WorldWideScience

Sample records for normal zone detectors

  1. Normal-zone detectors for the MFTF-B coils. Revision 1

    International Nuclear Information System (INIS)

    Owen, E.W.; Shimer, D.W.

    1983-01-01

    In order to protect a set of inductively coupled superconducting magnets, it is necessary to locate and measure normal zone voltages that are small compared with the mutual and self-induced voltages. The method described in this report uses two sets of voltage measurements to locate and measure one or more normal zones in any number of coupled coils. One set of voltages is the outputs of bridges that balance out the self-induced voltages. The other set of voltages can be the voltages across the coils, although alternatives are possible. The two sets of equations form a single combined set of equations. Each normal zone location or combination of normal zones has a set of these combined equations associated with it. It is demonstrated that the normal zone can be located and the correct set chosen, allowing determination of the size of the normal zone. Only a few operations take place in a working detector: multiplication of a constant, addition, and simple decision-making. In many cases the detector for each coil, although weakly linked to the other detectors, can be considered to be independent. An example of the detector design is given for four coils with realistic parameters. The effect on accuracy of changes in the system parameters is discussed

  2. Normal zone detectors for a large number of inductively coupled coils

    International Nuclear Information System (INIS)

    Owen, E.W.; Shimer, D.W.

    1983-01-01

    In order to protect a set of inductively coupled superconducting magnets, it is necessary to locate and measure normal zone voltages that are small compared with the mutual and self-induced voltages. The method described in this report uses two sets of voltage measurements to locate and measure one or more normal zones in any number of coupled coils. One set of voltages is the outputs of bridges that balance out the self-induced voltages The other set of voltages can be the voltages across the coils, although alternatives are possible. The two sets of equations form a single combined set of equations. Each normal zone location or combination of normal zones has a set of these combined equations associated with it. It is demonstrated that the normal zone can be located and the correct set chosen, allowing determination of the size of the normal zone. Only a few operations take plae in a working detector: multiplication of a constant, addition, and simple decision-making. In many cases the detector for each coil, although weakly linked to the other detectors, can be considered to be independent. An example of the detector design is given for four coils with realistic parameters. The effect on accuracy of changes in the system parameters is discussed

  3. Normal zone detectors for a large number of inductively coupled coils

    International Nuclear Information System (INIS)

    Owen, E.W.; Shimer, D.W.

    1983-01-01

    In order to protect a set of inductively coupled superconducting magnets, it is necessary to locate and measure normal zone voltages that are small compared with the mutual and self-induced voltages. The method described in this paper uses two sets of voltage measurements to locate and measure one or more normal zones in any number of coupled coils. One set of voltages is the outputs of bridges that balance out the self-induced voltages. The other set of voltages can be the voltages across the coils, although alternatives are possible. The two sets of equations form a single combined set of equations. Each normal zone location or combination of normal zones has a set of these combined equations associated with it. It is demonstrated that the normal zone can be located and the correct set chosen, allowing determination of the size of the normal zone. Only a few operations take place in a working detector: multiplication of a constant, addition, and simple decision-making. In many cases the detector for each coil, although weakly linked to the other detectors, can be considered to be independent

  4. Normal zone detectors for a large number of inductively coupled coils. Revision 1

    International Nuclear Information System (INIS)

    Owen, E.W.; Shimer, D.W.

    1983-01-01

    In order to protect a set of inductively coupled superconducting magnets, it is necessary to locate and measure normal zone voltages that are small compared with the mutual and self-induced voltages. The method described in this paper uses two sets of voltage measurements to locate and measure one or more normal zones in any number of coupled coils. One set of voltages is the outputs of bridges that balance out the self-induced voltages. The other set of voltages can be the voltages across the coils, although alternatives are possible. The two sets of equations form a single combined set of equations. Each normal zone location or combination of normal zones has a set of these combined equations associated with it. It is demonstrated that the normal zone can be located and the correct set chosen, allowing determination of the size of the normal zone. Only a few operations take place in a working detector: multiplication of a constant, addition, and simple decision-making. In many cases the detector for each coil, although weakly linked to the other detectors, can be considered to be independent. The effect on accuracy of changes in the system parameters is discussed

  5. Detection of a normal zone in the MFTF magnets

    International Nuclear Information System (INIS)

    Owen, E.W.

    1979-01-01

    A method is described for the electrical detection of a normal zone in inductively coupled superconducting coils. Measurements are made with two kinds of bridges, mutual inductance bridges and self-inductance bridges. The bridge outputs are combined with other measured voltages to form a detector that can be realized with either analog circuits or a computer algorithm. The detection of a normal zone in a pair of coupled coils, each with taps, is discussed in detail. It is also shown that the method applies to a pair of coils when one has no taps and to a pair when one coil is superconducting and the other is not. The method is extended, in principle, to a number of coils. A description is given of a technique for balancing the bridges at near the operating currents of the coils

  6. Ionization dual-zone static detector having single radioactive source

    International Nuclear Information System (INIS)

    Ried, L. Jr.; Wade, A.L.

    1977-01-01

    This ionization detector or combustion product detector includes a single radioactive source located in an ionization chamber, and the ionization chamber includes portions comprising a reference zone and a signal zone. Electrical circuitry connected to the reference and signal zones provides an output signal directly related to changes in voltages across the signal zone in relation to the amount of particulates of combustion present in the ionization chamber

  7. Currents and voltages in the MFTF coils during the formation of a normal zone

    International Nuclear Information System (INIS)

    Owen, E.W.

    1980-08-01

    Expressions are obtained for the currents and voltages in a pair of inductively coupled superconducting coils under two conditions: formation of a normal zone and during a change in the level of the current in one coil. A dump resistor of low resistance and a detector bridge is connected across each coil. Calculated results are given for the MFTF coils. The circuit equations during formation of a normal zone are nonlinear and time-varying, consequently, only a series solution is possible. The conditions during a change in current are more easily found. After the transient has died away, the voltages in the coil associated with the changing source are all self-inductive, while the voltages in the other coil are all mutually inductive

  8. The normal zone propagation in ATLAS B00 model coil

    CERN Document Server

    Boxman, E W; ten Kate, H H J

    2002-01-01

    The B00 model coil has been successfully tested in the ATLAS Magnet Test Facility at CERN. The coil consists of two double pancakes wound with aluminum stabilized cables of the barrel- and end-cap toroids conductors for the ATLAS detector. The magnet current is applied up to 24 kA and quenches are induced by firing point heaters. The normal zone velocity is measured over a wide range of currents by using pickup coils, voltage taps and superconducting quench detectors. The signals coming from various sensors are presented and analyzed. The results extracted from the various detection methods are in good agreement. It is found that the characteristic velocities vary from 5 to 20 m/s at 15 and 24 kA respectively. In addition, the minimum quench energies at different applied magnet currents are presented. (6 refs).

  9. A normalization of the physical tests for external irradiation measuring detectors

    International Nuclear Information System (INIS)

    1977-05-01

    This report is the result of a normalization work, realized within the Radioprotection Services of the C.E.A., of the physical tests for detectors measuring external irradiation. Among the various tests mentionned are treated more in details, calibration and the establishment of the relative spectral response. As far as calibration is concerned, the normalization refers to: the reference detector, the reference radiation source, the installation and calibration procedure. As for the relative spectral response the normalization refers to: the reference detector, the radiation sources to be used. Finally, a chapter is consecrated to the high flux detectors and to those for pulsed electromagnetic radiations [fr

  10. Normal zone propagation and Thermal Hydraulic Quenchback in a cable-in-conduit superconductor

    International Nuclear Information System (INIS)

    Lue, J.W.; Dresner, L.

    1993-01-01

    When a local normal zone appears in a cable-in-conduit superconductor, a slug of hot helium is produced. The pressure rises and the hot helium expands. Thus the normal zone propagation in such a conductor can be governed by the hot helium expansion, rather than the heat conduction along the conductor. The expansion of the hot helium compresses the cold helium outside of the normal zone. This raises th at sign temperature of the cold helium. When the temperature rise reaches the current sharing limit, the superconductor in contact goes normal. Thus a rapid increase in normal zone propagation occur. This phenomenon is termed Thermal Hydraulic Quenchback (THQ). An experiment was performed to investigate this process. The existence of THQ was verified. Thresholds of THQ were also observed by varying the conductor current, the magnetic field, the temperature, and the initial normal zone length. When THQ occurred, normal zone propagation approaching the velocity of sound was observed. A better picture of THQ is obtained by a careful comparison of the data with analytical studies

  11. High-gain bipolar detector on float-zone silicon

    Science.gov (United States)

    Han, D. J.; Batignani, G.; Del Guerra, A.; Dalla Betta, G.-F.; Boscardin, M.; Bosisio, L.; Giorgi, M.; Forti, F.

    2003-10-01

    Since the float-zone (FZ) silicon has lower contaminations and longer minority-carrier lifetime than those in Czochralski silicon and other semiconductor materials, it has potential advantages to fabricate bipolar detectors on the high-purity FZ silicon substrate to achieve a high gain at ultra-low-signal levels. The authors present preliminary experimental results on a bipolar detector fabricated on an unusual high-purity FZ silicon substrate. A backside gettering layer of phosphorus-doped polysilicon was employed to preserve the long carrier lifetime of the high-purity FZ silicon. The device has been investigated in the detection of a continuous flux of X-ray and infrared light. The bipolar detector with a circular emitter of 2 mm diameter has demonstrated high gains up to 3820 for 22 keV X-ray from a 1 mCi Cd radioactive source (the X-ray photon flux, received by the detector is estimated to be ˜7.77×10 4/s). High gain up to 4400 for 0.17 nW light with a wavelength of 0.83 μm has been observed for the same device.

  12. High-gain bipolar detector on float-zone silicon

    International Nuclear Information System (INIS)

    Han, D.J.; Batignani, G.; Guerra, A.D.A. Del; Dalla Betta, G.-F.; Boscardin, M.; Bosisio, L.; Giorgi, M.; Forti, F.

    2003-01-01

    Since the float-zone (FZ) silicon has lower contaminations and longer minority-carrier lifetime than those in Czochralski silicon and other semiconductor materials, it has potential advantages to fabricate bipolar detectors on the high-purity FZ silicon substrate to achieve a high gain at ultra-low-signal levels. The authors present preliminary experimental results on a bipolar detector fabricated on an unusual high-purity FZ silicon substrate. A backside gettering layer of phosphorus-doped polysilicon was employed to preserve the long carrier lifetime of the high-purity FZ silicon. The device has been investigated in the detection of a continuous flux of X-ray and infrared light. The bipolar detector with a circular emitter of 2 mm diameter has demonstrated high gains up to 3820 for 22 keV X-ray from a 1 mCi Cd radioactive source (the X-ray photon flux, received by the detector is estimated to be ∼7.77x10 4 /s). High gain up to 4400 for 0.17 nW light with a wavelength of 0.83 μm has been observed for the same device

  13. Criticality detector exclusion zone in a spent-fuel hot cell

    International Nuclear Information System (INIS)

    Kim, S.S.; Sterbentz, J.W.

    1999-01-01

    generate a light pulse. The cluster is composed of three scintillator tubes bound tightly together in a lead sheath. The lead plug and sheath provide gamma radiation shielding, but unfortunately, the sheath design does not fully shield the tube axial length circumferentially. The top of the sheath is basically open and can allow SNF scatter gamma rays that penetrate the concrete wall to encounter and strike the scintillator material without attenuation. Despite the fact that the detector cluster is at the 13 ft 1 in. elevation above the IFSF floor 0 ft 0 in. elevation, the potential for this detector cluster to inadvertently alarm is real. The CAS detector has been designed with a 10,000:1 gamma rejection ratio and zero response above background in gamma radiation fields le10 rads/h. The authors solution to prevent inadvertent criticality alarms involves setting up an exclusion zone around the detectors. Individual elements or loaded canisters would be prohibited from entering the exclusion zone. Centered about the CAS and extending from the north wall into the hot cell and from the hot-cell ceiling to an elevation below the detector elevation, the exclusion zone boundaries and dimensions were determined analytically

  14. Normal zone soliton in large composite superconductors

    International Nuclear Information System (INIS)

    Kupferman, R.; Mints, R.G.; Ben-Jacob, E.

    1992-01-01

    The study of normal zone of finite size (normal domains) in superconductors, has been continuously a subject of interest in the field of applied superconductivity. It was shown that in homogeneous superconductors normal domains are always unstable, so that if a normal domain nucleates, it will either expand or shrink. While testing the stability of large cryostable composite superconductors, a new phenomena was found, the existence of stable propagating normal solitons. The formation of these propagating domains was shown to be a result of the high Joule power generated in the superconductor during the relatively long process of current redistribution between the superconductor and the stabilizer. Theoretical studies were performed in investigate the propagation of normal domains in large composite super conductors in the cryostable regime. Huang and Eyssa performed numerical calculations simulating the diffusion of heat and current redistribution in the conductor, and showed the existence of stable propagating normal domains. They compared the velocity of normal domain propagation with the experimental data, obtaining a reasonable agreement. Dresner presented an analytical method to solve this problem if the time dependence of the Joule power is given. He performed explicit calculations of normal domain velocity assuming that the Joule power decays exponentially during the process of current redistribution. In this paper, the authors propose a system of two one-dimensional diffusion equations describing the dynamics of the temperature and the current density distributions along the conductor. Numerical simulations of the equations reconfirm the existence of propagating domains in the cryostable regime, while an analytical investigation supplies an explicit formula for the velocity of the normal domain

  15. Development of Radiation Hard Radiation Detectors, Differences between Czochralski Silicon and Float Zone Silicon

    CERN Document Server

    Tuominen, Eija

    2012-01-01

    The purpose of this work was to develop radiation hard silicon detectors. Radiation detectors made ofsilicon are cost effective and have excellent position resolution. Therefore, they are widely used fortrack finding and particle analysis in large high-energy physics experiments. Silicon detectors willalso be used in the CMS (Compact Muon Solenoid) experiment that is being built at the LHC (LargeHadron Collider) accelerator at CERN (European Organisation for Nuclear Research). This work wasdone in the CMS programme of Helsinki Institute of Physics (HIP).Exposure of the silicon material to particle radiation causes irreversible defects that deteriorate theperformance of the silicon detectors. In HIP CMS Programme, our approach was to improve theradiation hardness of the silicon material with increased oxygen concentration in silicon material. Westudied two different methods: diffusion oxygenation of Float Zone silicon and use of high resistivityCzochralski silicon.We processed, characterised, tested in a parti...

  16. Normal zone propagation characteristics of coated conductor according to insulation materials

    International Nuclear Information System (INIS)

    Yang, S.E.; Ahn, M.C.; Park, D.K.; Chang, K.S.; Bae, D.K.; Ko, T.K.

    2007-01-01

    Recent development of CC, usually called second generation (2G) HTS, is actively in progress. Because of its higher critical current density as well as higher n-value, 2G HTS is feasible for the applications such as superconducting fault current limiter and superconducting cable. For operating the HTS equipment stably, it needs to investigate the characteristics of normal zone propagation occurred by quench. Investigations on the fundamental characteristics can be one of the indispensable foundations for research and development of power equipments. In this paper, normal zone propagation (NZP) characteristics according to various insulation materials are researched. By heating with NiCr heater and insulating with epoxy, we applied the operating current with respect to the critical current for calculation of minimum quench energy (MQE) and measurement of NZP

  17. Quench pressure, thermal expulsion, and normal zone propagation in internally cooled superconductors

    International Nuclear Information System (INIS)

    Dresner, L.

    1988-01-01

    When a nonrecovering normal zone appears in an internally cooled superconductor, the pressure in the conductor rises, helium is expelled from its ends, and the normal zone grows in size. This paper presents a model of these processes that allows calculation of the pressure, the expulsion velocity, and the propagation velocity with simple formulas. The model is intended to apply to conductors such as the cable-in-conduit conductor of the Westinghouse LCT (WH-LCT) coil, the helium volumes of which have very large length-to-diameter ratios (3 /times/ 10 5 ). The predictions of the model agree with the rather limited data available from propagation experiments carried out on the WH-LCT coil. 3 refs., 1 fig

  18. Possibility of producing the event-ready two-photon polarization entangled state with normal photon detectors

    International Nuclear Information System (INIS)

    Wang Xiangbin

    2003-01-01

    We propose a scheme to produce the maximally two-photon polarization entangled state with single-photon sources and the passive linear optics devices. In particular, our scheme only requires the normal photon detectors which distinguish the vacuum and non-vacuum Fock number states. A sophisticated photon detector distinguishing between one-photon state and two-photon state is unnecessary in the scheme

  19. Propagation of normal zones in composite superconductors

    International Nuclear Information System (INIS)

    Dresner, L.

    1976-08-01

    This paper describes calculations of propagation velocities of normal zones in composite superconductors. Full accounting is made for (1) current sharing, (2) the variation with temperature of the thermal conductivity of the copper matrix, and the specific heats of the matrix and the superconductor, and (3) the variation with temperature of the steady-state heat transfer at a copper-helium interface in the nucleate-boiling, transition, and film-boiling ranges. The theory, which contains no adjustable parameters, is compared with experiments on bare (uninsulated) conductors. Agreement is not good. It is concluded that the effects of transient heat transfer may need to be included in the theory to improve agreement with experiment

  20. Diffusion-weighted MRI in prostatic lesions: Diagnostic performance of normalized ADC using normal peripheral prostatic zone as a reference

    Directory of Open Access Journals (Sweden)

    Tamer F. Taha Ali

    2018-03-01

    Full Text Available Aim of study: Evaluate the potential value of the normal peripheral zone as a reference organ to normalize prostatic lesion apparent diffusion coefficient (ADC to improve its evaluation of prostatic lesions. Patients and methods: This prospective study included 38 patients with clinical suspicion of cancer prostate (increased PSA levels (>4 ng/ml, hard prostate in digital rectal examination and who are scheduled to undergo a TRUS-guided biopsy. Conventional and DW-MRI was done and ADC was calculated. The normalized ADC value was calculated by dividing the ADC of lesion by ADC of reference site (healthy peripheral zone. DWI-MRI results were compared to the results of biopsy. Comparison of ADCs and nADCs of benign and malignant lesions was done. Receiver operating characteristics (ROC curve analysis was done. Results: The patients were classified by histopathology into non-malignant group (16 patients and malignant group (22 patients. Significant negative correlation between ADC and normalized ADC (nADC and malignancy was detected. There was no significant difference between the mean ADC of peripheral health prostatic zones (PZ between benign and malignant cases (2.221 ± 0.356 versus 1.99 ± 0.538x10−3 mm2/sec, p = 0.144.There was significant difference between the mean ADC and mean nADC in benign and malignant lesions (1.049 ± 0.217 versus 0.659 ± 0.221x10−3 mm2/sec, p < 0.001 and (0.475 ± 0.055 versus 0.328 ± 0.044, p < 0.001 respectively.There was significant higher diagnostic performance of nADC than ADC with ADC Cut-off value 0.75 × 10−3 mm2/sec and nADC cut-off value 0.39 could significantly differentiate between benign and malignant lesion with sensitivity, specificity, PPV,NPV of 86.36,75,82.61 and 80% respectively, p < 0.0001 for ADC and 95.45, 93.75, 95.45 and 93.75%, p < 0.0001 for nADC. Conclusion: diagnostic performance of nADC using normal peripheral zone is higher than

  1. Multi-satellites normalization of the FengYun-2s visible detectors by the MVP method

    Science.gov (United States)

    Li, Yuan; Rong, Zhi-guo; Zhang, Li-jun; Sun, Ling; Xu, Na

    2013-08-01

    After January 13, 2012, FY-2F had successfully launched, the total number of the in orbit operating FengYun-2 geostationary meteorological satellites reached three. For accurate and efficient application of multi-satellite observation data, the study of the multi-satellites normalization of the visible detector was urgent. The method required to be non-rely on the in orbit calibration. So as to validate the calibration results before and after the launch; calculate day updating surface bidirectional reflectance distribution function (BRDF); at the same time track the long-term decay phenomenon of the detector's linearity and responsivity. By research of the typical BRDF model, the normalization method was designed. Which could effectively solute the interference of surface directional reflectance characteristics, non-rely on visible detector in orbit calibration. That was the Median Vertical Plane (MVP) method. The MVP method was based on the symmetry of principal plane, which were the directional reflective properties of the general surface targets. Two geostationary satellites were taken as the endpoint of a segment, targets on the intersecting line of the segment's MVP and the earth surface could be used as a normalization reference target (NRT). Observation on the NRT by two satellites at the moment the sun passing through the MVP brought the same observation zenith, solar zenith, and opposite relative direction angle. At that time, the linear regression coefficients of the satellite output data were the required normalization coefficients. The normalization coefficients between FY-2D, FY-2E and FY-2F were calculated, and the self-test method of the normalized results was designed and realized. The results showed the differences of the responsivity between satellites could up to 10.1%(FY-2E to FY-2F); the differences of the output reflectance calculated by the broadcast calibration look-up table could up to 21.1%(FY-2D to FY-2F); the differences of the output

  2. One-dimensional time-dependent conduction states and temperature distribution along a normal zone during a quench

    International Nuclear Information System (INIS)

    Lopez, G.

    1991-01-01

    The quench simulations of a superconducting (s.c.) magnet requires some assumptions about the evolution of the normal zone and its temperature profile. The axial evolution of the normal zone is considered through the longitudinal quench velocity. However, the transversal quench propagation may be considered through the transversal quench velocity or with the turn-to-turn time delay quench propagation. The temperature distribution has been assumed adiabatic-like or cosine-like in two different computer programs. Although both profiles are different, they bring about more or less the same qualitative quench results differing only in about 8%. Unfortunately, there are not experimental data for the temperature profile along the conductor in a quench event to have a realistic comparison. Little attention has received the temperature profile, mainly because it is not so critical parameter in the quench analysis. Nonetheless, a confident quench analysis requires that the temperature distribution along the normal zone be taken into account with good approximation. In this paper, an analytical study is made about the temperature profile

  3. Automatic development of normal zone in composite MgB2/CuNi wires with different diameters

    Science.gov (United States)

    Jokinen, A.; Kajikawa, K.; Takahashi, M.; Okada, M.

    2010-06-01

    One of the promising applications with superconducting technology for hydrogen utilization is a sensor with a magnesium-diboride (MgB2) superconductor to detect the position of boundary between the liquid hydrogen and the evaporated gas stored in a Dewar vessel. In our previous experiment for the level sensor, the normal zone has been automatically developed and therefore any energy input with the heater has not been required for normal operation. Although the physical mechanism for such a property of the MgB2 wire has not been clarified yet, the deliberate application might lead to the realization of a simpler superconducting level sensor without heater system. In the present study, the automatic development of normal zone with increasing a transport current is evaluated for samples consisting of three kinds of MgB2 wires with CuNi sheath and different diameters immersed in liquid helium. The influences of the repeats of current excitation and heat cycle on the normal zone development are discussed experimentally. The aim of this paper is to confirm the suitability of MgB2 wire in a heater free level sensor application. This could lead to even more optimized design of the liquid hydrogen level sensor and the removal of extra heater input.

  4. Radiation hardness of silicon detectors manufactured on epitaxial material and FZ bulk enriched with oxygen, carbon, tin and platinum

    CERN Document Server

    Ruzin, A; Glaser, M; Lemeilleur, F; Talamonti, R; Watts, S; Zanet, A

    1999-01-01

    Recent results on the radiation hardness of silicon detectors fabricated on epitaxial and float zone bulk silicon enriched by various impurities, such as carbon, oxygen, tin and platinum are reported. A new methodology of measurements of electrical properties of the devices has been utilized in the experiment. It has been shown that in the case of irradiation by protons, oxygen enriched silicon has better radiation hardness than standard float zone silicon. The carbon enriched silicon detectors, on the other hand, exhibited significantly inferior radiation hardness compared to standard detectors. This study shows for the first time, a violation of the widely used normalization technique of the various particle irradiations by NIEL coefficients. The study has been carried out in the framework of the RD48 (ROSE) collaboration, which studies the radiation hardening of silicon detectors. (5 refs).

  5. Biophysical detector for definition of anomalies in Semipalatinsk nuclear test site zone

    International Nuclear Information System (INIS)

    Sokolovskaya, E.V.; Inyushin, V.M.; Kalieva, Zh.A.

    2000-01-01

    With help of space aero-survey of thermodynamical anomaly (increase of land surface temperature) in Semipalatinsk test site zone is revealed. It was suggested that it is a result of recombination processes of Earth's plasma due to entropy increase in result of plasma fluctuations called by underground nuclear explosions. This hypothesis was checked by means of territory scanning around Semipalatinsk test site with help of biophysical detectors representing isolate fragments of bio-plasma of animal and vegetation origin. It was revealed that there are anomalies in Almaty-Semipalatinsk cities' beam of Ayaguz-Semipalatinsk zone and on Omsk-Semipalatinsk beam on Semenovka-Semipalatinsk section. During passing of areas in close proximity to the nuclear site an increase of micro-currents amplitude in 4-5 μA as well as irregular amplitude change are registered. Although anomalies make up 10 % from geo-plasma's micro-currents initial values, and this value can exert significant influence on human plasma homeostasis for persons living in anomalous regions. It is concluded that it is necessary research of non-radiation effects nature of underground nuclear explosions and its action on biological status of men, animals, plants and soils

  6. Dynamic magneto-optical imaging of transport current redistribution and normal zone propagation in YBa2Cu3O7-δ coated conductor

    International Nuclear Information System (INIS)

    Song Honghai; Schwartz, Justin; Davidson, Michael W

    2009-01-01

    YBa 2 Cu 3 O 7-δ (YBCO) coated conductors carry high critical current density with the potential for low cost and thus have a broad range of potential applications. An unresolved issue that could inhibit implementation, however, is a lack of understanding of the current redistribution and normal zone propagation behavior in the event of a thermal disturbance (quench). In this work, we for the first time present the real-time, dynamic observation of magnetic field redistribution during a thermal disturbance via magneto-optical imaging with a high speed, high resolution CCD (charge coupled device) camera. The optical images are converted to a two-dimensional, time-dependent data set that is then analyzed quantitatively. It is found that the normal zone propagates non-uniformly in two dimensions within the YBCO layer. Two stages of normal zone propagation are observed. During the first stage, the normal zone propagates along the conductor length as the current and magnetic field redistribute within the YBCO layer. During the second stage, current sharing with the Cu begins and the magneto-optical image becomes constant. The normal zone propagation velocity at 45 K, I = 50 A (∼50% I c ), is determined as 22.7 mm s -1 using the time-dependent optical light intensity data. (rapid communication)

  7. Perivenous and perisinusoidal collagen content in the acinar zone 3 in the "normal" liver. A light microscopical study

    DEFF Research Database (Denmark)

    Junge, Jette; Vyberg, M; Horn, T

    1988-01-01

    The thickness of the terminal hepatic vein wall (TTHV) and the content of perisinusoidal collagen in 989 zone 3 areas in Picro-Sirius-stained sections from 117 liver biopsies with normal morphology or slight non-specific changes were analyzed. TTHV varied from 0.4 micron to 21.3 microns (median 3.......8 microns). A positive correlation was found between TTHV and the diameter of the terminal hepatic vein. The average TTHV of the individual biopsies was not correlated to age, sex or liver morphology. The average zone 3 collagen content did not exceed that of zones 2 and 1, with the exception of biopsies...... with slight steatosis, where a minimal increase in zone 3 collagen was found. The normal variability of TTHV and the correlation to the diameter of THV must be considered in the evaluation of perivenular fibrosis. Even a slight increase in perisinusoidal collagen content may be suggestive of a pathological...

  8. ALARA Review of the Activation/Repair of Fire Detectors in Zone Three at the 233-S Facility

    International Nuclear Information System (INIS)

    Kornish, M.J.

    1998-07-01

    A formal as low as reasonably achievable (ALARA) review is required by BHI-SH-02, Vol. 1, Procedure 1.22, 'Planning Radiological Work', when radiological conditions exceed trigger levels. The level of contamination inside the viewing room meets this criterion. This ALARA review is for task instruction 1997-03-18-005-8.3.3 (mini task instruction to a living work package), 'Instructions for D ampersand D Support of Fire Detector Troubleshooting and Minor Maintenance Work at 233-S,' and DynCorp 2G-98-7207C, '233-S Reconnect Smoke Detectors Zone 3.' The Radiological Work Permit (RWP) request broke these two task instructions into four separate tasks. The four tasks identified in the RWP request were used to estimate airborne concentrations and the total exposure

  9. The role of bed-parallel slip in the development of complex normal fault zones

    Science.gov (United States)

    Delogkos, Efstratios; Childs, Conrad; Manzocchi, Tom; Walsh, John J.; Pavlides, Spyros

    2017-04-01

    Normal faults exposed in Kardia lignite mine, Ptolemais Basin, NW Greece formed at the same time as bed-parallel slip-surfaces, so that while the normal faults grew they were intermittently offset by bed-parallel slip. Following offset by a bed-parallel slip-surface, further fault growth is accommodated by reactivation on one or both of the offset fault segments. Where one fault is reactivated the site of bed-parallel slip is a bypassed asperity. Where both faults are reactivated, they propagate past each other to form a volume between overlapping fault segments that displays many of the characteristics of relay zones, including elevated strains and transfer of displacement between segments. Unlike conventional relay zones, however, these structures contain either a repeated or a missing section of stratigraphy which has a thickness equal to the throw of the fault at the time of the bed-parallel slip event, and the displacement profiles along the relay-bounding fault segments have discrete steps at their intersections with bed-parallel slip-surfaces. With further increase in displacement, the overlapping fault segments connect to form a fault-bound lens. Conventional relay zones form during initial fault propagation, but with coeval bed-parallel slip, relay-like structures can form later in the growth of a fault. Geometrical restoration of cross-sections through selected faults shows that repeated bed-parallel slip events during fault growth can lead to complex internal fault zone structure that masks its origin. Bed-parallel slip, in this case, is attributed to flexural-slip arising from hanging-wall rollover associated with a basin-bounding fault outside the study area.

  10. Detector normalization and scatter correction for the jPET-D4: A 4-layer depth-of-interaction PET scanner

    Energy Technology Data Exchange (ETDEWEB)

    Kitamura, Keishi [Shimadzu Corporation, 1 Nishinokyo-Kuwabaracho, Nakagyo-ku, Kyoto-shi, Kyoto 604-8511 (Japan)]. E-mail: kitam@shimadzu.co.jp; Ishikawa, Akihiro [Shimadzu Corporation, 1 Nishinokyo-Kuwabaracho, Nakagyo-ku, Kyoto-shi, Kyoto 604-8511 (Japan); Mizuta, Tetsuro [Shimadzu Corporation, 1 Nishinokyo-Kuwabaracho, Nakagyo-ku, Kyoto-shi, Kyoto 604-8511 (Japan); Yamaya, Taiga [National Institute of Radiological Sciences, 9-1 Anagawa-4, Inage-ku, Chiba-shi, Chiba 263-8555 (Japan); Yoshida, Eiji [National Institute of Radiological Sciences, 9-1 Anagawa-4, Inage-ku, Chiba-shi, Chiba 263-8555 (Japan); Murayama, Hideo [National Institute of Radiological Sciences, 9-1 Anagawa-4, Inage-ku, Chiba-shi, Chiba 263-8555 (Japan)

    2007-02-01

    The jPET-D4 is a brain positron emission tomography (PET) scanner composed of 4-layer depth-of-interaction (DOI) detectors with a large number of GSO crystals, which achieves both high spatial resolution and high scanner sensitivity. Since the sensitivity of each crystal element is highly dependent on DOI layer depth and incidental {gamma} ray energy, it is difficult to estimate normalization factors and scatter components with high statistical accuracy. In this work, we implemented a hybrid scatter correction method combined with component-based normalization, which estimates scatter components with a dual energy acquisition using a convolution subtraction-method for an estimation of trues from an upper energy window. In order to reduce statistical noise in sinograms, the implemented scheme uses the DOI compression (DOIC) method, that combines deep pairs of DOI layers into the nearest shallow pairs of DOI layers with natural detector samplings. Since the compressed data preserve the block detector configuration, as if the data are acquired using 'virtual' detectors with high {gamma}-ray stopping power, these correction methods can be applied directly to DOIC sinograms. The proposed method provides high-quality corrected images with low statistical noise, even for a multi-layer DOI-PET.

  11. The quantitative measurements of foveal avascular zone using optical coherence tomography angiography in normal volunteers.

    Science.gov (United States)

    Ghassemi, Fariba; Mirshahi, Reza; Bazvand, Fatemeh; Fadakar, Kaveh; Faghihi, Houshang; Sabour, Siamak

    2017-12-01

    To provide normative data of foveal avascular zone (FAZ) and thickness. In this cross-sectional study both eyes of each normal subject were scanned with optical coherence tomography angiography (OCTA) for foveal superficial and deep avascular zone (FAZ) and central foveal thickness (CFT) and parafoveal thickness (PFT). Out of a total of 224 eyes of 112 volunteers with a mean age of 37.03 (12-67) years, the mean superficial FAZ area was 0.27 mm 2 , and deep FAZ area was 0.35 mm 2 ( P  < 0.001), with no difference between both eyes. Females had a larger superficial (0.32 ± 0.11 mm 2 versus 0.23 ± 0.09 mm 2 ) and deep FAZ (0.40 ± 0.14 mm 2 versus 0.31 ± 0.10 mm 2 ) ( P  < 0.001) than males. By multivariate linear regression analysis, in normal eyes, superficial FAZ area varied significantly with the gender, CFT, and deep FAZ. Deep FAZ varied with the gender and CFT. The gender and CFT influence the size of normal superficial and deep FAZ of capillary network.

  12. Characterization of Czochralski silicon detectors

    OpenAIRE

    Luukka, Panja-Riina

    2006-01-01

    This thesis describes the characterization of irradiated and non-irradiated segmented detectors made of high-resistivity (>1 kΩcm) magnetic Czochralski (MCZ) silicon. It is shown that the radiation hardness (RH) of the protons of these detectors is higher than that of devices made of traditional materials such as Float Zone (FZ) silicon or Diffusion Oxygenated Float Zone (DOFZ) silicon due to the presence of intrinsic oxygen (> 5 × 1017 cm−3). The MCZ devices therefore present an interesting ...

  13. The influence of the Al stabilizer layer thickness on the normal zone propagation velocity in high current superconductors

    CERN Document Server

    Shilon, I.; Langeslag, S.A.E.; Martins, L.P.; ten Kate, H.H.J.

    2015-06-19

    The stability of high-current superconductors is challenging in the design of superconducting magnets. When the stability requirements are fulfilled, the protection against a quench must still be considered. A main factor in the design of quench protection systems is the resistance growth rate in the magnet following a quench. The usual method for determining the resistance growth in impregnated coils is to calculate the longitudinal velocity with which the normal zone propagates in the conductor along the coil windings. Here, we present a 2D numerical model for predicting the normal zone propagation velocity in Al stabilized Rutherford NbTi cables with large cross section. By solving two coupled differential equations under adiabatic conditions, the model takes into account the thermal diffusion and the current redistribution process following a quench. Both the temperature and magnetic field dependencies of the superconductor and the metal cladding materials properties are included. Unlike common normal zon...

  14. Calibration method of liquid zone controller using the ex-core detector signal of CANDU 6 reactor

    International Nuclear Information System (INIS)

    Park, D.H.; Lee, E.K.; Shin, H.C.; Bae, S.M.; Hong, S.Y.

    2013-01-01

    Highlights: ► We developed a new LZC calibration method and measurement system. ► Photo-neutron effect, reactor core size, and detector position were evaluated and tested. ► We applied the new method and system to Wolsong NPP Unit 1. ► The LZC calibration test was well completed, and the requirement of the test was satisfied. - Abstract: The Phase-B test (low-power reactor physics test) is one of the commissioning tests for Canada Deuterium Uranium (CANDU) reactors that ensures the safe and reliable operation of the core during the design lifetime. The Phase-B test, which includes the approach to the first criticality at low reactor powers, is performed to verify the feasibility of the reactor’s physics design and to ensure the integrity of the control and protection facilities. The commissioning testing of pressurized heavy water moderated reactors (PHWRs) is usually performed only once (at the initial commissioning after construction). The large-scale facilities of the Wolsong nuclear power plant (NPP) Unit 1 have been gradually improved since May 2009 to extend its lifetime. The refurbishment was completed in April 2011 – then this NPP has been in operation again. We discusses the new methodology and measurement system that uses an ex-core detector signal for liquid zone controller (LZC) calibration of the Phase-B test instead of conventional methods. The inverse kinetic equation in the reactivity calculator is modified to treat the 17 delayed neutron groups including 11 photo-neutron fractions. The signal acquisition resolution of the reactivity calculator was enhanced and installed reactivity calculating module by each channel. The ex-core detector was confirmed to be applicable to a large reactor core, such as the CANDU 6 by comparison with the in-core flux detector signal. A preliminary test was performed in Wolsong NPP Unit 2 to verify the robustness of the reactivity calculator. This test convincingly demonstrated that the reactivity calculator

  15. Normalizing effect on fatigue crack propagation at the heat-affected zone of AISI 4140 steel shielded metal arc weldings

    Directory of Open Access Journals (Sweden)

    B. Vargas-Arista

    2013-01-01

    Full Text Available The fractography and mechanical behaviour of fatigue crack propagation in the heat-affected zone (HAZ of AISI 4140 steel welded using the shielded metal arc process was analysed. Different austenitic grain size was obtained by normalizing performed at 1200 °C for 5 and 10 hours after welding. Three point bending fatigue tests on pre-cracked specimens along the HAZ revealed that coarse grains promoted an increase in fatigue crack growth rate, hence causing a reduction in both fracture toughness and critical crack length, and a transgranular brittle final fracture with an area fraction of dimple zones connecting cleavage facets. A fractographic analysis proved that as the normalizing time increased the crack length decreased. The increase in the river patterns on the fatigue crack propagation in zone II was also evidenced and final brittle fracture because of transgranular quasicleavage was observed. Larger grains induced a deterioration of the fatigue resistance of the HAZ.

  16. Architecture of a low-angle normal fault zone, southern Basin and Range (SE California)

    Science.gov (United States)

    Goyette, J. A.; John, B. E.; Campbell-Stone, E.; Stunitz, H.; Heilbronner, R.; Pec, M.

    2009-12-01

    Exposures of the denuded Cenozoic detachment fault system in the southern Sacramento Mountains (SE California) delimit the architecture of a regional low-angle normal fault, and highlight the evolution of these enigmatic faults. The fault was initiated ~23 Ma in quartzo-feldspathic basement gneiss and granitoids at a low-angle (2km, and amplitudes up to 100m. These corrugations are continuous along their hinges for up to 3.6 km. Damage zone fracture intensity varies both laterally, and perpendicular to the fault plane (over an area of 25km2), decreasing with depth in the footwall, and varies as a function of lithology and proximity to corrugation walls. Deformation is concentrated into narrow damage zones (100m) are found in areas where low-fracture intensity horses are corralled by sub-horizontal zones of cataclasite (up to 8m) and thick zones of epidote (up to 20cm) and silica-rich alteration (up to 1m). Sub-vertical shear and extension fractures, and sub-horizontal shear fractures/zones dominate the NE side of the core complex. In all cases, sub-vertical fractures verge into or are truncated by low-angle fractures that dominate the top of the damage zone. These low-angle fractures have an antithetic dip to the detachment fault plane. Some sub-vertical fractures become curviplanar close to the fault, where they are folded into parallelism with the sub-horizontal fault surface in the direction of transport. These field data, corroborated by ongoing microstructural analyses, indicate fault activity at a low angle accommodated by a variety of deformation mechanisms dependent on lithology, timing, fluid flow, and fault morphology.

  17. Malware Normalization

    OpenAIRE

    Christodorescu, Mihai; Kinder, Johannes; Jha, Somesh; Katzenbeisser, Stefan; Veith, Helmut

    2005-01-01

    Malware is code designed for a malicious purpose, such as obtaining root privilege on a host. A malware detector identifies malware and thus prevents it from adversely affecting a host. In order to evade detection by malware detectors, malware writers use various obfuscation techniques to transform their malware. There is strong evidence that commercial malware detectors are susceptible to these evasion tactics. In this paper, we describe the design and implementation of a malware normalizer ...

  18. Radiation damage in silicon detectors

    CERN Document Server

    Lindström, G

    2003-01-01

    Radiation damage effects in silicon detectors under severe hadron and gamma-irradiation are surveyed, focusing on bulk effects. Both macroscopic detector properties (reverse current, depletion voltage and charge collection) as also the underlying microscopic defect generation are covered. Basic results are taken from the work done in the CERN-RD48 (ROSE) collaboration updated by results of recent work. Preliminary studies on the use of dimerized float zone and Czochralski silicon as detector material show possible benefits. An essential progress in the understanding of the radiation-induced detector deterioration had recently been achieved in gamma irradiation, directly correlating defect analysis data with the macroscopic detector performance.

  19. Patient-dependent count-rate adaptive normalization for PET detector efficiency with delayed-window coincidence events

    International Nuclear Information System (INIS)

    Niu, Xiaofeng; Ye, Hongwei; Xia, Ting; Asma, Evren; Gagnon, Daniel; Wang, Wenli; Winkler, Mark

    2015-01-01

    Quantitative PET imaging is widely used in clinical diagnosis in oncology and neuroimaging. Accurate normalization correction for the efficiency of each line-of- response is essential for accurate quantitative PET image reconstruction. In this paper, we propose a normalization calibration method by using the delayed-window coincidence events from the scanning phantom or patient. The proposed method could dramatically reduce the ‘ring’ artifacts caused by mismatched system count-rates between the calibration and phantom/patient datasets. Moreover, a modified algorithm for mean detector efficiency estimation is proposed, which could generate crystal efficiency maps with more uniform variance. Both phantom and real patient datasets are used for evaluation. The results show that the proposed method could lead to better uniformity in reconstructed images by removing ring artifacts, and more uniform axial variance profiles, especially around the axial edge slices of the scanner. The proposed method also has the potential benefit to simplify the normalization calibration procedure, since the calibration can be performed using the on-the-fly acquired delayed-window dataset. (paper)

  20. Fabrication of radiation detector using PbI2 crystals

    International Nuclear Information System (INIS)

    Shoji, T.; Ohba, K.; Suehiro, T.; Hiratate, Y.

    1995-01-01

    Radiation detectors have been fabricated from lead iodide (PbI 2 ) crystals grown by two methods: zone melting and Bridgman methods. In response characteristics of the detector fabricated from crystals grown by the zone melting method, a photopeak for γ-rays from an 241 Am source (59.5 KeV) has been clearly observed with applied detector bias of 500 V at room temperature. The hole drift mobility is estimated to be about 5.5 cm 2 /Vs from measurement of pulse rise time for 5.48 MeV α-rays from 241 Am. By comparing the detector bias versus saturated peak position of the PbI 2 detector with that of CdTe detector, the average energy for producing electron-hole pairs is estimated to be about 8.4 eV for the PbI 2 crystal. A radiation detector fabricated from PbI 2 crystals grown by the Bridgman method, however, exhibited no response for γ-rays

  1. Evaluation of prototype silicon drift detectors

    International Nuclear Information System (INIS)

    Ellison, J.; Hall, G.; Roe, S.; Lucas, A.

    1988-01-01

    Operating characteristics of several prototypes of silicon drift detectors are investigated. Detectors are made of unpolished silicon produced by the zone melting method and characterized by n-type conductivity and specific resistance of 3.6-4.6 kOhmxcm. The detectors comprise 40 parallel bands of 200 μm width and 1 cm length separated by 50 μm intervals. Data characterizing the potential distribution near anodes under the operating bias voltage, dependences of capacities and leakage as well as the detector space resolution

  2. Measurement and Analysis of Normal Zone Propagation in a ReBCO Coated Conductor at Temperatures Below 50K

    CERN Document Server

    van Nugteren, J; Wessel, S; Krooshoop, E; Nijhuis, A; ten Kate, H

    2015-01-01

    Measurements of the quasi-adiabatic normal zone propagation velocity and quench energies of a Superpower SCS4050 copper stabilised ReBCO superconducting tape are presented over a temperature range of 23 − 47 K; in parallel applied magnetic fields of 6, 10 and 14 T; and over a current range from 50% to 100% of Ic. The data are compared to results of analytic predictions and to one-dimensional numerical simulations. The availability of long lengths of ReBCO coated conductor makes the material interesting for many HTS applications operating well below the boiling point of liquid nitrogen, such as magnets and motors. One of the main issues in the design of such devices is quench detection and protection. At higher temperatures, the quench velocities in these materials are known to be about two orders of magnitude lower compared to low temperature superconductors, resulting in significantly smaller normal zones and the risk of higher peak temperatures. To investigate whether the same also holds for lower tempera...

  3. Performance of irradiated silicon microstrip detectors

    International Nuclear Information System (INIS)

    Catacchini, E.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Lenzi, M.; Meschini, M.; Parrini, G.; Pieri, M.

    1999-01-01

    Silicon microstrip devices to be installed in Large Hadron Collider (LHC) tracking detectors will have to operate in a high radiation environment. We report on performance studies of silicon microstrip detectors irradiated with neutrons or protons, up to fluences comparable to the first ten years of running at LHC. Obtained results show that irradiated detectors can still be operated with satisfactory signal-to-noise ratio,and in the case of inhomogeneously type inverted detector a very good position resolution is achieved regardless of the zone crossed by the particle

  4. Normal mediastinal and hilar lymph nodes in children on multi-detector row chest computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Jong, Pim A. de; Nievelstein, Rutger-Jan A. [University Medical Center Utrecht and Wilhelmina Children' s Hospital, Department of Radiology, Utrecht (Netherlands)

    2012-02-15

    To study normal mediastinal and hilar lymph nodes on multi-detector chest computed tomography (CT). A cohort of 120 children aged 1-17 years underwent emergency CT, including the chest, after high-energy trauma. Axial 5-mm reconstructions were evaluated for lymph nodes at hilar and various mediastinal levels and the short-axis diameters were measured. At least one lymph node was found in 115 (96%) children, with subcarinal (69%), lower paratracheal (64%) and hilar (60%) nodes being most common. Up to 10 years of age most lymph nodes were smaller than or equal to 7 mm. In older children lymph nodes measuring up to 10-mm-short-axis diameter were found. Lymph nodes were rare along the mammary vessels, at lower oesophageal and at prevascular and posterior mediastinal levels in children. Mediastinal and hilar lymph nodes are more common than previously thought, probably because of increased detection by modern multi-detector CT. Lymph node location and age have to be taken into account when evaluating lymph nodes in the paediatric chest. (orig.)

  5. Normal mediastinal and hilar lymph nodes in children on multi-detector row chest computed tomography

    International Nuclear Information System (INIS)

    Jong, Pim A. de; Nievelstein, Rutger-Jan A.

    2012-01-01

    To study normal mediastinal and hilar lymph nodes on multi-detector chest computed tomography (CT). A cohort of 120 children aged 1-17 years underwent emergency CT, including the chest, after high-energy trauma. Axial 5-mm reconstructions were evaluated for lymph nodes at hilar and various mediastinal levels and the short-axis diameters were measured. At least one lymph node was found in 115 (96%) children, with subcarinal (69%), lower paratracheal (64%) and hilar (60%) nodes being most common. Up to 10 years of age most lymph nodes were smaller than or equal to 7 mm. In older children lymph nodes measuring up to 10-mm-short-axis diameter were found. Lymph nodes were rare along the mammary vessels, at lower oesophageal and at prevascular and posterior mediastinal levels in children. Mediastinal and hilar lymph nodes are more common than previously thought, probably because of increased detection by modern multi-detector CT. Lymph node location and age have to be taken into account when evaluating lymph nodes in the paediatric chest. (orig.)

  6. Normal variation of focal T2 Hyperintensities in anterior parietal periventricular white matter: Another 'Terminal Zones of Myelination'

    International Nuclear Information System (INIS)

    Park, Jong Oag; Woo, Je Ho; Ki, Tae Sung; Lee, Jong Hwa; Chung, Jin Woo; Lee, Don Young

    1994-01-01

    It has been known that there are several areas of T2 hyperintensity in normal white matter of brain, such as terminal zones of myelination, ependymitis granularis, ones of posterior internal capsule, and perivascular space. The aim of our study is to demonstrate another region of T2 hyperintensities in normal pediatric age group. We have studied brain MR for 10 normal volunteers and 35 patients without having intracranial lesions in pediatric age group(3-19 years). In 5 among 45 cases, focal T2 hyperintensities were seen in the parietal periventricular white matter beneath the postcentral gyri. They were noted as poorly defined, 5-10 mm sized areas of increased signal intensities on T2-weighted axial images. They were also characterized by bilateral, posteromedially oriented, short band-like or oval areas. Interestingly, they were directly continuous with the T2 hyperintensity of posterior internal capsule. In spite of the relatively highly frequency in the pediatric population as in our study, this finding has not been reported in the asymptomatic adults. The results show that the bilateral anterior parietal hyperintense areas may be another terminal zones of delayed myelination affecting the parietopontine tract. They should be differentiated from pathologic T2 hyperintensities by their characteristic findings

  7. Discrimination of prostate cancer from normal peripheral zone and central gland tissue by using dynamic contrast-enhanced MR imaging

    NARCIS (Netherlands)

    Engelbrecht, Marc R.; Huisman, Henkjan J.; Laheij, Robert J. F.; Jager, Gerrit J.; van Leenders, Geert J. L. H.; Hulsbergen-van de Kaa, Christina A.; de La Rosette, Jean J. M. C. H.; Blickman, Johan G.; Barentsz, Jelle O.

    2003-01-01

    PURPOSE: To evaluate which parameters of dynamic magnetic resonance (MR) imaging and T2 relaxation rate would result in optimal discrimination of prostatic carcinoma from normal peripheral zone (PZ) and central gland (CG) tissues and to correlate these parameters with tumor stage, Gleason score,

  8. Improved spectrometric characteristics of thallium bromide nuclear radiation detectors

    CERN Document Server

    Hitomi, K; Shoji, T; Suehiro, T; Hiratate, Y

    1999-01-01

    Thallium bromide (TlBr) is a compound semiconductor with a high atomic number and wide band gap. In this study, nuclear radiation detectors have been fabricated from the TlBr crystals. The TlBr crystals were grown by the horizontal travelling molten zone (TMZ) method using the materials purified by many pass zone refining. The crystals were characterized by measuring the resistivity, the mobility-lifetime (mu tau) product and the energy required to create an electron-hole pair (the epsilon value). Improved energy resolution has been obtained by the TlBr radiation detectors. At room temperature the full-width at half-maximum (FWHM) for the 59.5, 122 and 662 keV gamma-ray photo peak obtained from the detectors were 3.3, 8.8 and 29.5 keV, respectively. By comparing the saturated peak position of the TlBr detector with that of the CdTe detector, the epsilon value has been estimated to be about 5.85 eV for the TlBr crystal.

  9. Detection of the normal zone with cowound sensors in cable-in conduit conductors

    International Nuclear Information System (INIS)

    Martovetsky, N.N.; Chaplin, M.R.

    1996-01-01

    Tokamaks in the future will use superconducting cable-in-conduit- conductors (CICC) in all poloidal field (PF) and toroidal field (TF) magnets. Conventional quench detection, the measurement of small resistive normal zone voltages ( 4 kV). In the quench detection design for TPX, we have considered several different locations for internal co-wound voltage sensors in the cable cross-section as the primary mechanism to cancel this inductive noise. The Noise Rejection Experiment (NRE) at LLNL has been designed to evaluate which internal locations will produce the best inductive- noise cancellation, and provide us with experimental data for comparison with previously developed theory. The details of the experiments and resulting data are presented and analyzed

  10. Fabrication of double-sided thallium bromide strip detectors

    Energy Technology Data Exchange (ETDEWEB)

    Hitomi, Keitaro, E-mail: keitaro.hitomi@qse.tohoku.ac.jp [Department of Quantum Science and Energy Engineering, Graduate School of Engineering, Tohoku University, Sendai 980-8579 (Japan); Nagano, Nobumichi [Department of Quantum Science and Energy Engineering, Graduate School of Engineering, Tohoku University, Sendai 980-8579 (Japan); Onodera, Toshiyuki [Department of Electronics and Intelligent Systems, Tohoku Institute of Technology, Sendai 982-8577 (Japan); Kim, Seong-Yun; Ito, Tatsuya; Ishii, Keizo [Department of Quantum Science and Energy Engineering, Graduate School of Engineering, Tohoku University, Sendai 980-8579 (Japan)

    2016-07-01

    Double-sided strip detectors were fabricated from thallium bromide (TlBr) crystals grown by the traveling-molten zone method using zone-purified materials. The detectors had three 3.4-mm-long strips with 1-mm widths and a surrounding electrode placed orthogonally on opposite surfaces of the crystals at approximately 6.5×6.5 mm{sup 2} in area and 5 mm in thickness. Excellent charge transport properties for both electrons and holes were observed from the TlBr crystals. The mobility-lifetime products for electrons and holes in the detector were measured to be ~3×10{sup −3} cm{sup 2}/V and ~1×10{sup −3} cm{sup 2}/V, respectively. The {sup 137}Cs spectra corresponding to the gamma-ray interaction position were obtained from the detector. An energy resolution of 3.4% of full width at half maximum for 662-keV gamma rays was obtained from one “pixel” (an intersection of the strips) of the detector at room temperature.

  11. Comparison of lesion conspicuity of radiofrequency ablation zones among MR sequences according to time in the normal rabbit liver

    International Nuclear Information System (INIS)

    Ku, Myong Seo; Kim, Seung Kwon; Hong, Hyun Pyo; Kwag, Hyon Joo

    2007-01-01

    To compare the lesion conspicuity of radiofrequency ablation (RFA) zones among MR sequences according to time in the normal rabbit liver. RFA zones were created in 12 rabbit livers with a 17-gauge internally cooled electrode (1-cm active tip, 30 Watts, 3 minutes). Three rabbits were sacrificed immediately, three days, two weeks, and six weeks after the RFA procedure, respectively. Before sacrifice, T1-, T2-weighted images (WI), and gadolinium-enhanced (GE)-T1WI images were obtained. The lesion conspicuity of the RAF zone and the contrast-to-noise ratio (CNR) of the RFA zone to the liver parenchyma were analyzed and compared among the MR sequences according to time. On T1WI, the RFA zones were only clearly seen on acute phase. On T2WI, the RFA zones were clearly seen on all phases except the hyperacute phase. On GE T1WI, the RFA zones were clearly seen on all phases. The CNRs of the RFA zone to the liver parenchyma of GE-T1WI (8.1-12.4) were significantly higher than the CNRs of TIWI (1.6-2.7) and T2WI (1.7-6.3) on all phases (ρ < 0.05), but the visual lesion conspicuity between GE T1WI and T2WI were similar. On hyperacute phase, GE T1WI showed better lesion conspicuity of the RFA zone than T1WI and T2WI. On other phases, GE T1WI and T2WI showed similar lesion conspicuity

  12. Analysis of normal zone propagation and hot spot temperature on ITER CS insert coil

    International Nuclear Information System (INIS)

    Suwa, Tomone; Ozeki, Hidemasa; Nabara, Yoshihiro; Saito, Toru; Kawano, Katsumi; Takahashi, Yoshikazu; Isono, Takaaki; Nunoya, Yoshihiko

    2016-01-01

    The Central Solenoid (CS) insert coil consists of a 42-m-long CS conductor, of which the specifications are the same as that of the ITER CS. In order to investigate normal zone propagation and hot spot temperature, a quench test was carried out on the CS insert under End-of-Burn condition at 12.5 T and 45.1 kA of after 16,000 cycles. External heat was applied at nearly the center of the CS insert using an inductive heater, and quench was induced. A current of 45.1 kA was dumped 9.5 s (7 s) after voltage generation (Quench detection, QD). The Normal zone propagation length reached 23.4 m, and the maxim propagation velocity was 3.1 m/s just before dumping. Considering the distribution of temperature, which is calculated by GANDALF, hot spot temperature was expected to reach 227 K. As the result, it was found that the hot spot temperature exceeded the criteria of 150 K which is designed on ITER. However, heating the CS insert to 227 K did not influence conductor performance, because the current sharing temperature was maintained after the quench test. Therefore, the quench detection has a margin of approximately 9.5 s (7 s) after voltage generation (QD) in view of the conductor performance under the conditions applied in this quench test. If the hot spot temperature is kept to less than 150 K, the current should be dumped 7.5 s (5 s) before voltage generation (QD). These results are very useful for designing quench protection of the ITER CS. (author)

  13. Geochemistry, mineralization, structure, and permeability of a normal-fault zone, Casino mine, Alligator Ridge district, north central Nevada

    Science.gov (United States)

    Hammond, K. Jill; Evans, James P.

    2003-05-01

    We examine the geochemical signature and structure of the Keno fault zone to test its impact on the flow of ore-mineralizing fluids, and use the mined exposures to evaluate structures and processes associated with normal fault development. The fault is a moderately dipping normal-fault zone in siltstone and silty limestone with 55-100 m of dip-slip displacement in north-central Nevada. Across-strike exposures up to 180 m long, 65 m of down-dip exposure and 350 m of along-strike exposure allow us to determine how faults, fractures, and fluids interact within mixed-lithology carbonate-dominated sedimentary rocks. The fault changes character along strike from a single clay-rich slip plane 10-20 mm thick at the northern exposure to numerous hydrocarbon-bearing, calcite-filled, nearly vertical slip planes in a zone 15 m wide at the southern exposure. The hanging wall and footwall are intensely fractured but fracture densities do not vary markedly with distance from the fault. Fault slip varies from pure dip-slip to nearly pure strike-slip, which suggests that either slip orientations may vary on faults in single slip events, or stress variations over the history of the fault caused slip vector variations. Whole-rock major, minor, and trace element analyses indicate that Au, Sb, and As are in general associated with the fault zone, suggesting that Au- and silica-bearing fluids migrated along the fault to replace carbonate in the footwall and adjacent hanging wall rocks. Subsequent fault slip was associated with barite and calcite and hydrocarbon-bearing fluids deposited at the southern end of the fault. No correlation exists at the meter or tens of meter scale between mineralization patterns and fracture density. We suggest that the fault was a combined conduit-barrier system in which the fault provides a critical connection between the fluid sources and fractures that formed before and during faulting. During the waning stages of deposit formation, the fault behaved as

  14. Characterization of Czochralski Silicon Detectors

    OpenAIRE

    Luukka, Panja-Riina; Haerkoenen, Jaakko

    2012-01-01

    This thesis describes the characterization of irradiated and non-irradiated segmenteddetectors made of high-resistivity (>1 kΩcm) magnetic Czochralski (MCZ) silicon. It isshown that the radiation hardness (RH) of the protons of these detectors is higher thanthat of devices made of traditional materials such as Float Zone (FZ) silicon or DiffusionOxygenated Float Zone (DOFZ) silicon due to the presence of intrinsic oxygen (> 5 x1017 cm-3). The MCZ devices therefore present an interesting alter...

  15. Longitudinal propagation of the normal zone through indirectly cooled superconducting solenoids. V.2

    International Nuclear Information System (INIS)

    Devred, A.

    1988-03-01

    This work deals with the longitudinal propagation of the normal zone in large thin super-conducting solenoids like CELLO. From the theoretical point of view, we begin to explain, under the name of classical model, a synthesis of the models known in the literature. Then we study successively the influence of four phenomenons, which until then were neglected: 1) The current sharing zone; 2) The dependence on temperature of the specific heat and of the thermal conductivity; 3) The electromagnetic diffusion through a possible super-stabilizer, and 4) The thermal diffusion through a possible insulator. In each case, we re-formulate the equation of thermal and electromagnetic behaviour of the layer, we solve them analytically, and we derive a corrective factor, which is to apply to the classical formula of the propagation velocity. Finally, we investigate how to combine these corrections, and we converge on a general method of calculation of the velocity. In the experimental part, we have pointed out and measured in terms of current and field, propagation velocities along a super-stabilized conductor. Having established that the experimental conditions satisfied the hypotheses of our theoretical study, we verify that these measurements are in good agreement with the calculated velocities. Finally we concluded that our model of current redistribution through the super-stabilizer is valid [fr

  16. Longitudinal propagation of the normal zone through indirectly cooled superconducting solenoidss. V.1

    International Nuclear Information System (INIS)

    Devred, A.

    1988-03-01

    This work deals with the longitudinal propagation of the normal zone in large thin super-conducting solenoids like CELLO. From the theoretical point of view, we begin to explain, under the name of classical model, a synthesis of the models known in the literature. Then we study successively the influence of four phenomenons, which until then were neglected: 1) The current sharing zone; 2) The dependence on temperature of the specific heat and of the thermal conductivity; 3) The electromagnetic diffusion through a possible super-stabilizer, and 4) The thermal diffusion through a possible insulator. In each case, we re-formulate the equation of thermal and electromagnetic behaviour of the layer, we solve them analytically, and we derive a corrective factor, which is to apply to the classical formula of the propagation velocity. Finally, we investigate how to combine these corrections, and we converge on a general method of calculation of the velocity. In the experimental part, we have pointed out and measured in terms of current and field, propagation velocities along a super-stabilized conductor. Having established that the experimental conditions satisfied the hypotheses of our theoretical study, we verify that these measurements are in good agreement with the calculated velocities. Finally we concluded that our model of current redistribution through the super-stabilizer is valid [fr

  17. Temperature cycling test of planar hyper-pure germanium radiation detector

    International Nuclear Information System (INIS)

    Sakai, Eiji

    1976-01-01

    If a Ge (Li) detector is left at the normal temperature, generally it does not recover its original performance even when it is cooled again with liquid nitrogen, as Li ions in the compensated i zone precipitate by Li drift and it returns to p type which is the state before drift. One of the devices that overcomes this shortcoming is the p-n junction Ge detector, which required the production of high purity Ge single crystals to obtain the thick depletion layer. The planar or coaxial type detectors were produced using the Ge single crystals with impurity concentration of 10 10 /cm 3 and it was recognized that they showed the gamma detecting characteristic nearly equal to Ge (Li) detectors. They are now commercially available from a few companies. The author carried out the temperature-cycling test of the planar type hyperpure Ge detector sold by Nuclear Radiation Developments, Canada. First, applying liquid nitrogen, the leakage current, static capacity, gamma ray-detecting efficiency and energy resolution were measured. Then it was returned to room temperature. Since then, irregular cycling tests were carried out 15 times. The results didn't show any significant change in the gamma ray-detecting efficiency, energy resolution and static capacity. Though leakage current changed between 9.3 and 33 pA, it does not influence on the energy resolution because of small absolute values. It may be said that it is sufficiently stable in the temperature cycling from room temperature to 77 K. (Wakatsuki, Y.)

  18. Measurements on a prototype segmented Clover detector

    CERN Document Server

    Shepherd, S L; Cullen, D M; Appelbe, D E; Simpson, J; Gerl, J; Kaspar, M; Kleinböhl, A; Peter, I; Rejmund, M; Schaffner, H; Schlegel, C; France, G D

    1999-01-01

    The performance of a segmented Clover germanium detector has been measured. The segmented Clover detector is a composite germanium detector, consisting of four individual germanium crystals in the configuration of a four-leaf Clover, housed in a single cryostat. Each crystal is electrically segmented on its outer surface into four quadrants, with separate energy read-outs from nine crystal zones. Signals are also taken from the inner contact of each crystal. This effectively produces a detector with 16 active elements. One of the purposes of this segmentation is to improve the overall spectral resolution when detecting gamma radiation emitted following a nuclear reaction, by minimising Doppler broadening caused by the opening angle subtended by each detector element. Results of the tests with sources and in beam will be presented. The improved granularity of the detector also leads to an improved isolated hit probability compared with an unsegmented Clover detector. (author)

  19. Virtual point detector: On the interpolation and extrapolation of scintillation detectors counting efficiencies

    International Nuclear Information System (INIS)

    Presler, Oren; German, Uzi; Pushkarsky, Vitaly; Alfassi, Zeev B.

    2006-01-01

    The concept of transforming the detector volume to a virtual point detector, in order to facilitate efficiency evaluations for different source locations, was proposed in the past for HPGe and Ge(Li) detectors. The validity of this model for NaI(Tl) and BGO scintillation detectors was studied in the present work. It was found that for both scintillation detectors, the point detector model does not seem to fit too well to the experimental data, for the whole range of source-to-detector distances; however, for source-to-detector cap distances larger than 4 cm, the accuracy was found to be high. A two-parameter polynomial expression describing the dependence of the normalized count rate versus the source-to-detector distance was fitted to the experimental data. For this fit, the maximum deviations are up to about 12%. These deviations are much smaller than the values obtained by applying the virtual point concept, even for distances greater than 4 cm, thus the polynomial fitting is to be preferred for scintillation detectors

  20. Modeling of Pixelated Detector in SPECT Pinhole Reconstruction.

    Science.gov (United States)

    Feng, Bing; Zeng, Gengsheng L

    2014-04-10

    A challenge for the pixelated detector is that the detector response of a gamma-ray photon varies with the incident angle and the incident location within a crystal. The normalization map obtained by measuring the flood of a point-source at a large distance can lead to artifacts in reconstructed images. In this work, we investigated a method of generating normalization maps by ray-tracing through the pixelated detector based on the imaging geometry and the photo-peak energy for the specific isotope. The normalization is defined for each pinhole as the normalized detector response for a point-source placed at the focal point of the pinhole. Ray-tracing is used to generate the ideal flood image for a point-source. Each crystal pitch area on the back of the detector is divided into 60 × 60 sub-pixels. Lines are obtained by connecting between a point-source and the centers of sub-pixels inside each crystal pitch area. For each line ray-tracing starts from the entrance point at the detector face and ends at the center of a sub-pixel on the back of the detector. Only the attenuation by NaI(Tl) crystals along each ray is assumed to contribute directly to the flood image. The attenuation by the silica (SiO 2 ) reflector is also included in the ray-tracing. To calculate the normalization for a pinhole, we need to calculate the ideal flood for a point-source at 360 mm distance (where the point-source was placed for the regular flood measurement) and the ideal flood image for the point-source at the pinhole focal point, together with the flood measurement at 360 mm distance. The normalizations are incorporated in the iterative OSEM reconstruction as a component of the projection matrix. Applications to single-pinhole and multi-pinhole imaging showed that this method greatly reduced the reconstruction artifacts.

  1. Study of silicon microstrips detector quantum efficiency using mathematical simulation

    International Nuclear Information System (INIS)

    Leyva Pernia, Diana; Cabal Rodriguez, Ana Ester; Pinnera Hernandez, Ibrahin; Fabelo, Antonio Leyva; Abreu Alfonso, Yamiel; Cruz Inclan, Carlos M.

    2011-01-01

    The paper shows the results from the application of mathematical simulation to study the quantum efficiency of a microstrips crystalline silicon detector, intended for medical imaging and the development of other applications such as authentication and dating of cultural heritage. The effects on the quantum efficiency of some parameters of the system, such as the detector-source geometry, X rays energy and detector dead zone thickness, were evaluated. The simulation results were compared with the theoretical prediction and experimental available data, resulting in a proper correspondence. It was concluded that the use of frontal configuration for incident energies lower than 17 keV is more efficient, however the use of the edge-on configuration for applications requiring the detection of energy above this value is recommended. It was also found that the reduction of the detector dead zone led to a considerable increase in quantum efficiency for any energy value in the interval from 5 to 100 keV.(author)

  2. Dimensions of the foveal avascular zone using the Heidelberg retinal angiogram-2 in normal eyes

    Directory of Open Access Journals (Sweden)

    John Deepa

    2011-01-01

    Full Text Available Purpose: The purpose was to study the dimensions of the foveal avascular zone (FAZ using Heidelberg Retinal Angiogram-2 (HRA-2; Heidelberg Engineering GmBH, Dossenheim, Germany. Materials and Methods: An observational study of the FAZ area and circumference was done with fundus fluorescein angiography (FFA using HRA-2 in 31 normal individuals. The FAZ was studied using both contrast-adjusted and nonadjusted methods. Contrast adjustment was done to obtain better visualization of the finer capillaries around the fovea enabling more precise measurements of the FAZ in normal eyes. Results: The mean area of the FAZ calculated by the contrast-adjusted method was 0.2753 mm 2 (±0.074 and the mean circumference was 2.22 mm (±0.048. By the conventional method, the area and circumference of the FAZ were 0.6241 mm 2 (±0.177 and 3.23 mm (±0.454, respectively. Conclusion: The measurements of area and circumference of FAZ using contrast-adjusted methods were significantly smaller than the conventional method.

  3. Design for measurement system of Doppler broadening profiles with the coincidence technique using a NaI detector in colinear geometry with the Ge detector

    International Nuclear Information System (INIS)

    Mori, Kazuteru; Uedono, Akira; Tanigawa, Shoichiro; Nakai, Katsuhiko

    1998-01-01

    The measurement system for Doppler broadening profiles with the coincidence technique using a NaI detector in colinear geometry with a Ge detector was developed. The principle of measurement system with the coincidence technique between the NaI detector and the Ge detector was described. Application of the system for the detection of vacancy-type defects introduced by electron irradiation in Czochralski-(Cz) grown Si was shown. Detail in the difference between the Doppler broadening profiles for Cz-Si and Si grown by the floating-zone method was also obtained. (author)

  4. Design for measurement system of Doppler broadening profiles with the coincidence technique using a NaI detector in colinear geometry with the Ge detector

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Kazuteru; Uedono, Akira; Tanigawa, Shoichiro [Tsukuba Univ., Ibaraki (Japan). Inst. of Materials Science; Nakai, Katsuhiko

    1998-08-01

    The measurement system for Doppler broadening profiles with the coincidence technique using a NaI detector in colinear geometry with a Ge detector was developed. The principle of measurement system with the coincidence technique between the NaI detector and the Ge detector was described. Application of the system for the detection of vacancy-type defects introduced by electron irradiation in Czochralski-(Cz) grown Si was shown. Detail in the difference between the Doppler broadening profiles for Cz-Si and Si grown by the floating-zone method was also obtained. (author)

  5. [The detector, the command neuron and plastic convergence].

    Science.gov (United States)

    Sokolov, E N

    1977-01-01

    The paper deals with the structure of detectors, the function of commanding neurones and the problem of relationship between detectors and commanding neurons. An example of hierarchial organization of detectors is provided by the colour analyser in which a layer of receptors, a layer of opponent neurones and a layer of colour-selective detectors are singled out. The colour detector is selectively sensitive to a certain combination of excitations at the input. If the detector is selectively activated by a certain combination of excitations at the input, the selective activation of the commanding neurone through a pool of motoneurones brings about a reaction at the output, specific in its organization. The reflexogenic zone of the reaction is determined by the detectors which converge on the commanding neurone controlling the given reaction. The plasticity of the reaction results from a plastic convergence of the detectors on the commanding neurone which controls the reaction. This comprises selective switching off the detectors from the commanding neurone (habituation) and connecting the detectors to the commanding neurone (facilitation).

  6. An endoscopic detector for ultracold neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Goeltl, L.; Fertl, M.; Kirch, K. [Paul Scherrer Institute, Laboratory for Particle Physics, Villigen-PSI (Switzerland); Institute for Particle Physics, Zuerich (Switzerland); Chowdhuri, Z.; Henneck, R.; Lauss, B.; Mtchedlishvili, A.; Schmidt-Wellenburg, P.; Zsigmond, G. [Paul Scherrer Institute, Laboratory for Particle Physics, Villigen-PSI (Switzerland); Gray, F. [Regis University, Denver, CO (United States); Lefort, T. [Universite de Caen, CNRS/IN2P3, Laboratoire de Physique Corpusculaire, Caen (France)

    2013-01-15

    A new versatile detector for ultracold neutrons (UCN) has been built and operated which combines multi-pixel photon counters and GS10 lithium-doped scintillators. Such detectors can be very small and can be used to monitor UCN inside storage vessels or guides with negligible influence (of order 10{sup -6}) on the UCN intensity itself. We have shown that such detectors can be used in a very harsh radiation environment of up to 200Gy/h via the addition of a 4m long quartz light guide in order to place the radiation-sensitive photon counters outside the hot zone. Additionally we have measured the UCN storage times in situ in this harsh environment. (orig.)

  7. Normalization of energy-dependent gamma survey data.

    Science.gov (United States)

    Whicker, Randy; Chambers, Douglas

    2015-05-01

    Instruments and methods for normalization of energy-dependent gamma radiation survey data to a less energy-dependent basis of measurement are evaluated based on relevant field data collected at 15 different sites across the western United States along with a site in Mongolia. Normalization performance is assessed relative to measurements with a high-pressure ionization chamber (HPIC) due to its "flat" energy response and accurate measurement of the true exposure rate from both cosmic and terrestrial radiation. While analytically ideal for normalization applications, cost and practicality disadvantages have increased demand for alternatives to the HPIC. Regression analysis on paired measurements between energy-dependent sodium iodide (NaI) scintillation detectors (5-cm by 5-cm crystal dimensions) and the HPIC revealed highly consistent relationships among sites not previously impacted by radiological contamination (natural sites). A resulting generalized data normalization factor based on the average sensitivity of NaI detectors to naturally occurring terrestrial radiation (0.56 nGy hHPIC per nGy hNaI), combined with the calculated site-specific estimate of cosmic radiation, produced reasonably accurate predictions of HPIC readings at natural sites. Normalization against two to potential alternative instruments (a tissue-equivalent plastic scintillator and energy-compensated NaI detector) did not perform better than the sensitivity adjustment approach at natural sites. Each approach produced unreliable estimates of HPIC readings at radiologically impacted sites, though normalization against the plastic scintillator or energy-compensated NaI detector can address incompatibilities between different energy-dependent instruments with respect to estimation of soil radionuclide levels. The appropriate data normalization method depends on the nature of the site, expected duration of the project, survey objectives, and considerations of cost and practicality.

  8. A fossils detector

    International Nuclear Information System (INIS)

    Buffetaut, E.

    1998-01-01

    Because fossil bones are often rich in uraninite they can be detected using a portable gamma-ray detector run over the prospected site. Zones with higher radioactivity are possible accumulations of bones or skeletons. This method invented by R. Jones from the University of Utah (Salt Lake City, USA) has been successfully used in the field and led to the discovery of new dinosaur skeletons. Short paper. (J.S.)

  9. Myocardial kinetics of thallium-201 after stress in normal and perfusion-reduced canine myocardium

    International Nuclear Information System (INIS)

    Okada, R.D.

    1985-01-01

    Despite the emerging use of quantitative computer programs for assessing myocardial thallium uptake and clearance after exercise, little is known about the kinetics of thallium after exercise stress. Accordingly, 11 mongrel dogs with experimental left anterior descending coronary stenoses were given thallium during norepinephrine infusion to simulate exercise. The infusion was discontinued and thallium activity was monitored regionally using miniature radiation detectors for 3 hours. Heart rate, arterial pressure and double product all increased significantly during norepinephrine infusion. The mean fractional myocardial thallium clearance was lower (0.47 +/- 0.03 [+/- standard error of the mean]) for the stenosis zone than for the no-stenosis zone (0.57 +/- 0.03) (p less than 0.0001). The stress blood flow ratio (stenosis/no-stenosis zone = 0.27 +/- 0.06) was significantly lower than the final thallium activity ratio (0.68 +/- 0.07) (p less than 0.001), consistent with thallium redistribution occurring over the 3-hour period. Myocardial thallium activity in the stenosis zone peaked in a mean of 2.2 minutes, then washed out biexponentially with a final decay constant of 0.0035 +/- 0.0005 min-1. Myocardial thallium activity in the no-stenosis zone peaked within 1 minute in all dogs, then washed out biexponentially, with a final decay constant of 0.0043 +/- 0.0003 (p less than 0.001 compared with stenosis zone). In conclusion, fractional clearance of thallium can differentiate myocardium distal to a coronary artery stenosis from that supplied by a normal coronary vessel

  10. In-core monitoring detectors

    International Nuclear Information System (INIS)

    Mitelman, M.G.

    2001-01-01

    The main task of in-core monitoring consists in securing observability of the reactor installation in all possible operation modes (normal, transient, accident and post-accident). Operation safety at acceptable cost can be achieved by optimized measurement errors. The range of sensors applied as in-core detectors for operative measurements in the industry is very limited in number. Among them might be cited self powered neutron detectors (SPND) and thermocouples. Sensors are incorporated in the in-core detectors assemblies (SVRD). The presentation makes an effort to touch upon the problems of assuring and increasing quality of in-core on-line measurements. So we do not consider systems using movable detectors, as the latter do not assure on-line measurements. (Authors)

  11. Simulations with the PANDA micro-vertex-detector

    International Nuclear Information System (INIS)

    Kliemt, Ralf

    2013-01-01

    The PANDA experiment will be built at the upcoming FAIR facility at GSI in Darmstadt, featuring antiproton-proton reactions hadron physics in a medium energy range. Charm physics will play an important role and therefore secondary decays relatively close to the interaction zone as well. The MVD will be the detector closest to these and will provide high-quality vertex position measurements. Alongside the detector layout and hardware development a detailed detector simulation and reconstruction software is required. This work contains the detailed description and the performance studies of the software developed for the MVD. Furthermore, vertexing tools are introduced and their performance is studied for the MVD.

  12. Simulations with the PANDA micro-vertex-detector

    Energy Technology Data Exchange (ETDEWEB)

    Kliemt, Ralf

    2013-07-17

    The PANDA experiment will be built at the upcoming FAIR facility at GSI in Darmstadt, featuring antiproton-proton reactions hadron physics in a medium energy range. Charm physics will play an important role and therefore secondary decays relatively close to the interaction zone as well. The MVD will be the detector closest to these and will provide high-quality vertex position measurements. Alongside the detector layout and hardware development a detailed detector simulation and reconstruction software is required. This work contains the detailed description and the performance studies of the software developed for the MVD. Furthermore, vertexing tools are introduced and their performance is studied for the MVD.

  13. Earthquake prediction research with plastic nuclear track detectors

    International Nuclear Information System (INIS)

    Woith, H.; Enge, W.; Beaujean, R.; Oschlies, K.

