WorldWideScience

Sample records for normal tissue damage

  1. Radiation-induced normal tissue damage: implications for radiotherapy

    International Nuclear Information System (INIS)

    Prasanna, Pataje G.

    2014-01-01

    Radiotherapy is an important treatment modality for many malignancies, either alone or as a part of combined modality treatment. However, despite technological advances in physical treatment delivery, patients suffer adverse effects from radiation therapy due to normal tissue damage. These side effects may be acute, occurring during or within weeks after therapy, or intermediate to late, occurring months to years after therapy. Minimizing normal tissue damage from radiotherapy will allow enhancement of tumor killing and improve tumor control and patients quality of life. Understanding mechanisms through which radiation toxicity develops in normal tissue will facilitate the development of next generation radiation effect modulators. Translation of these agents to the clinic will also require an understanding of the impact of these protectors and mitigators on tumor radiation response. In addition, normal tissues vary in radiobiologically important ways, including organ sensitivity to radiation, cellular turnover rate, and differences in mechanisms of injury manifestation and damage response. Therefore, successful development of radiation modulators may require multiple approaches to address organ/site-specific needs. These may include treatments that modify cellular damage and death processes, inflammation, alteration of normal flora, wound healing, tissue regeneration and others, specifically to counter cancer site-specific adverse effects. Further, an understanding of mechanisms of normal tissue damage will allow development of predictive biomarkers; however harmonization of such assays is critical. This is a necessary step towards patient-specific treatment customization. Examples of important adverse effects of radiotherapy either alone or in conjunction with chemotherapy, and important limitations in the current approaches of using radioprotectors for improving therapeutic outcome will be highlighted. (author)

  2. DNA-repair, cell killing and normal tissue damage

    International Nuclear Information System (INIS)

    Dahm-Daphi, J.; Dikomey, E.; Brammer, I.

    1998-01-01

    Background: Side effects of radiotherapy in normal tissue is determined by a variety of factors of which cellular and genetic contributions are described here. Material and methods: Review. Results: Normal tissue damage after irradiation is largely due to loss of cellular proliferative capacity. This can be due to mitotic cell death, apoptosis, or terminal differentiation. Dead or differentiated cells release cytokines which additionally modulate the tissue response. DNA damage, in particular non-reparable or misrepaired double-strand breaks are considered the basic lesion leading to G1-arrest and ultimately to cell inactivation. Conclusion: Evidence for genetic bases of normal tissue response, cell killing and DNA-repair capacity is presented. However, a direct link of all 3 endpoints has not yet been proved directly. (orig.) [de

  3. Radiobiology in clinical radiation therapy - Part III: Normal tissue damage

    International Nuclear Information System (INIS)

    Travis, Elizabeth L.

    1996-01-01

    Objective: This is the third part of a course designed for residents in radiation oncology preparing for their boards. This part of the course will focus on the mechanisms underlying damage in normal tissues. Although conventional wisdom long held that killing and depletion of a critical cell(s) in a tissue was responsible for the later expression of damage, histopathologic changes in normal tissue can now be explained and better understood in terms of the new molecular biology. The concept that depletion of a single cell type is responsible for the observed histopathologic changes in normal tissues has been replaced by the hypothesis that damage results from the interaction of many different cell systems, including epithelial, endothelial, macrophages and fibroblasts, via the production of specific autocrine, paracrine and endocrine growth factors. A portion of this course will discuss the clinical and experimental data on the production and interaction of those cytokines and cell systems considered to be critical to tissue damage. It had long been suggested that interindividual differences in radiation-induced normal tissue damage was genetically regulated, at least in part. Both clinical and experimental data supported this hypothesis but it is the recent advances in human and mouse molecular genetics which have provided the tools to dissect out the genetic component of normal tissue damage. These data will be presented and related to the potential to develop genetic markers to identify sensitive individuals. The impact on clinical outcome of the ability to identify prospectively sensitive patients will be discussed. Clinically it is well-accepted that the volume of tissue irradiated is a critical factor in determining tissue damage. A profusion of mathematical models for estimating dose-volume relationships in a number of organs have been published recently despite the fact that little data are available to support these models. This course will review the

  4. Role of endothelium in radiation-induced normal tissue damages

    International Nuclear Information System (INIS)

    Milliat, F.

    2007-05-01

    More than half of cancers are treated with radiation therapy alone or in combination with surgery and/or chemotherapy. The goal of radiation therapy is to deliver enough ionising radiation to destroy cancer cells without exceeding the level that the surrounding healthy cells can tolerate. Unfortunately, radiation-induced normal tissue injury is still a dose limiting factor in the treatment of cancer with radiotherapy. The knowledge of normal tissue radiobiology is needed to determine molecular mechanisms involved in normal tissue pathogenic pathways in order to identify therapeutic targets and develop strategies to prevent and /or reduce side effects of radiation therapy. The endothelium is known to play a critical role in radiation-induced injury. Our work shows that endothelial cells promote vascular smooth muscle cell proliferation, migration and fibro-genic phenotype after irradiation. Moreover, we demonstrate for the first time the importance of PAI-1 in radiation-induced normal tissue damage suggesting that PAI-1 may represent a molecular target to limit injury following radiotherapy. We describe a new role for the TGF-b/Smad pathway in the pathogenesis of radiation-induced damages. TGF-b/Smad pathway is involved in the fibro-genic phenotype of VSMC induced by irradiated EC as well as in the radiation-induced PAI-1 expression in endothelial cells. (author)

  5. High and Low LET Radiation Differentially Induce Normal Tissue Damage Signals

    International Nuclear Information System (INIS)

    Niemantsverdriet, Maarten; Goethem, Marc-Jan van; Bron, Reinier; Hogewerf, Wytse; Brandenburg, Sytze; Langendijk, Johannes A.; Luijk, Peter van; Coppes, Robert P.

    2012-01-01

    Purpose: Radiotherapy using high linear energy transfer (LET) radiation is aimed at efficiently killing tumor cells while minimizing dose (biological effective) to normal tissues to prevent toxicity. It is well established that high LET radiation results in lower cell survival per absorbed dose than low LET radiation. However, whether various mechanisms involved in the development of normal tissue damage may be regulated differentially is not known. Therefore the aim of this study was to investigate whether two actions related to normal tissue toxicity, p53-induced apoptosis and expression of the profibrotic gene PAI-1 (plasminogen activator inhibitor 1), are differentially induced by high and low LET radiation. Methods and Materials: Cells were irradiated with high LET carbon ions or low LET photons. Cell survival assays were performed, profibrotic PAI-1 expression was monitored by quantitative polymerase chain reaction, and apoptosis was assayed by annexin V staining. Activation of p53 by phosphorylation at serine 315 and serine 37 was monitored by Western blotting. Transfections of plasmids expressing p53 mutated at serines 315 and 37 were used to test the requirement of these residues for apoptosis and expression of PAI-1. Results: As expected, cell survival was lower and induction of apoptosis was higher in high -LET irradiated cells. Interestingly, induction of the profibrotic PAI-1 gene was similar with high and low LET radiation. In agreement with this finding, phosphorylation of p53 at serine 315 involved in PAI-1 expression was similar with high and low LET radiation, whereas phosphorylation of p53 at serine 37, involved in apoptosis induction, was much higher after high LET irradiation. Conclusions: Our results indicate that diverse mechanisms involved in the development of normal tissue damage may be differentially affected by high and low LET radiation. This may have consequences for the development and manifestation of normal tissue damage.

  6. Local stem cell depletion model for normal tissue damage

    International Nuclear Information System (INIS)

    Yaes, R.J.; Keland, A.

    1987-01-01

    The hypothesis that radiation causes normal tissue damage by completely depleting local regions of tissue of viable stem cells leads to a simple mathematical model for such damage. In organs like skin and spinal cord where destruction of a small volume of tissue leads to a clinically apparent complication, the complication probability is expressed as a function of dose, volume and stem cell number by a simple triple negative exponential function analogous to the double exponential function of Munro and Gilbert for tumor control. The steep dose response curves for radiation myelitis that are obtained with our model are compared with the experimental data for radiation myelitis in laboratory rats. The model can be generalized to include other types or organs, high LET radiation, fractionated courses of radiation, and cases where an organ with a heterogeneous stem cell population receives an inhomogeneous dose of radiation. In principle it would thus be possible to determine the probability of tumor control and of damage to any organ within the radiation field if the dose distribution in three dimensional space within a patient is known

  7. Lovastatin attenuates ionizing radiation-induced normal tissue damage in vivo

    International Nuclear Information System (INIS)

    Ostrau, Christian; Huelsenbeck, Johannes; Herzog, Melanie; Schad, Arno; Torzewski, Michael; Lackner, Karl J.; Fritz, Gerhard

    2009-01-01

    Background and purpose: HMG-CoA-reductase inhibitors (statins) are widely used lipid-lowering drugs. Moreover, they have pleiotropic effects on cellular stress responses, proliferation and apoptosis in vitro. Here, we investigated whether lovastatin attenuates acute and subchronic ionizing radiation-induced normal tissue toxicity in vivo. Materials and methods: Four hours to 24 h after total body irradiation (6 Gy) of Balb/c mice, acute pro-inflammatory and pro-fibrotic responses were analyzed. To comprise subchronic radiation toxicity, mice were irradiated twice with 2.5 Gy and analyses were performed 3 weeks after the first radiation treatment. Molecular markers of inflammation and fibrosis as well as organ toxicities were measured. Results: Lovastatin attenuated IR-induced activation of NF-κB, mRNA expression of cell adhesion molecules and mRNA expression of pro-inflammatory and pro-fibrotic marker genes (i.e. TNFα, IL-6, TGFβ, CTGF, and type I and type III collagen) in a tissue- and time-dependent manner. γH2AX phosphorylation stimulated by IR was not affected by lovastatin, indicating that the statin has no major impact on the induction of DNA damage in vivo. Radiation-induced thrombopenia was significantly alleviated by lovastatin. Conclusions: Lovastatin inhibits both acute and subchronic IR-induced pro-inflammatory and pro-fibrotic responses and cell death in normal tissue in vivo. Therefore, lovastatin might be useful for selectively attenuating acute and subchronic normal tissue damage caused by radiotherapy.

  8. Stem Cell Therapy to Reduce Radiation-Induced Normal Tissue Damage

    NARCIS (Netherlands)

    Coppes, Rob P.; van der Goot, Annemieke; Lombaert, Isabelle M. A.

    Normal tissue damage after radiotherapy is still a major problem in cancer treatment. Stem cell therapy may provide a means to reduce radiation-induced side effects and improve the quality of life of patients. This review discusses the current status in stem cell research with respect to their

  9. Radiotherapy- and chemotherapy-induced normal tissue damage. The role of cytokines and adhesion molecules

    International Nuclear Information System (INIS)

    Plevova, P.

    2002-01-01

    Background. Ionising radiation and cytostatic agents used in cancer therapy exert damaging effects on normal tissues and induce a complex response at the cellular and molecular levels. Cytokines and adhesion molecules are involved in this response. Methods. Published data on the given topic have been reviewed. Results and conclusions. Various cytokines and adhesion molecules, including tumor necrosis factor α, interleukins- 1,-2,-4, and -6, interferon γ, granulocyte macrophage- and macrophage- colony stimulating factors, transforming growth factor β, platelet-derived growth factor, insulin-like growth factor I, fibroblast and epidermal growth factors, platelet-activating factor, intercellular adhesion molecule-1, vascular cell adhesion molecule-1, E- and P-selectins are involved in the response of normal tissues to ionizing radiation- and chemotherapy- induced normal tissues damage and are co-responsible for some side effects of these treatment modalities, including fever, anorexia and fatigue, suppression of hematopoiesis, both acute and late local tissue response. (author)

  10. On radiation damage to normal tissues and its treatment. Pt. 2

    International Nuclear Information System (INIS)

    Michalowski, A.S.

    1994-01-01

    In addition to transiently inhibiting cell cycle progression and sterilizing those cells capable of proliferation, irradiation disturbs the homeostasis effected by endogenous mediators of intercellular communication (humoral component of tissue response to radiation). Changes in the mediator levels may modulate radiation effects either by a assisting a return to normality (e.g., through a rise in H-type cell lineage-specific growth factors) or by aggravating the damage. The latter mode is illustrated with reports on changes in eicosanoid levels after irradiation and on results of empirical treatment of radiation injuries with anti-inflammatory drugs. Prodromal, acute and chronic effects of radiation are accompanied by excessive production of eicosanoids (prostaglandins, prostacyclin, thromboxanes and leukotrienes). These endogenous mediators of inflammatory reactions may be responsible for the vasodilatation, vasoconstriction, increased microvascular permeability, thrombosis and chemotaxis observed after radiation exposure. Glucocorticoids inhibit eicosanoid synthesis primarily by interfering with phospholipase A 2 whilst non-steroidal anti-inflammatory drugs prevent prostaglandin/thromboxane synthesis by inhibiting cycloxygenase. When administered after irradiation on empirical grounds, drugs belonging to both groups tend to attenuate a range of prodomal, acute and chronic effects of radiation in man and animals. Taken together, these two sets of observations are highly suggestive of a contribution of humoral factors to the adverse responses of normal tissues and organs to radiation. A full account of radiation damage should therefore consist of complementary descriptions of cellular and humoral events. Further studies on anti-inflammatory drug treatment of radiation damage to normal organs are justified and desirable. (orig.)

  11. The Addition of Manganese Porphyrins during Radiation Inhibits Prostate Cancer Growth and Simultaneously Protects Normal Prostate Tissue from Radiation Damage

    Directory of Open Access Journals (Sweden)

    Arpita Chatterjee

    2018-01-01

    Full Text Available Radiation therapy is commonly used for prostate cancer treatment; however, normal tissues can be damaged from the reactive oxygen species (ROS produced by radiation. In separate reports, we and others have shown that manganese porphyrins (MnPs, ROS scavengers, protect normal cells from radiation-induced damage but inhibit prostate cancer cell growth. However, there have been no studies demonstrating that MnPs protect normal tissues, while inhibiting tumor growth in the same model. LNCaP or PC3 cells were orthotopically implanted into athymic mice and treated with radiation (2 Gy, for 5 consecutive days in the presence or absence of MnPs. With radiation, MnPs enhanced overall life expectancy and significantly decreased the average tumor volume, as compared to the radiated alone group. MnPs enhanced lipid oxidation in tumor cells but reduced oxidative damage to normal prostate tissue adjacent to the prostate tumor in combination with radiation. Mechanistically, MnPs behave as pro-oxidants or antioxidants depending on the level of oxidative stress inside the treated cell. We found that MnPs act as pro-oxidants in prostate cancer cells, while in normal cells and tissues the MnPs act as antioxidants. For the first time, in the same in vivo model, this study reveals that MnPs enhance the tumoricidal effect of radiation and reduce oxidative damage to normal prostate tissue adjacent to the prostate tumor in the presence of radiation. This study suggests that MnPs are effective radio-protectors for radiation-mediated prostate cancer treatment.

  12. Cell kinetical aspect of normal tissue damages in relation to radiosensitivity of cells, especially from the points of LQ model

    International Nuclear Information System (INIS)

    Tsubouchi, Susumu; Oohara, Hiroshi.

    1989-01-01

    Several points on the early and late radiation induced-normal tissue damages in terms of LQ model in multifractionation experiments of isoeffect were discussed from two fractors, (1) dose-responses of cell survivals or of tissue damages and (2) principles of the model. Application of the model to the both early and late tissue damages was fairly difficult in several tissues and several experimental conditions. In early damages, cell survival curve of single irradiation did not always fit to LQ model and further more incomlete repair as well as repopulation in multifractionation experiment contradicted the model especially in low dose fractionation. In late damages, the damages themselves did not express directly cell survival but probably indicate the degree of functional cell damage at the level of 10 -1 . As most isoeffects in early damages were taken at the level of 10 -3 , the comparison of two results from early and late tissue damages indicated the lack of coordinations both conceptionally and experimentally. (author)

  13. Neutron RBE for normal tissues

    International Nuclear Information System (INIS)

    Field, S.B.; Hornsey, S.

    1979-01-01

    RBE for various normal tissues is considered as a function of neutron dose per fraction. Results from a variety of centres are reviewed. It is shown that RBE is dependent on neutron energy and is tissue dependent, but is not specially high for the more critical tissues or for damage occurring late after irradiation. (author)

  14. SU-E-T-168: Evaluation of Normal Tissue Damage in Head and Neck Cancer Treatments

    International Nuclear Information System (INIS)

    Ai, H; Zhang, H

    2014-01-01

    Purpose: To evaluate normal tissue toxicity in patients with head and neck cancer by calculating average survival fraction (SF) and equivalent uniform dose (EUD) for normal tissue cells. Methods: 20 patients with head and neck cancer were included in this study. IMRT plans were generated using EclipseTM treatment planning system by dosimetrist following clinical radiotherapy treatment guidelines. The average SF for three different normal tissue cells of each concerned structure can be calculated from dose spectrum acquired from differential dose volume histogram (DVH) using linear quadratic model. The three types of normal tissues include radiosensitive, moderately radiosensitive and radio-resistant that represents 70%, 50% and 30% survival fractions, respectively, for a 2-Gy open field. Finally, EUDs for three types of normal tissue of each structure were calculated from average SF. Results: The EUDs of the brainstem, spinal cord, parotid glands, brachial plexus and etc were calculated. Our analysis indicated that the brainstem can absorb as much as 14.3% of prescription dose to the tumor if the cell line is radiosensitive. In addition, as much as 16.1% and 18.3% of prescription dose were absorbed by the brainstem for moderately radiosensitive and radio-resistant cells, respectively. For the spinal cord, the EUDs reached up to 27.6%, 35.0% and 42.9% of prescribed dose for the three types of radiosensitivities respectively. Three types of normal cells for parotid glands can get up to 65.6%, 71.2% and 78.4% of prescription dose, respectively. The maximum EUDs of brachial plexsus were calculated as 75.4%, 76.4% and 76.7% of prescription for three types of normal cell lines. Conclusion: The results indicated that EUD can be used to quantify and evaluate the radiation damage to surrounding normal tissues. Large variation of normal tissue EUDs may come from variation of target volumes and radiation beam orientations among the patients

  15. T lymphocytes and normal tissue responses to radiation

    International Nuclear Information System (INIS)

    Schaue, Dörthe; McBride, William H.

    2012-01-01

    There is compelling evidence that lymphocytes are a recurring feature in radiation damaged normal tissues, but assessing their functional significance has proven difficult. Contradictory roles have been postulated in both tissue pathogenesis and protection, although these are not necessarily mutually exclusive as the immune system can display what may seem to be opposing faces at any one time. While the exact role of T lymphocytes in irradiated normal tissue responses may still be obscure, their accumulation after tissue damage suggests they may be critical targets for radiotherapeutic intervention and worthy of further study. This is accentuated by recent findings that pathologically damaged “self,” such as occurs after exposure to ionizing radiation, can generate danger signals with the ability to activate pathways similar to those that activate adoptive immunity to pathogens. In addition, the demonstration of T cell subsets with their recognition radars tuned to “self” moieties has revolutionized our ideas on how all immune responses are controlled and regulated. New concepts of autoimmunity have resulted based on the dissociation of immune functions between different subsets of immune cells. It is becoming axiomatic that the immune system has the power to regulate radiation-induced tissue damage, from failure of regeneration to fibrosis, to acute and chronic late effects, and even to carcinogenesis. Our understanding of the interplay between T lymphocytes and radiation-damaged tissue may still be rudimentary but this is a good time to re-examine their potential roles, their radiobiological and microenvironmental influences, and the possibilities for therapeutic manipulation. This review will discuss the yin and yang of T cell responses within the context of radiation exposures, how they might drive or protect against normal tissue side effects and what we may be able do about it.

  16. Role of endothelium in radiation-induced normal tissue damages; Role de l'endothelium dans les dommages radio-induits aux tissus sains

    Energy Technology Data Exchange (ETDEWEB)

    Milliat, F

    2007-05-15

    More than half of cancers are treated with radiation therapy alone or in combination with surgery and/or chemotherapy. The goal of radiation therapy is to deliver enough ionising radiation to destroy cancer cells without exceeding the level that the surrounding healthy cells can tolerate. Unfortunately, radiation-induced normal tissue injury is still a dose limiting factor in the treatment of cancer with radiotherapy. The knowledge of normal tissue radiobiology is needed to determine molecular mechanisms involved in normal tissue pathogenic pathways in order to identify therapeutic targets and develop strategies to prevent and /or reduce side effects of radiation therapy. The endothelium is known to play a critical role in radiation-induced injury. Our work shows that endothelial cells promote vascular smooth muscle cell proliferation, migration and fibro-genic phenotype after irradiation. Moreover, we demonstrate for the first time the importance of PAI-1 in radiation-induced normal tissue damage suggesting that PAI-1 may represent a molecular target to limit injury following radiotherapy. We describe a new role for the TGF-b/Smad pathway in the pathogenesis of radiation-induced damages. TGF-b/Smad pathway is involved in the fibro-genic phenotype of VSMC induced by irradiated EC as well as in the radiation-induced PAI-1 expression in endothelial cells. (author)

  17. Role of endothelium in radiation-induced normal tissue damages; Role de l'endothelium dans les dommages radio-induits aux tissus sains

    Energy Technology Data Exchange (ETDEWEB)

    Milliat, F

    2007-05-15

    More than half of cancers are treated with radiation therapy alone or in combination with surgery and/or chemotherapy. The goal of radiation therapy is to deliver enough ionising radiation to destroy cancer cells without exceeding the level that the surrounding healthy cells can tolerate. Unfortunately, radiation-induced normal tissue injury is still a dose limiting factor in the treatment of cancer with radiotherapy. The knowledge of normal tissue radiobiology is needed to determine molecular mechanisms involved in normal tissue pathogenic pathways in order to identify therapeutic targets and develop strategies to prevent and /or reduce side effects of radiation therapy. The endothelium is known to play a critical role in radiation-induced injury. Our work shows that endothelial cells promote vascular smooth muscle cell proliferation, migration and fibro-genic phenotype after irradiation. Moreover, we demonstrate for the first time the importance of PAI-1 in radiation-induced normal tissue damage suggesting that PAI-1 may represent a molecular target to limit injury following radiotherapy. We describe a new role for the TGF-b/Smad pathway in the pathogenesis of radiation-induced damages. TGF-b/Smad pathway is involved in the fibro-genic phenotype of VSMC induced by irradiated EC as well as in the radiation-induced PAI-1 expression in endothelial cells. (author)

  18. Evaluation of normal tissue responses to high-LET radiations

    International Nuclear Information System (INIS)

    Halnan, K.E.

    1979-01-01

    Clinical results presented have been analysed to evaluate normal tissue responses to high-LET radiations. Damage to brain, spinal cord, gut, skin, connective tissue and bone has occurred. A high RBE is probable for brain and possible for spinal cord and gut but other reasons for damage are also discussed. A net gain seems likely. Random controlled trials are advocated. (author)

  19. Stem cell therapy for the treatment of radiation-induced normal tissue damage

    International Nuclear Information System (INIS)

    Chapel, A.; Benderitter, M.; Gourmelon, P.; Lataillade, J.J.; Gorin, N.C.

    2013-01-01

    Radiotherapy may induce irreversible damage on healthy tissues surrounding the tumour. In Europe, per year, 1.5 million patients undergo external radiotherapy. Acute adverse effect concern 80% of patients. The late adverse effect of radiotherapy concern 5 to 10% of them, which could be life threatening. Eradication of these manifestations is crucial. The French Institute of Radioprotection and Nuclear Safety (IRSN) contribute to understand effect of radiation on healthy tissue. IRSN is strongly implicated in the field of regeneration of healthy tissue after radiotherapy or radiological accident and in the clinical use of cell therapy in the treatment of irradiated patients. Our first success in cell therapy was the correction of deficient hematopoiesis in two patients. The intravenous injection of Mesenchymal Stem Cells (MSC) has restored bone marrow micro-environment after total body irradiation necessary to sustain hematopoiesis. Cutaneous radiation reactions play an important role in radiation accidents, but also as a limitation in radiotherapy and radio-oncology. We have evidenced for the first time, the efficiency of MSC therapy in the context of acute cutaneous and muscle damage following irradiation in five patients. Concerning the medical management of gastrointestinal disorder after irradiation, we have demonstrated the promising approach of the MSC treatment. We have shown that MSC migrate to damaged tissues and restore gut functions after radiation damage. The evaluation of stem cell therapy combining different sources of adult stem cells is under investigation

  20. Morphologic alterations in normal and neoplastic tissues following hyperthermia treatment

    International Nuclear Information System (INIS)

    Badylak, S.F.; Babbs, C.F.

    1984-01-01

    The sequential morphologic alterations in normal skeletal muscle in rats, Walker 256 tumors in rats, and transmissible venereal tumors (TVT) in dogs following microwave-induced hyperthermia (43 0 C and 45 0 for 20 minutes) were studied by light and electron microscopy. Normal muscle and Walker 256 tumors showed vascular damage at 5 minutes post-heating (PH), followed by suppuration and thrombosis at 6 and 48 hours PH, and by regeneration and repair at 7 days PH. Endothelial damage and parenchymal degeneration were present 5 minutes PH. Progressive ischemic injury occurred for at least 48 hours PH. Two hyperthermia treatments, separated by a 30 or 60 minute cooling interval, were applied to rats implanted with Walker 256 tumors. Increased selective heating of tumor tissue versus surrounding normal tissue, and increased intratumoral temperatures were found during the second hyperthermia treatment. Canine TVTs were resistant to hyperthermia damage. These results characterized the sequential morphologic alterations following hyperthermia treatment and showed that: 1) vascular damage contributed to the immediate and latent cytotoxic effects of hyperthermia, 2) selective heating occurred in the neoplastic tissue disrupted by prior heat treatment, and 3) not all neoplasms are responsive to hyperthermia treatment

  1. Radioprotection by WR-151327 against the late normal tissue damage in mouse hind legs from gamma ray radiation

    International Nuclear Information System (INIS)

    Matsushita, Satoru; Ando, Koichi; Koike, Sachiko

    1994-01-01

    To evaluate the protective effect of WR-151327 on late radiation-induced damaged to normal tissues in mice, the right hind legs of mice with or without WR-151327 administration (400 mg/kg) were irradiated with 137 Cs gamma rays. Leg contracture and skin shrinkage assays were performed at 380 days after irradiation. The mice were killed on day 400 postirradiation and histological sections of the legs were made. The thickness of the dermis, epidermis, and skin (dermis plus epidermis) was measured. The muscular area of the legs and the posterior knee angle between the femur and tibia were also measured. The left hind legs were similarly assessed as nonirradiated controls. Group means and standard deviations were calculated and dose-response curves were drawn for every endpoint. Then, the dose modifying factor (DMF) for each endpoint and the correlations among endpoints were determined. Latae damage assayed by leg contracture and skin shrinkage progressed with increasing radiation dose. However, it was reduced by drug treatment. The significant effect was indicated for skin shrinkage by a DMF of 1.8 at 35%. The DMF for leg contracture was 1.3 at 6 mm. In the irradiated legs, epidermal hyperplasia and dermal fibrosis in the skin, muscular atrophy, and extension disturbance of the knee joint were observed. These changes progressed with increasing radiation dose. Skin damage assayed by the present endpoints was also reduced by drug treatment by DMFs of 1.4 to 1.7. However, DMFs for damage to the muscle and knee were not determined because no isoeffect was observed. There were good correlations between leg contracture or skin shrinkage and the other endpoints in both untreated and drug-treated mice. WR-151327 has the potential to protect against radiation-induced late normal tissue damage. 17 refs., 6 figs., 2 tabs

  2. Comparison of single, fractionated and hyperfractionated irradiation on the development of normal tissue damage in rat lung

    International Nuclear Information System (INIS)

    Giri, P.G.S.; Kimler, B.F.; Giri, U.P.; Cox, G.G.; Reddy, E.K.

    1985-01-01

    The effect of fractionated thoracic irradiation on the development of normal tissue damage in rats was compared to that produced by single doses. Animals received a single dose of 15 Gy, 30 Gy in 10 daily fractions of 3 Gy each (fractionation), or 30 Gy in 30 fractions of 1 Gy each 3 times a day (hyperfractionation). The treatments produced minimal lethality since a total of only 6 animals died between days 273 and 475 after the initiation of treatment, with no difference in survival observed between the control and any of the 3 treated groups. Despite the lack of lethality, evidence of lung damage was obtained by histological examination. Animals that had received either single doses or fractionated doses had more of the pulmonary parenchyma involved than did animals that had received hyperfractionated doses. The authors conclude that, in the rat lung model, a total radiation dose of 30 Gy fractionated over 14 days produces no more lethality nor damage to lung tissue than does 15 Gy delivered as a single dose. However, long-term effects as evidenced by deposits of collagen and development of fibrosis are significantly reduced by hyperfractionation when compared to single doses and daily fractionation

  3. Measurement of human normal tissue and tumour responses

    International Nuclear Information System (INIS)

    Ross, G.; Yarnold, J.R.

    1988-01-01

    The scarcity of quantitative measures of normal tissue damage and tumour response in patients undergoing radiotherapy is an obstacle to the clinical evaluation of new treatment strategies. Retrospective studies of complications in critical normal tissues taught important lessons in the past concerning the potential dangers of hypofractionation. However, it is unethical to use serious complications as planned end-points in prospective studies. This paper reviews the desirable characteristics of clinical end-points required to compare alternative treatments employing radiotherapy, with emphasis on simple scales applied by clinicians or even the patients themselves

  4. Comparative study of radiosensitivity of normal and regenerating tissues

    International Nuclear Information System (INIS)

    Samokhvalova, H.S.; Popova, M.F.

    1983-01-01

    A comparative study of radiosensitivity of cells of normal and regenerating tissues of bone marrow and spleen has demonstrated that single exposure to X-rays produces a lesser damaging effect on regenerating tissues than on normal ones. The data obtained indicate that the increase in radioresistance of the organism during active regeneration of the haemopoietic organs is due not merely to the increase in the dividing cell pool of these organs but also to qualitative changes in their functional state

  5. Radiation-induced DNA damage in tumors and normal tissues. II. Influence of dose, residual DNA damage and physiological factors in oxygenated cells

    International Nuclear Information System (INIS)

    Zhang, H.; Wheeler, K.T.

    1994-01-01

    Detection and quantification of hypoxic cells in solid tumors is important for many experimental and clinical situations. Several laboratories, including ours, have suggested that assays which measure radiation-induced DNA strand breaks and DNA-protein crosslinks (DPCs) might be used to detect or quantify hypoxic cells in tumors and normal tissues. Recently, we demonstrated the feasibility of using an alkaline elution assay that measures strand breaks and DPCs to detect and/or quantify hypoxic cells in tissues. For this approach to be valid, DPCs must not be formed to any great extent in irradiated oxygenated cells, and the formation and repair of strand breaks and DPCs in oxygenated cells must not be modified appreciably by physiological factors (e.g., temperature, pH and nutrient depletion) that are often found in solid tumors. To address these issues, two sets of experiments were performed. In one set of experiments, oxygenated 9L cells in tissue culture, subcutaneous 9L tumors and rat cerebella were irradiated with doses of 15 or 50 Gy and allowed to repair until the residual strand break damage was low enough to detect DPCs. In another set of experiments, oxygenated exponentially growing or plateau-phase 9L cells in tissue culture were irradiated with a dose of 15 Gy at 37 or 20 degrees C, while the cells were maintained at a pH of either 6.6 or 7.3. DNA-protein crosslinks were formed in oxygenated cells about 100 times less efficiently than in hypoxic cells. In addition, temperature, pH, nutrient depletion and growth phase did not appreciably alter the formation and repair of strand breaks or the formation of DPCs in oxygenated 9L cells. These results support the use of this DNA damage assay for the detection and quantification of hypoxic cells in solid tumors. 27 refs., 5 tabs

  6. Radiosensitization effects of nicotinamide on malignant and normal mouse tissue

    International Nuclear Information System (INIS)

    Jonsson, G.G.; Kjellen, E.; Pero, R.W.; Cameron, R.

    1985-01-01

    Inhibitors of the chromatin-associated enzyme adenosine diphosphate ribosyltransferase have been found to inhibit DNA strand rejoining and to potentiate lethality of DNA-damaging agents both in vivo and in vitro. The authors have in this work examined the radiosensitizing potential of one such inhibitor, nicotinamide, on tumor tissue by using transplanted C3H mouse mammary adenocarcinomas and on normal tissue in a tail-stunting experiment using BALB/cA mice. The data indicate a radiosensitizing effect of nicotinamide on tumor cells as well as on normal tissue. The data indicate a possible role of adenosine diphosphate ribosyltransferase inhibitors as a sensitizing agent in the radiotherapy of malignant tumors

  7. Accumulation of DNA Double-Strand Breaks in Normal Tissues After Fractionated Irradiation

    International Nuclear Information System (INIS)

    Ruebe, Claudia E.; Fricke, Andreas; Wendorf, Juliane; Stuetzel, Annika; Kuehne, Martin; Ong, Mei Fang; Lipp, Peter; Ruebe, Christian

    2010-01-01

    Purpose: There is increasing evidence that genetic factors regulating the recognition and/or repair of DNA double-strand breaks (DSBs) are responsible for differences in radiosensitivity among patients. Genetically defined DSB repair capacities are supposed to determine patients' individual susceptibility to develop adverse normal tissue reactions after radiotherapy. In a preclinical murine model, we analyzed the impact of different DSB repair capacities on the cumulative DNA damage in normal tissues during the course of fractionated irradiation. Material and Methods: Different strains of mice with defined genetic backgrounds (SCID -/- homozygous, ATM -/- homozygous, ATM +/- heterozygous, and ATM +/+ wild-type mice) were subjected to single (2 Gy) or fractionated irradiation (5 x 2 Gy). By enumerating γH2AX foci, the formation and rejoining of DSBs were analyzed in organs representative of both early-responding (small intestine) and late-responding tissues (lung, kidney, and heart). Results: In repair-deficient SCID -/- and ATM -/- homozygous mice, large proportions of radiation-induced DSBs remained unrepaired after each fraction, leading to the pronounced accumulation of residual DNA damage after fractionated irradiation, similarly visible in early- and late-responding tissues. The slight DSB repair impairment of ATM +/- heterozygous mice was not detectable after single-dose irradiation but resulted in a significant increase in unrepaired DSBs during the fractionated irradiation scheme. Conclusions: Radiation-induced DSBs accumulate similarly in acute- and late-responding tissues during fractionated irradiation, whereas the whole extent of residual DNA damage depends decisively on the underlying genetically defined DSB repair capacity. Moreover, our data indicate that even minor impairments in DSB repair lead to exceeding DNA damage accumulation during fractionated irradiation and thus may have a significant impact on normal tissue responses in clinical

  8. Immunohistochemical analysis of oxidative stress and DNA repair proteins in normal mammary and breast cancer tissues

    International Nuclear Information System (INIS)

    Curtis, Carol D; Thorngren, Daniel L; Nardulli, Ann M

    2010-01-01

    During the course of normal cellular metabolism, oxygen is consumed and reactive oxygen species (ROS) are produced. If not effectively dissipated, ROS can accumulate and damage resident proteins, lipids, and DNA. Enzymes involved in redox regulation and DNA repair dissipate ROS and repair the resulting damage in order to preserve a functional cellular environment. Because increased ROS accumulation and/or unrepaired DNA damage can lead to initiation and progression of cancer and we had identified a number of oxidative stress and DNA repair proteins that influence estrogen responsiveness of MCF-7 breast cancer cells, it seemed possible that these proteins might be differentially expressed in normal mammary tissue, benign hyperplasia (BH), ductal carcinoma in situ (DCIS) and invasive breast cancer (IBC). Immunohistochemistry was used to examine the expression of a number of oxidative stress proteins, DNA repair proteins, and damage markers in 60 human mammary tissues which were classified as BH, DCIS or IBC. The relative mean intensity was determined for each tissue section and ANOVA was used to detect statistical differences in the relative expression of BH, DCIS and IBC compared to normal mammary tissue. We found that a number of these proteins were overexpressed and that the cellular localization was altered in human breast cancer tissue. Our studies suggest that oxidative stress and DNA repair proteins not only protect normal cells from the damaging effects of ROS, but may also promote survival of mammary tumor cells

  9. Mechanisms of radiation-induced normal tissue toxicity and implications for future clinical trials

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Ho; Jenrow, Kenneth A.; Brown, Stephen L. [Dept.of Radiation Oncology, Henry Ford Health System, Detroit (United States)

    2014-09-15

    To summarize current knowledge regarding mechanisms of radiation-induced normal tissue injury and medical countermeasures available to reduce its severity. Advances in radiation delivery using megavoltage and intensity-modulated radiation therapy have permitted delivery of higher doses of radiation to well-defined tumor target tissues. Injury to critical normal tissues and organs, however, poses substantial risks in the curative treatment of cancers, especially when radiation is administered in combination with chemotherapy. The principal pathogenesis is initiated by depletion of tissue stem cells and progenitor cells and damage to vascular endothelial microvessels. Emerging concepts of radiation-induced normal tissue toxicity suggest that the recovery and repopulation of stromal stem cells remain chronically impaired by long-lived free radicals, reactive oxygen species, and pro-inflammatory cytokines/chemokines resulting in progressive damage after radiation exposure. Better understanding the mechanisms mediating interactions among excessive generation of reactive oxygen species, production of pro-inflammatory cytokines and activated macrophages, and role of bone marrow-derived progenitor and stem cells may provide novel insight on the pathogenesis of radiation-induced injury of tissues. Further understanding the molecular signaling pathways of cytokines and chemokines would reveal novel targets for protecting or mitigating radiation injury of tissues and organs.

  10. Mechanisms of radiation-induced normal tissue toxicity and implications for future clinical trials

    International Nuclear Information System (INIS)

    Kim, Jae Ho; Jenrow, Kenneth A.; Brown, Stephen L.

    2014-01-01

    To summarize current knowledge regarding mechanisms of radiation-induced normal tissue injury and medical countermeasures available to reduce its severity. Advances in radiation delivery using megavoltage and intensity-modulated radiation therapy have permitted delivery of higher doses of radiation to well-defined tumor target tissues. Injury to critical normal tissues and organs, however, poses substantial risks in the curative treatment of cancers, especially when radiation is administered in combination with chemotherapy. The principal pathogenesis is initiated by depletion of tissue stem cells and progenitor cells and damage to vascular endothelial microvessels. Emerging concepts of radiation-induced normal tissue toxicity suggest that the recovery and repopulation of stromal stem cells remain chronically impaired by long-lived free radicals, reactive oxygen species, and pro-inflammatory cytokines/chemokines resulting in progressive damage after radiation exposure. Better understanding the mechanisms mediating interactions among excessive generation of reactive oxygen species, production of pro-inflammatory cytokines and activated macrophages, and role of bone marrow-derived progenitor and stem cells may provide novel insight on the pathogenesis of radiation-induced injury of tissues. Further understanding the molecular signaling pathways of cytokines and chemokines would reveal novel targets for protecting or mitigating radiation injury of tissues and organs.

  11. Effect of laminaria japonica polysaccharides (LJP) on radiation damage of testis tissue in male rats

    International Nuclear Information System (INIS)

    Ren Shicheng; Luo Qiong; Yang Mingliang; Yang Jiajuan; Yan Jun; Li Zhuoneng; Wang Lihong; Cui Xiaoyan

    2007-01-01

    Objective: To observe the effect of laminaria japonica polysaccharides (LJP) on local radiation damage of testis tissue in male rats. Methods: The Wistar rats were randomly divided into 4 groups: the normal group, the model group, positive control group and LJP treatment group (50 mg·kg -1 ·d -1 ). LJP was applied to the treatment group for 10 d before local irradiation with γ-ray (6.0 Gy). The morphological change of the testis, organ index of testis and epididymides, sperm count, motility rate, superoxide dismutase (SOD) activity and malonic aldehyde (MDA) contents were measured. Results: LJP could make the damaged testis recover to near normal, elevate the organ index of testis and epididymides, promote the sperm count and motility rate, increase the activity of SOD and decrease the contents of MDA in testis tissue. Conclusions: LJP could inhibit testis tissue damage induced by local radiation, hence enhance the significant radioprotective effect to testis tissue. LJP has the conspicuous protective effect on radiation damage of testis tissue. (authors)

  12. Quantification of thermal damage in skin tissue

    Institute of Scientific and Technical Information of China (English)

    Xu Feng; Wen Ting; Lu Tianjian; Seffen Keith

    2008-01-01

    Skin thermal damage or skin burns are the most commonly encountered type of trauma in civilian and military communities. Besides, advances in laser, microwave and similar technologies have led to recent developments of thermal treatments for disease and damage involving skin tissue, where the objective is to induce thermal damage precisely within targeted tissue structures but without affecting the surrounding, healthy tissue. Further, extended pain sensation induced by thermal damage has also brought great problem for burn patients. Thus, it is of great importance to quantify the thermal damage in skin tissue. In this paper, the available models and experimental methods for quantification of thermal damage in skin tissue are discussed.

  13. Protective Effect of HSP25 on Radiation Induced Tissue Damage

    International Nuclear Information System (INIS)

    Lee, Hae-June; Lee, Yoon-Jin; Kwon, Hee-Choong; Bae, Sang-Woo; Lee, Yun-Sil; Kim, Sung Ho

    2007-01-01

    Control of cancer by irradiation therapy alone or in conjunction with combination chemotherapy is often limited by organ specific toxicity. Ionizing irradiation toxicity is initiated by damage to normal tissue near the tumor target and within the transit volume of radiotherapy beams. Irradiation-induced cellular, tissue, and organ damage is mediated by acute effects, which can be dose limiting. A latent period follows recovery from the acute reaction, then chronic irradiation fibrosis (late effects) pose a second cause of organ failure. HSP25/27 has been suggested to protect cells against apoptotic cell death triggered by hyperthermia, ionizing radiation, oxidative stress, Fas ligand, and cytotoxic drugs. And several mechanisms have been proposed to account for HSP27-mediated apoptotic protection. However radioprotective effect of HSP25/27 in vivo system has not yet been evaluated. The aim of this study was to evaluate the potential of exogenous HSP25 expression, as delivered by adenoviral vectors, to protect animal from radiation induced tissue damage

  14. Tumor control and normal tissue toxicity: The two faces of radiotherapy

    NARCIS (Netherlands)

    van Oorschot, B.

    2016-01-01

    This thesis discusses the two contrasting sides of radiotherapy: tumor control and normal tissue toxicity. On one hand, radiation treatment aims to target the tumor with the highest possible radiation dose, inducing as much lethal DNA damage as possible. On the other hand however, escalation of the

  15. Damage Models for Soft Tissues: A Survey.

    Science.gov (United States)

    Li, Wenguang

    Damage to soft tissues in the human body has been investigated for applications in healthcare, sports, and biomedical engineering. This paper reviews and classifies damage models for soft tissues to summarize achievements, identify new directions, and facilitate finite element analysis. The main ideas of damage modeling methods are illustrated and interpreted. A few key issues related to damage models, such as experimental data curve-fitting, computational effort, connection between damage and fractures/cracks, damage model applications, and fracture/crack extension simulation, are discussed. Several new challenges in the field are identified and outlined. This review can be useful for developing more advanced damage models and extending damage modeling methods to a variety of soft tissues.

  16. Quantification of thermal damage in skin tissue

    Institute of Scientific and Technical Information of China (English)

    徐峰; 文婷; 卢天健; Seffen; Keith

    2008-01-01

    Skin thermal damage or skin burns are the most commonly encountered type of trauma in civilian and military communities. Besides, advances in laser, microwave and similar technologies have led to recent developments of thermal treatments for disease and damage involving skin tissue, where the objective is to induce thermal damage precisely within targeted tissue structures but without affecting the surrounding, healthy tissue. Further, extended pain sensation induced by thermal damage has also brought great...

  17. DNA Double-Strand Break Rejoining in Complex Normal Tissues

    International Nuclear Information System (INIS)

    Ruebe, Claudia E.; Dong, Xiaorong; Kuehne, Martin; Fricke, Andreas; Kaestner, Lars; Lipp, Peter; Ruebe, Christian

    2008-01-01

    Purpose: The clinical radiation responses of different organs vary widely and likely depend on the intrinsic radiosensitivities of their different cell populations. Double-strand breaks (DSBs) are the most deleterious form of DNA damage induced by ionizing radiation, and the cells' capacity to rejoin radiation-induced DSBs is known to affect their intrinsic radiosensitivity. To date, only little is known about the induction and processing of radiation-induced DSBs in complex normal tissues. Using an in vivo model with repair-proficient mice, the highly sensitive γH2AX immunofluorescence was established to investigate whether differences in DSB rejoining could account for the substantial differences in clinical radiosensitivity observed among normal tissues. Methods and Materials: After whole body irradiation of C57BL/6 mice (0.1, 0.5, 1.0, and 2.0 Gy), the formation and rejoining of DSBs was analyzed by enumerating γH2AX foci in various organs representative of both early-responding (small intestine) and late-responding (lung, brain, heart, kidney) tissues. Results: The linear dose correlation observed in all analyzed tissues indicated that γH2AX immunofluorescence allows for the accurate quantification of DSBs in complex organs. Strikingly, the various normal tissues exhibited identical kinetics for γH2AX foci loss, despite their clearly different clinical radiation responses. Conclusion: The identical kinetics of DSB rejoining measured in different organs suggest that tissue-specific differences in radiation responses are independent of DSB rejoining. This finding emphasizes the fundamental role of DSB repair in maintaining genomic integrity, thereby contributing to cellular viability and functionality and, thus, tissue homeostasis

  18. Normal tissue complication probability (NTCP), the clinician,s perspective

    International Nuclear Information System (INIS)

    Yeoh, E.K.

    2011-01-01

    Full text: 3D radiation treatment planning has enabled dose distributions to be related to the volume of normal tissues irradiated. The dose volume histograms thus derived have been utilized to set NTCP dose constraints to facilitate optimization of treatment planning. However, it is not widely appreciated that a number of important variables other than DYH's which determine NTCP in the individual patient. These variables will be discussed under the headings of patient and treatment related as well as tumour related factors. Patient related factors include age, co-morbidities such as connective tissue disease and diabetes mellitus, previous tissue/organ damage, tissue architectural organization (parallel or serial), regional tissue/organ and individual tissue/organ radiosensitivities as well as the development of severe acute toxicity. Treatment related variables which need to be considered include dose per fraction (if not the conventional 1.8012.00 Gy/fraction, particularly for IMRT), number of fractions and total dose, dose rate (particularly if combined with brachytherapy) and concurrent chemotherapy or other biological dose modifiers. Tumour related factors which impact on NTCP include infiltration of normal tissue/organ usually at presentation leading to compromised function but also with recurrent disease after radiation therapy as well as variable tumour radiosensitivities between and within tumour types. Whilst evaluation of DYH data is a useful guide in the choice of treatment plan, the current state of knowledge requires the clinician to make an educated judgement based on a consideration of the other factors.

  19. ALK1 heterozygosity delays development of late normal tissue damage in the irradiated mouse kidney

    International Nuclear Information System (INIS)

    Scharpfenecker, Marion; Floot, Ben; Korlaar, Regina; Russell, Nicola S.; Stewart, Fiona A.

    2011-01-01

    Background and Purpose: Activin receptor-like kinase 1 (ALK1) is a transforming growth factor β (TGF-β) receptor, which is mainly expressed in endothelial cells regulating proliferation and migration in vitro and angiogenesis in vivo. Endothelial cells also express the co-receptor endoglin, which modulates ALK1 effects on endothelial cells. Our previous studies showed that mice with reduced endoglin levels develop less irradiation-induced vascular damage and fibrosis, caused by an impaired inflammatory response. This study was aimed at investigating the role of ALK1 in late radiation toxicity. Material and Methods: Kidneys of ALK +/+ and ALK1 +/- mice were irradiated with 14 Gy. Mice were sacrificed at 10, 20, and 30 weeks after irradiation and gene expression and protein levels were analyzed. Results: Compared to wild type littermates, ALK1 +/- mice developed less inflammation and fibrosis at 20 weeks after irradiation, but displayed an increase in pro-inflammatory and pro-fibrotic gene expression at 30 weeks. In addition, ALK1 +/- mice showed superior vascular integrity at 10 and 20 weeks after irradiation which deteriorated at 30 weeks coinciding with changes in the VEGF pathway. Conclusions: ALK1 +/- mice develop a delayed normal tissue response by modulating the inflammatory response and growth factor expression after irradiation.

  20. Can cell survival parameters be deduced from non-clonogenic assays of radiation damage to normal tissue

    International Nuclear Information System (INIS)

    Michalowski, A.; Wheldon, T.E.; Kirk, J.

    1984-01-01

    The relationship between dose-response curves for large scale radiation injury to tissues and survival curves for clonogenic cells is not necessarily simple. Sterilization of clonogenic cells occurs near-instantaneously compared with the protracted lag period for gross injury to tissues. Moreover, with some types of macroscopic damage, the shapes of the dose-response curves may depend on time of assay. Changes in the area or volume of irradiated tissue may also influence the shapes of these curves. The temporal pattern of expression of large scale injury also varies between tissues, and two distinct groups can be recognized. In rapidly proliferating tissues, lag period is almost independent of dose, whilst in slowly proliferating tissues, it is inversely proportional to dose. This might be explained by invoking differences in corresponding proliferative structures of the tissues. (Three compartmental Type H versus one compartmental Type F proliferative organization). For the second group of tissues particularly, mathematical modelling suggests a systematic dissociation of the dose-response curves for clonogenic cell survival and large scale injury. In particular, it may be difficult to disentangle the contributions made to inter-fraction sparing by cellular repair processes and by proliferation-related factors. (U.K.)

  1. Periodontal tissue damage in smokers

    Directory of Open Access Journals (Sweden)

    Hutojo Djajakusuma

    2006-09-01

    Full Text Available Dental plaque is the primary etiological factor in periodontal diseases. However, there are many factors that can modify how an individual periodontal tissue will respond to the accumulation of dental plaque. Among such risk factors, there is increasing evidence that smoking tobacco products alters the expression and rate of progression of periodontal diseases. The aim of this study was to find out the loss of periodontal tissue adhesion in smokers by measuring pocket depth using probe, and by measuring alveolar bone damage using Bone Loss Score (BLS radiographic methods on teeth 12, 11, 21, 22, 32, 31, 41, 42. Based on T Test statistical analysis, there were significant differences in pocket depth damage of alveolar bone in smokers and non smokers. In conclusion there were increasing pocket depth and alveolar bone damage in smokers.

  2. Radioprotection of normal tissues in tumor-bearing mice by troxerutin

    International Nuclear Information System (INIS)

    Maurya, D.K.; Salvi, V.P.; Krishnan Nair, C.K.

    2004-01-01

    The flavanoid derivative troxerutin, used clinically for treating venous disorders, protected biomembranes and cellular DNA against the deleterious effects of γ-radiation. The peroxidation of lipids (measured as thiobarbituric acid-reacting substances, or TBARS) in rat liver microsomal and mitochondrial membranes resulting from γ-irradiation up to doses of 500 Gy in vitro was prevented by 0.2 mM troxerutin. The administration of troxerutin (175 mg/kg body weight) to tumor-bearing mice by intraperitoneal (ip) one hour prior to 4 Gy whole-body γ-irradiation significantly decreased the radiation-induced peroxidation of lipids in tissues such as liver and spleen, but there was no reduction of lipid peroxidation in tumor. The effect of troxerutin in γ-radiation-induced DNA strand breaks in different tissues of tumor-bearing mice was studied by comet assay. The administration of troxerutin to tumor-bearing animals protected cellular DNA against radiation-induced strand breaks. This was evidenced from decreases in comet tail length, tail moment, and percent of DNA in the tails in cells of normal tissues such as blood leukocytes and bone marrow, and these parameters were not altered in cells of fibrosarcoma tumor. The results revealed that troxerutin could preferentially protect normal tissues against radiation-induced damages in tumor-bearing animals. (author)

  3. Role of plasminogen activator inhibitor type-1 in radiation-induced normal tissues injury

    International Nuclear Information System (INIS)

    Abderrahmani, R.

    2010-01-01

    Radiotherapy is an essential tool for cancer treatment, but there is a balance between benefits and risks related to the use of ionizing radiation: the objective is to deliver a maximum dose to the tumour to destroy or to sterilize it while protecting surrounding normal tissues. Radio-induced damages to normal tissues are therefore a limiting factor when increasing the dose delivered to the tumour. One of the objectives of this research thesis is to bring to the fore a relationship between the initiation of lesions and the development of late damages, more particularly in the intestine, and to identify the involved molecular actors and their inter-connectivity. After a first part presenting ionizing radiation, describing biological effects of ionizing radiation and their use in radiotherapy, presenting the intestine and the endothelium and discussing the intestine radio-sensitivity, discussing the radio-induced intestine damages and radiotherapy-induced complications, and presenting the plasminogen activator inhibitor (PAI-1) and its behaviour in presence of ionizing radiation, two articles are reproduced. The first one addresses the effect of a pharmacological inhibition and of genetic deficiency in PAI-1 on the evolution of radio-induced intestine lesions. The second one discusses the fact that radio-induced PAI-1-related death of endothelial cells determines the severity of early radio-induced intestine lesions

  4. Variation in normal and tumor tissue sensitivity of mice to ionizing radiation-induced DNA strand breaks in vivo

    International Nuclear Information System (INIS)

    Meyn, R.E.; Jenkins, W.T.

    1983-01-01

    The efficiency of DNA strand break formation in normal and tumor tissues of mice was measured using the technique of alkaline elution coupled with a microfluorometric determination of DNA. This methodology allowed measurement of the DNA strand breaks produced in tissues irradiated in vivo with doses of radiation comparable to those used in radiotherapy (i.e., 1.0 gray) without the necessity for the cells to be dividing and incorporating radioactive precursors to label the DNA. The results showed that substantial differences existed among various tissues in terms of the amount of DNA strand break damage produced for a given dose of radiation. Of the normal tissues, the most breaks were produced in bone marrow and the least were produced in gut. Furthermore, strand break production was relatively inefficient in the tumor compared to the normal tissues. The efficiency of DNA strand break formation measured in the cells from the tissues irradiated in vitro was much more uniform and considerably greater than that measured in vivo, suggesting that the normal tissues in the animal may be radiobiologically hypoxic

  5. Continuum theory of fibrous tissue damage mechanics using bond kinetics: application to cartilage tissue engineering.

    Science.gov (United States)

    Nims, Robert J; Durney, Krista M; Cigan, Alexander D; Dusséaux, Antoine; Hung, Clark T; Ateshian, Gerard A

    2016-02-06

    This study presents a damage mechanics framework that employs observable state variables to describe damage in isotropic or anisotropic fibrous tissues. In this mixture theory framework, damage is tracked by the mass fraction of bonds that have broken. Anisotropic damage is subsumed in the assumption that multiple bond species may coexist in a material, each having its own damage behaviour. This approach recovers the classical damage mechanics formulation for isotropic materials, but does not appeal to a tensorial damage measure for anisotropic materials. In contrast with the classical approach, the use of observable state variables for damage allows direct comparison of model predictions to experimental damage measures, such as biochemical assays or Raman spectroscopy. Investigations of damage in discrete fibre distributions demonstrate that the resilience to damage increases with the number of fibre bundles; idealizing fibrous tissues using continuous fibre distribution models precludes the modelling of damage. This damage framework was used to test and validate the hypothesis that growth of cartilage constructs can lead to damage of the synthesized collagen matrix due to excessive swelling caused by synthesized glycosaminoglycans. Therefore, alternative strategies must be implemented in tissue engineering studies to prevent collagen damage during the growth process.

  6. Effects of tissue mechanical properties on susceptibility to histotripsy-induced tissue damage

    Science.gov (United States)

    Vlaisavljevich, Eli; Kim, Yohan; Owens, Gabe; Roberts, William; Cain, Charles; Xu, Zhen

    2014-01-01

    Histotripsy is a non-invasive tissue ablation method capable of fractionating tissue by controlling acoustic cavitation. To determine the fractionation susceptibility of various tissues, we investigated histotripsy-induced damage on tissue phantoms and ex vivo tissues with different mechanical strengths. A histotripsy bubble cloud was formed at tissue phantom surfaces using 5-cycle long ultrasound pulses with peak negative pressure of 18 MPa and PRFs of 10, 100, and 1000 Hz. Results showed significantly smaller lesions were generated in tissue phantoms of higher mechanical strength. Histotripsy was also applied to 43 different ex vivo porcine tissues with a wide range of mechanical properties. Gross morphology demonstrated stronger tissues with higher ultimate stress, higher density, and lower water content were more resistant to histotripsy damage in comparison to weaker tissues. Based on these results, a self-limiting vessel-sparing treatment strategy was developed in an attempt to preserve major vessels while fractionating the surrounding target tissue. This strategy was tested in porcine liver in vivo. After treatment, major hepatic blood vessels and bile ducts remained intact within a completely fractionated liver volume. These results identify varying susceptibilities of tissues to histotripsy therapy and provide a rational basis to optimize histotripsy parameters for treatment of specific tissues.

  7. Identification of molecular mechanisms of radiation-induced vascular damage in normal tissues using microarray analyses

    International Nuclear Information System (INIS)

    Kruse, J.J.C.M.; Te Poele, J.A.M.; Russell, N.S.; Boersma, L.J.; Stewart, F.A.

    2003-01-01

    Radiation-induced telangiectasia, characterized by thin-walled dilated blood vessels, can be a serious late complication in patients that have been previously treated for cancer. It might cause cosmetic problems when occurring in the skin, and excessive bleeding requiring surgery when occurring in rectal mucosa. The mechanisms underlying the development of radiation-induced telangiectasia are unclear. The aim of the present study is to determine whether microarrays are useful for studying mechanisms of radiation-induced telangiectasia. The second aim is to test the hypotheses that telangiectasia is characterized by a final common pathway in different tissues. Microarray experiments were performed using amplified RNA from (sham)irradiated mouse tissues (kidney, rectum) at different intervals (1-30 weeks) after irradiation. After normalization procedures, the differentially expressed genes were identified. Control/repeat experiments were done to confirm that the observations were not artifacts of the array procedure. The mouse kidney experiments showed significant upregulation of 31 and 42 genes and downregulation of 9 and 4 genes at 10 and 20 weeks after irradiation, respectively. Irradiated mouse rectum has 278 upregulated and 537 downregulated genes at 10 weeks and 86 upregulated and 29 downregulated genes at 20 weeks. During the development of telangiectasia, 19 upregulated genes and 5 downregulated genes were common to both tissues. Upregulation of Jagged-1, known to play a role in angiogenesis, is particularly interesting in the context of radiation-induced telangiectasia. Microarrays are affective discovery tools to identify novel genes of interest, which may be involved in radiation-induced normal tissue injury. Using information from control arrays (particularly straight color, color reverse and self-self experiments) allowed for a more accurate and reproducible identification of differentially expressed genes than the selection of an arbitrary 2-fold change

  8. Oxygen delivery in irradiated normal tissue

    Energy Technology Data Exchange (ETDEWEB)

    Kiani, M.F.; Ansari, R. [Univ. of Tennessee Health Science Center, Memphis, TN (United States). School of Biomedical Engineering; Gaber, M.W. [St. Jude Children' s Research Hospital, Memphis, TN (United States)

    2003-03-01

    Ionizing radiation exposure significantly alters the structure and function of microvascular networks, which regulate delivery of oxygen to tissue. In this study we use a hamster cremaster muscle model to study changes in microvascular network parameters and use a mathematical model to study the effects of these observed structural and microhemodynamic changes in microvascular networks on oxygen delivery to the tissue. Our experimental observations indicate that in microvascular networks while some parameters are significantly affected by irradiation (e.g. red blood cell (RBC) transit time), others remain at the control level (e.g. RBC path length) up to 180 days post-irradiation. The results from our mathematical model indicate that tissue oxygenation patterns are significantly different in irradiated normal tissue as compared to age-matched controls and the differences are apparent as early as 3 days post irradiation. However, oxygen delivery to irradiated tissue was not found to be significantly different from age matched controls at any time between 7 days to 6 months post-irradiation. These findings indicate that microvascular late effects in irradiated normal tissue may be due to factors other than compromised tissue oxygenation. (author)

  9. Radiogenomics: predicting clinical normal tissue radiosensitivity

    DEFF Research Database (Denmark)

    Alsner, Jan

    2006-01-01

    Studies on the genetic basis of normal tissue radiosensitivity, or  'radiogenomics', aims at predicting clinical radiosensitivity and optimize treatment from individual genetic profiles. Several studies have now reported links between variations in certain genes related to the biological response...... to radiation injury and risk of normal tissue morbidity in cancer patients treated with radiotherapy. However, after these initial association studies including few genes, we are still far from being able to predict clinical radiosensitivity on an individual level. Recent data from our own studies on risk...

  10. Performance of brain-damaged, schizophrenic, and normal subjects on a visual searching task.

    Science.gov (United States)

    Goldstein, G; Kyc, F

    1978-06-01

    Goldstein, Rennick, Welch, and Shelly (1973) reported on a visual searching task that generated 94.1% correct classifications when comparing brain-damaged and normal subjects, and 79.4% correct classifications when comparing brain-damaged and psychiatric patients. In the present study, representing a partial cross-validation with some modification of the test procedure, comparisons were made between brain-damaged and schizophrenic, and brain-damaged and normal subjects. There were 92.5% correct classifications for the brain-damaged vs normal comparison, and 82.5% correct classifications for the brain-damaged vs schizophrenic comparison.

  11. A compendium of canine normal tissue gene expression.

    Directory of Open Access Journals (Sweden)

    Joseph Briggs

    Full Text Available BACKGROUND: Our understanding of disease is increasingly informed by changes in gene expression between normal and abnormal tissues. The release of the canine genome sequence in 2005 provided an opportunity to better understand human health and disease using the dog as clinically relevant model. Accordingly, we now present the first genome-wide, canine normal tissue gene expression compendium with corresponding human cross-species analysis. METHODOLOGY/PRINCIPAL FINDINGS: The Affymetrix platform was utilized to catalogue gene expression signatures of 10 normal canine tissues including: liver, kidney, heart, lung, cerebrum, lymph node, spleen, jejunum, pancreas and skeletal muscle. The quality of the database was assessed in several ways. Organ defining gene sets were identified for each tissue and functional enrichment analysis revealed themes consistent with known physio-anatomic functions for each organ. In addition, a comparison of orthologous gene expression between matched canine and human normal tissues uncovered remarkable similarity. To demonstrate the utility of this dataset, novel canine gene annotations were established based on comparative analysis of dog and human tissue selective gene expression and manual curation of canine probeset mapping. Public access, using infrastructure identical to that currently in use for human normal tissues, has been established and allows for additional comparisons across species. CONCLUSIONS/SIGNIFICANCE: These data advance our understanding of the canine genome through a comprehensive analysis of gene expression in a diverse set of tissues, contributing to improved functional annotation that has been lacking. Importantly, it will be used to inform future studies of disease in the dog as a model for human translational research and provides a novel resource to the community at large.

