleton in skeletal muscle. Recently, we identified a second cytoskeletal Tm in this region, Tm4. Here we show that Tm4 and Tm5NM1 define separate actin filaments; the former associated with the terminal sarcoplasmic reticulum (SR) and other tubulovesicular structures. In skeletal muscles of Tm5NM1 knockout (KO) mice, Tm4 localization was unchanged, demonstrating the specificity of the membrane association. Tm5NM1 KO muscles exhibit potentiation of T-system depolarization and decreased force rundown with repeated T-tubule depolarizations consistent with altered T-tubule function. These results indicate that a Tm5NM1-defined actin cytoskeleton is required for the normal excitation–contraction coupling in skeletal muscle. PMID:19005216

  3. Cytoskeletal tropomyosin Tm5NM1 is required for normal excitation-contraction coupling in skeletal muscle.

    Science.gov (United States)

    Vlahovich, Nicole; Kee, Anthony J; Van der Poel, Chris; Kettle, Emma; Hernandez-Deviez, Delia; Lucas, Christine; Lynch, Gordon S; Parton, Robert G; Gunning, Peter W; Hardeman, Edna C

    2009-01-01

    The functional diversity of the actin microfilaments relies in part on the actin binding protein tropomyosin (Tm). The muscle-specific Tms regulate actin-myosin interactions and hence contraction. However, there is less known about the roles of the numerous cytoskeletal isoforms. We have shown previously that a cytoskeletal Tm, Tm5NM1, defines a Z-line adjacent cytoskeleton in skeletal muscle. Recently, we identified a second cytoskeletal Tm in this region, Tm4. Here we show that Tm4 and Tm5NM1 define separate actin filaments; the former associated with the terminal sarcoplasmic reticulum (SR) and other tubulovesicular structures. In skeletal muscles of Tm5NM1 knockout (KO) mice, Tm4 localization was unchanged, demonstrating the specificity of the membrane association. Tm5NM1 KO muscles exhibit potentiation of T-system depolarization and decreased force rundown with repeated T-tubule depolarizations consistent with altered T-tubule function. These results indicate that a Tm5NM1-defined actin cytoskeleton is required for the normal excitation-contraction coupling in skeletal muscle.

  4. Normal modes of Bardeen discs

    International Nuclear Information System (INIS)

    Verdaguer, E.

    1983-01-01

    The short wavelength normal modes of self-gravitating rotating polytropic discs in the Bardeen approximation are studied. The discs' oscillations can be seen in terms of two types of modes: the p-modes whose driving forces are pressure forces and the r-modes driven by Coriolis forces. As a consequence of differential rotation coupling between the two takes place and some mixed modes appear, their properties can be studied under the assumption of weak coupling and it is seen that they avoid the crossing of the p- and r-modes. The short wavelength analysis provides a basis for the classification of the modes, which can be made by using the properties of their phase diagrams. The classification is applied to the large wavelength modes of differentially rotating discs with strong coupling and to a uniformly rotating sequence with no coupling, which have been calculated in previous papers. Many of the physical properties and qualitative features of these modes are revealed by the analysis. (author)

  5. Effect of process parameters on temperature distribution in twin-electrode TIG coupling arc

    International Nuclear Information System (INIS)

    Zhang, Guangjun; Xiong, Jun; Gao, Hongming; Wu, Lin

    2012-01-01

    The twin-electrode TIG coupling arc is a new type of welding heat source, which is generated in a single welding torch that has two tungsten electrodes insulated from each other. This paper aims at determining the distribution of temperature for the coupling arc using the Fowler–Milne method under the assumption of local thermodynamic equilibrium. The influences of welding current, arc length, and distance between both electrode tips on temperature distribution of the coupling arc were analyzed. Based on the results, a better understanding of the twin-electrode TIG welding process was obtained. -- Highlights: ► Increasing arc current will increase the coupling arc temperature. ► Arc length seldom affects the peak temperature of the coupling arc. ► Increasing arc length will increase the extension of temperature near the anode. ► Increasing distance will decrease temperatures in the central part of the arc.

  6. GEYSER/TONUS: A coupled multi-D lumped parameter code for reactor thermal hydraulics analysis in case of severe accidents

    Energy Technology Data Exchange (ETDEWEB)

    Petit, M.; Durin, M.; Gauvain, J. [Commissariat a l`Energie Atomique, Gif sur Yvette (France)

    1995-09-01

    In many countries, the safety requirements for future light water reactors include accounting for severe accidents in the design process. As far as the containment is concerned, the design must now include mitigation features to limit the pressure and temperature inside the building. Hydrogen concentration is also a major issue for severe accidents. In this context, new needs appear for the modeling of the thermal hydraulics inside the containment. It requires the description of complex phenomena such as condensation, stratification, transport of gases and aerosols, heat transfers. Moreover, the effect of mitigation systems will increase the heterogeneities in the building, and most of those phenomena can be coupled, as for example hydrogen stratification and condensation. To model such a complex situation, the use of multi-dimensional computer codes seems to be necessary in case of large volumes. The aim of the GEYSER/TONUS computer code is to fulfill this need. This code is currently under development at CEA in Saclay. It will allow the coupling of parts of the containment described in a lumped parameter manner, together with meshed parts. Emphasis is put on the numerical methods used to solve the transient problem, as the objective is to be able to treat complete scenarios. Physical models of classical lumped parameters codes will adapted for the spatially described zones. The code is developed in the environment of the CASTEM 2000/TRIO EF system which allows, thanks to its modular conception, to construct sophisticated applications based upon it.

  7. Phase synchronization in inhomogeneous globally coupled map lattices

    International Nuclear Information System (INIS)

    Ho Mingchung; Hung Yaochen; Jiang, I-M.

    2004-01-01

    The study of inhomogeneous-coupled chaotic systems has attracted a lot of attention recently. With simple definition of phase, we present the phase-locking behavior in ensembles of globally coupled non-identical maps. The inhomogeneous globally coupled maps consist of logistic map and tent map simultaneously. Average phase synchronization ratios, which are used to characterize the phase coherent phenomena, depend on different coupling coefficients and chaotic parameters. By using interdependence, the relationship between a single unit and the mean field is illustrated. Moreover, we take the effect of external noise and parameter mismatch into consideration and present the results by numerical simulation

  8. Optimization of accelerator parameters using normal form methods on high-order transfer maps

    Energy Technology Data Exchange (ETDEWEB)

    Snopok, Pavel [Michigan State Univ., East Lansing, MI (United States)

    2007-05-01

    Methods of analysis of the dynamics of ensembles of charged particles in collider rings are developed. The following problems are posed and solved using normal form transformations and other methods of perturbative nonlinear dynamics: (1) Optimization of the Tevatron dynamics: (a) Skew quadrupole correction of the dynamics of particles in the Tevatron in the presence of the systematic skew quadrupole errors in dipoles; (b) Calculation of the nonlinear tune shift with amplitude based on the results of measurements and the linear lattice information; (2) Optimization of the Muon Collider storage ring: (a) Computation and optimization of the dynamic aperture of the Muon Collider 50 x 50 GeV storage ring using higher order correctors; (b) 750 x 750 GeV Muon Collider storage ring lattice design matching the Tevatron footprint. The normal form coordinates have a very important advantage over the particle optical coordinates: if the transformation can be carried out successfully (general restrictions for that are not much stronger than the typical restrictions imposed on the behavior of the particles in the accelerator) then the motion in the new coordinates has a very clean representation allowing to extract more information about the dynamics of particles, and they are very convenient for the purposes of visualization. All the problem formulations include the derivation of the objective functions, which are later used in the optimization process using various optimization algorithms. Algorithms used to solve the problems are specific to collider rings, and applicable to similar problems arising on other machines of the same type. The details of the long-term behavior of the systems are studied to ensure the their stability for the desired number of turns. The algorithm of the normal form transformation is of great value for such problems as it gives much extra information about the disturbing factors. In addition to the fact that the dynamics of particles is represented

  9. Mixed synchronization in chaotic oscillators using scalar coupling

    Energy Technology Data Exchange (ETDEWEB)

    Bhowmick, Sourav K.; Hens, Chittaranjan [CSIR – Indian Institute of Chemical Biology, Jadavpur, Kolkata 700032 (India); Ghosh, Dibakar, E-mail: drghosh_math@yahoo.co.in [Department of Mathematics, University of Kalyani, West Bengal 741235 (India); Dana, Syamal K. [CSIR – Indian Institute of Chemical Biology, Jadavpur, Kolkata 700032 (India)

    2012-07-23

    We report experimental evidence of mixed synchronization in two unidirectionally coupled chaotic oscillators using a scalar coupling. In this synchronization regime, some of the state variables may be in complete synchronization while others may be in anti-synchronization state. We extended the theory by using an adaptive controller with an updating law based on Lyapunov function stability to include parameter fluctuation. Using the scheme, we implemented a cryptographic encoding for digital signal through parameter modulation. -- Highlights: ► We provided experimental evidence of the mixed synchronization scheme while other methods are mostly theoretical nature. ► We numerically studied adaptive mixed synchronization when the parameters are not completely known using scalar coupling. ► We proposed a secure communication system where three digital messages are transmitted using parameter modulation.

  10. Estimation of Key Parameters of the Coupled Energy and Water Model by Assimilating Land Surface Data

    Science.gov (United States)

    Abdolghafoorian, A.; Farhadi, L.

    2017-12-01

    Accurate estimation of land surface heat and moisture fluxes, as well as root zone soil moisture, is crucial in various hydrological, meteorological, and agricultural applications. Field measurements of these fluxes are costly and cannot be readily scaled to large areas relevant to weather and climate studies. Therefore, there is a need for techniques to make quantitative estimates of heat and moisture fluxes using land surface state observations that are widely available from remote sensing across a range of scale. In this work, we applies the variational data assimilation approach to estimate land surface fluxes and soil moisture profile from the implicit information contained Land Surface Temperature (LST) and Soil Moisture (SM) (hereafter the VDA model). The VDA model is focused on the estimation of three key parameters: 1- neutral bulk heat transfer coefficient (CHN), 2- evaporative fraction from soil and canopy (EF), and 3- saturated hydraulic conductivity (Ksat). CHN and EF regulate the partitioning of available energy between sensible and latent heat fluxes. Ksat is one of the main parameters used in determining infiltration, runoff, groundwater recharge, and in simulating hydrological processes. In this study, a system of coupled parsimonious energy and water model will constrain the estimation of three unknown parameters in the VDA model. The profile of SM (LST) at multiple depths is estimated using moisture diffusion (heat diffusion) equation. In this study, the uncertainties of retrieved unknown parameters and fluxes are estimated from the inverse of Hesian matrix of cost function which is computed using the Lagrangian methodology. Analysis of uncertainty provides valuable information about the accuracy of estimated parameters and their correlation and guide the formulation of a well-posed estimation problem. The results of proposed algorithm are validated with a series of experiments using a synthetic data set generated by the simultaneous heat and

  11. Interband coupling and transport interband scattering in s± superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Kogan, Vladimir [Ames Lab., Ames, IA (United States); Prozorov, Ruslan [Ames Lab., Ames, IA (United States); Iowa State Univ., Ames, IA (United States)

    2016-04-04

    A two-band model with repulsive interband coupling and interband transport (potential) scattering is considered to elucidate their effects on material properties. In agreement with previous work, we find that the bands order parameters Δ1,2 differ and the large is at the band with a smaller normal density of states (DOS), Nn2 < Nn1. However, the bands energy gaps, as determined by the energy dependence of the DOS, are equal due to scattering. For each temperature, the gaps turn zero at a certain critical interband scattering rate, i.e. for strong enough scattering the model material becomes gappless. In the gapless state, the DOS at the band 2 is close to the normal state value, whereas at the band 1 it has a V-shape with non-zero minimum. When the normal bands DOS' are mismatched, Nn1 6= Nn2, the critical temperature Tc is suppressed even in the absence of interband scattering, Tc(Nn1) has a dome-like shape. With increasing interband scattering, the London penetration depth at low temperatures evolves from being exponentially at to the powerlaw and even to near linear behavior in the gapless state, the latter being easily misinterpreted as caused by order parameter nodes.

  12. Exergetic optimization of a key design parameter in heat pump systems with economizer coupled with scroll compressor

    International Nuclear Information System (INIS)

    Ma, Guoyuan; Li, Xianguo

    2007-01-01

    The heat pump system with economizer coupled with scroll compressor can extend effectively its operating ranges and provide a technological method to enable the heat pump to run steadily and efficiently in severe weather conditions. The intermediate pressure, namely the working pressure of the refrigerant in the economizer, is an essential design parameter and affects crucially the performances of the heat pump system. According to the exergetic model setup for the heat pump system based on the second law of thermodynamics, the influences of the intermediate pressure on the performances are comprehensively analyzed using experimental data of the heat pump prototype. It is found that the optimal relative intermediate pressure (RIP) is between 1.1 and 1.3

  13. Effects of D2O on biochemical parameters of normal cells and tumour cells

    International Nuclear Information System (INIS)

    Biesewig, G.

    1975-01-01

    The influence of high temperatures (Hyperthermia) on normal tissue and Ehrlich-Ascites tumour cells ('ATZ') was examined under several conditions with regard to the application of deuterium oxide as a stabilising factor. It was proven that the DNA-synthesis of normal tissue (liver, mouse) is not sensitive to temperature. This effect of hyperthermia only occurs when the tissue is damaged, e.g. by trypsinising. The influence of hyperthermia on several biochemical parameters and on morphological changes of the Ascites cells was examined. The findings show that deuterium oxide (D 2 O) is able to reduce both the thermal and the ureal denaturation of enzymes. Thus tests were carried out to find out if D 2 O also reduces toxic influence in complicated biological systems. The assumption of high D 2 O concentrations to prevent several reactions was confirmed. When the Ascites tumour cells in the H 2 O-buffer were exposed to the damaging influence of hyperthermia, the high degree of damage was seen with the decreasing DNA synthesis, reduced aerobic glycose capacity, a drop in the ATP values and breakdown of the permeability of the membrane. Deuterium oxide was able under high temperature (from appr. 44 0 C on) to reduce the degree of damage to DNA synthesis, while auto-effects (inhibition of synthesis) of D 2 O predominate in the lower region. Aerobic glycolysis was damaged in both cases to the same degree, however. In D 2 O after hyperthermia the ATP-level dropped faster than in H 2 O. D 2 O not only reduces the thermal denaturation of the Ascites tumour cells, but it also eliminates the toxic influence of the zytostaticum TRENIMONsup(R) (under 38 0 or 46 0 C incubation). (orig./AJ) [de

  14. Transport through hybrid superconducting/normal nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Futterer, David

    2013-01-29

    We mainly investigate transport through interacting quantum dots proximized by superconductors. For this purpose we extend an existing theory to describe transport through proximized quantum dots coupled to normal and superconducting leads. It allows us to study the influence of a strong Coulomb interaction on Andreev currents and Josephson currents. This is a particularly interesting topic because it combines two competing properties: in superconductors Cooper pairs are formed by two electrons which experience an attractive interaction while two electrons located on a quantum dot repel each other due to the Coulomb interaction. It seems at first glance that transport processes involving Cooper pairs should be suppressed because of the two competing interactions. However, it is possible to proximize the dot in nonequilibrium situations. At first, we study a setup composed of a quantum dot coupled to one normal, one ferromagnetic, and one superconducting lead in the limit of an infinitely-large superconducting gap. Within this limit the coupling between dot and superconductor is described exactly by the presented theory. It leads to the formation of Andreev-bound states (ABS) and an additional bias scheme opens in which a pure spin current, i.e. a spin current with a vanishing associated charge current, can be generated. In a second work, starting from the infinite-gap limit, we perform a systematic expansion of the superconducting gap around infinity and investigate Andreev currents and Josephson currents. This allows us to estimate the validity of infinite-gap calculations for real systems in which the superconducting gap is usually a rather small quantity. We find indications that a finite gap renormalizes the ABS and propose a resummation approach to explore the finite-gap ABS. Despite the renormalization effects the modifications of transport by finite gaps are rather small. This result lets us conclude that the infinite-gap calculation is a valuable tool to

  15. Transport through hybrid superconducting/normal nanostructures

    International Nuclear Information System (INIS)

    Futterer, David

    2013-01-01

    We mainly investigate transport through interacting quantum dots proximized by superconductors. For this purpose we extend an existing theory to describe transport through proximized quantum dots coupled to normal and superconducting leads. It allows us to study the influence of a strong Coulomb interaction on Andreev currents and Josephson currents. This is a particularly interesting topic because it combines two competing properties: in superconductors Cooper pairs are formed by two electrons which experience an attractive interaction while two electrons located on a quantum dot repel each other due to the Coulomb interaction. It seems at first glance that transport processes involving Cooper pairs should be suppressed because of the two competing interactions. However, it is possible to proximize the dot in nonequilibrium situations. At first, we study a setup composed of a quantum dot coupled to one normal, one ferromagnetic, and one superconducting lead in the limit of an infinitely-large superconducting gap. Within this limit the coupling between dot and superconductor is described exactly by the presented theory. It leads to the formation of Andreev-bound states (ABS) and an additional bias scheme opens in which a pure spin current, i.e. a spin current with a vanishing associated charge current, can be generated. In a second work, starting from the infinite-gap limit, we perform a systematic expansion of the superconducting gap around infinity and investigate Andreev currents and Josephson currents. This allows us to estimate the validity of infinite-gap calculations for real systems in which the superconducting gap is usually a rather small quantity. We find indications that a finite gap renormalizes the ABS and propose a resummation approach to explore the finite-gap ABS. Despite the renormalization effects the modifications of transport by finite gaps are rather small. This result lets us conclude that the infinite-gap calculation is a valuable tool to

  16. Monte Carlo and discrete-ordinate simulations of spectral radiances in a coupled air-tissue system.

    Science.gov (United States)

    Hestenes, Kjersti; Nielsen, Kristian P; Zhao, Lu; Stamnes, Jakob J; Stamnes, Knut

    2007-04-20

    We perform a detailed comparison study of Monte Carlo (MC) simulations and discrete-ordinate radiative-transfer (DISORT) calculations of spectral radiances in a 1D coupled air-tissue (CAT) system consisting of horizontal plane-parallel layers. The MC and DISORT models have the same physical basis, including coupling between the air and the tissue, and we use the same air and tissue input parameters for both codes. We find excellent agreement between radiances obtained with the two codes, both above and in the tissue. Our tests cover typical optical properties of skin tissue at the 280, 540, and 650 nm wavelengths. The normalized volume scattering function for internal structures in the skin is represented by the one-parameter Henyey-Greenstein function for large particles and the Rayleigh scattering function for small particles. The CAT-DISORT code is found to be approximately 1000 times faster than the CAT-MC code. We also show that the spectral radiance field is strongly dependent on the inherent optical properties of the skin tissue.

  17. Parameter identification for continuous point emission source based on Tikhonov regularization method coupled with particle swarm optimization algorithm.

    Science.gov (United States)

    Ma, Denglong; Tan, Wei; Zhang, Zaoxiao; Hu, Jun

    2017-03-05

    In order to identify the parameters of hazardous gas emission source in atmosphere with less previous information and reliable probability estimation, a hybrid algorithm coupling Tikhonov regularization with particle swarm optimization (PSO) was proposed. When the source location is known, the source strength can be estimated successfully by common Tikhonov regularization method, but it is invalid when the information about both source strength and location is absent. Therefore, a hybrid method combining linear Tikhonov regularization and PSO algorithm was designed. With this method, the nonlinear inverse dispersion model was transformed to a linear form under some assumptions, and the source parameters including source strength and location were identified simultaneously by linear Tikhonov-PSO regularization method. The regularization parameters were selected by L-curve method. The estimation results with different regularization matrixes showed that the confidence interval with high-order regularization matrix is narrower than that with zero-order regularization matrix. But the estimation results of different source parameters are close to each other with different regularization matrixes. A nonlinear Tikhonov-PSO hybrid regularization was also designed with primary nonlinear dispersion model to estimate the source parameters. The comparison results of simulation and experiment case showed that the linear Tikhonov-PSO method with transformed linear inverse model has higher computation efficiency than nonlinear Tikhonov-PSO method. The confidence intervals from linear Tikhonov-PSO are more reasonable than that from nonlinear method. The estimation results from linear Tikhonov-PSO method are similar to that from single PSO algorithm, and a reasonable confidence interval with some probability levels can be additionally given by Tikhonov-PSO method. Therefore, the presented linear Tikhonov-PSO regularization method is a good potential method for hazardous emission

  18. Strong-coupling theory of superconductivity

    International Nuclear Information System (INIS)

    Rainer, D.; Sauls, J.A.

    1995-01-01

    The electronic properties of correlated metals with a strong electron-phonon coupling may be understood in terms of a combination of Landau''s Fermi liquid theory and the strong-coupling theory of Migdal and Eliashberg. In these lecture notes we discuss the microscopic foundations of this phenomenological Fermi-liquid model of correlated, strong-coupling metals. We formulate the basic equations of the model, which are quasiclassical transport equations that describe both equilibrium and non-equilibrium phenomena for the normal and superconducting states of a metal. Our emphasis is on superconductors close to equilibrium, for which we derive the general linear response theory. As an application we calculate the dynamical conductivity of strong-coupling superconductors. (author)

  19. Efficient synchronization of structurally adaptive coupled Hindmarsh-Rose neurons

    International Nuclear Information System (INIS)

    Moujahid, A.; D'Anjou, A.; Torrealdea, F.J.; Torrealdea, F.

    2011-01-01

    Highlights: → Neural activity might be constrained by a requirement of energy efficiency. → Signaling in synchrony is a normal way to propagate information between neurons. → Quality of synchrony affects the capacity to exchange information and the energy cost. → Adaptive mechanism leads to high degree of synchronization between nonidentical neurons. - Abstract: The use of spikes to carry information between brain areas implies complete or partial synchronization of the neurons involved. The degree of synchronization reached by two coupled systems and the energy cost of maintaining their synchronized behavior is highly dependent on the nature of the systems. For non-identical systems the maintenance of a synchronized regime is energetically a costly process. In this work, we study conditions under which two non-identical electrically coupled neurons can reach an efficient regime of synchronization at low energy cost. We show that the energy consumption required to keep the synchronized regime can be spontaneously reduced if the receiving neuron has adaptive mechanisms able to bring its biological parameters closer in value to the corresponding ones in the sending neuron.

  20. Analysis and Synthesis of Coupled Microstrip Circuits with More Than Two Coupled Strips

    DEFF Research Database (Denmark)

    Dalby, Arne Brejning

    1977-01-01

    It is shown that the y-parameters for the 2N-port network, N coupled strips form, may be found using almost arbitrary quasi-propagation modes if the relative bandwith of interest is small. Chosing a special set of propagation modes leads to simple expressions for the y-parameters, which are easy...

  1. Conflicts Within the Family and Within the Couple as Contextual Factors in the Determinism of Male Sexual Dysfunction.

    Science.gov (United States)

    Boddi, Valentina; Fanni, Egidia; Castellini, Giovanni; Fisher, Alessandra Daphne; Corona, Giovanni; Maggi, Mario

    2015-12-01

    The deterioration of a couple's relationship has been previously associated with impairment in male sexual function. Besides a couple's dystonic relationship, other stressors can unfavorably influence dyadic intimacy. A largely neglected etiopathogenetic factor affecting couple sexuality is the frustration caused by conflicts within the family. To evaluate the possible associations between male sexual dysfunction (SD) and conflictual relationships within the couple or the family. A consecutive series of 3,975 men, attending the Outpatient Clinic for SD for the first time, was retrospectively studied. Conflicts within the family and within the couple were assessed using two standard questions: "Are there any conflicts at home," and "Do you have a difficult relationship with your partner?" respectively, rating 0 = normal relationships, 1 = occasional quarrels, and 2 = frequent quarrels or always. Several clinical, biochemical, and psychological (Middlesex Hospital Questionnaire) parameters were studied. Among the 3,975 patients studied, we observed a high prevalence of conflicts within the family and within the couple (32% vs. 21.2%). When compared with the rest of the sample, subjects reporting both type of conflicts showed a higher prevalence of psychiatric comorbidities. Hence, all data were adjusted for this parameter and for age. Family and couple conflicts were significantly associated with free floating anxiety, depression symptoms, and with a higher risk of subjective (self-reported) and objective (peak systolic velocity at the penile color Doppler ultrasound conflicts. This study indicates that the presence of often unexplored issues, like conflicts within the family or within the couple, can represent an important contextual factor in the determinism of male SD. © 2015 International Society for Sexual Medicine.

  2. Spin-orbit coupling calculations with the two-component normalized elimination of the small component method

    Science.gov (United States)

    Filatov, Michael; Zou, Wenli; Cremer, Dieter

    2013-07-01

    A new algorithm for the two-component Normalized Elimination of the Small Component (2cNESC) method is presented and tested in the calculation of spin-orbit (SO) splittings for a series of heavy atoms and their molecules. The 2cNESC is a Dirac-exact method that employs the exact two-component one-electron Hamiltonian and thus leads to exact Dirac SO splittings for one-electron atoms. For many-electron atoms and molecules, the effect of the two-electron SO interaction is modeled by a screened nucleus potential using effective nuclear charges as proposed by Boettger [Phys. Rev. B 62, 7809 (2000), 10.1103/PhysRevB.62.7809]. The use of the screened nucleus potential for the two-electron SO interaction leads to accurate spinor energy splittings, for which the deviations from the accurate Dirac Fock-Coulomb values are on the average far below the deviations observed for other effective one-electron SO operators. For hydrogen halides HX (X = F, Cl, Br, I, At, and Uus) and mercury dihalides HgX2 (X = F, Cl, Br, I) trends in spinor energies and SO splittings as obtained with the 2cNESC method are analyzed and discussed on the basis of coupling schemes and the electronegativity of X.

  3. Univariate normalization of bispectrum using Hölder's inequality.

    Science.gov (United States)

    Shahbazi, Forooz; Ewald, Arne; Nolte, Guido

    2014-08-15

    Considering that many biological systems including the brain are complex non-linear systems, suitable methods capable of detecting these non-linearities are required to study the dynamical properties of these systems. One of these tools is the third order cummulant or cross-bispectrum, which is a measure of interfrequency interactions between three signals. For convenient interpretation, interaction measures are most commonly normalized to be independent of constant scales of the signals such that its absolute values are bounded by one, with this limit reflecting perfect coupling. Although many different normalization factors for cross-bispectra were suggested in the literature these either do not lead to bounded measures or are themselves dependent on the coupling and not only on the scale of the signals. In this paper we suggest a normalization factor which is univariate, i.e., dependent only on the amplitude of each signal and not on the interactions between signals. Using a generalization of Hölder's inequality it is proven that the absolute value of this univariate bicoherence is bounded by zero and one. We compared three widely used normalizations to the univariate normalization concerning the significance of bicoherence values gained from resampling tests. Bicoherence values are calculated from real EEG data recorded in an eyes closed experiment from 10 subjects. The results show slightly more significant values for the univariate normalization but in general, the differences are very small or even vanishing in some subjects. Therefore, we conclude that the normalization factor does not play an important role in the bicoherence values with regard to statistical power, although a univariate normalization is the only normalization factor which fulfills all the required conditions of a proper normalization. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Measurements of the weak bonding interfacial stiffness by using air-coupled ultrasound

    Directory of Open Access Journals (Sweden)

    Wen-Lin Wu

    2017-12-01

    Full Text Available An air-coupled ultrasonic method, focusing on the problem that weak bonding interface is difficult to accurately measure using conventional nondestructive testing technique, is proposed to evaluate the bond integrity. Based on the spring model and the potential function theory, a theoretical model is established to predict the through-transmission spectrum in double-layer adhesive structure. The result of a theoretical algorithm shows that all the resonant transmission peaks move towards higher frequency with the increase of the interfacial stiffness. The reason for these movements is related to either the normal stiffness (KN or the transverse stiffness (KT. A method to optimize the measurement parameters (i.e. the incident angle and testing frequency is put forward through analyzing the relationship between the resonant transmission peaks and the interfacial spring stiffness at the frequency below 1MHz. The air-coupled ultrasonic testing experiments at the normal and oblique incident angle respectively are carried out to verify the theoretical analysis and to accurately measure the interfacial stiffness of double-layer adhesive composite plate. The experimental results are good agreement with the results from the theoretical algorithm, and the relationship between bonding time and interfacial stiffness is presented at the end of this paper.

  5. Chimera patterns in two-dimensional networks of coupled neurons

    Science.gov (United States)

    Schmidt, Alexander; Kasimatis, Theodoros; Hizanidis, Johanne; Provata, Astero; Hövel, Philipp

    2017-03-01

    We discuss synchronization patterns in networks of FitzHugh-Nagumo and leaky integrate-and-fire oscillators coupled in a two-dimensional toroidal geometry. A common feature between the two models is the presence of fast and slow dynamics, a typical characteristic of neurons. Earlier studies have demonstrated that both models when coupled nonlocally in one-dimensional ring networks produce chimera states for a large range of parameter values. In this study, we give evidence of a plethora of two-dimensional chimera patterns of various shapes, including spots, rings, stripes, and grids, observed in both models, as well as additional patterns found mainly in the FitzHugh-Nagumo system. Both systems exhibit multistability: For the same parameter values, different initial conditions give rise to different dynamical states. Transitions occur between various patterns when the parameters (coupling range, coupling strength, refractory period, and coupling phase) are varied. Many patterns observed in the two models follow similar rules. For example, the diameter of the rings grows linearly with the coupling radius.

  6. Effect of Nebivolol on MIBG Parameters and Exercise in Heart Failure with Normal Ejection Fraction

    Energy Technology Data Exchange (ETDEWEB)

    Messias, Leandro Rocha, E-mail: lmessias@cardiol.br; Ferreira, Aryanne Guimarães; Miranda, Sandra Marina Ribeiro de; Teixeira, José Antônio Caldas [Universidade Federal Fluminense, Rio de Janeiro, RJ (Brazil); Azevedo, Jader Cunha de [Universidade Federal Fluminense, Rio de Janeiro, RJ (Brazil); Hospital Procardíaco, Rio de Janeiro, RJ (Brazil); Messias, Ana Carolina Nader Vasconcelos [Hospital Federal dos Servidores do Estado do Rio de Janeiro, Rio de Janeiro, RJ (Brazil); Maróstica, Elisabeth [Universidade Federal Fluminense, Rio de Janeiro, RJ (Brazil); Mesquita, Claudio Tinoco [Universidade Federal Fluminense, Rio de Janeiro, RJ (Brazil); Hospital Procardíaco, Rio de Janeiro, RJ (Brazil)

    2016-05-15

    More than 50% of the patients with heart failure have normal ejection fraction (HFNEF). Iodine-123 metaiodobenzylguanidine (123I-MIBG) scintigraphy and cardiopulmonary exercise test (CPET) are prognostic markers in HFNEF. Nebivolol is a beta-blocker with vasodilating properties. To evaluate the impact of nebivolol therapy on CPET and123I-MIBG scintigraphic parameters in patients with HFNEF. Twenty-five patients underwent 123I-MIBG scintigraphy to determine the washout rate and early and late heart-to-mediastinum ratios. During the CPET, we analyzed the systolic blood pressure (SBP) response, heart rate (HR) during effort and recovery (HRR), and oxygen uptake (VO{sub 2}). After the initial evaluation, we divided our cohort into control and intervention groups. We then started nebivolol and repeated the tests after 3 months. After treatment, the intervention group showed improvement in rest SBP (149 mmHg [143.5-171 mmHg] versus 135 mmHg [125-151 mmHg, p = 0.016]), rest HR (78 bpm [65.5-84 bpm] versus 64.5 bpm [57.5-75.5 bpm, p = 0.028]), peak SBP (235 mmHg [216.5-249 mmHg] versus 198 mmHg [191-220.5 mmHg], p = 0.001), peak HR (124.5 bpm [115-142 bpm] versus 115 bpm [103.7-124 bpm], p= 0.043), HRR on the 1st minute (6.5 bpm [4.75-12.75 bpm] versus 14.5 bpm [6.7-22 bpm], p = 0.025) and HRR on the 2nd minute (15.5 bpm [13-21.75 bpm] versus 23.5 bpm [16-31.7 bpm], p = 0.005), but no change in peak VO{sub 2} and 123I-MIBG scintigraphic parameters. Despite a better control in SBP, HR during rest and exercise, and improvement in HRR, nebivolol failed to show a positive effect on peak VO2 and 123I-MIBG scintigraphic parameters. The lack of effect on adrenergic activity may be the cause of the lack of effect on functional capacity.

  7. Effect of Nebivolol on MIBG Parameters and Exercise in Heart Failure with Normal Ejection Fraction

    International Nuclear Information System (INIS)

    Messias, Leandro Rocha; Ferreira, Aryanne Guimarães; Miranda, Sandra Marina Ribeiro de; Teixeira, José Antônio Caldas; Azevedo, Jader Cunha de; Messias, Ana Carolina Nader Vasconcelos; Maróstica, Elisabeth; Mesquita, Claudio Tinoco

    2016-01-01

    More than 50% of the patients with heart failure have normal ejection fraction (HFNEF). Iodine-123 metaiodobenzylguanidine (123I-MIBG) scintigraphy and cardiopulmonary exercise test (CPET) are prognostic markers in HFNEF. Nebivolol is a beta-blocker with vasodilating properties. To evaluate the impact of nebivolol therapy on CPET and123I-MIBG scintigraphic parameters in patients with HFNEF. Twenty-five patients underwent 123I-MIBG scintigraphy to determine the washout rate and early and late heart-to-mediastinum ratios. During the CPET, we analyzed the systolic blood pressure (SBP) response, heart rate (HR) during effort and recovery (HRR), and oxygen uptake (VO 2 ). After the initial evaluation, we divided our cohort into control and intervention groups. We then started nebivolol and repeated the tests after 3 months. After treatment, the intervention group showed improvement in rest SBP (149 mmHg [143.5-171 mmHg] versus 135 mmHg [125-151 mmHg, p = 0.016]), rest HR (78 bpm [65.5-84 bpm] versus 64.5 bpm [57.5-75.5 bpm, p = 0.028]), peak SBP (235 mmHg [216.5-249 mmHg] versus 198 mmHg [191-220.5 mmHg], p = 0.001), peak HR (124.5 bpm [115-142 bpm] versus 115 bpm [103.7-124 bpm], p= 0.043), HRR on the 1st minute (6.5 bpm [4.75-12.75 bpm] versus 14.5 bpm [6.7-22 bpm], p = 0.025) and HRR on the 2nd minute (15.5 bpm [13-21.75 bpm] versus 23.5 bpm [16-31.7 bpm], p = 0.005), but no change in peak VO 2 and 123I-MIBG scintigraphic parameters. Despite a better control in SBP, HR during rest and exercise, and improvement in HRR, nebivolol failed to show a positive effect on peak VO2 and 123I-MIBG scintigraphic parameters. The lack of effect on adrenergic activity may be the cause of the lack of effect on functional capacity

  8. Normalization method for metabolomics data using optimal selection of multiple internal standards

    Directory of Open Access Journals (Sweden)

    Yetukuri Laxman

    2007-03-01

    Full Text Available Abstract Background Success of metabolomics as the phenotyping platform largely depends on its ability to detect various sources of biological variability. Removal of platform-specific sources of variability such as systematic error is therefore one of the foremost priorities in data preprocessing. However, chemical diversity of molecular species included in typical metabolic profiling experiments leads to different responses to variations in experimental conditions, making normalization a very demanding task. Results With the aim to remove unwanted systematic variation, we present an approach that utilizes variability information from multiple internal standard compounds to find optimal normalization factor for each individual molecular species detected by metabolomics approach (NOMIS. We demonstrate the method on mouse liver lipidomic profiles using Ultra Performance Liquid Chromatography coupled to high resolution mass spectrometry, and compare its performance to two commonly utilized normalization methods: normalization by l2 norm and by retention time region specific standard compound profiles. The NOMIS method proved superior in its ability to reduce the effect of systematic error across the full spectrum of metabolite peaks. We also demonstrate that the method can be used to select best combinations of standard compounds for normalization. Conclusion Depending on experiment design and biological matrix, the NOMIS method is applicable either as a one-step normalization method or as a two-step method where the normalization parameters, influenced by variabilities of internal standard compounds and their correlation to metabolites, are first calculated from a study conducted in repeatability conditions. The method can also be used in analytical development of metabolomics methods by helping to select best combinations of standard compounds for a particular biological matrix and analytical platform.

  9. Effect of process parameters on temperature distribution in twin-electrode TIG coupling arc

    Science.gov (United States)

    Zhang, Guangjun; Xiong, Jun; Gao, Hongming; Wu, Lin

    2012-10-01

    The twin-electrode TIG coupling arc is a new type of welding heat source, which is generated in a single welding torch that has two tungsten electrodes insulated from each other. This paper aims at determining the distribution of temperature for the coupling arc using the Fowler-Milne method under the assumption of local thermodynamic equilibrium. The influences of welding current, arc length, and distance between both electrode tips on temperature distribution of the coupling arc were analyzed. Based on the results, a better understanding of the twin-electrode TIG welding process was obtained.

  10. Inflation with non-minimal coupling. Metric vs. Palatini formulations

    International Nuclear Information System (INIS)

    Bauer, F.; Demir, D.A.; Izmir Institute of Technology

    2008-03-01

    We analyze non-minimally coupled scalar field theories in metric (second-order) and Palatini (first-order) formalisms in a comparative fashion. After contrasting them in a general setup, we specialize to inflation and find that the two formalisms differ in their predictions for various cosmological parameters. The main reason is that dependencies on the non-minimal coupling parameter are different in the two formalisms. For successful inflation, the Palatini approach prefers a much larger value for the non-minimal coupling parameter than the Metric approach. Unlike the Metric formalism, in Palatini, the inflaton stays well below the Planck scale whereby providing a natural inflationary epoch. (orig.)

  11. Direct Extraction of InP/GaAsSb/InP DHBT Equivalent-Circuit Elements From S-Parameters Measured at Cut-Off and Normal Bias Conditions

    DEFF Research Database (Denmark)

    Johansen, Tom Keinicke; Leblanc, Rémy; Poulain, Julien

    2016-01-01

    A unique direct parameter extraction method for the small-signal equivalent-circuit model of InP/GaAsSb/InP double heterojunction bipolar transistors (DHBTs) is presented. $S$-parameters measured at cut-off bias are used, at first, to extract the distribution factor $X_{0}$ for the base-collector......A unique direct parameter extraction method for the small-signal equivalent-circuit model of InP/GaAsSb/InP double heterojunction bipolar transistors (DHBTs) is presented. $S$-parameters measured at cut-off bias are used, at first, to extract the distribution factor $X_{0}$ for the base......-collector capacitance at zero collector current and the collector-to-emitter overlap capacitance $C_{ceo}$ present in InP DHBT devices. Low-frequency $S$-parameters measured at normal bias conditions then allows the extraction of the external access resistances $R_{bx}$, $R_{e}$, and $R_{cx}$ as well as the intrinsic...

  12. Land-Ocean-Atmospheric Coupling Associated with Earthquakes

    Science.gov (United States)

    Prasad, A. K.; Singh, R. P.; Kumar, S.; Cervone, G.; Kafatos, M.; Zlotnicki, J.

    2007-12-01

    Earthquakes are well known to occur along the plate boundaries and also on the stable shield. The recent studies have shown existence of strong coupling between land-ocean-atmospheric parameters associated with the earthquakes. We have carried out detailed analysis of multi sensor data (optical and microwave remote) to show existence of strong coupling between land-ocean-atmospheric parameters associated with the earthquakes with focal depth up to 30 km and magnitude greater than 5.5. Complimentary nature of various land, ocean and atmospheric parameters will be demonstrated in getting an early warning information about an impending earthquake.

  13. Psychosexual Complications of Female Genital Mutilation for Couples: A Comparative Study

    Directory of Open Access Journals (Sweden)

    Osman Mahmoudi

    2017-03-01

    Full Text Available Introduction: Female genital mutilation (FGM comprises of various procedures that damage female genitalia for non-therapeutic intentions, and it offers multidimensional and interdependent effects. Objectives: The aim of this study was to determine whether FGM versus non-FGM couples in Kermanshah in Iran vary in relationship characteristics, such as relationship satisfaction, sexual satisfaction, and mental health. Methods: To achieve this goal of research, a sample of 414 couples (206 FGM couples and 208 normal couples of Uramanat area in Kermanshah Province, were selected by non-randomized sampling. Enrich Marital Inventory, 25-SCL Mental Health Inventory and the Arizona Sexual Experience Scale were used for data collection. Data were analyzed between the two groups by utilizing independent t-test. The significance level was P < 0.05. Results: The findings indicated that there was a significant difference between FGM couples and normal couples. Besides, the results revealed that the two groups of participants had significant differences in mental health, marital satisfaction, and sexual function. Overall, FGM couples compared with normal couples had lower levels of mental health, marital satisfaction, and sexual function. Conclusion: FGM is associated with frequent psychosexual difficulties in Uramanat couples; notably orgasm difficulties, sense of incomplete sexual-needs fulfillment, and neurotic symptoms. Awareness of the psychosexual effects of this operation could help women cope with psychological and psychosexual problems, and could prevent the performing of this inhuman action on others.