    1988-01-01

    Since 1984 a German-Turkish project on earthquake prediction research has been operating at the North Anatolian fault zone in Turkey. Among many other parameters changes in Radon emission have also been investigated. Plastic nuclear track detectors (Kodak cellulose nitrate LR 115) are used to record alpha-particles emitted from Radon and Thoron atoms and their daughter isotopes. The detectors are replaced and analyzed every 3 weeks. Thus a quasi-continuous time sequence of the Radon soil gas emission is recorded. We present a comparison between measurements made with electronic counters and plastic track detectors. (author)

  14. Liquid ionizing radiaion detector

    International Nuclear Information System (INIS)

    deGaston, A.N.

    1979-01-01

    A normally nonconducting liquid such as liquid hydrocarbon is encased between a pair of electrodes in an enclosure so that when the liquid is subjected to ionizing radiation, the ion pairs so created measurably increase the conductivity of the fluid. The reduced impedance between the electrodes is detectable with a sensitive ohm-meter and indicates the amount of ionizing radiation. The enclosure, the electrodes and the fluid can be constructed of materials that make the response of the detector suitable for calibrating a large range of radiation energy levels. The detector is especially useful in medical applications where tissue equivalent X ray detectors are desired

  15. Root-cause Investigation for No Setback Initiation at Liquid Zone Control Unit Perturbation in CANDU6 Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Park, Donghwan; Kim, Youngae; Kim, Sungmin [KHNP Central Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Liquid zone control system (LZCS) is one of the indigenous systems in CANDU type reactor for reactor reactivity control. The LZCS is filled with light water and used to provide a continuous fine control of the reactivity and the reactor power level. This system is also designed to accomplish spatial control of the power distribution, automatically, which prevents xenon induced power oscillations. As the tilt control term is phased out, it is replaced by a level control term, which tends to drive the individual zone levels towards the average level of all the zones. Most of CANDU reactors have been experienced these events. Generally setback or stepback conditions are on when variables of spatial control off, high zone power, etc. are reached to the initiating conditions before ROP trip. But the condition of setback or stepback is not initiated before ROP trip sometime. In this study the root-causes for this event are investigated, and the impact assessment is performed by physics computational modeling. To investigate the root-cause of ROP trip before initiating setback at abnormal operating condition, some LZC perturbation models were simulated and investigated the neutron flux readings of zone detector and ROP detector. Two root-causes were founded. The first, flux variation by water level change is more gradual than other zones due to design characteristics in zone 03. The second, ROP detector (SDS no. 2 3G) in the near zone 03 is very sensitive below 40% of water level due to ROP detector installed position. Even though setback is initiated earlier than ROP trip in case of zone 03 perturbation, ROP trip will be occurred because power decreasing rate is very slow(0.1%/sec) on setback condition.

  16. Modifications in track registration response of PADC detector by energetic protons

    CERN Document Server

    Dwivedi, K K; Fink, D; Mishra, R; Tripathy, S P; Kulshreshtha, A; Khathing, D T

    1999-01-01

    It has been well established that different ionising radiations modify the track registration properties of dielectric solids. In an effort to study the response of Polyallyl diglycol carbonate (PADC Homalite) detector towards fission fragment, PADC detectors were exposed to 10 sup 4 Gy dose of 62 MeV protons and then one set of samples were exposed to fission fragments from a sup 2 sup 5 sup 2 Cf source. Two of these detectors were containing a thin layer of Buckminsterfullerene (C sub 6 sub 0). The study of the etched tracks by Leitz Optical Microscope reveals that the track diameters are enhanced by more than 70% in the proton irradiated zone as compared to that in the unirradiated zone. Scanning Electron Microscopy was performed after etching the sample in 6 N NaOH at 55 deg. C for different etching times, to study the details of the surface modifications due to proton irradiation of PADC detectors with and without C sub 6 sub 0 layer. Our observations revealed that the diameters and density of proton tra...

  17. Reactor antineutrino detector iDREAM.

    Science.gov (United States)

    Gromov, M. B.; Lukyanchenko, G. A.; Novikova, G. J.; Obinyakov, B. A.; Oralbaev, A. Y.; Skorokhvatov, M. D.; Sukhotin, S. V.; Chepurnov, A. S.; Etenko, A. V.

    2017-09-01

    Industrial Detector for Reactor Antineutrino Monitoring (iDREAM) is a compact (≈ 3.5m 2) industrial electron antineutrino spectrometer. It is dedicated for remote monitoring of PWR reactor operational modes by neutrino method in real-time. Measurements of antineutrino flux from PWR allow to estimate a fuel mixture in active zone and to check the status of the reactor campaign for non-proliferation purposes. LAB-based gadolinium doped scintillator is exploited as a target. Multizone architecture of the detector with gamma-catcher surrounding fiducial volume and plastic muon veto above and below ensure high efficiency of IBD detection and background suppression. DAQ is based on Flash ADC with PSD discrimination algorithms while digital trigger is programmable and flexible due to FPGA. The prototype detector was started up in 2014. Preliminary works on registration Cerenkov radiation produced by cosmic muons were established with distilled water inside the detector in order to test electronic and slow control systems. Also in parallel a long-term measurements with different scintillator samples were conducted.

  18. Pixellated thallium bromide detectors for gamma-ray spectroscopy and imaging

    Energy Technology Data Exchange (ETDEWEB)

    Onodera, T. E-mail: tosiyuki@smail.tohtech.ac.jp; Hitomi, K.; Shoji, T.; Hiratate, Y

    2004-06-01

    Recently, pixellated semiconductor detectors exhibit high-energy resolution, which have been studied actively and fabricated from CdTe, CZT and HgI{sub 2}. Thallium bromide (TlBr) is a compound semiconductor characterized with its high atomic numbers (Tl=81, Br=35) and high density (7.56 g/cm{sup 3}). Thus, TlBr exhibits higher photon stopping power than other semiconductor materials used for radiation detector fabrication such as CdTe, CZT and HgI{sub 2}. The wide band gap of TlBr (2.68 eV) permits the detectors low-noise operation at around room temperature. Our studies made an effort to fabricate pixellated TlBr detectors had sufficient detection efficiency and good charge collection efficiency. In this study, pixellated TlBr detectors were fabricated from the crystals purified by the multipass zone-refining method and grown by the horizontal traveling molten zone (TMZ) method. The TlBr detector has a continuous cathode over one crystal surface and 3x3 pixellated anodes (0.57x0.57 mm{sup 2} each) surrounded by a guard ring on the opposite surface. The electrodes were realized by vacuum evaporation of palladium through a shadow mask. Typical thickness of the detector was 2 mm. Spectrometric performance of the TlBr detectors was tested by irradiating them with {sup 241}Am (59.5 keV), {sup 57}Co (122 keV) and {sup 137}Cs (662 keV) gamma-ray sources at temperature of -20 deg. C. Energy resolutions (FWHM) were measured to be 4.0, 6.0 and 9.7 keV for 59.5, 122 and 662 keV gamma-rays, respectively.

  19. Device for glass detector tracks processing

    International Nuclear Information System (INIS)

    Zhukov, A.V.; Mikheev, V.P.; Pis'mennyj, G.V.; Pribytov, V.I.; Rozov, B.S.

    1974-01-01

    The authors describe a semi-automatic installation for measuring angular distribution of tracks from nuclear fission fragments. The measurements were performed on glass detectors represented by a cylinder surface section with central angle 110-120 deg, height 20 mm and radius 45 mm. The tracks were in the form of lunes, 10/25 mm deep. Treatment of one detector lasted 10-15 min. The installation affords the possibility of finding the angular distribution of tracks by counting them in zones, whose sizes may vary from 1 to 90 deg. Data output was performed on a digitizer [ru

  20. Radiation Hardening of Silicon Detectors

    CERN Multimedia

    Leroy, C; Glaser, M

    2002-01-01

    %RD48 %title\\\\ \\\\Silicon detectors will be widely used in experiments at the CERN Large Hadron Collider where high radiation levels will cause significant bulk damage. In addition to increased leakage current and charge collection losses worsening the signal to noise, the induced radiation damage changes the effective doping concentration and represents the limiting factor to long term operation of silicon detectors. The objectives are to develop radiation hard silicon detectors that can operate beyond the limits of the present devices and that ensure guaranteed operation for the whole lifetime of the LHC experimental programme. Radiation induced defect modelling and experimental results show that the silicon radiation hardness depends on the atomic impurities present in the initial monocrystalline material.\\\\ \\\\ Float zone (FZ) silicon materials with addition of oxygen, carbon, nitrogen, germanium and tin were produced as well as epitaxial silicon materials with epilayers up to 200 $\\mu$m thickness. Their im...

  1. Diamond Pixel Detectors

    International Nuclear Information System (INIS)

    Adam, W.; Berdermann, E.; Bergonzo, P.; Bertuccio, G.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; D'Angelo, P.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Doroshenko, J.; Dulinski, W.; Eijk, B. van; Fallou, A.; Fizzotti, F.; Foster, J.; Foulon, F.; Friedl, M.; Gan, K.K.; Gheeraert, E.; Gobbi, B.; Grim, G.P.; Hallewell, G.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Kass, R.; Koeth, T.; Krammer, M.; Lander, R.; Logiudice, A.; Lu, R.; Lynne, L.M.; Manfredotti, C.; Meier, D.; Mishina, M.; Moroni, L.; Oh, A.; Pan, L.S.; Pernicka, M.; Perera, L.; Pirollo, S.; Plano, R.; Procario, M.; Riester, J.L.; Roe, S.; Rott, C.; Rousseau, L.; Rudge, A.; Russ, J.; Sala, S.; Sampietro, M.; Schnetzer, S.; Sciortino, S.; Stelzer, H.; Stone, R.; Suter, B.; Tapper, R.J.; Tesarek, R.; Trischuk, W.; Tromson, D.; Vittone, E.; Wedenig, R.; Weilhammer, P.; White, C.; Zeuner, W.; Zoeller, M.

    2001-01-01

    Diamond based pixel detectors are a promising radiation-hard technology for use at the LHC. We present first results on a CMS diamond pixel sensor. With a threshold setting of 2000 electrons, an average pixel efficiency of 78% was obtained for normally incident minimum ionizing particles

  2. Diamond Pixel Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Adam, W.; Berdermann, E.; Bergonzo, P.; Bertuccio, G.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; D' Angelo, P.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Doroshenko, J.; Dulinski, W.; Eijk, B. van; Fallou, A.; Fizzotti, F.; Foster, J.; Foulon, F.; Friedl, M.; Gan, K.K.; Gheeraert, E.; Gobbi, B.; Grim, G.P.; Hallewell, G.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Kass, R.; Koeth, T.; Krammer, M.; Lander, R.; Logiudice, A.; Lu, R.; Lynne, L.M.; Manfredotti, C.; Meier, D.; Mishina, M.; Moroni, L.; Oh, A.; Pan, L.S.; Pernicka, M.; Perera, L. E-mail: perera@physics.rutgers.edu; Pirollo, S.; Plano, R.; Procario, M.; Riester, J.L.; Roe, S.; Rott, C.; Rousseau, L.; Rudge, A.; Russ, J.; Sala, S.; Sampietro, M.; Schnetzer, S.; Sciortino, S.; Stelzer, H.; Stone, R.; Suter, B.; Tapper, R.J.; Tesarek, R.; Trischuk, W.; Tromson, D.; Vittone, E.; Wedenig, R.; Weilhammer, P.; White, C.; Zeuner, W.; Zoeller, M

    2001-06-01

    Diamond based pixel detectors are a promising radiation-hard technology for use at the LHC. We present first results on a CMS diamond pixel sensor. With a threshold setting of 2000 electrons, an average pixel efficiency of 78% was obtained for normally incident minimum ionizing particles.

  3. A detector for tomography by Compton scattering at 900 and tomography apparatus comprising such detector

    International Nuclear Information System (INIS)

    Ricodeau, Jean.

    1981-01-01

    The present invention concerns a detector for tomography by Compton scattering at 90 0 . The difference between this detector and those currently used previously lies in the fact that the collection aperture of the radiation at normal angle to the incident beam is large and can reach 180 0 and even more. This fact allows to collect an important part of the scattered radiation. A good image quality is obtained with low radiation doses delivered to the body as compared to previous techniques. This detector can be operated in analogical mode which presents the advantage to be faster and easier to realize [fr

  4. Radiation hardness of silicon detectors manufactured on wafers from various sources

    International Nuclear Information System (INIS)

    Dezillie, B.; Bates, S.; Glaser, M.; Lemeilleur, F.; Leroy, C.

    1997-01-01

    Impurity concentrations in the initial silicon material are expected to play an important role for the radiation hardness of silicon detectors, during their irradiation and for their evolution with time after irradiation. This work reports on the experimental results obtained with detectors manufactured using various float-zone (FZ) and epitaxial-grown material. Preliminary results comparing the changes in leakage current and full depletion voltage of FZ and epitaxial detectors as a function of fluence and of time after 10 14 cm -2 proton irradiation are given. The measurement of charge collection efficiency for epitaxial detectors is also presented. (orig.)

  5. Technical Design Report for the: PANDA Micro Vertex Detector

    CERN Document Server

    Erni, W; Krusche, B; Steinacher, M; Heng, Y; Liu, Z; Liu, H; Shen, X; Wang, Q; Xu, H; Albrecht, M; Becker, J; Eickel, K; Feldbauer, F; Fink, M; Friedel, P; Heinsius, F H; Held, T; Koch, H; Kopf, B; Leyhe, M; Motzko, C; Pelizäus, M; Pychy, J; Roth, B; Schröder, T; Schulze, J; Steinke, M; Trifterer, T; Wiedner, U; Zhong, J; Beck, R; Becker, M; Bianco, S; Brinkmann, K -Th; Hammann, C; Hinterberger, F; Jäkel, R; Kaiser, D; Kliemt, R; Koop, K; Schmidt, C; Schnell, R; Thoma, U; Vlasov, P; Wendel, C; Winnebeck, A; Würschig, Th; Zaunick, H -G; Bianconi, A; Bragadireanu, M; Caprini, M; Ciubancan, M; Pantea, D; Tarta, P -D; De Napoli, M; Giacoppo, F; Rapisarda, E; Sfienti, C; Fiutowski, T; Idzik, N; Mindur, B; Przyborowski, D; Swientek, K; Bialkowski, E; Budzanowski, A; Czech, B; Kliczewski, S; Kozela, A; Kulessa, P; Lebiedowicz, P; Malgorzata, K; Pysz, K; Schäfer, W; Siudak, R; Szczurek, A; Brandys, P; Czyzewski, T; Czyzycki, W; Domagala, M; Hawryluk, M; Filo, G; Kwiatkowski, D; Lisowski, E; Lisowski, F; Bardan, W; Gil, D; Kamys, B; Kistryn, St; Korcyl, K; Krzemieñ, W; Magiera, A; Moskal, P; Rudy, Z; Salabura, P; Smyrski, J; Wroñska, A; Al-Turany, M; Arora, R; Augustin, I; Deppe, H; Dutta, D; Flemming, H; Götzen, K; Hohler, G; Karabowicz, R; Lehmann, D; Lewandowski, B; Lühning, J; Maas, F; Orth, H; Peters, K; Saito, T; Schepers, G; Schmidt, C J; Schmitt, L; Schwarz, C; Schwiening, J; Voss, B; Wieczorek, P; Wilms, A; Abazov, V M; Alexeev, G D; Arefiev, V A; Astakhov, V I; Barabanov, M Yu; Batyunya, B V; Davydov, Yu I; Dodokhov, V Kh; Efremov, A A; Fedunov, A G; Feshchenko, A A; Galoyan, A S; Grigoryan, S; Karmokov, A; Koshurnikov, E K; Lobanov, V I; Lobanov, Yu Yu; Makarov, A F; Malinina, L V; Malyshev, V L; Mustafaev, G A; Olshevski, A G; Pasyuk, M A; Perevalova, E A; Piskun, A A; Pocheptsov, T A; Pontecorvo, G; Rodionov, V K; Rogov, Yu N; Salmin, R A; Samartsev, A G; Sapozhnikov, M G; Shabratova, G S; Skachkova, A N; Skachkov, N B; Strokovsky, E A; Suleimanov, M K; Teshev, R Sh; Tokmenin, V V; Uzhinsky, V V; Vodopyanov, A S; Zaporozhets, S A; Zhuravlev, N I; Zorin, A G; Branford, D; Glazier, D; Watts, D; Woods, P; Britting, A; Eyrich, W; Lehmann, A; Uhlig, F; Dobbs, S; Metreveli, Z; Seth, K; Tann, B; Tomaradze, A; Bettoni, D; Carassiti, V; Dalpiaz, P; Drago, A; Fioravanti, E; Garzia, I; Negrini, M; Savriè, M; Stancari, G; Dulach, B; Gianotti, P; Guaraldo, C; Lucherini, V; Pace, E; Bersani, A; Macri, M; Marinelli, M; Parodi, R F; Dormenev, V; Drexler, P; Düren, M; Eisner, T; Foehl, K; Hayrapetyan, A; Koch, P; Krïoch, B; Kühn, W; Lange, S; Liang, Y; Liu, M; Merle, O; Metag, V; Moritz, M; Nanova, M; Novotny, R; Spruck, B; Stenzel, H; Strackbein, C; Thiel, M; Wang, Q; Clarkson, T; Euan, C; Hill, G; Hoek, M; Ireland, D; Kaiser, R; Keri, T; Lehmann, I; Livingston, K; Lumsden, P; MacGregor, D; McKinnon, B; Montgomery, R; Murray, M; Protopopescu, D; Rosner, G; Seitz, B; Yang, G; Babai, M; Biegun, A K; Glazenborg-Kluttig, A; Guliyev, E; Jothi, V S; Kavatsyuk, M; Lemmens, P; Löhner, H; Messchendorp, J; Poelman, T; Smit, H; van der Weele, J C; Sohlbach, H; Büscher, M; Dosdall, R; Dzhygadlo, R; Esch, S; Gillitzer, A; Goldenbaum, F; Grunwald, D; Jha, V; Kemmerling, G; Kleines, H; Lehrach, A; Maier, R; Mertens, M; Ohm, H; Pohl, D L; Prasuhn, D; Randriamalala, T; Ritman, J; Roeder, M; Sterzenbach, G; Stockmanns, T; Wintz, P; Wüstner, P; Xu, H; Kisiel, J; Li, S; Li, Z; Sun, Z; Xu, H; Fissum, K; Hansen, K; Isaksson, L; Lundin, M; Schröder, B; Achenbach, P; Denig, A; Distler, M; Fritsch, M; Kangh, D; Karavdina, A; Lauth, W; Michel, M; Espi, M C Mora; Pochodzalla, J; Sanchez, S; Sanchez-Lorente, A; Sfienti, C; Weber, T; Dormenev, V I; Fedorov, A A; Korzhik, M V; Missevitch, O V; Boukharov, A; Malyshev, O; Marishev, I; Semenov, A; Varma, R; Höppner, C; Ketzer, B; Konorov, I; Mann, A; Neubert, S; Paul, S; Vandenbroucke, M; Zhang, Q; Khoukaz, A; Rausmann, T; Täschner, A; Wessels, J; Baldin, E; Kotov, K; Peleganchuk, S; Tikhonov, Yu; Hennino, T; Imre, M; Kunne, R; Galliard, C Le; Normand, J P Le; Marchand, D; Maroni, A; Ong, S; Pouthas, J; Ramstein, B; Rosier, P; Sudol, M; Theneau, C; Tomasi-Gustafsson, E; Van de Wiele, J; Zerguerras, T; Boca, G; Braghieri, A; Costanza, S; Fontana, A; Genova, P; Lavezzi, L; Montagna, P; Rotondi, A; Buda, V; Abramov, V V; Davidenko, A M; Derevschikov, A A; Goncharenko, Y M; Grishin, V N; Kachanov, V A; Konstantinov, D A; Kormilitsin, V A; Matulenko, Y A; Melnik, Y M; Meschanin, A P; Minaev, N G; Mochalov, V V; Morozov, D A; Nogach, L V; Nurushev, S B; Ryazantsev, A V; Semenov, P A; Soloviev, L F; Uzunian, A V; Vasiliev, A N; Yakutin, A E; Belostotski, S; Gavrilov, G; Itzotov, A; Kisselev, A; Kravchenko, P; Manaenkov, S; Miklukho, O; Naryshkin, Y; Veretennikov, D; Vikhrov, V; Zhadanov, A; Bäck, T; Cederwall, B; Bargholtz, C; Gerén, L; Tegnér, P E; Thørngren, P; von Würtemberg, K M; Fava, L; Alberto, D; Amoroso, A; Bussa, M P; Busso, L; De Mori, F; Destefanis, M; Ferrero, L; Greco, M; Kugathasan, T; Maggiora, M; Marcello, S; Sosio, S; Spataro, S; Calvo, D; Coli, S; De Remigis, P; Filippi, A; Giraudo, G; Lusso, S; Mazza, G; Mignone, M; Rivetti, A; Wheadon, R; Zotti, L; Morra, O; Iazzi, F; Lavagno, A; Quarati, P; Szymanska, K; Birsa, R; Bradamante, F; Bressan, A; Martin, A; Clement, H; Galnander, B; Calén, H; Fransson, K; Johansson, T; Kupsc, A; Marciniewski, P; Thomé, E; Wolke, M; Zlomanczuk, J; Díaz, J; Ortiz, A; Buda, P; Dmowski, K; Korzeniewski, R; Przemyslaw, D; Slowinski, B; Borsuk, S; Chlopik, A; Guzik, Z; Kopec, J; Kozlowski, T; Melnychuk, D; Plominski, M; Szewinski, J; Traczyk, K; Zwieglinski, B; Bühler, P; Gruber, A; Kienle, P; Marton, J; Widmann, E; Zmeskal, J

    2012-01-01

    This document illustrates the technical layout and the expected performance of the Micro Vertex Detector (MVD) of the PANDA experiment. The MVD will detect charged particles as close as possible to the interaction zone. Design criteria and the optimisation process as well as the technical solutions chosen are discussed and the results of this process are subjected to extensive Monte Carlo physics studies. The route towards realisation of the detector is outlined.

  6. Detectors for Tomorrow's Instruments

    Science.gov (United States)

    Moseley, Harvey

    2009-01-01

    Cryogenically cooled superconducting detectors have become essential tools for a wide range of measurement applications, ranging from quantum limited heterodyne detection in the millimeter range to direct searches for dark matter with superconducting phonon detectors operating at 20 mK. Superconducting detectors have several fundamental and practical advantages which have resulted in their rapid adoption by experimenters. Their excellent performance arises in part from reductions in noise resulting from their low operating temperatures, but unique superconducting properties provide a wide range of mechanisms for detection. For example, the steep dependence of resistance with temperature on the superconductor/normal transition provides a sensitive thermometer for calorimetric and bolometric applications. Parametric changes in the properties of superconducting resonators provides a mechanism for high sensitivity detection of submillimeter photons. From a practical point of view, the use of superconducting detectors has grown rapidly because many of these devices couple well to SQUID amplifiers, which are easily integrated with the detectors. These SQUID-based amplifiers and multiplexers have matured with the detectors; they are convenient to use, and have excellent noise performance. The first generation of fully integrated large scale superconducting detection systems are now being deployed. I will discuss the prospects for a new generation of instruments designed to take full advantage of the revolution in detector technology.

  7. The Normal Zone Propagation in ATLAS B00 Model Coil

    NARCIS (Netherlands)

    Boxman, E.W.; Dudarev, A.V.; ten Kate, Herman H.J.

    2002-01-01

    The B00 model coil has been successfully tested in the ATLAS Magnet Test Facility at CERN. The coil consists of two double pancakes wound with aluminum stabilized cables of the barrel- and end-cap toroids conductors for the ATLAS detector. The magnet current is applied up to 24 kA and quenches are

  8. Test-beam results of a SOI pixel detector prototype

    CERN Document Server

    Bugiel, Roma; Dannheim, Dominik; Fiergolski, Adrian; Hynds, Daniel; Idzik, Marek; Kapusta, P; Kucewicz, Wojciech; Munker, Ruth Magdalena; Nurnberg, Andreas Matthias

    2018-01-01

    This paper presents the test-beam results of a monolithic pixel-detector prototype fabricated in 200 nm Silicon-On-Insulator (SOI) CMOS technology. The SOI detector was tested at the CERN SPS H6 beam line. The detector is fabricated on a 500 μm thick high-resistivity float- zone n-type (FZ-n) wafer. The pixel size is 30 μm × 30 μm and its readout uses a source- follower configuration. The test-beam data are analysed in order to compute the spatial resolution and detector efficiency. The analysis chain includes pedestal and noise calculation, cluster reconstruction, as well as alignment and η-correction for non-linear charge sharing. The results show a spatial resolution of about 4.3 μm.

  9. Molecular differences in transition zone and peripheral zone prostate tumors

    Science.gov (United States)

    Sinnott, Jennifer A.; Rider, Jennifer R.; Carlsson, Jessica; Gerke, Travis; Tyekucheva, Svitlana; Penney, Kathryn L.; Sesso, Howard D.; Loda, Massimo; Fall, Katja; Stampfer, Meir J.; Mucci, Lorelei A.; Pawitan, Yudi; Andersson, Sven-Olof; Andrén, Ove

    2015-01-01

    Prostate tumors arise primarily in the peripheral zone (PZ) of the prostate, but 20–30% arise in the transition zone (TZ). Zone of origin may have prognostic value or reflect distinct molecular subtypes; however, it can be difficult to determine in practice. Using whole-genome gene expression, we built a signature of zone using normal tissue from five individuals and found that it successfully classified nine tumors of known zone. Hypothesizing that this signature captures tumor zone of origin, we assessed its relationship with clinical factors among 369 tumors of unknown zone from radical prostatectomies (RPs) and found that tumors that molecularly resembled TZ tumors showed lower mortality (P = 0.09) that was explained by lower Gleason scores (P = 0.009). We further applied the signature to an earlier study of 88 RP and 333 transurethral resection of the prostate (TURP) tumor samples, also of unknown zone, with gene expression on ~6000 genes. We had observed previously substantial expression differences between RP and TURP specimens, and hypothesized that this might be because RPs capture primarily PZ tumors, whereas TURPs capture more TZ tumors. Our signature distinguished these two groups, with an area under the receiver operating characteristic curve of 87% (P zones. Zone of origin may be important to consider in prostate tumor biomarker research. PMID:25870172

  10. Effect of SiO$_{2}$ passivating layer in segmented silicon planar detectors on the detector response

    CERN Document Server

    Verbitskaya, Elena; Eremin, Vladimir; Golubkov, S; Konkov, K; Roe, Shaun; Ruggiero, G; Sidorov, A; Weilhammer, Peter

    2004-01-01

    Silicon detectors with a fine segmentation (micropixel and microstrip) are the main type of detectors used in the inner trackers of LHC experiments. Due to the high luminosity of the LHC machines they are required to have a fast response to fit the short shaping time of 25 ns and to be radiation hard. Evaluation of silicon microstrip detectors developed for the ATLAS silicon tracker and carried out under collaboration of CERN and PTI has shown the reversal of the pulse polarity in the detector response to short- range radiation. Since the negative signal is of about 30% of the normal positive one, the effect strongly reduces the charge collection efficiency in irradiated detectors. The investigation presents the consideration on the origin of a negative response in Si microstrip detectors and the experimental proof of the model. The study of the effect has been carried out using "baby" strip detectors with a special design: each strip has a window in a metallization, which covers the p/sup +/ implant. The sca...

  11. The PANDA detector at FAIR

    International Nuclear Information System (INIS)

    Bersani, Andrea

    2012-01-01

    The PANDA detector will be installed at FAIR to enterprise a long-term, wide-spectrum physics program in the strong interaction framework. The detector will be installed at the HESR accumulation ring, which will provide an anti-proton beam of unprecedented luminosity and momentum definition. The beam will interact with an internal target. The detector has been designed to allow a 4π coverage around the interaction region. Due to the relatively high energy of the beam, up to 15 GeV, PANDA will feature two magnetic spectrometers: the target spectrometer (TS), with a superconducting solenoid and covering the interaction region, and a forward spectrometer (FS), with a normal-conducting dipole and covering the small angles region. Since the physics program is wide and the requirements on the various subsystems are different, the detector has been designed to be as flexible as possible. The complete detector will be described in detail, both from the viewpoint of the proposed techniques and from the viewpoint of the expected performances. An overview of the status of various components of the detector will be presented, too.

  12. The PANDA detector at FAIR

    Science.gov (United States)

    Bersani, Andrea

    2012-10-01

    The PANDA detector will be installed at FAIR to enterprise a long-term, wide-spectrum physics program in the strong interaction framework. The detector will be installed at the HESR accumulation ring, which will provide an anti-proton beam of unprecedented luminosity and momentum definition. The beam will interact with an internal target. The detector has been designed to allow a 4π coverage around the interaction region. Due to the relatively high energy of the beam, up to 15 GeV, PANDA will feature two magnetic spectrometers: the target spectrometer (TS), with a superconducting solenoid and covering the interaction region, and a forward spectrometer (FS), with a normal-conducting dipole and covering the small angles region. Since the physics program is wide and the requirements on the various subsystems are different, the detector has been designed to be as flexible as possible. The complete detector will be described in detail, both from the viewpoint of the proposed techniques and from the viewpoint of the expected performances. An overview of the status of various components of the detector will be presented, too.

  13. Measurement and Analysis of Normal Zone Propagation in a ReBCO Coated at Temperatures Below 50 K (Proc. 25th ICEC & ICMC2014 conference)

    NARCIS (Netherlands)

    van Nugteren, J.; Dhalle, Marc M.J.; Wessel, Wilhelm A.J.; Krooshoop, Hendrikus J.G.; Nijhuis, Arend; ten Kate, Herman H.J.

    2015-01-01

    Measurements of the quasi-adiabatic normal zone propagation velocity and quench energies of a Superpower SCS4050 copper stabilised ReBCO superconducting tape are presented over a temperature range of 23 − 47 K; in parallel applied magnetic fields of 6, 10 and 14 T; and over a current range from 50%

  14. Charge collection and absorption-limited x-ray sensitivity of pixellated x-ray detectors

    International Nuclear Information System (INIS)

    Kabir, M. Zahangir; Kasap, S.O.

    2004-01-01

    The charge collection and absorption-limited x-ray sensitivity of a direct conversion pixellated x-ray detector operating in the presence of deep trapping of charge carriers is calculated using the Shockley-Ramo theorem and the weighting potential of the individual pixel. The sensitivity of a pixellated x-ray detector is analyzed in terms of normalized parameters; (a) the normalized x-ray absorption depth (absorption depth/photoconductor thickness), (b) normalized pixel width (pixel size/thickness), and (c) normalized carrier schubwegs (schubweg/thickness). The charge collection and absorption-limited sensitivity of pixellated x-ray detectors mainly depends on the transport properties (mobility and lifetime) of the charges that move towards the pixel electrodes and the extent of dependence increases with decreasing normalized pixel width. The x-ray sensitivity of smaller pixels may be higher or lower than that of larger pixels depending on the rate of electron and hole trapping and the bias polarity. The sensitivity of pixellated detectors can be improved by ensuring that the carrier with the higher mobility-lifetime product is drifted towards the pixel electrodes

  15. The development of Micromegas, a new gaseous position detector; Le developpement de micromegas, un nouveau detecteur gazeux de position a microgrille

    Energy Technology Data Exchange (ETDEWEB)

    Puill, G

    2000-06-01

    Micromegas (micro mesh gaseous structure) is a new detector based on a double structure, it is made of 2 different zones separated by a micro-grid. This detector is set in a tight container in which flows a mix of an inert gas with a few percents of a moderator gas that is needed for the right operating of the device. The part that is met by the incident particle is the conversion zone where the particle will lose a part of its energy by creating electron-ion pairs coming from the ionisation of the atoms of the gas mix. The other part is the amplifying zone, this zone is delimited by the micro-grid and the bottom of the detector and is about 100 microns broad, tracks are set on the bottom and each track is linked to an amplifying line. Micromegas detects charged particles but is not insensitive to other particles, its operating conditions are dependent on many parameters. The width of the conversion zone, the gas mix composition and the type of incident particles will determine the quantity of energy released and then its efficiency to detect all particles. The width of the conversion zone and the nature of the gas mix will have an influence on the spatial accuracy. The detector gain is dependent on the gas mix, the electric field, the gas pressure and the width of the amplifying zone. The nature of the gas mix is expected to have an effect on the spatial resolution. The signal lifetime will depend not only on the gas mix but also on the width of the amplifying zone. We have to notice that the grid mesh has to fit the width of the amplifying zone. This work is dedicated to the study of this detector, to determine its operating range, to evaluate the influence of all the parameters quoted above and to give a review of its performance. (A.C.)

  16. Comparison of experimental and theoretical efficiency of HPGe X-ray detector

    International Nuclear Information System (INIS)

    Mohanty, B.P.; Balouria, P.; Garg, M.L.; Nandi, T.K.; Mittal, V.K.; Govil, I.M.

    2008-01-01

    The low energy high purity germanium (HPGe) detectors are being increasingly used for the quantitative estimation of elements using X-ray spectrometric techniques. The softwares used for quantitative estimation normally evaluate model based efficiency of detector using manufacturer supplied detector physical parameters. The present work shows that the manufacturer supplied detector parameters for low energy HPGe detectors need to be verified by comparing model based efficiency with the experimental ones. This is particularly crucial for detectors with ion implanted P type contacts

  17. Integrated seismic interpretation of the Carlsberg Fault zone, Copenhagen, Denmark

    DEFF Research Database (Denmark)

    Nielsen, Lars; Thybo, Hans; Jørgensen, Mette Iwanouw

    2005-01-01

    the fault zone. The fault zone is a shadow zone to shots detonated outside the fault zone. Finite-difference wavefield modelling supports the interpretations of the fan recordings. Our fan recording approach facilitates cost-efficient mapping of fault zones in densely urbanized areas where seismic normal......We locate the concealed Carlsberg Fault zone along a 12-km-long trace in the Copenhagen city centre by seismic refraction, reflection and fan profiling. The Carlsberg Fault is located in a NNW-SSE striking fault system in the border zone between the Danish Basin and the Baltic Shield. Recent...... earthquakes indicate that this area is tectonically active. A seismic refraction study across the Carlsberg Fault shows that the fault zone is a low-velocity zone and marks a change in seismic velocity structure. A normal incidence reflection seismic section shows a coincident flower-like structure. We have...

  18. Contrast-enhanced transrectal ultrasound for prediction of prostate cancer aggressiveness: The role of normal peripheral zone time-intensity curves.

    Science.gov (United States)

    Huang, Hui; Zhu, Zheng-Qiu; Zhou, Zheng-Guo; Chen, Ling-Shan; Zhao, Ming; Zhang, Yang; Li, Hong-Bo; Yin, Li-Ping

    2016-12-08

    To assess the role of time-intensity curves (TICs) of the normal peripheral zone (PZ) in the identification of biopsy-proven prostate nodules using contrast-enhanced transrectal ultrasound (CETRUS). This study included 132 patients with 134 prostate PZ nodules. Arrival time (AT), peak intensity (PI), mean transit time (MTT), area under the curve (AUC), time from peak to one half (TPH), wash in slope (WIS) and time to peak (TTP) were analyzed using multivariate linear logistic regression and receiver operating characteristic (ROC) curves to assess whether combining nodule TICs with normal PZ TICs improved the prediction of prostate cancer (PCa) aggressiveness. The PI, AUC (p < 0.001 for both), MTT and TPH (p = 0.011 and 0.040 respectively) values of the malignant nodules were significantly higher than those of the benign nodules. Incorporating the PI and AUC values (both, p < 0.001) of the normal PZ TIC, but not the MTT and TPH values (p = 0.076 and 0.159 respectively), significantly improved the AUC for prediction of malignancy (PI: 0.784-0.923; AUC: 0.758-0.891) and assessment of cancer aggressiveness (p < 0.001). Thus, all these findings indicate that incorporating normal PZ TICs with nodule TICs in CETRUS readings can improve the diagnostic accuracy for PCa and cancer aggressiveness assessment.

  19. A statistical analysis of count normalization methods used in positron-emission tomography

    International Nuclear Information System (INIS)

    Holmes, T.J.; Ficke, D.C.; Snyder, D.L.

    1984-01-01

    As part of the Positron-Emission Tomography (PET) reconstruction process, annihilation counts are normalized for photon absorption, detector efficiency and detector-pair duty-cycle. Several normalization methods of time-of-flight and conventional systems are analyzed mathematically for count bias and variance. The results of the study have some implications on hardware and software complexity and on image noise and distortion

  20. Measurements for the energy calibration of the TANSY neutron detectors

    International Nuclear Information System (INIS)

    Drozdowicz, K.; Hoek, M.; Aronsson, D.

    1990-05-01

    The report describes measurements performed for the energy calibration of the TANSY neutron detectors (two arrays of 16 detectors each one). The calibration procedure determines four calibration parameters for each detector. Results of the calibration measurements are given and test measurements are presented. A relation of the neutron detector calibration parameters to producer's data for the photomulipliers is analysed. Also the tests necessary during normal operation of the TANSY neutron spectrometer are elaborated (passive and active tests). A method how to quickly get the calibration parameters for a spare detector in an array of the neutron detectors is included

  1. Optimal Design of the Adaptive Normalized Matched Filter Detector using Regularized Tyler Estimators

    KAUST Repository

    Kammoun, Abla; Couillet, Romain; Pascal, Frederic; Alouini, Mohamed-Slim

    2017-01-01

    This article addresses improvements on the design of the adaptive normalized matched filter (ANMF) for radar detection. It is well-acknowledged that the estimation of the noise-clutter covariance matrix is a fundamental step in adaptive radar detection. In this paper, we consider regularized estimation methods which force by construction the eigenvalues of the covariance estimates to be greater than a positive regularization parameter ρ. This makes them more suitable for high dimensional problems with a limited number of secondary data samples than traditional sample covariance estimates. The motivation behind this work is to understand the effect and properly set the value of ρthat improves estimate conditioning while maintaining a low estimation bias. More specifically, we consider the design of the ANMF detector for two kinds of regularized estimators, namely the regularized sample covariance matrix (RSCM), the regularized Tyler estimator (RTE). The rationale behind this choice is that the RTE is efficient in mitigating the degradation caused by the presence of impulsive noises while inducing little loss when the noise is Gaussian. Based on asymptotic results brought by recent tools from random matrix theory, we propose a design for the regularization parameter that maximizes the asymptotic detection probability under constant asymptotic false alarm rates. Provided Simulations support the efficiency of the proposed method, illustrating its gain over conventional settings of the regularization parameter.

  2. Optimal Design of the Adaptive Normalized Matched Filter Detector using Regularized Tyler Estimators

    KAUST Repository

    Kammoun, Abla

    2017-10-25

    This article addresses improvements on the design of the adaptive normalized matched filter (ANMF) for radar detection. It is well-acknowledged that the estimation of the noise-clutter covariance matrix is a fundamental step in adaptive radar detection. In this paper, we consider regularized estimation methods which force by construction the eigenvalues of the covariance estimates to be greater than a positive regularization parameter ρ. This makes them more suitable for high dimensional problems with a limited number of secondary data samples than traditional sample covariance estimates. The motivation behind this work is to understand the effect and properly set the value of ρthat improves estimate conditioning while maintaining a low estimation bias. More specifically, we consider the design of the ANMF detector for two kinds of regularized estimators, namely the regularized sample covariance matrix (RSCM), the regularized Tyler estimator (RTE). The rationale behind this choice is that the RTE is efficient in mitigating the degradation caused by the presence of impulsive noises while inducing little loss when the noise is Gaussian. Based on asymptotic results brought by recent tools from random matrix theory, we propose a design for the regularization parameter that maximizes the asymptotic detection probability under constant asymptotic false alarm rates. Provided Simulations support the efficiency of the proposed method, illustrating its gain over conventional settings of the regularization parameter.

  3. The Daya Bay antineutrino detector filling system and liquid mass measurement

    Science.gov (United States)

    Band, H. R.; Cherwinka, J. J.; Draeger, E.; Heeger, K. M.; Hinrichs, P.; Lewis, C. A.; Mattison, H.; McFarlane, M. C.; Webber, D. M.; Wenman, D.; Wang, W.; Wise, T.; Xiao, Q.

    2013-09-01

    The Daya Bay Reactor Neutrino Experiment has measured the neutrino mixing angle θ13 to world-leading precision. The experiment uses eight antineutrino detectors filled with 20-tons of gadolinium-doped liquid scintillator to detect antineutrinos emitted from the Daya Bay nuclear power plant through the inverse beta decay reaction. The precision measurement of sin22θ13 relies on the relative antineutrino interaction rates between detectors at near (400 m) and far (roughly 1.8 km) distances from the nuclear reactors. The measured interaction rate in each detector is directly proportional to the number of protons in the liquid scintillator target. A precision detector filling system was developed to simultaneously fill the three liquid zones of the antineutrino detectors and measure the relative target mass between detectors to < 0.02%. This paper describes the design, operation, and performance of the system and the resulting precision measurement of the detectors' target liquid masses.

  4. Monitor for reactor neutron detector

    International Nuclear Information System (INIS)

    Shirakami, Hisayuki; Shibata, Masatoshi

    1992-01-01

    The device of the present invention judges as to whether a neutron detector is normal or not while considering the change of indication value depending on the power change of a reactor core. That is, the device of the present invention comprises a standard value setting device for setting the standard value for calibrating the neutron detector and an abnormality judging device for comparing the standard value with a measured value of the neutron detector and judging the abnormality when the difference is greater than a predetermined value. The measured value upon initialization of each of the neutron detectors is determined as a quasi-standard value. An average value of the difference between the measured value and the quasi-standard value of a plurality of effective neutron detectors at a same level for the height of the reactor core is multiplied to a power rate based on the reactor core power at a position where the neutron detector is disposed upon calibration. The value obtained by adding the multiplied value and the quasi-standard value is determined as a standard value. The abnormality judging device compares the standard value with the measured value of the neutron detector and, if the difference is greater than a predetermined value, the neutron detector is determined as abnormal. As a result, judgement can be conducted more accurately than conventional cases. (I.S.)

  5. Optimization of the collection charge of a detector type LEM

    International Nuclear Information System (INIS)

    Ben Dhahbi, Anis

    2010-01-01

    Several discoveries were made with gaseous detectors, mainly Multi Wires Proportional Chambers M WPC i nvented by G. Charpak. This kind of detector is the ancestor of many detectors used at CERN today, which were used to examine the ultimate constituents of matter and can also be adapted for medical imaging. This work has been included in research and development of a detection plane of Micro Pattern Gaseous Detectors (MPGD) named Large Electron Multiplier (LEM) for better detection by acting on the dimensions of gap and diameter of holes. In this work simulation programs have been conducted to study the configuration of the electric field in the detector, more precisely in the amplification zone to optimize the detector dimensions. The transport properties of electrons inside the detector have been studied in different mixtures of gases (CF4, P10, Xenon-CF4 ...). A prototype was available in the Neuchatel University S witzerland t o study the gain and the energy resolution by detecting low energy radiation ( 55 Fe source with 5.9 keV of energy).

  6. Monte Carlo simulation of gas Cerenkov detectors

    International Nuclear Information System (INIS)

    Mack, J.M.; Jain, M.; Jordan, T.M.

    1984-01-01

    Theoretical study of selected gamma-ray and electron diagnostic necessitates coupling Cerenkov radiation to electron/photon cascades. A Cerenkov production model and its incorporation into a general geometry Monte Carlo coupled electron/photon transport code is discussed. A special optical photon ray-trace is implemented using bulk optical properties assigned to each Monte Carlo zone. Good agreement exists between experimental and calculated Cerenkov data in the case of a carbon-dioxide gas Cerenkov detector experiment. Cerenkov production and threshold data are presented for a typical carbon-dioxide gas detector that converts a 16.7 MeV photon source to Cerenkov light, which is collected by optics and detected by a photomultiplier

  7. Computed tomography apparatus with detector sensilivity correction

    International Nuclear Information System (INIS)

    Waltham, R. M.

    1984-01-01

    In a rotary fan beam computed tomography apparatus using recurrent relative displacement between the source and detectors (e.g. a deflected spot X-ray tube) for the recalibration of detectors in chain-like sequences across the detector array by successive pairwise common-path sensitivity comparisons starting from a terminal detector each sequence normally involves or more successive comparisons, and consistent but unpredictable errors are found to occur, leading to incorrect Houndsfield values in the computed image matrix. The improvement comprises locating at least one radiation transparent detector of high stability in front of the array at an intermediate point and using the output to further correct the chain-corrected detector sensitivity values. A detector comprising a plastics scintillator optically coupled to a photomultiplier is described, whose output pulses are counted during a rotational scan and compared with the mean corresponding measurement from detectors lying behind the detector, to form a sensitivity ratio. From a corresponding ratio and data derived during calibration, a measured sensitivity value for detectors is determined for each scan and is compared with the corresponding chain-corrected sensitivity value to generate a further sensitivity correction value which is then distributed among the detectors of the comparison sequence

  8. Absorption phenomenon study of low energies gamma rays in the Eurogam detector STACK

    International Nuclear Information System (INIS)

    Wei, L.; Duchene, G.; Beck, F.A.; Curien, D.; France, G. de; Moszynski, M.; Santos, D.

    1991-05-01

    The composite 4 π γ detector STACK is made of a pile of Ge Crystals in which the 2 circular surfaces are active, one implanted with Boron, the other diffused with Lithium and introducing a dead zone. The goal of this study is to research the dead zones and to study their influence upon the detection efficiency [fr

  9. Radiation hardness of silicon detectors for collider experiments

    International Nuclear Information System (INIS)

    Golutvin, I.; Cheremukhin, A.; Fefelova, E.

    1995-01-01

    The silicon planar detectors before and after fast neutron irradiation ( n o> = 1.35 MeV) at room temperature have been investigated. Maximal neutron fluence has been 8 · 10 13 cm -2 . The detectors have been manufactured of the high resistivity (1 : 10 k Ohm · cm) n-type float-zone silicon (FZ-Si) with the orientation supplied by two different producers: WACKER CHEMITRONIC and Zaporojie Titanium-Magnesium Factory (ZTMF). The influence of fast neutron irradiation of the main parameters of the starting silicon before the technological high temperature treatment has been investigated as well. 30 refs., 17 figs., 5 tabs

  10. Room temperature X- and gamma-ray detectors using thallium bromide crystals

    CERN Document Server

    Hitomi, K; Shoji, T; Suehiro, T; Hiratate, Y

    1999-01-01

    Thallium bromide (TlBr) is a compound semiconductor with wide band gap (2.68 eV) and high X- and gamma-ray stopping power. The TlBr crystals were grown by the horizontal travelling molten zone (TMZ) method using purified material. Two types of room temperature X- and gamma-ray detectors were fabricated from the TlBr crystals: TlBr detectors with high detection efficiency for positron annihilation gamma-ray (511 keV) detection and TlBr detectors with high-energy resolution for low-energy X-ray detection. The detector of the former type demonstrated energy resolution of 56 keV FWHM (11%) for 511 keV gamma-rays. Energy resolution of 1.81 keV FWHM for 5.9 keV was obtained from the detector of the latter type. In order to analyze noise characteristics of the detector-preamplifier assembly, the equivalent noise charge (ENC) was measured as a function of the amplifier shaping time for the high-resolution detector. This analysis shows that parallel white noise and 1/f noise were dominant noise sources in the detector...

  11. Radiofrequency ablation with epinephrine injection: in vivo study in normal pig livers

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyoung Jung; Lee, Dong Hoo; Lim, Joo Won; Ko, Young Tae; Kim, Youn Wha; Choi, Bong Keun [Kyung Hee University Medical Center, Seoul (Korea, Republic of)

    2007-07-15

    We wanted to evaluate whether epinephrine injection prior to radiofrequency (RF) ablation can increase the extent of thermally mediated coagulation in vivo normal pig liver tissue. Eighteen RF ablation zones were created in six pigs using a 17-gauge internally cooled electrode under ultrasound guidance. Three RF ablation zones were created in each pig under three conditions: RF ablation alone, RF ablation after the injection of 3 mL of normal saline, and RF ablation after the injection of 3 mL of epinephrine (1:10,000 solution). After the RF ablation, we measured the short and long diameters of the white zones in the gross specimens. Three of the RF ablations were technically unsuccessful; therefore, measurement of white zone was finally done in 15 RF ablation zones. The mean short and long diameters of the white zone of the RF ablation after epinephrine injection (17.2 mm {+-} 1.8 and 20.8 mm {+-} 3.7, respectively) were larger than those of RF ablation only (10 mm {+-} 1.2 and 12.2 mm {+-} 1.1, respectively) and RF ablation after normal saline injection (12.8 mm {+-} 1.5 and 15.6 mm {+-} 2.5, respectively) ({rho} < .05). RF ablation with epinephrine injection can increase the diameter of the RF ablation zone in normal pig liver tissue.

  12. Fabrication of radiation detector using PbI{sub 2} crystal

    Energy Technology Data Exchange (ETDEWEB)

    Shoji, T; Sakamoto, K; Ohba, K; Suehiro, T; Hiratate, Y [Tohoku Inst. of Tech., Sendai (Japan)

    1996-07-01

    In this paper, we will discuss the PbI{sub 2} radiation detector fabricated from a crystal grown by the zone melting method and by the vapor phase method, together with characteristics of the crystal obtained by a XPS analyzer. (J.P.N.)

  13. Purification of HGI2 for nuclear detector fabrication

    International Nuclear Information System (INIS)

    Schieber, M.M.

    1978-01-01

    A process for purification of mercuric iodide (HgI 2 ) to be used as a source material for the growth of detector quality crystals. The high purity HgI 2 raw material is produced by a combination of three stages: synthesis of HgI 2 from Hg and I 2 , repeated sublimation, and zone refining

  14. Fusion and normalization to enhance anomaly detection

    Science.gov (United States)

    Mayer, R.; Atkinson, G.; Antoniades, J.; Baumback, M.; Chester, D.; Edwards, J.; Goldstein, A.; Haas, D.; Henderson, S.; Liu, L.

    2009-05-01

    This study examines normalizing the imagery and the optimization metrics to enhance anomaly and change detection, respectively. The RX algorithm, the standard anomaly detector for hyperspectral imagery, more successfully extracts bright rather than dark man-made objects when applied to visible hyperspectral imagery. However, normalizing the imagery prior to applying the anomaly detector can help detect some of the problematic dark objects, but can also miss some bright objects. This study jointly fuses images of RX applied to normalized and unnormalized imagery and has a single decision surface. The technique was tested using imagery of commercial vehicles in urban environment gathered by a hyperspectral visible/near IR sensor mounted in an airborne platform. Combining detections first requires converting the detector output to a target probability. The observed anomaly detections were fitted with a linear combination of chi square distributions and these weights were used to help compute the target probability. Receiver Operator Characteristic (ROC) quantitatively assessed the target detection performance. The target detection performance is highly variable depending on the relative number of candidate bright and dark targets and false alarms and controlled in this study by using vegetation and street line masks. The joint Boolean OR and AND operations also generate variable performance depending on the scene. The joint SUM operation provides a reasonable compromise between OR and AND operations and has good target detection performance. In addition, new transforms based on normalizing correlation coefficient and least squares generate new transforms related to canonical correlation analysis (CCA) and a normalized image regression (NIR). Transforms based on CCA and NIR performed better than the standard approaches. Only RX detection of the unnormalized of the difference imagery in change detection provides adequate change detection performance.

  15. Neutron counting and gamma spectroscopy with PVT detectors

    International Nuclear Information System (INIS)

    Mitchell, Dean James; Brusseau, Charles A.

    2011-01-01

    Radiation portals normally incorporate a dedicated neutron counter and a gamma-ray detector with at least some spectroscopic capability. This paper describes the design and presents characterization data for a detection system called PVT-NG, which uses large polyvinyl toluene (PVT) detectors to monitor both types of radiation. The detector material is surrounded by polyvinyl chloride (PVC), which emits high-energy gamma rays following neutron capture reactions. Assessments based on high-energy gamma rays are well suited for the detection of neutron sources, particularly in border security applications, because few isotopes in the normal stream of commerce have significant gamma ray yields above 3 MeV. Therefore, an increased count rate for high-energy gamma rays is a strong indicator for the presence of a neutron source. The sensitivity of the PVT-NG sensor to bare 252 Cf is 1.9 counts per second per nanogram (cps/ng) and the sensitivity for 252 Cf surrounded by 2.5 cm of polyethylene is 2.3 cps/ng. The PVT-NG sensor is a proof-of-principal sensor that was not fully optimized. The neutron detector sensitivity could be improved, for instance, by using additional moderator. The PVT-NG detectors and associated electronics are designed to provide improved resolution, gain stability, and performance at high-count rates relative to PVT detectors in typical radiation portals. As well as addressing the needs for neutron detection, these characteristics are also desirable for analysis of the gamma-ray spectra. Accurate isotope identification results were obtained despite the common impression that the absence of photopeaks makes data collected by PVT detectors unsuitable for spectroscopic analysis. The PVT detectors in the PVT-NG unit are used for both gamma-ray and neutron detection, so the sensitive volume exceeds the volume of the detection elements in portals that use dedicated components to detect each type of radiation.

  16. The effects of lower crustal strength and preexisting midcrustal shear zones on the formation of continental core complexes and low-angle normal faults

    KAUST Repository

    Wu, Guangliang

    2016-08-22

    To investigate the formation of core complexes and low-angle normal faults, we devise thermomechanical simulations on a simplified wedge-like orogenic hinterland that has initial topography, Moho relief, and a preexisting midcrustal shear zone that can accommodate shear at very low angles (<20°). We mainly vary the strength of the lower crust and the frictional strength of the preexisting midcrustal shear zone. We find that the strength of the lower crust and the existence and strength of a preexisting shear zone significantly affect the formation and evolution of core complexes. With increasing lower crustal strength, we recognize varying extensional features with decreasing exhumation rate: these are characterized by bivergent metamorphic massifs, classic Cordilleran metamorphic core complexes, multiple consecutive core complexes (or boudinage structures), and a flexural core complex underlined by a large subsurface low-angle detachment fault with a small convex curvature. Topographic loading and mantle buoyancy forces, together with divergent boundaries, drive a regional lower crustal flow that leads to the exhumation of the lower crust where intensive upper crustal faulting induces strong unloading. The detachment fault is a decoupling zone that accommodates large displacement and accumulates sustained shear strain at very low angle between upper and lower crust. Though the regional stress is largely Andersonian, we find non-Andersonian stress in regions adjacent to the preexisting shear zone and those with high topographic gradient. Our new models provide a view that is generally consistent with geological and geophysical observations on how core complexes form and evolve.

  17. The effects of lower crustal strength and preexisting midcrustal shear zones on the formation of continental core complexes and low-angle normal faults

    KAUST Repository

    Wu, Guangliang; Lavier, Luc L.

    2016-01-01

    To investigate the formation of core complexes and low-angle normal faults, we devise thermomechanical simulations on a simplified wedge-like orogenic hinterland that has initial topography, Moho relief, and a preexisting midcrustal shear zone that can accommodate shear at very low angles (<20°). We mainly vary the strength of the lower crust and the frictional strength of the preexisting midcrustal shear zone. We find that the strength of the lower crust and the existence and strength of a preexisting shear zone significantly affect the formation and evolution of core complexes. With increasing lower crustal strength, we recognize varying extensional features with decreasing exhumation rate: these are characterized by bivergent metamorphic massifs, classic Cordilleran metamorphic core complexes, multiple consecutive core complexes (or boudinage structures), and a flexural core complex underlined by a large subsurface low-angle detachment fault with a small convex curvature. Topographic loading and mantle buoyancy forces, together with divergent boundaries, drive a regional lower crustal flow that leads to the exhumation of the lower crust where intensive upper crustal faulting induces strong unloading. The detachment fault is a decoupling zone that accommodates large displacement and accumulates sustained shear strain at very low angle between upper and lower crust. Though the regional stress is largely Andersonian, we find non-Andersonian stress in regions adjacent to the preexisting shear zone and those with high topographic gradient. Our new models provide a view that is generally consistent with geological and geophysical observations on how core complexes form and evolve.

  18. Radiation Damage in Silicon Detectors Caused by Hadronic and Electromagnetic Irradiation

    CERN Document Server

    Fretwurst, E.; Stahl, J.; Pintilie, I.

    2002-01-01

    The report contains various aspects of radiation damage in silicon detectors subjected to high intensity hadron and electromagnetic irradiation. It focuses on improvements for the foreseen LHC applications, employing oxygenation of silicon wafers during detector processing (result from CERN-RD48). An updated survey on hadron induced damage is given in the first article. Several improvements are outlined especially with respect to antiannealing problems associated with detector storage during LHC maintenance periods. Open questions are outlined in the final section, among which are a full understanding of differences found between proton and neutron induced damage, process related effects changing the radiation tolerance in addition to the oxygen content and the lack of understanding the changed detector properties on the basis of damage induced point and cluster defects. In addition to float zone silicon, so far entirely used for detector fabrication,Czochralski silicon was also studied and first promising re...

  19. Characterizing the response of a scintillator-based detector to single electrons

    International Nuclear Information System (INIS)

    Sang, Xiahan; LeBeau, James M.

    2016-01-01

    Here we report the response of a high angle annular dark field scintillator-based detector to single electrons. We demonstrate that care must be taken when determining the single electron intensity as significant discrepancies can occur when quantifying STEM images with different methods. To account for the detector response, we first image the detector using very low beam currents (∼8 fA), and subsequently model the interval between consecutive single electrons events. We find that single electrons striking the detector present a wide distribution of intensities, which we show is not described by a simple function. Further, we present a method to accurately account for the electrons within the incident probe when conducting quantitative imaging. The role detector settings play on determining the single electron intensity is also explored. Finally, we extend our analysis to describe the response of the detector to multiple electron events within the dwell interval of each pixel. - Highlights: • We show that the statistical description of single electron response of scintillator based detectors can be measured using a combination of small beam currents and short dwell times. • The average intensity from the probability distribution function can be used to normalize STEM images regardless of beam current and contrast settings. • We obtain consistent QSTEM normalization results from the single electron method and the conventional detector scan method.

  20. Large diameter lithium compensated silicon detectors for the NASA Advanced Composition Explorer (ACE) mission

    International Nuclear Information System (INIS)

    Allbritton, G.L.; Andersen, H.; Barnes, A.

    1996-01-01

    Fabrication of the 100 mm diameter, 3 mm thick lithium-compensated silicon, Si(Li), detectors for the Cosmic Ray Isotope Spectrometer (CRIS) instrument on board the ACE satellite required development of new float-zone silicon growing techniques, new Si(Li) fabrication procedures, and new particle beam testing sequences. These developments are discussed and results are presented that illustrate the advances made in realizing these CRIS Si(Li) detectors, which, when operational in the CRIS detector telescopes, will usher in a new generation of cosmic-ray isotope spectrometers

  1. Radiation damage in silicon. Defect analysis and detector properties

    Energy Technology Data Exchange (ETDEWEB)

    Hoenniger, F.

    2008-01-15

    Silicon microstrip and pixel detectors are vital sensor-components as particle tracking detectors for present as well as future high-energy physics (HEP) experiments. All experiments at the large Hadron Collider (LHC) are equipped with such detectors. Also for experiments after the upgrade of the LHC (the so-called Super-LHC), with its ten times higher luminosity, or the planned International Linear Collider (ILC) silicon tracking detectors are forseen. Close to the interaction region these detectors have to face harsh radiation fields with intensities above the presently tolerable level. defect engineering of the used material, e. g. oxygen enrichment of high resistivity float zone silicon and growing of thin low resistivityepitaxial layers on Czochralski silicon substrates has been established to improve the radiation hardness of silicon sensors. This thesis focuses mainly on the investigation of radiation induced defects and their differences observed in various kinds of epitaxial silicon material. Comparisons with other materials like float zone or Czochralski silicon are added. Deep Level Transient Spectroscopy (DLTS) and Thermally Stimulated Current (TSC) measurements have been performed after {gamma}-, electron-, proton- and neutron-irradiation. The differenced in the formation of vacancy and interstitial related defects as well as so-called clustered regions were investigated for various types of irradiation. In addition to the well known defects VO{sub i}, C{sub i}O{sub i}, C{sub i}C{sub s}, VP or V{sub 2} several other defect complexes have been found and investigated. Also the material dependence of the defect introduction rates and the defect annealing behavior has been studied by isothermal and isochronal annealing experiments. Especially the IO{sub 2} defect which is an indicator for the oxygen-dimer content of the material has been investigated in detail. On the basis of radiation induced defects like the bistable donor (BD) defect and a deep

  2. Radiation damage in silicon. Defect analysis and detector properties

    International Nuclear Information System (INIS)

    Hoenniger, F.

    2008-01-01

    Silicon microstrip and pixel detectors are vital sensor-components as particle tracking detectors for present as well as future high-energy physics (HEP) experiments. All experiments at the large Hadron Collider (LHC) are equipped with such detectors. Also for experiments after the upgrade of the LHC (the so-called Super-LHC), with its ten times higher luminosity, or the planned International Linear Collider (ILC) silicon tracking detectors are forseen. Close to the interaction region these detectors have to face harsh radiation fields with intensities above the presently tolerable level. defect engineering of the used material, e. g. oxygen enrichment of high resistivity float zone silicon and growing of thin low resistivityepitaxial layers on Czochralski silicon substrates has been established to improve the radiation hardness of silicon sensors. This thesis focuses mainly on the investigation of radiation induced defects and their differences observed in various kinds of epitaxial silicon material. Comparisons with other materials like float zone or Czochralski silicon are added. Deep Level Transient Spectroscopy (DLTS) and Thermally Stimulated Current (TSC) measurements have been performed after γ-, electron-, proton- and neutron-irradiation. The differenced in the formation of vacancy and interstitial related defects as well as so-called clustered regions were investigated for various types of irradiation. In addition to the well known defects VO i , C i O i , C i C s , VP or V 2 several other defect complexes have been found and investigated. Also the material dependence of the defect introduction rates and the defect annealing behavior has been studied by isothermal and isochronal annealing experiments. Especially the IO 2 defect which is an indicator for the oxygen-dimer content of the material has been investigated in detail. On the basis of radiation induced defects like the bistable donor (BD) defect and a deep acceptor, a model has been introduced to

  3. Testable, fault-tolerant power interface circuit for normally de-energized loads

    International Nuclear Information System (INIS)

    Hager, R.E.

    1987-01-01

    A power interface circuit is described for supplying power from a power line to a normally de-energized process control apparatus in a pressurized light water nuclear power system in dependence upon three input signals, comprising: voter means for supplying power to the normally de-energized load when at least two of the three input signals indicate that the normally de-energized load should be activated; a normally closed switch, operatively connected to the power line and the voter means, for supplying power to the voter means during ordinary operation; a first resistor operatively connected to the power line; a current detector operatively connected to the first resistor and the voter means; a second resistor operatively connected to the current detector and ground; and current sensor means, operatively connected between the voter means and the normally de-energized load, for detecting the power supplied to the normally de-energized load by the voter means

  4. The data acquisition system for a SPECT with cylindrical detector

    International Nuclear Information System (INIS)

    Jin Yongjie; Liu Yinong; Li Yuanjing

    1995-01-01

    The data acquisition and position estimation system has been developed for a multi-crystal SPECT with modular cylindrical detector. The electronics screen photon energy determines the detector module stricken by incident photon. The relevant PMT outputs are digitized and passed onto a Pentium PC. Then PMT gain normalization, detector bar identification, energy correction, event coordinates calculation and linearity correction are real-time performed by the PC. The system has been employed in clinical brain imaging

  5. Diverse, discrete, mantle-derived batches of basalt erupted along a short normal fault zone: The Poison Lake chain, southernmost Cascades

    Science.gov (United States)

    Muffler, L.J.P.; Clynne, M.A.; Calvert, A.T.; Champion, D.E.

    2011-01-01

    The Poison Lake chain consists of small, monogenetic, calc-alkaline basaltic volcanoes located east of the Cascade arc axis, 30 km ENE of Lassen Peak in northeastern California. This chain consists of 39 distinguishable units in a 14-km-long and 2-kmwide zone trending NNW, parallel to nearby Quaternary normal faults. The 39 units fall into nine coherent groups based on stratigraphy, field characteristics, petrography, and major-element compositions. Petrographic differences among groups are expressed by different amounts and proportions of phenocrysts. MgO-SiO 2, K 2O-SiO 2, and TiO 2-SiO 2 variation diagrams illustrate clear differences in compatible and incompatible elements among the groups. Variation of K 2O/ TiO 2 and K 2O/P 2O 5 with MgO indicates that most of the basalts of the Poison Lake chain cannot be related by crystal fractionation at different pressures and that compositions have not been affected significantly by incorporation of low-degree silicic crustal melt or interaction with sialic crust. Limited traceelement and whole-rock isotopic data also suggest little if any incorporation of uppercrustal material, and that compositional variation among groups primarily reflects source compositional differences. Precise 40Ar/ 39Ar determinations show that the lavas were erupted between 100 and 110 ka. The migration of paleomagnetic remanent directions over 30?? suggests that the entire Poison Lake chain could represent three short-lived episodes of volcanism within a period as brief as 500 yr. The diverse geologic, petrographic, chemical, paleomagnetic, and age data indicate that each of the nine groups represents a small, discrete magma batch generated in the mantle and stored briefly in the lower crust. A NNW normal fault zone provided episodic conduits that allowed rapid ascent of these batches to the surface, where they erupted as distinct volcanic groups, each aligned along a segment of the Poison Lake chain. Compositional diversity of these primitive

  6. New Fast Response Thin Film-Based Superconducting Quench Detectors

    CERN Document Server

    Dudarev, A; van de Camp, W; Ravaioli, E; Teixeira, A; ten Kate, H H J

    2014-01-01

    Quench detection on superconducting bus bars and other devices with a low normal zone propagation velocity and low voltage build-up is quite difficult with conventional quench detection techniques. Currently, on ATLAS superconducting bus bar sections, superconducting quench detectors (SQD) are mounted to detect quench events. A first version of the SQD essentially consists of an insulated superconducting wire glued to a superconducting bus line or windings, which in the case of a quench rapidly builds up a relatively high resistance that can be easily and quietly detected. We now introduce a new generation of drastically improved SQDs. The new version makes the detection of quenches simpler, more reliable, and much faster. Instead of a superconducting wire, now a superconducting thin film is used. The layout of the sensor shows a meander like pattern that is etched out of a copper coated 25 mu m thick film of Nb-Ti glued in between layers of Kapton. Since the sensor is now much smaller and thinner, it is easi...

  7. Determining dose rate with a semiconductor detector - Monte Carlo calculations of the detector response

    Energy Technology Data Exchange (ETDEWEB)

    Nordenfors, C

    1999-02-01

    To determine dose rate in a gamma radiation field, based on measurements with a semiconductor detector, it is necessary to know how the detector effects the field. This work aims to describe this effect with Monte Carlo simulations and calculations, that is to identify the detector response function. This is done for a germanium gamma detector. The detector is normally used in the in-situ measurements that is carried out regularly at the department. After the response function is determined it is used to reconstruct a spectrum from an in-situ measurement, a so called unfolding. This is done to be able to calculate fluence rate and dose rate directly from a measured (and unfolded) spectrum. The Monte Carlo code used in this work is EGS4 developed mainly at Stanford Linear Accelerator Center. It is a widely used code package to simulate particle transport. The results of this work indicates that the method could be used as-is since the accuracy of this method compares to other methods already in use to measure dose rate. Bearing in mind that this method provides the nuclide specific dose it is useful, in radiation protection, since knowing what the relations between different nuclides are and how they change is very important when estimating the risks

  8. Statistical decision making with a dual-detector probe

    International Nuclear Information System (INIS)

    Hickernell, T.S.

    1988-01-01

    Conventional imaging techniques for cancer detection have difficulty finding small, deep tumors. Single-detector radiation probes have been developed to search for deep lesions in a patient who has been given a tumor-seeking radiopharmaceutical. These probes perform poorly, however, when the background activity in the patient varies greatly from site to site. We have developed a surgical dual-detector probe that solves the problem of background activity variation, by simultaneously monitoring counts from a region of interest and counts from adjacent normal tissue. A comparison of counts from the detectors can reveal the class of tissue, tumor or normal, in the region of interest. In this study, we apply methods from statistical decision theory and derive a suitable comparison of counts to help us decide whether a tumor is present in the region of interest. We use the Hotelling trace criterion with a few assumptions to find a linear discriminant function, which can be reduced to a normalized subtraction of the counts for large background count-rate variations. Using a spatial response map of the dual probe, a computer torso phantom, and estimates of activity distribution, we simulate a surgical staging procedure to test the dual probe and the discriminant functions

  9. Radiation damage studies for the D0 silicon detector

    International Nuclear Information System (INIS)

    Lehner, F.

    2004-01-01

    We report on irradiation studies performed on spare production silicon detector modules for the current D0 silicon detector. The lifetime expectations due to radiation damage effects of the existing silicon detector are reviewed. A new upgrade project was started with the goal of a complete replacement of the existing silicon detector. In that context, several investigations on the radiation hardness of new prototype silicon microstrip detectors were carried out. The irradiation on different detector types was performed with 10 MeV protons up to fluences of 10 14 p/cm 2 at the J.R. Mcdonald Laboratory at Kansas State University. The flux calibration was carefully checked using different normalization techniques. As a result, we observe roughly 40-50% less radiation damage in silicon for 10 MeV p exposure than it is expected by the predicted NIEL scaling

  10. Multi-Detector CT Findings of the Normal Appendix in Children: Evaluation of the Position, Diameter, and Presence or Absence of Intraluminal Gas

    Energy Technology Data Exchange (ETDEWEB)

    Park, Woon Ju; Kim, Jong Chul [Dept. of Radiology, Chungnam National University College of Medicine, Daejeon (Korea, Republic of)

    2011-08-15

    To assess the usefulness of multi-detector CT (MDCT) with multiplanar reformations (MPR) for the evaluation of the position, diameter and presence or absence of intraluminal gas in the normal appendix in children. From 2007 to 2010, we retrospectively analyzed the MDCT images of normal appendices in 133 children, and evaluated the position, diameter, and presence or absence of intraluminal gas in the appendix. Among the 133 appendices, type I (postileal and medial paracecal position) was found in 64 children, type II (subcecal position) in 22, type III (retrocecal and retrocolic/laterocolic position) in 15, type IV (preileal and medial colic position) in 16, and type V (lower pelvic position) in 16 children. The mean diameter was 5.8 mm {+-} 1.2 (SD) (range; 3.2-8.7 mm). There was a high correlation between the appendiceal diameter and age (p = 0.000).There was no statistically significant difference in the appendiceal diameter between boys and girls (p = 0.470). Intraluminal gas was found in 115 appendices and there was no statistically significant correlation between the appendiceal diameter and intraluminal gas (p = 0.502). The MDCT with MPR was useful for the evaluation of the normal appendices in children. The procedure may be useful for the diagnosis of equivocal or unusual appendicitis in children.

  11. The bipolar silicon microstrip detector: A proposal for a novel precision tracking device

    International Nuclear Information System (INIS)

    Horisberger, R.

    1990-01-01

    It is proposed to combine the technology of fully depleted microstrip detectors fabricated on n doped high resistivity silicon with the concept of the bipolar transistor. This is done by adding a n ++ doped region inside the normal p + implanted region of the reverse biased p + n diode. The resulting structure has amplifying properties and is referred to as bipaolar pixel transistor. The simplest readout scheme of a bipolar pixel array by an aluminium strip bus leads to the bipolar microstrip detector. The bipolar pixel structure is expected to give a better signal-to-noise performance for the detection of minimum ionizing charged particle tracks than the normal silicon diode strip detector and therefore should allow in future the fabrication of thinner silicon detectors for precision tracking. (orig.)

  12. Investigation of space-energy effects in the reactivity measurement by neutron noise with excore detectors in a reflected LWR

    International Nuclear Information System (INIS)

    Lescano, V.H.; Behringer, K.