  12. Changes in the rate of proliferation in normal tissues after irradiation

    International Nuclear Information System (INIS)

    Denekamp, J.

    1975-01-01

    In tissues where reproductive cell death is known to cause the functional tissue damage (e.g., intestine and skin), repopulation becomes important only after the death of the radiation-damaged cells. Since these tissues have a fairly rapid turnover, this can occur within a short period of time and can assist in the healing of tissues during fractionated therapy. However, in tissues which express their damage late, such as the lung, it is very unlikely that repopulation will be stimulated before cell death is manifested and this does not occur during the period over which fractionated radiotherapy is administered. Although repopulation may be of no importance in these tissues, e.g., lungs and kidneys, there appears to be some other ''repair'' process which requires additional radiation dose to be administered to achieve the same endpoint if the overall time is increased

  13. Tissue Damage Characterization Using Non-invasive Optical Modalities

    Science.gov (United States)

    Diaz, David

    The ability to determine the degree of cutaneous and subcutaneous tissue damage is essential for proper wound assessment and a significant factor for determining patient treatment and morbidity. Accurate characterization of tissue damage is critical for a number of medical applications including surgical removal of nonviable tissue, severity assessment of subcutaneous ulcers, and depth assessment of visually open wounds. The main objective of this research was to develop a non-invasive method for identifying the extent of tissue damage underneath intact skin that is not apparent upon visual examination. This work investigated the relationship between tissue optical properties, blood flow, and tissue viability by testing the hypotheses that (a) changes in tissue oxygenation and/or microcirculatory blood flow measurable by Diffuse Near Infrared Spectroscopy (DNIRS) and Diffuse Correlation Spectroscopy (DCS) differ between healthy and damaged tissue and (b) the magnitude of those changes differs for different degrees of tissue damage. This was accomplished by developing and validating a procedure for measuring microcirculatory blood flow and tissue oxygenation dynamics at multiple depths (up to 1 centimeter) using non-invasive DCS and DNIRS technologies. Due to the lack of pressure ulcer animal models that are compatible with our optical systems, a proof of concept was conducted in a porcine burn model prior to conducting clinical trials in order to assess the efficacy of the system in-vivo. A reduction in total hemoglobin was observed for superficial (5%) and deep burns (35%) along with a statistically significant difference between the optical properties of superficial and deep burns (p differences detected in optical properties and hemoglobin content by optical measurements correlated with the extent of tissue injury observed in histological stains. After proof of concept in animals, a human study was conducted and optical data was collected from 20 healthy

  14. Normal tissue dose-effect models in biological dose optimisation

    International Nuclear Information System (INIS)

    Alber, M.

    2008-01-01

    Sophisticated radiotherapy techniques like intensity modulated radiotherapy with photons and protons rely on numerical dose optimisation. The evaluation of normal tissue dose distributions that deviate significantly from the common clinical routine and also the mathematical expression of desirable properties of a dose distribution is difficult. In essence, a dose evaluation model for normal tissues has to express the tissue specific volume effect. A formalism of local dose effect measures is presented, which can be applied to serial and parallel responding tissues as well as target volumes and physical dose penalties. These models allow a transparent description of the volume effect and an efficient control over the optimum dose distribution. They can be linked to normal tissue complication probability models and the equivalent uniform dose concept. In clinical applications, they provide a means to standardize normal tissue doses in the face of inevitable anatomical differences between patients and a vastly increased freedom to shape the dose, without being overly limiting like sets of dose-volume constraints. (orig.)

  15. Non-Fourier based thermal-mechanical tissue damage prediction for thermal ablation.

    Science.gov (United States)

    Li, Xin; Zhong, Yongmin; Smith, Julian; Gu, Chengfan

    2017-01-02

    Prediction of tissue damage under thermal loads plays important role for thermal ablation planning. A new methodology is presented in this paper by combing non-Fourier bio-heat transfer, constitutive elastic mechanics as well as non-rigid motion of dynamics to predict and analyze thermal distribution, thermal-induced mechanical deformation and thermal-mechanical damage of soft tissues under thermal loads. Simulations and comparison analysis demonstrate that the proposed methodology based on the non-Fourier bio-heat transfer can account for the thermal-induced mechanical behaviors of soft tissues and predict tissue thermal damage more accurately than classical Fourier bio-heat transfer based model.

  16. [Scanning electron microscopy of heat-damaged bone tissue].

    Science.gov (United States)

    Harsanyl, L

    1977-02-01

    Parts of diaphyses of bones were exposed to high temperature of 200-1300 degrees C. Damage to the bone tissue caused by the heat was investigated. The scanning electron microscopic picture seems to be characteristic of the temperature applied. When the bones heated to the high temperature of 700 degrees C characteristic changes appear on the periostal surface, higher temperatura on the other hand causes damage to the compact bone tissue and can be observed on the fracture-surface. Author stresses the importance of this technique in the legal medicine and anthropology.

  17. Telomere length in normal and neoplastic canine tissues.

    Science.gov (United States)

    Cadile, Casey D; Kitchell, Barbara E; Newman, Rebecca G; Biller, Barbara J; Hetler, Elizabeth R

    2007-12-01

    To determine the mean telomere restriction fragment (TRF) length in normal and neoplastic canine tissues. 57 solid-tissue tumor specimens collected from client-owned dogs, 40 samples of normal tissue collected from 12 clinically normal dogs, and blood samples collected from 4 healthy blood donor dogs. Tumor specimens were collected from client-owned dogs during diagnostic or therapeutic procedures at the University of Illinois Veterinary Medical Teaching Hospital, whereas 40 normal tissue samples were collected from 12 control dogs. Telomere restriction fragment length was determined by use of an assay kit. A histologic diagnosis was provided for each tumor by personnel at the Veterinary Diagnostic Laboratory at the University of Illinois. Mean of the mean TRF length for 44 normal samples was 19.0 kilobases (kb; range, 15.4 to 21.4 kb), and the mean of the mean TRF length for 57 malignant tumors was 19.0 kb (range, 12.9 to 23.5 kb). Although the mean of the mean TRF length for tumors and normal tissues was identical, tumor samples had more variability in TRF length. Telomerase, which represents the main mechanism by which cancer cells achieve immortality, is an attractive therapeutic target. The ability to measure telomere length is crucial to monitoring the efficacy of telomerase inhibition. In contrast to many other mammalian species, the length of canine telomeres and the rate of telomeric DNA loss are similar to those reported in humans, making dogs a compelling choice for use in the study of human anti-telomerase strategies.

  18. Pathologic evaluation of normal and perfused term placental tissue

    DEFF Research Database (Denmark)

    Maroun, Lisa Leth; Mathiesen, Line; Hedegaard, Morten

    2014-01-01

    This study reports for the 1st time the incidence and interobserver variation of morphologic findings in a series of 34 term placentas from pregnancies with normal outcome used for perfusion studies. Histologic evaluation of placental tissue is challenging, especially when it comes to defining...... "normal tissue" versus "pathologic lesions." A scoring system for registration of abnormal morphologic findings was developed. Light microscopic examination was performed independently by 2 pathologists, and interobserver variation was analyzed. Findings in normal and perfused tissue were compared...... and selected findings were tested against success parameters from the perfusions. Finally, the criteria for frequent lesions with fair to poor interobserver variation in the nonperfused tissue were revised and reanalyzed. In the perfused tissue, the perfusion artefact "trophoblastic vacuolization," which...

  19. Effects on normal tissues during radiosensitization of Dalton's Lymphoma by the DNA ligand Hoechst 33342 in Balb/c mice

    International Nuclear Information System (INIS)

    Kalra, Namita; Sampath, Swapna; Adhikari, J.S.; Dwarakanath, B.S.

    2014-01-01

    Hoechst 33342 is a bisbenzimidazole derivative with AT specific minor groove DNA binding ability. Scavenging of free radicals and stabilization of macromolecular structure resulting in reduced induction of DNA damage contributes to radioprotection afforded by the ligand. Their ability to inhibit topoisomerases I and II, which play important roles in damage response pathways including DNA repair has been shown to sensitize tumor cells in vitro and in vivo. Due to its mutagenic and clastogenic potentials, damage to vital normal tissues are a matter of concern in deploying the ligand as adjuvant in radiotherapy. Therefore, we investigated the effects of the ligand in Dalton's Lymphoma (DL) bearing Balb/c mice by studying the local tumor control and animal survival, besides damage to normal tissues like bone marrow, kidney and testis. Hoechst 33342 (10 mg/kg b wt) was administered (i.v.) 1 h before focal irradiation (10 Gy) of the tumor (∼ 500 mm 3 ) grown on the hind leg of the mice. Partial response with a growth delay of 16 days (3 x initial volume) was seen following irradiation, while a complete response (cure; tumor-free survival) was observed in 88% mice following the combined treatment (Hoechst 33342+radiation); ligand alone had no significant effect. Although the ligand induced marginal degree of chromosomal aberrations in the bone marrow, it did not enhance aberrations induced by radiation further. In testes, the proportions of diploid, haploid and hypo-haploid cells as well as resting primary spermatocytes (RPS) were not significantly altered by either. In kidney, Hoechst 33342 alone or in combination with radiation did not cause significant damage to the proximal tubules and glomeruli. These observations suggest that radiosensitization of tumor by the DNA ligand Hoechst 33342 may not be associated with enhanced toxicity to bone marrow as well as proximal normal tissues. (author)

  20. Hypoxic regulation of cytoglobin and neuroglobin expression in human normal and tumor tissues

    Directory of Open Access Journals (Sweden)

    Emara Marwan

    2010-09-01

    Full Text Available Abstract Background Cytoglobin (Cygb and neuroglobin (Ngb are recently identified globin molecules that are expressed in vertebrate tissues. Upregulation of Cygb and Ngb under hypoxic and/or ischemic conditions in vitro and in vivo increases cell survival, suggesting possible protective roles through prevention of oxidative damage. We have previously shown that Ngb is expressed in human glioblastoma multiforme (GBM cell lines, and that expression of its transcript and protein can be significantly increased after exposure to physiologically relevant levels of hypoxia. In this study, we extended this work to determine whether Cygb is also expressed in GBM cells, and whether its expression is enhanced under hypoxic conditions. We also compared Cygb and Ngb expression in human primary tumor specimens, including brain tumors, as well as in human normal tissues. Immunoreactivity of carbonic anhydrase IX (CA IX, a hypoxia-inducible metalloenzyme that catalyzes the hydration of CO2 to bicarbonate, was used as an endogenous marker of hypoxia. Results Cygb transcript and protein were expressed in human GBM cells, and this expression was significantly increased in most cells following 48 h incubation under hypoxia. We also showed that Cygb and Ngb are expressed in both normal tissues and human primary cancers, including GBM. Among normal tissues, Cygb and Ngb expression was restricted to distinct cell types and was especially prominent in ductal cells. Additionally, certain normal organs (e.g. stomach fundus, small bowel showed distinct regional co-localization of Ngb, Cygb and CA IX. In most tumors, Ngb immunoreactivity was significantly greater than that of Cygb. In keeping with previous in vitro results, tumor regions that were positively stained for CA IX were also positive for Ngb and Cygb, suggesting that hypoxic upregulation of Ngb and Cygb also occurs in vivo. Conclusions Our finding of hypoxic up-regulation of Cygb/Ngb in GBM cell lines and human

  1. Aag DNA glycosylase promotes alkylation-induced tissue damage mediated by Parp1.

    Science.gov (United States)

    Calvo, Jennifer A; Moroski-Erkul, Catherine A; Lake, Annabelle; Eichinger, Lindsey W; Shah, Dharini; Jhun, Iny; Limsirichai, Prajit; Bronson, Roderick T; Christiani, David C; Meira, Lisiane B; Samson, Leona D

    2013-04-01

    Alkylating agents comprise a major class of front-line cancer chemotherapeutic compounds, and while these agents effectively kill tumor cells, they also damage healthy tissues. Although base excision repair (BER) is essential in repairing DNA alkylation damage, under certain conditions, initiation of BER can be detrimental. Here we illustrate that the alkyladenine DNA glycosylase (AAG) mediates alkylation-induced tissue damage and whole-animal lethality following exposure to alkylating agents. Aag-dependent tissue damage, as observed in cerebellar granule cells, splenocytes, thymocytes, bone marrow cells, pancreatic β-cells, and retinal photoreceptor cells, was detected in wild-type mice, exacerbated in Aag transgenic mice, and completely suppressed in Aag⁻/⁻ mice. Additional genetic experiments dissected the effects of modulating both BER and Parp1 on alkylation sensitivity in mice and determined that Aag acts upstream of Parp1 in alkylation-induced tissue damage; in fact, cytotoxicity in WT and Aag transgenic mice was abrogated in the absence of Parp1. These results provide in vivo evidence that Aag-initiated BER may play a critical role in determining the side-effects of alkylating agent chemotherapies and that Parp1 plays a crucial role in Aag-mediated tissue damage.

  2. Aag DNA glycosylase promotes alkylation-induced tissue damage mediated by Parp1.

    Directory of Open Access Journals (Sweden)

    Jennifer A Calvo

    2013-04-01

    Full Text Available Alkylating agents comprise a major class of front-line cancer chemotherapeutic compounds, and while these agents effectively kill tumor cells, they also damage healthy tissues. Although base excision repair (BER is essential in repairing DNA alkylation damage, under certain conditions, initiation of BER can be detrimental. Here we illustrate that the alkyladenine DNA glycosylase (AAG mediates alkylation-induced tissue damage and whole-animal lethality following exposure to alkylating agents. Aag-dependent tissue damage, as observed in cerebellar granule cells, splenocytes, thymocytes, bone marrow cells, pancreatic β-cells, and retinal photoreceptor cells, was detected in wild-type mice, exacerbated in Aag transgenic mice, and completely suppressed in Aag⁻/⁻ mice. Additional genetic experiments dissected the effects of modulating both BER and Parp1 on alkylation sensitivity in mice and determined that Aag acts upstream of Parp1 in alkylation-induced tissue damage; in fact, cytotoxicity in WT and Aag transgenic mice was abrogated in the absence of Parp1. These results provide in vivo evidence that Aag-initiated BER may play a critical role in determining the side-effects of alkylating agent chemotherapies and that Parp1 plays a crucial role in Aag-mediated tissue damage.

  3. Protective effect of hydroalcoholic extract of tribulus terrestris on Cisplatin induced renal tissue damage in male mice.

    Science.gov (United States)

    Raoofi, Amir; Khazaei, Mozafar; Ghanbari, Ali

    2015-01-01

    According beneficial effects of Tribulus terrestris (TT) extract on tissue damage, the present study investigated the influence of hydroalcoholic extract of TT plant on cisplatin (CIS) (EBEWE Pharma, Unterach, Austria) induced renal tissue damage in male mice. Thirty mice were divided into five groups (n = 6). The first group (control) was treated with normal saline (0.9% NaCl) and experimental groups with CIS (E1), CIS + 100 mg/kg extract of TT (E2), CIS + 300 mg/kg extract of TT (E3), CIS + 500 mg/kg extract of TT (E4) intraperitoneally. The kidneys were removed after 4 days of injections, and histological evaluations were performed. The data were analyzed using one-way analysis of variance followed by Tukey's post-hoc test, paired-sample t-test, Kruskal-Wallis and Mann-Whitney tests. In the CIS treated group, the whole kidney tissue showed an increased dilatation of Bowman's capsule, medullar congestion, and dilatation of collecting tubules and a decreased in the body weight and kidney weight. These parameters reached to the normal range after administration of fruit extracts of TT for 4 days. The results suggested that the oral administration of TT fruit extract at dose 100, 300 and 500 mg/kg body weight provided protection against the CIS induced toxicity in the mice.

  4. Genomic instability: potential contributions to tumour and normal tissue response, and second tumours, after radiotherapy

    International Nuclear Information System (INIS)

    Hendry, Jolyon H.

    2001-01-01

    Purpose: Induced genomic instability generally refers to a type of damage which is transmissible down cell generations, and which results in a persistently enhanced frequency of de novo mutations, chromosomal abnormalities or lethality in a significant fraction of the descendant cell population. The potential contribution of induced genomic instability to tumour and normal tissue response, and second tumours, after radiotherapy, is explored. Results: The phenomenon of spontaneous genomic instability is well known in some rare genetic diseases (e.g. Gorlin's syndrome), and there is evidence in such cases that it can lead to a greater propensity for carcinogenesis (with shortened latency) which is enhanced after irradiation. It is unclear what role induced genomic instability plays in the response of normal individuals, but persistent chromosomal instability has been detected in vivo in lymphocytes and keratinocytes from irradiated normal individuals. Such induced genomic instability might play some role in tumour response in a subset of tumours with specific defects in damage response genes, but again its contribution to radiocurability in the majority of cancer patients is unclear. In normal tissues, genomic instability induced in wild-type cells leading to delayed cell death might contribute to more severe or prolonged early reactions as a consequence of increased cell loss, a longer time required for recovery, and greater residual injury. In tumours, induced genomic instability reflected in delayed reductions in clonogenic capacity might contribute to the radiosensitivity of primary tumours, and also to a lower incidence, longer latency and slower growth rate of recurrences and metastases. Conclusions: The evidence which is reviewed shows that there is little information at present to support these propositions, but what exists is consistent with their expectations. Also, it is not yet clear to what extent mutations associated with genomic instability

  5. Probing multi-scale mechanical damage in connective tissues using X-ray diffraction.

    Science.gov (United States)

    Bianchi, Fabio; Hofmann, Felix; Smith, Andrew J; Thompson, Mark S

    2016-11-01

    The accumulation of microstructural collagen damage following repetitive loading is linked to painful and debilitating tendon injuries. As a hierarchical, semi-crystalline material, collagen mechanics can be studied using X-ray diffraction. The aim of the study was to describe multi-structural changes in tendon collagen following controlled plastic damage (5% permanent strain). We used small angle X-ray scattering (SAXS) to interrogate the spacing of collagen molecules within a fibril, and wide angle X-ray scattering (WAXS) to measure molecular strains under macroscopic loading. Simultaneous recordings of SAXS and WAXS patterns, together with whole-tissue strain in physiologically hydrated rat-tail tendons were made during increments of in situ tensile loading. Results showed that while tissue level modulus was unchanged, fibril modulus decreased significantly, and molecular modulus significantly increased. Further, analysis of higher order SAXS peaks suggested structural changes in the gap and overlap regions, possibly localising the damage to molecular cross-links. Our results provide new insight into the fundamental damage processes at work in collagenous tissues and point to new directions for their mitigation and repair. This article reports the first in situ loading synchrotron studies on mechanical damage in collagenous tissues. We provide new insight into the nano- and micro-structural mechanisms of damage processes. Pre-damaged tendons showed differential alteration of moduli at macro, micro and nano-scales as measured using X-ray scattering techniques. Detailed analysis of higher order diffraction peaks suggested damage is localised to molecular cross-links. The results are consistent with previous X-ray scattering studies of tendons and also with recent thermal stability studies on damaged material. Detailed understanding of damage mechanisms is essential in the development of new therapies promoting tissue repair. Copyright © 2016 Acta Materialia Inc

  6. An experimental study on tissue damage following subcutaneous injection of water soluble contrast media

    International Nuclear Information System (INIS)

    Kim, Seung Hyup; Park, Jae Hyung; Kang, Heung Sik; Kim, Chu Wan; Han, Man Chung; Kim, Yong Il

    1989-01-01

    The water soluble contrast media cause tissue necrosis infrequently by extravasation during intravenous injection in various radiological examinations. However, it has not been well documented that what kind and what concentration of contrast media can cause tissue necrosis. And also, the mechanism of tissue necrosis by extravasated contrast media has not been well known. The purpose of this experimental study was to evaluate the frequency and severity of tissue damage following subcutaneous injection of various water soluble contrast media to investigate the characteristics of the contrast media acting on the tissue damage, and to provide the basic data for the clinical application. Meglumine ioxithalamate,sodium and meglumine ioxithalamate, iopromide, iopamidol, ioxaglate,meglumine diatrizoate and sodium diatrizoate of various iodine content and osmolality were injected into subcutaneous tissue of the dorsum of 970 feet of 485 rats. The tissue reaction of injection sites were grossly examined with period from 1 day to 8 weeks after the injection. Representative gross changes were correlated with histologic findings. The results were as follows; 1. The basic tissue damage by extravasated contrast media was acute and chronic inflammatory reaction of the soft tissue with subsequent progress into the hemorrhagic and necrotizing lesion. 2. Lager volume of contrast media caused more severe tissue damage. 3. Contrast media of higher osmolality caused more severe tissue damage. 4. At same osmolality, contrast media of higher iodine content caused more severe tissue damage

  7. Levels of oxidative damage and lipid peroxidation in thyroid neoplasia.

    LENUS (Irish Health Repository)

    Young, Orla

    2012-02-01

    BACKGROUND: This study assessed the presence of oxidative damage and lipid peroxidation in thyroid neoplasia. METHODS: Using tissue microarrays and immunohistochemistry, we assessed levels of DNA damage (8-oxo-dG) and lipid peroxidation (4-HNE) in 71 follicular thyroid adenoma (FTA), 45 papillary thyroid carcinoma (PTC), and 17 follicular thyroid carcinoma (FTC) and matched normal thyroid tissue. RESULTS: Cytoplasmic 8-oxo-dG and 4-HNE expression was significantly higher in FTA, FTC, and PTC tissue compared to matched normal tissue (all p values < .001). Similarly, elevated nuclear levels of 8-oxo-dG were seen in all in FTA, FTC, and PTC tissue compared to matched normal (p values < .07, < .001, < .001, respectively). In contrast, a higher level of 4-HNE expression was detected in normal thyroid tissue compared with matched tumor tissue (p < .001 for all groups). Comparing all 3 groups, 4-HNE levels were higher than 8-oxo-dG levels (p < .001 for all groups) except that cytoplasmic levels of 8-oxo-dG were higher than 4-HNE in all (p < .001). These results were independent of proliferation status. CONCLUSION: High levels of DNA damage and lipid peroxidation in benign and malignant thyroid neoplasia indicates this damage is an early event that may influence disease progression.

  8. Effects of heavy ions on rabbit tissues: damage to the forebrain

    International Nuclear Information System (INIS)

    Cox, A.B.; Keng, P.C.; Lee, A.C.; Lett, J.T.

    1982-01-01

    As part of a study of progressive radiation effects in normal tissues, the forebrains of New Zealand white rabbits (Oryctolagus cuniculus) (about 6 weeks old) were irradiated locally with single acute doses of 60 Co γ-photons (LETsub(infinity)=0.3 keV/μm), Ne ions (LETsub(infinity)=35+-3 keV/μm) or Ar ions (LETsub(infinity)=90+-5 keV/μm). Other rabbits received fractionated doses of 60 Co γ-photons according to a standard radiotherapeutic protocol. Irradiated rabbits and appropriately aged controls were sacrificed at selected intervals, and whole sagittal sections of their brains were examined for pathological changes. Forebrain damage was scored with subjective indices based on histological differences between the anterior (irradiated) and posterior (unirradiated) regions of the brain. Those indices ranged from zero (no apparent damage) to five (severe infarctions, etc.). At intermediate levels of forebrain damage, the relative biological effectiveness (r.b.e.) of each heavy ion was similar to that found for alopecia and cataractogenesis, and the early expression of the damage was also accelerated as the LETsub(infinity) increased. Late deterioration of the forebrain appeared also to be accelerated by increasing LETsub(infinity), although its accurate quantification was not possible because other priorities in the overall experimental design limited systematic sacrifice of the animals. (author)

  9. Quantification of change in vocal fold tissue stiffness relative to depth of artificial damage.

    Science.gov (United States)

    Rohlfs, Anna-Katharina; Schmolke, Sebastian; Clauditz, Till; Hess, Markus; Müller, Frank; Püschel, Klaus; Roemer, Frank W; Schumacher, Udo; Goodyer, Eric

    2017-10-01

    To quantify changes in the biomechanical properties of human excised vocal folds with defined artificial damage. The linear skin rheometer (LSR) was used to obtain a series of rheological measurements of shear modulus from the surface of 30 human cadaver vocal folds. The tissue samples were initially measured in a native condition and then following varying intensities of thermal damage. Histological examination of each vocal fold was used to determine the depth of artificial alteration. The measured changes in stiffness were correlated with the depth of cell damage. For vocal folds in a pre-damage state the shear modulus values ranged from 537 Pa to 1,651 Pa (female) and from 583 Pa to 1,193 Pa (male). With increasing depth of damage from the intermediate layer of the lamina propria (LP), tissue stiffness increased consistently (compared with native values) following application of thermal damage to the vocal folds. The measurement showed an increase of tissue stiffness when the depth of tissue damage was extending from the intermediate LP layer downwards. Changes in the elastic characteristics of human vocal fold tissue following damage at defined depths were demonstrated in an in vitro experiment. In future, reproducible in vivo measurements of elastic vocal fold tissue alterations may enable phonosurgeons to infer the extent of subepithelial damage from changes in surface elasticity.

  10. Protective effect of hydroalcoholic extract of tribulus terrestris on cisplatin induced renal tissue damage in male mice

    Directory of Open Access Journals (Sweden)

    Amir Raoofi

    2015-01-01

    Full Text Available Background: According beneficial effects of Tribulus terrestris (TT extract on tissue damage, the present study investigated the influence of hydroalcoholic extract of TT plant on cisplatin (CIS (EBEWE Pharma, Unterach, Austria induced renal tissue damage in male mice. Methods: Thirty mice were divided into five groups (n = 6. The first group (control was treated with normal saline (0.9% NaCl and experimental groups with CIS (E1, CIS + 100 mg/kg extract of TT (E2, CIS + 300 mg/kg extract of TT (E3, CIS + 500 mg/kg extract of TT (E4 intraperitoneally. The kidneys were removed after 4 days of injections, and histological evaluations were performed. Results: The data were analyzed using one-way analysis of variance followed by Tukey′s post-hoc test, paired-sample t-test, Kruskal-Wallis and Mann-Whitney tests. In the CIS treated group, the whole kidney tissue showed an increased dilatation of Bowman′s capsule, medullar congestion, and dilatation of collecting tubules and a decreased in the body weight and kidney weight. These parameters reached to the normal range after administration of fruit extracts of TT for 4 days. Conclusions: The results suggested that the oral administration of TT fruit extract at dose 100, 300 and 500 mg/kg body weight provided protection against the CIS induced toxicity in the mice.

  11. Protective Effect of Hydroalcoholic Extract of Tribulus Terrestris on Cisplatin Induced Renal Tissue Damage in Male Mice

    Science.gov (United States)

    Raoofi, Amir; Khazaei, Mozafar; Ghanbari, Ali

    2015-01-01

    Background: According beneficial effects of Tribulus terrestris (TT) extract on tissue damage, the present study investigated the influence of hydroalcoholic extract of TT plant on cisplatin (CIS) (EBEWE Pharma, Unterach, Austria) induced renal tissue damage in male mice. Methods: Thirty mice were divided into five groups (n = 6). The first group (control) was treated with normal saline (0.9% NaCl) and experimental groups with CIS (E1), CIS + 100 mg/kg extract of TT (E2), CIS + 300 mg/kg extract of TT (E3), CIS + 500 mg/kg extract of TT (E4) intraperitoneally. The kidneys were removed after 4 days of injections, and histological evaluations were performed. Results: The data were analyzed using one-way analysis of variance followed by Tukey's post-hoc test, paired-sample t-test, Kruskal–Wallis and Mann–Whitney tests. In the CIS treated group, the whole kidney tissue showed an increased dilatation of Bowman's capsule, medullar congestion, and dilatation of collecting tubules and a decreased in the body weight and kidney weight. These parameters reached to the normal range after administration of fruit extracts of TT for 4 days. Conclusions: The results suggested that the oral administration of TT fruit extract at dose 100, 300 and 500 mg/kg body weight provided protection against the CIS induced toxicity in the mice. PMID:25789143

  12. Effect of implanted radioactive 125I seeds on normal tissue structures of bronchus, esophagus, pulmonary artery, pulmonary vein and alveolus in dogs

    International Nuclear Information System (INIS)

    Qi Liangchen; Han Zhenguo; Yang Bin; Heersitai

    2008-01-01

    Objective: To investigate the effect of implanted radioactive 125 I seeds on normal tissue structures of bronchus, esophagus, pulmonary artery, pulmonary vein and alveolus in dogs. Methods: Nine healthy male dogs weighing 17-21 kg were randomly divided into three groups: 30 d, 60 d experimental groups and control group. Radioactive 125 I seeds (3.7 x 10 7 Bg, 1.0 mCi) were implanted into the sides of bronchus, esophagus, pulmonary artery, pulmonary vein respectively, the samples of bronchus, esophagus, pulmonary artery, pulmonary vein were taken 30 and 60 d after transplantation, HE staining was used to observe the pathologic changes of the tissues under light microscope. Results: The damages of normal bronchus, esophagus, pulmonary artery, pulmonary vein and alveolus after radioactive 125 I seeds implantation in 30 d group were weaker than those in control group and 60 d group, there were no complications such as perforation, hemorrhage, necrosis, etc. Histopathological score indicated that the scores of bronchus, esophagus and alveolar in 30 d group and 60 d group were higher than those in control group (P 0.05); there was no significant difference in histopathological score of pulmonary vein among all groups (P>0.05). Conclusion: The implanted radioactive 125 I seeds can damage all kinds of tissues at different degrees, but this kind of damage is reversible, the dog may repair the damage through its own repair ability, its clinical application is safe. (authors)

  13. Immunolocalization of transforming growth factor alpha in normal human tissues

    DEFF Research Database (Denmark)

    Christensen, M E; Poulsen, Steen Seier

    1996-01-01

    anchorage-independent growth of normal cells and was, therefore, considered as an "oncogenic" growth factor. Later, its immunohistochemical presence in normal human cells as well as its biological effects in normal human tissues have been demonstrated. The aim of the present investigation was to elucidate...... the distribution of the growth factor in a broad spectrum of normal human tissues. Indirect immunoenzymatic staining methods were used. The polypeptide was detected with a polyclonal as well as a monoclonal antibody. The polyclonal and monoclonal antibodies demonstrated almost identical immunoreactivity. TGF......-alpha was found to be widely distributed in cells of normal human tissues derived from all three germ layers, most often in differentiated cells. In epithelial cells, three different kinds of staining patterns were observed, either diffuse cytoplasmic, cytoplasmic in the basal parts of the cells, or distinctly...

  14. Thermal damage produced by high-irradiance continuous wave CO2 laser cutting of tissue.

    Science.gov (United States)

    Schomacker, K T; Walsh, J T; Flotte, T J; Deutsch, T F

    1990-01-01

    Thermal damage produced by continuous wave (cw) CO2 laser ablation of tissue in vitro was measured for irradiances ranging from 360 W/cm2 to 740 kW/cm2 in order to investigate the extent to which ablative cooling can limit tissue damage. Damage zones thinner than 100 microns were readily produced using single pulses to cut guinea pig skin as well as bovine cornea, aorta, and myocardium. Multiple pulses can lead to increased damage. However, a systematic decrease in damage with irradiance, predicted theoretically by an evaporation model of ablation, was not observed. The damage-zone thickness was approximately constant around the periphery of the cut, consistent with the existence of a liquid layer which stores heat and leads to tissue damage, and with a model of damage and ablation recently proposed by Zweig et al.

  15. A tissue phantom for visualization and measurement of ultrasound-induced cavitation damage.

    Science.gov (United States)

    Maxwell, Adam D; Wang, Tzu-Yin; Yuan, Lingqian; Duryea, Alexander P; Xu, Zhen; Cain, Charles A

    2010-12-01

    Many ultrasound studies involve the use of tissue-mimicking materials to research phenomena in vitro and predict in vivo bioeffects. We have developed a tissue phantom to study cavitation-induced damage to tissue. The phantom consists of red blood cells suspended in an agarose hydrogel. The acoustic and mechanical properties of the gel phantom were found to be similar to soft tissue properties. The phantom's response to cavitation was evaluated using histotripsy. Histotripsy causes breakdown of tissue structures by the generation of controlled cavitation using short, focused, high-intensity ultrasound pulses. Histotripsy lesions were generated in the phantom and kidney tissue using a spherically focused 1-MHz transducer generating 15 cycle pulses, at a pulse repetition frequency of 100 Hz with a peak negative pressure of 14 MPa. Damage appeared clearly as increased optical transparency of the phantom due to rupture of individual red blood cells. The morphology of lesions generated in the phantom was very similar to that generated in kidney tissue at both macroscopic and cellular levels. Additionally, lesions in the phantom could be visualized as hypoechoic regions on a B-mode ultrasound image, similar to histotripsy lesions in tissue. High-speed imaging of the optically transparent phantom was used to show that damage coincides with the presence of cavitation. These results indicate that the phantom can accurately mimic the response of soft tissue to cavitation and provide a useful tool for studying damage induced by acoustic cavitation. Copyright © 2010 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  16. Extravascular transport in normal and tumor tissues.

    Science.gov (United States)

    Jain, R K; Gerlowski, L E

    1986-01-01

    The transport characteristics of the normal and tumor tissue extravascular space provide the basis for the determination of the optimal dosage and schedule regimes of various pharmacological agents in detection and treatment of cancer. In order for the drug to reach the cellular space where most therapeutic action takes place, several transport steps must first occur: (1) tissue perfusion; (2) permeation across the capillary wall; (3) transport through interstitial space; and (4) transport across the cell membrane. Any of these steps including intracellular events such as metabolism can be the rate-limiting step to uptake of the drug, and these rate-limiting steps may be different in normal and tumor tissues. This review examines these transport limitations, first from an experimental point of view and then from a modeling point of view. Various types of experimental tumor models which have been used in animals to represent human tumors are discussed. Then, mathematical models of extravascular transport are discussed from the prespective of two approaches: compartmental and distributed. Compartmental models lump one or more sections of a tissue or body into a "compartment" to describe the time course of disposition of a substance. These models contain "effective" parameters which represent the entire compartment. Distributed models consider the structural and morphological aspects of the tissue to determine the transport properties of that tissue. These distributed models describe both the temporal and spatial distribution of a substance in tissues. Each of these modeling techniques is described in detail with applications for cancer detection and treatment in mind.

  17. Computer modeling the boron compound factor in normal brain tissue

    International Nuclear Information System (INIS)

    Gavin, P.R.; Huiskamp, R.; Wheeler, F.J.; Griebenow, M.L.

    1993-01-01

    The macroscopic distribution of borocaptate sodium (Na 2 B 12 H 11 SH or BSH) in normal tissues has been determined and can be accurately predicted from the blood concentration. The compound para-borono-phenylalanine (p-BPA) has also been studied in dogs and normal tissue distribution has been determined. The total physical dose required to reach a biological isoeffect appears to increase directly as the proportion of boron capture dose increases. This effect, together with knowledge of the macrodistribution, led to estimates of the influence of the microdistribution of the BSH compound. This paper reports a computer model that was used to predict the compound factor for BSH and p-BPA and, hence, the equivalent radiation in normal tissues. The compound factor would need to be calculated for other compounds with different distributions. This information is needed to design appropriate normal tissue tolerance studies for different organ systems and/or different boron compounds

  18. A Cancer-Indicative microRNA Pattern in Normal Prostate Tissue

    Directory of Open Access Journals (Sweden)

    Thorsten Schlomm

    2013-03-01

    Full Text Available We analyzed the levels of selected micro-RNAs in normal prostate tissue to assess their potential to indicate tumor foci elsewhere in the prostate. Histologically normal prostate tissue samples from 31 prostate cancer patients and two cancer negative control groups with either unsuspicious or elevated prostate specific antigen (PSA levels (14 and 17 individuals, respectively were analyzed. Based on the expression analysis of 157 microRNAs in a pool of prostate tissue samples and information from data bases/literature, we selected eight microRNAs for quantification by real-time polymerase chain reactions (RT-PCRs. Selected miRNAs were analyzed in histologically tumor-free biopsy samples from patients and healthy controls. We identified seven microRNAs (miR-124a, miR-146a & b, miR-185, miR-16 and let-7a & b, which displayed significant differential expression in normal prostate tissue from men with prostate cancer compared to both cancer negative control groups. Four microRNAs (miR-185, miR-16 and let-7a and let-7b remained to significantly discriminate normal tissues from prostate cancer patients from those of the cancer negative control group with elevated PSA levels. The transcript levels of these microRNAs were highly indicative for the presence of cancer in the prostates, independently of the PSA level. Our results suggest a microRNA-pattern in histologically normal prostate tissue, indicating prostate cancer elsewhere in the organ.

  19. Differentiating cancerous from normal breast tissue by redox imaging

    Science.gov (United States)

    Xu, He N.; Tchou, Julia; Feng, Min; Zhao, Huaqing; Li, Lin Z.

    2015-02-01

    Abnormal metabolism can be a hallmark of cancer occurring early before detectable histological changes and may serve as an early detection biomarker. The current gold standard to establish breast cancer (BC) diagnosis is histological examination of biopsy. Previously we have found that pre-cancer and cancer tissues in animal models displayed abnormal mitochondrial redox state. Our technique of quantitatively measuring the mitochondrial redox state has the potential to be implemented as an early detection tool for cancer and may provide prognostic value. We therefore in this present study, investigated the feasibility of quantifying the redox state of tumor samples from 16 BC patients. Tumor tissue aliquots were collected from both normal and cancerous tissue from the affected cancer-bearing breasts of 16 female patients (5 TNBC, 9 ER+, 2 ER+/Her2+) shortly after surgical resection. All specimens were snap-frozen with liquid nitrogen on site and scanned later with the Chance redox scanner, i.e., the 3D cryogenic NADH/oxidized flavoprotein (Fp) fluorescence imager. Our preliminary results showed that both NADH and Fp (including FAD, i.e., flavin adenine dinucleotide) signals in the cancerous tissues roughly tripled to quadrupled those in the normal tissues (pcancerous tissues than in the normal ones (pcancer and non-cancer breast tissues in human patients and this novel redox scanning procedure may assist in tissue diagnosis in freshly procured biopsy samples prior to tissue fixation. We are in the process of evaluating the prognostic value of the redox imaging indices for BC.

  20. Electrocautery causes more ischemic peritoneal tissue damage than ultrasonic dissection.

    NARCIS (Netherlands)

    Broek, R.P.G ten; Wilbers, J.; Goor, H. van

    2011-01-01

    BACKGROUND: Minimizing peritoneal tissue injury during abdominal surgery has the benefit of reducing postoperative inflammatory response, pain, and adhesion formation. Ultrasonic dissection seems to reduce tissue damage. This study aimed to compare electrocautery and ultrasonic dissection in terms

  1. Attenuation of radiation-induced DNA damage due to paracrine interactions between normal human epithelial and stromal cells

    International Nuclear Information System (INIS)

    Saenko, V.A.; Nakazawa, Yu.; Rogounovitch, T.I.; Suzuki, K.; Mitsutake, N.; Matsuse, M.; Yamashita, S.

    2007-01-01

    Complete text of publication follows. Objective: Developmentally, every tissue accommodates different types of cells, such as epitheliocytes and stromal cells in parenchymal organs. To better understand the complexity of radiation response, it is necessary to evaluate possible cross-talk between different tissue components. This work was set out to investigate reciprocal influence of normal human epithelial cells and fibroblasts on the extent of radiation-induced DNA damage. Methods: Model cultures of primary human thyrocytes (PT), normal diploid fibroblasts (BJ), PT/BJ cell co-culture and conditioned medium transfer were used to examine DNA damage in terms of γ-H2AX foci number per cell or by Comet assay after exposure to different doses of γ-rays. Results: In co-cultures, the kinetics of γ-H2AX foci number change was dose-dependent and similar to that in individual PT and BJ cultures. The number of γ-H2AX foci in co-cultures was significantly lower (∼25%) in both types of cells comparing to individual cultures. Reciprocal conditioned medium transfer to individual counterpart cells prior to irradiation resulted in approximately 35% reduction in the number γ-H2AX foci at 1 Gy and lower doses in both PT and BJ demonstrating the role of paracrine soluble factors. Comet assay corroborated the results of γ-H2AX foci counting in conditioned medium transfer experiments. In contrast to medium conditioned on PT cells, conditioned medium collected from several human thyroid cancer cell lines failed to establish DNA-protected state in BJ fibroblasts. In its turn, medium conditioned on BJ cells did not change the extent of radiation-induced DNA damage in cancer cell lines tested. Conclusion: The results imply the existence of a network of soluble factor-mediated paracrine interactions between normal epithelial and stromal cells that could be a part of natural mechanism by which cells protect DNA from genotoxic stress.

  2. Regulation of annexins following infection like tissue damage – investigated by 2-dimensional gel electrophoresis

    DEFF Research Database (Denmark)

    Wulff, Tune; Nielsen, Michael Engelbrecht

    are regulated after tissue damaged on the protein level. These proteins have been assign to functions like regulation of coagulation, apoptosis, and exocytosis, indicating their importance following infection and subsequent repair in fish. In addition the regulation observed in this study are supported...... an established model. In the model infection is mimicked by a well-defined tissue damage allowing each fish to be equally affected. Samples were taken 7 days after tissue damage and included samples from the damaged tissue, internal control and an external control. Changes in protein expression between the wound...... by previous findings on the mRNA level, where both proteins are regulated following infection. In conclusion this study show regulation on the protein level of two members of the annexin protein family after infection like tissue damage....

  3. Effect of time intervals between irradiation and chemotherapeutic agents on the normal tissue damage. Comparison between in vivo and in vitro experiments

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Hisao; Nakayama, Toshitake; Hashimoto, Shozo (Keio Univ., Tokyo (Japan). School of Medicine)

    1989-05-01

    Experiments have been carried out to determine the effect on the cell survivals at different time intervals between irradiation and chemotherapeutic agents (BLM, cisDDP, ADM and ACNU) in either the in vivo or the in vitro system. The intestinal epithelial assay was applied on the in vivo system. The clonogenic cell survivals of V/sub 79/ cells, both in the proliferative and the plateau phases, were determined in the in vitro system. The V/sub 79/ cells in the plateau phase were more sensitive to BLM, cisDDP and ACNU than those in the proliferative phase, however, the result was reverse with ADM. When BLM, cisDDP or ACNU was combined with irradiation at different time intervals, the response of the plateau phase V/sub 79/ cells to combination therapies were very similar to those of the intestinal epithelial cells. On the other hand, V/sub 79/ cells in the proliferative phase, which were treated with ADM and irradiation, showed the similar response as the intestinal cells. These results suggest that studies of chemo-radiotherapy with cultured cells which are sensitive to chemotherapeutic agents might be suitable to expect the in vivo damage of the normal tissue. (author).

  4. Human normal tissue reactions in radiotherapy

    International Nuclear Information System (INIS)

    Taniike, Keiko

    1990-01-01

    Acute and late normal tissue reactions in radiotherapy have not been considered to be major problems with conventional fractionation. But they may cause certain problems when newer schedules such as hyperfractionation or accelerated fractionation are used. In opposing parallel radiotherapy, the dose fractionation of skin or subcutaneous connective tissue are different between in one portal and two portals daily. So we examined acute skin erythema and late connective tissue fibrosis in the two groups (one and two portals) of the patients with uterus cancer. Acute skin erythema and late connective tissue fibrosis were slightly stronger in case of one portal daily. In relation to the anatomical site of skin, acute skin erythema was stronger at the buttocks than the lower abdomen, but late fibrosis was reverse to that. So the degree of acute skin erythema did not predict the degree of late connective tissue fibrosis. The number of Time Dose Fractionation Factor could roughly estimate the degree of erythema and fibrosis. Late fibrosis in 36 fractions increased with an increase of abdominal thickness, but acute erythema did not. (author)

  5. Analytical formulae in fractionated irradiation of normal tissue

    International Nuclear Information System (INIS)

    Kozubek, S.

    1982-01-01

    The new conception of the modeling of the cell tissue kinetics after fractionated irradiation is proposed. The formulae given earlier are compared with experimental data on various normal tissues and further adjustments are considered. The tissues are shown to exhibit several general patterns of behaviour. The repopulation, if it takes place, seems to start after some time, independently of fractionation in first approximation and can be treated as simple autogenesis. The results are compared with the commonly used NSD conception and the well-known Cohen cell tissue kinetic model

  6. Mouse genetic approaches applied to the normal tissue radiation response

    International Nuclear Information System (INIS)

    Haston, Christina K.

    2012-01-01

    The varying responses of inbred mouse models to radiation exposure present a unique opportunity to dissect the genetic basis of radiation sensitivity and tissue injury. Such studies are complementary to human association studies as they permit both the analysis of clinical features of disease, and of specific variants associated with its presentation, in a controlled environment. Herein I review how animal models are studied to identify specific genetic variants influencing predisposition to radiation-induced traits. Among these radiation-induced responses are documented strain differences in repair of DNA damage and in extent of tissue injury (in the lung, skin, and intestine) which form the base for genetic investigations. For example, radiation-induced DNA damage is consistently greater in tissues from BALB/cJ mice, than the levels in C57BL/6J mice, suggesting there may be an inherent DNA damage level per strain. Regarding tissue injury, strain specific inflammatory and fibrotic phenotypes have been documented for principally, C57BL/6 C3H and A/J mice but a correlation among responses such that knowledge of the radiation injury in one tissue informs of the response in another is not evident. Strategies to identify genetic differences contributing to a trait based on inbred strain differences, which include linkage analysis and the evaluation of recombinant congenic (RC) strains, are presented, with a focus on the lung response to irradiation which is the only radiation-induced tissue injury mapped to date. Such approaches are needed to reveal genetic differences in susceptibility to radiation injury, and also to provide a context for the effects of specific genetic variation uncovered in anticipated clinical association studies. In summary, mouse models can be studied to uncover heritable variation predisposing to specific radiation responses, and such variations may point to pathways of importance to phenotype development in the clinic.

  7. Effects of pions on normal tissues

    International Nuclear Information System (INIS)

    Tokita, N.

    1981-01-01

    Verification of the uniform biological effectiveness of pion beams of various dimensions produced at LAMPF has been made using cultured mammalian cells and mouse jejunum. Normal tissue radiobiology studies at LAMPF are reviewed with regard to biological beam characterization for the therapy program and the current status of acute and late effect studies on rodents

  8. Infrared laser damage thresholds in corneal tissue phantoms using femtosecond laser pulses

    Science.gov (United States)

    Boretsky, Adam R.; Clary, Joseph E.; Noojin, Gary D.; Rockwell, Benjamin A.

    2018-02-01

    Ultrafast lasers have become a fixture in many biomedical, industrial, telecommunications, and defense applications in recent years. These sources are capable of generating extremely high peak power that can cause laser-induced tissue breakdown through the formation of a plasma upon exposure. Despite the increasing prevalence of such lasers, current safety standards (ANSI Z136.1-2014) do not include maximum permissible exposure (MPE) values for the cornea with pulse durations less than one nanosecond. This study was designed to measure damage thresholds in corneal tissue phantoms in the near-infrared and mid-infrared to identify the wavelength dependence of laser damage thresholds from 1200-2500 nm. A high-energy regenerative amplifier and optical parametric amplifier outputting 100 femtosecond pulses with pulse energies up to 2 mJ were used to perform exposures and determine damage thresholds in transparent collagen gel tissue phantoms. Three-dimensional imaging, primarily optical coherence tomography, was used to evaluate tissue phantoms following exposure to determine ablation characteristics at the surface and within the bulk material. The determination of laser damage thresholds in the near-IR and mid-IR for ultrafast lasers will help to guide safety standards and establish the appropriate MPE levels for exposure sensitive ocular tissue such as the cornea. These data will help promote the safe use of ultrafast lasers for a wide range of applications.

  9. [Effect of oxidative stress-associated damage to the lung tissue caused by different body mass index in the rat models].

    Science.gov (United States)

    Li, X Y; Zhang, X J; Zhao, J H; Xu, J Y

    2016-12-12

    Objective: To investigate the influence of different diets on serum protein expression levels of 4-hydroxynonenal (4-HNE), thioredoxin (Trx), thioredoxin reductase (TrxR) and the activities of Trx and TrxR, and to explore the effect of damage to the lung tissue and the underlying mechanisms of different body mass index caused by different diets in the rat models . Method: Healthy clean male SD rats were randomly divided into normal group, emaciation group and fat group, which were raised by different diets for 6 months.Then the rats were sacrificed and the serum and lung tissue were prepared. The levels of 4-HNE, Trx and TrxR in peripheral blood were quantitatively analyzed by enzyme-linked immunosorbent assay(ELISA), and the activities of Trx and TrxR were measured by chemical methods. Results: Compared with the normal group, the lung tissue had more apparent emphysema in the emaciation and the fat groups under light microscope, and more inflammatory cell infiltration in alveolar septum was observed in the fat group.The levels of 4-HNE in the fat group[(24.7±8.7)mg/L]was significantly higher than that in the normal group[(15.4±4.7)mg/L, P 0.05)in the levels of 4-HNE between the emaciation and the normal groups. The levels of TrxR in the emaciation group[(7.7±1.4)μg/ml]was significantly higher than that in the normal and the fat groups[(6.2±1.1), (4.9±1.4)μg/ml, all P 0.05). The activity of Trx in the emaciation group[(32.4±8.5)×10 -3 A ·min -1 ·mg -1 ]was significantly higher than that in the normal group[(19.6±3.3)×10 -3 A ·min -1 ·mg -1 ]and the fat group[(11.3±7.5)×10 -3 A ·min -1 ·mg -1 , all P 0.05). Conclusion: Both high BMI and low BMI can affect the oxidative stress of the body, resulting in increased oxidants and decreased antioxidants, and can cause damage to the lung tissue in the rat models.

  10. Linking ontogeny and tissue regeneration: a study on tissue damage and wound healing in carp in connection to the developmental stage

    DEFF Research Database (Denmark)

    Nielsen, Michael Engelbrecht; Schmidt, Jacob; Ingerslev, Hans-Christian

    regeneration since its genome is well-described and it is easy visually to follow the wound healing. In this study, carps were physically damaged in the musculature using sterile needles at day 10, 16, 24, 47 and 94 post hatch. Muscle tissue samples were subsequently taken at day 1, 3 and 7 post damage...... healing and tissue regeneration, the developmental stage of the individual may influence the immune reaction initiated following damage and thus the proliferative responses, which usually cross-talk with the immune system. Common carp (Cyprinus carpio) is an excellent fish specie to study tissue...

  11. Renal tissue damage induced by focused shock waves

    Science.gov (United States)

    Ioritani, N.; Kuwahara, M.; Kambe, K.; Taguchi, K.; Saitoh, T.; Shirai, S.; Orikasa, S.; Takayama, K.; Lush, P. A.

    1990-07-01

    Biological evidence of renal arterial wall damage induced by the microjet due to shock wave-cavitation bubble interaction was demonstrated in living dog kidneys. We also intended to clarify the mechanism of renal tissue damage and the effects of different conditions of shock wave exposure (peak pressure of focused area, number of shots, exposure rate) on the renal tissue damage in comparison to stone disintegration. Disruption of arterial wall was the most remarkable histological change in the focused area of the kidneys. This lesion appeared as if the wall had been punctured by a needle. Large hematoma formation in the renal parenchym, and interstitial hemorrhage seemed to be the results of the arterial lesion. This arterial disorder also led to ischemic necrosis of the tubules surrounding the hematoma. Micro-angiographic examination of extracted kidneys also proved such arterial puncture lesions and ischemic lesions. The number of shots required for model stone disintegration was not inversely proportional to peak pressure. It decreased markedly when peak pressure was above 700 bar. Similarly thenumber of shots for hematoma formation was not inversely proportional to peak pressure, however, this decreased markedly above 500 bar. These results suggested that a hematoma could be formed under a lower peak pressure than that required for stone disintegration.

  12. The SOD Mimic, MnTE-2-PyP, Protects from Chronic Fibrosis and Inflammation in Irradiated Normal Pelvic Tissues

    Directory of Open Access Journals (Sweden)

    Shashank Shrishrimal

    2017-11-01

    Full Text Available Pelvic radiation for cancer therapy can damage a variety of normal tissues. In this study, we demonstrate that radiation causes acute changes to pelvic fibroblasts such as the transformation to myofibroblasts and the induction of senescence, which persist months after radiation. The addition of the manganese porphyrin, MnTE-2-PyP, resulted in protection of these acute changes in fibroblasts and this protection persisted months following radiation exposure. Specifically, at two months post-radiation, MnTE-2-PyP inhibited the number of α-smooth muscle actin positive fibroblasts induced by radiation and at six months post-radiation, MnTE-2-PyP significantly reduced collagen deposition (fibrosis in the skin and bladder tissues of irradiated mice. Radiation also resulted in changes to T cells. At two months post-radiation, there was a reduction of Th1-producing splenocytes, which resulted in reduced Th1:Th2 ratios. MnTE-2-PyP maintained Th1:Th2 ratios similar to unirradiated mice. At six months post-radiation, increased T cells were observed in the adipose tissues. MnTE-2-PyP treatment inhibited this increase. Thus, MnTE-2-PyP treatment maintains normal fibroblast function and T cell immunity months after radiation exposure. We believe that one of the reasons MnTE-2-PyP is a potent radioprotector is due to its protection of multiple cell types from radiation damage.

  13. β class II tubulin predominates in normal and tumor breast tissues

    International Nuclear Information System (INIS)

    Dozier, James H; Hiser, Laree; Davis, Jennifer A; Thomas, Nancy Stubbs; Tucci, Michelle A; Benghuzzi, Hamed A; Frankfurter, Anthony; Correia, John J; Lobert, Sharon

    2003-01-01

    Antimitotic chemotherapeutic agents target tubulin, the major protein in mitotic spindles. Tubulin isotype composition is thought to be both diagnostic of tumor progression and a determinant of the cellular response to chemotherapy. This implies that there is a difference in isotype composition between normal and tumor tissues. To determine whether such a difference occurs in breast tissues, total tubulin was fractionated from lysates of paired normal and tumor breast tissues, and the amounts of β-tubulin classes I + IV, II, and III were measured by competitive enzyme-linked immunosorbent assay (ELISA). Only primary tumor tissues, before chemotherapy, were examined. Her2/neu protein amplification occurs in about 30% of breast tumors and is considered a marker for poor prognosis. To gain insight into whether tubulin isotype levels might be correlated with prognosis, ELISAs were used to quantify Her2/neu protein levels in these tissues. β-Tubulin isotype distributions in normal and tumor breast tissues were similar. The most abundant β-tubulin isotypes in these tissues were β-tubulin classes II and I + IV. Her2/neu levels in tumor tissues were 5–30-fold those in normal tissues, although there was no correlation between the Her2/neu biomarker and tubulin isotype levels. These results suggest that tubulin isotype levels, alone or in combination with Her2/neu protein levels, might not be diagnostic of tumorigenesis in breast cancer. However, the presence of a broad distribution of these tubulin isotypes (for example, 40–75% β-tubulin class II) in breast tissue, in conjunction with other factors, might still be relevant to disease progression and cellular response to antimitotic drugs

  14. Cell Survival and DNA Damage in Normal Prostate Cells Irradiated Out-of-Field.

    LENUS (Irish Health Repository)

    Shields, L

    2014-10-31

    Interest in out-of-field radiation dose has been increasing with the introduction of new techniques, such as volumetric modulated arc therapy (VMAT). These new techniques offer superior conformity of high-dose regions to the target compared to conventional techniques, however more normal tissue is exposed to low-dose radiation with VMAT. There is a potential increase in radiobiological effectiveness associated with lower energy photons delivered during VMAT as normal cells are exposed to a temporal change in incident photon energy spectrum. During VMAT deliveries, normal cells can be exposed to the primary radiation beam, as well as to transmission and scatter radiation. The impact of low-dose radiation, radiation-induced bystander effect and change in energy spectrum on normal cells are not well understood. The current study examined cell survival and DNA damage in normal prostate cells after exposure to out-of-field radiation both with and without the transfer of bystander factors. The effect of a change in energy spectrum out-of-field compared to in-field was also investigated. Prostate cancer (LNCaP) and normal prostate (PNT1A) cells were placed in-field and out-of-field, respectively, with the PNT1A cells being located 1 cm from the field edge when in-field cells were being irradiated with 2 Gy. Clonogenic and γ-H2AX assays were performed postirradiation to examine cell survival and DNA damage. The assays were repeated when bystander factors from the LNCaP cells were transferred to the PNT1A cells and also when the PNT1A cells were irradiated in-field to a different energy spectrum. An average out-of-field dose of 10.8 ± 4.2 cGy produced a significant reduction in colony volume and increase in the number of γ-H2AX foci\\/cell in the PNT1A cells compared to the sham-irradiated control cells. An adaptive response was observed in the PNT1A cells having first received a low out-of-field dose and then the bystander factors. The PNT1A cells showed a significant

  15. Late effects of normal tissues (lent) scoring system: the soma scale

    International Nuclear Information System (INIS)

    Mornex, F.; Pavy, J.J.; Denekamp, J.

    1997-01-01

    Radiation tolerance of normal tissues remains the limiting factor for delivering tumoricidal dose. The late toxicity of normal tissues is the most critical element of an irradiation: somatic, functional and structural alterations occur during the actual treatment itself, but late effects manifest months to years after acute effects heal, and may progress with time. The optimal therapeutic ratio ultimately requires not only complete tumor clearance, but also minimal residual injury to surrounding vital normal tissues. The disparity between the intensity of acute and late effects and the inability to predict the eventual manifestation of late normal tissue injury has made radiation oncologists recognize the importance of careful patient follow-up. There is so far no uniform toxicity scoring system to compare several clinical studies in the absence of a 'common toxicity language'. This justifies the need to establish a precise evaluation system for the analysis of late effects of radiation on normal tissues. The SOMA/LENT scoring system results from an international collaboration. European Organization Treatment of Cancer (EORTC) and Radiation Therapy Oncology Group (RTOG) have created subcommittees with the aim of addressing the question of standardized toxic effects criteria. This effort appeared as a necessity to standardize and improve the data recording, to then describe and evaluate uniform toxicity at regular time intervals. The current proposed scale is not yet validated, and should be used cautiously. (authors)

  16. Pathway-specific differences between tumor cell lines and normal and tumor tissue cells

    Directory of Open Access Journals (Sweden)

    Tozeren Aydin

    2006-11-01

    Full Text Available Abstract Background Cell lines are used in experimental investigation of cancer but their capacity to represent tumor cells has yet to be quantified. The aim of the study was to identify significant alterations in pathway usage in cell lines in comparison with normal and tumor tissue. Methods This study utilized a pathway-specific enrichment analysis of publicly accessible microarray data and quantified the gene expression differences between cell lines, tumor, and normal tissue cells for six different tissue types. KEGG pathways that are significantly different between cell lines and tumors, cell lines and normal tissues and tumor and normal tissue were identified through enrichment tests on gene lists obtained using Significance Analysis of Microarrays (SAM. Results Cellular pathways that were significantly upregulated in cell lines compared to tumor cells and normal cells of the same tissue type included ATP synthesis, cell communication, cell cycle, oxidative phosphorylation, purine, pyrimidine and pyruvate metabolism, and proteasome. Results on metabolic pathways suggested an increase in the velocity nucleotide metabolism and RNA production. Pathways that were downregulated in cell lines compared to tumor and normal tissue included cell communication, cell adhesion molecules (CAMs, and ECM-receptor interaction. Only a fraction of the significantly altered genes in tumor-to-normal comparison had similar expressions in cancer cell lines and tumor cells. These genes were tissue-specific and were distributed sparsely among multiple pathways. Conclusion Significantly altered genes in tumors compared to normal tissue were largely tissue specific. Among these genes downregulation was a major trend. In contrast, cell lines contained large sets of significantly upregulated genes that were common to multiple tissue types. Pathway upregulation in cell lines was most pronounced over metabolic pathways including cell nucleotide metabolism and oxidative

  17. Normal tissue damage in radiotherapy development of a clinical audit tool

    International Nuclear Information System (INIS)

    Barrett, A.

    2001-01-01

    Radiotherapy treatments are evaluated by two main outcomes, rates of cure or local tumour control and normal tissue complication rates. Many excellent schemes have been devised for recording the late effects of radiotherapy treatments including the RTOG and LENT SOMA Scales. These have proved invaluable in documenting the outcome of clinical trials, but have proved too complex and time consuming for routine daily use in busy departments. A group in Eindhoven led by Professor Lybeert undertook a pilot study of a potential way of auditing late radiation complications. Using a simplified form derived from the LENT SOMA scales, they collected data on grade 3 and 4 complications in a total of 675 patients and were able to correlate a number of particular complications with specific protocols, ICD codes and physician practice. Further review of the case records made it possible to identify specific factors which may have led to toxicity and could be taken into account to modify treatment protocols. From September 1999 clinicians in participating centres undertaking normal follow-up procedures were asked to identify patients who showed evidence of grade 3 or 4 toxicity as defined in the pro-forma. Date of radiotherapy was recorded so that a temporal correlation of complication with treatment could be made, but this study did not attempt to assess the incidence of complications, but to provide a cross-sectional study of prevalence. Centres participating in the study have been Eindhoven, Koeln, Gent, Brussels, Glasgow, Mount Vernon, Madrid, Geneva and Lyon. In Eindhoven 651 reports were collected between January 1995 and December 1999. 89 reports had to be discarded because complications were not validated by the reviewing radiotherapists. Dr Lybeert noticed that individual radiotherapists appeared to have different thresholds for reporting specific complications. 13 patients deaths appeared to be related to radiation problems. An overall level of detection of morbidity was

  18. Comparison of effective atomic numbers of the cancerous and normal kidney tissue

    International Nuclear Information System (INIS)

    Manjunatha, H.C.