  14. A quantitative analysis of coupled oscillations using mobile accelerometer sensors

    International Nuclear Information System (INIS)

    Castro-Palacio, Juan Carlos; Velázquez-Abad, Luisberis; Giménez, Fernando; Monsoriu, Juan A

    2013-01-01

    In this paper, smartphone acceleration sensors were used to perform a quantitative analysis of mechanical coupled oscillations. Symmetric and asymmetric normal modes were studied separately in the first two experiments. In the third, a coupled oscillation was studied as a combination of the normal modes. Results indicate that acceleration sensors of smartphones, which are very familiar to students, represent valuable measurement instruments for introductory and first-year physics courses. (paper)

  15. A quantitative analysis of coupled oscillations using mobile accelerometer sensors

    Science.gov (United States)

    Castro-Palacio, Juan Carlos; Velázquez-Abad, Luisberis; Giménez, Fernando; Monsoriu, Juan A.

    2013-05-01

    In this paper, smartphone acceleration sensors were used to perform a quantitative analysis of mechanical coupled oscillations. Symmetric and asymmetric normal modes were studied separately in the first two experiments. In the third, a coupled oscillation was studied as a combination of the normal modes. Results indicate that acceleration sensors of smartphones, which are very familiar to students, represent valuable measurement instruments for introductory and first-year physics courses.

  16. Numerical research on the neutronic/thermal-hydraulic/mechanical coupling characteristics of the optimized helium cooled solid breeder blanket for CFETR

    International Nuclear Information System (INIS)

    Cui, Shijie; Zhang, Dalin; Cheng, Jie; Tian, Wenxi; Su, G.H.

    2017-01-01

    As one of the candidate tritium breeding blankets for Chinese Fusion Engineering Test Reactor (CFETR), a conceptual structure of the helium cooled solid breeder blanket has recently been proposed. The neutronic, thermal-hydraulic and mechanical characteristics of the blanket directly affect its tritium breeding and safety performance. Therefore, neutronic/thermal-hydraulic/mechanical coupling analyses are of vital importance for a reliable blanket design. In this work, first, three-dimensional neutronics analysis and optimization of the typical outboard equatorial blanket module (No. 12) were performed for the comprehensive optimal scheme. Then, thermal and fluid dynamic analyses of the scheme under both normal and critical conditions were performed and coupled with the previous neutronic calculation results. With thermal-hydraulic boundaries, thermo-mechanical analyses of the structure materials under normal, critical and blanket over-pressurization conditions were carried out. In addition, several parametric sensitivity studies were also conducted to investigate the influences of the main parameters on the blanket temperature distributions. In this paper, the coupled analyses verify the reasonability of the optimized conceptual design preliminarily and can provide an important reference for the further analysis and optimization design of the CFETR helium cooled solid breeder blanket.

  17. Numerical research on the neutronic/thermal-hydraulic/mechanical coupling characteristics of the optimized helium cooled solid breeder blanket for CFETR

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Shijie; Zhang, Dalin, E-mail: dlzhang@mail.xjtu.edu.cn; Cheng, Jie; Tian, Wenxi; Su, G.H.

    2017-01-15

    As one of the candidate tritium breeding blankets for Chinese Fusion Engineering Test Reactor (CFETR), a conceptual structure of the helium cooled solid breeder blanket has recently been proposed. The neutronic, thermal-hydraulic and mechanical characteristics of the blanket directly affect its tritium breeding and safety performance. Therefore, neutronic/thermal-hydraulic/mechanical coupling analyses are of vital importance for a reliable blanket design. In this work, first, three-dimensional neutronics analysis and optimization of the typical outboard equatorial blanket module (No. 12) were performed for the comprehensive optimal scheme. Then, thermal and fluid dynamic analyses of the scheme under both normal and critical conditions were performed and coupled with the previous neutronic calculation results. With thermal-hydraulic boundaries, thermo-mechanical analyses of the structure materials under normal, critical and blanket over-pressurization conditions were carried out. In addition, several parametric sensitivity studies were also conducted to investigate the influences of the main parameters on the blanket temperature distributions. In this paper, the coupled analyses verify the reasonability of the optimized conceptual design preliminarily and can provide an important reference for the further analysis and optimization design of the CFETR helium cooled solid breeder blanket.

  18. Time-Domain Analysis of Coupled Carbon Nano tube Interconnects

    International Nuclear Information System (INIS)

    Fathi, D.

    2014-01-01

    This paper describes a new method for the analysis of coupling effects including the crosstalk effects between two driven coupled single-walled carbon nano tubes (SWCNTs) and the intertalk effects between two neighboring shells in a multi walled carbon nano tube (MWCNT), based on transmission line circuit modeling. Using rigorous calculations, a new parametric transfer function has been obtained for the analysis of the impact of aggressor line on the victim line, which depends on the various coupling parameters such as the mutual inductance, the coupling capacitance, and the tunneling resistance. The influences of various parameters such as the contact resistance and the switching factor on the time behavior of coupling effects between the two coupled CNTs and an important effect named “crosstalk-induced delay” are studied and analyzed

  19. The properties of C-parameter and coupling constants

    Indian Academy of Sciences (India)

    2016-12-03

    Dec 3, 2016 ... We present the properties of the C-parameter as an event-shape variable. We calculate the ... ideal testing ground to study quantum chromodynam- ics (QCD) and these ... soid with orthogonal axes named minor, semimajor. 1 ...

  20. Anisotropic inflation with derivative couplings

    Science.gov (United States)

    Holland, Jonathan; Kanno, Sugumi; Zavala, Ivonne

    2018-05-01

    We study anisotropic power-law inflationary solutions when the inflaton and its derivative couple to a vector field. This type of coupling is motivated by D-brane inflationary models, in which the inflaton, and a vector field living on the D-brane, couple disformally (derivatively). We start by studying a phenomenological model where we show the existence of anisotropic solutions and demonstrate their stability via a dynamical system analysis. Compared to the case without a derivative coupling, the anisotropy is reduced and thus can be made consistent with current limits, while the value of the slow-roll parameter remains almost unchanged. We also discuss solutions for more general cases, including D-brane-like couplings.

  1. A general approach to double-moment normalization of drop size distributions

    Science.gov (United States)

    Lee, G. W.; Sempere-Torres, D.; Uijlenhoet, R.; Zawadzki, I.

    2003-04-01

    Normalization of drop size distributions (DSDs) is re-examined here. First, we present an extension of scaling normalization using one moment of the DSD as a parameter (as introduced by Sempere-Torres et al, 1994) to a scaling normalization using two moments as parameters of the normalization. It is shown that the normalization of Testud et al. (2001) is a particular case of the two-moment scaling normalization. Thus, a unified vision of the question of DSDs normalization and a good model representation of DSDs is given. Data analysis shows that from the point of view of moment estimation least square regression is slightly more effective than moment estimation from the normalized average DSD.

  2. Identical synchronization of coupled Rossler systems

    DEFF Research Database (Denmark)

    Yanchuk, S.; Maistrenko, Y.; Mosekilde, Erik

    1999-01-01

    Analyzing the transverse stability of low periodic orbits embedded in the synchronized chaotic state for a system of two coupled Rössler oscillators, we obtain the conditions for synchronization and determine the coupling parameters for which riddled basins of attraction may arise. It is shown how...

  3. Bifurcation and Fractal of the Coupled Logistic Map

    Science.gov (United States)

    Wang, Xingyuan; Luo, Chao

    The nature of the fixed points of the coupled Logistic map is researched, and the boundary equation of the first bifurcation of the coupled Logistic map in the parameter space is given out. Using the quantitative criterion and rule of system chaos, i.e., phase graph, bifurcation graph, power spectra, the computation of the fractal dimension, and the Lyapunov exponent, the paper reveals the general characteristics of the coupled Logistic map transforming from regularity to chaos, the following conclusions are shown: (1) chaotic patterns of the coupled Logistic map may emerge out of double-periodic bifurcation and Hopf bifurcation, respectively; (2) during the process of double-period bifurcation, the system exhibits self-similarity and scale transform invariability in both the parameter space and the phase space. From the research of the attraction basin and Mandelbrot-Julia set of the coupled Logistic map, the following conclusions are indicated: (1) the boundary between periodic and quasiperiodic regions is fractal, and that indicates the impossibility to predict the moving result of the points in the phase plane; (2) the structures of the Mandelbrot-Julia sets are determined by the control parameters, and their boundaries have the fractal characteristic.

  4. Jeans instability in collisional strongly coupled dusty plasma with radiative condensation and polarization force

    International Nuclear Information System (INIS)

    Prajapati, R. P.; Bhakta, S.; Chhajlani, R. K.

    2016-01-01

    The influence of dust-neutral collisions, polarization force, and electron radiative condensation is analysed on the Jeans (gravitational) instability of partially ionized strongly coupled dusty plasma (SCDP) using linear perturbation (normal mode) analysis. The Boltzmann distributed ions, dynamics of inertialess electrons, charged dust and neutral particles are considered. Using the plane wave solutions, a general dispersion relation is derived which is modified due to the presence of dust-neutral collisions, strong coupling effect, polarization force, electron radiative condensation, and Jeans dust/neutral frequencies. In the long wavelength perturbations, the Jeans instability criterion depends upon strong coupling effect, polarization interaction parameter, and thermal loss, but it is independent of dust-neutral collision frequency. The stability of the considered configuration is analysed using the Routh–Hurwitz criterion. The growth rates of Jeans instability are illustrated, and stabilizing influence of viscoelasticity and dust-neutral collision frequency while destabilizing effect of electron radiative condensation, polarization force, and Jeans dust-neutral frequency ratio is observed. This work is applied to understand the gravitational collapse of SCDP with dust-neutral collisions.

  5. Electrochemical Single-Molecule Transistors with Optimized Gate Coupling

    DEFF Research Database (Denmark)

    Osorio, Henrry M.; Catarelli, Samantha; Cea, Pilar

    2015-01-01

    Electrochemical gating at the single molecule level of viologen molecular bridges in ionic liquids is examined. Contrary to previous data recorded in aqueous electrolytes, a clear and sharp peak in the single molecule conductance versus electrochemical potential data is obtained in ionic liquids....... These data are rationalized in terms of a two-step electrochemical model for charge transport across the redox bridge. In this model the gate coupling in the ionic liquid is found to be fully effective with a modeled gate coupling parameter, ξ, of unity. This compares to a much lower gate coupling parameter...

  6. Coupling Strategies Investigation of Hybrid Atomistic-Continuum Method Based on State Variable Coupling

    Directory of Open Access Journals (Sweden)

    Qian Wang

    2017-01-01

    Full Text Available Different configurations of coupling strategies influence greatly the accuracy and convergence of the simulation results in the hybrid atomistic-continuum method. This study aims to quantitatively investigate this effect and offer the guidance on how to choose the proper configuration of coupling strategies in the hybrid atomistic-continuum method. We first propose a hybrid molecular dynamics- (MD- continuum solver in LAMMPS and OpenFOAM that exchanges state variables between the atomistic region and the continuum region and evaluate different configurations of coupling strategies using the sudden start Couette flow, aiming to find the preferable configuration that delivers better accuracy and efficiency. The major findings are as follows: (1 the C→A region plays the most important role in the overlap region and the “4-layer-1” combination achieves the best precision with a fixed width of the overlap region; (2 the data exchanging operation only needs a few sampling points closer to the occasions of interactions and decreasing the coupling exchange operations can reduce the computational load with acceptable errors; (3 the nonperiodic boundary force model with a smoothing parameter of 0.1 and a finer parameter of 20 can not only achieve the minimum disturbance near the MD-continuum interface but also keep the simulation precision.

  7. Introduction of Two Novel Stiffness Parameters and Interpretation of Air Puff-Induced Biomechanical Deformation Parameters With a Dynamic Scheimpflug Analyzer.

    Science.gov (United States)

    Roberts, Cynthia J; Mahmoud, Ashraf M; Bons, Jeffrey P; Hossain, Arif; Elsheikh, Ahmed; Vinciguerra, Riccardo; Vinciguerra, Paolo; Ambrósio, Renato

    2017-04-01

    To investigate two new stiffness parameters and their relationships with the dynamic corneal response (DCR) parameters and compare normal and keratoconic eyes. Stiffness parameters are defined as Resultant Pressure at inward applanation (A1) divided by corneal displacement. Stiffness parameter A1 uses displacement between the undeformed cornea and A1 and stiffness parameter highest concavity (HC) uses displacement from A1 to maximum deflection during HC. The spatial and temporal profiles of the Corvis ST (Oculus Optikgeräte, Wetzlar, Germany) air puff were characterized using hot wire anemometry. An adjusted air pressure impinging on the cornea at A1 (adjAP1) and an algorithm to biomechanically correct intraocular pressure based on finite element modelling (bIOP) were used for Resultant Pressure calculation (adjAP1 - bIOP). Linear regression analyses between DCR parameters and stiffness parameters were performed on a retrospective dataset of 180 keratoconic eyes and 482 normal eyes. DCR parameters from a subset of 158 eyes of 158 patients in each group were matched for bIOP and compared using t tests. A P value of less than .05 was considered statistically significant. All DCR parameters evaluated showed significant differences between normal and keratoconic eyes, except peak distance. Keratoconic eyes had lower stiffness parameter values, thinner pachymetry, shorter applanation lengths, greater absolute values of applanation velocities, earlier A1 times and later second applanation times, greater HC deformation amplitudes and HC deflection amplitudes, and lower HC radius of concave curvature (greater concave curvature). Most DCR parameters showed a significant relationship with both stiffness parameters in both groups. Keratoconic eyes demonstrated less resistance to deformation than normal eyes with similar IOP. The stiffness parameters may be useful in future biomechanical studies as potential biomarkers. [J Refract Surg. 2017;33(4):266-273.]. Copyright 2017

  8. Hadronic couplings of open beauty states

    International Nuclear Information System (INIS)

    Ram, S.N.; Singh, C.P.

    1982-08-01

    Strong interaction coupling parameters of particles with beauty quantum number are obtained using dispersion sum rules in various forms, e.g. current algebra sum rules, superconvergence sum rules and finite energy sum rules etc. These sum rules lead to a set of algebraic relations among masses and coupling constants. We compare the hadronic couplings of beautiful particles as obtained from various techniques and discuss their implications on the hadronic production of these states. (author)

  9. Reliability assessment based on small samples of normal distribution

    International Nuclear Information System (INIS)

    Ma Zhibo; Zhu Jianshi; Xu Naixin

    2003-01-01

    When the pertinent parameter involved in reliability definition complies with normal distribution, the conjugate prior of its distributing parameters (μ, h) is of normal-gamma distribution. With the help of maximum entropy and the moments-equivalence principles, the subjective information of the parameter and the sampling data of its independent variables are transformed to a Bayesian prior of (μ,h). The desired estimates are obtained from either the prior or the posterior which is formed by combining the prior and sampling data. Computing methods are described and examples are presented to give demonstrations

  10. Dark and composite rogue waves in the coupled Hirota equations

    International Nuclear Information System (INIS)

    Chen, Shihua

    2014-01-01

    The intriguing dark and composite rogue wave dynamics in a coupled Hirota system are unveiled, based on the exact explicit rational solutions obtained under the assumption of equal background height. It is found that a dark rogue wave state would occur as a result of the strong coupling between two field components with large wavenumber difference, and there would appear plenty of composite structures that are attributed to the specific wavenumber difference and the free choice of three independent structural parameters. The coexistence of different fundamental rogue waves in such a coupled system is also demonstrated. - Highlights: • Exact rational rogue wave solutions under different parameter conditions are presented for the coupled Hirota equations. • The basic rogue wave features and hence the intriguing dark structures are unveiled. • We attributed the diversity of composite rogue wave dynamics to the free choice of three independent structural parameters. • The remarkable coexisting rogue wave behaviors in such a coupled system are demonstrated

  11. Raman dispersion spectroscopy on the highly saddled nickel(II)-octaethyltetraphenylporphyrin reveals the symmetry of nonplanar distortions and the vibronic coupling strength of normal modes

    International Nuclear Information System (INIS)

    Schweitzer-Stenner, R.; Stichternath, A.; Dreybrodt, W.; Jentzen, W.; Song, X.; Shelnutt, J.A.; Nielsen, O.F.; Medforth, C.J.; Smith, K.M.

    1997-01-01

    We have measured the polarized Raman cross sections and depolarization ratios of 16 fundamental modes of nickel octaethyltetraphenylporphyrin in a CS 2 solution for 16 fundamental modes, i.e., the A 1g -type vibrations ν 1 , ν 2 , ν 3 , ν 4 , ν 5 , and φ 8 , the B 1g vibrations ν 11 and ν 14 , the B 2g vibrations ν 28 , ν 29 , and ν 30 and the antisymmetric A 2g modes ν 19 , ν 20 , ν 22 , and ν 23 as function of the excitation wavelength. The data cover the entire resonant regions of the Q- and B-bands. They were analyzed by use of a theory which describes intra- and intermolecular coupling in terms of a time-independent nonadiabatic perturbation theory [E. Unger, U. Bobinger, W. Dreybrodt, and R. Schweitzer-Stenner, J. Phys. Chem. 97, 9956 (1993)]. This approach explicitly accounts in a self-consistent way for multimode mixing with all Raman modes investigated. The vibronic coupling parameters obtained from this procedure were then used to successfully fit the vibronic side bands of the absorption spectrum and to calculate the resonance excitation profiles in absolute units. Our results show that the porphyrin macrocycle is subject to B 2u -(saddling) and B 1u -(ruffling) distortions which lower its symmetry to S 4 . Thus, evidence is provided that the porphyrin molecule maintains the nonplanar structure of its crystal phase in an organic solvent. The vibronic coupling parameters indicate a breakdown of the four-orbital model. This notion is corroborated by (ZINDO/S) calculations which reveal that significant configurational interaction occurs between the electronic transitions into |Q right-angle- and |1B right-angle-states and various porphyrin→porphyrin, metal→porphyrin, and porphyrin→metal transitions. (Abstract Truncated)

  12. Running couplings and operator mixing in the gravitational corrections to coupling constants

    International Nuclear Information System (INIS)

    Anber, Mohamed M.; Donoghue, John F.; El-Houssieny, Mohamed

    2011-01-01

    The use of a running coupling constant in renormalizable theories is well known, but the implementation of this idea for effective field theories with a dimensional coupling constant is, in general, less useful. Nevertheless, there are multiple attempts to define running couplings, including the effects of gravity, with varying conclusions. We sort through many of the issues involved, most particularly the idea of operator mixing and also the kinematics of crossing, using calculations in Yukawa and λφ 4 theories as illustrative examples. We remain in the perturbative regime. In some theories with a high permutation symmetry, such as λφ 4 , a reasonable running coupling can be defined. However, in most cases, such as Yukawa and gauge theories, a running coupling fails to correctly account for the energy dependence of the interaction strength. As a by-product we also contrast on-shell and off-shell renormalization schemes and show that operators which are normally discarded, such as those that vanish by the equations of motion, are required for off-shell renormalization of effective field theories. Our results suggest that the inclusion of gravity in the running of couplings is not useful or universal in the description of physical processes.

  13. Global coupling and decoupling of the APS storage ring

    International Nuclear Information System (INIS)

    Chae, Yong-Chul; Liu, Jianyang; Teng, L.C.

    1995-01-01

    This Paper describes a study of controlling the coupling between the horizontal and the vertical betatron oscillations in the APS storage ring. First, we investigate the strengthening of coupling using two families of skew quadrupoles. Using smooth approximation, we obtained the formulae to estimate the coupling ratio defined as the ratio of the vertical and horizontal emittances or, for a single particle, the ratio of the maximum values of the Courant Snyder invariants. Since we knew that the coupling is mostly enhanced by the 21st harmonic content of skew quadrupole distribution, we carried out the harmonic analysis in order to find the optimum arrangement of the skew quadrupoles. The numerical results from tracking a single particle are presented for the various configurations of skew quadrupoles. Second, we describe the global decoupling procedure to minimize the unwanted coupling effects. These are mainly due to the random roll errors of normal quadrupoles. It is shown that even with the rather large rms roll error of 2 mrad we can reduce the Coupling from 70 percent to 10 percent with a skew quadrupole strength which is one order of magnitude lower than the typical normal quadrupole strength

  14. Coupled variations of fundamental couplings and primordial nucleosynthesis

    International Nuclear Information System (INIS)

    Coc, Alain; Nunes, Nelson J.; Olive, Keith A.; Uzan, Jean-Philippe; Vangioni, Elisabeth

    2006-10-01

    The effect of variations of the fundamental nuclear parameters on big-bang nucleosynthesis are modeled and discussed in detail taking into account the interrelations between the fundamental parameters arising in unified theories. Considering only 4 He, strong constraints on the variation of the neutron lifetime, neutron-proton mass difference are set. These constraints are then translated into constraints on the time variation of the Yukawa couplings and the fine structure constant. Furthermore, we show that a variation of the deuterium binding energy is able to reconcile the 7 Li abundance deduced from the WMAP analysis with its spectroscopically determined value while maintaining concordance with D and 4 He. (authors)

  15. Soret-driven double diffusive magneto-convection in couple stress liquid

    Directory of Open Access Journals (Sweden)

    Mishra P.

    2012-07-01

    Full Text Available The stability analysis of Soret driven double diffusive convection for electrically conducting couple stress liquid is investigated theoretically. The couple stress liquid is confined between two horizontal surfaces and a constant vertical magnetic field is applied across the surfaces. Linear stability analysis is used to investigate the effect of various parameters on the onset of convection. Effect of magnetic field on the onset of convection is presented by means of Chandrasekhar number. The problem is analyzed as a function of Chandrasekhar number (Q, positive and negative Soret parameter (S r and couple stress parameter (C, mainly. The results show that the Q, both positive and negative Sr and C delay the onset of convection. The effect of other parameters is also discussed in paper and shown by graphs.

  16. A coupled oscillator model describes normal and strange zooplankton swimming behaviour

    NARCIS (Netherlands)

    Ringelberg, J.; Lingeman, R.

    2003-01-01

    "Normal" swimming in marine and freshwater zooplankton is often intermittent with active upward and more passive downward displacements. In the freshwater cladoceran Daphnia, the pattern is sometimes regular enough to demonstrate the presence of a rhythm. Abnormal swimming patterns were also

  17. Lumped-parameter Model of a Bucket Foundation

    DEFF Research Database (Denmark)

    Andersen, Lars; Ibsen, Lars Bo; Liingaard, Morten

    2009-01-01

    efficient model that can be applied in aero-elastic codes for fast evaluation of the dynamic structural response of wind turbines. The target solutions, utilised for calibration of the lumped-parameter models, are obtained by a coupled finite-element/boundaryelement scheme in the frequency domain......, and the quality of the models are tested in the time and frequency domains. It is found that precise results are achieved by lumped-parameter models with two to four internal degrees of freedom per displacement or rotation of the foundation. Further, coupling between the horizontal sliding and rocking cannot...

  18. Non normal modal analysis of oscillations in boiling water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Suarez-Antola, Roberto, E-mail: roberto.suarez@miem.gub.uy [Ministerio de Industria, Energia y Mineria (MIEM), Montevideo (Uruguay); Flores-Godoy, Jose-Job, E-mail: job.flores@ibero.mx [Universidad Iberoamericana (UIA), Mexico, DF (Mexico). Dept. de Fisica Y Matematicas

    2013-07-01

    The first objective of the present work is to construct a simple reduced order model for BWR stability analysis, combining a two nodes nodal model of the thermal hydraulics with a two modes modal model of the neutronics. Two coupled non-linear integral-differential equations are obtained, in terms of one global (in phase) and one local (out of phase) power amplitude, with direct and cross feedback reactivities given as functions of thermal hydraulics core variables (void fractions and temperatures). The second objective is to apply the effective life time approximation to further simplify the nonlinear equations. Linear approximations for the equations of the amplitudes of the global and regional modes are derived. The linearized equation for the amplitude of the global mode corresponds to a decoupled and damped harmonic oscillator. An analytical closed form formula for the damping coefficient, as a function of the parameters space of the BWR, is obtained. The coefficient changes its sign (with the corresponding modification in the decay ratio) when a stability boundary is crossed. This produces a supercritical Hopf bifurcation, with the steady state power of the reactor as the bifurcation parameter. However, the linearized equation for the amplitude of the regional mode corresponds always to an over-damped and always coupled (with the amplitude of the global mode) harmonic oscillator, for every set of possible values of core parameters (including the steady state power of the reactor) in the framework of the present mathematical model. The equation for the above mentioned over damped linear oscillator is closely connected with a non-normal operator. Due to this connection, there could be a significant transient growth of some solutions of the linear equation. This behavior allows a significant shrinking of the basin of attraction of the equilibrium state. The third objective is to apply the above approach to partially study the stability of the regional mode and

  19. Coupling parameter series expansion for fluid with square-well plus repulsive-square-barrier potential

    Directory of Open Access Journals (Sweden)

    Shiqi Zhou

    2013-10-01

    Full Text Available Monte Carlo simulations in the canonical ensemble are performed for fluid with potential consisting of a square-well plus a square-barrier to obtain thermodynamic properties such as pressure, excess energy, constant volume excess heat capacity, and excess chemical potential, and structural property such as radial distribution function. The simulations cover a wide density range for the fluid phase, several temperatures, and different combinations of the parameters defining the potential. These simulation data have been used to test performances of a coupling parameter series expansion (CPSE recently proposed by one of the authors [S. Zhou, Phys. Rev. E 74, 031119 (2006], and a traditional 2nd-order high temperature series expansion (HTSE based on a macroscopic compressibility approximation (MAC used with confidence since its introduction in 1967. It is found that (i the MCA-based 2nd-order HTSE unexpectedly and depressingly fails for most situations investigated, and the present simulation results can serve well as strict criteria for testing liquid state theories. (ii The CPSE perturbation scheme is shown to be capable of predicting very accurately most of the thermodynamic properties simulated, but the most appropriate level of truncating the CPSE differs and depends on the range of the potential to be calculated; in particular, the shorter the potential range is, the higher the most appropriate truncating level can be, and along with rising of the potential range the performance of the CPSE perturbation scheme will decrease at higher truncating level. (iii The CPSE perturbation scheme can calculate satisfactorily bulk fluid rdf, and such calculations can be done for all fluid states of the whole phase diagram. (iv The CPSE is a convergent series at higher temperatures, but show attribute of asymptotic series at lower temperatures, and as a result, the surest asymptotic value occurs at lower-order truncation.

  20. Cardiac Magnetic Resonance Imaging in Myocarditis Reveals Persistent Disease Activity Despite Normalization of Cardiac Enzymes and Inflammatory Parameters at 3-Month Follow-Up.

    Science.gov (United States)

    Berg, Jan; Kottwitz, Jan; Baltensperger, Nora; Kissel, Christine K; Lovrinovic, Marina; Mehra, Tarun; Scherff, Frank; Schmied, Christian; Templin, Christian; Lüscher, Thomas F; Heidecker, Bettina; Manka, Robert

    2017-11-01

    There is a major unmet need to identify high-risk patients in myocarditis. Although decreasing cardiac and inflammatory markers are commonly interpreted as resolving myocarditis, this assumption has not been confirmed as of today. We sought to evaluate whether routine laboratory parameters at diagnosis predict dynamic of late gadolinium enhancement (LGE) as persistent LGE has been shown to be a risk marker in myocarditis. Myocarditis was diagnosed based on clinical presentation, high-sensitivity troponin T, and cardiac magnetic resonance imaging, after exclusion of obstructive coronary artery disease by angiography. Cardiac magnetic resonance imaging was repeated at 3 months. LGE extent was analyzed with the software GT Volume. Change in LGE >20% was considered significant. Investigated cardiac and inflammatory markers included high-sensitivity troponin T, creatine kinase, myoglobin, N-terminal B-type natriuretic peptide, C-reactive protein, and leukocyte count. Twenty-four patients were enrolled. Absolute levels of cardiac enzymes and inflammatory markers at baseline did not predict change in LGE at 3 months. Cardiac and inflammatory markers had normalized in 21 patients (88%). LGE significantly improved in 16 patients (67%); however, it persisted to a lesser degree in 17 of them (71%) and increased in a small percentage (21%) despite normalization of cardiac enzymes. This is the first study reporting that cardiac enzymes and inflammatory parameters do not sufficiently reflect LGE in myocarditis. Although a majority of patients with normalizing laboratory markers experienced improved LGE, in a small percentage LGE worsened. These data suggest that cardiac magnetic resonance imaging might add value to currently existing diagnostic tools for risk assessment in myocarditis. © 2017 American Heart Association, Inc.

  1. Maximum Likelihood Estimates of Parameters in Various Types of Distribution Fitted to Important Data Cases.

    OpenAIRE

    HIROSE,Hideo

    1998-01-01

    TYPES OF THE DISTRIBUTION:13;Normal distribution (2-parameter)13;Uniform distribution (2-parameter)13;Exponential distribution ( 2-parameter)13;Weibull distribution (2-parameter)13;Gumbel Distribution (2-parameter)13;Weibull/Frechet Distribution (3-parameter)13;Generalized extreme-value distribution (3-parameter)13;Gamma distribution (3-parameter)13;Extended Gamma distribution (3-parameter)13;Log-normal distribution (3-parameter)13;Extended Log-normal distribution (3-parameter)13;Generalized ...

  2. The $SU(\\infty)$ twisted gradient flow running coupling

    CERN Document Server

    Pérez, Margarita García; Keegan, Liam; Okawa, Masanori

    2015-01-01

    We measure the running of the $SU(\\infty)$ 't Hooft coupling by performing a step scaling analysis of the Twisted Eguchi-Kawai (TEK) model, the SU($N$) gauge theory on a single site lattice with twisted boundary conditions. The computation relies on the conjecture that finite volume effects for SU(N) gauge theories defined on a 4-dimensional twisted torus are controlled by an effective size parameter $\\tilde l = l \\sqrt{N}$, with $l$ the torus period. We set the scale for the running coupling in terms of $\\tilde l$ and use the gradient flow to define a renormalized 't Hooft coupling $\\lambda(\\tilde l)$. In the TEK model, this idea allows the determination of the running of the coupling through a step scaling procedure that uses the rank of the group as a size parameter. The continuum renormalized coupling constant is extracted in the zero lattice spacing limit, which in the TEK model corresponds to the large $N$ limit taken at fixed value of $\\lambda(\\tilde l)$. The coupling constant is thus expected to coinc...

  3. Coupled vibrations in horizontal and vertical rotor-bearings systems

    OpenAIRE

    Luneno, Jean-Claude

    2010-01-01

    For dynamical systems having several degrees of freedom, motion in one direction can induce motion in the other and/or vice versa. This means that there is a certain coupling between these two motions. Coupling can in some cases be a source of instability that causes self-excited vibrations in rotating machinery. In modeling hydropower rotors, couplings other than those that are the result of gyroscopic effect are normally not considered. This is due to the complexity of the reasons for coupl...

  4. Coupled vibrations in horizontal and vertical rotor-bearing systems

    OpenAIRE

    Luneno, Jean-Claude

    2011-01-01

    For dynamical systems having several degrees of freedom, motion in one direction can induce motion in the other. This means that there is a certain coupling between these two motions. Coupling can in some cases be a source of instability that causes self-excited vibrations in rotating machinery. In classical modeling of rotor systems, couplings other than those that are the result of gyroscopic effect are normally not considered. This is due to thecomplexity of the reasons for coupling which ...

  5. Global coupling and decoupling of the APS storage ring

    Energy Technology Data Exchange (ETDEWEB)

    Chae, Y.C.; Liu, J.; Teng, L.C.

    1993-07-01

    This paper describes a study of controlling the coupling between the horizontal and the vertical betatron oscillations in the 7-GeV Advanced Photon Source (APS) storage ring. First, we investigate the strengthening of coupling using two families of skew quadrupoles. Twenty skew quadrupoles are arranged in the 40 sectors of the storage ring and powered in such a way so as to generate both quadrature components of the required 21st harmonic. The numerical results from tracking a single particle are presented for the various configurations of skew quadrupoles. Second, we describe the global decoupling procedure to minimize the unwanted coupling effects. These are mainly due to the random roll errors of normal quadruples. It is shown that even with the rather large rms roll error of 2 mrad, the coupling effects can be compensated for with 20 skew quadrupoles each having maximum strength one order of magnitude lower than the typical normal quadrupole strength.

  6. Predicting Magnetoelectric Coupling in Layered and Graded Composites

    Directory of Open Access Journals (Sweden)

    Mirza Bichurin

    2017-07-01

    Full Text Available Magnetoelectric (ME interaction in magnetostrictive-piezoelectric multiferroic structures consists in inducing the electric field across the structure in an applied magnetic field and is a product property of magnetostriction and piezoelectricity in components. ME voltage coefficient that is the ratio of induced electric field to applied magnetic field is the key parameter of ME coupling strength. It has been known that the ME coupling strength is dictated by the product of the piezoelectric and piezomagnetic coefficients of initial phases. As a result, using the laminates with graded piezoelectric and piezomagnetic parameters are a new pathway to the increase in the ME coupling strength. Recently developed models predict stronger ME interactions in composites based on graded components compared to homogeneous ones. We discuss predicting the ME coupling strength for layered structures of homogeneous and compositionally graded magnetostrictive and piezoelectric components based on the graphs of ME voltage coefficients against composite parameters. For obtaining the graphs, we developed equations for ME output in applied magnetic field for possible modes of operation and layered structure configurations. In particular, our studies have been performed on low-frequency ME coupling, enhanced ME effect in electromechanical resonance (EMR region for longitudinal and bending modes. Additionally, ME coupling at magnetic resonance in magnetostrictive component and at overlapping the EMR and magnetic resonance is investigated. We considered symmetric trilayers and asymmetric bilayers of magnetostrictive and piezoelectric components and multilayered structures based on compositionally stepped initial components.

  7. High grade intraepithelial neoplasia of prostate is associated with values of prostate specific antigen related parameters intermediate between prostate cancer and normal levels

    Directory of Open Access Journals (Sweden)

    Nermina Obralic

    2011-11-01

    Full Text Available High grade prostatic intraepithelial neoplasia (HGPIN is widely regarded as the precancerous. The aim of this study was to determine PSA related parameters in patients with initial PSA values 2-10 ng/mL and diagnosis of HGPIN without finding carcinoma at the time of their first needle biopsy. Study groups consisted of 100 men who were diagnosed HGPIN, 84 with cancer and 183 with benign hyperplasia on first biopsy of prostate. Total PSA and free PSA were measured and ratio free/total PSA and PSA density calculated. Mean values of these parameters were compared, and receiver operating characteristic curves were used for comparison of PSA related parameters to discriminate groups of patients. Total PSA, free PSA level and PSA density in patients with HGPIN (6.388 ng/mL did not differ significantly compared to prostate carcinoma (6.976 ng/mL or benign prostatic hyperplasia (6.07 ng/mL patients. Patients with HGPIN had significantly higher ratio free/total PSA than those with prostate carcinoma (0.168 vs 0.133, but significantly lower than patients with benign prostatic hyperplasia (0.168 vs 0.185. Ratio of free/total PSA significantly discriminate HGPIN from prostate carcinoma with sensitivity 84.52 and specify 45.00 at cut-off point of ≤ 0.18. Values of PSA, free PSA and ratio free/total PSA in cases of HGPIN appear to be intermediate between prostate cancer and normal levels. Ratio of free/total PSA may help in decision to repeat biopsies in the presence of HGPIN on biopsy, without concomitant prostate cancer, in patients suitable for curative treatment, with normal digito-rectal examination and trans-rectal sonography.

  8. Coupling Algorithms for Calculating Sensitivities of Population Balances

    International Nuclear Information System (INIS)

    Man, P. L. W.; Kraft, M.; Norris, J. R.

    2008-01-01

    We introduce a new class of stochastic algorithms for calculating parametric derivatives of the solution of the space-homogeneous Smoluchowski's coagulation equation. Currently, it is very difficult to produce low variance estimates of these derivatives in reasonable amounts of computational time through the use of stochastic methods. These new algorithms consider a central difference estimator of the parametric derivative which is calculated by evaluating the coagulation equation at two different parameter values simultaneously, and causing variance reduction by maximising the covariance between these. The two different coupling strategies ('Single' and 'Double') have been compared to the case when there is no coupling ('Independent'). Both coupling algorithms converge and the Double coupling is the most 'efficient' algorithm. For the numerical example chosen we obtain a factor of about 100 in efficiency in the best case (small system evolution time and small parameter perturbation).

  9. Fission yields and cross section uncertainty propagation in Boltzmann/Bateman coupled problems: Global and local parameters analysis with a focus on MTR

    International Nuclear Information System (INIS)

    Frosio, Thomas; Bonaccorsi, Thomas; Blaise, Patrick

    2016-01-01

    Highlights: • Nuclear data uncertainty propagation for neutronic quantities in coupled problems. • Uncertainties are detailed for local isotopic concentrations and local power maps. • Correlations are built between space areas of the core and for different burnups. - Abstract: In a previous paper, a method was investigated to calculate sensitivity coefficients in coupled Boltzmann/Bateman problem for nuclear data (ND) uncertainties propagation on the reactivity. Different methodologies were discussed and applied on an actual example of multigroup cross section uncertainty problem for a 2D Material Testing Reactor (MTR) benchmark. It was shown that differences between methods arose from correlations between input parameters, as far as the method enables to take them into account. Those methods, unlike Monte Carlo (MC) sampling for uncertainty propagation and quantification (UQ), allow obtaining sensitivity coefficients, as well as correlations values between nuclear data, during the depletion calculation for the parameters of interest. This work is here extended to local parameters such as power factors and isotopic concentrations. It also includes fission yield (FY) uncertainty propagation, on both reactivity and power factors. Furthermore, it introduces a new methodology enabling to decorrelate direct and transmutation terms for local quantities: a Monte-Carlo method using built samples from a multidimensional Gaussian law is used to extend the previous studies, and propagate fission yield uncertainties from the CEA’s COMAC covariance file. It is shown that, for power factors, the most impacting ND are the scattering reactions, principally coming from 27 Al and (bounded hydrogen in) H 2 O. The overall effect is a reduction of the propagated uncertainties throughout the cycle thanks to negatively correlated terms. For fission yield (FY), the results show that neither reactivity nor local power factors are strongly affected by uncertainties. However, they

  10. Viscous coupled fluids in inflationary cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Brevik, I., E-mail: iver.h.brevik@ntnu.no [Norwegian University of Science and Technology (Norway); Timoshkin, A. V., E-mail: timoshkinAV@tspu.edu.ru [Tomsk State Pedagogical University (Russian Federation)

    2016-04-15

    We consider the inflation produced by two coupled fluids in a flat Friedmann–Robertson–Walker universe. Different cosmological models for describing inflation with the use of an inhomogeneous equation of state for the fluid are investigated. The gravitational equations for energy and matter are solved, and analytic representations for the Hubble parameter and the energy density are obtained. Corrections to the energy density for matter inducing the inflation and the coupling to energy are discussed. We analyze the description of inflation induced by nonconstant equation-of-state parameters from fluid viscosity. The correspondence between the spectral index and the tensor-to-scalar ratio recently observed by the Planck satellite is considered.