    1982-01-01

    Practical application of the zero-crossing correlation method for measuring slightly-subcritical reactivities in a swimming-pool reactor required the use of detector locations in the reflector zone near to the core boundary. Experimental investigations of neutron-noise cross-power spectra showed significant deviations from the point-reactor model at higher frequencies (> 100 Hz). Nevertheless, the use of the point-reactor model was found to be a useful approach in the analysis of the zero-crossing correlation method, yielding results which agreed well with those obtained from the rod-drop method. The theoretical part of the work is concerned with a space-dependent model calculation in two-group diffusion theory to support the experimental findings. The model calculation can explain the trends observed in the neutron-noise spectra as well as the applicability of the point-reactor model to the zero-crossing correlation method. To obtain better insight, the calculations have been extended to neutron-noise spectra when one or both detectors are located in the core zone. In the case of a large core and widely-spaced detectors, with at least one detector in the core zone, a sink frequency appears in the spectra. This effect is well known in coupled-core kinetics. (author)

  13. Fethiye-Burdur Fault Zone (SW Turkey): a myth?

    Science.gov (United States)

    Kaymakci, Nuretdin; Langereis, Cornelis; Özkaptan, Murat; Özacar, Arda A.; Gülyüz, Erhan; Uzel, Bora; Sözbilir, Hasan

    2017-04-01

    Fethiye Burdur Fault Zone (FBFZ) is first proposed by Dumont et al. (1979) as a sinistral strike-slip fault zone as the NE continuation of Pliny-Strabo trench in to the Anatolian Block. The fault zone supposed to accommodate at least 100 km sinistral displacement between the Menderes Massif and the Beydaǧları platform during the exhumation of the Menderes Massif, mainly during the late Miocene. Based on GPS velocities Barka and Reilinger (1997) proposed that the fault zone is still active and accommodates sinistral displacement. In order to test the presence and to unravel its kinematics we have conducted a rigorous paleomagnetic study containing more than 3000 paleomagnetic samples collected from 88 locations and 11700 fault slip data collected from 198 locations distributed evenly all over SW Anatolia spanning from Middle Miocene to Late Pliocene. The obtained rotation senses and amounts indicate slight (around 20°) counter-clockwise rotations distributed uniformly almost whole SW Anatolia and there is no change in the rotation senses and amounts on either side of the FBFZ implying no differential rotation within the zone. Additionally, the slickenside pitches and constructed paleostress configurations, along the so called FBFZ and also within the 300 km diameter of the proposed fault zone, indicated that almost all the faults, oriented parallel to subparallel to the zone, are normal in character. The fault slip measurements are also consistent with earthquake focal mechanisms suggesting active extension in the region. We have not encountered any significant strike-slip motion in the region to support presence and transcurrent nature of the FBFZ. On the contrary, the region is dominated by extensional deformation and strike-slip components are observed only on the NW-SE striking faults which are transfer faults that accommodated extension and normal motion. Therefore, we claim that the sinistral Fethiye Burdur Fault (Zone) is a myth and there is no tangible

  14. Measurements of normalized differential cross-sections for $t\\bar{t}$ production in $pp$ collisions at $\\sqrt{s}$=7 TeV using the ATLAS detector

    CERN Document Server

    Aad, Georges; Abbott, Brad; Abdallah, Jalal; Abdel Khalek, Samah; Abdinov, Ovsat; Aben, Rosemarie; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Abulaiti, Yiming; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Agatonovic-Jovin, Tatjana; Aguilar-Saavedra, Juan Antonio; Agustoni, Marco; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Alimonti, Gianluca; Alio, Lion; Alison, John; Allbrooke, Benedict; Allison, Lee John; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alon, Raz; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Ammosov, Vladimir; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amram, Nir; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Anduaga, Xabier; Angelidakis, Stylianos; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Araque, Juan Pedro; Arce, Ayana; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Ask, Stefan; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Auerbach, Benjamin; Auge, Etienne; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Azuelos, Georges; Azuma, Yuya; Baak, Max; Bacci, Cesare; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Backus Mayes, John; Badescu, Elisabeta; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Bailey, David; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Sarah; Balek, Petr; Balli, Fabrice; Banas, Elzbieta; Banerjee, Swagato; Bangert, Andrea Michelle; Bannoura, Arwa A E; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barber, Tom; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Barnovska, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Bartsch, Valeria; Bassalat, Ahmed; Basye, Austin; Bates, Richard; Batkova, Lucia; Batley, Richard; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Anne Kathrin; Becker, Sebastian; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Katharina; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belloni, Alberto; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jürg; Bernard, Clare; Bernat, Pauline; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertolucci, Federico; Besana, Maria Ilaria; Besjes, Geert-Jan; Bessidskaia, Olga; Besson, Nathalie; Betancourt, Christopher; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilbao De Mendizabal, Javier; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Black, Curtis; Black, James; Black, Kevin; Blackburn, Daniel; Blair, Robert; Blanchard, Jean-Baptiste; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Boddy, Christopher Richard; Boehler, Michael; Boek, Jennifer; Boek, Thorsten Tobias; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bogouch, Andrei; Bohm, Christian; Bohm, Jan; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Boldyrev, Alexey; Bolnet, Nayanka Myriam; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Borisov, Anatoly; Borissov, Guennadi; Borri, Marcello; Borroni, Sara; Bortfeldt, Jonathan; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Boudreau, Joseph; Bouffard, Julian; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boutouil, Sara; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozovic-Jelisavcic, Ivanka; Bracinik, Juraj; Branchini, Paolo; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brazzale, Simone Federico; Brelier, Bertrand; Brendlinger, Kurt; Brennan, Amelia Jean; Brenner, Richard; Bressler, Shikma; Bristow, Kieran; Bristow, Timothy Michael; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Bromberg, Carl; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brosamer, Jacquelyn; Brost, Elizabeth; Brown, Gareth; Brown, Jonathan; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Bucci, Francesca; Buchholz, Peter; Buckingham, Ryan; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Buehrer, Felix; Bugge, Lars; Bugge, Magnar Kopangen; Bulekov, Oleg; Bundock, Aaron Colin; Burckhart, Helfried; Burdin, Sergey; Burghgrave, Blake; Burke, Stephen; Burmeister, Ingo; Busato, Emmanuel; Büscher, Volker; Bussey, Peter; Buszello, Claus-Peter; Butler, Bart; Butler, John; Butt, Aatif Imtiaz; Buttar, Craig; Butterworth, Jonathan; Butti, Pierfrancesco; Buttinger, William; Buzatu, Adrian; Byszewski, Marcin; Cabrera Urbán, Susana; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calderini, Giovanni; Calfayan, Philippe; Calkins, Robert; Caloba, Luiz; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarda, Stefano; Cameron, David; Caminada, Lea Michaela; Caminal Armadans, Roger; Campana, Simone; Campanelli, Mario; Campoverde, Angel; Canale, Vincenzo; Canepa, Anadi; Cantero, Josu; Cantrill, Robert; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Caputo, Regina; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Castaneda-Miranda, Elizabeth; Castelli, Angelantonio; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catastini, Pierluigi; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caughron, Seth; Cavaliere, Viviana; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerio, Benjamin; Cerny, Karel; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cerv, Matevz; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chalupkova, Ina; Chan, Kevin; Chang, Philip; Chapleau, Bertrand; Chapman, John Derek; Charfeddine, Driss; Charlton, Dave; Chau, Chav Chhiv; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chegwidden, Andrew; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Karen; Chen, Liming; Chen, Shenjian; Chen, Xin; Chen, Yujiao; Cheng, Hok Chuen; Cheng, Yangyang; Cheplakov, Alexander; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Chevalier, Laurent; Chiarella, Vitaliano; Chiefari, Giovanni; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chisholm, Andrew; Chislett, Rebecca Thalatta; Chitan, Adrian; Chizhov, Mihail; Chouridou, Sofia; Chow, Bonnie Kar Bo; Christidi, Ilektra-Athanasia; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Chytka, Ladislav; Ciapetti, Guido; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciocio, Alessandra; Cirkovic, Predrag; Citron, Zvi Hirsh; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Philip James; Clarke, Robert; Cleland, Bill; Clemens, Jean-Claude; Clement, Benoit; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coffey, Laurel; Cogan, Joshua Godfrey; Coggeshall, James; Cole, Brian; Cole, Stephen; Colijn, Auke-Pieter; Collins-Tooth, Christopher; Collot, Johann; Colombo, Tommaso; Colon, German; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Conidi, Maria Chiara; Connell, Simon Henry; Connelly, Ian; Consonni, Sofia Maria; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cooper-Smith, Neil; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Corso-Radu, Alina; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Côté, David; Cottin, Giovanna; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Cree, Graham; Crépé-Renaudin, Sabine; Crescioli, Francesco; Crispin Ortuzar, Mireia; Cristinziani, Markus; Crosetti, Giovanni; Cuciuc, Constantin-Mihai; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Cuthbert, Cameron; Czirr, Hendrik; Czodrowski, Patrick; Czyczula, Zofia; D'Auria, Saverio; D'Onofrio, Monica; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dafinca, Alexandru; Dai, Tiesheng; Dale, Orjan; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Daniells, Andrew Christopher; Dano Hoffmann, Maria; Dao, Valerio; Darbo, Giovanni; Darlea, Georgiana Lavinia; Darmora, Smita; Dassoulas, James; Davey, Will; David, Claire; Davidek, Tomas; Davies, Eleanor; Davies, Merlin; Davignon, Olivier; Davison, Adam; Davison, Peter; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Cecco, Sandro; de Graat, Julien; De Groot, Nicolo; de Jong, Paul; De La Taille, Christophe; De la Torre, Hector; De Lorenzi, Francesco; De Nooij, Lucie; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; De Zorzi, Guido; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dechenaux, Benjamin; Dedovich, Dmitri; Degenhardt, James; Deigaard, Ingrid; Del Peso, Jose; Del Prete, Tarcisio; Deliot, Frederic; Delitzsch, Chris Malena; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Dell'Orso, Mauro; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; Deluca, Carolina; Demers, Sarah; Demichev, Mikhail; Demilly, Aurelien; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deterre, Cecile; Deviveiros, Pier-Olivier; Dewhurst, Alastair; Dhaliwal, Saminder; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Domenico, Antonio; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Dietzsch, Thorsten; Diglio, Sara; Dimitrievska, Aleksandra; Dingfelder, Jochen; Dionisi, Carlo; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Barros do Vale, Maria Aline; Do Valle Wemans, André; Doan, Thi Kieu Oanh; Dobos, Daniel; Dobson, Ellie; Doglioni, Caterina; Doherty, Tom; Dohmae, Takeshi; Dolejsi, Jiri; Dolezal, Zdenek; Dolgoshein, Boris; Donadelli, Marisilvia; Donati, Simone; Dondero, Paolo; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dova, Maria-Teresa; Doyle, Tony; Dris, Manolis; Dubbert, Jörg; Dube, Sourabh; Dubreuil, Emmanuelle; Duchovni, Ehud; Duckeck, Guenter; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Dudziak, Fanny; Duflot, Laurent; Duguid, Liam; Dührssen, Michael; Dunford, Monica; Duran Yildiz, Hatice; Düren, Michael; Durglishvili, Archil; Dwuznik, Michal; Dyndal, Mateusz; Ebke, Johannes; Edson, William; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Endner, Oliver Chris; Endo, Masaki; Engelmann, Roderich; Erdmann, Johannes; Ereditato, Antonio; Eriksson, Daniel; Ernis, Gunar; Ernst, Jesse; Ernst, Michael; Ernwein, Jean; Errede, Deborah; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Esposito, Bellisario; Etienvre, Anne-Isabelle; Etzion, Erez; Evans, Hal; Fabbri, Laura; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Faltova, Jana; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Favareto, Andrea; Fayard, Louis; Federic, Pavol; Fedin, Oleg; Fedorko, Wojciech; Fehling-Kaschek, Mirjam; Feigl, Simon; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Haolu; Fenyuk, Alexander; Fernandez Perez, Sonia; Ferrag, Samir; Ferrando, James; Ferrara, Valentina; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filipuzzi, Marco; Filthaut, Frank; Fincke-Keeler, Margret; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Julia; Fisher, Matthew; Fisher, Wade Cameron; Fitzgerald, Eric Andrew; Flechl, Martin; Fleck, Ivor; Fleischmann, Philipp; Fleischmann, Sebastian; Fletcher, Gareth Thomas; Fletcher, Gregory; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Florez Bustos, Andres Carlos; Flowerdew, Michael; Formica, Andrea; Forti, Alessandra; Fortin, Dominique; Fournier, Daniel; Fox, Harald; Fracchia, Silvia; Francavilla, Paolo; Franchini, Matteo; Franchino, Silvia; Francis, David; Franklin, Melissa; Franz, Sebastien; Fraternali, Marco; French, Sky; Friedrich, Conrad; Friedrich, Felix; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fulsom, Bryan Gregory; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gadatsch, Stefan; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallo, Valentina Santina; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram Krohn; Gan, KK; Gandrajula, Reddy Pratap; Gao, Jun; Gao, Yongsheng; Garay Walls, Francisca; Garberson, Ford; García, Carmen; García Navarro, José Enrique; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gatti, Claudio; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gauzzi, Paolo; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Ge, Peng; Gecse, Zoltan; Gee, Norman; Geerts, Daniël Alphonsus Adrianus; Geich-Gimbel, Christoph; Gellerstedt, Karl; Gemme, Claudia; Gemmell, Alistair; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerbaudo, Davide; Gershon, Avi; Ghazlane, Hamid; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giangiobbe, Vincent; Giannetti, Paola; Gianotti, Fabiola; Gibbard, Bruce; Gibson, Stephen; Gilchriese, Murdock; Gillam, Thomas; Gillberg, Dag; Gilles, Geoffrey; Gingrich, Douglas; Giokaris, Nikos; Giordani, MarioPaolo; Giordano, Raffaele; Giorgi, Francesco Michelangelo; Giraud, Pierre-Francois; Giugni, Danilo; Giuliani, Claudia; Giulini, Maddalena; Gjelsten, Børge Kile; Gkialas, Ioannis; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glaysher, Paul; Glazov, Alexandre; Glonti, George; Goblirsch-Kolb, Maximilian; Goddard, Jack Robert; Godfrey, Jennifer; Godlewski, Jan; Goeringer, Christian; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gomez Fajardo, Luz Stella; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez Silva, Laura; Gonzalez-Sevilla, Sergio; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Goshaw, Alfred; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Gouighri, Mohamed; Goujdami, Driss; Goulette, Marc Phillippe; Goussiou, Anna; Goy, Corinne; Gozpinar, Serdar; Grabas, Herve Marie Xavier; Graber, Lars; Grabowska-Bold, Iwona; Grafström, Per; Grahn, Karl-Johan; Gramling, Johanna; Gramstad, Eirik; Grancagnolo, Francesco; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Gray, Heather; Graziani, Enrico; Grebenyuk, Oleg; Greenwood, Zeno Dixon; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grishkevich, Yaroslav; Grivaz, Jean-Francois; Grohs, Johannes Philipp; Grohsjean, Alexander; Gross, Eilam; Grosse-Knetter, Joern; Grossi, Giulio Cornelio; Groth-Jensen, Jacob; Grout, Zara Jane; Grybel, Kai; Guan, Liang; Guescini, Francesco; Guest, Daniel; Gueta, Orel; Guicheney, Christophe; Guido, Elisa; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gumpert, Christian; Gunther, Jaroslav; Guo, Jun; Gupta, Shaun; Gutierrez, Phillip; Gutierrez Ortiz, Nicolas Gilberto; Gutschow, Christian; Guttman, Nir; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Haddad, Nacim; Haefner, Petra; Hageböck, Stephan; Hajduk, Zbigniew; Hakobyan, Hrachya; Haleem, Mahsana; Hall, David; Halladjian, Garabed; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamer, Matthias; Hamilton, Andrew; Hamilton, Samuel; Hamnett, Phillip George; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Hanke, Paul; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Peter Henrik; Hara, Kazuhiko; Hard, Andrew; Harenberg, Torsten; Harkusha, Siarhei; Harper, Devin; Harrington, Robert; Harris, Orin; Harrison, Paul Fraser; Hartjes, Fred; Hasegawa, Satoshi; Hasegawa, Yoji; Hasib, A; Hassani, Samira; Haug, Sigve; Hauschild, Michael; Hauser, Reiner; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hayashi, Takayasu; Hayden, Daniel; Hays, Chris; Hayward, Helen; Haywood, Stephen; Head, Simon; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heim, Timon; Heinemann, Beate; Heinrich, Lukas; Heisterkamp, Simon; Hejbal, Jiri; Helary, Louis; Heller, Claudio; Heller, Matthieu; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, James; Henderson, Robert; Hengler, Christopher; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Hensel, Carsten; Herbert, Geoffrey Henry; Hernández Jiménez, Yesenia; Herrberg-Schubert, Ruth; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Hickling, Robert; Higón-Rodriguez, Emilio; Hill, John; Hiller, Karl Heinz; Hillert, Sonja; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hirose, Minoru; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoffman, Julia; Hoffmann, Dirk; Hofmann, Julia Isabell; Hohlfeld, Marc; Holmes, Tova Ray; Hong, Tae Min; Hooft van Huysduynen, Loek; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howard, Jacob; Howarth, James; Hrabovsky, Miroslav; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Diedi; Hu, Xueye; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Hülsing, Tobias Alexander; Hurwitz, Martina; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Ideal, Emma; Iengo, Paolo; Igonkina, Olga; Iizawa, Tomoya; Ikegami, Yoichi; Ikematsu, Katsumasa; Ikeno, Masahiro; Iliadis, Dimitrios; Ilic, Nikolina; Inamaru, Yuki; Ince, Tayfun; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Iturbe Ponce, Julia Mariana; Ivashin, Anton; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jackson, Brett; Jackson, John; Jackson, Matthew; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jakubek, Jan; Jamin, David Olivier; Jana, Dilip; Jansen, Eric; Jansen, Hendrik; Janssen, Jens; Janus, Michel; Jarlskog, Göran; Javůrek, Tomáš; Jeanty, Laura; Jeng, Geng-yuan; Jennens, David; Jenni, Peter; Jentzsch, Jennifer; Jeske, Carl; Jézéquel, Stéphane; Ji, Haoshuang; Ji, Weina; Jia, Jiangyong; Jiang, Yi; Jimenez Belenguer, Marcos; Jin, Shan; Jinaru, Adam; Jinnouchi, Osamu; Joergensen, Morten Dam; Johansson, Erik; Johansson, Per; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tim; Jongmanns, Jan; Jorge, Pedro; Joshi, Kiran Daniel; Jovicevic, Jelena; Ju, Xiangyang; Jung, Christian; Jungst, Ralph Markus; Jussel, Patrick; Juste Rozas, Aurelio; Kaci, Mohammed; Kaczmarska, Anna; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kajomovitz, Enrique; Kama, Sami; Kanaya, Naoko; Kaneda, Michiru; Kaneti, Steven; Kanno, Takayuki; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kar, Deepak; Karakostas, Konstantinos; Karastathis, Nikolaos; Karnevskiy, Mikhail; Karpov, Sergey; Karthik, Krishnaiyengar; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kasieczka, Gregor; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Katre, Akshay; Katzy, Judith; Kaushik, Venkatesh; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kazama, Shingo; Kazanin, Vassili; Kazarinov, Makhail; Keeler, Richard; Kehoe, Robert; Keil, Markus; Keller, John; Keoshkerian, Houry; Kepka, Oldrich; Kerševan, Borut Paul; Kersten, Susanne; Kessoku, Kohei; Keung, Justin; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Khodinov, Alexander; Khomich, Andrei; Khoo, Teng Jian; Khoriauli, Gia; Khoroshilov, Andrey; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kim, Hee Yeun; Kim, Hyeon Jin; Kim, Shinhong; Kimura, Naoki; Kind, Oliver; King, Barry; King, Matthew; King, Robert Steven Beaufoy; King, Samuel Burton; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kiss, Florian; Kitamura, Takumi; Kittelmann, Thomas; Kiuchi, Kenji; Kladiva, Eduard; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klinkby, Esben; Klioutchnikova, Tatiana; Klok, Peter; Kluge, Eike-Erik; Kluit, Peter; Kluth, Stefan; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koevesarki, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohlmann, Simon; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kolanoski, Hermann; Koletsou, Iro; Koll, James; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kondrashova, Nataliia; Köneke, Karsten; König, Adriaan; König, Sebastian; Kono, Takanori; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Köpke, Lutz; Kopp, Anna Katharina; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Korotkov, Vladislav; Kortner, Oliver; Kortner, Sandra; Kostyukhin, Vadim; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kral, Vlastimil; Kramarenko, Viktor; Kramberger, Gregor; Krasnopevtsev, Dimitriy; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, Jana; Kravchenko, Anton; Kreiss, Sven; Kretz, Moritz; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Peter; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Kruker, Tobias; Krumnack, Nils; Krumshteyn, Zinovii; Kruse, Amanda; Kruse, Mark; Kruskal, Michael; Kubota, Takashi; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuhl, Andrew; Kuhl, Thorsten; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kuna, Marine; Kunkle, Joshua; Kupco, Alexander; Kurashige, Hisaya; Kurochkin, Yurii; Kurumida, Rie; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; La Rosa, Alessandro; La Rotonda, Laura; Labarga, Luis; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Laier, Heiko; Lambourne, Luke; Lammers, Sabine; Lampen, Caleb; Lampl, Walter; Lançon, Eric; Landgraf, Ulrich; Landon, Murrough; Lang, Valerie Susanne; Lange, Clemens; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Lassnig, Mario; Laurelli, Paolo; Lavorini, Vincenzo; Lavrijsen, Wim; Law, Alexander; Laycock, Paul; Le, Bao Tran; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Menedeu, Eve; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Claire Alexandra; Lee, Hurng-Chun; Lee, Jason; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Guillaume; Lefebvre, Michel; Legger, Federica; Leggett, Charles; Lehan, Allan; Lehmacher, Marc; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leister, Andrew Gerard; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Leney, Katharine; Lenz, Tatjana; Lenzen, Georg; Lenzi, Bruno; Leone, Robert; Leonhardt, Kathrin; Leontsinis, Stefanos; Leroy, Claude; Lester, Christopher; Lester, Christopher Michael; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levy, Mark; Lewis, Adrian; Lewis, George; Leyko, Agnieszka; Leyton, Michael; Li, Bing; Li, Bo; Li, Haifeng; Li, Ho Ling; Li, Shu; Li, Xuefei; Li, Yichen; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Lichard, Peter; Lie, Ki; Liebal, Jessica; Liebig, Wolfgang; Limbach, Christian; Limosani, Antonio; Limper, Maaike; Lin, Simon; Linde, Frank; Lindquist, Brian Edward; Linnemann, James; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Bo; Liu, Dong; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Miaoyuan; Liu, Minghui; Liu, Yanwen; Livan, Michele; Livermore, Sarah; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo Sterzo, Francesco; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loddenkoetter, Thomas; Loebinger, Fred; Loevschall-Jensen, Ask Emil; Loginov, Andrey; Loh, Chang Wei; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Lombardo, Vincenzo Paolo; Long, Jonathan; Long, Robin Eamonn; Lopes, Lourenco; Lopez Mateos, David; Lopez Paredes, Brais; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Loscutoff, Peter; Lou, XinChou; Lounis, Abdenour; Love, Jeremy; Love, Peter; Lowe, Andrew; Lu, Feng; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Luehring, Frederick; Lukas, Wolfgang; Luminari, Lamberto; Lundberg, Olof; Lund-Jensen, Bengt; Lungwitz, Matthias; Lynn, David; Lysak, Roman; Lytken, Else; Ma, Hong; Ma, Lian Liang; Maccarrone, Giovanni; Macchiolo, Anna; Maček, Boštjan; Machado Miguens, Joana; Macina, Daniela; Madaffari, Daniele; Madar, Romain; Maddocks, Harvey Jonathan; Mader, Wolfgang; Madsen, Alexander; Maeno, Mayuko; Maeno, Tadashi; Magradze, Erekle; Mahboubi, Kambiz; Mahlstedt, Joern; Mahmoud, Sara; Maiani, Camilla; Maidantchik, Carmen; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Mal, Prolay; Malaescu, Bogdan; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mamuzic, Judita; Mandelli, Beatrice; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Manfredini, Alessandro; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany Andreina; Mann, Alexander; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Mantifel, Rodger; Mapelli, Livio; March, Luis; Marchand, Jean-Francois; Marchiori, Giovanni; Marcisovsky, Michal; Marino, Christopher; Marques, Carlos; Marroquim, Fernando; Marsden, Stephen Philip; Marshall, Zach; Marti, Lukas Fritz; Marti-Garcia, Salvador; Martin, Brian; Martin, Brian Thomas; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Homero; Martinez, Mario; Martin-Haugh, Stewart; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massol, Nicolas; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Matsunaga, Hiroyuki; Matsushita, Takashi; Mättig, Peter; Mättig, Stefan; Mattmann, Johannes; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Mazzaferro, Luca; Mc Goldrick, Garrin; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; Mchedlidze, Gvantsa; Mclaughlan, Tom; McMahon, Steve; McPherson, Robert; Meade, Andrew; Mechnich, Joerg; Medinnis, Michael; Meehan, Samuel; Meera-Lebbai, Razzak; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meineck, Christian; Meirose, Bernhard; Melachrinos, Constantinos; Mellado Garcia, Bruce Rafael; Meloni, Federico; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mercurio, Kevin Michael; Mergelmeyer, Sebastian; Meric, Nicolas; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Merritt, Hayes; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Middleton, Robin; Migas, Sylwia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Miller, David; Mills, Corrinne; Milov, Alexander; Milstead, David; Milstein, Dmitry; Minaenko, Andrey; Miñano Moya, Mercedes; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mirabelli, Giovanni; Mitani, Takashi; Mitrevski, Jovan; Mitsou, Vasiliki A; Mitsui, Shingo; Miucci, Antonio; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mochizuki, Kazuya; Moeller, Victoria; Mohapatra, Soumya; Mohr, Wolfgang; Molander, Simon; Moles-Valls, Regina; Mönig, Klaus; Monini, Caterina; Monk, James; Monnier, Emmanuel; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Mora Herrera, Clemencia; Moraes, Arthur; Morange, Nicolas; Morel, Julien; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morgenstern, Marcus; Morii, Masahiro; Moritz, Sebastian; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Morvaj, Ljiljana; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Muanza, Steve; Mudd, Richard; Mueller, Felix; Mueller, James; Mueller, Klemens; Mueller, Thibaut; Mueller, Timo; Muenstermann, Daniel; Munwes, Yonathan; Murillo Quijada, Javier Alberto; Murray, Bill; Musheghyan, Haykuhi; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nackenhorst, Olaf; Nadal, Jordi; Nagai, Koichi; Nagai, Ryo; Nagai, Yoshikazu; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagel, Martin; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Namasivayam, Harisankar; Nanava, Gizo; Narayan, Rohin; Nattermann, Till; Naumann, Thomas; Navarro, Gabriela; Nayyar, Ruchika; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Negri, Andrea; Negri, Guido; Negrini, Matteo; Nektarijevic, Snezana; Nelson, Andrew; Nelson, Timothy Knight; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen, Duong Hai; Nickerson, Richard; Nicolaidou, Rosy; Nicquevert, Bertrand; Nielsen, Jason; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolics, Katalin; Nikolopoulos, Konstantinos; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Norberg, Scarlet; Nordberg, Markus; Nowak, Sebastian; Nozaki, Mitsuaki; Nozka, Libor; Ntekas, Konstantinos; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; Nuti, Francesco; O'Brien, Brendan Joseph; O'grady, Fionnbarr; O'Neil, Dugan; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Obermann, Theresa; Ocariz, Jose; Ochi, Atsuhiko; Ochoa, Ines; Oda, Susumu; Odaka, Shigeru; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohman, Henrik; Ohshima, Takayoshi; Okamura, Wataru; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olchevski, Alexander; Olivares Pino, Sebastian Andres; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olivito, Dominick; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Otero y Garzon, Gustavo; Otono, Hidetoshi; Ouchrif, Mohamed; Ouellette, Eric; Ould-Saada, Farid; Ouraou, Ahmimed; Oussoren, Koen Pieter; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pachal, Katherine; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagáčová, Martina; Pagan Griso, Simone; Paganis, Efstathios; Pahl, Christoph; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Palestini, Sandro; Pallin, Dominique; Palma, Alberto; Palmer, Jody; Pan, Yibin; Panagiotopoulou, Evgenia; Panduro Vazquez, William; Pani, Priscilla; Panikashvili, Natalia; Panitkin, Sergey; Pantea, Dan; Paolozzi, Lorenzo; Papadopoulou, Theodora; Papageorgiou, Konstantinos; Paramonov, Alexander; Paredes Hernandez, Daniela; Parker, Michael Andrew; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pasqualucci, Enrico; Passaggio, Stefano; Passeri, Antonio; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Patricelli, Sergio; Pauly, Thilo; Pearce, James; Pedersen, Maiken; Pedraza Lopez, Sebastian; Pedro, Rute; Peleganchuk, Sergey; Pelikan, Daniel; Peng, Haiping; Penning, Bjoern; Penwell, John; Perepelitsa, Dennis; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perez Reale, Valeria; Perini, Laura; Pernegger, Heinz; Perrino, Roberto; Peschke, Richard; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Jorgen; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Petteni, Michele; Pettersson, Nora Emilia; Pezoa, Raquel; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Piec, Sebastian Marcin; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinder, Alex; Pinfold, James; Pingel, Almut; Pinto, Belmiro; Pires, Sylvestre; Pizio, Caterina; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Plucinski, Pawel; Poddar, Sahill; Podlyski, Fabrice; Poettgen, Ruth; Poggioli, Luc; Pohl, David-leon; Pohl, Martin; Polesello, Giacomo; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Pollard, Christopher Samuel; Polychronakos, Venetios; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Portell Bueso, Xavier; Pospelov, Guennady; Pospisil, Stanislav; Potamianos, Karolos; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Prabhu, Robindra; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Pravahan, Rishiraj; Prell, Soeren; Price, Darren; Price, Joe; Price, Lawrence; Prieur, Damien; Primavera, Margherita; Proissl, Manuel; Prokofiev, Kirill; Prokoshin, Fedor; Protopapadaki, Eftychia-sofia; Protopopescu, Serban; Proudfoot, James; Przybycien, Mariusz; Przysiezniak, Helenka; Ptacek, Elizabeth; Pueschel, Elisa; Puldon, David; Purohit, Milind; Puzo, Patrick; Pylypchenko, Yuriy; Qian, Jianming; Qin, Gang; Quadt, Arnulf; Quarrie, David; Quayle, William; Quilty, Donnchadha; Qureshi, Anum; Radeka, Veljko; Radescu, Voica; Radhakrishnan, Sooraj Krishnan; Radloff, Peter; Rados, Pere; Ragusa, Francesco; Rahal, Ghita; Rajagopalan, Srinivasan; Rammensee, Michael; Rammes, Marcus; Randle-Conde, Aidan Sean; Rangel-Smith, Camila; Rao, Kanury; Rauscher, Felix; Rave, Tobias Christian; Ravenscroft, Thomas; Raymond, Michel; Read, Alexander Lincoln; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Rehnisch, Laura; Reinsch, Andreas; Reisin, Hernan; Relich, Matthew; Rembser, Christoph; Ren, Zhongliang; Renaud, Adrien; Rescigno, Marco; Resconi, Silvia; Rezanova, Olga; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Ridel, Melissa; Rieck, Patrick; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Ritsch, Elmar; Riu, Imma; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Roda, Chiara; Rodrigues, Luis; Roe, Shaun; Røhne, Ole; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romeo, Gaston; Romero Adam, Elena; Rompotis, Nikolaos; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Matthew; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rosten, Rachel; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rubinskiy, Igor; Rud, Viacheslav; Rudolph, Christian; Rudolph, Matthew Scott; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rurikova, Zuzana; Rusakovich, Nikolai; Ruschke, Alexander; Rutherfoord, John; Ruthmann, Nils; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Saavedra, Aldo; Sacerdoti, Sabrina; Saddique, Asif; Sadeh, Iftach; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sakamoto, Hiroshi; Sakurai, Yuki; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salek, David; Sales De Bruin, Pedro Henrique; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvachua Ferrando, Belén; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sampsonidis, Dimitrios; Sanchez, Arturo; Sánchez, Javier; Sanchez Martinez, Victoria; Sandaker, Heidi; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Tanya; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sansoni, Andrea; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Santoyo Castillo, Itzebelt; Sapp, Kevin; Sapronov, Andrey; Saraiva, João; Sarrazin, Bjorn; Sartisohn, Georg; Sasaki, Osamu; Sasaki, Yuichi; Sauvage, Gilles; Sauvan, Emmanuel; Savard, Pierre; Savu, Dan Octavian; Sawyer, Craig; Sawyer, Lee; Saxon, David; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scanlon, Tim; Scannicchio, Diana; Scarcella, Mark; Schaarschmidt, Jana; Schacht, Peter; Schaefer, Douglas; Schaefer, Ralph; Schaelicke, Andreas; Schaepe, Steffen; Schaetzel, Sebastian; Schäfer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R. Dean; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Scherzer, Max; Schiavi, Carlo; Schieck, Jochen; Schillo, Christian; Schioppa, Marco; Schlenker, Stefan; Schmidt, Evelyn; Schmieden, Kristof; Schmitt, Christian; Schmitt, Christopher; Schmitt, Sebastian; Schneider, Basil; Schnellbach, Yan Jie; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schoenrock, Bradley Daniel; Schorlemmer, Andre Lukas; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schramm, Steven; Schreyer, Manuel; Schroeder, Christian; Schuh, Natascha; Schultens, Martin Johannes; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwartzman, Ariel; Schwegler, Philipp; Schwemling, Philippe; Schwienhorst, Reinhard; Schwindling, Jerome; Schwindt, Thomas; Schwoerer, Maud; Sciacca, Gianfranco; Scifo, Estelle; Sciolla, Gabriella; Scott, Bill; Scuri, Fabrizio; Scutti, Federico; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekula, Stephen; Selbach, Karoline Elfriede; Seliverstov, Dmitry; Sellers, Graham; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Serre, Thomas; Seuster, Rolf; Severini, Horst; Sforza, Federico; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shank, James; Shao, Qi Tao; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Sherwood, Peter; Shimizu, Shima; Shimmin, Chase Owen; Shimojima, Makoto; Shiyakova, Mariya; Shmeleva, Alevtina; Shochet, Mel; Short, Daniel; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Shushkevich, Stanislav; Sicho, Petr; Sidorov, Dmitri; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silbert, Ohad; Silva, José; Silver, Yiftah; Silverstein, Daniel; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simoniello, Rosa; Simonyan, Margar; Sinervo, Pekka; Sinev, Nikolai; Sipica, Valentin; Siragusa, Giovanni; Sircar, Anirvan; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skinnari, Louise Anastasia; Skottowe, Hugh Philip; Skovpen, Kirill; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Sliwa, Krzysztof; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Kenway; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snidero, Giacomo; Snyder, Scott; Sobie, Randall; Socher, Felix; Soffer, Abner; Soh, Dart-yin; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solfaroli Camillocci, Elena; Solodkov, Alexander; Solovyanov, Oleg; Solovyev, Victor; Sommer, Philip; Song, Hong Ye; Soni, Nitesh; Sood, Alexander; Sopko, Bruno; Sopko, Vit; Sorin, Veronica; Sosebee, Mark; Soualah, Rachik; Soueid, Paul; Soukharev, Andrey; South, David; Spagnolo, Stefania; Spanò, Francesco; Spearman, William Robert; Spighi, Roberto; Spigo, Giancarlo; Spousta, Martin; Spreitzer, Teresa; Spurlock, Barry; St Denis, Richard Dante; Staerz, Steffen; Stahlman, Jonathan; Stamen, Rainer; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staszewski, Rafal; Stavina, Pavel; Steele, Genevieve; Steinberg, Peter; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stern, Sebastian; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoebe, Michael; Stoerig, Kathrin; Stoicea, Gabriel; Stolte, Philipp; Stonjek, Stefan; Stradling, Alden; Straessner, Arno; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Stroynowski, Ryszard; Stucci, Stefania Antonia; Stugu, Bjarne; Styles, Nicholas Adam; Su, Dong; Su, Jun; Subramania, Halasya Siva; Subramaniam, Rajivalochan; Succurro, Antonella; Sugaya, Yorihito; Suhr, Chad; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Yu; Svatos, Michal; Swedish, Stephen; Swiatlowski, Maximilian; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Tackmann, Kerstin; Taenzer, Joe; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takahashi, Yuta; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tam, Jason; Tamsett, Matthew; Tan, Kong Guan; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Satoshi; Tanaka, Shuji; Tanasijczuk, Andres Jorge; Tani, Kazutoshi; Tannoury, Nancy; Tapprogge, Stefan; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tashiro, Takuya; Tassi, Enrico; Tavares Delgado, Ademar; Tayalati, Yahya; Taylor, Christopher; Taylor, Frank; Taylor, Geoffrey; Taylor, Wendy; Teischinger, Florian Alfred; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Terada, Susumu; Terashi, Koji; Terron, Juan; Terzo, Stefano; Testa, Marianna; Teuscher, Richard; Therhaag, Jan; Theveneaux-Pelzer, Timothée; Thoma, Sascha; Thomas, Juergen; Thomas-Wilsker, Joshuha; Thompson, Emily; Thompson, Paul; Thompson, Peter; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Thong, Wai Meng; Thun, Rudolf; Tian, Feng; Tibbetts, Mark James; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tiouchichine, Elodie; Tipton, Paul; Tisserant, Sylvain; Todorov, Theodore; Todorova-Nova, Sharka; Toggerson, Brokk; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tollefson, Kirsten; Tomlinson, Lee; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Topilin, Nikolai; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Tran, Huong Lan; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alessandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Triplett, Nathan; Trischuk, William; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trovatelli, Monica; True, Patrick; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsirintanis, Nikolaos; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsuno, Soshi; Tsybychev, Dmitri; Tua, Alan; Tudorache, Alexandra; Tudorache, Valentina; Tuna, Alexander Naip; Tupputi, Salvatore; Turchikhin, Semen; Turecek, Daniel; Turk Cakir, Ilkay; Turra, Ruggero; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Uchida, Kirika; Ueda, Ikuo; Ueno, Ryuichi; Ughetto, Michael; Ugland, Maren; Uhlenbrock, Mathias; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Urbaniec, Dustin; Urquijo, Phillip; Usai, Giulio; Usanova, Anna; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Valencic, Nika; Valentinetti, Sara; Valero, Alberto; Valery, Loic; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; Van Der Deijl, Pieter; van der Geer, Rogier; van der Graaf, Harry; Van Der Leeuw, Robin; van der Ster, Daniel; van Eldik, Niels; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; van Woerden, Marius Cornelis; Vanadia, Marco; Vandelli, Wainer; Vanguri, Rami; Vaniachine, Alexandre; Vankov, Peter; Vannucci, Francois; Vardanyan, Gagik; Vari, Riccardo; Varnes, Erich; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vazeille, Francois; Vazquez Schroeder, Tamara; Veatch, Jason; Veloso, Filipe; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Venturini, Alessio; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Viazlo, Oleksandr; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Vigne, Ralph; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinogradov, Vladimir; Virzi, Joseph; Vitells, Ofer; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vogel, Adrian; Vokac, Petr; Volpi, Guido; Volpi, Matteo; von der Schmitt, Hans; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorobev, Konstantin; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vu Anh, Tuan; Vuillermet, Raphael; Vukotic, Ilija; Vykydal, Zdenek; Wagner, Peter; Wagner, Wolfgang; Wahrmund, Sebastian; Wakabayashi, Jun; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wall, Richard; Waller, Peter; Walsh, Brian; Wang, Chao; Wang, Chiho; Wang, Fuquan; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Kuhan; Wang, Rui; Wang, Song-Ming; Wang, Tan; Wang, Xiaoxiao; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Warsinsky, Markus; Washbrook, Andrew; Wasicki, Christoph; Watanabe, Ippei; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Ben; Webb, Samuel; Weber, Michele; Weber, Stefan Wolf; Webster, Jordan S; Weidberg, Anthony; Weigell, Philipp; Weinert, Benjamin; Weingarten, Jens; Weiser, Christian; Weits, Hartger; Wells, Phillippa; Wenaus, Torre; Wendland, Dennis; Weng, Zhili; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Wessels, Martin; Wetter, Jeffrey; Whalen, Kathleen; White, Andrew; White, Martin; White, Ryan; White, Sebastian; Whiteson, Daniel; Wicke, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wijeratne, Peter Alexander; Wildauer, Andreas; Wildt, Martin Andre; Wilkens, Henric George; Will, Jonas Zacharias; Williams, Hugh; Williams, Sarah; Willis, Christopher; Willocq, Stephane; Wilson, Alan; Wilson, John; Wingerter-Seez, Isabelle; Winkelmann, Stefan; Winklmeier, Frank; Wittgen, Matthias; Wittig, Tobias; Wittkowski, Josephine; Wollstadt, Simon Jakob; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wright, Michael; Wu, Mengqing; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wulf, Evan; Wyatt, Terry Richard; Wynne, Benjamin; Xella, Stefania; Xiao, Meng; Xu, Da; Xu, Lailin; Yabsley, Bruce; Yacoob, Sahal; Yamada, Miho; Yamaguchi, Hiroshi; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Kyoko; Yamamoto, Shimpei; Yamamura, Taiki; Yamanaka, Takashi; Yamauchi, Katsuya; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Un-Ki; Yang, Yi; Yanush, Serguei; Yao, Liwen; Yao, Weiming; Yasu, Yoshiji; Yatsenko, Elena; Yau Wong, Kaven Henry; Ye, Jingbo; Ye, Shuwei; Yen, Andy L; Yildirim, Eda; Yilmaz, Metin; Yoosoofmiya, Reza; Yorita, Kohei; Yoshida, Rikutaro; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, David Ren-Hwa; Yu, Jaehoon; Yu, Jiaming; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zaman, Aungshuman; Zambito, Stefano; Zanello, Lucia; Zanzi, Daniele; Zaytsev, Alexander; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zengel, Keith; Zenin, Oleg; Ženiš, Tibor; Zerwas, Dirk; Zevi della Porta, Giovanni; Zhang, Dongliang; Zhang, Fangzhou; Zhang, Huaqiao; Zhang, Jinlong; Zhang, Lei; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Lei; Zhou, Ning; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zibell, Andre; Zieminska, Daria; Zimine, Nikolai; Zimmermann, Christoph; Zimmermann, Robert; Zimmermann, Simone; Zimmermann, Stephanie; Zinonos, Zinonas; Ziolkowski, Michael; Zitoun, Robert; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zurzolo, Giovanni; Zutshi, Vishnu; Zwalinski, Lukasz

    2014-10-13

    Measurements of normalized differential cross-sections for top-quark pair production are presented as a~function of the top-quark transverse momentum, and of the mass, transverse momentum, and rapidity of the $t\\bar{t}$ system, in proton--proton collisions at a~center-of-mass energy of $\\sqrt{s}$ = 7 TeV. The dataset corresponds to an integrated luminosity of 4.6 fb$^{-1}$, recorded in 2011 with the ATLAS detector at the CERN Large Hadron Collider. Events are selected in the lepton+jets channel, requiring exactly one lepton and at least four jets with at least one of the jets tagged as originating from a~$b$-quark. The measured spectra are corrected for detector efficiency and resolution effects and are compared to several Monte Carlo simulations and theory calculations. The results are in fair agreement with the predictions in a~wide kinematic range. Nevertheless, data distributions are softer than predicted for higher values of the mass of the $t\\bar{t}$ system and of the top-quark transverse momentum. The ...

  15. Spill-Detector-and-Shutoff Device

    Science.gov (United States)

    Jarvis, M. R.; Fulton, D. S.

    1985-01-01

    Overflow in liquid chromatography systems rapidly detected and stopped. Spill-detector-and-shutoff device incorporated into liquid-chromatography system. When liquid from output nozzle spills on liquid sensor, device automatically shuts off pump and releases solenoid to pinch off flow in tube. Device uses common type of alarm circuit reset manually before normal operation resumes.

  16. Study of charge transport in silicon detectors: Non-irradiated and irradiated

    International Nuclear Information System (INIS)

    Leroy, C.; Roy, P.; Casse, G.; Glaser, M.; Grigoriev, E.; Lemeilleur, F.

    1999-01-01

    The electrical characteristics of silicon detectors (standard planar float zone and MESA detectors) as a function of the particle fluence can be extracted by the application of a model describing the transport of charge carriers generated in the detectors by ionizing particles. The current pulse response induced by α and β particles in non-irradiated detectors and detectors irradiated up to fluences PHI ∼ 3 · 10 14 particles/cm 2 is reproduced via this model: i) by adding a small n-type region 15 μm deep on the p + side for the detectors at fluences beyond the n to p-type inversion and ii) for the MESA detectors, by considering one additional dead layer of 14 μm (observed experimentally) on each side of the detector, and introducing a second (delayed) component to the current pulse response. For both types of detectors, the model gives mobilities decreasing linearily up to fluences of about 5·10 13 particles/cm 2 and converging, beyond, to saturation values of about 1050 cm 2 /Vs and 450 cm 2 /Vs for electrons and holes, respectively. At a fluence PHI ∼ 10 14 particles/cm 2 (corresponding to about ten years of operation at the CERN-LHC), charge collection deficits of about 14% for β particles, 25% for α particles incident on the front and 35% for α particles incident on the back of the detector are found for both type of detectors

  17. Comparison of Fresnel zone plates and uniformly redundant arrays

    International Nuclear Information System (INIS)

    Fenimore, E.E.; Cannon, T.M.; Miller, E.L.

    1978-01-01

    Several imaging systems in laser fusion, e-beam fusion, and astronomy employ a Fresnel zone plate (FZP) as a coded aperture. The recent development of uniformly redundant arrays (URAs) promises several improvements in these systems. The first advantage of the URA is the fact that its modulation transfer function (MTF) is the same as the MTF of a single pinhole, whereas the MTF of an FZP is an erratic function including some small values. This means that if inverse filtering is used, the URA will be less susceptible to noise. If a correlation analysis is used, the FZP will produce artifacts whereas the URA has no artifacts (assuming planar sources). Both the FZP and URA originated from functions which had flat MTFs. However, practical considerations in the implementation of the FZP detracted from its good characteristics whereas the URA was only mildly affected. The second advantage of the URA is that it better utilizes the available detector area. With the FZP, the aperture should be smaller than the detector in order to maintain the full angular resolution corresponding to the thinnest zone. The cyclic nature of the URA allows one to mosaic it in such a way that the entire detector area collects photons from all of the sources within the field of view while maintaining the full angular resolution. If the FZP is as large (or larger) than the detector, all parts of the source will not be resolved with the same resolution. The FZP does have some advantages, in particular its radial symmetry eases the alignment problem; it has a convenient optical decoding method; and higher diffraction order reconstruction might provide better spatial resolution

  18. Domestic smoke detectors - a radioactive waste problem

    International Nuclear Information System (INIS)

    Carter, M.W.

    1996-01-01

    A common form of domestic smoke detector is the ionization chamber smoke detector. A small radioactive source provides the ionization and when smoke enters the sensitive volume the change in voltage is sensed electronically. The use of domestic ionization chamber smoke detectors is widespread and is recommended by fire authorities and insurance companies. That one million such detectors were imported into New South Wales in 1994 is an indication of the numbers involved. The typical radioactive source in a domestic smoke detector is Am 241, which is regarded as one of the more hazardous radionuclides. If it is such a hazardous material, should it be allowed in the normal household without any control? Or, in a smoke detector, is it in a less hazardous form than assumed in the ICRP recommendations and do its benefits outweigh its possible risks? In spite of the apparent hazard of Am 241, the possession of the radioactive source in smoke detectors is generally exempt from any form of regulation. Waste regulations, however, set requirements for the disposal of Am 241 and these regulations can be interpreted as applying to smoke detectors. We appear to have a situation where a home owner can legally purchase any number of smoke detectors but when they fail there are codes of practice that prevent them being disposed of. On the other hand, smoke detectors have a direct life saving function and reports indicate that smoke detectors can reduce both injury and property damage by up to 50%. Do these benefits from the use of smoke detectors compensate for any radiological risk? (author)

  19. First runs with the ORPHEUS dark matter detector

    CERN Document Server

    Czapek, G; Hauser, M; Janos, S; Loaiza, P; Moser, U; Pretzl, K; Brandt, B V D; Konter, J A; Mango, S; Ebert, T; Kainer, K U; Knoop, K M

    2002-01-01

    The ORPHEUS dark matter experiment is completed at our shallow depth laboratory in Bern (70 m.w.e.). The detector relies on measuring the magnetic flux variation produced by weakly interacting massive particles (WIMPs) as they heat 30 mu m diameter superheated superconducting tin granules (SSG) and induce superconducting-to-normal phase transitions. In an initial phase, 0.45 kg of tin granules in a segmented detector volume have been used. Preliminary results of the experiment will be reported.

  20. Investigation of space-energy effects in the reactivity measurement by neutron noise with ex-core detectors in a reflected LWR

    International Nuclear Information System (INIS)

    Lescano, V.H.; Behringer, K.

    1981-11-01

    Practical application of the zero-crossing correlation method for measuring slightly subcritical reactivities in a swimming pool reactor required the use of detector locations in the reflector zone near to the core boundary. Experimental investigations of neutron-noise cross-power spectra showed significant deviations from the point reactor model at higher frequencies (> 100 Hz). Nevertheless, the use of the point reactor model was found to be an useful approach in the analysis of the zero-crossing correlation method yielding results which agreed well with those obtained from the rod-drop method. The theoretical part of the work is concerned with a space-dependent model calculation in two-group diffusion theory to support the experimental findings. The model calculation can explain the trends observed in the neutron-noise spectra as well as the applicability of the point reactor model to the zero-crossing correlation method. To obtain better insight, the calculations have been extended to neutron-noise spectra when one or both detectors are located in the core zone. In the case of a large core and widely spaced detectors, with at least one detector in the core zone, a sink frequency appears in the spectra. This effect is well-known in coupled-core kinetics. (Auth.)

  1. Semi-automatic bubble counting system for superheated droplet detectors

    International Nuclear Information System (INIS)

    Reina, Luiz C.; Bellido, Luis F.; Ramos, Paulo R.; Silva, Ademir X. da; Facure, Alessandro; Dantas, Jose E.R.

    2009-01-01

    Neutron dose rate measurements are normally performed by means of PADC, CR-39 and TLD detectors. Although, none of these devices can give instant reading of the neutron dose, recently new kind of detectors are being developed, based on the formation of tiny drops in a superheated liquid suspended in a polymer or gel solution, called superheated droplet detector (SDD) or also as bubble detectors (BD), with no response for gamma radiation. This work describes the experimental setup and the developed procedures for acquiring and processing digital images obtained with bubble detector spectrometer (BDS), developed by Bubble Technology Industries, for personal neutron dosimeter and/or neutron energy fluence measurements in nuclear facilities. The results of the neutron measurements obtained during the F-18 production, at the RDS-111 cyclotron, are presented. These neutron measurements were the first ones with this type of BDS detectors in a particle accelerator facility in Brazil and it was very important to estimate neutron dose rate received by occupationally exposed individuals. (author)

  2. Adaptive Detectors for Two Types of Subspace Targets in an Inverse Gamma Textured Background

    Directory of Open Access Journals (Sweden)

    Ding Hao

    2017-06-01

    Full Text Available Considering an inverse Gamma prior distribution model for texture, the adaptive detection problems for both first order Gaussian and second order Gaussian subspace targets are researched in a compound Gaussian sea clutter. Test statistics are derived on the basis of the two-step generalized likelihood ratio test. From these tests, new adaptive detectors are proposed by substituting the covariance matrix with estimation results from the Sample Covariance Matrix (SCM, normalized SCM, and fixed point estimator. The proposed detectors consider the prior distribution model for sea clutter during the design stage, and they model parameters that match the working environment during the detection stage. Analysis and validation results indicate that the detection performance of the proposed detectors out performs existing AMF (Adaptive Matched Filter, AMF and ANMF (Adaptive Normalized Matched Filter, ANMF detectors.

  3. Magnetic field influences on the lateral dose response functions of photon-beam detectors: MC study of wall-less water-filled detectors with various densities.

    Science.gov (United States)

    Looe, Hui Khee; Delfs, Björn; Poppinga, Daniela; Harder, Dietrich; Poppe, Björn

    2017-06-21

    The distortion of detector reading profiles across photon beams in the presence of magnetic fields is a developing subject of clinical photon-beam dosimetry. The underlying modification by the Lorentz force of a detector's lateral dose response function-the convolution kernel transforming the true cross-beam dose profile in water into the detector reading profile-is here studied for the first time. The three basic convolution kernels, the photon fluence response function, the dose deposition kernel, and the lateral dose response function, of wall-less cylindrical detectors filled with water of low, normal and enhanced density are shown by Monte Carlo simulation to be distorted in the prevailing direction of the Lorentz force. The asymmetric shape changes of these convolution kernels in a water medium and in magnetic fields of up to 1.5 T are confined to the lower millimetre range, and they depend on the photon beam quality, the magnetic flux density and the detector's density. The impact of this distortion on detector reading profiles is demonstrated using a narrow photon beam profile. For clinical applications it appears as favourable that the magnetic flux density dependent distortion of the lateral dose response function, as far as secondary electron transport is concerned, vanishes in the case of water-equivalent detectors of normal water density. By means of secondary electron history backtracing, the spatial distribution of the photon interactions giving rise either directly to secondary electrons or to scattered photons further downstream producing secondary electrons which contribute to the detector's signal, and their lateral shift due to the Lorentz force is elucidated. Electron history backtracing also serves to illustrate the correct treatment of the influences of the Lorentz force in the EGSnrc Monte Carlo code applied in this study.

  4. Spatial resolution in Micromegas detectors

    CERN Document Server

    Bayb, A; Giomataris, Ioanis; Zaccone, Henri; Bay, A; Perroud, Jean-Pierre; Ronga, F

    2001-01-01

    The performance of a telescope of Micromegas detectors has been studied in a pion beam at the CERN PS. With a gas filling of CF/sub 4 / and 20% isobutane and with a strip pitch of 100 mu m an accuracy of 14+or-3 mu m on the spatial resolution has been measured at normal incidence. A simulation demonstrates that the resolution is limited by the size of the holes of the mesh of the detector and could be reduced to 11 mu m in the same conditions with smaller holes. Even further improvement down to 8.5 mu m is feasible for the same gas with an optimized 75 mu m strip pitch. (5 refs).

  5. Evaporative light scattering detector in normal-phase high-performance liquid chromatography determination of FAME oxidation products.

    Science.gov (United States)

    Morales, Arturo; Marmesat, Susana; Dobarganes, M Carmen; Márquez-Ruiz, Gloria; Velasco, Joaquín

    2012-09-07

    The use of an ELS detector in NP-HPLC for quantitative analysis of oxidation products in FAME obtained from oils is evaluated in this study. The results obtained have shown that the ELS detector enables the quantitative determination of the hydroperoxides of oleic and linoleic acid methyl esters as a whole, and connected in series with a UV detector makes it possible to determine both groups of compounds by difference, providing useful complementary information. The limits of detection (LOD) and quantification (LOQ) found for hydroperoxides were respectively 2.5 and 5.7 μg mL⁻¹ and precision of quantitation expressed as coefficient of variation was lower than 10%. Due to a low sensitivity the ELS detector shows limitations to determine the low contents of secondary oxidation products in the direct analysis of FAME oxidized at low or moderate temperature. Analysis of FAME samples obtained either from high linoleic sunflower oil (HLSO) or high oleic sunflower oil (HOSO) and oxidized at 80 °C showed that only ketodienes formed from methyl linoleate can be determined in samples with relatively high oxidation, being the LOD and LOQ 0.2 and 0.4 mg/g FAME, respectively, at the analytical conditions applied. The ELS detector also enabled the determination of methyl cis-9,10-epoxystearate and methyl trans-9,10-epoxystearate, which were resolved at the chromatographic conditions applied. Results showed that these compounds, which are formed from methyl oleate, were not detected in the high-linoleic sample, but occurred at non-negligible levels in the oxidized FAME obtained from HOSO. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Making SPC easier with zone control charts

    International Nuclear Information System (INIS)

    Lanning, B.

    1995-01-01

    The zone control chart is a simple, easy to learn statistical process control (SPC) tool that can be applied to any process where the data are normally distributed. Several Shewhart runs rules are incorporated into a simple scoring system, with a single rule to determine when a process is out of control. Zone charts have average run lengths (ARLs) for detecting shifts in the process mean which, for most cases, are uniformly better than the standard control charts. This paper presents the simplified methodology behind the zone control chart

  7. Positron emission mammography with tomographic acquisition using dual planar detectors: initial evaluations

    International Nuclear Information System (INIS)

    Smith, Mark F; Raylman, Raymond R; Majewski, Stan; Weisenberger, Andrew G

    2004-01-01

    Positron emission mammography (PEM) with tomographic acquisition using dual planar detectors rotating about the breast can obtain complete angular sampling and has the potential to improve activity estimation compared with PEM using stationary detectors. PEM tomography (PEMT) was compared with stationary PEM for point source and compressed breast phantom studies performed with a compact dual detector system. The acquisition geometries were appropriate for the target application of PEM guidance of stereotactic core biopsy. Images were reconstructed with a three-dimensional iterative maximum likelihood expectation maximization algorithm. PEMT eliminated blurring normal to the detectors seen with stationary PEM. Depth of interaction effects distorted the shape of the point spread functions for PEMT as the angular range from normal incidence of lines of response used in image reconstruction increased. Streak artefacts in PEMT for large detector rotation increments led to the development of an expression for the maximum rotation increment that maintains complete angular sampling. Studies with a compressed breast phantom were used to investigate contrast and signal-to-noise ratio (SNR) trade-offs for different sized spherical tumour models. PEMT and PEM both had advantages depending on lesion size and detector separation. The most appropriate acquisition method for specific detection or quantitation tasks requires additional investigation

  8. Normal values of regional left ventricular myocardial thickness, mass and distribution-assessed by 320-detector computed tomography angiography in the Copenhagen General Population Study

    DEFF Research Database (Denmark)

    Hindsø, Louise; Fuchs, Andreas; Kühl, Jørgen Tobias

    2017-01-01

    regional normal reference values of the left ventricle. The aim of this study was to derive reference values of regional LV myocardial thickness (LVMT) and mass (LVMM) from a healthy study group of the general population using cardiac computed tomography angiography (CCTA). We wanted to introduce LV...... myocardial distribution (LVMD) as a measure of regional variation of the LVMT. Moreover, we wanted to determine whether these parameters varied between men and women. We studied 568 (181 men; 32%) adults, free of cardiovascular disease and risk factors, who underwent 320-detector CCTA. Mean age was 55 (range...... 40-84) years. Regional LVMT and LVMM were measured, according to the American Heart Association's 17 segment model, using semi-automatic software. Mean LVMT were 6.6 mm for men and 5.4 mm for women (p normal LV was thickest in the basal septum (segment 3; men = 8.3 mm; women = 7.2 mm...

  9. IDENTIFYING LOCAL SCALE CLIMATE ZONES OF URBAN HEAT ISLAND FROM HJ-1B SATELLITE DATA USING SELF-ORGANIZING MAPS

    Directory of Open Access Journals (Sweden)

    C. Z. Wei

    2016-10-01

    Full Text Available With the increasing acceleration of urbanization, the degeneration of the environment and the Urban Heat Island (UHI has attracted more and more attention. Quantitative delineation of UHI has become crucial for a better understanding of the interregional interaction between urbanization processes and the urban environment system. First of all, our study used medium resolution Chinese satellite data-HJ-1B as the Earth Observation data source to derive parameters, including the percentage of Impervious Surface Areas, Land Surface Temperature, Land Surface Albedo, Normalized Differential Vegetation Index, and object edge detector indicators (Mean of Inner Border, Mean of Outer border in the city of Guangzhou, China. Secondly, in order to establish a model to delineate the local climate zones of UHI, we used the Principal Component Analysis to explore the correlations between all these parameters, and estimate their contributions to the principal components of UHI zones. Finally, depending on the results of the PCA, we chose the most suitable parameters to classify the urban climate zones based on a Self-Organization Map (SOM. The results show that all six parameters are closely correlated with each other and have a high percentage of cumulative (95% in the first two principal components. Therefore, the SOM algorithm automatically categorized the city of Guangzhou into five classes of UHI zones using these six spectral, structural and climate parameters as inputs. UHI zones have distinguishable physical characteristics, and could potentially help to provide the basis and decision support for further sustainable urban planning.

  10. Research of coincidence method for calculation model of the specific detector

    Energy Technology Data Exchange (ETDEWEB)

    Guangchun, Hu; Suping, Liu; Jian, Gong [China Academy of Engineering Physics, Mianyang (China). Inst. of Nuclear Physics and Chemistry

    2003-07-01

    The physical size of specific detector is known normally, but production business is classified for some sizes that is concerned with the property of detector, such as the well diameter, well depth of detector and dead region. The surface source of even distribution and the sampling method of source particle isotropy sport have been established with the method of Monte Carlo, and gamma ray respond spectral with the {sup 152}Eu surface source been calculated. The experiment have been performed under the same conditions. Calculation and experiment results are compared with relative efficiency coincidence method and spectral similar degree coincidence method. According to comparison as a result, detector model is revised repeatedly to determine the calculation model of detector and to calculate efficiency of detector and spectra. (authors)

  11. Response of resonant gravitational wave detectors to damped sinusoid signals

    International Nuclear Information System (INIS)

    Pai, A; Celsi, C; Pallottino, G V; D'Antonio, S; Astone, P

    2007-01-01

    Till date, the search for burst signals with resonant gravitational wave (GW) detectors has been done using the δ-function approximation for the signal, which was reasonable due to the very small bandwidth of these detectors. However, now with increased bandwidth (of the order of 10 or more Hz) and with the possibility of comparing results with interferometric GW detectors (broad-band), it is very important to exploit the resonant detectors' capability to detect also signals with specific wave shapes. As a first step, we present a study of the response of resonant GW detectors to damped sinusoids with given frequency and decay time and report on the development of a filter matched to these signals. This study is a preliminary step towards the comprehension of the detector response and of the filtering for signals such as the excitation of stellar quasi-normal modes

  12. CELL AVERAGING CFAR DETECTOR WITH SCALE FACTOR CORRECTION THROUGH THE METHOD OF MOMENTS FOR THE LOG-NORMAL DISTRIBUTION

    Directory of Open Access Journals (Sweden)

    José Raúl Machado Fernández

    2018-01-01

    Full Text Available Se presenta el nuevo detector LN-MoM-CA-CFAR que tiene una desviación reducida en la tasa de probabilidad de falsa alarma operacional con respecto al valor concebido de diseño. La solución corrige un problema fundamental de los procesadores CFAR que ha sido ignora-do en múltiples desarrollos. En efecto, la mayoría de los esquemas previamente propuestos tratan con los cambios bruscos del nivel del clutter mientras que la presente solución corrige los cambios lentos estadísticos de la señal de fondo. Se ha demostrado que estos tienen una influencia marcada en la selección del factor de ajuste multiplicativo CFAR, y consecuen-temente en el mantenimiento de la probabilidad de falsa alarma. Los autores aprovecharon la alta precisión que se alcanza en la estimación del parámetro de forma Log-Normal con el MoM, y la amplia aplicación de esta distribución en la modelación del clutter, para crear una arquitectura que ofrece resultados precisos y con bajo costo computacional. Luego de un procesamiento intensivo de 100 millones de muestras Log-Normal, se creó un esquema que, mejorando el desempeño del clásico CA-CFAR a través de la corrección continua de su fac-tor de ajuste, opera con una excelente estabilidad alcanzando una desviación de solamente 0,2884 % para la probabilidad de falsa alarma de 0,01.

  13. Influence of Time-Series Normalization, Number of Nodes, Connectivity and Graph Measure Selection on Seizure-Onset Zone Localization from Intracranial EEG.

    Science.gov (United States)

    van Mierlo, Pieter; Lie, Octavian; Staljanssens, Willeke; Coito, Ana; Vulliémoz, Serge

    2018-04-26

    We investigated the influence of processing steps in the estimation of multivariate directed functional connectivity during seizures recorded with intracranial EEG (iEEG) on seizure-onset zone (SOZ) localization. We studied the effect of (i) the number of nodes, (ii) time-series normalization, (iii) the choice of multivariate time-varying connectivity measure: Adaptive Directed Transfer Function (ADTF) or Adaptive Partial Directed Coherence (APDC) and (iv) graph theory measure: outdegree or shortest path length. First, simulations were performed to quantify the influence of the various processing steps on the accuracy to localize the SOZ. Afterwards, the SOZ was estimated from a 113-electrodes iEEG seizure recording and compared with the resection that rendered the patient seizure-free. The simulations revealed that ADTF is preferred over APDC to localize the SOZ from ictal iEEG recordings. Normalizing the time series before analysis resulted in an increase of 25-35% of correctly localized SOZ, while adding more nodes to the connectivity analysis led to a moderate decrease of 10%, when comparing 128 with 32 input nodes. The real-seizure connectivity estimates localized the SOZ inside the resection area using the ADTF coupled to outdegree or shortest path length. Our study showed that normalizing the time-series is an important pre-processing step, while adding nodes to the analysis did only marginally affect the SOZ localization. The study shows that directed multivariate Granger-based connectivity analysis is feasible with many input nodes (> 100) and that normalization of the time-series before connectivity analysis is preferred.

  14. Determination of photon detector coefficient in neutron flux study

    International Nuclear Information System (INIS)

    Jedol Dayou; Azali Muhammad; Abd Aziz Mohamed; Abdul Razak Daud; Elias Saniman

    1995-01-01

    The efficiency of photon detector which is normally used in neutron flux measurement has been studied. The data obtain have been plotted using mathematical models in the form of reciprocal, exponential and semilog equation and subsequently efficiency coefficient of the detector has been determined. Beside that, energy quadratic equation model has also been used. It has been found that equation model selection is very important in the detector efficiency coefficient determination. In the case of energy quadratic equation, it has been found that the selection of energy set influenced the result. It can be concluded that energy quadratic equation is the best model in the neutron flux determination

  15. Detector simulation needs for detector designers

    International Nuclear Information System (INIS)

    Hanson, G.G.

    1987-11-01

    Computer simulation of the components of SSC detectors and of the complete detectors will be very important for the designs of the detectors. The ratio of events from interesting physics to events from background processes is very low, so detailed understanding of detector response to the backgrounds is needed. Any large detector for the SSC will be very complex and expensive and every effort must be made to design detectors which will have excellent performance and will not have to undergo major rebuilding. Some areas in which computer simulation is particularly needed are pattern recognition in tracking detectors and development of shower simulation code which can be trusted as an aid in the design and optimization of calorimeters, including their electron identification performance. Existing codes require too much computer time to be practical and need to be compared with test beam data at energies of several hundred GeV. Computer simulation of the processing of the data, including electronics response to the signals from the detector components, processing of the data by microprocessors on the detector, the trigger, and data acquisition will be required. In this report we discuss the detector simulation needs for detector designers

  16. Fault zone architecture within Miocene–Pliocene syn-rift sediments ...

    Indian Academy of Sciences (India)

    The present study focusses on field description of small normal fault zones in Upper Miocene–Pliocene sedimentary rocks on the northwestern side of the Red Sea, Egypt. The trend of these fault zones is mainly NW–SE. Paleostress analysis of 17 fault planes and slickenlines indicate that the tension direction is NE–SW.

  17. Amorphous selenium based detectors for medical imaging applications

    Science.gov (United States)

    Mandal, Krishna C.; Kang, Sung H.; Choi, Michael; Jellison, Gerald E., Jr.

    2006-08-01

    We have developed and characterized large volume amorphous (a-) selenium (Se) stabilized alloys for room temperature medical imaging devices and high-energy physics detectors. The synthesis and preparation of well-defined and high quality a-Se (B, As, Cl) alloy materials have been conducted using a specially designed alloying reactor at EIC and installed in an argon atmosphere glove box. The alloy composition has been precisely controlled and optimized to ensure good device performance. The synthesis of large volume boron (B) doped (natural and isotopic 10B) a-Se (As, Cl) alloys has been carried out by thoroughly mixing vacuum distilled and zone-refined (ZR) Se with previously synthesized Se-As master alloys, Se-Cl master alloys and B. The synthesized a-Se (B, As, Cl) alloys have been characterized by x-ray diffraction (XRD), differential scanning calorimetry (DSC), Fourier transform infra-red spectroscopy (FTIR), x-ray photoelectron spectroscopy (XPS), inductively coupled plasma mass spectroscopy (ICP-MS), and detector testing. The a- Se alloys have shown high promise for x-ray detectors with its high dark resistivity (10 10-10 13 Ωcm), good charge transport properties, and cost-effective large area scalability. Details of various steps about detector fabrication and testing of these imaging devices are also presented.

  18. Feasible voltage-tap based quench detection in a Ag/Bi-2212 coil enabled by fast 3D normal zone propagation

    International Nuclear Information System (INIS)

    Shen, Tengming; Ye, Liyang; Li, Pei

    2016-01-01

    For this study, small insert solenoids have been built using a commercial Ag/Bi-2212 multifilamentary round wire, insulated with a new thin TiO 2 – polymer coating insulation (thickness in ~20 μm versus ~100 μm for a commonly used mullite braided sleeve insulation), and characterized in background magnetic field up to 14 T at 4.2 K to explore the high-field performance and quench detection of Bi-2212 magnets. The coil has no visible leakage and no electrical shorts after reaction, and it carries 280 A/mm -2 in a background field 14 T and generates an additional 1.7 T. A notable result is that, despite normal zones propagate slowly along the conductor, the hot spot temperature upon detection increases only from 40 K to 60 K when the resistive quench detection voltage threshold increases from 0.1 V to 1 V for all operating current density investigated, showing that quench detection using voltage taps is feasible for this coil. This is in a strong contrast to a coil we previously built to the same specifications but from wires insulated with the mullite braided sleeve insulation, for which the hot spot temperature upon detection increases from ~80 K to ~140 K while increasing from the detection voltage threshold from 0.1 V to 1 V, and thus for which quench detection using voltage taps presents significant risks, consistent with the common belief that the effectiveness of quench detection using voltage taps for superconducting magnets built using high temperature superconductors is seriously compromised by their slow normal zone propagation. This striking difference is ascribed to the fast transverse quench propagation enabled by thin insulation and improved thermal coupling between conductor turns. Finally, this work demonstrates that quench detection for high-temperature superconducting magnets highly depends on the design and construction of the coils such as insulation materials used and this dependence should be factored into the overall magnet design

  19. Kinetics of Tc-99m hexakis t-butyl isonitrile in normal and ischemic canine myocardium

    International Nuclear Information System (INIS)

    Williams, S.J.; Dragotakos, D.L.

    1989-01-01

    Hexakis 99m Tc-tertiary butyl isonitrile ( 99m Tc-TBI) was studied as a cardiac perfusion imaging agent in nine dogs with partial occlusion of the LAD. Thirty min after applying the stenosis, 99m Tc-TBI was injected into the right atrium (RA) in five dogs and left atrium (LA) in four dogs. Normal and ischemic zone regional myocardial 99m Tc-TBI activities were monitored continuously for 4 h. Dogs with LA injections had minimal and equivalent 4 h fractional clearance from the normal and ischemic zones. Dogs with RA injections had minimal, but significantly lower 4 h fractional 99m Tc clearances in the ischemic zone (0.08±0.08) compared to the normal zone (0.16±0.07, P 99m Tc-TBI a promising cardiac perfusion imaging agent. (orig.)

  20. The Sorong Fault Zone, Indonesia: Mapping a Fault Zone Offshore

    Science.gov (United States)

    Melia, S.; Hall, R.

    2017-12-01

    The Sorong Fault Zone is a left-lateral strike-slip fault zone in eastern Indonesia, extending westwards from the Bird's Head peninsula of West Papua towards Sulawesi. It is the result of interactions between the Pacific, Caroline, Philippine Sea, and Australian Plates and much of it is offshore. Previous research on the fault zone has been limited by the low resolution of available data offshore, leading to debates over the extent, location, and timing of movements, and the tectonic evolution of eastern Indonesia. Different studies have shown it north of the Sula Islands, truncated south of Halmahera, continuing to Sulawesi, or splaying into a horsetail fan of smaller faults. Recently acquired high resolution multibeam bathymetry of the seafloor (with a resolution of 15-25 meters), and 2D seismic lines, provide the opportunity to trace the fault offshore. The position of different strands can be identified. On land, SRTM topography shows that in the northern Bird's Head the fault zone is characterised by closely spaced E-W trending faults. NW of the Bird's Head offshore there is a fold and thrust belt which terminates some strands. To the west of the Bird's Head offshore the fault zone diverges into multiple strands trending ENE-WSW. Regions of Riedel shearing are evident west of the Bird's Head, indicating sinistral strike-slip motion. Further west, the ENE-WSW trending faults turn to an E-W trend and there are at least three fault zones situated immediately south of Halmahera, north of the Sula Islands, and between the islands of Sanana and Mangole where the fault system terminates in horsetail strands. South of the Sula islands some former normal faults at the continent-ocean boundary with the North Banda Sea are being reactivated as strike-slip faults. The fault zone does not currently reach Sulawesi. The new fault map differs from previous interpretations concerning the location, age and significance of different parts of the Sorong Fault Zone. Kinematic

  1. DQE of wireless digital detectors: Comparative performance with differing filtration schemes

    International Nuclear Information System (INIS)

    Samei, Ehsan; Murphy, Simon; Christianson, Olav

    2013-01-01

    Purpose: Wireless flat panel detectors are gaining increased usage in portable medical imaging. Two such detectors were evaluated and compared with a conventional flat-panel detector using the formalism of the International Electrotechnical Commission (IEC 62220-1) for measuring modulation transfer function (MTF), normalized noise power spectrum (NNPS), and detective quantum efficiency (DQE) using two different filtration schemes.Methods: Raw images were acquired for three image receptors (DRX-1C and DRX-1, Carestream Health; Inc., Pixium 4600, Trixell) using a radiographic system with a well-characterized output (Philips Super80 CP, Philips Healthcare). Free in-air exposures were measured using a calibrated radiation meter (Unfors Mult-O-Meter Type 407, Unfors Instruments AB). Additional aluminum filtration and a new alternative combined copper-aluminum filtration were used to conform the x ray output to IEC-specified beam quality definitions RQA5 and RQA9. Using the IEC 62220-1 formalism, each detector was evaluated at X N /2, X N , and 2X N , where the normal exposure level to the detector surface (X N ) was set to 8.73 μGy (1.0 mR). The prescribed edge test device was used to evaluate the MTF, while the NNPS was measured using uniform images. The DQE was then calculated from the MTF and NNPS and compared across detectors, exposures, and filtration schemes.Results: The three DR systems had largely comparable MTFs with DRX-1 demonstrating lower values above 1.0 cycles/mm. At each exposure, DRX-1C and Pixium detectors demonstrated better noise performance than that of DRX-1. Zero-frequency DQEs for DRX-1C, Pixium, and DRX-1 detectors were approximately 74%, 63%, and 38% for RQA5 and 50%, 42%, and 28% for RQA9, respectively.Conclusions: DRX-1C detector exhibited superior DQE performance compared to Pixium and DRX-1. In terms of filtration, the alternative filtration was found to provide comparable performance in terms of rank ordering of different detectors with

  2. Oblique incidence effects in direct x-ray detectors: A first-order approximation using a physics-based analytical model

    International Nuclear Information System (INIS)

    Badano, Aldo; Freed, Melanie; Fang Yuan

    2011-01-01

    Purpose: The authors describe the modifications to a previously developed analytical model of indirect CsI:Tl-based detector response required for studying oblique x-ray incidence effects in direct semiconductor-based detectors. This first-order approximation analysis allows the authors to describe the associated degradation in resolution in direct detectors and compare the predictions to the published data for indirect detectors. Methods: The proposed model is based on a physics-based analytical description developed by Freed et al. [''A fast, angle-dependent, analytical model of CsI detector response for optimization of 3D x-ray breast imaging systems,'' Med. Phys. 37(6), 2593-2605 (2010)] that describes detector response functions for indirect detectors and oblique incident x rays. The model, modified in this work to address direct detector response, describes the dependence of the response with x-ray energy, thickness of the transducer layer, and the depth-dependent blur and collection efficiency. Results: The authors report the detector response functions for indirect and direct detector models for typical thicknesses utilized in clinical systems for full-field digital mammography (150 μm for indirect CsI:Tl and 200 μm for a-Se direct detectors). The results suggest that the oblique incidence effect in a semiconductor detector differs from that in indirect detectors in two ways: The direct detector model produces a sharper overall PRF compared to the response corresponding to the indirect detector model for normal x-ray incidence and a larger relative increase in blur along the x-ray incidence direction compared to that found in indirect detectors with respect to the response at normal incidence angles. Conclusions: Compared to the effect seen in indirect detectors, the direct detector model exhibits a sharper response at normal x-ray incidence and a larger relative increase in blur along the x-ray incidence direction with respect to the blur in the

  3. X- and gamma-ray N+PP+ silicon detectors with high radiation resistance

    International Nuclear Information System (INIS)

    Petris, M.; Ruscu, R.; Moraru, R.; Cimpoca, V.

    1998-01-01

    We have investigated the use of p-type silicon detectors as starting material for X-and gamma-ray detectors because of several potential benefits it would bring: 1. high purity p-type silicon grown by the float-zone process exhibits better radial dopant uniformity than n-type float-zone silicon; 2. it is free of radiation damage due to the neutron transmutation doping process and behaves better in a radiation field because mainly acceptor like centers are created through the exposure and the bulk material type inversion does not occur as in the n-type silicon. But the p-type silicon, in combination with a passivating layer of silicon dioxide, leads to a more complex detector layout since the positive charge in the oxide causes an inversion in the surface layer under the silicon dioxide. Consequently, it would be expected that N + P diodes have a higher leakage current than P + N ones. All these facts have been demonstrated experimentally. These features set stringent requirements for the technology of p-type silicon detectors. Our work presents two new geometries and an improved technology for p-type high resistivity material to obtain low noise radiation detectors. Test structures were characterized before and after the gamma exposure with a cumulative dose in the range 10 4 - 5 x 10 6 rad ( 60 Co). Results indicate that proposed structures and their technology enable the development of reliable N + PP + silicon detectors. For some samples (0.8 - 12 mm 2 ), extremely low reverse currents were obtained and, in combination with a low noise charge preamplifier, the splitting of 241 Am X-ray lines was possible and also the Mn Kα line (5.9 keV) was extracted from the noise with a 1.9 keV FWHM at the room temperature. An experimental model of a nuclear probe based on these diodes was designed for X-ray detection applications. (authors)

  4. Development of an imaging VUV monochromator in normal incidence region

    Energy Technology Data Exchange (ETDEWEB)

    Koog, Joong-San

    1996-07-01

    This paper describes a development of the two-dimensional imaging monochromator system. A commercial normal incidence monochromator working on off-Rowland circle mounting is used for this purpose. The imaging is achieved with utilizing the pinhole camera effect created by an entrance slit of limited height. The astigmatism in the normal incidence mounting is small compared with a grazing incidence mount, but has a finite value. The point is that for near normal incidence, the vertical focusing with a concave grating is produced at outside across the exit slit. Therefore, by putting a 2-D detector at the position away from the exit slit ({approx}30 cm), a one-to-one correspondence between the position of a point on the detector and where it originated in the source is accomplished. This paper consists of (1) the principle and development of the imaging monochromator using the off-Rowland mounting, including the 2-D detector system, (2) a computer simulation by ray tracing for investigations of the imaging properties of imaging system, and aberration from the spherical concave grating on the exit slit, (3) the plasma light source (TPD-S) for the test experiments, (4) Performances of the imaging monochromator system on the spatial resolution and sensitivity, and (5) the use of this system for diagnostic studies on the JIPP T-IIU tokamak. (J.P.N.)

  5. Development of an imaging VUV monochromator in normal incidence region

    International Nuclear Information System (INIS)

    Koog, Joong-San.

    1996-07-01

    This paper describes a development of the two-dimensional imaging monochromator system. A commercial normal incidence monochromator working on off-Rowland circle mounting is used for this purpose. The imaging is achieved with utilizing the pinhole camera effect created by an entrance slit of limited height. The astigmatism in the normal incidence mounting is small compared with a grazing incidence mount, but has a finite value. The point is that for near normal incidence, the vertical focusing with a concave grating is produced at outside across the exit slit. Therefore, by putting a 2-D detector at the position away from the exit slit (∼30 cm), a one-to-one correspondence between the position of a point on the detector and where it originated in the source is accomplished. This paper consists of 1) the principle and development of the imaging monochromator using the off-Rowland mounting, including the 2-D detector system, 2) a computer simulation by ray tracing for investigations of the imaging properties of imaging system, and aberration from the spherical concave grating on the exit slit, 3) the plasma light source (TPD-S) for the test experiments, 4) Performances of the imaging monochromator system on the spatial resolution and sensitivity, and 5) the use of this system for diagnostic studies on the JIPP T-IIU tokamak. (J.P.N.)

  6. Transducer for measuring normal and friction stress in contact zone during rolling

    DEFF Research Database (Denmark)

    Henningsen, Poul; Wanheim, Tarras; Arentoft, Mogens

    2004-01-01

    , generating frictional stresses contrary to the direction of rolling. In a narrow area in the deformation zone, the velocity of the deformed material is equal to the velocity of the rolls. This area or line is named “neutral line”[2]. The position of the neutral line depends on friction, reduction ratio...

  7. Shear zones between rock units with no relative movement

    DEFF Research Database (Denmark)

    Koyi, Hemin; Schmeling, Harro; Burchardt, Steffi

    2013-01-01

    Shear zones are normally viewed as relatively narrow deformation zones that accommodate relative displacement between two "blocks" that have moved past each other in opposite directions. This study reports localized zones of shear between adjacent blocks that have not moved past each other. Such ...... given credit for and may be responsible for some reverse kinematics reported in shear zones....... or wakes, elongated bodies (vertical plates or horizontal rod-like bodies) produce tabular shear zones or wakes. Unlike conventional shear zones across which shear indicators usually display consistent symmetries, shear indicators on either side of the shear zone or wake reported here show reverse...... kinematics. Thus profiles exhibit shear zones with opposed senses of movement across their center-lines or -planes.We have used field observations and results from analytical and numerical models to suggest that examples of wakes are the transit paths that develop where denser blocks sink within salt...

  8. Breast cancer detection rates using four different types of mammography detectors

    Energy Technology Data Exchange (ETDEWEB)

    Mackenzie, Alistair; Warren, Lucy M.; Dance, David R.; Young, Kenneth C. [Royal Surrey County Hospital, National Coordinating Centre for the Physics in Mammography (NCCPM), Guildford (United Kingdom); University of Surrey, Department of Physics, Guildford (United Kingdom); Wallis, Matthew G. [Cambridge University Hospitals NHS Foundation Trust, Cambridge (United Kingdom); NIHR Cambridge Biomedical Research Centre, Cambridge Breast Unit, Cambridge (United Kingdom); Cooke, Julie [Jarvis Breast Screening and Diagnostic Centre, Guildford (United Kingdom); Given-Wilson, Rosalind M. [St George' s Healthcare NHS Trust, Department of Radiology, London (United Kingdom); Chakraborty, Dev P. [University of Pittsburgh, Department of Radiology, Pittsburgh, PA (United States); Halling-Brown, Mark D. [Royal Surrey County Hospital, Scientific Computing, Department of Medical Physics, Guildford (United Kingdom); Looney, Padraig T. [Royal Surrey County Hospital, National Coordinating Centre for the Physics in Mammography (NCCPM), Guildford (United Kingdom)

    2016-03-15

    To compare the performance of different types of detectors in breast cancer detection. A mammography image set containing subtle malignant non-calcification lesions, biopsy-proven benign lesions, simulated malignant calcification clusters and normals was acquired using amorphous-selenium (a-Se) detectors. The images were adapted to simulate four types of detectors at the same radiation dose: digital radiography (DR) detectors with a-Se and caesium iodide (CsI) convertors, and computed radiography (CR) detectors with a powder phosphor (PIP) and a needle phosphor (NIP). Seven observers marked suspicious and benign lesions. Analysis was undertaken using jackknife alternative free-response receiver operating characteristics weighted figure of merit (FoM). The cancer detection fraction (CDF) was estimated for a representative image set from screening. No significant differences in the FoMs between the DR detectors were measured. For calcification clusters and non-calcification lesions, both CR detectors' FoMs were significantly lower than for DR detectors. The calcification cluster's FoM for CR NIP was significantly better than for CR PIP. The estimated CDFs with CR PIP and CR NIP detectors were up to 15 % and 22 % lower, respectively, than for DR detectors. Cancer detection is affected by detector type, and the use of CR in mammography should be reconsidered. (orig.)