    2015-01-01

    The effective atomic number (Z eff ) and electron density (N e ) of normal kidney and cancerous kidney have been computed for total and partial photon interactions by computing the molecular, atomic, and electronic cross section in the wide energy range of 1 keV-100 GeV using WinXCOM. The mean Z eff and N e of normal kidney and cancerous kidney in the various energy ranges and for total and partial photon interactions are tabulated. The variation of effective N e with energy is shown graphically for all photon interactions. In addition to this computer tomography (CT), numbers of normal kidney and cancerous kidney for photon interaction and energy absorption is also computed. The role of Z eff in the dual-energy dividing radiography is also discussed. The values of Z eff and N e for cancerous kidney are higher than normal kidney. This is due to the levels of elements K, Ca, Fe, Ni, and Se are lower and those of the elements Ti, Co, Zn, As, and Cd are higher in the cancer tissue of kidney than those observed in the normal tissue. The soft tissue and cancerous tissue are very similar, but their atomic number differs. The cancerous tissue exhibits a higher Z eff than the normal tissue. This fact helps in the dual-energy dividing radiography which enables to improve the diagnosis of the kidney cancer. Hence, the computed values may be useful in the diagnosis of the kidney cancer. CT numbers for normal kidney are higher than cancerous kidney. (author)

  19. MRI characterization of brown adipose tissue in obese and normal-weight children

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Jie; Rigsby, Cynthia K.; Shore, Richard M. [Ann and Robert H. Lurie Children' s Hospital of Chicago, Department of Medical Imaging, 225 E. Chicago Ave., Box 9, Chicago, IL (United States); Northwestern University, Department of Radiology, Feinberg School of Medicine, Chicago, IL (United States); Schoeneman, Samantha E. [Ann and Robert H. Lurie Children' s Hospital of Chicago, Department of Medical Imaging, 225 E. Chicago Ave., Box 9, Chicago, IL (United States); Zhang, Huiyuan [John H. Stroger, Jr. Hospital of Cook County, Collaborative Research Unit, Chicago, IL (United States); Kwon, Soyang [Ann and Robert H. Lurie Children' s Hospital of Chicago, Stanley Manne Children' s Research Institute, Chicago, IL (United States); Northwestern University, Department of Pediatrics, Feinberg School of Medicine, Chicago, IL (United States); Josefson, Jami L. [Ann and Robert H. Lurie Children' s Hospital of Chicago, Division of Endocrinology, Chicago, IL (United States); Northwestern University, Department of Pediatrics, Feinberg School of Medicine, Chicago, IL (United States)

    2015-10-15

    Brown adipose tissue (BAT) is identified in mammals as an adaptive thermogenic organ for modulation of energy expenditure and heat generation. Human BAT may be primarily composed of brown-in-white (BRITE) adipocytes and stimulation of BRITE may serve as a potential target for obesity interventions. Current imaging studies of BAT detection and characterization have been mainly limited to PET/CT. MRI is an emerging application for BAT characterization in healthy children. To exploit Dixon and diffusion-weighted MRI methods to characterize cervical-supraclavicular BAT/BRITE properties in normal-weight and obese children while accounting for pubertal status. Twenty-eight healthy children (9-15 years old) with a normal or obese body mass index participated. MRI exams were performed to characterize supraclavicular adipose tissues by measuring tissue fat percentage, T2*, tissue water mobility, and microvasculature properties. We used multivariate linear regression models to compare tissue properties between normal-weight and obese groups while accounting for pubertal status. MRI measurements of BAT/BRITE tissues in obese children showed higher fat percentage (P < 0.0001), higher T2* (P < 0.0001), and lower diffusion coefficient (P = 0.015) compared with normal-weight children. Pubertal status was a significant covariate for the T2* measurement, with higher T2* (P = 0.0087) in pubertal children compared to prepubertal children. Perfusion measurements varied by pubertal status. Compared to normal-weight children, obese prepubertal children had lower perfusion fraction (P = 0.003) and pseudo-perfusion coefficient (P = 0.048); however, obese pubertal children had higher perfusion fraction (P = 0.02) and pseudo-perfusion coefficient (P = 0.028). This study utilized chemical-shift Dixon MRI and diffusion-weighted MRI methods to characterize supraclavicular BAT/BRITE tissue properties. The multi-parametric evaluation revealed evidence of morphological differences in brown

  20. MRI characterization of brown adipose tissue in obese and normal-weight children

    International Nuclear Information System (INIS)

    Deng, Jie; Rigsby, Cynthia K.; Shore, Richard M.; Schoeneman, Samantha E.; Zhang, Huiyuan; Kwon, Soyang; Josefson, Jami L.

    2015-01-01

    Brown adipose tissue (BAT) is identified in mammals as an adaptive thermogenic organ for modulation of energy expenditure and heat generation. Human BAT may be primarily composed of brown-in-white (BRITE) adipocytes and stimulation of BRITE may serve as a potential target for obesity interventions. Current imaging studies of BAT detection and characterization have been mainly limited to PET/CT. MRI is an emerging application for BAT characterization in healthy children. To exploit Dixon and diffusion-weighted MRI methods to characterize cervical-supraclavicular BAT/BRITE properties in normal-weight and obese children while accounting for pubertal status. Twenty-eight healthy children (9-15 years old) with a normal or obese body mass index participated. MRI exams were performed to characterize supraclavicular adipose tissues by measuring tissue fat percentage, T2*, tissue water mobility, and microvasculature properties. We used multivariate linear regression models to compare tissue properties between normal-weight and obese groups while accounting for pubertal status. MRI measurements of BAT/BRITE tissues in obese children showed higher fat percentage (P < 0.0001), higher T2* (P < 0.0001), and lower diffusion coefficient (P = 0.015) compared with normal-weight children. Pubertal status was a significant covariate for the T2* measurement, with higher T2* (P = 0.0087) in pubertal children compared to prepubertal children. Perfusion measurements varied by pubertal status. Compared to normal-weight children, obese prepubertal children had lower perfusion fraction (P = 0.003) and pseudo-perfusion coefficient (P = 0.048); however, obese pubertal children had higher perfusion fraction (P = 0.02) and pseudo-perfusion coefficient (P = 0.028). This study utilized chemical-shift Dixon MRI and diffusion-weighted MRI methods to characterize supraclavicular BAT/BRITE tissue properties. The multi-parametric evaluation revealed evidence of morphological differences in brown

  1. The metabolism of 32P-CP-PLLA seed implanted in the liver and its damage to the normal liver tissue: a study in the experimental dogs

    International Nuclear Information System (INIS)

    Tan Zhongbao; Liu Lu; Guo Jinhe; Zhu Guangyu; Wang Fuan; Nie Qi; Gao Hailin; Teng Gaojun

    2010-01-01

    Objective: To investigate the effects of intratumoral implantation of 32 P -CP-PLLA seeds on the normal canine liver tissue and to explore the metabolism of 32 P-CP-PLLA seeds implanted in the liver of experimental dogs. Methods: Twelve beagles were enrolled in this study. The dogs were randomly and equally divided into four groups: group A (185 MBq), group B (370 MBq), group C (740 MBq) and group D (0 MBq). By using laparotomy procedure 32 P-CP-PLLA seeds were implanted into dog's liver. CT scan was performed before operation as well as before the dog was sacrificed. All dogs were sacrificed three months after the implantation. Before the procedure and 1, 2, 4, 8 and 12 weeks after the procedure the blood tests and serum biochemical tests were conducted. One dog from group B and group C was selected respectively and was fed in a metabolic cage. Within one month after the procedure the cpm in feces and in urine was determined every 24 hours. One dog was picked out from each of the three groups and was punctured to get its liver tissue for pathologic exam each time at 1, 2, 4, 8 and 12 weeks after the implantation, and SPECT imaging was also performed at the same time. Pathologic study, both macroscopic and microscopic (including optical and electronic microscopy) was made to observe the liver damage after the dog was sacrificed. The statistical analysis was processed by using SPSS 13.0 software and the measuring data were expressed with mean ± standard deviation (x ± s). Results: Two months after the procedure, serological examination found that the serum alkaline phosphatase (BKP) in both group B and group C was significantly higher than that in other groups, the difference was statistically significant (P 32 P-CP-PLLA seeds was manifested as a spherical lesion which was encysted by a layer of fibrous tissue with an edematous zone peripherally. Conclusion: The implantation of 32 P-CP-PLLA seeds in dog's liver causes only localized hepatic damage with no general

  2. Relative binding affinity of carboxylate-, phosphonate-, and bisphosphonate-functionalized gold nanoparticles targeted to damaged bone tissue

    Energy Technology Data Exchange (ETDEWEB)

    Ross, Ryan D. [Rush University Medical Center, Department of Anatomy and Cell Biology (United States); Cole, Lisa E.; Roeder, Ryan K., E-mail: rroeder@nd.edu [University of Notre Dame, Department of Aerospace and Mechanical Engineering Bioengineering Graduate Program (United States)

    2012-10-15

    Functionalized Au NPs have received considerable recent interest for targeting and labeling cells and tissues. Damaged bone tissue can be targeted by functionalizing Au NPs with molecules exhibiting affinity for calcium. Therefore, the relative binding affinity of Au NPs surface functionalized with either carboxylate (l-glutamic acid), phosphonate (2-aminoethylphosphonic acid), or bisphosphonate (alendronate) was investigated for targeted labeling of damaged bone tissue in vitro. Targeted labeling of damaged bone tissue was qualitatively verified by visual observation and backscattered electron microscopy, and quantitatively measured by the surface density of Au NPs using field-emission scanning electron microscopy. The surface density of functionalized Au NPs was significantly greater within damaged tissue compared to undamaged tissue for each functional group. Bisphosphonate-functionalized Au NPs exhibited a greater surface density labeling damaged tissue compared to glutamic acid- and phosphonic acid-functionalized Au NPs, which was consistent with the results of previous work comparing the binding affinity of the same functionalized Au NPs to synthetic hydroxyapatite crystals. Targeted labeling was enabled not only by the functional groups but also by the colloidal stability in solution. Functionalized Au NPs were stabilized by the presence of the functional groups, and were shown to remain well dispersed in ionic (phosphate buffered saline) and serum (fetal bovine serum) solutions for up to 1 week. Therefore, the results of this study suggest that bisphosphonate-functionalized Au NPs have potential for targeted delivery to damaged bone tissue in vitro and provide motivation for in vivo investigation.

  3. The role of tissue damage in whiplash associated disorders: Discussion paper 1

    Science.gov (United States)

    Bogduk, Nikolai; Ivancic, Paul C.; McLean, Samuel A.; Siegmund, Gunter P.; Winkelstein, Beth

    2011-01-01

    STUDY DESIGN Non-systematic review of cervical spine lesions in whiplash-associated disorders (WAD). OBJECTIVE To describe whiplash injury models in terms of basic and clinical science, to summarize what can and cannot be explained by injury models, and to highlight future research areas to better understand the role of tissue damage in WAD. SUMMARY OF BACKGROUND DATA The frequent lack of detectable tissue damage has raised questions about whether tissue damage is necessary for WAD and what role it plays in the clinical context of WAD. METHODS Non-systematic review. RESULTS Lesions of various tissues have been documented by numerous investigations conducted in animals, cadavers, healthy volunteers and patients. Most lesions are undetected by imaging techniques. For zygapophysial (facet) joints, lesions have been predicted by bioengineering studies and validated through animal studies; for zygapophysial joint pain, a valid diagnostic test and a proven treatment are available. Lesions of dorsal root ganglia, discs, ligaments, muscles and vertebral artery have been documented in biomechanical and autopsy studies, but no valid diagnostic test is available to assess their clinical relevance. The proportion of WAD patients in whom a persistent lesion is the major determinant of ongoing symptoms is unknown. Psychosocial factors, stress reactions and generalized hyperalgesia have also been shown to predict WAD outcomes. CONCLUSION There is evidence supporting a lesion-based model in WAD. Lack of macroscopically identifiable tissue damage does not rule out the presence of painful lesions. The best available evidence concerns zygapophysial joint pain. The clinical relevance of other lesions needs to be addressed by future research. PMID:22020601

  4. In vitro sensitivity of normal and hereditary retinoblastoma fibroblasts to DNA-damaging agents

    International Nuclear Information System (INIS)

    Woods, W.G.; Byrne, T.D.

    1986-01-01

    We investigated the ability of nine fibroblast cell strains from patients with the hereditary form of retinoblastoma (RB) to handle various types of DNA-damaging agents and compared the results with those obtained in nine normal strains. Cell strains were exposed to gamma-radiation, which causes DNA scission; actinomycin D, a DNA-intercalating agent; and mitomycin C, a bifunctional alkylating agent leading to DNA-DNA cross-linking. Cell strains were studied for their ability to survive in a cytotoxicity assay. Nine normal strains exhibited a mean D0 (inverse of the slope of the straight line portion of the survival curve) of 134-178 cGy after radiation exposure, compared to a range of 119-186 cGy in the nine RB strains (P = 0.33). Similarly, exposure to actinomycin D led to D0 values of 0.024-0.069 microgram/ml in the nine normal strains and D0 values of 0.016-0.067 microgram/ml in the RB strains (P = 0.64). The nine RB strains did exhibit a small overall increase in sensitivity after exposure to mitomycin C, with D0 values ranging from 0.14-0.32 microgram/ml versus 0.19-0.66 microgram/ml in the nine normal strains (P = 0.002); however, when the two most resistant normal strains were excluded from analysis, results were similar. Three RB cell strains derived from individuals who had either developed second cancers or who had a family history of additional sarcomas consistently exhibited increases in sensitivity to all three DNA-damaging agents studied compared with other hereditary RB cell strains as well as normal strains. The results suggest that normal human fibroblast cell strains exhibit a wide response to DNA-damaging agents, especially chemical agents. Most hereditary RB strains exhibit sensitivity well within the normal range; however, strains from RB patients predisposed to second cancers exhibit increases in sensitivity to DNA-damaging agents

  5. Potential clinical impact of normal-tissue intrinsic radiosensitivity testing

    International Nuclear Information System (INIS)

    Bentzen, Soeren M.

    1997-01-01

    A critical appraisal is given of the possible benefit from a reliable pre-treatment knowledge of individual normal-tissue sensitivity to radiotherapy. The considerations are in part, but not exclusively, based on the recent experience with in vitro colony-forming assays of the surviving fraction at 2 Gy, the SF 2 . Three strategies are reviewed: (1) to screen for rare cases with extreme radiosensitivity, so-called over-reactors, and treat these with reduced total dose, (2) to identify the sensitive tail of the distribution of 'normal' radiosensitivities, refer these patients to other treatment, and to escalate the dose to the remaining patients, or (3) to individualize dose prescriptions based on individual radiosensitivity, i.e. treating to isoeffect rather than to a specific dose-fractionation schedule. It is shown that these strategies will have a small, if any, impact on routine radiotherapy. Screening for over-reactors is hampered by the low prevalence of these among otherwise un-selected patients that leads to a low positive predictive value of in vitro radiosensitivity assays. It is argued, that this problem may persist even if the noise on current assays could be reduced to (the unrealistic value of) zero, simply because of the large biological variation in SF 2 . Removing the sensitive tail of the patient population, will only have a minor effect on the dose that could be delivered to the remaining patients, because of the sigmoid shape of empirical dose-response relationships. Finally, individualizing dose prescriptions based exclusively on information from a normal-tissue radiosensitivity assay, leads to a nearly symmetrical distribution of dose-changes that would produce a very small gain, or even a loss, of tumor control probability if implemented in the clinic. From a theoretical point of view, other strategies could be devised and some of these are considered in this review. Right now the most promising clinical use of in vitro radiosensitivity

  6. Effect of mechanical tissue properties on thermal damage in skin after IR-laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Frenz, M.; Romano, V.; Forrer, M.; Weber, H.P. (Inst. of Applied Physics, Bern Univ. (Switzerland)); Mischler, C.; Mueller, O.M. (Anatomical Inst., Bern Univ. (Switzerland))

    1991-04-01

    The damage created instantaneously in dorsal skin and in the subjacent skeletal muscle layer after CO{sub 2} and Er{sup 3+} laser incisions is histologically and ultrastructurally investigated. Light microscopical examinations show an up to three times larger damage zone in the subcutaneous layer of skeletal muscle than in the connective tissue above. The extent of thermally altered muscle tissue is classified by different zones and characterized by comparison to long time heating injuries. The unexpectedly large damage is a result of the change of elastic properties occurring abruptly at the transition between different materials. This leads to a discontinuity of the cutting dynamics that reduces the ejection of tissue material. We show that the degree of thermal damage originates from the amount of hot material that is not ejected out of the crater acting as a secondary heat source. (orig.).

  7. DNA double-strand break repair of blood lymphocytes and normal tissues analysed in a preclinical mouse model: implications for radiosensitivity testing.

    Science.gov (United States)

    Rübe, Claudia E; Grudzenski, Saskia; Kühne, Martin; Dong, Xiaorong; Rief, Nicole; Löbrich, Markus; Rübe, Christian

    2008-10-15

    Radiotherapy is an effective cancer treatment, but a few patients suffer severe radiation toxicities in neighboring normal tissues. There is increasing evidence that the variable susceptibility to radiation toxicities is caused by the individual genetic predisposition, by subtle mutations, or polymorphisms in genes involved in cellular responses to ionizing radiation. Double-strand breaks (DSB) are the most deleterious form of radiation-induced DNA damage, and DSB repair deficiencies lead to pronounced radiosensitivity. Using a preclinical mouse model, the highly sensitive gammaH2AX-foci approach was tested to verify even subtle, genetically determined DSB repair deficiencies known to be associated with increased normal tissue radiosensitivity. By enumerating gammaH2AX-foci in blood lymphocytes and normal tissues (brain, lung, heart, and intestine), the induction and repair of DSBs after irradiation with therapeutic doses (0.1-2 Gy) was investigated in repair-proficient and repair-deficient mouse strains in vivo and blood samples irradiated ex vivo. gammaH2AX-foci analysis allowed to verify the different DSB repair deficiencies; even slight impairments caused by single polymorphisms were detected similarly in both blood lymphocytes and solid tissues, indicating that DSB repair measured in lymphocytes is valid for different and complex organs. Moreover, gammaH2AX-foci analysis of blood samples irradiated ex vivo was found to reflect repair kinetics measured in vivo and, thus, give reliable information about the individual DSB repair capacity. gammaH2AX analysis of blood and tissue samples allows to detect even minor genetically defined DSB repair deficiencies, affecting normal tissue radiosensitivity. Future studies will have to evaluate the clinical potential to identify patients more susceptible to radiation toxicities before radiotherapy.

  8. Acute and late effects of multimodal therapy on normal tissues

    International Nuclear Information System (INIS)

    Phillips, T.L.; Fu, K.K.

    1977-01-01

    The increasing use of combined radiation, chemotherapy, and surgery has led to an increased incidence of acute and late complications. The complications are, in general, similar to those seen with each modality alone, but occur with increased incidence. Enhanced effects of combined radiation and surgery are modest in number and consist primarily of problems with wound healing and fibrosis, as well as late gastrointestinal damage. Combinations of radiotherapy and chemotherapy have shown a greater degree of enhanced acute and late reactions. Drugs, such as actinomycin-D and Adriamycin, are particularly dangerous if the marked enhancement of radiation effects caused by the drugs in almost all organs is not appreciated and the radiation dose not adjusted accordingly. Proper selection of drugs can lead to enhanced local control by radiotherapy and/or surgery, as well as eradication of microscopic distant metastases, without increased normal tissue injury. Late induction of malignancy can occur with either radiation or chemotherapy alone and, in some cases, this appears to be enhanced when they are combined

  9. Nd : YAG surgical laser effects in canine prostate tissue: temperature and damage distribution

    NARCIS (Netherlands)

    van Nimwegen, S. A.; L'Eplattenier, H. F.; Rem, A. I.; van der Lugt, J. J.; Kirpensteijn, J.

    2009-01-01

    An in vitro model was used to predict short-term, laser-induced, thermal damage in canine prostate tissue. Canine prostate tissue samples were equipped with thermocouple probes to measure tissue temperature at 3, 6, 9 and 12 mm depths. The tissue surface was irradiated with a Nd:YAG laser in contact

  10. Screening of the residual normal ovarian tissue adjacent to orthotopic epithelial ovarian carcinomas in nude mice.

    Science.gov (United States)

    Zhu, G H; Wang, S T; Yao, M Z; Cai, J H; Chen, C Y; Yang, Z X; Hong, L; Yang, S Y

    2014-04-16

    The objective of this study was to explore the feasibility and methods of screening the residual normal ovarian tissue adjacent to orthotopic ovarian carcinomas in nude mice. Human epithelial ovarian cancer cells (OVCAR3) were subcutaneously implanted for a tumor source and ovarian orthotopic transplantation. The cancer tissue, proximal paraneoplastic tissue, middle paraneoplastic tissue, remote paraneoplastic tissue, and normal ovarian tissue were removed. CK-7, CA125, p53, survivin, MMP-2, and TIMP-2 expression was detected by reverse transcription polymerase chain reaction. We obtained 35 paraneoplastic residual ovarian tissues with normal biopsies from 40 cases of an orthotopic epithelial ovarian carcinoma model (87.5%). CK-7, CA125, p53, survivin, MMP-2, and TIMP-2 expression was lower in proximal paraneoplastic tissue than in cancer tissue (P tissue (P tissue as well as among residual normal ovarian tissues with different severity (P > 0.05). In ovarian tissues of 20 normal nude mice, the expression of CK- 7, CA125, p53, survivin, MMP-2, and TIMP-2 was negative. Overall, the expression levels of CK-7, CA125, p53, survivin, MMP-2, TIMP-2, and other molecular markers showed a decreasing trend in the non-cancer tissue direction. The expression levels can be used as standards to screen residual normal ovarian tissue. We can obtain relatively safe normal ovarian tissues adjacent to epithelial ovarian cancer.

  11. Photoacoustic spectroscopic differences between normal and malignant thyroid tissues

    Science.gov (United States)

    Li, Li; Xie, Wengming; Li, Hui

    2012-12-01

    The thyroid is one of the main endocrine glands of human body, which plays a crucial role in the body's metabolism. Thyroid cancer mortality ranks only second to ovarian cancer in endocrine cancer. Routine diagnostic methods of thyroid diseases in present clinic exist misdiagnosis and missed diagnosis to varying degrees. Those lead to miss the best period of cancer treatment--early. Photoacoustic spectroscopy technology is a new tool, which provides an effective and noninvasive way for biomedical materials research, being highly sensitive and without sample pretreatment. In this paper, we use photoacoustic spectroscopy technology (PAST) to detect the absorption spectrum between normal and malignant thyroid tissues. The result shows that the photoacoustic spectroscopy technology (PAST) could differentiate malignant thyroid tissue from normal thyroid tissue very well. This technique combined with routine diagnostic methods has the potential to increase the diagnostic accuracy in clinical thyroid cancer diagnosis.

  12. Relationship between in vitro chromosomal radiosensitivity of peripheral blood lymphocytes and the expression of normal tissue damage following radiotherapy for breast cancer

    International Nuclear Information System (INIS)

    Barber, J.B.P.; Burrill, W.; Spreadborough, A.R.; Levine, E.; Warren, C.; Scott, D.; Kiltie, A.E.; Roberts, S.A.

    2000-01-01

    There is a need for rapid and reliable tests for the prediction of normal tissue responses to radiotherapy, as this could lead to individualization of patient radiotherapy schedules and thus improvements in the therapeutic ratio. Because the use of cultured fibroblasts is too slow to be practicable in a clinical setting, we evaluated the predictive role of assays of lymphocyte chromosomal radiosensitivity in patients having radiotherapy for breast cancer. Radiosensitivity was assessed using a macronucleus (MN) assay at high dose rate (HDR) and low dose rate (LDR) on lymphocytes irradiated in the G 0 phase of the cell cycle (Scott D, Barber JB, Levine EL, Burril W, Roberts SA. Radiation-induced micronucleus induction in lymphocytes identifies a frequency of radiosensitive cases among breast cancer patients: a test for predisposition? Br. J. Cancer 1998;77;614-620) and an assay of G 2 phase chromatid radiosensitivity ('G 2 assay') (Scott D, Spreadborough A, Levine E, Roberts SA. Genetic predisposition in breast cancer. Lancet 1994; 344: 1444). In a study of acute reactions, blood samples were taken from breast cancer patients before the start of radiotherapy, and the skin reaction documented. 116 patients were tested with the HDR MN assay, 73 with the LDR MN assay and 123 with the G 2 assay. In a study of late reactions, samples were taken from a series of breast cancer patients 8-14 years after radiotherapy and the patients assessed for the severity of late effects according to the 'LENT SOMA' scales. 47 were tested with the HDR assay, 26 with the LDR assay and 19 with the G 2 assay. For each clinical endpoint, patients were classified as being normal reactors or 'highly radiosensitive patients' (HR patients (Burnet NG. Johansen J, Turesson I, Nyman J. Describing patients' normal tissue reactions: Concerning the possibility of individualising radiotherapy dose prescriptions based on potential predictive assays of normal tissue radiosensitivity. Int. J. Cancer 1998

  13. Statistical validation of normal tissue complication probability models

    NARCIS (Netherlands)

    Xu, Cheng-Jian; van der Schaaf, Arjen; van t Veld, Aart; Langendijk, Johannes A.; Schilstra, Cornelis

    2012-01-01

    PURPOSE: To investigate the applicability and value of double cross-validation and permutation tests as established statistical approaches in the validation of normal tissue complication probability (NTCP) models. METHODS AND MATERIALS: A penalized regression method, LASSO (least absolute shrinkage

  14. Iso-effect tables and therapeutic ratios for epidermoid cancer and normal tissue stroma

    International Nuclear Information System (INIS)

    Cohen, L.; Creditor, M.

    1983-01-01

    Available literature on radiation injury to normal tissue stroma and ablation of epidermoid carcinoma was surveyed. Computer programs (RAD3 and RAD1) were then used to derive cell kinetic parameters and generate iso-effect tables for the relevant tissues. The two tables provide a set of limiting doses for tolerance of normal connective tissue (16% risk of injury) and for ablation of epidermoid cancer (16% risk of recurrence) covering a wide range of treatment schedules. Calculating the ratios of normal tissue tolerance to tumor control doses for each treatment scheme provides an array of therapeutic ratios, from which appropriate treatment schemes can be selected

  15. Normalization of periodontal tissues in osteopetrotic mib mutant rats, treated with CSF-1

    Science.gov (United States)

    Wojtowicz, A.; Yamauchi, M.; Sotowski, R.; Ostrowski, K.

    1998-01-01

    The osteopetrotic mib mutation in rats causes defects in the skeletal bone tissue in young animals. These defects, i.e. slow bone remodelling, changes in both crystallinity and mineral content, are transient and undergo normalization, even without any treatment in 6-wk-old animals. Treatment with CSF-1 (colony stimulating factor-1) accelerates the normalization process in skeletal bones. The periodontal tissues around the apices of incisors show abnormalities caused by the slow remodelling process of the mandible bone tissue, the deficiency of osteoclasts and their abnormal morphology, as well as the disorganization of periodontal ligament fibres. In contrast to the skeletal tissues, these abnormalities would not undergo spontaneous normalization. Under treatment with colony stimulating factor 1 (CSF-1), the primitive bone trabeculae of mandible are resorbed and the normalization of the number of osteoclasts and their cytology occurs. The organization of the periodontal ligament fibres is partially restored, resembling the histological structure of the normal one.

  16. SU-D-18A-04: Quantifying the Ability of Tumor Tracking to Spare Normal Tissue

    Energy Technology Data Exchange (ETDEWEB)

    Burger, A; Buzurovic, I; Hurwitz, M; Williams, C; Lewis, J [Brigham and Women' s Hospital, Dana-Farber Cancer Center, Harvard Medical Sc, Boston, MA (United States); Mishra, P [Varian Medical Systems, Palo Alto, CA (United States); Seco, J [Mass General Hospital, Harvard Medical, Boston, MA (United States)

    2014-06-01

    Purpose: Tumor tracking allows for smaller tissue volumes to be treated, potentially reducing normal tissue damage. However, tumor tracking is a more complex treatment and has little benefit in some scenarios. Here we quantify the benefit of tumor tracking for a range of patients by estimating the dose of radiation to organs at risk and the normal tissue complication probability (NTCP) for both standard and tracking treatment plans. This comparison is performed using both patient 4DCT data and extended Cardiac-Torso (XCAT) digital phantoms. Methods: We use 4DCT data for 10 patients. Additionally, we generate digital phantoms with motion derived from measured patient long tumor trajectories to compare standard and tracking treatment plans. The standard treatment is based on the average intensity projection (AIP) of 4DCT images taken over a breath cycle. The tracking treatment is based on doses calculated on images representing the anatomy at each time point. It is assumed that there are no errors in tracking the target. The NTCP values are calculated based on RTOG guidelines. Results: The mean reduction in the mean dose delivered was 5.5% to the lungs (from 7.3 Gy to 6.9 Gy) and 4.0% to the heart (from 12.5 Gy to 12.0 Gy). The mean reduction in the max dose delivered was 13% to the spinal cord (from 27.6 Gy to 24.0 Gy), 2.5% to the carina (from 31.7 Gy to 30.9 Gy), and 15% to the esophagus (from 69.6 Gy to 58.9 Gy). The mean reduction in the probability of 2nd degree radiation pneumonitis (RP) was 8.7% (3.1% to 2.8%) and the mean reduction in the effective volume was 6.8% (10.8% to 10.2%). Conclusions: Tumor tracking has the potential to reduce irradiation of organs at risk, and consequentially reduce the normal tissue complication probability. The benefits vary based on the clinical scenario. This study is supported by Varian Medical Systems, Inc.

  17. MRI appearance of radiation-induced changes of normal cervical tissues

    International Nuclear Information System (INIS)

    Noemayr, A.; Lell, M.; Bautz, W.; Sweeney, R.; Lukas, P.

    2001-01-01

    Irradiation causes specific MRI changes in anatomic morphology and signal intensity. To avoid misinterpretation, it is important to consider the potential radiation changes of normal tissue in MRI. The aim of this study was to describe the detected radiation effects on normal cervical tissues in MRI. Pretreatment and posttreatment MRI of 52 patients with primary neck tumors were evaluated retrospectively. The MR imaging was performed before initiating radiotherapy and at the end of the treatment period. Patients underwent follow-up studies within 24 months after the end of irradiation. Edema was the main radiation-induced effect. It was detected in the epiglottis, larynx, pharynx wall, retro- and parapharyngeal space, salivary glands, muscles, and subcutaneous tissue. In some cases the bone marrow of the mandible showed edema, due to osteonecrosis. We additionally detected fluid accumulation in the mastoid cells. Radiation caused volume reduction of the parotid gland, thickening of the pharynx wall, and fatty degeneration of bone marrow. Magnetic resonance imaging is an excellent method of depicting radiation-induced changes of normal tissue. Especially T2-weighted sequences allow the detection of even slight edema. It is important to be aware of the most common radiation-induced changes in MRI and to take them into account when assessing an examination. (orig.)

  18. The Cell Nucleus Serves as a Mechanotransducer of Tissue Damage-Induced Inflammation.

    Science.gov (United States)

    Enyedi, Balázs; Jelcic, Mark; Niethammer, Philipp

    2016-05-19

    Tissue damage activates cytosolic phospholipase A2 (cPLA2), releasing arachidonic acid (AA), which is oxidized to proinflammatory eicosanoids by 5-lipoxygenase (5-LOX) on the nuclear envelope. How tissue damage is sensed to activate cPLA2 is unknown. We investigated this by live imaging in wounded zebrafish larvae, where damage of the fin tissue causes osmotic cell swelling at the wound margin and the generation of a chemotactic eicosanoid signal. Osmotic swelling of cells and their nuclei activates cPla2 by translocating it from the nucleoplasm to the nuclear envelope. Elevated cytosolic Ca(2+) was necessary but not sufficient for cPla2 translocation, and nuclear swelling was required in parallel. cPla2 translocation upon nuclear swelling was reconstituted in isolated nuclei and appears to be a simple physical process mediated by tension in the nuclear envelope. Our data suggest that the nucleus plays a mechanosensory role in inflammation by transducing cell swelling and lysis into proinflammatory eicosanoid signaling. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Mechanistic simulation of normal-tissue damage in radiotherapy-implications for dose-volume analyses

    International Nuclear Information System (INIS)

    Rutkowska, Eva; Baker, Colin; Nahum, Alan

    2010-01-01

    A radiobiologically based 3D model of normal tissue has been developed in which complications are generated when 'irradiated'. The aim is to provide insight into the connection between dose-distribution characteristics, different organ architectures and complication rates beyond that obtainable with simple DVH-based analytical NTCP models. In this model the organ consists of a large number of functional subunits (FSUs), populated by stem cells which are killed according to the LQ model. A complication is triggered if the density of FSUs in any 'critical functioning volume' (CFV) falls below some threshold. The (fractional) CFV determines the organ architecture and can be varied continuously from small (series-like behaviour) to large (parallel-like). A key feature of the model is its ability to account for the spatial dependence of dose distributions. Simulations were carried out to investigate correlations between dose-volume parameters and the incidence of 'complications' using different pseudo-clinical dose distributions. Correlations between dose-volume parameters and outcome depended on characteristics of the dose distributions and on organ architecture. As anticipated, the mean dose and V 20 correlated most strongly with outcome for a parallel organ, and the maximum dose for a serial organ. Interestingly better correlation was obtained between the 3D computer model and the LKB model with dose distributions typical for serial organs than with those typical for parallel organs. This work links the results of dose-volume analyses to dataset characteristics typical for serial and parallel organs and it may help investigators interpret the results from clinical studies.

  20. Raman spectroscopy of normal oral buccal mucosa tissues: study on intact and incised biopsies

    Science.gov (United States)

    Deshmukh, Atul; Singh, S. P.; Chaturvedi, Pankaj; Krishna, C. Murali

    2011-12-01

    Oral squamous cell carcinoma is one of among the top 10 malignancies. Optical spectroscopy, including Raman, is being actively pursued as alternative/adjunct for cancer diagnosis. Earlier studies have demonstrated the feasibility of classifying normal, premalignant, and malignant oral ex vivo tissues. Spectral features showed predominance of lipids and proteins in normal and cancer conditions, respectively, which were attributed to membrane lipids and surface proteins. In view of recent developments in deep tissue Raman spectroscopy, we have recorded Raman spectra from superior and inferior surfaces of 10 normal oral tissues on intact, as well as incised, biopsies after separation of epithelium from connective tissue. Spectral variations and similarities among different groups were explored by unsupervised (principal component analysis) and supervised (linear discriminant analysis, factorial discriminant analysis) methodologies. Clusters of spectra from superior and inferior surfaces of intact tissues show a high overlap; whereas spectra from separated epithelium and connective tissue sections yielded clear clusters, though they also overlap on clusters of intact tissues. Spectra of all four groups of normal tissues gave exclusive clusters when tested against malignant spectra. Thus, this study demonstrates that spectra recorded from the superior surface of an intact tissue may have contributions from deeper layers but has no bearing from the classification of a malignant tissues point of view.

  1. Three-Dimensional Normal Human Neural Progenitor Tissue-Like Assemblies: A Model for Persistent Varicell-Zoster Virus Infection and Platform to Study Viral Infectivity and Oxidative Stress and Damage

    Science.gov (United States)

    Goodwin, T. J.; McCarthy, M.; Osterrieder, N.; Cohrs, R. J.; Kaufer, B. B.

    2014-01-01

    The environment of space results in a multitude of challenges to the human physiology that present barriers to extended habitation and exploration. Over 40 years of investigation to define countermeasures to address space flight adaptation has left gaps in our knowledge regarding mitigation strategies partly due to the lack of investigative tools, monitoring strategies, and real time diagnostics to understand the central causative agent(s) responsible for physiologic adaptation and maintaining homeostasis. Spaceflight-adaptation syndrome is the combination of space environmental conditions and the synergistic reaction of the human physiology. Our work addresses the role of oxidative stress and damage (OSaD) as a negative and contributing Risk Factor (RF) in the following areas of combined spaceflight related dysregulation: i) radiation induced cellular damage [1], [2] ii) immune impacts and the inflammatory response [3], [4] and iii) varicella zoster virus (VZV) reactivation [5]. Varicella-zoster (VZV)/Chicken Pox virus is a neurotropic human alphaherpesvirus resulting in varicella upon primary infection, suppressed by the immune system becomes latent in ganglionic neurons, and reactivates under stress events to re-express in zoster and possibly shingles. Our laboratory has developed a complex threedimensional (3D) normal human neural tissue model that emulates several characteristics of the human trigeminal ganglia (TG) and allows the study of combinatorial experimentation which addresses, simultaneously, OSaD associated with Spaceflight adaptation and habitation [6].

  2. Tumor and normal tissue responses to fractioned non-uniform dose delivery

    Energy Technology Data Exchange (ETDEWEB)

    Kaellman, P; Aegren, A; Brahme, A [Karolinska Inst., Stockholm (Sweden). Dept. of Radiation Physics

    1996-08-01

    The volume dependence of the radiation response of a tumor is straight forward to quantify because it depends primarily on the eradication of all its clonogenic cells. A tumor therefore has a parallel organization as any surviving clonogen in principle can repopulate the tumor. The difficulty with the response of the tumor is instead to know the density and sensitivity distribution of the most resistant clonogenic cells. The increase in the 50% tumor control dose and the decrease in the maximum normalized slope of the dose response relation, {gamma}, in presence of small compartments of resistant tumor cells have therefore been quantified to describe their influence on the dose response relation. Injury to normal tissue is a much more complex and gradual process. It depends on earlier effects induced long before depletion of the differentiated and clonogenic cells that in addition may have a complex structural and functional organization. The volume dependence of the dose response relation of normal tissues is therefore described here by the relative seriality, s, of the infrastructure of the organ. The model can also be generalized to describe the response of heterogeneous tissues to non uniform dose distributions. The new model is compared with clinical and experimental data on normal tissue response, and shows good agreement both with regard to the shape of dose response relation and the volume dependence of the isoeffect dose. The response of tumors and normal tissues are quantified for arbitrary dose fractionations using the linear quadratic cell survival parameters {alpha} and {beta}. The parameters of the dose response relation are derived both for a constant dose per fraction and a constant number of dose fractions, thus in the latter case accounting also for non uniform dose delivery. (author). 26 refs, 4 figs.

  3. Dosimetric precision requirements and quantities for characterizing the response of tumors and normal tissues

    Energy Technology Data Exchange (ETDEWEB)

    Brahme, A [Karolinska Inst., Stockholm (Sweden). Dept. of Radiation Physics

    1996-08-01

    Based on simple radiobiological models the effect of the distribution of absorbed dose in therapy beams on the radiation response of tumor and normal tissue volumes are investigated. Under the assumption that the dose variation in the treated volume is small it is shown that the response of the tissue to radiation is determined mainly by the mean dose to the tumor or normal tissue volume in question. Quantitative expressions are also given for the increased probability of normal tissue complications and the decreased probability of tumor control as a function of increasing dose variations around the mean dose level to these tissues. When the dose variations are large the minimum tumor dose (to cm{sup 3} size volumes) will generally be better related to tumor control and the highest dose to significant portions of normal tissue correlates best to complications. In order not to lose more than one out of 20 curable patients (95% of highest possible treatment outcome) the required accuracy in the dose distribution delivered to the target volume should be 2.5% (1{sigma}) for a mean dose response gradient {gamma} in the range 2 - 3. For more steeply responding tumors and normal tissues even stricter requirements may be desirable. (author). 15 refs, 6 figs.

  4. Modulation of radiation induced DNA damage by natural products in hemopoietic tissue of mice

    International Nuclear Information System (INIS)

    Jayakumar, S.; Bhilwade, H.N.; Chaubey, R.C.

    2014-01-01

    Ionizing radiation is known to induce oxidative stress through generation of ROS leading to a variety of DNA lesions. However, the most dangerous DNA lesions which are responsible for the origin of lethal effects, mutagenesis, genomic instability and carcinogenesis are the DSBs. During recent years efforts are being made to identify phytochemicals, antioxidants or neutraxeuticals which can reduce harmful effect of radiation during accidental exposure or prevent normal tissue injury during radiotherapy. In the present study, we have investigated the radioprotective role of curcumin, a dietary antioxidant, taurine, malabaricone-C, and umbelliferone, for their radioprotective properties in hemopoietic cells of mice. Groups of mice-were fed 1% of curcumin in diet for three weeks. Similarly other groups of mice were injected i.p. with 50 mg/kg body weight of taurine for five consecutive days. After the completion of the treatment mice pre-treated with curcumin and taurine were exposed to 3 Gy of gamma rays. Malabaricone-C was tested for its radiomodulation potential in vitro, in spleenocytes of mouse. Spleenocytes were isolated and treated with different concentrations (0.5-25 ìM) of malabaricone-C. Immediately after irradiation, alkaline comet assay were performed using standard procedures. Twenty four post radiation exposure mice were sacrificed for micronucleus test. Results of these studies showed significant reduction in DNA damage by curcumin. The micronucleus data showed marginal increase in the frequency of micronucleated erythrocytes in curcumin fed group as compared to the controls. Mice receiving curcumin for 3 weeks in diet followed by gamma radiation (3 Gy), showed approximately 50% reduction in the frequency of micro nucleated polychromatic erythrocytes. Pre-treatment of mice with taurine significantly (p < 0.01) reduced the frequency of gamma rays induced mn-PCEs in bone marrow tissue. Malabaricone-C at 1.5 ìM concentration showed very good protection

  5. Enhancing the radiation response of tumors but not early or late responding normal tissues using a vascular disrupting agent

    DEFF Research Database (Denmark)

    Horsman, Michael R

    2017-01-01

    INTRODUCTION: Vascular disrupting agents (VDAs) damage tumor vasculature and enhance tumor radiation response. In this pre-clinical study, we combined radiation with the leading VDA in clinical development, combretastatin A-4 phosphate (CA4P), and compared the effects seen in tumors and relevant...... normal tissues. MATERIAL AND METHODS: Radiation was applied locally to tissues in CDF1 mice to produce full radiation dose-response curves. CA4P (250 mg/kg) was intraperitoneally (i.p.) injected within 30 minutes after irradiating. Response of 200 mm3 foot implanted C3H mammary carcinomas was assessed......% increase in ventilation rate measured by plethysmography within 9 months). A Chi-squared test was used for statistical comparisons (significance level of p 4P. The radiation...

  6. Optical redox imaging indices discriminate human breast cancer from normal tissues

    Science.gov (United States)

    Xu, He N.; Tchou, Julia; Feng, Min; Zhao, Huaqing; Li, Lin Z.

    2016-01-01

    Abstract. Our long-term goal was to investigate the potential of incorporating redox imaging technique as a breast cancer (BC) diagnosis component to increase the positive predictive value of suspicious imaging finding and to reduce unnecessary biopsies and overdiagnosis. We previously found that precancer and cancer tissues in animal models displayed abnormal mitochondrial redox state. We also revealed abnormal mitochondrial redox state in cancerous specimens from three BC patients. Here, we extend our study to include biopsies of 16 patients. Tissue aliquots were collected from both apparently normal and cancerous tissues from the affected cancer-bearing breasts shortly after surgical resection. All specimens were snap-frozen and scanned with the Chance redox scanner, i.e., the three-dimensional cryogenic NADH/Fp (reduced nicotinamide adenine dinucleotide/oxidized flavoproteins) fluorescence imager. We found both Fp and NADH in the cancerous tissues roughly tripled that in the normal tissues (predox ratio Fp/(NADH + Fp) was ∼27% higher in the cancerous tissues (predox ratio alone could predict cancer with reasonable sensitivity and specificity. Our findings suggest that the optical redox imaging technique can provide parameters independent of clinical factors for discriminating cancer from noncancer breast tissues in human patients. PMID:27896360

  7. Correlation of in vitro lymphocyte radiosensitivity and gene expression with late normal tissue reactions following curative radiotherapy for breast cancer

    International Nuclear Information System (INIS)

    Finnon, Paul; Kabacik, Sylwia; MacKay, Alan; Raffy, Claudine; A’Hern, Roger; Owen, Roger; Badie, Christophe; Yarnold, John; Bouffler, Simon

    2012-01-01

    Background and purpose: Identification of mechanisms of late normal tissue responses to curative radiotherapy that discriminate individuals with marked or mild responses would aid response prediction. This study aimed to identify differences in gene expression, apoptosis, residual DNA double strand breaks and chromosomal damage after in vitro irradiation of lymphocytes in a series of patients with marked (31 cases) or mild (28 controls) late adverse reaction to adjuvant breast radiotherapy. Materials and methods: Gene expression arrays, residual γH2AX, apoptosis, G2 chromosomal radiosensitivity and G0 micronucleus assay were used to compare case and control lymphocyte radiation responses. Results: Five hundred and thirty genes were up-regulated and 819 down-regulated by ionising radiation. Irradiated samples were identified with an overall cross-validated error rate of 3.4%. Prediction analyses to classify cases and controls using unirradiated (0 Gy), irradiated (4 Gy) or radiation response (4–0 Gy) expression profiles correctly identified samples with, respectively, 25%, 22% or 18.5% error rates. Significant inter-sample variation was observed for all cellular endpoints but cases and controls could not be distinguished. Conclusions: Variation in lymphocyte radiosensitivity does not necessarily correlate with normal tissue response to radiotherapy. Gene expression analysis can predict of radiation exposure and may in the future help prediction of normal tissue radiosensitivity.

  8. Effect of retinol on the hyperthermal response of normal tissue in vivo

    International Nuclear Information System (INIS)

    Rogers, M.A.; Marigold, J.C.L.; Hume, S.P.

    1983-01-01

    The effect of prior administration of retinol, a membrane labilizer, on the in vivo hyperthermal response of lysosomes was investigated in the mouse spleen using a quantitative histochemical assay for the lysosomal enzyme acid phosphatase. A dose of retinol which had no effect when given alone enhanced the thermal response of the lysosome, causing an increase in lysosomal membrane permeability. In contrast, the same dose of retinol had no effect on the gross hyperthermal response of mouse intestine; a tissue which is relatively susceptible to hyperthermia. Thermal damage to intestine was assayed directly by crypt loss 1 day after treatment or assessed as thermal enhancement of x-ray damage by counting crypt microcolonies 4 days after a combined heat and x-ray treatment. Thus, although the hyperthermal response of the lysosome could be enhanced by the administration of retinol, thermal damage at a gross tissue level appeared to be unaffected, suggesting that lysosomal membrane injury is unlikely to be a primary event in hyperthermal cell killing

  9. Fuel damage during off-normal transients in metal-fueled fast reactors

    International Nuclear Information System (INIS)

    Kramer, J.M.; Bauer, T.H.

    1990-01-01

    Fuel damage during off-normal transients is a key issue in the safety of fast reactors because the fuel pin cladding provides the primary barrier to the release of radioactive materials. Part of the Safety Task of the Integral Fast Reactor Program is to provide assessments of the damage and margins to failure for metallic fuels over the wide range of transients that must be considered in safety analyses. This paper reviews the current status of the analytical and experimental programs that are providing the bases for these assessments. 13 refs., 2 figs

  10. Therapy-induced effects in normal tissue; Therapieinduzierte Effekte am Normalgewebe

    Energy Technology Data Exchange (ETDEWEB)

    Kaick, G. van; Delorme, S. [Deutsches Krebsforschungszentrum (DKFZ), Abteilung E010 - Radiologie, Heidelberg (Germany)

    2008-09-15

    More than 50% of cancer patients survive for more than 5 years, owing to modern and effective treatment. Therefore, long-term sequelae of treatment are more frequently seen than in the past. Such effects on normal tissue may both mimic and obscure tumor recurrences. Besides the direct consequences of surgery, tissue damage due to radiation or chemotherapy frequently cause problems in differential diagnosis. Among the numerous sequelae of radiotherapy, the most prominent are disturbance of the blood-brain barrier, radiation pneumonitis, osteodystrophy and osteoradionecrosis, fatty changes of bone marrow, or increased radiodensity of breast parenchyma. Chemotherapy may cause, e.g., diffuse abnormalities of white matter, pneumonitis and lung fibrosis, cardiomyopathy, or diffuse and patchy changes in bone marrow signals in MRI. The most devastating long-term complications are secondary cancers and leukemia induced by both radiotherapy and chemotherapy. (orig.) [German] Mehr als 50% der Tumorpatienten ueberleben dank moderner Therapie laenger als 5 Jahre, sodass die Spaetfolgen am gesunden Gewebe haeufiger und genauer erfasst werden. Diese koennen Tumorrezidive sowohl verschleiern als auch vortaeuschen. Neben den unmittelbaren Folgen operativer Eingriffe sind Auswirkungen der Chemo- und Strahlentherapie ein haeufiges differenzialdiagnostisches Problem. Wichtige Folgen einer Strahlentherapie sind z. B. Blut-Hirn-Schranken-Stoerungen, Strahlenpneumonitis, Osteodystrophie und -radionekrose, Verfettung des blutbildenden Knochenmarks oder Parenchymverdichtungen der Brust. Chemotherapie kann u. a. zur Leukenzephalopathie, Pneumonitis und Lungenfibrose, Kardiomyopathie sowie zu diffusen und fleckfoermigen Signalaenderungen des Knochenmarks in der MRT fuehren. Die schwerstwiegende Spaetkomplikation ist die Induktion solider Zweittumoren und Leukaemien sowohl nach Strahlen- als auch Chemotherapie. (orig.)

  11. Oxidative DNA damage in lung tissue from patients with COPD is clustered in functionally significant sequences

    Directory of Open Access Journals (Sweden)

    Viktor M Pastukh

    2011-03-01

    Full Text Available Viktor M Pastukh1, Li Zhang2, Mykhaylo V Ruchko1, Olena Gorodnya1, Gina C Bardwell1, Rubin M Tuder2, Mark N Gillespie11Department of Pharmacology and Center for Lung Biology, University of South Alabama College of Medicine, Mobile, AL, USA; 2Program in Translational Lung Research, Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado at Denver, Aurora, CO, USAAbstract: Lung tissue from COPD patients displays oxidative DNA damage. The present study determined whether oxidative DNA damage was randomly distributed or whether it was localized in specific sequences in either the nuclear or mitochondrial genomes. The DNA damage-specific histone, gamma-H2AX, was detected immunohistochemically in alveolar wall cells in lung tissue from COPD patients but not control subjects. A PCR-based method was used to search for oxidized purine base products in selected 200 bp sequences in promoters and coding regions of the VEGF, TGF-β1, HO-1, Egr1, and β-actin genes while quantitative Southern blot analysis was used to detect oxidative damage to the mitochondrial genome in lung tissue from control subjects and COPD patients. Among the nuclear genes examined, oxidative damage was detected in only 1 sequence in lung tissue from COPD patients: the hypoxic response element (HRE of the VEGF promoter. The content of VEGF mRNA also was reduced in COPD lung tissue. Mitochondrial DNA content was unaltered in COPD lung tissue, but there was a substantial increase in mitochondrial DNA strand breaks and/or abasic sites. These findings show that oxidative DNA damage in COPD lungs is prominent in the HRE of the VEGF promoter and in the mitochondrial genome and raise the intriguing possibility that genome and sequence-specific oxidative DNA damage could contribute to transcriptional dysregulation and cell fate decisions in COPD.Keywords: DNA damage, VEGF hypoxic response element, mtDNA, COPD

  12. Thermal damage control of dye-assisted laser tissue welding: effect of dye concentration

    Science.gov (United States)

    Xie, Hua; Buckley, Lisa A.; Prahl, Scott A.; Shaffer, Brian S.; Gregory, Kenton W.

    2001-05-01

    Successful laser-assisted tissue welding was implemented to provide proper weld strength with minimized tissue thermal injury. We investigated and compared the weld strengths and morphologic changes in porcine small intestinal submucose (SIS) and porcine ureteral tissues with various concentration of indocyanine green (ICG) and with a solid albumin sheet. The study showed that the tissues were welded at lower ICG concentration (0.05 mM) with minimized tissue thermal damage using an 800-nm wavelength diode laser.

  13. Hypersensitivity to DNA-damaging agents in primary degenerations of excitable tissue

    International Nuclear Information System (INIS)

    Robbins, J.H.

    1983-01-01

    Defects in DNA-repair mechanisms render xeroderma pigmentosum cells hypersensitive to killing by the uv-type of DNA-damaging agent. Some xeroderma pigmentosum patients develop a primary neuronal degeneration, and cell lines from patients with the earliest onset of neurodegeneration are the most sensitive to killing by uv radiation. These findings led to the neuronal DNA integrity theory which holds that when the integrity of neuronal DNA is destroyed by the accumulation of unrepaired DNA damaged spontaneously or by endogenous metabolites, the neurons will undergo a primary degeneration. Cells from patients with Cockayne syndrome, a demyelinating disorder with a primary retinal degeneration, are also hypersensitive to the uv-type of DNA-damaging agent. Cells from patients with the primary neuronal degeneration of ataxia telangiectasia are hypersensitive to the x-ray-type of DNA-damaging agent. Cells from other patients with primary degeneration of excitable tissue also have hypersensitivity to the x-ray-type of DNA-damaging agent. These disorders include (1) primary neuronal degenerations which are either genetic (e.g., Huntington disease, familial dysautonomia, Friedreich ataxia) or sporadic (e.g., Alzheimer disease, Parkinson disease), (2) primary muscle degenerations (e.g., Duchenne muscular dystrophy), and (3) a primary retinal degeneration (Usher syndrome). Death of excitable tissue in vivo in these radiosensitive diseases may result from unrepaired DNA. This hypersensitivity provides the basis for developing suitable presymptomatic and prenatal tests for these diseases, for elucidating their pathogenesis, and for developing future therapies. 119 references, 3 figures, 3 tables

  14. Tissue repair in myxobacteria: A cooperative strategy to heal cellular damage.

    Science.gov (United States)

    Vassallo, Christopher N; Wall, Daniel

    2016-04-01

    Damage repair is a fundamental requirement of all life as organisms find themselves in challenging and fluctuating environments. In particular, damage to the barrier between an organism and its environment (e.g. skin, plasma membrane, bacterial cell envelope) is frequent because these organs/organelles directly interact with the external world. Here, we discuss the general strategies that bacteria use to cope with damage to their cell envelope and their repair limits. We then describe a novel damage-coping mechanism used by multicellular myxobacteria. We propose that cell-cell transfer of membrane material within a population serves as a wound-healing strategy and provide evidence for its utility. We suggest that--similar to how tissues in eukaryotes have evolved cooperative methods of damage repair--so too have some bacteria that live a multicellular lifestyle. © 2016 WILEY Periodicals, Inc.

  15. Modification of the biologic dose to normal tissue by daily fraction

    Energy Technology Data Exchange (ETDEWEB)

    Wollin, M; Kagan, A R [Southern California Permanente Medical Group, Los Angeles Calif. (USA). Dep. of Radiation Therapy

    1976-12-01

    A method to predict normal tissue injury is proposed that includes high daily doses and unusual times successfully by calculating a new value called BIR (Biologic Index of Reaction). BIR and NSD were calculated for various normal tissue reactions. With the aid of statistical correlation techniques it is found that the BIR model is better than the NSD model in predicting radiation myelopathy and vocal edema and as good as NSD IN PREDICTING RIB FRACTURE/ Neither model predicts pericardial effusion. In no case were the results of BIR inferior to those of NSD.

  16. Using electrolyte leakage tests to determine lifting windows and detect tissue damage

    Science.gov (United States)

    Richard W. Tinus

    2002-01-01

    Physiological testing is rapidly coming into use as a means to determine the condition of nursery stock and predict how it will respond to treatment or use. One such test, the electrolyte leakage test, can be used to measure cold hardiness and detect tissue damage. The principle of this test is that when cell membranes are damaged, electrolytes leak out into the water...

  17. Application of a Brittle Damage Model to Normal Plate-on-Plate Impact

    National Research Council Canada - National Science Library

    Raftenberg, Martin N

    2005-01-01

    A brittle damage model presented by Grinfeld and Wright of the U.S. Army Research Laboratory was implemented in the LS-DYNA finite element code and applied to the simulation of normal plate-on-plate impact...

  18. Non-damaging laser therapy of the macula: Titration algorithm and tissue response

    Science.gov (United States)

    Palanker, Daniel; Lavinsky, Daniel; Dalal, Roopa; Huie, Philip

    2014-02-01

    Retinal photocoagulation typically results in permanent scarring and scotomata, which limit its applicability to the macula, preclude treatments in the fovea, and restrict the retreatments. Non-damaging approaches to laser therapy have been tested in the past, but the lack of reliable titration and slow treatment paradigms limited their clinical use. We developed and tested a titration algorithm for sub-visible and non-damaging treatments of the retina with pulses sufficiently short to be used with pattern laser scanning. The algorithm based on Arrhenius model of tissue damage optimizes the power and duration for every energy level, relative to the threshold of lesion visibility established during titration (and defined as 100%). Experiments with pigmented rabbits established that lesions in the 50-75% energy range were invisible ophthalmoscopically, but detectable with Fluorescein Angiography and OCT, while at 30% energy there was only very minor damage to the RPE, which recovered within a few days. Patients with Diabetic Macular Edema (DME) and Central Serous Retinopathy (CSR) have been treated over the edematous areas at 30% energy, using 200μm spots with 0.25 diameter spacing. No signs of laser damage have been detected with any imaging modality. In CSR patients, subretinal fluid resolved within 45 days. In DME patients the edema decreased by approximately 150μm over 60 days. After 3-4 months some patients presented with recurrence of edema, and they responded well to retreatment with the same parameters, without any clinically visible damage. This pilot data indicates a possibility of effective and repeatable macular laser therapy below the tissue damage threshold.

  19. A 3D intestinal tissue model supports Clostridioides difficile germination, colonization, toxin production and epithelial damage.

    Science.gov (United States)

    Shaban, Lamyaa; Chen, Ying; Fasciano, Alyssa C; Lin, Yinan; Kaplan, David L; Kumamoto, Carol A; Mecsas, Joan

    2018-04-01

    Endospore-forming Clostridioides difficile is a causative agent of antibiotic-induced diarrhea, a major nosocomial infection. Studies of its interactions with mammalian tissues have been hampered by the fact that C. difficile requires anaerobic conditions to survive after spore germination. We recently developed a bioengineered 3D human intestinal tissue model and found that low O 2 conditions are produced in the lumen of these tissues. Here, we compared the ability of C. difficile spores to germinate, produce toxin and cause tissue damage in our bioengineered 3D tissue model versus in a 2D transwell model in which human cells form a polarized monolayer. 3D tissue models or 2D polarized monolayers on transwell filters were challenged with the non-toxin producing C. difficile CCUG 37787 serotype X (ATCC 43603) and the toxin producing UK1 C. difficile spores in the presence of the germinant, taurocholate. Spores germinated in both the 3D tissue model as well as the 2D transwell system, however toxin activity was significantly higher in the 3D tissue models compared to the 2D transwells. Moreover, the epithelium damage in the 3D tissue model was significantly more severe than in 2D transwells and damage correlated significantly with the level of toxin activity detected but not with the amount of germinated spores. Combined, these results show that the bioengineered 3D tissue model provides a powerful system with which to study early events leading to toxin production and tissue damage of C. difficile with mammalian cells under anaerobic conditions. Furthermore, these systems may be useful for examining the effects of microbiota, novel drugs and other potential therapeutics directed towards C. difficile infections. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Differential expression of GPR30 in preeclampsia placenta tissue and normal placenta tissue and its clinical significance

    Directory of Open Access Journals (Sweden)

    Ben-Zhou Feng

    2016-04-01

    Full Text Available Objective: To study the differential expression of GPR30 in preeclampsia placenta tissue and normal placenta tissue and its clinical significance. Methods: Preeclampsia placenta tissue and normal placenta tissue were collected and GPR30 expression levels were detected; human umbilical vein endothelial cells were cultured and processed with GRP30 inhibitor and GRP30 agonist combined with hypoxia-reoxygenation respectively, and cell apoptosis as well as pro-angiogenesis molecule and apoptosis molecule contents were detected. Results: mRNA content and protein content of GRP30 in preeclampsia placenta tissue were significantly lower than those in normal placenta tissue; apoptosis rate of G15 group was significantly higher than that of control group, VEGF and bFGF contents in supernatant were significantly lower than those of control group, and mRNA contents of Bax, Caspase-3 and Caspase-9 in cells were significantly higher than those of control group; apoptosis rate of H/R group was significantly higher than that of control group, VEGF and bFGF contents in supernatant were significantly lower than those of control group, and mRNA contents of Bax, Caspase-3 and Caspase-9 in cells were significantly higher than those of control group; apoptosis rate of G1 group was significantly lower than that of H/R group, VEGF and bFGF contents in supernatant were significantly higher than those of H/R group, and mRNA contents of Bax, Caspase-3 and Caspase-9 in cells were significantly lower than those of H/R group. Conclusions: Low expression of GPR30 in placenta tissue is closely associated with the occurrence of preeclampsia, enhancing GPR function can reduce endothelial cell apoptosis and increase the contents of pro-angiogenesis factors, and it has endothelial protection effect.

  1. Avaliação da expressão tecidual do gene de reparo MLH1 e dos níveis de dano oxidativo ao DNA em doentes com câncer colorretal Evaluation of expression of mismatch repair gene MLH1 and levels of oxidative DNA damage in normal and neoplastic tissues of patients with colorectal cancer

    Directory of Open Access Journals (Sweden)

    Carlos Augusto Real Martinez

    2009-09-01

    form the DNA, allowing mutations in controlling genes of the cell cycle. The cells have a defense system represented by the DNA mismatch repair genes that correct the errors of matching prevent the development of DNA mutations. Few studies have evaluated the relationship between oxidative DNA damage and the tissue expression of mismatch repair genes. AIM: The aim of the present study was evaluate the levels of oxidative DNA and the tissue expression of MLH1 mismatch repair gene in the cells of normal and neoplastic colonic mucosa of patients with colorectal cancer. MATERIAL AND METHODS: Were studied 44 patients with diagnosis of colorectal adenocarcinoma. Were excluded patients with hereditary colorectal cancer, with colorectal cancer associate with inflammatory bowel diseases and those undergoing neoadjuvant radioquimiotherapy. To evaluate the levels of oxidative DNA damage was used the single cell gel electrophoresis (comet assay evaluating 100 cells obtained from normal and neoplastic tissues. For the evaluation of the tissue expression of MLH1 gene was employed the technique of polymerase chain reaction in real time (RT-PCR with primer specifically designed for MLH1 gene. The comparison among the levels of DNA oxidative stress and expression of MLH1 mismatch repair gene in normal and neoplastic tissues was done by Student t test adopting a significance level of 5% (p< 0.05. RESULTS: The levels of oxidative DNA damage in tumor tissue were significantly higher when compared to the level of the normal tissue (p = 0.0001. The tissue expression of MLH1 mismatch repair gene in tumor tissue was significantly lower when compared to normal tissue (p=0.02. CONCLUSION: The mismatch repair gene MLH1 are less expressed in tumor tissue and inversely related to levels of oxidative DNA damage.

  2. Comparison of Tissue Stiffness Using Shear Wave Elastography in Men with Normal Testicular Tissue, Testicular Microlithiasis and Testicular Cancer

    DEFF Research Database (Denmark)

    Pedersen, Malene Roland; Møller, Henrik; Osther, Palle Jørn Sloth

    2017-01-01

    Objectives: To compare elastography measurements in men with normal testicular tissue, testicular microlithiasis and testicular cancer. Methods: A total of 248 consecutive patients were included. All men provided written informed consent. Testicular stiffness was assessed using shear wave...... elastography (SWE). Three SWE velocity measurements were assessed in each testicle. The patients were divided into three groups; men with normal testicular tissue (n=130), men with testicular microlithiasis (n=99) and men with testicular cancer (n=19). Results: We found a higher mean velocity in the group...... of patients with testicular cancer (1.92 m/s (95% CI 1.82-2.03)) compared to both the group with normal tissue (0.76 m/s (95% CI: 0.75-0.78)) (ptesticular microlithiasis 0.79 m/s (95% CI: 0.77-0.81) (ptesticular microlithiasis increased stiffness...