  11. The SU(∞) twisted gradient flow running coupling

    Energy Technology Data Exchange (ETDEWEB)

    Pérez, Margarita García [Instituto de Física Teórica UAM-CSIC,Nicolás Cabrera 13-15, E-28049-Madrid (Spain); González-Arroyo, Antonio [Instituto de Física Teórica UAM-CSIC,Nicolás Cabrera 13-15, E-28049-Madrid (Spain); Departamento de Física Teórica, C-15, Universidad Autónoma de Madrid,E-28049-Madrid (Spain); Keegan, Liam [PH-TH, CERN,CH-1211 Geneva 23 (Switzerland); Okawa, Masanori [Graduate School of Science, Hiroshima University,Higashi-Hiroshima, Hiroshima 739-8526 (Japan)

    2015-01-09

    We measure the running of the SU(∞) ’t Hooft coupling by performing a step scaling analysis of the Twisted Eguchi-Kawai (TEK) model, the SU(N) gauge theory on a single site lattice with twisted boundary conditions. The computation relies on the conjecture that finite volume effects for SU(N) gauge theories defined on a 4-dimensional twisted torus are controlled by an effective size parameter l-tilde=l√N, with l the torus period. We set the scale for the running coupling in terms of l-tilde and use the gradient flow to define a renormalized ’t Hooft coupling λ(l-tilde). In the TEK model, this idea allows the determination of the running of the coupling through a step scaling procedure that uses the rank of the group as a size parameter. The continuum renormalized coupling constant is extracted in the zero lattice spacing limit, which in the TEK model corresponds to the large N limit taken at fixed value of λ(l-tilde). The coupling constant is thus expected to coincide with that of the ordinary pure gauge theory at N=∞. The idea is shown to work and permits us to follow the evolution of the coupling over a wide range of scales. At weak coupling we find a remarkable agreement with the perturbative two-loop formula for the running coupling.

  12. Synchronization-optimized networks for coupled nearly identical ...

    Indian Academy of Sciences (India)

    2014-01-24

    Jan 24, 2014 ... The extension of the master stability function (MSF) to analyse stability of generalized synchronization for coupled nearly identical oscillators is discussed. The nearly identical nature of the coupled oscillators is due to some parameter mismatch while the dynamical equations are the same for all the ...

  13. Exploring AdS waves via nonminimal coupling

    International Nuclear Information System (INIS)

    Ayon-Beato, Eloy; Hassaiene, Mokhtar

    2006-01-01

    We consider nonminimally coupled scalar fields to explore the Siklos spacetimes in three dimensions. Their interpretation as exact gravitational waves propagating on AdS space restrict the source to behave as a pure radiation field. We show that the related pure radiation constraints single out a unique self-interaction potential depending on one coupling constant. For a vanishing coupling constant, this potential reduces to a mass term with a mass fixed in terms of the nonminimal-coupling parameter. This mass dependence allows the existence of several free cases including massless and tachyonic sources. There even exists a particular value of the nonminimal-coupling parameter for which the corresponding mass exactly compensates the contribution generated by the negative scalar curvature, producing a genuinely massless field in this curved background. The self-interacting case is studied in detail for the conformal coupling. The resulting gravitational wave is formed by the superposition of the free and the self-interaction contributions, except for a critical value of the coupling constant where a nonperturbative effect relating the strong and weak regimes of the source appears. We establish a correspondence between the scalar source supporting an AdS wave and a pp wave by showing that their respective pure radiation constraints are conformally related, while their involved backgrounds are not. Finally, we consider the AdS waves for topologically massive gravity and its limit to conformal gravity

  14. Normalized Dynamic Blood Pressure Parameters - Additional Marker of Hypertension Risk

    Czech Academy of Sciences Publication Activity Database

    Jurák, Pavel; Halámek, Josef; Vondra, Vlastimil; Leinveber, P.; Fráňa, P.; Plachý, M.; Souček, M.; Kára, T.

    2008-01-01

    Roč. 6, č. 1 (2008), s. 103 ISSN 1556-7451. [World Congress on Heart Disease /14./. 26.07.2008-29.07.2008, Toronto] Institutional research plan: CEZ:AV0Z20650511 Keywords : hypertension * vessel compliance * blood pressure * dynamic parameters Subject RIV: FA - Cardiovascular Disease s incl. Cardiotharic Surgery

  15. Critical Surface Parameters for the Oxidative Coupling of Methane over the Mn-Na-W/SiO2 Catalyst.

    Science.gov (United States)

    Hayek, Naseem S; Lucas, Nishita S; Warwar Damouny, Christine; Gazit, Oz M

    2017-11-22

    The work here presents a thorough evaluation of the effect of Mn-Na-W/SiO 2 catalyst surface parameters on its performance in the oxidative coupling of methane (OCM). To do so, we used microporous dealuminated β-zeolite (Zeo), or mesoporous SBA-15 (SBA), or macroporous fumed silica (Fum) as precursors for catalyst preparation, together with Mn nitrate, Mn acetate and Na 2 WO 4 . Characterizing the catalysts by inductively coupled plasma-optical emission spectroscopy, N 2 physisorption, X-ray diffraction, high-resolution scanning electron microscopy-energy-dispersive spectroscopy, X-ray photoelectron spectroscopy, and catalytic testing enabled us to identify critical surface parameters that govern the activity and C 2 selectivity of the Mn-Na-W/SiO 2 catalyst. Although the current paradigm views the phase transition of silica to α-cristobalite as the critical step in obtaining dispersed and stable metal sites, we show that the choice of precursors is equally or even more important with respect to tailoring the right surface properties. Specifically, the SBA-based catalyst, characterized by relatively closed surface porosity, demonstrated low activity and low C 2 selectivity. By contrast, for the same composition, the Zeo-based catalyst showed an open surface pore structure, which translated up to fourfold higher activity and enhanced selectivity. By varying the overall composition of the Zeo catalysts, we show that reducing the overall W concentration reduces the size of the Na 2 WO 4 species and increases the catalytic activity linearly as much as fivefold higher than the SBA catalyst. This linear dependence correlates well to the number of interfaces between the Na 2 WO 4 and Mn 2 O 3 species. Our results combined with prior studies lead us to single out the interface between Na 2 WO 4 and Mn 2 O 3 as the most probable active site for OCM using this catalyst. Synergistic interactions between the various precursors used and the phase transition are discussed in

  16. Normalization of doxorubicin release from graphene oxide: New approach for optimization of effective parameters on drug loading.

    Science.gov (United States)

    Hashemi, Mohadeseh; Yadegari, Amir; Yazdanpanah, Ghasem; Omidi, Meisam; Jabbehdari, Sayena; Haghiralsadat, Fatemeh; Yazdian, Fatemeh; Tayebi, Lobat

    2017-05-01

    Graphene oxide (GO) has been recently introduced as a suitable anticancer drug carrier, which could be loaded with doxorubicin (DOX) as a general chemotherapy agent. Herein, the attempts were made to optimize the effective parameters on both loading and release of DOX on GO. GO and GO-DOX were characterized using transition electron microscopy , zeta potential, Raman spectroscopy, UV-visible spectroscopy, and Fourier transform infrared spectroscopy. In addition, loading and releasing behaviors of DOX on GO were studied in terms of different temperature and pH values. The primary optimized values of pH and temperature for best-loaded amount of DOX were 8.9 and 309 K, respectively. Moreover, we found that the smallest amount of released DOX, in pH of cancer microenvironment (5.4), occurs when DOX had been previously loaded in pH 7.8 and 310 K. Although the highest amount of loaded DOX was in basic pH, the results of efficient release of DOX from the GO-DOX complex and also cellular toxicity assay revealed that the best pH for loading of DOX on GO was 7.8. Therefore, in addition to optimization of parameters for efficient loading of DOX on GO, this study suggested that normalization of a released drug compared with the amount of a loaded drug could be a new approach for optimization of drug loading on nanocarriers. © 2016 International Union of Biochemistry and Molecular Biology, Inc.

  17. Circuit electromechanics with single photon strong coupling

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Zheng-Yuan, E-mail: zyxue@scnu.edu.cn; Yang, Li-Na [Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, and School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China); Zhou, Jian, E-mail: jianzhou8627@163.com [Department of Electronic Communication Engineering, Anhui Xinhua University, Hefei 230088 (China); Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, and School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China)

    2015-07-13

    In circuit electromechanics, the coupling strength is usually very small. Here, replacing the capacitor in circuit electromechanics by a superconducting flux qubit, we show that the coupling among the qubit and the two resonators can induce effective electromechanical coupling which can attain the strong coupling regime at the single photon level with feasible experimental parameters. We use dispersive couplings among two resonators and the qubit while the qubit is also driven by an external classical field. These couplings form a three-wave mixing configuration among the three elements where the qubit degree of freedom can be adiabatically eliminated, and thus results in the enhanced coupling between the two resonators. Therefore, our work constitutes the first step towards studying quantum nonlinear effect in circuit electromechanics.

  18. Identifying tectonic parameters that influence tsunamigenesis

    Science.gov (United States)

    van Zelst, Iris; Brizzi, Silvia; van Dinther, Ylona; Heuret, Arnauld; Funiciello, Francesca

    2017-04-01

    The role of tectonics in tsunami generation is at present poorly understood. However, the fact that some regions produce more tsunamis than others indicates that tectonics could influence tsunamigenesis. Here, we complement a global earthquake database that contains geometrical, mechanical, and seismicity parameters of subduction zones with tsunami data. We statistically analyse the database to identify the tectonic parameters that affect tsunamigenesis. The Pearson's product-moment correlation coefficients reveal high positive correlations of 0.65 between, amongst others, the maximum water height of tsunamis and the seismic coupling in a subduction zone. However, these correlations are mainly caused by outliers. The Spearman's rank correlation coefficient results in more robust correlations of 0.60 between the number of tsunamis in a subduction zone and subduction velocity (positive correlation) and the sediment thickness at the trench (negative correlation). Interestingly, there is a positive correlation between the latter and tsunami magnitude. In an effort towards multivariate statistics, a binary decision tree analysis is conducted with one variable. However, this shows that the amount of data is too scarce. To complement this limited amount of data and to assess physical causality of the tectonic parameters with regard to tsunamigenesis, we conduct a numerical study of the most promising parameters using a geodynamic seismic cycle model. We show that an increase in sediment thickness on the subducting plate results in a shift in seismic activity from outerrise normal faults to splay faults. We also show that the splay fault is the preferred rupture path for a strongly velocity strengthening friction regime in the shallow part of the subduction zone, which increases the tsunamigenic potential. A larger updip limit of the seismogenic zone results in larger vertical surface displacement.

  19. Obliquity histories of Earth and Mars: Influence of inertial and dissipative core-mantle coupling

    International Nuclear Information System (INIS)

    Bills, B.G.

    1990-01-01

    For both the Earth and Mars, secular variations in the angular separation of the spin axis from the orbit normal are suspected of driving major climatic changes. There is considerable interest in determining the amplitude and timing of these obliquity variations. If the orientation of the orbital plane were inertially fixed, the spin axis would simply precess around the orbit at a fixed obliquity and at a uniform angular rate. The precession rate parameter depends on the principal moments of inertia and rotation rate of the perturbed body, and on the gravitational masses and semiminor axes of the perturbing bodies. For Mars, the precession rate is not well known, but probably lies in the interval 8 to 10 arcsec/year. In the rigid body case, the spin axis still attempts to precess about the instantaneous orbit normal, but now the obliquity varies. The hydrostatic figure of a planet represents a compromise between gravitation, which attempts to attain spherical symmetry, and rotation, which prefers cylindrical symmetry. Due to their higher mean densities the cores of the Earth and Mars will be more nearly spherical than the outer layers of these planets. On short time scales it is appropriate to consider the core to be an inviscid fluid. The inertial coupling provided by this mechanism is effective whenever the ellipticicy of the container exceeds the ratio of precessional to rotational rates. If the mantle were actually rigid, this would be an extremely effective type of coupling. However, on sufficiently long time scales, the mantle will deform viscously and can accommodate the motions of the core fluid. A fundamentally different type of coupling is provided by electromagnetic or viscous torques. This type of coupling is likely to be most important on longer time scales

  20. Experimental analysis and simulation calculation of the inductances of loosely coupled transformer

    Science.gov (United States)

    Kerui, Chen; Yang, Han; Yan, Zhang; Nannan, Gao; Ying, Pei; Hongbo, Li; Pei, Li; Liangfeng, Guo

    2017-11-01

    The experimental design of iron-core wireless power transmission system is designed, and an experimental model of loosely coupled transformer is built. Measuring the air gap on both sides of the transformer 15mm inductor under the parameters. The feasibility and feasibility of using the finite element method to calculate the coil inductance parameters of the loosely coupled transformer are analyzed. The system was modeled by ANSYS, and the magnetic field was calculated by finite element method, and the inductance parameters were calculated. The finite element method is used to calculate the inductive parameters of the loosely coupled transformer, and the basis for the accurate compensation of the capacitance of the wireless power transmission system is established.

  1. Superconducting versus normal conducting cavities

    CERN Document Server

    Podlech, Holger

    2013-01-01

    One of the most important issues of high-power hadron linacs is the choice of technology with respect to superconducting or room-temperature operation. The favour for a specific technology depends on several parameters such as the beam energy, beam current, beam power and duty factor. This contribution gives an overview of the comparison between superconducting and normal conducting cavities. This includes basic radiofrequency (RF) parameters, design criteria, limitations, required RF and plug power as well as case studies.

  2. Normal distribution of standing balance for healthy Danish children

    DEFF Research Database (Denmark)

    Pedersen, Line Kjeldgaard; Ghasemi, Habib; Rahbek, Ole

    2013-01-01

    Title: Normal distribution of standing balance for healthy Danish children – Reproducibility of parameters of balance. Authors Line Kjeldgaard Pedersen Habib Ghasemi Ole Rahbek Bjarne Møller-Madsen 1800 characters incl. spaces Background Pedobarographic measurements are increasingly used in child......Title: Normal distribution of standing balance for healthy Danish children – Reproducibility of parameters of balance. Authors Line Kjeldgaard Pedersen Habib Ghasemi Ole Rahbek Bjarne Møller-Madsen 1800 characters incl. spaces Background Pedobarographic measurements are increasingly used...

  3. Measurements of time average series resonance effect in capacitively coupled radio frequency discharge plasma

    International Nuclear Information System (INIS)

    Bora, B.; Bhuyan, H.; Favre, M.; Wyndham, E.; Chuaqui, H.; Kakati, M.

    2011-01-01

    Self-excited plasma series resonance is observed in low pressure capacitvely coupled radio frequency discharges as high-frequency oscillations superimposed on the normal radio frequency current. This high-frequency contribution to the radio frequency current is generated by a series resonance between the capacitive sheath and the inductive and resistive bulk plasma. In this report, we present an experimental method to measure the plasma series resonance in a capacitively coupled radio frequency argon plasma by modifying the homogeneous discharge model. The homogeneous discharge model is modified by introducing a correction factor to the plasma resistance. Plasma parameters are also calculated by considering the plasma series resonances effect. Experimental measurements show that the self-excitation of the plasma series resonance, which arises in capacitive discharge due to the nonlinear interaction of plasma bulk and sheath, significantly enhances both the Ohmic and stochastic heating. The experimentally measured total dissipation, which is the sum of the Ohmic and stochastic heating, is found to increase significantly with decreasing pressure.

  4. Coupled mode theory of periodic waveguides arrays

    DEFF Research Database (Denmark)

    Lavrinenko, Andrei; Chigrin, Dmitry N.

    We apply the scalar coupled mode theory to the case of waveguides array consisting om two periodic waveguides. One of the waveguides is arbitrary shifted along another. A longitudinal shift acts as a parameter in the coupled mode theory. The proposed theory explains peculiarities of modes dispers...... dispersion and transmission in coupled periodic waveguides systems. Analytical results are compared with the numerical ones obtained by the plane wave expansion and FDTD methods....

  5. Inflationary dynamics of kinetically-coupled gauge fields

    DEFF Research Database (Denmark)

    Ferreira, Ricardo J. Z.; Ganc, Jonathan

    2015-01-01

    We investigate the inflationary dynamics of two kinetically-coupled massless U(1) gauge fields with time-varying kinetic-term coefficients. Ensuring that the system does not have strongly coupled regimes shrinks the parameter space. Also, we further restrict ourselves to systems that can be quant......We investigate the inflationary dynamics of two kinetically-coupled massless U(1) gauge fields with time-varying kinetic-term coefficients. Ensuring that the system does not have strongly coupled regimes shrinks the parameter space. Also, we further restrict ourselves to systems that can...... be quantized using the standard creation, annihilation operator algebra. This second constraint limits us to scenarios where the system can be diagonalized into the sum of two decoupled, massless, vector fields with a varying kinetic-term coefficient. Such a system might be interesting for magnetogenesis...... because of how the strong coupling problem generalizes. We explore this idea by assuming that one of the gauge fields is the Standard Model U(1) field and that the other dark gauge field has no particles charged under its gauge group. We consider whether it would be possible to transfer a magnetic field...

  6. Bifurcation and synchronization of synaptically coupled FHN models with time delay

    International Nuclear Information System (INIS)

    Wang Qingyun; Lu Qishao; Chen Guanrong; Feng Zhaosheng; Duan Lixia

    2009-01-01

    This paper presents an investigation of dynamics of the coupled nonidentical FHN models with synaptic connection, which can exhibit rich bifurcation behavior with variation of the coupling strength. With the time delay being introduced, the coupled neurons may display a transition from the original chaotic motions to periodic ones, which is accompanied by complex bifurcation scenario. At the same time, synchronization of the coupled neurons is studied in terms of their mean frequencies. We also find that the small time delay can induce new period windows with the coupling strength increasing. Moreover, it is found that synchronization of the coupled neurons can be achieved in some parameter ranges and related to their bifurcation transition. Bifurcation diagrams are obtained numerically or analytically from the mathematical model and the parameter regions of different behavior are clarified.

  7. Statistical properties of the normalized ice particle size distribution

    Science.gov (United States)

    Delanoë, Julien; Protat, Alain; Testud, Jacques; Bouniol, Dominique; Heymsfield, A. J.; Bansemer, A.; Brown, P. R. A.; Forbes, R. M.

    2005-05-01

    Testud et al. (2001) have recently developed a formalism, known as the "normalized particle size distribution (PSD)", which consists in scaling the diameter and concentration axes in such a way that the normalized PSDs are independent of water content and mean volume-weighted diameter. In this paper we investigate the statistical properties of the normalized PSD for the particular case of ice clouds, which are known to play a crucial role in the Earth's radiation balance. To do so, an extensive database of airborne in situ microphysical measurements has been constructed. A remarkable stability in shape of the normalized PSD is obtained. The impact of using a single analytical shape to represent all PSDs in the database is estimated through an error analysis on the instrumental (radar reflectivity and attenuation) and cloud (ice water content, effective radius, terminal fall velocity of ice crystals, visible extinction) properties. This resulted in a roughly unbiased estimate of the instrumental and cloud parameters, with small standard deviations ranging from 5 to 12%. This error is found to be roughly independent of the temperature range. This stability in shape and its single analytical approximation implies that two parameters are now sufficient to describe any normalized PSD in ice clouds: the intercept parameter N*0 and the mean volume-weighted diameter Dm. Statistical relationships (parameterizations) between N*0 and Dm have then been evaluated in order to reduce again the number of unknowns. It has been shown that a parameterization of N*0 and Dm by temperature could not be envisaged to retrieve the cloud parameters. Nevertheless, Dm-T and mean maximum dimension diameter -T parameterizations have been derived and compared to the parameterization of Kristjánsson et al. (2000) currently used to characterize particle size in climate models. The new parameterization generally produces larger particle sizes at any temperature than the Kristjánsson et al. (2000

  8. Detection of a normal zone in the MFTF magnets

    International Nuclear Information System (INIS)

    Owen, E.W.

    1979-01-01

    A method is described for the electrical detection of a normal zone in inductively coupled superconducting coils. Measurements are made with two kinds of bridges, mutual inductance bridges and self-inductance bridges. The bridge outputs are combined with other measured voltages to form a detector that can be realized with either analog circuits or a computer algorithm. The detection of a normal zone in a pair of coupled coils, each with taps, is discussed in detail. It is also shown that the method applies to a pair of coils when one has no taps and to a pair when one coil is superconducting and the other is not. The method is extended, in principle, to a number of coils. A description is given of a technique for balancing the bridges at near the operating currents of the coils

  9. Chaotic synchronization of three coupled oscillators with ring connection

    International Nuclear Information System (INIS)

    Kyprianidis, I.M.; Stouboulos, I.N.

    2003-01-01

    We study the evolution of three identical, resistively coupled with ring connection, nonlinear and nonautonomous electric circuits from nonsynchronized oscillations to synchronized ones, when they exhibit chaotic behavior. Phase-locked states are also observed, as the coupling parameter is varied. The system's dynamics depends on the way of coupling (unidirectional or bidirectional)

  10. Chaotic synchronization of three coupled oscillators with ring connection

    CERN Document Server

    Kyprianidis, I M

    2003-01-01

    We study the evolution of three identical, resistively coupled with ring connection, nonlinear and nonautonomous electric circuits from nonsynchronized oscillations to synchronized ones, when they exhibit chaotic behavior. Phase-locked states are also observed, as the coupling parameter is varied. The system's dynamics depends on the way of coupling (unidirectional or bidirectional).

  11. The (φ4)3+1 theory with infinitesimal bare coupling constants

    International Nuclear Information System (INIS)

    Yotsuyanagi, I.

    1987-01-01

    We study the (φ 4 ) 3+1 theory by means of a variational method improved with a BCS-type vacuum state. We examine the theory with both negative and positive infinitesimal bare coupling constants, where the theory has been suggested to exist nontrivially and stably in the infinite ultraviolet cutoff limit. When the cutoff is sent to infinity, we find the instability of the vacuum energy at the end point value of the variational parameter in the case of the negative bare coupling constant. For the positive bare coupling constant, we can renormalize the vacuum energy without using the extremal condition with respect to the variational mass parameter. We do not find an instability for the whole range of parameters including the end point. We still have a possibility that the theory with this bare coupling constant is nontrivial and stable. (orig.)

  12. Mixed normal inference on multicointegration

    NARCIS (Netherlands)

    Boswijk, H.P.

    2009-01-01

    Asymptotic likelihood analysis of cointegration in I(2) models, see Johansen (1997, 2006), Boswijk (2000) and Paruolo (2000), has shown that inference on most parameters is mixed normal, implying hypothesis test statistics with an asymptotic 2 null distribution. The asymptotic distribution of the

  13. Superconducting and normal-state properties of the layered boride OsB2

    Science.gov (United States)

    Singh, Yogesh; Niazi, A.; Vannette, M. D.; Prozorov, R.; Johnston, D. C.

    2007-12-01

    OsB2 crystallizes in an orthorhombic structure (Pmmn) which contains alternate boron and osmium layers stacked along the c axis. The boron layers consist of puckered hexagons as opposed to the flat graphite-like boron layers in MgB2 . OsB2 is reported to become superconducting below 2.1K . We report results of the dynamic and static magnetic susceptibilities, electrical resistivity, Hall effect, heat capacity, and penetration depth measurements on arc-melted polycrystalline samples of OsB2 to characterize its superconducting and normal-state properties. These measurements confirmed that OsB2 becomes a bulk superconductor below Tc=2.1K . Our results indicate that OsB2 is a moderate-coupling type-II superconductor with an electron-phonon coupling constant λep≈0.4-0.5 , a small Ginzburg-Landau parameter κ˜1-2 , and an upper critical magnetic field Hc2(0.5K)˜420Oe for an unannealed sample and Hc2(1K)˜330Oe for an annealed sample. The temperature dependence of the superfluid density ns(T) for the unannealed sample is consistent with an s -wave superconductor with a slightly enhanced zero temperature gap Δ(0)=1.9kBTc and a zero temperature London penetration depth λ(0)=0.38(2)μm . The ns(T) data for the annealed sample show deviations from the predictions of the single-band s -wave BCS model. The magnetic, transport, and thermal properties in the normal state of isostructural and isoelectronic RuB2 , which is reported to become superconducting below 1.6K , are also reported.

  14. Standardized uptake values of fluorine-18 fluorodeoxyglucose: the value of different normalization procedures

    International Nuclear Information System (INIS)

    Schomburg, A.; Bender, H.; Reichel, C.; Sommer, T.; Ruhlmann, J.; Kozak, B.; Biersack, H.J.

    1996-01-01

    While the evident advantages of absolute metabolic rate determinations cannot be equalled by static image analysis of fluorine-18 fluorodexyglucose positron emission tomographic (FDG PET) studies, various algorithms for the normalization of static FDG uptake values have been proposed. This study was performed to compare different normalization procedures in terms of dependency on individual patient characteristics. Standardized FDG uptake values (SUVs) were calculated for liver and lung tissue in 126 patients studied with whole-body FDG PET. Uptake values were normalized for total body weight, lean body mass and body surface area. Ranges, means, medians, standard deviations and variation coefficients of these SUV parameters were calculated and their interdependency with total body weight, lean body mass, body surface area, patient height and blood sugar levels was calculated by means of regression analysis. Standardized FDG uptake values normalized for body surface area were clearly superior to SUV parameters normalized for total body weight or lean body mass. Variation and correlation coefficients of body surface area-normalized uptake values were minimal when compared with SUV parameters derived from the other normalization procedures. Normalization for total body weight resulted in uptake values still dependent on body weight and blood sugar levels, while normalization for lean body mass did not eliminate the positive correlation with lean body mass and patient height. It is concluded that normalization of FDG uptake values for body surface area is less dependent on the individual patient characteristics than are FDG uptake values normalized for other parameters, and therefore appears to be preferable for FDG PET studies in oncology. (orig.)

  15. Order parameter analysis of synchronization transitions on star networks

    Science.gov (United States)

    Chen, Hong-Bin; Sun, Yu-Ting; Gao, Jian; Xu, Can; Zheng, Zhi-Gang

    2017-12-01

    The collective behaviors of populations of coupled oscillators have attracted significant attention in recent years. In this paper, an order parameter approach is proposed to study the low-dimensional dynamical mechanism of collective synchronizations, by adopting the star-topology of coupled oscillators as a prototype system. The order parameter equation of star-linked phase oscillators can be obtained in terms of the Watanabe-Strogatz transformation, Ott-Antonsen ansatz, and the ensemble order parameter approach. Different solutions of the order parameter equation correspond to the diverse collective states, and different bifurcations reveal various transitions among these collective states. The properties of various transitions in the star-network model are revealed by using tools of nonlinear dynamics such as time reversibility analysis and linear stability analysis.

  16. Fluctuations in a coupled population model

    International Nuclear Information System (INIS)

    Jakeman, E; Hopcraft, K I; Matthews, J O

    2005-01-01

    We investigate a discrete Markov process in which the immigration of individuals into one population is controlled by the fluctuations in another. We examine the effect of coupling back the second population to the first through a similar mechanism and derive exact solutions for the generating functions of the population statistics. We show that a stationary state exists over a certain parameter range and obtain expressions for moments and correlation functions in this regime. When more than two populations are coupled, cyclically transient oscillations and periodic behaviour of correlation functions are predicted. We demonstrate that if the initial distribution of either population is stable, or more generally has a power-law tail that falls off like N -(1+α) (0 < α < 1), then for certain parameter values there exists a stationary state that is also power law but not stable. This stationary state cannot be accessed from a single multiple immigrant population model, but arises solely from the nonlinear interaction of the coupled system

  17. RMB identification based on polarization parameters inversion imaging

    Science.gov (United States)

    Liu, Guoyan; Gao, Kun; Liu, Xuefeng; Ni, Guoqiang

    2016-10-01

    Social order is threatened by counterfeit money. Conventional anti-counterfeit technology is much too old to identify its authenticity or not. The intrinsic difference between genuine notes and counterfeit notes is its paper tissue. In this paper a new technology of detecting RMB is introduced, the polarization parameter indirect microscopic imaging technique. A conventional reflection microscopic system is used as the basic optical system, and inserting into it with polarization-modulation mechanics. The near-field structural characteristics can be delivered by optical wave and material coupling. According to coupling and conduction physics, calculate the changes of optical wave parameters, then get the curves of the intensity of the image. By analyzing near-field polarization parameters in nanoscale, finally calculate indirect polarization parameter imaging of the fiber of the paper tissue in order to identify its authenticity.

  18. Numerical analysis of coupled water transport in wood with a focus on the coupling parameter sorption

    DEFF Research Database (Denmark)

    Hozjan, T.; Turk, G.; Rodman, U.

    2011-01-01

    This paper presents a study of sorption rate function in a so-called multi-Fickian or multi-phase model. This model describes the complex moisture transport system in wood, which consists of separate water-vapour and bound-water diffusion interacting through sorption. In the numerical example inf...... influence of the sorption rate function on water transport is presented. It can be seen that the sorption rate function has a noticeable influence on coupled water transport in wood....

  19. Normal stresses in semiflexible polymer hydrogels

    Science.gov (United States)

    Vahabi, M.; Vos, Bart E.; de Cagny, Henri C. G.; Bonn, Daniel; Koenderink, Gijsje H.; MacKintosh, F. C.

    2018-03-01

    Biopolymer gels such as fibrin and collagen networks are known to develop tensile axial stress when subject to torsion. This negative normal stress is opposite to the classical Poynting effect observed for most elastic solids including synthetic polymer gels, where torsion provokes a positive normal stress. As shown recently, this anomalous behavior in fibrin gels depends on the open, porous network structure of biopolymer gels, which facilitates interstitial fluid flow during shear and can be described by a phenomenological two-fluid model with viscous coupling between network and solvent. Here we extend this model and develop a microscopic model for the individual diagonal components of the stress tensor that determine the axial response of semiflexible polymer hydrogels. This microscopic model predicts that the magnitude of these stress components depends inversely on the characteristic strain for the onset of nonlinear shear stress, which we confirm experimentally by shear rheometry on fibrin gels. Moreover, our model predicts a transient behavior of the normal stress, which is in excellent agreement with the full time-dependent normal stress we measure.

  20. Bubbling in delay-coupled lasers.

    Science.gov (United States)

    Flunkert, V; D'Huys, O; Danckaert, J; Fischer, I; Schöll, E

    2009-06-01

    We theoretically study chaos synchronization of two lasers which are delay coupled via an active or a passive relay. While the lasers are synchronized, their dynamics is identical to a single laser with delayed feedback for a passive relay and identical to two delay-coupled lasers for an active relay. Depending on the coupling parameters the system exhibits bubbling, i.e., noise-induced desynchronization, or on-off intermittency. We associate the desynchronization dynamics in the coherence collapse and low-frequency fluctuation regimes with the transverse instability of some of the compound cavity's antimodes. Finally, we demonstrate how, by using an active relay, bubbling can be suppressed.

  1. Interocular symmetry of retinal nerve fiber layer and optic nerve head parameters measured by Cirrus high-definition optical coherence tomography in a normal pediatric population.

    Science.gov (United States)

    Pawar, Neelam; Maheshwari, Devendra; Ravindran, Meenakshi; Ramakrishnan, Renagappa

    2017-10-01

    To determine interocular differences in the retinal nerve fiber layer (RNFL) and optic nerve head (ONH) parameters in a pediatric population using Cirrus high-definition optical coherence tomography (HD-OCT). Seventy normal Indian children aged 5-17 years presenting to the Pediatric Clinic were included in this observational cross-sectional study. All subjects underwent a comprehensive ophthalmologic examination and an evaluation of the RNFL and ONH by Cirrus HD-OCT. Differences between the right and left eyes were calculated and values were compared by means of a paired t-test. Subjects were also divided into two groups based on age (under or over 10 years of age). Interocular differences in RNFL and ONH parameters together with sex and age variations for these differences were determined. The mean age of studied pediatric population was 11.83 ± 3.3 years (range 5-17). Average RNFL thickness was 94.46 ± 8.7 μm (± SD) (range 77-111). Differences in the average RNFL between right and left eyes were not statistically significant (P = 0.060). Superior quadrant RNFL was thicker in the left eye and temporal quadrant was thicker in the right eye. Among ONH parameters, there were no statistically significant differences in any parameters, except vertical cup-disc (CD) ratio which was significant (P = 0.007). The 2.5%-97.5% limits of asymmetry were 9 μm for average RNFL, 0.14 for average CD ratio, and 0.22 for vertical CD ratio. Mean interocular RNFL thickness differences in superior, superior nasal, and temporal superior quadrants were 10.61 (P sex, while only significant differences with age were observed in 12 clock hour sector analysis, mainly in nasal inferior and inferior quadrant. We report the degree of interocular symmetry of RNFL and ONH parameters measured by Cirrus HD-OCT in a healthy pediatric population. The normal interocular RNFL asymmetry should not exceed 9 μm and vertical CD ratio beyond 0.22 should be considered for further investigations. The

  2. Cooperation and competition between two symmetry breakings in a coupled ratchet

    Science.gov (United States)

    Li, Chen-Pu; Chen, Hong-Bin; Fan, Hong; Xie, Ge-Ying; Zheng, Zhi-Gang

    2018-03-01

    We investigate the collective mechanism of coupled Brownian motors in a flashing ratchet in the presence of coupling symmetry breaking and space symmetry breaking. The dependences of directed current on various parameters are extensively studied in terms of numerical simulations and theoretical analysis. Reversed motion can be achieved by modulating multiple parameters including the spatial asymmetry coefficient, the coupling asymmetry coefficient, the coupling free length and the coupling strength. The dynamical mechanism of these transport properties can be reasonably explained by the effective potential theory and the cooperation or competition between two symmetry breakings. Moreover, adjusting the Gaussian white noise intensity, which can induce weak reversed motion under certain condition, can optimize and manipulate the directed transport of the ratchet system.

  3. Optimization of parameters in the simulation of the interdiffusion layer growth in Al-U couples

    International Nuclear Information System (INIS)

    Kniznik, Laura; Alonso, Paula R.; Gargano, Pablo H.; Rubiolo, Gerardo H.

    2009-01-01

    U-Mo alloy dispersed in aluminum is considered as a high U density fuel for research reactors. In and out of pile experiments showed a reaction layer in U-Mo/Al interphase with formation of intermetallics compounds: Al 2 U, Al 3 U and Al 4 U. Under irradiation, porosities originate an unacceptable swelling of the fuel plate. The kinetics of growth of the intermetallic compounds in the U-Mo/Al interphase is treated in the Al 3 U/Al couple as a planar moving boundary problem due to diffusion of Al and U atoms in the direction perpendicular to the interphase surface. Using data from literature, we built a thermodynamic database to be read by the Thermocalc code to calculate phase equilibria. The diffusion problem was carried out by the DICTRA simulation package which articulates data evaluated by Thermocalc with a mobility database. In a previous work we built preliminary databases, for both free energy and mobilities. In the present work, we adjust the parameters from experimental thermodynamic equilibria and concentration profiles existing in literature, and we simulate satisfactorily the growth of the Al 4 U phase. (author)

  4. Development of a safety parameter supervision system for Angra-1

    International Nuclear Information System (INIS)

    Silva, R.A. da; Thome Filho, Z.D.; Schirru, R.; Martinez, A.S.; Oliveira, L.F.S. de

    1986-01-01

    The Safety Parameter Supervision System (SSPS) which is a computerized system for monitoring essential parameters in real time, determining the safety status and emergency procedures for returning normal reactor operation, in case of an anomaly occurrence, is presented. The SSPS consists of three sub-systems: Integrated parameter monitoring system which gives to operators an integrated vision of values of a parameter set, able to detect any deviation of normal reactor operation; safety critical function system which evaluates safety status in terms of a safety critical function set appointed in advance, and in case of violation of any critical function, it initiates the adequate emergency procedure to return normal operation; and safety parameter computer system which carries out the arquirement of analogic and digital control signals of nuclear power plant. (M.C.K.) [pt

  5. Non-minimally coupled tachyonic inflation in warped string background

    International Nuclear Information System (INIS)

    Chingangbam, Pravabati; Panda, Sudhakar; Deshamukhya, Atri

    2005-01-01

    We show that the non-minimal coupling of tachyon field to the scalar curvature, as proposed by Piao et al, with the chosen coupling parameter does not produce the effective potential where the tachyon field can roll down from T=0 to large T along the slope of the potential. We find a correct choice of the parameters which ensures this requirement and support slow-roll inflation. However, we find that the cosmological parameter found from the analysis of the theory are not in the range obtained from observations. We then invoke warped compactification and varying dilaton field over the compact manifold, as proposed by Raeymaekers, to show that in such a setup the observed parameter space can be ensured. (author)

  6. Cytogenetic analysis in 61 couples with spontaneous abortions

    Institute of Scientific and Technical Information of China (English)

    江静; 傅曼芬; 王德芬

    2001-01-01

    Objective To examine the relationship between spontaneous abortion and chromosomal abnormalities. Methods Couples who had one or more consecutive spontaneous abortions and had normal genitals were enrolled for cytogenetic karyotype analysis. Results In the 61 couples, the detected incidence was 11.5%, with five Robertsonian translocations, one reciprocal translocation, and one pericentric inversion of chromosome 7. Conclusion Chromosomal abnormalities may play an important role in fetal wastage.

  7. Normalized inverse characterization of sound absorbing rigid porous media.

    Science.gov (United States)

    Zieliński, Tomasz G

    2015-06-01

    This paper presents a methodology for the inverse characterization of sound absorbing rigid porous media, based on standard measurements of the surface acoustic impedance of a porous sample. The model parameters need to be normalized to have a robust identification procedure which fits the model-predicted impedance curves with the measured ones. Such a normalization provides a substitute set of dimensionless (normalized) parameters unambiguously related to the original model parameters. Moreover, two scaling frequencies are introduced, however, they are not additional parameters and for different, yet reasonable, assumptions of their values, the identification procedure should eventually lead to the same solution. The proposed identification technique uses measured and computed impedance curves for a porous sample not only in the standard configuration, that is, set to the rigid termination piston in an impedance tube, but also with air gaps of known thicknesses between the sample and the piston. Therefore, all necessary analytical formulas for sound propagation in double-layered media are provided. The methodology is illustrated by one numerical test and by two examples based on the experimental measurements of the acoustic impedance and absorption of porous ceramic samples of different thicknesses and a sample of polyurethane foam.

  8. Relationship of metabolic and endocrine parameters to brain glucose metabolism in older adults: do cognitively-normal older adults have a particular metabolic phenotype?

    Science.gov (United States)

    Nugent, S; Castellano, C A; Bocti, C; Dionne, I; Fulop, T; Cunnane, S C

    2016-02-01

    Our primary objective in this study was to quantify whole brain and regional cerebral metabolic rates of glucose (CMRg) in young and older adults in order to determine age-normalized reference CMRg values for healthy older adults with normal cognition for age. Our secondary objectives were to--(i) report a broader range of metabolic and endocrine parameters including body fat composition that could form the basis for the concept of a 'metabolic phenotype' in cognitively normal, older adults, and (ii) to assess whether medications commonly used to control blood lipids, blood pressure or thyroxine affect CMRg values in older adults. Cognition assessed by a battery of tests was normal for age and education in both groups. Compared to the young group (25 years old; n = 34), the older group (72 years old; n = 41) had ~14% lower CMRg (μmol/100 g/min) specifically in the frontal cortex, and 18% lower CMRg in the caudate. Lower grey matter volume and cortical thickness was widespread in the older group. These differences in CMRg, grey matter volume and cortical thickness were present in the absence of any known evidence for prodromal Alzheimer's disease (AD). Percent total body fat was positively correlated with CMRg in many brain regions but only in the older group. Before and after controlling for body fat, HOMA2-IR was significantly positively correlated to CMRg in several brain regions in the older group. These data show that compared to a healthy younger adult, the metabolic phenotype of a cognitively-normal 72 year old person includes similar plasma glucose, insulin, cholesterol, triglycerides and TSH, higher hemoglobin A1c and percent body fat, lower CMRg in the superior frontal cortex and caudate, but the same CMRg in the hippocampus and white matter. Age-normalization of cognitive test results is standard practice and we would suggest that regional CMRg in cognitively healthy older adults should also be age-normalized.

  9. Characterization of hot dense plasma with plasma parameters

    Science.gov (United States)

    Singh, Narendra; Goyal, Arun; Chaurasia, S.

    2018-05-01

    Characterization of hot dense plasma (HDP) with its parameters temperature, electron density, skin depth, plasma frequency is demonstrated in this work. The dependence of HDP parameters on temperature and electron density is discussed. The ratio of the intensities of spectral lines within HDP is calculated as a function of electron temperature. The condition of weakly coupled for HDP is verified by calculating coupling constant. Additionally, atomic data such as transition wavelength, excitation energies, line strength, etc. are obtained for Be-like ions on the basis of MCDHF method. In atomic data calculations configuration interaction and relativistic effects QED and Breit corrections are newly included for HDP characterization and this is first result of HDP parameters from extreme ultraviolet (EUV) radiations.