  9. Timing of gamma rays in coaxial germanium detector systems

    International Nuclear Information System (INIS)

    El-Ibiary, M.Y.

    1979-01-01

    A study is reported on the timing uncertainty in gamma ray coaxial germanium detector systems. The work deals with the zero cross over method which is widely used to reduce the dependence of the instant of timing on the radiation energy absorbed and on the position within the detector at which absorption takes place. It is found that the amplitude risetime compensated (ARC) method gives, under normal conditions, the best resolution at a specific energy. For higher energies, the resolution improves and there is no shift of the mean instant of timing. The method is therefore well suited for wide energy coverage. The parameters involved in implementing an ARC system for optimum performance at a specific energy are identified in terms of the preamplifier noise level and risetime. A trade off can be made between the resolutions at high and at low energies. The time resolution attained is given by means of a series of charts which use normalized dimensionless variables for ready application to any given case. Lithium compensated Ge detectors which normally operate under conditions of velocity saturation of the charge carriers by applying sufficient bias voltage create an electric field in excess of 1 kV/cm throughout the depleted region. High purity Ge detectors where velocity saturation may not be reached within certain parts of the depleted region are studied. Special attention is given to the probability of pulses being incorrectly timed because of their slow rise or small magnitude. Such incorrect timing is energy-dependent and results in a noticeable distortion of the timing spectrum that relates to a wide energy range. Limitations on system parameters to keep the probability of incorrect timing below a specified fraction are given

  10. Radiation danger of exclusion zone objects

    International Nuclear Information System (INIS)

    Kholosha, V.I.; Proskura, N.I.; Ivanov, Yu.A.; Kazakov, S.V.; Arkhipov, A.N.

    2001-01-01

    The analysis of radiation danger of the Exclusion Zone objects was made. Here, the Zone is defined as the territory from which the population has been evacuated in 1986 owing to the Chernobyl accident and possible outflow of the contaminated substances out of the borders is potentially dangerous to the Ukraine. In the present work were analyzed such problems as sources of radiation danger in the Zone, ways of radionuclide migration out of the borders of the Zone in normal and emergency situations, the non-radiation (ecological) danger factors of the Zone objects, doses (individual and collective) from various sources and on separate ways of their formation, and the characteristics of radiation danger of the Zone objects. The conclusions are: (1) Radionuclide flows both from technologic and natural sources exceed those from Shelter objects, (2) Under emergency conditions, radionuclide flows and doze loading remain comparable with those from emergency sources, (3) To solve some management tasks in radiation situation, the basic works on the Shelter objects should be oriented to decrease probability of emergency occurrence and to reduce radiation influence (prevention wash-outs during high waters, fire-prevention measures in forests and strengthening of the control behind non-authorized use of objects in the Zone). (S. Ohno)

  11. Low dose radiation damage effects in silicon strip detectors

    International Nuclear Information System (INIS)

    Wiącek, P.; Dąbrowski, W.

    2016-01-01

    The radiation damage effects in silicon segmented detectors caused by X-rays have become recently an important research topic driven mainly by development of new detectors for applications at the European X-ray Free Electron Laser (E-XFEL). However, radiation damage in silicon strip is observed not only after extreme doses up to 1 GGy expected at E-XFEL, but also at doses in the range of tens of Gy, to which the detectors in laboratory instruments like X-ray diffractometers or X-ray spectrometers can be exposed. In this paper we report on investigation of radiation damage effects in a custom developed silicon strip detector used in laboratory diffractometers equipped with X-ray tubes. Our results show that significant degradation of detector performance occurs at low doses, well below 200 Gy, which can be reached during normal operation of laboratory instruments. Degradation of the detector energy resolution can be explained by increasing leakage current and increasing interstrip capacitance of the sensor. Another observed effect caused by accumulation of charge trapped in the surface oxide layer is change of charge division between adjacent strips. In addition, we have observed unexpected anomalies in the annealing process.

  12. Low dose radiation damage effects in silicon strip detectors

    Science.gov (United States)

    Wiącek, P.; Dąbrowski, W.

    2016-11-01

    The radiation damage effects in silicon segmented detectors caused by X-rays have become recently an important research topic driven mainly by development of new detectors for applications at the European X-ray Free Electron Laser (E-XFEL). However, radiation damage in silicon strip is observed not only after extreme doses up to 1 GGy expected at E-XFEL, but also at doses in the range of tens of Gy, to which the detectors in laboratory instruments like X-ray diffractometers or X-ray spectrometers can be exposed. In this paper we report on investigation of radiation damage effects in a custom developed silicon strip detector used in laboratory diffractometers equipped with X-ray tubes. Our results show that significant degradation of detector performance occurs at low doses, well below 200 Gy, which can be reached during normal operation of laboratory instruments. Degradation of the detector energy resolution can be explained by increasing leakage current and increasing interstrip capacitance of the sensor. Another observed effect caused by accumulation of charge trapped in the surface oxide layer is change of charge division between adjacent strips. In addition, we have observed unexpected anomalies in the annealing process.

  13. Focused seismicity triggered by flank instability on Kīlauea's Southwest Rift Zone

    Science.gov (United States)

    Judson, Josiah; Thelen, Weston A.; Greenfield, Tim; White, Robert S.

    2018-03-01

    Swarms of earthquakes at the head of the Southwest Rift Zone on Kīlauea Volcano, Hawai´i, reveal an interaction of normal and strike-slip faulting associated with movement of Kīlauea's south flank. A relocated subset of earthquakes between January 2012 and August 2014 are highly focused in space and time at depths that are coincident with the south caldera magma reservoir beneath the southern margin of Kīlauea Caldera. Newly calculated focal mechanisms are dominantly dextral shear with a north-south preferred fault orientation. Two earthquakes within this focused area of seismicity have normal faulting mechanisms, indicating two mechanisms of failure in very close proximity (10's of meters to 100 m). We suggest a model where opening along the Southwest Rift Zone caused by seaward motion of the south flank permits injection of magma and subsequent freezing of a plug, which then fails in a right-lateral strike-slip sense, consistent with the direction of movement of the south flank. The seismicity is concentrated in an area where a constriction occurs between a normal fault and the deeper magma transport system into the Southwest Rift Zone. Although in many ways the Southwest Rift Zone appears analogous to the more active East Rift Zone, the localization of the largest seismicity (>M2.5) within the swarms to a small volume necessitates a different model than has been proposed to explain the lineament outlined by earthquakes along the East Rift Zone.

  14. Analysis of the Variation of Energetic Electron Flux with Respect to Longitude and Distance Normal to the Magnetic Equatorial Plane for Galileo Energetic Particle Detector Data

    Science.gov (United States)

    Swimm, R.; Garrett, H. B.; Jun, I.; Evans, R. W.

    2004-12-01

    In this study we examine ten-minute omni-directional averages of energetic electron data measured by the Galileo spacecraft Energetic Particle Detector (EPD). Count rates from electron channels B1, DC2, and DC3 are evaluated using a power law model to yield estimates of the differential electron fluxes from 1 MeV to 11 MeV at distances from the planet Jupiter from 8 to 28 Jupiter radii. Whereas the orbit of the Galileo spacecraft remained close to the rotational equatorial plane of Jupiter, the approximately 11 degree tilt of the magnetic axis of Jupiter relative to its rotational axis allowed the EPD instrument to sample high energy electrons at limited distances normal to the magnetic equatorial plane. We present a Fourier analysis of the semi-diurnal variation of electron radiation with longitude. We also develop a model of the electron flux with respect to distance normal to the magnetic equatorial plane as a function of the distance from Jupiter.

  15. On the electron density localization in elemental cubic ceramic and FCC transition metals by means of a localized electrons detector.

    Science.gov (United States)

    Aray, Yosslen; Paredes, Ricardo; Álvarez, Luis Javier; Martiz, Alejandro

    2017-06-14

    The electron density localization in insulator and semiconductor elemental cubic materials with diamond structure, carbon, silicon, germanium, and tin, and good metallic conductors with face centered cubic structure such as α-Co, Ni, Cu, Rh, Pd, Ag, Ir, Pt, and Au, was studied using a localized electrons detector defined in the local moment representation. Our results clearly show an opposite pattern of the electron density localization for the cubic ceramic and transition metal materials. It was found that, for the elemental ceramic materials, the zone of low electron localization is very small and is mainly localized on the atomic basin edges. On the contrary, for the transition metals, there are low-valued localized electrons detector isocontours defining a zone of highly delocalized electrons that extends throughout the material. We have found that the best conductors are those in which the electron density at this low-value zone is the lowest.

  16. MCNP-REN a Monte Carlo tool for neutron detector design

    CERN Document Server

    Abhold, M E

    2002-01-01

    The development of neutron detectors makes extensive use of the predictions of detector response through the use of Monte Carlo techniques in conjunction with the point reactor model. Unfortunately, the point reactor model fails to accurately predict detector response in common applications. For this reason, the general Monte Carlo code developed at Los Alamos National Laboratory, Monte Carlo N-Particle (MCNP), was modified to simulate the pulse streams that would be generated by a neutron detector and normally analyzed by a shift register. This modified code, MCNP-Random Exponentially Distributed Neutron Source (MCNP-REN), along with the Time Analysis Program, predicts neutron detector response without using the point reactor model, making it unnecessary for the user to decide whether or not the assumptions of the point model are met for their application. MCNP-REN is capable of simulating standard neutron coincidence counting as well as neutron multiplicity counting. Measurements of mixed oxide fresh fuel w...

  17. Radiation detectors

    International Nuclear Information System (INIS)

    2013-01-01

    This sixth chapter presents the operational principles of the radiation detectors; detection using photographic emulsions; thermoluminescent detectors; gas detectors; scintillation detectors; liquid scintillation detectors; detectors using semiconductor materials; calibration of detectors; Bragg-Gray theory; measurement chain and uncertainties associated to measurements

  18. Dual detector neutron lifetime log: theory and practical applications

    International Nuclear Information System (INIS)

    Serpas, C.J.; Wichmann, P.A.; Fertl, W.H.; DeVries, M.R.; Rndall, R.R.

    1977-01-01

    The Neutron Lifetime Log instrumentation has continued to evolve and now is equipped with dual detectors for increased ease in gas detection and also a ratio response for a simultaneous porosity determination. A good deal of experimentation was involved to minimize both lithology and salinity effects on the porosity indication. This paper contains a discussion of the theory and concepts related to the application of the Dual Detector Neutron Lifetime Log (DNLL). It is important to note that with these advances the recording of thermal neutron capture cross section (Σ) remains consistent with the past measurements of earlier generations of instruments as the most accurate determination of this parameter. A number of field examples of the newly logged results are shown. These field cases include Dual Detector NLL's run thru the drill strings of highly deviated holes when difficulties were encountered in getting conventional open hole logs to bottom, logs thru open perforations and hot radioactive zones, comparisons of the large and small diameter instruments, logs with anomalous fluids in the annulus, logs thru multiple casing strings, and a number of other examples

  19. Preparation of High Purity CdTe for Nuclear Detector: Electrical and Nuclear Characterization

    Science.gov (United States)

    Zaiour, A.; Ayoub, M.; Hamié, A.; Fawaz, A.; Hage-ali, M.

    High purity crystal with controllable electrical properties, however, control of the electrical properties of CdTe has not yet been fully achieved. Using the refined Cd and Te as starting materials, extremely high-purity CdTe single crystals were prepared by the traditional vertical THM. The nature of the defects involved in the transitions was studied by analyzing the position of the energy levels by TSC method. The resolution of 4.2 keV (FWHM) confirms the high quality and stability of the detectors: TSC spectrum was in coherence with detectors spectrum with a horizontal plate between 0.2 and 0.6 eV. The enhancement in resolution of detectors with a full width at half- maximum (less than 0.31 meV), lead to confirm that the combination of vacuum distillation and zone refining was very effective to obtain more purified CdTe single crystals for photovoltaic or nuclear detectors with better physical properties.

  20. Assessment of MODIS RSB Detector Uniformity Using Deep Convective Clouds

    Science.gov (United States)

    Chang, Tiejun; Xiong, Xiaoxiong (Jack); Angal, Amit; Mu, Qiaozhen

    2016-01-01

    For satellite sensor, the striping observed in images is typically associated with the relative multiple detector gain difference derived from the calibration. A method using deep convective cloud (DCC) measurements to assess the difference among detectors after calibration is proposed and demonstrated for select reflective solar bands (RSBs) of the Moderate Resolution Imaging Spectroradiometer (MODIS). Each detector of MODIS RSB is calibrated independently using a solar diffuser (SD). Although the SD is expected to accurately characterize detector response, the uncertainties associated with the SD degradation and characterization result in inadequacies in the estimation of each detector's gain. This work takes advantage of the DCC technique to assess detector uniformity and scan mirror side difference for RSB. The detector differences for Terra MODIS Collection 6 are less than 1% for bands 1, 3-5, and 18 and up to 2% for bands 6, 19, and 26. The largest difference is up to 4% for band 7. Most Aqua bands have detector differences less than 0.5% except bands 19 and 26 with up to 1.5%. Normally, large differences occur for edge detectors. The long-term trending shows seasonal oscillations in detector differences for some bands, which are correlated with the instrument temperature. The detector uniformities were evaluated for both unaggregated and aggregated detectors for MODIS band 1 and bands 3-7, and their consistencies are verified. The assessment results were validated by applying a direct correction to reflectance images. These assessments can lead to improvements to the calibration algorithm and therefore a reduction in striping observed in the calibrated imagery.

  1. Raman characterization of high temperature materials using an imaging detector

    International Nuclear Information System (INIS)

    Rosenblatt, G.M.; Veirs, D.K.

    1989-03-01

    The characterization of materials by Raman spectroscopy has been advanced by recent technological developments in light detectors. Imaging photomultiplier-tube detectors are now available that impart position information in two dimensions while retaining photon-counting sensitivity, effectively greatly reducing noise. The combination of sensitivity and reduced noise allows smaller amounts of material to be analyzed. The ability to observe small amount of material when coupled with position information makes possible Raman characterization in which many spatial elements are analyzed simultaneously. Raman spectroscopy making use of these capabilities has been used, for instance, to analyze the phases present in carbon films and fibers and to map phase-transformed zones accompanying crack propagation in toughened zirconia ceramics. 16 refs., 6 figs., 2 tabs

  2. Radon exhalation rate on the Sivrice (Elazig ) fault zone

    International Nuclear Information System (INIS)

    Sahin, S.; Kuluoeztuerk, M. F.; Dogru, M.

    2009-01-01

    Four radon monitoring stations were built on the Sivrice Fault Zone which is a part of the East Anatolian Fault System that one of the very important two fault systems which tends to produce earthquake in Turkey. Radon exhalation rate were analyzed in the soil and water samples which collected around the stations. Radon exhalation rate in the soil and water samples were determined by using CR-39 that it is plastic detector.

  3. DQE of wireless digital detectors: Comparative performance with differing filtration schemes

    Energy Technology Data Exchange (ETDEWEB)

    Samei, Ehsan [Carl E. Ravin Advanced Imaging Laboratories, Departments of Radiology, Biomedical Engineering, Physics, and Electrical and Computer Engineering, Medical Physics Graduate Program, Duke University Medical Center, Durham, North Carolina 27705 (United States); Murphy, Simon; Christianson, Olav [Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 (United States)

    2013-08-15

    Purpose: Wireless flat panel detectors are gaining increased usage in portable medical imaging. Two such detectors were evaluated and compared with a conventional flat-panel detector using the formalism of the International Electrotechnical Commission (IEC 62220-1) for measuring modulation transfer function (MTF), normalized noise power spectrum (NNPS), and detective quantum efficiency (DQE) using two different filtration schemes.Methods: Raw images were acquired for three image receptors (DRX-1C and DRX-1, Carestream Health; Inc., Pixium 4600, Trixell) using a radiographic system with a well-characterized output (Philips Super80 CP, Philips Healthcare). Free in-air exposures were measured using a calibrated radiation meter (Unfors Mult-O-Meter Type 407, Unfors Instruments AB). Additional aluminum filtration and a new alternative combined copper-aluminum filtration were used to conform the x ray output to IEC-specified beam quality definitions RQA5 and RQA9. Using the IEC 62220-1 formalism, each detector was evaluated at X{sub N}/2, X{sub N}, and 2X{sub N}, where the normal exposure level to the detector surface (X{sub N}) was set to 8.73 μGy (1.0 mR). The prescribed edge test device was used to evaluate the MTF, while the NNPS was measured using uniform images. The DQE was then calculated from the MTF and NNPS and compared across detectors, exposures, and filtration schemes.Results: The three DR systems had largely comparable MTFs with DRX-1 demonstrating lower values above 1.0 cycles/mm. At each exposure, DRX-1C and Pixium detectors demonstrated better noise performance than that of DRX-1. Zero-frequency DQEs for DRX-1C, Pixium, and DRX-1 detectors were approximately 74%, 63%, and 38% for RQA5 and 50%, 42%, and 28% for RQA9, respectively.Conclusions: DRX-1C detector exhibited superior DQE performance compared to Pixium and DRX-1. In terms of filtration, the alternative filtration was found to provide comparable performance in terms of rank ordering of different

  4. Technical characterization of five x-ray detectors for paediatric radiography applications

    Science.gov (United States)

    Marshall, N. W.; Smet, M.; Hofmans, M.; Pauwels, H.; De Clercq, T.; Bosmans, H.

    2017-12-01

    Physical image quality of five x-ray detectors used in the paediatric imaging department is characterized with the aim of establishing the range/scope of imaging performance provided by these detectors for neonatal imaging. Two computed radiography (CR) detectors (MD4.0 powder imaging plate (PIP) and HD5.0 needle imaging plate (NIP), Agfa HealthCare NV, B-2640 Mortsel, Belgium) and three flat panel detectors (FPD) (the Agfa DX-D35C and DX-D45C and the DRX-2530C (Carestream Health Inc., Rochester, NY 14608, USA)) were assessed. Physical image quality was characterized using the detector metrics given by the International Electrotechnical Commission (IEC 62220-1) to measure modulation transfer function (MTF), the noise power spectrum (NPS) and the detective quantum efficiency (DQE) using the IEC-specified beam qualities of RQA3 and RQA5. The DQE was evaluated at the normal operating detector air kerma (DAK) level, defined at 2.5 µGy for all detectors, and at factors of 1/3.2 and 3.2 times the normal level. MTF curves for the different detectors were similar at both RQA3 and RQA5 energies; the average spatial frequency for the 50% point (MTF0.5) at RQA3 was 1.26 mm-1, with a range from 1.20 mm-1 to 1.37 mm-1. The DQE of the NIP CR compared to the PIP CR was notably greater and similar to that for the FPD devices. At RQA3, average DQE for the FPD and NIP (at 0.5 mm-1 2.5 µGy) was 0.57 compared to 0.26 for the PIP CR. At the RQA5 energy, the DRX-2530C and the DX-D45C had the highest DQE (~0.6 at 0.5 mm-1 2.5 µGy). Noise separation analysis using the polynomial model showed higher electronic noise for the DX-D35C and DRX-2530C detectors; this explains the reduced DQE seen at 0.7 µGy/image. The NIP CR detector offers notably improved DQE performance compared to the PIP CR system and a value similar to the DQE for FPD devices at the RQA3 energy.

  5. Predicting DNAPL Source Zone and Plume Response Using Site-Measured Characteristics

    Science.gov (United States)

    2017-05-19

    Losses must be considered such as complete degradation, changes in hydro -stratigraphy, and remediation. c. Use of Extraction Wells Changes in...coal tar is polyparameter linear free energy relationships which uses a mechanistic description of the intermolecular interactions. Final Report ER...used to identify zones of contamination. There were three electric conductivity logging tools tested: the flame ionization detector (FID), the

  6. Ionization detector

    International Nuclear Information System (INIS)

    Steele, D.S.

    1987-01-01

    An ionization detector having an array of detectors has, for example, grounding pads positioned in the spaces between some detectors (data detectors) and other detectors (reference detectors). The grounding pads are kept at zero electric potential, i.e. grounded. The grounding serves to drain away electrons and thereby prevent an unwanted accumulation of charge in the spaces, and cause the electric field lines to be more perpendicular to the detectors in regions near the grounding pads. Alternatively, no empty space is provided there being additional, grounded, detectors provided between the data and reference detectors. (author)

  7. Distribution and migration of aftershocks of the 2010 Mw 7.4 Ogasawara Islands intraplate normal-faulting earthquake related to a fracture zone in the Pacific plate

    Science.gov (United States)

    Obana, Koichiro; Takahashi, Tsutomu; No, Tetsuo; Kaiho, Yuka; Kodaira, Shuichi; Yamashita, Mikiya; Sato, Takeshi; Nakamura, Takeshi

    2014-04-01

    describe the aftershocks of a Mw 7.4 intraplate normal-faulting earthquake that occurred 150 km east Ogasawara (Bonin) Islands, Japan, on 21 December 2010. It occurred beneath the outer trench slope of the Izu-Ogasawara trench, where the Pacific plate subducts beneath the Philippine Sea plate. Aftershock observations using ocean bottom seismographs (OBSs) began soon after the earthquake and multichannel seismic reflection surveys were conducted across the aftershock area. Aftershocks were distributed in a NW-SE belt 140 km long, oblique to the N-S trench axis. They formed three subparallel lineations along a fracture zone in the Pacific plate. The OBS observations combined with data from stations on Chichi-jima and Haha-jima Islands revealed a migration of the aftershock activity. The first hour, which likely outlines the main shock rupture, was limited to an 80 km long area in the central part of the subsequent aftershock area. The first hour activity occurred mainly around, and appears to have been influenced by, nearby large seamounts and oceanic plateau, such as the Ogasawara Plateau and the Uyeda Ridge. Over the following days, the aftershocks expanded beyond or into these seamounts and plateau. The aftershock distribution and migration suggest that crustal heterogeneities related to a fracture zone and large seamounts and oceanic plateau in the incoming Pacific plate affected the rupture of the main shock. Such preexisting structures may influence intraplate normal-faulting earthquakes in other regions of plate flexure prior to subduction.

  8. A low-background Micromegas detector for axion searches

    CERN Document Server

    Andriamonje, Samuel A; Dafni, T; Delagnes, E; Fanourakis, G K; Ferrer-Ribas, Esther; Geralis, T; Giomataris, Ioanis; Kousouris, K; Papaevangelou, T; Zachariadou, K

    2004-01-01

    A micropattern low-background detector based on the Micromegas technology has been designed and constructed for the CERN Axion Search experiment CAST. The detector is made of low natural radioactivity materials and has a two-dimensional readout with X-Y strip structure. It is operated with an Argon/Isobutane (95%/5%) mixture and is controlled by a VME data acquisition system. The detector is sensitive to photons in the energy range of 1-10 keV, it has a linear response, excellent stability and a very good energy resolution (14% FWHM at 5.9 keV). This device has been in stable operation since October 2002, taking data during the running periods of the CAST experiment. At the end of summer 2003, the detector was upgraded with a flash ADC readout of the grid signal to further improve its background rejection capability. The currently achieved background rate under normal operation is about 2.0 multiplied by 10 **-**5 events/keV/cm**2/s with better than 85% software efficiency.

  9. Sandstone-filled normal faults: A case study from central California

    Science.gov (United States)

    Palladino, Giuseppe; Alsop, G. Ian; Grippa, Antonio; Zvirtes, Gustavo; Phillip, Ruy Paulo; Hurst, Andrew

    2018-05-01

    Despite the potential of sandstone-filled normal faults to significantly influence fluid transmissivity within reservoirs and the shallow crust, they have to date been largely overlooked. Fluidized sand, forcefully intruded along normal fault zones, markedly enhances the transmissivity of faults and, in general, the connectivity between otherwise unconnected reservoirs. Here, we provide a detailed outcrop description and interpretation of sandstone-filled normal faults from different stratigraphic units in central California. Such faults commonly show limited fault throw, cm to dm wide apertures, poorly-developed fault zones and full or partial sand infill. Based on these features and inferences regarding their origin, we propose a general classification that defines two main types of sandstone-filled normal faults. Type 1 form as a consequence of the hydraulic failure of the host strata above a poorly-consolidated sandstone following a significant, rapid increase of pore fluid over-pressure. Type 2 sandstone-filled normal faults form as a result of regional tectonic deformation. These structures may play a significant role in the connectivity of siliciclastic reservoirs, and may therefore be crucial not just for investigation of basin evolution but also in hydrocarbon exploration.

  10. En-face imaging of the ellipsoid zone in the retina from optical coherence tomography B-scans

    Science.gov (United States)

    Holmes, T.; Larkin, S.; Downing, M.; Csaky, K.

    2015-03-01

    It is generally believed that photoreceptor integrity is related to the ellipsoid zone appearance in optical coherence tomography (OCT) B-scans. Algorithms and software were developed for viewing and analyzing the ellipsoid zone. The software performs the following: (a), automated ellipsoid zone isolation in the B-scans, (b), en-face view of the ellipsoid-zone reflectance, (c), alignment and overlay of (b) onto reflectance images of the retina, and (d), alignment and overlay of (c) with microperimetry sensitivity points. Dataset groups were compared from normal and dry age related macular degeneration (DAMD) subjects. Scalar measurements for correlation against condition included the mean and standard deviation of the ellipsoid zone's reflectance. The imageprocessing techniques for automatically finding the ellipsoid zone are based upon a calculation of optical flow which tracks the edges of laminated structures across an image. Statistical significance was shown in T-tests of these measurements with the population pools separated as normal and DAMD subjects. A display of en-face ellipsoid-zone reflectance shows a clear and recognizable difference between any of the normal and DAMD subjects in that they show generally uniform and nonuniform reflectance, respectively, over the region near the macula. Regions surrounding points of low microperimetry (μP) sensitivity have nonregular and lower levels of ellipsoid-zone reflectance nearby. These findings support the idea that the photoreceptor integrity could be affecting both the ellipsoid-zone reflectance and the sensitivity measurements.

  11. Comparative study between c-Si and CZT semiconducting detectors using the mathematical simulation of the radiation transport through matter

    International Nuclear Information System (INIS)

    Dona, O.; Leyva, A.; Pinera, I.; Abreu, Y.; Cruz, C.

    2007-01-01

    Using the code system MCNP-X, based on the Monte Carlo statistical method, a comparative study of some properties of the crystalline silicon and CZT semiconducting detectors was carried out. This program, conceived to simulate the transport of several types of particles through matter, allowed the study of spatial distribution of the radiation energy deposition in detectors and evaluate the devices quantum efficiency. A quantitative estimation of the number of charge carriers generated in active zone of the detector was also presented. The results of the displacement cross sections calculation and the devices resistance to the radiacional damage are discussed. (Author)

  12. Detectors for proton counting. Si-APD and scintillation detectors

    International Nuclear Information System (INIS)

    Kishimoto, Shunji

    2008-01-01

    Increased intensity of synchrotron radiation requests users to prepare photon pulse detectors having higher counting rates. As detectors for photon counting, silicon-avalanche photodiode (Si-APD) and scintillation detectors were chosen for the fifth series of detectors. Principle of photon detection by pulse and need of amplification function of the detector were described. Structure and working principle, high counting rate measurement system, bunch of electrons vs. counting rate, application example of NMR time spectroscopy measurement and comments for users were described for the Si-APD detector. Structure of scintillator and photomultiplier tube, characteristics of scintillator and performance of detector were shown for the NaI detector. Future development of photon pulse detectors was discussed. (T. Tanaka)

  13. Normalized noise power spectrum of full field digital mammography detector system

    International Nuclear Information System (INIS)

    Norriza Mohd Isa; Wan Muhamad Saridan Wan Hassan

    2009-01-01

    Full text: A method to measure noise power spectrum of a full field digital mammography system is presented. The effect of X-ray radiation dose, size and configuration of region of interest on normalized noise power spectrum (NNPS) was investigated. Flat field images were acquired using RQA-M2 beam quality technique (Mo/Mo anode-filter, 28 kV, 2 mm Al) with different clinical radiation doses. The images were cropped at about 4 cm from the edge of the breast wall and then divided into different size of non-overlapping or overlapping segments. NNPS was determined through de trending, 2-D fast Fourier transformation and normalization. Our measurement shows that high radiation dose gave lower NNPS at a specific beam quality. (author)

  14. Architecture of buried reverse fault zone in the sedimentary basin: A case study from the Hong-Che Fault Zone of the Junggar Basin

    Science.gov (United States)

    Liu, Yin; Wu, Kongyou; Wang, Xi; Liu, Bo; Guo, Jianxun; Du, Yannan

    2017-12-01

    It is widely accepted that the faults can act as the conduits or the barrier for oil and gas migration. Years of studies suggested that the internal architecture of a fault zone is complicated and composed of distinct components with different physical features, which can highly influence the migration of oil and gas along the fault. The field observation is the most useful methods of observing the fault zone architecture, however, in the petroleum exploration, what should be concerned is the buried faults in the sedimentary basin. Meanwhile, most of the studies put more attention on the strike-slip or normal faults, but the architecture of the reverse faults attracts less attention. In order to solve these questions, the Hong-Che Fault Zone in the northwest margin of the Junggar Basin, Xinjiang Province, is chosen for an example. Combining with the seismic data, well logs and drill core data, we put forward a comprehensive method to recognize the internal architectures of buried faults. High-precision seismic data reflect that the fault zone shows up as a disturbed seismic reflection belt. Four types of well logs, which are sensitive to the fractures, and a comprehensive discriminated parameter, named fault zone index are used in identifying the fault zone architecture. Drill core provides a direct way to identify different components of the fault zone, the fault core is composed of breccia, gouge, and serpentinized or foliated fault rocks and the damage zone develops multiphase of fractures, which are usually cemented. Based on the recognition results, we found that there is an obvious positive relationship between the width of the fault zone and the displacement, and the power-law relationship also exists between the width of the fault core and damage zone. The width of the damage zone in the hanging wall is not apparently larger than that in the footwall in the reverse fault, showing different characteristics with the normal fault. This study provides a

  15. A New Virtual Point Detector Concept for a HPGe detector

    International Nuclear Information System (INIS)

    Byun, Jong In; Yun, Ju Yong

    2009-01-01

    For last several decades, the radiation measurement and radioactivity analysis techniques using gamma detectors have been well established. Especially , the study about the detection efficiency has been done as an important part of gamma spectrometry. The detection efficiency depends strongly on source-to-detector distance. The detection efficiency with source-to-detector distance can be expressed by a complex function of geometry and physical characteristics of gamma detectors. In order to simplify the relation, a virtual point detector concept was introduced by Notea. Recently, further studies concerning the virtual point detector have been performed. In previous other works the virtual point detector has been considered as a fictitious point existing behind the detector end cap. However the virtual point detector position for the front and side of voluminous detectors might be different due to different effective central axis of them. In order to more accurately define the relation, therefore, we should consider the virtual point detector for the front as well as side and off-center of the detector. The aim of this study is to accurately define the relation between the detection efficiency and source-to-detector distance with the virtual point detector. This paper demonstrates the method to situate the virtual point detectors for a HPGe detector. The new virtual point detector concept was introduced for three area of the detector and its characteristics also were demonstrated by using Monte Carlo Simulation method. We found that the detector has three virtual point detectors except for its rear area. This shows that we should consider the virtual point detectors for each area when applying the concept to radiation measurement. This concept can be applied to the accurate geometric simplification for the detector and radioactive sources.

  16. Transmutation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Viererbl, L., E-mail: vie@ujv.c [Research Centre Rez Ltd. (Czech Republic); Nuclear Research Institute Rez plc (Czech Republic); Lahodova, Z. [Research Centre Rez Ltd. (Czech Republic); Nuclear Research Institute Rez plc (Czech Republic); Klupak, V. [Nuclear Research Institute Rez plc (Czech Republic); Sus, F. [Research Centre Rez Ltd. (Czech Republic); Nuclear Research Institute Rez plc (Czech Republic); Kucera, J. [Research Centre Rez Ltd. (Czech Republic); Nuclear Physics Institute, Academy of Sciences of the Czech Republic (Czech Republic); Kus, P.; Marek, M. [Research Centre Rez Ltd. (Czech Republic); Nuclear Research Institute Rez plc (Czech Republic)

    2011-03-11

    We have designed a new type of detectors, called transmutation detectors, which can be used primarily for neutron fluence measurement. The transmutation detector method differs from the commonly used activation detector method in evaluation of detector response after irradiation. Instead of radionuclide activity measurement using radiometric methods, the concentration of stable non-gaseous nuclides generated by transmutation in the detector is measured using analytical methods like mass spectrometry. Prospective elements and nuclear reactions for transmutation detectors are listed and initial experimental results are given. The transmutation detector method could be used primarily for long-term measurement of neutron fluence in fission nuclear reactors, but in principle it could be used for any type of radiation that can cause transmutation of nuclides in detectors. This method could also be used for measurement in accelerators or fusion reactors.

  17. Transmutation detectors

    International Nuclear Information System (INIS)

    Viererbl, L.; Lahodova, Z.; Klupak, V.; Sus, F.; Kucera, J.; Kus, P.; Marek, M.

    2011-01-01

    We have designed a new type of detectors, called transmutation detectors, which can be used primarily for neutron fluence measurement. The transmutation detector method differs from the commonly used activation detector method in evaluation of detector response after irradiation. Instead of radionuclide activity measurement using radiometric methods, the concentration of stable non-gaseous nuclides generated by transmutation in the detector is measured using analytical methods like mass spectrometry. Prospective elements and nuclear reactions for transmutation detectors are listed and initial experimental results are given. The transmutation detector method could be used primarily for long-term measurement of neutron fluence in fission nuclear reactors, but in principle it could be used for any type of radiation that can cause transmutation of nuclides in detectors. This method could also be used for measurement in accelerators or fusion reactors.

  18. Cryogenic phonon-mediated particle detectors for dark matter searches and neutrino physics

    International Nuclear Information System (INIS)

    Lee, A.T.J.

    1993-01-01

    This work describes the development of cryogenic phonon-mediated particle detectors for dark matter searches and neutrino detection. The detectors described in this work employ transition-edge sensors, which consist of a meander pattern of thin-film superconductor on a silicon substrate. When phonons from a particle interaction in the crystal impinge on the sensor in sufficient density, sections of the line are driven normal and provide a measurable resistance. A large fraction of the thesis describes work to fully characterize the phonon flux from particle interactions. In one set of experiments, ∼25% of the phonon energy from 59.54 keV gamma-ray events was found to propagate open-quotes ballisticallyclose quotes (i.e., with little or no scattering) across a 300 μm thick crystal of silicon. Gamma-rays produce electron recoils in silicon whereas with dark matter and neutrino experiments nuclear recoils are also of interest. Two experiments were done to measure the ballistic component that arises from neutron events, which interact via nuclear recoil. Measurements indicate that the fraction of energy that is ballistic is ∼50% greater for nuclear recoils than for electron recoils. Two novel detectors were fabricated and tested in an attempt to improve the sensitivity of the detectors. In the first detector, relatively large Al pads were linked by 2 μm wide Ti lines in a meander pattern. Phonons impinging on the Al pads create quasiparticles which diffuse in the Al pad until they are trapped in the lower gap Tl links. The sensitivity of the detector was found to be increased by this open-quotes funnelingclose quotes action. A second detector was built that incorporates 0.25 μm wide lines defined by direct electron-beam exposure of the photoresist. If the superconducting line is sufficiently narrow, single phonons are capable of driving sections normal which should improve the sensitivity and linearity of the detector

  19. Performance of the INTPIX6 SOI pixel detector

    International Nuclear Information System (INIS)

    Arai, Y.; Miyoshi, T.; Bugiel, Sz.; Dasgupta, R.; Idzik, M.; Kapusta, P.; Turala, M.; Kucewicz, W.

    2017-01-01

    Characterization of the monolithic pixel detector INPTIX6, designed at KEK and fabricated in Lapis 0.2 μ  m Fully-Depleted, Low-Leakage Silicon-On-Insulator (SOI) CMOS technology, was performed. The INTPIX6 comprises a large area of 1408 × 896 integrating type squared pixels of 12 micron pitch. In this work the performance and measurement results of the prototypes produced on lower resistivity Czochralski type (CZ-n) and high resistivity floating zone (FZ-n) sensor wafers are presented. Using 241 Am radioactive source the noise of INTPIX6 was measured, showing the ENC (Equivalent Noise Charge) of about 70 e − . The resolution calculated from the FWHM of the Iron-55 X-ray peak was about 100 e − . The radiation hardness of the SOI pixel detector was also investigated. The CZ-n type INTPIX6 received a dose of 60 krad and its performance has been continuously monitored during the irradiation.

  20. Performance of the INTPIX6 SOI pixel detector

    Science.gov (United States)

    Arai, Y.; Bugiel, Sz.; Dasgupta, R.; Idzik, M.; Kapusta, P.; Kucewicz, W.; Miyoshi, T.; Turala, M.

    2017-01-01

    Characterization of the monolithic pixel detector INPTIX6, designed at KEK and fabricated in Lapis 0.2 μ m Fully-Depleted, Low-Leakage Silicon-On-Insulator (SOI) CMOS technology, was performed. The INTPIX6 comprises a large area of 1408 × 896 integrating type squared pixels of 12 micron pitch. In this work the performance and measurement results of the prototypes produced on lower resistivity Czochralski type (CZ-n) and high resistivity floating zone (FZ-n) sensor wafers are presented. Using 241Am radioactive source the noise of INTPIX6 was measured, showing the ENC (Equivalent Noise Charge) of about 70 e-. The resolution calculated from the FWHM of the Iron-55 X-ray peak was about 100 e-. The radiation hardness of the SOI pixel detector was also investigated. The CZ-n type INTPIX6 received a dose of 60 krad and its performance has been continuously monitored during the irradiation.

  1. Structural geology of the French Peak accommodation zone, Nevada Test Site, southwestern Nevada

    International Nuclear Information System (INIS)

    Hudson, M.R.

    1997-01-01

    The French Peak accommodation zone (FPAZ) forms an east-trending bedrock structural high in the Nevada Test Site region of southwestern Nevada that formed during Cenozoic Basin and Range extension. The zone separates areas of opposing directions of tilt and downthrow on faults in the Yucca Flat and Frenchman Flat areas. Paleomagnetic data show that rocks within the accommodation zone adjacent to Yucca Flat were not strongly affected by vertical-axis rotation and thus that the transverse strikes of fault and strata formed near their present orientation. Both normal- and oblique strike-slip faulting in the FPAZ largely occurred under a normal-fault stress regime, with least principal stress oriented west-northwest. The normal and sinistral faults in the Puddle Peka segment transfers extension between the Plutonium Valley normal fault zone and the Cane Spring sinistral fault. Recognition of sinistral shear across the Puddle Peak segment allows the Frenchman Flat basin to be interpreted as an asymmetric pull-apart basin developed between the FPAZ and a zone of east-northeast-striking faults to the south that include the Rock Valley fault. The FPAZ has the potential to influence ground-water flow in the region in several ways. Fracture density and thus probably fracture conductivity is high within the FPAZ due to the abundant fault splays present. Moreover,, fractures oriented transversely to the general southward flow of ground water through Yucca Flat area are significant and have potential to laterally divert ground water. Finally, the FPAZ forms a faulted structural high whose northern and southern flanks may permit intermixing of ground waters from different aquifer levels, namely the lower carbonate, welded tuff, and alluvial aquifers. 42 refs

  2. Detector Control System for the ATLAS Forward Proton detector

    CERN Document Server

    Czekierda, Sabina; The ATLAS collaboration

    2017-01-01

    The ATLAS Forward Proton (AFP) is a forward detector using a Roman Pot technique, recently installed in the LHC tunnel. It is aiming at registering protons that were diffractively or electromagnetically scattered in soft and hard processes. Infrastructure of the detector consists of hardware placed both in the tunnel and in the control room USA15 (about 330 meters from the Roman Pots). AFP detector, like the other detectors of the ATLAS experiment, uses the Detector Control System (DCS) to supervise the detector and to ensure its safe and coherent operation, since the incorrect detector performance may influence the physics results. The DCS continuously monitors the detector parameters, subset of which is stored in data bases. Crucial parameters are guarded by alarm system. A detector representation as a hierarchical tree-like structure of well-defined subsystems built with the use of the Finite State Machine (FSM) toolkit allows for overall detector operation and visualization. Every node in the hierarchy is...

  3. Normalization of water flow rate for external fire fighting of the buildings in settlements with zone water supply

    Directory of Open Access Journals (Sweden)

    Deryushev Leonid Georgievich

    2014-12-01

    Full Text Available In the article the requirements for fire safety assurance are justified for the objects, in which water is supplied with account for serial and parallel area zoning. In the process of zoning the district is segregated into such parts, for which head rate in any point of selection of water from network will not exceed 6 bar. In the current regulatory rules the requirements for the calculation of the costs of water points are stated, as well as in case of extinguishing fires at the sites with water-supply systems zones. It is recommended to analyze each zone of the system of water-supply separately, without interrelation with the common water feeders, water consumers and services of fire extinguishing. Such an approach to assign water discharge for fire extinguishing results in the decrease of fire safety of an object, deforms calculation technique of outside systems of water-supply of the similar-type objects located in different parts of the terrain. Taking the number of fires and water consumption for fire suppression by the number of residents in each zone, we thus underestimate the capacity of the pipeline system. It is offered to make changes in Norms and Standards in force on fire safety of settlements. The recommendations on regulation of the number of fires and water flow for fire fighting in residential objects with zoned systems of water-supply are formulated.

  4. Registration of alpha particles in Makrofol-E nuclear track detectors

    Energy Technology Data Exchange (ETDEWEB)

    Rammah, Y.S. [Physics Department, Faculty of Science, Menoufia University, Shebin El-Koom (Egypt); Abdalla, Ayman M., E-mail: aymanabdalla62@hotmail.com [Physics Department, Faculty of Sciences and Arts, Najran University, P. O. Box. 11001, Najran (Saudi Arabia); Promising Centre for Sensors and Electronic Devices, Faculty of Arts and Sciences, Najran University (Saudi Arabia); Ashraf, O., E-mail: osama.ashraf@edu.asu.edu.eg [Physics Department, Faculty of Education, Ain Shams University, Cairo 11575 (Egypt); Ashry, A.H. [Physics Department, Faculty of Education, Ain Shams University, Cairo 11575 (Egypt)

    2016-06-15

    Highlights: • Makrofol-E detectors have been irradiated with alpha particles and fission fragments. • Fast detection of alpha particles in Makrofol-E detectors. • Bulk etching rate was calculated from fission track diameters. - Abstract: Fast detection of alpha particles in the range from 1 to 5 MeV in Makrofol-E polycarbonate nuclear track detectors (PCTDs) using a new chemical etchant was investigated. {sup 252}Cf and {sup 241}Am-thin open sources were used for irradiating Makrofol-E detectors with fission fragments and alpha particles in air at normal pressure and temperature (NPT). A chain of experimental work has been carried out using new etchants to register alpha particle in short time in Makrofol-E polycarbonate detectors. The etching efficiency were exhibited a clear dependence on the amount of methanol in the etching solution and etching time. The optimized chemical condition obtained at this stage of development for 200 μm Makrofol-E detectors are (8 ml of 10 N NaOH + 2 ml CH{sub 3}OH) etching solutions at 60 °C for 3 h. In this study; it is possible to observe energy detection windows for Makrofol-E detectors according to applied etching duration. Makrofol-E introduced the characteristic Bragg peak, which indicates the advantages of this detector as alpha spectrometer. Consequently, the suggested new etchant can be developed for heavy ions detection and monitoring radon levels and its daughters.

  5. Innovative mid-infrared detector concepts

    Science.gov (United States)

    Höfling, Sven; Pfenning, Andreas; Weih, Robert; Ratajczak, Albert; Hartmann, Fabian; Knebl, Georg; Kamp, Martin; Worschech, Lukas

    2016-09-01

    Gas sensing is a key technology with applications in various industrial, medical and environmental areas. Optical detection mechanisms allow for a highly selective, contactless and fast detection. For this purpose, rotational-vibrational absorption bands within the mid infrared (MIR) spectral region are exploited and probed with appropriate light sources. During the past years, the development of novel laser concepts such as interband cascade lasers (ICLs) and quantum cascade lasers (QCLs) has driven a continuous optimization of MIR laser sources. On the other hand side, there has been relatively little progress on detectors in this wavelength range. Here, we study two novel and promising GaSb-based detector concepts: Interband cascade detectors (ICD) and resonant tunneling diode (RTD) photodetectors. ICDs are a promising approach towards highly sensitive room temperature detection of MIR radiation. They make use of the cascading scheme that is enabled by the broken gap alignment of the two binaries GaSb and InAs. The interband transition in GaSb/InAs-superlattices (SL) allows for normal incidence detection. The cut-off wavelength, which determines the low energy detection limit, can be engineered via the SL period. RTD photodetectors act as low noise and high speed amplifiers of small optically generated electrical signals. In contrast to avalanche photodiodes, where the gain originates from multiplication due to impact ionization, in RTD photodetectors a large tunneling current is modulated via Coulomb interaction by the presence of photogenerated minority charge carriers. For both detector concepts, first devices operational at room temperature have been realized.

  6. MCNP-REN: a Monte Carlo tool for neutron detector design

    International Nuclear Information System (INIS)

    Abhold, M.E.; Baker, M.C.

    2002-01-01

    The development of neutron detectors makes extensive use of the predictions of detector response through the use of Monte Carlo techniques in conjunction with the point reactor model. Unfortunately, the point reactor model fails to accurately predict detector response in common applications. For this reason, the general Monte Carlo code developed at Los Alamos National Laboratory, Monte Carlo N-Particle (MCNP), was modified to simulate the pulse streams that would be generated by a neutron detector and normally analyzed by a shift register. This modified code, MCNP-Random Exponentially Distributed Neutron Source (MCNP-REN), along with the Time Analysis Program, predicts neutron detector response without using the point reactor model, making it unnecessary for the user to decide whether or not the assumptions of the point model are met for their application. MCNP-REN is capable of simulating standard neutron coincidence counting as well as neutron multiplicity counting. Measurements of mixed oxide fresh fuel were taken with the Underwater Coincidence Counter, and measurements of highly enriched uranium reactor fuel were taken with the active neutron interrogation Research Reactor Fuel Counter and compared to calculation. Simulations completed for other detector design applications are described. The method used in MCNP-REN is demonstrated to be fundamentally sound and shown to eliminate the need to use the point model for detector performance predictions

  7. Sensor development for the CMS pixel detector

    CERN Document Server

    Bölla, G; Horisberger, R P; Kaufmann, R; Rohe, T; Roy, A

    2002-01-01

    The CMS experiment which is currently under construction at the Large Hadron Collider (LHC) at CERN (Geneva, Switzerland) will contain a pixel detector which provides in its final configuration three space points per track close to the interaction point of the colliding beams. Because of the harsh radiation environment of the LHC, the technical realization of the pixel detector is extremely challenging. The readout chip as the most damageable part of the system is believed to survive a particle fluence of 6x10 sup 1 sup 4 n sub e sub q /cm sup 2 (All fluences are normalized to 1 MeV neutrons and therefore all components of the hybrid pixel detector have to perform well up to at least this fluence. As this requires a partially depleted operation of the silicon sensors after irradiation-induced type inversion of the substrate, an ''n in n'' concept has been chosen. In order to perform IV-tests on wafer level and to hold accidentally unconnected pixels close to ground potential, a resistive path between the pixe...

  8. Three Types of Flower Structures in a Divergent-Wrench Fault Zone

    Science.gov (United States)

    Huang, Lei; Liu, Chi-yang

    2017-12-01

    Flower structures are typical features of wrench fault zones. In conventional studies, two distinct kinds of flower structures have been identified based on differences in their internal structural architecture: (1) negative flower structures characterized by synforms and normal separations and (2) positive flower structures characterized by antiforms and reverse separations. In addition to negative and positive flower structures, in this study, a third kind of flower structure was identified in a divergent-wrench fault zone, a hybrid characterized by both antiforms and normal separations. Negative flower structures widely occur in divergent-wrench fault zones, and their presence indicates the combined effects of extensional and strike-slip motion. In contrast, positive and hybrid flower structures occur only in fault restraining bends and step overs. A hybrid flower structure can be considered as product of a kind of structural deformation typical of divergent-wrench zones; it is the result of the combined effects of extensional, compressional, and strike-slip strains under a locally appropriate compressional environment. The strain situation in it represents the transition stage that in between positive and negative flower structures. Kinematic and dynamic characteristics of the hybrid flower structures indicate the salient features of structural deformation in restraining bends and step overs along divergent-wrench faults, including the coexistence of three kinds of strains (i.e., compression, extension, and strike-slip) and synchronous presence of compressional (i.e., typical fault-bend fold) and extensional (normal faults) deformation in the same place. Hybrid flower structures are also favorable for the accumulation of hydrocarbons because of their special structural configuration in divergent-wrench fault zones.

  9. Technology developments and first measurements of Low Gain Avalanche Detectors (LGAD) for high energy physics applications

    International Nuclear Information System (INIS)

    Pellegrini, G.; Fernández-Martínez, P.; Baselga, M.; Fleta, C.; Flores, D.; Greco, V; Hidalgo, S.; Mandić, I.; Kramberger, G.; Quirion, D.; Ullan, M.

    2014-01-01

    This paper introduces a new concept of silicon radiation detector with intrinsic multiplication of the charge, called Low Gain Avalanche Detector (LGAD). These new devices are based on the standard Avalanche Photo Diodes (APD) normally used for optical and X-ray detection applications. The main differences to standard APD detectors are the low gain requested to detect high energy charged particles, and the possibility to have fine segmentation pitches: this allows fabrication of microstrip or pixel devices which do not suffer from the limitations normally found [1] in avalanche detectors. In addition, a moderate multiplication value will allow the fabrication of thinner devices with the same output signal of standard thick substrates. The investigation of these detectors provides important indications on the ability of such modified electrode geometry to control and optimize the charge multiplication effect, in order to fully recover the collection efficiency of heavily irradiated silicon detectors, at reasonable bias voltage, compatible with the voltage feed limitation of the CERN High Luminosity Large Hadron Collider (HL-LHC) experiments [2]. For instance, the inner most pixel detector layers of the ATLAS tracker will be exposed to fluences up to 2×10 16 1 MeV n eq /cm 2 , while for the inner strip detector region fluences of 1×10 15 n eq /cm 2 are expected. The gain implemented in the non-irradiated devices must retain some effect also after irradiation, with a higher multiplication factor with respect to standard structures, in order to be used in harsh environments such those expected at collider experiments

  10. Heat transport and electron cooling in ballistic normal-metal/spin-filter/superconductor junctions

    International Nuclear Information System (INIS)

    Kawabata, Shiro; Vasenko, Andrey S.; Ozaeta, Asier; Bergeret, Sebastian F.; Hekking, Frank W.J.

    2015-01-01

    We investigate electron cooling based on a clean normal-metal/spin-filter/superconductor junction. Due to the suppression of the Andreev reflection by the spin-filter effect, the cooling power of the system is found to be extremely higher than that for conventional normal-metal/nonmagnetic-insulator/superconductor coolers. Therefore we can extract large amount of heat from normal metals. Our results strongly indicate the practical usefulness of the spin-filter effect for cooling detectors, sensors, and quantum bits

  11. Heat transport and electron cooling in ballistic normal-metal/spin-filter/superconductor junctions

    Energy Technology Data Exchange (ETDEWEB)

    Kawabata, Shiro, E-mail: s-kawabata@aist.go.jp [Electronics and Photonics Research Institute (ESPRIT), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Vasenko, Andrey S. [LPMMC, Université Joseph Fourier and CNRS, 25 Avenue des Martyrs, BP 166, 38042 Grenoble (France); Ozaeta, Asier [Centro de Física de Materiales (CFM-MPC), Centro Mixto CSIC-UPV/EHU, Manuel de Lardizabal 5, E-20018 San Sebastián (Spain); Bergeret, Sebastian F. [Centro de Física de Materiales (CFM-MPC), Centro Mixto CSIC-UPV/EHU, Manuel de Lardizabal 5, E-20018 San Sebastián (Spain); Donostia International Physics Center (DIPC), Manuel de Lardizabal 5, E-20018 San Sebastián (Spain); Hekking, Frank W.J. [LPMMC, Université Joseph Fourier and CNRS, 25 Avenue des Martyrs, BP 166, 38042 Grenoble (France)

    2015-06-01

    We investigate electron cooling based on a clean normal-metal/spin-filter/superconductor junction. Due to the suppression of the Andreev reflection by the spin-filter effect, the cooling power of the system is found to be extremely higher than that for conventional normal-metal/nonmagnetic-insulator/superconductor coolers. Therefore we can extract large amount of heat from normal metals. Our results strongly indicate the practical usefulness of the spin-filter effect for cooling detectors, sensors, and quantum bits.

  12. Optimal Design of Large Dimensional Adaptive Subspace Detectors

    KAUST Repository

    Ben Atitallah, Ismail; Kammoun, Abla; Alouini, Mohamed-Slim; Alnaffouri, Tareq Y.

    2016-01-01

    This paper addresses the design of Adaptive Subspace Matched Filter (ASMF) detectors in the presence of a mismatch in the steering vector. These detectors are coined as adaptive in reference to the step of utilizing an estimate of the clutter covariance matrix using training data of signalfree observations. To estimate the clutter covariance matrix, we employ regularized covariance estimators that, by construction, force the eigenvalues of the covariance estimates to be greater than a positive scalar . While this feature is likely to increase the bias of the covariance estimate, it presents the advantage of improving its conditioning, thus making the regularization suitable for handling high dimensional regimes. In this paper, we consider the setting of the regularization parameter and the threshold for ASMF detectors in both Gaussian and Compound Gaussian clutters. In order to allow for a proper selection of these parameters, it is essential to analyze the false alarm and detection probabilities. For tractability, such a task is carried out under the asymptotic regime in which the number of observations and their dimensions grow simultaneously large, thereby allowing us to leverage existing results from random matrix theory. Simulation results are provided in order to illustrate the relevance of the proposed design strategy and to compare the performances of the proposed ASMF detectors versus Adaptive normalized Matched Filter (ANMF) detectors under mismatch scenarios.

  13. Optimal Design of Large Dimensional Adaptive Subspace Detectors

    KAUST Repository

    Ben Atitallah, Ismail

    2016-05-27

    This paper addresses the design of Adaptive Subspace Matched Filter (ASMF) detectors in the presence of a mismatch in the steering vector. These detectors are coined as adaptive in reference to the step of utilizing an estimate of the clutter covariance matrix using training data of signalfree observations. To estimate the clutter covariance matrix, we employ regularized covariance estimators that, by construction, force the eigenvalues of the covariance estimates to be greater than a positive scalar . While this feature is likely to increase the bias of the covariance estimate, it presents the advantage of improving its conditioning, thus making the regularization suitable for handling high dimensional regimes. In this paper, we consider the setting of the regularization parameter and the threshold for ASMF detectors in both Gaussian and Compound Gaussian clutters. In order to allow for a proper selection of these parameters, it is essential to analyze the false alarm and detection probabilities. For tractability, such a task is carried out under the asymptotic regime in which the number of observations and their dimensions grow simultaneously large, thereby allowing us to leverage existing results from random matrix theory. Simulation results are provided in order to illustrate the relevance of the proposed design strategy and to compare the performances of the proposed ASMF detectors versus Adaptive normalized Matched Filter (ANMF) detectors under mismatch scenarios.

  14. Calibration of detector efficiency of neutron detector

    International Nuclear Information System (INIS)

    Guo Hongsheng; He Xijun; Xu Rongkun; Peng Taiping

    2001-01-01

    BF 3 neutron detector has been set up. Detector efficiency is calibrated by associated particle technique. It is about 3.17 x 10 -4 (1 +- 18%). Neutron yield of neutron generator per pulse (10 7 /pulse) is measured by using the detector

  15. Numerical reconstruction of Late-Cenosoic evolution of normal-fault scarps in Baikal Rift Zone

    Science.gov (United States)

    Byzov, Leonid; San'kov, Vladimir

    2014-05-01

    Numerical landscape development modeling has recently become a popular tool in geo-logic and geomorphic investigations. We employed this technique to reconstruct Late-Cenosoic evolution of Baikal Rift Zone mountains. The objects of research were Barguzin Range and Svyatoy Nos Upland. These structures are formed under conditions of crustal extension and bounded by active normal faults. In our experiments we used instruments, engineered by Greg Tucker (University of Colo-rado) - CHILD (Channel-Hillslope Integrated Landscape Development) and 'Bedrock Fault Scarp'. First program allowed constructing the complex landscape model considering tectonic uplift, fluvial and hillslope processes; second program is used for more accurate simulating of triangular facet evolution. In general, our experiments consisted in testing of tectonic parameters, and climatic char-acteristic, erosion and diffusion properties, hydraulic geometry were practically constant except for some special runs. Numerous experiments, with various scenarios of development, showed that Barguzin range and Svyatoy Nos Upland has many common features. These structures characterized by internal differentiation, which appear in height and shape of slopes. At the same time, individual segments of these objects are very similar - this conclusion refers to most developing parts, with pronounced facets and V-shaped valleys. Accordingly modelling, these landscapes are in a steady state and are undergoing a uplift with rate 0,4 mm/yr since Early Pliocene (this solution accords with AFT-dating). Lower segments of Barguzin Range and Svyatoy Nos Upland also have some general fea-tures, but the reasons of such similarity probably are different. In particular, southern segment of Svyatoy Nos Upland, which characterized by relative high slope with very weak incision, may be formed as result very rapid fault movement or catastrophic landslide. On the other hand, a lower segment of Barguzin Range (Ulun segment, for example

  16. Safe Zone Quantification of the Third Sacral Segment in Normal and Dysmorphic Sacra.

    Science.gov (United States)

    Hwang, John S; Reilly, Mark C; Shaath, Mohammad K; Changoor, Stuart; Eastman, Jonathan; Routt, Milton Lee Chip; Sirkin, Michael S; Adams, Mark R

    2018-04-01

    To quantify the osseous anatomy of the dysmorphic third sacral segment and assess its ability to accommodate internal fixation. Retrospective chart review of a trauma database. University Level 1 Trauma Center. Fifty-nine patients over the age of 18 with computed tomography scans of the pelvis separated into 2 groups: a group with normal pelvic anatomy and a group with sacral dysmorphism. The sacral osseous area was measured on computed tomography scans in the axial, coronal, and sagittal planes in normal and dysmorphic pelves. These measurements were used to determine the possibility of accommodating a transiliac transsacral screw in the third sacral segment. In the normal group, the S3 coronal transverse width averaged 7.71 mm and the S3 axial transverse width averaged 7.12 mm. The mean S3 cross-sectional area of the normal group was 55.8 mm. The dysmorphic group was found to have a mean S3 coronal transverse width of 9.49 mm, an average S3 axial transverse width of 9.14 mm, and an S3 cross-sectional area of 77.9 mm. The third sacral segment of dysmorphic sacra has a larger osseous pathway available to safely accommodate a transiliac transsacral screw when compared with normal sacra. The S3 segment of dysmorphic sacra can serve as an additional site for screw placement when treating unstable posterior pelvic ring fractures.

  17. Performance of low-cost X-ray area detectors with consumer digital cameras

    International Nuclear Information System (INIS)

    Panna, A.; Gomella, A.A.; Harmon, K.J.; Chen, P.; Miao, H.; Bennett, E.E.; Wen, H.

    2015-01-01

    We constructed X-ray detectors using consumer-grade digital cameras coupled to commercial X-ray phosphors. Several detector configurations were tested against the Varian PaxScan 3024M (Varian 3024M) digital flat panel detector. These include consumer cameras (Nikon D800, Nikon D700, and Nikon D3X) coupled to a green emission phosphor in a back-lit, normal incidence geometry, and in a front-lit, oblique incidence geometry. We used the photon transfer method to evaluate detector sensitivity and dark noise, and the edge test method to evaluate their spatial resolution. The essential specifications provided by our evaluation include discrete charge events captured per mm 2 per unit exposure surface dose, dark noise in equivalents of charge events per pixel, and spatial resolution in terms of the full width at half maximum (FWHM) of the detector's line spread function (LSF). Measurements were performed using a tungsten anode X-ray tube at 50 kVp. The results show that the home-built detectors provide better sensitivity and lower noise than the commercial flat panel detector, and some have better spatial resolution. The trade-off is substantially smaller imaging areas. Given their much lower costs, these home-built detectors are attractive options for prototype development of low-dose imaging applications

  18. Quality control measurements for digital x-ray detectors

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, N W [Department of Radiology, University Hospitals Leuven, 49 Herenstraat, 3000 Leuven (Belgium); Mackenzie, A [National Co-ordinating Centre for the Physics of Mammography, Medical Physics, Level B, St Luke' s Wing, The Royal Surrey County Hospital NHS Trust, Egerton Road, Guildford, GU2 7XX (United Kingdom); Honey, I D, E-mail: nicholas.marshall@uz.kuleuven.ac.be [Department of Medical Physics, Floor 3, Henriette Raphael House, Guy' s and St Thomas' Hospital, London, SE1 9RT (United Kingdom)

    2011-02-21

    This paper describes a digital radiography (DR) quality control protocol for DR detectors from the forthcoming report from the Institute of Physics and Engineering in Medicine (IPEM). The protocol was applied to a group of six identical caesium iodide (CsI) digital x-ray detectors to assess reproducibility of methods, while four further detectors were assessed to examine the wider applicability. Twelve images with minimal spatial frequency processing are required, from which the detector response, lag, modulation transfer function (MTF), normalized noise power spectrum (NNPS) and threshold contrast-detail (c-d) detectability are calculated. The x-ray spectrum used was 70 kV and 1 mm added copper filtration, with a target detector air kerma of 2.5 {mu}Gy for the NNPS and c-d results. In order to compare detector performance with previous imaging technology, c-d data from four screen/film systems were also acquired, at a target optical density of 1.5 and an average detector air kerma of 2.56 {mu}Gy. The DR detector images were typically acquired in 20 min, with a further 45 min required for image transfer and analysis. The average spatial frequency for the 50% point of the MTF for six identical detectors was 1.29 mm{sup -1} {+-} 0.05 (3.9% coefficient of variation (cov)). The air kerma set for the six systems was 2.57 {mu}Gy {+-} 0.13 (5.0% cov) and the NNPS at this air kerma was 1.42 x 10{sup -5} mm{sup 2} (6.5% cov). The detective quantum efficiency (DQE) measured for the six identical detectors was 0.60 at 0.5 mm{sup -1}, with a maximum cov of 10% at 2.9 mm{sup -1}, while the average DQE was 0.56 at 0.5 mm{sup -1} for three CsI detectors from three different manufacturers. Comparable c-d performance was found for these detectors (5.9% cov) with an average threshold contrast of 0.46% for 11 mm circular discs. The average threshold contrast for the S/F systems was 0.70% at 11 mm, indicating superior imaging performance for the digital systems. The protocol was found

  19. Radiation detectors laboratory; Laboratorio de detectores de radiacion

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez J, F.J. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1997-07-01

    The Radiation detectors laboratory was established with the assistance of the International Atomic Energy Agency which gave this the responsibility to provide its services at National and regional level for Latin America and it is located at the ININ. The more expensive and delicate radiation detectors are those made of semiconductor, so it has been put emphasis in the use and repairing of these detectors type. The supplied services by this laboratory are: selection consultant, detectors installation and handling and associated systems. Installation training, preventive and corrective maintenance of detectors and detection systems calibration. (Author)

  20. Characterizing X-ray detectors for prototype digital breast tomosynthesis systems

    International Nuclear Information System (INIS)

    Kim, Y.-S.; Park, H.-S.; Park, S.-J.; Choi, S.; Lee, H.; Kim, H.-J.; Lee, D.; Choi, Y.-W.

    2016-01-01

    The digital breast tomosynthesis (DBT) system is a newly developed 3-D imaging technique that overcomes the tissue superposition problems of conventional mammography. Therefore, it produces fewer false positives. In DBT system, several parameters are involved in image acquisition, including geometric components. A series of projections should be acquired at low exposure. This makes the system strongly dependent on the detector's characteristic performance. This study compares two types of x-ray detectors developed by the Korea Electrotechnology Research Institute (KERI). The first prototype DBT system has a CsI (Tl) scintillator/CMOS based flat panel digital detector (2923 MAM, Dexela Ltd.), with a pixel size of 0.0748 mm. The second uses a-Se based direct conversion full field detector (AXS 2430, analogic) with a pixel size of 0.085 mm. The geometry of both systems is same, with a focal spot 665.8 mm from the detector, and a center of rotation 33 mm above the detector surface. The systems were compared with regard to modulation transfer function (MTF), normalized noise power spectrum (NNPS), detective quantum efficiency (DQE) and a new metric, the relative object detectability (ROD). The ROD quantifies the relative performance of each detector at detecting specified objects. The system response function demonstrated excellent linearity (R 2 >0.99). The CMOS-based detector had a high sensitivity, while the Anrad detector had a large dynamic range. The higher MTF and noise power spectrum (NPS) values were measured using an Anrad detector. The maximum DQE value of the Dexela detector was higher than that of the Anrad detector with a low exposure level, considering one projection exposure for tomosynthesis. Overall, the Dexela detector performed better than did the Anrad detector with regard to the simulated Al wires, spheres, test objects of ROD with low exposure level. In this study, we compared the newly developed prototype DBT system with two different types

  1. Study of response of 3He detectors to monoenergetic neutrons

    International Nuclear Information System (INIS)

    Abanades, A.; Andriamonje, S.; Arnould, H.; Barreau, G.; Bercion, M.; Casagrande, F.; Cennini, P.; Del Moral, R.; Gonzales, E.; Lacoste, V.; Pdemay, G.; Pravikoff, M.S.

    1997-01-01

    In the search of a hybrid system (the coupling of the particle accelerator to an under-critical reactor) for radioactive waste transmutation the TARC (Transmutation by Adiabatic Resonance Crossing) program has been developed. Due to experimental limitations, the time-energy relation at higher neutron energies, particularly, around 2 MeV, which is an important domain for TARC, cannot be applied. Consequently the responses of the 3 He ionization neutron detector developed for TARC experiment have been studied using a fast monoenergetic neutron source. The neutrons were produced by the interaction of the proton delivered by Van de Graaff accelerator of CENBG. The originality of the detector consists in its structure of three series of electric conductors which are mounted around the anode: a grid ensuring the detector proportionality, a cylindrical suit of alternating positive voltage and grounded wires aiming at eliminating the radial end effects, serving as veto and two cylinders serving as end plugs to eliminate the perpendicular end effects. Examples of anode spectra conditioned (in anticoincidence) by the mentioned vetoes are given. One can see the contribution of the elastic scattering from H and 3 He. By collimating the neutron beam through a borated polyethylene system it was possible to obtain a mapping of the detector allowing the study of its response as a function of the irradiated zones (anode and grid)

  2. Detector and System Developments for LHC Detector Upgrades

    CERN Document Server

    Mandelli, Beatrice; Guida, Roberto; Rohne, Ole; Stapnes, Steinar

    2015-05-12

    The future Large Hadron Collider (LHC) Physics program and the consequent improvement of the LHC accelerator performance set important challenges to all detector systems. This PhD thesis delineates the studies and strategies adopted to improve two different types of detectors: the replacement of precision trackers with ever increasingly performing silicon detectors, and the improvement of large gaseous detector systems by optimizing their gas mixtures and operation modes. Within the LHC tracker upgrade programs, the ATLAS Insertable B-layer (IBL) is the first major upgrade of a silicon-pixel detector. Indeed the overall ATLAS Pixel Detector performance is expected to degrade with the increase of luminosity and the IBL will recover the performance by adding a fourth innermost layer. The IBL Detector makes use of new pixel and front-end electronics technologies as well as a novel thermal management approach and light support and service structures. These innovations required complex developments and Quality Ass...

  3. Detector Unit

    CERN Multimedia

    1960-01-01

    Original detector unit of the Instituut voor Kernfysisch Onderzoek (IKO) BOL project. This detector unit shows that silicon detectors for nuclear physics particle detection were already developed and in use in the 1960's in Amsterdam. Also the idea of putting 'strips' onto the silicon for high spatial resolution of a particle's impact on the detector were implemented in the BOL project which used 64 of these detector units. The IKO BOL project with its silicon particle detectors was designed, built and operated from 1965 to roughly 1977. Detector Unit of the BOL project: These detectors, notably the ‘checkerboard detector’, were developed during the years 1964-1968 in Amsterdam, The Netherlands, by the Natuurkundig Laboratorium of the N.V. Philips Gloeilampen Fabrieken. This was done in close collaboration with the Instituut voor Kernfysisch Onderzoek (IKO) where the read-out electronics for their use in the BOL Project was developed and produced.

  4. Manufacturing process for electrodes for ionizing radiation detectors

    International Nuclear Information System (INIS)

    Tirelli, M.G.; Hecquet, R.

    1987-01-01

    A manufacturing proces for electrodes for ionizing radiation detectors, particularly electrodes for X-ray multidetectors, is proposed. It consists of electrodepositing at least one layer of an electrically conducting material on at least one side of a relatively flat plate. A ductile material is used to form the conducting layer. The assembly formed by the plate covered by the ductile conducting material is subjected to pressing to crush the ductile conducting material at least in the zones where the assembly formed by the plate and the covering material has a total thickness superior to a constant thickness desired for the electrode [fr

  5. Pulse-height response of silicon surface-barrier detectors to high-energy heavy ions

    International Nuclear Information System (INIS)

    Smith, G.D.

    1973-01-01

    The pulse-height defect (PHD) of high-energy heavy ions in silicon surface-barrier detectors can be divided into three components: (1) energy loss in the gold-surface layer, (2) a nuclear-stopping defect, and (3) a defect due to recombination of electron-hole pairs in the plasma created by the heavy ion. The plasma recombination portion of the PHD was the subject of this study using the variation of the PHD with (1) the angle of incidence of incoming heavy ions, and (2) changes in the detector bias. The Tandem Van de Graaff accelerator at Argonne National Laboratory was used to produce scattered beam ions ( 32 S, 35 Cl) and heavy target recoils (Ni, Cu, 98 Mo, Ag, Au) at sufficient energies to produce a significant recombination defect. The results confirm the existence of a recombination zone at the front surface of these detectors and the significance of plasma recombination as a portion of the pulse-height defect. (Diss. Abstr. Int., B)

  6. Quantifying the Variation in Shear Zone Character with Depth: a Case Study from the Simplon Shear Zone, Central Alps

    Science.gov (United States)

    Cawood, T. K.; Platt, J. P.

    2017-12-01

    A widely-accepted model for the rheology of crustal-scale shear zones states that they comprise distributed strain at depth, in wide, high-temperature shear zones, which narrow to more localized, high-strain zones at lower temperature and shallower crustal levels. We test and quantify this model by investigating how the width, stress, temperature and deformation mechanisms change with depth in the Simplon Shear Zone (SSZ). The SSZ marks a major tectonic boundary in the central Alps, where normal-sense motion and rapid exhumation of the footwall have preserved evidence of older, deeper deformation in rocks progressively further into the currently-exposed footwall. As such, microstructures further from the brittle fault (which represents the most localized, most recently-active part of the SSZ) represent earlier, higher- temperature deformation from deeper crustal levels, while rocks closer to the fault have been overprinted by successively later, cooler deformation at shallower depths. This study uses field mapping and microstructural studies to identify zones representing deformation at various crustal levels, and characterize each in terms of zone width (representing width of the shear zone at that time and depth) and dominant deformation mechanism. In addition, quartz- (by Electron Backscatter Diffraction, EBSD) and feldspar grain size (measured optically) piezometry are used to calculate the flow stress for each zone, while the Ti-in-quartz thermometer (TitaniQ) is used to calculate the corresponding temperature of deformation. We document the presence of a broad zone in which quartz is recrystallized by the Grain Boundary Migration (GBM) mechanism and feldspar by Subgrain Rotation (SGR), which represents the broad, deep zone of deformation occurring at relatively high temperatures and low stresses. In map view, this transitions to successively narrower zones, respectively characterized by quartz SGR and feldspar Bulge Nucleation (BLG); quartz BLG and brittle

  7. P wave detector with PP rhythm tracking: evaluation in different arrhythmia contexts

    International Nuclear Information System (INIS)

    Portet, François

    2008-01-01

    Automatic detection of atrial activity (P waves) in an electrocardiogram (ECG) is a crucial task to diagnose the presence of arrhythmias. The P wave is difficult to detect and most of the approaches in the literature have been evaluated on normal sinus rhythms and rarely considered arrhythmia contexts other than atrial flutter and fibrillation. A novel knowledge-based P wave detector algorithm is presented. It is self-adaptive to the patient and able to deal with certain arrhythmias by tracking the PP rhythm. The detector has been tested on 12 records of the MIT-BIH arrhythmia database containing several ventricular and supra-ventricular arrhythmias. On the overall records, the detector demonstrates Se = 96.60% and Pr = 95.46%; for the normal sinus rhythm, it reaches Se = 97.76% and Pr = 96.80% and, in the case of Mobitz type II, it demonstrates Se = 72.79% and Pr = 99.51%. It also shows good performance for trigeminy and bigeminy, and outperforms some more sophisticated techniques. Although the results emphasize the difficulty of P wave detection in difficult arrhythmias (supra and ventricular tachycardias), it shows that domain knowledge can efficiently support signal processing techniques

  8. Development of TiBr semiconductor crystal for applications as radiation detector and photodetector; Desenvolvimento do cristal semicondutor de brometo de talio para aplicacoes como detector de radiacao e fotodetector

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Icimone Braga de

    2006-07-01

    In this work, Tlbr crystals were grown by the Bridgman method from zone melted materials. The influence of the purification efficiency and the crystalline surface quality on the crystal were studied, evaluating its performance as a radiation detector. Due to significant improvement in the purification and crystals growth, good results have been obtained for the developed detectors. The spectrometric performance of the Tlbr detector was evaluated by {sup 241}Am (59 keV), {sup 133}Ba (80 e 355 keV), {sup 57}Co (122 keV), {sup 22}Na (511 keV) and {sup 137} Cs (662 keV) at room temperature. The best energy resolution results were obtained from purer detectors. Energy resolutions of 10 keV (16%), 12 keV (15%), 12 keV (10%), 28 keV (8%), 31 keV (6%) and 36 keV (5%) to 59, 80, 122, 355, 511 and 662 keV energies, respectively, were obtained. A study on the detection response at -20 deg C was also carried out, as well as the detector stability in function of the time. No significant difference was observed in the energy resolution between measurements at both temperatures. It was observed that the detector instability causes degradation of the spectroscopic characteristics during measurements at room temperature and the instability varies for each detector. This behavior was also verified by other authors. The viability to use the developed Tlbr crystal as a photodetector coupled to scintillators crystals was also studied in this work. Due to its quantum efficiency in the region from 350 to 500 nm, Tlbr shows to be a promising material to be used as a photodetector. As a possible application of this work, the development of a surgical probe has been initiated using the developed Tlbr crystal as the radiation detector of the probe. (author)

  9. Research on Mechanical Shim Application with Compensated Prompt γ Current of Vanadium Detectors

    OpenAIRE

    Zhi Xu

    2017-01-01

    Mechanical shim is an advanced technology for reactor power and axial offset control with control rod assemblies. To address the adverse accuracy impact on the ex-core power range neutron flux measurements-based axial offset control resulting from the variable positions of control rod assemblies, the lead-lag-compensated in-core self-powered vanadium detector signals are utilized. The prompt γ current of self-powered detector is ignored normally due to its weakness compared with the delayed β...