  3. Laser treatment of female stress urinary incontinence: optical, thermal, and tissue damage simulations

    Science.gov (United States)

    Hardy, Luke A.; Chang, Chun-Hung; Myers, Erinn M.; Kennelly, Michael J.; Fried, Nathaniel M.

    2016-02-01

    Treatment of female stress urinary incontinence (SUI) by laser thermal remodeling of subsurface tissues is studied. Light transport, heat transfer, and thermal damage simulations were performed for transvaginal and transurethral methods. Monte Carlo (MC) provided absorbed photon distributions in tissue layers (vaginal wall, endopelvic fascia, urethral wall). Optical properties (n,μa,μs,g) were assigned to each tissue at λ=1064 nm. A 5-mm-diameter laser beam and power of 5 W for 15 s was used, based on previous experiments. MC output was converted into absorbed energy, serving as input for ANSYS finite element heat transfer simulations of tissue temperatures over time. Convective heat transfer was simulated with contact cooling probe set at 0 °C. Thermal properties (κ,c,ρ) were assigned to each tissue layer. MATLAB code was used for Arrhenius integral thermal damage calculations. A temperature matrix was constructed from ANSYS output, and finite sum was incorporated to approximate Arrhenius integral calculations. Tissue damage properties (Ea,A) were used to compute Arrhenius sums. For the transvaginal approach, 37% of energy was absorbed in endopelvic fascia layer with 0.8% deposited beyond it. Peak temperature was 71°C, treatment zone was 0.8-mm-diameter, and almost all of 2.7-mm-thick vaginal wall was preserved. For transurethral approach, 18% energy was absorbed in endopelvic fascia with 0.3% deposited beyond it. Peak temperature was 80°C, treatment zone was 2.0-mm-diameter, and only 0.6 mm of 2.4-mm-thick urethral wall was preserved. A transvaginal approach is more feasible than transurethral approach for laser treatment of SUI.

  4. Mitigation of Radiation-Induced Epithelial Damage by the TLR5 Agonist Entolimod in a Mouse Model of Fractionated Head and Neck Irradiation.

    Science.gov (United States)

    Toshkov, Ilia A; Gleiberman, Anatoli S; Mett, Vadim L; Hutson, Alan D; Singh, Anurag K; Gudkov, Andrei V; Burdelya, Lyudmila G

    2017-05-01

    Radiation treatment of head and neck cancer frequently causes severe collateral damage to normal tissues including mouth mucosa, salivary glands and skin. This toxicity limits the radiation dose that can be delivered and affects the patient's quality of life. Previous studies in mice and nonhuman primates showed that entolimod, a toll-like receptor 5 (TLR5) agonist derived from bacterial flagellin, effectively reduced radiation damage to hematopoietic and gastrointestinal tissues in both total-body and local irradiation scenarios, with no protection of tumors. Here, using a mouse model, we analyzed the efficacy of entolimod administered before or after irradiation in reducing damage to normal tissues. Animals received local fractionated radiation to the head and neck area, thus modeling radiotherapy of head and neck cancer. Tissue damage was evaluated through histomorphological examination of samples collected at different time points up to four weeks, mice were exposed locally to five daily fractions of 5, 6 or 7 Gy. A semiquantitative scoring system was used to assess the severity of observed pathomorphological changes. In this model, radiation damage was most severe in the lips, tongue and skin, moderate in the upper esophagus and minor in salivary glands. The kinetics of injury appearance and recovery of normal morphology varied among tissues, with maximal damage to the tongue, esophagus and salivary glands developing at earlier times (days 8-11 postirradiation) relative to that of lip and skin mucosa (days 11-15 postirradiation). While both tested regimens of entolimod significantly reduced the extent of radiation damage and accelerated restoration of normal structure in all tissues analyzed, administration of entolimod 1 h after each irradiation was more effective than treatment 30 min before irradiation. These results support the potential clinical use of entolimod as an adjuvant for improving the therapeutic index of head and neck cancer radiotherapy by

  5. The influence of parotid gland sparing on radiation damages of dental hard tissues.

    Science.gov (United States)

    Hey, Jeremias; Seidel, Johannes; Schweyen, Ramona; Paelecke-Habermann, Yvonne; Vordermark, Dirk; Gernhardt, Christian; Kuhnt, Thomas

    2013-07-01

    The aim of the present study was to evaluate whether radiation damage on dental hard tissue depends on the mean irradiation dose the spared parotid gland is subjected to or on stimulated whole salivary flow rate. Between June 2002 and October 2008, 70 patients with neck and cancer curatively irradiated were included in this study. All patients underwent dental treatment referring to the guidelines and recommendations of the German Society of Dental, Oral and Craniomandibular Sciences prior, during, and after radiotherapy (RT). During the follow-up period of 24 months, damages on dental hard tissues were classified according to the RTOG/EORTC guidelines. The mean doses (D(mean)) during spared parotid gland RT were determined. Stimulated whole saliva secretion flow rates (SFR) were measured before RT and 1, 6, 12, 24 months after RT. Thirty patients showed no carious lesions (group A), 18 patients developed sporadic carious lesions (group B), and 22 patients developed general carious lesions (group C). Group A patients received a D mean of 21.2 ± 11.04 Gy. Group B patients received a D(mean) of 26.5 ± 11.59 Gy and group C patients received a D(mean) of 33.9 ± 9.93 Gy, respectively. The D(mean) of group A was significantly lower than the D(mean) of group C (p dental hard tissue correlates with increased mean irradiation doses as well as decreased salivary flow rates. Parotid gland sparing resulting in a dose below 20 Gy reduces radiation damage on dental hard tissues, and therefore, the dose may act as a predictor for the damage to be expected.

  6. Trace elemental correlation study in malignant and normal breast tissue by PIXE technique

    International Nuclear Information System (INIS)

    Raju, G.J. Naga; Sarita, P.; Kumar, M. Ravi; Murty, G.A.V. Ramana; Reddy, B. Seetharami; Lakshminarayana, S.; Vijayan, V.; Lakshmi, P.V.B. Rama; Gavarasana, Satyanarayana; Reddy, S. Bhuloka

    2006-01-01

    Particle induced X-ray emission technique was used to study the variations in trace elemental concentrations between normal and malignant human breast tissue specimens and to understand the effects of altered homeostasis of these elements in the etiology of breast cancer. A 3 MeV proton beam was used to excite the biological samples of normal and malignant breast tissues. The elements Cl, K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Br, Rb and Sr were identified and their relative concentrations were estimated. Almost all the elements were found to be elevated (p < 0.05, Wilcoxon signed-ranks test) in the cancerous tissues when compared with normal tissues. The excess levels of trace elements observed in the cancerous breast tissues could either be a cause or a consequence of breast cancer. Regarding their role in the initiation or promotion of breast cancer, one possible interpretation is that the elevated levels of Cu, Fe and Cr could have led to the formation of free radicals or other reactive oxygen species (ROS) that adversely affect DNA thereby causing breast cancer, which is mainly attributed to genetic abnormalities. Moreover, since Cu and Fe are required for angiogenesis, elevated concentrations of these elements are likely to promote breast cancer by increasing the blood supply for tumor growth. On the other hand elevated concentrations of elements in breast cancer tissues might also be a consequence of the cancer. This can be understood in terms of the biochemical and histological differences between normal and cancerous breast tissues. Tumors, characterized by unregulated multiplication of cells, need an ever-increasing supply of essential nutrients including trace elements. This probably results in an increased vascularity of malignant tissues, which in turn leads to enhancement of elemental concentrations in tumors

  7. The expression of Egfl7 in human normal tissues and epithelial tumors.

    Science.gov (United States)

    Fan, Chun; Yang, Lian-Yue; Wu, Fan; Tao, Yi-Ming; Liu, Lin-Sen; Zhang, Jin-Fan; He, Ya-Ning; Tang, Li-Li; Chen, Guo-Dong; Guo, Lei

    2013-04-23

    To investigate the expression of Egfl7 in normal adult human tissues and human epithelial tumors.
 RT-PCR and Western blot were employed to detect Egfl7 expression in normal adult human tissues and 10 human epithelial tumors including hepatocellular carcinoma (HCC), lung cancer, breast cancer, prostate cancer, colorectal cancer, gastric cancer, esophageal cancer, malignant glioma, ovarian cancer and renal cancer. Immunohistochemistry and cytoimmunofluorescence were subsequently used to determine the localization of Egfl7 in human epithelial tumor tissues and cell lines. ELISA was also carried out to examine the serum Egfl7 levels in cancer patients. In addition, correlations between Egfl7 expression and clinicopathological features as well as prognosis of HCC and breast cancer were also analyzed on the basis of immunohistochemistry results.
 Egfl7 was differentially expressed in 19 adult human normal tissues and was overexpressed in all 10 human epithelial tumor tissues. The serum Egfl7 level was also significantly elevated in cancer patients. The increased Egfl7 expression in HCC correlated with vein invasion, absence of capsule formation, multiple tumor nodes and poor prognosis. Similarly, upregulation of Egfl7 in breast cancer correlated strongly with TNM stage, lymphatic metastasis, estrogen receptor positivity, Her2 positivity and poor prognosis. 
 Egfl7 is significantly upregulated in human epithelial tumor tissues, suggesting Egfl7 to be a potential biomarker for human epithelial tumors, especially HCC and breast cancer.

  8. Adipose Tissues Characteristics of Normal, Obesity, and Type 2 Diabetes in Uygurs Population

    Directory of Open Access Journals (Sweden)

    Jun Zhang

    2015-01-01

    Full Text Available Our results showed that, at the same BMI level, Uygurs have greater WHR values, abdominal visceral fat content, and diabetes risks than Kazaks. In addition, values of HDL-C in Uygur subjects were lower than those in Kazak subjects, and values of creatinine, uric acid, diastolic blood pressure, blood glucose, and fructosamine in Uygur male subjects were lower than those in Kazak male subjects. In contrast, systolic blood pressure values in Uygur subjects were greater than those in Kazak subjects, and blood glucose values were greater in Uygur female subjects than in Kazak female subjects. Additionally, in Uygurs, visceral adipose tissue expression levels of TBX1 and TCF21 were greater in obesity group than in normal and T2DM groups and lower in T2DM group than in normal group (P<0.01. The visceral adipose tissue expression levels of APN in normal group was greater than those in obesity and T2DM groups, and visceral adipose tissue expression levels of TNF-α and MCP-1 in normal group were lower than those in obesity and T2DM groups (P<0.01. In conclusion, T2DM in Uygurs was mainly associated with not only distribution of adipose tissue in body, but also change in metabolic activity and adipocytokines secretion of adipose tissue.

  9. Suberoylanilide hydroxamic acid affects γH2AX expression in osteosarcoma, atypical teratoid rhabdoid tumor and normal tissue cell lines after irradiation

    International Nuclear Information System (INIS)

    Blattmann, C.; Oertel, S.; Thiemann, M.; Weber, K.J.; Schmezer, P.; Zelezny, O.; Lopez Perez, R.; Kulozik, A.E.; Debus, J.; Ehemann, V.

    2012-01-01

    Osteosarcoma and atypical teratoid rhabdoid tumors are tumor entities with varying response to common standard therapy protocols. Histone acetylation affects chromatin structure and gene expression which are considered to influence radiation sensitivity. The aim of this study was to investigate the effect of the combination therapy with the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) and irradiation on atypical teratoid rhabdoid tumors and osteosarcoma compared to normal tissue cell lines. Clonogenic assay was used to determine cell survival. DNA double-strand breaks (DSB) were examined by pulsed-field electrophoresis (PFGE) as well as by γH2AX immunostaining involving flow cytometry, fluorescence microscopy, and immunoblot analysis. SAHA lead to an increased radiosensitivity in tumor but not in normal tissue cell lines. γH2AX expression as an indicator for DSB was significantly increased when SAHA was applied 24 h before irradiation to the sarcoma cell cultures. In contrast, γH2AX expression in the normal tissue cell lines was significantly reduced when irradiation was combined with SAHA. Analysis of initial DNA fragmentation and fragment rejoining by PFGE, however, did not reveal differences in response to the SAHA pretreatment for either cell type. SAHA increases radiosensitivity in tumor but not normal tissue cell lines. The increased H2AX phosphorylation status of the SAHA-treated tumor cells post irradiation likely reflects its delayed dephosphorylation within the DNA damage signal decay rather than chromatin acetylation-dependent differences in the overall efficacy of DSB induction and rejoining. The results support the hypothesis that combining SAHA with irradiation may provide a promising strategy in the treatment of solid tumors. (orig.)

  10. TU-F-12A-09: GLCM Texture Analysis for Normal-Tissue Toxicity: A Prospective Ultrasound Study of Acute Toxicity in Breast-Cancer Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, T; Yang, X; Curran, W; Torres, M [Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA (United States)

    2014-06-15

    Purpose: To evaluate the morphologic and structural integrity of the breast glands using sonographic textural analysis, and identify potential early imaging signatures for radiation toxicity following breast-cancer radiotherapy (RT). Methods: Thirty-eight patients receiving breast RT participated in a prospective ultrasound imaging study. Each participant received 3 ultrasound scans: 1 week before RT (baseline), and at 6-week and 3-month follow-ups. Patients were imaged with a 10-MHz ultrasound on the four quadrant of the breast. A second order statistical method of texture analysis, called gray level co-occurrence matrix (GLCM), was employed to assess RT-induced breast-tissue toxicity. The region of interest (ROI) was 28 mm × 10 mm in size at a 10 mm depth under the skin. Twenty GLCM sonographic features, ratios of the irradiated breast and the contralateral breast, were used to quantify breast-tissue toxicity. Clinical assessment of acute toxicity was conducted using the RTOG toxicity scheme. Results: Ninety-seven ultrasound studies (776 images) were analyzed; and 5 out of 20 sonographic features showed significant differences (p < 0.05) among the baseline scans, the acute toxicity grade 1 and 2 groups. These sonographic features quantified the degree of tissue damage through homogeneity, heterogeneity, randomness, and symmetry. Energy ratio value decreased from 108±0.05 (normal) to 0.99±0.05 (Grade 1) and 0.84±0.04 (Grade 2); Entropy ratio value increased from 1.01±0.01 to 1.02±0.01 and 1.04±0.01; Contrast ratio value increased from 1.03±0.03 to 1.07±0.06 and 1.21±0.09; Variance ratio value increased from 1.06±0.03 to 1.20±0.04 and 1.42±0.10; Cluster Prominence ratio value increased from 0.98±0.02 to 1.01±0.04 and 1.25±0.07. Conclusion: This work has demonstrated that the sonographic features may serve as imaging signatures to assess radiation-induced normal tissue damage. While these findings need to be validated in a larger cohort, they suggest

  11. Fractionation in normal tissues: the (α/β)eff concept can account for dose heterogeneity and volume effects.

    Science.gov (United States)

    Hoffmann, Aswin L; Nahum, Alan E

    2013-10-07

    The simple Linear-Quadratic (LQ)-based Withers iso-effect formula (WIF) is widely used in external-beam radiotherapy to derive a new tumour dose prescription such that there is normal-tissue (NT) iso-effect when changing the fraction size and/or number. However, as conventionally applied, the WIF is invalid unless the normal-tissue response is solely determined by the tumour dose. We propose a generalized WIF (gWIF) which retains the tumour prescription dose, but replaces the intrinsic fractionation sensitivity measure (α/β) by a new concept, the normal-tissue effective fractionation sensitivity, [Formula: see text], which takes into account both the dose heterogeneity in, and the volume effect of, the late-responding normal-tissue in question. Closed-form analytical expressions for [Formula: see text] ensuring exact normal-tissue iso-effect are derived for: (i) uniform dose, and (ii) arbitrary dose distributions with volume-effect parameter n = 1 from the normal-tissue dose-volume histogram. For arbitrary dose distributions and arbitrary n, a numerical solution for [Formula: see text] exhibits a weak dependence on the number of fractions. As n is increased, [Formula: see text] increases from its intrinsic value at n = 0 (100% serial normal-tissue) to values close to or even exceeding the tumour (α/β) at n = 1 (100% parallel normal-tissue), with the highest values of [Formula: see text] corresponding to the most conformal dose distributions. Applications of this new concept to inverse planning and to highly conformal modalities are discussed, as is the effect of possible deviations from LQ behaviour at large fraction sizes.

  12. Disease related tissue damage and subsequent changes in fillet structure

    DEFF Research Database (Denmark)

    of the fish and subsequent a reduction in price. Despite this, the impact of infectious diseases on the meat quality and the mechanisms behind are poorly investigated. Wound repair is a dynamic, interactive response to tissue injury that involves a complex interaction and cross talk of various cell types......, extracellular matrix molecules, soluble mediators and cytokines. In order to describe the molecular mechanisms and processes of wound repair, a panel of genes covering immunological factors and tissue regeneration were used to measure changes at the mRNA level following mechanical tissue damage in rainbow trout...... (Oncorhynchus mykiss). Needle disrupted muscle tissue was sampled at different time points and subject to real-time RT-PCR for measuring the expression of the genes IL-1β, IL-8, IL-10, TGF-β, Myostatin-1ab, MMP-2, CTGF, Collagen-1α, VEGF, iNOS, Arg-2 and FGF. The results showed an initial phase with up...

  13. Compton scattering spectrum as a source of information of normal and neoplastic breast tissues' composition

    Energy Technology Data Exchange (ETDEWEB)

    Antoniassi, M.; Conceicao, A.L.C. [Departamento de Fisica-Faculdade de Filosofia Ciencias e Letras de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, 14040-901 Sao Paulo (Brazil); Poletti, M.E., E-mail: poletti@ffclrp.usp.br [Departamento de Fisica-Faculdade de Filosofia Ciencias e Letras de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, 14040-901 Sao Paulo (Brazil)

    2012-07-15

    In this work we measured X-ray scatter spectra from normal and neoplastic breast tissues using photon energy of 17.44 keV and a scattering angle of 90 Degree-Sign , in order to study the shape (FWHM) of the Compton peaks. The obtained results for FWHM were discussed in terms of composition and histological characteristics of each tissue type. The statistical analysis shows that the distribution of FWHM of normal adipose breast tissue clearly differs from all other investigated tissues. Comparison between experimental values of FWHM and effective atomic number revealed a strong correlation between them, showing that the FWHM values can be used to provide information about elemental composition of the tissues. - Highlights: Black-Right-Pointing-Pointer X-ray scatter spectra from normal and neoplastic breast tissues were measured. Black-Right-Pointing-Pointer Shape (FWHM) of Compton peak was related with elemental composition and characteristics of each tissue type. Black-Right-Pointing-Pointer A statistical hypothesis test showed clear differences between normal and neoplastic breast tissues. Black-Right-Pointing-Pointer There is a strong correlation between experimental values of FWHM and effective atomic number. Black-Right-Pointing-Pointer Shape (FWHM) of Compton peak can be used to provide information about elemental composition of the tissues.

  14. Protective Effect of Pyruvate Against Radiation-Induced Damage in Collagenized Tissues

    Science.gov (United States)

    Griko, Y. V.; Yan, Xiaoli

    2016-01-01

    Exposure to high doses of ionizing radiation produces both acute and late effects on the collagenized tissues and have profound effects on wound healing. Because of the crucial practical importance for new radioprotective agents, our study has been focused on evaluation of the efficacy of non-toxic naturally occurring compounds to protect tissue integrity against high-dose gamma radiation. Here, we demonstrate that molecular integrity of collagen may serve as a sensitive biological marker for quantitative evaluation of molecular damage to collagenized tissue and efficacy of radioprotective agents. Increasing doses of gamma radiation (0-50kGy) result in progressive destruction of the native collagen fibrils, which provide a structural framework, strength, and proper milieu for the regenerating tissue. The strategy used in this study involved the thermodynamic specification of all structural changes in collagenized matrix of skin, aortic heart valve, and bone tissue induced by different doses and conditions of g-irradiation. This study describes a simple biophysical approach utilizing the Differential Scanning Calorimetry (DSC) to characterize the structural resistance of the aortic valve matrix exposed to different doses of g-irradiation. It allows us to identify the specific response of each constituent as well as to determine the influence of the different treatments on the characteristic parameters of protein structure. We found that pyruvate, a substance that naturally occurs in the body, provide significant protection (up to 80%) from biochemical and biomechanical damage to the collagenized tissue through the effective targeting of reactive oxygen species. The recently discovered role of pyruvate in the cell antioxidant defense to O2 oxidation, and its essential constituency in the daily human diet, indicate that the administration of pyruvate-based radioprotective formulations may provide safe and effective protection from deleterious effects of ionizing

  15. Alteration of proliferation and apoptotic markers in normal and premalignant tissue associated with prostate cancer

    International Nuclear Information System (INIS)

    Ananthanarayanan, Vijayalakshmi; Deaton, Ryan J; Yang, Ximing J; Pins, Michael R; Gann, Peter H

    2006-01-01

    Molecular markers identifying alterations in proliferation and apoptotic pathways could be particularly important in characterizing high-risk normal or pre-neoplastic tissue. We evaluated the following markers: Ki67, Minichromosome Maintenance Protein-2 (Mcm-2), activated caspase-3 (a-casp3) and Bcl-2 to determine if they showed differential expression across progressive degrees of intraepithelial neoplasia and cancer in the prostate. To identify field effects, we also evaluated whether high-risk expression patterns in normal tissue were more common in prostates containing cancer compared to those without cancer (supernormal), and in histologically normal glands adjacent to a cancer focus as opposed to equivalent glands that were more distant. The aforementioned markers were studied in 13 radical prostatectomy (RP) and 6 cystoprostatectomy (CP) specimens. Tissue compartments representing normal, low grade prostatic intraepithelial neoplasia (LGPIN), high grade prostatic intraepithelial neoplasia (HGPIN), as well as different grades of cancer were mapped on H&E slides and adjacent sections were analyzed using immunohistochemistry. Normal glands within 1 mm distance of a tumor focus and glands beyond 5 mm were considered 'near' and 'far', respectively. Randomly selected nuclei and 40 × fields were scored by a single observer; basal and luminal epithelial layers were scored separately. Both Ki-67 and Mcm-2 showed an upward trend from normal tissue through HGPIN and cancer with a shift in proliferation from basal to luminal compartment. Activated caspase-3 showed a significant decrease in HGPIN and cancer compartments. Supernormal glands had significantly lower proliferation indices and higher a-casp3 expression compared to normal glands. 'Near' normal glands had higher Mcm-2 indices compared to 'far' glands; however, they also had higher a-casp3 expression. Bcl-2, which varied minimally in normal tissue, did not show any trend

  16. Pattern of somatostatin receptors expression in normal and bladder cancer tissue samples.

    Science.gov (United States)

    Karavitakis, Markos; Msaouel, Pavlos; Michalopoulos, Vassilis; Koutsilieris, Michael

    2014-06-01

    Known risks factors for bladder cancer progression and recurrence are limited regarding their prognostic ability. Therefore identification of molecular determinants of disease progression could provide with more specific prognostic information and could be translated into new approaches for biomarker development. In the present study we evaluated, the expression patterns of somatostatin receptors 1-5 (SSTRs) in normal and tumor bladder tissues. The expression of SSTR1-5 was characterized in 45 normal and bladder cancer tissue samples using reverse transcriptase-polymerase chain reaction (RT-PCR). SSTR1 was expressed in 24 samples, SSTR2 in 15, SSTR3 in 23, SSTR4 in 16 and SSTR5 in all but one sample. Bladder cancer tissue samples expressed lower levels of SSTR3. Co-expression of SSTRs was associated with superficial disease. Our results demonstrate, for the first time, that there is expression of SSTR in normal and bladder cancer urothelium. Further studies are required to evaluate the prognostic and therapeutic significance of these findings. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  17. Tissue Engineering of the Penis

    Directory of Open Access Journals (Sweden)

    Manish N. Patel

    2011-01-01

    Full Text Available Congenital disorders, cancer, trauma, or other conditions of the genitourinary tract can lead to significant organ damage or loss of function, necessitating eventual reconstruction or replacement of the damaged structures. However, current reconstructive techniques are limited by issues of tissue availability and compatibility. Physicians and scientists have begun to explore tissue engineering and regenerative medicine strategies for repair and reconstruction of the genitourinary tract. Tissue engineering allows the development of biological substitutes which could potentially restore normal function. Tissue engineering efforts designed to treat or replace most organs are currently being undertaken. Most of these efforts have occurred within the past decade. However, before these engineering techniques can be applied to humans, further studies are needed to ensure the safety and efficacy of these new materials. Recent progress suggests that engineered urologic tissues and cell therapy may soon have clinical applicability.

  18. Short- and Mid-term Effects of Irreversible Electroporation on Normal Renal Tissue: An Animal Model

    Energy Technology Data Exchange (ETDEWEB)

    Wendler, J. J., E-mail: johann.wendler@med.ovgu.de; Porsch, M.; Huehne, S.; Baumunk, D. [University of Magdeburg, Department of Urology (Germany); Buhtz, P. [Institute of Pathology, University of Magdeburg (Germany); Fischbach, F.; Pech, M. [University of Magdeburg, Department of Radiology (Germany); Mahnkopf, D. [Institute of Medical Technology and Research (Germany); Kropf, S. [Institute of Biometry, University of Magdeburg (Germany); Roessner, A. [Institute of Pathology, University of Magdeburg (Germany); Ricke, J. [University of Magdeburg, Department of Radiology (Germany); Schostak, M.; Liehr, U.-B. [University of Magdeburg, Department of Urology (Germany)

    2013-04-15

    Irreversible electroporation (IRE) is a novel nonthermal tissue ablation technique by high current application leading to apoptosis without affecting extracellular matrix. Previous results of renal IRE shall be supplemented by functional MRI and differentiated histological analysis of renal parenchyma in a chronic treatment setting. Three swine were treated with two to three multifocal percutaneous IRE of the right kidney. MRI was performed before, 30 min (immediate-term), 7 days (short-term), and 28 days (mid-term) after IRE. A statistical analysis of the lesion surrounded renal parenchyma intensities was made to analyze functional differences depending on renal part, side and posttreatment time. Histological follow-up of cortex and medulla was performed after 28 days. A total of eight ablations were created. MRI showed no collateral damage of surrounded tissue. The highest visual contrast between lesions and normal parenchyma was obtained by T2-HR-SPIR-TSE-w sequence of DCE-MRI. Ablation zones showed inhomogeneous necroses with small perifocal edema in the short-term and sharp delimitable scars in the mid-term. MRI showed no significant differences between adjoined renal parenchyma around ablations and parenchyma of untreated kidney. Histological analysis demonstrated complete destruction of cortical glomeruli and tubules, while collecting ducts, renal calyxes, and pelvis of medulla were preserved. Adjoined kidney parenchyma around IRE lesions showed no qualitative differences to normal parenchyma of untreated kidney. This porcine IRE study reveals a multifocal renal ablation, while protecting surrounded renal parenchyma and collecting system over a mid-term period. That offers prevention of renal function ablating centrally located or multifocal renal masses.

  19. Short- and Mid-term Effects of Irreversible Electroporation on Normal Renal Tissue: An Animal Model

    International Nuclear Information System (INIS)

    Wendler, J. J.; Porsch, M.; Hühne, S.; Baumunk, D.; Buhtz, P.; Fischbach, F.; Pech, M.; Mahnkopf, D.; Kropf, S.; Roessner, A.; Ricke, J.; Schostak, M.; Liehr, U.-B.

    2013-01-01

    Irreversible electroporation (IRE) is a novel nonthermal tissue ablation technique by high current application leading to apoptosis without affecting extracellular matrix. Previous results of renal IRE shall be supplemented by functional MRI and differentiated histological analysis of renal parenchyma in a chronic treatment setting. Three swine were treated with two to three multifocal percutaneous IRE of the right kidney. MRI was performed before, 30 min (immediate-term), 7 days (short-term), and 28 days (mid-term) after IRE. A statistical analysis of the lesion surrounded renal parenchyma intensities was made to analyze functional differences depending on renal part, side and posttreatment time. Histological follow-up of cortex and medulla was performed after 28 days. A total of eight ablations were created. MRI showed no collateral damage of surrounded tissue. The highest visual contrast between lesions and normal parenchyma was obtained by T2-HR-SPIR-TSE-w sequence of DCE-MRI. Ablation zones showed inhomogeneous necroses with small perifocal edema in the short-term and sharp delimitable scars in the mid-term. MRI showed no significant differences between adjoined renal parenchyma around ablations and parenchyma of untreated kidney. Histological analysis demonstrated complete destruction of cortical glomeruli and tubules, while collecting ducts, renal calyxes, and pelvis of medulla were preserved. Adjoined kidney parenchyma around IRE lesions showed no qualitative differences to normal parenchyma of untreated kidney. This porcine IRE study reveals a multifocal renal ablation, while protecting surrounded renal parenchyma and collecting system over a mid-term period. That offers prevention of renal function ablating centrally located or multifocal renal masses.

  20. Radioprotection of normal tissues of the mouse by hypoxic breathing

    International Nuclear Information System (INIS)

    Stevens, G.N.; Joiner, B.; Denekamp, J.

    1989-01-01

    Hypoxic breathing during irradiation has been advocated as a therapeutic modality, to increase the efficacy of radiotherapy. In this form of treatment, the total and daily X-ray dose is increased by a factor of 1.25, on the assumption that all normal tissues in the beam will be protected to a similar extent by breathing gas containing a reduced oxygen concentration (usually 10%). To test this concept, we have determined the effect of varying the inspired oxygen tension on the radiosensitivity of 3 normal tissues in the mouse (kidney, jejunum and skin), and have compared these results with data from the literature for mouse lung. Reduction of the inspired oxygen tension from 21% (air) to 7-8% led to much greater radioprotection of skin (protection factor 1.37) than of lung (1.09). Protection factors for jejunum and kidney were 1.16 and 1.36 respectively. The results show that the extent of radioprotection afforded by hypoxic breathing is tissue dependent, and that great care must be taken clinically in choosing the increased radiation dose to be used in conjunction with hypoxic breathing

  1. Normal tissue complication probability for salivary glands

    International Nuclear Information System (INIS)

    Rana, B.S.

    2008-01-01

    The purpose of radiotherapy is to make a profitable balance between the morbidity (due to side effects of radiation) and cure of malignancy. To achieve this, one needs to know the relation between NTCP (normal tissue complication probability) and various treatment variables of a schedule viz. daily dose, duration of treatment, total dose and fractionation along with tissue conditions. Prospective studies require that a large number of patients be treated with varied schedule parameters and a statistically acceptable number of patients develop complications so that a true relation between NTCP and a particular variable is established. In this study Salivary Glands Complications have been considered. The cases treated in 60 Co teletherapy machine during the period 1994 to 2002 were analyzed and the clinicians judgement in ascertaining the end points was the only means of observations. The only end points were early and late xerestomia which were considered for NTCP evaluations for a period of 5 years

  2. Effect of propolis feeding on rat tissues damaged by X-ray irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ji Hoon; Seo, Eul Won [Andong National Univ., Andong (Korea, Republic of); Ji, Tae Jeong [Kaya Univ., Goryeong (Korea, Republic of)

    2007-06-15

    Present study aimed to investigate the radioprotective effects of propolis feeding on rat tissues damaged by X-ray irradiation. It was shown that the number of white blood cell in X-ray irradiated group supplemented with propolis increased as much to those of the control group and also the GOT activities among the blood components were decreased after propolis feeding. The mineral contents such as Mg, Fe, Ca, Mn, Cu, Mo, Ni, As in liver were increased as compared with those of the control group but maintained lower level than those of only irradiated groups, implying that the propolis feeding elevated the recovery capability of white blood cell effectively and propolis have a potential resistance to cell damage by X-ray. According to histological observations of the testis, intestine and liver tissues which are irradiated after feeding propolis, the numbers of damaged undifferentiated cells were decreased in testis and the shape of the goblet cells and inner and outer muscular layers in intestine were restored to the original state and the hepatocytes and interlobular veins were shown intact in liver, suggesting that propolis has a potential capacity to restore cell shapes or resist deformation of cell.

  3. The role of zinc supplementation in the inhibition of tissue damage caused by exposure to electromagnetic field in rat lung and liver tissues.

    Science.gov (United States)

    Baltaci, A K; Mogulkoc, R; Salbacak, A; Celik, I; Sivrikaya, A

    2012-01-01

    The objective of the present study was to examine the effects of zinc supplementation on the oxidant damage in lung and liver tissues in rats exposed to a 50-Hz frequency magnetic field for 5 minutes every other day over a period of 6 months. The study included 24 adult male Sprague-Dawley rats, which were divided into the three groups in equal numbers: Group 1, the control group (G1); Group 2, the group exposed to an electromagnetic field (G2); and Group 3, the group, which was exposed to an EMF and supplemented with zinc (G3). At the end of the 6-month procedures, the animals were decapitated to collect lung and liver tissue samples, in which MDA was analyzed using the "TBARS method (nmol/g/protein)", GSH by the "biuret method (mg/g/protein)" and zinc levels by atomic emission (µg/dl). MDA levels in lung and liver tissues in G2 were higher than those in G1 and G3, and the levels in G3 were higher than those in G1 (pelectromagnetic field caused cellular damage in lung and liver tissues and zinc supplementation inhibited the inflicted cellular damage. Another important result of this study that needs emphasis was that exposure to an electromagnetic field led to a significant decrease in zinc levels in lung and liver tissues (Tab. 3, Ref. 23).

  4. Quantifying glucose permeability and enhanced light penetration in ex vivo human normal and cancerous esophagus tissues with optical coherence tomography

    International Nuclear Information System (INIS)

    Zhao, Q L; Guo, Z Y; Wei, H J; Guo, X; Zhong, H Q; Li, L Q; Si, J L; Yang, H Q; Xie, S S; Wu, G Y; Li, X Y

    2011-01-01

    We report our pilot results on quantification of glucose (G) diffusion permeability in human normal esophagus and ESCC tissues in vitro by using OCT technique. The permeability coefficient of 40% aqueous solution of G was found to be (1.74±0.04)×10 -5 cm/s in normal esophagus and (2.45±0.06)×10 -5 cm/s in ESCC tissues. The results from this study indicate that ESCC tissues had a higher permeability coefficient compared to normal esophageal tissues, and the light penetration depths gradually increase with the increase of applied topically with G time for the normal esophageal and ESCC tissues. The results indicate that the permeability coefficient of G in cancer tissues was 1.41-fold than that in normal tissues, and the light penetration depth for the ESCC tissues is significantly smaller than that of normal esophagus tissues in the same time range. These results demonstrate that the optical clearing of normal and cancer esophagus tissues are improved after application of G

  5. Quantifying glucose permeability and enhanced light penetration in ex vivo human normal and cancerous esophagus tissues with optical coherence tomography

    Science.gov (United States)

    Zhao, Q. L.; Si, J. L.; Guo, Z. Y.; Wei, H. J.; Yang, H. Q.; Wu, G. Y.; Xie, S. S.; Li, X. Y.; Guo, X.; Zhong, H. Q.; Li, L. Q.

    2011-01-01

    We report our pilot results on quantification of glucose (G) diffusion permeability in human normal esophagus and ESCC tissues in vitro by using OCT technique. The permeability coefficient of 40% aqueous solution of G was found to be (1.74±0.04)×10-5 cm/s in normal esophagus and (2.45±0.06)×10-5 cm/s in ESCC tissues. The results from this study indicate that ESCC tissues had a higher permeability coefficient compared to normal esophageal tissues, and the light penetration depths gradually increase with the increase of applied topically with G time for the normal esophageal and ESCC tissues. The results indicate that the permeability coefficient of G in cancer tissues was 1.41-fold than that in normal tissues, and the light penetration depth for the ESCC tissues is significantly smaller than that of normal esophagus tissues in the same time range. These results demonstrate that the optical clearing of normal and cancer esophagus tissues are improved after application of G.

  6. DNA-damage foci to detect and characterize DNA repair alterations in children treated for pediatric malignancies.

    Directory of Open Access Journals (Sweden)

    Nadine Schuler

    Full Text Available PURPOSE: In children diagnosed with cancer, we evaluated the DNA damage foci approach to identify patients with double-strand break (DSB repair deficiencies, who may overreact to DNA-damaging radio- and chemotherapy. In one patient with Fanconi anemia (FA suffering relapsing squamous cell carcinomas of the oral cavity we also characterized the repair defect in biopsies of skin, mucosa and tumor. METHODS AND MATERIALS: In children with histologically confirmed tumors or leukemias and healthy control-children DSB repair was investigated by counting γH2AX-, 53BP1- and pATM-foci in blood lymphocytes at defined time points after ex-vivo irradiation. This DSB repair capacity was correlated with treatment-related normal-tissue responses. For the FA patient the defective repair was also characterized in tissue biopsies by analyzing DNA damage response proteins by light and electron microscopy. RESULTS: Between tumor-children and healthy control-children we observed significant differences in mean DSB repair capacity, suggesting that childhood cancer is based on genetic alterations affecting DNA repair. Only 1 out of 4 patients with grade-4 normal-tissue toxicities revealed an impaired DSB repair capacity. The defective DNA repair in FA patient was verified in irradiated blood lymphocytes as well as in non-irradiated mucosa and skin biopsies leading to an excessive accumulation of heterochromatin-associated DSBs in rapidly cycling cells. CONCLUSIONS: Analyzing human tissues we show that DSB repair alterations predispose to cancer formation at younger ages and affect the susceptibility to normal-tissue toxicities. DNA damage foci analysis of blood and tissue samples allows one to detect and characterize DSB repair deficiencies and enables identification of patients at risk for high-grade toxicities. However, not all treatment-associated normal-tissue toxicities can be explained by DSB repair deficiencies.

  7. Normal tissue adverse side effects in radiotherapy cancer patients and applicability of predictive radiosensitivity tests for new radiation treatment decision

    International Nuclear Information System (INIS)

    Di Giorgio, Marina; Vallerga, Maria B.; Radl, Analia; Sardi, Mabel

    2008-01-01

    Full text: Around 5 % -7 % of cancer patients develop adverse side effects, which include acute effects, late effects and cancer induction to radiation therapy in normal tissues in the treatment field. Such effects are of particular interest as the cancer patient population that reaches prolonged survival has increased with the improvements in cancer therapy and health care. These adverse reactions are mainly influenced by deficiencies in DNA repair pathways. However, tissue response to IR could be modified by several treatment- and patient- related factors. Numerous studies have been carried out to evaluate the correlation between clinical and cellular radiosensitivity, by in vitro tests. Previous own studies, characterizing DNA repair capacity in peripheral lymphocytes of cancer patients through cytokinesis blocked micronucleus test and alkaline single-cell microgel electrophoresis (comet), indicated that such assays correlated with the clinical radiation signs of radiosensitivity and showed the predictive potential of both techniques in the identification of radiosensitivity subgroups. In this paper, retrospective studies are conducted in 10 representative cases, which had developed acute or late toxicity in previous treatments and at present require new radiation treatments due to secondary malignancies or recurrence. Samples were in vitro irradiated with 2 Gy. MN data were analyzed comparing expected MN frequencies with values observed after in vitro irradiation. DNA repair capacity was evaluated through comet assay for initial damage and after specific times of repair (0-120 minutes). Captured images were analyzed by CASP image analysis software. Repair capacity was quantified by the Olive tail moment. Weibull alpha parameter was applied to describe DNA damage at the different evaluated repair times after in vitro irradiation and fitted by a mono-exponential model to describe the kinetic profile. In every evaluated patient a correlation between mean half

  8. Normal tissue adverse side effects in radiotherapy cancer patients and applicability of predictive radiosensitivity tests for new radiation treatment decision

    International Nuclear Information System (INIS)

    Di Giorgio, M.; Vallerga, M.B.; Radl, A.; Sardi, M.

    2011-01-01

    Around 5%-7% of cancer patients develop adverse side effects, which include acute effects, late effects and cancer induction to radiation therapy in normal tissues in the treatment field. Such effects are of particular interest as the cancer patient population that reaches prolonged survival has increased with the improvements in cancer therapy and health care. These adverse reactions are mainly influenced by deficiencies in DNA repair pathways. However, tissue response to IR could be modified by several treatment- and patient- related factors. Numerous studies have been carried out to evaluate the correlation between clinical and cellular radiosensitivity, by in vitro tests. Previous own studies, characterizing DNA repair capacity in peripheral lymphocytes of cancer patients through cytokinesis blocked micronucleus test and alkaline single-cell microgel electrophoresis (comet), indicated that such assays correlated with the clinical radiation signs of radiosensitivity and showed the predictive potential of both techniques in the identification of radiosensitivity subgroups. In this paper, retrospective studies are conducted in 10 representative cases, which had developed acute or late toxicity in previous treatments and at present require new radiation treatments due to secondary malignancies or recurrence. Samples were in vitro irradiated with 2 Gy. MN data were analyzed comparing expected MN frequencies with values observed after in vitro irradiation. DNA repair capacity was evaluated through comet assay for initial damage and after specific times of repair (0-120 minutes). Captured images were analyzed by CASP image analysis software. Repair capacity was quantified by the Olive tail moment. Weibull alpha parameter was applied to describe DNA damage at the different evaluated repair times after in vitro irradiation and fitted by a mono-exponential model to describe the kinetic profile. In every evaluated patient a correlation between mean half-time (T1/2) and

  9. Cell-surface glycoproteins of human sarcomas: differential expression in normal and malignant tissues and cultured cells

    International Nuclear Information System (INIS)

    Rettig, W.F.; Garin-Chesa, P.; Beresford, H.R.; Oettgen, H.F.; Melamed, M.R.; Old, L.J.

    1988-01-01

    Normal differentiation and malignant transformation of human cells are characterized by specific changes in surface antigen phenotype. In the present study, the authors have defined six cell-surface antigens of human sarcomas and normal mesenchymal cells, by using mixed hemadsorption assays and immunochemical methods for the analysis of cultured cells and immunohistochemical staining for the analysis of normal tissues and > 200 tumor specimens. Differential patterns of F19, F24, G171, G253, S5, and Thy-1 antigen expression were found to characterize (i) subsets of cultured sarcoma cell lines, (ii) cultured fibroblasts derived from various organs, (iii) normal resting and activated mesenchymal tissues, and (iv) sarcoma and nonmesenchymal tumor tissues. These results provide a basic surface antigenic map for cultured mesenchymal cells and mesenchymal tissues and permit the classification of human sarcomas according to their antigenic phenotypes

  10. Differences in supratentorial white matter diffusion after radiotherapy - New biomarker of normal brain tissue damage?

    Energy Technology Data Exchange (ETDEWEB)

    Ravn, Soeren; Jens Broendum Froekaer, Jens [Dept. of Radiology, Aalborg Univ. Hospital, Aalborg (Denmark)], e-mail: sorl@rn.dk; Holmberg, Mats [Dept. of Oncology, Aalborg Univ. Hospital, Aalborg (Denmark); Soerensen, Preben [Dept. of Neurosurgery, Aalborg Univ. Hospital, Aalborg (Denmark); Carl, Jesper [Dept. of Neurosurgery, Aalborg Univ. Hospital, Aalborg (Denmark)

    2013-10-15

    Introduction: Therapy-induced injury to normal brain tissue is a concern in the treatment of all types of brain tumours. The purpose of this study was to investigate if magnetic resonance diffusion tensor imaging (DTI) could serve as a potential biomarker for the assessment of radiation-induced long-term white matter injury. Material and methods: DTI- and T1-weighted images of the brain were obtained in 19 former radiotherapy patients [nine men and 10 women diagnosed with astrocytoma (4), pituitary adenoma (6), meningioma (8) and craniopharyngioma (1), average age 57.8 (range 35-71) years]. Average time from radiotherapy to DTI scan was 4.6 (range 2.0-7.1) years. NordicICE software (NIC) was used to calculate apparent diffusion coefficient maps (ADC-maps). The co-registration between T1 images and ADC-maps were done using the auto function in NIC. The co-registration between the T1 images and the patient dose plans were done using the auto function in the treatment planning system Eclipse from Varian. Regions of interest were drawn on the T1-weighted images in NIC based on iso curves from Eclipse. Data was analysed by t-test. Estimates are given with 95 % CI. Results: A mean ADC difference of 4.6(0.3;8.9) X 10{sup -5} mm{sup 2}/s, p = 0.03 was found between paired white matter structures with a mean dose difference of 31.4 Gy. Comparing the ADC-values of the areas with highest dose from the paired data (dose > 33 Gy) with normal white matter (dose < 5 Gy) resulted in a mean dose difference of 44.1 Gy and a mean ADC difference of 7.87(3.15;12.60) X 10{sup -5} mm{sup 2}/s, p = 0.003. Following results were obtained when looking at differences between white matter mean ADC in average dose levels from 5 to 55 Gy in steps of 10 Gy with normal white matter mean ADC: 5 Gy; 1.91(-1.76;5.58) X 10{sup -5} mm{sup 2}/s, p = 0.29; 15 Gy; 5.81(1.53;10.11) X 10{sup -5} mm{sup 2}/s, p = 0.01; 25 Gy; 5.80(2.43;9.18) X 10{sup -5} mm{sup 2}/s, p = 0.002; 35 Gy; 5.93(2.89;8.97) X 10

  11. Correlation study of trace metals in malignant and normal breast tissues by AAS technique

    International Nuclear Information System (INIS)

    Rahman, S.

    2012-01-01

    The study reports the application of atomic absorption spectrophotometry (AAS) for quantification of Fe, Cu and Zn in forty one formalin-fixed biopsy breast carcinoma tissue and adjoining fifteen normal tissue samples. These tissues samples were of category two breast carcinoma patients and of normal subjects. The qualitative comparison between the elements levels measured in the two types of specimens suggests significant elevation of these metals in the histopathological samples of carcinoma tissue. The samples were collected from women aged 19-51 years. Most of the patients belong to urban areas of Pakistan and middle to high socioeconomic status with the exception of few. Findings of study depicts that these elements have an important role in the initiation and development of carcinoma as consistent pattern of elevation for Fe, Cu and Zn was observed. The results showed the excessive accumulation of Fe (166.9 mg/L) in tissue samples of breast carcinoma patients (p < 0.01) than that in normal tissues samples (23.5 mg/L). In order to validate our method of analysis certified reference material Muscle Tissue Lyophilised (IAEA) MA-M-2/TM was analyzed for Fe, Cu and Zn. Determined concentrations were in good agreement with certified levels. The concentration distribution of trace elements Cu, Zn and Fe measured in the malignant tissues were found to be higher when compared to benign tissues, indicating the involvement of these metals in the breast malignancy. Results also indicate that excess iron may play a role in breast carcinogenesis. (Orig./A.B.)

  12. Adult Bone Marrow Mesenchymal Stem Cells Primed for fhe Repair of Damaged Cardiac Tissue After Myocardial Infarction

    Science.gov (United States)

    Marks, Edward D.

    The burden of cardiovascular disease around the world is growing, despite improvements in hospital care and time to treatment. As more people survive an initial myocardial infarction (MI), the decompensated heart tissue is strained, leading to heart failure (HF) and an increased risk for a second MI. While extensive progress has been made in treating the symptoms after MI, including HF and angina, little success has come from repairing the damaged heart tissue to alleviate the progression to these end- stage symptoms. One promising area of regenerative research has been the use of adult stem cells, particularly from the bone marrow (BMSCs). These cells can differentiate towards the cardiac cell lineage in vitro while producing trophic factors that can repair damaged tissue. When placed in the heart after MI though, BMSCs have mixed results, producing profound changes in some patients but zero or even negative effects in others. In this report, we used BMSCs as a stem cell base for a regenerative medicine system for the repair of damaged cardiac tissue. These cells are seeded on a polycaprolactone nanoscaffolding support system, which provides a growth substrate for in vitro work, as well as a housing system for protected in vivo delivery. When the nanoscaffold is pre-coated with a novel combination of a cardiac protein, thymosin beta4 (Tbeta4), and a small molecule effector of the WNT protein pathway, IWP-2, BMSCs differentiated towards the cardiac lineage in as little as 24hours. When injected into rat hearts that have been given an ischemic MI, the nanoscaffolding system slowly dissolves, leaving the cells in place of the damaged cardiac tissue. After two weeks of monitoring, BMSCs are present within the damaged hearts, as evidenced by immunofluorescence and nanoparticle tracking. Injections of the nanoscaffolding/cell system led to robust healing of the rat hearts that had been given small- and medium- damage heart attacks, outperforming PBS sham and cell

  13. Utility of Normal Tissue-to-Tumor {alpha}/{beta} Ratio When Evaluating Isodoses of Isoeffective Radiation Therapy Treatment Plans

    Energy Technology Data Exchange (ETDEWEB)

    Gay, Hiram A., E-mail: hgay@radonc.wustl.edu [Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri (United States); Jin Jianyue [Department of Radiation Oncology, Henry Ford Hospital, Detroit, Michigan (United States); Chang, Albert J. [Department of Radiation Oncology, University of California, San Francisco, California (United States); Ten Haken, Randall K. [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States)

    2013-01-01

    Purpose: To achieve a better understanding of the effect of the number of fractions on normal tissue sparing for equivalent tumor control in radiation therapy plans by using equivalent biologically effective dose (BED) isoeffect calculations. Methods and Materials: The simple linear quadratic (LQ) model was assumed to be valid up to 10 Gy per fraction. Using the model, we formulated a well-known mathematical equality for the tumor prescription dose and probed and solved a second mathematical problem for normal tissue isoeffect. That is, for a given arbitrary relative isodose distribution (treatment plan in percentages), 2 isoeffective tumor treatment regimens (N fractions of the dose D and n fractions of the dose d) were denoted, which resulted in the same BED (corresponding to 100% prescription isodose). Given these situations, the LQ model was further exploited to mathematically establish a unique relative isodose level, z (%), for the same arbitrary treatment plan, where the BED to normal tissues was also isoeffective for both fractionation regimens. Results: For the previously stated problem, the relative isodose level z (%), where the BEDs to the normal tissue were also equal, was defined by the normal tissue {alpha}/{beta} ratio divided by the tumor {alpha}/{beta} times 100%. Fewer fractions offers a therapeutic advantage for those portions of the normal tissue located outside the isodose surface, z, whereas more fractions offer a therapeutic advantage for those portions of the normal tissue within the isodose surface, z. Conclusions: Relative isodose-based treatment plan evaluations may be useful for comparing isoeffective tumor regimens in terms of normal tissue effects. Regions of tissues that would benefit from hypofractionation or standard fractionation can be identified.

  14. Genetic markers for prediction of normal tissue toxicity after radiotherapy

    DEFF Research Database (Denmark)

    Alsner, Jan; Andreassen, Christian Nicolaj; Overgaard, Jens

    2008-01-01

    During the last decade, a number of studies have supported the hypothesis that there is an important genetic component to the observed interpatient variability in normal tissue toxicity after radiotherapy. This review summarizes the candidate gene association studies published so far on the risk...

  15. EPR study of the reactions of tumour and normal tissues under ionizing radiation

    International Nuclear Information System (INIS)

    Rikhireva, G.T.; Pulatova, M.K.; Turganov, M.M.; Pal'mina, N.P.; Burlakova, E.B.

    1978-01-01

    Data on the EPR spectrum characteristics of irradiated tissues of tumour-free animals and animals with tumour are presented. Mice of the Csub(3)Hsub(A) line were used in the experiments. Hepatoma was subcutaneously transplanted with the suspension of tumour tissue reduced to fragments. Animals were killed in 6-8 days after transplantation and in the case of tumour-free animals liver was immediately isolated while in the case of animals with tumour isolated were liver and tumour. Tissues cut with scissors were frozen in liquid nitrogen. Tissue samples were exposed to 60 Co at 1 Mrad dose and -196 deg C. On the base of the data it has been concluded: firstly, there are differences between the EPR spectra of normal and tumour tissue samples irradiated at -196 deg C. Asymmetryc signal with Δ H=Ge and g=2.0005 (''tumour signal'') is typical only for the EPR spectra of tumour and liver tissues of the animal with tumour. Thus, in the -author's opinion, irradiation use turns out to be useful for detecting the difference between the normal and tumour tissues. Secondly, ''tumour signal'' intensity changes after ionol incorporation into animal organism, used as a modificator of tissue sensitivity to the irradiation effect

  16. Evaluation of DNA damage induced by gamma radiation in gill and muscle tissues of Cyprinus carpio and their relative sensitivity.

    Science.gov (United States)

    M K, Praveen Kumar; Shyama, Soorambail K; D'Costa, Avelyno; Kadam, Samit B; Sonaye, Bhagatsingh Harisingh; Chaubey, Ramesh Chandra

    2017-10-01

    The effect of radiation on the aquatic environment is of major concern in recent years. Limited data is available on the genotoxicity of gamma radiation on different tissues of aquatic organisms. Hence, the present investigation was carried out to study the DNA damage induced by gamma radiation in the gill and muscle tissues and their relative sensitivity using the comet assay in the freshwater teleost fish, common carp (Cyprinus carpio). The comet assay was optimized and validated in common carp using cyclophosphamide (CP), a reference genotoxic agent. The fish were exposed (acute) to various doses of gamma radiation (2, 4, 6, 8 and 10Gy) and samplings (gill and muscle tissue) were done at regular intervals (24, 48 and 72h) to assess the DNA damage. A significant increase in DNA damage was observed as indicated by an increase in % tail DNA for all doses of gamma radiation in both tissues. We also observed a dose-related increase and a time-dependent decrease of DNA damage. In comparison, DNA damage showed different sensitivity among the tissues at different doses. This shows that a particular dose may have different effects on different tissues which could be due to physiological factors of the particular tissue. Our study also suggests that the gills and muscle of fish are sensitive and reliable tissues for evaluating the genotoxic effects of reference and environmental agents, using the comet assay. Copyright © 2017. Published by Elsevier Inc.

  17. Gastric Tissue Damage Analysis Generated by Ischemia: Bioimpedance, Confocal Endomicroscopy, and Light Microscopy

    Directory of Open Access Journals (Sweden)

    Nohra E. Beltran

    2013-01-01

    Full Text Available The gastric mucosa ischemic tissular damage plays an important role in critical care patients’ outcome, because it is the first damaged tissue by compensatory mechanism during shock. The aim of the study is to relate bioimpedance changes with tissular damage level generated by ischemia by means of confocal endomicroscopy and light microscopy. Bioimpedance of the gastric mucosa and confocal images were obtained from Wistar male rats during basal and ischemia conditions. They were anesthetized, and stain was applied (fluorescein and/or acriflavine. The impedance spectroscopy catheter was inserted and then confocal endomicroscopy probe. After basal measurements and biopsy, hepatic and gastric arteries clamping induced ischemia. Finally, pyloric antrum tissue was preserved in buffered formaldehyde (10% for histology processing using light microscopy. Confocal images were equalized, binarized, and boundary defined, and infiltrations were quantified. Impedance and infiltrations increased with ischemia showing significant changes between basal and ischemia conditions (. Light microscopy analysis allows detection of general alterations in cellular and tissular integrity, confirming gastric reactance and confocal images quantification increments obtained during ischemia.

  18. A decreased subchondral trabecular bone tissue elastic modulus is associated with pre-arthritic cartilage damage

    DEFF Research Database (Denmark)

    Day, J; Ding, Ming; van der Linden, JC

    2001-01-01

    determined using a combination of finite element models and mechanical testing. The bone tissue modulus was reduced by 60% in the medial condyle of the cases with cartilage damage compared to the control specimens. Neither the presence of cartilage damage nor the anatomic site (medial vs. lateral) affected...

  19. The effect of irradiation on function in self-renewing normal tissues with differing proliferative organisation

    International Nuclear Information System (INIS)

    Wheldon, T.E.; Michalowski, A.S.

    1982-01-01

    The primary effect of irradiation on self-renewing normal tissues is sterilisation of their proliferative cells, but how this translates into failure of tissue function depends on the mode of organisation of the tissue concerned. It has recently been suggested (Michalowski, 1981) that proliferative normal tissues may be classed as ''hierarchical'' (like haemopoietic tissues) or as ''flexible'' (like liver parenchyma) and that radiation injury to tissue function develops by different pathways in these tissues. Mathematical model studies confirm the different radiation responses of differently organized tissues. Tissues of the ''flexible'' or ''F-type'' category display a variety of novel radiobiological properties, different from those of the more familiar ''hierarchical'' or ''H-type'' tissues. The ''F-type'' responses are strongly influenced by radiation-sterilised (''doomed'') cells, and is is suggested that the role of ''doomed'' cells has been undervalued relative to that of clonogenic survivors. Since ''F-type'' tissues have characteristically low rates of cell renewal, it is possible that these tissues are preferentially responsible for late effects of irradiation in clinical radiotherapy. (author)

  20. Cellular radiosensitivity and DNA damage in primary human fibroblasts

    International Nuclear Information System (INIS)

    Wurm, R.; Burnet, N.G.; Duggal, N.

    1994-01-01

    To evaluate the relationship between radiation-induced cell survival and DNA damage in primary human fibroblasts to decide whether the initial or residual DNA damage levels are more predictive of normal tissue cellular radiosensitivity. Five primary human nonsyndromic and two primary ataxia telangiectasia fibroblast strains grown in monolayer were studied. Cell survival was assessed by clonogenic assay. Irradiation was given at high dose rate (HDR) 1-2 Gy/min. DNA damage was measured in stationary phase cells and expressed as fraction released from the well by pulsed-field gel electrophoresis (PFGE). For initial damage, cells were embedded in agarose and irradiated at HDR on ice. Residual DNA damage was measured in monolayer by allowing a 4-h repair period after HDR irradiation. Following HDR irradiation, cell survival varied between SF 2 0.025 to 0.23. Measurement of initial DNA damage demonstrated linear induction up to 30 Gy, with small differences in the slope of the dose-response curve between strains. No correlation between cell survival and initial damage was found. Residual damage increased linearly up to 80 Gy with a variation in slope by a factor of 3.2. Cell survival correlated with the slope of the dose-response curves for residual damage of the different strains (p = 0.003). The relationship between radiation-induced cell survival and DNA damage in primary human fibroblasts of differing radiosensitivity is closest with the amount of DNA damage remaining after repair. If assays of DNA damage are to be used as predictors of normal tissue response to radiation, residual DNA damage provides the most likely correlation with cell survival. 52 refs., 5 figs., 2 tabs

  1. Prodrugs designed to discriminate pathological (tumour) and physiological (normal tissue) hypoxia

    International Nuclear Information System (INIS)

    Wilson, W.R.; Patterson, A.V.

    2003-01-01

    There is now abundant evidence that hypoxic contributes to treatment failure in radiation therapy. As a target for therapeutic intervention, hypoxia is especially attractive because it is a common feature of most human tumours and therefore a potential 'pan target' across many tumour types. However, attempts to exploit hypoxia face the problem that oxygen concentrations in some normal tissues are also heterogeneous and that O 2 distributions in tumours and normal tissues overlap. Simply adjusting the K value (O 2 concentration for 50% inhibition of activation) does not provide a satisfactory solution. Bioreductive drugs like tirapazamine with high K values are activated significantly in several normal tissues, while nitro compounds and quinones with low K values spare the hypoxic tumour cells at 'intermediate' O 2 tensions (1-10 mM O 2 ) which are considered to be major contributors to tumour radioresistance. A potential strategy for overcoming this dilemma is to design prodrugs that are activated only at very low K values, but give relatively stable cytotoxic metabolites capable of diffusing to cells at higher O 2 concentrations. This approach redefines the therapeutic target as cells adjacent to zones of pathological hypoxia ( 2 ), providing discrimination from physiological hypoxia in normal tissues. Detecting bioreductive prodrugs capable of providing bystander killing of this kind is not straightforward. We have adapted a multicellular layer (MCL) co-culture model for quantifying bystander effects in GDEPT (Wilson et al., Cancer Res., 62: 1425-1432, 2002), and have used this to measure bystander effects of hypoxia-activated prodrugs. This model uses differences in metabolic activation of bioreductive drugs between A459 cell lines with low and high cytochrome P450 reductase activity, rather than O 2 gradients, to effect localised prodrug activation. It shows that TPZ and the nitroimidazole RSU-1069 have little or no bystander effect, but that dinitrobenzamide

  2. Proteolytic processing of connective tissue growth factor in normal ocular tissues and during corneal wound healing.

    Science.gov (United States)

    Robinson, Paulette M; Smith, Tyler S; Patel, Dilan; Dave, Meera; Lewin, Alfred S; Pi, Liya; Scott, Edward W; Tuli, Sonal S; Schultz, Gregory S

    2012-12-13

    Connective tissue growth factor (CTGF) is a fibrogenic cytokine that is up-regulated by TGF-β and mediates most key fibrotic actions of TGF-β, including stimulation of synthesis of extracellular matrix and differentiation of fibroblasts into myofibroblasts. This study addresses the role of proteolytic processing of CTGF in human corneal fibroblasts (HCF) stimulated with TGF-β, normal ocular tissues and wounded corneas. Proteolytic processing of CTGF in HCF cultures, normal animal eyes, and excimer laser wounded rat corneas were examined by Western blot. The identity of a 21-kDa band was determined by tandem mass spectrometry, and possible alternative splice variants of CTGF were assessed by 5' Rapid Amplification of cDNA Ends (RACE). HCF stimulated by TGF-β contained full length 38-kDa CTGF and fragments of 25, 21, 18, and 13 kDa, while conditioned medium contained full length 38- and a 21-kDa fragment of CTGF that contained the middle "hinge" region of CTGF. Fragmentation of recombinant CTGF incubated in HCF extracts was blocked by the aspartate protease inhibitor, pepstatin. Normal mouse, rat, and rabbit whole eyes and rabbit ocular tissues contained abundant amounts of C-terminal 25- and 21-kDa fragments and trace amounts of 38-kDa CTGF, although no alternative transcripts were detected. All forms of CTGF (38, 25, and 21 kDa) were detected during healing of excimer ablated rat corneas, peaking on day 11. Proteolytic processing of 38-kDa CTGF occurs during corneal wound healing, which may have important implications in regulation of corneal scar formation.