  10. tbW anomalous couplings in the Two Higgs Doublet Model

    Energy Technology Data Exchange (ETDEWEB)

    Arhrib, Abdesslam; Jueid, Adil [Département de Mathématiques, Faculté des Sciences et Techniques,Université Abdelmalek Essaadi,B. 416, Tangier (Morocco)

    2016-08-11

    We make a complete one loop calculation of the tbW couplings in the Two Higgs Doublet Model. We evaluate both the anomalous couplings g{sub L} and g{sub R} as well as left handed and right handed component of tbW. The computation is done in the Feynman gauge using the on-shell scheme renormalization for the Standard Model wave functions and parameters. We first show that the relative corrections to these anomalous couplings are rather small in most regions of the parameter space. We then analyze the effects of these anomalous couplings on certain observables such as top quark polarization in single top production through t−channel as well as W{sup ±} boson helicity fractions in top decay.

  11. SU(N) gauge theory couplings on asymmetric lattices

    International Nuclear Information System (INIS)

    Karsch, F.

    1982-01-01

    The connection between euclidean and hamiltonian lattice QCD requires the use of asymmetric lattices, which in turn implies the necessity of two coupling parameters. We analyse the dependence of space- and time-like couplings gsub(sigma) and gsub(tau) on the different lattice spacings a and asub(tau) in space and time directions. Using the background field method we determine the derivatives of the couplings with respect to the asymmetry factor xi = a/asub(tau) in the weak coupling limit, obtaining for xi = 1 the values (deltag -2 sub(sigma)/deltaxi)sub(xi = 1) = 0.11403, N = 2, 0.20161, N = 3, (deltag -2 sub(tau)/deltaxi)sub(xi = 1) = -0.06759, N = 2, -0.13195, N = 3. We argue that the sum of these derivatives has to be equal to b 0 = 11N/48π 2 and determine the Λ parameter for asymmetric lattices. In the limit xi → infinity all our results agree with those of A. and P. Hasenfratz. (orig.)

  12. Chimera states in Gaussian coupled map lattices

    Science.gov (United States)

    Li, Xiao-Wen; Bi, Ran; Sun, Yue-Xiang; Zhang, Shuo; Song, Qian-Qian

    2018-04-01

    We study chimera states in one-dimensional and two-dimensional Gaussian coupled map lattices through simulations and experiments. Similar to the case of global coupling oscillators, individual lattices can be regarded as being controlled by a common mean field. A space-dependent order parameter is derived from a self-consistency condition in order to represent the collective state.

  13. Anticipating synchronization in a chain of chaotic oscillators with switching parameters

    Energy Technology Data Exchange (ETDEWEB)

    Pyragienė, T., E-mail: tatjana.pyragiene@ftmc.lt; Pyragas, K.

    2015-12-18

    A new coupling scheme for anticipating synchronization of chaotic systems is proposed. The scheme consists of a master system and two in series coupled slave systems with periodically switching parameters. The scheme does not require the presence of any time-delay terms either in a master or in slave systems and provides long-term anticipation. The value of anticipation time as well as the conditions of synchronization are derived in an analytical form. Analytical results are tested by numerical experiments with the chaotic Rössler and Lorenz systems as well as the Hindmarsh–Rose neuron in a regime of chaotic bursting. Also a robustness of the scheme with respect to parameter mismatch and noise is demonstrated. - Highlights: • A new coupling scheme for anticipating chaotic synchronization is proposed. • The scheme consists of three coupled systems with periodically switching parameters. • Long-term anticipation is achieved without using time-delay terms. • The method is verified for the Rössler, Lorenz and Hindmarsh–Rose neuron systems.

  14. Anticipating synchronization in a chain of chaotic oscillators with switching parameters

    International Nuclear Information System (INIS)

    Pyragienė, T.; Pyragas, K.

    2015-01-01

    A new coupling scheme for anticipating synchronization of chaotic systems is proposed. The scheme consists of a master system and two in series coupled slave systems with periodically switching parameters. The scheme does not require the presence of any time-delay terms either in a master or in slave systems and provides long-term anticipation. The value of anticipation time as well as the conditions of synchronization are derived in an analytical form. Analytical results are tested by numerical experiments with the chaotic Rössler and Lorenz systems as well as the Hindmarsh–Rose neuron in a regime of chaotic bursting. Also a robustness of the scheme with respect to parameter mismatch and noise is demonstrated. - Highlights: • A new coupling scheme for anticipating chaotic synchronization is proposed. • The scheme consists of three coupled systems with periodically switching parameters. • Long-term anticipation is achieved without using time-delay terms. • The method is verified for the Rössler, Lorenz and Hindmarsh–Rose neuron systems.

  15. Vibrational Interaction of Two Rotors with Friction Coupling

    Directory of Open Access Journals (Sweden)

    H. Larsson

    2016-01-01

    Full Text Available A lumped parameter model is presented for studying the dynamic interaction between two disks in relative rotational motion and in friction contact. The contact elastic and dissipative characteristics are represented by equivalent stiffness and damping coefficient in the axial as well as torsional direction. The formulation accounts for the coupling between the axial and angular motions by viewing the contact normal force a result of axial behavior of the system. The model is used to investigate stick-slip behavior of a two-disk friction system. In this effort the friction coefficient is represented as an exponentially decaying function of relative angular velocity, varying from its static value at zero relative velocity to its kinetic value at very high velocities. This investigation results in the establishment of critical curve defining two-parameter regions: one in which stick-slip occurs and that in which stick-slip does not occur. Moreover, the onset and termination of stick-slip, when it occurs, are related to the highest component frequency in the system. It is found that stick-slip starts at a period nearly equal to that of the highest component frequency and terminates at a period almost three times that of the highest component frequency.

  16. Oyster Creek cycle 10 nodal model parameter optimization study using PSMS

    International Nuclear Information System (INIS)

    Dougher, J.D.

    1987-01-01

    The power shape monitoring system (PSMS) is an on-line core monitoring system that uses a three-dimensional nodal code (NODE-B) to perform nodal power calculations and compute thermal margins. The PSMS contains a parameter optimization function that improves the ability of NODE-B to accurately monitor core power distributions. This functions iterates on the model normalization parameters (albedos and mixing factors) to obtain the best agreement between predicted and measured traversing in-core probe (TIP) reading on a statepoint-by-statepoint basis. Following several statepoint optimization runs, an average set of optimized normalization parameters can be determined and can be implemented into the current or subsequent cycle core model for on-line core monitoring. A statistical analysis of 19 high-power steady-state state-points throughout Oyster Creek cycle 10 operation has shown a consistently poor virgin model performance. The normalization parameters used in the cycle 10 NODE-B model were based on a cycle 8 study, which evaluated only Exxon fuel types. The introduction of General Electric (GE) fuel into cycle 10 (172 assemblies) was a significant fuel/core design change that could have altered the optimum set of normalization parameters. Based on the need to evaluate a potential change in the model normalization parameters for cycle 11 and in an attempt to account for the poor cycle 10 model performance, a parameter optimization study was performed

  17. Influence of the low-frequency source parameters on the plasma characteristics in a dual frequency capacitively coupled plasma reactor: Two dimensional simulations

    Institute of Scientific and Technical Information of China (English)

    Xiang Xu; Hao Ge; Shuai Wang; Zhongling Dai; Younian Wang; Aimin Zhu

    2009-01-01

    A two-dimensional (2D) fluid model is presented to study the discharge of argon in a dual frequency capacitively coupled plasma (CCP) reactor. We are interested in the influence of low-frequency (LF) source parameters such as applied voltage amplitudes and low frequencies on the plasma characteristics. In this paper, the high frequency is set to 60 MHz with voltage 50 V. The simulations were carried out for low frequencies of 1, 2 and 6 MHz with LF voltage 100 V, and for LF voltages of 60, 90 and 120 V with low frequency 2 MHz. The results of 2D distributions of electric field and ion density, the ion flux impinging on the substrate and the ion energy on the powered electrode are shown. As the low frequency increases, two sources become from uncoupling to coupling, When two sources are uncoupling, the increase in LF has little impact on the plasma characteristics, but when two sources are coupling, the increase in LF decreases the uniformities of ion density and ion flux noticeably. It is also found that with the increase in LF voltage, the uniformities in the radial direction of ion density distribution and ion flux at the powered electrode decreases significantly, and the energy of ions bombarding on the powered electrode increases significantly.

  18. Quantization of physical parameters

    International Nuclear Information System (INIS)

    Jackiw, R.; Massachusetts Inst. of Tech., Cambridge; Massachusetts Inst. of Tech., Cambridge

    1984-01-01

    Dynamical models are described with parameters (mass, coupling strengths) which must be quantized for quantum mechanical consistency. These and related topological ideas have physical application to phenomenological descriptions of high temperature and low energy quantum chromodynamics, to the nonrelativistic dynamics of magnetic monopoles, and to the quantum Hall effect. (author)

  19. Plateau inflation from random non-minimal coupling

    International Nuclear Information System (INIS)

    Broy, Benedict J.; Roest, Diederik

    2016-06-01

    A generic non-minimal coupling can push any higher-order terms of the scalar potential sufficiently far out in field space to yield observationally viable plateau inflation. We provide analytic and numerical evidence that this generically happens for a non-minimal coupling strength ξ of the order N 2 e . In this regime, the non-minimally coupled field is sub-Planckian during inflation and is thus protected from most higher-order terms. For larger values of ξ, the inflationary predictions converge towards the sweet spot of PLANCK. The latter includes ξ≅10 4 obtained from CMB normalization arguments, thus providing a natural explanation for the inflationary observables measured.

  20. Method for Automatic Selection of Parameters in Normal Tissue Complication Probability Modeling.

    Science.gov (United States)

    Christophides, Damianos; Appelt, Ane L; Gusnanto, Arief; Lilley, John; Sebag-Montefiore, David

    2018-07-01

    To present a fully automatic method to generate multiparameter normal tissue complication probability (NTCP) models and compare its results with those of a published model, using the same patient cohort. Data were analyzed from 345 rectal cancer patients treated with external radiation therapy to predict the risk of patients developing grade 1 or ≥2 cystitis. In total, 23 clinical factors were included in the analysis as candidate predictors of cystitis. Principal component analysis was used to decompose the bladder dose-volume histogram into 8 principal components, explaining more than 95% of the variance. The data set of clinical factors and principal components was divided into training (70%) and test (30%) data sets, with the training data set used by the algorithm to compute an NTCP model. The first step of the algorithm was to obtain a bootstrap sample, followed by multicollinearity reduction using the variance inflation factor and genetic algorithm optimization to determine an ordinal logistic regression model that minimizes the Bayesian information criterion. The process was repeated 100 times, and the model with the minimum Bayesian information criterion was recorded on each iteration. The most frequent model was selected as the final "automatically generated model" (AGM). The published model and AGM were fitted on the training data sets, and the risk of cystitis was calculated. The 2 models had no significant differences in predictive performance, both for the training and test data sets (P value > .05) and found similar clinical and dosimetric factors as predictors. Both models exhibited good explanatory performance on the training data set (P values > .44), which was reduced on the test data sets (P values < .05). The predictive value of the AGM is equivalent to that of the expert-derived published model. It demonstrates potential in saving time, tackling problems with a large number of parameters, and standardizing variable selection in NTCP

  1. Light higgsino for gauge coupling unification

    Directory of Open Access Journals (Sweden)

    Kwang Sik Jeong

    2017-06-01

    Full Text Available We explore gauge coupling unification and dark matter in high scale supersymmetry where the scale of supersymmetry breaking is much above the weak scale. The gauge couplings unify as precisely as in low energy supersymmetry if the higgsinos, whose mass does not break supersymmetry, are much lighter than those obtaining masses from supersymmetry breaking. The dark matter of the universe can then be explained by the neutral higgsino or the gravitino. High scale supersymmetry with light higgsinos requires a large Higgs mixing parameter for electroweak symmetry breaking to take place. It is thus naturally realized in models where superparticle masses are generated at loop level while the Higgs mixing parameter is induced at tree level, like in anomaly and gauge mediation of supersymmetry breaking.

  2. Light higgsino for gauge coupling unification

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Kwang Sik, E-mail: ksjeong@pusan.ac.kr

    2017-06-10

    We explore gauge coupling unification and dark matter in high scale supersymmetry where the scale of supersymmetry breaking is much above the weak scale. The gauge couplings unify as precisely as in low energy supersymmetry if the higgsinos, whose mass does not break supersymmetry, are much lighter than those obtaining masses from supersymmetry breaking. The dark matter of the universe can then be explained by the neutral higgsino or the gravitino. High scale supersymmetry with light higgsinos requires a large Higgs mixing parameter for electroweak symmetry breaking to take place. It is thus naturally realized in models where superparticle masses are generated at loop level while the Higgs mixing parameter is induced at tree level, like in anomaly and gauge mediation of supersymmetry breaking.

  3. Estimating Non-Normal Latent Trait Distributions within Item Response Theory Using True and Estimated Item Parameters

    Science.gov (United States)

    Sass, D. A.; Schmitt, T. A.; Walker, C. M.

    2008-01-01

    Item response theory (IRT) procedures have been used extensively to study normal latent trait distributions and have been shown to perform well; however, less is known concerning the performance of IRT with non-normal latent trait distributions. This study investigated the degree of latent trait estimation error under normal and non-normal…

  4. Tracing control of chaos for the coupled dynamos dynamical system

    International Nuclear Information System (INIS)

    Wang Xuedi; Tian Lixin

    2004-01-01

    This paper introduces a new method for the coupled dynamos dynamical system, which can be applied to the decision of the chaotic behavior of the system. And research the tracing control of the chaos for the coupled dynamos dynamical system by gradually changing the driving parameter for the chaos. With the different design of controllers, the numerical simulation results show the relation between the chaotic behavior and the changes of the parameter value. Furthermore, the result shows the difference of the controllers. In the mean time, it reveals the process of the orbit's gradual changing with the parameter value

  5. Connection between Dynamically Derived Initial Mass Function Normalization and Stellar Population Parameters

    NARCIS (Netherlands)

    McDermid, Richard M.; Cappellari, Michele; Alatalo, Katherine; Bayet, Estelle; Blitz, Leo; Bois, Maxime; Bournaud, Frédéric; Bureau, Martin; Crocker, Alison F.; Davies, Roger L.; Davis, Timothy A.; de Zeeuw, P. T.; Duc, Pierre-Alain; Emsellem, Eric; Khochfar, Sadegh; Krajnović, Davor; Kuntschner, Harald; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Scott, Nicholas; Serra, Paolo; Weijmans, Anne-Marie; Young, Lisa M.

    We report on empirical trends between the dynamically determined stellar initial mass function (IMF) and stellar population properties for a complete, volume-limited sample of 260 early-type galaxies from the ATLAS3D project. We study trends between our dynamically derived IMF normalization αdyn ≡

  6. Earth's Outer Core Properties Estimated Using Bayesian Inversion of Normal Mode Eigenfrequencies

    Science.gov (United States)

    Irving, J. C. E.; Cottaar, S.; Lekic, V.

    2016-12-01

    The outer core is arguably Earth's most dynamic region, and consists of an iron-nickel liquid with an unknown combination of lighter alloying elements. Frequencies of Earth's normal modes provide the strongest constraints on the radial profiles of compressional wavespeed, VΦ, and density, ρ, in the outer core. Recent great earthquakes have yielded new normal mode measurements; however, mineral physics experiments and calculations are often compared to the Preliminary reference Earth model (PREM), which is 35 years old and does not provide uncertainties. Here we investigate the thermo-elastic properties of the outer core using Earth's free oscillations and a Bayesian framework. To estimate radial structure of the outer core and its uncertainties, we choose to exploit recent datasets of normal mode centre frequencies. Under the self-coupling approximation, centre frequencies are unaffected by lateral heterogeneities in the Earth, for example in the mantle. Normal modes are sensitive to both VΦ and ρ in the outer core, with each mode's specific sensitivity depending on its eigenfunctions. We include a priori bounds on outer core models that ensure compatibility with measurements of mass and moment of inertia. We use Bayesian Monte Carlo Markov Chain techniques to explore different choices in parameterizing the outer core, each of which represents different a priori constraints. We test how results vary (1) assuming a smooth polynomial parametrization, (2) allowing for structure close to the outer core's boundaries, (3) assuming an Equation-of-State and adiabaticity and inverting directly for thermo-elastic parameters. In the second approach we recognize that the outer core may have distinct regions close to the core-mantle and inner core boundaries and investigate models which parameterize the well mixed outer core separately from these two layers. In the last approach we seek to map the uncertainties directly into thermo-elastic parameters including the bulk

  7. Transient chaos in weakly coupled Josephson junctions

    Energy Technology Data Exchange (ETDEWEB)

    Koch, B P; Bruhn, B

    1988-01-01

    This paper considers periodic excitations and coupling of nonlinear Josephson oscillators. The Melnikov method is used to prove the existence of horseshoes in the dynamics. The coupling of two systems yields a reduction of the chaos threshold in comparison with the corresponding threshold of a single system. For some selected parameter values the theoretical predictions are checked by numerical methods.

  8. Synthesis of coupled resonator optical waveguides by cavity aggregation.

    Science.gov (United States)

    Muñoz, Pascual; Doménech, José David; Capmany, José

    2010-01-18

    In this paper, the layer aggregation method is applied to coupled resonator optical waveguides. Starting from the frequency transfer function, the method yields the coupling constants between the resonators. The convergence of the algorithm developed is examined and the related parameters discussed.

  9. Normal value of functional parameters in gated myocardial perfusion SPECT in patients with low risk of coronary artery disease: emory cardiac tool box program

    Energy Technology Data Exchange (ETDEWEB)

    Kang, D. Y.; Kim, M. H.; Kim, Y. D.; Kim, D. K. [Donga University College of Medicine, Busan (Korea, Republic of)

    2002-07-01

    Absolute value of the functional data of gated myocardial perfusion SPECT is necessary to determine that individual patient is normal or not. Tc-99m MIBI gated myocardial perfusion SPECT was performed using emory cardiac tool box program. All patients (M:F=15:36, age 64{+-}10 yrs) showed normal myocardial perfusion. The patients with following characteristics were excluded; previous angina or MI, ECG change with Q wave or ST-T change, diabetes mellitus, hypercholesterolemia, typical chest pain and hypertension. In all patients, myocardial mass is 117{+-}23 g in stress gated SPECT, 106{+-}22 g in stress ungated SPECT and 102{+-}21 g in rest ungated SPECT. EDV is 90{+-}28 ml, ESV 26{+-}20 ml, SV 66{+-}21 ml, EF 73{+-}10 % and TID 1.06{+-}0.14. Myocardial mass in rest ungated SPECT is significantly different between men and women (p=0.025). Myocardial mass is significantly different between stress gated SPECT and stress ungated SPECT (p=0.000), and between stress ungated SPECT and rest ungated SPECT (p=0.003). We provide normal value of functional parameters to determine the abnormality of individual patients in patients with low risk of coronary artery disease.

  10. Mixed convection flow of couple stress nanofluid over oscillatory stretching sheet with heat absorption/generation effects

    Directory of Open Access Journals (Sweden)

    Sami Ullah Khan

    2018-03-01

    Full Text Available The aim of this article is to highlight the unsteady mixed convective couple stress nanoliquid flow passed through stretching surface. The flow is generated due to periodic oscillations of sheet. An appropriate set of dimensionless variables are used to reduce the independent variables in governing equations arising from mathematical modeling. An analytical solution has been computed by employing the technique of homotopy method. The outcomes of various sundry parameters like couple stress parameter, the ratio of angular velocity to stretching rate, thermophoresis parameter, Hartmann number, Prandtl number, heat source/sink parameter, Schmidt number described graphically and in tabular form. It is observed that the velocity profile increases by increasing mixed convection parameter and concentration buoyancy parameter. The temperature enhances for larger values of Hartmann number and Brownian. The concentration profile increases by increasing thermophoresis parameter. Results show that wall shear stress increases by increasing couple stress parameter and ratio of oscillating frequency to stretching rate. Keywords: Oscillatory surface, Couple stress fluid, Nanoparticles, Heat absorption/generation

  11. Effects of Supplemental Chromium Source and Concentration on Growth, Carcass Characteristics, and Serum Lipid Parameters of Broilers Reared Under Normal Conditions.

    Science.gov (United States)

    Zheng, Cancai; Huang, Yanling; Xiao, Fang; Lin, Xi; Lloyd, Karen

    2016-02-01

    An experiment was conducted to investigate the effects of dietary chromium (Cr) source and concentration on growth performance, carcass traits, and some serum lipid parameters of broilers under normal rearing conditions for 42 days. A total of 252 1-day-old Cobb 500 commercial female broilers were randomly allotted by body weight (BW) to one of six replicate cages (six broilers per cage) for each of seven treatments in a completely randomized design involved in a 2 × 3 factorial arrangement of treatments with three Cr sources (Cr propionate (CrPro), Cr picolinate (CrPic), Cr chloride (CrCl3)) and two concentrations of added Cr (0.4 and 2.0 mg of Cr/kg) plus a Cr-unsupplemented control diet. The results showed that dietary Cr supplementation tended to increase the breast muscle percentage compared with the Cr-unsupplemented control group (P = 0.0784), while Cr from CrPic tended to have higher breast muscle percentage compared with Cr from CrCl3 (P = 0.0881). Chromium from CrPic also tended to increase the breast intramuscular fat (IMF) compared with Cr from CrCl3 (P = 0.0648). In addition, supplementation of 0.4 mg/kg Cr tended to decrease low-density lipoprotein cholesterol (LDL-C) (P = 0.0614). Compared with the control group, broilers fed Cr-supplemented diets had higher triglyceride (TG) (P = 0.0129) regardless of Cr source and Cr concentration. Chromium from CrPro and CrPic had lower total cholesterol (TC) compared with Cr from CrCl3 (P = 0.0220). These results indicate that dietary supplementation of Cr has effects on carcass characteristics and serum lipid parameters of broilers under normal rearing conditions, while supplementation of organic Cr can improve carcass characteristics and reduce the cholesterol content in serum.

  12. Normal ranges and test-retest reproducibility of flow and velocity parameters in intracranial arteries measured with phase-contrast magnetic resonance imaging

    International Nuclear Information System (INIS)

    Correia de Verdier, Maria; Wikstroem, Johan

    2016-01-01

    The purpose of the present study was to investigate normal ranges and test-retest reproducibility of phase-contrast MRI (PC-MRI)-measured flow and velocity parameters in intracranial arteries. Highest flow (HF), lowest flow (LF), peak systolic velocity (PSV), and end diastolic velocity (EDV) were measured at two dates in the anterior (ACA), middle (MCA), and posterior (PCA) cerebral arteries of 30 healthy volunteers using two-dimensional PC-MRI at 3 T. Least detectable difference (LDD) was calculated. In the left ACA, HF was (mean (range, LDD)) 126 ml/min (36-312, 59 %), LF 61 ml/min (0-156, 101 %), PSV 64 cm/s (32-141, 67 %), and EDV 35 cm/s (18-55, 42 %); in the right ACA, HF was 154 ml/min (42-246, 49 %), LF 77 ml/min (0-156, 131 %), PSV 75 cm/s (26-161, 82 %), and EDV 39 cm/s (7-59, 67 %). In the left MCA, HF was 235 ml/min (126-372, 35 %), LF 116 ml/min (42-186, 48 %), PSV 90 cm/s (55-183, 39 %), and EDV 46 cm/s (20-66, 28 %); in the right MCA, HF was 238 ml/min (162-342, 44 %), LF 120 ml/min (72-216, 48 %), PSV 88 cm/s (55-141, 35 %), and EDV 45 cm/s (26-67, 23 %). In the left PCA, HF was 108 ml/min (42-168, 54 %), LF 53 ml/min (18-108, 64 %), PSV 50 cm/s (24-77, 63 %), and EDV 28 cm/s (14-40, 45 %); in the right PCA, HF was 98 ml/min (30-162, 49 %), LF 49 ml/min (12-84, 55 %), PSV 47 cm/s (27-88, 59 %), and EDV 27 cm/s (16-41, 45 %). PC-MRI-measured flow and velocity parameters in the main intracranial arteries have large normal ranges. Reproducibility is highest in MCA. (orig.)

  13. Normal ranges and test-retest reproducibility of flow and velocity parameters in intracranial arteries measured with phase-contrast magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Correia de Verdier, Maria; Wikstroem, Johan [Uppsala University Hospital, Department of Radiology, Uppsala University, Uppsala (Sweden)

    2016-05-15

    The purpose of the present study was to investigate normal ranges and test-retest reproducibility of phase-contrast MRI (PC-MRI)-measured flow and velocity parameters in intracranial arteries. Highest flow (HF), lowest flow (LF), peak systolic velocity (PSV), and end diastolic velocity (EDV) were measured at two dates in the anterior (ACA), middle (MCA), and posterior (PCA) cerebral arteries of 30 healthy volunteers using two-dimensional PC-MRI at 3 T. Least detectable difference (LDD) was calculated. In the left ACA, HF was (mean (range, LDD)) 126 ml/min (36-312, 59 %), LF 61 ml/min (0-156, 101 %), PSV 64 cm/s (32-141, 67 %), and EDV 35 cm/s (18-55, 42 %); in the right ACA, HF was 154 ml/min (42-246, 49 %), LF 77 ml/min (0-156, 131 %), PSV 75 cm/s (26-161, 82 %), and EDV 39 cm/s (7-59, 67 %). In the left MCA, HF was 235 ml/min (126-372, 35 %), LF 116 ml/min (42-186, 48 %), PSV 90 cm/s (55-183, 39 %), and EDV 46 cm/s (20-66, 28 %); in the right MCA, HF was 238 ml/min (162-342, 44 %), LF 120 ml/min (72-216, 48 %), PSV 88 cm/s (55-141, 35 %), and EDV 45 cm/s (26-67, 23 %). In the left PCA, HF was 108 ml/min (42-168, 54 %), LF 53 ml/min (18-108, 64 %), PSV 50 cm/s (24-77, 63 %), and EDV 28 cm/s (14-40, 45 %); in the right PCA, HF was 98 ml/min (30-162, 49 %), LF 49 ml/min (12-84, 55 %), PSV 47 cm/s (27-88, 59 %), and EDV 27 cm/s (16-41, 45 %). PC-MRI-measured flow and velocity parameters in the main intracranial arteries have large normal ranges. Reproducibility is highest in MCA. (orig.)

  14. Multi-element quantification of ancient/historic glasses by laser ablation inductively coupled plasma mass spectrometry using sum normalization calibration

    International Nuclear Information System (INIS)

    Elteren, Johannes T. van; Tennent, Norman H.; Selih, Vid S.

    2009-01-01

    Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) for quantitative analysis of ancient/historic glasses is subject to calibration issues which have been addressed in this work. Since ancient/historic glasses have widely ranging matrix compositions, a complementary analysis by an alternative method is generally employed to determine at least one major element which can be used as an internal standard. We demonstrate that such a complementary analysis is unnecessary using a so-called sum normalization calibration technique (mathematically formulated) by simultaneous measurement of 54 elements and normalizing them to 100% [w/w] based on their corresponding oxide concentrations. The crux of this approach is that by assuming a random internal standard concentration of a particular major oxide, e.g. SiO 2 , the normalization algorithm varies the internal standard concentration until the cumulated concentrations of all 54 elemental oxides reach 100% [w/w]. The fact that 54 elements are measured simultaneously predetermines the laser ablation mode to rastering. Nine glass standards, some replicating historic compositions, were used for calibration. The linearity of the calibration graphs (forced through the origin) represented by the relative standard deviations in the slope were between 0.1 and 6.6% using SiO 2 as an internal standard. This allows high-accuracy determination of elemental oxides as confirmed by good agreement between found and reported values for major and minor elemental oxides in some synthetic glasses with typical medieval composition (European Science Foundation 151 and 158). Also for trace elemental concentrations of lanthanides in a reference glass (P and H Developments Ltd. DLH7, a base glass composition with nominally 75 μg g -1 elements added) accurate data were obtained. Interferences from polyatomic species and doubly charged species on the masses of trace elements are possible, depending on the base composition of the

  15. A 2-DOF microstructure-dependent model for the coupled torsion/bending instability of rotational nanoscanner

    Science.gov (United States)

    Keivani, M.; Abadian, N.; Koochi, A.; Mokhtari, J.; Abadyan, M.

    2016-10-01

    It has been well established that the physical performance of nanodevices might be affected by the microstructure. Herein, a two-degree-of-freedom model base on the modified couple stress theory is developed to incorporate the impact of microstructure in the torsion/bending coupled instability of rotational nanoscanner. Effect of microstructure dependency on the instability parameters is determined as a function of the microstructure parameter, bending/torsion coupling ratio, van der Waals force parameter and geometrical dimensions. It is found that the bending/torsion coupling substantially affects the stable behavior of the scanners especially those with long rotational beam elements. Impact of microstructure on instability voltage of the nanoscanner depends on coupling ratio and the conquering bending mode over torsion mode. This effect is more highlighted for higher values of coupling ratio. Depending on the geometry and material characteristics, the presented model is able to simulate both hardening behavior (due to microstructure) and softening behavior (due to torsion/bending coupling) of the nanoscanners.

  16. Optical Control of Mechanical Mode-Coupling within a MoS2 Resonator in the Strong-Coupling Regime.

    Science.gov (United States)

    Liu, Chang-Hua; Kim, In Soo; Lauhon, Lincoln J

    2015-10-14

    Two-dimensional (2-D) materials including graphene and transition metal dichalcogenides (TMDs) are an exciting platform for ultrasensitive force and displacement detection in which the strong light-matter coupling is exploited in the optical control of nanomechanical motion. Here we report the optical excitation and displacement detection of a ∼ 3 nm thick MoS2 resonator in the strong-coupling regime, which has not previously been achieved in 2-D materials. Mechanical mode frequencies can be tuned by more than 12% by optical heating, and they exhibit avoided crossings indicative of strong intermode coupling. When the membrane is optically excited at the frequency difference between vibrational modes, normal mode splitting is observed, and the intermode energy exchange rate exceeds the mode decay rate by a factor of 15. Finite element and analytical modeling quantifies the extent of mode softening necessary to control intermode energy exchange in the strong coupling regime.

  17. Effects of couple stresses in MHD channel flow

    International Nuclear Information System (INIS)

    Soundalgekar, V.M.; Aranake, R.N.

    1977-01-01

    An analysis of fully developed MHD channel flow of an electrically conducting incompressible fluid, taking into account the couple stresses, is carried out. Exact solutions are derived for velocity profiles, current density, skin-friction and coefficient of mass flux. They are influenced by the magnetic field, the loading parameter k, and the non-dimensional parameter (a=b 1 /lambda). Their variations with respect to M, k and a are represented graphically, this is followed by a physical discussion. It is observed that the couple stresses are more effective in the presence of a very weak magnetic field. (Auth.)

  18. Predictive modeling of coupled multi-physics systems: I. Theory

    International Nuclear Information System (INIS)

    Cacuci, Dan Gabriel

    2014-01-01

    Highlights: • We developed “predictive modeling of coupled multi-physics systems (PMCMPS)”. • PMCMPS reduces predicted uncertainties in predicted model responses and parameters. • PMCMPS treats efficiently very large coupled systems. - Abstract: This work presents an innovative mathematical methodology for “predictive modeling of coupled multi-physics systems (PMCMPS).” This methodology takes into account fully the coupling terms between the systems but requires only the computational resources that would be needed to perform predictive modeling on each system separately. The PMCMPS methodology uses the maximum entropy principle to construct an optimal approximation of the unknown a priori distribution based on a priori known mean values and uncertainties characterizing the parameters and responses for both multi-physics models. This “maximum entropy”-approximate a priori distribution is combined, using Bayes’ theorem, with the “likelihood” provided by the multi-physics simulation models. Subsequently, the posterior distribution thus obtained is evaluated using the saddle-point method to obtain analytical expressions for the optimally predicted values for the multi-physics models parameters and responses along with corresponding reduced uncertainties. Noteworthy, the predictive modeling methodology for the coupled systems is constructed such that the systems can be considered sequentially rather than simultaneously, while preserving exactly the same results as if the systems were treated simultaneously. Consequently, very large coupled systems, which could perhaps exceed available computational resources if treated simultaneously, can be treated with the PMCMPS methodology presented in this work sequentially and without any loss of generality or information, requiring just the resources that would be needed if the systems were treated sequentially

  19. LOG-NORMAL DISTRIBUTION OF COSMIC VOIDS IN SIMULATIONS AND MOCKS

    Energy Technology Data Exchange (ETDEWEB)

    Russell, E.; Pycke, J.-R., E-mail: er111@nyu.edu, E-mail: jrp15@nyu.edu [Division of Science and Mathematics, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi (United Arab Emirates)

    2017-01-20

    Following up on previous studies, we complete here a full analysis of the void size distributions of the Cosmic Void Catalog based on three different simulation and mock catalogs: dark matter (DM), haloes, and galaxies. Based on this analysis, we attempt to answer two questions: Is a three-parameter log-normal distribution a good candidate to satisfy the void size distributions obtained from different types of environments? Is there a direct relation between the shape parameters of the void size distribution and the environmental effects? In an attempt to answer these questions, we find here that all void size distributions of these data samples satisfy the three-parameter log-normal distribution whether the environment is dominated by DM, haloes, or galaxies. In addition, the shape parameters of the three-parameter log-normal void size distribution seem highly affected by environment, particularly existing substructures. Therefore, we show two quantitative relations given by linear equations between the skewness and the maximum tree depth, and between the variance of the void size distribution and the maximum tree depth, directly from the simulated data. In addition to this, we find that the percentage of voids with nonzero central density in the data sets has a critical importance. If the number of voids with nonzero central density reaches ≥3.84% in a simulation/mock sample, then a second population is observed in the void size distributions. This second population emerges as a second peak in the log-normal void size distribution at larger radius.

  20. Modeling guided wave excitation in plates with surface mounted piezoelectric elements: coupled physics and normal mode expansion

    Science.gov (United States)

    Ren, Baiyang; Lissenden, Cliff J.

    2018-04-01

    Guided waves have been extensively studied and widely used for structural health monitoring because of their large volumetric coverage and good sensitivity to defects. Effectively and preferentially exciting a desired wave mode having good sensitivity to a certain defect is of great practical importance. Piezoelectric discs and plates are the most common types of surface-mounted transducers for guided wave excitation and reception. Their geometry strongly influences the proportioning between excited modes as well as the total power of the excited modes. It is highly desirable to predominantly excite the selected mode while the total transduction power is maximized. In this work, a fully coupled multi-physics finite element analysis, which incorporates the driving circuit, the piezoelectric element and the wave guide, is combined with the normal mode expansion method to study both the mode tuning and total wave power. The excitation of circular crested waves in an aluminum plate with circular piezoelectric discs is numerically studied for different disc and adhesive thicknesses. Additionally, the excitation of plane waves in an aluminum plate, using a stripe piezoelectric element is studied both numerically and experimentally. It is difficult to achieve predominant single mode excitation as well as maximum power transmission simultaneously, especially for higher order modes. However, guidelines for designing the geometry of piezoelectric elements for optimal mode excitation are recommended.

  1. Suppression and revival of oscillation in indirectly coupled limit cycle oscillators

    International Nuclear Information System (INIS)

    Sharma, P.R.; Kamal, N.K.; Verma, U.K.; Suresh, K.; Thamilmaran, K.; Shrimali, M.D.

    2016-01-01

    Highlights: • The phenomena of suppression and revival of oscillations are studied in indirectly coupled nonlinear oscillators. • The decay parameter and a feedback factor play a crucial role in emergent dynamical behavior of oscillators. • The critical curves for different dynamical regions are obtained analytically using linear stability analysis. • Electronic circuit experiments demonstrate these emergent dynamical states. - Abstract: We study the phenomena of suppression and revival of oscillations in a system of limit cycle oscillators coupled indirectly via a dynamic local environment. The dynamics of the environment is assumed to decay exponentially with time. We show that for appropriate coupling strength, the decay parameter of the environment plays a crucial role in the emergent dynamics such as amplitude death (AD) and oscillation death (OD). We also show that introducing a feedback factor in the diffusion term revives the oscillations in this system. The critical curves for the regions of different emergent states as a function of coupling strength, decay parameter of the environment and feedback factor in the coupling are obtained analytically using linear stability analysis. These results are found to be consistent with the numerics and are also observed experimentally.

  2. Cross Talk Analysis on Multiple Coupled Transmission Lines; (The calculation of transfer functions on multiple coupled tansmission lines in an inhomogeneous dielectric medium)

    DEFF Research Database (Denmark)

    Dalby, Arne Brejning

    1994-01-01

    A flow graph relating voltages and the forward and reflected propagation modes (¿ TEM) on multiple coupled transmission lines in an inhomogeneous dielectric medium is presented. This flow graph directy gives the different transfer functions, including S-parameters, in matrix form needed to calcul......A flow graph relating voltages and the forward and reflected propagation modes (¿ TEM) on multiple coupled transmission lines in an inhomogeneous dielectric medium is presented. This flow graph directy gives the different transfer functions, including S-parameters, in matrix form needed...

  3. Synchronization and suppression of chaos in non-locally coupled ...

    Indian Academy of Sciences (India)

    Coupled map lattices have been intensively investigated as models to understand many spatiotemporal phenomena observed in extended system, and consequently spatiotemporal chaos. We used the complex order parameter to quantify chaos synchronization for a one-dimensional chain of coupled logistic maps with a ...

  4. Partial synchronization in a system of coupled logistic maps

    DEFF Research Database (Denmark)

    Taborov, A.V.; Maistrenko, Y.L; Mosekilde, Erik

    1999-01-01

    The phenomenon of clustering (or partial synchronization) in a system of globqally coupled chaotic oscillators is studied by means of a model of three coupled logistic maps. We determine the regions in parameter space where total and partial synchronization take place, examine the bifurcations...

  5. Is liver perfusion CT reproducible? A study on intra- and interobserver agreement of normal hepatic haemodynamic parameters obtained with two different software packages.

    Science.gov (United States)

    Bretas, Elisa Almeida Sathler; Torres, Ulysses S; Torres, Lucas Rios; Bekhor, Daniel; Saito Filho, Celso Fernando; Racy, Douglas Jorge; Faggioni, Lorenzo; D'Ippolito, Giuseppe

    2017-10-01

    To evaluate the agreement between the measurements of perfusion CT parameters in normal livers by using two different software packages. This retrospective study was based on 78 liver perfusion CT examinations acquired for detecting suspected liver metastasis. Patients with any morphological or functional hepatic abnormalities were excluded. The final analysis included 37 patients (59.7 ± 14.9 y). Two readers (1 and 2) independently measured perfusion parameters using different software packages from two major manufacturers (A and B). Arterial perfusion (AP) and portal perfusion (PP) were determined using the dual-input vascular one-compartmental model. Inter-reader agreement for each package and intrareader agreement between both packages were assessed with intraclass correlation coefficients (ICC) and Bland-Altman statistics. Inter-reader agreement was substantial for AP using software A (ICC = 0.82) and B (ICC = 0.85-0.86), fair for PP using software A (ICC = 0.44) and fair to moderate for PP using software B (ICC = 0.56-0.77). Intrareader agreement between software A and B ranged from slight to moderate (ICC = 0.32-0.62) for readers 1 and 2 considering the AP parameters, and from fair to moderate (ICC = 0.40-0.69) for readers 1 and 2 considering the PP parameters. At best there was only moderate agreement between both software packages, resulting in some uncertainty and suboptimal reproducibility. Advances in knowledge: Software-dependent factors may contribute to variance in perfusion measurements, demanding further technical improvements. AP measurements seem to be the most reproducible parameter to be adopted when evaluating liver perfusion CT.

  6. Harmonic synchronization in resistively coupled Josephson junctions

    International Nuclear Information System (INIS)

    Blackburn, J.A.; Gronbech-Jensen, N.; Smith, H.J.T.

    1994-01-01

    The oscillations of two resistively coupled Josephson junctions biased only by a single dc current source are shown to lock harmonically in a 1:2 mode over a significant range of bias current, even when the junctions are identical. The dependence of this locking on both junction and coupling parameters is examined, and it is found that, for this particular two-junction configuration, 1:1 locking can never occur, and also that a minimum coupling coefficient is needed to support harmonic locking. Some issues related to subharmonic locking are also discussed

  7. Synchronization and chaotic dynamics of coupled mechanical metronomes

    Science.gov (United States)

    Ulrichs, Henning; Mann, Andreas; Parlitz, Ulrich

    2009-12-01

    Synchronization scenarios of coupled mechanical metronomes are studied by means of numerical simulations showing the onset of synchronization for two, three, and 100 globally coupled metronomes in terms of Arnol'd tongues in parameter space and a Kuramoto transition as a function of coupling strength. Furthermore, we study the dynamics of metronomes where overturning is possible. In this case hyperchaotic dynamics associated with some diffusion process in configuration space is observed, indicating the potential complexity of metronome dynamics.