  10. Normalization of voltage-sensitive dye signal with functional activity measures.

    Directory of Open Access Journals (Sweden)

    Kentaroh Takagaki

    Full Text Available In general, signal amplitude in optical imaging is normalized using the well-established DeltaF/F method, where functional activity is divided by the total fluorescent light flux. This measure is used both directly, as a measure of population activity, and indirectly, to quantify spatial and spatiotemporal activity patterns. Despite its ubiquitous use, the stability and accuracy of this measure has not been validated for voltage-sensitive dye imaging of mammalian neocortex in vivo. In this report, we find that this normalization can introduce dynamic biases. In particular, the DeltaF/F is influenced by dye staining quality, and the ratio is also unstable over the course of experiments. As methods to record and analyze optical imaging signals become more precise, such biases can have an increasingly pernicious impact on the accuracy of findings, especially in the comparison of cytoarchitechtonic areas, in area-of-activation measurements, and in plasticity or developmental experiments. These dynamic biases of the DeltaF/F method may, to an extent, be mitigated by a novel method of normalization, DeltaF/DeltaF(epileptiform. This normalization uses as a reference the measured activity of epileptiform spikes elicited by global disinhibition with bicuculline methiodide. Since this normalization is based on a functional measure, i.e. the signal amplitude of "hypersynchronized" bursts of activity in the cortical network, it is less influenced by staining of non-functional elements. We demonstrate that such a functional measure can better represent the amplitude of population mass action, and discuss alternative functional normalizations based on the amplitude of synchronized spontaneous sleep-like activity. These findings demonstrate that the traditional DeltaF/F normalization of voltage-sensitive dye signals can introduce pernicious inaccuracies in the quantification of neural population activity. They further suggest that normalization

  11. Local stresses, dyke arrest and surface deformation in volcanic edificesand rift zones

    Directory of Open Access Journals (Sweden)

    L. S. Brenner

    2004-06-01

    Full Text Available Field studies indicate that nearly all eruptions in volcanic edifices and rift zones are supplied with magma through fractures (dykes that are opened by magmatic overpressure. While (inferred dyke injections are frequent during unrest periods, volcanic eruptions are, in comparison, infrequent, suggesting that most dykes become arrested at certain depths in the crust, in agreement with field studies. The frequency of dyke arrest can be partly explained by the numerical models presented here which indicate that volcanic edifices and rift zones consisting of rocks of contrasting mechanical properties, such as soft pyroclastic layers and stiff lava flows, commonly develop local stress fields that encourage dyke arrest. During unrest, surface deformation studies are routinely used to infer the geometries of arrested dykes, and some models (using homogeneous, isotropic half-spaces infer large grabens to be induced by such dykes. Our results, however, show that the dyke-tip tensile stresses are normally much greater than the induced surface stresses, making it difficult to explain how a dyke can induce surface stresses in excess of the tensile (or shear strength while the same strength is not exceeded at the (arrested dyke tip. Also, arrested dyke tips in eroded or active rift zones are normally not associated with dyke-induced grabens or normal faults, and some dykes arrested within a few metres of the surface do not generate faults or grabens. The numerical models show that abrupt changes in Young's moduli(stiffnesses, layers with relatively high dyke-normal compressive stresses (stress barriers, and weak horizontal contacts may make the dyke-induced surface tensile stresses too small for significant fault or graben formation to occur in rift zones or volcanic edifices. Also, these small surface stresses may have no simple relation to the dyke geometry or the depth to its tip. Thus, for a layered crust with weak contacts, straightforward

  12. Differences in microRNA expression during tumor development in the transition and peripheral zones of the prostate

    International Nuclear Information System (INIS)

    Carlsson, Jessica; Helenius, Gisela; Karlsson, Mats G; Andrén, Ove; Klinga-Levan, Karin; Olsson, Björn

    2013-01-01

    The prostate is divided into three glandular zones, the peripheral zone (PZ), the transition zone (TZ), and the central zone. Most prostate tumors arise in the peripheral zone (70-75%) and in the transition zone (20-25%) while only 10% arise in the central zone. The aim of this study was to investigate if differences in miRNA expression could be a possible explanation for the difference in propensity of tumors in the zones of the prostate. Patients with prostate cancer were included in the study if they had a tumor with Gleason grade 3 in the PZ, the TZ, or both (n=16). Normal prostate tissue was collected from men undergoing cystoprostatectomy (n=20). The expression of 667 unique miRNAs was investigated using TaqMan low density arrays for miRNAs. Student’s t-test was used in order to identify differentially expressed miRNAs, followed by hierarchical clustering and principal component analysis (PCA) to study the separation of the tissues. The ADtree algorithm was used to identify markers for classification of tissues and a cross-validation procedure was used to test the generality of the identified miRNA-based classifiers. The t-tests revealed that the major differences in miRNA expression are found between normal and malignant tissues. Hierarchical clustering and PCA based on differentially expressed miRNAs between normal and malignant tissues showed perfect separation between samples, while the corresponding analyses based on differentially expressed miRNAs between the two zones showed several misplaced samples. A classification and cross-validation procedure confirmed these results and several potential miRNA markers were identified. The results of this study indicate that the major differences in the transcription program are those arising during tumor development, rather than during normal tissue development. In addition, tumors arising in the TZ have more unique differentially expressed miRNAs compared to the PZ. The results also indicate that separate mi

  13. Geomagnetic reversal in brunhes normal polarity epoch.

    Science.gov (United States)

    Smith, J D; Foster, J H

    1969-02-07

    The magnetic stratigraphly of seven cores of deep-sea sediment established the existence of a short interval of reversed polarity in the upper part of the Brunches epoch of normal polarity. The reversed zone in the cores correlates well with paleontological boundaries and is named the Blake event. Its boundaries are estimated to be 108,000 and 114,000 years ago +/- 10 percent.

  14. Surface deformation in volcanic rift zones

    Science.gov (United States)

    Pollard, D.D.; Delaney, P.T.; Duffield, W.A.; Endo, E.T.; Okamura, A.T.

    1983-01-01

    The principal conduits for magma transport within rift zones of basaltic volcanoes are steeply dipping dikes, some of which feed fissure eruptions. Elastic displacements accompanying a single dike emplacement elevate the flanks of the rift relative to a central depression. Concomitant normal faulting may transform the depression into a graben thus accentuating the topographic features of the rift. If eruption occurs the characteristic ridge-trough-ridge displacement profile changes to a single ridge, centered at the fissure, and the erupted lava alters the local topography. A well-developed rift zone owes its structure and topography to the integrated effects of many magmatic rifting events. To investigate this process we compute the elastic displacements and stresses in a homogeneous, two-dimensional half-space driven by a pressurized crack that may breach the surface. A derivative graphical method permits one to estimate the three geometric parameters of the dike (height, inclination, and depth-to-center) and the mechanical parameter (driving pressure/rock stiffness) from a smoothly varying displacement profile. Direct comparison of measured and theoretical profiles may be used to estimate these parameters even if inelastic deformation, notably normal faulting, creates discontinuities in the profile. Geological structures (open cracks, normal faults, buckles, and thrust faults) form because of stresses induced by dike emplacement and fissure eruption. Theoretical stress states associated with dilation of a pressurized crack are used to interpret the distribution and orientation of these structures and their role in rift formation. ?? 1983.

  15. Silicon diodes as an alternative to diamond detectors for depth dose curves and profile measurements of photon and electron radiation

    International Nuclear Information System (INIS)

    Scherf, Christian; Moog, Jussi; Licher, Joerg; Kara, Eugen; Roedel, Claus; Ramm, Ulla; Peter, Christiane; Zink, Klemens

    2009-01-01

    Background: Depth dose curves and lateral dose profiles should correspond to relative dose to water in any measured point, what can be more or less satisfied with different detectors. Diamond as detector material has similar dosimetric properties like water. Silicon diodes and ionization chambers are also commonly used to acquire dose profiles. Material and Methods: The authors compared dose profiles measured in an MP3 water phantom with a diamond detector 60003, unshielded and shielded silicon diodes 60008 and 60012 and a 0.125-cm 3 thimble chamber 233642 (PTW, Freiburg, Germany) for 6- and 25-MV photons. Electron beams of 6, 12 and 18 MeV were investigated with the diamond detector, the unshielded diode and a Markus chamber 23343. Results: The unshielded diode revealed relative dose differences at the water surface below +10% for 6-MV and +4% for 25-MV photons compared to the diamond data. These values decreased to less than 1% within the first millimeters of water depth. The shielded diode was only required to obtain correct data of the fall-off zones for photon beams larger than 10 x 10 cm 2 because of important contributions of low-energy scattered photons. For electron radiation the largest relative dose difference of -2% was observed with the unshielded silicon diode for 6 MeV within the build-up zone. Spatial resolutions were always best with the small voluminous silicon diodes. Conclusion: Relative dose profiles obtained with the two silicon diodes have the same degree of accuracy as with the diamond detector. (orig.)

  16. Silicon diodes as an alternative to diamond detectors for depth dose curves and profile measurements of photon and electron radiation.

    Science.gov (United States)

    Scherf, Christian; Peter, Christiane; Moog, Jussi; Licher, Jörg; Kara, Eugen; Zink, Klemens; Rödel, Claus; Ramm, Ulla

    2009-08-01

    Depth dose curves and lateral dose profiles should correspond to relative dose to water in any measured point, what can be more or less satisfied with different detectors. Diamond as detector material has similar dosimetric properties like water. Silicon diodes and ionization chambers are also commonly used to acquire dose profiles. The authors compared dose profiles measured in an MP3 water phantom with a diamond detector 60003, unshielded and shielded silicon diodes 60008 and 60012 and a 0.125-cm(3) thimble chamber 233642 (PTW, Freiburg, Germany) for 6- and 25-MV photons. Electron beams of 6, 12 and 18 MeV were investigated with the diamond detector, the unshielded diode and a Markus chamber 23343. The unshielded diode revealed relative dose differences at the water surface below +10% for 6-MV and +4% for 25-MV photons compared to the diamond data. These values decreased to less than 1% within the first millimeters of water depth. The shielded diode was only required to obtain correct data of the fall-off zones for photon beams larger than 10 x 10 cm(2) because of important contributions of low-energy scattered photons. For electron radiation the largest relative dose difference of -2% was observed with the unshielded silicon diode for 6 MeV within the build-up zone. Spatial resolutions were always best with the small voluminous silicon diodes. Relative dose profiles obtained with the two silicon diodes have the same degree of accuracy as with the diamond detector.

  17. Diffusion Behaviour in Superconducting Ti/Au bilayers for SAFARI TES Detectors

    Science.gov (United States)

    van der Heijden, N. J.; Khosropanah, P.; van der Kuur, J.; Ridder, M. L.

    2014-08-01

    Controlling the critical temperature () of Ti/Au bilayers is vital in the development of practical TES detectors. Previously empirical studies have been done on aging effects in Ti/Au and other superconducting bilayers but no link with theory has been made. Here we attempt to explain the change in with a diffusion mechanism. The change in has been measured for a set of Ti/Au bilayer samples that have been given a variety of bake-out treatments, where we found a trend that can be partly explained by an inter-diffusion mechanism. With an empirical model based on diffusion a safe zone can be defined as a region of bake-out treatments, where the is not affected beyond the requirements. This will shine light on the bake-out and the storage condition boundaries of these detectors.

  18. Characterization of Silicon Photomultiplier Detectors using Cosmic Radiation

    Science.gov (United States)

    Zavala, Favian; Castro, Juan; Niduaza, Rexavalmar; Wedel, Zachary; Fan, Sewan; Ritt, Stefan; Fatuzzo, Laura

    2014-03-01

    The silicon photomultiplier light detector has gained a lot of attention lately in fields such as particle physics, astrophysics, and medical physics. Its popularity stems from its lower cost, compact size, insensitivity to magnetic fields, and its excellent ability to distinguish a quantized number of photons. They are normally operated at room temperature and biased above their breakdown voltages. As such, they may also exhibit properties that may hinder their optimal operation which include a thermally induced high dark count rate, after pulse effects, and cross talk from photons in nearby pixels. At this poster session, we describe our data analysis and our endeavor to characterize the multipixel photon counter (MPPC) detectors from Hamamatsu under different bias voltages and temperature conditions. Particularly, we describe our setup which uses cosmic rays to induce scintillation light delivered to the detector by wavelength shifting optical fibers and the use of a fast 1 GHz waveform sampler, the domino ring sampler (DRS4) digitizer board. Department of Education grant number P031S90007.

  19. Silicon detectors

    International Nuclear Information System (INIS)

    Klanner, R.

    1984-08-01

    The status and recent progress of silicon detectors for high energy physics is reviewed. Emphasis is put on detectors with high spatial resolution and the use of silicon detectors in calorimeters. (orig.)

  20. NORMAL PRESSURE AND FRICTION STRESS MEASUREMENT IN ROLLING PROCESSES

    DEFF Research Database (Denmark)

    Henningsen, Poul; Arentoft, Mogens; Lagergren, Jonas

    2005-01-01

    the output from the transducer, the friction stress and normal pressure in the contact zone can be determined. The new concept differs from existing pin designs by a lower disturbance of lubricant film and material flow and limited penetration of material between transducer and roll. Aluminum, cupper...

  1. Neutron measurement in 12,13C+ 27Al system using CR-39 detectors and neutron rem meter

    International Nuclear Information System (INIS)

    Sahoo, G.S.; Tripathy, S.P.; Shanbhag, A.A.; Sunil, C.; Joshi, D.S.; Sarkar, P.K.

    2011-01-01

    In this work, neutron measurements carried out for the interaction of 60 and 67.5 MeV 12 C, 57.3 and 65 MeV 13 C ions with thick aluminium target by using CR-39 detectors and neutron rem meter is reported. Both the detector systems were irradiated at different angles viz. 0 deg, 30 deg, 60 deg, 90 deg with respect to the beam direction. The normalized track density measurements (tracks/cm 2 /projectile at 1m) in CR-39 detectors were correlated with the normalized dose equivalent values (μSv/projectile at 1m) obtained using the neutron rem meter. The track density was found to be more in case of 13 C than 12 C. However in all the cases, the track density per incident projectile was found to decrease as the angle with respect to beam direction increases, indicating non-isotropic nature of neutron emission. The ratio between measured dose equivalent in rem meter to the measured track densities in CR-39 detectors was found to be 2.8±0.2, which remains constant irrespective of the change in angle from beam direction as well as neutron spectrum, indicating a flat dose response of CR-39 detectors. (author)

  2. Mobility and powering of large detectors. Moving large detectors

    International Nuclear Information System (INIS)

    Thompson, J.

    1977-01-01

    The possibility is considered of moving large lepton detectors at ISABELLE for readying new experiments, detector modifications, and detector repair. A large annex (approximately 25 m x 25 m) would be built adjacent to the Lepton Hall separated from the Lepton Hall by a wall of concrete 11 m high x 12 m wide (for clearance of the detector) and approximately 3 m thick (for radiation shielding). A large pad would support the detector, the door, the cryogenic support system and the counting house. In removing the detector from the beam hall, one would push the pad into the annex, add a dummy beam pipe, bake out the beam pipe, and restack and position the wall on a small pad at the door. The beam could then operate again while experimenters could work on the large detector in the annex. A consideration and rough price estimate of various questions and proposed solutions are given

  3. Active zones of mammalian neuromuscular junctions: formation, density, and aging.

    Science.gov (United States)

    Nishimune, Hiroshi

    2012-12-01

    Presynaptic active zones are synaptic vesicle release sites that play essential roles in the function and pathology of mammalian neuromuscular junctions (NMJs). The molecular mechanisms of active zone organization use presynaptic voltage-dependent calcium channels (VDCCs) in NMJs as scaffolding proteins. VDCCs interact extracellularly with the muscle-derived synapse organizer, laminin β2 and interact intracellularly with active zone-specific proteins, such as Bassoon, CAST/Erc2/ELKS2alpha, ELKS, Piccolo, and RIMs. These molecular mechanisms are supported by studies in P/Q- and N-type VDCCs double-knockout mice, and they are consistent with the pathological conditions of Lambert-Eaton myasthenic syndrome and Pierson syndrome, which are caused by autoantibodies against VDCCs or by a laminin β2 mutation. During normal postnatal maturation, NMJs maintain the density of active zones, while NMJs triple their size. However, active zones become impaired during aging. Propitiously, muscle exercise ameliorates the active zone impairment in aged NMJs, which suggests the potential for therapeutic strategies. © 2012 New York Academy of Sciences.

  4. Study of semiconductor detectors applied to diagnostic X-ray

    International Nuclear Information System (INIS)

    Salgado, Cesar Marques

    2003-08-01

    This work aims an evaluation of procedures for photons spectrum determination, produced by a X ray tube, normally used for medical diagnoses which operation voltage ranges from 20 to 150 kVp, to allow more precise characterization of the photon beam. The use of spectrum analysis will contribute to reduce the uncertainty in the ionization camera calibrations. For this purpose, two kind of detectors were selected, a Cadmium Zinc Telluride (CZT) and a planar HPGe detector. The X ray interaction with the detector's crystal produces, by electronic processes, a pulse high distribution as an output, which is no the true photon spectrum, due to the presence of K shell escape peaks, Compton scattering and to the fact that the detectors efficiency diminish rapidly with the increase of the photon energy. A detailed analysis of the contributing factors to distortions in the spectrum is necessary and was performed by Monte Carlo calculation with the MCNP 4B computer code. In order to determine the actual photon spectrum for a X ray tube a spectra stripping procedure is described for the HPGe detector. The detector's response curves, determined by the Monte Carlo calculation, were compared to the experimental ones, for isotropic point sources. For the methodology validation, stripped spectra were compared to the theoretical ones, for the same X ray tube's settings, for a qualitative evaluation. The air kerma rate calculated with the photon spectra were compared to the direct measurement using an ionization chamber, for a quantitative evaluation. (author)

  5. 2011 ATLAS Detector Performance - ID and Forward detectors

    CERN Document Server

    Davies‎, E; The ATLAS collaboration; Abdel Khalek, S

    2012-01-01

    This poster describes the performance of 2 parts of ATLAS: - The Inner Detector which consists of 3 subdetectors: the Pixel detector, the SemiConductor Tracker (or SCT) and the Transition Radiation Tracker (or TRT). Here, we report on Pixel detector and SCT performance over 2011. - ALFA detector which will determine the absolute luminosity of the CERN LHC at the ATLAS Interaction Point (IP), and the total proton-proton cross section, by tracking elastically scattered protons at very small angles in the limit of the Coulomb Nuclear interference region.

  6. Development of TiBr semiconductor crystal for applications as radiation detector and photodetector

    International Nuclear Information System (INIS)

    Oliveira, Icimone Braga de

    2006-01-01

    In this work, Tlbr crystals were grown by the Bridgman method from zone melted materials. The influence of the purification efficiency and the crystalline surface quality on the crystal were studied, evaluating its performance as a radiation detector. Due to significant improvement in the purification and crystals growth, good results have been obtained for the developed detectors. The spectrometric performance of the Tlbr detector was evaluated by 241 Am (59 keV), 133 Ba (80 e 355 keV), 57 Co (122 keV), 22 Na (511 keV) and 137 Cs (662 keV) at room temperature. The best energy resolution results were obtained from purer detectors. Energy resolutions of 10 keV (16%), 12 keV (15%), 12 keV (10%), 28 keV (8%), 31 keV (6%) and 36 keV (5%) to 59, 80, 122, 355, 511 and 662 keV energies, respectively, were obtained. A study on the detection response at -20 deg C was also carried out, as well as the detector stability in function of the time. No significant difference was observed in the energy resolution between measurements at both temperatures. It was observed that the detector instability causes degradation of the spectroscopic characteristics during measurements at room temperature and the instability varies for each detector. This behavior was also verified by other authors. The viability to use the developed Tlbr crystal as a photodetector coupled to scintillators crystals was also studied in this work. Due to its quantum efficiency in the region from 350 to 500 nm, Tlbr shows to be a promising material to be used as a photodetector. As a possible application of this work, the development of a surgical probe has been initiated using the developed Tlbr crystal as the radiation detector of the probe. (author)

  7. Fault zone architecture of a major oblique-slip fault in the Rawil depression, Western Helvetic nappes, Switzerland

    Science.gov (United States)

    Gasser, D.; Mancktelow, N. S.

    2009-04-01

    The Helvetic nappes in the Swiss Alps form a classic fold-and-thrust belt related to overall NNW-directed transport. In western Switzerland, the plunge of nappe fold axes and the regional distribution of units define a broad depression, the Rawil depression, between the culminations of Aiguilles Rouge massif to the SW and Aar massif to the NE. A compilation of data from the literature establishes that, in addition to thrusts related to nappe stacking, the Rawil depression is cross-cut by four sets of brittle faults: (1) SW-NE striking normal faults that strike parallel to the regional fold axis trend, (2) NW-SE striking normal faults and joints that strike perpendicular to the regional fold axis trend, and (3) WNW-ESE striking normal plus dextral oblique-slip faults as well as (4) WSW-ENE striking normal plus dextral oblique-slip faults that both strike oblique to the regional fold axis trend. We studied in detail a beautifully exposed fault from set 3, the Rezli fault zone (RFZ) in the central Wildhorn nappe. The RFZ is a shallow to moderately-dipping (ca. 30-60˚) fault zone with an oblique-slip displacement vector, combining both dextral and normal components. It must have formed in approximately this orientation, because the local orientation of fold axes corresponds to the regional one, as does the generally vertical orientation of extensional joints and veins associated with the regional fault set 2. The fault zone crosscuts four different lithologies: limestone, intercalated marl and limestone, marl and sandstone, and it has a maximum horizontal dextral offset component of ~300 m and a maximum vertical normal offset component of ~200 m. Its internal architecture strongly depends on the lithology in which it developed. In the limestone, it consists of veins, stylolites, cataclasites and cemented gouge, in the intercalated marls and limestones of anastomosing shear zones, brittle fractures, veins and folds, in the marls of anastomosing shear zones, pressure

  8. Infrared detectors

    CERN Document Server

    Rogalski, Antonio

    2010-01-01

    This second edition is fully revised and reorganized, with new chapters concerning third generation and quantum dot detectors, THz detectors, cantilever and antenna coupled detectors, and information on radiometry and IR optics materials. Part IV concerning focal plane arrays is significantly expanded. This book, resembling an encyclopedia of IR detectors, is well illustrated and contains many original references … a really comprehensive book.-F. Sizov, Institute of Semiconductor Physics, National Academy of Sciences, Kiev, Ukraine

  9. MR measurement of normal corpus callosum in children

    International Nuclear Information System (INIS)

    Kim, Hyoung Sub; Kim, Jong Chul; Kang, Yong Soo; Lee, Young Hwan; Kim, Young Wol

    1997-01-01

    To measure the mean size of the various portions of the corpus callosum in normal Korean children, using MR imaging. Our subjects were 166 children (male : female=100 : 66) aged under 15 whose findings on MR imaging and neurologic examination were normal. Using midsagittal T1-weighted imaging, we measured the length of the brain and corpus callosum, the height of the latter, and the thickness of its genu body, transitional zone and splenium. The measurements were statistically analysed according to age and sex. Brain length and the size of the various portions of the corpus callosum tended to increase relatively rapidly during the first three years of life, but the rate of growth tended to decrease according to age. The mean lenght of the brain and corpus callosum and the mean thickness of the splenium of the corpus callosum did not differ according to sex. The mean thickness of the genu, body and transitional zone of the corpus callosum was greater in males than in females. The ratio of the length of the corpus callosum to the anteroposterior diameter of the brain was significantly greater in females than in males (alpha=0.05). Using MR imaging, we measured the mean sizes of the various portions of the corpus callosum in normal children;these values may provide a useful basis for determing changes occurring in its structure

  10. Tectonic geomorphology of large normal faults bounding the Cuzco rift basin within the southern Peruvian Andes

    Science.gov (United States)

    Byers, C.; Mann, P.

    2015-12-01

    The Cuzco basin forms a 80-wide, relatively flat valley within the High Andes of southern Peru. This larger basin includes the regional capital of Cuzco and the Urubamba Valley, or "Sacred Valley of the Incas" favored by the Incas for its mild climate and broader expanses of less rugged and arable land. The valley is bounded on its northern edge by a 100-km-long and 10-km-wide zone of down-to-the-south systems of normal faults that separate the lower area of the down-dropped plateau of central Peru and the more elevated area of the Eastern Cordillera foldbelt that overthrusts the Amazon lowlands to the east. Previous workers have shown that the normal faults are dipslip with up to 600 m of measured displacements, reflect north-south extension, and have Holocene displacments with some linked to destructive, historical earthquakes. We have constructed topographic and structural cross sections across the entire area to demonstrate the normal fault on a the plateau peneplain. The footwall of the Eastern Cordillera, capped by snowcapped peaks in excess of 6 km, tilts a peneplain surface northward while the hanging wall of the Cuzco basin is radially arched. Erosion is accelerated along the trend of the normal fault zone. As the normal fault zone changes its strike from east-west to more more northwest-southeast, normal displacement decreases and is replaced by a left-lateral strike-slip component.

  11. Silicon Drift Detectors - A Novel Technology for Vertex Detectors

    Science.gov (United States)

    Lynn, D.

    1996-10-01

    Silicon Drift Detectors (SDD) are novel position sensing silicon detectors which operate in a manner analogous to gas drift detectors. Single SDD's were shown in the CERN NA45 experiment to permit excellent spatial resolution (pseudo-rapidity. Over the last three years we undertook a concentrated R+D effort to optimize the performance of the detector by minimizing the inactive area, the operating voltage and the data volume. We will present test results from several wafer prototypes. The charge produced by the passage of ionizing particles through the bulk of the detectors is collected on segmented anodes, with a pitch of 250 μm, on the far edges of the detector. The anodes are wire-bonded to a thick film multi-chip module which contains preamplifier/shaper chips and CMOS based switched capacitor arrays used as an analog memory pipeline. The ADC is located off-detector. The complete readout chain from the wafer to the DAQ will be presented. Finally we will show physics performance simulations based on the resolution achieved by the SVT prototypes.

  12. Parametric study of the relaxation zone behind strong normal shock waves in a dusty ionized monatomic gas

    International Nuclear Information System (INIS)

    Igra, O.; Ben-Dor, G.

    1982-01-01

    The conservation equations appropriate to a steady, one-dimensional flow of dusty ionized argon were solved numerically. The specific effect of each of the physical parameters of the dust upon the flow properties in the relaxation zone is studied. It is found that increasing the dust particle mass causes an increase in both the kinematic and thermal relaxation lengths. In addition to these changes, the flow field inside the relaxation zone is also affected. An increase in the dust mass (caused either by an increase in the dust density or its diameter) causes an increase in the plasma velocity, temperature and electron number density and a decrease in its density and pressure. Similar effects are encountered when the specific heat capacity of the dust is changed. An increase in the emissivity of the dust causes an increase in the plasma density and pressure and a decrease in its velocity, temperature and electron number density. Increasing the emissivity of the dust results in a decrease in the relaxation zone length. (author)

  13. Design of InAs/GaSb superlattice infrared barrier detectors

    Science.gov (United States)

    Delmas, M.; Rossignol, R.; Rodriguez, J. B.; Christol, P.

    2017-04-01

    Design of InAs/GaSb type-II superlattice (T2SL) infrared barrier detectors is theoretically investigated. Each part of the barrier structures is studied in order to achieve optimal device operation at 150 K and 77 K, in the midwave and longwave infrared domain, respectively. Whatever the spectral domain, nBp structure with a p-type absorbing zone and an n-type contact layer is found to be the most favourable detector architecture allowing a reduction of the dark-current associated with generation-recombination processes. The nBp structures are then compared to pin photodiodes. The MWIR nBp detector with 5 μm cut-off wavelength can operate up to 120 K, resulting in an improvement of 20 K on the operating temperature compared to the pin device. The dark-current density of the LWIR nBp device at 77 K is expected to be as low as 3.5 × 10-4 A/cm2 at 50 mV reverse bias, more than one decade lower than the usual T2SL photodiode. This result, for a device having cut-off wavelength at 12 μm, is at the state of the art compared to the well-known MCT 'rule 07'.

  14. Sensitivity determination of CR-39 from Normal and inclined incidence

    International Nuclear Information System (INIS)

    Abou, A.A.; El-Kheir, A.A.; Daas, A.F.; Awwad, Z.; Reda, A.M.

    2000-01-01

    An experimental study have been carried out on alpha- particle track opening (Major and minor axes) using alpha-particles of different energies incident with different angels in addition to the normal incidence. The sensitivity of CR-39 in present work is determined for each of normal and inclined incidence. The results indicated a difference in the sensitivity according to angle of incidence. The variation of alpha- particle tracks (major and minor axes) are calculated and compared with our measured values. Also, it is found that the sensitivity of CR-39 detector is change due to the storage time at room temperature

  15. Impact of the neutron detector choice on Bell and Glasstone spatial correction factor for subcriticality measurement

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, Alberto, E-mail: alby@anl.gov [Argonne National Laboratory, 9700S. Cass Avenue, Argonne, IL 60439 (United States); Gohar, Y.; Cao, Y.; Zhong, Z. [Argonne National Laboratory, 9700S. Cass Avenue, Argonne, IL 60439 (United States); Kiyavitskaya, H.; Bournos, V.; Fokov, Y.; Routkovskaya, C. [Joint Institute for Power and Nuclear Research-Sosny, National Academy of Sciences of Belarus, 99 acad. Krasin str., Minsk 220109 (Belarus)

    2012-03-11

    In subcritical assemblies, the Bell and Glasstone spatial correction factor is used to correct the measured reactivity from different detector positions. In addition to the measuring position, several other parameters affect the correction factor: the detector material, the detector size, and the energy-angle distribution of source neutrons. The effective multiplication factor calculated by computer codes in criticality mode slightly differs from the average value obtained from the measurements in the different experimental channels of the subcritical assembly, which are corrected by the Bell and Glasstone spatial correction factor. Generally, this difference is due to (1) neutron counting errors; (2) geometrical imperfections, which are not simulated in the calculational model, and (3) quantities and distributions of material impurities, which are missing from the material definitions. This work examines these issues and it focuses on the detector choice and the calculation methodologies. The work investigated the YALINA Booster subcritical assembly of Belarus, which has been operated with three different fuel enrichments in the fast zone either: high (90%) and medium (36%), medium (36%), or low (21%) enriched uranium fuel.

  16. Impact of the neutron detector choice on Bell and Glasstone spatial correction factor for subcriticality measurement

    International Nuclear Information System (INIS)

    Talamo, Alberto; Gohar, Y.; Cao, Y.; Zhong, Z.; Kiyavitskaya, H.; Bournos, V.; Fokov, Y.; Routkovskaya, C.

    2012-01-01

    In subcritical assemblies, the Bell and Glasstone spatial correction factor is used to correct the measured reactivity from different detector positions. In addition to the measuring position, several other parameters affect the correction factor: the detector material, the detector size, and the energy-angle distribution of source neutrons. The effective multiplication factor calculated by computer codes in criticality mode slightly differs from the average value obtained from the measurements in the different experimental channels of the subcritical assembly, which are corrected by the Bell and Glasstone spatial correction factor. Generally, this difference is due to (1) neutron counting errors; (2) geometrical imperfections, which are not simulated in the calculational model, and (3) quantities and distributions of material impurities, which are missing from the material definitions. This work examines these issues and it focuses on the detector choice and the calculation methodologies. The work investigated the YALINA Booster subcritical assembly of Belarus, which has been operated with three different fuel enrichments in the fast zone either: high (90%) and medium (36%), medium (36%), or low (21%) enriched uranium fuel.

  17. An ultrafast NbN hot-electron single-photon detector for electronic applications

    International Nuclear Information System (INIS)

    Lipatov, A; Okunev, O; Smirnov, K; Chulkova, G; Korneev, A; Kouminov, P; Gol'tsman, G; Zhang, J; Slysz, W; Verevkin, A; Sobolewski, R

    2002-01-01

    We present the latest generation of our superconducting single-photon detector (SPD), which can work from ultraviolet to mid-infrared optical radiation wavelengths. The detector combines a high speed of operation and low jitter with high quantum efficiency (QE) and very low dark count level. The technology enhancement allows us to produce ultrathin (3.5 nm thick) structures that demonstrate QE hundreds of times better, at 1.55 μm, than previous 10 nm thick SPDs. The best, 10x10 μm 2 , SPDs demonstrate QE up to 5% at 1.55 μm and up to 11% at 0.86 μm. The intrinsic detector QE, normalized to the film absorption coefficient, reaches 100% at bias currents above 0.9 I c for photons with wavelengths shorter than 1.3 μm

  18. Spiral silicon drift detectors

    International Nuclear Information System (INIS)

    Rehak, P.; Gatti, E.; Longoni, A.; Sampietro, M.; Holl, P.; Lutz, G.; Kemmer, J.; Prechtel, U.; Ziemann, T.

    1988-01-01

    An advanced large area silicon photodiode (and x-ray detector), called Spiral Drift Detector, was designed, produced and tested. The Spiral Detector belongs to the family of silicon drift detectors and is an improvement of the well known Cylindrical Drift Detector. In both detectors, signal electrons created in silicon by fast charged particles or photons are drifting toward a practically point-like collection anode. The capacitance of the anode is therefore kept at the minimum (0.1pF). The concentric rings of the cylindrical detector are replaced by a continuous spiral in the new detector. The spiral geometry detector design leads to a decrease of the detector leakage current. In the spiral detector all electrons generated at the silicon-silicon oxide interface are collected on a guard sink rather than contributing to the detector leakage current. The decrease of the leakage current reduces the parallel noise of the detector. This decrease of the leakage current and the very small capacities of the detector anode with a capacitively matched preamplifier may improve the energy resolution of Spiral Drift Detectors operating at room temperature down to about 50 electrons rms. This resolution is in the range attainable at present only by cooled semiconductor detectors. 5 refs., 10 figs

  19. Study on dosimetric properties of radiophotoluminescent glass rod detector

    Energy Technology Data Exchange (ETDEWEB)

    Rah, Jeong Eun; Hong, Ju Young; Suh, Tea Suk [The Catholic University of Korea, Seoul (Korea, Republic of); Shin, Dong Oh [Kyunghee Univ., Seoul (Korea, Republic of); Kim, Hee Sun [Korea Hydro and Nuclear Power Co., Ltd, Daejeon (Korea, Republic of); Lim, Chun Il; Jeong, Hee Gyo [Korea Food and Drug Administration, Seoul (Korea, Republic of)

    2006-12-15

    A radiophotoluminescent Glass Rod Detector (GRD) system has recently become commercially available. We investigate the dosimetric properties of the GRD regarding the reproducibility of signal, dose linearity and energy dependence. The reproducibility of five measurements for 50 GRDs is presented by an average of one standard deviation of each GRD and it is {+-}1.2%. It is found to be linear in response to doses of {sup 60}Co beam in the range 0.5 to 50 Gy with a coefficient of linearity of 0.9998. The energy dependence of the GRD is determined by comparing the dose obtained using cylindrical chamber to that by using the GRD. The GRD response for each beam is normalized to the response for a {sup 60}Co beam. The responses for 6 and 15 MV x-ray beams are within {+-}1.5% (1SD). The energy response of GRD for high-energy photon is almost the same as the energy dependence of LiF:Mg:Ti (TLD-100) and shows little energy dependence unlike p-type silicon diode detector. The GRDs have advantages over other detectors such diode detector, and TLD: linearity, reproducibility and energy dependency. It has been verified to be an effective device for small field dosimetry for stereotactic radiosurgery.

  20. Radiation detectors laboratory

    International Nuclear Information System (INIS)

    Ramirez J, F.J.

    1996-01-01

    The National Institute for Nuclear Research has established a Radiation detector laboratory that has the possibility of providing to the consultants on the handling and applications of the nuclear radiation detectors. It has special equipment to repair the radiation detectors used in spectroscopy as the hyper pure Germanium for gamma radiation and the Lithium-silica for X-rays. There are different facilities in the laboratory that can become useful for other institutions that use radiation detectors. This laboratory was created to satisfy consultant services, training and repairing of the radiation detectors both in national and regional levels for Latin America. The laboratory has the following sections: Nuclear Electronic Instrumentation; where there are all kind of instruments for the measurement and characterization of detectors like multichannel analyzers of pulse height, personal computers, amplifiers and nuclear pulse preamplifiers, nuclear pulses generator, aleatories, computer programs for radiation spectra analysis, etc. High vacuum; there is a vacuum escape measurer, two high vacuum pumps to restore the vacuum of detectors, so the corresponding measurers and the necessary tools. Detectors cleaning; there is an anaerobic chamber for the detectors handling at inert atmosphere, a smoke extraction bell for cleaning with the detector solvents. Cryogenic; there are vessels and tools for handling liquid nitrogen which is used for cooling the detectors when they required it. (Author)

  1. Interfacial stresses in strengthened beam with shear cohesive zone ...

    Indian Academy of Sciences (India)

    The results of parametric study are compared with those of Smith and Teng. They confirm the accuracy of the proposed approach in predicting both interfacial shear and normal stresses. Keywords. Strengthened beam; interfacial stresses; cohesive zone; shear deformation. 1. Introduction. The FRP plates can be either ...

  2. Model-based normalization for iterative 3D PET image

    International Nuclear Information System (INIS)

    Bai, B.; Li, Q.; Asma, E.; Leahy, R.M.; Holdsworth, C.H.; Chatziioannou, A.; Tai, Y.C.

    2002-01-01

    We describe a method for normalization in 3D PET for use with maximum a posteriori (MAP) or other iterative model-based image reconstruction methods. This approach is an extension of previous factored normalization methods in which we include separate factors for detector sensitivity, geometric response, block effects and deadtime. Since our MAP reconstruction approach already models some of the geometric factors in the forward projection, the normalization factors must be modified to account only for effects not already included in the model. We describe a maximum likelihood approach to joint estimation of the count-rate independent normalization factors, which we apply to data from a uniform cylindrical source. We then compute block-wise and block-profile deadtime correction factors using singles and coincidence data, respectively, from a multiframe cylindrical source. We have applied this method for reconstruction of data from the Concorde microPET P4 scanner. Quantitative evaluation of this method using well-counter measurements of activity in a multicompartment phantom compares favourably with normalization based directly on cylindrical source measurements. (author)

  3. Exact analytical solution of the convolution integral equation for a general profile fitting function and Gaussian detector kernel

    International Nuclear Information System (INIS)

    Garcia-Vicente, F.; Rodriguez, C.

    2000-01-01

    One of the most important aspects in the metrology of radiation fields is the problem of the measurement of dose profiles in regions where the dose gradient is large. In such zones, the 'detector size effect' may produce experimental measurements that do not correspond to reality. Mathematically it can be proved, under some general assumptions of spatial linearity, that the disturbance induced in the measurement by the effect of the finite size of the detector is equal to the convolution of the real profile with a representative kernel of the detector. In this work the exact relation between the measured profile and the real profile is shown, through the analytical resolution of the integral equation for a general type of profile fitting function using Gaussian convolution kernels. (author)

  4. Fast photoconductor CdTe detectors for synchrotron x-ray studies

    International Nuclear Information System (INIS)

    Yoo, Sung Shik; Faurie, J.P.; Huang Qiang; Rodricks, B.

    1993-09-01

    The Advanced Photon Source will be that brightest source of synchrotron x-rays when it becomes operational in 1996. During normal operation, the ring will be filled with 20 bunches of positrons with an interbunch spacing of 177 ns and a bunch width of 119 ps. To perform experiments with x-rays generated by positrons on these time scales one needs extremely high speed detectors. To achieve the necessary high speed, we are developing MBE-grown CdTe-base photoconductive position sensitive array detectors. The arrays fabricated have 64 pixels with a gap of 100 μm between pixels. The high speed response of the devices was tested using a short pulse laser. X-ray static measurements were performed using an x-ray tube and synchrotron radiation to study the device's response to flux and wavelength changes. This paper presents the response of the devices to some of these tests and discusses different physics aspects to be considered when designing high speed detectors

  5. Characterization of Photon-Counting Detector Responsivity for Non-Linear Two-Photon Absorption Process

    Science.gov (United States)

    Sburlan, S. E.; Farr, W. H.

    2011-01-01

    Sub-band absorption at 1550 nm has been demonstrated and characterized on silicon Geiger mode detectors which normally would be expected to have no response at this wavelength. We compare responsivity measurements to singlephoton absorption for wavelengths slightly above the bandgap wavelength of silicon (approx. 1100 microns). One application for this low efficiency sub-band absorption is in deep space optical communication systems where it is desirable to track a 1030 nm uplink beacon on the same flight terminal detector array that monitors a 1550 nm downlink signal for pointingcontrol. The currently observed absorption at 1550 nm provides 60-70 dB of isolation compared to the response at 1064 nm, which is desirable to avoid saturation of the detector by scattered light from the downlink laser.

  6. Ruggedization of CdZnTe detectors and detector assemblies for radiation detection applications

    Energy Technology Data Exchange (ETDEWEB)

    Lu, P.H., E-mail: pinghe.lu@redlen.com; Gomolchuk, P.; Chen, H.; Beitz, D.; Grosser, A.W.

    2015-06-01

    This paper described improvements in the ruggedization of CdZnTe detectors and detector assemblies for use in radiation detection applications. Research included experimenting with various conductive and underfill adhesive material systems suitable for CZT substrates. A detector design with encapsulation patterning was developed to protect detector surfaces and to control spacing between CZT anode and PCB carrier. Robustness of bare detectors was evaluated through temperature cycling and metallization shear testing. Attachment processes using well-chosen adhesives and PCB carrier materials were optimized to improve reliability of detector assemblies, resulted in Improved Attachment Detector Assembly. These detector assemblies were subjected to aggressive temperature cycling, and varying levels of drop/shock and vibration, in accordance with modified JEDEC, ANSI and FedEx testing standards, to assess their ruggedness. Further enhanced detector assembly ruggedization methods were investigated involving adhesive conformal coating, potting and dam filling on detector assemblies, which resulted in the Enhanced Ruggedization Detector Assembly. Large numbers of CZT detectors and detector assemblies with 5 mm and 15 mm thick, over 200 in total, were tested. Their performance was evaluated by exposure to various radioactive sources using comprehensive predefined detector specifications and testing protocols. Detector assemblies from improved attachment and enhanced ruggedization showed stable performances during the harsh environmental condition tests. In conclusion, significant progress has been made in improving the reliability and enhancing the ruggedness of CZT detector assemblies for radiation detection applications deployed in operational environments. - Highlights: • We developed ruggedization methods to enhance reliability of CZT detector assemblies. • Attachment of CZT radiation detectors was improved through comparative studies. • Bare detector metallization

  7. Three-dimensional characterization of microporosity and permeability in fault zones hosted in heterolithic succession

    Science.gov (United States)

    Riegel, H. B.; Zambrano, M.; Jablonska, D.; Emanuele, T.; Agosta, F.; Mattioni, L.; Rustichelli, A.

    2017-12-01

    The hydraulic properties of fault zones depend upon the individual contributions of the damage zone and the fault core. In the case of the damage zone, it is generally characterized by means of fracture analysis and modelling implementing multiple approaches, for instance the discrete fracture network model, the continuum model, and the channel network model. Conversely, the fault core is more difficult to characterize because it is normally composed of fine grain material generated by friction and wear. If the dimensions of the fault core allows it, the porosity and permeability are normally studied by means of laboratory analysis or in the other case by two dimensional microporosity analysis and in situ measurements of permeability (e.g. micro-permeameter). In this study, a combined approach consisting of fracture modeling, three-dimensional microporosity analysis, and computational fluid dynamics was applied to characterize the hydraulic properties of fault zones. The studied fault zones crosscut a well-cemented heterolithic succession (sandstone and mudstones) and may vary in terms of fault core thickness and composition, fracture properties, kinematics (normal or strike-slip), and displacement. These characteristics produce various splay and fault core behavior. The alternation of sandstone and mudstone layers is responsible for the concurrent occurrence of brittle (fractures) and ductile (clay smearing) deformation. When these alternating layers are faulted, they produce corresponding fault cores which act as conduits or barriers for fluid migration. When analyzing damage zones, accurate field and data acquisition and stochastic modeling was used to determine the hydraulic properties of the rock volume, in relation to the surrounding, undamaged host rock. In the fault cores, the three-dimensional pore network quantitative analysis based on X-ray microtomography images includes porosity, pore connectivity, and specific surface area. In addition, images were

  8. A new perspective on the significance of the Ranotsara shear zone in Madagascar

    DEFF Research Database (Denmark)

    Schreurs, Guido; Giese, Jörg; Berger, Alfons

    2010-01-01

    only a marked deflection along its central segment. The ductile deflection zone is interpreted as a result of E-W indentation of the Antananarivo Block into the less rigid, predominantly metasedimentary rocks of the Southwestern Madagascar Block during a late phase of the Neoproterozoic/Cambrian East...... the central segment of the Ranotsara Zone, confirmed by apatite-fission track results, may have led to the formation of a shallow Neogene basin underlying the Ranotsara plain. The present-day drainage pattern suggests on-going normal fault activity along the central segment. The Ranotsara Zone...

  9. Responses of platinum, vanadium and cobalt self-powered flux detectors near simulated booster rods in a ZED-2 mockup of a Bruce reactor core

    International Nuclear Information System (INIS)

    French, P.M.; Shields, R.B.; Kroon, J.C.

    1978-02-01

    The static responses of Pt, V and Co self-powered detectors have been compared with copper-foil neutron activation profiles in reference and perturbed Bruce reactor core mockups assembled in the ZED-2 test reactor at Chalk River Nuclear Laboratories. The results indicate that the normalized response of each self-powered detector is an accurate measure of the thermal-neutron flux at locations greater than one lattice pitch from either a booster rod or the core boundary. They indicate that, in the Bruce booster/detector configuration, the normalized static Pt response overestimates the neutron flux by less than 3.5% upon full booster-rod insertion. (author)

  10. Clustering method to process signals from a CdZnTe detector

    International Nuclear Information System (INIS)

    Zhang, Lan; Takahashi, Hiroyuki; Fukuda, Daiji; Nakazawa, Masaharu

    2001-01-01

    The poor mobility of holes in a compound semiconductor detector results in the imperfect collection of the primary charge deposited in the detector. Furthermore the fluctuation of the charge loss efficiency due to the change in the hole collection path length seriously degrades the energy resolution of the detector. Since the charge collection efficiency varies with the signal waveform, we can expect the improvement of the energy resolution through a proper waveform signal processing method. We developed a new digital signal processing technique, a clustering method which derives typical patterns containing the information on the real situation inside a detector from measured signals. The obtained typical patterns for the detector are then used for the pattern matching method. Measured signals are classified through analyzing the practical waveform variation due to the charge trapping, the electric field and the crystal defect etc. Signals with similar shape are placed into the same cluster. For each cluster we calculate an average waveform as a reference pattern. Using these reference patterns obtained from all the clusters, we can classify other measured signal waveforms from the same detector. Then signals are independently processed according to the classified category and form corresponding spectra. Finally these spectra are merged into one spectrum by multiplying normalization coefficients. The effectiveness of this method was verified with a CdZnTe detector of 2 mm thick and a 137 Cs gamma-ray source. The obtained energy resolution as improved to about 8 keV (FWHM). Because the clustering method is only related to the measured waveforms, it can be applied to any type and size of detectors and compatible with any type of filtering methods. (author)

  11. Evaluation of a flat-panel detector system

    International Nuclear Information System (INIS)

    Sato, Masami; Eguchi, Yoichi; Yamada, Kinichi; Kaga, Yuji; Endo, Yutaka; Yamazaki, Tatsuya

    2001-01-01

    We evaluated the imaging performance of a flat-panel detector digital radiography system (CXDI-11 X-ray Digital Camera, Canon Inc.) and a computed radiography system (FCR9000C-HQ, Fuji Film). The characteristics of the two detectors and of the overall systems were compared. This included evaluation and comparison of the fundamental physical characteristics, including x-ray response curve, modulation transfer function (MTF), Wiener spectra, noise-equivalent quanta, and x-ray tube voltage-dependent detector response. Overall system performance was evaluated using receiver operating characteristic (ROC) analysis. The results of the study showed that the dynamic range of the CXDI-11 measured relative to the input x-ray flux was 10 3 , similar to that of the FCR9000C-HQ. Both systems showed similar final MTFs, although the pre-sampling MTF of the CXDI-11 was better than that of the FCR9000C-HQ. Noise analysis, based on noise-equivalent quanta and Wiener spectra, showed that for normal exposure conditions the CXDI-11 had superior performance. With both systems, x-ray response (system output/incident x-ray exposure) increased with increasing x-ray tube voltage. ROC analysis indicated that the CXDI-11 was superior in overall performance. (author)

  12. Compound Semiconductor Radiation Detector

    International Nuclear Information System (INIS)

    Kim, Y. K.; Park, S. H.; Lee, W. G.; Ha, J. H.

    2005-01-01

    In 1945, Van Heerden measured α, β and γ radiations with the cooled AgCl crystal. It was the first radiation measurement using the compound semiconductor detector. Since then the compound semiconductor has been extensively studied as radiation detector. Generally the radiation detector can be divided into the gas detector, the scintillator and the semiconductor detector. The semiconductor detector has good points comparing to other radiation detectors. Since the density of the semiconductor detector is higher than that of the gas detector, the semiconductor detector can be made with the compact size to measure the high energy radiation. In the scintillator, the radiation is measured with the two-step process. That is, the radiation is converted into the photons, which are changed into electrons by a photo-detector, inside the scintillator. However in the semiconductor radiation detector, the radiation is measured only with the one-step process. The electron-hole pairs are generated from the radiation interaction inside the semiconductor detector, and these electrons and charged ions are directly collected to get the signal. The energy resolution of the semiconductor detector is generally better than that of the scintillator. At present, the commonly used semiconductors as the radiation detector are Si and Ge. However, these semiconductor detectors have weak points. That is, one needs thick material to measure the high energy radiation because of the relatively low atomic number of the composite material. In Ge case, the dark current of the detector is large at room temperature because of the small band-gap energy. Recently the compound semiconductor detectors have been extensively studied to overcome these problems. In this paper, we will briefly summarize the recent research topics about the compound semiconductor detector. We will introduce the research activities of our group, too

  13. The GRANDE detector

    International Nuclear Information System (INIS)

    Adams, A.; Bond, R.; Coleman, L.; Rollefson, A.; Wold, D.; Bratton, C.B.; Gurr, H.; Kropp, W.; Nelson, M.; Price, L.R.; Reines, F.; Schultz, J.; Sobel, H.; Svoboda, R.; Yodh, G.; Burnett, T.; Chaloupka, V.; Wilkes, R.J.; Cherry, M.; Ellison, S.B.; Guzik, T.G.; Wefel, J.; Gaidos, J.; Loeffler, F.; Sembroski, G.; Wilson, C.; Goodman, J.; Haines, T.J.; Kielczewska, D.; Lane, C.; Steinberg, R.; Lieber, M.; Nagle, D.; Potter, M.; Tripp, R.

    1990-01-01

    In this paper we present a detector facility which meets the requirements outlined above for a next-generation instrument. GRANDE (Gamma Ray and Neutrino DEtector) is an imaging, water Cerenkov detector, which combines in one facility an extensive air shower array and a high-energy neutrino detector. (orig.)

  14. Kinetics of thallium-201 in reperfused canine myocardium after coronary artery occlusion

    International Nuclear Information System (INIS)

    Okada, R.D.

    1984-01-01

    To study the kinetics of thallium-201 in nonsalvaged acutely infarcted myocardium and salvaged myocardium, the tracer was administered after experimental left anterior descending coronary artery reperfusion 2 hours after occlusion. In 19 dogs, thallium activity was then monitored for 4 hours in the reperfused anterior wall and normal posterior wall using miniature cadmium telluride radiation detectors. After sacrifice, 13 of the dogs were found to have an infarcted anterior wall by triphenyltetrazolium-chloride staining. In these dogs, mean (+/- standard deviation) fractional 4 hour thallium clearance was 0.33 +/- 0.08 for the infarct zone and 0.15 +/- 0.06 for the normal control zone (p less than 0.001). When computer-modeled, the clearance curve from the infarct zone was biexponential. The second exponential clearance curve from the infarct zone began 19.1 +/- 3.2 minutes after tracer administration, and was indistinguishable from the monoexponential clearance curve from the normal control zone. Thallium clearance from the blood pool was triexponential, the final exponential clearance curve being indistinguishable from the normal control zone clearance curve. Six dogs were found to have a salvaged noninfarcted anterior wall by triphenyltetrazolium-chloride staining. In these dogs, mean fractional 4 hour thallium clearance was 0.20 +/- 0.07 for the reperfused zone, and 0.19 +/- 0.08 for the normal control zone (p . NS). When computer-modeled, clearance curves for the reperfused and control zones were monoexponential. The monoexponential clearance curve for the salvaged reperfused zone was indistinguishable from the monoexponential clearance curve for normal myocardium

  15. Detectors - Electronics

    International Nuclear Information System (INIS)

    Bregeault, J.; Gabriel, J.L.; Hierle, G.; Lebotlan, P.; Leconte, A.; Lelandais, J.; Mosrin, P.; Munsch, P.; Saur, H.; Tillier, J.

    1998-01-01

    The reports presents the main results obtained in the fields of radiation detectors and associated electronics. In the domain of X-ray gas detectors for the keV range efforts were undertaken to rise the detector efficiency. Multiple gap parallel plate chambers of different types as well as different types of X → e - converters were tested to improve the efficiency (values of 2.4% at 60 KeV were reached). In the field of scintillators a study of new crystals has been carried out (among which Lutetium orthosilicate). CdTe diode strips for obtaining X-ray imaging were studied. The complete study of a linear array of 8 CdTe pixels has been performed and certified. The results are encouraging and point to this method as a satisfying solution. Also, a large dimension programmable chamber was used to study the influence of temperature on the inorganic scintillators in an interval from -40 deg. C to +150 deg. C. Temperature effects on other detectors and electronic circuits were also investigated. In the report mentioned is also the work carried out for the realization of the DEMON neutron multidetector. For neutron halo experiments different large area Si detectors associated with solid and gas position detectors were realized. In the frame of a contract with COGEMA a systematic study of Li doped glasses was undertaken aiming at replacing with a neutron probe the 3 He counters presently utilized in pollution monitoring. An industrial prototype has been realised. Other studies were related to integrated analog chains, materials for Cherenkov detectors, scintillation probes for experiments on fundamental processes, gas position sensitive detectors, etc. In the field of associated electronics there are mentioned the works related to the multidetector INDRA, data acquisition, software gamma spectrometry, automatic gas pressure regulation in detectors, etc

  16. A method to unfold the efficiency of gaseous detectors exposed to broad X-ray spectra

    International Nuclear Information System (INIS)

    Almeida, Gevaldo L. de; Souza, Maria Ines S. de; Lopes, Ricardo T.

    2000-01-01

    A method to obtain the efficiency of a gaseous detector exposed to broad energy X-ray spectra was developed. It consists in the de-convolution of the integrated detector response using the shapes of those spectra as a tool to unfold the aimed detector efficiency curve. For this purpose, the spectra emitted by a X-ray tube under several anode voltages, were properly characterized through measurements with a NaI(Tl) spectrometer. A Lorentz function was then fitted to each of the spectra, and their parameters expressed as a function of the anode voltage, by using polynomial and gaussian fittings. The integral of the product of each Lorentz function, by another unknown Lorentz function, expressing the detector efficiency curve, represents the response of the detector for each anode tension, e.g., each X-ray spectrum. The symbolical integration of that product, produces a general function containing the unknown parameters of the unknown efficiency curve. A non-linear fitting of this general function, to the detector response points, as experimentally obtained, generates the aimed parameters for the efficiency curve. The final detector efficiency curve is obtained after normalization procedures. (author)

  17. Use of intravoxel incoherent motion diffusion-weighted imaging in identifying the vascular and avascular zones of human meniscus.

    Science.gov (United States)

    Guo, Tan; Chen, Juan; Wu, Bing; Zheng, Dandan; Jiao, Sheng; Song, Yan; Chen, Min

    2017-04-01

    To investigate the hypothesis that the intravoxel incoherent motion (IVIM) diffusion-weighted imaging may depict microcirculation of meniscus and the perfusion changes in meniscal disorder. Fifty patients received diffusion-weighted MRI with multiple b-values ranging from 0 to 400 s/mm 2 . The four horns of the menisci were divided into normal, degenerated, and torn groups. IVIM parameters including perfusion fraction (f), pseudo-diffusion coefficient (D*), true diffusion coefficient (D), and the product of f and D* (f D*) of normal meniscal red zone and white zone were derived and compared for microcirculation changes of normal, degenerated, and torn posterior horn of the medial meniscus (PMM). The parameters between red and white zones among the groups were compared. Significant differences were considered when P meniscus and the perfusion changes in meniscal disorder. 3 J. Magn. Reson. Imaging 2017;45:1090-1096. © 2016 International Society for Magnetic Resonance in Medicine.

  18. Marginal zone in femoral head avascular necrosis: scintigraphic characteristics and clinical prognostic value

    International Nuclear Information System (INIS)

    Milcinski, M.; Sedonja, I.; Dolinar, D.; Jevtic, V.

    2002-01-01

    Aim: Marginal zone, seen on magnetic resonance imaging (MRI) in femoral head avascular necrosis, consists of granulation tissue and sclerosis at the junction of necrotic and normal bone. Prognostic value of this finding is not clear. Aim of our study was to evaluate osteoblastic activity of marginal zone with bone scintigraphy and to assess prognostic importance of marginal zone for further evolution of femoral head necrosis. Material and methods: MRI was performed in 37 hips in 26 patients (17 m, 9 f, 20-64 y, mean 42,9 y) with Ficat 0-II avascular necrosis (SE T1W, STIR and SE T1W FAT.SAT after Gd DTPA in the coronal plane and GE FLASH in the sagittal plane). In 26 hips of 17 patients planar and pinhole scintigraphy with 99mTc-DPD was performed. Results: On MRI, marginal zone divided necrotic and normal bone in 26/37 (70,3%) hips, in 14/26 it was thin (2% of femoral head diameter or less), but in 12/26 it was wide (more than 2% of femoral head diameter). In 11/37 (29,7%) hips marginal zone was not seen. Pinhole scintigraphy was performed in 26 hips; in all 10/10 (100%) hips with wide marginal zone, seen on MRI, increased osteoblastic activity was detected, while only in 1/9 (11,1%) hips with thin marginal zone on MRI osteoblastic activity was increased. Patients were followed 1 to 5 years (mean 2,2 y). In hips without marginal zone no collapse of femoral head was seen until now, in 2/11 (18,2%) femoral heads MRI and clinical regression was observed. Ten of 12 lesions with wide marginal zone (83,3 %) collapsed 0,25 to 2,5 (mean 1) years after onset of pain. Two of 12 lesions with wide marginal zone (16,7%) have not collapsed until now. From lesions with thin marginal zone, 4/14 (28,6 %) collapsed 0,7 to 3 (mean 1,9) years after onset of pain, 10/14 (71,4%) did not collapse until now. Conclusion: Increased osteoblastic activity in wide marginal zone between necrotic and vital bone in hip avascular necrosis is bad prognostic factor for femoral head collapse

  19. Detector Control System for the AFP detector in ATLAS experiment at CERN

    Science.gov (United States)

    Banaś, E.; Caforio, D.; Czekierda, S.; Hajduk, Z.; Olszowska, J.; Seabra, L.; Šícho, P.

    2017-10-01

    The ATLAS Forward Proton (AFP) detector consists of two forward detectors located at 205 m and 217 m on either side of the ATLAS experiment. The aim is to measure the momenta and angles of diffractively scattered protons. In 2016, two detector stations on one side of the ATLAS interaction point were installed and commissioned. The detector infrastructure and necessary services were installed and are supervised by the Detector Control System (DCS), which is responsible for the coherent and safe operation of the detector. A large variety of used equipment represents a considerable challenge for the AFP DCS design. Industrial Supervisory Control and Data Acquisition (SCADA) product Siemens WinCCOA, together with the CERN Joint Control Project (JCOP) framework and standard industrial and custom developed server applications and protocols are used for reading, processing, monitoring and archiving of the detector parameters. Graphical user interfaces allow for overall detector operation and visualization of the detector status. Parameters, important for the detector safety, are used for alert generation and interlock mechanisms.

  20. Silicon Telescope Detectors

    CERN Document Server

    Gurov, Yu B; Sandukovsky, V G; Yurkovski, J

    2005-01-01

    The results of research and development of special silicon detectors with a large active area ($> 8 cm^{2}$) for multilayer telescope spectrometers (fulfilled in the Laboratory of Nuclear Problems, JINR) are reviewed. The detector parameters are listed. The production of totally depleted surface barrier detectors (identifiers) operating under bias voltage two to three times higher than depletion voltage is described. The possibility of fabrication of lithium drifted counters with a very thin entrance window on the diffusion side of the detector (about 10--20 $\\mu$m) is shown. The detector fabrication technique has allowed minimizing detector dead regions without degradation of their spectroscopic characteristics and reliability during long time operation in charge particle beams.

  1. The 150 ns detector project: progress with small detectors

    International Nuclear Information System (INIS)

    Warburton, W.K.; Russell, S.R.; Kleinfelder, Stuart A.; Segal, Julie

    1994-01-01

    This project's long term goal is to develop a pixel area detector capable of 6 MHz frame rates (150 ns/frame). Our milestones toward this goal are: a single pixel, 1x256 1D and 8x8 2D detectors, 256x256 2D detectors and, finally, 1024x1024 2D detectors. The design strategy is to supply a complete electronics chain (resetting preamp, selectable gain amplifier, analog-to-digital converter (ADC), and memory) for each pixel. In the final detectors these will all be custom integrated circuits. The front end preamplifiers are being integrated first, since their design and performance are both the most unusual and also critical to the project's success. Similarly, our early work is also concentrating on devising and perfecting detector structures which are thick enough (1 mm) to absorb over 99% of the incident X-rays in the energy range of interest. In this paper we discuss our progress toward the 1x256 1D and 8x8 2D detectors. We have fabricated sample detectors at Stanford's Center for Integrated Systems and are preparing both to test them individually and to wirebond them to the preamplifier samples to produce our first working small 1D and 2D detectors. We will describe our solutions to the design problems associated with collecting charge in less than 30 ns from 1 mm thick pixels in high resistivity silicon. We have constructed and tested the front end of our preamplifier design using a commercial 1.2 μm CMOS technology and are moving on to produce a few channels of the complete preamplifier, including a switchable gain stage and output stage. We will discuss both the preamplifier design and our initial test results. ((orig.))

  2. The 150 ns detector project: progress with small detectors

    Energy Technology Data Exchange (ETDEWEB)

    Warburton, W.K. (X-ray Instrumentation Associates, 2513 Charleston Rd, Ste 207, Mountain View, CA 94043 (United States)); Russell, S.R. (X-ray Instrumentation Associates, 2513 Charleston Rd, Ste 207, Mountain View, CA 94043 (United States)); Kleinfelder, Stuart A. (VLSI Physics, 19 Drury Lane, Berkeley, CA 94705 (United States)); Segal, Julie (Integrated Ckts Lab., Dept. of Electrical Engineering, Stanford University, Stanford, CA 94305 (United States))

    1994-09-01

    This project's long term goal is to develop a pixel area detector capable of 6 MHz frame rates (150 ns/frame). Our milestones toward this goal are: a single pixel, 1x256 1D and 8x8 2D detectors, 256x256 2D detectors and, finally, 1024x1024 2D detectors. The design strategy is to supply a complete electronics chain (resetting preamp, selectable gain amplifier, analog-to-digital converter (ADC), and memory) for each pixel. In the final detectors these will all be custom integrated circuits. The front end preamplifiers are being integrated first, since their design and performance are both the most unusual and also critical to the project's success. Similarly, our early work is also concentrating on devising and perfecting detector structures which are thick enough (1 mm) to absorb over 99% of the incident X-rays in the energy range of interest. In this paper we discuss our progress toward the 1x256 1D and 8x8 2D detectors. We have fabricated sample detectors at Stanford's Center for Integrated Systems and are preparing both to test them individually and to wirebond them to the preamplifier samples to produce our first working small 1D and 2D detectors. We will describe our solutions to the design problems associated with collecting charge in less than 30 ns from 1 mm thick pixels in high resistivity silicon. We have constructed and tested the front end of our preamplifier design using a commercial 1.2 [mu]m CMOS technology and are moving on to produce a few channels of the complete preamplifier, including a switchable gain stage and output stage. We will discuss both the preamplifier design and our initial test results. ((orig.))

  3. Diamond pad detector telescope for beam conditions and luminosity monitoring in ATLAS

    Energy Technology Data Exchange (ETDEWEB)

    Mikuz, M. [Jozef Stefan Institute and Department of Physics, University of Ljubljana, Ljubljana (Slovenia)], E-mail: Marko.Mikuz@ijs.si; Cindro, V.; Dolenc, I. [Jozef Stefan Institute and Department of Physics, University of Ljubljana, Ljubljana (Slovenia); Frais-Koelbl, H. [University of Applied Sciences Wiener Neustadt and Fotec, Wiener Neustadt (Austria); Gorisek, A. [CERN, Geneva (Switzerland); Griesmayer, E. [University of Applied Sciences Wiener Neustadt and Fotec, Wiener Neustadt (Austria); Kagan, H. [Ohio State University, Columbus (United States); Kramberger, G.; Mandic, I. [Jozef Stefan Institute and Department of Physics, University of Ljubljana, Ljubljana (Slovenia); Niegl, M. [University of Applied Sciences Wiener Neustadt and Fotec, Wiener Neustadt (Austria); Pernegger, H. [CERN, Geneva (Switzerland); Trischuk, W. [University of Toronto, Toronto (Canada); Weilhammer, P. [CERN, Geneva (Switzerland); Zavrtanik, M. [Jozef Stefan Institute and Department of Physics, University of Ljubljana, Ljubljana (Slovenia)

    2007-09-01

    Beam conditions and the potential detector damage resulting from their anomalies have pushed the LHC experiments to plan their own monitoring devices in addition to those provided by the machine. ATLAS decided to build a telescope composed of two stations with four diamond pad detector modules each, placed symmetrically around the interaction point at z={+-}183.8cm and r{approx}55mm ({eta}{approx}4.2). Equipped with fast electronics it allows time-of-flight separation of events resulting from beam anomalies from normally occurring p-p interactions. In addition it will provide a coarse measurement of the LHC luminosity in ATLAS. Ten detector modules have been assembled and subjected to tests, from characterization of bare diamonds to source and beam tests. Preliminary results of beam test in the CERN PS indicate a signal-to-noise ratio of 14{+-}2.

  4. Diamond pad detector telescope for beam conditions and luminosity monitoring in ATLAS

    International Nuclear Information System (INIS)

    Mikuz, M.; Cindro, V.; Dolenc, I.; Frais-Koelbl, H.; Gorisek, A.; Griesmayer, E.; Kagan, H.; Kramberger, G.; Mandic, I.; Niegl, M.; Pernegger, H.; Trischuk, W.; Weilhammer, P.; Zavrtanik, M.

    2007-01-01

    Beam conditions and the potential detector damage resulting from their anomalies have pushed the LHC experiments to plan their own monitoring devices in addition to those provided by the machine. ATLAS decided to build a telescope composed of two stations with four diamond pad detector modules each, placed symmetrically around the interaction point at z=±183.8cm and r∼55mm (η∼4.2). Equipped with fast electronics it allows time-of-flight separation of events resulting from beam anomalies from normally occurring p-p interactions. In addition it will provide a coarse measurement of the LHC luminosity in ATLAS. Ten detector modules have been assembled and subjected to tests, from characterization of bare diamonds to source and beam tests. Preliminary results of beam test in the CERN PS indicate a signal-to-noise ratio of 14±2

  5. Analysis and comparison of the breakdown performance of semi- insulator and dielectric passivated Si strip detectors

    CERN Document Server

    Ranjan, Kirti; Chatterji, S; Srivastava-Ajay, K; Shivpuri, R K

    2002-01-01

    The harsh radiation environment in future high-energy physics (HEP) experiments like LHC provides a challenging task to the performance of Si microstrip detectors. Normal operating condition for silicon detectors in HEP experiments are in most cases not as favourable as for experiments in nuclear physics. In HEP experiments the detector may be exposed to moisture and other adverse atmospheric environment. It is therefore utmost important to protect the sensitive surfaces against such poisonous effects. These instabilities can be nearly eliminated and the performance of Si detectors can be improved by implementing suitably passivated metal-overhang structures. This paper presents the influence of the relative permittivity of the passivant on the breakdown performance of the Si detectors using computer simulations. The semi-insulator and the dielectric passivated metal-overhang structures are compared under optimal conditions. The influence of various parameters such as passivation layer thickness, junction dep...

  6. Normal appearance of the prostate and seminal tract: MR imaging using an endorectal surface coil

    International Nuclear Information System (INIS)

    Kim, Myeong Jin; Lee, Jong Tae; Lee, Moo Sang; Choi, Pil Sik; Hong, Sung Joon; Lee, Yeon Hee; Choi, Hak Yong

    1994-01-01

    To assess the ability of MR imaging with an endorectal surface coil for the depiction of normal anatomical structure of prostate and its adjacent organs. MR imaging using an endorectal surface coil was performed in 23 male patients(age ; 20-75) to evaluate various prostatic and vasovesicular disorders, i. e, 14 cases of ejaculatory problems, 3 cases of hypogonadism, and 4 cases of prostatic cancers and 2 cases of benign prostatic hyperplasia. MR images were obtained with axial, sagittal and coronal fast spin echo long TR/TE images and axial spin echo short TR/TE images. Field of views was 10-12 cm and scan thickness was 3-5 mm. Depiction of normal anatomcial structures was excellent in all cases. On T2WI, zonal anatomy of the prostate and prostatic urethra, urethral crest, and ejaculatory duct were cleary visualized. On T1WI, periprostatic fat plane is more cleary visualized. On transverse images, periprostatic structures were well visualized on T1WI,and on T2WI, anterior fibromuscular stroma, transition zone and peripheral zone could be readily differentiated. Coronal images were more helpful in visualization of both central and peripheral zones. Vas deferens, ejaculatory duct and vermontanum were also more easily defined on these images. Sagittal images was helpful in the depiction of anterior fibromuscular stroma, central zone and peripheral zone with prostatic urethra and ejaculatory duct in a single plane. High resolution MR imaging with an endorectal surface coil can readily visualize the normal anatomy of the prostate and its related structures and may be useful in the evaluation of various diseases of prostate and vasvesicular system

  7. Normal appearance of the prostate and seminal tract: MR imaging using an endorectal surface coil

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Myeong Jin; Lee, Jong Tae; Lee, Moo Sang; Choi, Pil Sik; Hong, Sung Joon; Lee, Yeon Hee; Choi, Hak Yong [Yonsei University College of Medicine, Seoul (Korea, Republic of)

    1994-06-15

    To assess the ability of MR imaging with an endorectal surface coil for the depiction of normal anatomical structure of prostate and its adjacent organs. MR imaging using an endorectal surface coil was performed in 23 male patients(age ; 20-75) to evaluate various prostatic and vasovesicular disorders, i. e, 14 cases of ejaculatory problems, 3 cases of hypogonadism, and 4 cases of prostatic cancers and 2 cases of benign prostatic hyperplasia. MR images were obtained with axial, sagittal and coronal fast spin echo long TR/TE images and axial spin echo short TR/TE images. Field of views was 10-12 cm and scan thickness was 3-5 mm. Depiction of normal anatomcial structures was excellent in all cases. On T2WI, zonal anatomy of the prostate and prostatic urethra, urethral crest, and ejaculatory duct were cleary visualized. On T1WI, periprostatic fat plane is more cleary visualized. On transverse images, periprostatic structures were well visualized on T1WI,and on T2WI, anterior fibromuscular stroma, transition zone and peripheral zone could be readily differentiated. Coronal images were more helpful in visualization of both central and peripheral zones. Vas deferens, ejaculatory duct and vermontanum were also more easily defined on these images. Sagittal images was helpful in the depiction of anterior fibromuscular stroma, central zone and peripheral zone with prostatic urethra and ejaculatory duct in a single plane. High resolution MR imaging with an endorectal surface coil can readily visualize the normal anatomy of the prostate and its related structures and may be useful in the evaluation of various diseases of prostate and vasvesicular system.

  8. Emphysema in heavy smokers with normal chest radiography

    International Nuclear Information System (INIS)

    Sashidhar, K.; Monga, S.; Suri, S.; Gulati, M.; Gupta, D.

    2002-01-01

    Purpose: To determine the severity and extent of emphysema in heavy smokers by high-resolution CT (HRCT) and to correlate the findings with spirometric tests (STs) and symptomatology. Material and Methods: Fifty adult smokers with a mean age of 53 years with a smoking history of more than 30 pack years and normal chest radiographs underwent HRCT of the chest and ST (FEV1, FEV1/FVC, PEFR). Among these, 22 had symptoms of pulmonary disease and 28 were asymptomatic. Quantification of emphysema was done using a density mask program and the visual scoring method. The results were correlated with ST and symptomatology. Results: 58% (29 out of 50) of the subjects had significant emphysema on HRCT. Eleven out of 15 with normal ST showed emphysema on HRCT while 2 with airflow obstruction on ST showed normal CT scores. 14% (4 out of 28) asymptomatic subjects had severe emphysema compared to 64% of symptomatic subjects. Emphysematous changes were predominantly seen in upper lung zones in 48% of the patients while in 52% it was distributed equally in both upper and lower zones. The number of pack years of smoking showed a positive correlation with CT scores. The correlation between HRCT scores and ST was statistically significant. Conclusion: A significant number of asymptomatic and clinically undiagnosed smokers tend to have significant emphysema. HRCT helps in early detection of disease and thus helps implementation of preventive measures

  9. High-energy detector

    Science.gov (United States)

    Bolotnikov, Aleksey E [South Setauket, NY; Camarda, Giuseppe [Farmingville, NY; Cui, Yonggang [Upton, NY; James, Ralph B [Ridge, NY

    2011-11-22

    The preferred embodiments are directed to a high-energy detector that is electrically shielded using an anode, a cathode, and a conducting shield to substantially reduce or eliminate electrically unshielded area. The anode and the cathode are disposed at opposite ends of the detector and the conducting shield substantially surrounds at least a portion of the longitudinal surface of the detector. The conducting shield extends longitudinally to the anode end of the detector and substantially surrounds at least a portion of the detector. Signals read from one or more of the anode, cathode, and conducting shield can be used to determine the number of electrons that are liberated as a result of high-energy particles impinge on the detector. A correction technique can be implemented to correct for liberated electron that become trapped to improve the energy resolution of the high-energy detectors disclosed herein.

  10. Nuclear radiation detectors

    International Nuclear Information System (INIS)

    Kapoor, S.S.; Ramamurthy, V.S.

    1986-01-01

    The present monograph is intended to treat the commonly used detectors in the field of nuclear physics covering important developments of the recent years. After a general introduction, a brief account of interaction of radiation with matter relevant to the processes in radiation detection is given in Chapter II. In addition to the ionization chamber, proportional counters and Geiger Mueller counters, several gas-filled detectors of advanced design such as those recently developed for heavy ion physics and other types of studies have been covered in Chapter III. Semiconductor detectors are dealt with in Chapter IV. The scintillation detectors which function by sensing the photons emitted by the luminescence process during the interaction of the impinging radiation with the scintillation detector medium are described in Chapter V. The topic of neutron detectors is covered in Chapter VI, as in this case the emphasis is more on the method of neutron detection rather than on detector type. Electronic instrumentation related to signal pulse processing dealt with in Chapter VII. The track etch detectors based on the visualization of the track of the impinging charge particle have also been briefly covered in the last chapter. The scope of this monograph is confined to detectors commonly used in low and medium energy nuclear physics research and applications of nuclear techniques. The monograph is intended for post-graduate students and those beginning to work with the radiation detectors. (author)

  11. Radiation detectors laboratory

    International Nuclear Information System (INIS)

    Ramirez J, F.J.

    1997-01-01

    The Radiation detectors laboratory was established with the assistance of the International Atomic Energy Agency which gave this the responsibility to provide its services at National and regional level for Latin America and it is located at the ININ. The more expensive and delicate radiation detectors are those made of semiconductor, so it has been put emphasis in the use and repairing of these detectors type. The supplied services by this laboratory are: selection consultant, detectors installation and handling and associated systems. Installation training, preventive and corrective maintenance of detectors and detection systems calibration. (Author)

  12. Method and device for monitoring vibration of incore neutron detector guide tube

    International Nuclear Information System (INIS)

    Enomoto, Mitsuhiro; Naito, Norio; Oda, Akira.

    1978-01-01

    Purpose: To easily detect the vibration of an incore neutron detector guide tube and to prevent the occurrence of such accidents that the guide tube comes into contact with the fuel channel box arranged around the periphery thereof to break the channel box. Method: A neutron detector guide tube is disposed within a channel box, and the neutron detector is arranged at the center of the guide tube. Now, when the guide tube vibrates at an inherent number of vibration and a predetermined amplitude, the guide tube moves in the radial direction by the predetermined amplitude part to come into contact with the channel box. Upon this occasion, the detector similarity vibrates, and the output signal is varied by the predetermined neutron flux variation part. This output signal is sent to a comparator through an analyser, and compared with the output signal produced from a device wherein the result analysed at normal time, and the output signal is sent to an alarm device and an indicator, respectively. (Aizawa, K.)

  13. Is the T1ρ MRI profile of hyaline cartilage in the normal hip uniform?

    Science.gov (United States)

    Rakhra, Kawan S; Cárdenas-Blanco, Arturo; Melkus, Gerd; Schweitzer, Mark E; Cameron, Ian G; Beaulé, Paul E

    2015-04-01

    T1ρ MRI is an imaging technique sensitive to proteoglycan (PG) content of hyaline cartilage. However, normative T1ρ values have not been established for the weightbearing cartilage of the hip, and it is not known whether it is uniform or whether there is topographic variation. Knowledge of the T1ρ profile of hyaline cartilage in the normal hip is important for establishing a baseline against which comparisons can be made to experimental and clinical arthritic subjects. In this diagnostic study, we determined (1) the T1ρ MRI values of hyaline cartilage of the normal hip; and (2) whether the T1ρ MRI profile of the normal hip hyaline cartilage is uniform. Fourteen asymptomatic volunteers (11 men, three women; mean age, 35 years) prospectively underwent 1.5-T T1ρ MRI of a single hip. The weightbearing hyaline cartilage bilayer of the acetabulum and femoral head was evaluated on sagittal images and segmented into four zones: (1) anterior; (2) anterosuperior; (3) posterosuperior; and (4) and posterior. For the full region of interest and within each zone and each sagittal slice, we calculated the mean T1ρ relaxation value, a parameter that indirectly quantifies PG content, where T1ρ is inversely related to PG concentration. There was variation in the T1ρ relaxation values depending on zone (anterior to posterior) and slice (medial to lateral). When combining the most anterior quadrants (Zones 1 and 2), the T1ρ relaxation values were lower than those in the combined posterior quadrants (Zones 3 and 4) (30.4 msec versus 32.2 msec, respectively; p = 0.002), reflecting higher PG concentration. There was a difference between the T1ρ relaxation values of the sagittal slices (p = 0.038), most pronounced anteriorly in Zone 1 (26.6 msec, p = 0.001). With a selective combination of zones and slices, there were lower mean T1ρ values in the anterolateral-most region compared with the remainder of the weightbearing portion of the hip (28.6 msec versus 32.2 msec

  14. DETECTING THE SUPERNOVA BREAKOUT BURST IN TERRESTRIAL NEUTRINO DETECTORS

    International Nuclear Information System (INIS)

    Wallace, Joshua; Burrows, Adam; Dolence, Joshua C.