  3. Normal-tissue radioprotection by overexpression of the copper-zinc and manganese superoxide dismutase genes

    Energy Technology Data Exchange (ETDEWEB)

    Veldwijk, Marlon R. [Dept. of Radiation Oncology, Univ. Medical Center Mannheim, Univ. of Heidelberg, Mannheim (Germany); Pharmacology of Cancer Treatment (G402), German Cancer Research Center, Heidelberg (Germany); Herskind, Carsten; Wenz, Frederik [Dept. of Radiation Oncology, Univ. Medical Center Mannheim, Univ. of Heidelberg, Mannheim (Germany); Sellner, Leopold; Zeller, W. Jens [Pharmacology of Cancer Treatment (G402), German Cancer Research Center, Heidelberg (Germany); Radujkovic, Aleksandar [Dept. of Internal Medicine V, Univ. of Heidelberg (Germany); Laufs, Stephanie [Dept. of Experimental Surgery, Univ. Medical Center Mannheim, Univ. of Heidelberg, Mannheim (Germany); Molecular Oncology of Solid Tumors (G360), German Cancer Research Center, Heidelberg (Germany); Fruehauf, Stefan [Center for Tumor Diagnostic and Therapy, Paracelsus-Klinik, Osnabrueck (Germany)

    2009-08-15

    Background and Purpose: Protection of normal tissue against radiation-induced damage may increase the therapeutic ratio of radiotherapy. A promising strategy for testing this approach is gene therapy-mediated overexpression of the copper-zinc (CuZnSOD) or manganese superoxide dismutase (MnSOD) using recombinant adeno-associated viral (rAAV2) vectors. The purpose of this study was to test the modulating effects of the SOD genes on human primary lung fibroblasts (HPLF) after irradiation. Material and Methods: HPLF were transduced with rAAV2 vectors containing cDNA for the CuZnSOD, MnSOD or a control gene. The cells were irradiated (1-6 Gy), and gene transfer efficiency, apoptosis, protein expression/activity, and radiosensitivity measured by the colony-forming assay determined. Results: After transduction, 90.0% {+-} 6.4% of the cells expressed the transgene. A significant fivefold overexpression of both SOD was confirmed by an SOD activity assay (control: 21.1 {+-} 12.6, CuZnSOD: 95.1 {+-} 17.1, MnSOD: 108.5 {+-} 36.0 U SOD/mg protein) and immunohistochemistry. CuZnSOD and MnSOD overexpression resulted in a significant radioprotection of HPLF compared to controls (surviving fraction [SF] ratio SOD/control > 1): CuZnSOD: 1.18-fold (95% confidence interval [CI]: 1.06-1.32; p = 0.005), MnSOD: 1.23-fold (95% CI: 1.07-1.43; p = 0.01). Conclusion: Overexpression of CuZnSOD and MnSOD in HPLF mediated an increase in clonogenic survival after irradiation compared to controls. In previous works, a lack of radioprotection in SOD-overexpressing tumor cells was observed. Therefore, the present results suggest that rAAV2 vectors are promising tools for the delivery of radioprotective genes in normal tissue. (orig.)

  4. Comparison of tissue damage caused by various laser systems with tissue tolerable plasma by light and laser scan microscopy

    International Nuclear Information System (INIS)

    Vandersee, Staffan; Lademann, Jürgen; Richter, Heike; Patzelt, Alexa; Lange-Asschenfeldt, Bernhard

    2013-01-01

    Tissue tolerable plasma (TTP) represents a novel therapeutic method with promising capabilities in the field of dermatological interventions, in particular disinfection but also wound antisepsis and regeneration. The energy transfer by plasma into living tissue is not easily educible, as a variety of features such as the medium’s actual molecule-stream, the ions, electrons and free radicals involved, as well as the emission of ultraviolet, visible and infrared light contribute to its increasingly well characterized effects. Thus, relating possible adversary effects, especially of prolonged exposure to a single component of the plasma’s mode of action, is difficult. Until now, severe adverse events connected to plasma exposure have not been reported when conducted according to existing therapeutic protocols. In this study, we have compared the tissue damage-potential of CO 2 and dye lasers with TTP in a porcine model. After exposure of pig ear skin to the three treatment modalities, all specimens were examined histologically and by means of laser scan microscopy (LSM). Light microscopical tissue damage could only be shown in the case of the CO 2 laser, whereas dye laser and plasma treatment resulted in no detectable impairment of the specimens. In the case of TTP, LSM examination revealed only an impairment of the uppermost corneal layers of the skin, thus stressing its safety when used in vivo. (letter)

  5. Distribution of Basement Membrane Molecules, Laminin and Collagen Type IV, in Normal and Degenerated Cartilage Tissues.

    Science.gov (United States)

    Foldager, Casper Bindzus; Toh, Wei Seong; Gomoll, Andreas H; Olsen, Bjørn Reino; Spector, Myron

    2014-04-01

    The objective of the present study was to investigate the presence and distribution of 2 basement membrane (BM) molecules, laminin and collagen type IV, in healthy and degenerative cartilage tissues. Normal and degenerated tissues were obtained from goats and humans, including articular knee cartilage, the intervertebral disc, and meniscus. Normal tissue was also obtained from patella-tibial enthesis in goats. Immunohistochemical analysis was performed using anti-laminin and anti-collagen type IV antibodies. Human and goat skin were used as positive controls. The percentage of cells displaying the pericellular presence of the protein was graded semiquantitatively. When present, laminin and collagen type IV were exclusively found in the pericellular matrix, and in a discrete layer on the articulating surface of normal articular cartilage. In normal articular (hyaline) cartilage in the human and goat, the proteins were found co-localized pericellularly. In contrast, in human osteoarthritic articular cartilage, collagen type IV but not laminin was found in the pericellular region. Nonpathological fibrocartilaginous tissues from the goat, including the menisci and the enthesis, were also positive for both laminin and collagen type IV pericellularly. In degenerated fibrocartilage, including intervertebral disc, as in degenerated hyaline cartilage only collagen type IV was found pericellularly around chondrocytes but with less intense staining than in non-degenerated tissue. In calcified cartilage, some cells were positive for laminin but not type IV collagen. We report differences in expression of the BM molecules, laminin and collagen type IV, in normal and degenerative cartilaginous tissues from adult humans and goats. In degenerative tissues laminin is depleted from the pericellular matrix before collagen type IV. The findings may inform future studies of the processes underlying cartilage degeneration and the functional roles of these 2 extracellular matrix proteins

  6. Distribution of Basement Membrane Molecules, Laminin and Collagen Type IV, in Normal and Degenerated Cartilage Tissues

    Science.gov (United States)

    Toh, Wei Seong; Gomoll, Andreas H.; Olsen, Bjørn Reino; Spector, Myron

    2014-01-01

    Objective: The objective of the present study was to investigate the presence and distribution of 2 basement membrane (BM) molecules, laminin and collagen type IV, in healthy and degenerative cartilage tissues. Design: Normal and degenerated tissues were obtained from goats and humans, including articular knee cartilage, the intervertebral disc, and meniscus. Normal tissue was also obtained from patella-tibial enthesis in goats. Immunohistochemical analysis was performed using anti-laminin and anti–collagen type IV antibodies. Human and goat skin were used as positive controls. The percentage of cells displaying the pericellular presence of the protein was graded semiquantitatively. Results: When present, laminin and collagen type IV were exclusively found in the pericellular matrix, and in a discrete layer on the articulating surface of normal articular cartilage. In normal articular (hyaline) cartilage in the human and goat, the proteins were found co-localized pericellularly. In contrast, in human osteoarthritic articular cartilage, collagen type IV but not laminin was found in the pericellular region. Nonpathological fibrocartilaginous tissues from the goat, including the menisci and the enthesis, were also positive for both laminin and collagen type IV pericellularly. In degenerated fibrocartilage, including intervertebral disc, as in degenerated hyaline cartilage only collagen type IV was found pericellularly around chondrocytes but with less intense staining than in non-degenerated tissue. In calcified cartilage, some cells were positive for laminin but not type IV collagen. Conclusions: We report differences in expression of the BM molecules, laminin and collagen type IV, in normal and degenerative cartilaginous tissues from adult humans and goats. In degenerative tissues laminin is depleted from the pericellular matrix before collagen type IV. The findings may inform future studies of the processes underlying cartilage degeneration and the functional

  7. Telomere elongation protects heart and lung tissue cells from fatal damage in rats exposed to severe hypoxia.

    Science.gov (United States)

    Wang, Yaping; Zhao, Zhen; Zhu, Zhiyong; Li, Pingying; Li, Xiaolin; Xue, Xiaohong; Duo, Jie; Ma, Yingcai

    2018-02-17

    The effects of acute hypoxia at high altitude on the telomere length of the cells in the heart and lung tissues remain unclear. This study aimed to investigate the change in telomere length of rat heart and lung tissue cells in response to acute exposure to severe hypoxia and its role in hypoxia-induced damage to heart and lung tissues. Forty male Wistar rats (6-week old) were randomized into control group (n = 10) and hypoxia group (n = 30). Rats in control group were kept at an altitude of 1500 m, while rats in hypoxia group were exposed to simulated hypoxia with an altitude of 5000 m in a low-pressure oxygen chamber for 1, 3, and 7 days (n = 10). The left ventricular and right middle lobe tissues of each rat were collected for measurement of telomere length and reactive oxygen species (ROS) content, and the mRNA and protein levels of telomerase reverse transcriptase (TERT), hypoxia-inducible factor1α (HIF-1α), and hypoxia-inducible factor1α (HIF-2α). Increased exposure to hypoxia damaged rat heart and lung tissue cells and increased ROS production and telomere length. The mRNA and protein levels of TERT and HIF-1α were significantly higher in rats exposed to hypoxia and increased with prolonged exposure; mRNA and protein levels of HIF-2α increased only in rats exposed to hypoxia for 7 days. TERT was positively correlated with telomere length and the levels of HIF-1α but not HIF-2α. Acute exposure to severe hypoxia causes damage to heart and lung tissues due to the production of ROS but promotes telomere length and adaptive response by upregulating TERT and HIF-1α, which protect heart and lung tissue cells from fatal damage.

  8. Responses of some normal tissues to low doses of γ-radiation

    International Nuclear Information System (INIS)

    Withers, H.R.

    1975-01-01

    The response of four normal tissues to low doses of γ-radiation was measured in mice using three indirect methods. The survival curves for cells of the tissues studied (colon, jejunum, testis and haemoleucopoietic system) may be exponential over an uncertain dose range (from zero to between 100 to 230 rad), the slope being about one third of that in the high-dose region. Some of the uncertainties in the data probably reflect variations in age-density distribution. (author)

  9. Discriminant analysis of normal and malignant breast tissue based upon INAA investigation of elemental concentration

    International Nuclear Information System (INIS)

    Kwanhoong Ng; Senghuat Ong; Bradley, D.A.; Laimeng Looi

    1997-01-01

    Discriminant analysis of six trace element concentrations measured by instrumental neutron activation analysis (INAA) in 26 paired-samples of malignant and histologically normal human breast tissues shows the technique to be a potentially valuable clinical tool for making malignant-normal classification. Nonparametric discriminant analysis is performed for the data obtained. Linear and quadratic discriminant analyses are also carried out for comparison. For this data set a formal analysis shows that the elements which may be useful in distinguishing between malignant and normal tissues are Ca, Rb and Br, providing correct classification for 24 out of 26 normal samples and 22 out of 26 malignant samples. (Author)

  10. The Sensitization Model to Explain How Chronic Pain Exists Without Tissue Damage

    NARCIS (Netherlands)

    van Wilgen, C. Paul; Keizer, Doeke

    The interaction of nurses with chronic pain patients is often difficult. One of the reasons is that chronic pain is difficult to explain, because no obvious anatomic defect or tissue damage is present. There is now enough evidence available indicating that chronic pain syndromes such as low back

  11. Review of RBE values of 15 MeV neutrons for effects on normal tissues

    NARCIS (Netherlands)

    Broerse, J.J.

    1974-01-01

    Values of the relative biological effectiveness (RBE) of fast neutrons for effect on normal tissue depend not only on the neutron energy and the dose, but also on the type of tissue irradiated. Values of the RBE of 15 MeV neutrons are reviewed for rapidly proliferating rodent tissue, such as mouse

  12. Apoptosis modulation in the immune system reveals a role of neutrophils in tissue damage in a murine model of chlamydial genital infection.

    Science.gov (United States)

    Zortel, Tom; Schmitt-Graeff, Annette; Kirschnek, Susanne; Häcker, Georg

    2018-03-07

    Chlamydial infection frequently causes damage to the female genital tract. The precise mechanisms of chlamydial clearance and tissue damage are unknown but studies suggest immunopathology with a particular role of neutrophils. The goal of this study was to understand the contribution of the immune system, in particular neutrophils. Using Chlamydia muridarum, we infected mice with a prolonged immune response due to expression of Bcl-2 in haematopoietic cells (Bcl-2-mice), and mice where mature neutrophils are lacking due to the deletion of Mcl-1 in myeloid cells (LysM-cre-mcl-1-flox-mice; Mcl-1-mice). We monitored bacterial clearance, cellular infiltrate and long-term tissue damage. Both mutant strains showed slightly delayed clearance of the acute infection. Bcl-2-mice had a strongly increased inflammatory infiltrate concerning almost all cell lineages. The infection of Bcl-2-mice caused increased tissue damage. The loss of neutrophils in Mcl-1-mice was associated with substantial quantitative and qualitative alterations of the inflammatory infiltrate. Mcl-1-mice had higher chlamydial burden and reduced tissue damage, including lower incidence of hydrosalpinx and less uterine dilation. Inhibition of apoptosis in the haematopoietic system increases inflammation and tissue damage. Neutrophils have broad functions, including a role in chlamydial clearance and in tissue destruction.

  13. Options and pitfalls of normal tissues complication probability models

    International Nuclear Information System (INIS)

    Dorr, Wolfgang

    2011-01-01

    Full text: Technological improvements in the physical administration of radiotherapy have led to increasing conformation of the treatment volume (TV) with the planning target volume (PTV) and of the irradiated volume (IV) with the TV. In this process of improvement of the physical quality of radiotherapy, the total volumes of organs at risk exposed to significant doses have significantly decreased, resulting in increased inhomogeneities in the dose distributions within these organs. This has resulted in a need to identify and quantify volume effects in different normal tissues. Today, irradiated volume today must be considered a 6t h 'R' of radiotherapy, in addition to the 5 'Rs' defined by Withers and Steel in the mid/end 1980 s. The current status of knowledge of these volume effects has recently been summarized for many organs and tissues by the QUANTEC (Quantitative Analysis of Normal Tissue Effects in the Clinic) initiative [Int. J. Radiat. Oncol. BioI. Phys. 76 (3) Suppl., 2010]. However, the concept of using dose-volume histogram parameters as a basis for dose constraints, even without applying any models for normal tissue complication probabilities (NTCP), is based on (some) assumptions that are not met in clinical routine treatment planning. First, and most important, dose-volume histogram (DVH) parameters are usually derived from a single, 'snap-shot' CT-scan, without considering physiological (urinary bladder, intestine) or radiation induced (edema, patient weight loss) changes during radiotherapy. Also, individual variations, or different institutional strategies of delineating organs at risk are rarely considered. Moreover, the reduction of the 3-dimentional dose distribution into a '2dimensl' DVH parameter implies that the localization of the dose within an organ is irrelevant-there are ample examples that this assumption is not justified. Routinely used dose constraints also do not take into account that the residual function of an organ may be

  14. Radiobiology of normal tissue. Scientific advances and perspectives; Strahlenbiologie der Normalgewebe. Wissenschaftliche Fortschritte und Perspektiven

    Energy Technology Data Exchange (ETDEWEB)

    Doerr, W. [Medizinische Univ. Wien (Austria). Universitaetsklinik fuer Strahlentherapie; Medizinische Univ. Wien (Austria). Universitaetsklinik fuer Radioonkologie; Medizinische Univ. Wien (Austria). Christian Doppler Labor fuer Medizinische Strahlenforschung fuer die Radioonkologie; Herskind, C. [Universitaetsmedizin Mannheim, Heidelberg Univ., Mannheim (Germany). Labor fuer Zellulaere und Molekulare Radioonkologie

    2012-11-15

    Radiotherapy involves always the exposure of normal tissue, resulting in an excepted risk of complications. The side effect rate is therefore the compromise between optimized tumor doses and the side effect minimization. The report covers the issues target cell hypothesis and the consequences, new aspect of the pathogenesis of normal issue reactions and strategies of targeted reduction of normal tissue effects. The complexity of the radiobiological processes, the specificity and action mechanisms, the mutual interactions of chemical and radiological processes require further coordinated radiobiological research in the future.

  15. Mathematical model of normal tissue injury in telegammatherapy

    International Nuclear Information System (INIS)

    Belov, S.A.; Lyass, F.M.; Mamin, R.G.; Minakova, E.I.; Raevskaya, S.A.

    1983-01-01

    A model of normal tissue injury as a result of exposure to ionizing radiation is based on an assumption that the degree of tissue injury is determined by the degree of destruction by certain critical cells. The dependence of the number of lethal injuriies on a single dose is expressed by a trinomial - linear and quadratic parts and a constant, obtained as a result of the processing of experimental data. Quantitative correlations have been obtained for the skin and brain. They have been tested using clinical and experimental material. The results of the testing point out to the absence of time dependence on a single up to 6-week irradiation cources. Correlation with an irradiation field has been obtained for the skin. A conclusion has been made that the concept of isoefficacy of irradiation cources is conditional. Spatial-time fractionation is a promising direction in the development of radiation therapy

  16. Three-Dimensional Normal Human Neutral Progenitor Tissue-Like Assemblies: A Model for Persistent Varicella-Zoster Virus Infection and Platform to Study Oxidate Stress and Damage in Multiple Hit Scenarios

    Science.gov (United States)

    Goodwin, Thomas J.; McCarthy, M.; Osterrieder, N.; Cohrs, R. J.; Kaufer, B. B.

    2014-01-01

    The environment of space results in a multitude of challenges to the human physiology that present barriers to extended habitation and exploration. Over 40 years of investigation to define countermeasures to address space flight adaptation has left gaps in our knowledge regarding mitigation strategies partly due to the lack of investigative tools, monitoring strategies, and real time diagnostics to understand the central causative agent(s) responsible for physiologic adaptation and maintaining homeostasis. Spaceflight-adaptation syndrome is the combination of space environmental conditions and the synergistic reaction of the human physiology. Our work addresses the role of oxidative stress and damage (OSaD) as a negative and contributing Risk Factor (RF) in the following areas of combined spaceflight related dysregulation: i) radiation induced cellular damage [1], [2] ii) immune impacts and the inflammatory response [3], [4] and iii) varicella zoster virus (VZV) reactivation [5]. Varicella-zoster (VZV)/Chicken Pox virus is a neurotropic human alphaherpes virus resulting in varicella upon primary infection, suppressed by the immune system becomes latent in ganglionic neurons, and reactivates under stress events to re-express in zoster and possibly shingles. Our laboratory has developed a complex three-dimensional (3D) normal human neural tissue model that emulates several characteristics of the human trigeminal ganglia (TG) and allows the study of combinatorial experimentation which addresses, simultaneously, OSaD associated with Spaceflight adaptation and habitation [6]. By combining the RFs of microgravity, radiation, and viral infection we will demonstrate that living in the space environment leads to significant physiological consequences for the peripheral and subsequently the central nervous system (PNS, CNS) associated with OSaD generation and consequentially endangers long-duration and exploration-class missions.

  17. Mathematical models of tumour and normal tissue response

    International Nuclear Information System (INIS)

    Jones, B.; Dale, R.G.; Charing Cross Group of Hospitals, London

    1999-01-01

    The historical application of mathematics in the natural sciences and in radiotherapy is compared. The various forms of mathematical models and their limitations are discussed. The Linear Quadratic (LQ) model can be modified to include (i) radiobiological parameter changes that occur during fractionated radiotherapy, (ii) situations such as focal forms of radiotherapy, (iii) normal tissue responses, and (iv) to allow for the process of optimization. The inclusion of a variable cell loss factor in the LQ model repopulation term produces a more flexible clonogenic doubling time, which can simulate the phenomenon of 'accelerated repopulation'. Differential calculus can be applied to the LQ model after elimination of the fraction number integers. The optimum dose per fraction (maximum cell kill relative to a given normal tissue fractionation sensitivity) is then estimated from the clonogen doubling times and the radiosensitivity parameters (or α/β ratios). Economic treatment optimization is described. Tumour volume studies during or following teletherapy are used to optimize brachytherapy. The radiation responses of both individual tumours and tumour populations (by random sampling 'Monte-Carlo' techniques from statistical ranges of radiobiological and physical parameters) can be estimated. Computerized preclinical trials can be used to guide choice of dose fractionation scheduling in clinical trials. The potential impact of gene and other biological therapies on the results of radical radiotherapy are testable. New and experimentally testable hypotheses are generated from limited clinical data by exploratory modelling exercises. (orig.)

  18. Experimental studies on interactions of radiation and cancer chemotherapeutic drugs in normal tissues and a solid tumour

    International Nuclear Information System (INIS)

    Maase, H. van der

    1986-01-01

    The interactions of radiation and seven cancer chemotherapeutic drugs have been investigated in four normal tissues and in a solid C 3 H mouse mammary carcinoma in vivo. The investigated drugs were adriamycin (ADM), bleomycin (BLM), cyclophosphamide (CTX), 5-fluorouracil (5-FU), methotrexate (MTX), mitomycin C (MM-C) and cis-diamminedichloroplatinum(II) (cis-DDP). The drugs enhanced the radiation response in most cases. However, signs of radioprotection was observed for CTX in skin and for MTX in haemopoietic tissue. The interval and the sequence of the two treatment modalities were of utmost importance for the normal tissue reactions. In general, the most serious interactions occurred when drugs were administered simultaneously with or a few hours before radiation. The radiation-modifying effect of the drugs deviated from this pattern in the haemopoietic tissue as the radiation response was most enhanced on drug administration 1-3 days after radiation. Enhancement of the radiation response was generally less pronounced in the tumour model than in the normal tissues. The combined drug-radiation effect was apparently less time-dependent in the tumour than in the normal tissues. (Auth.)

  19. Elemental concentration analysis in PCa, BPH and normal prostate tissues using SR-TXRF

    International Nuclear Information System (INIS)

    Leitao, Roberta G.; Anjos, Marcelino J.; Canellas, Catarine G.L.; Lopes, Ricardo T.

    2009-01-01

    Prostate cancer (PCa) is one of the main causes of illness and death all over the world. In Brazil, prostate cancer currently represents the second most prevalent malignant neoplasia in men, representing 21% of all cancer cases. Benign Prostate Hyperplasia (BPH) is an illness prevailing in men above the age of 50, close to 90% after the age of 80. The prostate presents a high zinc concentration, about 10-fold higher than any other body tissue. In this work, samples of human prostate tissues with cancer (PCa), BPH and normal tissue were analyzed utilizing the total reflection X-ray fluorescence spectroscopy using synchrotron radiation technique (SRTXRF) to investigate the differences in the elemental concentrations in these tissues. SR-TXRF analyses were performed at the X-Ray fluorescence beamline at Brazilian National Synchrotron Light Laboratory (LNLS), in Campinas, Sao Paulo. It was possible to determine the concentrations of the following elements: P, S, K, Ca, Fe, Cu, Zn, Br and Rb. By using Mann-Whitney U test it was observed that almost all elements presented concentrations with significant differences α = 0.05) between the groups studied. The elements and groups were: S, K, Ca, Fe, Zn, Br and Rb (PCa X Normal); S, Fe, Zn and Br (PCa X BPH); K, Ca, Fe, Zn, Br and Rb (BPH X Normal). (author)

  20. Trace element determinations in brain tissues from normal and clinically demented individuals

    International Nuclear Information System (INIS)

    Saiki, Mitiko; Genezini, Frederico A.; Leite, Renata E.P.; Grinberg, Lea T.; Ferretti, Renata E.L.; Suemoto, Claudia; Pasqualucci, Carlos A.; Jacob-Filho, Wilson

    2013-01-01

    Studies on trace element levels in human brains under normal and pathological conditions have indicated a possible correlation between some trace element concentrations and neurodegenerative diseases. In this study, analysis of brain tissues was carried out to investigate if there are any differences in elemental concentrations between brain tissues from a normal population above 50 years of age presenting Clinical Dementia Rating (CDR) equal to zero (CDR=0) and that cognitively affected population ( CDR=3). The tissues were dissected, ground, freeze-dried and then analyzed by instrumental neutron activation analysis. Samples and elemental standards were irradiated in a neutron flux at the IEA-R1 nuclear research reactor for Br, Fe, K, Na, Rb, Se and Zn determinations. The induced gamma ray activities were measured using a hyperpure Ge detector coupled to a gamma ray spectrometer. The one-way ANOVA test (p< 0.05) was used to compare the results. All the elements determined in the hippocampus brain region presented differences between the groups presenting CDR=0 and CDR=3. In the case of frontal region only the elements Na, Rb and Zn showed differences between these two groups. These findings proved the correlation between elemental levels present in brain tissues neurodegenerative diseases. Biological standard reference materials SRM 1566b Oyster Tissue and SRM 1577b Bovine Liver analyzed for quality control indicated good accuracy and precision of the results. (author)

  1. Renal damage detected by DMSA, despite normal renal ultrasound, in children with febrile UTI.

    Science.gov (United States)

    Bush, N C; Keays, M; Adams, C; Mizener, K; Pritzker, K; Smith, W; Traylor, J; Villanueva, C; Snodgrass, W T

    2015-06-01

    2011 American Academy of Pediatrics guidelines recommended renal-bladder ultrasound (RBUS) as the only evaluation after febrile urinary tract infection (FUTI) in infants aged 2-24 months. We determined the sensitivity, specificity, and false negative rate of RBUS to identify DMSA-detected renal damage in this age group as well as in older children. Consecutive patients referred to pediatric urology with a history of FUTI underwent DMSA ≥ 3 months after FUTI. Abnormal RBUS was defined as: Society of Fetal Urology hydronephrosis grades I-IV; hydroureter ≥ 7 mm; renal scar defined as focal parenchymal thinning; and/or size discrepancy ≥ 1 cm between kidneys. Abnormal DMSA was presence of any focal uptake defects and/or split renal function 24 months. RBUS had poor sensitivity (34%) and low positive predictive value (47%) to identify patients with renal damage. 99/149 (66%) children with renal damage on DMSA had normal RBUS. After FUTI, 66% of children with reduced renal function and/or renal cortical defects found by DMSA scintigraphy had a normal RBUS. Since abnormal DMSA may correlate with increased risk for VUR, recurrent FUTI and renal damage, our data suggest RBUS alone will fail to detect a significant proportion of patients at risk. The data suggest that imaging after FUTI should include acute RBUS and delayed DMSA, reserving VCUG for patients with abnormal DMSA and/or recurrent FUTI. Copyright © 2015 Journal of Pediatric Urology Company. Published by Elsevier Ltd. All rights reserved.

  2. Pelvic Normal Tissue Contouring Guidelines for Radiation Therapy: A Radiation Therapy Oncology Group Consensus Panel Atlas

    Energy Technology Data Exchange (ETDEWEB)

    Gay, Hiram A., E-mail: hgay@radonc.wustl.edu [Washington University School of Medicine, St Louis, MO (United States); Barthold, H. Joseph [Commonwealth Hematology and Oncology, Weymouth, MA (United States); Beth Israel Deaconess Medical Center, Boston, MA (Israel); O' Meara, Elizabeth [Radiation Therapy Oncology Group, Philadelphia, PA (United States); Bosch, Walter R. [Washington University School of Medicine, St Louis, MO (United States); El Naqa, Issam [Department of Radiation Oncology, McGill University Health Center, Montreal, Quebec (Canada); Al-Lozi, Rawan [Washington University School of Medicine, St Louis, MO (United States); Rosenthal, Seth A. [Radiation Oncology Centers, Radiological Associates of Sacramento, Sacramento, CA (United States); Lawton, Colleen [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI (United States); Lee, W. Robert [Department of Radiation Oncology, Duke University Medical Center, Durham, NC (United States); Sandler, Howard [Cedars-Sinai Medical Center, Los Angeles, CA (United States); Zietman, Anthony [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States); Myerson, Robert [Washington University School of Medicine, St Louis, MO (United States); Dawson, Laura A. [Department of Radiation Oncology, Princess Margaret Hospital, University of Toronto, Toronto, Ontario (Canada); Willett, Christopher [Department of Radiation Oncology, Duke University Medical Center, Durham, NC (United States); Kachnic, Lisa A. [Department of Radiation Oncology, Boston Medical Center, Boston University School of Medicine, Boston, MA (United States); Jhingran, Anuja [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX (United States); Portelance, Lorraine [University of Miami, Miami, FL (United States); Ryu, Janice [Radiation Oncology Centers, Radiological Associates of Sacramento, Sacramento, CA (United States); and others

    2012-07-01

    Purpose: To define a male and female pelvic normal tissue contouring atlas for Radiation Therapy Oncology Group (RTOG) trials. Methods and Materials: One male pelvis computed tomography (CT) data set and one female pelvis CT data set were shared via the Image-Guided Therapy QA Center. A total of 16 radiation oncologists participated. The following organs at risk were contoured in both CT sets: anus, anorectum, rectum (gastrointestinal and genitourinary definitions), bowel NOS (not otherwise specified), small bowel, large bowel, and proximal femurs. The following were contoured in the male set only: bladder, prostate, seminal vesicles, and penile bulb. The following were contoured in the female set only: uterus, cervix, and ovaries. A computer program used the binomial distribution to generate 95% group consensus contours. These contours and definitions were then reviewed by the group and modified. Results: The panel achieved consensus definitions for pelvic normal tissue contouring in RTOG trials with these standardized names: Rectum, AnoRectum, SmallBowel, Colon, BowelBag, Bladder, UteroCervix, Adnexa{sub R}, Adnexa{sub L}, Prostate, SeminalVesc, PenileBulb, Femur{sub R}, and Femur{sub L}. Two additional normal structures whose purpose is to serve as targets in anal and rectal cancer were defined: AnoRectumSig and Mesorectum. Detailed target volume contouring guidelines and images are discussed. Conclusions: Consensus guidelines for pelvic normal tissue contouring were reached and are available as a CT image atlas on the RTOG Web site. This will allow uniformity in defining normal tissues for clinical trials delivering pelvic radiation and will facilitate future normal tissue complication research.

  3. Elastic moduli of normal and pathological human breast tissues: an inversion-technique-based investigation of 169 samples

    Science.gov (United States)

    Samani, Abbas; Zubovits, Judit; Plewes, Donald

    2007-03-01

    Understanding and quantifying the mechanical properties of breast tissues has been a subject of interest for the past two decades. This has been motivated in part by interest in modelling soft tissue response for surgery planning and virtual-reality-based surgical training. Interpreting elastography images for diagnostic purposes also requires a sound understanding of normal and pathological tissue mechanical properties. Reliable data on tissue elastic properties are very limited and those which are available tend to be inconsistent, in part as a result of measurement methodology. We have developed specialized techniques to measure tissue elasticity of breast normal tissues and tumour specimens and applied them to 169 fresh ex vivo breast tissue samples including fat and fibroglandular tissue as well as a range of benign and malignant breast tumour types. Results show that, under small deformation conditions, the elastic modulus of normal breast fat and fibroglandular tissues are similar while fibroadenomas were approximately twice the stiffness. Fibrocystic disease and malignant tumours exhibited a 3-6-fold increased stiffness with high-grade invasive ductal carcinoma exhibiting up to a 13-fold increase in stiffness compared to fibrogalndular tissue. A statistical analysis showed that differences between the elastic modulus of the majority of those tissues were statistically significant. Implications for the specificity advantages of elastography are reviewed.

  4. Elastic moduli of normal and pathological human breast tissues: an inversion-technique-based investigation of 169 samples

    International Nuclear Information System (INIS)

    Samani, Abbas; Zubovits, Judit; Plewes, Donald

    2007-01-01

    Understanding and quantifying the mechanical properties of breast tissues has been a subject of interest for the past two decades. This has been motivated in part by interest in modelling soft tissue response for surgery planning and virtual-reality-based surgical training. Interpreting elastography images for diagnostic purposes also requires a sound understanding of normal and pathological tissue mechanical properties. Reliable data on tissue elastic properties are very limited and those which are available tend to be inconsistent, in part as a result of measurement methodology. We have developed specialized techniques to measure tissue elasticity of breast normal tissues and tumour specimens and applied them to 169 fresh ex vivo breast tissue samples including fat and fibroglandular tissue as well as a range of benign and malignant breast tumour types. Results show that, under small deformation conditions, the elastic modulus of normal breast fat and fibroglandular tissues are similar while fibroadenomas were approximately twice the stiffness. Fibrocystic disease and malignant tumours exhibited a 3-6-fold increased stiffness with high-grade invasive ductal carcinoma exhibiting up to a 13-fold increase in stiffness compared to fibrogalndular tissue. A statistical analysis showed that differences between the elastic modulus of the majority of those tissues were statistically significant. Implications for the specificity advantages of elastography are reviewed

  5. Elastic moduli of normal and pathological human breast tissues: an inversion-technique-based investigation of 169 samples

    Energy Technology Data Exchange (ETDEWEB)

    Samani, Abbas [Department of Medical Biophysics/Electrical and Computer Engineering, University of Western Ontario, Medical Sciences Building, London, Ontario, N6A 5C1 (Canada); Zubovits, Judit [Department of Anatomic Pathology, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, Ontario, M4N 3M5 (Canada); Plewes, Donald [Department of Medical Biophysics, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario, M4N 3M5 (Canada)

    2007-03-21

    Understanding and quantifying the mechanical properties of breast tissues has been a subject of interest for the past two decades. This has been motivated in part by interest in modelling soft tissue response for surgery planning and virtual-reality-based surgical training. Interpreting elastography images for diagnostic purposes also requires a sound understanding of normal and pathological tissue mechanical properties. Reliable data on tissue elastic properties are very limited and those which are available tend to be inconsistent, in part as a result of measurement methodology. We have developed specialized techniques to measure tissue elasticity of breast normal tissues and tumour specimens and applied them to 169 fresh ex vivo breast tissue samples including fat and fibroglandular tissue as well as a range of benign and malignant breast tumour types. Results show that, under small deformation conditions, the elastic modulus of normal breast fat and fibroglandular tissues are similar while fibroadenomas were approximately twice the stiffness. Fibrocystic disease and malignant tumours exhibited a 3-6-fold increased stiffness with high-grade invasive ductal carcinoma exhibiting up to a 13-fold increase in stiffness compared to fibrogalndular tissue. A statistical analysis showed that differences between the elastic modulus of the majority of those tissues were statistically significant. Implications for the specificity advantages of elastography are reviewed.

  6. A large-scale study of the ultrawideband microwave dielectric properties of normal breast tissue obtained from reduction surgeries.

    Science.gov (United States)

    Lazebnik, Mariya; McCartney, Leah; Popovic, Dijana; Watkins, Cynthia B; Lindstrom, Mary J; Harter, Josephine; Sewall, Sarah; Magliocco, Anthony; Booske, John H; Okoniewski, Michal; Hagness, Susan C

    2007-05-21

    The efficacy of emerging microwave breast cancer detection and treatment techniques will depend, in part, on the dielectric properties of normal breast tissue. However, knowledge of these properties at microwave frequencies has been limited due to gaps and discrepancies in previously reported small-scale studies. To address these issues, we experimentally characterized the wideband microwave-frequency dielectric properties of a large number of normal breast tissue samples obtained from breast reduction surgeries at the University of Wisconsin and University of Calgary hospitals. The dielectric spectroscopy measurements were conducted from 0.5 to 20 GHz using a precision open-ended coaxial probe. The tissue composition within the probe's sensing region was quantified in terms of percentages of adipose, fibroconnective and glandular tissues. We fit a one-pole Cole-Cole model to the complex permittivity data set obtained for each sample and determined median Cole-Cole parameters for three groups of normal breast tissues, categorized by adipose tissue content (0-30%, 31-84% and 85-100%). Our analysis of the dielectric properties data for 354 tissue samples reveals that there is a large variation in the dielectric properties of normal breast tissue due to substantial tissue heterogeneity. We observed no statistically significant difference between the within-patient and between-patient variability in the dielectric properties.

  7. A large-scale study of the ultrawideband microwave dielectric properties of normal breast tissue obtained from reduction surgeries

    International Nuclear Information System (INIS)

    Lazebnik, Mariya; McCartney, Leah; Popovic, Dijana; Watkins, Cynthia B; Lindstrom, Mary J; Harter, Josephine; Sewall, Sarah; Magliocco, Anthony; Booske, John H; Okoniewski, Michal; Hagness, Susan C

    2007-01-01

    The efficacy of emerging microwave breast cancer detection and treatment techniques will depend, in part, on the dielectric properties of normal breast tissue. However, knowledge of these properties at microwave frequencies has been limited due to gaps and discrepancies in previously reported small-scale studies. To address these issues, we experimentally characterized the wideband microwave-frequency dielectric properties of a large number of normal breast tissue samples obtained from breast reduction surgeries at University of Wisconsin and University of Calgary hospitals. The dielectric spectroscopy measurements were conducted from 0.5 to 20 GHz using a precision open-ended coaxial probe. The tissue composition within the probe's sensing region was quantified in terms of percentages of adipose, fibroconnective and glandular tissues. We fit a one-pole Cole-Cole model to the complex permittivity data set obtained for each sample and determined median Cole-Cole parameters for three groups of normal breast tissues, categorized by adipose tissue content (0-30%, 31-84% and 85-100%). Our analysis of the dielectric properties data for 354 tissue samples reveals that there is a large variation in the dielectric properties of normal breast tissue due to substantial tissue heterogeneity. We observed no statistically significant difference between the within-patient and between-patient variability in the dielectric properties

  8. Enhancer of the rudimentary gene homologue (ERH expression pattern in sporadic human breast cancer and normal breast tissue

    Directory of Open Access Journals (Sweden)

    Knüchel Ruth

    2008-05-01

    Full Text Available Abstract Background The human gene ERH (Enhancer of the Rudimentary gene Homologue has previously been identified by in silico analysis of four million ESTs as a gene differentially expressed in breast cancer. The biological function of ERH protein has not been fully elucidated, however functions in cell cycle progression, pyrimidine metabolism a possible interaction with p21(Cip1/Waf1 via the Ciz1 zinc finger protein have been suggested. The aim of the present study was a systematic characterization of ERH expression in human breast cancer in order to evaluate possible clinical applications of this molecule. Methods The expression pattern of ERH was analyzed using multiple tissue northern blots (MTN on a panel of 16 normal human tissues and two sets of malignant/normal breast and ovarian tissue samples. ERH expression was further analyzed in breast cancer and normal breast tissues and in tumorigenic as well as non-tumorigenic breast cancer cell lines, using quantitative RT-PCR and non-radioisotopic in situ hybridization (ISH. Results Among normal human tissues, ERH expression was most abundant in testis, heart, ovary, prostate, and liver. In the two MTN sets of malignant/normal breast and ovarian tissue,ERH was clearly more abundantly expressed in all tumours than in normal tissue samples. Quantitative RT-PCR analyses showed that ERH expression was significantly more abundant in tumorigenic than in non-tumorigenic breast cancer cell lines (4.5-fold; p = 0.05, two-tailed Mann-Whitney U-test; the same trend was noted in a set of 25 primary invasive breast cancers and 16 normal breast tissue samples (2.5-fold; p = 0.1. These findings were further confirmed by non-radioisotopic ISH in human breast cancer and normal breast tissue. Conclusion ERH expression is clearly up-regulated in malignant as compared with benign breast cells both in primary human breast cancer and in cell models of breast cancer. Since similar results were obtained for ovarian

  9. Comparative study of rabbit VX2 hepatic implantation tumor and normal liver tissue on magnetic resonance perfusion weighted imaging

    International Nuclear Information System (INIS)

    Jiao Zimei; Wang Xizhen; Wang Bin; Liu Feng; Li Haiqing; Sun Yequan; Dong Peng

    2012-01-01

    Objective: To investigate the value of magnetic resonance (MR) perfusion weighted imaging (PWI) in evaluating the blood perfusion of tumor by analyzing the features and indexes of PWI on rabbit VX2 hepatic implantation tumor and normal liver tissue. Methods: Twenty-four New Zealand White rabbits with VX2 carcinoma were established under direct surgical vision embedding tumor tissue. MR examination was performed at 21 days after the tumor implantation. The signal intensity -time curve of hepatic tumor and normal liver tissue were obtained. Mean time to enhance (MTE), negative enhancement integral (NEI), time to minimum (TM), maximum slope of decrease (MSD) and maximum slope of increase (MSI) were measured. Results: MTE, NEI, TM, MSD, and MSI of the normal liver tissue were 208.341±2.226 ms, 78.334±8.152, 24.059±1.927 ms, 38.221±2.443, and 15.389±2.526, respectively. MTE, NEI, TM, MSD, and MSI of the tumor tissue were 175.437±4.182 ms, 123.203±19.455, 17.061±1.834 ms, 125.740±4.842, and 67.832±2.882, respectively. The MTE and TM of tumor were shorter than those of normal hepatic tissue (P<0.05). NEI, MSD, and MSI of tumor were higher than those of normal hepatic tissue (P<0.05). Conclusion: PWI can distinguish the normal liver tissue from the tumor tissue, which is helpful in evaluating blood perfusion of different hepatic tissues. (authors)

  10. YAP expression in normal and neoplastic breast tissue: an immunohistochemical study.

    Science.gov (United States)

    Jaramillo-Rodríguez, Yolanda; Cerda-Flores, Ricardo M; Ruiz-Ramos, Ruben; López-Márquez, Francisco C; Calderón-Garcidueñas, Ana Laura

    2014-04-01

    Yes-associated protein (YAP) is a transcriptional factor involved in normal cell proliferation, apoptosis and carcinogenesis; however, its contribution to breast cancer (BC) is still controversial. We undertook this study to compare the expression of YAP by immunohistochemistry (IHC) in normal breast tissue of women without breast cancer (BC) (controls), non-neoplastic breast tissue in women with cancer (internal controls) and in four different subtypes of invasive ductal carcinoma. There were 17 controls and 105 tumor cases (53 luminal A, 15 luminal B, 20 overexpression of HER2 and 17 triple negative cases) studied by IHC. Statistical analysis included χ(2) for linear trend (Extended Mantel-Haenszel). There were 40% of internal controls that showed expression of YAP in myoepithelial cells, whereas in controls expression was 100%. In controls, 3/17 (17.6%) showed cytoplasmic staining in luminal cells. There was a significant difference in nuclear expression between the ductal BC subtypes. Luminal A had 4% of positive cases with <10% of cells affected in each case; in contrast, there were 17-20% of positive cases in the other groups with 50% or more of stained cells. YAP expression in stromal cells was not observed in controls or in triple-negative cases, and luminal B pattern had the highest YAP nuclear expression (20%). YAP showed decreased expression in tumor cells compared with normal breast tissue. These findings are consistent with a role of YAP as a suppressor gene in BC and show differences in YAP expression in different patterns of ductal BC. Copyright © 2014 IMSS. Published by Elsevier Inc. All rights reserved.

  11. Zicam-induced damage to mouse and human nasal tissue.

    Directory of Open Access Journals (Sweden)

    Jae H Lim

    Full Text Available Intranasal medications are used to treat various nasal disorders. However, their effects on olfaction remain unknown. Zicam (zinc gluconate; Matrixx Initiatives, Inc, a homeopathic substance marketed to alleviate cold symptoms, has been implicated in olfactory dysfunction. Here, we investigated Zicam and several common intranasal agents for their effects on olfactory function. Zicam was the only substance that showed significant cytotoxicity in both mouse and human nasal tissue. Specifically, Zicam-treated mice had disrupted sensitivity of olfactory sensory neurons to odorant stimulation and were unable to detect novel odorants in behavioral testing. These findings were long-term as no recovery of function was observed after two months. Finally, human nasal explants treated with Zicam displayed significantly elevated extracellular lactate dehydrogenase levels compared to saline-treated controls, suggesting severe necrosis that was confirmed on histology. Our results demonstrate that Zicam use could irreversibly damage mouse and human nasal tissue and may lead to significant smell dysfunction.

  12. Differential Expression of Cytochrome P450 Enzymes in Normal and Tumor Tissues from Childhood Rhabdomyosarcoma

    Science.gov (United States)

    Molina-Ortiz, Dora; Camacho-Carranza, Rafael; González-Zamora, José Francisco; Shalkow-Kalincovstein, Jaime; Cárdenas-Cardós, Rocío; Ností-Palacios, Rosario; Vences-Mejía, Araceli

    2014-01-01

    Intratumoral expression of genes encoding Cytochrome P450 enzymes (CYP) might play a critical role not only in cancer development but also in the metabolism of anticancer drugs. The purpose of this study was to compare the mRNA expression patterns of seven representative CYPs in paired tumor and normal tissue of child patients with rabdomyosarcoma (RMS). Using real time quantitative RT-PCR, the gene expression pattern of CYP1A1, CYP1A2, CYP1B1, CYP2E1, CYP2W1, CYP3A4, and CYP3A5 were analyzed in tumor and adjacent non-tumor tissues from 13 child RMS patients. Protein concentration of CYPs was determined using Western blot. The expression levels were tested for correlation with the clinical and pathological data of the patients. Our data showed that the expression levels of CYP1A1 and CYP1A2 were negligible. Elevated expression of CYP1B1 mRNA and protein was detected in most RMS tumors and adjacent normal tissues. Most cancerous samples exhibit higher levels of both CYP3A4 and CYP3A5 compared with normal tissue samples. Expression of CYP2E1 mRNA was found to be significantly higher in tumor tissue, however no relation was found with protein levels. CYP2W1 mRNA and/or protein are mainly expressed in tumors. In conclusion, we defined the CYP gene expression profile in tumor and paired normal tissue of child patients with RMS. The overexpression of CYP2W1, CYP3A4 and CYP3A5 in tumor tissues suggests that they may be involved in RMS chemoresistance; furthermore, they may be exploited for the localized activation of anticancer prodrugs. PMID:24699256

  13. Apple Flavonoids Suppress Carcinogen-Induced DNA Damage in Normal Human Bronchial Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Vazhappilly Cijo George

    2017-01-01

    Full Text Available Scope. Human neoplastic transformation due to DNA damage poses an increasing global healthcare concern. Maintaining genomic integrity is crucial for avoiding tumor initiation and progression. The present study aimed to investigate the efficacy of an apple flavonoid fraction (AF4 against various carcinogen-induced toxicity in normal human bronchial epithelial cells and its mechanism of DNA damage response and repair processes. Methods and Results. AF4-pretreated cells were exposed to nicotine-derived nitrosamine ketones (NNK, NNK acetate (NNK-Ae, methotrexate (MTX, and cisplatin to validate cytotoxicity, total reactive oxygen species, intracellular antioxidants, DNA fragmentation, and DNA tail damage. Furthermore, phosphorylated histone (γ-H2AX and proteins involved in DNA damage (ATM/ATR, Chk1, Chk2, and p53 and repair (DNA-PKcs and Ku80 mechanisms were evaluated by immunofluorescence and western blotting, respectively. The results revealed that AF4-pretreated cells showed lower cytotoxicity, total ROS generation, and DNA fragmentation along with consequent inhibition of DNA tail moment. An increased level of γ-H2AX and DNA damage proteins was observed in carcinogen-treated cells and that was significantly (p≤0.05 inhibited in AF4-pretreated cells, in an ATR-dependent manner. AF4 pretreatment also facilitated the phosphorylation of DNA-PKcs and thus initiation of repair mechanisms. Conclusion. Apple flavonoids can protect in vitro oxidative DNA damage and facilitate repair mechanisms.

  14. A simple method to calculate the influence of dose inhomogeneity and fractionation in normal tissue complication probability evaluation

    International Nuclear Information System (INIS)

    Begnozzi, L.; Gentile, F.P.; Di Nallo, A.M.; Chiatti, L.; Zicari, C.; Consorti, R.; Benassi, M.

    1994-01-01

    Since volumetric dose distributions are available with 3-dimensional radiotherapy treatment planning they can be used in statistical evaluation of response to radiation. This report presents a method to calculate the influence of dose inhomogeneity and fractionation in normal tissue complication probability evaluation. The mathematical expression for the calculation of normal tissue complication probability has been derived combining the Lyman model with the histogram reduction method of Kutcher et al. and using the normalized total dose (NTD) instead of the total dose. The fitting of published tolerance data, in case of homogeneous or partial brain irradiation, has been considered. For the same total or partial volume homogeneous irradiation of the brain, curves of normal tissue complication probability have been calculated with fraction size of 1.5 Gy and of 3 Gy instead of 2 Gy, to show the influence of fraction size. The influence of dose distribution inhomogeneity and α/β value has also been simulated: Considering α/β=1.6 Gy or α/β=4.1 Gy for kidney clinical nephritis, the calculated curves of normal tissue complication probability are shown. Combining NTD calculations and histogram reduction techniques, normal tissue complication probability can be estimated taking into account the most relevant contributing factors, including the volume effect. (orig.) [de

  15. The influence of dose fractionation and dose rate on normal tissue responses

    International Nuclear Information System (INIS)

    Barendsen, G.W.

    1982-01-01

    An analysis of responses of a variety of normal tissues in animals to fractionated irradiations has been made with the aim of developing a formalism for the prediction of tolerance doses as a function of the dose per fraction and the overall treatment time. An important feature of the formalism is that it is directly based on radiological insights and therefore provides a logical concept to account for the diversity of tissue responses. (Auth.)

  16. Prevention Effect of Poly-Gamma-Glutamic Acid on Tissue Damage Induced by Gamma Irradiation as a Natural Cross-Linker

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jaehun; Sung, Nakyun; Kim, Jeongsoo; Jo, Euri; Choi, Jongil; Park, Jongheum; Lee, Juwoon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, Kwangwon [Eulji Univ. Hospital, Daejeon (Korea, Republic of); Kwon, Jungkee [Chonbuk National Univ., Jeonju (Korea, Republic of); Kim, Taewoon [Jeonbuk Technopark, Jeonju (Korea, Republic of)

    2012-03-15

    This study was to determine the prevention effect of poly-gamma-glutamic acid (PGA) on tissue damage induced by gamma irradiation for development of xenograft. PGA (MW 2000 kDa) extracted from permeated soy bean (natto) was used in this study as natural compound, and glutaraldehyde (GA) and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) were used as a control, chemical based cross-linking agents. GA, EDC and PGA treated porcine tendons were gamma-irradiated at the dose of 30 kGy. Prevention effects against tissue damage were measured as the result of tensile strength, hydroxyproline contents and tissue morphological analysis. Tensile of porcine tendon was remarkably decreased by gamma irradiation, but increased in PGA treated group. Morphological analysis showed that collagen structure was broken by gamma irradiation, but attenuated by PGA treatment. Base on the results, it demonstrated that gamma irradiation can induce severe alteration of porcine tendon, but PGA can effectively improve the tissue damage.

  17. Prevention Effect of Poly-Gamma-Glutamic Acid on Tissue Damage Induced by Gamma Irradiation as a Natural Cross-Linker

    International Nuclear Information System (INIS)

    Kim, Jaehun; Sung, Nakyun; Kim, Jeongsoo; Jo, Euri; Choi, Jongil; Park, Jongheum; Lee, Juwoon; Lee, Kwangwon; Kwon, Jungkee; Kim, Taewoon

    2012-01-01

    This study was to determine the prevention effect of poly-gamma-glutamic acid (PGA) on tissue damage induced by gamma irradiation for development of xenograft. PGA (MW 2000 kDa) extracted from permeated soy bean (natto) was used in this study as natural compound, and glutaraldehyde (GA) and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) were used as a control, chemical based cross-linking agents. GA, EDC and PGA treated porcine tendons were gamma-irradiated at the dose of 30 kGy. Prevention effects against tissue damage were measured as the result of tensile strength, hydroxyproline contents and tissue morphological analysis. Tensile of porcine tendon was remarkably decreased by gamma irradiation, but increased in PGA treated group. Morphological analysis showed that collagen structure was broken by gamma irradiation, but attenuated by PGA treatment. Base on the results, it demonstrated that gamma irradiation can induce severe alteration of porcine tendon, but PGA can effectively improve the tissue damage

  18. CURED I - LENT. Late effects of cancer treatment on normal tissues

    International Nuclear Information System (INIS)

    Rubin, P.; Okunieff, P.; Constine, L.S.; Rochester Univ. School of Medicine and Dentistry, Rochester, NY; Marks, L.B.

    2008-01-01

    The search for the most favorable therapeutic ratio - at which ablation of cancer is achieved while normal tissues are conserved - has been modern radiation oncology's equivalent of the quest for the Holy Grail. Our awareness of the late effects of radiation grew during the past century as new modalities were introduced. Heightened normal tissue reactions accompanied the higher rates of cancer ablation achieved by escalation of radiation doses, accelerated fractionated radiotherapy, and aggressive concurrent chemotherapy and radiation regimens. This volume is based on the LENT V NCI-sponsored meeting held in May 2004 and the CURED I conference held in 2006. Written by experts in the field, it addresses a number of critical topics relating to late effects, such as mechanisms of injury, the role of screening, options for interventions, second malignancies, and prevention. It is hoped that it will assist the reader in understanding how to prevent and treat the long-term side-effects of irradiation. (orig.)

  19. DNA damage in preserved specimens and tissue samples: a molecular assessment

    Directory of Open Access Journals (Sweden)

    Cantin Elizabeth

    2008-10-01

    Full Text Available Abstract The extraction of genetic information from preserved tissue samples or museum specimens is a fundamental component of many fields of research, including the Barcode of Life initiative, forensic investigations, biological studies using scat sample analysis, and cancer research utilizing formaldehyde-fixed, paraffin-embedded tissue. Efforts to obtain genetic information from these sources are often hampered by an inability to amplify the desired DNA as a consequence of DNA damage. Previous studies have described techniques for improved DNA extraction from such samples or focused on the effect of damaging agents – such as light, oxygen or formaldehyde – on free nucleotides. We present ongoing work to characterize lesions in DNA samples extracted from preserved specimens. The extracted DNA is digested to single nucleosides with a combination of DNase I, Snake Venom Phosphodiesterase, and Antarctic Phosphatase and then analyzed by HPLC-ESI-TOF-MS. We present data for moth specimens that were preserved dried and pinned with no additional preservative and for frog tissue samples that were preserved in either ethanol, or formaldehyde, or fixed in formaldehyde and then preserved in ethanol. These preservation methods represent the most common methods of preserving animal specimens in museum collections. We observe changes in the nucleoside content of these samples over time, especially a loss of deoxyguanosine. We characterize the fragmentation state of the DNA and aim to identify abundant nucleoside lesions. Finally, simple models are introduced to describe the DNA fragmentation based on nicks and double-strand breaks.

  20. Voxel-by-voxel analysis of ECD-brain SPECT can separate penumbra from irreversibly damaged tissue at the acute phase of stroke

    International Nuclear Information System (INIS)

    Darcourt, J.; Migneco, O.; David, O.; Bussiere, F.; Mahagne, M.H.; Dunac, A.; Baron, J.C.

    2002-01-01

    Aim. At the acute phase of ischemic stroke, the target of treatment is still salvageable hypoperfused cerebral tissue; so called penumbra. We tested the possibility of separating on early ECD brain SPECT penumbral voxels (P) from irreversibly damaged damaged tissue (IDT). We used ECD which is not only a perfusion tracer but also a metabolic marker. Materials and methods. We prospectively studied 18 patients who underwent ECD-SPECT within the 12 hours following a first-ever acute middle cerebral artery stroke. Neurological evaluation was performed using the Orgogozo's scale at admission and 3 months later in order to calculate and evolution index (IE%) (Martinez-Vila et al.). SPECT data were obtained using a triple head camera equipped with fan beam collimators one hour after injection of 1000 MBq of 99mTc-ECD. On reconstructed images gray matter voxels were automatically segmented. Contralateral healthy hemisphere was used as reference leading to the identification of 3 cortical voxel types: normal (N-SPECT) above 80%; penumbra (P-SPECT) between 80% and 40% and IDT (IDT-SPECT) below 40%. 10 patients also underwent a T2 weighted 3D MRI study at 3 months. Cortical voxels with hypersignal served as reference for IDT (IDT-MRI) the others were considered normal (N-MRI). SPECT and MRI data were co-registered. Therefore each voxel belonged to one of 6 categories (3 SPECT x 2 MRI). Results. (1) The SPECT thresholds were validated on the MRI subgroup. 99% of the N-SPECT voxels were normal on late MRI. 84% of IDT-SPECT voxels corresponded to IDT-MRI. 89% of P-SPECT voxels were normal on late MRI and 11% corresponded to IDT on late MRI. Other categories of voxels (N-SPECT IDT-MRI and IDT-SPECT N-MRI) represented less than 5%. (2) Percentages of each voxel SPECT type was correlated with the EI% on the entire population (Spearman test). P-SPECT extent correlated with EI% improvement (p<0.001) and IDT-SPECT with EI% worsening (p<0.001). Conclusion. Analysis of ECD cortical

  1. An Alternative Method of Evaluating 1540NM Exposure Laser Damage using an Optical Tissue Phantom

    National Research Council Canada - National Science Library

    Jindra, Nichole M; Figueroa, Manuel A; Rockwell, Benjamin A; Chavey, Lucas J; Zohner, Justin J

    2006-01-01

    An optical phantom was designed to physically and optically resemble human tissue, in an effort to provide an alternative for detecting visual damage resulting from inadvertent exposure to infrared lasers...

  2. Comparison of the predictions of the LQ and CRE models for normal tissue damage due to biologically targeted radiotherapy with exponentially decaying dose rates

    International Nuclear Information System (INIS)

    O'Donoghue, J.A.; West of Schotland Health Boards, Glasgow

    1989-01-01

    For biologically targeted radiotherapy organ dose rates may be complex functions of time, related to the biodistribution kinetics of the delivery vehicle and radiolabel. The simples situation is where dose rates are exponentially decaying functions of time. Two normal tissue isoeffect models enable the effects of exponentially decaying dose rates to be addressed. These are the extension of the linear-quadratic model and the cumulative radiation effect model. This communication will compare the predictions of these models. (author). 14 refs.; 1 fig

  3. Effect of different BNCT protocols on DNA synthesis in precancerous and normal tissues in an experimental model of oral cancer

    International Nuclear Information System (INIS)

    Heber, Elisa M.; Aromando, Romina; Trivillin, Veronica A.; Itoiz, Maria E.; Kreimann, Erica L.; Schwint, Amanda E.; Nigg, David W.

    2006-01-01

    We previously reported the therapeutic success of different BNCT protocols in the treatment of oral cancer, employing the hamster cheek pouch model. The aim of the present study was to evaluate the effect of these BNCT protocols on DNA synthesis in precancerous and normal tissue in this model and assess the potential lag in the development of second primary tumors in precancerous tissue. The data are relevant to potential control of field cancerized tissue and tolerance of normal tissue. We evaluated DNA synthesis in precancerous and normal pouch tissue 1-30 days post-BNCT mediated by BPA, GB-10 or BPA + GB-10 employing incorporation of bromo-deoxyuridine as an end-point. The BNCT-induced potential lag in the development of second primary tumors in precancerous tissue was monitored. A drastic, statistically significant reduction in DNA synthesis occurred in pacancerous tissue as early as 1 day post-BNCT and was sustained at virtually all time points until 30 days post-BNCT for all protocols. The histological categories evaluated individually within precancerous tissue (dysplasia, hyperplasia and NUMF [no unusual microscopic features]) responded similarly. DNA synthesis in normal tissue treated with BNCT oscillated around the very low pre-treatment values. A BNCT-induced lag in the development of second primary tumors was observed. BNCT induced a drastic fall in DNA synthesis in precancerous tissue that would be associated to the observed lag in the development of second primary tumors. The minimum variations in DNA synthesis in BNCT-treated normal tissue would correlate with the absence of normal tissue radiotoxicity. The present data would contribute to optimize therapeutic efficacy in the treatment of field-cancerized areas. (author)

  4. Lewis x is highly expressed in normal tissues: a comparative immunohistochemical study and literature revision.

    Science.gov (United States)

    Croce, María V; Isla-Larrain, Marina; Rabassa, Martín E; Demichelis, Sandra; Colussi, Andrea G; Crespo, Marina; Lacunza, Ezequiel; Segal-Eiras, Amada

    2007-01-01

    An immunohistochemical analysis was employed to determine the expression of carbohydrate antigens associated to mucins in normal epithelia. Tissue samples were obtained as biopsies from normal breast (18), colon (35) and oral cavity mucosa (8). The following carbohydrate epitopes were studied: sialyl-Lewis x, Lewis x, Lewis y, Tn hapten, sialyl-Tn and Thomsen-Friedenreich antigen. Mucins were also studied employing antibodies against MUC1, MUC2, MUC4, MUC5AC, MUC6 and also normal colonic glycolipid. Statistical analysis was performed and Kendall correlations were obtained. Lewis x showed an apical pattern mainly at plasma membrane, although cytoplasmic staining was also found in most samples. TF, Tn and sTn haptens were detected in few specimens, while sLewis x was found in oral mucosa and breast tissue. Also, normal breast expressed MUC1 at a high percentage, whereas MUC4 was observed in a small number of samples. Colon specimens mainly expressed MUC2 and MUC1, while most oral mucosa samples expressed MUC4 and MUC1. A positive correlation between MUC1VNTR and TF epitope (r=0.396) was found in breast samples, while in colon specimens MUC2 and colonic glycolipid versus Lewis x were statistically significantly correlated (r=0.28 and r=0.29, respectively). As a conclusion, a defined carbohydrate epitope expression is not exclusive of normal tissue or a determined localization, and it is possible to assume that different glycoproteins and glycolipids may be carriers of carbohydrate antigens depending on the tissue localization considered.

  5. Pain and Tissue Damage in Response to Orthodontic Tooth Movement: Are They Correlated?

    Science.gov (United States)

    Cuoghi, Osmar A; Topolski, Francielle; de Faria, Lorraine P; de Mendonça, Marcos R

    2016-09-01

    To evaluate the correlation between pain and tissue damage in response to orthodontic tooth movement (OTM), such as hyalinization and external apical root resorption (EARR). The literature review was used as a methodological strategy, following the knowledge development process - constructivist (ProKnow-C). Study axes were defined and keywords that best represented each axis were selected. The terms were submitted to an adherence test and validation, resulting in 12 keyword combinations. Searches were carried out in the most representative databases for the selected terms, without restriction as for language or publication dates. Retrieved studies were filtered using the EndNote X6 program and classified according to analysis of title, abstract, and keywords. The final portfolio of articles was submitted to bibliometric and systematic analysis. A total of 1,091 studies were retrieved, out of which 719 were repeated and 335 were removed in the classification stage. A total of 37 articles remained in the final portfolio. Only one article was in line with the purpose of this study, indicating absence of correlation between pain and EARR in response to OTM. Further studies are necessary to confirm whether orthodontic pain might serve as a criterion for the use of appropriate mechanical forces, contributing to minimize tissue damage following OTM. This article presents a systematic literature review, in which scientific evidence of the correlation between pain and tissue damage during orthodontic movement was studied, providing a scientific answer for the following question: Is pain reported by patients associated with application of inappropriate orthodontic force? Thus, it aims at aiding the orthodontist in the definition of clinical parameters for the use of optimal orthodontic force.