  8. Optical model with multiple band couplings using soft rotator structure

    Science.gov (United States)

    Martyanov, Dmitry; Soukhovitskii, Efrem; Capote, Roberto; Quesada, Jose Manuel; Chiba, Satoshi

    2017-09-01

    A new dispersive coupled-channel optical model (DCCOM) is derived that describes nucleon scattering on 238U and 232Th targets using a soft-rotator-model (SRM) description of the collective levels of the target nucleus. SRM Hamiltonian parameters are adjusted to the observed collective levels of the target nucleus. SRM nuclear wave functions (mixed in K quantum number) have been used to calculate coupling matrix elements of the generalized optical model. Five rotational bands are coupled: the ground-state band, β-, γ-, non-axial- bands, and a negative parity band. Such coupling scheme includes almost all levels below 1.2 MeV of excitation energy of targets. The "effective" deformations that define inter-band couplings are derived from SRM Hamiltonian parameters. Conservation of nuclear volume is enforced by introducing a monopolar deformed potential leading to additional couplings between rotational bands. The present DCCOM describes the total cross section differences between 238U and 232Th targets within experimental uncertainty from 50 keV up to 200 MeV of neutron incident energy. SRM couplings and volume conservation allow a precise calculation of the compound-nucleus (CN) formation cross sections, which is significantly different from the one calculated with rigid-rotor potentials with any number of coupled levels.

  9. Nonlocal constitutive equations of elasto-visco-plasticity coupled with damage and temperature

    Directory of Open Access Journals (Sweden)

    Liu Weijie

    2016-01-01

    Full Text Available In this paper, the nonlocal anisothermal elasto-visco-plastic constitutive equations strongly coupled with ductile isotropic damage, nonlinear isotropic hardening and kinematic hardening are developed to model the material behaviour under finite strain. The new micromorphic variable of damage is introduced into the principle of virtual power and new additional balance equations are obtained. Thermodynamically-consistent nonlocal constitutive equations are then deduced. The evolution equations are deduced from the generalized normality rule for the Norton-Hoff visco-plastic potential. This model is used to simulate various material responses under different velocities at high temperature. The micromorphic parameters of damage: micromorphic density and H moduli are studied to examine the effects of micromorphic damage. Biaxial tension is performed to make a comparison between the local damage model and the micromorphic damage model.

  10. Linear and nonlinear optical susceptibilities in a laterally coupled quantum-dot–quantum-ring system

    International Nuclear Information System (INIS)

    Zeng, Zaiping; Garoufalis, Christos S.; Baskoutas, Sotirios

    2014-01-01

    Linear and nonlinear optical susceptibilities in a laterally coupled quantum-dot–quantum-ring system have been theoretically studied. In general, we find that the structure parameters of the coupled system significantly affect the optical susceptibilities. The enhancement of the coupling effects between the dot and ring is found to increase considerably the optical susceptibilities and redshift drastically the transition energies. Comparing to the linear susceptibility, the nonlinear optical susceptibility is found to be more sensitive to the variation of the structure parameters. A comprehensive analysis of the electron probability density movement with respect to the modification of the structure parameters is provided, which offers a unique perspective of the ground-state localization. - Highlights: • Optical susceptibilities in a quantum-dot–quantum-ring system are studied. • The structure parameters significantly affect the optical susceptibilities. • The enhancement of the coupling effects increases the optical susceptibilities. • The nonlinear susceptibility is more sensitive to the change in structure parameters. • A comprehensive analysis of the electron probability density movement is provided

  11. Direct and indirect parameters of free thyroxine. Pt. 2

    International Nuclear Information System (INIS)

    Reiners, C.; Hoffmann, R.; Moll, E.; Baum, K.; Becker, W.; Eilles, C.; Gerhards, W.; Schick, F.; Spiegel, W.; Wiedemann, W.; Boerner, W.

    1983-01-01

    Part II of the study concerning the clinical applicability of direct and indirect parameters for free thyroxine evaluates the diagnostic accuracy of the FT 4 -RIAs ImmoPhase, GammaCoat, Liquisol, Amerlex and LisoPhase in relation to FT 4 index and T 4 /TBG ratio. This comparison of methods is done on a thoroughly classified collection (n = 640) of patients with normal and impaired thyroid function including patients with binding protein anomalies (pregnancy, estrogen-medication, phenytoin therapy, renal protein loss). FT 4 normal ranges of a given kit harmonize well with data of the manufacturers and of the literature. On the other hand, the normal ranges of the various kits are not comparable. The differentiation of euthyroidism from hyper- or hypothyroidism can be made without problems using any of these methods, with the exception of the FT 4 -RIA GammaCoat. As expected, patients with euthyroid goiter show, on the average, slightly lower parameters for FT 4 . In pregnancy all direct and indirect parameters for FT 4 have a tendency to lower values after the first trimester. This trend is most distinct for the T 4 /TBG ratio. A weak negative correlation of FT 4 parameters with basal TSH, which does not exceed the upper normal range, however, can be interpreted in the sense of a relative hypothyroxinemia. Under contraceptive estrogen medication FT 4 parameters do not fall outside the normal range, with the exception of the FT 4 -RIA ImmoPhase assay which yields a significantly increased frequency of high FT 4 levels. (orig./RW) [de

  12. Star-coupled Hindmarsh-Rose neural network with chemical synapses

    Science.gov (United States)

    Usha, K.; Subha, P. A.

    We analyze the patterns like synchrony, desynchrony, and Drum head mode in a network of Hindmarsh-Rose (HR) neurons interacting via chemical synapse in unidirectional and bidirectional star topology. A two-coupled system has been studied for synchronization by varying the coupling strength and the parameter describing the activation and inactivation of the fast ion channel. The transverse Lyapunov exponent spectrum is plotted to observe the point of transition from desynchrony to synchrony. The synchronized, desynchronized, and drum head mode regions are observed when the neurons are connected in unidirectional and bidirectional coupling configurations. A detailed analysis about the time evolution of membrane potential corresponding to each region is presented. The annihilation of synchronized region and the expansion of drum head mode region in bidirectional coupling is discussed using parameter space. Our work provides finer insight into the existence and stability of Drum head mode and is useful for designing communication networks.

  13. Variational iteration method for solving coupled-KdV equations

    International Nuclear Information System (INIS)

    Assas, Laila M.B.

    2008-01-01

    In this paper, the He's variational iteration method is applied to solve the non-linear coupled-KdV equations. This method is based on the use of Lagrange multipliers for identification of optimal value of a parameter in a functional. This technique provides a sequence of functions which converge to the exact solution of the coupled-KdV equations. This procedure is a powerful tool for solving coupled-KdV equations

  14. Information flow between weakly interacting lattices of coupled maps

    Energy Technology Data Exchange (ETDEWEB)

    Dobyns, York [PEAR, Princeton University, Princeton, NJ 08544-5263 (United States); Atmanspacher, Harald [Institut fuer Grenzgebiete der Psychologie und Psychohygiene, Wilhelmstr. 3a, 79098 Freiburg (Germany)]. E-mail: haa@igpp.de

    2006-05-15

    Weakly interacting lattices of coupled maps can be modeled as ordinary coupled map lattices separated from each other by boundary regions with small coupling parameters. We demonstrate that such weakly interacting lattices can nevertheless have unexpected and striking effects on each other. Under specific conditions, particular stability properties of the lattices are significantly influenced by their weak mutual interaction. This observation is tantamount to an efficacious information flow across the boundary.

  15. Information flow between weakly interacting lattices of coupled maps

    International Nuclear Information System (INIS)

    Dobyns, York; Atmanspacher, Harald

    2006-01-01

    Weakly interacting lattices of coupled maps can be modeled as ordinary coupled map lattices separated from each other by boundary regions with small coupling parameters. We demonstrate that such weakly interacting lattices can nevertheless have unexpected and striking effects on each other. Under specific conditions, particular stability properties of the lattices are significantly influenced by their weak mutual interaction. This observation is tantamount to an efficacious information flow across the boundary

  16. Fisher information and asymptotic normality in system identification for quantum Markov chains

    International Nuclear Information System (INIS)

    Guta, Madalin

    2011-01-01

    This paper deals with the problem of estimating the coupling constant θ of a mixing quantum Markov chain. For a repeated measurement on the chain's output we show that the outcomes' time average has an asymptotically normal (Gaussian) distribution, and we give the explicit expressions of its mean and variance. In particular, we obtain a simple estimator of θ whose classical Fisher information can be optimized over different choices of measured observables. We then show that the quantum state of the output together with the system is itself asymptotically Gaussian and compute its quantum Fisher information, which sets an absolute bound to the estimation error. The classical and quantum Fisher information are compared in a simple example. In the vicinity of θ=0 we find that the quantum Fisher information has a quadratic rather than linear scaling in output size, and asymptotically the Fisher information is localized in the system, while the output is independent of the parameter.

  17. A coupled stochastic inverse-management framework for dealing with nonpoint agriculture pollution under groundwater parameter uncertainty

    Science.gov (United States)

    Llopis-Albert, Carlos; Palacios-Marqués, Daniel; Merigó, José M.

    2014-04-01

    In this paper a methodology for the stochastic management of groundwater quality problems is presented, which can be used to provide agricultural advisory services. A stochastic algorithm to solve the coupled flow and mass transport inverse problem is combined with a stochastic management approach to develop methods for integrating uncertainty; thus obtaining more reliable policies on groundwater nitrate pollution control from agriculture. The stochastic inverse model allows identifying non-Gaussian parameters and reducing uncertainty in heterogeneous aquifers by constraining stochastic simulations to data. The management model determines the spatial and temporal distribution of fertilizer application rates that maximizes net benefits in agriculture constrained by quality requirements in groundwater at various control sites. The quality constraints can be taken, for instance, by those given by water laws such as the EU Water Framework Directive (WFD). Furthermore, the methodology allows providing the trade-off between higher economic returns and reliability in meeting the environmental standards. Therefore, this new technology can help stakeholders in the decision-making process under an uncertainty environment. The methodology has been successfully applied to a 2D synthetic aquifer, where an uncertainty assessment has been carried out by means of Monte Carlo simulation techniques.

  18. Gold in semen: Level in seminal plasma and spermatozoa of normal ...

    African Journals Online (AJOL)

    K.P. Skandhan

    2016-07-01

    Jul 1, 2016 ... Gold level in sediment (spermatozoa) of normal was almost same as observed in its seminal plasma ... showed, gold was not detected in semen by Direct Couple ... Diffraction Analysis, revealed presence of gold throughout.

  19. Normal Mode Analysis to a Poroelastic Half-Space Problem under Generalized Thermoelasticity

    Directory of Open Access Journals (Sweden)

    Chunbao Xiong

    Full Text Available Abstract The thermo-hydro-mechanical problems associated with a poroelastic half-space soil medium with variable properties under generalized thermoelasticity theory were investigated in this study. By remaining faithful to Biot’s theory of dynamic poroelasticity, we idealized the foundation material as a uniform, fully saturated, poroelastic half-space medium. We first subjected this medium to time harmonic loads consisting of normal or thermal loads, then investigated the differences between the coupled thermohydro-mechanical dynamic models and the thermo-elastic dynamic models. We used normal mode analysis to solve the resulting non-dimensional coupled equations, then investigated the effects that non-dimensional vertical displacement, excess pore water pressure, vertical stress, and temperature distribution exerted on the poroelastic half-space medium and represented them graphically.

  20. Some chaotic features of intrinsically coupled Josephson junctions

    International Nuclear Information System (INIS)

    Kolahchi, M.R.; Shukrinov, Yu.M.; Hamdipour, M.; Botha, A.E.; Suzuki, M.

    2013-01-01

    Highlights: ► Intrinsically coupled Josephson junctions model a high-T c superconductor. ► Intrinsically coupled Josephson junctions can act as a chaotic nonlinear system. ► Chaos could be due to resonance overlap. ► Avoiding parameters that lead to chaos is important for the design of resonators. -- Abstract: We look for chaos in an intrinsically coupled system of Josephson junctions. This study has direct applications for the high-T c resonators which require coherence amongst the junctions

  1. Spectral Gaps of Spin-orbit Coupled Particles in Deformed Traps

    DEFF Research Database (Denmark)

    V. Marchukov, O.; G. Volosniev, A.; V. Fedorov, D.

    2013-01-01

    the spectrum. The effect of a Zeeman term is also considered. Our results demonstrate that variable spectral gaps occur as a function of strength of the Rashba interaction and deformation of the harmonic trapping potential. The single-particle density of states and the critical strength for superfluidity vary...... tremendously with the interaction parameter. The strong variations with Rashba coupling and deformation implies that the few- and many-body physics of spin-orbit coupled systems can be manipulated by variation of these parameters....

  2. Measurement of IR optics with linear coupling's action-angle parametrization

    Science.gov (United States)

    Luo, Y.; Bai, M.; Pilat, F.; Satogata, T.; Trbojevic, D.

    2005-08-01

    Linear coupling’s action-angle parametrization is convenient for interpretation of turn-by-turn beam position monitor (BPM) data. We demonstrate how to apply this parametrization to extract Twiss and coupling parameters in interaction regions (IRs), using BPMs on each side of a long IR drift region. Example data were acquired at the Relativistic Heavy Ion Collider, using an ac dipole to excite a single transverse eigenmode. We have measured the waist of the β function and its Twiss and coupling parameters.

  3. Spatiotemporal chaos in mixed linear-nonlinear two-dimensional coupled logistic map lattice

    Science.gov (United States)

    Zhang, Ying-Qian; He, Yi; Wang, Xing-Yuan

    2018-01-01

    We investigate a new spatiotemporal dynamics with mixing degrees of nonlinear chaotic maps for spatial coupling connections based on 2DCML. Here, the coupling methods are including with linear neighborhood coupling and the nonlinear chaotic map coupling of lattices, and the former 2DCML system is only a special case in the proposed system. In this paper the criteria such Kolmogorov-Sinai entropy density and universality, bifurcation diagrams, space-amplitude and snapshot pattern diagrams are provided in order to investigate the chaotic behaviors of the proposed system. Furthermore, we also investigate the parameter ranges of the proposed system which holds those features in comparisons with those of the 2DCML system and the MLNCML system. Theoretical analysis and computer simulation indicate that the proposed system contains features such as the higher percentage of lattices in chaotic behaviors for most of parameters, less periodic windows in bifurcation diagrams and the larger range of parameters for chaotic behaviors, which is more suitable for cryptography.

  4. Regulation of neuron–astrocyte metabolic coupling across the sleep–wake cycle

    OpenAIRE

    Petit, J.-M.; Magistretti, P.J.

    2016-01-01

    Over the last thirty years, a growing number of studies showed that astrocytes play a pivotal role in the energy support to synapses. More precisely, astrocytes adjust energy production to neuronal energy needs through different mechanisms grouped under the term "neurometabolic coupling" (NMC). In this review we describe these mechanisms of coupling and how they involve astrocytes. From a physiological point of view, these mechanisms of coupling are particularly important to ensure normal syn...

  5. Immunohistochemical Expression of Survivin in Breast Carcinoma: Relationship with Clinico pathological Parameters, Proliferation and Molecular Classification

    International Nuclear Information System (INIS)

    YOUSSEF, N.S.; HEWEDI, I.H.; ABD RABOH, N.M.

    2008-01-01

    Background and Objective: Survivin is a novel member of the inhibitor of apoptosis (IAP) gene family. It is associated with more aggressive behavior and parameters of poor prognosis in most human cancers including gastric, colorectal and bladder carcinomas. However, conflicting data exist on its prognostic effect in breast cancer. This current study is designed to assess survivin expression in breast carcinoma relating results with clinico pathological parameters, proliferation (MIB-1) and molecular classification. Material and Methods: Our retrospective study com- prised of 65 archived cases of breast carcinoma. Samples from the tumor and the adjacent normal breast tissue were immuno stained for survivin and MIB-1. Nuclear and cytoplasmic survivin expression was evaluated in normal breast tissue and carcinoma regarding both the intensity and the percentage of positive cells. ER, PR, HER2 were used as surrogate markers to classify the cases into four molecular subtypes. Results: Survivin expression was detected in 78.5% of breast carcinomas. The adjacent normal breast tissue was immuno negative. Survivin expression showed significant association with increased tumor size ( p <0.0001), high histologic grade ( p =0.04), lymph node metastases ( p <0.001), advanced tumor stage ( p <0.0001), MIB-1 expression ( p =0.02), negative estrogen receptor status ( p =0.01) and negative progesterone receptor status ( p <0.0001). The subcellular localization of survivin significantly related to histologic grade, stage and lymph node involvement. The percentage of TNP (triple negative phenotype) and HER2+/ER-PR- tumors expressing survivin were significantly higher compared to the Luminal subtypes ( p =0.01). Conclusion: Survivin expression was associated with parameters of poor prognosis in breast cancer. Moreover, the cancer-specific expression of survivin, coupled with its importance in inhibiting cell death and in regulating cell division, makes it a potential target for novel

  6. General expressions and physical origin of the coupling coefficient of arbitrary tuned coupled electromagnetic resonators

    Energy Technology Data Exchange (ETDEWEB)

    Elnaggar, Sameh Y. [School of Engineering and Information Technology, University of New South Wales, Canberra (Australia); Tervo, Richard J. [Department of Electrical and Computer Engineering, University of New Brunswick, Fredericton, NB, E3B 5A3 Canada (Canada); Mattar, Saba M., E-mail: mattar@unb.ca [Chemistry Department, University of New Brunswick, Fredericton, NB, E3B 5A3 Canada (Canada)

    2015-11-21

    The theory and operation of various devices and systems, such as wireless power transfer via magnetic resonant coupling, magneto-inductive wave devices, magnetic resonance spectroscopy probes, and metamaterials can rely on coupled tuned resonators. The coupling strength is usually expressed in terms of the coupling coefficient κ, which can have electrical κ{sub E} and/or magnetic κ{sub M} components. In the current article, general expressions of κ are derived. The relation between the complex Poynting equation in its microscopic form and κ is made and discussed in detail. It is shown that κ can be expressed in terms of the interaction energy between the resonators' modes. It thus provides a general form that combines the magnetic and electric components of κ. The expressions make it possible to estimate the frequencies and fields of the coupled modes for arbitrarily oriented and spaced resonators. Thus, enabling the calculation of system specific parameters such as the transfer efficiency of wireless power transfer systems, resonator efficiency for electron spin resonance probes, and dispersion relations of magneto-inductive and stereo-metamaterials structures.

  7. General expressions and physical origin of the coupling coefficient of arbitrary tuned coupled electromagnetic resonators

    International Nuclear Information System (INIS)

    Elnaggar, Sameh Y.; Tervo, Richard J.; Mattar, Saba M.

    2015-01-01

    The theory and operation of various devices and systems, such as wireless power transfer via magnetic resonant coupling, magneto-inductive wave devices, magnetic resonance spectroscopy probes, and metamaterials can rely on coupled tuned resonators. The coupling strength is usually expressed in terms of the coupling coefficient κ, which can have electrical κ E and/or magnetic κ M components. In the current article, general expressions of κ are derived. The relation between the complex Poynting equation in its microscopic form and κ is made and discussed in detail. It is shown that κ can be expressed in terms of the interaction energy between the resonators' modes. It thus provides a general form that combines the magnetic and electric components of κ. The expressions make it possible to estimate the frequencies and fields of the coupled modes for arbitrarily oriented and spaced resonators. Thus, enabling the calculation of system specific parameters such as the transfer efficiency of wireless power transfer systems, resonator efficiency for electron spin resonance probes, and dispersion relations of magneto-inductive and stereo-metamaterials structures

  8. Comparative Evaluation of the Corneal and Anterior Chamber Parameters Derived From Scheimpflug Imaging in Arab and South Asian Normal Eyes.

    Science.gov (United States)

    Prakash, Gaurav; Srivastava, Dhruv; Avadhani, Kavitha; Thirumalai, Sandeep M; Choudhuri, Sounak

    2015-11-01

    To evaluate the differences in the normal corneal and anterior segment Scheimpflug parameters in Arab and South Asian eyes. This hospital-based study was performed at a cornea and refractive surgery service in Abu Dhabi. A total of 600 consecutive normal candidates of South Asian (group 1, n = 300) and Arab (group 2, n = 300) origins underwent Scheimpflug imaging (Sirius; Costruzione Strumenti Oftalmici, Italy). One eye was randomly selected for evaluation. The age and sex distributions in both groups were comparable. The pachymetric variables were statistically higher in group 2 (group 2 vs. group 1, 544.3 ± 32.2 μm vs. 535.1 ± 31.4 μm for central corneal thickness, 541.0 ± 32.6 μm vs. 531.9 ± 31.5 μm for minimum corneal thickness, 571.7 ± 43.2 μm vs. 558.1 ± 42.3 μm for apical thickness, and 58.1 ± 4.2 vs. 57.3 ± 4.3 mm³ for the corneal volume; P Arab ethnicity tend to have statistically thicker and flatter corneas and less-crowded anterior segments than those of the South Asian counterparts. These epidemiological differences have a mild to moderate biological effect size (Cohen d), but they should be considered when evaluating these eyes for anterior segment or corneal procedures.

  9. Bosonization of fermions coupled to topologically massive gravity

    Science.gov (United States)

    Fradkin, Eduardo; Moreno, Enrique F.; Schaposnik, Fidel A.

    2014-03-01

    We establish a duality between massive fermions coupled to topologically massive gravity (TMG) in d=3 space-time dimensions and a purely gravity theory which also will turn out to be a TMG theory but with different parameters: the original graviton mass in the TMG theory coupled to fermions picks up a contribution from fermion bosonization. We obtain explicit bosonization rules for the fermionic currents and for the energy-momentum tensor showing that the identifications do not depend explicitly on the parameters of the theory. These results are the gravitational analog of the results for 2+1 Abelian and non-Abelian bosonization in flat space-time.

  10. Bosonization of fermions coupled to topologically massive gravity

    International Nuclear Information System (INIS)

    Fradkin, Eduardo; Moreno, Enrique F.; Schaposnik, Fidel A.

    2014-01-01

    We establish a duality between massive fermions coupled to topologically massive gravity (TMG) in d=3 space–time dimensions and a purely gravity theory which also will turn out to be a TMG theory but with different parameters: the original graviton mass in the TMG theory coupled to fermions picks up a contribution from fermion bosonization. We obtain explicit bosonization rules for the fermionic currents and for the energy–momentum tensor showing that the identifications do not depend explicitly on the parameters of the theory. These results are the gravitational analog of the results for 2+1 Abelian and non-Abelian bosonization in flat space–time.

  11. Bosonization of fermions coupled to topologically massive gravity

    Energy Technology Data Exchange (ETDEWEB)

    Fradkin, Eduardo [Department of Physics and Institute for Condensed Matter Theory, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, IL 61801-3080 (United States); Moreno, Enrique F. [Department of Physics, Northeastern University, Boston, MA 02115 (United States); Schaposnik, Fidel A. [Departamento de Física, Universidad Nacional de La Plata, Instituto de Física La Plata, C.C. 67, 1900 La Plata (Argentina)

    2014-03-07

    We establish a duality between massive fermions coupled to topologically massive gravity (TMG) in d=3 space–time dimensions and a purely gravity theory which also will turn out to be a TMG theory but with different parameters: the original graviton mass in the TMG theory coupled to fermions picks up a contribution from fermion bosonization. We obtain explicit bosonization rules for the fermionic currents and for the energy–momentum tensor showing that the identifications do not depend explicitly on the parameters of the theory. These results are the gravitational analog of the results for 2+1 Abelian and non-Abelian bosonization in flat space–time.

  12. Improving weather predictability by including land-surface model parameter uncertainty

    Science.gov (United States)

    Orth, Rene; Dutra, Emanuel; Pappenberger, Florian

    2016-04-01

    The land surface forms an important component of Earth system models and interacts nonlinearly with other parts such as ocean and atmosphere. To capture the complex and heterogenous hydrology of the land surface, land surface models include a large number of parameters impacting the coupling to other components of the Earth system model. Focusing on ECMWF's land-surface model HTESSEL we present in this study a comprehensive parameter sensitivity evaluation using multiple observational datasets in Europe. We select 6 poorly constrained effective parameters (surface runoff effective depth, skin conductivity, minimum stomatal resistance, maximum interception, soil moisture stress function shape, total soil depth) and explore their sensitivity to model outputs such as soil moisture, evapotranspiration and runoff using uncoupled simulations and coupled seasonal forecasts. Additionally we investigate the possibility to construct ensembles from the multiple land surface parameters. In the uncoupled runs we find that minimum stomatal resistance and total soil depth have the most influence on model performance. Forecast skill scores are moreover sensitive to the same parameters as HTESSEL performance in the uncoupled analysis. We demonstrate the robustness of our findings by comparing multiple best performing parameter sets and multiple randomly chosen parameter sets. We find better temperature and precipitation forecast skill with the best-performing parameter perturbations demonstrating representativeness of model performance across uncoupled (and hence less computationally demanding) and coupled settings. Finally, we construct ensemble forecasts from ensemble members derived with different best-performing parameterizations of HTESSEL. This incorporation of parameter uncertainty in the ensemble generation yields an increase in forecast skill, even beyond the skill of the default system. Orth, R., E. Dutra, and F. Pappenberger, 2016: Improving weather predictability by

  13. Fermionic Hubbard model with Rashba or Dresselhaus spin-orbit coupling

    Science.gov (United States)

    Sun, Fadi; Ye, Jinwu; Liu, Wu-Ming

    2017-06-01

    In this work, we investigate the possible dramatic effects of Rashba or Dresselhaus spin-orbit coupling (SOC) on the fermionic Hubbard model in a two-dimensional square lattice. In the strong coupling limit, it leads to the rotated antiferromagnetic Heisenberg model which is a new class of quantum spin model. For a special equivalent class, we identify a new spin-orbital entangled commensurate ground (Y-y) state subject to strong quantum fluctuations at T = 0. We evaluate the quantum fluctuations by the spin wave expansion up to order 1/{S}2. In some SOC parameter regimes, the Y-y state supports a massive relativistic incommensurate magnon (C-IC) with its two gap minima positions continuously tuned by the SOC parameters. The C-IC magnons dominate all the low temperature thermodynamic quantities and also lead to the separation of the peak positions between the longitudinal and the transverse spin structure factors. In the weak coupling limit, any weak repulsive interaction also leads to a weak Y-y state. There is only a crossover from the weak to the strong coupling. High temperature expansions of the specific heats in both weak and strong coupling are presented. The dramatic roles to be played by these C-IC magnons at generic SOC parameters or under various external probes are hinted at. Experimental applications to both layered noncentrosymmetric materials and cold atoms are discussed.

  14. Coupling of morphology to surface transport in ion-beam-irradiated surfaces: normal incidence and rotating targets

    International Nuclear Information System (INIS)

    Munoz-Garcia, Javier; Cuerno, Rodolfo; Castro, Mario

    2009-01-01

    Continuum models have proved their applicability to describe nanopatterns produced by ion-beam sputtering of amorphous or amorphizable targets at low and medium energies. Here we pursue the recently introduced 'hydrodynamic approach' in the cases of bombardment at normal incidence, or of oblique incidence onto rotating targets, known to lead to self-organized arrangements of nanodots. Our approach stresses the dynamical roles of material (defect) transport at the target surface and of local redeposition. By applying results previously derived for arbitrary angles of incidence, we derive effective evolution equations for these geometries of incidence, which are then numerically studied. Moreover, we show that within our model these equations are identical (albeit with different coefficients) in both cases, provided surface tension is isotropic in the target. We thus account for the common dynamics for both types of incidence conditions, namely formation of dots with short-range order and long-wavelength disorder, and an intermediate coarsening of dot features that improves the local order of the patterns. We provide for the first time approximate analytical predictions for the dependence of stationary dot features (amplitude and wavelength) on phenomenological parameters, that improve upon previous linear estimates. Finally, our theoretical results are discussed in terms of experimental data.

  15. Some aspects of fluid-structure coupling

    International Nuclear Information System (INIS)

    Kulak, R.F.

    1982-01-01

    The numerical simulation of nonlinear, transient fluid-structure interactions (FSI) is a current area of concern by researchers in various fields, including the field of nuclear reactor safety. This paper primarily discusses the formulation used in an algorithm that couples three-dimensional hydrodynamic and structural domains. The fluid domain is governed by the Navier-Stokes equations, and the structural domain is governed by the equations of nonlinear structural dynamics. Here, both the fluid and structure are discretized using finite elements. The fluid is discretized with eight-noded quasi-Eulerian hexahedrons and the structural components are represented by Lagrangian triangular plate elements. The semi-discretized equations of motion are solved using an explicit temporal integrator. The coupling is accomplished by satisfying interface mechanics. The structure imposes kinematic constraints to the moving fluid boundary, and the fluid in turn provides an external loading on the structure. At each interface node, normals are computed from the nodal basis functions of only the hydrodynamic nodes. By defining the interface normal in this manner, it becomes independent of the type of structural boundary (i.e. shell, plate, continuum etc.) and thus makes this aspect of the coupling independent of the structure type. Results for several problems are presented and these include a comparison between analytical results for a FSI problem and numerical predictions

  16. Study of the characteristic parameters of the normal voices of Argentinian speakers

    Directory of Open Access Journals (Sweden)

    Edgardo Bonzi

    2014-02-01

    Full Text Available The voice laboratory permits to study the human voices using a method that is objective and noninvasive. In this work, we have studied the parameters of the human voice such as pitch, formant, jitter, shimmer and harmonic-noise ratio of a group of young people. This statistical information of parameters is obtained from Argentinian speakers. Received: 29 December 2013, Accepted: 27 May 2014; Reviewed by: J. Brum, Instituto de Física, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay; Edited by: E. Mizraji; DOI: http://dx.doi.org/10.4279/PIP.060002 Cite as: E V Bonzi, G B Grad, A M Maggi, M R Muñoz, Papers in Physics 6, 060002 (2014

  17. Uncertainty and sensitivity analysis in the neutronic parameters generation for BWR and PWR coupled thermal-hydraulic–neutronic simulations

    International Nuclear Information System (INIS)

    Ánchel, F.; Barrachina, T.; Miró, R.; Verdú, G.; Juanas, J.; Macián-Juan, R.

    2012-01-01

    Highlights: ► Best-estimate codes are affected by the uncertainty in the methods and the models. ► Influence of the uncertainty in the macroscopic cross-sections in a BWR and PWR RIA accidents analysis. ► The fast diffusion coefficient, the scattering cross section and both fission cross sections are the most influential factors. ► The absorption cross sections very little influence. ► Using a normal pdf the results are more “conservative” comparing the power peak reached with uncertainty quantified with a uniform pdf. - Abstract: The Best Estimate analysis consists of a coupled thermal-hydraulic and neutronic description of the nuclear system's behavior; uncertainties from both aspects should be included and jointly propagated. This paper presents a study of the influence of the uncertainty in the macroscopic neutronic information that describes a three-dimensional core model on the most relevant results of the simulation of a Reactivity Induced Accident (RIA). The analyses of a BWR-RIA and a PWR-RIA have been carried out with a three-dimensional thermal-hydraulic and neutronic model for the coupled system TRACE-PARCS and RELAP-PARCS. The cross section information has been generated by the SIMTAB methodology based on the joint use of CASMO-SIMULATE. The statistically based methodology performs a Monte-Carlo kind of sampling of the uncertainty in the macroscopic cross sections. The size of the sampling is determined by the characteristics of the tolerance intervals by applying the Noether–Wilks formulas. A number of simulations equal to the sample size have been carried out in which the cross sections used by PARCS are directly modified with uncertainty, and non-parametric statistical methods are applied to the resulting sample of the values of the output variables to determine their intervals of tolerance.

  18. Qubit absorption refrigerator at strong coupling

    Science.gov (United States)

    Mu, Anqi; Agarwalla, Bijay Kumar; Schaller, Gernot; Segal, Dvira

    2017-12-01

    We demonstrate that a quantum absorption refrigerator (QAR) can be realized from the smallest quantum system, a qubit, by coupling it in a non-additive (strong) manner to three heat baths. This function is un-attainable for the qubit model under the weak system-bath coupling limit, when the dissipation is additive. In an optimal design, the reservoirs are engineered and characterized by a single frequency component. We then obtain closed expressions for the cooling window and refrigeration efficiency, as well as bounds for the maximal cooling efficiency and the efficiency at maximal power. Our results agree with macroscopic designs and with three-level models for QARs, which are based on the weak system-bath coupling assumption. Beyond the optimal limit, we show with analytical calculations and numerical simulations that the cooling efficiency varies in a non-universal manner with model parameters. Our work demonstrates that strongly-coupled quantum machines can exhibit function that is un-attainable under the weak system-bath coupling assumption.

  19. Embedding complex hydrology in the climate system - towards fully coupled climate-hydrology models

    DEFF Research Database (Denmark)

    Butts, M.; Rasmussen, S.H.; Ridler, M.

    2013-01-01

    Motivated by the need to develop better tools to understand the impact of future management and climate change on water resources, we present a set of studies with the overall aim of developing a fully dynamic coupling between a comprehensive hydrological model, MIKE SHE, and a regional climate...... distributed parameters using satellite remote sensing. Secondly, field data are used to investigate the effects of model resolution and parameter scales for use in a coupled model. Finally, the development of the fully coupled climate-hydrology model is described and some of the challenges associated...... with coupling models for hydrological processes on sub-grid scales of the regional climate model are presented....

  20. Normal tissue complication probability model parameter estimation for xerostomia in head and neck cancer patients based on scintigraphy and quality of life assessments

    International Nuclear Information System (INIS)

    Lee, Tsair-Fwu; Chao, Pei-Ju; Wang, Hung-Yu; Hsu, Hsuan-Chih; Chang, PaoShu; Chen, Wen-Cheng

    2012-01-01

    With advances in modern radiotherapy (RT), many patients with head and neck (HN) cancer can be effectively cured. However, xerostomia is a common complication in patients after RT for HN cancer. The purpose of this study was to use the Lyman–Kutcher–Burman (LKB) model to derive parameters for the normal tissue complication probability (NTCP) for xerostomia based on scintigraphy assessments and quality of life (QoL) questionnaires. We performed validation tests of the Quantitative Analysis of Normal Tissue Effects in the Clinic (QUANTEC) guidelines against prospectively collected QoL and salivary scintigraphic data. Thirty-one patients with HN cancer were enrolled. Salivary excretion factors (SEFs) measured by scintigraphy and QoL data from self-reported questionnaires were used for NTCP modeling to describe the incidence of grade 3 + xerostomia. The NTCP parameters estimated from the QoL and SEF datasets were compared. Model performance was assessed using Pearson’s chi-squared test, Nagelkerke’s R 2 , the area under the receiver operating characteristic curve, and the Hosmer–Lemeshow test. The negative predictive value (NPV) was checked for the rate of correctly predicting the lack of incidence. Pearson’s chi-squared test was used to test the goodness of fit and association. Using the LKB NTCP model and assuming n=1, the dose for uniform irradiation of the whole or partial volume of the parotid gland that results in 50% probability of a complication (TD 50 ) and the slope of the dose–response curve (m) were determined from the QoL and SEF datasets, respectively. The NTCP-fitted parameters for local disease were TD 50 =43.6 Gy and m=0.18 with the SEF data, and TD 50 =44.1 Gy and m=0.11 with the QoL data. The rate of grade 3 + xerostomia for treatment plans meeting the QUANTEC guidelines was specifically predicted, with a NPV of 100%, using either the QoL or SEF dataset. Our study shows the agreement between the NTCP parameter modeling based on SEF and

  1. Normal tissue complication probability model parameter estimation for xerostomia in head and neck cancer patients based on scintigraphy and quality of life assessments

    Science.gov (United States)

    2012-01-01

    Background With advances in modern radiotherapy (RT), many patients with head and neck (HN) cancer can be effectively cured. However, xerostomia is a common complication in patients after RT for HN cancer. The purpose of this study was to use the Lyman–Kutcher–Burman (LKB) model to derive parameters for the normal tissue complication probability (NTCP) for xerostomia based on scintigraphy assessments and quality of life (QoL) questionnaires. We performed validation tests of the Quantitative Analysis of Normal Tissue Effects in the Clinic (QUANTEC) guidelines against prospectively collected QoL and salivary scintigraphic data. Methods Thirty-one patients with HN cancer were enrolled. Salivary excretion factors (SEFs) measured by scintigraphy and QoL data from self-reported questionnaires were used for NTCP modeling to describe the incidence of grade 3+ xerostomia. The NTCP parameters estimated from the QoL and SEF datasets were compared. Model performance was assessed using Pearson’s chi-squared test, Nagelkerke’s R2, the area under the receiver operating characteristic curve, and the Hosmer–Lemeshow test. The negative predictive value (NPV) was checked for the rate of correctly predicting the lack of incidence. Pearson’s chi-squared test was used to test the goodness of fit and association. Results Using the LKB NTCP model and assuming n=1, the dose for uniform irradiation of the whole or partial volume of the parotid gland that results in 50% probability of a complication (TD50) and the slope of the dose–response curve (m) were determined from the QoL and SEF datasets, respectively. The NTCP-fitted parameters for local disease were TD50=43.6 Gy and m=0.18 with the SEF data, and TD50=44.1 Gy and m=0.11 with the QoL data. The rate of grade 3+ xerostomia for treatment plans meeting the QUANTEC guidelines was specifically predicted, with a NPV of 100%, using either the QoL or SEF dataset. Conclusions Our study shows the agreement between the NTCP

  2. Normal tissue complication probability model parameter estimation for xerostomia in head and neck cancer patients based on scintigraphy and quality of life assessments

    Directory of Open Access Journals (Sweden)

    Lee Tsair-Fwu

    2012-12-01

    Full Text Available Abstract Background With advances in modern radiotherapy (RT, many patients with head and neck (HN cancer can be effectively cured. However, xerostomia is a common complication in patients after RT for HN cancer. The purpose of this study was to use the Lyman–Kutcher–Burman (LKB model to derive parameters for the normal tissue complication probability (NTCP for xerostomia based on scintigraphy assessments and quality of life (QoL questionnaires. We performed validation tests of the Quantitative Analysis of Normal Tissue Effects in the Clinic (QUANTEC guidelines against prospectively collected QoL and salivary scintigraphic data. Methods Thirty-one patients with HN cancer were enrolled. Salivary excretion factors (SEFs measured by scintigraphy and QoL data from self-reported questionnaires were used for NTCP modeling to describe the incidence of grade 3+ xerostomia. The NTCP parameters estimated from the QoL and SEF datasets were compared. Model performance was assessed using Pearson’s chi-squared test, Nagelkerke’s R2, the area under the receiver operating characteristic curve, and the Hosmer–Lemeshow test. The negative predictive value (NPV was checked for the rate of correctly predicting the lack of incidence. Pearson’s chi-squared test was used to test the goodness of fit and association. Results Using the LKB NTCP model and assuming n=1, the dose for uniform irradiation of the whole or partial volume of the parotid gland that results in 50% probability of a complication (TD50 and the slope of the dose–response curve (m were determined from the QoL and SEF datasets, respectively. The NTCP-fitted parameters for local disease were TD50=43.6 Gy and m=0.18 with the SEF data, and TD50=44.1 Gy and m=0.11 with the QoL data. The rate of grade 3+ xerostomia for treatment plans meeting the QUANTEC guidelines was specifically predicted, with a NPV of 100%, using either the QoL or SEF dataset. Conclusions Our study shows the agreement

  3. Coupled thermo-geophysical inversion for permafrost monitoring

    DEFF Research Database (Denmark)

    Tomaskovicova, Sona

    temperature dataset within ±0.55 ◦C, provided that the freeze-thaw water content hysteresis was accounted for. The calibrated model predicted the temperature variation in two testing datasets within ±0.32 to ±0.62 ◦C, depending on length of the testing timeseries. The coupled inversion approach showed...... on borehole temperatures. Thermal parameters optimized in coupled inversion predicted the temperature variation in the two testing datasets within ±0 ◦C to 0 ◦C. A number of possibilities and paths for improvement of both coupled and uncoupled optimization approaches has been identified and identification...