    2016-01-01

    We calculate the distance-dependent performance of a few representative terrestrial neutrino detectors in detecting and measuring the properties of the ν e breakout burst light curve in a Galactic core-collapse supernova. The breakout burst is a signature phenomenon of core collapse and offers a probe into the stellar core through collapse and bounce. We examine cases of no neutrino oscillations and oscillations due to normal and inverted neutrino-mass hierarchies. For the normal hierarchy, other neutrino flavors emitted by the supernova overwhelm the ν e signal, making a detection of the breakout burst difficult. For the inverted hierarchy (IH), some detectors at some distances should be able to see the ν e breakout burst peak and measure its properties. For the IH, the maximum luminosity of the breakout burst can be measured at 10 kpc to accuracies of ∼30% for Hyper-Kamiokande (Hyper-K) and ∼60% for the Deep Underground Neutrino Experiment (DUNE). Super-Kamiokande (Super-K) and Jiangmen Underground Neutrino Observatory (JUNO) lack the mass needed to make an accurate measurement. For the IH, the time of the maximum luminosity of the breakout burst can be measured in Hyper-K to an accuracy of ∼3 ms at 7 kpc, in DUNE to ∼2 ms at 4 kpc, and JUNO and Super-K can measure the time of maximum luminosity to an accuracy of ∼2 ms at 1 kpc. Detector backgrounds in IceCube render a measurement of the ν e breakout burst unlikely. For the IH, a measurement of the maximum luminosity of the breakout burst could be used to differentiate between nuclear equations of state

  15. Drift Chambers detectors; Detectores de deriva

    Energy Technology Data Exchange (ETDEWEB)

    Duran, I; Martinez laso, L

    1989-07-01

    We present here a review of High Energy Physics detectors based on drift chambers. The ionization, drift diffusion, multiplication and detection principles are described. Most common drift media are analysed, and a classification of the detectors according to its geometry is done. Finally the standard read-out methods are displayed and the limits of the spatial resolution are discussed. (Author) 115 refs.

  16. Optimal adaptive normalized matched filter for large antenna arrays

    KAUST Repository

    Kammoun, Abla

    2016-09-13

    This paper focuses on the problem of detecting a target in the presence of a compound Gaussian clutter with unknown statistics. To this end, we focus on the design of the adaptive normalized matched filter (ANMF) detector which uses the regularized Tyler estimator (RTE) built from N-dimensional observations x, · · ·, x in order to estimate the clutter covariance matrix. The choice for the RTE is motivated by its possessing two major attributes: first its resilience to the presence of outliers, and second its regularization parameter that makes it more suitable to handle the scarcity in observations. In order to facilitate the design of the ANMF detector, we consider the regime in which n and N are both large. This allows us to derive closed-form expressions for the asymptotic false alarm and detection probabilities. Based on these expressions, we propose an asymptotically optimal setting for the regularization parameter of the RTE that maximizes the asymptotic detection probability while keeping the asymptotic false alarm probability below a certain threshold. Numerical results are provided in order to illustrate the gain of the proposed detector over a recently proposed setting of the regularization parameter.

  17. Optimal adaptive normalized matched filter for large antenna arrays

    KAUST Repository

    Kammoun, Abla; Couillet, Romain; Pascal, Fré dé ric; Alouini, Mohamed-Slim

    2016-01-01

    This paper focuses on the problem of detecting a target in the presence of a compound Gaussian clutter with unknown statistics. To this end, we focus on the design of the adaptive normalized matched filter (ANMF) detector which uses the regularized Tyler estimator (RTE) built from N-dimensional observations x, · · ·, x in order to estimate the clutter covariance matrix. The choice for the RTE is motivated by its possessing two major attributes: first its resilience to the presence of outliers, and second its regularization parameter that makes it more suitable to handle the scarcity in observations. In order to facilitate the design of the ANMF detector, we consider the regime in which n and N are both large. This allows us to derive closed-form expressions for the asymptotic false alarm and detection probabilities. Based on these expressions, we propose an asymptotically optimal setting for the regularization parameter of the RTE that maximizes the asymptotic detection probability while keeping the asymptotic false alarm probability below a certain threshold. Numerical results are provided in order to illustrate the gain of the proposed detector over a recently proposed setting of the regularization parameter.

  18. Feature Detector and Descriptor for Medical Images

    Science.gov (United States)

    Sargent, Dusty; Chen, Chao-I.; Tsai, Chang-Ming; Wang, Yuan-Fang; Koppel, Daniel

    2009-02-01

    The ability to detect and match features across multiple views of a scene is a crucial first step in many computer vision algorithms for dynamic scene analysis. State-of-the-art methods such as SIFT and SURF perform successfully when applied to typical images taken by a digital camera or camcorder. However, these methods often fail to generate an acceptable number of features when applied to medical images, because such images usually contain large homogeneous regions with little color and intensity variation. As a result, tasks like image registration and 3D structure recovery become difficult or impossible in the medical domain. This paper presents a scale, rotation and color/illumination invariant feature detector and descriptor for medical applications. The method incorporates elements of SIFT and SURF while optimizing their performance on medical data. Based on experiments with various types of medical images, we combined, adjusted, and built on methods and parameter settings employed in both algorithms. An approximate Hessian based detector is used to locate scale invariant keypoints and a dominant orientation is assigned to each keypoint using a gradient orientation histogram, providing rotation invariance. Finally, keypoints are described with an orientation-normalized distribution of gradient responses at the assigned scale, and the feature vector is normalized for contrast invariance. Experiments show that the algorithm detects and matches far more features than SIFT and SURF on medical images, with similar error levels.

  19. Cryogenic detectors

    International Nuclear Information System (INIS)

    Zehnder, A.

    1987-01-01

    Presently the development of new large scale detector systems, used in very high energy physics experiments, is very active. In the low energy range, the introduction of charge coupled devices allows improved spacial and energy resolution. In the keV region, high resolution can only be achieved via the well established diffraction spectrometers with the well-known disadvantage of a small throughput. There exist no efficient detectors for non-ionizing radiation such as coherent nuclear scattering of weakly interacting particles. The development of high resolution solid state detectors in the keV-region with the possibility of nuclear recoil detection is therefore highly desired. Such detectors applied in astro and particle physics would thus allow one to obtain new information not achievable otherwise. Three types of cryogenic detectors exist: Calorimeters/Bolometers. This type is sensitive to the produced excess phonons and measures the deposited energy by detecting the heat pulses. Excess charge carriers should be used to produce phonons. Tunneling junctions. This type is sensitive to excess charge produced by the Cooper pair breakup. Excess phonons should be used to break up Cooper pairs. Superheated superconducting granules (SSG). An SSG detector consists of granules, the metastability of which is disturbed by radiation. The Meissner effect then causes a change in the field distribution of the applied external field, which can be detected. The present paper discusses the basic principle of calorimetric and tunneling junction detectors and some of their applications. 26 refs., 7 figs., 1 tab

  20. Multi-Detector CT Findings of Palpable Chest Wall Masses in Children: A Pictorial Essay

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chan Ho; Kim, Young Tong [Dept. of Radiology, Soonchunhyang University College of Medicine, Cheonan Hospital, Cheonan (Korea, Republic of); Hong, Hyun Sook [Dept. of Radiology, Soonchunhyang University College of Medicine, Bucheon Hospital, Bucheon (Korea, Republic of)

    2013-03-15

    A wide variety of diseases manifest as palpable chest wall masses in children. These include normal variation, congenital anomalies, trauma, infection, axillary lymphadenopathies, soft tissue tumors and bone tumors. Given that most of these diseases are associated with chest wall deformity, diagnosis is difficult by physical examination or ultrasonography alone. However, multi-detector CT with three dimensional reconstruction is useful in the characterization and differential diagnosis of palpable chest wall lesions. In this article, we review the spectrum of palpable chest wall diseases and illustrate their multi-detector CT presentation.

  1. Scintillating ribbon x-ray detector

    International Nuclear Information System (INIS)

    Kinchen, B.E.; Rogers, A.

    1995-01-01

    A patent in the early 1970's by Aerojet Corporation in Sacramento, CA put forth the idea of using an array of scintillating fibers for x-ray detection and imaging. In about 1975, Pratt and Whitney Aircraft in East Hartford, CT designed and manufactured an imaging system based on the patent. The device was 1.75 in thick in the direction of the x-ray beam and about 4 in. by 4 in. square. The device was used with a 8 MeV x-ray source to image and measure internal clearances within operating aircraft, gas turbines engines. There are significant advantages of fiber optic detectors in x-ray detection. However, the advantages are often outweighed by the disadvantages. Two of the advantages of scintillating fiber optic x-ray detectors are: (1) high limiting spatial frequency -- between 20 and 25 lp/mm; and (2) excellent x-ray stopping power -- they can be made thick and retain spatial resolution. In traditional fiber optic detectors the x-rays are oriented parallel to the long axis of the fiber. For the scintillating ribbon x-ray sensor, the x-rays are oriented normal to the fiber long axis. This ribbon sensor technique has a number of advantages over the two current radiographic techniques digital x-radiography and x-ray film: The main advantage the ribbon has is size and shape. It can be as thin as 0.05 in., virtually any width or length, and flexible. Once positioned in a given location, 20 to 100 square inches of the object being inspected can be imaged with a single x-ray beam sweep. It is clear that conventional digital cameras do not lend themselves to placement between walls of aircraft structures or similar items requiring x-ray inspections. A prototype scintillating ribbon x-ray sensor has been fabricated and tested by Synergistic Detector Designs. Images were acquired on corrosion test panels of aluminum fabricated by Iowa State University

  2. Radiation hardness of silicon detectors - a challenge from high-energy physics

    CERN Document Server

    Lindström, G; Fretwurst, E

    1999-01-01

    An overview of the radiation-damage-induced problems connected with the application of silicon particle detectors in future high-energy physics experiments is given. Problems arising from the expected hadron fluences are summarized and the use of the nonionizing energy loss for normalization of bulk damage is explained. The present knowledge on the deterioration effects caused by irradiation is described leading to an appropriate modeling. Examples are given for a correlation between the change in the macroscopic performance parameters and effects to be seen on the microscopic level by defect analysis. Finally possible ways are out-lined for improving the radiation tolerance of silicon detectors either by operational conditions, process technology or defect engineering.

  3. The DELPHI Detector (DEtector with Lepton Photon and Hadron Identification)

    CERN Multimedia

    Crawley, B; Munich, K; Mckay, R; Matorras, F; Joram, C; Malychev, V; Behrmann, A; Van dam, P; Drees, J K; Stocchi, A; Adam, W; Booth, P; Bilenki, M; Rosenberg, E I; Morton, G; Rames, J; Hahn, S; Cosme, G; Ventura, L; Marco, J; Tortosa martinez, P; Monge silvestri, R; Moreno, S; Phillips, H; Alekseev, G; Boudinov, E; Martinez rivero, C; Gitarskiy, L; Davenport, M; De clercq, C; Firestone, A; Myagkov, A; Belous, K; Haider, S; Hamilton, K M; Lamsa, J; Rahmani, M H; Malek, A; Hughes, G J; Peralta, L; Carroll, L; Fuster verdu, J A; Cossutti, F; Gorn, L; Yi, J I; Bertrand, D; Myatt, G; Richard, F; Shapkin, M; Hahn, F; Ferrer soria, A; Reinhardt, R; Renton, P; Sekulin, R; Timmermans, J; Baillon, P

    2002-01-01

    % DELPHI The DELPHI Detector (Detector with Lepton Photon and Hadron Identification) \\\\ \\\\DELPHI is a general purpose detector for physics at LEP on and above the Z$^0$, offering three-dimensional information on curvature and energy deposition with fine spatial granularity as well as identification of leptons and hadrons over most of the solid angle. A superconducting coil provides a 1.2~T solenoidal field of high uniformity. Tracking relies on the silicon vertex detector, the inner detector, the Time Projection Chamber (TPC), the outer detector and forward drift chambers. Electromagnetic showers are measured in the barrel with high granularity by the High Density Projection Chamber (HPC) and in the endcaps by $ 1 ^0 $~x~$ 1 ^0 $ projective towers composed of lead glass as active material and phototriode read-out. Hadron identification is provided mainly by liquid and gas Ring Imaging Counters (RICH). The instrumented magnet yoke serves for hadron calorimetry and as filter for muons, which are identified in t...

  4. A new high background radiation area in the Geothermal region of Eastern Ghats Mobile Belt (EGMB) of Orissa, India

    International Nuclear Information System (INIS)

    Baranwal, V.C.; Sharma, S.P.; Sengupta, D.; Sandilya, M.K.; Bhaumik, B.K.; Guin, R.; Saha, S.K.

    2006-01-01

    A high natural radiation zone is investigated for the first time in a geothermal region of Eastern Ghats Mobile Belt (EGMB) of Orissa state in India. The surrounding area comprises a geothermal region which has surveyed using a portable pulsed Geiger-Muller counter. On the basis of findings of GM counter, an area was marked as a high radiation zone. Soil and rock samples collected from the high radiation zone were analyzed by γ-ray spectrometry (GRS) using NaI(Tl) detector. The radioactivity is found to be contributed mainly by thorium. Concentration of thorium is reported to be very high compared to their normal abundance in crustal rocks. Further, concentrations of 238 U and 40 K are also high compared to normal abundance in crustal rocks but their magnitude is comparatively less than that of thorium. The average concentrations of 238 U (i.e. U(β-γ)), 232 Th and 40 K are found to be 33, 459ppm and 3%, respectively, in soils and 312, 1723ppm and 5%, respectively, in the granitic rocks. Maximum concentrations of 238 U, 232 Th and 40 K are found to be 95, 1194ppm and 4%, respectively, in soils and 1434, 10,590ppm and 8%, respectively, in the granitic rocks. Radioactive element emits various energies in its decay chain. High energies are utilized to estimate the concentration of actual 238 U, 232 Th and 40 K using a NaI(Tl) detector, however, low energies are used for the same in an HPGe detector. Some of the rock samples (eight in number) were also analyzed using HPGe detector for studying the behavior of low energies emitted in the decay series of uranium and thorium. The absorbed gamma dose rate in air and external annual dose rate of the high radiation zone are calculated to be 2431nGy/h and 3.0mSv/y, respectively. It is approximately 10 times greater than the dose rates obtained outside the high radiation zone. The high concentration of uranium and thorium may be one of the possible heat sources together with the normal geothermal gradient for hot springs

  5. Changes in auxin activity in tumourous and normal tobacco calluses treated with morphactin IT 3233

    Directory of Open Access Journals (Sweden)

    Z. Chirek

    2015-01-01

    Full Text Available The addition of morphactin IT 3233 in 1-40 mg/dm3 concentrations to the medium inhibited the growth in vitro of normal and tumourous tobacco calluses. The auxin activity (estimated by the Avena coleoptile straight growth test of the acid ether extracts from these tissues increased. The activity of zone I (Rf 0.2-0.4, 0.5, solvent system: butanol:water:ammonia 10:10:1 in normal tissues increased more intensively than that of zone II (Rf 0.6-0.8, 0.9. In tumourous tissues, however, these changes were smaller and they concerned merely zone I of auxin activity (Rf 0.0-0.5. It seems that the mechanism of morphactin activity in both kinds of tissue is different. It may be supposed that the excessive accumulation of auxins induces growth inhibition of tissues. A previously found increase in the activity of IAA-oxidase influenced by morphactin might be considered as an adaptation to a higher level of IAA.

  6. Detector applications

    International Nuclear Information System (INIS)

    Pehl, R.H.

    1977-10-01

    Semiconductor detectors are now applied to a very wide range of problems. The combination of relatively low cost, excellent energy resolution, and simultaneous broad energy-spectrum analysis is uniquely suited to many applications in both basic and applied physics. Alternative techniques, such as magnetic spectrometers for charged-particle spectroscopy, while offering better energy resolution, are bulky, expensive, and usually far more difficult to use. Furthermore, they do not directly provide the broad energy-spectrum measurements easily accomplished using semiconductor detectors. Scintillation detectors, which are approximately equivalent to semiconductor detectors in convenience and cost, exhibit 10 to 100 times worse energy resolution. However, their high efficiency and large potential size recommend their use in some measurements

  7. Zone separator for multiple zone vessels

    Science.gov (United States)

    Jones, John B.

    1983-02-01

    A solids-gas contact vessel, having two vertically disposed distinct reaction zones, includes a dynamic seal passing solids from an upper to a lower zone and maintaining a gas seal against the transfer of the separate treating gases from one zone to the other, and including a stream of sealing fluid at the seal.

  8. Adaptive Iterative Soft-Input Soft-Output Parallel Decision-Feedback Detectors for Asynchronous Coded DS-CDMA Systems

    Directory of Open Access Journals (Sweden)

    Zhang Wei

    2005-01-01

    Full Text Available The optimum and many suboptimum iterative soft-input soft-output (SISO multiuser detectors require a priori information about the multiuser system, such as the users' transmitted signature waveforms, relative delays, as well as the channel impulse response. In this paper, we employ adaptive algorithms in the SISO multiuser detector in order to avoid the need for this a priori information. First, we derive the optimum SISO parallel decision-feedback detector for asynchronous coded DS-CDMA systems. Then, we propose two adaptive versions of this SISO detector, which are based on the normalized least mean square (NLMS and recursive least squares (RLS algorithms. Our SISO adaptive detectors effectively exploit the a priori information of coded symbols, whose soft inputs are obtained from a bank of single-user decoders. Furthermore, we consider how to select practical finite feedforward and feedback filter lengths to obtain a good tradeoff between the performance and computational complexity of the receiver.

  9. Detection of On-Chip Generated Weak Microwave Radiation Using Superconducting Normal-Metal SET

    Directory of Open Access Journals (Sweden)

    Behdad Jalali-Jafari

    2016-01-01

    Full Text Available The present work addresses quantum interaction phenomena of microwave radiation with a single-electron tunneling system. For this study, an integrated circuit is implemented, combining on the same chip a Josephson junction (Al/AlO x /Al oscillator and a single-electron transistor (SET with the superconducting island (Al and normal-conducting leads (AuPd. The transistor is demonstrated to operate as a very sensitive photon detector, sensing down to a few tens of photons per second in the microwave frequency range around f ∼ 100 GHz. On the other hand, the Josephson oscillator, realized as a two-junction SQUID and coupled to the detector via a coplanar transmission line (Al, is shown to provide a tunable source of microwave radiation: controllable variations in power or in frequency were accompanied by significant changes in the detector output, when applying magnetic flux or adjusting the voltage across the SQUID, respectively. It was also shown that the effect of substrate-mediated phonons, generated by our microwave source, on the detector output was negligibly small.

  10. On determining dead layer and detector thicknesses for a position-sensitive silicon detector

    Science.gov (United States)

    Manfredi, J.; Lee, Jenny; Lynch, W. G.; Niu, C. Y.; Tsang, M. B.; Anderson, C.; Barney, J.; Brown, K. W.; Chajecki, Z.; Chan, K. P.; Chen, G.; Estee, J.; Li, Z.; Pruitt, C.; Rogers, A. M.; Sanetullaev, A.; Setiawan, H.; Showalter, R.; Tsang, C. Y.; Winkelbauer, J. R.; Xiao, Z.; Xu, Z.

    2018-04-01

    In this work, two particular properties of the position-sensitive, thick silicon detectors (known as the "E" detectors) in the High Resolution Array (HiRA) are investigated: the thickness of the dead layer on the front of the detector, and the overall thickness of the detector itself. The dead layer thickness for each E detector in HiRA is extracted using a measurement of alpha particles emitted from a 212Pb pin source placed close to the detector surface. This procedure also allows for energy calibrations of the E detectors, which are otherwise inaccessible for alpha source calibration as each one is sandwiched between two other detectors. The E detector thickness is obtained from a combination of elastically scattered protons and an energy-loss calculation method. Results from these analyses agree with values provided by the manufacturer.

  11. Detector Control System for the AFP detector in ATLAS experiment at CERN

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00211068; The ATLAS collaboration; Caforio, Davide; Czekierda, Sabina; Hajduk, Zbigniew; Olszowska, Jolanta; Oleiro Seabra, Luis Filipe; Sicho, Petr

    2017-01-01

    The ATLAS Forward Proton (AFP) detector consists of two forward detectors located at 205 m and 217 m on either side of the ATLAS experiment. The aim is to measure the momenta and angles of diffractively scattered protons. In 2016, two detector stations on one side of the ATLAS interaction point were installed and commissioned. The detector infrastructure and necessary services were installed and are supervised by the Detector Control System (DCS), which is responsible for the coherent and safe operation of the detector. A large variety of used equipment represents a considerable challenge for the AFP DCS design. Industrial Supervisory Control and Data Acquisition (SCADA) product Siemens WinCCOA, together with the CERN Joint Control Project (JCOP) framework and standard industrial and custom developed server applications and protocols are used for reading, processing, monitoring and archiving of the detector parameters. Graphical user interfaces allow for overall detector operation and visualization of the det...

  12. Strip detector for the ATLAS detector upgrade for the High-Luminosity LHC

    CERN Document Server

    Veloce, Laurelle Maria; The ATLAS collaboration

    2017-01-01

    The ATLAS experiment is currently preparing for an upgrade of the tracking system in the course of the High Luminosity LHC, scheduled for 2025. The expected radiation damage at an integrated luminosity of 3000fb-1 will require the tracking detectors to withstand hadron fluencies to over 1x1016 1 MeV neutron equivalent per cm2. With the addition of increased readout rates, the existing Inner Detector will have to be replaced by an all-silicon Inner Tracker (ITk) with a pixel detector surrounded by a strip detector. The ITk strip detector consists of a four-layer barrel and a forward region composed of six discs on each side of the barrel. The current prototyping phase has resulted in the ITk Strip Detector Technical Design Report (TDR), which starts the pre-production readiness phase at the involved institutes. In this contribution we present the design of the ITk Strip Detector and current status of R&D of various detector components.

  13. Silicon radiation detectors

    International Nuclear Information System (INIS)

    Lutz, G.

    1995-01-01

    An introduction to and an overview of function principles and properties of semiconductor radiation detectors is attempted. The paper is addressed to people interested in detector development but not already experts in the field of semiconductor detectors. (orig.)

  14. Silicon Sensor and Detector Developments for the CMS Tracker Upgrade

    CERN Document Server

    D'Alessandro, Raffaello

    2011-01-01

    CMS started a campaign to identify the future silicon sensor technology baseline for a new Tracker for the high-luminosity phase of LHC, coupled to a new effective way of providing tracking information to the experiment trigger. To this end a large variety of 6'' wafers was acquired in different thicknesses and technologies at HPK and new detector module designs were investigated. Detector thicknesses ranging from 50$\\mu$m to 300$\\mu$m are under investigation on float zone, magnetic Czochralski and epitaxial material both in n-in-p and p-in-n versions. P-stop and p-spray are explored as isolation technology for the n-in-p type sensors as well as the feasibility of double metal routing on 6'' wafers. Each wafer contains different structures to answer different questions, e.g. influence of geometry, Lorentz angle, radiation tolerance, annealing behaviour, validation of read-out schemes. Dedicated process test-structures, as well as diodes, mini-sensors, long and very short strip sensors and real pixel sensors ...

  15. Smile detectors correlation

    Science.gov (United States)

    Yuksel, Kivanc; Chang, Xin; Skarbek, Władysław

    2017-08-01

    The novel smile recognition algorithm is presented based on extraction of 68 facial salient points (fp68) using the ensemble of regression trees. The smile detector exploits the Support Vector Machine linear model. It is trained with few hundreds exemplar images by SVM algorithm working in 136 dimensional space. It is shown by the strict statistical data analysis that such geometric detector strongly depends on the geometry of mouth opening area, measured by triangulation of outer lip contour. To this goal two Bayesian detectors were developed and compared with SVM detector. The first uses the mouth area in 2D image, while the second refers to the mouth area in 3D animated face model. The 3D modeling is based on Candide-3 model and it is performed in real time along with three smile detectors and statistics estimators. The mouth area/Bayesian detectors exhibit high correlation with fp68/SVM detector in a range [0:8; 1:0], depending mainly on light conditions and individual features with advantage of 3D technique, especially in hard light conditions.

  16. The solenoidal detector collaboration silicon detector system

    International Nuclear Information System (INIS)

    Ziock, H.J.; Gamble, M.T.; Miller, W.O.; Palounek, A.P.T.; Thompson, T.C.

    1992-01-01

    Silicon tracking systems (STS) will be fundamental components of the tracking systems for both planned major SSC experiments. The STS is physically a small part of the central tracking system and the calorimeter of the detector being proposed by the Solenoidal Detector Collaboration (SDC). Despite its seemingly small size, it occupies a volume of more than 5 meters in length and 1 meter in diameter and is an order of magnitude larger than any silicon detector system previously built. The STS will consist of silicon microstrip detectors and possibly silicon pixel detectors. The other two components are an outer barrel tracker, which will consist of straw tubes or scintillating fibers; and an outer intermediate angle tracker, which will consist of gas microstrips. The components are designed to work as an integrated system. Each componenet has specific strengths, but is individually incapable of providing the overall performance required by the physics goals of the SSC. The large particle fluxes, the short times between beam crossing, the high channel count, and the required very high position measurement accuracy pose challenging problems that must be solved. Furthermore, to avoid degrading the measurements, the solutions must be achieved using only a minimal amount of material. An additional constraint is that only low-Z materials are allowed. If that were not difficlut enough, the solutions must also be affordable

  17. One dimensional spatial resolution optimization on a hybrid low field MRI-gamma detector

    Energy Technology Data Exchange (ETDEWEB)

    Agulles-Pedrós, L., E-mail: lagullesp@unal.edu.co; Abril, A., E-mail: ajabrilf@unal.edu.co [Medical Physics Group, Physics Department, Universidad Nacional de Colombia, Bogotá (Colombia)

    2016-07-07

    Hybrid systems like Positron Emission Tomography/Magnetic Resonance Imaging (PET/MRI) and MRI/gamma camera, offer advantages combining the resolution and contrast capability of MRI with the better contrast and functional information of nuclear medicine techniques. However, the radiation detectors are expensive and need an electronic set-up, which can interfere with the MRI acquisition process or viceversa. In order to improve these drawbacks, in this work it is presented the design of a low field NMR system made up of permanent magnets compatible with a gamma radiation detector based on gel dosimetry. The design is performed using the software FEMM for estimation of the magnetic field, and GEANT4 for the physical process involved in radiation detection and effect of magnetic field. The homogeneity in magnetic field is achieved with an array of NbFeB magnets in a linear configuration with a separation between the magnets, minimizing the effect of Compton back scattering compared with a no-spacing linear configuration. The final magnetic field in the homogeneous zone is ca. 100 mT. In this hybrid proposal, although the gel detector do not have spatial resolution per se, it is possible to obtain a dose profile (1D image) as a function of the position by using a collimator array. As a result, the gamma detector system described allows a complete integrated radiation detector within the low field NMR (lfNMR) system. Finally we present the better configuration for the hybrid system considering the collimator parameters such as height, thickness and distance.

  18. Assembly, characterization, and operation of large-scale TES detector arrays for ACTPol

    Science.gov (United States)

    Pappas, Christine Goodwin

    2016-01-01

    The Polarization-sensitive Receiver for the Atacama Cosmology Telescope (ACTPol) is designed to measure the Cosmic Microwave Background (CMB) temperature and polarization anisotropies on small angular scales. Measurements of the CMB temperature and polarization anisotropies have produced arguably the most important cosmological data to date, establishing the LambdaCDM model and providing the best constraints on most of its parameters. To detect the very small fluctuations in the CMB signal across the sky, ACTPol uses feedhorn-coupled Transition-Edge Sensor (TES) detectors. A TES is a superconducting thin film operated in the transition region between the superconducting and normal states, where it functions as a highly sensitive resistive thermometer. In this thesis, aspects of the assembly, characterization, and in-field operation of the ACTPol TES detector arrays are discussed. First, a novel microfabrication process for producing high-density superconducting aluminum/polyimide flexible circuitry (flex) designed to connect large-scale detector arrays to the first stage of readout is presented. The flex is used in parts of the third ACTPol array and is currently being produced for use in the AdvACT detector arrays, which will begin to replace the ACTPol arrays in 2016. Next, we describe methods and results for the in-lab and on-telescope characterization of the detectors in the third ACTPol array. Finally, we describe the ACTPol TES R(T,I) transition shapes and how they affect the detector calibration and operation. Methods for measuring the exact detector calibration and re-biasing functions, taking into account the R(T,I) transition shape, are presented.

  19. The OSMOND detector

    Energy Technology Data Exchange (ETDEWEB)

    Bateman, J.E. [Technology Dept. Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Oxfordshire, OX11 0QX (United Kingdom); Dalgliesh, R. [ISIS Dept. Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Oxfordshire, OX11 0QX (United Kingdom); Duxbury, D.M., E-mail: dom.duxbury@stfc.ac.uk [Technology Dept. Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Oxfordshire, OX11 0QX (United Kingdom); Helsby, W.I. [Science and Technology Facilities Council, Daresbury Laboratory, Keckwick Lane, Daresbury, Warrington WA4 4AD (United Kingdom); Holt, S.A.; Kinane, C.J. [ISIS Dept. Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Oxfordshire, OX11 0QX (United Kingdom); Marsh, A.S. [Diamond Light Source LTD, Harwell Science and Innovation Campus, Diamond House, Chilton, Didcot, Oxfordshire, OX11 0DE (United Kingdom); Rhodes, N.J.; Schooneveld, E.M. [ISIS Dept. Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Oxfordshire, OX11 0QX (United Kingdom); Spill, E.J.; Stephenson, R. [Technology Dept. Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Oxfordshire, OX11 0QX (United Kingdom)

    2013-01-11

    The development and testing of the Off Specular MicrOstrip Neutron Detector (OSMOND) is described. Based on a microstrip gas chamber the aim of the project was to produce a high counting rate detector capable of replacing the existing rate limited scintillator detectors currently in use on the CRISP reflectometer for off specular reflectometry experiments. The detector system is described together with results of neutron beam tests carried out at the ISIS spallation neutron source.

  20. Dopamine D2 receptor expression in the corticotroph cells of the human normal pituitary gland.

    Science.gov (United States)

    Pivonello, Rosario; Waaijers, Marlijn; Kros, Johan M; Pivonello, Claudia; de Angelis, Cristina; Cozzolino, Alessia; Colao, Annamaria; Lamberts, Steven W J; Hofland, Leo J

    2017-08-01

    The dopamine D 2 receptor is the main dopamine receptor expressed in the human normal pituitary gland. The aim of the current study was to evaluate dopamine D 2 receptor expression in the corticotroph cell populations of the anterior lobe and pars intermedia, as well as posterior lobe of the human normal pituitary gland by immunohistochemistry. Human normal pituitary gland samples obtained from routine autopsies were used for the study. In all cases, histology together with immunostaining for adrenocorticotropic hormone, melanocyte-stimulating hormone, prolactin, and neurofilaments were performed and compared to the immunostaining for D 2 receptor. D 2 receptor was heterogeneously expressed in the majority of the cell populations of the anterior and posterior lobe as well as in the area localized between the anterior and posterior lobe, and arbitrary defined as "intermediate zone". This zone, characterized by the presence of nerve fibers included the residual pars intermedia represented by the colloid-filled cysts lined by the remnant melanotroph cells strongly expressing D 2 receptors, and clusters of corticotroph cells, belonging to the anterior lobe but localized within the cysts and adjacent to the posterior lobe, variably expressing D 2 receptors. D 2 dopamine receptor is expressed in the majority of the cell populations of the human normal pituitary gland, and particularly, in the different corticotroph cell populations localized in the anterior lobe and the intermediate zone of the pituitary gland.

  1. The dielectric track and thermoluminescent detectors applied to neutron dosimetry in personnel monitoring

    International Nuclear Information System (INIS)

    Mebhah, D.

    1984-03-01

    The personnal dosimeter for neutron based on the detection of fission fragments from 237 Np and 232 Th by a polycarbonate 10 gm, and lithium fluorite 6 LIF/ 7 LIF, allow to cover an energy spectrum from 0.05 eV to 14 MeV with a easy neutron gamma discrimination. In criticality dosimetry, the energy spectrum of the incident neutrons can be defined by two components: the fast component by E b exp(-ae) with E between 0.1 and 14 MeV, a and b determined by a combination of 237 Np and 232 Th track detector responses, and the epithermal component in 1/E, the thermal component having a minor contribution to the total equivalent dose. We took into account the body influence on the detectors response by introducing effective cross section. The equivalent dose obtained by this dosimeter is 20% overestimated in low doses dosimetry. The interpretation of the detectors responses is based on the definition of a factor and a calibration parameter for each zone in which the spectrum is constant. The knowledge of this parameter for individual dosimeters allows to account for the variations of the conditions of calibration

  2. Monte Carlo simulation of the X-ray response of a germanium microstrip detector with energy and position resolution

    CERN Document Server

    Rossi, G; Fajardo, P; Morse, J

    1999-01-01

    We present Monte Carlo computer simulations of the X-ray response of a micro-strip germanium detector over the energy range 30-100 keV. The detector consists of a linear array of lithographically defined 150 mu m wide strips on a high purity monolithic germanium crystal of 6 mm thickness. The simulation code is divided into two parts. We first consider a 10 mu m wide X-ray beam striking the detector surface at normal incidence and compute the interaction processes possible for each photon. Photon scattering and absorption inside the detector crystal are simulated using the EGS4 code with the LSCAT extension for low energies. A history of events is created of the deposited energies which is read by the second part of the code which computes the energy histogram for each detector strip. Appropriate algorithms are introduced to account for lateral charge spreading occurring during charge carrier drift to the detector surface, and Fano and preamplifier electronic noise contributions. Computed spectra for differen...

  3. Detector trends

    International Nuclear Information System (INIS)

    Charpak, G.

    1986-01-01

    The author describes briefly the development of detectors for high energy physics experiments. Especially considered are semiconductor microstrip detectors, drift tubes, holographic bubble chambers, scintillating fiber optics, and calorimeters. (HSI).

  4. DEPFET-detectors: New developments

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, G. [MPI Semiconductor Laboratory, Max Planck Institut fuer Physik, Otto Hahn Ring 6, D 81739 Munich (Germany)]. E-mail: gerhard.lutz@cern.ch; Andricek, L. [MPI Semiconductor Laboratory, Max Planck Institut fuer Physik, Otto Hahn Ring 6, D 81739 Munich (Germany); Eckardt, R. [MPI Semiconductor Laboratory, Max Planck Institut fuer extraterrestrische Physik, Otto Hahn Ring 6, D 81739 Munich (Germany); Haelker, O. [MPI Semiconductor Laboratory, Max Planck Institut fuer extraterrestrische Physik, Otto Hahn Ring 6, D 81739 Munich (Germany); Hermann, S. [MPI Semiconductor Laboratory, Max Planck Institut fuer extraterrestrische Physik, Otto Hahn Ring 6, D 81739 Munich (Germany); Lechner, P. [MPI Semiconductor Laboratory, PNSensor GmbH, Otto Hahn Ring 6, D 81739 Munich (Germany); Richter, R. [MPI Semiconductor Laboratory, Max Planck Institut fuer Physik, Otto Hahn Ring 6, D 81739 Munich (Germany); Schaller, G. [MPI Semiconductor Laboratory, Max Planck Institut fuer extraterrestrische Physik, Otto Hahn Ring 6, D 81739 Munich (Germany); Schopper, F. [MPI Semiconductor Laboratory, Max Planck Institut fuer extraterrestrische Physik, Otto Hahn Ring 6, D 81739 Munich (Germany); Soltau, H. [MPI Semiconductor Laboratory, PNSensor GmbH, Otto Hahn Ring 6, D 81739 Munich (Germany); Strueder, L. [MPI Semiconductor Laboratory, Max Planck Institut fuer extraterrestrische Physik, Otto Hahn Ring 6, D 81739 Munich (Germany); Treis, J. [MPI Semiconductor Laboratory, Max Planck Institut fuer extraterrestrische Physik, Otto Hahn Ring 6, D 81739 Munich (Germany); Woelfl, S. [MPI Semiconductor Laboratory, Max Planck Institut fuer extraterrestrische Physik, Otto Hahn Ring 6, D 81739 Munich (Germany); Zhang, C. [MPI Semiconductor Laboratory, Max Planck Institut fuer extraterrestrische Physik, Otto Hahn Ring 6, D 81739 Munich (Germany)

    2007-03-01

    The Depleted Field Effect Transistor (DEPFET) detector-amplifier structure forms the basis of a variety of detectors being developed at the MPI semiconductor laboratory. These detectors are foreseen to be used in astronomy and particle physics as well as other fields of science. The detector developments are described together with some intended applications. They comprise the X-ray astronomy missions XEUS and SIMBOL-X as well as the vertex detector of the planned International Linear Collider (ILC). All detectors are produced in the MPI semiconductor laboratory that has a complete silicon technology available.

  5. DEPFET-detectors: New developments

    International Nuclear Information System (INIS)

    Lutz, G.; Andricek, L.; Eckardt, R.; Haelker, O.; Hermann, S.; Lechner, P.; Richter, R.; Schaller, G.; Schopper, F.; Soltau, H.; Strueder, L.; Treis, J.; Woelfl, S.; Zhang, C.

    2007-01-01

    The Depleted Field Effect Transistor (DEPFET) detector-amplifier structure forms the basis of a variety of detectors being developed at the MPI semiconductor laboratory. These detectors are foreseen to be used in astronomy and particle physics as well as other fields of science. The detector developments are described together with some intended applications. They comprise the X-ray astronomy missions XEUS and SIMBOL-X as well as the vertex detector of the planned International Linear Collider (ILC). All detectors are produced in the MPI semiconductor laboratory that has a complete silicon technology available

  6. Deformation around basin scale normal faults

    International Nuclear Information System (INIS)

    Spahic, D.

    2010-01-01

    in the central Vienna Basin from commercial 3D seismic data. In addition to detailed conventional fault analysis (displacement and fault shape), syn-and anticlinal structures of sedimentary horizons occurring both in hanging wall and footwall are assessed. Reverse drag geometries of variable magnitudes are found to correlate with local displacement maxima along the fault. In contrast, normal drag is observed along segment boundaries and relay zones. Thus, the detailed documentation of the distribution, type and magnitude of fault drag provides additional information on the fault evolution, as initial fault segments as well as linkage or relay zones can be identified. (author) [de

  7. Comparing the Normalized Difference Infrared Index (NDII) with root zone storage in a lumped conceptual model

    NARCIS (Netherlands)

    Sriwongsitanon, Nutchanart; Gao, H.; Savenije, H.H.G.; Maekan, Ekkarin; Saengsawang, Sirikanya; Thianpopirug, Sansarith

    2016-01-01

    With remote sensing we can readily observe the Earth’s surface, but direct observation of the sub-surface remains a challenge. In hydrology, but also in related disciplines such as agricultural and atmospheric sciences, knowledge of the dynamics of soil moisture in the root zone of vegetation is

  8. Handling missing data for the identification of charged particles in a multilayer detector: A comparison between different imputation methods

    Energy Technology Data Exchange (ETDEWEB)

    Riggi, S., E-mail: sriggi@oact.inaf.it [INAF - Osservatorio Astrofisico di Catania (Italy); Riggi, D. [Keras Strategy - Milano (Italy); Riggi, F. [Dipartimento di Fisica e Astronomia - Università di Catania (Italy); INFN, Sezione di Catania (Italy)

    2015-04-21

    Identification of charged particles in a multilayer detector by the energy loss technique may also be achieved by the use of a neural network. The performance of the network becomes worse when a large fraction of information is missing, for instance due to detector inefficiencies. Algorithms which provide a way to impute missing information have been developed over the past years. Among the various approaches, we focused on normal mixtures’ models in comparison with standard mean imputation and multiple imputation methods. Further, to account for the intrinsic asymmetry of the energy loss data, we considered skew-normal mixture models and provided a closed form implementation in the Expectation-Maximization (EM) algorithm framework to handle missing patterns. The method has been applied to a test case where the energy losses of pions, kaons and protons in a six-layers’ Silicon detector are considered as input neurons to a neural network. Results are given in terms of reconstruction efficiency and purity of the various species in different momentum bins.

  9. Parapapillary atrophy: histological gamma zone and delta zone.

    Directory of Open Access Journals (Sweden)

    Jost B Jonas

    Full Text Available BACKGROUND: To examine histomorphometrically the parapapillary region in human eyes. METHODOLOGY/PRINCIPAL FINDINGS: The histomorphometric study included 65 human globes (axial length:21-37 mm. On anterior-posterior histological sections, we measured the distance Bruch's membrane end (BME-optic nerve margin ("Gamma zone", BME-retinal pigment epithelium (RPE ("Beta zone", BME-beginning of non-occluded choriocapillaris, and BME-beginning of photoreceptor layer. "Delta zone" was defined as part of gamma zone in which blood vessels of at least 50 µm diameter were not present over a length of >300 µm. Beta zone (mean length:0.35±0.52 mm was significantly (P = 0.01 larger in the glaucoma group than in the non-glaucomatous group. It was not significantly (P = 0.28 associated with axial length. Beta zone was significantly (P = 0.004 larger than the region with occluded choriocapillaris. Gamma zone (mean length:0.63±1.25 mm was associated with axial length (P50 µm diameter within gamma zone was present only in highly axially elongated globes and was not related with glaucoma. Beta zone (Bruch's membrane without RPE was correlated with glaucoma but not with globe elongation. Since the region with occluded choriocapillaris was smaller than beta zone, complete loss of RPE may have occurred before complete choriocapillaris closure.

  10. The distribution of YKL-40 in osteoarthritic and normal human articular cartilage

    DEFF Research Database (Denmark)

    Volck, B; Ostergaard, K; Johansen, J S

    1999-01-01

    YKL-40, also called human cartilage glycoprotein-39, is a major secretory protein of human chondrocytes in cell culture. YKL-40 mRNA is expressed by cartilage from patients with rheumatoid arthritis, but is not detectable in normal human cartilage. The aim was to investigate the distribution of YKL......-40 in osteoarthritic (n=9) and macroscopically normal (n=5) human articular cartilage, collected from 12 pre-selected areas of the femoral head, to discover a potential role for YKL-40 in cartilage remodelling in osteoarthritis. Immunohistochemical analysis showed that YKL-40 staining was found...... in chondrocytes of osteoarthritic cartilage mainly in the superficial and middle zone of the cartilage rather than the deep zone. There was a tendency for high number of YKL-40 positive chondrocytes in areas of the femoral head with a considerable biomechanical load. The number of chondrocytes with a positive...

  11. Internal architecture, permeability structure, and hydrologic significance of contrasting fault-zone types

    Science.gov (United States)

    Rawling, Geoffrey C.; Goodwin, Laurel B.; Wilson, John L.

    2001-01-01

    The Sand Hill fault is a steeply dipping, large-displacement normal fault that cuts poorly lithified Tertiary sediments of the Albuquerque basin, New Mexico, United States. The fault zone does not contain macroscopic fractures; the basic structural element is the deformation band. The fault core is composed of foliated clay flanked by structurally and lithologically heterogeneous mixed zones, in turn flanked by damage zones. Structures present within these fault-zone architectural elements are different from those in brittle faults formed in lithified sedimentary and crystalline rocks that do contain fractures. These differences are reflected in the permeability structure of the Sand Hill fault. Equivalent permeability calculations indicate that large-displacement faults in poorly lithified sediments have little potential to act as vertical-flow conduits and have a much greater effect on horizontal flow than faults with fractures.

  12. Global peak flux profile of proton precipitation in the equatorial zone

    International Nuclear Information System (INIS)

    Miah, M.A.

    1991-01-01

    Particle precipitation near the equator within ± 30deg geomagnetic latitude was investigated by the Phoenix-1 instrumentation on board the S81-1 mission. The monitor telescope on board the mission was sensitive to protons in the energy range 0.6-9.1 MeV, to alpha particles in the energy range 0.4-80 MeV/nucleon and Z→3 particles ( 12 C) of energy greater than 0.7 MeV/nucleon. The peak efficiency of the telescope was for particles of ∼88deg pitch angles at the line of minimum magnetic field. Careful separation of the magnetically quiet time equatorial particle data from global data coverage and subsequent analysis shows that the ML detector on board the mission detected mostly protons. The proton peak flux profile follows the line of minimum magnetic field. The full width at half maximum (FWHM) of the equatorial zone is ∼ 13deg, which is well within the EUV emission zone. (author). 14 refs., 9 figs

  13. Position-sensitive superconductor detectors

    International Nuclear Information System (INIS)

    Kurakado, M.; Taniguchi, K.

    2016-01-01

    Superconducting tunnel junction (STJ) detectors and superconducting transition- edge sensors (TESs) are representative superconductor detectors having energy resolutions much higher than those of semiconductor detectors. STJ detectors are thin, thereby making it suitable for detecting low-energy X rays. The signals of STJ detectors are more than 100 times faster than those of TESs. By contrast, TESs are microcalorimeters that measure the radiation energy from the change in the temperature. Therefore, signals are slow and their time constants are typically several hundreds of μs. However, TESs possess excellent energy resolutions. For example, TESs have a resolution of 1.6 eV for 5.9-keV X rays. An array of STJs or TESs can be used as a pixel detector. Superconducting series-junction detectors (SSJDs) comprise multiple STJs and a single-crystal substrate that acts as a radiation absorber. SSJDs are also position sensitive, and their energy resolutions are higher than those of semiconductor detectors. In this paper, we give an overview of position-sensitive superconductor detectors.

  14. The CosmicWatch Desktop Muon Detector: a self-contained, pocket sized particle detector

    Science.gov (United States)

    Axani, S. N.; Frankiewicz, K.; Conrad, J. M.

    2018-03-01

    The CosmicWatch Desktop Muon Detector is a self-contained, hand-held cosmic ray muon detector that is valuable for astro/particle physics research applications and outreach. The material cost of each detector is under 100 and it takes a novice student approximately four hours to build their first detector. The detectors are powered via a USB connection and the data can either be recorded directly to a computer or to a microSD card. Arduino- and Python-based software is provided to operate the detector and an online application to plot the data in real-time. In this paper, we describe the various design features, evaluate the performance, and illustrate the detectors capabilities by providing several example measurements.

  15. Application of the multisphere technique. Calibration and use of a modified Multiple Probe Detector

    International Nuclear Information System (INIS)

    Lalande, R.

    1966-11-01

    The study concerns the search for a portable, compact device with a great autonomy of operation, able to carry out precise measurements of fast neutrons in exclusion zones. A DSM-type multi-probe detector, which is self-contained and fully transistorized, have been studied; it includes a storage battery with a 30 hour autonomy and a buffering capability, a pulse amplifier, an integrator (sensitivity 4 c / s - 200 c / s - 2000 c / s), a totalizer to carry out counting on 5 mm, and a SNR fast neutron probe equipped with its preamplifier. Slightly modified, this device perfectly fulfills the operating conditions. Designed to precisely define the relationship between the flow and the dose intensity, it allows to calibrate any type of fast neutrons detector (e.g. BF 3 or unmodified DSM) that will respond correctly and will provide routine monitoring at a facility

  16. Gas filled detectors

    International Nuclear Information System (INIS)

    Stephan, C.

    1993-01-01

    The main types of gas filled nuclear detectors: ionization chambers, proportional counters, parallel-plate avalanche counters (PPAC) and microstrip detectors are described. New devices are shown. A description of the processes involved in such detectors is also given. (K.A.) 123 refs.; 25 figs.; 3 tabs

  17. Cohesive zone modeling of intergranular cracking in polycrystalline aggregates

    International Nuclear Information System (INIS)

    Simonovski, Igor; Cizelj, Leon

    2015-01-01

    Highlights: • Alternative approach to cohesive elements is proposed: cohesive-zone contact. • Applicability to measured and simulated grain structures is demonstrated. • Normal and normal/shear separation as a damage initialization is explored. • Normal/shear damage initialization significantly reduces ductility. • Little difference in Voronoi aggregate size on macroscopic response. - Abstract: Understanding and controlling early damage initiation and evolution are amongst the most important challenges in nuclear power plants, occurring in ferritic, austenitic steels and nickel based alloys. In this work a meso-scale approach to modeling initiation and evolution of early intergranular cracking is presented. This damage mechanism is present in a number of nuclear power plant components and depends on the material (e.g. composition, heat treatment, microstructure), environment and load. Finite element modeling is used to explicitly model the microstructure – both the grains and the grain boundaries. Spatial Voronoi tessellation is used to obtain the grain topology. In addition, measured topology of a 0.4 mm stainless steel wire is used. Anisotropic elasticity and crystal plasticity are used as constitutive laws for the grains. Grain boundaries are modeled using the cohesive zone approach. Different modeling assumptions/parameters are evaluated against the numerical stability criteria. The biggest positive contribution to numerical stability is the use of cohesive-type contact instead of cohesive elements. A small amount of viscous regularization should be also used along with the addition of a small amount of viscous forces to the global equilibrium equations. Two cases of grain boundary damage initiation are explored: (1) initiation due to normal separation and (2) initiation due to a combination of normal and shear separation. The second criterion significantly decreases the ductility of an aggregate and slightly improves the numerical stability

  18. Determination of sodium bis(2-ethylhexylsulfosuccinate (AOT surfactant with liquid chromatography: Comparative study of evaporative light scattering detector, ultraviolet detector and conductivity detector

    Directory of Open Access Journals (Sweden)

    Ho Ryul Ryu

    2010-03-01

    Full Text Available This work presents comparison of performance of ultraviolet (UV detector, conductivity detector (CD and evaporative light scattering detector (ELSD in terms of quantitative analysis of AOT (sodium bis(2-ethylhexylsulfosuccinate using liquid chromatography. The employed chromatographic condition, including an acetonitrile/water (45:55, v/v isocratic eluent system, is suitable for the three different detectors, and the figures of merits obtained by building up calibration plots are compared. The sensitivities of the detectors are in the order of ELSD ≈ CD >> UV detector. The linear range for quantification of AOT depends on the type of detector: the lower limits are in the order of UV detector (207 ㎍ mL-1 < CD (310 ㎍ mL-1 << ELSD (930 ㎍ mL-1, while the upper limits are 3720 ㎍ mL-1 for all the detectors (the maximum concentration of injected standard solution. The detection limits are 155 ㎍ mL-1 for ELSD, 78 ㎍ mL-1 for UV detector and 13 ㎍ mL-1 for CD, respectively. The figures of merit for each detector could be a guideline in choosing a detector in quantization of AOT. Furthermore, application of the chromatographic method to two commercial products is demonstrated.

  19. Characteristics of patients with a significant stenosis in a conventional coronary angiogram with a normal multi-detector computed tomographic coronary angiogram

    International Nuclear Information System (INIS)

    Jeong, Hae Chang; Ahn, Youngkeun; Jeong, Myung Ho

    2009-01-01

    Multi-detector computed tomography (MDCT) has high diagnostic value for detecting or excluding coronary artery stenosis. However, conventional coronary angiograms (CCA) are occasionally required in patients having persistent chest pain with normal MDCT. We retrospectively analyzed 90 patients who underwent CCA due to persistent chest pain with normal MDCT. The patients were classified into patients having more than 50% diameter stenosis in CCA (false negative, group I: n=14, 62.6±7.5 years, 7 males) and those having less than 50% diameter stenosis (true negative, group II: n=76, 52.1±12.0 years, 42 males). Significant stenosis was observed in 9 patients at the left anterior descending artery, 4 at the right coronary artery, and 1 at the left circumflex artery in group I. Group I patients were older than group II patients (63±8 versus 52±12 years, P<0.001). There were more patients with hypertension and smoking in group I (64.3% versus 7.9%, 35.7% versus 3.9%, P<0.001, P<0.001, respectively). The levels of uric acid and homocysteine were higher in group I than in group II (5.7±1.5 versus 4.6±1.2 mg/dL, 9.6±3.1 versus 7.4±2.5 mol/L, P=0.008, P=0.010, respectively). There were more ST or T changes in the electrocardiograms in group I (35.7% versus 1.3%) (P<0.001). In multivariate analysis, a history of hypertension, uric acid levels, and ischemic evidence in the electrocardiogram were independent factors for a false negative of MDCT (odds ratio 11.11, 4.76, 1.81, 95% confidence interval 4.67 to 10.00, 1.41 to 1.61, 1.05 to 3.33, P=0.009, P=0.012, P=0.046, respectively). In certain situations, the findings of coronary stenosis by MDCT do not always correlate with that of CCA. (author)

  20. Incorporating single detector failure into the ROP detector layout optimization for CANDU reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kastanya, Doddy, E-mail: Doddy.Kastanya@snclavalin.com

    2015-12-15

    Highlights: • ROP TSP value needs to be adjusted when any detector in the system fails. • Single detector failure criterion has been incorporated into the detector layout optimization as a constraint. • Results show that the optimized detector layout is more robust with respect to its vulnerability to a single detector failure. • An early rejection scheme has been introduced to speed-up the optimization process. - Abstract: In CANDU{sup ®} reactors, the regional overpower protection (ROP) systems are designed to protect the reactor against overpower in the fuel which could reduce the safety margin-to-dryout. In the CANDU{sup ®} 600 MW (CANDU 6) design, there are two ROP systems in the core, each of which is connected to a fast-acting shutdown system. Each ROP system consists of a number of fast-responding, self-powered flux detectors suitably distributed throughout the core within vertical and horizontal flux detector assemblies. The placement of these ROP detectors is a challenging discrete optimization problem. In the past few years, two algorithms, DETPLASA and ADORE, have been developed to optimize the detector layout for the ROP systems in CANDU reactors. These algorithms utilize the simulated annealing (SA) technique to optimize the placement of the detectors in the core. The objective of the optimization process is typically either to maximize the TSP value for a given number of detectors in the system or to minimize the number of detectors in the system to obtain a target TSP value. One measure to determine the robustness of the optimized detector layout is to evaluate the maximum decrease (penalty) in TSP value when any single detector in the system fails. The smaller the penalty, the more robust the design is. Therefore, in order to ensure that the optimized detector layout is robust, the single detector failure (SDF) criterion has been incorporated as an additional constraint into the ADORE algorithm. Results from this study indicate that there

  1. Undepleted silicon detectors

    International Nuclear Information System (INIS)

    Rancoita, P.G.; Seidman, A.

    1985-01-01

    Large-size silicon detectors employing relatively low resistivity material can be used in electromagnetic calorimetry. They can operate in strong magnetic fields, under geometric constraints and with microstrip detectors a high resolution can be achieved. Low noise large capacitance oriented electronics was developed to enable good signal-to-noise ratio for single relativistic particles traversing large area detectors. In undepleted silicon detectors, the charge migration from the field-free region has been investigated by comparing the expected peak position (from the depleted layer only) of the energy-loss of relativistic electrons with the measured one. Furthermore, the undepleted detectors have been employed in a prototype of Si/W electromagnetic colorimeter. The sensitive layer was found to be systematically larger than the depleted one

  2. Simulating detectors dead time

    International Nuclear Information System (INIS)

    Rustom, Ibrahim Farog Ibrahim

    2015-06-01

    Nuclear detectors are used in all aspects of nuclear measurements. All nuclear detectors are characterized by their dead time i.e. the time needed by a detector to recover from a previous incident. A detector dead time influences measurements taken by a detector and specially when measuring high decay rate (>) where is the detector dead time. Two models are usually used to correct for the dead time effect: the paralayzable and the non-paralayzable models. In the current work we use Monte Carlo simulation techniques to simulate radioactivity and the effect of dead time and the count rate of a detector with a dead time =5x10 - 5s assuming the non-paralayzable model. The simulation indicates that assuming a non -paralayzable model could be used to correct for decay rate measured by a detector. The reliability of the non-paralayzable model to correct the measured decay rate could be gauged using the Monte Carlo simulation. (Author)

  3. Detector Systems at CLIC

    CERN Document Server

    Simon, Frank

    2011-01-01

    The Compact Linear Collider CLIC is designed to deliver e+e- collisions at a center of mass energy of up to 3 TeV. The detector systems at this collider have to provide highly efficient tracking and excellent jet energy resolution and hermeticity for multi-TeV final states with multiple jets and leptons. In addition, the detector systems have to be capable of distinguishing physics events from large beam-induced background at a crossing frequency of 2 GHz. Like for the detector concepts at the ILC, CLIC detectors are based on event reconstruction using particle flow algorithms. The two detector concepts for the ILC, ILD and SID, were adapted for CLIC using calorimeters with dense absorbers limiting leakage through increased compactness, as well as modified forward and vertex detector geometries and precise time stamping to cope with increased background levels. The overall detector concepts for CLIC are presented, with particular emphasis on the main detector and engineering challenges, such as: the ultra-thi...

  4. Estimation of bias with the single-zone assumption in measurement of residential air exchange using the perfluorocarbon tracer gas method.

    Science.gov (United States)

    Van Ryswyk, K; Wallace, L; Fugler, D; MacNeill, M; Héroux, M È; Gibson, M D; Guernsey, J R; Kindzierski, W; Wheeler, A J

    2015-12-01

    Residential air exchange rates (AERs) are vital in understanding the temporal and spatial drivers of indoor air quality (IAQ). Several methods to quantify AERs have been used in IAQ research, often with the assumption that the home is a single, well-mixed air zone. Since 2005, Health Canada has conducted IAQ studies across Canada in which AERs were measured using the perfluorocarbon tracer (PFT) gas method. Emitters and detectors of a single PFT gas were placed on the main floor to estimate a single-zone AER (AER(1z)). In three of these studies, a second set of emitters and detectors were deployed in the basement or second floor in approximately 10% of homes for a two-zone AER estimate (AER(2z)). In total, 287 daily pairs of AER(2z) and AER(1z) estimates were made from 35 homes across three cities. In 87% of the cases, AER(2z) was higher than AER(1z). Overall, the AER(1z) estimates underestimated AER(2z) by approximately 16% (IQR: 5-32%). This underestimate occurred in all cities and seasons and varied in magnitude seasonally, between homes, and daily, indicating that when measuring residential air exchange using a single PFT gas, the assumption of a single well-mixed air zone very likely results in an under prediction of the AER. The results of this study suggest that the long-standing assumption that a home represents a single well-mixed air zone may result in a substantial negative bias in air exchange estimates. Indoor air quality professionals should take this finding into consideration when developing study designs or making decisions related to the recommendation and installation of residential ventilation systems. © 2014 Her Majesty the Queen in Right of Canada. Indoor Air published by John Wiley & Sons Ltd Reproduced with the permission of the Minister of Health Canada.

  5. Continentward-Dipping Normal Faults, Boudinage and Ductile Shear at Rifted Passive Margins

    Science.gov (United States)

    Clerc, C. N.; Ringenbach, J. C.; Jolivet, L.; Ballard, J. F.

    2017-12-01

    Deep structures resulting from the rifting of the continental crust are now well imaged by seismic profiles. We present a series of recent industrial profiles that allow the identification of various rift-related geological processes such as crustal boudinage, ductile shear of the base of the crust and low-angle detachment faulting. Along both magma-rich and magma-poor rifted margins, we observe clear indications of ductile deformation of the deep continental crust. Large-scale shallow dipping shear zones are identified with a top-to-the-continent sense of shear. This sense of shear is consistent with the activity of the Continentward-Dipping Normal Faults (CDNF) that accommodate the extension in the upper crust. This pattern is responsible for an oceanward migration of the deformation and of the associated syn-tectonic deposits (sediments and/or volcanics). We discuss the origin of the Continentward-Dipping Normal Faults (CDNF) and investigate their implications and the effect of sediment thermal blanketing on crustal rheology. In some cases, low-angle shear zones define an anastomosed pattern that delineates boudin-like structures that seem to control the position and dip of upper crustal normal faults. We present some of the most striking examples from several locations (Uruguay, West Africa, South China Sea…), and discuss their rifting histories that differ from the classical models of oceanward-dipping normal faults.

  6. Position detectors, methods of detecting position, and methods of providing positional detectors

    Science.gov (United States)

    Weinberg, David M.; Harding, L. Dean; Larsen, Eric D.

    2002-01-01

    Position detectors, welding system position detectors, methods of detecting various positions, and methods of providing position detectors are described. In one embodiment, a welding system positional detector includes a base that is configured to engage and be moved along a curved surface of a welding work piece. At least one position detection apparatus is provided and is connected with the base and configured to measure angular position of the detector relative to a reference vector. In another embodiment, a welding system positional detector includes a weld head and at least one inclinometer mounted on the weld head. The one inclinometer is configured to develop positional data relative to a reference vector and the position of the weld head on a non-planar weldable work piece.

  7. Fast method for geometric calibration of detectors and matching testing between two detectors

    International Nuclear Information System (INIS)

    Pechenova, O.Yu.

    2002-01-01

    A fast method of geometric calibration of detectors has been proposed. The main idea of this method is to determine offsets by fitting the real data distribution by analytic functions which describe the motion of one detector relative to the other one. This method can be applicable to offsets determination for one detector relative to the other detector or for one part of the detector relative to its other part. The detectors should be placed perpendicular to the beam axis. The form of analytic functions depends on the geometry of the experiment and direction of the coordinate axes. The analytic functions have been obtained using the rotation matrices. This method can be applied to the matching testing between two detectors

  8. The sinusoidal lining cells in "normal" human liver. A scanning electron microscopic investigation

    DEFF Research Database (Denmark)

    Horn, T; Henriksen, Jens Henrik Sahl; Christoffersen, P

    1986-01-01

    The scanning electron microscopic was used to study the fenestrations of human liver sinusoids. Thirteen biopsies, where light microscopy and transmission electron microscopy revealed normal sinusoidal architecture, were investigated. The number of fenestrae was calculated in acinar zone 3...

  9. The Search for Highly Ionizing Particles in e$^{+}$e$^{-}$ Collisions at LEP using (MODAL) (MOnopole Detector At Lep)

    CERN Multimedia

    2002-01-01

    The experiment is designed to search for highly ionizing particles such as the monopole and the dyon. On the assumption that monopole-antimonopole pairs are produced via a virtual photon intermediate state, and have a mass in the range 0-100~GeV, a direct search for Dirac monopoles using e$^+$e$^-$ annihilation carries a distinct cross-sectional advantage over a search using hadron colliders.\\\\ \\\\ The MODAL detector is formed from Lexan/CR-39 dielectric track detector modules arranged in a polyhedral configuration outside of the vacuum pipe and around the intersection region, as shown on the opposite page. Etchable track detectors are more sensitive to particles at normal incidence, the shape of the detector was chosen with this fact in mind to allow for maximum acceptance of monopoles which leave the beam pipe. These dielectric track detectors will enable us to detect particles with magnetic charge: 20e$<$g$ _{d}

  10. Solid state detector design

    International Nuclear Information System (INIS)

    Gunarwan Prayitno; Ahmad Rifai

    2010-01-01

    Much has been charged particle detector radiation detector made by the industry, especially those engaged in the development of detection equipment and components. The development and further research will be made solid state detector with silicon material. To be able to detect charged particles (radiation), required the processing of silicon material into the detector material. The method used to make silicon detector material is a lithium evaporations. Having formed an intrinsic region contactor installation process, and with testing. (author)

  11. Investigation of Influence Zones Induced by Shallow Tunnelling in Soft Soils

    NARCIS (Netherlands)

    Vu Minh, N.; Broere, W.; Bosch, J.W.

    2017-01-01

    The extent of the influence zone affected by shallow tunnelling depends on the value of volume loss which normally represents the amount of over-excavation and stress changes induced in the soil. This paper combines upper and lower estimates of volume loss for different soft soils and

  12. Comparison of auxin activty in tumourous and normal callus cultures from sunflower and tobacco plants

    Directory of Open Access Journals (Sweden)

    Z. Chirek

    2015-01-01

    Full Text Available In normal and tumourous calluses of sunflower and tobacco the level of extractable auxins was determined by Avena coleoptile straight growth test. Auxin activity was detected practically in two zones: I - at position with Rf 0.2-0.4 and II - at position with Rf 0.6-0.9. The tumour tissues of sunflower and tobacco plants, representing different types of neoplastic growth exhibit a 3 times higher auxin activity as compared with that of the corresponding normal tissues. Tobacco tissues, on the other hand, had a higher auxin level than the corresponding sunflower tissues and they exhibited different proportions in the activity of zones I and II, which points to a dominance of genetic regulation of hormone metabolism in these plants.

  13. Effects of the normalizing time and temperature on the impact properties of ASTM A-516 grade 70 steel

    International Nuclear Information System (INIS)

    Carneiro, T.; Cescon, T.

    1982-01-01

    The influence of normalizing time and temperature, as well as the plate thickness, on the impact properties of ASTM A-516 grade 70 steel, is studied. Results show that different normalizing conditions may lead to equivalent microstructure with different impact properties. Normalizing conditions that cause low cooling rate in the critical zone exhibit banded microstructure with inferior impact properties. (Author) [pt

  14. Thin Fresnel zone plate lenses for focusing underwater sound

    International Nuclear Information System (INIS)

    Calvo, David C.; Thangawng, Abel L.; Nicholas, Michael; Layman, Christopher N.

    2015-01-01

    A Fresnel zone plate (FZP) lens of the Soret type creates a focus by constructive interference of waves diffracted through open annular zones in an opaque screen. For underwater sound below MHz frequencies, a large FZP that blocks sound using high-impedance, dense materials would have practical disadvantages. We experimentally and numerically investigate an alternative approach of creating a FZP with thin (0.4λ) acoustically opaque zones made of soft silicone rubber foam attached to a thin (0.1λ) transparent rubber substrate. An ultra-thin (0.0068λ) FZP that achieves higher gain is also proposed and simulated which uses low-volume fraction, bubble-like resonant air ring cavities to construct opaque zones. Laboratory measurements at 200 kHz indicate that the rubber foam can be accurately modeled as a lossy fluid with an acoustic impedance approximately 1/10 that of water. Measured focal gains up to 20 dB agree with theoretical predictions for normal and oblique incidence. The measured focal radius of 0.68λ (peak-to-null) agrees with the Rayleigh diffraction limit prediction of 0.61 λ/NA (NA = 0.88) for a low-aberration lens

  15. Interpatient variation in normal peripheral zone apparent diffusion coefficient: effect on the prediction of prostate cancer aggressiveness

    NARCIS (Netherlands)

    Litjens, G.J.S.; Hambrock, T.; Hulsbergen-van de Kaa, C.A.; Barentsz, J.O.; Huisman, H.J.

    2012-01-01

    Purpose: To determine the interpatient variability of prostate peripheral zone (PZ) apparent diffusion coefficient (ADC) and its effect on the assessment of prostate cancer aggressiveness. Materials and Methods: The requirement for institutional review board approval was waived. Intra- and

  16. The GDH-Detector

    CERN Document Server

    Helbing, K; Fausten, M; Menze, D; Michel, T; Nagel, A; Ryckbosch, D; Speckner, T; Vyver, R V D; Zeitler, G

    2002-01-01

    For the GDH-Experiment at ELSA, the helicity dependent total photoabsorption cross-section is to be determined. These measurements will be performed with the newly developed GDH-Detector which is presented here. The concept of the GDH-Detector is to detect at least one reaction product from all possible hadronic processes with almost complete acceptance concerning solid angle and efficiency. This is realized by an arrangement of scintillators and lead. The overall acceptance for hadronic processes is better than 99%. The electromagnetic background is suppressed by about five orders of magnitude by means of a threshold Cherenkov detector. In dedicated tests, it has been demonstrated that all individual components of the GDH-Detector fulfill the design goals. Measurements of unpolarized total photoabsorption cross-sections were performed to ensure that the complete GDH-Detector is operational.

  17. Spatiotemporal patterns of fault slip rates across the Central Sierra Nevada frontal fault zone

    Science.gov (United States)

    Rood, Dylan H.; Burbank, Douglas W.; Finkel, Robert C.

    2011-01-01

    Patterns in fault slip rates through time and space are examined across the transition from the Sierra Nevada to the Eastern California Shear Zone-Walker Lane belt. At each of four sites along the eastern Sierra Nevada frontal fault zone between 38 and 39° N latitude, geomorphic markers, such as glacial moraines and outwash terraces, are displaced by a suite of range-front normal faults. Using geomorphic mapping, surveying, and 10Be surface exposure dating, mean fault slip rates are defined, and by utilizing markers of different ages (generally, ~ 20 ka and ~ 150 ka), rates through time and interactions among multiple faults are examined over 10 4-10 5 year timescales. At each site for which data are available for the last ~ 150 ky, mean slip rates across the Sierra Nevada frontal fault zone have probably not varied by more than a factor of two over time spans equal to half of the total time interval (~ 20 ky and ~ 150 ky timescales): 0.3 ± 0.1 mm year - 1 (mode and 95% CI) at both Buckeye Creek in the Bridgeport basin and Sonora Junction; and 0.4 + 0.3/-0.1 mm year - 1 along the West Fork of the Carson River at Woodfords. Data permit rates that are relatively constant over the time scales examined. In contrast, slip rates are highly variable in space over the last ~ 20 ky. Slip rates decrease by a factor of 3-5 northward over a distance of ~ 20 km between the northern Mono Basin (1.3 + 0.6/-0.3 mm year - 1 at Lundy Canyon site) to the Bridgeport Basin (0.3 ± 0.1 mm year - 1 ). The 3-fold decrease in the slip rate on the Sierra Nevada frontal fault zone northward from Mono Basin is indicative of a change in the character of faulting north of the Mina Deflection as extension is transferred eastward onto normal faults between the Sierra Nevada and Walker Lane belt. A compilation of regional deformation rates reveals that the spatial pattern of extension rates changes along strike of the Eastern California Shear Zone-Walker Lane belt. South of the Mina Deflection

  18. Effects of detector-source distance and detector bias voltage variations on time resolution of general purpose plastic scintillation detectors.

    Science.gov (United States)

    Ermis, E E; Celiktas, C

    2012-12-01

    Effects of source-detector distance and the detector bias voltage variations on time resolution of a general purpose plastic scintillation detector such as BC400 were investigated. (133)Ba and (207)Bi calibration sources with and without collimator were used in the present work. Optimum source-detector distance and bias voltage values were determined for the best time resolution by using leading edge timing method. Effect of the collimator usage on time resolution was also investigated. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Detector to detector corrections: a comprehensive experimental study of detector specific correction factors for beam output measurements for small radiotherapy beams

    DEFF Research Database (Denmark)

    Azangwe, Godfrey; Grochowska, Paulina; Georg, Dietmar

    2014-01-01

    -doped aluminium oxide (Al2O3:C), organic plastic scintillators, diamond detectors, liquid filled ion chamber, and a range of small volume air filled ionization chambers (volumes ranging from 0.002 cm3 to 0.3 cm3). All detector measurements were corrected for volume averaging effect and compared with dose ratios...... measurements, the authors recommend the use of detectors that require relatively little correction, such as unshielded diodes, diamond detectors or microchambers, and solid state detectors such as alanine, TLD, Al2O3:C, or scintillators....

  20. Effect of reinforcement element folds on stresses in NPP containment shell in the zone of technological tunnels

    International Nuclear Information System (INIS)

    Ul'yanov, A.N.; Medvedev, V.N.; Kiselev, A.S.

    1993-01-01

    Basing on the results of experimental and calculational studies of stressed state in the zone of a technological tunnel with one-side thicker part the approximated problem solution taking into account the effect of reinforcement element folds on opening zone stressed state is obtained. The great effect of reinforcement ropes on shell stressed state in the zone of technological tunnels, which causes the necessity of its accounting during this zone design, is revealed. Special attention shoul be paid to the sections, where the stretching stresses arising as a result of bundle bending are not compensated (sections of bundle fold origin from normal trajectory)

  1. A Detector Scenario for a Muon Cooling Demonstration Experiment

    Science.gov (United States)

    McDonald, Kirk T.; Lu, Changguo; Prebys, Eric J.

    1998-04-01

    As a verification of the concept of ionization cooling of a muon beam, the Muon Collider Collaboration is planning an experiment to cool the 6-dimensional normalized emittance by a factor of two. We have designed a princeton.edu/mumu/mumu-97-8.ps>detector system to measure the 6-dimensional emittance before and after the cooling apparatus. To avoid the cost associated with preparation of a muon beam bunched at 800 MHz, the nominal frequency of the RF in the muon cooler, we propose to use an unbunched muon beam. Muons will be measured in the detector individually, and a subset chosen corresponding to an ideal input bunch. The muons are remeasured after the cooling apparatus and the output bunch emittance calculated to show the expected reduction in phase-space volume. The technique of tracing individual muons will reproduce all effects encountered by a bunch except for space-charge.

  2. History of infrared detectors

    Science.gov (United States)

    Rogalski, A.

    2012-09-01

    This paper overviews the history of infrared detector materials starting with Herschel's experiment with thermometer on February 11th, 1800. Infrared detectors are in general used to detect, image, and measure patterns of the thermal heat radiation which all objects emit. At the beginning, their development was connected with thermal detectors, such as thermocouples and bolometers, which are still used today and which are generally sensitive to all infrared wavelengths and operate at room temperature. The second kind of detectors, called the photon detectors, was mainly developed during the 20th Century to improve sensitivity and response time. These detectors have been extensively developed since the 1940's. Lead sulphide (PbS) was the first practical IR detector with sensitivity to infrared wavelengths up to ˜3 μm. After World War II infrared detector technology development was and continues to be primarily driven by military applications. Discovery of variable band gap HgCdTe ternary alloy by Lawson and co-workers in 1959 opened a new area in IR detector technology and has provided an unprecedented degree of freedom in infrared detector design. Many of these advances were transferred to IR astronomy from Departments of Defence research. Later on civilian applications of infrared technology are frequently called "dual-use technology applications." One should point out the growing utilisation of IR technologies in the civilian sphere based on the use of new materials and technologies, as well as the noticeable price decrease in these high cost technologies. In the last four decades different types of detectors are combined with electronic readouts to make detector focal plane arrays (FPAs). Development in FPA technology has revolutionized infrared imaging. Progress in integrated circuit design and fabrication techniques has resulted in continued rapid growth in the size and performance of these solid state arrays.

  3. Future particle detector systems

    International Nuclear Information System (INIS)

    Clark, Allan G.

    2000-01-01

    Starting with a short summary of the major new experimental physics programs, we attempt to motivate the reasons why existing general-purpose detectors at Hadron Colliders are what they are, why they are being upgraded, and why new facilities are being constructed. The CDF and ATLAS detectors are used to illustrate these motivations. Selected physics results from the CDF experiment provide evidence for limitations on the detector performance, and new physics opportunities motivate both machine and detector upgrades. This is discussed with emphasis on the improved physics reach of the CDF experiment at the Fermilab Tevatron (√(s)=2 TeV). From 2005, the Large Hadron Collider (LHC) at CERN will become operational at a collision energy of √(s)=14 TeV, seven times larger than at the Tevatron Collider. To exploit the physics capability of the LHC, several large detectors are being constructed. The detectors are significantly more complex than those at the Tevatron Collider because of physics and operational constraints. The detector design and technology of the aspects of the large general-purpose detector ATLAS is described

  4. Detectors on the drawing board

    CERN Document Server

    Katarina Anthony

    2011-01-01

    Linear collider detector developers inside and outside CERN are tackling the next generation of detector technology. While their focus has centred on high-energy linear collider detectors, their innovative concepts and designs will be applicable to any future detector.   A simulated event display in one of the new generation detectors. “While the LHC experiments remain the pinnacle of detector technology, you may be surprised to realise that the design and expertise behind them is well over 10 years old,” says Lucie Linssen, CERN’s Linear Collider Detector (LCD) project manager whose group is pushing the envelope of detector design. “The next generation of detectors will have to surpass the achievements of the LHC experiments. It’s not an easy task but, by observing detectors currently in operation and exploiting a decade’s worth of technological advancements, we’ve made meaningful progress.” The LCD team is curr...

  5. Neutron irradiation effects on silicon detectors structure, electrical and mechanical characteristics

    International Nuclear Information System (INIS)

    Rabinovich, E.; Golan, G.; Axelevich, A.; Inberg, A.; Oksman, M.; Rosenwaks, I.; Lubarsky, G.; Seidman, A.; Croitoru, N.; Rancoita, P.G.; Rattaggi, M.

    1999-01-01

    Neutron irradiation effects on (p-n) and Schottky-junction silicon detectors were studied. It was shown that neutron interactions with monocrystalline silicon create specific types of microstructure defects with morphology differing according to the level of neutron fluences (Φ). The isolated dislocation loops, formed by interstitial atoms were observed in microstructure images for 10 10 ≤ Φ ≤ 10 12 n/cm 2 . A strong change in the dislocation loops density and a cluster formation was observed for Φ ≥ 10 13 n/cm 2 . A drastic silicon damage was found for fluences over 10 14 n/cm 2 . These fluences created zones enriched with all types of dislocations, covering more than 50 % of the total surface area. A mechanical fragility appeared in that fluence range in a form of microcracks. 10 14 n/cm 2 appears to be a critical value of neutron irradiation because of the radiation damage described above and because the characteristics I f -V f of silicon detectors can be differentiated from those obtained at low fluences. (A.C.)

  6. Dimensionless model to determine spontaneous combustion danger zone in the longwall gob

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xin-hai; DENG Jun; WEN Hu

    2011-01-01

    According to spontaneous combustion propensity,the longwall gob is divided into three zones,including heat dissipation zone,self-heating zone and the choking zone.Only in the self-heating zone can temperature of coal rise due to oxidation.Studying the distribution of the “Three Zones” in gob is important for predicting and preventing spontaneous combustion in coalmine.In normal mining operations,temperature of coal is roughly constant.The process of mass transfer in the gob is considered to be steady.Based on mass conservation,gas species conservation,darcy' s law,Ficks law of diffusion and coal oxidation 1-grade reaction rule,governing equation for air leakage intensity and species concentration are deduced.With critical value of coal spontaneous combustion and the size of longwall workface as basic dimension,a dimensionless steady coupled model of air flow diffusion and chemical reaction in loose coal of Fully Mechanized Top-Coal Caving Mining Workface (FMTCCMW) is setup.By solving the model numerically,regulation of three zones' distribution and spontaneous combustion in the gob can be obtained.The results can be easily popularized to prediction of spontaneous combustion in other coalmines' longwall gob.