  6. In vitro prediction of in vivo skin damage associated with the wiping of dry tissue against skin.

    Science.gov (United States)

    Koenig, David W; Dvoracek, Barb; Vongsa, Rebecca

    2013-02-01

    The ideal gentle cleansing product is one that effectively removes soils while minimizing damage to the skin. Thus, measuring physical abrasion caused by cleansing tissues is critical to the continued development of gentle cleansing products. Current analysis of cleansing materials for skin gentleness is time consuming and requires expensive human subject testing. This report describes the development of a rapid and inexpensive bench assay for the assessment of skin abrasion caused by wiping. Coefficient of friction (COF) evaluations using bench methods were compared with results from clinical studies of repeated wiping and with confocal visualizations of excised skin. A Monitor/Slip and Friction instrument (model 32-06; TMI, Amityville, NY, USA) was used to measure tissue friction on simulated skin (Vitro-Skin, N19-5X; IMS, Milford, CT, USA). Clinical data from a 4-day repetitive forearm wiping study measuring transepidermal water loss (TEWL) in 30 subjects was compared with results from the bench top assay. In addition, excised skin samples were also treated using the COF bench assay and examined using confocal microscopy to visualize stratum corneum damage caused by wiping. Using the bench COF assay, we were able to distinguish between bath tissue codes by comparing average static friction value (ASFV) for the test codes, where lower ASFV indicated less abrasive tissue. The ASFV followed the same gentleness trend observed in the clinical study. Confocal microscopy of excised skin wiped with the same materials indicated stratum corneum damage consistent with the bench COF and clinical TEWL observations. We observed significant correlation between bench and clinical methods for measuring skin damage caused by wiping of skin with tissue. The bench method will facilitate rapid and inexpensive skin gentleness assessment of cleansing materials. © 2012 John Wiley & Sons A/S.

  7. L-Carnosine reduces telomere damage and shortening rate in cultured normal fibroblasts

    International Nuclear Information System (INIS)

    Shao Lan; Li Qinghuan; Tan Zheng

    2004-01-01

    Telomere is the repetitive DNA sequence at the end of chromosomes, which shortens progressively with cell division and limits the replicative potential of normal human somatic cells. L-Carnosine, a naturally occurring dipeptide, has been reported to delay the replicative senescence, and extend the lifespan of cultured human diploid fibroblasts. In this work, we studied the effect of carnosine on the telomeric DNA of cultured human fetal lung fibroblast cells. Cells continuously grown in 20 mM carnosine exhibited a slower telomere shortening rate and extended lifespan in population doublings. When kept in a long-term nonproliferating state, they accumulated much less damages in the telomeric DNA when cultured in the presence of carnosine. We suggest that the reduction in telomere shortening rate and damages in telomeric DNA made an important contribution to the life-extension effect of carnosine

  8. Can Rotational Atherectomy Cause Thermal Tissue Damage? A Study of the Potential Heating and Thermal Tissue Effects of a Rotational Atherectomy Device

    International Nuclear Information System (INIS)

    Gehani, Abdurrazzak A.; Rees, Michael R.

    1998-01-01

    Purpose: Thermal tissue damage (TTD) is customarily associated with some lasers. The thermal potential of rotational atherectomy (RA) devices is unknown. We investigated the temperature profile and potential TTD as well as the value of fluid flushing of an RA device. Methods: We used a high-resolution infrared imaging system that can detect changes as small as 0.1 deg. C to measure the temperature changes at the tip of a fast RA device with and without fluid flushing. To assess TTD, segments of porcine aorta were subjected to the rotating tip under controlled conditions, stained by a special histochemical stain (picrisirius red) and examined under normal and polarized light microscopy. Results: There was significant heating of the rotating cam. The mean 'peak' temperature rise was 52.8 ± 16.9 deg. C. This was related to rotational speed; thus the 'peak' temperature rise was 88.3 ± 12.6 deg. C at 80,000 rpm and 17.3 ± 3.8 deg. C at 20,000 rpm (p < 0.001, t-test). Fluid flushing at 18 ml/min reduced, but did not abolish, heating of the device (11.8 ± 2.9 deg. C). A crater was observed in all segments exposed to the rotating tip. The following features were most notable: (i) A zone of 'thermal' tissue damage extended radially from the crater reaching adventitia in some sections, especially at high speeds. This zone showed markedly reduced or absent birefringence. (ii) Fluid flushing of the catheter reduced the above changes but increased the incidence and extent of dissections in the media, especially when combined with high atherectomy speeds. (iii) These changes were observed in five of six specimens exposed to RA without flushing, but in only one of six with flushing (p < 0.05). (iv) None of the above changes was seen in control segments. Conclusion: RA is capable of generating significant heat and potential TTD. Fluid flushing reduced heating and TTD. These findings warrant further studies in vivo, and may influence the design of atherectomy devices

  9. Space Radiation Effects on Human Cells: Modeling DNA Breakage, DNA Damage Foci Distribution, Chromosomal Aberrations and Tissue Effects

    Science.gov (United States)

    Ponomarev, A. L.; Huff, J. L.; Cucinotta, F. A.

    2011-01-01

    Future long-tem space travel will face challenges from radiation concerns as the space environment poses health risk to humans in space from radiations with high biological efficiency and adverse post-flight long-term effects. Solar particles events may dramatically affect the crew performance, while Galactic Cosmic Rays will induce a chronic exposure to high-linear-energy-transfer (LET) particles. These types of radiation, not present on the ground level, can increase the probability of a fatal cancer later in astronaut life. No feasible shielding is possible from radiation in space, especially for the heavy ion component, as suggested solutions will require a dramatic increase in the mass of the mission. Our research group focuses on fundamental research and strategic analysis leading to better shielding design and to better understanding of the biological mechanisms of radiation damage. We present our recent effort to model DNA damage and tissue damage using computational models based on the physics of heavy ion radiation, DNA structure and DNA damage and repair in human cells. Our particular area of expertise include the clustered DNA damage from high-LET radiation, the visualization of DSBs (DNA double strand breaks) via DNA damage foci, image analysis and the statistics of the foci for different experimental situations, chromosomal aberration formation through DSB misrepair, the kinetics of DSB repair leading to a model-derived spectrum of chromosomal aberrations, and, finally, the simulation of human tissue and the pattern of apoptotic cell damage. This compendium of theoretical and experimental data sheds light on the complex nature of radiation interacting with human DNA, cells and tissues, which can lead to mutagenesis and carcinogenesis later in human life after the space mission.

  10. Repairable-conditionally repairable damage model based on dual Poisson processes.

    Science.gov (United States)

    Lind, B K; Persson, L M; Edgren, M R; Hedlöf, I; Brahme, A

    2003-09-01

    The advent of intensity-modulated radiation therapy makes it increasingly important to model the response accurately when large volumes of normal tissues are irradiated by controlled graded dose distributions aimed at maximizing tumor cure and minimizing normal tissue toxicity. The cell survival model proposed here is very useful and flexible for accurate description of the response of healthy tissues as well as tumors in classical and truly radiobiologically optimized radiation therapy. The repairable-conditionally repairable (RCR) model distinguishes between two different types of damage, namely the potentially repairable, which may also be lethal, i.e. if unrepaired or misrepaired, and the conditionally repairable, which may be repaired or may lead to apoptosis if it has not been repaired correctly. When potentially repairable damage is being repaired, for example by nonhomologous end joining, conditionally repairable damage may require in addition a high-fidelity correction by homologous repair. The induction of both types of damage is assumed to be described by Poisson statistics. The resultant cell survival expression has the unique ability to fit most experimental data well at low doses (the initial hypersensitive range), intermediate doses (on the shoulder of the survival curve), and high doses (on the quasi-exponential region of the survival curve). The complete Poisson expression can be approximated well by a simple bi-exponential cell survival expression, S(D) = e(-aD) + bDe(-cD), where the first term describes the survival of undamaged cells and the last term represents survival after complete repair of sublethal damage. The bi-exponential expression makes it easy to derive D(0), D(q), n and alpha, beta values to facilitate comparison with classical cell survival models.

  11. Adverse event reporting and developments in radiation biology after normal tissue injury: International Atomic Energy Agency consultation

    International Nuclear Information System (INIS)

    Chen Yuhchyau; Trotti, Andy; Coleman, C. Norman; Machtay, Mitchell; Mirimanoff, Rene O.; Hay, John; O'Brien, Peter C.; El-Gueddari, Brahim; Salvajoli, Joao V.; Jeremic, Branislav

    2006-01-01

    Purpose: Recent research has enhanced our understanding of radiation injury at the molecular-cellular and tissue levels; significant strides have occurred in standardization of adverse event reporting in clinical trials. In response, the International Atomic Energy Agency, through its Division of Human Health and its section for Applied Radiation Biology and Radiotherapy, organized a consultation meeting in Atlanta (October 2, 2004) to discuss developments in radiobiology, normal tissue reactions, and adverse event reporting. Methods and Materials: Representatives from cooperative groups of African Radiation Oncology Group, Curriculo Radioterapeutica Ibero Latino Americana, European Organization for Research and Treatment of Cancer, National Cancer Institute of Canada Clinical Trials Group, Radiation Therapy Oncology Group, and Trans-Tasman Radiation Oncology Group held the meeting discussion. Results: Representatives of major radiotherapy groups/organizations and prominent leaders in radiotherapy discussed current understanding of normal tissue radiobiologic effects, the design and implementation of future clinical and translational projects for normal tissue injury, and the standardization of adverse-event reporting worldwide. Conclusions: The consensus was to adopt NCI comprehensive adverse event reporting terminology and grading system (CTCAE v3.0) as the new standard for all cooperative group trials. Future plans included the implementation of coordinated research projects focusing on normal tissue biomarkers and data collection methods

  12. Changes in regional blood flow of normal and tumor tissues following hyperthermia and combined X-ray irradiation

    International Nuclear Information System (INIS)

    Suga, Kazuyoshi

    1986-01-01

    Hyperthermia and X-ray irradiation were given to Ehrlich tumors, which were induced in the ventrum of the right hind foot of ICR mice, and to the normal tissues. Their effects on regional blood flow were examined using Xe-133 local clearance method. Blood flow of the normal tissues remained unchanged by heating at 41 deg C for 30 minutes, and increased by heating at 43 deg C and 45 deg C for 30 minutes. On the contrary, blood flow of the tumors decreased with an increase in temperature. When hypertermia (43 deg C for 30 minutes) was combined with irradiation of 30 Gy, decrease in blood flow of the tumors was greater than the normal tissues at 24 hours. Blood flow of the tumors depended on tumor size. The decreased amount of blood flow by hyperthermia was more for tumors > 250 mm 3 than tumors 3 . Blood flow ratios of tumor to normal tissues were also smaller in tumors > 250 mm 3 than tumors 3 . In the case of tumors 3 , blood flow tended to return to normal at 3 hr after heating at 43 deg C for 30 min. However, this was not seen in tumors > 250 mm 3 . (Namekawa, K.)

  13. Evaluation of tissue engineered models of the oral mucosa to investigate oral candidiasis.

    Science.gov (United States)

    Yadev, Nishant P; Murdoch, Craig; Saville, Stephen P; Thornhill, Martin H

    2011-06-01

    Candida albicans is a commensal organism that can be isolated from the majority of healthy individuals. However, in certain susceptible individuals C. albicans can become pathogenic leading to the mucocutaneous infection; oral candidiasis. Murine models and in vitro monolayer cultures have generated some data on the likely virulence and host factors that contribute to oral candidiasis but these models have limitations. Recently, tissue engineered oral mucosal models have been developed to mimic the normal oral mucosa but little information is available on their true representation. In this study, we assessed the histological features of three different tissue engineered oral mucosal models compared to the normal oral mucosa and analysed both cell damage and cytokine release following infection with C. albicans. Models comprised of normal oral keratinocytes and a fibroblast-containing matrix displayed more similar immunohistological and proliferation characteristics to normal mucosa, compared to models composed of an oral carcinoma cell line. Although all models were invaded and damaged by C. albicans in a similar manner, the cytokine response was much more pronounced in models containing normal keratinocytes. These data suggest that models based on normal keratinocytes atop a fibroblast-containing connective tissue will significantly aid in dissecting the molecular pathogenesis of oral candidiasis. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Repair in normal tissues and the possible relevance to radiotherapy

    International Nuclear Information System (INIS)

    Field, S.B.; Hornsey, S.

    1977-01-01

    Between each fraction in radiotherapy, there is repair and recovery of both normal and neoplastic tissues. Several different types of repair have been identified. Some relate specifically to the effect of changing the number of fractions and others to the overall treatment time. Each will be discussed and particular attention will be paid to slow repair phenomena which have recently been the subject of much interest. (orig.) [de

  15. Effect of dexmedetomidine combined with propofol on brain tissue damage in brain glioma resection

    Institute of Scientific and Technical Information of China (English)

    2017-01-01

    Objective:To study the effect of dexmedetomidine combined with propofol on brain tissue damage in brain glioma resection.Methods: A total of 74 patients who received brain glioma resection in our hospital between May 2014 and December 2016 were selected and randomly divided into Dex group and control group who received dexmedetomidine intervention and saline intervention before induction respectively. Serum brain tissue damage marker, PI3K/AKT/iNOS and oxidation reaction molecule contents as well as cerebral oxygen metabolism index levels were determined before anesthesia (T0), at dura mater incision (T1), immediately after recovery (T2) and 24 h after operation (T3).Results: Serum NSE, S100B, MBP, GFAP, PI3K, AKT, iNOS and MDA contents as well as AVDO2 and CERO2 levels of both groups at T2 and T3 were significantly higher than those at T0 and T1 while serum SOD and CAT contents as well as SjvO2levels were significantly lower than those at T0 and T1, and serum NSE, S100B, MBP, GFAP, PI3K, AKT, iNOS and MDA contents as well as AVDO2 and CERO2 levels of Dex group at T2 and T3 were significantly lower than those of control group while serum SOD and CAT contents as well as SjvO2 levels were significantly higher than those of control group.Conclusions: Dexmedetomidine combined with propofol can reduce the brain tissue damage in brain glioma resection.

  16. Evaluation of cyclooxygenase protein expression in traumatized versus normal tissues from eastern box turtles (Terrapene carolina carolina).

    Science.gov (United States)

    Royal, Lillian W; Lascelles, B Duncan X; Lewbart, Gregory A; Correa, Maria T; Jones, Samuel L

    2012-06-01

    This pilot study was designed to determine whether cyclooxygenase (COX)-1, COX-2, or both are expressed in normal turtle tissues and whether level of expression changes when tissue becomes inflamed. Five eastern box turtles, Terrapene carolina carolina, that either died or were euthanatized due to disease or injuries were used for this work. Tissues were obtained from the five turtles. Western blot analysis was used to evaluate tissues for COX-1 and COX-2 proteins. Densiometric analysis was used to compare Western blot bands within each turtle. COX-1 and COX-2 were found in the liver, kidney, grossly normal muscle, and grossly traumatized (inflamed) muscle of all study turtles. In all cases, COX-1 and COX-2 proteins were increased in traumatized muscle over grossly normal nontraumatized muscle. The highest levels of COX-1 and COX-2 proteins were found in kidney and liver. There was no statistical difference between the amount of COX-1 protein in liver and kidney, but traumatized muscle compared with grossly normal muscle had significantly greater COX-1 but not COX 2 protein concentrations. There was no statistical difference between the amount of COX-2 protein in liver and kidney. Traumatized muscle expressed nonstatistically significant greater amounts of COX-2 compared with grossly normal muscle. COX-1 and COX-2 proteins are expressed in turtle tissues, and both isoforms are upregulated during inflammation of muscle tissue. Traditional nonsteroidal anti-inflammatory drugs (NSAIDs) that block both COX isoforms might be more efficacious than COX-2-selective drugs. This work suggests that NSAIDs should be evaluated for potential liver and kidney toxicity in turtles.

  17. Normal breast tissue DNA methylation differences at regulatory elements are associated with the cancer risk factor age.

    Science.gov (United States)

    Johnson, Kevin C; Houseman, E Andres; King, Jessica E; Christensen, Brock C

    2017-07-10

    The underlying biological mechanisms through which epidemiologically defined breast cancer risk factors contribute to disease risk remain poorly understood. Identification of the molecular changes associated with cancer risk factors in normal tissues may aid in determining the earliest events of carcinogenesis and informing cancer prevention strategies. Here we investigated the impact cancer risk factors have on the normal breast epigenome by analyzing DNA methylation genome-wide (Infinium 450 K array) in cancer-free women from the Susan G. Komen Tissue Bank (n = 100). We tested the relation of established breast cancer risk factors, age, body mass index, parity, and family history of disease, with DNA methylation adjusting for potential variation in cell-type proportions. We identified 787 cytosine-guanine dinucleotide (CpG) sites that demonstrated significant associations (Q value breast cancer risk factors. Age-related DNA methylation changes are primarily increases in methylation enriched at breast epithelial cell enhancer regions (P = 7.1E-20), and binding sites of chromatin remodelers (MYC and CTCF). We validated the age-related associations in two independent populations, using normal breast tissue samples (n = 18) and samples of normal tissue adjacent to tumor tissue (n = 97). The genomic regions classified as age-related were more likely to be regions altered in both pre-invasive (n = 40, P = 3.0E-03) and invasive breast tumors (n = 731, P = 1.1E-13). DNA methylation changes with age occur at regulatory regions, and are further exacerbated in cancer, suggesting that age influences breast cancer risk in part through its contribution to epigenetic dysregulation in normal breast tissue.

  18. Metabolomic Evidence for a Field Effect in Histologically Normal and Metaplastic Tissues in Patients with Esophageal Adenocarcinoma

    Directory of Open Access Journals (Sweden)

    Michelle A.C. Reed

    2017-03-01

    Full Text Available Patients with Barrett's esophagus (BO are at increased risk of developing esophageal adenocarcinoma (EAC. Most Barrett's patients, however, do not develop EAC, and there is a need for markers that can identify those most at risk. This study aimed to see if a metabolic signature associated with the development of EAC existed. For this, tissue extracts from patients with EAC, BO, and normal esophagus were analyzed using 1H nuclear magnetic resonance. Where possible, adjacent histologically normal tissues were sampled in those with EAC and BO. The study included 46 patients with EAC, 7 patients with BO, and 68 controls who underwent endoscopy for dyspeptic symptoms with normal appearances. Within the cancer cohort, 9 patients had nonneoplastic Barrett's adjacent to the cancer suitable for biopsy. It was possible to distinguish between histologically normal, BO, and EAC tissue in EAC patients [area under the receiver operator curve (AUROC 1.00, 0.86, and 0.91] and between histologically benign BO in the presence and absence of EAC (AUROC 0.79. In both these cases, sample numbers limited the power of the models. Comparison of histologically normal tissue proximal to EAC versus that from controls (AUROC 1.00 suggests a strong field effect which may develop prior to overt EAC and hence be useful for identifying patients at high risk of developing EAC. Excellent sensitivity and specificity were found for this model to distinguish histologically normal squamous esophageal mucosa in EAC patients and healthy controls, with 8 metabolites being very significantly altered. This may have potential diagnostic value if a molecular signature can detect tissue from which neoplasms subsequently arise.

  19. Ginsenoside Rg3 induces DNA damage in human osteosarcoma cells and reduces MNNG-induced DNA damage and apoptosis in normal human cells.

    Science.gov (United States)

    Zhang, Yue-Hui; Li, Hai-Dong; Li, Bo; Jiang, Sheng-Dan; Jiang, Lei-Sheng

    2014-02-01

    Panax ginseng is a Chinese medicinal herb. Ginsenosides are the main bioactive components of P. ginseng, and ginsenoside Rg3 is the primary ginsenoside. Ginsenosides can potently kill various types of cancer cells. The present study was designed to evaluate the potential genotoxicity of ginsenoside Rg3 in human osteosarcoma cells and the protective effect of ginsenoside Rg3 with respect to N-methyl-N'-nitro-N-nitrosoguanidine (MNNG)-induced DNA damage and apoptosis in a normal human cell line (human fibroblasts). Four human osteosarcoma cell lines (MG-63, OS732, U-2OS and HOS cells) and a normal human cell line (human fibroblasts) were employed to investigate the cytotoxicity of ginsenosides Rg3 by MTT assay. Alkaline comet assay and γH2AX focus staining were used to detect the DNA damage in MG-63 and U-2OS cells. The extent of cell apoptosis was determined by flow cytometry and a DNA ladder assay. Our results demonstrated that the cytotoxicity of ginsenoside Rg3 was dose-dependent in the human osteosarcoma cell lines, and MG-63 and U-2OS cells were the most sensitive to ginsenoside Rg3. As expected, compared to the negative control, ginsenoside Rg3 significantly increased DNA damage in a concentration-dependent manner. In agreement with the comet assay data, the percentage of γH2AX-positive MG-63 and U-2OS cells indicated that ginsenoside Rg3 induced DNA double-strand breaks in a concentration-dependent manner. The results also suggest that ginsenoside Rg3 reduces the extent of MNNG-induced DNA damage and apoptosis in human fibroblasts.

  20. The number of bleaching sessions influences pulp tissue damage in rat teeth.

    Science.gov (United States)

    Cintra, Luciano Tavares Angelo; Benetti, Francine; da Silva Facundo, Aguinaldo Cândido; Ferreira, Luciana Louzada; Gomes-Filho, João Eduardo; Ervolino, Edilson; Rahal, Vanessa; Briso, André Luiz Fraga

    2013-12-01

    Hydrogen peroxide tooth bleaching is claimed to cause alterations in dental tissue structures. This study investigated the influence of the number of bleaching sessions on pulp tissue in rats. Male Wistar rats were studied in 5 groups (groups 1S-5S) of 10 each, which differed by the number (1-5) of bleaching sessions. In each session, the animals were anesthetized, and 35% hydrogen peroxide gel was applied to 3 upper right molars. Two days after the experimental period, the animals were killed, and their jaws were processed for light microscope evaluation. Pulp tissue reactions were scored as follows: 1, no or few inflammatory cells and no reaction; 2, session, necrotic tissue in the pulp horns and underlying inflammatory changes were observed. The extent and intensity of these changes increased with the number of bleaching sessions. After 5 sessions, the changes included necrotic areas in the pulp tissue involving the second third of the radicular pulp and intense inflammation in the apical third. The number of bleaching sessions directly influenced the extent of pulp damage. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  1. Persistent Amplification of DNA Damage Signal Involved in Replicative Senescence of Normal Human Diploid Fibroblasts

    Directory of Open Access Journals (Sweden)

    Masatoshi Suzuki

    2012-01-01

    Full Text Available Foci of phosphorylated histone H2AX and ATM are the surrogate markers of DNA double strand breaks. We previously reported that the residual foci increased their size after irradiation, which amplifies DNA damage signals. Here, we addressed whether amplification of DNA damage signal is involved in replicative senescence of normal human diploid fibroblasts. Large phosphorylated H2AX foci (>1.5 μm diameter were specifically detected in presenescent cells. The frequency of cells with large foci was well correlated with that of cells positive for senescence-associated β-galactosidase staining. Hypoxic cell culture condition extended replicative life span of normal human fibroblast, and we found that the formation of large foci delayed in those cells. Our immuno-FISH analysis revealed that large foci partially localized at telomeres in senescent cells. Importantly, large foci of phosphorylated H2AX were always colocalized with phosphorylated ATM foci. Furthermore, Ser15-phosphorylated p53 showed colocalization with the large foci. Since the treatment of senescent cells with phosphoinositide 3-kinase inhibitor, wortmannin, suppressed p53 phosphorylation, it is suggested that amplification of DNA damage signaling sustains persistent activation of ATM-p53 pathway, which is essential for replicative senescence.

  2. The effect of customized beam shaping on normal tissue complications in radiation therapy of parotid gland tumors

    International Nuclear Information System (INIS)

    Keus, R.; Boer, R. de; Lebesque, J.; Noach, P.

    1991-01-01

    The impact of customized beam shaping was studied for 5 patients with parotid tumors treated with a paired wedged field technique. For each patient 2 plans were generated. The standard plan had unblocked portals with field sizes defined by the largest target contour found in any CT slice. In the 2nd plan customized beam's view (BEV) designed blocks were added to both beams. The differences in those distributions between the 2 types of plans were evaluated using dose-volume histograms (DVH). As expected, the dose distribution within the target volume showed no difference. However, a considerable sparing of normal tissue was observed for the plans with customized blocks. The volume of un-necessary exposed normal tissue that received more than 90 percent of the prescribed dose, was reduced by a factor of about 4: from 165 to 44 percent on an average, if the volume is expressed as a percentage of the target volume in each patient. In particular, the homolateral mandible showed a mean decrease of 21 percent of integral dose when blocks were used. Normal tissue complication probabilities (NTCP) were calculated. For a tumor dose of 70 Gy, the average bone necrosis probability was reduced from 8.4 percent (no blocks) to 4.1. percent (blocks). For other normal tissues such as nervous tissue, other soft tissues and bones a substantial reduction of integral dose was found for al patients when individual blocks were used. (author). 10 refs.; 4 figs.; 2 tabs

  3. A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries

    Energy Technology Data Exchange (ETDEWEB)

    Lazebnik, Mariya [Department of Electrical and Computer Engineering, University of Wisconsin, Madison, WI (United States); Popovic, Dijana [Department of Electrical and Computer Engineering, University of Calgary, Calgary, AB (Canada); McCartney, Leah [Department of Electrical and Computer Engineering, University of Calgary, Calgary, AB (Canada); Watkins, Cynthia B [Department of Electrical and Computer Engineering, University of Wisconsin, Madison, WI (United States); Lindstrom, Mary J [Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, WI (United States); Harter, Josephine [Department of Pathology, University of Wisconsin, Madison, WI (United States); Sewall, Sarah [Department of Pathology, University of Wisconsin, Madison, WI (United States); Ogilvie, Travis [Department of Pathology, University of Calgary, Calgary, AB (Canada); Magliocco, Anthony [Department of Pathology, University of Calgary, Calgary, AB (Canada); Breslin, Tara M [Department of Surgery, University of Wisconsin, Madison, WI (United States); Temple, Walley [Department of Surgery and Oncology, University of Calgary, Calgary, AB (Canada); Mew, Daphne [Department of Surgery and Oncology, University of Calgary, Calgary, AB (Canada); Booske, John H [Department of Electrical and Computer Engineering, University of Wisconsin, Madison, WI (United States); Okoniewski, Michal [Department of Electrical and Computer Engineering, University of Calgary, Calgary, AB (Canada); Hagness, Susan C [Department of Electrical and Computer Engineering, University of Wisconsin, Madison, WI (United States)

    2007-10-21

    The development of microwave breast cancer detection and treatment techniques has been driven by reports of substantial contrast in the dielectric properties of malignant and normal breast tissues. However, definitive knowledge of the dielectric properties of normal and diseased breast tissues at microwave frequencies has been limited by gaps and discrepancies across previously published studies. To address these issues, we conducted a large-scale study to experimentally determine the ultrawideband microwave dielectric properties of a variety of normal, malignant and benign breast tissues, measured from 0.5 to 20 GHz using a precision open-ended coaxial probe. Previously, we reported the dielectric properties of normal breast tissue samples obtained from reduction surgeries. Here, we report the dielectric properties of normal (adipose, glandular and fibroconnective), malignant (invasive and non-invasive ductal and lobular carcinomas) and benign (fibroadenomas and cysts) breast tissue samples obtained from cancer surgeries. We fit a one-pole Cole-Cole model to the complex permittivity data set of each characterized sample. Our analyses show that the contrast in the microwave-frequency dielectric properties between malignant and normal adipose-dominated tissues in the breast is considerable, as large as 10:1, while the contrast in the microwave-frequency dielectric properties between malignant and normal glandular/fibroconnective tissues in the breast is no more than about 10%.

  4. A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries

    Science.gov (United States)

    Lazebnik, Mariya; Popovic, Dijana; McCartney, Leah; Watkins, Cynthia B.; Lindstrom, Mary J.; Harter, Josephine; Sewall, Sarah; Ogilvie, Travis; Magliocco, Anthony; Breslin, Tara M.; Temple, Walley; Mew, Daphne; Booske, John H.; Okoniewski, Michal; Hagness, Susan C.

    2007-10-01

    The development of microwave breast cancer detection and treatment techniques has been driven by reports of substantial contrast in the dielectric properties of malignant and normal breast tissues. However, definitive knowledge of the dielectric properties of normal and diseased breast tissues at microwave frequencies has been limited by gaps and discrepancies across previously published studies. To address these issues, we conducted a large-scale study to experimentally determine the ultrawideband microwave dielectric properties of a variety of normal, malignant and benign breast tissues, measured from 0.5 to 20 GHz using a precision open-ended coaxial probe. Previously, we reported the dielectric properties of normal breast tissue samples obtained from reduction surgeries. Here, we report the dielectric properties of normal (adipose, glandular and fibroconnective), malignant (invasive and non-invasive ductal and lobular carcinomas) and benign (fibroadenomas and cysts) breast tissue samples obtained from cancer surgeries. We fit a one-pole Cole-Cole model to the complex permittivity data set of each characterized sample. Our analyses show that the contrast in the microwave-frequency dielectric properties between malignant and normal adipose-dominated tissues in the breast is considerable, as large as 10:1, while the contrast in the microwave-frequency dielectric properties between malignant and normal glandular/fibroconnective tissues in the breast is no more than about 10%.

  5. A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries

    International Nuclear Information System (INIS)

    Lazebnik, Mariya; Popovic, Dijana; McCartney, Leah; Watkins, Cynthia B; Lindstrom, Mary J; Harter, Josephine; Sewall, Sarah; Ogilvie, Travis; Magliocco, Anthony; Breslin, Tara M; Temple, Walley; Mew, Daphne; Booske, John H; Okoniewski, Michal; Hagness, Susan C

    2007-01-01

    The development of microwave breast cancer detection and treatment techniques has been driven by reports of substantial contrast in the dielectric properties of malignant and normal breast tissues. However, definitive knowledge of the dielectric properties of normal and diseased breast tissues at microwave frequencies has been limited by gaps and discrepancies across previously published studies. To address these issues, we conducted a large-scale study to experimentally determine the ultrawideband microwave dielectric properties of a variety of normal, malignant and benign breast tissues, measured from 0.5 to 20 GHz using a precision open-ended coaxial probe. Previously, we reported the dielectric properties of normal breast tissue samples obtained from reduction surgeries. Here, we report the dielectric properties of normal (adipose, glandular and fibroconnective), malignant (invasive and non-invasive ductal and lobular carcinomas) and benign (fibroadenomas and cysts) breast tissue samples obtained from cancer surgeries. We fit a one-pole Cole-Cole model to the complex permittivity data set of each characterized sample. Our analyses show that the contrast in the microwave-frequency dielectric properties between malignant and normal adipose-dominated tissues in the breast is considerable, as large as 10:1, while the contrast in the microwave-frequency dielectric properties between malignant and normal glandular/fibroconnective tissues in the breast is no more than about 10%

  6. Altered expression of estrogen receptor-α variant messenger RNAs between adjacent normal breast and breast tumor tissues

    International Nuclear Information System (INIS)

    Leygue, Etienne; Dotzlaw, Helmut; Watson, Peter H; Murphy, Leigh C

    2000-01-01

    Using semiquantitative reverse transcription-polymerase chain reaction assays, we investigated the expression of variant messenger RNAs relative to wild-type estrogen receptor (ER)-α messenger RNA in normal breast tissues and their adjacent matched breast tumor tissues. Higher ER variant truncated after sequences encoding exon 2 of the wild-type ER-α (ERC4) messenger RNA and a lower exon 3 deleted ER-α variant (ERD3) messenger RNA relative expression in the tumor compartment were observed in the ER-positive/PR-positive and the ER-positive subsets, respectively. A significantly higher relative expression of exon 5 deleted ER-α varient (ERD5) messenger RNA was observed in tumor components overall. These data demonstrate that changes in the relative expression of ER-α variant messenger RNAs occur between adjacent normal and neoplastic breast tissues. We suggest that these changes might be involved in the mechanisms that underlie breast tumorigenesis. Estrogen receptor (ER)-α and ER-β are believed to mediate the action of estradiol in target tissues. Several ER-α and ER-β variant messenger RNAs have been identified in both normal and neoplastic human tissues. Most of these variants contain a deletion of one or more exons of the wild-type (WT) ER messenger RNAs. The putative proteins that are encoded by these variant messenger RNAs would therefore be missing some functional domains of the WT receptors, and might interfere with WT-ER signaling pathways. The detection of ER-α variants in both normal and neoplastic human breast tissues raised the question of their possible role in breast tumorigenesis. We have previously reported an increased relative expression of exon 5 deleted ER-α variant (ERD5) messenger RNA and of another ER-α variant truncated of all sequences following the exon 2 of the WT ER-α (ERC4) messenger RNA in breast tumor samples versus independent normal breast tissues. In contrast, a decreased relative expression of exon 3 deleted ER

  7. Radiosensitization In Vivo by Histone Deacetylase Inhibition with No Increase in Early Normal Tissue Radiation Toxicity.

    Science.gov (United States)

    Groselj, Blaz; Ruan, Jia-Ling; Scott, Helen; Gorrill, Jessica; Nicholson, Judith; Kelly, Jacqueline; Anbalagan, Selvakumar; Thompson, James; Stratford, Michael R L; Jevons, Sarah J; Hammond, Ester M; Scudamore, Cheryl L; Kerr, Martin; Kiltie, Anne E

    2018-02-01

    As the population ages, more elderly patients require radiotherapy-based treatment for their pelvic malignancies, including muscle-invasive bladder cancer, as they are unfit for major surgery. Therefore, there is an urgent need to find radiosensitizing agents minimally toxic to normal tissues, including bowel and bladder, for such patients. We developed methods to determine normal tissue toxicity severity in intestine and bladder in vivo , using novel radiotherapy techniques on a small animal radiation research platform (SARRP). The effects of panobinostat on in vivo tumor growth delay were evaluated using subcutaneous xenografts in athymic nude mice. Panobinostat concentration levels in xenografts, plasma, and normal tissues were measured in CD1-nude mice. CD1-nude mice were treated with drug/irradiation combinations to assess acute normal tissue effects in small intestine using the intestinal crypt assay, and later effects in small and large intestine at 11 weeks by stool assessment and at 12 weeks by histologic examination. In vitro effects of panobinostat were assessed by qPCR and of panobinostat, TMP195, and mocetinostat by clonogenic assay, and Western blot analysis. Panobinostat resulted in growth delay in RT112 bladder cancer xenografts but did not significantly increase acute (3.75 days) or 12 weeks' normal tissue radiation toxicity. Radiosensitization by panobinostat was effective in hypoxic bladder cancer cells and associated with class I HDAC inhibition, and protein downregulation of HDAC2 and MRE11. Pan-HDAC inhibition is a promising strategy for radiosensitization, but more selective agents may be more useful radiosensitizers clinically, resulting in fewer systemic side effects. Mol Cancer Ther; 17(2); 381-92. ©2017 AACR See all articles in this MCT Focus section, "Developmental Therapeutics in Radiation Oncology." ©2017 American Association for Cancer Research.

  8. Simulation study of pO2 distribution in induced tumour masses and normal tissues within a microcirculation environment.

    Science.gov (United States)

    Li, Mao; Li, Yan; Wen, Peng Paul

    2014-01-01

    The biological microenvironment is interrupted when tumour masses are introduced because of the strong competition for oxygen. During the period of avascular growth of tumours, capillaries that existed play a crucial role in supplying oxygen to both tumourous and healthy cells. Due to limitations of oxygen supply from capillaries, healthy cells have to compete for oxygen with tumourous cells. In this study, an improved Krogh's cylinder model which is more realistic than the previously reported assumption that oxygen is homogeneously distributed in a microenvironment, is proposed to describe the process of the oxygen diffusion from a capillary to its surrounding environment. The capillary wall permeability is also taken into account. The simulation study is conducted and the results show that when tumour masses are implanted at the upstream part of a capillary and followed by normal tissues, the whole normal tissues suffer from hypoxia. In contrast, when normal tissues are ahead of tumour masses, their pO2 is sufficient. In both situations, the pO2 in the whole normal tissues drops significantly due to the axial diffusion at the interface of normal tissues and tumourous cells. As the existence of the axial oxygen diffusion cannot supply the whole tumour masses, only these tumourous cells that are near the interface can be partially supplied, and have a small chance to survive.

  9. Alpha particle induced DNA damage and repair in normal cultured thyrocytes of different proliferation status

    Energy Technology Data Exchange (ETDEWEB)

    Lyckesvärd, Madeleine Nordén, E-mail: madeleine.lyckesvard@oncology.gu.se [Department of Oncology, Sahlgrenska Academy, University of Gothenburg (Sweden); Delle, Ulla; Kahu, Helena [Department of Oncology, Sahlgrenska Academy, University of Gothenburg (Sweden); Lindegren, Sture [Department of Radiation Physics, Sahlgrenska Academy, University of Gothenburg (Sweden); Jensen, Holger [The PET and Cyclotron Unit Copenhagen University Hospital, Rigshospitalet (Denmark); Bäck, Tom [Department of Radiation Physics, Sahlgrenska Academy, University of Gothenburg (Sweden); Swanpalmer, John [Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg (Sweden); Elmroth, Kecke [Department of Oncology, Sahlgrenska Academy, University of Gothenburg (Sweden)

    2014-07-15

    Highlights: • We study DNA damage response to low-LET photons and high-LET alpha particles. • Cycling primary thyrocytes are more sensitive to radiation than stationary cells. • Influence of radiation quality varies due to cell cycle status of normal cells. • High-LET radiation gives rise to a sustained DNA damage response. - Abstract: Childhood exposure to ionizing radiation increases the risk of developing thyroid cancer later in life and this is suggested to be due to higher proliferation of the young thyroid. The interest of using high-LET alpha particles from Astatine-211 ({sup 211}At), concentrated in the thyroid by the same mechanism as {sup 131}I [1], in cancer treatment has increased during recent years because of its high efficiency in inducing biological damage and beneficial dose distribution when compared to low-LET radiation. Most knowledge of the DNA damage response in thyroid is from studies using low-LET irradiation and much less is known of high-LET irradiation. In this paper we investigated the DNA damage response and biological consequences to photons from Cobolt-60 ({sup 60}Co) and alpha particles from {sup 211}At in normal primary thyrocytes of different cell cycle status. For both radiation qualities the intensity levels of γH2AX decreased during the first 24 h in both cycling and stationary cultures and complete repair was seen in all cultures but cycling cells exposed to {sup 211}At. Compared to stationary cells alpha particles were more harmful for cycling cultures, an effect also seen at the pChk2 levels. Increasing ratios of micronuclei per cell nuclei were seen up to 1 Gy {sup 211}At. We found that primary thyrocytes were much more sensitive to alpha particle exposure compared with low-LET photons. Calculations of the relative biological effectiveness yielded higher RBE for cycling cells compared with stationary cultures at a modest level of damage, clearly demonstrating that cell cycle status influences the relative

  10. Influence of nanoparticles accumulation on optical properties of human normal and cancerous liver tissue in vitro estimated by OCT

    International Nuclear Information System (INIS)

    Zhou, Fang; Wei, Huajiang; Guo, Zhouyi; Ye, Xiangping; Hu, Kun; Wu, Guoyong; Yang, Hongqin; Xie, Shusen; He, Yonghong

    2015-01-01

    In this work, the potential use of nanoparticles as contrast agents by using spectral domain optical coherence tomography (SD-OCT) in liver tissue was demonstrated. Gold nanoparticles (average size of 25 and 70 nm), were studied in human normal and cancerous liver tissues in vitro, respectively. Each sample was monitored with SD-OCT functional imaging for 240 min. Continuous OCT monitoring showed that, after application of gold nanoparticles, the OCT signal intensities of normal liver and cancerous liver tissue both increase with time, and the larger nanoparticles tend to produce a greater signal enhancement in the same type of tissue. The results show that the values of attenuation coefficients have significant differences between normal liver tissue and cancerous liver tissue. In addition, 25 nm gold nanoparticles allow higher penetration depth than 70 nm gold nanoparticles in liver tissues. (paper)

  11. Chemical modification of conventional cancer radiotherapy. Tumor sensitization combined with normal tissue protection

    International Nuclear Information System (INIS)

    Kagiya, Tsutomu

    2006-01-01

    Nitrotriazole radiosensitizer, Sanazole (AK-2123, N-(2'-methoxyethyl)-2-(3''-nitro-1''-triazolyl) acetamide) developed by Kyoto University group was studied by 18 groups of 7 countries on fundamental aspects and clinical studies by 30 groups of 12 countries, and reported its effects on tumor sensitization of conventional cancer radiotherapy. On the other hand, the glucosides of vitamin C (Ascorbic acid glucoside, (AsAG) and water soluble derivative of vitamin-E (α-tocopherol glucoside, TMG) developed by Kyoto University group were studied fundamentally by 4 groups of 4 countries and clinically by 2 groups of 2 countries, and reported their effects on normal tissue protection in cancer treatments. These two studies of tumor sensitization and normal tissue protection were proposed as an advanced strategy of conventional cancer radiotherapy. (author)

  12. Quantitatively characterizing microstructural variations of skin tissues during ultraviolet radiation damaging process based on Mueller matrix polarimetry

    Science.gov (United States)

    Sheng, Wei; He, Honghui; Dong, Yang; Ma, Hui

    2018-02-01

    As one of the most fundamental features of light, polarization can be used to develop imaging techniques which can provide insight into the optical and structural properties of tissues. Especially, the Mueller matrix polarimetry is suitable to detect the changes in collagen and elastic fibres, which are the main compositions of skin tissue. Here we demonstrate a novel quantitative, non-contact and in situ technique to monitor the microstructural variations of skin tissue during ultraviolet radiation (UVR) induced photoaging based on Mueller matrix polarimetry. Specifically, we measure the twodimensional (2D) backscattering Mueller matrices of nude mouse skin samples, then calculate and analyze the Mueller matrix derived parameters during the skin photoaging and self-repairing processes. To induce three-day skin photoaging, the back skin of each mouse is irradiated with UVR (0.05J/cm2) for five minutes per day. After UVR, the microstructures of the nude mouse skin are damaged. During the process of UV damage, we measure the backscattering Mueller matrices of the mouse skin samples and examine the relationship between the Mueller matrix parameters and the microstructural variations of skin tissue quantitatively. The comparisons between the UVR damaged groups with and without sunscreens show that the Mueller matrix derived parameters are potential indicators for fibrous microstructure variation in skin tissue. The pathological examinations and Monte Carlo simulations confirm the relationship between the values of Mueller matrix parameters and the changes of fibrous structures. Combined with smart phones or wearable devices, this technique may have a good application prospect in the fields of cosmetics and dermatological health.

  13. The use of normal tissue complication probability to predict radiation hepatitis

    International Nuclear Information System (INIS)

    Keum, Ki Chang; Seong, Jin Sil; Suh, Chang Ok; Lee, Sang Wook; Chung, Eun Ji; Shin, Hyun Soo; Kim, Gwi Eon

    2000-01-01

    Although it has been known that the tolerance of the liver to external beam irradiation depends on the irradiated volume and dose, few data exist which quantify this dependence. However, recently, with the development of three dimensional (3-D) treatment planning, have the tools to quantify the relationships between dose, volume, and normal tissue complications become available. The objective of this study is to investigate the relationships between normal tissue complication probability (NTCP) and the risk of radiation hepatitis for patients who received variant dose partial liver irradiation. From March 1992 to December 1994, 10 patients with hepatoma and 10 patients with bile duct cancer were included in this study. Eighteen patients had normal hepatic function, but 2 patients (prothrombin time 73%, 68%) had mild liver cirrhosis before irradiation. Radiation therapy was delivered with 10MV linear accelerator, 180-200 cGy fraction per day. The total dose ranged from 3,960 cGy to 6,000 cGy (median dose 5,040 cGy). The normal tissue complication probability was calculated by using Lyman's model. Radiation hepatitis was defined as the development of anicteric elevation of alkaline phosphatase of at least two fold and non-malignant ascites in the absence of documented progressive. The calculated NTCP ranged from 0.001 to 0.840 (median 0.05). Three of the 20 patients developed radiation hepatitis. The NTCP of the patients with radiation hepatitis were 0.390, 0.528, 0.844 (median: O.58±0.23), but that of the patients without radiation hepatitis ranged from 0.001 to 0.308 (median: 0.09±0.09). When the NTCP was calculated by using the volume factor of 0.32, a radiation hepatitis was observed only in patients with the NTCP value more than 0.39. By contrast, clinical results of evolving radiation hepatitis were not well correlated with NTCP value calculated when the volume factor of 0.69 was applied. On the basis of these observations, volume factor of 0.32 was more

  14. Damage to apparel layers and underlying tissue due to hand-gun bullets.

    Science.gov (United States)

    Carr, Debra; Kieser, Jules; Mabbott, Alexander; Mott, Charlotte; Champion, Stephen; Girvan, Elizabeth

    2014-01-01

    Ballistic damage to the clothing of victims of gunshot wounds to the chest can provide useful forensic evidence. Anyone shot in the torso will usually be wearing clothing which will be damaged by the penetrating impact event and can reportedly be the source of some of the debris in the wound. Minimal research has previously been reported regarding the effect of bullets on apparel fabrics and underlying tissue. This paper examines the effect of ammunition (9 mm full metal jacket [FMJ] DM11 A1B2, 8.0 g; and soft point flat nose Remington R357M3, 10.2 g) on clothing layers that cover the torso (T-shirt, T-shirt plus hoodie, T-shirt plus denim jacket) and underlying structures represented by porcine thoracic wall (skin, underlying tissue, ribs). Impacts were recorded using a Phantom V12 high speed camera. Ejected bone debris was collected before wound tracts were dissected and measured; any debris found was recovered for further analysis. Size and mass of bony debris was recorded; fibre debris recovered from the wound and impact damage to fabrics were imaged using scanning electron microscopy (SEM). Remington R357M3 ammunition was characteristically associated with stellate fabric damage; individual fibres were less likely to show mushrooming. In contrast, 9 mm FMJ ammunition resulted in punch-out damage to fabric layers, with mushrooming of individual fibres being more common. Entry wound sizes were similar for both types of ammunition and smaller than the diameter of the bullet that caused them. In this work, the Remington R357M3 ammunition resulted in larger exit wounds due to the bullet construction which mushroomed. That fabric coverings did not affect the amount of bony debris produced is interesting, particularly given there was some evidence that apparel layers affected the size of the wound. Recent work has suggested that denim (representative of jeans) can exacerbate wounding caused by high-velocity bullet impacts to the thigh when the bullet does not

  15. Repair of potentially lethal radiation damage: comparison of neutron and x-ray RBE and implications for radiation therapy

    International Nuclear Information System (INIS)

    Hall, E.J.; Kraljevic, U.

    1976-01-01

    Experiments with Chinese hamster cells have shown that neutron irradiation does not result in repair of potentially lethal damage (PLD), i.e., that which can be influenced by changes in environmental conditions following irradiation. Since PLD is presumed to be repaired in tumors but not in normal tissues, this absence of differential sparing of tumor cells relative to normal tissues--a feature characteristic of irradiation with x rays--represents an advantage of neutrons in addition to their reduced oxygen effect. At a given dose, the difference in relative biological effectiveness (RBE) between tumors and normal tissues corresponds to a 5 percent increase in tumor dose with no concomitant increase in dose to normal tissues, which could be significant in cancer therapy

  16. Hole Burning Imaging Studies of Cancerous and Analogous Normal Ovarian Tissues Utilizing Organelle Specific Dyes

    Energy Technology Data Exchange (ETDEWEB)

    Matsuzaki, Satoshi [Iowa State Univ., Ames, IA (United States)

    2004-01-01

    Presented in this dissertation is the successful demonstration that nonphotochemical hole burning (NPWB) imaging can be used to study in vitro tissue cellular systems for discerning differences in cellular ultrastructures due to cancer development. This has been accomplished with the surgically removed cancerous ovarian and analogous normal peritoneal tissues from the same patient and the application of a fluorescent mitochondrion specific dye, Molecular Probe MitoFluor Far Red 680 (MF680), commonly known as rhodamine 800, that has been proven to exhibit efficient NPHB. From the results presented in Chapters 4 and 5 , and Appendix B, the following conclusions were made: (1) fluorescence excitation spectra of MF680 and confocal microscopy images of thin sliced tissues incubated with MF680 confirm the site-specificity of the probe molecules in the cellular systems. (2) Tunneling parameters, {lambda}{sub 0} and σΛ, as well as the standard hole burning parameters (namely, γ and S), have been determined for the tissue samples by hole growth kinetics (HGK) analyses. Unlike the preliminary cultured cell studies, these parameters have not shown the ability to distinguish tissue cellular matrices surrounding the chromophores. (3) Effects of an external electric (Stark) field on the nonphotochemical holes have been used to determine the changes in permanent dipole moment (fΔμ) for MF680 in tissue samples when burn laser polarization is parallel to the Stark field. Differences are detected between fΔμs in the two tissue samples, with the cancerous tissue exhibiting a more pronounced change (1.35-fold increase) in permanent dipole moment change relative to the normal analogs. It is speculated that the difference may be related to differences in mitochondrial membrane potentials in these tissue samples. (4) In the HGK mode, hole burning imaging (HBI) of cells adhered to coverslips and cooled to liquid helium temperatures in the complete absence of

  17. Biomechanics Analysis of Pressure Ulcer Using Damaged Interface Model between Bone and Muscle in the Human Buttock

    Science.gov (United States)

    Slamet, Samuel Susanto; Takano, Naoki; Tanabe, Yoshiyuki; Hatano, Asako; Nagasao, Tomohisa

    This paper aims at building up a computational procedure to study the bio-mechanism of pressure ulcer using the finite element method. Pressure ulcer is a disease that occurs in the human body after 2 hours of continuous external force. In the very early stage of pressure ulcer, it is found that the tissues inside the body are damaged, even though skin surface looks normal. This study assumes that tension and/or shear strain will cause damage to loose fibril tissue between the bone and muscle and that propagation of damaged area will lead to fatal stage. Analysis was performed using the finite element method by modeling the damaged fibril tissue as a cutout. By varying the loading directions and watching both tensile and shear strains, the risk of fibril tissue damage and propagation of the damaged area is discussed, which may give new insight for the careful nursing for patients, particularly after surgical treatment. It was found that the pressure ulcer could reoccur for a surgical flap treatment. The bone cut and surgical flap surgery is not perfect to prevent the bone-muscle interfacial damage.

  18. Modeling DNA?damage-induced pneumopathy in mice: insight from danger signaling cascades

    OpenAIRE

    Wirsd?rfer, Florian; Jendrossek, Verena

    2017-01-01

    Radiation-induced pneumonitis and fibrosis represent severe and dose-limiting side effects in the radiotherapy of thorax-associated neoplasms leading to decreased quality of life or - as a consequence of treatment with suboptimal radiation doses - to fatal outcomes by local recurrence or metastatic disease. It is assumed that the initial radiation-induced damage to the resident cells triggers a multifaceted damage-signalling cascade in irradiated normal tissues including a multifactorial secr...

  19. Repair of human DNA: radiation and chemical damage in normal and xeroderma pigmentosum cells

    International Nuclear Information System (INIS)

    Regan, J.D.; Setlow, R.B.

    1976-01-01

    We present the experimental evidence we have gathered, using a particular assay for DNA repair in human cells, the photolysis of bromodeoxyuridine (BrdUrd) incorporated during repair. This assay characterizes the sequence of repair events that occur in human cells after radiation, both ultraviolet and ionizing, and permits an estimation of the size of the average repaired region after these physical insults to DNA. We will discuss chemical insults to DNA and attempt to liken the repair processes after chemical damages of various kinds to those repair processes that occur in human DNA after damage from physical agents. We will also show results indicating that, under certain conditions, repair events resembling those seen after uv-irradiation can be observed in normal human cells after ionizing radiation. Furthermore the XP cells, defective in the repair of uv-induced DNA damage, show defective repair of these uv-like DNA lesions induced by ionizing radiation

  20. Fatty acid and lipidomic data in normal and tumor colon tissues of rats fed diets with and without fish oil

    Directory of Open Access Journals (Sweden)

    Zora Djuric

    2017-08-01

    Full Text Available Data is provided to show the detailed fatty acid and lipidomic composition of normal and tumor rat colon tissues. Rats were fed either a Western fat diet or a fish oil diet, and half the rats from each diet group were treated with chemical carcinogens that induce colon cancer (azoxymethane and dextran sodium sulfate. The data show total fatty acid profiles of sera and of all the colon tissues, namely normal tissue from control rats and both normal and tumor tissues from carcinogen-treated rats, as obtained by gas chromatography with mass spectral detection. Data from lipidomic analyses of a representative subset of the colon tissue samples is also shown in heat maps generated from hierarchical cluster analysis. These data display the utility lipidomic analyses to enhance the interpretation of dietary feeding studies aimed at cancer prevention and support the findings published in the companion paper (Effects of fish oil supplementation on prostaglandins in normal and tumor colon tissue: modulation by the lipogenic phenotype of colon tumors, Djuric et al., 2017 [1].

  1. Melatonin Role in Ameliorating Radiation-induced Skin Damage: From Theory to Practice (A Review of Literature

    Directory of Open Access Journals (Sweden)

    Abbaszadeh A.

    2017-06-01

    Full Text Available Normal skin is composed of epidermis and dermis. Skin is susceptible to radiation damage because it is a continuously renewing organ containing rapidly proliferating mature cells. Radiation burn is a damage to the skin or other biological tissues caused by exposure to radiofrequency energy or ionizing radiation. Acute skin reaction is the most frequently occurring side effect of radiation therapy. Generally, any chemical/ biological agent given before or at the time of irradiation to prevent or ameliorate damage to normal tissues is called a radioprotector. Melatonin is a highly lipophilic substance that easily penetrates organic membranes and therefore is able to protect important intracellular structures including mitochondria and DNA against oxidative damage directly at the sites where such a kind of damage would occur. Melatonin leads to an increase in the molecular level of some important antioxidative enzymes such as superoxide, dismotase and glutation-peroxidase, and also a reduction in synthetic activity of nitric oxide. There is a large body of evidence which proves the efficacy of Melatonin in ameliorating UV and X ray-induced skin damage. We propose that, in the future, Melatonin would improve the therapeutic ratio in radiation oncology and ameliorate skin damage more effectively when administered in optimal and non-toxic doses

  2. Radiation damage to the normal monkey brain. Experimental study induced by interstitial irradiation

    International Nuclear Information System (INIS)

    Mishima, Nobuya; Tamiya, Takashi; Matsumoto, Kengo; Furuta, Tomohisa; Ohmoto, Takashi

    2003-01-01

    Radiation damage to normal brain tissue induced by interstitial irradiation with iridium-192 seeds was sequentially evaluated by computed tomography (CT), magnetic resonance imaging (MRI), and histological examination. This study was carried out in 14 mature Japanese monkeys. The experimental area received more than 200-260 Gy of irradiation developed coagulative necrosis. Infiltration of macrophages to the periphery of the necrotic area was seen. In addition, neovascularization, hyalinization of vascular walls, and gliosis were found in the periphery of the area invaded by the macrophages. All sites at which the vascular walls were found to have acute stage fibrinoid necrosis eventually developed coagulative necrosis. The focus of necrosis was detected by MRI starting 1 week after the end of radiation treatment, and the size of the necrotic area did not change for 6 months. The peripheral areas showed clear ring enhancement with contrast material. Edema surrounding the lesions was the most significant 1 week after radiation and was reduced to a minimum level 1 month later. However, the edema then expanded once again and was sustained for as long as 6 months. CT did not provide as clear of a presentation as MRI, but it did reveal similar findings for the most part, and depicted calcification in the necrotic area. This experimental model is considered useful for conducting basic research on brachytherapy, as well as for achieving a better understanding of delayed radiation necrosis. (author)

  3. N-isopropyl-p-iodoamphetamine receptors in normal and cancerous tissue of the human lung

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Eiko; Mishima, Michiaki; Kawakami, Kenzo; Sakai, Naoki; Sugiura, Naoharu; Kuno, Kenshi [Kyoto Univ. (Japan). Dept. of Clinical Physiology; Taniguchi, Takashi [Kyoto Pharmaceutical Univ. (Japan). Dept. of Neurobiology

    1993-04-01

    N-Isopropyl-p-iodoamphetamine (IMP) receptors in normal human lung tissue were characterized using a radioligand binding assay with iodine-125 IMP as the ligand. Saturation binding studies revealed the presence of two binding sites with dissociation constant (K[sub d]) values of 53[+-]2 and 4687[+-]124 nM and maximum binding capacity (Bmax) values of 7[+-]1 and 133[+-]27 pmol/mg protein (n=5) respectively. The IC[sub 50] values of various amines were as follows: IMP, 9x10[sup -5] M; propranolol, 5x10[sup -4] M; haloperidol, 6x10[sup -4] M; ketamine, 9x10[sup -3] M; dopamine, 1x10[sup -2] M. The IMP receptors of cancerous tissue obtained from human lung also had two binding sites with K[sub d] values of 54[+-]2 and 5277[+-]652 nM and Bmax values of 7[+-]1 and 103[+-]21 pmol/mg protein (n=3) respectively. There was no significant difference in binding parameters between normal and cancerous lung tissue. These results demonstrate the existence of IMP receptors and suggest that cancer does not affect the nature of IMP receptors in human lung tissue. (orig.).

  4. [FTIR study on the normal and cancerous stomach tissues].

    Science.gov (United States)

    Tong, Y; Lin, Y

    2001-06-01

    Tissues of cancerous and corresponding normal stomach were studied by FTIR technique. The results showed that there are obvious differences between FTIR spectra of them in spectral parameters such as frequency, intensity and band shape etc. The changes involving the phosphate symmetric stretching nu s, PO2- and asymmetric stretching nu as, PO2- modes, the CH3 and CH2 groups stretching (nu s, CH2, nu as, CH3) and bending (delta CH2) modes and the C-O stretching nu C-O mode were discussed. In addition, the changes of structure of hydrogen-bonding of nucleic acid and cell proteins and the packing and the conformational structure of the membrance lipids were analysed further. The average wavenumber of band of nu s, PO2- shifted from 1,080.92 cm-1 to 1,085.93 cm-1 and that of nu as, PO2- shifted from 1,239.64 cm-1 to 1,238.73 cm-1 which indicated that the degree of hydrogen-bonding formed by oxygen atom of the phosphodiester groups of nucleic acids was increased. The average wavenumber of band of delta CH2 of membrance lipids shifted from 1,455.23 cm-1 to 1,457.37 cm-1 that suggested that the conformational structure of the methylene chains of membrance lipids is more disordered than in normal tissues. The shift of band of nu C-O of cell proteins from 1,166.08 cm-1 to 1,166.58 cm-1 indicated that the hydrogen-bond of cell proteins become weaker.

  5. Hyaluronic Acid in Normal and Neoplastic Colorectal Tissue: Electrospray Ionization Mass Spectrometric and Fluor Metric Analysis

    Directory of Open Access Journals (Sweden)

    Ana Paula Cleto Marolla

    2016-01-01

    Conclusions: The expression of HA was found to be slightly lower in tumor tissue than in colorectal non-neoplastic mucosa, although this difference was not statistically significant. This finding probably influenced the lower expression of HA in tumor tissue than in colorectal non-neoplastic mucosa. Compared to normal tissues, HA levels are significantly increased in the tumor tissues unless they exhibit lymph node metastasis. Otherwise, the expression of HA in tumor tissue did not correlated with the other clinicopathological parameters.

  6. Oxidative damage induced by cigarette smoke exposure in mice: impact on lung tissue and diaphragm muscle,

    Directory of Open Access Journals (Sweden)

    Samanta Portão de Carlos

    2014-08-01

    Full Text Available OBJECTIVE: To evaluate oxidative damage (lipid oxidation, protein oxidation, thiobarbituric acid-reactive substances [TBARS], and carbonylation and inflammation (expression of phosphorylated AMP-activated protein kinase and mammalian target of rapamycin [p-AMPK and p-mTOR, respectively] in the lung parenchyma and diaphragm muscles of male C57BL-6 mice exposed to cigarette smoke (CS for 7, 15, 30, 45, or 60 days. METHODS: Thirty-six male C57BL-6 mice were divided into six groups (n = 6/group: a control group; and five groups exposed to CS for 7, 15, 30, 45, and 60 days, respectively. RESULTS: Compared with control mice, CS-exposed mice presented lower body weights at 30 days. In CS-exposed mice (compared with control mice, the greatest differences (increases in TBARS levels were observed on day 7 in diaphragm-muscle, compared with day 45 in lung tissue; the greatest differences (increases in carbonyl levels were observed on day 7 in both tissue types; and sulfhydryl levels were lower, in both tissue types, at all time points. In lung tissue and diaphragm muscle, p-AMPK expression exhibited behavior similar to that of TBARS. Expression of p-mTOR was higher than the control value on days 7 and 15 in lung tissue, as it was on day 45 in diaphragm muscle. CONCLUSION: Our data demonstrate that CS exposure produces oxidative damage, not only in lung tissue but also (primarily in muscle tissue, having an additional effect on respiratory muscle, as is frequently observed in smokers with COPD.

  7. DNA damage and the bystander response in tumor and normal cells exposed to X-rays.

    Science.gov (United States)

    Subhashree, M; Venkateswarlu, R; Karthik, K; Shangamithra, V; Venkatachalam, P

    2017-09-01

    Monolayer and suspension cultures of tumor (BMG-1, CCRF-CEM), normal (AG1522, HADF, lymphocytes) and ATM-mutant (GM4405) human cells were exposed to X-rays at doses used in radiotherapy (high dose and high dose-rate) or radiological imaging (low dose and low dose-rate). Radiation-induced DNA damage, its persistence, and possible bystander effects were evaluated, based on DNA damage markers (γ-H2AX, p53 ser15 ) and cell-cycle-specific cyclins (cyclin B1 and cyclin D1). Dose-dependent DNA damage and a dose-independent bystander response were seen after exposure to high dose and high dose-rate radiation. The level of induced damage (expression of p53 ser15 , γ-H2AX) depended on ATM status. However, low dose and dose-rate exposures neither increased expression of marker proteins nor induced a bystander response, except in the CCRF-CEM cells. Bystander effects after high-dose irradiation may contribute to stochastic and deterministic effects. Precautions to protect unexposed regions or to inhibit transmission of DNA damage signaling might reduce radiation risks. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Fibrosis of the pancreas: the initial tissue damage and the resulting pattern.

    Science.gov (United States)

    Klöppel, Günter; Detlefsen, Sönke; Feyerabend, Bernd

    2004-07-01

    Fibrosis in the pancreas is caused by such processes as necrosis/apoptosis, inflammation or duct obstruction. The initial event that induces fibrogenesis in the pancreas is an injury that may involve the interstitial mesenchymal cells, the duct cells and/or the acinar cells. Damage to any one of these tissue compartments of the pancreas is associated with cytokine-triggered transformation of resident fibroblasts/pancreatic stellate cells into myofibroblasts and the subsequent production and deposition of extracellular matrix. Depending on the site of injury in the pancreas and the involved tissue compartment, predominantly inter(peri)lobular fibrosis (as in alcoholic chronic pancreatitis), periductal fibrosis (as in hereditary pancreatitis), periductal and interlobular fibrosis (as in autoimmune pancreatitis) or diffuse inter- and intralobular fibrosis (as in obstructive chronic pancreatitis) develops.