  4. Self-Organization in Coupled Map Scale-Free Networks

    International Nuclear Information System (INIS)

    Xiao-Ming, Liang; Zong-Hua, Liu; Hua-Ping, Lü

    2008-01-01

    We study the self-organization of phase synchronization in coupled map scale-free networks with chaotic logistic map at each node and find that a variety of ordered spatiotemporal patterns emerge spontaneously in a regime of coupling strength. These ordered behaviours will change with the increase of the average links and are robust to both the system size and parameter mismatch. A heuristic theory is given to explain the mechanism of self-organization and to figure out the regime of coupling for the ordered spatiotemporal patterns

  5. Determination of Sample Entropy and Fuzzy Measure Entropy Parameters for Distinguishing Congestive Heart Failure from Normal Sinus Rhythm Subjects

    Directory of Open Access Journals (Sweden)

    Lina Zhao

    2015-09-01

    Full Text Available Entropy provides a valuable tool for quantifying the regularity of physiological time series and provides important insights for understanding the underlying mechanisms of the cardiovascular system. Before any entropy calculation, certain common parameters need to be initialized: embedding dimension m, tolerance threshold r and time series length N. However, no specific guideline exists on how to determine the appropriate parameter values for distinguishing congestive heart failure (CHF from normal sinus rhythm (NSR subjects in clinical application. In the present study, a thorough analysis on the selection of appropriate values of m, r and N for sample entropy (SampEn and recently proposed fuzzy measure entropy (FuzzyMEn is presented for distinguishing two group subjects. 44 long-term NRS and 29 long-term CHF RR interval recordings from http://www.physionet.org were used as the non-pathological and pathological data respectively. Extreme (>2 s and abnormal heartbeat RR intervals were firstly removed from each RR recording and then the recording was segmented with a non-overlapping segment length N of 300 and 1000, respectively. SampEn and FuzzyMEn were performed for each RR segment under different parameter combinations: m of 1, 2, 3 and 4, and r of 0.10, 0.15, 0.20 and 0.25 respectively. The statistical significance between NSR and CHF groups under each combination of m, r and N was observed. The results demonstrated that the selection of m, r and N plays a critical role in determining the SampEn and FuzzyMEn outputs. Compared with SampEn, FuzzyMEn shows a better regularity when selecting the parameters m and r. In addition, FuzzyMEn shows a better relative consistency for distinguishing the two groups, that is, the results of FuzzyMEn in the NSR group were consistently lower than those in the CHF group while SampEn were not. The selections of m of 2 and 3 and r of 0.10 and 0.15 for SampEn and the selections of m of 1 and 2 whenever r (herein

  6. Strongly coupled models at the LHC

    International Nuclear Information System (INIS)

    Vries, Maikel de

    2014-10-01

    In this thesis strongly coupled models where the Higgs boson is composite are discussed. These models provide an explanation for the origin of electroweak symmetry breaking including a solution for the hierarchy problem. Strongly coupled models provide an alternative to the weakly coupled supersymmetric extensions of the Standard Model and lead to different and interesting phenomenology at the Large Hadron Collider (LHC). This thesis discusses two particular strongly coupled models, a composite Higgs model with partial compositeness and the Littlest Higgs model with T-parity - a composite model with collective symmetry breaking. The phenomenology relevant for the LHC is covered and the applicability of effective operators for these types of strongly coupled models is explored. First, a composite Higgs model with partial compositeness is discussed. In this model right-handed light quarks could be significantly composite, yet compatible with experimental searches at the LHC and precision tests on Standard Model couplings. In these scenarios, which are motivated by flavour physics, large cross sections for the production of new resonances coupling to light quarks are expected. Experimental signatures of right-handed compositeness at the LHC are studied, and constraints on the parameter space of these models are derived using recent results by ATLAS and CMS. Furthermore, dedicated searches for multi-jet signals at the LHC are proposed which could significantly improve the sensitivity to signatures of right-handed compositeness. The Littlest Higgs model with T-parity, providing an attractive solution to the fine-tuning problem, is discussed next. This solution is only natural if its intrinsic symmetry breaking scale f is relatively close to the electroweak scale. The constraints from the latest results of the 8 TeV run at the LHC are examined. The model's parameter space is being excluded based on a combination of electroweak precision observables, Higgs precision

  7. Couple stress fluid flow in a rotating channel with peristalsis

    Science.gov (United States)

    Abd elmaboud, Y.; Abdelsalam, Sara I.; Mekheimer, Kh. S.

    2018-04-01

    This article describes a new model for obtaining closed-form semi-analytical solutions of peristaltic flow induced by sinusoidal wave trains propagating with constant speed on the walls of a two-dimensional rotating infinite channel. The channel rotates with a constant angular speed about the z - axis and is filled with couple stress fluid. The governing equations of the channel deformation and the flow rate inside the channel are derived using the lubrication theory approach. The resulting equations are solved, using the homotopy perturbation method (HPM), for exact solutions to the longitudinal velocity distribution, pressure gradient, flow rate due to secondary velocity, and pressure rise per wavelength. The effect of various values of physical parameters, such as, Taylor's number and couple stress parameter, together with some interesting features of peristaltic flow are discussed through graphs. The trapping phenomenon is investigated for different values of parameters under consideration. It is shown that Taylor's number and the couple stress parameter have an increasing effect on the longitudinal velocity distribution till half of the channel, on the flow rate due to secondary velocity, and on the number of closed streamlines circulating the bolus.

  8. nth roots with Hilbert-Schmidt defect operator of normal contractions

    International Nuclear Information System (INIS)

    Duggal, B.P.

    1992-08-01

    Let T be a normal contraction (on a complex separable Hilbert space H into itself) with an nth root A such that the defect operator D A =(1-A*A) 1/2 is of the Hilbert-Schmidt class C 2 . Then either A is normal or A is similar to a normal contraction. In the case in which T is hyponormal, A n =T and D A is an element of C 2 , A is a ''coupling'' of a contraction similar to a normal contraction and a contraction which is the quasi-affine transform of a unilateral shift. These results are applied to prove a (Putnam-Fuglede type) commutatively theorem for operator valued roots of commutative analytic functions and hyponormal contractions T which have an nth root with Hilbert-Schmidt defect operator. 23 refs

  9. Probability distribution of atmospheric pollutants: comparison among four methods for the determination of the log-normal distribution parameters; La distribuzione di probabilita` degli inquinanti atmosferici: confronto tra quattro metodi per la determinazione dei parametri della distribuzione log-normale

    Energy Technology Data Exchange (ETDEWEB)

    Bellasio, R [Enviroware s.r.l., Agrate Brianza, Milan (Italy). Centro Direzionale Colleoni; Lanzani, G; Ripamonti, M; Valore, M [Amministrazione Provinciale, Como (Italy)

    1998-04-01

    This work illustrates the possibility to interpolate the measured concentrations of CO, NO, NO{sub 2}, O{sub 3}, SO{sub 2} during one year (1995) at the 13 stations of the air quality monitoring station network of the Provinces of Como and Lecco (Italy) by means of a log-normal distribution. Particular attention was given in choosing the method for the determination of the log-normal distribution parameters among four possible methods: I natural, II percentiles, III moments, IV maximum likelihood. In order to evaluate the goodness of fit a ranking procedure was carried out over the values of four indices: absolute deviation, weighted absolute deviation, Kolmogorov-Smirnov index and Cramer-von Mises-Smirnov index. The capability of the log-normal distribution to fit the measured data is then discussed as a function of the pollutant and of the monitoring station. Finally an example of application is given: the effect of an emission reduction strategy in Lombardy Region (the so called `bollino blu`) is evaluated using a log-normal distribution. [Italiano] In questo lavoro si discute la possibilita` di interpolare le concentrazioni misurate di CO, NO, NO{sub 2}, O{sub 3}, SO{sub 2} durante un anno solare (il 1995) nelle 13 stazioni della Rete di Rilevamento della qualita` dell`aria delle Provincie di Como e di Lecco mediante una funzione log-normale. In particolare si discute quale metodo e` meglio usare per l`individuazione dei 2 parametri caratteristici della log-normale, tra 4 teoreticamente possibili: I naturale, II dei percentili, III dei momenti, IV della massima verosimiglianza. Per valutare i risultati ottenuti si usano: la deviazione assoluta, la deviazione pesata, il parametro di Kolmogorov-Smirnov e quello di Cramer-von Mises-Smirnov effettuando un ranking tra i metodi in funzione degli inquinanti e della stazione di misura. Ancora in funzione degli inquinanti e delle diverse stazioni di misura si discute poi la capacita` della funzione log-normale di

  10. Chaos synchronization in time-delayed systems with parameter mismatches and variable delay times

    International Nuclear Information System (INIS)

    Shahverdiev, E.M.; Nuriev, R.A.; Hashimov, R.H.; Shore, K.A.

    2004-06-01

    We investigate synchronization between two undirectionally linearly coupled chaotic nonidentical time-delayed systems and show that parameter mismatches are of crucial importance to achieve synchronization. We establish that independent of the relation between the delay time in the coupled systems and the coupling delay time, only retarded synchronization with the coupling delay time is obtained. We show that with parameter mismatch or without it neither complete nor anticipating synchronization occurs. We derive existence and stability conditions for the retarded synchronization manifold. We demonstrate our approach using examples of the Ikeda and Mackey Glass models. Also for the first time we investigate chaos synchronization in time-delayed systems with variable delay time and find both existence and sufficient stability conditions for the retarded synchronization manifold with the coupling-delay lag time. (author)

  11. Development of a general coupling interface for the fuel performance code TRANSURANUS – Tested with the reactor dynamics code DYN3D

    International Nuclear Information System (INIS)

    Holt, L.; Rohde, U.; Seidl, M.; Schubert, A.; Van Uffelen, P.; Macián-Juan, R.

    2015-01-01

    Highlights: • A general coupling interface was developed for couplings of the TRANSURANUS code. • With this new tool simplified fuel behavior models in codes can be replaced. • Applicable e.g. for several reactor types and from normal operation up to DBA. • The general coupling interface was applied to the reactor dynamics code DYN3D. • The new coupled code system DYN3D–TRANSURANUS was successfully tested for RIA. - Abstract: A general interface is presented for coupling the TRANSURANUS fuel performance code with thermal hydraulics system, sub-channel thermal hydraulics, computational fluid dynamics (CFD) or reactor dynamics codes. As first application the reactor dynamics code DYN3D was coupled at assembly level in order to describe the fuel behavior in more detail. In the coupling, DYN3D provides process time, time-dependent rod power and thermal hydraulics conditions to TRANSURANUS, which in case of the two-way coupling approach transfers parameters like fuel temperature and cladding temperature back to DYN3D. Results of the coupled code system are presented for the reactivity transient scenario, initiated by control rod ejection. More precisely, the two-way coupling approach systematically calculates higher maximum values for the node fuel enthalpy. These differences can be explained thanks to the greater detail in fuel behavior modeling. The numerical performance for DYN3D–TRANSURANUS was proved to be fast and stable. The coupled code system can therefore improve the assessment of safety criteria, at a reasonable computational cost

  12. Chemical event chain model of coupled genetic oscillators.

    Science.gov (United States)

    Jörg, David J; Morelli, Luis G; Jülicher, Frank

    2018-03-01

    We introduce a stochastic model of coupled genetic oscillators in which chains of chemical events involved in gene regulation and expression are represented as sequences of Poisson processes. We characterize steady states by their frequency, their quality factor, and their synchrony by the oscillator cross correlation. The steady state is determined by coupling and exhibits stochastic transitions between different modes. The interplay of stochasticity and nonlinearity leads to isolated regions in parameter space in which the coupled system works best as a biological pacemaker. Key features of the stochastic oscillations can be captured by an effective model for phase oscillators that are coupled by signals with distributed delays.

  13. Chemical event chain model of coupled genetic oscillators

    Science.gov (United States)

    Jörg, David J.; Morelli, Luis G.; Jülicher, Frank

    2018-03-01

    We introduce a stochastic model of coupled genetic oscillators in which chains of chemical events involved in gene regulation and expression are represented as sequences of Poisson processes. We characterize steady states by their frequency, their quality factor, and their synchrony by the oscillator cross correlation. The steady state is determined by coupling and exhibits stochastic transitions between different modes. The interplay of stochasticity and nonlinearity leads to isolated regions in parameter space in which the coupled system works best as a biological pacemaker. Key features of the stochastic oscillations can be captured by an effective model for phase oscillators that are coupled by signals with distributed delays.

  14. U.S. Monthly Climate Normals (1981-2010)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The U.S. Monthly Climate Normals for 1981 to 2010 are 30-year averages of meteorological parameters for thousands of U.S. stations located across the 50 states, as...

  15. U.S. Daily Climate Normals (1981-2010)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The U.S. Daily Climate Normals for 1981 to 2010 are 30-year averages of meteorological parameters for thousands of U.S. stations located across the 50 states, as...

  16. U.S. Supplemental Climate Normals (1981-2010)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The U.S. Annual Climate Normals for 1981 to 2010 are 30-year averages of meteorological parameters for thousands of U.S. stations located across the 50 states, as...

  17. U.S. Hourly Climate Normals (1981-2010)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The U.S. Hourly Climate Normals for 1981 to 2010 are 30-year averages of meteorological parameters for thousands of U.S. stations located across the 50 states, as...

  18. Diagnosis of transverse coupling errors in a storage ring

    International Nuclear Information System (INIS)

    Bagley, P.; Rubin, D.

    1987-01-01

    In a coupled lattice excitation of either one of the two transverse normal modes will generally excite both horizontal and vertical motion at an observation point. A measurement of the relative phase and amplitude of the two components permits a partial reconstruction of the off-diagonal elements of the full turn transfer matrix. At each of the nearly 100 beam position detectors in CESR the coupled transfer matrices are measured. A fit of plausible sources of coupling to the data can improve our understanding of lattice errors and permit an optimization of the rotated quad, solenoid compensation scheme

  19. Equivalent parameter model of 1-3 piezocomposite with a sandwich polymer

    Science.gov (United States)

    Zhang, Yanjun; Wang, Likun; Qin, Lei

    2018-06-01

    A theoretical model was developed to investigate the performance of 1-3 piezoelectric composites with a sandwich polymer. Effective parameters, such as the electromechanical coupling factor, longitudinal velocity, and characteristic acoustic impedance of the piezocomposite, were predicted using the developed model. The influences of volume fractions and components of the polymer phase on the effective parameters of the piezoelectric composite were studied. The theoretical model was verified experimentally. The proposed model can reproduce the effective parameters of 1-3 piezoelectric composites with a sandwich polymer in the thickness mode. The measured electromechanical coupling factor was improved by more than 9.8% over the PZT/resin 1-3 piezoelectric composite.

  20. A New Normal Form for Multidimensional Mode Conversion

    International Nuclear Information System (INIS)

    Tracy, E. R.; Richardson, A. S.; Kaufman, A. N.; Zobin, N.

    2007-01-01

    Linear conversion occurs when two wave types, with distinct polarization and dispersion characteristics, are locally resonant in a nonuniform plasma [1]. In recent work, we have shown how to incorporate a ray-based (WKB) approach to mode conversion in numerical algorithms [2,3]. The method uses the ray geometry in the conversion region to guide the reduction of the full NxN-system of wave equations to a 2x2 coupled pair which can be solved and matched to the incoming and outgoing WKB solutions. The algorithm in [2] assumes the ray geometry is hyperbolic and that, in ray phase space, there is an 'avoided crossing', which is the most common type of conversion. Here, we present a new formulation that can deal with more general types of conversion [4]. This formalism is based upon the fact (first proved in [5]) that it is always possible to put the 2x2 wave equation into a 'normal' form, such that the diagonal elements of the dispersion matrix Poisson-commute with the off-diagonals (at leading order). Therefore, if we use the diagonals (rather than the eigenvalues or the determinant) of the dispersion matrix as ray Hamiltonians, the off-diagonals will be conserved quantities. When cast into normal form, the 2x2 dispersion matrix has a very natural physical interpretation: the diagonals are the uncoupled ray hamiltonians and the off-diagonals are the coupling. We discuss how to incorporate the normal form into ray tracing algorithms

  1. [Role of aerodynamic parameters in voice function assessment].

    Science.gov (United States)

    Guo, Yong-qing; Lin, Sheng-zhi; Xu, Xin-lin; Zhou, Li; Zhuang, Pei-yun; Jiang, Jack J

    2012-10-01

    To investigate the application and significance of aerodynamic parameters in voice function assessment. The phonatory aerodynamic system (PAS) was used to collect aerodynamic parameters from subjects with normal voice, vocal fold polyp, vocal fold cyst, and vocal fold immobility. Multivariate statistical analysis was used to compare measurements across groups. Phonation threshold flow (PTF), mean flow rate (MFR), maximum phonation time (MPT), and glottal resistance (GR) in one hundred normal subjects were significantly affected by sex (P efficiency (VE) were not (P > 0.05). PTP, PTF, MFR, SGP, and MPT were significantly different between normal voice and voice disorders (P 0.05). Receiver operating characteristic (ROC) analysis found that PTP, PTF, SGP, MFR, MPT, and VE in one hundred thirteen voice dis orders had similar diagnostic utility (P aerodynamic parameters of the three degrees of voice dysfunction due to vocal cord polyps were compared and found to have no significant differences (P > 0.05). PTP, PTF, MFR, SGP and MPT in forty one patients with vocal polyps were significantly different after surgical resection of vocal cord polyps (P aerodynamic parameters can objectively and effectively evaluate the variations of vocal function, and have good auxiliary diagnostic value.

  2. Trilinear Higgs couplings in the two Higgs doublet model with CP violation

    International Nuclear Information System (INIS)

    Osland, Per; Pandita, P. N.; Selbuz, Levent

    2008-01-01

    We carry out a detailed analysis of the general two Higgs doublet model with CP violation. We describe two different parametrizations of this model, and then study the Higgs boson masses and the trilinear Higgs couplings for these two parametrizations. Within a rather general model, we find that the trilinear Higgs couplings have a significant dependence on the details of the model, even when the lightest Higgs boson mass is taken to be a fixed parameter. We include radiative corrections in the one-loop effective potential approximation in our analysis of the Higgs boson masses and the Higgs trilinear couplings. The one-loop corrections to the trilinear couplings of the two Higgs doublet model also depend significantly on the details of the model, and can be rather large. We study quantitatively the trilinear Higgs couplings, and show that these couplings are typically several times larger than the corresponding standard model trilinear Higgs coupling in some regions of the parameter space. We also briefly discuss the decoupling limit of the two Higgs doublet model.

  3. COSMOLOGY OF CHAMELEONS WITH POWER-LAW COUPLINGS

    International Nuclear Information System (INIS)

    Mota, David F.; Winther, Hans A.

    2011-01-01

    In chameleon field theories, a scalar field can couple to matter with gravitational strength and still evade local gravity constraints due to a combination of self-interactions and the couplings to matter. Originally, these theories were proposed with a constant coupling to matter; however, the chameleon mechanism also extends to the case where the coupling becomes field dependent. We study the cosmology of chameleon models with power-law couplings and power-law potentials. It is found that these generalized chameleons, when viable, have a background expansion very close to ΛCDM, but can in some special cases enhance the growth of the linear perturbations at low redshifts. For the models we consider, it is found that this region of the parameter space is ruled out by local gravity constraints. Imposing a coupling to dark matter only, the local constraints are avoided, and it is possible to have observable signatures on the linear matter perturbations.

  4. Trajectory-probed instability and statistics of desynchronization events in coupled chaotic systems

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Gilson F. de, E-mail: gilson@otica.ufpb.br; Chevrollier, Martine; Oriá, Marcos [Departamento de Física, Universidade Federal da Paraíba, Caixa Postal 5008, 58051-900 João Pessoa-PB (Brazil); Passerat de Silans, Thierry [Departamento de Física, Universidade Federal da Paraíba, Caixa Postal 5008, 58051-900 João Pessoa-PB (Brazil); UAF, Universidade Federal de Campina Grande, 58429-900 Campina Grande, PB (Brazil); Souza Cavalcante, Hugo L. D. de [Departamento de Informática, Centro de Informática, Universidade Federal da Paraíba, Av. dos Escoteiros s/n, Mangabeira VII, 58055-000 João Pessoa, PB (Brazil)

    2015-11-15

    Complex systems, such as financial markets, earthquakes, and neurological networks, exhibit extreme events whose mechanisms of formation are not still completely understood. These mechanisms may be identified and better studied in simpler systems with dynamical features similar to the ones encountered in the complex system of interest. For instance, sudden and brief departures from the synchronized state observed in coupled chaotic systems were shown to display non-normal statistical distributions similar to events observed in the complex systems cited above. The current hypothesis accepted is that these desynchronization events are influenced by the presence of unstable object(s) in the phase space of the system. Here, we present further evidence that the occurrence of large events is triggered by the visitation of the system's phase-space trajectory to the vicinity of these unstable objects. In the system studied here, this visitation is controlled by a single parameter, and we exploit this feature to observe the effect of the visitation rate in the overall instability of the synchronized state. We find that the probability of escapes from the synchronized state and the size of those desynchronization events are enhanced in attractors whose shapes permit the chaotic trajectories to approach the region of strong instability. This result shows that the occurrence of large events requires not only a large local instability to amplify noise, or to amplify the effect of parameter mismatch between the coupled subsystems, but also that the trajectories of the system wander close to this local instability.

  5. Trajectory-probed instability and statistics of desynchronization events in coupled chaotic systems

    International Nuclear Information System (INIS)

    Oliveira, Gilson F. de; Chevrollier, Martine; Oriá, Marcos; Passerat de Silans, Thierry; Souza Cavalcante, Hugo L. D. de

    2015-01-01

    Complex systems, such as financial markets, earthquakes, and neurological networks, exhibit extreme events whose mechanisms of formation are not still completely understood. These mechanisms may be identified and better studied in simpler systems with dynamical features similar to the ones encountered in the complex system of interest. For instance, sudden and brief departures from the synchronized state observed in coupled chaotic systems were shown to display non-normal statistical distributions similar to events observed in the complex systems cited above. The current hypothesis accepted is that these desynchronization events are influenced by the presence of unstable object(s) in the phase space of the system. Here, we present further evidence that the occurrence of large events is triggered by the visitation of the system's phase-space trajectory to the vicinity of these unstable objects. In the system studied here, this visitation is controlled by a single parameter, and we exploit this feature to observe the effect of the visitation rate in the overall instability of the synchronized state. We find that the probability of escapes from the synchronized state and the size of those desynchronization events are enhanced in attractors whose shapes permit the chaotic trajectories to approach the region of strong instability. This result shows that the occurrence of large events requires not only a large local instability to amplify noise, or to amplify the effect of parameter mismatch between the coupled subsystems, but also that the trajectories of the system wander close to this local instability

  6. Trajectory-probed instability and statistics of desynchronization events in coupled chaotic systems

    Science.gov (United States)

    de Oliveira, Gilson F.; Chevrollier, Martine; Passerat de Silans, Thierry; Oriá, Marcos; de Souza Cavalcante, Hugo L. D.

    2015-11-01

    Complex systems, such as financial markets, earthquakes, and neurological networks, exhibit extreme events whose mechanisms of formation are not still completely understood. These mechanisms may be identified and better studied in simpler systems with dynamical features similar to the ones encountered in the complex system of interest. For instance, sudden and brief departures from the synchronized state observed in coupled chaotic systems were shown to display non-normal statistical distributions similar to events observed in the complex systems cited above. The current hypothesis accepted is that these desynchronization events are influenced by the presence of unstable object(s) in the phase space of the system. Here, we present further evidence that the occurrence of large events is triggered by the visitation of the system's phase-space trajectory to the vicinity of these unstable objects. In the system studied here, this visitation is controlled by a single parameter, and we exploit this feature to observe the effect of the visitation rate in the overall instability of the synchronized state. We find that the probability of escapes from the synchronized state and the size of those desynchronization events are enhanced in attractors whose shapes permit the chaotic trajectories to approach the region of strong instability. This result shows that the occurrence of large events requires not only a large local instability to amplify noise, or to amplify the effect of parameter mismatch between the coupled subsystems, but also that the trajectories of the system wander close to this local instability.

  7. Development of Side Coupled Cavities

    International Nuclear Information System (INIS)

    Conto, J.M. de; Carretta, J.M.; Gomez-Martinez, Y.; Micoud, R.

    2008-01-01

    Side coupled Cavities are good candidates for proton accelerations in the 90-180 MeV range, as it has been first proposed for the CERN LINAC4 project. A side coupled Linac is made of a lump chain of resonant cavities, alternatively accelerating and coupling. A side coupled cavity has been designed in a CERN-LPSC collaboration to achieve LINAC4 requirements. After RF studies, a complete thermal study has been done, showing that 10-15% is the absolute maximum duty-cycle achievable by such a cavity. Error studies have been developed. They have shown that a tuning ring is mandatory and that a K equals 3% coupling factor is a good choice. A prototype has been built and each cell has been measured and tuned. A simple and accurate method has been used to get both the resonant frequency and the coupling factor, with a movable tuner and a linear fit. A similar method has been used to get the second order coupling factor. A large dispersion is observed on K. This is mainly due to the shape of the coupling apertures, which are very sensitive to mechanical errors. A future and realistic design must be very careful to guarantee a constant aperture (the important parameter is more the dispersion of k than its exact value). Finally, we analyse how to tune the cavity. This has to checked carefully and probably improved or corrected. Results are expected for mid-2008

  8. On polarization parameters of spin-1 particles and anomalous couplings in e"+e"- → ZZ/Zγ

    International Nuclear Information System (INIS)

    Rahaman, Rafiqul; Singh, Ritesh K.

    2016-01-01

    We study the anomalous trilinear gauge couplings of Z and γ using a complete set of polarization asymmetries for the Z boson in e"+e"- → ZZ/Zγ processes with unpolarized initial beams. We use these polarization asymmetries, along with the cross section, to obtain a simultaneous limit on all the anomalous couplings using the Markov Chain Monte Carlo (MCMC) method. For an e"+e"- collider running at 500 GeV center-of-mass energy and 100 fb"-"1 of integrated luminosity the simultaneous limits on the anomalous couplings are 1-3 x 10"-"3. (orig.)

  9. Ponderomotive force effects on slow-wave coupling

    International Nuclear Information System (INIS)

    Wilson, J.R.; Wong, K.L.

    1982-01-01

    Localized plasma density depressions are observed to form near a multi-ring slow-wave structure when the value of the nonlinearity parameter, s = ω 2 /sub p/eVertical BarE/sub z/Vertical Bar 2 /8πω 2 nkappaT, is of order unity. Consequent changes in the wave propagation and coupling efficiency are reported. For large enough values of s, the coupling efficiency may be reduced by 50% from the linear value

  10. Cosmological tests of coupled Galileons

    International Nuclear Information System (INIS)

    Brax, Philippe; Burrage, Clare; Davis, Anne-Christine; Gubitosi, Giulia

    2015-01-01

    We investigate the cosmological properties of Galileon models which admit Minkowski space as a stable solution in vacuum. This is motivated by stable, positive tension brane world constructions that give rise to Galileons. We include both conformal and disformal couplings to matter and focus on constraints on the theory that arise because of these couplings. The disformal coupling to baryonic matter is extremely constrained by astrophysical and particle physics effects. The disformal coupling to photons induces a cosmological variation of the speed of light and therefore distorsions of the Cosmic Microwave Background spectrum which are known to be very small. The conformal coupling to baryons leads to a variation of particle masses since Big Bang Nucleosynthesis which is also tightly constrained. We consider the background cosmology of Galileon models coupled to Cold Dark Matter (CDM), photons and baryons and impose that the speed of light and particle masses respect the observational bounds on cosmological time scales. We find that requiring that the equation of state for the Galileon models must be close to -1 now restricts severely their parameter space and can only be achieved with a combination of the conformal and disformal couplings. This leads to large variations of particle masses and the speed of light which are not compatible with observations. As a result, we find that cosmological Galileon models are viable dark energy theories coupled to dark matter but their couplings, both disformal and conformal, to baryons and photons must be heavily suppressed making them only sensitive to CDM

  11. Superconducting proximity effect in mesoscopic superconductor/normal-metal junctions

    CERN Document Server

    Takayanagi, H; Toyoda, E

    1999-01-01

    The superconducting proximity effect is discussed in mesoscopic superconductor/normal-metal junctions. The newly-developed theory shows long-range phase-coherent effect which explaines early experimental results of giant magnetoresistance oscillations in an Andreev interferometer. The theory also shows that the proximity correction to the conductance (PCC) has a reentrant behavior as a function of energy. The reentrant behavior is systematically studied in a gated superconductor-semiconductor junction. A negative PCC is observed in the case of a weak coupling between the normal metal and the external reservoir. Phase coherent ac effect is also observed when rf is irradiated to the junction.

  12. Determination of new electroweak parameters at the ILC. Sensitivity to new physics

    Energy Technology Data Exchange (ETDEWEB)

    Beyer, M.; Schmidt, E.; Schroeder, H. [Rostock Univ. (Germany). Inst. fuer Physik; Kilian, W. [Siegen Univ. (Gesamthochschule) (Germany). Fach Physik]|[Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Krstonosic, P.; Reuter, J. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Moenig, K. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2006-04-15

    We present a study of the sensitivity of an International Linear Collider (ILC) to electroweak parameters in the absence of a light Higgs boson. In particular, we consider those parameters that have been inaccessible at previous colliders, quartic gauge couplings. Within a generic effective-field theory context we analyze all processes that contain quasi-elastic weak-boson scattering, using complete six-fermion matrix elements in unweighted event samples, fast simulation of the ILC detector, and a multidimensional parameter fit of the set of anomalous couplings. The analysis does not rely on simplifying assumptions such as custodial symmetry or approximations such as the equivalence theorem. We supplement this by a similar new study of triple weak-boson production, which is sensitive to the same set of anomalous couplings. Including the known results on triple gauge couplings and oblique corrections, we thus quantitatively determine the indirect sensitivity of the ILC to new physics in the electroweak symmetry-breaking sector, conveniently parameterized by real or fictitious resonances in each accessible spin/isospin channel. (Orig.)

  13. Determination of new electroweak parameters at the ILC. Sensitivity to new physics

    International Nuclear Information System (INIS)

    Beyer, M.; Schmidt, E.; Schroeder, H.; Krstonosic, P.; Reuter, J.; Moenig, K.

    2006-04-01

    We present a study of the sensitivity of an International Linear Collider (ILC) to electroweak parameters in the absence of a light Higgs boson. In particular, we consider those parameters that have been inaccessible at previous colliders, quartic gauge couplings. Within a generic effective-field theory context we analyze all processes that contain quasi-elastic weak-boson scattering, using complete six-fermion matrix elements in unweighted event samples, fast simulation of the ILC detector, and a multidimensional parameter fit of the set of anomalous couplings. The analysis does not rely on simplifying assumptions such as custodial symmetry or approximations such as the equivalence theorem. We supplement this by a similar new study of triple weak-boson production, which is sensitive to the same set of anomalous couplings. Including the known results on triple gauge couplings and oblique corrections, we thus quantitatively determine the indirect sensitivity of the ILC to new physics in the electroweak symmetry-breaking sector, conveniently parameterized by real or fictitious resonances in each accessible spin/isospin channel. (Orig.)

  14. Dynamics of multi-frequency oscillator ensembles with resonant coupling

    Science.gov (United States)

    Lück, S.; Pikovsky, A.

    2011-07-01

    We study dynamics of populations of resonantly coupled oscillators having different frequencies. Starting from the coupled van der Pol equations we derive the Kuramoto-type phase model for the situation, where the natural frequencies of two interacting subpopulations are in relation 2:1. Depending on the parameter of coupling, ensembles can demonstrate fully synchronous clusters, partial synchrony (only one subpopulation synchronizes), or asynchrony in both subpopulations. Theoretical description of the dynamics based on the Watanabe-Strogatz approach is developed.

  15. Comparison of Cluster C personality disorders in couples with ...

    African Journals Online (AJOL)

    Comparison of Cluster C personality disorders in couples with normal divorce. ... Also purposeful sampling was used to select individuals. ... that the personality disorder group C, there is no significant difference between men and women.

  16. Vitrification of neat semen alters sperm parameters and DNA integrity.

    Science.gov (United States)

    Khalili, Mohammad Ali; Adib, Maryam; Halvaei, Iman; Nabi, Ali

    2014-05-06

    Our aim was to evaluate the effect of neat semen vitrification on human sperm vital parameters and DNA integrity in men with normal and abnormal sperm parameters. Semen samples were 17 normozoospermic samples and 17 specimens with abnormal sperm parameters. Semen analysis was performed according to World Health Organization (WHO) criteria. Then, the smear was provided from each sample and fixed for terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. Vitrification of neat semen was done by plunging cryoloops directly into liquid nitrogen and preserved for 7 days. The samples were warmed and re-evaluated for sperm parameters as well as DNA integrity. Besides, the correlation between sperm parameters and DNA fragmentation was assessed pre- and post vitrification. Cryopreserved spermatozoa showed significant decrease in sperm motility, viability and normal morphology after thawing in both normal and abnormal semen. Also, the rate of sperm DNA fragmentation was significantly higher after vitrification compared to fresh samples in normal (24.76 ± 5.03 and 16.41 ± 4.53, P = .002) and abnormal (34.29 ± 10.02 and 23.5 ± 8.31, P < .0001), respectively. There was negative correlation between sperm motility and sperm DNA integrity in both groups after vitrification. Vitrification of neat ejaculates has negative impact on sperm parameters as well as DNA integrity, particularly among abnormal semen subjects. It is, therefore, recommend to process semen samples and vitrify the sperm pellets.

  17. Integrating out resonances in strongly-coupled electroweak scenarios

    Directory of Open Access Journals (Sweden)

    Rosell Ignasi

    2017-01-01

    Full Text Available Accepting that there is a mass gap above the electroweak scale, the Electroweak Effective Theory (EWET is an appropriate tool to describe this situation. Since the EWET couplings contain information on the unknown high-energy dynamics, we consider a generic strongly-coupled scenario of electroweak symmetry breaking, where the known particle fields are coupled to heavier states. Then, and by integrating out these heavy fields, we study the tracks of the lightest resonances into the couplings. The determination of the low-energy couplings (LECs in terms of resonance parameters can be made more precise by considering a proper short-distance behaviour on the Lagrangian with heavy states, since the number of resonance couplings is then reduced. Notice that we adopt a generic non-linear realization of the electroweak symmetry breaking with a singlet Higgs.

  18. The Static and Dynamic QT/RR Coupling and QT Parameters

    Czech Academy of Sciences Publication Activity Database

    Halámek, Josef; Jurák, Pavel; Villa, M.; Fráňa, P.; Novák, M.; Lipoldová, J.; Leinveber, P.; Vondra, Vlastimil; Somers, V. K.; Kára, T.

    2008-01-01

    Roč. 6, č. 1 (2008), s. 533 ISSN 1556-7451. [World Congress on Heart Disease /14./. 26.07.2008-29.07.2008, Toronto] Institutional research plan: CEZ:AV0Z20650511 Keywords : QT parameters Subject RIV: FA - Cardiovascular Disease s incl. Cardiotharic Surgery

  19. Transition behaviours in two coupled Josephson junction equations

    International Nuclear Information System (INIS)

    Wang Jiazeng; Zhang Xuejuan; You Gongqiang; Zhou Fengyan

    2007-01-01

    The dynamics of two coupled Josephson junction equations are investigated via mathematical reasoning and numerical simulations. We show that for a fixed coupling K, the whole parameter space can be comparted into three regions: a quenching region, a synchronized running periodic region and a region where these two states coexist. It is further shown that with the increase of the coupling K, the system may transit from a synchronizing state to a quenching state. The characteristic of the critical line K*(b) which separates these two states is mathematically analysed

  20. Estimating Convection Parameters in the GFDL CM2.1 Model Using Ensemble Data Assimilation

    Science.gov (United States)

    Li, Shan; Zhang, Shaoqing; Liu, Zhengyu; Lu, Lv; Zhu, Jiang; Zhang, Xuefeng; Wu, Xinrong; Zhao, Ming; Vecchi, Gabriel A.; Zhang, Rong-Hua; Lin, Xiaopei

    2018-04-01

    Parametric uncertainty in convection parameterization is one major source of model errors that cause model climate drift. Convection parameter tuning has been widely studied in atmospheric models to help mitigate the problem. However, in a fully coupled general circulation model (CGCM), convection parameters which impact the ocean as well as the climate simulation may have different optimal values. This study explores the possibility of estimating convection parameters with an ensemble coupled data assimilation method in a CGCM. Impacts of the convection parameter estimation on climate analysis and forecast are analyzed. In a twin experiment framework, five convection parameters in the GFDL coupled model CM2.1 are estimated individually and simultaneously under both perfect and imperfect model regimes. Results show that the ensemble data assimilation method can help reduce the bias in convection parameters. With estimated convection parameters, the analyses and forecasts for both the atmosphere and the ocean are generally improved. It is also found that information in low latitudes is relatively more important for estimating convection parameters. This study further suggests that when important parameters in appropriate physical parameterizations are identified, incorporating their estimation into traditional ensemble data assimilation procedure could improve the final analysis and climate prediction.

  1. Multivariate relationships between international normalized ratio and vitamin K-dependent coagulation-derived parameters in normal healthy donors and oral anticoagulant therapy patients

    Directory of Open Access Journals (Sweden)

    Golanski Jacek

    2003-11-01

    Full Text Available Abstract Background and objectives International Normalized Ratio (INR is a world-wide routinely used factor in the monitoring of oral anticoagulation treatment (OAT. However, it was reported that other factors, e. g. factor II, may even better reflect therapeutic efficacy of OAT and, therefore, may be potentialy useful for OAT monitoring. The primary purpose of this study was to characterize the associations of INR with other vitamin K-dependent plasma proteins in a heterogenous group of individuals, including healthy donors, patients on OAT and patients not receiving OAT. The study aimed also at establishing the influence of co-morbid conditions (incl. accompanying diseases and co-medications (incl. different intensity of OAT on INR. Design and Methods Two hundred and three subjects were involved in the study. Of these, 35 were normal healthy donors (group I, 73 were patients on medication different than OAT (group II and 95 were patients on stable oral anticoagulant (acenocoumarol therapy lasting for at least half a year prior to the study. The values of INR and activated partial thromboplastin time (APTT ratio, as well as activities of FII, FVII, FX, protein C, and concentration of prothrombin F1+2 fragments and fibrinogen were obtained for all subjects. In statistical evaluation, the uni- and multivariate analyses were employed and the regression equations describing the obtained associations were estimated. Results Of the studied parameters, three (factors II, VII and X appeared as very strong modulators of INR, protein C and prothrombin fragments F1+2 had moderate influence, whereas both APTT ratio and fibrinogen had no significant impact on INR variability. Due to collinearity and low tolerance of independent variables included in the multiple regression models, we routinely employed a ridge multiple regression model which compromises the minimal number of independent variables with the maximal overall determination coefficient. The best

  2. The two-qubit quantum Rabi model: inhomogeneous coupling

    International Nuclear Information System (INIS)

    Mao, Lijun; Huai, Sainan; Zhang, Yunbo

    2015-01-01

    We revisit the analytic solution of the two-qubit quantum Rabi model with inhomogeneous coupling and transition frequencies using a displaced oscillator basis. This approach enables us to apply the same truncation rules and techniques adopted in the Rabi model to the two qubits system. The derived analytical spectra match perfectly with the numerical solutions in the parameter regime where the qubits’ transition frequencies are far off-resonance with the field frequency and the interaction strengths reach the ultrastrong coupling regime. We further explore the dynamical behavior of the two qubits as well as the evolution of entanglement. The analytical methods provide unexpectedly accurate results in describing the dynamics of the two qubits in the present experimentally accessible coupling regime. The time evolutions of the probability for the qubits show that the collapse-revival phenomena emerge, survive and finally disappear when one coupling strength increases from weak to strong coupling regimes and the other coupling strength is well into the ultrastrong coupling regime. The inhomogeneous coupling system exhibits new dynamics, which are different from the homogeneous coupling case. (paper)

  3. Numerical analysis of dynamic response of vehicle–bridge coupled system on long-span continuous girder bridge

    Directory of Open Access Journals (Sweden)

    Lipeng An

    2016-07-01

    Full Text Available To systematically study the vehicle–bridge coupled dynamic response and its change rule with different parameters, a vehicle model with seven degrees of freedom was built and the total potential energy of vehicle space vibration system was deduced. Considering the stimulation of road roughness, the dynamic response equation of vehicle–bridge coupled system was established in accordance with the elastic system principle of total potential energy with stationary value and the “set-in-right-position” rule. On the basis of the self-compiled Fortran program and bridge engineering, the dynamic response of long-span continuous girder bridge under vehicle load was studied. This study also included the calculation of vehicle impact coefficient, evaluation of vibration comfort, and analysis of dynamic response parameters. Results show the impact coefficient changes with lane number and is larger than the value calculated by the “general code for design of highway bridges and culverts (China”. The Dieckmann index of bridge vibration is also related to lane number, and the vibration comfort evaluation is good in normal conditions. The relevant conclusions from parametric analyses have practical significance to dynamic design and daily operation of long-span continuous girder bridges in expressways. Safety and comfort are expected to improve significantly with further control of the vibration of vehicle–bridge system.