  7. Gamma-ray pulse height spectrum analysis on systems with multiple Ge detectors using spectrum summing

    Energy Technology Data Exchange (ETDEWEB)

    Killian, E.W. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1997-11-01

    A technique has been developed at the Idaho National Engineering Laboratory to sum high resolution gamma-ray pulse spectra from systems with multiple Ge detectors. Lockheed Martin Idaho Technologies Company operates a multi-detector spectrometer configuration at the Stored Waste Examination Pilot Plant facility which is used to characterize the radionuclide contents in waste drums destined for shipment to Waste Isolation Pilot Plant. This summing technique was developed to increase the sensitivity of the system, reduce the count times required to properly quantify the radio-nuclides and provide a more consistent methodology for combining data collected from multiple detectors. In spectrometer systems with multiple detectors looking at non homogeneous waste forms it is often difficult to combine individual spectrum analysis results from each detector to obtain a meaningful result for the total waste container. This is particularly true when the counting statistics in each individual spectrum are poor. The spectrum summing technique adds the spectra collected by each detector into a single spectrum which has better counting statistics than each individual spectrum. A normal spectral analysis program can then be used to analyze the sum spectrum to obtain radio-nuclide values which have smaller errors and do not have to be further manipulated to obtain results for the total waste container. 2 refs., 2 figs.

  8. Micro-channel plate photon detector studies for the TORCH detector

    Energy Technology Data Exchange (ETDEWEB)

    Castillo García, L., E-mail: lucia.castillo.garcia@cern.ch [CERN, PH Department, CH-1211, Geneva 23 (Switzerland); Laboratory for High Energy Physics, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland); Brook, N.; Cowie, E.N.; Cussans, D. [H.H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL (United Kingdom); Forty, R.; Frei, C. [CERN, PH Department, CH-1211, Geneva 23 (Switzerland); Gao, R. [Department of Physics, University of Oxford, Oxford OXI 3RH (United Kingdom); Gys, T. [CERN, PH Department, CH-1211, Geneva 23 (Switzerland); Harnew, N. [Department of Physics, University of Oxford, Oxford OXI 3RH (United Kingdom); Piedigrossi, D. [CERN, PH Department, CH-1211, Geneva 23 (Switzerland); Van Dijk, M. [H.H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL (United Kingdom)

    2015-07-01

    The Time Of internally Reflected Cherenkov light (TORCH) detector is under development. Charged particle tracks passing through a 1 cm plate of quartz will generate the Cherenkov photons, and their arrival will be timed by an array of micro-channel plate photon detectors. As part of the TORCH R&D studies, commercial and custom-made micro-channel plate detectors are being characterized. The final photon detectors for this application are being produced in a three-phase program in collaboration with industry. Custom-made single-channel devices with extended lifetime have been manufactured and their performance is being systematically investigated in the laboratory. Optical studies for the preparation of beam and laboratory tests of a TORCH prototype are also underway.

  9. Measurement of Normal and Friction Forces in a Rolling Process

    DEFF Research Database (Denmark)

    Henningsen, Poul; Arentoft, Mogens; Wanheim, Tarras

    2004-01-01

    by the fric-tion conditions. To achieve this important informa-tion, measurements of the normal pressure and friction stresses in the deformation zone are re-quested. The direction of the friction stresses is changing during the rolling gap. At the entrance of the de-formation zone, the peripherical velocity...... of the roll is higher than for the incoming material, which causes frictional stresses at the material acting in the rolling direction. At the outlet of the rolling gap, the velocity of the deformed material exceeds the velocity of the roll, generating frictional stresses contrary to the direction of rolling....... In a narrow area in the deformation zone, the velocity of the de-formed material is equal to the velocity of the rolls. This area or line is named “neutral line”. The posi-tion of the neutral line depends on friction, reduc-tion ratio, diameter of the rolls, and width of the sheet....

  10. Width of the Surface Rupture Zone for Thrust Earthquakes and Implications for Earthquake Fault Zoning: Chi-Chi 1999 and Wenchuan 2008 Earthquakes

    Science.gov (United States)

    Boncio, P.; Caldarella, M.

    2016-12-01

    We analyze the zones of coseismic surface faulting along thrust faults, whit the aim of defining the most appropriate criteria for zoning the Surface Fault Rupture Hazard (SFRH) along thrust faults. Normal and strike-slip faults were deeply studied in the past, while thrust faults were not studied with comparable attention. We analyze the 1999 Chi-Chi, Taiwan (Mw 7.6) and 2008 Wenchuan, China (Mw 7.9) earthquakes. Several different types of coseismic fault scarps characterize the two earthquakes, depending on the topography, fault geometry and near-surface materials. For both the earthquakes, we collected from the literature, or measured in GIS-georeferenced published maps, data about the Width of the coseismic Rupture Zone (WRZ). The frequency distribution of WRZ compared to the trace of the main fault shows that the surface ruptures occur mainly on and near the main fault. Ruptures located away from the main fault occur mainly in the hanging wall. Where structural complexities are present (e.g., sharp bends, step-overs), WRZ is wider then for simple fault traces. We also fitted the distribution of the WRZ dataset with probability density functions, in order to define a criterion to remove outliers (e.g., by selecting 90% or 95% probability) and define the zone where the probability of SFRH is the highest. This might help in sizing the zones of SFRH during seismic microzonation (SM) mapping. In order to shape zones of SFRH, a very detailed earthquake geologic study of the fault is necessary. In the absence of such a very detailed study, during basic (First level) SM mapping, a width of 350-400 m seems to be recommended (95% of probability). If the fault is carefully mapped (higher level SM), one must consider that the highest SFRH is concentrated in a narrow zone, 50 m-wide, that should be considered as a "fault-avoidance (or setback) zone". These fault zones should be asymmetric. The ratio of footwall to hanging wall (FW:HW) calculated here ranges from 1:5 to 1:3.

  11. DUMAND detector

    CERN Multimedia

    This object is one of the 256 other detectors of the DUMAND (Deep Underwater Muon And Neutrino Detection) experiment. The goal of the experiment was the construction of the first deep ocean high energy neutrino detector, to be placed at 4800 m depth in the Pacific Ocean off Keahole Point on the Big Island of Hawaii. A few years ago, a European conference with Cosmic experiments was organized at CERN as they were projects like DUMAND in Hawaii. Along with the conference, a temporary exhibition was organised as well. It was a collaboration of institutions from Germany, Japan, Switzerland and the U.S.A. CERN had borrowed equipment and objects from different institutes around the world, including this detector of the DUMAND experiment. Most of the equipment were sent back to the institutes, however this detector sphere was offered to a CERN member of the personnel.

  12. A silicon pixel detector prototype for the CLIC vertex detector

    CERN Multimedia

    AUTHOR|(INSPIRE)INSPIRE-00714258

    2017-01-01

    A silicon pixel detector prototype for CLIC, currently under study for the innermost detector surrounding the collision point. The detector is made of a High-Voltage CMOS sensor (top) and a CLICpix2 readout chip (bottom) that are glued to each other. Both parts have a size of 3.3 x 4.0 $mm^2$ and consist of an array of 128 x 128 pixels of 25 x 25 $\\micro m^2$ size.

  13. Physics of scintillation detectors

    International Nuclear Information System (INIS)

    Novotny, R.

    1991-01-01

    The general concept of a radiation detector is based on three fundamental principles: sensitivity of the device to the radiation of interest which requires a large cross-section in the detector material, detector response function to the physical properties of the radiation. As an example, a scintillation detector for charged particles should allow to identify the charge of the particle, its kinetic energy and the time of impact combined with optimum resolutions. Optimum conversion of the detector response (like luminescence of a scintillator) into electronical signals for further processing. The following article will concentrate on the various aspects of the first two listed principles as far as they appear to be relevant for photon and charged particle detection using organic and inorganic scintillation detectors. (orig.)

  14. Detectors for Linear Colliders: Detector design for a Future Electron-Positron Collider (4/4)

    CERN Multimedia

    CERN. Geneva

    2010-01-01

    In this lecture I will discuss the issues related to the overall design and optimization of a detector for ILC and CLIC energies. I will concentrate on the two main detector concepts which are being developed in the context of the ILC. Here there has been much recent progress in developing realistic detector models and in understanding the physics performance of the overall detector concept. In addition, I will discuss the how the differences in the detector requirements for the ILC and CLIC impact the overall detector design.

  15. Marginal Zone Lymphoma Complicated by Protein Losing Enteropathy

    Directory of Open Access Journals (Sweden)

    Nadine Stanek

    2016-01-01

    Full Text Available Protein losing enteropathy (PLE refers to excessive intestinal protein loss, resulting in hypoalbuminemia. Underlying pathologies include conditions leading to either reduced intestinal barrier or lymphatic congestion. We describe the case of a patient with long-lasting diffuse abdominal problems and PLE. Repetitive endoscopies were normal with only minimal lymphangiectasia in biopsies. Further evaluations revealed an indolent marginal zone lymphoma with minor bone marrow infiltration. Monotherapy with rituximab decreased bone marrow infiltration of the lymphoma but did not relieve PLE. Additional treatments with steroids, octreotide, a diet devoid of long-chain fatty-acids, and parenteral nutrition did not prevent further clinical deterioration with marked weight loss (23 kg, further reduction in albumin concentrations (nadir 8 g/L, and a pronounced drop in performance status. Finally, immunochemotherapy with rituximab and bendamustine resulted in hematological remission and remarkable clinical improvement. 18 months after therapy the patient remains free of gastrointestinal complaints and has regained his body weight with normal albumin levels. We demonstrate a case of PLE secondary to indolent marginal zone lymphoma. No intestinal pathologies were detected, contrasting a severe and almost lethal clinical course. Immunochemotherapy relieved lymphoma and PLE, suggesting that a high suspicion of lymphoma is warranted in otherwise unexplained cases of PLE.

  16. The distribution of YKL-40 in osteoarthritic and normal human articular cartilage

    DEFF Research Database (Denmark)

    Volck, B; Ostergaard, K; Johansen, J S

    1999-01-01

    YKL-40, also called human cartilage glycoprotein-39, is a major secretory protein of human chondrocytes in cell culture. YKL-40 mRNA is expressed by cartilage from patients with rheumatoid arthritis, but is not detectable in normal human cartilage. The aim was to investigate the distribution of YKL...... in chondrocytes of osteoarthritic cartilage mainly in the superficial and middle zone of the cartilage rather than the deep zone. There was a tendency for high number of YKL-40 positive chondrocytes in areas of the femoral head with a considerable biomechanical load. The number of chondrocytes with a positive...

  17. ATLAS Detector Interface Group

    CERN Multimedia

    Mapelli, L

    Originally organised as a sub-system in the DAQ/EF-1 Prototype Project, the Detector Interface Group (DIG) was an information exchange channel between the Detector systems and the Data Acquisition to provide critical detector information for prototype design and detector integration. After the reorganisation of the Trigger/DAQ Project and of Technical Coordination, the necessity to provide an adequate context for integration of detectors with the Trigger and DAQ lead to organisation of the DIG as one of the activities of Technical Coordination. Such an organisation emphasises the ATLAS wide coordination of the Trigger and DAQ exploitation aspects, which go beyond the domain of the Trigger/DAQ project itself. As part of Technical Coordination, the DIG provides the natural environment for the common work of Trigger/DAQ and detector experts. A DIG forum for a wide discussion of all the detector and Trigger/DAQ integration issues. A more restricted DIG group for the practical organisation and implementation o...

  18. Investigation about semiconductor gamma ray detector - Evaluation of Ge(Li) detectors life expectation

    International Nuclear Information System (INIS)

    1980-06-01

    A list of germanium lithium gamma ray detectors has been drawn up by a working group after investigations in various laboratories. Authors analyse the historical account of each detector and try to give an answer about some questions as: - detectors life expectation, - deficiencies and death reasons, - influence of detector type and volume. Differents parameters are also collected by the working group for future works (standard geometry, low level measurements, etc.). In the list, the characteristics of 228 detectors, collected between january 1965 and december 1977 are put together. The principal conclusions of the authors are: - with a probability of 95%, half of the detectors is dead before 6.1 years, - the average age of dead population (33% of detectors) is 3.9 years, - resolution and efficiency evolution are good indicators of possible deficiency, - the fiability of vertical cryostat is better than the other systems [fr

  19. Shaped detector

    International Nuclear Information System (INIS)

    Carlson, R.W.

    1981-01-01

    A radiation detector or detector array which has a non-constant spatial response, is disclosed individually and in combination with a tomographic scanner. The detector has a first dimension which is oriented parallel to the plane of the scan circle in the scanner. Along the first dimension, the detector is most responsive to radiation received along a centered segment of the dimension and less responsive to radiation received along edge segments. This non-constant spatial response can be achieved in a detector comprised of a scintillation crystal and a photoelectric transducer. The scintillation crystal in one embodiment is composed of three crystals arranged in layers, with the center crystal having the greatest light conversion efficiency. In another embodiment, the crystal is covered with a reflective substance around the center segment and a less reflective substance around the remainder. In another embodiment, an optical coupling which transmits light from adjacent the center segment with the greatest intensity couples the scintillation crystal and the photoelectric transducer. In yet another embodiment, the photoelectric transducer comprises three photodiodes, one receiving light produced adjacent the central segment and the other two receiving light produced adjacent the edge segments. The outputs of the three photodiodes are combined with a differential amplifier

  20. Application of solid state track detector to neutron dosimetry

    International Nuclear Information System (INIS)

    Tsuruta, Takao

    1979-01-01

    Though solid state track detectors (SSTD) are radiation measuring instrument for heavy charged particles by itself, it can be used as radiation measuring instrument for neutrons, if nuclear reactions such as (n, f) or (n, α) reaction are utilized. Since the means was found, which permits to observe the tracks of heavy charged particles in a solid with an optical microscope by chemically etching the tracks to enlarge them to etch pits, various types of detectors have been developed for the purpose of measuring neutron dose. The paper is described on the materials and construction of the SSTDs for neutron dosimetry, and the sensitivity is explained with mathematical equations. The features of neutron dosimetry with SSTDs are as follows: They are compact, and scarcely disturb neutron field, thus delicate dose distribution can be known; integration measurement is possible regardless of dose rate values because of integrating type detectors; it is not influenced by β-ray or γ-ray except the case when there is high energy radiation such as causing photonuclear reactions or high dose such as degrading solids, it has pretty high sensitivity; track fading is negligible during the normal measuring time around room temperature; and the etching images of tracks are relatively clear, and various automatic counting systems can be employed. (Wakatsuki, Y.)

  1. Development of Hydrologic Characterization Technology of Fault Zones

    International Nuclear Information System (INIS)

    Karasaki, Kenzi; Onishi, Tiemi; Wu, Yu-Shu

    2008-01-01

    Through an extensive literature survey we find that there is very limited amount of work on fault zone hydrology, particularly in the field using borehole testing. The common elements of a fault include a core, and damage zones. The core usually acts as a barrier to the flow across it, whereas the damage zone controls the flow either parallel to the strike or dip of a fault. In most of cases the damage zone is the one that is controlling the flow in the fault zone and the surroundings. The permeability of damage zone is in the range of two to three orders of magnitude higher than the protolith. The fault core can have permeability up to seven orders of magnitude lower than the damage zone. The fault types (normal, reverse, and strike-slip) by themselves do not appear to be a clear classifier of the hydrology of fault zones. However, there still remains a possibility that other additional geologic attributes and scaling relationships can be used to predict or bracket the range of hydrologic behavior of fault zones. AMT (Audio frequency Magneto Telluric) and seismic reflection techniques are often used to locate faults. Geochemical signatures and temperature distributions are often used to identify flow domains and/or directions. ALSM (Airborne Laser Swath Mapping) or LIDAR (Light Detection and Ranging) method may prove to be a powerful tool for identifying lineaments in place of the traditional photogrammetry. Nonetheless not much work has been done to characterize the hydrologic properties of faults by directly testing them using pump tests. There are some uncertainties involved in analyzing pressure transients of pump tests: both low permeability and high permeability faults exhibit similar pressure responses. A physically based conceptual and numerical model is presented for simulating fluid and heat flow and solute transport through fractured fault zones using a multiple-continuum medium approach. Data from the Horonobe URL site are analyzed to demonstrate the

  2. Development of Hydrologic Characterization Technology of Fault Zones

    Energy Technology Data Exchange (ETDEWEB)

    Karasaki, Kenzi; Onishi, Tiemi; Wu, Yu-Shu

    2008-03-31

    Through an extensive literature survey we find that there is very limited amount of work on fault zone hydrology, particularly in the field using borehole testing. The common elements of a fault include a core, and damage zones. The core usually acts as a barrier to the flow across it, whereas the damage zone controls the flow either parallel to the strike or dip of a fault. In most of cases the damage zone isthe one that is controlling the flow in the fault zone and the surroundings. The permeability of damage zone is in the range of two to three orders of magnitude higher than the protolith. The fault core can have permeability up to seven orders of magnitude lower than the damage zone. The fault types (normal, reverse, and strike-slip) by themselves do not appear to be a clear classifier of the hydrology of fault zones. However, there still remains a possibility that other additional geologic attributes and scaling relationships can be used to predict or bracket the range of hydrologic behavior of fault zones. AMT (Audio frequency Magneto Telluric) and seismic reflection techniques are often used to locate faults. Geochemical signatures and temperature distributions are often used to identify flow domains and/or directions. ALSM (Airborne Laser Swath Mapping) or LIDAR (Light Detection and Ranging) method may prove to be a powerful tool for identifying lineaments in place of the traditional photogrammetry. Nonetheless not much work has been done to characterize the hydrologic properties of faults by directly testing them using pump tests. There are some uncertainties involved in analyzing pressure transients of pump tests: both low permeability and high permeability faults exhibit similar pressure responses. A physically based conceptual and numerical model is presented for simulating fluid and heat flow and solute transport through fractured fault zones using a multiple-continuum medium approach. Data from the Horonobe URL site are analyzed to demonstrate the

  3. Introduction to detectors

    CERN Document Server

    Walenta, Albert H

    1995-01-01

    Concepts for momentum measurements,particle identification and energy measurements (calorimeters) as well for imaging applications in medecine, biology and industry (non destructive testing) will be put into relation to the specific detection princip In particular the resolution for position, time, energy and intensity measurement and the efficiency will be discussed. Signal extraction,electronic signal processing and principles of information capture will close the logic circle to the input : the radiation properties.The lecture will provide some sources for data tables and small demonstration computer programs f The basic detector physics as interaction of radiation with matter, information transport via free charges,photons and phonons and the signal formation will be presented in some depth with emphasis on the influence on specific parameters for detector The lecture will cover the most popular detector principles, gas detectors (ion chambers,MPWC's and MSGC's), semiconductor detectors scintillators and ...

  4. Detector Motion Method to Increase Spatial Resolution in Photon-Counting Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Daehee; Park, Kyeongjin; Lim, Kyung Taek; Cho, Gyuseong [Korea Advanced Institute of Science and Technology, Daejon (Korea, Republic of)

    2017-03-15

    Medical imaging requires high spatial resolution of an image to identify fine lesions. Photoncounting detectors in medical imaging have recently been rapidly replacing energy-integrating detectors due to the former's high spatial resolution, high efficiency and low noise. Spatial resolution in a photon counting image is determined by the pixel size. Therefore, the smaller the pixel size, the higher the spatial resolution that can be obtained in an image. However, detector redesigning is required to reduce pixel size, and an expensive fine process is required to integrate a signal processing unit with reduced pixel size. Furthermore, as the pixel size decreases, charge sharing severely deteriorates spatial resolution. To increase spatial resolution, we propose a detector motion method using a large pixel detector that is less affected by charge sharing. To verify the proposed method, we utilized a UNO-XRI photon-counting detector (1-mm CdTe, Timepix chip) at the maximum X-ray tube voltage of 80 kVp. A similar spatial resolution of a 55-μm-pixel image was achieved by application of the proposed method to a 110-μm-pixel detector with a higher signal-to-noise ratio. The proposed method could be a way to increase spatial resolution without a pixel redesign when pixels severely suffer from charge sharing as pixel size is reduced.

  5. Determination of normal heights in the area of Polish Economic Zone

    Directory of Open Access Journals (Sweden)

    Jerzy B. Rogowski

    2017-12-01

    Full Text Available The article presents a method of determining the level of the seabed in the Polish reference system. The authors show how to determine the ellipsoidal height of the seabed using GNSS measurements and single-beam echo sounders. The authors propose the transition to the system of normal heights referred to the average level of the North Sea as defined by the tide-gauge in Amsterdam to be made using the EGM 2008 model and data from the official Polish quasi-geoid model as well as data from another model distributed by GUGiK (Head Office of Geodesy and Cartography. The article presents also potential errors of the presented method.

  6. Volume-controlled histographic analysis of pulmonary parenchyma in normal and diffuse parenchymal lung disease: a pilot study

    International Nuclear Information System (INIS)

    Park, Hyo Yong; Lee, Jongmin; Kim, Jong Seob; Won, Chyl Ho; Kang, Duk Sik; Kim, Myoung Nam

    2000-01-01

    To evaluate the clinical usefulness of a home-made histographic analysis system using a lung volume controller. Our study involved ten healthy volunteers, ten emphysema patients, and two idiopathic pulmonary fibrosis (IPF) patients. Using a home-made lung volume controller, images were obtained in the upper, middle, and lower lung zones at 70%, 50%, and 20% of vital capacity. Electron beam tomography was used and scanning parameters were single slice mode, 10-mm slice thickness, 0.4-second scan time, and 35-cm field of view. Usinga home-made semi-automated program, pulmonary parenchyma was isolated and a histogrm then obtained. Seven histographic parameters, namely mean density (MD), density at maximal frequency (DMF), maximal ascending gradient (MAG),maximal ascending gradient density (MAGD), maximal sescending gradient (MDG), maximal descending gradient density (MDGD), and full width at half maximum (FWHM) were derived from the histogram. We compared normal controls with abnormal groups including emphysema and IPF patients at the same respiration levels. A normal histographic zone with ± 1 standard deviation was obtained. Histographic curves of normal controls shifted toward the high density level, and the width of the normal zone increased as the level of inspiration decreased. In ten normal controls, MD, DMF, MAG, MAGD, MDG, MDGD, and FWHM readings at a 70% inspiration level were lower than those at 20% (p less than0.05). At the same level of inspiration, histograms of emphysema patients were locatedat a lower density area than those of normal controls. As inspiration status decreased, histograms of emphysema patients showed diminished shift compared with those of normal controls. At 50% and 20% inspiration levels, the MD, DMF, and MAGD readings of emphysema patients were significantly lower than those of normal controls (p less than 0.05). Compared with those of normal controls, histogrms of the two IPF patients obtained at three inspiration levels were

  7. Volume-controlled histographic analysis of pulmonary parenchyma in normal and diffuse parenchymal lung disease: a pilot study

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hyo Yong; Lee, Jongmin; Kim, Jong Seob; Won, Chyl Ho; Kang, Duk Sik [School of Medicine, Kyungpook National University, Taegu (Korea, Republic of); Kim, Myoung Nam [The University of Iowa (United States)

    2000-06-01

    To evaluate the clinical usefulness of a home-made histographic analysis system using a lung volume controller. Our study involved ten healthy volunteers, ten emphysema patients, and two idiopathic pulmonary fibrosis (IPF) patients. Using a home-made lung volume controller, images were obtained in the upper, middle, and lower lung zones at 70%, 50%, and 20% of vital capacity. Electron beam tomography was used and scanning parameters were single slice mode, 10-mm slice thickness, 0.4-second scan time, and 35-cm field of view. Usinga home-made semi-automated program, pulmonary parenchyma was isolated and a histogrm then obtained. Seven histographic parameters, namely mean density (MD), density at maximal frequency (DMF), maximal ascending gradient (MAG),maximal ascending gradient density (MAGD), maximal sescending gradient (MDG), maximal descending gradient density (MDGD), and full width at half maximum (FWHM) were derived from the histogram. We compared normal controls with abnormal groups including emphysema and IPF patients at the same respiration levels. A normal histographic zone with {+-} 1 standard deviation was obtained. Histographic curves of normal controls shifted toward the high density level, and the width of the normal zone increased as the level of inspiration decreased. In ten normal controls, MD, DMF, MAG, MAGD, MDG, MDGD, and FWHM readings at a 70% inspiration level were lower than those at 20% (p less than0.05). At the same level of inspiration, histograms of emphysema patients were locatedat a lower density area than those of normal controls. As inspiration status decreased, histograms of emphysema patients showed diminished shift compared with those of normal controls. At 50% and 20% inspiration levels, the MD, DMF, and MAGD readings of emphysema patients were significantly lower than those of normal controls (p less than 0.05). Compared with those of normal controls, histogrms of the two IPF patients obtained at three inspiration levels were

  8. LHCb Detector Performance

    CERN Document Server

    Aaij, Roel; Adinolfi, Marco; Affolder, Anthony; Ajaltouni, Ziad; Akar, Simon; Albrecht, Johannes; Alessio, Federico; Alexander, Michael; Ali, Suvayu; Alkhazov, Georgy; Alvarez Cartelle, Paula; Alves Jr, Antonio Augusto; Amato, Sandra; Amerio, Silvia; Amhis, Yasmine; An, Liupan; Anderlini, Lucio; Anderson, Jonathan; Andreassen, Rolf; Andreotti, Mirco; Andrews, Jason; Appleby, Robert; Aquines Gutierrez, Osvaldo; Archilli, Flavio; Artamonov, Alexander; Artuso, Marina; Aslanides, Elie; Auriemma, Giulio; Baalouch, Marouen; Bachmann, Sebastian; Back, John; Badalov, Alexey; Baesso, Clarissa; Baldini, Wander; Barlow, Roger; Barschel, Colin; Barsuk, Sergey; Barter, William; Batozskaya, Varvara; Battista, Vincenzo; Bay, Aurelio; Beaucourt, Leo; Beddow, John; Bedeschi, Franco; Bediaga, Ignacio; Belogurov, Sergey; Belous, Konstantin; Belyaev, Ivan; Ben-Haim, Eli; Bencivenni, Giovanni; Benson, Sean; Benton, Jack; Berezhnoy, Alexander; Bernet, Roland; Bettler, Marc-Olivier; van Beuzekom, Martinus; Bien, Alexander; Bifani, Simone; Bird, Thomas; Bizzeti, Andrea; Bjørnstad, Pål Marius; Blake, Thomas; Blanc, Frédéric; Blouw, Johan; Blusk, Steven; Bocci, Valerio; Bondar, Alexander; Bondar, Nikolay; Bonivento, Walter; Borghi, Silvia; Borgia, Alessandra; Borsato, Martino; Bowcock, Themistocles; Bowen, Espen Eie; Bozzi, Concezio; Brambach, Tobias; Bressieux, Joël; Brett, David; Britsch, Markward; Britton, Thomas; Brodzicka, Jolanta; Brook, Nicholas; Brown, Henry; Bursche, Albert; Buytaert, Jan; Cadeddu, Sandro; Calabrese, Roberto; Calvi, Marta; Calvo Gomez, Miriam; Campana, Pierluigi; Campora Perez, Daniel; Carbone, Angelo; Carboni, Giovanni; Cardinale, Roberta; Cardini, Alessandro; Carson, Laurence; Carvalho Akiba, Kazuyoshi; Casse, Gianluigi; Cassina, Lorenzo; Castillo Garcia, Lucia; Cattaneo, Marco; Cauet, Christophe; Cenci, Riccardo; Charles, Matthew; Charpentier, Philippe; Chefdeville, Maximilien; Chen, Shanzhen; Cheung, Shu-Faye; Chiapolini, Nicola; Chrzaszcz, Marcin; Ciba, Krzystof; Cid Vidal, Xabier; Ciezarek, Gregory; Clarke, Peter; Clemencic, Marco; Cliff, Harry; Closier, Joel; Coco, Victor; Cogan, Julien; Cogneras, Eric; Cogoni, Violetta; Cojocariu, Lucian; Collazuol, Gianmaria; Collins, Paula; Comerma-Montells, Albert; Contu, Andrea; Cook, Andrew; Coombes, Matthew; Coquereau, Samuel; Corti, Gloria; Corvo, Marco; Counts, Ian; Couturier, Benjamin; Cowan, Greig; Craik, Daniel Charles; Crocombe, Andrew; Cruz Torres, Melissa Maria; Cunliffe, Samuel; Currie, Robert; D'Ambrosio, Carmelo; Dalseno, Jeremy; David, Pascal; David, Pieter; Davis, Adam; De Bruyn, Kristof; De Capua, Stefano; De Cian, Michel; De Miranda, Jussara; De Paula, Leandro; De Silva, Weeraddana; De Simone, Patrizia; Decamp, Daniel; Deckenhoff, Mirko; Del Buono, Luigi; Déléage, Nicolas; Derkach, Denis; Deschamps, Olivier; Dettori, Francesco; Di Canto, Angelo; Dijkstra, Hans; Donleavy, Stephanie; Dordei, Francesca; Dorigo, Mirco; Dosil Suárez, Alvaro; Dossett, David; Dovbnya, Anatoliy; Dreimanis, Karlis; Dujany, Giulio; Dupertuis, Frederic; Durante, Paolo; Dzhelyadin, Rustem; Dziurda, Agnieszka; Dzyuba, Alexey; Easo, Sajan; Egede, Ulrik; Egorychev, Victor; Eidelman, Semen; Eisenhardt, Stephan; Eitschberger, Ulrich; Ekelhof, Robert; Eklund, Lars; El Rifai, Ibrahim; Elsasser, Christian; Ely, Scott; Esen, Sevda; Evans, Hannah Mary; Evans, Timothy; Falabella, Antonio; Färber, Christian; Farinelli, Chiara; Farley, Nathanael; Farry, Stephen; Fay, Robert; Ferguson, Dianne; Fernandez Albor, Victor; Ferreira Rodrigues, Fernando; Ferro-Luzzi, Massimiliano; Filippov, Sergey; Fiore, Marco; Fiorini, Massimiliano; Firlej, Miroslaw; Fitzpatrick, Conor; Fiutowski, Tomasz; Fol, Philip; Fontana, Marianna; Fontanelli, Flavio; Forty, Roger; Francisco, Oscar; Frank, Markus; Frei, Christoph; Frosini, Maddalena; Fu, Jinlin; Furfaro, Emiliano; Gallas Torreira, Abraham; Galli, Domenico; Gallorini, Stefano; Gambetta, Silvia; Gandelman, Miriam; Gandini, Paolo; Gao, Yuanning; García Pardiñas, Julián; Garofoli, Justin; Garra Tico, Jordi; Garrido, Lluis; Gascon, David; Gaspar, Clara; Gauld, Rhorry; Gavardi, Laura; Geraci, Angelo; Gersabeck, Evelina; Gersabeck, Marco; Gershon, Timothy; Ghez, Philippe; Gianelle, Alessio; Gianì, Sebastiana; Gibson, Valerie; Giubega, Lavinia-Helena; Gligorov, V.V.; Göbel, Carla; Golubkov, Dmitry; Golutvin, Andrey; Gomes, Alvaro; Gotti, Claudio; Grabalosa Gándara, Marc; Graciani Diaz, Ricardo; Granado Cardoso, Luis Alberto; Graugés, Eugeni; Graverini, Elena; Graziani, Giacomo; Grecu, Alexandru; Greening, Edward; Gregson, Sam; Griffith, Peter; Grillo, Lucia; Grünberg, Oliver; Gui, Bin; Gushchin, Evgeny; Guz, Yury; Gys, Thierry; Hadjivasiliou, Christos; Haefeli, Guido; Haen, Christophe; Haines, Susan; Hall, Samuel; Hamilton, Brian; Hampson, Thomas; Han, Xiaoxue; Hansmann-Menzemer, Stephanie; Harnew, Neville; Harnew, Samuel; Harrison, Jonathan; He, Jibo; Head, Timothy; Heijne, Veerle; Hennessy, Karol; Henrard, Pierre; Henry, Louis; Hernando Morata, Jose Angel; van Herwijnen, Eric; Heß, Miriam; Hicheur, Adlène; Hill, Donal; Hoballah, Mostafa; Hombach, Christoph; Hulsbergen, Wouter; Hunt, Philip; Hussain, Nazim; Hutchcroft, David; Hynds, Daniel; Idzik, Marek; Ilten, Philip; Jacobsson, Richard; Jaeger, Andreas; Jalocha, Pawel; Jans, Eddy; Jaton, Pierre; Jawahery, Abolhassan; Jing, Fanfan; John, Malcolm; Johnson, Daniel; Jones, Christopher; Joram, Christian; Jost, Beat; Jurik, Nathan; Kandybei, Sergii; Kanso, Walaa; Karacson, Matthias; Karbach, Moritz; Karodia, Sarah; Kelsey, Matthew; Kenyon, Ian; Ketel, Tjeerd; Khanji, Basem; Khurewathanakul, Chitsanu; Klaver, Suzanne; Klimaszewski, Konrad; Kochebina, Olga; Kolpin, Michael; Komarov, Ilya; Koopman, Rose; Koppenburg, Patrick; Korolev, Mikhail; Kozlinskiy, Alexandr; Kravchuk, Leonid; Kreplin, Katharina; Kreps, Michal; Krocker, Georg; Krokovny, Pavel; Kruse, Florian; Kucewicz, Wojciech; Kucharczyk, Marcin; Kudryavtsev, Vasily; Kurek, Krzysztof; Kvaratskheliya, Tengiz; La Thi, Viet Nga; Lacarrere, Daniel; Lafferty, George; Lai, Adriano; Lambert, Dean; Lambert, Robert W; Lanfranchi, Gaia; Langenbruch, Christoph; Langhans, Benedikt; Latham, Thomas; Lazzeroni, Cristina; Le Gac, Renaud; van Leerdam, Jeroen; Lees, Jean-Pierre; Lefèvre, Regis; Leflat, Alexander; Lefrançois, Jacques; Leo, Sabato; Leroy, Olivier; Lesiak, Tadeusz; Leverington, Blake; Li, Yiming; Likhomanenko, Tatiana; Liles, Myfanwy; Lindner, Rolf; Linn, Christian; Lionetto, Federica; Liu, Bo; Lohn, Stefan; Longstaff, Iain; Lopes, Jose; Lopez-March, Neus; Lowdon, Peter; Lucchesi, Donatella; Luo, Haofei; Lupato, Anna; Luppi, Eleonora; Lupton, Oliver; Machefert, Frederic; Machikhiliyan, Irina V; Maciuc, Florin; Maev, Oleg; Malde, Sneha; Malinin, Alexander; Manca, Giulia; Mancinelli, Giampiero; Mapelli, Alessandro; Maratas, Jan; Marchand, Jean François; Marconi, Umberto; Marin Benito, Carla; Marino, Pietro; Märki, Raphael; Marks, Jörg; Martellotti, Giuseppe; Martens, Aurelien; Martín Sánchez, Alexandra; Martinelli, Maurizio; Martinez Santos, Diego; Martinez Vidal, Fernando; Martins Tostes, Danielle; Massafferri, André; Matev, Rosen; Mathe, Zoltan; Matteuzzi, Clara; Mazurov, Alexander; McCann, Michael; McCarthy, James; McNab, Andrew; McNulty, Ronan; McSkelly, Ben; Meadows, Brian; Meier, Frank; Meissner, Marco; Merk, Marcel; Milanes, Diego Alejandro; Minard, Marie-Noelle; Moggi, Niccolò; Molina Rodriguez, Josue; Monteil, Stephane; Morandin, Mauro; Morawski, Piotr; Mordà, Alessandro; Morello, Michael Joseph; Moron, Jakub; Morris, Adam Benjamin; Mountain, Raymond; Muheim, Franz; Müller, Katharina; Mussini, Manuel; Muster, Bastien; Naik, Paras; Nakada, Tatsuya; Nandakumar, Raja; Nasteva, Irina; Needham, Matthew; Neri, Nicola; Neubert, Sebastian; Neufeld, Niko; Neuner, Max; Nguyen, Anh Duc; Nguyen, Thi-Dung; Nguyen-Mau, Chung; Nicol, Michelle; Niess, Valentin; Niet, Ramon; Nikitin, Nikolay; Nikodem, Thomas; Novoselov, Alexey; O'Hanlon, Daniel Patrick; Oblakowska-Mucha, Agnieszka; Obraztsov, Vladimir; Oggero, Serena; Ogilvy, Stephen; Okhrimenko, Oleksandr; Oldeman, Rudolf; Onderwater, Gerco; Orlandea, Marius; Otalora Goicochea, Juan Martin; Owen, Patrick; Oyanguren, Maria Arantza; Pal, Bilas Kanti; Palano, Antimo; Palombo, Fernando; Palutan, Matteo; Panman, Jacob; Papanestis, Antonios; Pappagallo, Marco; Pappalardo, Luciano; Parkes, Christopher; Parkinson, Christopher John; Passaleva, Giovanni; Patel, Girish; Patel, Mitesh; Patrignani, Claudia; Pearce, Alex; Pellegrino, Antonio; Penso, Gianni; Pepe Altarelli, Monica; Perazzini, Stefano; Perret, Pascal; Perrin-Terrin, Mathieu; Pescatore, Luca; Pesen, Erhan; Pessina, Gianluigi; Petridis, Konstantin; Petrolini, Alessandro; Picatoste Olloqui, Eduardo; Pietrzyk, Boleslaw; Pilař, Tomas; Pinci, Davide; Pistone, Alessandro; Playfer, Stephen; Plo Casasus, Maximo; Polci, Francesco; Poluektov, Anton; Polyakov, Ivan; Polycarpo, Erica; Popov, Alexander; Popov, Dmitry; Popovici, Bogdan; Potterat, Cédric; Price, Eugenia; Price, Joseph David; Prisciandaro, Jessica; Pritchard, Adrian; Prouve, Claire; Pugatch, Valery; Puig Navarro, Albert; Punzi, Giovanni; Qian, Wenbin; Rachwal, Bartolomiej; Rademacker, Jonas; Rakotomiaramanana, Barinjaka; Rama, Matteo; Rangel, Murilo; Raniuk, Iurii; Rauschmayr, Nathalie; Raven, Gerhard; Redi, Federico; Reichert, Stefanie; Reid, Matthew; dos Reis, Alberto; Ricciardi, Stefania; Richards, Sophie; Rihl, Mariana; Rinnert, Kurt; Rives Molina, Vincente; Robbe, Patrick; Rodrigues, Ana Barbara; Rodrigues, Eduardo; Rodriguez Perez, Pablo; Roiser, Stefan; Romanovsky, Vladimir; Romero Vidal, Antonio; Rotondo, Marcello; Rouvinet, Julien; Ruf, Thomas; Ruiz, Hugo; Ruiz Valls, Pablo; Saborido Silva, Juan Jose; Sagidova, Naylya; Sail, Paul; Saitta, Biagio; Salustino Guimaraes, Valdir; Sanchez Mayordomo, Carlos; Sanmartin Sedes, Brais; Santacesaria, Roberta; Santamarina Rios, Cibran; Santovetti, Emanuele; Sarti, Alessio; Satriano, Celestina; Satta, Alessia; Saunders, Daniel Martin; Savrina, Darya; Schiller, Manuel; Schindler, Heinrich; Schlupp, Maximilian; Schmelling, Michael; Schmidt, Burkhard; Schneider, Olivier; Schopper, Andreas; Schune, Marie Helene; Schwemmer, Rainer; Sciascia, Barbara; Sciubba, Adalberto; Semennikov, Alexander; Sepp, Indrek; Serra, Nicola; Serrano, Justine; Sestini, Lorenzo; Seyfert, Paul; Shapkin, Mikhail; Shapoval, Illya; Shcheglov, Yury; Shears, Tara; Shekhtman, Lev; Shevchenko, Vladimir; Shires, Alexander; Silva Coutinho, Rafael; Simi, Gabriele; Sirendi, Marek; Skidmore, Nicola; Skillicorn, Ian; Skwarnicki, Tomasz; Smith, Anthony; Smith, Edmund; Smith, Eluned; Smith, Jackson; Smith, Mark; Snoek, Hella; Sokoloff, Michael; Soler, Paul; Soomro, Fatima; Souza, Daniel; Souza De Paula, Bruno; Spaan, Bernhard; Sparkes, Ailsa; Spradlin, Patrick; Sridharan, Srikanth; Stagni, Federico; Stahl, Marian; Stahl, Sascha; Steinkamp, Olaf; Stenyakin, Oleg; Stevenson, Scott; Stoica, Sabin; Stone, Sheldon; Storaci, Barbara; Stracka, Simone; Straticiuc, Mihai; Straumann, Ulrich; Stroili, Roberto; Subbiah, Vijay Kartik; Sun, Liang; Sutcliffe, William; Swientek, Krzysztof; Swientek, Stefan; Syropoulos, Vasileios; Szczekowski, Marek; Szczypka, Paul; Szumlak, Tomasz; T'Jampens, Stephane; Teklishyn, Maksym; Tellarini, Giulia; Teubert, Frederic; Thomas, Christopher; Thomas, Eric; van Tilburg, Jeroen; Tisserand, Vincent; Tobin, Mark; Tolk, Siim; Tomassetti, Luca; Tonelli, Diego; Topp-Joergensen, Stig; Torr, Nicholas; Tournefier, Edwige; Tourneur, Stephane; Tran, Minh Tâm; Tresch, Marco; Tsaregorodtsev, Andrei; Tsopelas, Panagiotis; Tuning, Niels; Ubeda Garcia, Mario; Ukleja, Artur; Ustyuzhanin, Andrey; Uwer, Ulrich; Vacca, Claudia; Vagnoni, Vincenzo; Valenti, Giovanni; Vallier, Alexis; Vazquez Gomez, Ricardo; Vazquez Regueiro, Pablo; Vázquez Sierra, Carlos; Vecchi, Stefania; Velthuis, Jaap; Veltri, Michele; Veneziano, Giovanni; Vesterinen, Mika; Viaud, Benoit; Vieira, Daniel; Vieites Diaz, Maria; Vilasis-Cardona, Xavier; Vollhardt, Achim; Volyanskyy, Dmytro; Voong, David; Vorobyev, Alexey; Vorobyev, Vitaly; Voß, Christian; de Vries, Jacco; Waldi, Roland; Wallace, Charlotte; Wallace, Ronan; Walsh, John; Wandernoth, Sebastian; Wang, Jianchun; Ward, David; Watson, Nigel; Websdale, David; Whitehead, Mark; Wicht, Jean; Wiedner, Dirk; Wilkinson, Guy; Williams, Matthew; Williams, Mike; Wilschut, Hans; Wilson, Fergus; Wimberley, Jack; Wishahi, Julian; Wislicki, Wojciech; Witek, Mariusz; Wormser, Guy; Wotton, Stephen; Wright, Simon; Wyllie, Kenneth; Xie, Yuehong; Xing, Zhou; Xu, Zhirui; Yang, Zhenwei; Yuan, Xuhao; Yushchenko, Oleg; Zangoli, Maria; Zavertyaev, Mikhail; Zhang, Liming; Zhang, Wen Chao; Zhang, Yanxi; Zhelezov, Alexey; Zhokhov, Anatoly; Zhong, Liang; Zvyagin, Alexander

    2015-03-05

    The LHCb detector is a forward spectrometer at the Large Hadron Collider (LHC) at CERN. The experiment is designed for precision measurements of CP violation and rare decays of beauty and charm hadrons. In this paper the performance of the various LHCb sub-detectors and the trigger system are described, using data taken from 2010 to 2012. It is shown that the design criteria of the experiment have been met. The excellent performance of the detector has allowed the LHCb collaboration to publish a wide range of physics results, demonstrating LHCb's unique role, both as a heavy flavour experiment and as a general purpose detector in the forward region.

  9. Development of a technique for the efficiency calibration of a HPGe detector for the off gas samples of a nuclear reactor

    International Nuclear Information System (INIS)

    Singh, Sarbjit; Agarwal, Chhavi; Ramaswami, A.; Manchanda, V.K.

    2007-01-01

    Regular monitoring of off gases released to the environment from a nuclear reactor is mandatory. The gaseous fission products are estimated by gamma ray spectrometry using a HPGe detector coupled to a multichannel analyser. In view of the lack of availability of gaseous fission products standards, an indirect method based on the charcoal absorption technique was developed for the efficiency calibration of HPGe detector system using 133B a and 152E u standards. The known activities of 133B a and 152E u are uniformly distributed in a vial having activated charcoal and counted on the HPGe detector system at liquid nitrogen temperature to determine the gamma ray efficiency for the vial having activated charcoal. The ratio of the gamma ray efficiencies of off gas present in the normal vial and the vial having activated charcoal at liquid nitrogen temperature are used to determine the gamma ray efficiency of off gas present in the normal vial. (author)

  10. Extension parallel to the rift zone during segmented fault growth: application to the evolution of the NE Atlantic

    Directory of Open Access Journals (Sweden)

    A. Bubeck

    2017-11-01

    Full Text Available The mechanical interaction of propagating normal faults is known to influence the linkage geometry of first-order faults, and the development of second-order faults and fractures, which transfer displacement within relay zones. Here we use natural examples of growth faults from two active volcanic rift zones (Koa`e, island of Hawai`i, and Krafla, northern Iceland to illustrate the importance of horizontal-plane extension (heave gradients, and associated vertical axis rotations, in evolving continental rift systems. Second-order extension and extensional-shear faults within the relay zones variably resolve components of regional extension, and components of extension and/or shortening parallel to the rift zone, to accommodate the inherently three-dimensional (3-D strains associated with relay zone development and rotation. Such a configuration involves volume increase, which is accommodated at the surface by open fractures; in the subsurface this may be accommodated by veins or dikes oriented obliquely and normal to the rift axis. To consider the scalability of the effects of relay zone rotations, we compare the geometry and kinematics of fault and fracture sets in the Koa`e and Krafla rift zones with data from exhumed contemporaneous fault and dike systems developed within a > 5×104 km2 relay system that developed during formation of the NE Atlantic margins. Based on the findings presented here we propose a new conceptual model for the evolution of segmented continental rift basins on the NE Atlantic margins.

  11. The atlas detector

    International Nuclear Information System (INIS)

    Perrodo, P.

    2001-01-01

    The ATLAS detector, one of the two multi-purpose detectors at the Large Hadron Collider at CERN, is currently being built in order to meet the first proton-proton collisions in time. A description of the detector components will be given, corresponding to the most up to date design and status of construction, completed with test beam results and performances of the first serial modules. (author)

  12. The discovery of a conjugate system of faults in the Wharton Basin intraplate deformation zone.

    Science.gov (United States)

    Singh, Satish C; Hananto, Nugroho; Qin, Yanfang; Leclerc, Frederique; Avianto, Praditya; Tapponnier, Paul E; Carton, Helene; Wei, Shengji; Nugroho, Adam B; Gemilang, Wishnu A; Sieh, Kerry; Barbot, Sylvain

    2017-01-01

    The deformation at well-defined, narrow plate boundaries depends on the relative plate motion, but how the deformation takes place within a distributed plate boundary zone remains a conundrum. This was confirmed by the seismological analyses of the 2012 great Wharton Basin earthquakes [moment magnitude ( M w ) 8.6], which suggested the rupture of several faults at high angles to one another. Using high-resolution bathymetry and seismic reflection data, we report the discovery of new N294°E-striking shear zones, oblique to the plate fabric. These shear zones are expressed by sets of normal faults striking at N335°E, defining the direction of the principal compressional stress in the region. Also, we have imaged left-lateral strike-slip faults along reactivated N7°E-oriented oceanic fracture zones. The shear zones and the reactivated fracture zones form a conjugate system of faults, which accommodate present-day intraplate deformation in the Wharton Basin.

  13. Measurement of the spatial resolution of wide-pitch silicon strip detectors with large incident angle

    International Nuclear Information System (INIS)

    Kawasaki, T.; Hazumi, M.; Nagashima, Y.

    1996-01-01

    As a part of R ampersand D for the BELLE experiment at KEK-B, we measured the spatial resolution of silicon strip detectors for particles with incident angles ranging from 0 degrees to 75 degrees. These detectors have strips with pitches of 50, 125 and 250 μm on the ohmic side. We have obtained the incident angle dependence which agreed well with a Monte Carlo simulation. The resolution was found to be 11 μm for normal incidence with a pitch of 50 μm, and 29 μm for incident angle of 75 degrees with a pitch of 250μm

  14. Preparation of bubble damage detectors

    International Nuclear Information System (INIS)

    Tu Caiqing; Guo Shilun; Wang Yulan; Hao Xiuhong; Chen Changmao; Su Jingling

    1997-01-01

    Bubble damage detectors have been prepared by using polyacrylamide as detector solid and freon as detector liquid. Tests show that the prepared detectors are sensitive to fast neutrons and have proportionality between bubble number and neutron fluence within a certain range of neutron fluence. Therefore, it can be used as a fast neutron detector and a dosimeter

  15. Seismic attenuation structure beneath Nazca Plate subduction zone in southern Peru

    Science.gov (United States)

    Jang, H.; Kim, Y.; Clayton, R. W.

    2017-12-01

    We estimate seismic attenuation in terms of quality factors, QP and QS using P and S phases, respectively, beneath Nazca Plate subduction zone between 10°S and 18.5°S latitude in southern Peru. We first relocate 298 earthquakes with magnitude ranges of 4.0-6.5 and depth ranges of 20-280 km. We measure t*, which is an integrated attenuation through the seismic raypath between the regional earthquakes and stations. The measured t* are inverted to construct three-dimensional attenuation structures of southern Peru. Checkerboard test results for both QP and QS structures ensure good resolution in the slab-dip transition zone between flat and normal slab subduction down to a depth of 200 km. Both QP and QS results show higher attenuation continued down to a depth of 50 km beneath volcanic arc and also beneath the Quimsachata volcano, the northernmost young volcano, located far east of the main volcanic front. We also observe high attenuation in mantle wedge especially beneath the normal subduction region in both QP and QS (100-130 in QP and 100-125 in QS) and slightly higher QP and QS beneath the flat-subduction and slab-dip transition regions. We plan to relate measured attenuation in the mantle wedge to material properties such as viscosity to understand the subduction zone dynamics.

  16. Low energy response calibration of the BATSE large area detectors onboard the Compton Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Laird, C.E. [Dept. of Physics and Astronomy, Eastern Kentucky University, Moore 351, 521 Lancaster Avenue, Richmond, KY 40475-3124 (United States)]. E-mail: Chris.Laird@eku.edu; Harmon, B.A. [XD12 NASA/Marshall Space Flight Center, Huntsville, AL 35812 (United States); Wilson, Colleen A. [XD12 NASA/Marshall Space Flight Center, Huntsville, AL 35812 (United States); Hunter, David [Dept. of Physics and Astronomy, Eastern Kentucky University, Moore 351, 521 Lancaster Avenue, Richmond, KY 40475-3124 (United States); Isaacs, Jason [Dept. of Physics and Astronomy, Eastern Kentucky University, Moore 351, 521 Lancaster Avenue, Richmond, KY 40475-3124 (United States)

    2006-10-15

    The low-energy attenuation of the covering material of the Burst and Transient Source Experiment (BATSE) large area detectors (LADs) on the Compton Gamma Ray Observatory as well as the small-angle response of the LADs have been studied. These effects are shown to be more significant than previously assumed. The LAD entrance window included layers of an aluminum-epoxy composite (hexel) that acted as a collimator for the lowest energy photons entering the detector just above threshold (20-50 keV). Simplifying assumptions made concerning the entrance window materials and the angular response at incident angles near normal to the detector face in the original BATSE response matrix formalism had little effect on {gamma}-ray burst measurements; however, these assumptions created serious errors in measured fluxes of galactic sources, whose emission is strongest near the LAD energy threshold. Careful measurements of the angular and low-energy dependence of the attenuation due to the hexel plates only partially improved the response. A systematic study of Crab Nebula spectra showed the need for additional corrections: an angular-dependent correction for all detectors and an angular-independent correction for each detector. These corrections have been applied as part of an overall energy and angular-dependent correction to the BATSE response matrices.

  17. The AFP Detector Control System

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00514541; The ATLAS collaboration

    2017-01-01

    The ATLAS Forward Proton (AFP) detector is one of the forward detectors of the ATLAS experiment at CERN aiming at measuring momenta and angles of diffractively scattered protons. Silicon Tracking and Time-of-Flight detectors are located inside Roman Pot stations inserted into beam pipe aperture. The AFP detector is composed of two stations on each side of the ATLAS interaction point and is under commissioning. The detector is provided with high and low voltage distribution systems. Each station has vacuum and cooling systems, movement control and all the required electronics for signal processing. Monitoring of environmental parameters, like temperature and radiation, is also available. The Detector Control System (DCS) provides control and monitoring of the detector hardware and ensures the safe and reliable operation of the detector, assuring good data quality. Comparing with DCS systems of other detectors, the AFP DCS main challenge is to cope with the large variety of AFP equipment. This paper describes t...

  18. The AFP detector control system

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00514541; The ATLAS collaboration; Caforio, Davide; Czekierda, Sabina; Hajduk, Zbigniew; Olszowska, Jolanta; Sicho, Petr; Zabinski, Bartlomiej

    The ATLAS Forward Proton (AFP) detector is one of the forward detectors of the ATLAS experiment at CERN aiming at measuring momenta and angles of diffractively scattered protons. Silicon Tracking and Time-of-Flight detectors are located inside Roman Pot stations inserted into beam pipe aperture. The AFP detector is composed of two stations on each side of the ATLAS interaction point and is under commissioning. The detector is provided with high and low voltage distribution systems. Each station has vacuum and cooling systems, movement control and all the required electronics for signal processing. Monitoring of environmental parameters, like temperature and radiation, is also available. The Detector Control System (DCS) provides control and monitoring of the detector hardware and ensures the safe and reliable operation of the detector, assuring good data quality. Comparing with DCS systems of other detectors, the AFP DCS main challenge is to cope with the large variety of AFP equipment. This paper describes t...

  19. Radiation protection zoning

    International Nuclear Information System (INIS)

    2015-01-01

    Radiation being not visible, the zoning of an area containing radioactive sources is important in terms of safety. Concerning radiation protection, 2 work zones are defined by regulations: the monitored zone and the controlled zone. The ministerial order of 15 may 2006 settles the frontier between the 2 zones in terms of radiation dose rates, the rules for access and the safety standards in both zones. Radioprotection rules and the name of the person responsible for radiation protection must be displayed. The frontier between the 2 zones must be materialized and marked with adequate equipment (specific danger signs and tapes). Both zones are submitted to selective entrance, the access for the controlled zone is limited because of the radiation risk and of the necessity of confining radioactive contamination while the limitation of the access to the monitored zone is due to radiation risk only. (A.C.)

  20. Report of the compact detector subgroup

    International Nuclear Information System (INIS)

    Kirkby, J.; Kondo, T.; Olsen, S.L.

    1988-01-01

    This report discusses different detector designs that are being proposed for Superconducting Super Collider experiments. The detectors discussed are: Higgs particle detector, Solid State Box detector, SMART detector, muon detection system, and forward detector. Also discussed are triggering strategies for these detectors, high field solenoids, barium fluoride option for EM calorimetry, radiation damage considerations, and cost estimates

  1. Hydrogen detector

    International Nuclear Information System (INIS)

    Kumagaya, Hiromichi; Yoshida, Kazuo; Sanada, Kazuo; Chigira, Sadao.

    1994-01-01

    The present invention concerns a hydrogen detector for detecting water-sodium reaction. The hydrogen detector comprises a sensor portion having coiled optical fibers and detects hydrogen on the basis of the increase of light transmission loss upon hydrogen absorption. In the hydrogen detector, optical fibers are wound around and welded to the outer circumference of a quartz rod, as well as the thickness of the clad layer of the optical fiber is reduced by etching. With such procedures, size of the hydrogen detecting sensor portion can be decreased easily. Further, since it can be used at high temperature, diffusion rate is improved to shorten the detection time. (N.H.)

  2. Detectors for Particle Radiation

    Science.gov (United States)

    Kleinknecht, Konrad

    1999-01-01

    This textbook provides a clear, concise and comprehensive review of the physical principles behind the devices used to detect charged particles and gamma rays, and the construction and performance of these many different types of detectors. Detectors for high-energy particles and radiation are used in many areas of science, especially particle physics and nuclear physics experiments, nuclear medicine, cosmic ray measurements, space sciences and geological exploration. This second edition includes all the latest developments in detector technology, including several new chapters covering micro-strip gas chambers, silicion strip detectors and CCDs, scintillating fibers, shower detectors using noble liquid gases, and compensating calorimeters for hadronic showers. This well-illustrated textbook contains examples from the many areas in science in which these detectors are used. It provides both a coursebook for students in physics, and a useful introduction for researchers in other fields.

  3. The ATLAS Pixel Detector

    CERN Document Server

    Huegging, Fabian

    2006-06-26

    The contruction of the ATLAS Pixel Detector which is the innermost layer of the ATLAS tracking system is prgressing well. Because the pixel detector will contribute significantly to the ATLAS track and vertex reconstruction. The detector consists of identical sensor-chip-hybrid modules, arranged in three barrels in the centre and three disks on either side for the forward region. The position of the detector near the interaction point requires excellent radiation hardness, mechanical and thermal robustness, good long-term stability for all parts, combined with a low material budget. The final detector layout, new results from production modules and the status of assembly are presented.

  4. The development of p-type silicon detectors for the high radiation regions of the LHC

    CERN Document Server

    Hanlon, M D L

    1998-01-01

    This thesis describes the production and characterisation of silicon microstrip detectors and test structures on p-type substrates. An account is given of the production and full parameterisation of a p-type microstrip detector, incorporating the ATLAS-A geometry in a beam test. This detector is an AC coupled device incorporating a continuous p-stop isolation frame and polysilicon biasing and is typical of n-strip devices proposed for operation at the LHC. It was successfully read out using the FELix-128 analogue pipeline chip and a signal to noise (s/n) of 17+-1 is reported, along with a spatial resolution of 14.6+-0.2 mu m. Diode test structures were fabricated on both high resistivity float zone material and on epitaxial material and subsequently irradiated with 24 GeV protons at the CERN PS up to a dose of (8.22+-0.23) x 10 sup 1 sup 4 per cm sup 2. An account of the measurement program is presented along with results on the changes in the effective doping concentration (N sub e sub f sub f) with irradiat...

  5. Silicon strip detector for a novel 2D dosimetric method for radiotherapy treatment verification

    Science.gov (United States)

    Bocci, A.; Cortés-Giraldo, M. A.; Gallardo, M. I.; Espino, J. M.; Arráns, R.; Alvarez, M. A. G.; Abou-Haïdar, Z.; Quesada, J. M.; Pérez Vega-Leal, A.; Pérez Nieto, F. J.

    2012-05-01

    The aim of this work is to characterize a silicon strip detector and its associated data acquisition system, based on discrete electronics, to obtain in a near future absorbed dose maps in axial planes for complex radiotherapy treatments, using a novel technique. The experimental setup is based on two phantom prototypes: the first one is a polyethylene slab phantom used to characterize the detector in terms of linearity, percent depth dose, reproducibility, uniformity and penumbra. The second one is a cylindrical phantom, specifically designed and built to recreate conditions close to those normally found in clinical environments, for treatment planning assessment. This system has been used to study the dosimetric response of the detector, in the axial plane of the phantom, as a function of its angle with respect to the irradiation beam. A software has been developed to operate the rotation of this phantom and to acquire signals from the silicon strip detector. As an innovation, the detector was positioned inside the cylindrical phantom parallel to the beam axis. Irradiation experiments were carried out with a Siemens PRIMUS linac operating in the 6 MV photon mode at the Virgen Macarena Hospital. Monte Carlo simulations were performed using Geant4 toolkit and results were compared to Treatment Planning System (TPS) calculations for the absorbed dose-to-water case. Geant4 simulations were used to estimate the sensitivity of the detector in different experimental configurations, in relation to the absorbed dose in each strip. A final calibration of the detector in this clinical setup was obtained by comparing experimental data with TPS calculations.

  6. Factors affecting surf zone phytoplankton production in Southeastern North Carolina, USA

    KAUST Repository

    Cahoon, Lawrence B.

    2017-07-15

    Abstract: The biomass and productivity of primary producers in the surf zone of the ocean beach at Wrightsville Beach, North Carolina, USA, were measured during all seasons, along with environmental parameters and nutrient levels. Variation in biomass (chlorophyll a) was associated with temperature. Primary production (PP), measured by in situ 14-C incubations, was a function of chlorophyll a, tide height at the start of incubations, and rainfall in the preceding 24-hr period. Biomass-normalized production (PB) was also a function of tide height and rainfall in the preceding 24-hr period. We interpreted these results as evidence of surf production 1) as combined contributions of phytoplankton and suspended benthic microalgae, which may confound application of simple P-E models to surf zone production, and 2) being regulated by nutrient source/supply fluctuations independently from other factors. Surf zone biomass and production levels are intermediate between relatively high estuarine values and much lower coastal ocean values. Surf zone production may represent an important trophic connection between these two important ecosystems.

  7. Factors affecting surf zone phytoplankton production in Southeastern North Carolina, USA

    KAUST Repository

    Cahoon, Lawrence B.; Bugica, Kalman; Wooster, Michael K.; Dickens, Amanda Kahn

    2017-01-01

    Abstract: The biomass and productivity of primary producers in the surf zone of the ocean beach at Wrightsville Beach, North Carolina, USA, were measured during all seasons, along with environmental parameters and nutrient levels. Variation in biomass (chlorophyll a) was associated with temperature. Primary production (PP), measured by in situ 14-C incubations, was a function of chlorophyll a, tide height at the start of incubations, and rainfall in the preceding 24-hr period. Biomass-normalized production (PB) was also a function of tide height and rainfall in the preceding 24-hr period. We interpreted these results as evidence of surf production 1) as combined contributions of phytoplankton and suspended benthic microalgae, which may confound application of simple P-E models to surf zone production, and 2) being regulated by nutrient source/supply fluctuations independently from other factors. Surf zone biomass and production levels are intermediate between relatively high estuarine values and much lower coastal ocean values. Surf zone production may represent an important trophic connection between these two important ecosystems.

  8. Factors affecting surf zone phytoplankton production in Southeastern North Carolina, USA

    Science.gov (United States)

    Cahoon, Lawrence B.; Bugica, Kalman; Wooster, Michael K.; Dickens, Amanda Kahn

    2017-09-01

    The biomass and productivity of primary producers in the surf zone of the ocean beach at Wrightsville Beach, North Carolina, USA, were measured during all seasons, along with environmental parameters and nutrient levels. Variation in biomass (chlorophyll a) was associated with temperature. Primary production (PP), measured by in situ 14-C incubations, was a function of chlorophyll a, tide height at the start of incubations, and rainfall in the preceding 24-hr period. Biomass-normalized production (PB) was also a function of tide height and rainfall in the preceding 24-hr period. We interpreted these results as evidence of surf production 1) as combined contributions of phytoplankton and suspended benthic microalgae, which may confound application of simple P-E models to surf zone production, and 2) being regulated by nutrient source/supply fluctuations independently from other factors. Surf zone biomass and production levels are intermediate between relatively high estuarine values and much lower coastal ocean values. Surf zone production may represent an important trophic connection between these two important ecosystems.

  9. Self powered neutron detectors

    International Nuclear Information System (INIS)

    Gopalan, C.S.; Ramachandra Rao, M.N.; Ingale, A.D.

    1976-01-01

    Two types of self powered neutron detectors used for in-core flux measurements are described. The characteristics of the various detectors, with emitters Rh, V, Co, Py are presented. Details about the fabrication of these detectors are given. (A.K.)

  10. Active Deformation of Malawi Rift's North Basin Hinge Zone Modulated by Reactivation of Preexisting Precambrian Shear Zone Fabric

    Science.gov (United States)

    Kolawole, F.; Atekwana, E. A.; Laó-Dávila, D. A.; Abdelsalam, M. G.; Chindandali, P. R.; Salima, J.; Kalindekafe, L.

    2018-03-01

    We integrated temporal aeromagnetic data and recent earthquake data to address the long-standing question on the role of preexisting Precambrian structures in modulating strain accommodation and subsequent ruptures leading to seismic events within the East African Rift System. We used aeromagnetic data to elucidate the relationship between the locations of the 2009 Mw 6.0 Karonga, Malawi, earthquake surface ruptures and buried basement faults along the hinge zone of the half-graben comprising the North Basin of the Malawi Rift. Through the application of derivative filters and depth-to-magnetic-source modeling, we identified and constrained the trend of the Precambrian metamorphic fabrics and correlated them to the three-dimensional structure of buried basement faults. Our results reveal an unprecedented detail of the basement fabric dominated by high-frequency WNW to NW trending magnetic lineaments associated with the Precambrian Mughese Shear Zone fabric. The high-frequency magnetic lineaments are superimposed by lower frequency NNW trending magnetic lineaments associated with possible Cenozoic faults. Surface ruptures associated with the 2009 Mw 6.0 Karonga earthquake swarm aligned with one of the NNW-trending magnetic lineaments defining a normal fault that is characterized by right-stepping segments along its northern half and coalesced segments on its southern half. Fault geometries, regional kinematics, and spatial distribution of seismicity suggest that seismogenic faults reactivated the basement fabric found along the half-graben hinge zone. We suggest that focusing of strain accommodation and seismicity along the half-graben hinge zone is facilitated and modulated by the presence of the basement fabric.

  11. Feasibility study for the use of PADC as a radiation detector for living cell cultures

    CERN Document Server

    Meesen, G; Gestel, S V; Oostveldt, P V

    1999-01-01

    In the framework of an ESA project, a microbiological experiment in space is planned. In this experiment a cell culture will be exposed to cosmic radiation onboard a spacecraft. Because the living cell culture will be directly on a nuclear track detector stack, this detector will be submitted to a different environment than normally used. The temperature will be 37 deg. C and the culture will be in a biological growth medium. Tests have been conducted to assess the possible use of PADC in these conditions. For this, a series of alpha irradiated detectors have been exposed for different periods of time (up to 1 month) to these 'biological' conditions. The radiological properties as well as the mechanical properties (swelling...) have been investigated. Results show no influence of the biological environment on the PADC, which makes it useable under these circumstances.

  12. Feasibility study for the use of PADC as a radiation detector for living cell cultures

    International Nuclear Information System (INIS)

    Meesen, G.; Poffijn, A.; Gestel, S. van; Oostveldt, P. van

    1999-01-01

    In the framework of an ESA project, a microbiological experiment in space is planned. In this experiment a cell culture will be exposed to cosmic radiation onboard a spacecraft. Because the living cell culture will be directly on a nuclear track detector stack, this detector will be submitted to a different environment than normally used. The temperature will be 37 deg. C and the culture will be in a biological growth medium. Tests have been conducted to assess the possible use of PADC in these conditions. For this, a series of alpha irradiated detectors have been exposed for different periods of time (up to 1 month) to these 'biological' conditions. The radiological properties as well as the mechanical properties (swelling...) have been investigated. Results show no influence of the biological environment on the PADC, which makes it useable under these circumstances

  13. Comparative estimation of radioecological significance of natural and technogenic objects of exclusion zone

    International Nuclear Information System (INIS)

    Kholosha, V.I.; Proskura, N.I.; Ivanov, Yu.A.; Arkhipov, A.N.; Kazakov, S.V.

    2002-01-01

    Stocks of radionuclides in natural and technogenic objects of a Zone (forests, meadows, former agricultural lands, water objects etc., object 'Shelter', Sites of Radioactive Waste Disposal (SRAWD) and Sites of Temporary Localization of Radioactive Waste (STLRAW)) are estimated. The estimations of fluxes of radionuclides both inside a Zone and out of its borders in normal conditions as well as in case of different natural and technogenic cataclysms (floods, fires, emergencies etc.) with account of probabilities of such events are discussed. The significance of the main fluxes of radionuclide migration beyond the Zone borders is estimated: a surface water flux (river Pripyat), air (wind) transfer, biogenic flux, technogenic migration. The significance of the non-radiological factors influenced on the ecological situation in a Zone (phyto-and zoosanitary, sanitary-epidemiological conditions) is discussed. The problems of irradiation of vegetation and animal organisms in terrestrial and water ecosystems, of personnel and people living on a Zone territory without permission (so called 'self-settlers') are considered. The priority directions of activities for control over the radiological and ecological situation on the territory and in objects of a Zone are formulated. (author)

  14. Comparisons Between Histology and Optical Coherence Tomography Angiography of the Periarterial Capillary-Free Zone.

    Science.gov (United States)

    Balaratnasingam, Chandrakumar; An, Dong; Sakurada, Yoichi; Lee, Cecilia S; Lee, Aaron Y; McAllister, Ian L; Freund, K Bailey; Sarunic, Marinko; Yu, Dao-Yi

    2018-05-01

    To use the capillary-free zone along retinal arteries, a physiologic area of superficial avascularization, as an anatomic paradigm to investigate the reliability of optical coherence tomography angiography (OCTA) for visualizing the deep retinal circulation. Validity analysis and laboratory investigation. Five normal human donor eyes (mean age 69.8 years) were perfusion-labeled with endothelial antibodies and the capillary networks of the perifovea were visualized using confocal scanning laser microscopy. Regions of the capillary-free zone along the retinal artery were imaged using OCTA in 16 normal subjects (age range 24-51 years). Then, 3 × 3-mm scans were acquired using the RTVue XR Avanti (ver. 2016.1.0.26; Optovue, Inc, Fremont, California, USA), PLEX Elite 9000 (ver. 1.5.0.15909; Zeiss Meditec, Inc, Dublin, California, USA), Heidelberg Spectralis OCT2 (Family acquisition module 6.7.21.0; Heidelberg Engineering, Heidelberg, Germany), and DRI-OCT Triton (Ver. 1.1.1; Topcon Corp, Tokyo, Japan). Images of the superficial plexus, deep vascular plexus, and a slab containing all vascular plexuses were generated using manufacturer-recommended default settings. Comparisons between histology and OCTA were performed. Histologic analysis revealed that the capillary-free zone along the retinal artery was confined to the plane of the superficial capillary plexus and did not include the intermediate and deep capillary plexuses. Images derived from OCTA instruments demonstrated a prominent capillary-free zone along the retinal artery in slabs of the superficial plexus, deep plexus, and all capillary plexuses. The number of deep retinal capillaries seen in the capillary-free zone was significantly greater on histology than on OCTA (P zone as an anatomic paradigm, we show that the deep vascular beds of the retina are not completely visualized using OCTA. This may be a limitation of current OCTA techniques. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Acquisition System and Detector Interface for Power Pulsed Detectors

    CERN Document Server

    Cornat, R

    2012-01-01

    A common DAQ system is being developed within the CALICE collaboration. It provides a flexible and scalable architecture based on giga-ethernet and 8b/10b serial links in order to transmit either slow control data, fast signals or read out data. A detector interface (DIF) is used to connect detectors to the DAQ system based on a single firmware shared among the collaboration but targeted on various physical implementations. The DIF allows to build, store and queue packets of data as well as to control the detectors providing USB and serial link connectivity. The overall architecture is foreseen to manage several hundreds of thousands channels.

  16. Apparent diffusion coefficients of normal uterus in premenopausal women with 3 T MRI

    International Nuclear Information System (INIS)

    Kuang, F.; Chen, Z.; Zhong, Q.; Fu, L.; Ma, M.

    2013-01-01

    Aim: To investigate the apparent diffusion coefficient (ADC) values of the normal uterine cervical zonal structures (cervical epithelium, the junctional zone, and myometrium) during different phases of the menstrual cycle among premenopausal women in different age groups. Materials and methods: Seventy healthy women, who were divided into three age groups (group A, 24 women in their twenties; group B, 23 women in their thirties; group C, 23 women in their forties), underwent 3 T magnetic resonance imaging (MRI) with T2-weighted and diffusion-weighted imaging (DWI) during the mid-proliferative and the mid-secretory phases. Results: The ADC values of each cervical zonal structure were significantly different from one another (p 0.05). Conclusion: ADC values of normal cervical epithelium and the junctional zone change with different phases of the menstrual cycle, which should be taken into consideration when early cervical disease is detected, when monitoring treatment response, and differentiating early tumour recurrence

  17. HIBP primary beam detector

    International Nuclear Information System (INIS)

    Schmidt, T.W.

    1979-01-01

    A position measuring detector was fabricated for the Heavy Ion Beam Probe. The 11 cm by 50 cm detector was a combination of 15 detector wires in one direction and 63 copper bars - .635 cm by 10 cm to measure along an orthogonal axis by means of a current divider circuit. High transmission tungsten meshes provide entrance windows and suppress secondary electrons. The detector dimensions were chosen to resolve the beam position to within one beam diameter

  18. Width of surface rupture zone for thrust earthquakes: implications for earthquake fault zoning

    Science.gov (United States)

    Boncio, Paolo; Liberi, Francesca; Caldarella, Martina; Nurminen, Fiia-Charlotta

    2018-01-01

    The criteria for zoning the surface fault rupture hazard (SFRH) along thrust faults are defined by analysing the characteristics of the areas of coseismic surface faulting in thrust earthquakes. Normal and strike-slip faults have been deeply studied by other authors concerning the SFRH, while thrust faults have not been studied with comparable attention. Surface faulting data were compiled for 11 well-studied historic thrust earthquakes occurred globally (5.4 ≤ M ≤ 7.9). Several different types of coseismic fault scarps characterize the analysed earthquakes, depending on the topography, fault geometry and near-surface materials (simple and hanging wall collapse scarps, pressure ridges, fold scarps and thrust or pressure ridges with bending-moment or flexural-slip fault ruptures due to large-scale folding). For all the earthquakes, the distance of distributed ruptures from the principal fault rupture (r) and the width of the rupture zone (WRZ) were compiled directly from the literature or measured systematically in GIS-georeferenced published maps. Overall, surface ruptures can occur up to large distances from the main fault ( ˜ 2150 m on the footwall and ˜ 3100 m on the hanging wall). Most of the ruptures occur on the hanging wall, preferentially in the vicinity of the principal fault trace ( > ˜ 50 % at distances guidelines). In the absence of such a very detailed study (basic SM, i.e. Level 1 SM of Italian guidelines) a width of ˜ 840 m (90 % probability from "simple thrust" database of distributed ruptures, excluding B-M, F-S and Sy fault ruptures) is suggested to be sufficiently precautionary. For more detailed SM, where the fault is carefully mapped, one must consider that the highest SFRH is concentrated in a narrow zone, ˜ 60 m in width, that should be considered as a fault avoidance zone (more than one-third of the distributed ruptures are expected to occur within this zone). The fault rupture hazard zones should be asymmetric compared to the trace

  19. A low-Z PET detector

    International Nuclear Information System (INIS)

    Burnham, C.A.; Kaufman, D.E.; Chesler, D.A.; Stearns, C.W.; Correia, J.A.; Brownell, G.L.

    1990-01-01

    In order to examine the potential of low-Z detector materials for PET, a small field imaging system using plastic detectors has been designed. In this system the site of a photon interaction in the detector is located using light produced by the first Compton electron. This is in contrast to high-Z detectors where multiple interactions occur. The calculated performance of the detector and supporting measurements are presented

  20. Characterization of a glass GEM for sealed detectors application and reduction of charging-up effects

    CERN Document Server

    Erdal, Eran

    2014-01-01

    Apart from high energy physics experiments, there has been a great effort in recent years to incorporate MPGDs in many other applications i.e. medical treatments and imaging and home land security. However, MPGDs (as most gaseous detectors) are normally operated under a constant flushing of the gas. Their use thus turns them expensive since they rely on a constant gas supply and a suitable infrastructure, but most important is the loss of their portability. These reasons have pushed the community to search for other solutions, aiming for the development of sealed detectors. The demands for such is to be made out of low outgassing rate materials and possibly the use of only noble gas to avoid aging due to chemical activity of the ionized gas of the avalanche. The default material for GEM detectors - Polyimide (Kapton), is not suitable for a sealed detector because of its high outgassing rate, thus calling for new solutions. Moreover, GEMs, being essentially made out of an insulating material, pose a problem in...

  1. ATLAS ITk Pixel detector

    CERN Document Server

    Gemme, Claudia; The ATLAS collaboration

    2016-01-01

    The high luminosity upgrade of the LHC (HL-LHC) in 2026 will provide new challenge to the ATLAS tracker. The current inner detector will be replaced with a whole silicon tracker which will consist of a five barrel layer Pixel detector surrounded by a four barrel layer Strip detector. The expected high radiation level are requiring the development of upgraded silicon sensors as well as new a front-end chip. The dense tracking environment will require finer granularity detectors. The data rates will require new technologies for high bandwidth data transmission and handling. The current status of the HL-LHC ATLA Pixel detector developments as well as the various layout options will be reviewed.

  2. Advanced far infrared detectors

    International Nuclear Information System (INIS)

    Haller, E.E.

    1993-05-01

    Recent advances in photoconductive and bolometric semiconductor detectors for wavelength 1 mm > λ > 50 μm are reviewed. Progress in detector performance in this photon energy range has been stimulated by new and stringent requirements for ground based, high altitude and space-borne telescopes for astronomical and astrophysical observations. The paper consists of chapters dealing with the various types of detectors: Be and Ga doped Ge photoconductors, stressed Ge:Ga devices and neutron transmutation doped Ge thermistors. Advances in the understanding of basic detector physics and the introduction of modern semiconductor device technology have led to predictable and reliable fabrication techniques. Integration of detectors into functional arrays has become feasible and is vigorously pursued by groups worldwide

  3. Numerical modeling of normal turbulent plane jet impingement on solid wall

    Energy Technology Data Exchange (ETDEWEB)

    Guo, C.Y.; Maxwell, W.H.C.