  9. The role of platelet factor 4 in local and remote tissue damage in a mouse model of mesenteric ischemia/reperfusion injury.

    Directory of Open Access Journals (Sweden)

    Peter H Lapchak

    Full Text Available The robust inflammatory response that occurs during ischemia reperfusion (IR injury recruits factors from both the innate and adaptive immune systems. However the contribution of platelets and their products such as Platelet Factor 4 (PF4; CXCL4, during the pathogenesis of IR injury has not been thoroughly investigated. We show that a deficiency in PF4 protects mice from local and remote tissue damage after 30 minutes of mesenteric ischemia and 3 hours of reperfusion in PF4-/- mice compared to control B6 mice. This protection was independent from Ig or complement deposition in the tissues. However, neutrophil and monocyte infiltration were decreased in the lungs of PF4-/- mice compared with B6 control mice. Platelet-depleted B6 mice transfused with platelets from PF4-/- mice displayed reduced tissue damage compared with controls. In contrast, transfusion of B6 platelets into platelet depleted PF4-/- mice reconstituted damage in both intestine and lung tissues. We also show that PF4 may modulate the release of IgA. Interestingly, we show that PF4 expression on intestinal epithelial cells is increased after IR at both the mRNA and protein levels. In conclusion, these findings demonstrate that may PF4 represent an important mediator of local and remote tissue damage.

  10. Study of electron densities of normal and neoplastic human breast tissues by Compton scattering using synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Antoniassi, M.; Conceicao, A.L.C. [Departamento de Fisica-Faculdade de Filosofia Ciencias e Letras de Ribeirao Preto-Universidade de Sao Paulo, Ribeirao Preto, Sao Paulo (Brazil); Poletti, M.E., E-mail: poletti@ffclrp.usp.br [Departamento de Fisica-Faculdade de Filosofia Ciencias e Letras de Ribeirao Preto-Universidade de Sao Paulo, Ribeirao Preto, Sao Paulo (Brazil)

    2012-07-15

    Electron densities of 33 samples of normal (adipose and fibroglangular) and neoplastic (benign and malignant) human breast tissues were determined through Compton scattering data using a monochromatic synchrotron radiation source and an energy dispersive detector. The area of Compton peaks was used to determine the electron densities of the samples. Adipose tissue exhibits the lowest values of electron density whereas malignant tissue the highest. The relationship with their histology was discussed. Comparison with previous results showed differences smaller than 4%. - Highlights: Black-Right-Pointing-Pointer Electron density of normal and neoplastic breast tissues was measured using Compton scattering. Black-Right-Pointing-Pointer Monochromatic synchrotron radiation was used to obtain the Compton scattering data. Black-Right-Pointing-Pointer The area of Compton peaks was used to determine the electron densities of samples. Black-Right-Pointing-Pointer Adipose tissue shows the lowest electron density values whereas the malignant tissue the highest. Black-Right-Pointing-Pointer Comparison with previous results showed differences smaller than 4%.

  11. Study of electron densities of normal and neoplastic human breast tissues by Compton scattering using synchrotron radiation

    International Nuclear Information System (INIS)

    Antoniassi, M.; Conceição, A.L.C.; Poletti, M.E.

    2012-01-01

    Electron densities of 33 samples of normal (adipose and fibroglangular) and neoplastic (benign and malignant) human breast tissues were determined through Compton scattering data using a monochromatic synchrotron radiation source and an energy dispersive detector. The area of Compton peaks was used to determine the electron densities of the samples. Adipose tissue exhibits the lowest values of electron density whereas malignant tissue the highest. The relationship with their histology was discussed. Comparison with previous results showed differences smaller than 4%. - Highlights: ► Electron density of normal and neoplastic breast tissues was measured using Compton scattering. ► Monochromatic synchrotron radiation was used to obtain the Compton scattering data. ► The area of Compton peaks was used to determine the electron densities of samples. ► Adipose tissue shows the lowest electron density values whereas the malignant tissue the highest. ► Comparison with previous results showed differences smaller than 4%.

  12. Mineral density volume gradients in normal and diseased human tissues.

    Directory of Open Access Journals (Sweden)

    Sabra I Djomehri

    Full Text Available Clinical computed tomography provides a single mineral density (MD value for heterogeneous calcified tissues containing early and late stage pathologic formations. The novel aspect of this study is that, it extends current quantitative methods of mapping mineral density gradients to three dimensions, discretizes early and late mineralized stages, identifies elemental distribution in discretized volumes, and correlates measured MD with respective calcium (Ca to phosphorus (P and Ca to zinc (Zn elemental ratios. To accomplish this, MD variations identified using polychromatic radiation from a high resolution micro-computed tomography (micro-CT benchtop unit were correlated with elemental mapping obtained from a microprobe X-ray fluorescence (XRF using synchrotron monochromatic radiation. Digital segmentation of tomograms from normal and diseased tissues (N=5 per group; 40-60 year old males contained significant mineral density variations (enamel: 2820-3095 mg/cc, bone: 570-1415 mg/cc, cementum: 1240-1340 mg/cc, dentin: 1480-1590 mg/cc, cementum affected by periodontitis: 1100-1220 mg/cc, hypomineralized carious dentin: 345-1450 mg/cc, hypermineralized carious dentin: 1815-2740 mg/cc, and dental calculus: 1290-1770 mg/cc. A plausible linear correlation between segmented MD volumes and elemental ratios within these volumes was established, and Ca/P ratios for dentin (1.49, hypomineralized dentin (0.32-0.46, cementum (1.51, and bone (1.68 were observed. Furthermore, varying Ca/Zn ratios were distinguished in adapted compared to normal tissues, such as in bone (855-2765 and in cementum (595-990, highlighting Zn as an influential element in prompting observed adaptive properties. Hence, results provide insights on mineral density gradients with elemental concentrations and elemental footprints that in turn could aid in elucidating mechanistic processes for pathologic formations.

  13. Mineral Density Volume Gradients in Normal and Diseased Human Tissues

    Science.gov (United States)

    Djomehri, Sabra I.; Candell, Susan; Case, Thomas; Browning, Alyssa; Marshall, Grayson W.; Yun, Wenbing; Lau, S. H.; Webb, Samuel; Ho, Sunita P.

    2015-01-01

    Clinical computed tomography provides a single mineral density (MD) value for heterogeneous calcified tissues containing early and late stage pathologic formations. The novel aspect of this study is that, it extends current quantitative methods of mapping mineral density gradients to three dimensions, discretizes early and late mineralized stages, identifies elemental distribution in discretized volumes, and correlates measured MD with respective calcium (Ca) to phosphorus (P) and Ca to zinc (Zn) elemental ratios. To accomplish this, MD variations identified using polychromatic radiation from a high resolution micro-computed tomography (micro-CT) benchtop unit were correlated with elemental mapping obtained from a microprobe X-ray fluorescence (XRF) using synchrotron monochromatic radiation. Digital segmentation of tomograms from normal and diseased tissues (N=5 per group; 40-60 year old males) contained significant mineral density variations (enamel: 2820-3095mg/cc, bone: 570-1415mg/cc, cementum: 1240-1340mg/cc, dentin: 1480-1590mg/cc, cementum affected by periodontitis: 1100-1220mg/cc, hypomineralized carious dentin: 345-1450mg/cc, hypermineralized carious dentin: 1815-2740mg/cc, and dental calculus: 1290-1770mg/cc). A plausible linear correlation between segmented MD volumes and elemental ratios within these volumes was established, and Ca/P ratios for dentin (1.49), hypomineralized dentin (0.32-0.46), cementum (1.51), and bone (1.68) were observed. Furthermore, varying Ca/Zn ratios were distinguished in adapted compared to normal tissues, such as in bone (855-2765) and in cementum (595-990), highlighting Zn as an influential element in prompting observed adaptive properties. Hence, results provide insights on mineral density gradients with elemental concentrations and elemental footprints that in turn could aid in elucidating mechanistic processes for pathologic formations. PMID:25856386

  14. Validation of putative reference genes for normalization of Q-RT-PCR data from paraffin-embedded lymphoid tissue

    DEFF Research Database (Denmark)

    Green, Tina Marie; de Stricker, Karin; Møller, Michael Boe

    2009-01-01

    Normalization of quantitative reverse transcription-PCR (Q-RT-PCR) data to appropriate tissue-specific reference genes is an essential part of interpreting the results. This study aimed to determine the most appropriate reference genes for normalizing gene expressions in lymphatic tissue...... was 0.93 (Pnormalization with the appropriate reference genes. Thus, we show that formalin-fixed, paraffin-embedded lymphoid samples are suitable for Q-RT-PCR when using thoroughly validated reference genes....

  15. SU-E-T-573: Normal Tissue Dose Effect of Prescription Isodose Level Selection in Lung Stereotactic Body Radiation Therapy

    International Nuclear Information System (INIS)

    Zhang, Q; Lei, Y; Zheng, D; Zhu, X; Wahl, A; Lin, C; Zhou, S; Zhen, W

    2015-01-01

    Purpose: To evaluate dose fall-off in normal tissue for lung stereotactic body radiation therapy (SBRT) cases planned with different prescription isodose levels (IDLs), by calculating the dose dropping speed (DDS) in normal tissue on plans computed with both Pencil Beam (PB) and Monte-Carlo (MC) algorithms. Methods: The DDS was calculated on 32 plans for 8 lung SBRT patients. For each patient, 4 dynamic conformal arc plans were individually optimized for prescription isodose levels (IDL) ranging from 60% to 90% of the maximum dose with 10% increments to conformally cover the PTV. Eighty non-overlapping rind structures each of 1mm thickness were created layer by layer from each PTV surface. The average dose in each rind was calculated and fitted with a double exponential function (DEF) of the distance from the PTV surface, which models the steep- and moderate-slope portions of the average dose curve in normal tissue. The parameter characterizing the steep portion of the average dose curve in the DEF quantifies the DDS in the immediate normal tissue receiving high dose. Provided that the prescription dose covers the whole PTV, a greater DDS indicates better normal tissue sparing. The DDS were compared among plans with different prescription IDLs, for plans computed with both PB and MC algorithms. Results: For all patients, the DDS was found to be the lowest for 90% prescription IDL and reached a highest plateau region for 60% or 70% prescription. The trend was the same for both PB and MC plans. Conclusion: Among the range of prescription IDLs accepted by lung SBRT RTOG protocols, prescriptions to 60% and 70% IDLs were found to provide best normal tissue sparing

  16. Human papillomavirus in normal conjunctival tissue and in conjunctival papilloma: types and frequencies in a large series.

    Science.gov (United States)

    Sjö, Nicolai Christian; von Buchwald, Christian; Cassonnet, Patricia; Norrild, Bodil; Prause, Jan Ulrik; Vinding, Troels; Heegaard, Steffen

    2007-08-01

    To examine conjunctival papilloma and normal conjunctival tissue for the presence of human papillomavirus (HPV). Archival paraffin wax-embedded tissue from 165 conjunctival papillomas and from 20 histological normal conjunctival biopsy specimens was analysed for the presence of HPV by PCR. Specimens considered HPV positive using consensus primers, but with a negative or uncertain PCR result using type-specific HPV probes, were analysed with DNA sequencing. HPV was present in 86 of 106 (81%) beta-globin-positive papillomas. HPV type 6 was positive in 80 cases, HPV type 11 was identified in 5 cases and HPV type 45 was present in a single papilloma. All the 20 normal conjunctival biopsy specimens were beta-globin positive and HPV negative. There is a strong association between HPV and conjunctival papilloma. The study presents the largest material of conjunctival papilloma investigated for HPV and the first investigation of HPV in normal conjunctival tissue. HPV types 6 and 11 are the most common HPV types in conjunctival papilloma. This also is the first report of HPV type 45 in conjunctival papilloma.

  17. Broccoli (Brassica oleracea) Reduces Oxidative Damage to Pancreatic Tissue and Combats Hyperglycaemia in Diabetic Rats.

    Science.gov (United States)

    Suresh, Sithara; Waly, Mostafa Ibrahim; Rahman, Mohammad Shafiur; Guizani, Nejib; Al-Kindi, Mohamed Abdullah Badar; Al-Issaei, Halima Khalfan Ahmed; Al-Maskari, Sultan Nasser Mohd; Al-Ruqaishi, Bader Rashid Said; Al-Salami, Ahmed

    2017-12-01

    Oxidative stress plays a pivotal role in the development of diabetes and hyperglycaemia. The protective effects of natural extracts against diabetes are mainly dependent on their antioxidant and hypoglycaemic properties. Broccoli ( Brassica oleracea ) exerts beneficial health effects in several diseases including diabetes; however, the mechanism has not been elucidated yet. The present study was carried out to evaluate the potential hypoglycaemic and antioxidant properties of aqueous broccoli extracts (BEs) in diabetic rats. Streptozotocin (STZ) drug was used as a diabetogenic agent in a single intraperitoneal injection dose of 50 mg/kg body weight. The blood glucose level for each rat was measured twice a week. After 8 weeks, all animals were fasted overnight and sacrificed; pancreatic tissues were homogenized and used for measuring oxidative DNA damage, biochemical assessment of glutathione (GSH), and total antioxidant capacity (TAC) as well as histopathological examination for pancreatic tissues was examined. Diabetic rats showed significantly higher levels of DNA damage, GSH depletion, and impaired TAC levels in comparison to non-diabetics ( P <0.05). The treatment of diabetic rats with BE significantly reduced DNA damage and conserved GSH and TAC values ( P <0.01). BE attenuated pancreatic histopathological changes in diabetic rats. The results of this study indicated that BE reduced the STZ mediated hyperglycaemia and the STZ-induced oxidative injury to pancreas tissue. The used in vivo model confirmed the efficacy of BE as an anti-diabetic herbal medicine and provided insights into the capacity of BE to be used for phytoremediation purposes for human type 2 diabetes.

  18. Statistical validation of normal tissue complication probability models.

    Science.gov (United States)

    Xu, Cheng-Jian; van der Schaaf, Arjen; Van't Veld, Aart A; Langendijk, Johannes A; Schilstra, Cornelis

    2012-09-01

    To investigate the applicability and value of double cross-validation and permutation tests as established statistical approaches in the validation of normal tissue complication probability (NTCP) models. A penalized regression method, LASSO (least absolute shrinkage and selection operator), was used to build NTCP models for xerostomia after radiation therapy treatment of head-and-neck cancer. Model assessment was based on the likelihood function and the area under the receiver operating characteristic curve. Repeated double cross-validation showed the uncertainty and instability of the NTCP models and indicated that the statistical significance of model performance can be obtained by permutation testing. Repeated double cross-validation and permutation tests are recommended to validate NTCP models before clinical use. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Statistical Validation of Normal Tissue Complication Probability Models

    Energy Technology Data Exchange (ETDEWEB)

    Xu Chengjian, E-mail: c.j.xu@umcg.nl [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Schaaf, Arjen van der; Veld, Aart A. van' t; Langendijk, Johannes A. [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Schilstra, Cornelis [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Radiotherapy Institute Friesland, Leeuwarden (Netherlands)

    2012-09-01

    Purpose: To investigate the applicability and value of double cross-validation and permutation tests as established statistical approaches in the validation of normal tissue complication probability (NTCP) models. Methods and Materials: A penalized regression method, LASSO (least absolute shrinkage and selection operator), was used to build NTCP models for xerostomia after radiation therapy treatment of head-and-neck cancer. Model assessment was based on the likelihood function and the area under the receiver operating characteristic curve. Results: Repeated double cross-validation showed the uncertainty and instability of the NTCP models and indicated that the statistical significance of model performance can be obtained by permutation testing. Conclusion: Repeated double cross-validation and permutation tests are recommended to validate NTCP models before clinical use.

  20. Targeted Delivery of Neutralizing Anti-C5 Antibody to Renal Endothelium Prevents Complement-Dependent Tissue Damage

    Directory of Open Access Journals (Sweden)

    Paolo Durigutto

    2017-09-01

    Full Text Available Complement activation is largely implicated in the pathogenesis of several clinical conditions and its therapeutic neutralization has proven effective in preventing tissue and organ damage. A problem that still needs to be solved in the therapeutic control of complement-mediated diseases is how to avoid side effects associated with chronic neutralization of the complement system, in particular, the increased risk of infections. We addressed this issue developing a strategy based on the preferential delivery of a C5 complement inhibitor to the organ involved in the pathologic process. To this end, we generated Ergidina, a neutralizing recombinant anti-C5 human antibody coupled with a cyclic-RGD peptide, with a distinctive homing property for ischemic endothelial cells and effective in controlling tissue damage in a rat model of renal ischemia/reperfusion injury (IRI. As a result of its preferential localization on renal endothelium, the molecule induced complete inhibition of complement activation at tissue level, and local protection from complement-mediated tissue damage without affecting circulating C5. The ex vivo binding of Ergidina to surgically removed kidney exposed to cold ischemia supports its therapeutic use to prevent posttransplant IRI leading to delay of graft function. Moreover, the finding that the ex vivo binding of Ergidina was not restricted to the kidney, but was also seen on ischemic heart, suggests that this RGD-targeted anti-C5 antibody may represent a useful tool to treat organs prior to transplantation. Based on this evidence, we propose preliminary data showing that Ergidina is a novel targeted drug to prevent complement activation on the endothelium of ischemic kidney.

  1. Comparison of renal artery, soft tissue, and nerve damage after irrigated versus nonirrigated radiofrequency ablation.

    Science.gov (United States)

    Sakakura, Kenichi; Ladich, Elena; Fuimaono, Kristine; Grunewald, Debby; O'Fallon, Patrick; Spognardi, Anna-Maria; Markham, Peter; Otsuka, Fumiyuki; Yahagi, Kazuyuki; Shen, Kai; Kolodgie, Frank D; Joner, Michael; Virmani, Renu

    2015-01-01

    The long-term efficacy of radiofrequency ablation of renal autonomic nerves has been proven in nonrandomized studies. However, long-term safety of the renal artery (RA) is of concern. The aim of our study was to determine if cooling during radiofrequency ablation preserved the RA while allowing equivalent nerve damage. A total of 9 swine (18 RAs) were included, and allocated to irrigated radiofrequency (n=6 RAs, temperature setting: 50°C), conventional radiofrequency (n=6 RAs, nonirrigated, temperature setting: 65°C), and high-temperature radiofrequency (n=6 RAs, nonirrigated, temperature setting: 90°C) groups. RAs were harvested at 10 days, serially sectioned from proximal to distal including perirenal tissues and examined after paraffin embedding, and staining with hematoxylin-eosin and Movat pentachrome. RAs and periarterial tissue including nerves were semiquantitatively assessed and scored. A total of 660 histological sections from 18 RAs were histologically examined by light microscopy. Arterial medial injury was significantly less in the irrigated radiofrequency group (depth of medial injury, circumferential involvement, and thinning) than that in the conventional radiofrequency group (Pradiofrequency group (Pradiofrequency group and conventional radiofrequency group (P=0.36), there was a trend toward less nerve damage in the irrigated compared with conventional. Compared to conventional radiofrequency, circumferential medial damage in highest-temperature nonirrigated radiofrequency group was significantly greater (Pradiofrequency ablation, and there is a trend toward less nerve damage. © 2014 American Heart Association, Inc.

  2. An automatic method to discriminate malignant masses from normal tissue in digital mammograms

    International Nuclear Information System (INIS)

    Brake, Guido M. te; Karssemeijer, Nico; Hendriks, Jan H.C.L.

    2000-01-01

    Specificity levels of automatic mass detection methods in mammography are generally rather low, because suspicious looking normal tissue is often hard to discriminate from real malignant masses. In this work a number of features were defined that are related to image characteristics that radiologists use to discriminate real lesions from normal tissue. An artificial neural network was used to map the computed features to a measure of suspiciousness for each region that was found suspicious by a mass detection method. Two data sets were used to test the method. The first set of 72 malignant cases (132 films) was a consecutive series taken from the Nijmegen screening programme, 208 normal films were added to improve the estimation of the specificity of the method. The second set was part of the new DDSM data set from the University of South Florida. A total of 193 cases (772 films) with 372 annotated malignancies was used. The measure of suspiciousness that was computed using the image characteristics was successful in discriminating tumours from false positive detections. Approximately 75% of all cancers were detected in at least one view at a specificity level of 0.1 false positive per image. (author)

  3. Avaliação do dano oxidativo ao DNA de células normais e neoplásicas da mucosa cólica de doentes com câncer colorretal Evaluation of DNA oxidative damage in normal and neoplastic cells of colonic mucosa in patients with colorectal cancer

    Directory of Open Access Journals (Sweden)

    Marcelo Lima Ribeiro

    2007-12-01

    levels of oxidative damage to the DNA in cells isolated from the colon mucosa in colorectal patients, and to compare normal and neoplastic tissues and make correlations with anatomopathological variables. METHOD: Thirty colorectal adenocarcinoma patients (eighteen women of mean age 60.6 ± 15.5 years who consecutively underwent operations performed by the same surgical team between 2005 and 2006 were studied. The oxidative damage to the DNA was evaluated by means of the alkaline version of the comet assay (single-cell gel electrophoresis, from fragments of normal and neoplastic colon tissue that were obtained immediately after removal of the surgical specimen. The extent of breakages of the DNA helices was assessed using an image intensification method, on 200 randomly chosen cells (100 from each tissue sample, by means of the Komet 5.5 program. The Tail Moment (T.M measured in each cell quantitatively represented the extent of the oxidative damage to the DNA. The statistical analysis on the variables considered was performed by means of the Student t, chi-squared and Kruskal-Wallis tests, with a significance level of 5% (p<0.05. RESULTS: It was found that, for all the patients studied, the cells obtained from the neoplastic tissue presented oxidative damage to the DNA that was greater than in the cells from normal tissue. The cells isolated from the neoplastic mucosal tissue of the colon presented extension of DNA strand breakage significantly greater (T.M. = 2.532 ± 0.945 than did the cells isolated from normal tissue (T.M. = 1.056 ± 0.460 (p=0.00001; C.I. 95%: -1.7705 to -1.1808. It was found that the patients at earlier stages of the Dukes and TNM classifications presented higher levels of oxidative damage than did those at more advanced stages (p=0.04 and p=0.001, respectively. CONCLUSIONS: The cells obtained from normal tissue of colorectal cancer patients presented signs of oxidative damage to the cell DNA, although at significant lower levels than in the

  4. DNA damage in plant herbarium tissue.

    Science.gov (United States)

    Staats, Martijn; Cuenca, Argelia; Richardson, James E; Vrielink-van Ginkel, Ria; Petersen, Gitte; Seberg, Ole; Bakker, Freek T

    2011-01-01

    Dried plant herbarium specimens are potentially a valuable source of DNA. Efforts to obtain genetic information from this source are often hindered by an inability to obtain amplifiable DNA as herbarium DNA is typically highly degraded. DNA post-mortem damage may not only reduce the number of amplifiable template molecules, but may also lead to the generation of erroneous sequence information. A qualitative and quantitative assessment of DNA post-mortem damage is essential to determine the accuracy of molecular data from herbarium specimens. In this study we present an assessment of DNA damage as miscoding lesions in herbarium specimens using 454-sequencing of amplicons derived from plastid, mitochondrial, and nuclear DNA. In addition, we assess DNA degradation as a result of strand breaks and other types of polymerase non-bypassable damage by quantitative real-time PCR. Comparing four pairs of fresh and herbarium specimens of the same individuals we quantitatively assess post-mortem DNA damage, directly after specimen preparation, as well as after long-term herbarium storage. After specimen preparation we estimate the proportion of gene copy numbers of plastid, mitochondrial, and nuclear DNA to be 2.4-3.8% of fresh control DNA and 1.0-1.3% after long-term herbarium storage, indicating that nearly all DNA damage occurs on specimen preparation. In addition, there is no evidence of preferential degradation of organelle versus nuclear genomes. Increased levels of C→T/G→A transitions were observed in old herbarium plastid DNA, representing 21.8% of observed miscoding lesions. We interpret this type of post-mortem DNA damage-derived modification to have arisen from the hydrolytic deamination of cytosine during long-term herbarium storage. Our results suggest that reliable sequence data can be obtained from herbarium specimens.

  5. Extracranial soft-tissue swelling: a normal postmortem radiographic finding or a sign of trauma?

    International Nuclear Information System (INIS)

    Strouse, P.J.; Caplan, M.; Owings, C.L.

    1998-01-01

    Objective. To determine if extracranial soft-tissue swelling is an expected postmortem finding or a sign of trauma. Materials and methods. Extracranial soft-tissue thickness was measured at 5 standardized locations on postmortem skull films obtained of 18 infants with no evidence of trauma on autopsy. The same measurements were performed on the skull films of 100 living children, all less than 3 years old and without clinical history of trauma. Results. Extracranial soft tissues measured only slightly greater in the postmortem group than on films of living children; however, the difference did achieve statistical significance. Conclusion. Minimal extracranial soft-tissue swelling is a normal finding on a postmortem skeletal survey. The presence of substantial or asymmetric extracranial soft-tissue swelling should be viewed with suspicion for trauma. (orig.)

  6. Extracranial soft-tissue swelling: a normal postmortem radiographic finding or a sign of trauma?

    Energy Technology Data Exchange (ETDEWEB)

    Strouse, P.J. [Section of Pediatric Radiology, University of Michigan Medical Center, Ann Arbor (United States); Caplan, M. [Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan (United States); Owings, C.L. [Department of Pediatrics and Communicable Diseases, C. S. Mott Children`s Hospital, Ann Arbor, Michigan (United States)

    1998-08-01

    Objective. To determine if extracranial soft-tissue swelling is an expected postmortem finding or a sign of trauma. Materials and methods. Extracranial soft-tissue thickness was measured at 5 standardized locations on postmortem skull films obtained of 18 infants with no evidence of trauma on autopsy. The same measurements were performed on the skull films of 100 living children, all less than 3 years old and without clinical history of trauma. Results. Extracranial soft tissues measured only slightly greater in the postmortem group than on films of living children; however, the difference did achieve statistical significance. Conclusion. Minimal extracranial soft-tissue swelling is a normal finding on a postmortem skeletal survey. The presence of substantial or asymmetric extracranial soft-tissue swelling should be viewed with suspicion for trauma. (orig.) With 2 tabs., 5 refs.

  7. Honey can repairing damage of liver tissue due to protein energy malnutrition through induction of endogenous stem cells.

    Science.gov (United States)

    Prasetyo, R Heru; Hestianah, Eka Pramyrtha

    2017-06-01

    This study was to evaluate effect of honey in repairing damage of liver tissue due to energy protein malnutrition and in mobilization of endogenous stem cells. Male mice model of degenerative liver was obtained through food fasting but still have drinking water for 5 days. It caused energy protein malnutrition and damage of liver tissue. The administration of 50% (v/v) honey was performed for 10 consecutive days, while the positive control group was fasted and not given honey and the negative control not fasted and without honey. Observations of regeneration the liver tissue based on histologically examination, observation of Hsp70 expression, and homing signal based on vascular endothelial growth factor-1 (VEGF-1) expression using immunohistochemistry technique. Observation on expression of CD34 and CD45 as the marker of auto mobilization of hematopoietic stem cells using flow cytometry technique. There is regeneration of the liver tissue due to protein energy malnutrition, decrease of Hsp70 expression, increase of VEGF-1 expression, and high expression of CD34 and CD45. Honey can improve the liver tissue based on: (1) Mobilization of endogenous stem cells (CD34 and CD45); (2) Hsp70 and VEGF-1 expressions as regeneration marker of improvement, and (3) regeneration histologically of liver tissue.

  8. Alpha particle induced DNA damage and repair in normal cultured thyrocytes of different proliferation status

    DEFF Research Database (Denmark)

    Lyckesvärd, Madeleine Nordén; Delle, Ulla; Kahu, Helena

    2014-01-01

    Childhood exposure to ionizing radiation increases the risk of developing thyroid cancer later in life and this is suggested to be due to higher proliferation of the young thyroid. The interest of using high-LET alpha particles from Astatine-211 ((211)At), concentrated in the thyroid by the same...... mechanism as (131)I [1], in cancer treatment has increased during recent years because of its high efficiency in inducing biological damage and beneficial dose distribution when compared to low-LET radiation. Most knowledge of the DNA damage response in thyroid is from studies using low-LET irradiation...... and much less is known of high-LET irradiation. In this paper we investigated the DNA damage response and biological consequences to photons from Cobolt-60 ((60)Co) and alpha particles from (211)At in normal primary thyrocytes of different cell cycle status. For both radiation qualities the intensity...

  9. LYCOPENE EFFICIENCY IN THE MODULATION OF OXIDATIVE DAMAGE IN DIFFERENT TISSUES OF GAMMA IRRADIATED RATS

    International Nuclear Information System (INIS)

    EL-TAHAWY, N.A.; NADA, A.S.; REZK, R.G.

    2008-01-01

    Exposure to ionizing radiation induces oxidative stress that has been recognized as an important etiological factor in the causation of several chronic diseases. Lycopene, a carotenoid almost exclusively present in tomatoes and tomatoes products, is a lipid soluble antioxidant claimed to possess cardio protective and anticancer properties. The present study was designed to determine the possible modulator effects of lycopene on radiation-induced oxidative damage to liver, spleen and lung tissues. Animals were supplemented with lycopene (5 mg/kg body weight/ day) by gavages for two weeks before whole body exposure to gamma rays and within the period of irradiation (3 successive doses, each of 3 Gy at 72 hours intervals). Animals were sacrificed on the 3 r d day post the last irradiation session.The results obtained in the present study showed that whole body gamma irradiation produced oxidative stress manifested by significant elevation in lipid peroxides levels measured as thiobarbituric acid reactive substances (TBARS) associated with significant decrease of nitric oxide (NO) content. Non-significant change in total cupper (Cu) in the three tissues was recorded while significant increase of total iron (Fe) was observed in liver and spleen tissues only. Liver tissue of irradiated rats showed significant decrease in the activities of the antioxidant enzymes as superoxide dismutase (SOD) and catalase (CAT). In spleen tissues, there was a significant increase of SOD and significant decrease of CAT activities while in lung tissues, both SOD and CAT activities showed significant increase.Histological observations of photomicrograph of liver sections showed that radiation-induced sever damage obvious by dilated portal vein, ruptured hepatocytes, necrotic, pyknotic, karyolitic nuclei and vacuolated cytoplasm. In spleen tissue, radiation was induced degeneration of lymphatic nodules, dilation follicular artery and marked hemorrhage. In lung tissue, radiation- induces ill

  10. A general native-state method for determination of proliferation capacity of human normal and tumor tissues in vitro

    International Nuclear Information System (INIS)

    Hoffman, R.M.; Connors, K.M.; Meerson-Monosov, A.Z.; Herrera, H.; Price, J.H.

    1989-01-01

    An important need in cancer research and treatment is a physiological means in vitro by which to assess the proliferation capacity of human tumors and corresponding normal tissue for comparison. The authors have recently developed a native-state, three-dimensional, gel-supported primary culture system that allows every type of human cancer to grow in vitro at more than 90% frequency, with maintenance of tissue architecture, tumor-stromal interaction, and differentiated functions. Here they demonstrate that the native-state culture system allows proliferation indices to be determined for all solid cancer types explanted directly from surgery into long-term culture. Normal tissues also proliferate readily in this system. The degree of resolution of measurement of cell proliferation by histological autoradiography within the cultured tissues is greatly enhanced with the use of epi-illumination polarization microscopy. The histological status of the cultured tissues can be assessed simultaneously with the proliferation status. Carcinomas generally have areas of high epithelial proliferation with quiescent stromal cells. Sarcomas have high proliferation of cells of mesenchymal organ. Normal tissues can also proliferate at high rates. An image analysis system has been developed to automate proliferation determination. The high-resolution physiological means described here to measure the proliferation capacity of tissues will be important in further understanding of the deregulation of cell proliferation in cancer as well as in cancer prognosis and treatment

  11. Dynamic contrast enhanced CT measurement of blood flow during interstitial laser photocoagulation: comparison with an Arrhenius damage model

    International Nuclear Information System (INIS)

    Purdie, T.J.; Lee, T.J.; Iizuka, M.; Sherar, M.D.

    2000-01-01

    One effect of heating during interstitial laser photocoagulation (ILP) is to directly destroy the tumour vasculature resulting in a loss of viable blood supply. Therefore, blood flow measured during and after treatment can be a useful indicator of tissue thermal damage. In this study, the effect of ILP treatment on rabbit thigh tumours was investigated by measuring blood flow changes using dynamic contrast enhanced computed tomography (CT). The CT measured changes in blood flow of treated tumour tissue were fitted to an Arrhenius model assuming first order rate kinetics. Our results show that changes in blood flow of tumour tissue distant from surrounding normal tissue are well described by an Arrhenius model. By contrast, the temperature profile of tumour tissue adjacent to normal tissue must be modified to account for heat dissipation by the latter. Finally, the Arrhenius parameters derived in the study are similar to those derived by heating tumour tissue to a lower temperature (<47 deg. C) than the current study. In conclusion, CT can be used to monitor blood flow changes during ILP and these measurements are related to the thermal damage predicted by the Arrhenius model. (author)

  12. Improving normal tissue complication probability models: the need to adopt a "data-pooling" culture.

    Science.gov (United States)

    Deasy, Joseph O; Bentzen, Søren M; Jackson, Andrew; Ten Haken, Randall K; Yorke, Ellen D; Constine, Louis S; Sharma, Ashish; Marks, Lawrence B

    2010-03-01

    Clinical studies of the dependence of normal tissue response on dose-volume factors are often confusingly inconsistent, as the QUANTEC reviews demonstrate. A key opportunity to accelerate progress is to begin storing high-quality datasets in repositories. Using available technology, multiple repositories could be conveniently queried, without divulging protected health information, to identify relevant sources of data for further analysis. After obtaining institutional approvals, data could then be pooled, greatly enhancing the capability to construct predictive models that are more widely applicable and better powered to accurately identify key predictive factors (whether dosimetric, image-based, clinical, socioeconomic, or biological). Data pooling has already been carried out effectively in a few normal tissue complication probability studies and should become a common strategy. Copyright 2010 Elsevier Inc. All rights reserved.

  13. Optoacoustic monitoring of cutting efficiency and thermal damage during laser ablation.

    Science.gov (United States)

    Bay, Erwin; Douplik, Alexandre; Razansky, Daniel

    2014-05-01

    Successful laser surgery is characterized by a precise cut and effective hemostasis with minimal collateral thermal damage to the adjacent tissues. Consequently, the surgeon needs to control several parameters, such as power, pulse repetition rate, and velocity of movements. In this study we propose utilizing optoacoustics for providing the necessary real-time feedback of cutting efficiency and collateral thermal damage. Laser ablation was performed on a bovine meat slab using a Q-switched Nd-YAG laser (532 nm, 4 kHz, 18 W). Due to the short pulse duration of 7.6 ns, the same laser has also been used for generation of optoacoustic signals. Both the shockwaves, generated due to tissue removal, as well as the normal optoacoustic responses from the surrounding tissue were detected using a single broadband piezoelectric transducer. It has been observed that the rapid reduction in the shockwave amplitude occurs as more material is being removed, indicating decrease in cutting efficiency, whereas gradual decrease in the optoacoustic signal likely corresponds to coagulation around the ablation crater. Further heating of the surrounding tissue leads to carbonization accompanied by a significant shift in the optoacoustic spectra. Our results hold promise for real-time monitoring of cutting efficiency and collateral thermal damage during laser surgery. In practice, this could eventually facilitate development of automatic cut-off mechanisms that will guarantee an optimal tradeoff between cutting and heating while avoiding severe thermal damage to the surrounding tissues.

  14. Piezosurgery prevents brain tissue damage: an experimental study on a new rat model

    Czech Academy of Sciences Publication Activity Database

    Pavlíková, G.; Foltán, R.; Burian, M.; Horká, E.; Adámek, S.; Hejčl, Aleš; Hanzelka, T.; Šedý, Jiří

    2011-01-01

    Roč. 40, č. 8 (2011), s. 840-844 ISSN 0901-5027 R&D Projects: GA MŠk(CZ) LC554; GA ČR GAP304/10/0320 Grant - others:GA MŠk(CZ) 1M0538 Program:1M Institutional research plan: CEZ:AV0Z50390703 Keywords : piezosurgery * brain * tissue damage Subject RIV: FJ - Surgery incl. Transplants; FH - Neurology (UEM-P) Impact factor: 1.506, year: 2011

  15. Contribution Of Brain Tissue Oxidative Damage In Hypothyroidism-associated Learning and Memory Impairments

    Directory of Open Access Journals (Sweden)

    Yousef Baghcheghi

    2017-01-01

    Full Text Available The brain is a critical target organ for thyroid hormones, and modifications in memory and cognition happen with thyroid dysfunction. The exact mechanisms underlying learning and memory impairments due to hypothyroidism have not been understood yet. Therefore, this review was aimed to compress the results of previous studies which have examined the contribution of brain tissues oxidative damage in hypothyroidism-associated learning and memory impairments.

  16. Silver nanoparticle based surface enhanced Raman scattering spectroscopy of diabetic and normal rat pancreatic tissue under near-infrared laser excitation

    International Nuclear Information System (INIS)

    Huang, H; Shi, H; Chen, W; Yu, Y; Lin, D; Xu, Q; Feng, S; Lin, J; Huang, Z; Li, Y; Chen, R

    2013-01-01

    This paper presents the use of high spatial resolution silver nanoparticle based near-infrared surface enhanced Raman scattering (SERS) from rat pancreatic tissue to obtain biochrmical information about the tissue. A high quality SERS signal from a mixture of pancreatic tissues and silver nanoparticles can be obtained within 10 s using a Renishaw micro-Raman system. Prominent SERS bands of pancreatic tissue were assigned to known molecular vibrations, such as the vibrations of DNA bases, RNA bases, proteins and lipids. Different tissue structures of diabetic and normal rat pancreatic tissues have characteristic features in SERS spectra. This exploratory study demonstrated great potential for using SERS imaging to distinguish diabetic and normal pancreatic tissues on frozen sections without using dye labeling of functionalized binding sites. (letter)

  17. Bisphenol A induces oxidative stress and DNA damage in hepatic tissue of female rat offspring

    Directory of Open Access Journals (Sweden)

    Jehane I. Eid

    2015-08-01

    Full Text Available Bisphenol A (BPA is an endocrine disrupting compound widely spread in our living environment. It is a contaminant with increasing exposure to it and exerts both toxic and estrogenic effects on mammalian cells. Due to the limited information concerning the effect of BPA on the liver, the present study was designed to assess hepatic tissue injury induced by early life exposure to BPA in female rat offspring. Rat dams (n = 9 were gavaged with 0.5 and 50 mg of BPA/kg b.w./day throughout lactation until weaning. The sham group received olive oil for the same duration while the control group did not receive any injection. The liver tissue was collected from female pups at different pubertal periods (PND50, 90 and 110 to evaluate oxidative stress biomarkers, extent of DNA damage and histopathological changes. Our results indicated that early life exposure to BPA significantly increased oxidative/nitrosative stress, decreased antioxidant enzyme activities, induced DNA damage and chronic severe inflammation in the hepatic tissue in a time dependent manner. These data suggested that BPA causes long-term adverse effects on the liver, which leads to deleterious effects in the liver of female rat offspring.

  18. Markers of fibrosis and epithelial to mesenchymal transition demonstrate field cancerization in histologically normal tissue adjacent to breast tumors

    Science.gov (United States)

    Trujillo, Kristina A.; Heaphy, Christopher M.; Mai, Minh; Vargas, Keith M.; Jones, Anna C.; Vo, Phung; Butler, Kimberly S.; Joste, Nancy E.; Bisoffi, Marco; Griffith, Jeffrey K

    2011-01-01

    Previous studies have shown that a field of genetically altered but histologically normal tissue extends 1 cm or more from the margins of human breast tumors. The extent, composition and biological significance of this field are only partially understood, but the molecular alterations in affected cells could provide mechanisms for limitless replicative capacity, genomic instability and a microenvironment that supports tumor initiation and progression. We demonstrate by microarray, qRT-PCR and immunohistochemistry a signature of differential gene expression that discriminates between patient-matched, tumor-adjacent histologically normal breast tissues located 1 cm and 5 cm from the margins of breast adenocarcinomas (TAHN-1 and TAHN-5, respectively). The signature includes genes involved in extracellular matrix remodeling, wound healing, fibrosis and epithelial to mesenchymal transition (EMT). Myofibroblasts, which are mediators of wound healing and fibrosis, and intra-lobular fibroblasts expressing MMP2, SPARC, TGF-β3, which are inducers of EMT, were both prevalent in TAHN-1 tissues, sparse in TAHN-5 tissues, and absent in normal tissues from reduction mammoplasty. Accordingly, EMT markers S100A4 and vimentin were elevated in both luminal and myoepithelial cells, and EMT markers α-smooth muscle actin and SNAIL were elevated in luminal epithelial cells of TAHN-1 tissues. These results identify cellular processes that are differentially activated between TAHN-1 and TAHN-5 breast tissues, implicate myofibroblasts as likely mediators of these processes, provide evidence that EMT is occurring in histologically normal tissues within the affected field and identify candidate biomarkers to investigate whether or how field cancerization contributes to the development of primary or recurrent breast tumors. PMID:21105047

  19. Expression of Apoptosis Inducing-Ligands, TRAIL and Fas-L in Hydatid Cyst Germinal Layer and Normal Tissue

    Directory of Open Access Journals (Sweden)

    Adel Spotin

    2012-04-01

    Full Text Available Background & objectives: Hydaticosis is a zoonotic helminthic disease of human and other intermediated hosts in which larval stages of the tapeworm Echinococcus granulosu transfect human. The liver and lung are the host tissues for the hydatid cyst . It is unknown which mechanisms are involved in infertility of the cyst and suppression of the fertile cyst. This study was aimed to evaluate the expression of the apoptosis inducing-ligands such as TRAIL and Fas-L in germinal layer of the cyst and human normal tissue surrounding the cyst that is one of the unknown host innate immunity mechanisms against the hydatid cyst.   Methods: In this study, four isolated hydatid cysts were used which had been diagnosed in patients by radiography and parasitological examination in Mashhad Ghaem hospital. Furthermore, the germinal layer of the cyst and accompanied normal peripheral tissues were separated by scalpel in sterile conditions. After homogenization, expression of TRAIL and Fas-L genes were studied by semi-quantitive RT-PCR method.   Results: The TRAIL and Fas-L showed significant higher level expression in germinal layer of infertile cyst than the fertile cyst and host normal tissues.   Conclusion: The host tissue-induced apoptosis of germinal layer of the fertile cysts is probably one of the infertility mechanism in patients with hydaticosis

  20. Connective tissue photodamage in the hairless mouse is partially reversible

    International Nuclear Information System (INIS)

    Kligman, L.H.

    1987-01-01

    Photodamaged connective tissue in animal and human skin is characterized by excessive accumulations of elastic fibers, loss of mature collagen, concomitant overproduction of new collagen, and greatly increased levels of glycosaminoglycans. Formerly considered irreversible changes, we recently showed in hairless mice, post irradiation, that a band of normal connective tissue was laid down subepidermally. The present studies focused on 2 aspects of this repair: whether repair would occur if animals were protected by sunscreens after dermal damage was induced and irradiation continued; whether retinoic acid could enhance the repair process. To examine the first aspect, albino hairless mice were irradiated with Westinghouse FS 20 sunlamps thrice weekly for 30 weeks. Sunscreens of high sun-protection factors were applied after 10 and 20 weeks. Not only was further damage prevented, but the damage incurred before sunscreen application was repaired. This appeared as subepidermal reconstruction zones containing normal, mature collagen and a network of fine elastic fibers. The second aspect was examined by applying 0.05% retinoic acid, topically, to animals preirradiated for 10 weeks. In contrast to controls treated with vehicle, the reconstruction zone was significantly wider in retinoic acid-treated mice. The enhanced repair was dose-related

  1. Radionuclide investigation of the blood flow in tumor and normal rat tissues in induced hyperglycemia

    International Nuclear Information System (INIS)

    Istomin, Yu.P.; Shitikov, B.D.; Markova, L.V.

    1991-01-01

    Radionuclide angiography was performed in rats with transplantable tumors. Induced hyperglycemia was shown to result in blood flow inhibition in tumor and normal tissues of tumor-bearing rats. Some differences were revealed in a degree of reversibility of blood flow disorders in tissues of the above strains. The results obtained confirmed the advisability of radiation therapy at the height of a decrease in tumor blood

  2. A quantitative and non-contact technique to characterise microstructural variations of skin tissues during photo-damaging process based on Mueller matrix polarimetry.

    Science.gov (United States)

    Dong, Yang; He, Honghui; Sheng, Wei; Wu, Jian; Ma, Hui

    2017-10-31

    Skin tissue consists of collagen and elastic fibres, which are highly susceptible to damage when exposed to ultraviolet radiation (UVR), leading to skin aging and cancer. However, a lack of non-invasive detection methods makes determining the degree of UVR damage to skin in real time difficult. As one of the fundamental features of light, polarization can be used to develop imaging techniques capable of providing structural information about tissues. In particular, Mueller matrix polarimetry is suitable for detecting changes in collagen and elastic fibres. Here, we demonstrate a novel, quantitative, non-contact and in situ technique based on Mueller matrix polarimetry for monitoring the microstructural changes of skin tissues during UVR-induced photo-damaging. We measured the Mueller matrices of nude mouse skin samples, then analysed the transformed parameters to characterise microstructural changes during the skin photo-damaging and self-repairing processes. Comparisons between samples with and without the application of a sunscreen showed that the Mueller matrix-derived parameters are potential indicators for fibrous microstructure in skin tissues. Histological examination and Monte Carlo simulations confirmed the relationship between the Mueller matrix parameters and changes to fibrous structures. This technique paves the way for non-contact evaluation of skin structure in cosmetics and dermatological health.

  3. Changes in markers of oxidative stress and DNA damage in human visceral adipose tissue from subjects with obesity and type 2 diabetes.

    Science.gov (United States)

    Jones, D A; Prior, S L; Barry, J D; Caplin, S; Baxter, J N; Stephens, J W

    2014-12-01

    In the past 30 years, prevalence of obesity has almost trebled resulting in an increased incidence of type 2 diabetes mellitus and other co-morbidities. Visceral adipose tissue is believed to play a vital role, but underlying mechanisms remain unclear. Our aim was to investigate changes in markers of oxidative damage in human visceral adipose tissue to determine levels of oxidative burden that may be attributed to obesity and/or diabetes. Visceral adipose tissue samples from 61 subjects undergoing abdominal surgery grouped as lean, obese and obese with type 2 diabetes mellitus, were examined using 3 different markers of oxidative stress. Malondialdehyde (MDA) concentration was measured as a marker of lipid peroxidation, telomere length and Comet assay as markers of oxidative DNA damage. No significant difference in MDA concentration, telomere length and DNA damage was observed between groups, although longer telomere lengths were seen in the obese with diabetes group compared to the obese group (Pstress and DNA damage was observed in samples from subjects with type 2 diabetes mellitus. Further work is required to investigate this further, however this phenomenon may be due to an up regulation of antioxidant defences in adipose tissue. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. Thermal coagulation-induced changes of the optical properties of normal and adenomatous human colon tissues in vitro in the spectral range 400-1100 nm

    International Nuclear Information System (INIS)

    Ao Huilan; Xing Da; Wei Huajiang; Gu Huaimin; Wu Guoyong; Lu Jianjun

    2008-01-01

    The absorption coefficients, the reduced scattering coefficients and the optical penetration depths for native and coagulated human normal and adenomatous colon tissues in vitro were determined over the range of 400-1100 nm using a spectrophotometer with an internal integrating sphere system, and the inverse adding-doubling method was applied to calculate the tissue optical properties from diffuse reflectance and total transmittance measurements. The experimental results showed that in the range of 400-1100 nm there were larger absorption coefficients (P < 0.01) and smaller reduced scattering coefficients (P < 0.01) for adenomatous colon tissues than for normal colon tissues, and there were smaller optical penetration depths for adenomatous colon tissues than for normal colon tissues, especially in the near-infrared wavelength. Thermal coagulation induced significant increase of the absorption coefficients and reduced scattering coefficients for the normal and adenomatous colon tissues, and significantly reduced decrease of the optical penetration depths for the normal and adenomatous colon tissues. The smaller optical penetration depth for coagulated adenomatous colon tissues is a disadvantage for laser-induced thermotherapy (LITT) and photodynamic therapy (PDT). It is necessary to adjust the application parameters of lasers to achieve optimal therapy

  5. Leaf hairs of Olea europaea protect underlying tissues against ultraviolet-B radiation damage

    International Nuclear Information System (INIS)

    Karabourniotis, G.; Kyparissis, A.; Manetas, Y.

    1993-01-01

    The photochemical efficiency of photosystem II, as measured by chlorophyll fluorescence induction, was not affected in de-haired olive leaves kept in the dark or intact leaves irradiated with a moderate (3.75 W m-2) ultraviolet-B (UV-B) intensity. In de-haired, UV-B-irradiated leaves, however, the ratio of variable to maximum (F(v)/F(m)) chlorophyll fluorescence declined significantly and irreversibly. Reduction in F(v)/V(m) was associated with an increase in instantaneous and a decrease in maximum (F(m)) fluorescence, indicating perturbation by the UV-B exposure of more than one photosynthetic site. Extensive epidermal browning in de-haired, UV-B irradiated leaves was also observed, indicating possible damage to cell membranes. The results strengthen the hypothesis that leaf hairs protect the underlying tissues against UV-B radiation damage

  6. Honey can repairing damage of liver tissue due to protein energy malnutrition through induction of endogenous stem cells

    Directory of Open Access Journals (Sweden)

    R. Heru Prasetyo

    2017-06-01

    Full Text Available Aim: This study was to evaluate effect of honey in repairing damage of liver tissue due to energy protein malnutrition and in mobilization of endogenous stem cells. Materials and Methods: Male mice model of degenerative liver was obtained through food fasting but still have drinking water for 5 days. It caused energy protein malnutrition and damage of liver tissue. The administration of 50% (v/v honey was performed for 10 consecutive days, while the positive control group was fasted and not given honey and the negative control not fasted and without honey. Observations of regeneration the liver tissue based on histologically examination, observation of Hsp70 expression, and homing signal based on vascular endothelial growth factor-1 (VEGF-1 expression using immunohistochemistry technique. Observation on expression of CD34 and CD45 as the marker of auto mobilization of hematopoietic stem cells using flow cytometry technique. Results: There is regeneration of the liver tissue due to protein energy malnutrition, decrease of Hsp70 expression, increase of VEGF-1 expression, and high expression of CD34 and CD45. Conclusion: Honey can improve the liver tissue based on: (1 Mobilization of endogenous stem cells (CD34 and CD45; (2 Hsp70 and VEGF-1 expressions as regeneration marker of improvement, and (3 regeneration histologically of liver tissue.

  7. Elemental analysis of the frontal lobe of 'normal' brain tissue and that affected by Alzheimer's disease

    International Nuclear Information System (INIS)

    Stedman, J.D.; Spyrou, N.M.

    1997-01-01

    'Normal' brain tissue and brain tissue affected by Alzheimer's disease has been taken from the frontal lobe of both hemispheres and their elemental compositions in terms of major, minor and trace elements compared. Brain samples were obtained from the MRC Alzheimer's Disease Brain Bank, London. 25 samples were taken from 18 individuals (5 males and 13 females) of mean age 79.9 ± 7.3 years with pathologically confirmed Alzheimer's disease and 26 samples from 15 individuals (8 males and 7 females) of mean age 71.8 ± 13.0 years with no pathological sings of Alzheimer's disease ('normals'). The elemental concentration of the samples were determined by the techniques of Rutherford backscattering (RBS) analysis, particle induced X-ray emission (PIXE) analysis and instrumental neutron activation analysis (INAA). Na, Mg, Al, Cl, K, Sc, Fe, Zn, Se, Br, Rb and Cs were detected by INAA and significant differences in concentrations were found between concentrations in normal and Alzheimer tissue for the elements. Na, Cl, K, Se, Br and Rb, P, S, Cl, K, Ca, Fe, Zn and Cd were detected by PIXE analysis and significant differences found for the elements P, S, Cl, K and Ca. (author)

  8. Comparison of soft-tissue orbital morphometry in attractive and normal Italian subjects.

    Science.gov (United States)

    Sforza, Chiarella; Dolci, Claudia; Grandi, Gaia; Tartaglia, Gianluca M; Laino, Alberto; Ferrario, Virgilio F

    2015-01-01

    To identify esthetic characteristics of the orbital soft tissues of attractive Italian adult women and men. Three-dimensional computerized digitizers were used to collect the coordinates of facial landmarks in 199 healthy, normal subjects aged 18 to 30 years (71 women, 128 men; mean age, 22 years) and in 126 coetaneous attractive subjects (92 women, 34 men; mean age, 20 years) selected during beauty competitions. From the landmarks, six linear distances, two ratios, six angles, and two areas were calculated. Attractive subjects were compared with normal ones by computing z-scores. Intercanthal width was reduced while eye fissure lengths were increased in both genders. Orbital heights (os-or) were increased only in attractive women, with a significant gender-related difference. The inclinations of the eye fissure were increased in attractive subjects, while the inclinations of the orbit were reduced. For several of the analyzed measurements, similar patterns of z-scores were observed for attractive men and women (r  =  .883). Attractive women and men had several specific esthetic characteristics in their orbital soft tissues; esthetic reference values can be used to determine optimal goals in surgical treatment.

  9. Distribution of the anticancer drugs doxorubicin, mitoxantrone and topotecan in tumors and normal tissues.

    Science.gov (United States)

    Patel, Krupa J; Trédan, Olivier; Tannock, Ian F

    2013-07-01

    Pharmacokinetic analyses estimate the mean concentration of drug within a given tissue as a function of time, but do not give information about the spatial distribution of drugs within that tissue. Here, we compare the time-dependent spatial distribution of three anticancer drugs within tumors, heart, kidney, liver and brain. Mice bearing various xenografts were treated with doxorubicin, mitoxantrone or topotecan. At various times after injection, tumors and samples of heart, kidney, liver and brain were excised. Within solid tumors, the distribution of doxorubicin, mitoxantrone and topotecan was limited to perivascular regions at 10 min after administration and the distance from blood vessels at which drug intensity fell to half was ~25-75 μm. Although drug distribution improved after 3 and 24 h, there remained a significant decrease in drug fluorescence with increasing distance from tumor blood vessels. Drug distribution was relatively uniform in the heart, kidney and liver with substantially greater perivascular drug uptake than in tumors. There was significantly higher total drug fluorescence in the liver than in tumors after 10 min, 3 and 24 h. Little to no drug fluorescence was observed in the brain. There are marked differences in the spatial distributions of three anticancer drugs within tumor tissue and normal tissues over time, with greater exposure to most normal tissues and limited drug distribution to many cells in tumors. Studies of the spatial distribution of drugs are required to complement pharmacokinetic data in order to better understand and predict drug effects and toxicities.

  10. Nuclear medicine in the detection of radiation associated normal tissue damage of kidney, brain and salivary glands

    International Nuclear Information System (INIS)

    Liu Xiaomei; Li Dongxue; Pan Liping

    2005-01-01

    The radiation induced damage of kidney, brain and salivary glands is an important complicating disease after limit radiotherapy. The routine technology of nuclear medicine, such as tracing and imaging technique conduce to dose-effect calculations used in the planning of modern radiotherapy to three major organ systems and early detection of irradiation induced organ dysfunctions, as well as increased availability of radiotherapy. (authors)

  11. Role of the immune system in cardiac tissue damage and repair following myocardial infarction.

    Science.gov (United States)

    Saparov, Arman; Ogay, Vyacheslav; Nurgozhin, Talgat; Chen, William C W; Mansurov, Nurlan; Issabekova, Assel; Zhakupova, Jamilya

    2017-09-01

    The immune system plays a crucial role in the initiation, development, and resolution of inflammation following myocardial infarction (MI). The lack of oxygen and nutrients causes the death of cardiomyocytes and leads to the exposure of danger-associated molecular patterns that are recognized by the immune system to initiate inflammation. At the initial stage of post-MI inflammation, the immune system further damages cardiac tissue to clear cell debris. The excessive production of reactive oxygen species (ROS) by immune cells and the inability of the anti-oxidant system to neutralize ROS cause oxidative stress that further aggravates inflammation. On the other hand, the cells of both innate and adaptive immune system and their secreted factors are critically instrumental in the very dynamic and complex processes of regulating inflammation and mediating cardiac repair. It is important to decipher the balance between detrimental and beneficial effects of the immune system in MI. This enables us to identify better therapeutic targets for reducing the infarct size, sustaining the cardiac function, and minimizing the likelihood of heart failure. This review discusses the role of both innate and adaptive immune systems in cardiac tissue damage and repair in experimental models of MI.

  12. From DNA lesions to tissue malfunction

    International Nuclear Information System (INIS)

    Denekamp, J.

    1989-01-01

    After large doses of radiation, tissues fail to function when the proliferating cells lose their clonogenic ability. This results from unrepaired or misrepaired double strand breaks in the DNA. The lesions are inflicted immediately but there is a variable latent period before tissue damage is expressed. This ranges from a few days in intestine, to weeks in skin, and to months or years in deep visceral tissues, e.g. heart, lung, kidney, spinal cord. The latency relates to the proliferation kinetics of each tissue component. Doses of 10-30 Gy do not cause serious functional defects in differentiated cells, but they prevent successful mitosis in proliferating cells. Thus each tissue continues to function until its differentiated cells are lost by normal wear and tear processes. After a time which relates to the natural lifespan of the differentiated cells, failure to provide replacement cells from the proliferating compartment becomes important and the tissue shows atrophy and eventually a functional deficit. If the radiation exposure is divided into a series of smaller exposures or is given at a low dose-rate, the biochemical repair of DNA is more effective and less damage is observed. After high LET ionizing radiation, e.g. neutrons or α particles, the response is almost linear and is not affected by doserate or fractionation. (author)

  13. Radiation damages in solids and tissues

    International Nuclear Information System (INIS)

    Cevc, P.; Kogovsek, F.; Kanduser, A.; Peternelj, M.; Skaleric, U.; Funduk, N.

    1977-01-01

    In submitted research work we have studied radiation damages in ferroelectric crystals and application of ferroelectric crystals. Studying the radiation damages we have introduced new technique of EPR measurements under high hydrostatic pressure, that will enable us to obtain additional data on crystal lattice dynamics. A change of piroelectric coefficient with high radiation doses in dopped TGS has been measured also

  14. Immunohistochemical Expression of FXR1 in Canine Normal Tissues and Melanomas.

    Science.gov (United States)

    Nordio, Laura; Marques, Andreia T; Lecchi, Cristina; Luciano, Alberto M; Stefanello, Damiano; Giudice, Chiara

    2018-04-01

    Fragile X mental retardation-related protein 1 (FXR1) is a cytoplasmic RNA-binding protein highly conserved among vertebrates. It has been studied for its role in muscle development, inflammation, and tumorigenesis, being related, for example, to metastasizing behavior in human and canine uveal melanoma. Anti-FXR1 antibodies have never been validated in the canine species. To investigate FXR1 expression in canine melanocytic tumors, the present study tested two commercially available polyclonal anti-human FXR1 antibodies, raised in goat and rabbit, respectively. The cross-reactivity of the anti-FXR1 antibodies was assessed by Western blot analysis, and the protein was localized by IHC in a set of normal canine tissues and in canine melanocytic tumors (10 uveal and 10 oral). Western blot results demonstrated that the antibody raised in rabbit specifically recognized the canine FXR1, while the antibody raised in goat did not cross-react with this canine protein. FXR1 protein was immunodetected using rabbit anti-FXR1 antibody, in canine normal tissues with different levels of intensity and distribution. It was also detected in 10/10 uveal and 9/10 oral melanocytic tumors. The present study validated for the first time the use of anti-FXR1 antibody in dogs and highlighted different FXR1 protein expression in canine melanocytic tumors, the significance of which is undergoing further investigations.

  15. Monitoring of tissue optical properties during thermal coagulation of ex vivo tissues.

    Science.gov (United States)

    Nagarajan, Vivek Krishna; Yu, Bing

    2016-09-01

    Real-time monitoring of tissue status during thermal ablation of tumors is critical to ensure complete destruction of tumor mass, while avoiding tissue charring and excessive damage to normal tissues. Currently, magnetic resonance thermometry (MRT), along with magnetic resonance imaging (MRI), is the most commonly used technique for monitoring and assessing thermal ablation process in soft tissues. MRT/MRI is very expensive, bulky, and often subject to motion artifacts. On the other hand, light propagation within tissue is sensitive to changes in tissue microstructure and physiology which could be used to directly quantify the extent of tissue damage. Furthermore, optical monitoring can be a portable, and cost-effective alternative for monitoring a thermal ablation process. The main objective of this study, is to establish a correlation between changes in tissue optical properties and the status of tissue coagulation/damage during heating of ex vivo tissues. A portable diffuse reflectance spectroscopy system and a side-firing fiber-optic probe were developed to study the absorption (μa (λ)), and reduced scattering coefficients (μ's (λ)) of native and coagulated ex vivo porcine, and chicken breast tissues. In the first experiment, both porcine and chicken breast tissues were heated at discrete temperature points between 24 and 140°C for 2 minutes. Diffuse reflectance spectra (430-630 nm) of native and coagulated tissues were recorded prior to, and post heating. In a second experiment, porcine tissue samples were heated at 70°C and diffuse reflectance spectra were recorded continuously during heating. The μa (λ) and μ's (λ) of the tissues were extracted from the measured diffuse reflectance spectra using an inverse Monte-Carlo model of diffuse reflectance. Tissue heating was stopped when the wavelength-averaged scattering plateaued. The wavelength-averaged optical properties, and , for native porcine tissues (n = 66) at room temperature, were 5.4

  16. Pathogenesis of Radiation effects in normal tissues and options for intervention

    International Nuclear Information System (INIS)

    Dorr, W.

    2011-01-01

    ' processing of radiation damage can be directed against any step of the 'molecular' pathogenetic cascade, including early production of free radicals, activation of transcription factors, modulation of signaling cascades, or modulation of the immune response. Most promising, with first clinical studies, are the interaction with (some) growth factor signaling cascades, the interruption of chronic oxidative stress (in late tissue reactions), and the treatment (mobilization or transplantation) with stem cells.