  4. Instabilities in dark coupled models and constraints from cosmological data

    CERN Document Server

    Honorez, L Lopez

    2010-01-01

    Coupled dark matter-dark energy systems can suffer from non-adiabatic instabilities at early times and large scales. In these proceedings, we consider two parameterizations of the dark sector interaction. In the first one the energy-momentum transfer 4-vector is parallel to the dark matter 4-velocity and in the second one to the dark energy 4-velocity. In these cases, coupled models which suffer from non-adiabatic instabilities can be identified as a function of a generic coupling Q and of the dark energy equation of state. In our analysis, we do not refer to any particular cosmic field. We confront then a viable class of models in which the interaction is directly proportional to the dark energy density and to the Hubble rate parameter to recent cosmological data. In that framework, we show that correlations between the dark coupling and several cosmological parameters allow for a larger neutrino mass than in uncoupled models.

  5. Full parameter scan of the Zee model: exploring Higgs lepton flavor violation

    Energy Technology Data Exchange (ETDEWEB)

    Herrero-García, Juan [ARC Center of Excellence for Particle Physics at the Terascale, University of Adelaide,Adelaide, SA 5005 (Australia); Department of Physics, School of Engineering Sciences, KTH Royal Institute of Technology,AlbaNova University Center, Roslagstullsbacken 21, 106 91 Stockholm (Sweden); Ohlsson, Tommy; Riad, Stella; Wirén, Jens [Department of Physics, School of Engineering Sciences, KTH Royal Institute of Technology,AlbaNova University Center, Roslagstullsbacken 21, 106 91 Stockholm (Sweden)

    2017-04-21

    We study the general Zee model, which includes an extra Higgs scalar doublet and a new singly-charged scalar singlet. Neutrino masses are generated at one-loop level, and in order to describe leptonic mixing, both the Standard Model and the extra Higgs scalar doublets need to couple to leptons (in a type-III two-Higgs doublet model), which necessarily generates large lepton flavor violating signals, also in Higgs decays. Imposing all relevant phenomenological constraints and performing a full numerical scan of the parameter space, we find that both normal and inverted neutrino mass orderings can be fitted, although the latter is disfavored with respect to the former. In fact, inverted ordering can only be accommodated if θ{sub 23} turns out to be in the first octant. A branching ratio for h→τμ of up to 10{sup −2} is allowed, but it could be as low as 10{sup −6}. In addition, if future expected sensitivities of τ→μγ are achieved, normal ordering can be almost completely tested. Also, μe conversion is expected to probe large parts of the parameter space, excluding completely inverted ordering if no signal is observed. Furthermore, non-standard neutrino interactions are found to be smaller than 10{sup −6}, which is well below future experimental sensitivity. Finally, the results of our scan indicate that the masses of the additional scalars have to be below 2.5 TeV, and typically they are lower than that and therefore within the reach of the LHC and future colliders.

  6. The interblink interval in normal and dry eye subjects

    Directory of Open Access Journals (Sweden)

    Johnston PR

    2013-02-01

    Full Text Available Patrick R Johnston,1 John Rodriguez,1 Keith J Lane,1 George Ousler,1 Mark B Abelson1,21Ora, Inc, Andover, MA, USA; 2Schepens Eye Research Institute and Harvard Medical School, Boston, MA, USAPurpose: Our aim was to extend the concept of blink patterns from average interblink interval (IBI to other aspects of the distribution of IBI. We hypothesized that this more comprehensive approach would better discriminate between normal and dry eye subjects.Methods: Blinks were captured over 10 minutes for ten normal and ten dry eye subjects while viewing a standardized televised documentary. Fifty-five blinks were analyzed for each of the 20 subjects. Means, standard deviations, and autocorrelation coefficients were calculated utilizing a single random effects model fit to all data points and a diagnostic model was subsequently fit to predict probability of a subject having dry eye based on these parameters.Results: Mean IBI was 5.97 seconds for normal versus 2.56 seconds for dry eye subjects (ratio: 2.33, P = 0.004. IBI variability was 1.56 times higher in normal subjects (P < 0.001, and the autocorrelation was 1.79 times higher in normal subjects (P = 0.044. With regard to the diagnostic power of these measures, mean IBI was the best dry eye versus normal classifier using receiver operating characteristics (0.85 area under curve (AUC, followed by the standard deviation (0.75 AUC, and lastly, the autocorrelation (0.63 AUC. All three predictors combined had an AUC of 0.89. Based on this analysis, cutoffs of ≤3.05 seconds for median IBI, and ≤0.73 for the coefficient of variation were chosen to classify dry eye subjects.Conclusion: (1 IBI was significantly shorter for dry eye patients performing a visual task compared to normals; (2 there was a greater variability of interblink intervals in normal subjects; and (3 these parameters were useful as diagnostic predictors of dry eye disease. The results of this pilot study merit investigation of IBI

  7. Double-diffusive convection in a Darcy porous medium saturated with a couple-stress fluid

    International Nuclear Information System (INIS)

    Malashetty, M S; Kollur, Premila; Pal, Dulal

    2010-01-01

    The onset of double-diffusive convection in a couple-stress fluid-saturated horizontal porous layer is studied using linear and weak nonlinear stability analyses. The modified Darcy equation that includes the time derivative term and the inertia term is used to model the momentum equation. The expressions for stationary, oscillatory and finite-amplitude Rayleigh number are obtained as a function of the governing parameters. The effect of couple-stress parameter, solute Rayleigh number, Vadasz number and diffusivity ratio on stationary, oscillatory and finite-amplitude convection is shown graphically. It is found that the couple-stress parameter and the solute Rayleigh number have a stabilizing effect on stationary, oscillatory and finite-amplitude convection. The diffusivity ratio has a destabilizing effect in the case of stationary and finite-amplitude modes, with a dual effect in the case of oscillatory convection. The Vadasz number advances the onset of oscillatory convection. The heat and mass transfer decreases with an increase in the values of couple-stress parameter and diffusivity ratio, while both increase with an increase in the value of the solute Rayleigh number.

  8. Nonequilibrium phase transitions in finite arrays of globally coupled Stratonovich models: strong coupling limit

    International Nuclear Information System (INIS)

    Senf, Fabian; Altrock, Philipp M; Behn, Ulrich

    2009-01-01

    A finite array of N globally coupled Stratonovich models exhibits a continuous nonequilibrium phase transition. In the limit of strong coupling, there is a clear separation of timescales of centre of mass and relative coordinates. The latter relax very fast to zero and the array behaves as a single entity described by the centre of mass coordinate. We compute analytically the stationary probability distribution and the moments of the centre of mass coordinate. The scaling behaviour of the moments near the critical value of the control parameter a c (N) is determined. We identify a crossover from linear to square root scaling with increasing distance from a c . The crossover point approaches a c in the limit N→∞ which reproduces previous results for infinite arrays. Our results are obtained in both the Fokker-Planck and the Langevin approach and are corroborated by numerical simulations. For a general class of models we show that the transition manifold in the parameter space depends on N and is determined by the scaling behaviour near a fixed point of the stochastic flow.

  9. Nonlinear vibrations analysis of rotating drum-disk coupling structure

    Science.gov (United States)

    Chaofeng, Li; Boqing, Miao; Qiansheng, Tang; Chenyang, Xi; Bangchun, Wen

    2018-04-01

    A dynamic model of a coupled rotating drum-disk system with elastic support is developed in this paper. By considering the effects of centrifugal and Coriolis forces as well as rotation-induced hoop stress, the governing differential equation of the drum-disk is derived by Donnell's shell theory. The nonlinear amplitude-frequency characteristics of coupled structure are studied. The results indicate that the natural characteristics of the coupling structure are sensitive to the supporting stiffness of the disk, and the sensitive range is affected by rotating speeds. The circumferential wave numbers can affect the characteristics of the drum-disk structure. If the circumferential wave number n = 1 , the vibration response of the drum keeps a stable value under an unbalanced load of the disk, there is no coupling effect if n ≠ 1 . Under the excitation, the nonlinear hardening characteristics of the forward traveling wave are more evident than that of the backward traveling wave. Moreover, because of the coupling effect of the drum and the disk, the supporting stiffness of the disk has certain effect on the nonlinear characteristics of the forward and backward traveling waves. In addition, small length-radius and thickness-radius ratios have a significant effect on the nonlinear characteristics of the coupled structure, which means nonlinear shell theory should be adopted to design rotating drum's parameter for its specific structural parameters.

  10. Dynamics of unidirectionally coupled bistable Henon maps

    International Nuclear Information System (INIS)

    Sausedo-Solorio, J.M.; Pisarchik, A.N.

    2011-01-01

    We study dynamics of two bistable Henon maps coupled in a master-slave configuration. In the case of coexistence of two periodic orbits, the slave map evolves into the master map state after transients, which duration determines synchronization time and obeys a -1/2 power law with respect to the coupling strength. This scaling law is almost independent of the map parameter. In the case of coexistence of chaotic and periodic attractors, very complex dynamics is observed, including the emergence of new attractors as the coupling strength is increased. The attractor of the master map always exists in the slave map independently of the coupling strength. For a high coupling strength, complete synchronization can be achieved only for the attractor similar to that of the master map. -- Highlights: → We study dynamics of two bistable Henon maps coupled in a master-slave configuration. → Synchronization time for periodic orbits obeys a -1/2 power law with respect to coupling. → For a high coupling strength, the slave map remains bistable. → Complete synchronization can be achieved only when both maps stay at the same attractor.

  11. Resolved Hapke parameter maps of the Moon

    Science.gov (United States)

    Sato, H.; Robinson, M. S.; Hapke, B.; Denevi, B. W.; Boyd, A. K.

    2014-08-01

    We derived spatially resolved near-global Hapke photometric parameter maps of the Moon from 21 months of Lunar Reconnaissance Orbiter Camera (LROC) Wide Angle Camera (WAC) multispectral observations using a novel "tile-by-tile method" (1° latitude by 1° longitude bins). The derived six parameters (w,b,c,BS0,hS, andθ¯p) for each tile were used to normalize the observed reflectance (standard angles i = g = 60°, e = 0° instead of the traditional angles i = g = 30°, e = 0°) within each tile, resulting in accurate normalization optimized for the local photometric response. Each pixel in the seven-color near-global mosaic (70°S to 70°N and 0°E to 360°E) was computed by the median of normalized reflectance from large numbers of repeated observations (UV: ˜50 and visible: ˜126 on average). The derived mosaic exhibits no significant artifacts with latitude or along the tile boundaries, demonstrating the quality of the normalization procedure. The derived Hapke parameter maps reveal regional photometric response variations across the lunar surface. The b, c (Henyey-Greenstein double-lobed phase function parameters) maps demonstrate decreased backscattering in the maria relative to the highlands (except 321 nm band), probably due to the higher content of both SMFe (submicron iron) and ilmenite in the interiors of back scattering agglutinates in the maria. The hS (angular width of shadow hiding opposition effect) map exhibits relatively lower values in the maria than the highlands and slightly higher values for immature highland crater ejecta, possibly related to the variation in a grain size distribution of regolith.

  12. Calculation of the spectrum of {gamma} rays connecting superdeformed and normally deformed nuclear states

    Energy Technology Data Exchange (ETDEWEB)

    Dossing, T.; Khoo, T.L.; Lauritsen, T. [and others

    1995-08-01

    The decay out of superdeformed states occurs by coupling to compound nuclear states of normal deformation. The coupling is very weak, resulting in mixing of the SD state with one or two normal compound states. With a high energy available for decay, a statistical spectrum ensues. The shape of this statistical spectrum contains information on the level densities of the excited states below the SD level. The level densities are sensitively affected by the pair correlations. Thus decay-out of a SD state (which presents us with a means to start a statistical cascade from a highly-excited sharp state) provides a method for investigating the reduction of pairing with increasing thermal excitation energy.

  13. Characterizing spontaneous irregular behavior in coupled map lattices

    International Nuclear Information System (INIS)

    Dobyns, York; Atmanspacher, Harald

    2005-01-01

    Two-dimensional coupled map lattices display, in a specific parameter range, a stable phase (quasi-) periodic in both space and time. With small changes to the model parameters, this stable phase develops spontaneous eruptions of non-periodic behavior. Although this behavior itself appears irregular, it can be characterized in a systematic fashion. In particular, parameter-independent features of the spontaneous eruptions may allow useful empirical characterizations of other phenomena that are intrinsically hard to predict and reproduce. Specific features of the distributions of lifetimes and emergence rates of irregular states display such parameter-independent properties

  14. Characterizing spontaneous irregular behavior in coupled map lattices

    Energy Technology Data Exchange (ETDEWEB)

    Dobyns, York [PEAR, Princeton University Princeton, NJ 08544-5263 (United States); Atmanspacher, Harald [Institut fuer Grenzgebiete der Psychologie und Psychohygiene Wilhelmstrasse 3a, Freiburg 79098 (Germany)]. E-mail: haa@igpp.de

    2005-04-01

    Two-dimensional coupled map lattices display, in a specific parameter range, a stable phase (quasi-) periodic in both space and time. With small changes to the model parameters, this stable phase develops spontaneous eruptions of non-periodic behavior. Although this behavior itself appears irregular, it can be characterized in a systematic fashion. In particular, parameter-independent features of the spontaneous eruptions may allow useful empirical characterizations of other phenomena that are intrinsically hard to predict and reproduce. Specific features of the distributions of lifetimes and emergence rates of irregular states display such parameter-independent properties.

  15. Connection dynamics of a gauge theory of gravity coupled with matter

    International Nuclear Information System (INIS)

    Yang, Jian; Banerjee, Kinjal; Ma, Yongge

    2013-01-01

    We study the coupling of the gravitational action, which is a linear combination of the Hilbert–Palatini term and the quadratic torsion term, to the action of Dirac fermions. The system possesses local Poincare invariance and hence belongs to Poincare gauge theory (PGT) with matter. The complete Hamiltonian analysis of the theory is carried out without gauge fixing but under certain ansatz on the coupling parameters, which leads to a consistent connection dynamics with second-class constraints and torsion. After performing a partial gauge fixing, all second-class constraints can be solved, and a SU(2)-connection dynamical formalism of the theory can be obtained. Hence, the techniques of loop quantum gravity (LQG) can be employed to quantize this PGT with non-zero torsion. Moreover, the Barbero–Immirzi parameter in LQG acquires its physical meaning as the coupling parameter between the Hilbert–Palatini term and the quadratic torsion term in this gauge theory of gravity. (paper)

  16. CANDU reactor core simulations using fully coupled DRAGON and DONJON calculations

    International Nuclear Information System (INIS)

    Varin, E.; Marleau, G.

    2006-01-01

    The operating CANDU-6 reactors are refueled on-power to compensate for the reactivity loss due to fuel burnup. In order to predict the core behavior, fuel bundle burnups and local parameter information need to be tracked. The history-based approach has been developed to follow local parameter as well as history effect in CANDU reactors. The finite reactor diffusion code DONJON and the lattice code DRAGON have been coupled to perform reactor follow-up calculations using a history-based approach. A coupled methodology that manages the transfer of information between standard DONJON and DRAGON data structures has been developed. Push-through refueling can be taken into account directly in cell calculations. Using actual on-site information, an isotopic core content database has been generated with coupled DONJON and DRAGON calculations. Moreover calculations have been performed for different local parameters. Results are compared with those obtained using standard cross section generation approaches

  17. Spinal cord normalization in multiple sclerosis.

    Science.gov (United States)

    Oh, Jiwon; Seigo, Michaela; Saidha, Shiv; Sotirchos, Elias; Zackowski, Kathy; Chen, Min; Prince, Jerry; Diener-West, Marie; Calabresi, Peter A; Reich, Daniel S

    2014-01-01

    Spinal cord (SC) pathology is common in multiple sclerosis (MS), and measures of SC-atrophy are increasingly utilized. Normalization reduces biological variation of structural measurements unrelated to disease, but optimal parameters for SC volume (SCV)-normalization remain unclear. Using a variety of normalization factors and clinical measures, we assessed the effect of SCV normalization on detecting group differences and clarifying clinical-radiological correlations in MS. 3T cervical SC-MRI was performed in 133 MS cases and 11 healthy controls (HC). Clinical assessment included expanded disability status scale (EDSS), MS functional composite (MSFC), quantitative hip-flexion strength ("strength"), and vibration sensation threshold ("vibration"). SCV between C3 and C4 was measured and normalized individually by subject height, SC-length, and intracranial volume (ICV). There were group differences in raw-SCV and after normalization by height and length (MS vs. HC; progressive vs. relapsing MS-subtypes, P normalization by length (EDSS:r = -.43; MSFC:r = .33; strength:r = .38; vibration:r = -.40), and height (EDSS:r = -.26; MSFC:r = .28; strength:r = .22; vibration:r = -.29), but diminished with normalization by ICV (EDSS:r = -.23; MSFC:r = -.10; strength:r = .23; vibration:r = -.35). In relapsing MS, normalization by length allowed statistical detection of correlations that were not apparent with raw-SCV. SCV-normalization by length improves the ability to detect group differences, strengthens clinical-radiological correlations, and is particularly relevant in settings of subtle disease-related SC-atrophy in MS. SCV-normalization by length may enhance the clinical utility of measures of SC-atrophy. Copyright © 2014 by the American Society of Neuroimaging.

  18. Magnetostructural coupling behavior at the ferromagnetic transition in double-perovskite S r2FeMo O6

    Science.gov (United States)

    Yang, Dexin; Harrison, Richard J.; Schiemer, Jason A.; Lampronti, Giulio I.; Liu, Xueyin; Zhang, Fenghua; Ding, Hao; Liu, Yan'gai; Carpenter, Michael A.

    2016-01-01

    The ordered double-perovskite S r2FeMo O6 (SFMO) possesses remarkable room-temperature low-field colossal magnetoresistivity and transport properties which are related, at least in part, to combined structural and magnetic instabilities that are responsible for a cubic-tetragonal phase transition near 420 K. A formal strain analysis combined with measurements of elastic properties from resonant ultrasound spectroscopy reveal a system with weak biquadratic coupling between two order parameters belonging to Γ4+ and m Γ4+ of parent space group F m 3 ¯m . The observed softening of the shear modulus by ˜50% is due to the classical effects of strain/order parameter coupling at an improper ferroelastic (Γ4+) transition which is second order in character, while the ferromagnetic order parameter (m Γ4+ ) couples only with volume strain. The influence of a third order parameter, for ordering of Fe and Mo on crystallographic B sites, is to change the strength of coupling between the Γ4+ order parameter and the tetragonal shear strain due to the influence of changes in local strain heterogeneity at a unit cell scale. High anelastic loss below the transition point reveals the presence of mobile ferroelastic twin walls which become pinned by oxygen vacancies in a temperature interval near 340 K. The twin walls must be both ferroelastic and ferromagnetic, but due to the weak coupling between the magnetic and structural order parameters it should be possible to pull them apart with a weak magnetic field. These insights into the role of strain coupling and relaxational effects in a system with only weak coupling between three order parameters allow rationalization and prediction of how static and dynamic properties of the material might be tuned in thin film form by choice of strain contrast with a substrate.

  19. The Influence of Normalization Weight in Population Pharmacokinetic Covariate Models.

    Science.gov (United States)

    Goulooze, Sebastiaan C; Völler, Swantje; Välitalo, Pyry A J; Calvier, Elisa A M; Aarons, Leon; Krekels, Elke H J; Knibbe, Catherijne A J

    2018-03-23

    In covariate (sub)models of population pharmacokinetic models, most covariates are normalized to the median value; however, for body weight, normalization to 70 kg or 1 kg is often applied. In this article, we illustrate the impact of normalization weight on the precision of population clearance (CL pop ) parameter estimates. The influence of normalization weight (70, 1 kg or median weight) on the precision of the CL pop estimate, expressed as relative standard error (RSE), was illustrated using data from a pharmacokinetic study in neonates with a median weight of 2.7 kg. In addition, a simulation study was performed to show the impact of normalization to 70 kg in pharmacokinetic studies with paediatric or obese patients. The RSE of the CL pop parameter estimate in the neonatal dataset was lowest with normalization to median weight (8.1%), compared with normalization to 1 kg (10.5%) or 70 kg (48.8%). Typical clearance (CL) predictions were independent of the normalization weight used. Simulations showed that the increase in RSE of the CL pop estimate with 70 kg normalization was highest in studies with a narrow weight range and a geometric mean weight away from 70 kg. When, instead of normalizing with median weight, a weight outside the observed range is used, the RSE of the CL pop estimate will be inflated, and should therefore not be used for model selection. Instead, established mathematical principles can be used to calculate the RSE of the typical CL (CL TV ) at a relevant weight to evaluate the precision of CL predictions.

  20. Quantitative proteome profiling of normal human circulating microparticles

    DEFF Research Database (Denmark)

    Østergaard, Ole; Nielsen, Christoffer T; Iversen, Line V

    2012-01-01

    Circulating microparticles (MPs) are produced as part of normal physiology. Their numbers, origin, and composition change in pathology. Despite this, the normal MP proteome has not yet been characterized with standardized high-resolution methods. We here quantitatively profile the normal MP...... proteome using nano-LC-MS/MS on an LTQ-Orbitrap with optimized sample collection, preparation, and analysis of 12 different normal samples. Analytical and procedural variation were estimated in triply processed samples analyzed in triplicate from two different donors. Label-free quantitation was validated...... by the correlation of cytoskeletal protein intensities with MP numbers obtained by flow cytometry. Finally, the validity of using pooled samples was evaluated using overlap protein identification numbers and multivariate data analysis. Using conservative parameters, 536 different unique proteins were quantitated...

  1. Four-parameter model for polarization-resolved rough-surface BRDF.

    Science.gov (United States)

    Renhorn, Ingmar G E; Hallberg, Tomas; Bergström, David; Boreman, Glenn D

    2011-01-17

    A modeling procedure is demonstrated, which allows representation of polarization-resolved BRDF data using only four parameters: the real and imaginary parts of an effective refractive index with an added parameter taking grazing incidence absorption into account and an angular-scattering parameter determined from the BRDF measurement of a chosen angle of incidence, preferably close to normal incidence. These parameters allow accurate predictions of s- and p-polarized BRDF for a painted rough surface, over three decades of variation in BRDF magnitude. To characterize any particular surface of interest, the measurements required to determine these four parameters are the directional hemispherical reflectance (DHR) for s- and p-polarized input radiation and the BRDF at a selected angle of incidence. The DHR data describes the angular and polarization dependence, as well as providing the overall normalization constraint. The resulting model conserves energy and fulfills the reciprocity criteria.

  2. Analysis of sagittal spinopelvic parameters in achondroplasia.

    Science.gov (United States)

    Hong, Jae-Young; Suh, Seung-Woo; Modi, Hitesh N; Park, Jong-Woong; Park, Jung-Ho

    2011-08-15

    Prospective radiological analysis of patients with achondroplasia. To analyze sagittal spinal alignment and pelvic orientation in achondroplasia patients. Knowledge of sagittal spinopelvic parameters is important for the treatment of achondroplasia, because they differ from those of the normal population and can induce pain. The study and control groups were composed of 32 achondroplasia patients and 24 healthy volunteers, respectively. All underwent lateral radiography of the whole spine including hip joints. The radiographic parameters examined were sacral slope (SS), pelvic tilt, pelvic incidence (PI), S1 overhang, thoracic kyphosis, T10-L2 kyphosis, lumbar lordosis (LL1, LL2), and sagittal balance. Statistical analysis was performed to identify significant differences between the two groups. In addition, correlations between parameters and symptoms were sought. Sagittal spinopelvic parameters, namely, pelvic tilt, pelvic incidence, S1 overhang, thoracic kyphosis, T10-L2 kyphosis, lumbar lordosis 1 and sagittal balance were found to be significantly different in the patient and control groups (P achondroplasia patients and normal healthy controls. The present study shows that sagittal spinal and pelvic parameters can assist the treatment of spinal disorders in achondroplasia patients.

  3. A domain decomposition method for analyzing a coupling between multiple acoustical spaces (L).

    Science.gov (United States)

    Chen, Yuehua; Jin, Guoyong; Liu, Zhigang

    2017-05-01

    This letter presents a domain decomposition method to predict the acoustic characteristics of an arbitrary enclosure made up of any number of sub-spaces. While the Lagrange multiplier technique usually has good performance for conditional extremum problems, the present method avoids involving extra coupling parameters and theoretically ensures the continuity conditions of both sound pressure and particle velocity at the coupling interface. Comparisons with the finite element results illustrate the accuracy and efficiency of the present predictions and the effect of coupling parameters between sub-spaces on the natural frequencies and mode shapes of the overall enclosure is revealed.

  4. Evaluation on Hope and Psychological Symptoms in Infertile Couples Undergoing Assisted Reproduction Treatment

    Directory of Open Access Journals (Sweden)

    maryam mohammadi

    2017-03-01

    Full Text Available Background: This study evaluated hope, depression, anxiety, and stress among three groups of infertile couples. Materials and Methods: This cross-sectional study consisted of three groups of infertile couples-candidates for oocyte donation (n=60, embryo donation (n=60, and normal infertile (n=60. Participants included couples seen at Royan Institute, Tehran, Iran between 2013-2014 who were at least 18 years of age and could read and write in Persian. Participants provided demographic and general characteristics and completed the Persian version of the Adult Trait Hope Scale (hope, agency and pathway and Depression, Anxiety, and Stress Scale (DASS. Data was analyzed by the paired t test, ANOVA, ANCOVA and Pearson correlation tests using SPSS statistical software. Results: Overall, 180 infertile couples participated in the three groups. There was a significant higher mean score for hope in husbands compared to wives in the normal infertile group (P=0.046. Husbands in the normal infertile group also had a significantly higher mean score for pathway (P=0.032. The frequency of anxiety significantly differed in female subjects (P=0.028. In the normal infertile group, the anxiety distribution significantly differed between wives and husbands (P=0.006. There was a significantly different stress frequency in male subjects (P=0.048. In the embryo donation group, stress significantly differed between wives and husbands (P=0.002. In the normal infertile group, stress also significantly differed between wives and husbands (P=0.05. Conclusion: The results have suggested that hope might be important in reducing psychological symptoms and psychological adjustment in those exposed to infertility problems who follow medical recommendations, which accelerates recovery. It is recommended to hold psychological counseling sessions (hope therapy during reproduction cycles.

  5. Normalized compression distance of multisets with applications

    NARCIS (Netherlands)

    Cohen, A.R.; Vitányi, P.M.B.

    Pairwise normalized compression distance (NCD) is a parameter-free, feature-free, alignment-free, similarity metric based on compression. We propose an NCD of multisets that is also metric. Previously, attempts to obtain such an NCD failed. For classification purposes it is superior to the pairwise

  6. Mixed coherent states in coupled chaotic systems: Design of secure wireless communication

    Science.gov (United States)

    Vigneshwaran, M.; Dana, S. K.; Padmanaban, E.

    2016-12-01

    A general coupling design is proposed to realize a mixed coherent (MC) state: coexistence of complete synchronization, antisynchronization, and amplitude death in different pairs of similar state variables of the coupled chaotic system. The stability of coupled system is ensured by the Lyapunov function and a scaling of each variable is also separately taken care of. When heterogeneity as a parameter mismatch is introduced in the coupled system, the coupling function facilitates to retain its coherence and displays the global stability with renewed scaling factor. Robust synchronization features facilitated by a MC state enable to design a dual modulation scheme: binary phase shift key (BPSK) and parameter mismatch shift key (PMSK), for secure data transmission. Two classes of decoders (coherent and noncoherent) are discussed, the noncoherent decoder shows better performance over the coherent decoder, mostly a noncoherent demodulator is preferred in biological implant applications. Both the modulation schemes are demonstrated numerically by using the Lorenz oscillator and the BPSK scheme is demonstrated experimentally using radio signals.

  7. Tunneling of a coupled system

    International Nuclear Information System (INIS)

    Avishai, Y.

    1985-01-01

    We consider tunneling through a potential barrier V(x) in the presence of a coupling term W(x,y). Let H(y) be the internal Hamiltonian associated with the coordinate y and let E 0 (x) be the ground state energy of the operator H(x;y) = H(y) + W(x,y) in which x is a parameter. Our result for the tunneling probability (in the WKB approximation) is P = exp(2i ∫ k 0 (x)dx) where, at energy E, k 0 (x) = [E-E 0 (x)-V(x)]sup(1/2)/(h/2π) is the local wave number in the presence of coupling. (orig.)

  8. Software reliability growth models with normal failure time distributions

    International Nuclear Information System (INIS)

    Okamura, Hiroyuki; Dohi, Tadashi; Osaki, Shunji

    2013-01-01

    This paper proposes software reliability growth models (SRGM) where the software failure time follows a normal distribution. The proposed model is mathematically tractable and has sufficient ability of fitting to the software failure data. In particular, we consider the parameter estimation algorithm for the SRGM with normal distribution. The developed algorithm is based on an EM (expectation-maximization) algorithm and is quite simple for implementation as software application. Numerical experiment is devoted to investigating the fitting ability of the SRGMs with normal distribution through 16 types of failure time data collected in real software projects

  9. U.S. Annual/Seasonal Climate Normals (1981-2010)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The U.S. Annual Climate Normals for 1981 to 2010 are 30-year averages of meteorological parameters that provide users with many tools to understand typical climate...

  10. Dynamical behaviour of the coupled diffusion map lattice

    International Nuclear Information System (INIS)

    Wei Wang; Cerdeira, H.A.

    1993-10-01

    In this paper we report the dynamical study of a coupled diffusive map lattice with the coupling between the elements only through the bifurcation parameter of the mapping function. The diffusive process of the lattice from an initially random distribution state to a homogeneous one and the stable range of the diffusive homogeneous attractor are discussed. For various coupling strengths we find that there are several types of spatio-temporal structures. In addition, the evolution of the lattice into chaos is studied and a largest Lyapunov exponent is used to characterize the dynamical behaviour. (author). 22 refs, 9 figs

  11. First-Principle Characterization for Singlet Fission Couplings.

    Science.gov (United States)

    Yang, Chou-Hsun; Hsu, Chao-Ping

    2015-05-21

    The electronic coupling for singlet fission, an important parameter for determining the rate, has been found to be too small unless charge-transfer (CT) components were introduced in the diabatic states, mostly through perturbation or a model Hamiltonian. In the present work, the fragment spin difference (FSD) scheme was generalized to calculate the singlet fission coupling. The largest coupling strength obtained was 14.8 meV for two pentacenes in a crystal structure, or 33.7 meV for a transition-state structure, which yielded a singlet fission lifetime of 239 or 37 fs, generally consistent with experimental results (80 fs). Test results with other polyacene molecules are similar. We found that the charge on one fragment in the S1 diabatic state correlates well with FSD coupling, indicating the importance of the CT component. The FSD approach is a useful first-principle method for singlet fission coupling, without the need to include the CT component explicitly.

  12. Perturbative Critical Behavior from Spacetime Dependent Couplings

    International Nuclear Information System (INIS)

    Torroba, Gonzalo

    2012-01-01

    We find novel perturbative fixed points by introducing mildly spacetime-dependent couplings into otherwise marginal terms. In four-dimensional QFT, these are physical analogues of the small-ε Wilson-Fisher fixed point. Rather than considering 4-ε dimensions, we stay in four dimensions but introduce couplings whose leading spacetime dependence is of the form λx κ μ κ , with a small parameter κ playing a role analogous to ε. We show, in φ 4 theory and in QED and QCD with massless flavors, that this leads to a critical theory under perturbative control over an exponentially wide window of spacetime positions x. The exact fixed point coupling λ * (x) in our theory is identical to the running coupling of the translationally invariant theory, with the scale replaced by 1/x. Similar statements hold for three-dimensional φ 6 theories and two-dimensional sigma models with curved target spaces. We also describe strongly coupled examples using conformal perturbation theory.

  13. Magnetic phase transitions with incommensurate structures in systems with coupled order parameters

    International Nuclear Information System (INIS)

    Izyumov, Yu.A.; Laptev, V.M.; Petrov, S.B.

    1984-01-01

    Modulated magnetic phases are investigated for the case when symmetry does not allow linear by gradients Lifshits invariants and magnetic momenta are converted by two irreducible representations. Possible phase diagrams with participation of incommensurable phases are plotted on the base of Ginsburg-Landau functional for 2 bound parameters of the order. The role of the highest harmonics in spatial distribution of the order parameters is clarified on the example of magnetic phase transitions in Er

  14. Chaos crisis in coupled Duffing's systems with initial phase difference

    International Nuclear Information System (INIS)

    Bi Qinsheng

    2007-01-01

    The dynamics of coupled Duffing's oscillators with initial phase difference is investigated in this Letter. For the averaged equations, different equilibrium points can be observed, the number of which may vary with the parameters. The stable equilibrium points, corresponding to the periodic motion of the original coupled oscillators, may coexist with different patterns of dynamics, including chaos. Furthermore, two different chaotic attractors associated with different attracting basin coexist for certain parameter conditions, which may interact with each other to form an enlarged chaotic attractor. Several new dynamical phenomena such as boundary chaos crises have been predicted as the initial phase difference varies

  15. Chimera states in two-dimensional networks of locally coupled oscillators

    Science.gov (United States)

    Kundu, Srilena; Majhi, Soumen; Bera, Bidesh K.; Ghosh, Dibakar; Lakshmanan, M.

    2018-02-01

    states in detail over a large range of coupling parameter. The existence of chimera states is confirmed by instantaneous angular frequency, order parameter and strength of incoherence.

  16. A universal order parameter for synchrony in networks of limit cycle oscillators

    Science.gov (United States)

    Schröder, Malte; Timme, Marc; Witthaut, Dirk

    2017-07-01

    We analyze the properties of order parameters measuring synchronization and phase locking in complex oscillator networks. First, we review network order parameters previously introduced and reveal several shortcomings: none of the introduced order parameters capture all transitions from incoherence over phase locking to full synchrony for arbitrary, finite networks. We then introduce an alternative, universal order parameter that accurately tracks the degree of partial phase locking and synchronization, adapting the traditional definition to account for the network topology and its influence on the phase coherence of the oscillators. We rigorously prove that this order parameter is strictly monotonously increasing with the coupling strength in the phase locked state, directly reflecting the dynamic stability of the network. Furthermore, it indicates the onset of full phase locking by a diverging slope at the critical coupling strength. The order parameter may find applications across systems where different types of synchrony are possible, including biological networks and power grids.

  17. Heart rate variability in normal-weight patients with polycystic ovary syndrome.

    Science.gov (United States)

    Kilit, Celal; Paşalı Kilit, Türkan

    2017-05-01

    Polycystic ovary syndrome (PCOS) is an endocrine disease closely related to several risk factors of cardiovascular disease. Obese women with PCOS show altered autonomic modulation. The results of studies investigating cardiac autonomic functions of normal-weight women with PCOS are conflicting. The aim of the study was to assess the reactivity of cardiac sympathovagal balance in normal-weight women with PCOS by heart rate variability analysis. We examined the heart rate variability in 60 normal-weight women with PCOS and compared them with that in 60 age-matched healthy women having a similar metabolic profile. Time and frequency domain parameters of heart rate variability were analyzed based on 5-min-long continuous electrocardiography recordings for the following 3 periods: (1) during rest in supine position, (2) during controlled breathing, and (3) during isometric handgrip exercise. Time and frequency domain parameters of heart rate variability for the 3 periods assessed were similar in the two groups. Although modified Ferriman-Gallwey score and serum testosterone and luteinizing hormone levels were significantly higher in women with PCOS, homeostatic model assessment-insulin resistance (HOMA-IR) was not different the between the PCOS and control groups. There were no significant correlations between serum testosterone levels and heart rate variability parameters among the study population. The findings of this study suggest that the reactivity of cardiac sympathovagal balance is not altered in normal-weight women with PCOS having a normal HOMA-IR.

  18. Muscular hypertrophy and atrophy in normal rats provoked by the administration of normal and denervated muscle extracts.

    Science.gov (United States)

    Agüera, Eduardo; Castilla, Salvador; Luque, Evelio; Jimena, Ignacio; Leiva-Cepas, Fernando; Ruz-Caracuel, Ignacio; Peña, José

    2016-12-01

    This study was conducted to determine the effects of extracts obtained from both normal and denervated muscles on different muscle types. Wistar rats were used and were divided into a control group and four experimental groups. Each experimental group was treated intraperitoneally during 10 consecutive days with a different extract. These extracts were obtained from normal soleus muscle, denervated soleus, normal extensor digitorum longus, and denervated extensor digitorum longus. Following treatment, the soleus and extensor digitorum longus muscles were obtained for study under optic and transmission electron microscope; morphometric parameters and myogenic responses were also analyzed. The results demonstrated that the treatment with normal soleus muscle and denervated soleus muscle extracts provoked hypertrophy and increased myogenic activity. In contrast, treatment with extracts from the normal and denervated EDL had a different effect depending on the muscle analyzed. In the soleus muscle it provoked hypertrophy of type I fibers and increased myogenic activity, while in the extensor digitorum longus atrophy of the type II fibers was observed without changes in myogenic activity. This suggests that the muscular responses of atrophy and hypertrophy may depend on different factors related to the muscle type which could be related to innervation.

  19. Coupled code analysis of uncertainty and sensitivity of Kalinin-3 benchmark

    Energy Technology Data Exchange (ETDEWEB)

    Pasichnyk, Ihor; Zwermann, Winfried; Velkov, Kiril [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) gGmbH, Garching (Germany); Nikonov, Sergey [VNIIAES, Moscow (Russian Federation)

    2016-09-15

    An uncertainty and sensitivity analysis is performed for the OECD/NEA coolant transient Benchmark (K-3) on measured data at Kalinin-3 Nuclear Power Plant (NPP). A switch off of one main coolant pump (MCP) at nominal reactor power is calculated using a coupled thermohydraulic and neutron-kinetic ATHLET-PARCS code. The objectives are to study uncertainty of total reactor power and to identify the main sources of reactor power uncertainty. The GRS uncertainty and sensitivity software package XSUSA is applied to propagate uncertainties in nuclear data libraries to the full core coupled transient calculations. A set of most important thermal-hydraulic parameters of the primary circuit is identified and a total of 23 thermohydraulic parameters are statistically varied using GRS code SUSA. The ATHLET model contains also a balance-of-plant (BOP) model which is simulated using ATHLET GCSM module. In particular the operation of the main steam generator regulators is modelled in detail. A set of 200 varied coupled ATHLET-PARCS calculations is analyzed. The results obtained show a clustering effect in the behavior of global reactor parameters. It is found that the GCSM system together with varied input parameters strongly influence the overall nuclear power plant behavior and can even lead to a new scenario. Possible reasons of the clustering effect are discussed in the paper. This work is a step forward in establishing a ''best-estimate calculations in combination with performing uncertainty analysis'' methodology for coupled full core calculations.

  20. Coupling effect on the Berry phase

    Directory of Open Access Journals (Sweden)

    Lijing Tian

    2016-11-01

    Full Text Available The Berry phase has universal applications in various fields. Here, we explore the coupling effect on the Berry phase of a two-level system adiabatically driven by a rotating classical field and interacting with a single quantized mode. Our simulations clearly reveal that the Berry phase change is quadratic proportional to the coupling constant if it is less than the level spacing between neighboring instantaneous eigenstates. Remarkably, if the nearest neighbouring level spacing is comparable with the coupling constant, this simple quadratic dependence is lost. Around this resonance, the Berry phase can be significantly tuned by slightly adjusting the parameters, such as the coupling constant, the frequency of the quantized mode, and the transition frequency. These numerical results, agreeing well with the perturbation theory calculations, provide an alternative approach to tune the Berry phase near the resonance, which is useful in quantum information science, i.e. designing quantum logic gates.