    1984-10-01

    Attention is given to a numerical turbulence model for the impingement of a well developed normal plane jet on a solid wall, by means of which it is possible to express different jet impingement geometries in terms of different boundary conditions. Examples of these jets include those issuing from VTOL aircraft, chemical combustors, etc. The two-equation, turbulent kinetic energy-turbulent dissipation rate model is combined with the continuity equation and the transport equation of vorticity, using an iterative finite difference technique in the computations. Peak levels of turbulent kinetic energy occur not only in the impingement zone, but also in the intermingling zone between the edges of the free jet and the wall jet. 20 references.

  4. New neutrino detection technology: application of massive water detectors to accelerator neutrino physics

    International Nuclear Information System (INIS)

    Sulak, L.

    1982-01-01

    In surveying the field of new detector technology, it appears that the advent of massive, inexpensive water Cerenkov detectors may have a significant impact on future neutrino physics. These detectors offer the volumes necessary to perform experiments at very low fluxes, for example with long neutrino flight paths or with rare neutrino species (e.g. upsilon/sub e/. As an illustration of the potential on the new techniques, we consider in detail an experiment dedicated to the study of the time evolution of a neutrino beam enriched with #betta# /sub e/'s. The highest fluexes f #betta# /sub e/ appear to be achieved with current beam lines at the Brookhaven AGS or the CERN PS. An array of massive, inexpensive detectors allows a configuration optimized for good sensitivity to neutrino eigenmass differences from 0.6 eV to 20 eV and mixing angles down to 15 0 (comparable to the Cabibbo angle). The #betta# /sub e/ beam is formed using k 0 /sub e/ 3 decays. A simultaneously produced #betta#sigma phi beam from K 0 /sub e/ 3 decay serves as the normalizer. Pion generated #betta#sigma phi's are suppressed to limit background. The detector consists of a series of seven water Cerenkov modules (each with 175T fiducial mass), judiciously spaced along the #betta# line to provide flight paths from 40m to 1000m. Simulation and reconstruction neutrino events in a detector similar to the one considered show sufficient resolution in angle, energy, position and event timing relative to the beam

  5. Development and characterization of the lead iodide semiconductor detector; Desenvolvimento e caracterizacao do detector semicondutor de iodeto de chumbo

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Icimone Braga de

    2001-07-01

    A methodology for purification and growth of PbI{sub 2} crystal as well as for its characterization as a room temperature radiation detector was developed in this work. Commercial salts were purified using the zone refining method and, for the purified material growth, the Bridgman method was used. To calculate the purification efficiency, studies of the decrease impurities concentrations were made in the salts and in three sections of the materials purified, using the neutron activation analysis technique. The results showed that the impurities segregate preferentially in the ingot final section. A significant decrease of the impurities concentration in function of the purification pass number was observed. The grown crystals presented good crystalline quality according to the results of the X-ray diffraction analysis. To evaluate the crystal as a semiconductor detector, measurements of dark leakage current, resistivity and the response of ({sup 241}Am) alpha particle and ({sup 241}Am, {sup 57}Co, {sup 133}Ba and {sup 137}Cs) gamma rays were carried out. The radiation response is strongly dependent on the crystals purity. The crystals purified with 500 passes exhibited energy resolution of 10% for {sup 241} Am alpha particle and the gamma rays resolution was compatible with the literature. The photosensibility of the PbI{sub 2} crystal found in the wavelength from 400 to 600 nm range suggests an another application at this crystal as a photodetector to be coupled to scintillators. (author)

  6. SoLid Detector Technology

    Science.gov (United States)

    Labare, Mathieu

    2017-09-01

    SoLid is a reactor anti-neutrino experiment where a novel detector is deployed at a minimum distance of 5.5 m from a nuclear reactor core. The purpose of the experiment is three-fold: to search for neutrino oscillations at a very short baseline; to measure the pure 235U neutrino energy spectrum; and to demonstrate the feasibility of neutrino detectors for reactor monitoring. This report presents the unique features of the SoLid detector technology. The technology has been optimised for a high background environment resulting from low overburden and the vicinity of a nuclear reactor. The versatility of the detector technology is demonstrated with a 288 kg detector prototype which was deployed at the BR2 nuclear reactor in 2015. The data presented includes both reactor on, reactor off and calibration measurements. The measurement results are compared with Monte Carlo simulations. The 1.6t SoLid detector is currently under construction, with an optimised design and upgraded material technology to enhance the detector capabilities. Its deployement on site is planned for the begin of 2017 and offers the prospect to resolve the reactor anomaly within about two years.

  7. Fuel conditioning facility zone-to-zone transfer administrative controls

    International Nuclear Information System (INIS)

    Pope, C. L.

    2000-01-01

    The administrative controls associated with transferring containers from one criticality hazard control zone to another in the Argonne National Laboratory (ANL) Fuel Conditioning Facility (FCF) are described. FCF, located at the ANL-West site near Idaho Falls, Idaho, is used to remotely process spent sodium bonded metallic fuel for disposition. The process involves nearly forty widely varying material forms and types, over fifty specific use container types, and over thirty distinct zones where work activities occur. During 1999, over five thousand transfers from one zone to another were conducted. Limits are placed on mass, material form and type, and container types for each zone. Ml material and containers are tracked using the Mass Tracking System (MTG). The MTG uses an Oracle database and numerous applications to manage the database. The database stores information specific to the process, including material composition and mass, container identification number and mass, transfer history, and the operators involved in each transfer. The process is controlled using written procedures which specify the zone, containers, and material involved in a task. Transferring a container from one zone to another is called a zone-to-zone transfer (ZZT). ZZTs consist of four distinct phases, select, request, identify, and completion

  8. Increase in the accuracy of approximating the profile of the erosion zone in planar magnetrons

    Science.gov (United States)

    Rogov, A. V.; Kapustin, Yu. V.

    2017-09-01

    It has been shown that the use of the survival function of the Weibull distribution shifted along the ordinate axis allows one to increase the accuracy of the approximation of the normalized profile of an erosion zone in the area from the axis to the maximum sputtering region compared with the previously suggested distribution function of the extremum values. The survival function of the Weibull distribution is used in the area from the maximum to the outer boundary of an erosion zone. The major advantage of using the new approximation is observed for magnetrons with a large central nonsputtered spot and for magnetrons with substantial sputtering in the paraxial zone.

  9. Department of Radiation Detectors - Overview

    International Nuclear Information System (INIS)

    Piekoszewski, J.

    1997-01-01

    Work carried out in 1996 in the Department of Radiation Detectors concentrated on three subjects: (i) Semiconductor Detectors (ii) X-ray Tube Generators (iii) Material Modification Using Ion and Plasma Beams. The Departamental objectives are: a search for new types of detectors, adapting modern technologies (especially of industrial microelectronics) to detector manufacturing, producing unique detectors tailored for physics experiments, manufacturing standard detectors for radiation measuring instruments. These objectives were accomplished in 1996 by: research on unique detectors for nuclear physics (e.g. a spherical set of particle detectors silicon ball), detectors for particle identification), development of technology of high-resistivity silicon detectors HRSi (grant proposal), development of thermoelectric cooling systems (grant proposal), research on p-i-n photodiode-based personal dosimeters, study of applicability of industrial planar technology in producing detectors, manufacturing detectors developed in previous years, re-generating and servicing customer detectors of various origin. The Department conducts research on the design and technology involved in producing X-ray generators based on X-ray tubes of special construction. Various tube models and their power supplies were developed. Some work has also been devoted to the detection and dosimetry of X-rays. X-ray tube generators are applied to non-destructive testing and are components of analytical systems such as: X-ray fluorescence chemical composition analysis, gauges of layer thickness and composition stress measurements, on-line control of processes, others where an X-ray tube may replace a radio-isotope source. In 1996, the Department: reviewed the domestic demand for X-ray generators, developed an X-ray generator for diagnosis of ostheroporosis of human limbs, prepared a grant proposal for the development of a new instrument for radiotherapy, the so-called needle-like X-ray tube. (author)

  10. Department of Radiation Detectors - Overview

    Energy Technology Data Exchange (ETDEWEB)

    Piekoszewski, J. [Soltan Inst. for Nuclear Studies, Otwock-Swierk (Poland)

    1997-12-31

    Work carried out in 1996 in the Department of Radiation Detectors concentrated on three subjects: (i) Semiconductor Detectors (ii) X-ray Tube Generators (iii) Material Modification Using Ion and Plasma Beams. The Departamental objectives are: a search for new types of detectors, adapting modern technologies (especially of industrial microelectronics) to detector manufacturing, producing unique detectors tailored for physics experiments, manufacturing standard detectors for radiation measuring instruments. These objectives were accomplished in 1996 by: research on unique detectors for nuclear physics (e.g. a spherical set of particle detectors silicon ball), detectors for particle identification), development of technology of high-resistivity silicon detectors HRSi (grant proposal), development of thermoelectric cooling systems (grant proposal), research on p-i-n photodiode-based personal dosimeters, study of applicability of industrial planar technology in producing detectors, manufacturing detectors developed in previous years, re-generating and servicing customer detectors of various origin. The Department conducts research on the design and technology involved in producing X-ray generators based on X-ray tubes of special construction. Various tube models and their power supplies were developed. Some work has also been devoted to the detection and dosimetry of X-rays. X-ray tube generators are applied to non-destructive testing and are components of analytical systems such as: X-ray fluorescence chemical composition analysis, gauges of layer thickness and composition stress measurements, on-line control of processes, others where an X-ray tube may replace a radio-isotope source. In 1996, the Department: reviewed the domestic demand for X-ray generators, developed an X-ray generator for diagnosis of ostheroporosis of human limbs, prepared a grant proposal for the development of a new instrument for radiotherapy, the so-called needle-like X-ray tube. (author).

  11. ATLAS muon detector

    CERN Multimedia

    Muon detectors from the outer layer of the ATLAS experiment at the Large Hadron Collider. Over a million individual detectors combine to make up the outer layer of ATLAS. All of this is exclusively to track the muons, the only detectable particles to make it out so far from the collision point. How the muon’s path curves in the magnetic field depends on how fast it is travelling. A fast muon curves only a very little, a slower one curves a lot. Together with the calorimeters, the muon detectors play an essential role in deciding which collisions to store and which to ignore. Certain signals from muons are a sure sign of exciting discoveries. To make sure the data from these collisions is not lost, some of the muon detectors react very quickly and trigger the electronics to record. The other detectors take a little longer, but are much more precise. Their job is to measure exactly where the muons have passed, calculating the curvature of their tracks in the magnetic field to the nearest five hundredths of a ...

  12. Detector and dosimeter for neutrons and other radiation

    International Nuclear Information System (INIS)

    Apfel, R.E.

    1979-01-01

    A radiation detector and dosimeter is based on the fact that a sufficiently finely-dispersed liquid suspended in a host liquid of high viscosity or gel is stable at temperatures above its normal boiling point for long periods of time provided it is protected from contact with walls, or other types of initiators which can cause volatilization or vaporization of the droplets. Radiation, and particularly neutron radiation of sufficient energy and intensity on coming in contact with such droplets can trigger volatilization. The volume of vapor evolved can then serve as a measure of radiation intensity and dosage

  13. Detectors for CBA

    International Nuclear Information System (INIS)

    Baggett, N.; Gordon, H.A.; Palmer, R.B.; Tannenbaum, M.J.

    1983-05-01

    We discuss some current approaches to a large solid angle detector. An alternative approach for utilizing the high rate of events at CBA is to design special purpose detectors for specific physics goals which can be pursued within a limited solid angle. In many cases this will be the only way to proceed, and then high luminosity has a different significance. The total rate in the restricted acceptance is less likely to be a problem, while the need for high luminosity to obtain sufficient data is obvious. Eight such experiments from studies carried out in the community are surveyed. Such experiments could be run on their own or in combination with others at the same intersection, or even with a large solid angle detector, if a window can be provided in the larger facility. The small solid angle detector would provide the trigger and special information, while the facility would provide back-up information on the rest of the event. We consider some possibilities of refurbishing existing detectors for use at CBA. This discussion is motivated by the fact that there is a growing number of powerful detectors at colliding beam machines around the world. Their builders have invested considerable amounts of time, money and ingenuity in them, and may wish to extend the useful lives of their creations, as new opportunities arise

  14. Pulse shape analysis and position determination in segmented HPGe detectors: The AGATA detector library

    Energy Technology Data Exchange (ETDEWEB)

    Bruyneel, B. [Universitaet zu Koeln, Institut fuer Kernphysik, Koeln (Germany); Service de Physique Nucleaire, CEA Saclay, Gif-sur-Yvette (France); Birkenbach, B.; Reiter, P. [Universitaet zu Koeln, Institut fuer Kernphysik, Koeln (Germany)

    2016-03-15

    The AGATA Detector Library (ADL) was developed for the calculation of signals from highly segmented large volume high-purity germanium (HPGe) detectors. ADL basis sets comprise a huge amount of calculated position-dependent detector pulse shapes. A basis set is needed for Pulse Shape Analysis (PSA). By means of PSA the interaction position of a γ -ray inside the active detector volume is determined. Theoretical concepts of the calculations are introduced and cover the relevant aspects of signal formation in HPGe. The approximations and the realization of the computer code with its input parameters are explained in detail. ADL is a versatile and modular computer code; new detectors can be implemented in this library. Measured position resolutions of the AGATA detectors based on ADL are discussed. (orig.)

  15. The ALICE forward multiplicity detector

    DEFF Research Database (Denmark)

    Holm Christensen, Christian; Gulbrandsen, Kristjan; Sogaard, Carsten

    2007-01-01

    The ALICE Forward Multiplicity Detector (FMD) is a silicon strip detector with 51,200 strips arranged in 5 rings, covering the range $-3.4......The ALICE Forward Multiplicity Detector (FMD) is a silicon strip detector with 51,200 strips arranged in 5 rings, covering the range $-3.4...

  16. Forward tracking detectors

    Indian Academy of Sciences (India)

    Abstract. Forward tracking is an essential part of a detector at the international linear collider (ILC). The requirements for forward tracking are explained and the proposed solutions in the detector concepts are shown.

  17. Quaternary layer anomalies around the Carlsberg Fault zone mapped with high-resolution shear-wave seismics south of Copenhagen

    DEFF Research Database (Denmark)

    Kammann, Janina; Hübscher, Christian; Nielsen, Lars

    Fault zone. The portable compact vibrator source ElViS III S8 was used to acquire a 1150 m long seismic section on the island Amager, south of Copenhagen. The shallow subsurface in the investigation area is dominated by Quaternary glacial till deposits in the upper 5-11 m and Danian limestone below....... In the shear-wave profile, we imaged the 30 m of the upward continuation of the Carlsberg Fault zone. In our area of investigation, the fault zone appears to comprise normal block faults and one reverse block fault showing the complexity of the fault zone. The observed faults appear to affect both the Danian...

  18. The Upgraded D0 detector

    Energy Technology Data Exchange (ETDEWEB)

    Abazov, V.M.; Abbott, B.; Abolins, M.; Acharya, B.S.; Adams, D.L.; Adams, M.; Adams, T.; Agelou, M.; Agram, J.-L.; Ahmed, S.N.; Ahn, S.H.; Ahsan, M.; Alexeev, G.D.; Alkhazov, G.; Alton, A.; Alverson, G.; Alves, G.A.; Anastasoaie, M.; Andeen, T.; Anderson, J.T.; Anderson, S.; /Buenos Aires U. /Rio de Janeiro, CBPF /Sao Paulo, IFT /Alberta U.

    2005-07-01

    The D0 experiment enjoyed a very successful data-collection run at the Fermilab Tevatron collider between 1992 and 1996. Since then, the detector has been upgraded to take advantage of improvements to the Tevatron and to enhance its physics capabilities. We describe the new elements of the detector, including the silicon microstrip tracker, central fiber tracker, solenoidal magnet, preshower detectors, forward muon detector, and forward proton detector. The uranium/liquid-argon calorimeters and central muon detector, remaining from Run I, are discussed briefly. We also present the associated electronics, triggering, and data acquisition systems, along with the design and implementation of software specific to D0.

  19. Noble Gas Detectors

    CERN Document Server

    Aprile, Elena; Bolozdynya, Alexander I; Doke, Tadayoshi

    2006-01-01

    This book discusses the physical properties of noble fluids, operational principles of detectors based on these media, and the best technical solutions to the design of these detectors. Essential attention is given to detector technology: purification methods and monitoring of purity, information readout methods, electronics, detection of hard ultra-violet light emission, selection of materials, cryogenics etc.The book is mostly addressed to physicists and graduate students involved in the preparation of fundamental next generation experiments, nuclear engineers developing instrumentation

  20. Silicon drift detectors coupled to CsI(Tl) scintillators for spaceborne gamma-ray detectors

    International Nuclear Information System (INIS)

    Marisaldi, M.; Fiorini, C.; Labanti, C.; Longoni, A.; Perotti, F.; Rossi, E.; Soltau, H.

    2006-01-01

    Silicon Drift Detectors (SDDs), thanks to their peculiar low noise characteristics, have proven to be excellent photodetectors for CsI(Tl) scintillation light detection. Two basic detector configurations have been developed: either a single SDD or a monolithic array of SDDs coupled to a single CsI(Tl) crystal. A 16 independent detectors prototype is under construction, designed to work in conjunction with the MEGA Compton telescope prototype under development at MPE, Garching, Germany. A single SDD coupled to a CsI(Tl) crystal has also been tested as a monolithic detector with an extended energy range between 1.5 keV and 1 MeV. The SDD is used as a direct X-ray detector for low energy photons interacting in silicon and as a scintillation light photodetector for photons interacting in the crystal. The type of interaction is identified by means of pulse shape discrimination technique. Detectors based on an array of SDDs coupled to a single CsI(Tl) crystal have also been built. The readout of these detectors is based on the Anger camera technique, and submillimeter spatial resolution can be achieved. The two detectors' approaches and their applications will be described

  1. Progress in semiconductor drift detectors

    International Nuclear Information System (INIS)

    Rehak, P.; Walton, J.; Gatti, E.

    1985-01-01

    Progress in testing semiconductor drift detectors is reported. Generally better position and energy resolutions were obtained than resolutions published previously. The improvement is mostly due to new electronics better matched to different detectors. It is shown that semiconductor drift detectors are becoming versatile and reliable detectors for position and energy measurements

  2. VeriTainer radiation detector for intermodal shipping containers

    International Nuclear Information System (INIS)

    Redus, R.H.; Alioto, M.; Sperry, D.; Pantazis, T.

    2007-01-01

    The VeriSpreader TM radiation detection system will monitor every container passing through a shipping terminal without impeding the flow of commerce by making the radiation measurements during normal container handling. This is accomplished by integrating neutron and spectroscopic γ-ray detectors into a container crane spreader bar, the part of the crane that directly engages the intermodal shipping containers while moving from ship to shore and vice versa. The use of a spectroscopic γ-detector reduces the rate of nuisance alarms due to naturally occurring radioactive material (NORM). The combination of γ and neutron detection reduces the effectiveness of shielding and countermeasures. The challenges in this spreader bar-based approach arise from the harsh environment, particularly the mechanical shock and the vibration of the moving spreader bar, since the measurement is taken while the container is moving. The electrical interfaces in the port environment, from the crane to a central monitoring office, present further challenges. It is the packaging, electronic interfaces, and data processing software that distinguish this system, which is based on conventional radiation sensors. The core of the system is Amptek's GAMMA-RAD, which integrates a ruggedized scintillator/PMT, digital pulse shaping electronics, electronics for the neutron detector, power supplies, and an Ethernet interface. The design of the VeriTainer system and results from both the laboratory and a proof-of-concept test at the Port of Oakland, California will be presented

  3. Detector Mount Design for IGRINS

    Directory of Open Access Journals (Sweden)

    Jae Sok Oh

    2014-06-01

    Full Text Available The Immersion Grating Infrared Spectrometer (IGRINS is a near-infrared wide-band high-resolution spectrograph jointly developed by the Korea Astronomy and Space Science Institute and the University of Texas at Austin. IGRINS employs three HAWAII-2RG Focal Plane Array (H2RG FPA detectors. We present the design and fabrication of the detector mount for the H2RG detector. The detector mount consists of a detector housing, an ASIC housing, a Field Flattener Lens (FFL mount, and a support base frame. The detector and the ASIC housing should be kept at 65 K and the support base frame at 130 K. Therefore they are thermally isolated by the support made of GFRP material. The detector mount is designed so that it has features of fine adjusting the position of the detector surface in the optical axis and of fine adjusting yaw and pitch angles in order to utilize as an optical system alignment compensator. We optimized the structural stability and thermal characteristics of the mount design using computer-aided 3D modeling and finite element analysis. Based on the structural and thermal analysis, the designed detector mount meets an optical stability tolerance and system thermal requirements. Actual detector mount fabricated based on the design has been installed into the IGRINS cryostat and successfully passed a vacuum test and a cold test.

  4. Multiparametric magnetic resonance imaging characteristics of normal, benign and malignant conditions in the prostate

    Energy Technology Data Exchange (ETDEWEB)

    Visschere, Pieter J.L. de; Pattyn, Eva; Villeirs, Geert M. [Ghent University Hospital, Department of Radiology, Ghent (Belgium); Vral, Anne [Ghent University Hospital, Department of Basic Medical Sciences, Ghent (Belgium); Perletti, Gianpaolo [Ghent University Hospital, Department of Basic Medical Sciences, Ghent (Belgium); University of Insubria, Clinical Pharmacology, Medical and Surgical Sciences Section, Department of Biotechnology and Life Sciences, Varese (Italy); Praet, Marleen [Ghent University Hospital, Department of Pathology, Ghent (Belgium); Magri, Vittorio [Instituti Clinici di Perfezionamento, Urology Clinic, Milano (Italy)

    2017-05-15

    To identify the multiparametric magnetic resonance imaging (mpMRI) characteristics of normal, benign and malignant conditions in the prostate. Fifty-six histopathological whole-mount radical prostatectomy specimens from ten randomly selected patients with prostate cancer (PC) were matched with corresponding transverse mpMRI slices. The mpMRI was performed prior to biopsy and consisted of T2-weighted imaging (T2-WI), diffusion-weighted imaging (DWI), dynamic contrast-enhanced imaging (DCE) and magnetic resonance spectroscopic imaging (MRSI). In each prostate specimen, a wide range of histopathological conditions were observed. They showed consistent but overlapping characteristics on mpMRI. Normal glands in the transition zone showed lower signal intensity (SI) on T2-WI, lower ADC values and lower citrate peaks on MRSI as compared to the peripheral zone (PZ) due to sparser glandular elements and more prominent collagenous fibres. In the PZ, normal glands were iso-intense on T2-WI, while high SI areas represented cystic atrophy. Mimickers of well-differentiated PC on mpMRI were inflammation, adenosis, HG-PIN and post-atrophic hyperplasia. Each prostate is a unique mix of normal, benign and/or malignant areas that vary in extent and distribution resulting in very heterogeneous characteristics on mpMRI. Understanding the main concepts of this mpMRI-histopathological correlation may increase the diagnostic confidence in reporting mpMRI. (orig.)

  5. Calibration of CR-39 plastic detectors in various modes and radon measurement in the north-western region of Bangladesh

    International Nuclear Information System (INIS)

    Islam, G.S.; Islam, M.A.; Haque, A.K.F.

    1998-04-01

    Solid State track detectors have been extensively used for the measurement of time integrated radon levels in dwellings under different conditions. The CR-39 plastic detectors were calibrated for bare as well as cup with membrane mode, along with a mono dispersal aerosol 0.2μm in size in an exposure chamber, to find the relationship between track densities and the radon concentration as well as potential alpha energy concentration (WL) of radon. Measurement of the indoor radon and radon daughter concentrations were performed in houses in the north-western region of Bangladesh. In total 163 detectors were placed for measurement of indoor radon activities and 230 detectors for measurement of radon daughter concentrations. To study the underground radon activity, 114 CR-39 detectors in cylinders were used. The indoor radon activity in Naogaon was, in general, found to be higher than that in Rajshahi. The working levels in the mud-built houses were greater than that in brick-built houses. The underground radon activity of Naogaon was found to be 6 times higher than that of Rajshahi. No direct correlation was observed between the underground and indoor radon activity. The average values of radon activity and the working level for the north-western zone of Bangladesh are found to be 91 Bq. m -3 and 16 mWL respectively. (author)

  6. Basic Radiation Detectors. Chapter 6

    Energy Technology Data Exchange (ETDEWEB)

    Van Eijk, C. W.E. [Faculty of Applied Sciences, Delft University of Technology, Delft (Netherlands)

    2014-12-15

    Radiation detectors are of paramount importance in nuclear medicine. The detectors provide a wide range of information including the radiation dose of a laboratory worker and the positron emission tomography (PET) image of a patient. Consequently, detectors with strongly differing specifications are used. In this chapter, general aspects of detectors are discussed.

  7. Frontier detectors for frontier physics

    International Nuclear Information System (INIS)

    Cervelli, F.; Scribano, A.

    1984-01-01

    These proceedings contain the articles presented at the named meeting. These concern developments of radiation detectors and counting techniques in high energy physics. Especially considered are tracking detectors, calorimeters, time projection chambers, detectors for rare events, solid state detectors, particle identification, and optical readout systems. See hints under the relevant topics. (HSI)

  8. Position-sensitive X-ray detectors

    International Nuclear Information System (INIS)

    Hendrix, J.

    1982-01-01

    An overview is given of the different types of position-sensitive X-ray detectors used in kinetic studies of biological molecule state changes using X-ray diffraction with synchrotron radiation as a probe. The detector requirements and principles of operation of proportional counters are outlined. Multiwire proportional chamber systems and their readout techniques are described. Other detectors discussed include a drift chamber type detector, microchannel plates, charge-couple devices and, for high count rates, an integrating TV-detector. (U.K.)

  9. The HERMES recoil detector

    International Nuclear Information System (INIS)

    Airapetian, A.; Belostotski, S.

    2013-02-01

    For the final running period of HERA, a recoil detector was installed at the HERMES experiment to improve measurements of hard exclusive processes in charged-lepton nucleon scattering. Here, deeply virtual Compton scattering is of particular interest as this process provides constraints on generalised parton distributions that give access to the total angular momenta of quarks within the nucleon. The HERMES recoil detector was designed to improve the selection of exclusive events by a direct measurement of the four-momentum of the recoiling particle. It consisted of three components: two layers of double-sided silicon strip sensors inside the HERA beam vacuum, a two-barrel scintillating fibre tracker, and a photon detector. All sub-detectors were located inside a solenoidal magnetic field with an integrated field strength of 1Tm. The recoil detector was installed in late 2005. After the commissioning of all components was finished in September 2006, it operated stably until the end of data taking at HERA end of June 2007. The present paper gives a brief overview of the physics processes of interest and the general detector design. The recoil detector components, their calibration, the momentum reconstruction of charged particles, and the event selection are described in detail. The paper closes with a summary of the performance of the detection system.

  10. The HERMES recoil detector

    Energy Technology Data Exchange (ETDEWEB)

    Airapetian, A. [Giessen Univ. (Germany). Physikalisches Inst.; Michigan Univ., Ann Arbor, MI (United States). Randall Laboratory of Physics; Aschenauer, E.C. [DESY, Zeuthen (Germany); Belostotski, S. [B.P. Konstantinov Petersburg Nuclear Physics Insitute, Gatchina (Russian Federation)] [and others; Collaboration: HERMES Recoil Detector Group

    2013-02-15

    For the final running period of HERA, a recoil detector was installed at the HERMES experiment to improve measurements of hard exclusive processes in charged-lepton nucleon scattering. Here, deeply virtual Compton scattering is of particular interest as this process provides constraints on generalised parton distributions that give access to the total angular momenta of quarks within the nucleon. The HERMES recoil detector was designed to improve the selection of exclusive events by a direct measurement of the four-momentum of the recoiling particle. It consisted of three components: two layers of double-sided silicon strip sensors inside the HERA beam vacuum, a two-barrel scintillating fibre tracker, and a photon detector. All sub-detectors were located inside a solenoidal magnetic field with an integrated field strength of 1Tm. The recoil detector was installed in late 2005. After the commissioning of all components was finished in September 2006, it operated stably until the end of data taking at HERA end of June 2007. The present paper gives a brief overview of the physics processes of interest and the general detector design. The recoil detector components, their calibration, the momentum reconstruction of charged particles, and the event selection are described in detail. The paper closes with a summary of the performance of the detection system.

  11. Description of current pulses induced by heavy ions in silicon detectors (II)

    Energy Technology Data Exchange (ETDEWEB)

    Hamrita, H. [Institut de Physique Nucleaire, CNRS/IN2P3, Universite Paris-Sud 11, F-91406 Orsay Cedex (France); CEA, LIST, Laboratoire Capteurs et Architectures Electroniques, F-91191 Gif-sur-Yvette Cedex (France); Parlog, M. [LPC, CNRS/IN2P3, ENSICAEN, Universite de Caen, F-14050 Caen Cedex (France); National Institute for Physics and Nuclear Engineering, RO-76900 Bucharest-Magurele (Romania); Borderie, B., E-mail: borderie@ipno.in2p3.fr [Institut de Physique Nucleaire, CNRS/IN2P3, Universite Paris-Sud 11, F-91406 Orsay Cedex (France); Lavergne, L. [Institut de Physique Nucleaire, CNRS/IN2P3, Universite Paris-Sud 11, F-91406 Orsay Cedex (France); Le Neindre, N. [Institut de Physique Nucleaire, CNRS/IN2P3, Universite Paris-Sud 11, F-91406 Orsay Cedex (France); LPC, CNRS/IN2P3, ENSICAEN, Universite de Caen, F-14050 Caen Cedex (France); Rivet, M.F.; Barbey, S. [Institut de Physique Nucleaire, CNRS/IN2P3, Universite Paris-Sud 11, F-91406 Orsay Cedex (France); Bougault, R. [LPC, CNRS/IN2P3, ENSICAEN, Universite de Caen, F-14050 Caen Cedex (France); Chabot, M. [Inst. de Physique Nucleaire, CNRS/IN2P3, Universite Paris-Sud 11, F-91406 Orsay Cedex (France); Chbihi, A. [GANIL (DSM-CEA/CNRS/IN2P3), F-14076 Caen Cedex (France); Cussol, D. [LPC, CNRS/IN2P3, ENSICAEN, Univ. de Caen, F-14050 Caen Cedex (France); Oliveira Santos, F. de [GANIL (DSM-CEA/CNRS/IN2P3), F-14076 Caen Cedex (France); Edelbruck, P. [Inst. de Physique Nucleaire, CNRS/IN2P3, Univ. Paris-Sud 11, F-91406 Orsay Cedex (France); Frankland, J.D. [GANIL (DSM-CEA/CNRS/IN2P3), F-14076 Caen Cedex (France); Galichet, E. [Inst. de Physique Nucleaire, CNRS/IN2P3, Univ. Paris-Sud 11, F-91406 Orsay Cedex (France); Conservatoire National des Arts et Metier, F-75141 Paris Cedex 03 (France); Guinet, D.; Lautesse, Ph. [Inst. de Physique Nucleaire, CNRS/IN2P3, Univ.e Claude Bernard Lyon I, F-69622 Villeurbanne Cedex (France); Lopez, O. [LPC, CNRS/IN2P3, ENSICAEN, Univ. de Caen, F-14050 Caen Cedex (France)

    2011-06-21

    Current pulses induced in a silicon detector by 10 different heavy ion species at known energies around 10 A MeV have been sampled in time at high frequency. Their individual average shapes are quite well reproduced by a fit procedure based on our recent charge carrier collection treatment which considers the progressive extraction of the electrons and holes from the high carrier density zone along the ionizing particle track. This region is assumed to present a supplementary dielectric polarization and consequently a disturbed electric field. The influence of the nature of the heavy ion on the values of the three fit parameters is analyzed.

  12. A multi-sample based method for identifying common CNVs in normal human genomic structure using high-resolution aCGH data.

    Directory of Open Access Journals (Sweden)

    Chihyun Park

    Full Text Available BACKGROUND: It is difficult to identify copy number variations (CNV in normal human genomic data due to noise and non-linear relationships between different genomic regions and signal intensity. A high-resolution array comparative genomic hybridization (aCGH containing 42 million probes, which is very large compared to previous arrays, was recently published. Most existing CNV detection algorithms do not work well because of noise associated with the large amount of input data and because most of the current methods were not designed to analyze normal human samples. Normal human genome analysis often requires a joint approach across multiple samples. However, the majority of existing methods can only identify CNVs from a single sample. METHODOLOGY AND PRINCIPAL FINDINGS: We developed a multi-sample-based genomic variations detector (MGVD that uses segmentation to identify common breakpoints across multiple samples and a k-means-based clustering strategy. Unlike previous methods, MGVD simultaneously considers multiple samples with different genomic intensities and identifies CNVs and CNV zones (CNVZs; CNVZ is a more precise measure of the location of a genomic variant than the CNV region (CNVR. CONCLUSIONS AND SIGNIFICANCE: We designed a specialized algorithm to detect common CNVs from extremely high-resolution multi-sample aCGH data. MGVD showed high sensitivity and a low false discovery rate for a simulated data set, and outperformed most current methods when real, high-resolution HapMap datasets were analyzed. MGVD also had the fastest runtime compared to the other algorithms evaluated when actual, high-resolution aCGH data were analyzed. The CNVZs identified by MGVD can be used in association studies for revealing relationships between phenotypes and genomic aberrations. Our algorithm was developed with standard C++ and is available in Linux and MS Windows format in the STL library. It is freely available at: http://embio.yonsei.ac.kr/~Park/mgvd.php.

  13. Exchange rate arrangements: From extreme to "normal"

    Directory of Open Access Journals (Sweden)

    Beker Emilija

    2006-01-01

    Full Text Available The paper studies theoretical and empirical location dispersion of exchange rate arrangements - rigid-intermediate-flexible regimes, in the context of extreme arrangements of a currency board, dollarization and monetary union moderate characteristics of intermediate arrangements (adjustable pegs crawling pegs and target zones and imperative-process "normalization" in the form of a managed or clean floating system. It is established that de iure and de facto classifications generate "fear of floating" and "fear of pegging". The "impossible trinity" under the conditions of capital liberalization and globalization creates a bipolar view or hypothesis of vanishing intermediate exchange rate regimes.

  14. Detectors - Electronics; Detecteurs - Electronique

    Energy Technology Data Exchange (ETDEWEB)

    Bregeault, J.; Gabriel, J.L.; Hierle, G.; Lebotlan, P.; Leconte, A.; Lelandais, J.; Mosrin, P.; Munsch, P.; Saur, H.; Tillier, J. [Lab. de Physique Corpusculaire, Caen Univ., 14 (France)

    1998-04-01

    The reports presents the main results obtained in the fields of radiation detectors and associated electronics. In the domain of X-ray gas detectors for the keV range efforts were undertaken to rise the detector efficiency. Multiple gap parallel plate chambers of different types as well as different types of X {yields} e{sup -} converters were tested to improve the efficiency (values of 2.4% at 60 KeV were reached). In the field of scintillators a study of new crystals has been carried out (among which Lutetium orthosilicate). CdTe diode strips for obtaining X-ray imaging were studied. The complete study of a linear array of 8 CdTe pixels has been performed and certified. The results are encouraging and point to this method as a satisfying solution. Also, a large dimension programmable chamber was used to study the influence of temperature on the inorganic scintillators in an interval from -40 deg. C to +150 deg. C. Temperature effects on other detectors and electronic circuits were also investigated. In the report mentioned is also the work carried out for the realization of the DEMON neutron multidetector. For neutron halo experiments different large area Si detectors associated with solid and gas position detectors were realized. In the frame of a contract with COGEMA a systematic study of Li doped glasses was undertaken aiming at replacing with a neutron probe the {sup 3}He counters presently utilized in pollution monitoring. An industrial prototype has been realised. Other studies were related to integrated analog chains, materials for Cherenkov detectors, scintillation probes for experiments on fundamental processes, gas position sensitive detectors, etc. In the field of associated electronics there are mentioned the works related to the multidetector INDRA, data acquisition, software gamma spectrometry, automatic gas pressure regulation in detectors, etc

  15. The JADE muon detector

    International Nuclear Information System (INIS)

    Allison, J.; Armitage, J.C.M.; Baines, J.T.M.; Ball, A.H.; Bamford, G.; Barlow, R.J.; Bowdery, C.K.; Chrin, J.T.M.; Duerdoth, I.P.; Glendinning, I.; Greenshaw, T.; Hassard, J.F.; Hill, P.; King, B.T.; Loebinger, F.K.; Macbeth, A.A.; McCann, H.; Mercer, D.; Mills, H.E.; Murphy, P.G.; Prosper, H.B.; Rowe, P.; Stephens, K.

    1985-01-01

    The JADE muon detector consists of 618 planar drift chambers interspersed between layers of hadron absorber. This paper gives a detailed description of the construction and operation of the detector as a whole and discusses the properties of the drift chambers. The muon detector has been operating successfully at PETRA for five years. (orig.)

  16. HP Ge planar detectors

    International Nuclear Information System (INIS)

    Gornov, M.G.; Gurov, Yu.B.; Soldatov, A.M.; Osipenko, B.P.; Yurkowski, J.; Podkopaev, O.I.

    1989-01-01

    Parameters of planar detectors manufactured of HP Ge are presented. The possibilities to use multilayer spectrometers on the base of such semiconductor detectors for nuclear physics experiments are discussed. It is shown that the obtained detectors including high square ones have spectrometrical characteristics close to limiting possible values. 9 refs.; 3 figs.; 1 tab

  17. GANIL beam profile detectors

    International Nuclear Information System (INIS)

    Tribouillard, C.

    1997-01-01

    In the design phase of GANIL which started in 1977, one of the priorities of the project management was equipping the beamlines with a fast and efficient system for visualizing the beam position, thus making possible adjustment of the beam transport lines optics and facilitating beam control. The implantation of some thirty detectors was foreseen in the initial design. The assembly of installed detectors (around 190) proves the advantages of these detectors for displaying all the beams extracted from GANIL: transfer and transport lines, beam extracted from SISSI, very high intensity beam, secondary ion beams from the production target of the LISE and SPEG spectrometers, different SPIRAL project lines. All of these detectors are based on standard characteristics: - standard flange diameter (DN 160) with a standard booster for all the sensors; - identical analog electronics for all the detectors, with networking; - unique display system. The new micro-channel plate non-interceptive detectors (beam profile and ion packet lengths) make possible in-line control of the beam quality and accelerator stability. (author)

  18. Energy dependence of commercially available diode detectors for in-vivo dosimetry

    International Nuclear Information System (INIS)

    Saini, Amarjit S.; Zhu, Timothy C.

    2007-01-01

    The energy dependence of commercially available diode detectors was measured for nominal accelerating potential ranging between Co-60 and 17 MV. The measurements were performed in a liquid water phantom at 5 cm depth for 10x10 cm 2 collimator setting and source-to-detector distance of 100 cm. The response (nC/Gy) was normalized to Co-60 beam after corrections for the dose rate and temperature dependences for each diode. The energy dependence, calculated by taking the percent difference between the maximum and minimum sensitivity normalized to Co-60 beam, varied by 39% for the n-type Isorad Red, 26% for the n-type Isorad Electron, 19% for the QED Red (p-type), 15% for the QED Electron (p-type), 11% for the QED Blue (p-type), and 6% for the EDP10 diode for nominal accelerating potential between Co-60 and 17 MV. It varied by 34% for the Isorad-3 Gold 1 and 2, 35% for the Veridose Green, 15% for the Veridose Yellow, 9% for the Veridose Electron, 21% for the n-type QED Gold, 24% for the n-type QED Red, 3% for the EDP2 3G , 2% for the PFD (photon field detector), 7% for the EDP10 3G , and 16% for the EDP20 3G for nominal accelerating potential between Co-60 and 15 MV. The magnitude of the energy dependence is verified by Monte Carlo simulation. We concluded that the energy dependence does not depend on whether the diode is n- or p-type but rather depends mainly on the material around the die such as the buildup and the geometry of the buildup material. As a result, the value of the energy dependence can vary for each individual diode depending on the actual geometry and should be used with caution

  19. Comparison of forward collider vertex detectors for B physics at hadron accelerators

    International Nuclear Information System (INIS)

    Harr, R.F.; Karchin, P.E.; Kennedy, C.J.

    1993-01-01

    Two silicon vertex detector designs have been proposed for a forward collider B physics experiment at the SSC: in one the silicon system is put outside the beampipe (like in the forward part of the proposed BCD detector); and in the other the silicon system is put inside the beampipe, close to the circulating beams, with the use of open-quote roman pots close-quote (as in the COBEX proposal). In what follows these will be referred to as the inside and outside designs. The two designs are significantly different in their construction and impact on the rest of the experiment. The authors would like to understand how the designs compare for doing B physics and what are the factors that most greatly influence the results. Two measurements relying on the vertex detector and of particular importance for B physics are the reconstructed vertex position and B mass. They have analyzed the resolution achievable in these 2 quantities for open-quote models close-quote of the two forward collider vertex detector designs. The design parameters - beampipe radius and thickness, silicon position and resolution, etc. - have been varied about their normal values to observe their effect on these resolutions. They find very little difference between the two designs; both give nearly the same decay length error, impact parameter error, and reconstructed B mass error, for a large range of geometrical parameters. The design parameter having the most significant impact on the errors of B decay vertices is found to be the point resolution of the silicon detectors

  20. Calculation of neutron albedo from laminated semiinfinite media

    International Nuclear Information System (INIS)

    Dobrynin, Yu.L.; Mikaehlyan, L.A.; Skorokhvatov, M.D.

    1978-01-01

    A version of a laminated neutron detector with increased efficiency for recording external neutron fluxes by gamma-quanta from neutron capture is considered. The detector comprises two zones. The first zone constitutes an absorbent layer (europium oxide) 0.5 cm thick, and the second one is a moderator (water with gadolinium salt at the concentration of 0.8 g/l). Mono-energetic neutrons fall normally onto the detector surface. Neutron energy varied from 0.1 eV to MeV. The results of calculations of the integral numerical current albedo (INCA) of neutrons by the Monte Carlo method are presented. The INCA dependences on neutron energy are obtained for one moderator with different gadolinium contents; for the absorbent with the moderator containing and lacking the gadolinium. The resultant dependences are indicative of preferential capture of neutrons by the gadolinium in the moderator, this being more desirable for recording neutrons in the (n, γ) reaction

  1. The STAR Vertex Position Detector

    Energy Technology Data Exchange (ETDEWEB)

    Llope, W.J., E-mail: llope@rice.edu [Rice University, Houston, TX 77005 (United States); Zhou, J.; Nussbaum, T. [Rice University, Houston, TX 77005 (United States); Hoffmann, G.W. [University of Texas, Austin, TX 78712 (United States); Asselta, K. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Brandenburg, J.D.; Butterworth, J. [Rice University, Houston, TX 77005 (United States); Camarda, T.; Christie, W. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Crawford, H.J. [University of California, Berkeley, CA 94720 (United States); Dong, X. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Engelage, J. [University of California, Berkeley, CA 94720 (United States); Eppley, G.; Geurts, F. [Rice University, Houston, TX 77005 (United States); Hammond, J. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Judd, E. [University of California, Berkeley, CA 94720 (United States); McDonald, D.L. [Rice University, Houston, TX 77005 (United States); Perkins, C. [University of California, Berkeley, CA 94720 (United States); Ruan, L.; Scheblein, J. [Brookhaven National Laboratory, Upton, NY 11973 (United States); and others

    2014-09-21

    The 2×3 channel pseudo Vertex Position Detector (pVPD) in the STAR experiment at RHIC has been upgraded to a 2×19 channel detector in the same acceptance, called the Vertex Position Detector (VPD). This detector is fully integrated into the STAR trigger system and provides the primary input to the minimum-bias trigger in Au+Au collisions. The information from the detector is used both in the STAR Level-0 trigger and offline to measure the location of the primary collision vertex along the beam pipe and the event “start time” needed by other fast-timing detectors in STAR. The offline timing resolution of single detector channels in full-energy Au+Au collisions is ∼100 ps, resulting in a start time resolution of a few tens of picoseconds and a resolution on the primary vertex location of ∼1 cm.

  2. Detector unit for X-ray diagnosis

    International Nuclear Information System (INIS)

    Svobodova, B.; Hamouz, J.; Pavlicek, Z.; Jursova, L.; Pohanka, J.

    1983-01-01

    The detector unit is applied in the medical and industrial X-ray diagnosis and analysis. It controls the X-ray dosing by exposure and brightness automation. The detector field is generated from a carrier, in which detector elements with light quides are situated, tapped on optical detectors with level converters outside the detector field. The detector field and the optical detectors with level converters are located in a light-resistent shell. This arrangement of the detector unit allows to use the impulse skiascopy instead of permanent X-ray examinations or the skiagraphy with multienergy levels which considerably improves the diagnostic value of the exposures and the working conditions. 1 cl., 1 fig

  3. Noise power spectrum of the fixed pattern noise in digital radiography detectors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Sik, E-mail: dskim@hufs.ac.kr [Department of Electronics Engineering, Hankuk University of Foreign Studies, Gyeonggi-do 449-791 (Korea, Republic of); Kim, Eun [R& D Center, DRTECH Co., Gyeonggi-do 13558 (Korea, Republic of)

    2016-06-15

    Purpose: The fixed pattern noise in radiography image detectors is caused by various sources. Multiple readout circuits with gate drivers and charge amplifiers are used to efficiently acquire the pixel voltage signals. However, the multiple circuits are not identical and thus yield nonuniform system gains. Nonuniform sensitivities are also produced from local variations in the charge collection elements. Furthermore, in phosphor-based detectors, the optical scattering at the top surface of the columnar CsI growth, the grain boundaries, and the disorder structure causes spatial sensitivity variations. These nonuniform gains or sensitivities cause fixed pattern noise and degrade the detector performance, even though the noise problem can be partially alleviated by using gain correction techniques. Hence, in order to develop good detectors, comparative analysis of the energy spectrum of the fixed pattern noise is important. Methods: In order to observe the energy spectrum of the fixed pattern noise, a normalized noise power spectrum (NNPS) of the fixed pattern noise is considered in this paper. Since the fixed pattern noise is mainly caused by the nonuniform gains, we call the spectrum the gain NNPS. We first asymptotically observe the gain NNPS and then formulate two relationships to calculate the gain NNPS based on a nonuniform-gain model. Since the gain NNPS values are quite low compared to the usual NNPS, measuring such a low NNPS value is difficult. By using the average of the uniform exposure images, a robust measuring method for the gain NNPS is proposed in this paper. Results: By using the proposed measuring method, the gain NNPS curves of several prototypes of general radiography and mammography detectors were measured to analyze their fixed pattern noise properties. We notice that a direct detector, which is based on the a-Se photoconductor, showed lower gain NNPS than the indirect-detector case, which is based on the CsI scintillator. By comparing the gain

  4. Gabor zone-plate apertures for imaging with the mercuric iodide gamma-ray camera

    Energy Technology Data Exchange (ETDEWEB)

    Patt, B E [EG and G Energy Measurements, Inc., Goleta, CA (USA); Meyyappan, A; Cai, A; Wade, G [California Univ., Santa Barbara (USA). Dept. of Electrical and Computer Engineering

    1990-12-20

    Gabor zone-plate (GZP) apertures have been developed for use in EG and G EM's mercuric iodide (HgI{sub 2}) gamma-ray camera. The purpose of such an aperture is to increase efficiency, while maintaining good resolution. The GZP is similar to the Fresnel zone plate (FZP) but it has continuous transitions between opaque and transparent regions. Because there are no sharp transitions in the transmission, the inherent interference noise in GZP imaging is lower than that in FZP imaging. GZP parameters were chosen by considering the effects of constraints such as detector pixel size, number of pixels, minimum field of view required, maximum angle of incidence tolerated, and the Nyquist criterion for the minimum sampling rate. As a result an aperture was designed and fabricated with eight zones and a diameter of 3 cm. Lead was chosen as the aperture medium due to its high attenuation coefficient. Experimental data were obtained from the camera with the above GZP aperture. The point-spread function was determined and compared to the calculated response. Excellent agreement was obtained. The reconstruction process involves simulating, by computer, planar-wave illumination of a scaled transparency of the image and recording the intensity pattern at the focal plane. (orig.).

  5. Detectors in Medicine and Biology: Applications of Detectors in Technology, Medicine and Other Fields

    CERN Document Server

    Lecoq, P

    2011-01-01

    Detectors in Medicine and Biology in 'Applications of Detectors in Technology, Medicine and Other Fields', part of 'Landolt-Börnstein - Group I Elementary Particles, Nuclei and Atoms: Numerical Data and Functional Relationships in Science and Technology, Volume 21B2: Detectors for Particles and Radiation. Part 2: Systems and Applications'. This document is part of Part 2 'Principles and Methods' of Subvolume B 'Detectors for Particles and Radiation' of Volume 21 'Elementary Particles' of Landolt-Börnstein - Group I 'Elementary Particles, Nuclei and Atoms'. It contains the Section '7.1 Detectors in Medicine and Biology' of Chapter '7 Applications of Detectors in Technology; Medicine and Other Fields' with the content: 7.1 Detectors in Medicine and Biology 7.1.1 Dosimetry and medical imaging 7.1.1.1 Radiotherapy and dosimetry 7.1.1.2 Status of medical imaging 7.1.1.3 Towards in-vivo molecular imaging 7.1.2 X-Ray radiography and computed tomography (CT) 7.1.2.1 Different X-Ray imaging modalities 7.1.2.2 Detec...

  6. Radiation detector

    International Nuclear Information System (INIS)

    Gillies, W.

    1980-01-01

    The radiation detector for measuring e.g. a neutron flux consists of a central emitter, an insulating shell arranged around it, and a tube-shaped collector enclosing both. The emitter itself is composed of a great number of stranded, spiral wires of small diameter giving a defined flexibility to the detector. For emitter material Pt, Rh, V, Co, Ce, Os or Ta may be used. (DG) [de

  7. Economical stabilized scintillation detector

    International Nuclear Information System (INIS)

    Anshakov, O.M.; Chudakov, V.A.; Gurinovich, V.I.

    1983-01-01

    An economical scintillation detector with the stabilization system of an integral type is described. Power consumed by the photomultiplier high-voltage power source is 40 mW, energy resolution is not worse than 9%. The given detector is used in a reference detector of a digital radioisotope densimeter for light media which is successfully operating for several years

  8. The HOTWAXS detector

    Energy Technology Data Exchange (ETDEWEB)

    Bateman, J.E.; Derbyshire, G.E. [Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX (United Kingdom); Diakun, G. [Science and Technology Facilities Council, Daresbury Laboratory, Keckwick Lane, Daresbury, Warrington WA4 4AD (United Kingdom); Duxbury, D.M. [Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX (United Kingdom)], E-mail: d.m.duxbury@rl.ac.uk; Fairclough, J.P.A. [Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF (United Kingdom); Harvey, I.; Helsby, W.I. [Science and Technology Facilities Council, Daresbury Laboratory, Keckwick Lane, Daresbury, Warrington WA4 4AD (United Kingdom); Lipp, J.D.; Marsh, A.S.; Salisbury, J. [Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX (United Kingdom); Sankar, G. [Royal Institution of GB, 21 Albemarle Street, London W1S 4BS (United Kingdom); Spill, E.J.; Stephenson, R. [Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX (United Kingdom); Terrill, N.J. [Diamond Light Source LTD, Harwell Science and Innovation Campus, Diamond House, Chilton, Didcot, Oxfordshire OX11 0DE (United Kingdom)

    2007-10-11

    The development and testing of the HOTWAXS position-sensitive X-ray detector for Synchrotron Radiation Sources is described. Funded from a facility development grant, the aim of the project was to produce a high counting rate, parallax-free photon counting detector to be used in the combined studies of X-ray absorption fine structure and X-ray diffraction (XAFS/XRD), and also in the technique of small angle and wide angle X-ray scattering (SAXS/WAXS). The detector system is described together with results of experiments carried out at the Daresbury Laboratory Synchrotron Radiation Source.

  9. The HOTWAXS detector

    International Nuclear Information System (INIS)

    Bateman, J.E.; Derbyshire, G.E.; Diakun, G.; Duxbury, D.M.; Fairclough, J.P.A.; Harvey, I.; Helsby, W.I.; Lipp, J.D.; Marsh, A.S.; Salisbury, J.; Sankar, G.; Spill, E.J.; Stephenson, R.; Terrill, N.J.

    2007-01-01

    The development and testing of the HOTWAXS position-sensitive X-ray detector for Synchrotron Radiation Sources is described. Funded from a facility development grant, the aim of the project was to produce a high counting rate, parallax-free photon counting detector to be used in the combined studies of X-ray absorption fine structure and X-ray diffraction (XAFS/XRD), and also in the technique of small angle and wide angle X-ray scattering (SAXS/WAXS). The detector system is described together with results of experiments carried out at the Daresbury Laboratory Synchrotron Radiation Source

  10. WorkZoneQ user guide for two-lane freeway work zones.

    Science.gov (United States)

    2013-06-01

    WorkZoneQ was developed in Visual Basic for Applications (VBA) to implement the results of the previous study, : Queue and Users Costs in Highway Work Zones. This report contains the WorkZoneQ user guide. WorkZoneQ : consists of eight Excel ...

  11. Strip detector for the ATLAS detector upgrade for the high-luminosity LHC

    CERN Document Server

    Madaffari, Daniele; The ATLAS collaboration

    2017-01-01

    The planned HL-LHC (High Luminosity LHC) in 2025 is being designed to maximise the physics potential of the LHC through a sizeable increase in the luminosity, reaching 1x10$^{35}$ cm$^{-2}$s$^{-1}$ after 10 years of operation. A consequence of this increased luminosity is the expected radiation damage at an integrated luminosity of 3000 fb$^{-1}$, requiring the tracking detectors to withstand hadron fluencies to over 1x10$^{16}$ 1 MeV neutron equivalent per cm$^2$. With the addition of increased readout rates, a complete re-design of the current ATLAS Inner Detector (ID) is being developed as the Inner Tracker (ITk), which will consist of both strip and pixelated silicon detectors. The physics motivations, required performance characteristics and basic design of the proposed upgrade of the strip detector will be a subject of this talk. Present ideas and solutions for the strip detector and current research and development program will be discussed.

  12. New developments in PET detector technology

    International Nuclear Information System (INIS)

    Niu Lingxin; Zhao Shujun; Zhang Bin; Liu Haojia

    2010-01-01

    The researches on PET detector are always active and innovative area. The research direction of PET detector includes improving performances of scintillator-based detectors, investigating new detectors suitable for multi-modality imaging (e.g. PET/CT and PET/MRI), meeting requirements of TOF and DOI technologies and boosting the development of the technologies. In this paper, new developments in PET detector technology about scintillation crystal, photodetector and semiconductor detector is introduced. (authors)

  13. The LHC detector challenge

    CERN Document Server

    Virdee, Tejinder S

    2004-01-01

    The Large Hadron Collider (LHC) from CERN, scheduled to come online in 2007, is a multi-TeV proton-proton collider with vast detectors. Two of the more significant detectors for LHC are ATLAS and CMS. Currently, both detectors are more than 65% complete in terms of financial commitment, and the experiments are being assembled at an increasing pace. ATLAS is being built directly in its underground cavern, whereas CMS is being assembled above ground. When completed, both detectors will aid researchers in determining what lies at the high-energy frontier, in particular the mechanism by which particles attain mass. (Edited abstract).

  14. How Many Convective Zones Are There in the Atmosphere of Venus?

    Science.gov (United States)

    Moroz, V. I.; Rodin, A. V.

    2002-11-01

    The qualitative characteristics of the vertical structure of the atmospheres of Venus and the Earth essentially differ. For instance, there are at least two, instead of one, zones with normal (thermal) convection on Venus. The first one is near the surface (a boundary layer); the second is at the altitudes of the lower part of the main cloud layer between 49 and 55 km. Contrary to the hypotheses proposed by Izakov (2001, 2002), the upper convective zone prevents energy transfer from the upper clouds to the subcloud atmosphere by ``anomalous turbulent heat conductivity.'' It is possible, however, that the anomalous turbulent heat conductivity takes part in the redistribution of the heat fluxes within the lower (subcloud) atmosphere.

  15. Hanford Tank Farms Vadose Zone, Addendum to the TX Tank Farm Report

    International Nuclear Information System (INIS)

    Spatz, R.

    2000-01-01

    This addendum to the TX Tank Farm Report (GJO-97-13-TAR, GJO-HAN-11) published in September 1997 incorporates the results of high-rate and repeat logging activities along with shape factor analysis of the logging data. A high-rate logging system was developed and deployed in the TX Tank Farm to measure cesium-137 concentration levels in high gamma flux zones where the spectral gamma logging system was unable to collect usable data because of high dead times and detector saturation. This report presents additional data and revised visualizations of subsurface contaminant distribution in the TX Tank Farm at the DOE Hanford Site in the state of Washington

  16. Current Redistribution around the Superconducting-to-normal Transition in Superconducting Nb-Ti Rutherford Cables

    CERN Document Server

    Willering, G P; ten Kate, H H J

    2008-01-01

    Sufficient thermal-electromagnetic stability against external heat sources is an essential design criterion for superconducting Rutherford cables, especially if operated close to the critical current. Due to the complex phenomena contributing to stability such as helium cooling, inter-strand current and heat transfer, its level is difficult to quantify. In order to improve our understanding, many stability tests were performed on different cable samples, each incorporating several point-like heaters. The current redistribution around the heat front is measured after inducing a local normal zone in one strand of the cable. By using voltage taps, expansion of the normal zone is monitored in the initially quenched strand as well as in adjacent strands. An array of Hall probes positioned at the cable edge is used to scan the selffield generated by the cable by which it becomes possible to estimate the inter-strand current transfer. In this paper it is demonstrated that two different stability regimes can be disti...

  17. ZoneLib

    DEFF Research Database (Denmark)

    Jessen, Jan Jacob; Schiøler, Henrik

    2006-01-01

    We present a dynamic model for climate in a livestock building divided into a number of zones, and a corresponding modular Simulink library (ZoneLib). While most literature in this area consider air flow as a control parameter we show how to model climate dynamics using actual control signals...... development of ZoneLib....

  18. Mica fission detectors

    International Nuclear Information System (INIS)

    Wong, C.; Anderson, J.D.; Hansen, L.; Lehn, A.V.; Williamson, M.A.

    1977-01-01

    The present development status of the mica fission detectors is summarized. It is concluded that the techniques have been refined and developed to a state such that the mica fission counters are a reliable and reproducible detector for fission events

  19. ATLAS Pixel Detector Operational Experience

    CERN Document Server

    Di Girolamo, B; The ATLAS collaboration

    2011-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this talk, results from the successful operation of the Pixel Detector at the LHC will be presented, including monitoring, calibration procedures, timing optimization and detector performance. The detector performance is excellent: 96.9% of the pixels are operational, noise occupancy and hit efficiency exceed the design specification, an...

  20. Spectral and spatial resolution properties of photon counting X-ray detectors like the Medipix-Detector

    International Nuclear Information System (INIS)

    Korn, A.

    2007-01-01

    The Medipix detector is a hybrid photon counting X-ray detector, consisting of an ASIC and a semiconducting layer as the sensor. This makes the Medipix a direct converting detector. A special feature of the Medipix is a signal processing circuit in every single pixel. This circuit amplifies the input signal triggered by a photon and then transforms the pulse into a digital signal. This early stage digitalisation is one of the main advantages of the detector, since no dark currents are integrated into the signal. Furthermore, the energy information of each single photon is partly preserved. The high number of pixels lends the detector a wide dynamic range, starting from single counts up to a rate of 1010 photons per cm2 and second. Apart from the many advantages, there are still some problems with the detector. Some effects lead to a deterioration of the energy resolution as well as the spatial resolution. The main reasons for this are two effects occuring in the detector, charge sharing and backscattering inside the detector. This study investigates the influence of those two effects on both the energy and spatial resolution. The physical causes of these effects are delineated and their impact on the detector output is examined. In contrast to high energy photon detectors, the repulsion of the charge carriers drifting inside the sensor must not be neglected in a detailed model of X-ray detectors with an energy range of 5 keV-200 keV. For the simulation of the Medipix using Monte Carlo simulations, the software ROSI was augmented. The added features allow a detailed simulation of the charge distribution, using the relevant physical effects that alter the distribution width during the drift towards the sensor electrodes as well further influences on the detector output, including electronical noise, threshold noise or the geometry of the detector. The measured energy and spatial resolution of several different models of Medipix is compared to the simulated

  1. Investigation on the improved radiation hardness of silicon detectors with high oxygen concentration

    CERN Document Server

    Moll, Michael; Lindström, G

    2000-01-01

    We present an investigation on the influence of the oxygen concentration on radiation-induced changes in the effective doping concentration of silicon detectors. Diodes fabricated from silicon with interstitial oxygen content ranging from below 2*10/sup 14/ to 9*10/sup 17/ cm/sup -3/ have been irradiated with fast neutrons up to a fluence of 2*10/sup 15/ cm/sup -2/. Our main interest focused on the so-called stable damage component in the change of the effective doping concentration being of prime importance for the application of silicon detectors in high-energy physics experiments. We demonstrate, that with a high oxygen enrichment the donor removal is appreciably reduced, reaching a value of only 10601130f the initial doping concentration for [O/sub i/]=9*10/sup 17/ cm/sup -3/, while for normal detector grade material with [O/sub i/] below 5*10/sup 16/ cm /sup -3/ that value is 60-90Furthermore, we show that the fluence proportional introduction of stable acceptors is independent of the oxygen concentratio...

  2. Pore network properties of sandstones in a fault damage zone

    Science.gov (United States)

    Bossennec, Claire; Géraud, Yves; Moretti, Isabelle; Mattioni, Luca; Stemmelen, Didier

    2018-05-01

    The understanding of fluid flow in faulted sandstones is based on a wide range of techniques. These depend on the multi-method determination of petrological and structural features, porous network properties and both spatial and temporal variations and interactions of these features. The question of the multi-parameter analysis on fluid flow controlling properties is addressed for an outcrop damage zone in the hanging wall of a normal fault zone on the western border of the Upper Rhine Graben, affecting the Buntsandstein Group (Early Triassic). Diagenetic processes may alter the original pore type and geometry in fractured and faulted sandstones. Therefore, these may control the ultimate porosity and permeability of the damage zone. The classical model of evolution of hydraulic properties with distance from the major fault core is nuanced here. The hydraulic behavior of the rock media is better described by a pluri-scale model including: 1) The grain scale, where the hydraulic properties are controlled by sedimentary features, the distance from the fracture, and the impact of diagenetic processes. These result in the ultimate porous network characteristics observed. 2) A larger scale, where the structural position and characteristics (density, connectivity) of the fracture corridors are strongly correlated with both geo-mechanical and hydraulic properties within the damage zone.

  3. The CAPRICE RICH detector

    Energy Technology Data Exchange (ETDEWEB)

    Basini, G. [INFN, Laboratori Nazionali di Frascati, Rome (Italy); Codino, A.; Grimani, C. [Perugia Univ. (Italy)]|[INFN, Perugia (Italy); De Pascale, M.P. [Rome Univ. `Tor Vergata` (Italy). Dip. di Fisica]|[INFN, Sezione Univ. `Tor Vergata` Rome (Italy); Cafagna, F. [Bari Univ. (Italy)]|[INFN, Bari (Italy); Golden, R.L. [New Mexico State Univ., Las Cruces, NM (United States). Particle Astrophysics Lab.; Brancaccio, F.; Bocciolini, M. [Florence Univ. (Italy)]|[INFN, Florence (Italy); Barbiellini, G.; Boezio, M. [Trieste Univ. (Italy)]|[INFN, Trieste (Italy)

    1995-09-01

    A compact RICH detector has been developed and used for particle identification in a balloon borne spectrometer to measure the flux of antimatter in the cosmic radiation. This is the first RICH detector ever used in space experiments that is capable of detecting unit charged particles, such as antiprotons. The RICH and all other detectors performed well during the 27 hours long flight.

  4. Shielded regenerative neutron detector

    International Nuclear Information System (INIS)

    Terhune, J.H.; Neissel, J.P.

    1978-01-01

    An ion chamber type neutron detector is disclosed which has a greatly extended lifespan. The detector includes a fission chamber containing a mixture of active and breeding material and a neutron shielding material. The breeding and shielding materials are selected to have similar or substantially matching neutron capture cross-sections so that their individual effects on increased detector life are mutually enhanced

  5. Neutron and X-ray Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Carini, Gabriella [SLAC National Accelerator Lab., Menlo Park, CA (United States); Denes, Peter [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gruener, Sol [Cornell Univ., Ithaca, NY (United States); Lessner, Elianne [Dept. of Energy (DOE), Washington DC (United States). Office of Science Office of Basic Energy Sciences

    2012-08-01

    The Basic Energy Sciences (BES) X-ray and neutron user facilities attract more than 12,000 researchers each year to perform cutting-edge science at these state-of-the-art sources. While impressive breakthroughs in X-ray and neutron sources give us the powerful illumination needed to peer into the nano- to mesoscale world, a stumbling block continues to be the distinct lag in detector development, which is slowing progress toward data collection and analysis. Urgently needed detector improvements would reveal chemical composition and bonding in 3-D and in real time, allow researchers to watch “movies” of essential life processes as they happen, and make much more efficient use of every X-ray and neutron produced by the source The immense scientific potential that will come from better detectors has triggered worldwide activity in this area. Europe in particular has made impressive strides, outpacing the United States on several fronts. Maintaining a vital U.S. leadership in this key research endeavor will require targeted investments in detector R&D and infrastructure. To clarify the gap between detector development and source advances, and to identify opportunities to maximize the scientific impact of BES user facilities, a workshop on Neutron and X-ray Detectors was held August 1-3, 2012, in Gaithersburg, Maryland. Participants from universities, national laboratories, and commercial organizations from the United States and around the globe participated in plenary sessions, breakout groups, and joint open-discussion summary sessions. Sources have become immensely more powerful and are now brighter (more particles focused onto the sample per second) and more precise (higher spatial, spectral, and temporal resolution). To fully utilize these source advances, detectors must become faster, more efficient, and more discriminating. In supporting the mission of today’s cutting-edge neutron and X-ray sources, the workshop identified six detector research challenges

  6. The interpretation of remote sensing image on the stability of fault zone at HLW repository site

    International Nuclear Information System (INIS)

    Liu Linqing; Yu Yunxiang

    1994-01-01

    It is attempted to interpret the buried fault at the preselected HLW repository site in western Gansu province with a remote sensing image. The authors discuss the features of neotectonism of Shule River buried fault zone and its two sides in light of the remote sensing image, geomorphology, stream pattern, type and thickness difference of Quaternary sediments, and structural basin, etc.. The stability of Shule River fault zone is mainly dominated by the neotectonic movement pattern and strength of its two sides. Although there exist normal and differential vertical movements along it, their strengths are small. Therefore, this is a weakly-active passive fault zone. The east Beishan area north to Shule River fault zone is weakliest active and is considered as the target for further pre-selection for HLW repository site

  7. Study of preamplifier, shaper and peak detector in readout ASIC for particle detector

    International Nuclear Information System (INIS)

    Wang Ke; Zhang Shengjun; Fan Lei; Li Xian

    2014-01-01

    Recently, kinds of particle detectors have used Application Specific Integrated Circuits (ASIC) in their electronics readout system and ASICs have been designed in China now. This project designed a multi-channel readout ASIC for general detector. The chip has Preamplifier, Shaper and Peak Detector embedded for easy readout. For each channel, signal which is preprocessed by a low-noise preamplifier is sent to the shaper to form a quasi-Gaussian pulse and keep its peak for readout. This chip and modules of individual Preamplifier, Shaper and Peak Detector have been manufactured, results will be reported in time. (authors)

  8. Advanced Space Radiation Detector Technology Development

    Science.gov (United States)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.

    2013-01-01

    The advanced space radiation detector development team at the NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of multiple solid-state detectors will result in an improved detector system in comparison to existing state-of-the-art instruments for the detection and monitoring of the space radiation field for deep space and aerospace applications.

  9. Detector for failed fuel elements

    International Nuclear Information System (INIS)

    Ito, Masaru.

    1979-01-01

    Purpose: To provide automatic monitor for the separation or reactor water and sampling water, in a failed fuel element detector using a sipping chamber. Constitution: A positional detector for the exact mounting of a sipping chamber on a channel box and a level detector for the detection of complete discharge of cooling water in the sipping chamber are provided in the sipping chamber. The positional detector is contacted to the upper end of the channel box and operated when the sipping chamber is correctly mounted to the fuel assemblies. The level detector comprises a float and a limit switch and it is operated when the water in the sipping chamber is discharged by a predetermined amount. Isolation of reactor water and sampling water are automatically monitored by the signal from these two detectors. (Ikeda, J.)

  10. Protecting detectors in ALICE

    International Nuclear Information System (INIS)

    Lechman, M.; Augustinus, A.; Chochula, P.; Di Mauro, A.; Stig Jirden, L.; Rosinsky, P.; Schindler, H.; Cataldo, G. de; Pinazza, O.; Kurepin, A.; Moreno, A.

    2012-01-01

    ALICE (A Large Ion Collider Experiment) is one of the big LHC (Large Hadron Collider) experiments at CERN in Geneva. It is composed of many sophisticated and complex detectors mounted very compactly around the beam pipe. Each detector is a unique masterpiece of design, engineering and construction and any damage to it could stop the experiment for months or even for years. It is therefore essential that the detectors are protected from any danger and this is one very important role of the Detector Control System (DCS). One of the main dangers for the detectors is the particle beam itself. Since the detectors are designed to be extremely sensitive to particles they are also vulnerable to any excess of beam conditions provided by the LHC accelerator. The beam protection consists of a combination of hardware interlocks and control software and this paper will describe how this is implemented and handled in ALICE. Tools have also been developed to support operators and shift leaders in the decision making related to beam safety. The gained experiences and conclusions from the individual safety projects are also presented. (authors)

  11. ULTRASTRUCTURAL-CHANGES OF THE BASEMENT-MEMBRANE ZONE IN BENIGN LESIONS OF THE VOCAL FOLDS

    NARCIS (Netherlands)

    DIKKERS, FG; HULSTAERT, CE; OOSTERBAAN, JA; CERVERAPAZ, FJ

    The basement membrane zone (BMZ) of the epithelium of the vocal folds was investigated electron microscopically in 10 patients suffering from various benign lesions and in 3 controls. Various defects were observed: a thickening by deposition of electron dense material, a loss of normal architecture,

  12. Empowerment Zones and Enterprise Districts - MDC_EnterpriseZone

    Data.gov (United States)

    NSGIC Local Govt | GIS Inventory — Polygon feature class of Miami Dade County Enterprise Zones. Enterprise Zones are special areas in the county where certain incentives from the State are available...

  13. Development and characterization of the lead iodide semiconductor detector

    International Nuclear Information System (INIS)

    Oliveira, Icimone Braga de

    2001-01-01

    A methodology for purification and growth of PbI 2 crystal as well as for its characterization as a room temperature radiation detector was developed in this work. Commercial salts were purified using the zone refining method and, for the purified material growth, the Bridgman method was used. To calculate the purification efficiency, studies of the decrease impurities concentrations were made in the salts and in three sections of the materials purified, using the neutron activation analysis technique. The results showed that the impurities segregate preferentially in the ingot final section. A significant decrease of the impurities concentration in function of the purification pass number was observed. The grown crystals presented good crystalline quality according to the results of the X-ray diffraction analysis. To evaluate the crystal as a semiconductor detector, measurements of dark leakage current, resistivity and the response of ( 241 Am) alpha particle and ( 241 Am, 57 Co, 133 Ba and 137 Cs) gamma rays were carried out. The radiation response is strongly dependent on the crystals purity. The crystals purified with 500 passes exhibited energy resolution of 10% for 241 Am alpha particle and the gamma rays resolution was compatible with the literature. The photosensibility of the PbI 2 crystal found in the wavelength from 400 to 600 nm range suggests an another application at this crystal as a photodetector to be coupled to scintillators. (author)

  14. ALFA Detector Control System

    CERN Document Server

    Oleiro Seabra, Luis Filipe; The ATLAS collaboration

    2015-01-01

    ALFA (Absolute Luminosity For ATLAS) is one of the sub-detectors of ATLAS (A Toroidal LHC Apparatus). The ALFA system is composed by four stations installed in the LHC tunnel 240 m away from the ATLAS interaction point. Each station has a vacuum and ventilation system, movement control and all the required electronics for signal processing. The Detector Control System (DCS) provides control and monitoring of several components and ensures the safe operation of the detector contributing to good Data Quality. This paper describes the ALFA DCS system including a detector overview, operation aspects and hardware control through a SCADA system, WinCC OA.

  15. ALFA Detector Control System

    CERN Document Server

    Oleiro Seabra, Luis Filipe; The ATLAS collaboration

    2015-01-01

    ALFA (Absolute Luminosity For ATLAS) is one of the sub-detectors of ATLAS/LHC. The ALFA system is composed by two stations installed in the LHC tunnel 240 m away from each side of the ATLAS interaction point. Each station has a vacuum and ventilation system, movement control and all the required electronic for signal processing. The Detector Control System (DCS) provides control and monitoring of several components and ensures the safe operation of the detector contributing to good Data Quality. This paper describes the ALFA DCS system including a detector overview, operation aspects and hardware control through a SCADA system, WinCC OA.

  16. Microfluidic Scintillation Detectors

    CERN Multimedia

    Microfluidic scintillation detectors are devices of recent introduction for the detection of high energy particles, developed within the EP-DT group at CERN. Most of the interest for such technology comes from the use of liquid scintillators, which entails the possibility of changing the active material in the detector, leading to an increased radiation resistance. This feature, together with the high spatial resolution and low thickness deriving from the microfabrication techniques used to manufacture such devices, is desirable not only in instrumentation for high energy physics experiments but also in medical detectors such as beam monitors for hadron therapy.

  17. A Highly Sensitive Multi-Element HgCdTe E-APD Detector for IPDA Lidar Applications

    Science.gov (United States)

    Beck, Jeff; Welch, Terry; Mitra, Pradip; Reiff, Kirk; Sun, Xiaoli; Abshire, James

    2014-01-01

    An HgCdTe electron avalanche photodiode (e-APD) detector has been developed for lidar receivers, one application of which is integrated path differential absorption lidar measurements of such atmospheric trace gases as CO2 and CH4. The HgCdTe APD has a wide, visible to mid-wave-infrared, spectral response, high dynamic range, substantially improved sensitivity, and an expected improvement in operational lifetime. A demonstration sensor-chip assembly consisting of a 4.3 lm cutoff HgCdTe 4 9 4 APD detector array with 80 micrometer pitch pixels and a custom complementary metal-oxide-semiconductor readout integrated circuit was developed. For one typical array the APD gain was 654 at 12 V with corresponding gain normalized dark currents ranging from 1.2 fA to 3.2 fA. The 4 9 4 detector system was characterized at 77 K with a 1.55 micrometer wavelength, 1 microsecond wide, laser pulse. The measured unit gain detector photon conversion efficiency was 91.1%. At 11 V bias the mean measured APD gain at 77 K was 307.8 with sigma/mean uniformity of 1.23%. The average, noise-bandwidth normalized, system noise-equivalent power (NEP) was 1.04 fW/Hz(exp 1/2) with a sigma/mean of 3.8%. The measured, electronics-limited, bandwidth of 6.8 MHz was more than adequate for 1 microsecond pulse detection. The system had an NEP (3 MHz) of 0.4 fW/Hz(exp 1/2) at 12 V APD bias and a linear dynamic range close to 1000. A gain-independent quantum-limited SNR of 80% of full theoretical was indicative of a gain-independent excess noise factor very close to 1.0 and the expected APD mode quantum efficiency.

  18. Position-sensitive X-ray detectors

    International Nuclear Information System (INIS)

    Hendrix, J.

    1982-01-01

    In this review of the application of different types of position sensitive detectors to synchrotron radiation, discussion of the proportional counters based on the gas amplification principle forms a major part. Other topics reviewed are detector requirements, multiwire proportional chamber system, drift chamber type detectors, TV detectors, and recent developments, such as that based on a micro-channel plate as the amplifying element, and charge-coupled devices. (U.K.)

  19. Semiconductor detectors in nuclear and particle physics

    International Nuclear Information System (INIS)

    Rehak, P.; Gatti, E.

    1992-01-01

    Semiconductor detectors for elementary particle physics and nuclear physics in the energy range above 1 GeV are briefly reviewed. In these two fields semiconductor detectors are used mainly for the precise position sensing. In a typical experiment, the position of a fast charged particle crossing a relatively thin semiconductor detector is measured. The position resolution achievable by semiconductor detectors is compared with the resolution achievable by gas filled position sensing detectors. Semiconductor detectors are divided into two groups: Classical semiconductor diode detectors and semiconductor memory detectors. Principles of the signal formation and the signal read-out for both groups of detectors are described. New developments of silicon detectors of both groups are reported

  20. Modeling an array of encapsulated germanium detectors

    International Nuclear Information System (INIS)

    Kshetri, R

    2012-01-01

    A probability model has been presented for understanding the operation of an array of encapsulated germanium detectors generally known as composite detector. The addback mode of operation of a composite detector has been described considering the absorption and scattering of γ-rays. Considering up to triple detector hit events, we have obtained expressions for peak-to-total and peak-to-background ratios of the cluster detector, which consists of seven hexagonal closely packed encapsulated HPGe detectors. Results have been obtained for the miniball detectors comprising of three and four seven hexagonal closely packed encapsulated HPGe detectors. The formalism has been extended to the SPI spectrometer which is a telescope of the INTEGRAL satellite and consists of nineteen hexagonal closely packed encapsulated HPGe detectors. This spectrometer comprises of twelve detector modules surrounding the cluster detector. For comparison, we have considered a spectrometer comprising of nine detector modules surrounding the three detector configuration of miniball detector. In the present formalism, the operation of these sophisticated detectors could be described in terms of six probability amplitudes only. Using experimental data on relative efficiency and fold distribution of cluster detector as input, the fold distribution and the peak-to-total, peak-to-background ratios have been calculated for the SPI spectrometer and other composite detectors at 1332 keV. Remarkable agreement between experimental data and results from the present formalism has been observed for the SPI spectrometer.