  1. Reconstruction of ensembles of coupled time-delay systems from time series.

    Science.gov (United States)

    Sysoev, I V; Prokhorov, M D; Ponomarenko, V I; Bezruchko, B P

    2014-06-01

    We propose a method to recover from time series the parameters of coupled time-delay systems and the architecture of couplings between them. The method is based on a reconstruction of model delay-differential equations and estimation of statistical significance of couplings. It can be applied to networks composed of nonidentical nodes with an arbitrary number of unidirectional and bidirectional couplings. We test our method on chaotic and periodic time series produced by model equations of ensembles of diffusively coupled time-delay systems in the presence of noise, and apply it to experimental time series obtained from electronic oscillators with delayed feedback coupled by resistors.

  2. Relaxation of coupled nuclear spin systems

    International Nuclear Information System (INIS)

    Koenigsberger, E.

    1985-05-01

    The subject of the present work is the relaxation behaviour of scalarly coupled spin-1/2 systems. In the theoretical part the semiclassical Redfield equations are used. Dipolar (D), Chemical Shift Anisotropy (CSA) and Random Field (RF) interactions are considered as relaxation mechanisms. Cross correlations of dipolar interactions of different nuclei pairs and those between the D and the CSA mechanisms are important. The model of anisotropic molecular rotational relaxation and the extreme narrowing approximation are used to obtain the spectral density functions. The longitudinal relaxation data are analyzed into normal modes following Werbelow and Grant. The time evolution of normal modes is derived for the AX system with D-CSA cross terms. In the experimental part the hypothesis of dimerization in the cinnamic acid and the methyl cinnamate - AMX systems with DD cross terms - is corroborated by T 1 -time measurements and a calculation of the diffusion constants. In pentachlorobenzene - an AX system - taking into account of D-CSA cross terms enables the complete determination of movements anosotropy and the determination of the sign of the indirect coupling constant 1 Jsub(CH). (G.Q.)

  3. Longitudinal relations between constructive and destructive conflict and couples' sleep.

    Science.gov (United States)

    El-Sheikh, Mona; Kelly, Ryan J; Koss, Kalsea J; Rauer, Amy J

    2015-06-01

    We examined longitudinal relations between interpartner constructive (negotiation) and destructive (psychological and physical aggression) conflict strategies and couples' sleep over 1 year. Toward explicating processes of effects, we assessed the intervening role of internalizing symptoms in associations between conflict tactics and couples' sleep. Participants were 135 cohabiting couples (M age = 37 years for women and 39 years for men). The sample included a large representation of couples exposed to economic adversity. Further, 68% were European American and the remainder were primarily African American. At Time 1 (T1), couples reported on their conflict and their mental health (depression, anxiety). At T1 and Time 2, sleep was examined objectively with actigraphs for 7 nights. Three sleep parameters were derived: efficiency, minutes, and latency. Actor-partner interdependence models indicated that husbands' use of constructive conflict forecasted increases in their own sleep efficiency as well as their own and their wives' sleep duration over time. Actor and partner effects emerged, and husbands' and wives' use of destructive conflict strategies generally predicted worsening of some sleep parameters over time. Several mediation and intervening effects were observed for destructive conflict strategies. Some of these relations reveal that destructive conflict is associated with internalizing symptoms, which in turn are associated with some sleep parameters longitudinally. These findings build on a small, albeit growing, literature linking sleep with marital functioning, and illustrate that consideration of relationship processes including constructive conflict holds promise for gaining a better understanding of factors that influence the sleep of men and women. (c) 2015 APA, all rights reserved).

  4. Acid-base changes in canine neonates following normal birth or dystocia.

    Science.gov (United States)

    Lúcio, C F; Silva, L C G; Rodrigues, J A; Veiga, G A L; Vannucchi, C I

    2009-07-01

    There are limited data concerning blood gas parameters in neonatal dogs. Knowledge of the normal physiology may facilitate effective therapeutic intervention and potentially reduce neonatal mortality. This study examined acid-base parameters in pups born at normal parturition (n = 27) compared with those born after obstetrical assistance or caesarean operation (n = 13) and those born following oxytocin (OXY) administration for treatment of uterine inertia (n = 11). Pups were subjected to an objective scoring method of neonatal health adapted from use in humans (the Apgar score) at birth and again at 5 and 60 min after birth. Venous blood samples were collected at 5 and 60 min after birth for evaluation of blood gas parameters. At birth, all pups had low Apgar scores and a mixed acidosis. The base excess was lowest for pups delivered after OXY administration. The Apgar score improved for all pups after 5 min of birth and there was an improvement in carbon dioxide tension, base excess and venous blood pH at 1 h, although in all pups a metabolic acidosis persisted. These data provide an important insight into neonatal physiology and the variability of blood gas parameters in pups born at normal and abnormal parturition and provide the basis for clinical decision making following dystocia.

  5. On entanglement of light and Stokes parameters

    International Nuclear Information System (INIS)

    Żukowski, Marek; Laskowski, Wiesław; Wieśniak, Marcin

    2016-01-01

    We present a new approach to Stokes parameters, which enables one to see better non-classical properties of bright quantum light, and of undefined overall photon numbers. The crucial difference is as follows. The standard quantum optical Stokes parameters are averages of differences of intensities of light registered at the two exits of polarization analyzers, and one gets their normalized version by dividing them by the average total intensity. The new ones are averages of the registered normalized Stokes parameters, for the duration of the experiment. That is, we redefine each Stokes observable as the difference of photon number operators at the two exits of a polarizing beam splitter multiplied by the inverse of their sum. The vacuum eigenvalue of the operator is defined a zero. We show that with such an approach one can obtain more sensitive entanglement indicators based on polarization measurements. (paper)

  6. On entanglement of light and Stokes parameters

    Science.gov (United States)

    Żukowski, Marek; Laskowski, Wiesław; Wieśniak, Marcin

    2016-08-01

    We present a new approach to Stokes parameters, which enables one to see better non-classical properties of bright quantum light, and of undefined overall photon numbers. The crucial difference is as follows. The standard quantum optical Stokes parameters are averages of differences of intensities of light registered at the two exits of polarization analyzers, and one gets their normalized version by dividing them by the average total intensity. The new ones are averages of the registered normalized Stokes parameters, for the duration of the experiment. That is, we redefine each Stokes observable as the difference of photon number operators at the two exits of a polarizing beam splitter multiplied by the inverse of their sum. The vacuum eigenvalue of the operator is defined a zero. We show that with such an approach one can obtain more sensitive entanglement indicators based on polarization measurements.

  7. Robust Parameter Coordination for Multidisciplinary Design

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This paper introduced a robust parameter coordination method to analyze parameter uncertainties so as to predict conflicts and coordinate parameters in multidisciplinary design. The proposed method is based on constraints network, which gives a formulated model to analyze the coupling effects between design variables and product specifications. In this model, interval boxes are adopted to describe the uncertainty of design parameters quantitatively to enhance the design robustness. To solve this constraint network model, a general consistent algorithm framework is designed and implemented with interval arithmetic and the genetic algorithm, which can deal with both algebraic and ordinary differential equations. With the help of this method, designers could infer the consistent solution space from the given specifications. A case study involving the design of a bogie dumping system demonstrates the usefulness of this approach.

  8. Charge dependence of the pion-nucleon coupling constant

    Directory of Open Access Journals (Sweden)

    V. A. Babenko

    2015-07-01

    Full Text Available On the basis of the Yukawa potential we study the pion-nucleon coupling constants for the neutral and charged pions assuming that nuclear forces at low energies are mainly determined by the exchange of virtual pions. We obtain the charged pseudovector pion-nucleon coupling constant f2π± = 0.0804(7 by making the use of experimental low-energy scattering parameters for the singlet pp- and np-scattering, and also by use of the neutral pseudovector pion-nucleon coupling constant f2π0 = 0.0749(7. Corresponding value of the charged pseudoscalar pion-nucleon coupling constant g2π0 / 4π = 14.55(13 is also determined. This calculated value of the charged pseudoscalar pion-nucleon coupling constant is in fully agreement with the experimental constant g2π0 / 4π = 14.52(26 obtained by the Uppsala Neutron Research Group. Our results show considerable charge splitting of the pion-nucleon coupling constant.

  9. [Hemostatic system parameters of placental extracts in normal pregnancy and severe preeclampsia].

    Science.gov (United States)

    López-Ramírez, Ysabel; Carvajal, Zoila; Arocha-Piñango, Carmen Luisa

    2006-09-01

    To better understand the role of the hemostatic mechanism in preeclampsia, placental extracts obtained from 26 normal pregnant women (NP) and 12 patients with severe pre-eclampsia (SPE) were analyzed to determine thrombomodulin (TM), tissue factor (TF), tissue-type plasminogen activator (tPA), plasminogen activator inhibitor (PAI) 1 and 2, and TF pathway inhibitor (TFPI). The results showed similar concentrations of TF, TM and PAI-2 in both groups, while tPA increased no significantly and TFPI and PAI-1 increased significantly in SPE placentas.

  10. Deterministic Diffusion in Delayed Coupled Maps

    International Nuclear Information System (INIS)

    Sozanski, M.

    2005-01-01

    Coupled Map Lattices (CML) are discrete time and discrete space dynamical systems used for modeling phenomena arising in nonlinear systems with many degrees of freedom. In this work, the dynamical and statistical properties of a modified version of the CML with global coupling are considered. The main modification of the model is the extension of the coupling over a set of local map states corresponding to different time iterations. The model with both stochastic and chaotic one-dimensional local maps is studied. Deterministic diffusion in the CML under variation of a control parameter is analyzed for unimodal maps. As a main result, simple relations between statistical and dynamical measures are found for the model and the cases where substituting nonlinear lattices with simpler processes is possible are presented. (author)

  11. How coupling affects closely packed rectenna arrays used for wireless power transmission

    Science.gov (United States)

    Walls, Deidra; Choi, Sang H.; Yoon, Hargsoon; Geddis, Demetris; Song, Kyo D.

    2017-04-01

    The development of power transmission by microwave beam power harvesting attracts manufactures for use of wireless power transmission. Optimizing maximum conversion efficiency is affected by many design parameters, and has been mainly focused previously. Combining several rectennas in one array potentially aides in the amount of microwave energy that can be harvested for energy conversion. Closely packed rectenna arrays is the result of the demand to minimize size and weight for flexibility. This paper specifically focuses on the coupling effects on power; mutual coupling, comparing sparameters and gain total while varying effective parameters. This paper investigates how coupling between each dipole positively and negatively affects the microwave energy, harvesting, and the design limitations.

  12. On the dynamics of traveling phase-oscillators with positive and negative couplings

    International Nuclear Information System (INIS)

    Choi, Jungzae; Choi, Mooyoung; Yoon, Byunggook

    2014-01-01

    We investigate numerically the dynamics of traveling clusters in systems of phase oscillators, some of which possess positive couplings and others negative couplings. The phase distribution, speed of traveling, and average separation between clusters, as well as the order parameters for positive and negative oscillators, are computed as the ratio of the two coupling constants and the fraction of positive oscillators are varied. The dependence of the traveling speed on these parameters is obtained and is observed to fit well with the numerical data of the systems. With the help of this, we describe the conditions for the traveling state to appear in the systems with and without a periodic driving field.

  13. A new relation of parameters of Bohr-Mottelson rotational spectra formula

    International Nuclear Information System (INIS)

    Li Mingliang; Xu Fuxin

    2003-01-01

    With the first three terms of Harris formula included and Mottelson's method followed, a new relation of the parameters of Bohr-Mottelson rotational spectra formula is brought forward. Superdeformed bands of even-even nuclei and normal deformed bands of nuclei in actinide and rare-earth are fitted with four-parameter Bohr-Mottelson rotational spectra formula. The relations of the parameters A, B, C, D are studied. The result show, for normal deformed bands, the new relation approach the experiment value in the same degree as the relation deduced from ab formula, but for superdeformed bands, the new relation is closer to the experiment than the relation deduced from ab formula. Three-parameter Harris formula may have better convergence than two-parameter Harris formula

  14. Obesity and Sexuality Among Older Couples.

    Science.gov (United States)

    Kwon, Soyoung; Schafer, Markus H

    2016-04-01

    We investigate whether obesity is associated with sexual activity, sexual frequency, and the range of sexual behaviors in heterosexual older couples. We assess to what extent associations between obesity and sexuality are explained by physical, psychological, and sexual health, and by relationship quality. We use data from 1,698 older adults in 849 partnered dyads in the 2010-2011 wave of the National Social Life, Health, and Aging Project and conduct couple-level analysis featuring women's and men's characteristics. Women's obesity-particularly at severe levels-is negatively associated with coupled sexual activity, and that the association is not mediated by hypothesized mediators. Men's obesity did not have any association with sexual activity. There was no significant difference between overweight and normal weight adults across all three sexuality measures. The growing number of older adults with high levels of body mass index, particularly women, may face certain difficulties in maintaining active sexual lives.

  15. Calculation of coupling factor for double-period accelerating structure

    International Nuclear Information System (INIS)

    Bian Xiaohao; Chen Huaibi; Zheng Shuxin

    2005-01-01

    In the design of the linear accelerating structure, the coupling factor between cavities is a crucial parameter. The error of coupling factor accounts for the electric or magnetic field error mainly. To accurately design the coupling iris, the accurate calculation of coupling factor is essential. The numerical simulation is widely used to calculate the coupling factor now. By using MAFIA code, two methods have been applied to calculate the dispersion characteristics of the single-period structure, one method is to simulate the traveling wave mode by the period boundary condition; another method is to simulate the standing wave mode by the electrical boundary condition. In this work, the authors develop the two methods to calculate the coupling factor of double-period accelerating structure. Compared to experiment, the results for both methods are very similar, and in agreement with measurement within 15% deviation. (authors)

  16. Strongly coupled models with a Higgs-like boson

    International Nuclear Information System (INIS)

    Pich, A.; Rosell, I.; Sanz-Cillero, J. J.

    2013-01-01

    Considering the one-loop calculation of the oblique S and T parameters, we have presented a study of the viability of strongly-coupled scenarios of electroweak symmetry breaking with a light Higgs-like boson. The calculation has been done by using an effective Lagrangian, being short-distance constraints and dispersive relations the main ingredients of the estimation. Contrary to a widely spread believe, we have demonstrated that strongly coupled electroweak models with massive resonances are not in conflict with experimental constraints on these parameters and the recently observed Higgs-like resonance. So there is room for these models, but they are stringently constrained. The vector and axial-vector states should be heavy enough (with masses above the TeV scale), the mass splitting between them is highly preferred to be small and the Higgs-like scalar should have a WW coupling close to the Standard Model one. It is important to stress that these conclusions do not depend critically on the inclusion of the second Weinberg sum rule. (authors)

  17. A power-law coupled three-form dark energy model

    Science.gov (United States)

    Yao, Yan-Hong; Yan, Yang-Jie; Meng, Xin-He

    2018-02-01

    We consider a field theory model of coupled dark energy which treats dark energy as a three-form field and dark matter as a spinor field. By assuming the effective mass of dark matter as a power-law function of the three-form field and neglecting the potential term of dark energy, we obtain three solutions of the autonomous system of evolution equations, including a de Sitter attractor, a tracking solution and an approximate solution. To understand the strength of the coupling, we confront the model with the latest Type Ia Supernova, Baryon Acoustic Oscillations and Cosmic Microwave Background radiation observations, with the conclusion that the combination of these three databases marginalized over the present dark matter density parameter Ω _{m0} and the present three-form field κ X0 gives stringent constraints on the coupling constant, - 0.017< λ <0.047 (2σ confidence level), by which we present the model's applicable parameter range.

  18. A power-law coupled three-form dark energy model

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Yan-Hong; Yan, Yang-Jie; Meng, Xin-He [Nankai University, Department of Physics, Tianjin (China)

    2018-02-15

    We consider a field theory model of coupled dark energy which treats dark energy as a three-form field and dark matter as a spinor field. By assuming the effective mass of dark matter as a power-law function of the three-form field and neglecting the potential term of dark energy, we obtain three solutions of the autonomous system of evolution equations, including a de Sitter attractor, a tracking solution and an approximate solution. To understand the strength of the coupling, we confront the model with the latest Type Ia Supernova, Baryon Acoustic Oscillations and Cosmic Microwave Background radiation observations, with the conclusion that the combination of these three databases marginalized over the present dark matter density parameter Ω{sub m0} and the present three-form field κX{sub 0} gives stringent constraints on the coupling constant, -0.017 < λ < 0.047 (2σ confidence level), by which we present the model's applicable parameter range. (orig.)

  19. Electrolarynx Voice Recognition Utilizing Pulse Coupled Neural Network

    Directory of Open Access Journals (Sweden)

    Fatchul Arifin

    2010-08-01

    Full Text Available The laryngectomies patient has no ability to speak normally because their vocal chords have been removed. The easiest option for the patient to speak again is by using electrolarynx speech. This tool is placed on the lower chin. Vibration of the neck while speaking is used to produce sound. Meanwhile, the technology of "voice recognition" has been growing very rapidly. It is expected that the technology of "voice recognition" can also be used by laryngectomies patients who use electrolarynx.This paper describes a system for electrolarynx speech recognition. Two main parts of the system are feature extraction and pattern recognition. The Pulse Coupled Neural Network – PCNN is used to extract the feature and characteristic of electrolarynx speech. Varying of β (one of PCNN parameter also was conducted. Multi layer perceptron is used to recognize the sound patterns. There are two kinds of recognition conducted in this paper: speech recognition and speaker recognition. The speech recognition recognizes specific speech from every people. Meanwhile, speaker recognition recognizes specific speech from specific person. The system ran well. The "electrolarynx speech recognition" has been tested by recognizing of “A” and "not A" voice. The results showed that the system had 94.4% validation. Meanwhile, the electrolarynx speaker recognition has been tested by recognizing of “saya” voice from some different speakers. The results showed that the system had 92.2% validation. Meanwhile, the best β parameter of PCNN for electrolarynx recognition is 3.

  20. Spin-charge coupled dynamics driven by a time-dependent magnetization

    Science.gov (United States)

    Tölle, Sebastian; Eckern, Ulrich; Gorini, Cosimo

    2017-03-01

    The spin-charge coupled dynamics in a thin, magnetized metallic system are investigated. The effective driving force acting on the charge carriers is generated by a dynamical magnetic texture, which can be induced, e.g., by a magnetic material in contact with a normal-metal system. We consider a general inversion-asymmetric substrate/normal-metal/magnet structure, which, by specifying the precise nature of each layer, can mimic various experimentally employed setups. Inversion symmetry breaking gives rise to an effective Rashba spin-orbit interaction. We derive general spin-charge kinetic equations which show that such spin-orbit interaction, together with anisotropic Elliott-Yafet spin relaxation, yields significant corrections to the magnetization-induced dynamics. In particular, we present a consistent treatment of the spin density and spin current contributions to the equations of motion, inter alia, identifying a term in the effective force which appears due to a spin current polarized parallel to the magnetization. This "inverse-spin-filter" contribution depends markedly on the parameter which describes the anisotropy in spin relaxation. To further highlight the physical meaning of the different contributions, the spin-pumping configuration of typical experimental setups is analyzed in detail. In the two-dimensional limit the buildup of dc voltage is dominated by the spin-galvanic (inverse Edelstein) effect. A measuring scheme that could isolate this contribution is discussed.

  1. Polaritonic normal-mode splitting and light localization in a one-dimensional nanoguide

    NARCIS (Netherlands)

    Haakh, Harald R.; Faez, Sanli; Sandoghdar, Vahid

    2016-01-01

    We theoretically investigate the interaction of light and a collection of emitters in a subwavelength one-dimensional medium (nanoguide), where enhanced emitter-photon coupling leads to efficient multiple scattering of photons. We show that the spectrum of the transmitted light undergoes normal-mode

  2. Signatures of Majorana Kramers pairs in superconductor-Luttinger liquid and superconductor-quantum dot-normal lead junctions

    DEFF Research Database (Denmark)

    Kim, Younghyun; Liu, Dong E.; Gaidamauskas, Erikas

    2016-01-01

    Time-reversal invariant topological superconductors are characterized by the presence of Majorana Kramers pairs localized at defects. One of the transport signatures of Majorana Kramers pairs is the quantized differential conductance of $4e^2/h$ when such a one-dimensional superconductor is coupled...... to that in a spin-triplet superconductor - normal lead junction. We also study here a quantum dot coupled to a normal lead and a Majorana Kramers pair and investigate the effect of local repulsive interactions leading to an interplay between Kondo and Majorana correlations. Using a combination of renormalization...... sector of the topological superconductor. We investigate the stability of the Majorana phase with respect to Gaussian fluctuations....

  3. Warm Inflation with Nonminimal Derivative Coupling

    International Nuclear Information System (INIS)

    Rashidi, N.; Nozari, Kourosh; Shoukrani, M.

    2014-01-01

    We study the effects of the nonminimal derivative coupling on the dissipative dynamics of the warm inflation where the scalar field is nonminimally coupled to gravity via its kinetic term. We present a detailed calculation of the cosmological perturbations in this setup. We use the recent observational data from the joint data set of WMAP9 + BAO + H 0 and also the Planck satellite data to constrain our model parameters for natural and chaotic inflation potentials. We study also the levels of non-Gaussianity in this warm inflation model and we confront the result with recent observational data from the Planck satellite

  4. A Thermo-Hydro-Mechanical coupled Numerical modeling of Injection-induced seismicity on a pre-existing fault

    Science.gov (United States)

    Kim, Jongchan; Archer, Rosalind

    2017-04-01

    In terms of energy development (oil, gas and geothermal field) and environmental improvement (carbon dioxide sequestration), fluid injection into subsurface has been dramatically increased. As a side effect of these operations, a number of injection-induced seismic activities have also significantly risen. It is known that the main causes of induced seismicity are changes in local shear and normal stresses and pore pressure as well. This mechanism leads to increase in the probability of earthquake occurrence on permeable pre-existing fault zones predominantly. In this 2D fully coupled THM geothermal reservoir numerical simulation of injection-induced seismicity, we investigate the thermal, hydraulic and mechanical behavior of the fracture zone, considering a variety of 1) fault permeability, 2) injection rate and 3) injection temperature to identify major contributing parameters to induced seismic activity. We also calculate spatiotemporal variation of the Coulomb stress which is a combination of shear stress, normal stress and pore pressure and lastly forecast the seismicity rate on the fault zone by computing the seismic prediction model of Dieterich (1994).

  5. An assessment of mode-coupling and falling-friction mechanisms in railway curve squeal through a simplified approach

    Science.gov (United States)

    Ding, Bo; Squicciarini, Giacomo; Thompson, David; Corradi, Roberto

    2018-06-01

    Curve squeal is one of the most annoying types of noise caused by the railway system. It usually occurs when a train or tram is running around tight curves. Although this phenomenon has been studied for many years, the generation mechanism is still the subject of controversy and not fully understood. A negative slope in the friction curve under full sliding has been considered to be the main cause of curve squeal for a long time but more recently mode coupling has been demonstrated to be another possible explanation. Mode coupling relies on the inclusion of both the lateral and vertical dynamics at the contact and an exchange of energy occurs between the normal and the axial directions. The purpose of this paper is to assess the role of the mode-coupling and falling-friction mechanisms in curve squeal through the use of a simple approach based on practical parameter values representative of an actual situation. A tramway wheel is adopted to study the effect of the adhesion coefficient, the lateral contact position, the contact angle and the damping ratio. Cases corresponding to both inner and outer wheels in the curve are considered and it is shown that there are situations in which both wheels can squeal due to mode coupling. Additionally, a negative slope is introduced in the friction curve while keeping active the vertical dynamics in order to analyse both mechanisms together. It is shown that, in the presence of mode coupling, the squealing frequency can differ from the natural frequency of either of the coupled wheel modes. Moreover, a phase difference between wheel vibration in the vertical and lateral directions is observed as a characteristic of mode coupling. For both these features a qualitative comparison is shown with field measurements which show the same behaviour.

  6. Two-qubit gate operations in superconducting circuits with strong coupling and weak anharmonicity

    International Nuclear Information System (INIS)

    Lü Xinyou; Ashhab, S; Cui Wei; Wu Rebing; Nori, Franco

    2012-01-01

    We theoretically study the implementation of two-qubit gates in a system of two coupled superconducting qubits. In particular, we analyze two-qubit gate operations under the condition that the coupling strength is comparable with or even larger than the anharmonicity of the qubits. By numerically solving the time-dependent Schrödinger equation under the assumption of negligible decoherence, we obtain the dependence of the two-qubit gate fidelity on the system parameters in the case of both direct and indirect qubit-qubit coupling. Our numerical results can be used to identify the ‘safe’ parameter regime for experimentally implementing two-qubit gates with high fidelity in these systems. (paper)

  7. Obliquity histories of Earth and Mars: Influence of inertial and dissipative core-mantle coupling

    Science.gov (United States)

    Bills, Bruce G.

    1990-01-01

    For both the Earth and Mars, secular variations in the angular separation of the spin axis from the orbit normal are suspected of driving major climatic changes. There is considerable interest in determining the amplitude and timing of these obliquity variations. If the orientation of the orbital plane were inertially fixed, and the planet were to act as a rigid body in it response to precessional torques, the spin axis would simply precess around the orbit at a fixed obliquity and at a uniform angular rate. The precession rate parameter depends on the principal moments of inertia and rotation rate of the perturbed body, and on the gravitational masses and semiminor axes of the perturbing bodies. For Mars, the precession rate is not well known, but probably lies in the interval 8 to 10 arcsec/year. Gravitational interactions between the planets lead to secular motions of the orbit planes. In the rigid body case, the spin axis still attempts to precess about the instantaneous orbit normal, but now the obliquity varies. The hydrostatic figure of a planet represents a compromise between gravitation, which attempts to attain spherical symmetry, and rotation, which prefers cylindrical symmetry. Due to their higher mean densities the cores of the Earth and Mars will be more nearly spherical than the outer layers of these planets. On short time scales it is appropriate to consider the core to be an inviscid fluid constrained to move with the ellipsoidal region bounded by the rigid mantle. The inertial coupling provided by this mechanism is effective whenever the ellipticicy of the container exceeds the ratio of precessional to rotational rates. If the mantle were actually rigid, this would be an extremely effective type of coupling. However, on sufficiently long time scales, the mantle will deform viscously and can accommodate the motions of the core fluid. A fundamentally different type of coupling is provided by electromagnetic or viscous torques. This type of coupling

  8. Pure spin current manipulation in antiferromagnetically exchange coupled heterostructures

    Science.gov (United States)

    Avilés-Félix, L.; Butera, A.; González-Chávez, D. E.; Sommer, R. L.; Gómez, J. E.

    2018-03-01

    We present a model to describe the spin currents generated by ferromagnet/spacer/ferromagnet exchange coupled trilayer systems and heavy metal layers with strong spin-orbit coupling. By exploiting the magnitude of the exchange coupling (oscillatory RKKY-like coupling) and the spin-flop transition in the magnetization process, it has been possible to produce spin currents polarized in arbitrary directions. The spin-flop transition of the trilayer system originates pure spin currents whose polarization vector depends on the exchange field and the magnetization equilibrium angles. We also discuss a protocol to control the polarization sign of the pure spin current injected into the metallic layer by changing the initial conditions of magnetization of the ferromagnetic layers previously to the spin pumping and inverse spin Hall effect experiments. The small differences in the ferromagnetic layers lead to a change in the magnetization vector rotation that permits the control of the sign of the induced voltage components due to the inverse spin Hall effect. Our results can lead to important advances in hybrid spintronic devices with new functionalities, particularly, the ability to control microscopic parameters such as the polarization direction and the sign of the pure spin current through the variation of macroscopic parameters, such as the external magnetic field or the thickness of the spacer in antiferromagnetic exchange coupled systems.

  9. Evaluation of coupling terms between intra- and intermolecular vibrations in coarse-grained normal-mode analysis: Does a stronger acid make a stiffer hydrogen bond?

    Science.gov (United States)

    Houjou, Hirohiko

    2011-10-01

    Using theory of harmonic normal-mode vibration analysis, we developed a procedure for evaluating the anisotropic stiffness of intermolecular forces. Our scheme for coarse-graining of molecular motions is modified so as to account for intramolecular vibrations in addition to relative translational/rotational displacement. We applied this new analytical scheme to four carboxylic acid dimers, for which coupling between intra- and intermolecular vibrations is crucial for determining the apparent stiffness of the intermolecular double hydrogen bond. The apparent stiffness constant was analyzed on the basis of a conjunct spring model, which defines contributions from true intermolecular stiffness and molecular internal stiffness. Consequently, the true intermolecular stiffness was in the range of 43-48 N m-1 for all carboxylic acids studied, regardless of the molecules' acidity. We concluded that the difference in the apparent stiffness can be attributed to differences in the internal stiffness of the respective molecules.

  10. Modulational instability of coupled waves

    International Nuclear Information System (INIS)

    McKinstrie, C.J.; Bingham, R.

    1989-01-01

    The collinear propagation of an arbitrary number of finite-amplitude waves is modeled by a system of coupled nonlinear Schroedinger equations; one equation for each complex wave amplitude. In general, the waves are modulationally unstable with a maximal growth rate larger than the modulational growth rate of any wave alone. Moreover, waves that are modulationally stable by themselves can be driven unstable by the nonlinear coupling. The general theory is then applied to the relativistic modulational instability of two laser beams in a beat-wave accelerator. For parameters typical of a proposed beat-wave accelerator, this instability can seriously distort the incident laser pulse shapes on the particle-acceleration time scale, with detrimental consequences for particle acceleration

  11. Self-induced steps in a small Josephson junction strongly coupled to a multimode resonator

    DEFF Research Database (Denmark)

    Larsen, A.; Jensen, H. Dalsgaard; Mygind, Jesper

    1991-01-01

    An equally spaced series of very large and nearly constant-voltage self-induced singularities has been observed in the dc I-V characteristics of a small Josephson tunnel junction strongly coupled to a resonant section of a superconducting transmission line. The system allows extremely high values...... of the coupling parameter. The current steps are due to subharmonic parametric excitation of the fundamental mode of the resonator loaded by the junction admittance. Using an applied magnetic field to vary the coupling parameter, we traced out half-integer steps as well as the mode steps known from more weakly...

  12. CT quantification of lung and airways in normal Korean subjects

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Song Soo; Lee, Jeong Eun; Shin, Hye Soo [Dept. of Radiology, Chungnam National University Hospital, Chungnam National University School of Medicine, Daejeon (Korea, Republic of); Jin, Gong Yong; Li, Yuan Zhe [Dept. of Radiology, Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju (Korea, Republic of)

    2017-08-01

    To measure and compare the quantitative parameters of the lungs and airways in Korean never-smokers and current or former smokers (“ever-smokers”). Never-smokers (n = 119) and ever-smokers (n = 45) who had normal spirometry and visually normal chest computed tomography (CT) results were retrospectively enrolled in this study. For quantitative CT analyses, the low attenuation area (LAA) of LAA{sub I-950}, LAA{sub E-856}, CT attenuation value at the 15th percentile, mean lung attenuation (MLA), bronchial wall thickness of inner perimeter of a 10 mm diameter airway (Pi10), total lung capacity (TLC{sub CT}), and functional residual capacity (FRC{sub CT}) were calculated based on inspiratory and expiratory CT images. To compare the results between groups according to age, sex, and smoking history, independent t test, one way ANOVA, correlation test, and simple and multiple regression analyses were performed. The values of attenuation parameters and volume on inspiratory and expiratory quantitative computed tomography (QCT) were significantly different between males and females (p < 0.001). The MLA and the 15th percentile value on inspiratory QCT were significantly lower in the ever-smoker group than in the never-smoker group (p < 0.05). On expiratory QCT, all lung attenuation parameters were significantly different according to the age range (p < 0.05). Pi10 in ever-smokers was significantly correlated with forced expiratory volume in 1 second/forced vital capacity (r = −0.455, p = 0.003). In simple and multivariate regression analyses, TLC{sub CT}, FRC{sub CT}, and age showed significant associations with lung attenuation (p < 0.05), and only TLC{sub CT} was significantly associated with inspiratory Pi10. In Korean subjects with normal spirometry and visually normal chest CT, there may be significant differences in QCT parameters according to sex, age, and smoking history.

  13. CT quantification of lung and airways in normal Korean subjects

    International Nuclear Information System (INIS)

    Kim, Song Soo; Lee, Jeong Eun; Shin, Hye Soo; Jin, Gong Yong; Li, Yuan Zhe

    2017-01-01

    To measure and compare the quantitative parameters of the lungs and airways in Korean never-smokers and current or former smokers (“ever-smokers”). Never-smokers (n = 119) and ever-smokers (n = 45) who had normal spirometry and visually normal chest computed tomography (CT) results were retrospectively enrolled in this study. For quantitative CT analyses, the low attenuation area (LAA) of LAA_I_-_9_5_0, LAA_E_-_8_5_6, CT attenuation value at the 15th percentile, mean lung attenuation (MLA), bronchial wall thickness of inner perimeter of a 10 mm diameter airway (Pi10), total lung capacity (TLC_C_T), and functional residual capacity (FRC_C_T) were calculated based on inspiratory and expiratory CT images. To compare the results between groups according to age, sex, and smoking history, independent t test, one way ANOVA, correlation test, and simple and multiple regression analyses were performed. The values of attenuation parameters and volume on inspiratory and expiratory quantitative computed tomography (QCT) were significantly different between males and females (p < 0.001). The MLA and the 15th percentile value on inspiratory QCT were significantly lower in the ever-smoker group than in the never-smoker group (p < 0.05). On expiratory QCT, all lung attenuation parameters were significantly different according to the age range (p < 0.05). Pi10 in ever-smokers was significantly correlated with forced expiratory volume in 1 second/forced vital capacity (r = −0.455, p = 0.003). In simple and multivariate regression analyses, TLC_C_T, FRC_C_T, and age showed significant associations with lung attenuation (p < 0.05), and only TLC_C_T was significantly associated with inspiratory Pi10. In Korean subjects with normal spirometry and visually normal chest CT, there may be significant differences in QCT parameters according to sex, age, and smoking history

  14. Normalization of Gravitational Acceleration Models

    Science.gov (United States)

    Eckman, Randy A.; Brown, Aaron J.; Adamo, Daniel R.

    2011-01-01

    Unlike the uniform density spherical shell approximations of Newton, the con- sequence of spaceflight in the real universe is that gravitational fields are sensitive to the nonsphericity of their generating central bodies. The gravitational potential of a nonspherical central body is typically resolved using spherical harmonic approximations. However, attempting to directly calculate the spherical harmonic approximations results in at least two singularities which must be removed in order to generalize the method and solve for any possible orbit, including polar orbits. Three unique algorithms have been developed to eliminate these singularities by Samuel Pines [1], Bill Lear [2], and Robert Gottlieb [3]. This paper documents the methodical normalization of two1 of the three known formulations for singularity-free gravitational acceleration (namely, the Lear [2] and Gottlieb [3] algorithms) and formulates a general method for defining normalization parameters used to generate normalized Legendre Polynomials and ALFs for any algorithm. A treatment of the conventional formulation of the gravitational potential and acceleration is also provided, in addition to a brief overview of the philosophical differences between the three known singularity-free algorithms.

  15. Coupling q-Deformed Dark Energy to Dark Matter

    Directory of Open Access Journals (Sweden)

    Emre Dil

    2016-01-01

    Full Text Available We propose a novel coupled dark energy model which is assumed to occur as a q-deformed scalar field and investigate whether it will provide an expanding universe phase. We consider the q-deformed dark energy as coupled to dark matter inhomogeneities. We perform the phase-space analysis of the model by numerical methods and find the late-time accelerated attractor solutions. The attractor solutions imply that the coupled q-deformed dark energy model is consistent with the conventional dark energy models satisfying an acceleration phase of universe. At the end, we compare the cosmological parameters of deformed and standard dark energy models and interpret the implications.

  16. Analysis of neutron cross sections using the coupled-channel theory

    International Nuclear Information System (INIS)

    Tanaka, Shigeya

    1975-01-01

    Fast neutron total and scattering cross sections calculated with the coupled-channel theory and the spherical optical model are compared with experimental data. The optical-potential parameters used in both the calculations were obtained from comparison of calculations with scattering data for 209 Bi. The calculations for total cross sections were made for thirty-five nuclides from 23 Na to 239 Pu in the energy range of 0.25 to 15 MeV, and good results were obtained with the coupled-channel calculations. The comparisons of the calculations with the elastic data for about twenty nuclides were made at incident energies of 8 and 14 MeV. In general, the coupled-channel calculations at 8 MeV have given better agreements with the experimental data than the spherical optical-model calculations. At 14 MeV, differences between both the calculations were small. The analysis was also made for the elastic and inelastic scattering by several nuclei such as Fe, Ni, 120 Sn, Pu in the low energy region, and good results have been given by the coupled-channel calculations. Thus, it is demonstrated that the coupled-channel calculations with one set of the optical parameters well reproduce the total and scattering cross sections over a wide energy and mass region. (auth.)

  17. Resonance parameter analysis with SAMMY

    International Nuclear Information System (INIS)

    Larson, N.M.; Perey, F.G.

    1988-01-01

    The multilevel R-matrix computer code SAMMY has evolved over the past decade to become an important analysis tool for neutron data. SAMMY uses the Reich-Moore approximation to the multilevel R-matrix and includes an optional logarithmic parameterization of the external R-function. Doppler broadening is simulated either by numerical integration using the Gaussian approximation to the free gas model or by a more rigorous solution of the partial differential equation equivalent to the exact free gas model. Resolution broadening of cross sections and derivatives also has new options that more accurately represent the experimental situation. SAMMY treats constant normalization and some types of backgrounds directly and treats other normalizations and/or backgrounds with the introduction of user-generated partial derivatives. The code uses Bayes' method as an efficient alternative to least squares for fitting experimental data. SAMMY allows virtually any parameter to be varied and outputs values, uncertainties, and covariance matrix for all varied parameters. Versions of SAMMY exist for VAX, FPS, and IBM computers

  18. The Interaction of a N-Type Four Level Atom with the Electromagnetic Field for a Kerr Medium Induced Intensity-Dependent Coupling

    Science.gov (United States)

    Othman, Anas; Yevick, David

    2018-01-01

    The interaction of a N-type four-level atom with a single field in the presence of an intensity-dependent coupling in a nonlinear Kerr medium is investigated. The exact analytic solution is obtained in the case that the atom and electromagnetic field are initially in a higher excited state and a coherent state, respectively. It is then demonstrated that effects such as nonclassical light generation, degree of entanglement stabilization, Kerr medium nonclassical control, and squeezed light are can be more efficiently implemented within this four-level framework than in many competing procedures. Additionally, inversion, linear entropy, Mandel Q-parameter and normal squeezing dynamics are examined.

  19. Spin Chern number and topological phase transition on the Lieb lattice with spin–orbit coupling

    International Nuclear Information System (INIS)

    Chen, Rui; Zhou, Bin

    2017-01-01

    We propose that quantum anomalous Hall effect may occur in the Lieb lattice, when Rashba spin–orbit coupling, spin-independent and spin-dependent staggered potentials are introduced into the lattice. It is found that spin Chern numbers of two degenerate flat bands change from 0 to ±2 due to Rashba spin–orbit coupling effect. The inclusion of Rashba spin–orbit coupling and two kinds of staggered potentials opens a gap between the two flat bands. The topological property of the gap is determined by the amplitudes of Rashba spin–orbit coupling and staggered potentials, and thus the topological phase transition from quantum anomalous Hall effect to normal insulator can occur. Finally, the topological phase transition from quantum spin Hall state to normal insulator is discussed when Rashba spin–orbit coupling and intrinsic spin–orbit coupling coexist in the Lieb lattice. - Highlights: • Spin Chern numbers of the bulk states on the Lieb lattice are calculated. • RSOC plays an important role on the topological phase transition on the Lieb lattice. • Quantum anomalous Hall effect can occur due to RSOC and staggered potentials. • Topological phase transition can occur when ISOC and RSOC coexist.

  20. Inference of Time-Evolving Coupled Dynamical Systems in the Presence of Noise

    Science.gov (United States)

    Stankovski, Tomislav; Duggento, Andrea; McClintock, Peter V. E.; Stefanovska, Aneta

    2012-07-01

    A new method is introduced for analysis of interactions between time-dependent coupled oscillators, based on the signals they generate. It distinguishes unsynchronized dynamics from noise-induced phase slips and enables the evolution of the coupling functions and other parameters to be followed. It is based on phase dynamics, with Bayesian inference of the time-evolving parameters achieved by shaping the prior densities to incorporate knowledge of previous samples. The method is tested numerically and applied to reveal and quantify the time-varying nature of cardiorespiratory interactions.