  17. The use of biological isodoses ''IsobioGy 2'' for evaluation of tumour and normal tissues response for fractionated irradiation

    International Nuclear Information System (INIS)

    Maciejewski, B.; Skolyszewski, J.; Majewski, S.; Lobodziec, W.; Jedynak, T.; Slosarek, K.

    1988-01-01

    Divergences between physical and biological dose distributions were analysed using linear quadratic model. It was found that small variations in physical dose distribution and differences in normal tissue sensitivity for change in dose per fraction, expressed by a α/β value, can cause a high difference between physical and biological doses. This difference significantly increases when one field instead of two fields is daily treated. If there is no enough separation between treated fields, the biological dose may dramatically increase. The use of biological ''isobioGy 2'' isodoses, instead of physical isodoses, can provide an important information on biological effect in tumour or normal tissue and may diminish the risk of giving too high dose to normal tissue and too low dose to the tumour. 6 figs., 13 refs. (author)

  18. Feasibility of temporary protective embolization of normal liver tissue using degradable starch microspheres during radioembolization of liver tumours

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Carsten [University of Bonn, Department of Radiology, Bonn (Germany); Pieper, Claus Christian; Wilhelm, Kai E.; Schild, Hans Heinz [University of Bonn, Department of Radiology, Bonn (Germany); Ezziddin, Samer; Ahmadzadehfar, Hojjat [University of Bonn, Department of Nuclear Medicine, Bonn (Germany)

    2014-02-15

    To describe a new approach to protect nontarget healthy liver tissue using degradable starch microspheres (DSM) as a short-term embolizate during radioembolization of liver tumours with {sup 90}Y microspheres. Between December 2011 and July 2012 radioembolization was performed in 54 patients. Five of these patients (three women, two men; mean age 67 years) underwent protective temporary embolization using DSM (EmboCept {sup registered} S) of normal liver tissue that could not be excluded from the area treated by radioembolization through catheter repositioning. Clinical symptoms, laboratory findings, preinterventional imaging, and {sup 99m}Tc-MAA and bremsstrahlung SPECT/CT, as well as baseline and follow-up imaging with {sup 18}F-FDG PET/CT and MRI, were evaluated in relation to the technical and clinical success of the protective embolization. Temporary embolization of arteries supplying normal liver tissue using DSM was technically successful in all five patients. {sup 99m}Tc-MAA SPECT/CT performed in the first two patients after DSM injection showed no increased pulmonary shunting compared to the MAA test injection without DSM. Bremsstrahlung SPECT/CT after radioembolization demonstrated satisfactory irradiation of the tumour and successful protection of normal liver tissue. There were only mild hepatotoxic effects (grade 1) on laboratory follow-up examinations, and no adverse events associated with DSM embolization or radioembolization were recorded. Temporary embolization with DSM before radioembolization is feasible and can effectively protect areas of normal liver tissue from irradiation and avoid permanent embolization if other methods such as catheter repositioning are not possible due to the location of the metastases. (orig.)

  19. Feasibility of temporary protective embolization of normal liver tissue using degradable starch microspheres during radioembolization of liver tumours

    International Nuclear Information System (INIS)

    Meyer, Carsten; Pieper, Claus Christian; Wilhelm, Kai E.; Schild, Hans Heinz; Ezziddin, Samer; Ahmadzadehfar, Hojjat

    2014-01-01

    To describe a new approach to protect nontarget healthy liver tissue using degradable starch microspheres (DSM) as a short-term embolizate during radioembolization of liver tumours with 90 Y microspheres. Between December 2011 and July 2012 radioembolization was performed in 54 patients. Five of these patients (three women, two men; mean age 67 years) underwent protective temporary embolization using DSM (EmboCept registered S) of normal liver tissue that could not be excluded from the area treated by radioembolization through catheter repositioning. Clinical symptoms, laboratory findings, preinterventional imaging, and 99m Tc-MAA and bremsstrahlung SPECT/CT, as well as baseline and follow-up imaging with 18 F-FDG PET/CT and MRI, were evaluated in relation to the technical and clinical success of the protective embolization. Temporary embolization of arteries supplying normal liver tissue using DSM was technically successful in all five patients. 99m Tc-MAA SPECT/CT performed in the first two patients after DSM injection showed no increased pulmonary shunting compared to the MAA test injection without DSM. Bremsstrahlung SPECT/CT after radioembolization demonstrated satisfactory irradiation of the tumour and successful protection of normal liver tissue. There were only mild hepatotoxic effects (grade 1) on laboratory follow-up examinations, and no adverse events associated with DSM embolization or radioembolization were recorded. Temporary embolization with DSM before radioembolization is feasible and can effectively protect areas of normal liver tissue from irradiation and avoid permanent embolization if other methods such as catheter repositioning are not possible due to the location of the metastases. (orig.)

  20. Pulse frequency in pulsed brachytherapy based on tissue repair kinetics

    International Nuclear Information System (INIS)

    Sminia, Peter; Schneider, Christoph J.; Koedooder, Kees; Tienhoven, Geertjan van; Blank, Leo E.C.M.; Gonzalez Gonzalez, Dionisio

    1998-01-01

    Purpose: Investigation of normal tissue sparing in pulsed brachytherapy (PB) relative to continuous low-dose rate irradiation (CLDR) by adjusting pulse frequency based on tissue repair characteristics. Method: Using the linear quadratic model, the relative effectiveness (RE) of a 20 Gy boost was calculated for tissue with an α/β ratio ranging from 2 to 10 Gy and a half-time of sublethal damage repair between 0.1 and 3 h. The boost dose was considered to be delivered either in a number of pulses varying from 2 to 25, or continuously at a dose rate of 0.50, 0.80, or 1.20 Gy/h. Results: The RE of 20 Gy was found to be identical for PB in 25 pulses of 0.80 Gy each h and CLDR delivered at 0.80 Gy/h for any α/β value and for a repair half-time > 0.75 h. When normal tissue repair half-times are assumed to be longer than tumor repair half-times, normal tissue sparing can be obtained, within the restriction of a fixed overall treatment time, with higher dose per pulse and longer period time (time elapsed between start of pulse n and start of pulse n + 1). An optimum relative normal tissue sparing larger than 10% was found with 4 pulses of 5 Gy every 8 h. Hence, a therapeutic gain might be obtained when changing from CLDR to PB by adjusting the physical dose in such a way that the biological dose on the tumor is maintained. The normal tissue-sparing phenomenon can be explained by an increase in RE with longer period time for tissue with high α/β ratio and fast or intermediate repair half-time, and the RE for tissue with low α/β ratio and long repair half-time remains almost constant. Conclusion: Within the benchmark of the LQ model, advantage in normal tissue-sparing is expected when matching the pulse frequency to the repair kinetics of the normal tissue exposed. A period time longer than 1 h may lead to a reduction of late normal tissue complications. This theoretical advantage emphasizes the need for better knowledge of human tissue-repair kinetics

  1. Variability of individual normal tissue radiation sensitivity. An international empirical evaluation of endogenous and exogenous

    International Nuclear Information System (INIS)

    Zimmermann, J.S.; Kumpf, L.; Kimmig, B.

    1998-01-01

    Background: The variability of normal-tissue response is of major concern for radiation therapy. Multiple endogenous and exogenous factors are qualitatively known to alter the acute and late tissue response. Which of them are regarded most important by the European radiation oncologists and what is, empirically, their quantitative influence on the acute or late tissue tolerance? Methods: In August 1997, we sent a questionnaire to 255 European radiation oncology departments. Among others, the questionnaire asked for endogenous and exogenous factors modifying the tissue response to radiation therapy and their quantitative influence on the acute and late radiation morbidity (TD5/5). Fifty-five questionnaires (21.5%) were answered. Results: Empirically, the most important endogenous factors to modify the acute tissue tolerance are (a) metabolic/other diseases with macro- or microangiopathia (17 answers [a]/32% mean decrease of tissue tolerance), (b) collagen diseases (9 a/37%) and (c) immune diseases (5 a/53%). As endogenous response modifiers for the TD5/5 are recognized (a) metabolic or other diseases leading to marcro- or microangiopathia (15 a/31%), (b) collagen diseases (11 a/38%) and (c) immune diseases (2 a/50%). Inflammations from any reason are assumed to alter the acute tissue tolerance by (6 a/26%) and the TD5/5 by (10 a/24%). Exogenous modifiers of the acute tissue response mentioned are (a) smoking (34 a/44%), (b) alcohol (23 a/45%), (c) nutrition/diets (16 a/45%), (d) hygiene (9 a/26%) and (e) medical therapies (10 a/37%). Exogenous factors assumed to influence the TD5/5 are (a) smoking (22 a/40%), (b) alcohol (15 a/38%), (c) nutrition/diets (9 a/48%), (d) hygiene (5 a/34%) and (e) medical therapies (10 a/30%). Conclusions: Exogenous factors are regarded more important by number and extent on the acute and late tissue response than endogenous modifiers. Both may have an important influence on the individual expression of normal tissue response. (orig

  2. The effect of setup uncertainty on normal tissue sparing with IMRT for head-and-neck cancer

    International Nuclear Information System (INIS)

    Manning, Matthew A.; Wu Quiwen; Cardinale, Robert M.; Mohan, Radhe; Lauve, Andrew D.; Kavanagh, Brian D.; Morris, Monica M.; Schmidt-Ullrich, Rupert K.

    2001-01-01

    Purpose: Intensity-modulated radiotherapy (IMRT) is being evaluated in the management of head-and-neck cancers at several institutions, and a Radiation Therapy Oncology Group study of its utility in parotid sparing is under development. There is an inherent risk that the sharper dose gradients generated by IMRT amplify the potentially detrimental impact of setup uncertainty. The International Commission on Radiation Units and Measurements Report 62 (ICRU-62) defined planning organ-at-risk volume (PRV) to account for positional uncertainties for normal tissues. The purpose of this study is to quantify the dosimetric effect of employing PRV for the parotid gland and to evaluate the use of PRV on normal-tissue sparing in the setting of small clinical setup errors. Methods and Materials: The optimized nine-beam IMRT plans for three head-and-neck cancer patients participating in an institutional review board approved parotid-sparing protocol were used as reference plans. A second optimized plan was generated for each patient by adding a PRV of 5 mm for the contralateral parotid gland. The effect of these additions on the quality of the plans was quantified, in terms of both target coverage and normal-tissue sparing. To test the value of PRV in a worst-case scenario, systematic translational setup uncertainties were simulated by shifting the treatment isocenter 5 mm superiorly, inferiorly, left, right, anteriorly, and posteriorly, without altering optimized beam profiles. At each shifted isocenter, dose distributions were recalculated, producing a total of six shifted plans without PRV and six shifted plans with PRV for each patient. The effect of setup uncertainty on parotid sparing and the value of PRV in compensating for the uncertainty were evaluated. Results: The addition of the PRV and reoptimization did not significantly affect the dose to gross tumor volume, spinal cord, or brainstem. In contrast, without any shift, the PRV did increase parotid sparing and reduce

  3. Benfotiamine alleviates diabetes-induced cerebral oxidative damage independent of advanced glycation end-product, tissue factor and TNF-alpha.

    Science.gov (United States)

    Wu, Shan; Ren, Jun

    2006-02-13

    Diabetes mellitus leads to thiamine deficiency and multiple organ damage including diabetic neuropathy. This study was designed to examine the effect of benfotiamine, a lipophilic derivative of thiamine, on streptozotocin (STZ)-induced cerebral oxidative stress. Adult male FVB mice were made diabetic with a single injection of STZ (200 mg/kg, i.p.). Fourteen days later, control and diabetic (fasting blood glucose >13.9 mM) mice received benfotiamine (100 mg/kg/day, i.p.) for 14 days. Oxidative stress and protein damage were evaluated by glutathione/glutathione disulfide (GSH/GSSG) assay and protein carbonyl formation, respectively. Pro-oxidative or pro-inflammatory factors including advanced glycation end-product (AGE), tissue factor and tumor necrosis factor-alpha (TNF-alpha) were evaluated by immunoblot analysis. Four weeks STZ treatment led to hyperglycemia, enhanced cerebral oxidative stress (reduced GSH/GSSG ratio), elevated TNF-alpha and AGE levels without changes in protein carbonyl or tissue factor. Benfotiamine alleviated diabetes-induced cerebral oxidative stress without affecting levels of AGE, protein carbonyl, tissue factor and TNF-alpha. Collectively, our results indicated benfotiamine may antagonize diabetes-induced cerebral oxidative stress through a mechanism unrelated to AGE, tissue factor and TNF-alpha.

  4. Expression and relevant research of MGMT and XRCC1 gene in differentgrades of brain glioma and normal brain tissues

    Institute of Scientific and Technical Information of China (English)

    Ya-Fei Zhang

    2015-01-01

    Objective: To explore and analyze expression and relevant research of MGMT and XRCC1 gene in different grades of brain glioma and normal brain tissues. Methods: 52 cases of patients with brain glioma treated in our hospital from December 2013 to December 2014, and 50 cases of normal brain-tissue patients with intracranial hypertension were selected, and proceeding test to the surgical resection of brain tissue of the above patients to determine its MGMT and XRCC1 protein content, sequentially to record the expression of MGMT and XRCC1 of both groups. Grading of tumors to brain glioma after operation was carried out, and the expression of MGMT and XRCC1 gene in brain tissues of different patients was analyzed and compared;finally the contingency tables of X2 test was used to analyze the correlation of XRCC1and MGMT. Results:Positive rate of MGMT expression in normal brain tissue was 2%,while positive rate of MGMT expression in brain glioma was 46.2%,which was obviously higher than that in normal brain tissues (χ2=26.85, P0.05), which had no statistical significance. There were 12 cases of patients whose MGMT protein expression was positive and XRCC1 protein expression was positive; there were 18 cases of patients whose MGMT protein expression was negative and XRCC1 protein expression was negative. Contingency tables of X2 test was used to analyze the correlation of XRCC1 and MGMT, which indicated that the expression of XRCCI and MGMT in brain glioma had no correlation (r=0.9%, P=0.353), relevancy of both was r=0.9%. Conclusions: Positive rate of the expression of MGMT and XRCC1 in brain glioma was obviously higher than that in normal brain tissues, but the distribution of different grades of brain glioma had no obvious difference, and MGMT and XRCC1 expression had no obvious correlation, which needed further research.

  5. Characterization of adenoviral transduction profile in prostate cancer cells and normal prostate tissue.

    Science.gov (United States)

    Ai, Jianzhong; Tai, Phillip W L; Lu, Yi; Li, Jia; Ma, Hong; Su, Qin; Wei, Qiang; Li, Hong; Gao, Guangping

    2017-09-01

    Prostate diseases are common in males worldwide with high morbidity. Gene therapy is an attractive therapeutic strategy for prostate diseases, however, it is currently underdeveloped. As well known, adeno virus (Ad) is the most widely used gene therapy vector. The aims of this study are to explore transduction efficiency of Ad in prostate cancer cells and normal prostate tissue, thus further providing guidance for future prostate pathophysiological studies and therapeutic development of prostate diseases. We produced Ad expressing enhanced green fluorescence protein (EGFP), and characterized the transduction efficiency of Ad in both human and mouse prostate cancer cell lines in vitro, as well as prostate tumor xenograft, and wild-type mouse prostate tissue in vivo. Ad transduction efficiency was determined by EGFP fluorescence using microscopy and flow cytometry. Cell type-specific transduction was examined by immunofluorescence staining of cell markers. Our data showed that Ad efficiently transduced human and mouse prostate cancer cells in vitro in a dose dependent manner. Following intratumoral and intraprostate injection, Ad could efficiently transduce prostate tumor xenograft and the major prostatic cell types in vivo, respectively. Our findings suggest that Ad can efficiently transduce prostate tumor cells in vitro as well as xenograft and normal prostate tissue in vivo, and further indicate that Ad could be a potentially powerful toolbox for future gene therapy of prostate diseases. © 2017 Wiley Periodicals, Inc.

  6. Immunohistochemical Study of Expression of Sohlh1 and Sohlh2 in Normal Adult Human Tissues.

    Directory of Open Access Journals (Sweden)

    Xiaoli Zhang

    Full Text Available The expression pattern of Sohlh1 (spermatogenesis and oogenesis specific basic helix-loop-helix 1 and Sohlh2 in mice has been reported in previous studies. Sohlh1 and Sohlh2 are specifically expressed in spermatogonia, prespermatogonia in male mice and oocytes of primordial and primary follicles in female mice. In this report, we studied the expression pattern of Sohlh1 and Sohlh2 in human adult tissues. Immunohistochemical staining of Sohlh1 and Sohlh2 was performed in 5 samples of normal ovaries and testes, respectively. The results revealed that Sohlh genes are not only expressed in oocytes and spermatogonia, but also in granular cells, theca cells, Sertoli cells and Leydig cells, and in smooth muscles of blood vessel walls. To further investigate the expression of Sohlh genes in other adult human tissues, we collected representative normal adult tissues developed from three embryonic germ layers. Compared with the expression in mice, Sohlhs exhibited a much more extensive expression pattern in human tissues. Sohlhs were detected in testis, ovary and epithelia developed from embryonic endoderm, ectoderm and tissues developed from embryonic mesoderm. Sohlh signals were found in spermatogonia, Sertoli cells and also Leydig cells in testis, while in ovary, the expression was mainly in oocytes of primordial and primary follicles, granular cells and theca cells of secondary follicles. Compared with Sohlh2, the expression of Sohlh1 was stronger and more extensive. Our study explored the expression of Sohlh genes in human tissues and might provide insights for functional studies of Sohlh genes.

  7. Tissue Damage, Temperature, and pH Induced by Different Electrode Arrays on Potato Pieces (Solanum tuberosum L.

    Directory of Open Access Journals (Sweden)

    Maraelys Morales González

    2018-04-01

    Full Text Available One of the most challenging problems of electrochemical therapy is the design and selection of suitable electrode array for cancer. The aim is to determine how two-dimensional spatial patterns of tissue damage, temperature, and pH induced in pieces of potato (Solanum tuberosum L., var. Mondial depend on electrode array with circular, elliptical, parabolic, and hyperbolic shape. The results show the similarity between the shapes of spatial patterns of tissue damage and electric field intensity, which, like temperature and pH take the same shape of electrode array. The adequate selection of suitable electrodes array requires an integrated analysis that involves, in a unified way, relevant information about the electrochemical process, which is essential to perform more efficiently way the therapeutic planning and the personalized therapy for patients with a cancerous tumor.

  8. [Morphology of basement membrane and associated matrix proteins in normal and pathological tissues].

    Science.gov (United States)

    Nerlich, A

    1995-01-01

    Basement membranes (BM) are specialized structures of the extracellular matrix. Their composition is of particular importance for the maintenance of normal morphological and functional properties of a multitude of organs and tissue systems and it is thus required for regular homeostasis of body function. Generally, they possess three main functions, i.e. participation in the maintenance of tissue structure, control of fluid and substrate exchange, and regulation of cell growth and differentiation. BMs are made up by various components which are in part specifically localized within the BM zone, or which represent ubiquitous matrix constituents with specific quantitative and/or qualitative differences in their localization. On the basis of a thorough immunohistochemical analysis of normal and diseased tissues, we provide here a concept of "functional morphology/pathomorphology" of the different BM components analyzed: 1.) The ubiquitous BM-constituent collagen IV primarily stabilizes the BM-zone and thus represents the "backbone" of the BM providing mechanical strength. Its loss leads to cystic tissue transformation as it is evidenced from the analysis of polycystic nephropathies. Thus, in other cystic tissue transformations a similar formal pathogenesis may be present. 2.) The specific localization of collagen VII as the main structural component of anchoring fibrils underlines the mechanical anchoring function of this collagenous protein. Defects in this protein lead to hereditary epidermolysis. The rapid re-occurrence of epidermal collagen VII during normal human wound healing indicates a quick reconstitution of the mechanical tensile strength of healing wounds. 3.) The BM-specific heparan sulfate proteoglycan (HSPG, Perlecan) with its highly negative anionic charge can be assumed to exert filter control. This assumption is corroborated by the localizatory findings of a preferential deposition of HSPG in endothelial and particularly in glomerular BM. Similarly

  9. Analysis of the genetic phylogeny of multifocal prostate cancer identifies multiple independent clonal expansions in neoplastic and morphologically normal prostate tissue.

    Science.gov (United States)

    Cooper, Colin S; Eeles, Rosalind; Wedge, David C; Van Loo, Peter; Gundem, Gunes; Alexandrov, Ludmil B; Kremeyer, Barbara; Butler, Adam; Lynch, Andrew G; Camacho, Niedzica; Massie, Charlie E; Kay, Jonathan; Luxton, Hayley J; Edwards, Sandra; Kote-Jarai, ZSofia; Dennis, Nening; Merson, Sue; Leongamornlert, Daniel; Zamora, Jorge; Corbishley, Cathy; Thomas, Sarah; Nik-Zainal, Serena; O'Meara, Sarah; Matthews, Lucy; Clark, Jeremy; Hurst, Rachel; Mithen, Richard; Bristow, Robert G; Boutros, Paul C; Fraser, Michael; Cooke, Susanna; Raine, Keiran; Jones, David; Menzies, Andrew; Stebbings, Lucy; Hinton, Jon; Teague, Jon; McLaren, Stuart; Mudie, Laura; Hardy, Claire; Anderson, Elizabeth; Joseph, Olivia; Goody, Victoria; Robinson, Ben; Maddison, Mark; Gamble, Stephen; Greenman, Christopher; Berney, Dan; Hazell, Steven; Livni, Naomi; Fisher, Cyril; Ogden, Christopher; Kumar, Pardeep; Thompson, Alan; Woodhouse, Christopher; Nicol, David; Mayer, Erik; Dudderidge, Tim; Shah, Nimish C; Gnanapragasam, Vincent; Voet, Thierry; Campbell, Peter; Futreal, Andrew; Easton, Douglas; Warren, Anne Y; Foster, Christopher S; Stratton, Michael R; Whitaker, Hayley C; McDermott, Ultan; Brewer, Daniel S; Neal, David E

    2015-04-01

    Genome-wide DNA sequencing was used to decrypt the phylogeny of multiple samples from distinct areas of cancer and morphologically normal tissue taken from the prostates of three men. Mutations were present at high levels in morphologically normal tissue distant from the cancer, reflecting clonal expansions, and the underlying mutational processes at work in morphologically normal tissue were also at work in cancer. Our observations demonstrate the existence of ongoing abnormal mutational processes, consistent with field effects, underlying carcinogenesis. This mechanism gives rise to extensive branching evolution and cancer clone mixing, as exemplified by the coexistence of multiple cancer lineages harboring distinct ERG fusions within a single cancer nodule. Subsets of mutations were shared either by morphologically normal and malignant tissues or between different ERG lineages, indicating earlier or separate clonal cell expansions. Our observations inform on the origin of multifocal disease and have implications for prostate cancer therapy in individual cases.

  10. Pharmacokinetics and tissue distribution of five active ingredients of Eucommiae cortex in normal and ovariectomized mice by UHPLC-MS/MS.

    Science.gov (United States)

    An, Jing; Hu, Fangdi; Wang, Changhong; Zhang, Zijia; Yang, Li; Wang, Zhengtao

    2016-09-01

    1. Pinoresinol di-O-β-d-glucopyranoside (PDG), geniposide (GE), geniposidic acid (GA), aucubin (AN) and chlorogenic acid (CA) are the representative active ingredients in Eucommiae cortex (EC), which may be estrogenic. 2. The ultra high-performance liquid chromatography/tandem mass spectrometry (UHPLC-MS/MS) method for simultaneous determination of the five ingredients showed good linearity, low limits of quantification and high extraction recoveries, as well as acceptable precision, accuracy and stability in mice plasma and tissue samples (liver, spleen, kidney and uterus). It was successfully applied to the comparative study on pharmacokinetics and tissue distribution of PDG, GE, GA, AN and CA between normal and ovariectomized (OVX) mice. 3. The results indicated that except CA, the plasma and tissue concentrations of PDG, GE, GA in OVX mice were all greater than those in normal mice. AN could only be detected in the plasma and liver homogenate of normal mice, which was poorly absorbed in OVX mice and low in other measured tissues. PDG, GE and GA seem to be better absorbed in OVX mice than in normal mice proved by the remarkable increased value of AUC0-∞ and Cmax. It is beneficial that PDG, GE, GA have better plasma absorption and tissue distribution in pathological state.

  11. Laser-induced damage in biological tissue: Role of complex and dynamic optical properties of the medium

    Science.gov (United States)

    Ahmed, Elharith M.

    Since its invention in the early 1960's, the laser has been used as a tool for surgical, therapeutic, and diagnostic purposes. To achieve maximum effectiveness with the greatest margin of safety it is important to understand the mechanisms of light propagation through tissue and how that light affects living cells. Lasers with novel output characteristics for medical and military applications are too often implemented prior to proper evaluation with respect to tissue optical properties and human safety. Therefore, advances in computational models that describe light propagation and the cellular responses to laser exposure, without the use of animal models, are of considerable interest. Here, a physics-based laser-tissue interaction model was developed to predict the spatial and temporal temperature and pressure rise during laser exposure to biological tissues. Our new model also takes into account the dynamic nature of tissue optical properties and their impact on the induced temperature and pressure profiles. The laser-induced retinal damage is attributed to the formation of microbubbles formed around melanosomes in the retinal pigment epithelium (RPE) and the damage mechanism is assumed to be photo-thermal. Selective absorption by melanin creates these bubbles that expand and collapse around melanosomes, destroying cell membranes and killing cells. The Finite Element (FE) approach taken provides suitable ground for modeling localized pigment absorption which leads to a non-uniform temperature distribution within pigmented cells following laser pulse exposure. These hot-spots are sources for localized thermo-elastic stresses which lead to rapid localized expansions that manifest themselves as microbubbles and lead to microcavitations. Model predictions for the interaction of lasers at wavelengths of 193, 694, 532, 590, 1314, 1540, 2000, and 2940 nm with biological tissues were generated and comparisons were made with available experimental data for the retina

  12. Quantitative radiation dose-response relationships for normal tissues in man - I. Gustatory tissues response during photon and neutron radiotherapy

    International Nuclear Information System (INIS)

    Mossman, K.L.

    1982-01-01

    Quantitative radiation dose-response curves for normal gustatory tissue in man were studied. Taste function, expressed as taste loss, was evaluated in 84 patients who were given either photon or neutron radiotherapy for tumors in the head and neck region. Patients were treated to average tumor doses of 6600 cGy (photon) or 2200 cGy intervals for photon patients and 320-cGy intervals for neutron patients during radiotherapy. The dose-response curves for photons and neutrons were analyzed by fitting a four-parameter logistic equation to the data. Photon and neutron curves differed principally in their relative position along the dose axis. Comparison of the dose-response curves were made by determination of RBE. At 320 cGy, the lowest neutron dose at which taste measurements were made, RBE = 5.7. If this RBE is correct, then the therapeutic gain factor may be equal to or less than 1, indicating no biological advantage in using neutrons over photons for this normal tissue. These studies suggest measurements of taste function and evaluation of dose-response relationships may also be useful in quantitatively evaluating the efficacy of chemical modifiers of radiation response such as hypoxic cell radiosensitizers and radioprotectors

  13. Synthetic Secoisolariciresinol Diglucoside (LGM2605 Protects Human Lung in an Ex Vivo Model of Proton Radiation Damage

    Directory of Open Access Journals (Sweden)

    Anastasia Velalopoulou

    2017-11-01

    Full Text Available Radiation therapy for the treatment of thoracic malignancies has improved significantly by directing of the proton beam in higher doses on the targeted tumor while normal tissues around the tumor receive much lower doses. Nevertheless, exposure of normal tissues to protons is known to pose a substantial risk in long-term survivors, as confirmed by our work in space-relevant exposures of murine lungs to proton radiation. Thus, radioprotective strategies are being sought. We established that LGM2605 is a potent protector from radiation-induced lung toxicity and aimed in the current study to extend the initial findings of space-relevant, proton radiation-associated late lung damage in mice by looking at acute changes in human lung. We used an ex vivo model of organ culture where tissue slices of donor living human lung were kept in culture and exposed to proton radiation. We exposed donor human lung precision-cut lung sections (huPCLS, pretreated with LGM2605, to 4 Gy proton radiation and evaluated them 30 min and 24 h later for gene expression changes relevant to inflammation, oxidative stress, and cell cycle arrest, and determined radiation-induced senescence, inflammation, and oxidative tissue damage. We identified an LGM2605-mediated reduction of proton radiation-induced cellular senescence and associated cell cycle changes, an associated proinflammatory phenotype, and associated oxidative tissue damage. This is a first report on the effects of proton radiation and of the radioprotective properties of LGM2605 on human lung.

  14. Exogenous normal lymph reduces liver injury induced by lipopolysaccharides in rats

    International Nuclear Information System (INIS)

    Zhao, Z.G.; Zhang, L.L.; Niu, C.Y.; Zhang, J.

    2014-01-01

    The liver is one of the target organs damaged by septic shock, wherein the spread of endotoxins begins. This study aimed to investigate the effects of exogenous normal lymph (ENL) on lipopolysaccharide (LPS)-induced liver injury in rats. Male Wistar rats were randomly divided into sham, LPS, and LPS+ENL groups. LPS (15 mg/kg) was administered intravenously via the left jugular vein to the LPS and LPS+ENL groups. At 15 min after the LPS injection, saline or ENL without cell components (5 mL/kg) was administered to the LPS and LPS+ENL groups, respectively, at a rate of 0.5 mL/min. Hepatocellular injury indices and hepatic histomorphology, as well as levels of P-selectin, intercellular adhesion molecule 1 (ICAM-1), myeloperoxidase (MPO), and Na + -K + -ATPase, were assessed in hepatic tissues. Liver tissue damage occurred after LPS injection. All levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in plasma as well as the wet/dry weight ratio of hepatic tissue in plasma increased. Similarly, P-selectin, ICAM-1, and MPO levels in hepatic tissues were elevated, whereas Na + -K + -ATPase activity in hepatocytes decreased. ENL treatment lessened hepatic tissue damage and decreased levels of AST, ALT, ICAM-1, and MPO. Meanwhile, the treatment increased the activity of Na + -K + -ATPase. These results indicated that ENL could alleviate LPS-induced liver injury, thereby suggesting an alternative therapeutic strategy for the treatment of liver injury accompanied by severe infection or sepsis

  15. Ionizing radiation-induced DNA damage and repair as a potential biomarker in biodosimetry, cancer risk analysis and for prediction of radiotherapy induced toxicity

    International Nuclear Information System (INIS)

    Satish Rao, B.S.

    2017-01-01

    Lymphocytes isolated from peripheral blood from 100 healthy individuals, 232 cancer patients (cervical, breast cancer and head and neck cancer) irradiated in vitro or in vivo were used for measuring DNA damage and repair. The microscopic method of the γ-H2AX assay was adopted to elucidate the significance of DSB in biodosimetry, cancer risk susceptibility, and normal tissue toxicity prediction. We validated the use of H2AX assay in early triage biodosimetry by using lymphocytes from cervical cancer patients exposed to radiotherapy. Further, the basal and residual damage was significantly higher in cancer individuals compared to the healthy individuals. In cancer patients undergoing radiotherapy, we could able to show the increase in normal tissue toxicity with decreased DSB repair capacity. In conclusion this study indicates the DSB estimation by γ-H2AX foci analysis can serve as a tool to understand the triage of radiation exposed individuals, identifying individuals at cancer risk and normal tissue toxicity

  16. Effects of D2O on biochemical parameters of normal cells and tumour cells

    International Nuclear Information System (INIS)

    Biesewig, G.

    1975-01-01

    The influence of high temperatures (Hyperthermia) on normal tissue and Ehrlich-Ascites tumour cells ('ATZ') was examined under several conditions with regard to the application of deuterium oxide as a stabilising factor. It was proven that the DNA-synthesis of normal tissue (liver, mouse) is not sensitive to temperature. This effect of hyperthermia only occurs when the tissue is damaged, e.g. by trypsinising. The influence of hyperthermia on several biochemical parameters and on morphological changes of the Ascites cells was examined. The findings show that deuterium oxide (D 2 O) is able to reduce both the thermal and the ureal denaturation of enzymes. Thus tests were carried out to find out if D 2 O also reduces toxic influence in complicated biological systems. The assumption of high D 2 O concentrations to prevent several reactions was confirmed. When the Ascites tumour cells in the H 2 O-buffer were exposed to the damaging influence of hyperthermia, the high degree of damage was seen with the decreasing DNA synthesis, reduced aerobic glycose capacity, a drop in the ATP values and breakdown of the permeability of the membrane. Deuterium oxide was able under high temperature (from appr. 44 0 C on) to reduce the degree of damage to DNA synthesis, while auto-effects (inhibition of synthesis) of D 2 O predominate in the lower region. Aerobic glycolysis was damaged in both cases to the same degree, however. In D 2 O after hyperthermia the ATP-level dropped faster than in H 2 O. D 2 O not only reduces the thermal denaturation of the Ascites tumour cells, but it also eliminates the toxic influence of the zytostaticum TRENIMONsup(R) (under 38 0 or 46 0 C incubation). (orig./AJ) [de

  17. An Intron 9 CYP19 Gene Variant (IVS9+5G>A), Present in an Aromatase-Deficient Girl, Affects Normal Splicing and Is Also Present in Normal Human Steroidogenic Tissues.

    Science.gov (United States)

    Saraco, Nora; Nesi-Franca, Suzana; Sainz, Romina; Marino, Roxana; Marques-Pereira, Rosana; La Pastina, Julia; Perez Garrido, Natalia; Sandrini, Romolo; Rivarola, Marco Aurelio; de Lacerda, Luiz; Belgorosky, Alicia

    2015-01-01

    Splicing CYP19 gene variants causing aromatase deficiency in 46,XX disorder of sexual development (DSD) patients have been reported in a few cases. A misbalance between normal and aberrant splicing variants was proposed to explain spontaneous pubertal breast development but an incomplete sex maturation progress. The aim of this study was to functionally characterize a novel CYP19A1 intronic homozygote mutation (IVS9+5G>A) in a 46,XX DSD girl presenting spontaneous breast development and primary amenorrhea, and to evaluate similar splicing variant expression in normal steroidogenic tissues. Genomic DNA analysis, splicing prediction programs, splicing assays, and in vitro protein expression and enzyme activity analyses were carried out. CYP19A1 mRNA expression in human steroidogenic tissues was also studied. A novel IVS9+5G>A homozygote mutation was found. In silico analysis predicts the disappearance of the splicing donor site in intron 9, confirmed by patient peripheral leukocyte cP450arom and in vitro studies. Protein analysis showed a shorter and inactive protein. The intron 9 transcript variant was also found in human steroidogenic tissues. The mutation IVS9+5G>A generates a splicing variant that includes intron 9 which is also present in normal human steroidogenic tissues, suggesting that a misbalance between normal and aberrant splicing variants might occur in target tissues, explaining the clinical phenotype in the affected patient. © 2015 S. Karger AG, Basel.

  18. Differentiation of prostate cancer from normal prostate tissue in an animal model: conventional MRI and dynamic contrast-enhanced MRI

    International Nuclear Information System (INIS)

    Gemeinhardt, O.; Prochnow, D.; Taupitz, M.; Hamm, B.; Beyersdorff, D.; Luedemann, L.; Abramjuk, C.

    2005-01-01

    Purpose: to differentiate orthotopically implanted prostate cancer from normal prostate tissue using magnetic resonance imaging (MRI) and Gd-DTPA-BMA-enhanced dynamic MRI in the rat model. Material and methods: tumors were induced in 15 rats by orthotopic implantation of G subline Dunning rat prostatic tumor cells. MRI was performed 56 to 60 days after tumor cell implantation using T1-weighted spin-echo, T2-weighted turbo SE sequences, and a 2D FLASH sequence for the contrast medium based dynamic study. The interstitial leakage volume, normalized permeability and the permeability surface area product of tumor and healthy prostate were determined quantitatively using a pharmacokinetic model. The results were confirmed by histologic examination. Results: axial T2-weighted TSE images depicted low-intensity areas suspicious for tumor in all 15 animals. The mean tumor volume was 46.5 mm3. In the dynamic study, the suspicious areas in all animals displayed faster and more pronounced signal enhancement than surrounding prostate tissue. The interstitial volume and the permeability surface area product of the tumors increased significantly by 420% (p<0.001) and 424% (p<0.001), respectively, compared to normal prostate tissue, while no significant difference was seen for normalized permeability alone. Conclusion: the results of the present study demonstrate that quantitative analysis of contrast-enhanced dynamic MRI data enables differentiation of small, slowly growing orthotopic prostate cancer from normal prostate tissue in the rat model. (orig.)

  19. Repair of x-ray induced chromosomal damage in trisomy 2- and normal diploid lymphocytes

    International Nuclear Information System (INIS)

    Countryman, P.I.; Heddle, J.A.; Crawford, E.

    1977-01-01

    The frequency of chromosomal aberrations produced by x-rays is greater in lymphocytes cultured from trisomy 21 patients (Down's syndrome) than from normal diploid donors. This increase, which can be detected by a micronucleus assay for chromosomal damage, was postulated by us to result from a defect in the rejoining system which repairs chromosomal breaks. The postulated defect would result in a longer rejoining time, therapy permitting more movement of broken ends and thus enhancing the frequency of exchanges. To test this possibility, the time required for the rejoining (repair) of chromosome breaks was measured in lymphocytes from five Down's syndrome (four trisomy 21 and one D/G translocation partial trisomy 21) donors, from a monosomy 21 donor, and from five diploid donors. The rejoining time was reduced in the Down's syndrome lymphocytes in comparison to the normal diploid and monosomy 21 lymphocytes. Thus the repair of chromosome breaks, far from being defective as evidenced by a longer rejoining time in Down's syndrome cells, occurred more rapidly than in normal cells

  20. Muscle Tissue Damage Induced by the Venom of Bothrops asper: Identification of Early and Late Pathological Events through Proteomic Analysis.

    Directory of Open Access Journals (Sweden)

    Cristina Herrera

    2016-04-01

    Full Text Available The time-course of the pathological effects induced by the venom of the snake Bothrops asper in muscle tissue was investigated by a combination of histology, proteomic analysis of exudates collected in the vicinity of damaged muscle, and immunodetection of extracellular matrix proteins in exudates. Proteomic assay of exudates has become an excellent new methodological tool to detect key biomarkers of tissue alterations for a more integrative perspective of snake venom-induced pathology. The time-course analysis of the intracellular proteins showed an early presence of cytosolic and mitochondrial proteins in exudates, while cytoskeletal proteins increased later on. This underscores the rapid cytotoxic effect of venom, especially in muscle fibers, due to the action of myotoxic phospholipases A2, followed by the action of proteinases in the cytoskeleton of damaged muscle fibers. Similarly, the early presence of basement membrane (BM and other extracellular matrix (ECM proteins in exudates reflects the rapid microvascular damage and hemorrhage induced by snake venom metalloproteinases. The presence of fragments of type IV collagen and perlecan one hour after envenoming suggests that hydrolysis of these mechanically/structurally-relevant BM components plays a key role in the genesis of hemorrhage. On the other hand, the increment of some ECM proteins in the exudate at later time intervals is likely a consequence of the action of endogenous matrix metalloproteinases (MMPs or of de novo synthesis of ECM proteins during tissue remodeling as part of the inflammatory reaction. Our results offer relevant insights for a more integrative and systematic understanding of the time-course dynamics of muscle tissue damage induced by B. asper venom and possibly other viperid venoms.

  1. Protection and sensitization of normal and malignant cells by a naturally occurring compound in a model of photochemical damage

    Science.gov (United States)

    Lee, Yuan-Hao; Kumar, Neeru; Glickman, Randolph D.

    2012-03-01

    Certain phytonutrients are known to confer protection and immunosuppression against radiation insults. Radiation-induced reactive oxygen species (ROS) can either lead to the destruction of normal tissue cells, or induce tumor radioresistance by activating ROS scavenging proteins. To identify whether the triterpene phytonutrient, ursolic acid, reduces radiation-induced damage in normal cells and promotes the apoptosis of malignant cells, we investigated the biologic mechanisms and effect of radiation-cell interaction with or without treatment with ursolic acid in human skin melanoma cells (ATCC CRL-11147TM) and transformed human retinal pigment epithelial (hTERT-RPE) cells. UV-VIS light was employed to investigate the efficacy of ursolic acid in altering cellular viability by modulations of p53 and NF-κB p65 signaling. Cell response was investigated by changes in proliferative activity and free radical generation assessed by 2',7'-dichlorofluorescin liquid chromatography. Ursolic acid pretreatment strongly increased the level of p53 and decreased the level of phosphorylated p65 leading to enhanced cell death of skin melanoma cells in response to UV-VIS exposure. In contrast, ursolic acid appeared to downregulate p53 levels without disturbing NF-κB activation along with an increase of oxidative stress in hTERT-RPE cells. These findings indicate that ursolic acid may beneficially increase the radiosensitivity of tumor cells while potentiating a photoprotective effect on benign cells through differential effects on the NF-κB and p53 signaling pathways.

  2. The influence of water/air cooling on collateral tissue damage using a diode laser with an innovative pulse design (micropulsed mode)-an in vitro study.

    Science.gov (United States)

    Beer, F; Körpert, W; Buchmair, A G; Passow, H; Meinl, A; Heimel, P; Moritz, A

    2013-05-01

    Since the diode laser is a good compromise for the daily use in dental offices, finding usage in numerous dental indications (e.g., surgery, periodontics, and endodontics), the minimization of the collateral damage in laser surgery is important to improve the therapeutical outcome. The aim of this study was to investigate the effect of water/air cooling on the collateral thermal soft tissue damage of 980-nm diode laser incisions. A total of 36 mechanically executed laser cuts in pork liver were made with a 980-nm diode laser in micropulsed mode with three different settings of water/air cooling and examined by histological assessment to determine the area and size of carbonization, necrosis, and reversible tissue damage as well as incision depth and width. In our study, clearly the incision depth increased significantly under water/air cooling (270.9 versus 502.3 μm-test group 3) without significant changes of incision width. In test group 2, the total area of damage was significantly smaller than in the control group (in this group, the incision depth increases by 65 %). In test group 3, the total area of damage was significantly higher (incision depth increased by 85 %), but the bigger part of it represented a reversible tissue alteration leaving the amount of irreversible damage almost the same as in the control group. This first pilot study clearly shows that water/air cooling in vitro has an effect on collateral tissue damage. Further studies will have to verify, if the reduced collateral damage we have proved in this study can lead to accelerated wound healing. Reduction of collateral thermal damage after diode laser incisions is clinically relevant for promoted wound healing.

  3. The claudin gene family: expression in normal and neoplastic tissues

    International Nuclear Information System (INIS)

    Hewitt, Kyle J; Agarwal, Rachana; Morin, Patrice J

    2006-01-01

    The claudin (CLDN) genes encode a family of proteins important in tight junction formation and function. Recently, it has become apparent that CLDN gene expression is frequently altered in several human cancers. However, the exact patterns of CLDN expression in various cancers is unknown, as only a limited number of CLDN genes have been investigated in a few tumors. We identified all the human CLDN genes from Genbank and we used the large public SAGE database to ascertain the gene expression of all 21 CLDN in 266 normal and neoplastic tissues. Using real-time RT-PCR, we also surveyed a subset of 13 CLDN genes in 24 normal and 24 neoplastic tissues. We show that claudins represent a family of highly related proteins, with claudin-16, and -23 being the most different from the others. From in silico analysis and RT-PCR data, we find that most claudin genes appear decreased in cancer, while CLDN3, CLDN4, and CLDN7 are elevated in several malignancies such as those originating from the pancreas, bladder, thyroid, fallopian tubes, ovary, stomach, colon, breast, uterus, and the prostate. Interestingly, CLDN5 is highly expressed in vascular endothelial cells, providing a possible target for antiangiogenic therapy. CLDN18 might represent a biomarker for gastric cancer. Our study confirms previously known CLDN gene expression patterns and identifies new ones, which may have applications in the detection, prognosis and therapy of several human cancers. In particular we identify several malignancies that express CLDN3 and CLDN4. These cancers may represent ideal candidates for a novel therapy being developed based on CPE, a toxin that specifically binds claudin-3 and claudin-4

  4. MO-D-BRF-01: Pediatric Treatment Planning II: The PENTEC Report On Normal Tissue Complications

    International Nuclear Information System (INIS)

    Constine, L; Hodgson, D; Bentzen, S

    2014-01-01

    With advances in multimodality therapy, childhood cancer cure rates approach 80%. However, both radiotherapy and chemotherapy may cause debilitating or even fatal ‘late effects’ that are critical to understand, mitigate, or prevent. QUANTEC identified the uncertainties relating to side-effects of adult treatments, but this is more complicated for children in whom a mosaic of tissues develops at different rates and temporal sequences. Childhood cancer survivors have long life expectancy and may develop treatmentinduced secondary cancers and severe organ/tissue injury decades after treatment. Collaborative long-term observational studies and clinical research programs for survivors of pediatric and adolescent cancer provide some dose-response data for follow-up periods exceeding 40 years. Data analysis is challenging due to the influence of both therapeutic and developmental variables. PENTEC is a group of radiation oncologists, pediatric oncologists, subsepcialty physicians, medical physicists, biomathematic modelers/statisticians, and epidemiologists charged with conducting a critical synthesis of existing literature aiming to: critically analyze radiation dose-volume effects on normal tissue tolerances as a function of age/development in pediatric cancer patients in order to inform treatment planning and improve outcomes for survivors; describe relevant physics issues specific to pediatric radiotherapy; propose dose-volumeoutcome reporting standards to improve the knowledge base to inform future treatment guidelines. PENTEC has developed guidelines for systematic literature reviews, data extraction tolls and data analysis. This education session will discuss:1. Special considerations for normal tissue radiation response of children/adolescents, e.g. the interplay between development and radiotherapy effects.2. Epidemiology of organ/tissue injuries and secondary cancers.3. Exploration of dose-response differences between children and adults4. Methodology for

  5. MO-D-BRF-01: Pediatric Treatment Planning II: The PENTEC Report On Normal Tissue Complications

    Energy Technology Data Exchange (ETDEWEB)

    Constine, L; Hodgson, D; Bentzen, S [University of Maryland, Baltimore, MD (United States)

    2014-06-15

    With advances in multimodality therapy, childhood cancer cure rates approach 80%. However, both radiotherapy and chemotherapy may cause debilitating or even fatal ‘late effects’ that are critical to understand, mitigate, or prevent. QUANTEC identified the uncertainties relating to side-effects of adult treatments, but this is more complicated for children in whom a mosaic of tissues develops at different rates and temporal sequences. Childhood cancer survivors have long life expectancy and may develop treatmentinduced secondary cancers and severe organ/tissue injury decades after treatment. Collaborative long-term observational studies and clinical research programs for survivors of pediatric and adolescent cancer provide some dose-response data for follow-up periods exceeding 40 years. Data analysis is challenging due to the influence of both therapeutic and developmental variables. PENTEC is a group of radiation oncologists, pediatric oncologists, subsepcialty physicians, medical physicists, biomathematic modelers/statisticians, and epidemiologists charged with conducting a critical synthesis of existing literature aiming to: critically analyze radiation dose-volume effects on normal tissue tolerances as a function of age/development in pediatric cancer patients in order to inform treatment planning and improve outcomes for survivors; describe relevant physics issues specific to pediatric radiotherapy; propose dose-volumeoutcome reporting standards to improve the knowledge base to inform future treatment guidelines. PENTEC has developed guidelines for systematic literature reviews, data extraction tolls and data analysis. This education session will discuss:1. Special considerations for normal tissue radiation response of children/adolescents, e.g. the interplay between development and radiotherapy effects.2. Epidemiology of organ/tissue injuries and secondary cancers.3. Exploration of dose-response differences between children and adults4. Methodology for

  6. ALERT. Adverse late effects of cancer treatment. Vol. 2. Normal tissue specific sites and systems

    Energy Technology Data Exchange (ETDEWEB)

    Rubin, Philip; Constine, Louis S. [Univ. Rochester Medical Center, NY (United States). Dept. of Radiation Oncology; Marks, Lawrence B. (ed.) [Univ. North Carolina and Lineberger, Comprehensive Cancer Center, Chapel Hill, NC (United States). Dept. of Radiation Oncology

    2014-09-01

    Comprehensively documents potential late effects in all the normal tissue sites in the human body. Considers in detail the detection, diagnosis, management and prevention of effects and discusses prognostic outcomes. Clearly presents radiation risk factors and interactions with chemotherapy effects. Provides the most current evidence-based medicine for cancer care survivorship guidelines. The literature on the late effects of cancer treatment is widely scattered in different journals since all major organ systems are affected and management is based on a variety of medical and surgical treatments. The aim of ALERT - Adverse Late Effects of Cancer Treatment is to offer a coherent multidisciplinary approach to the care of cancer survivors. The central paradigm is that cytotoxic multimodal therapy results in a perpetual cascade of events that affects each major organ system differently and is expressed continually over time. Essentially, radiation and chemotherapy are intense biologic modifiers that allow for cancer cure and cancer survivorship but accelerate senescence of normal tissues and increase the incidence of age-related diseases and second malignant tumors. Volume 2 of this two-volume work comprehensively documents potential late effects in all the normal tissue anatomic sites in the human body. The detection, diagnosis, management and prevention of effects are all considered in detail, and prognostic outcomes are discussed. Radiation risk factors and interactions with chemotherapy effects are clearly presented. The text is accompanied by numerous supportive illustrations and tables.

  7. Genipin crosslinker releasing sutures for improving the mechanical/repair strength of damaged connective tissue.

    Science.gov (United States)

    Sundararaj, Sharath; Slusarewicz, Paul; Brown, Matt; Hedman, Thomas

    2017-11-01

    The most common mode of surgical repair of ruptured tendons and ligaments involves the use of sutures for reattachment. However, there is a high incidence of rerupture and repair failure due to pulling out of the suture material from the damaged connective tissue. The main goal of this research was to achieve a localized delivery of crosslinking agent genipin (GP) from rapid-release biodegradable coatings on sutures, for strengthening the repair of ruptured connective tissue. Our hypothesis is that GP released from the suture coating will lead to exogenous crosslinking of native connective tissue resulting in beneficial effects on clinically relevant mechanical parameters such as tear resistance, tissue strength, and energy required to rupture the tissue (toughness). Sutures were successfully coated with a biodegradable polymer layer loaded with the crosslinking agent genipin, without compromising the mechanical properties of the suture. The rapid-release of genipin was achieved under both in vitro and ex vivo conditions. Exogenous crosslinking using these genipin releasing sutures was demonstrated using equine tendons. The tendons treated with genipin releasing sutures showed significant improvement in failure load, energy required for pull-out failure, and stiffness. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2199-2205, 2017. © 2016 Wiley Periodicals, Inc.

  8. Apparent diffusion coefficient of breast cancer and normal fibroglandular tissue in diffusion-weighted imaging: the effects of menstrual cycle and menopausal status.

    Science.gov (United States)

    Kim, Jin You; Suh, Hie Bum; Kang, Hyun Jung; Shin, Jong Ki; Choo, Ki Seok; Nam, Kyung Jin; Lee, Seok Won; Jung, Young Lae; Bae, Young Tae

    2016-05-01

    The purpose of this study was to investigate prospectively whether the apparent diffusion coefficients (ADCs) of both breast cancer and normal fibroglandular tissue vary with the menstrual cycle and menopausal status. Institutional review board approval was obtained, and informed consent was obtained from each participant. Fifty-seven women (29 premenopausal, 28 postmenopausal) with newly diagnosed breast cancer underwent diffusion-weighted imaging twice (interval 12-20 days) before surgery. Two radiologists independently measured ADC of breast cancer and normal contralateral breast tissue, and we quantified the differences according to the phases of menstrual cycle and menopausal status. With normal fibroglandular tissue, ADC was significantly lower in postmenopausal than in premenopausal women (P = 0.035). In premenopausal women, ADC did not differ significantly between proliferative and secretory phases in either breast cancer or normal fibroglandular tissue (P = 0.969 and P = 0.519, respectively). In postmenopausal women, no significant differences were found between ADCs measured at different time intervals in either breast cancer or normal fibroglandular tissue (P = 0.948 and P = 0.961, respectively). The within-subject variability of the ADC measurements was quantified using the coefficient of variation (CV) and was small: the mean CVs of tumor ADC were 2.90 % (premenopausal) and 3.43 % (postmenopausal), and those of fibroglandular tissue ADC were 4.37 % (premenopausal) and 2.55 % (postmenopausal). Both intra- and interobserver agreements were excellent for ADC measurements, with intraclass correlation coefficients in the range of 0.834-0.974. In conclusion, the measured ADCs of breast cancer and normal fibroglandular tissue were not affected significantly by menstrual cycle, and the measurements were highly reproducible both within and between observers.

  9. Modification by cystamine of radiation-induced free radical damages to biomolecules in tissues of mouse organs

    International Nuclear Information System (INIS)

    Svistunenko, D.A.; Gudtsova, K.V.

    1989-01-01

    The method of low-temperature ESR-spectroscopy was used to study a modifying effect of cystamine on the yield of radiation-induced free radicals in different biomolecules of liver and spleen tissues of mice. Intraperitoneal administration of cystamine (150 mg/kg) 15 min before isolation and freezing of the tissues was shown to reduce by 11 per cent the yield of radicals of H-adducts of thymine DNA bases, to decrease by 23 per cent the yield of radicals of triacyglycerol and phospholipid radiolysis, and to increase by 24 per cent the yield of radicals of lipid fatty acid residues in splenic tissues. According to the criterion used, cystamine has no modyfying action on the yield of free-radical damages to liver biomolecules

  10. Chitosan adhesive for laser tissue repair

    Science.gov (United States)

    Lauto, A.; Stoodley, M.; Avolio, A.; Foster, L. J. R.

    2006-02-01

    Background. Laser tissue repair usually relies on haemoderivate solders, based on serum albumin. These solders have intrinsic limitations that impair their widespread use, such as limited repair strength, high solubility, brittleness and viral transmission. Furthermore, the solder activation temperature (65-70 °C) can induce significant damage to tissue. In this study, a new laser-activated biomaterial for tissue repair was developed and tested in vitro and in vivo to overcome some of the shortcomings of traditional solders. Materials and Methods. Flexible and insoluble strips of chitosan adhesive (surface area ~34 mm2, thickness ~20 μm) were developed and bonded on sheep intestine with a laser fluence and irradiance of 52 +/- 2 J/cm2 and ~15 W/cm2 respectively. The temperature between tissue and adhesive was measured using small thermocouples. The strength of repaired tissue was tested by a calibrated tensiometer. The adhesive was also bonded in vivo to the sciatic nerve of rats to assess the thermal damage induced by the laser (fluence = 65 +/- 11 J/cm2, irradiance = 15 W/cm2) four days post-operatively. Results. Chitosan adhesives successfully repaired intestine tissue, achieving a repair strength of 0.50 +/- 0.15 N (shear stress = 14.7 +/- 4.7 KPa, n=30) at a temperature of 60-65 °C. The laser caused demyelination of axons at the operated site; nevertheless, the myelinated axons retained their normal morphology proximally and distally.

  11. Repair of chromosome damage induced by X-irradiation during G2 phase in a line of normal human fibroblasts and its malignant derivative

    International Nuclear Information System (INIS)

    Parshad, R.; Gantt, R.; Sanford, K.K.; Jones, G.M.; Tarone, R.E.

    1982-01-01

    A line of normal human skin fibroblasts (KD) differed from its malignant derivative (HUT-14) in the extent of cytogenetic damage induced by X-irradiation during G2 phase. Malignant cells had significantly more chromatid breaks and gaps after exposure to 25, 50, or 100 rad. The gaps may represent single-strand breaks. Results from alkaline elution of cellular DNA immediately after irradiation showed that the normal and malignant cells in asynchronous population were equally sensitive to DNA single-strand breakage by X-irradiation. Caffeine or beta-cytosine arabinoside (ara-C), inhibitors of DNA repair, when added directly following G2 phase exposure, significantly increased the incidence of radiation-induced chromatid damage in the normal cells. In contrast, similar treatment of the malignant cells had little influence. Ara-C differed from caffeine in its effects; whereas both agents increased the frequency of chromatid breaks and gaps, only ara-C increased the frequency of gaps to the level observed in the irradiated malignant cells. Addition of catalase, a scavenger of the derivative free hydroxyl radical (.OH), to the cultures of malignant cells before, during, and following irradiation significantly reduced the chromatid damage; and catalase prevented formation of chromatid gaps. The DNA damage induced by X-ray during G2 phase in the normal KD cells was apparently repaired by a caffeine- and ara-C-sensitive mechanism(s) that was deficient or absent in their malignant derivatives

  12. Repair of chromosome damage induced by X-irradiation during G2 phase in a line of normal human fibroblasts and its malignant derivative

    International Nuclear Information System (INIS)

    Parshad, R.; Gantt, R.; Sanford, K.K.; Jones, G.M.; Tarone, R.E.

    1982-01-01

    A line of normal human skin fibroblasts (KD) differed from its malignant derivative (HUT-14) in the extent of cytogenetic damage induced by X-irradiation during G 2 phase. Malignant cells had significantly more chromatid breaks and gaps after exposure to 25, 50, or 100 rad. Results from alkaline elution of cellular DNA immediately after irradiation showed that the normal and malignant cells in asynchronous population were equally sensitive to DNA single-strand breakage by X-irradiation. Caffeine or #betta#-cytosine arabinoside (ara-C), inhibitors of DNA repair, when added directly following G 2 phase exposure, significantly increased the incidence of radiation-induced chromatid damage in the normal cells. In contrast, similar treatment of the malignant cells had little influence. Ara-C differed from caffeine in its effects; whereas both agents increased the frequency of chromatid breaks and gaps, only ara-C increased the frequency of gaps to the level observed in the irradiated malignant cells. Addition of catalase, which destroys H 2 O 2 , or mannitol, a scavenger of the derivative free hydroxyl radical (.OH), to the cultures of malignant cells before, during, and following irradiation significantly reduced the chromatid damage; and catalase prevented formation of chromatid gaps. The DNA damage induced by X-ray during G 2 phase in the normal KD cells was apparently repaired by a caffeine- and ara-C-sensitive mechanism(s) that was deficient or absent in their malignant derivatives

  13. 2-deoxyglucose tissue levels and insulin levels following tolazamide dosing in normal and obese mice

    International Nuclear Information System (INIS)

    Skillman, C.A.; Fletcher, H.P.

    1986-01-01

    The effect of tolazamide (TZ), a sulfonylurea, on 14 C-2-deoxyglucose ( 14 C-2DG) tissue distribution and insulin levels of normal and obese mice was investigated using an in vivo physiological method. Acute doses of TZ (50 mg/kg ip) increased 14 C-2DG levels in gastrocnemius muscle and retroperitoneal fat and produced a transient elevation of insulin which most likely accounts for the increased 14 C-2DG levels in muscle and fat. The results demonstrate that the in vivo 14 C-2DG method produced results consistent with known actions of sulfonylureas on in vitro hexose assimilation in muscle and fat. Subchronic treatment (7 days) with TZ 50 mg/kg ip twice daily did not result in increased insulin-stimulated 14 C-2DG tissue levels in normal mice when compared to saline treated controls. However, insulin levels were lower in mice treated subchronically with TZ compared to saline controls suggesting an enhancement of insulin action. Viable yellow obese mice represent a model of maturity onset obesity presenting with insulin resistance. The insulin resistance of this obese strain appears to reside in the fat tissue as assessed by comparing 14 C-2DG tissue levels of obese mice with lean littermate controls. Subchronic TZ treatment had no effect on 14 C-2DG uptake in fat or muscle tissue of viable yellow obese mice and did not alter their plasma insulin levels. It appears that genetically obese viable mice may be resistant to subchronic treatment with TZ. (author)

  14. Diabetes Impairs the Vascular Recruitment of Normal Stem Cells by Oxidant Damage, Reversed by Increases in pAMPK, Heme Oxygenase-1, and Adiponectin

    Science.gov (United States)

    Sambuceti, Gianmario; Morbelli, Silvia; Vanella, Luca; Kusmic, Claudia; Marini, Cecilia; Massollo, Michela; Augeri, Carla; Corselli, Mirko; Ghersi, Chiara; Chiavarina, Barbara; Rodella, Luigi F; L'Abbate, Antonio; Drummond, George; Abraham, Nader G; Frassoni, Francesco

    2009-01-01

    Background Atherosclerosis progression is accelerated in diabetes mellitus (DM) by either direct endothelial damage or reduced availability and function of endothelial progenitor cells (EPCs). Both alterations are related to increased oxidant damage. Aim We examined if DM specifically impairs vascular signaling, thereby reducing the recruitment of normal EPCs, and if increases in antioxidant levels by induction of heme oxygenase-1 (HO-1) can reverse this condition. Methods Control and diabetic rats were treated with the HO-1 inducer cobalt protoporphyrin (CoPP) once a week for 3 weeks. Eight weeks after the development of diabetes, EPCs harvested from the aorta of syngenic inbred normal rats and labeled with technetium-99m-exametazime were infused via the femoral vein to estimate their blood clearance and aortic recruitment. Circulating endothelial cells (CECs) and the aortic expression of thrombomodulin (TM), CD31, and endothelial nitric oxide synthase (eNOS) were used to measure endothelial damage. Results DM reduced blood clearance and aortic recruitment of EPCs. Both parameters were returned to control levels by CoPP treatment without affecting EPC kinetics in normal animals. These abnormalities of EPCs in DM were paralleled by reduced serum adiponectin levels, increased numbers of CECs, reduced endothelial expression of phosphorylated eNOS, and reduced levels of TM, CD31, and phosphorylated AMP-activated protein kinase (pAMPK). CoPP treatment restored all of these parameters to normal levels. Conclusion Type II DM and its related oxidant damage hamper the interaction between the vascular wall and normal EPCs by mechanisms that are, at least partially, reversed by the induction of HO-1 gene expression, adiponectin, and pAMPK levels. PMID:19038792

  15. Human BLCAP transcript: new editing events in normal and cancerous tissues.

    Science.gov (United States)

    Galeano, Federica; Leroy, Anne; Rossetti, Claudia; Gromova, Irina; Gautier, Philippe; Keegan, Liam P; Massimi, Luca; Di Rocco, Concezio; O'Connell, Mary A; Gallo, Angela

    2010-07-01

    Bladder cancer-associated protein (BLCAP) is a highly conserved protein among species, and it is considered a novel candidate tumor suppressor gene originally identified from human bladder carcinoma. However, little is known about the regulation or the function of this protein. Here, we show that the human BLCAP transcript undergoes multiple A-to-I editing events. Some of the new editing events alter the highly conserved amino terminus of the protein creating alternative protein isoforms by changing the genetically coded amino acids. We found that both ADAR1 and ADAR2-editing enzymes cooperate to edit this transcript and that different tissues displayed distinctive ratios of edited and unedited BLCAP transcripts. Moreover, we observed a general decrease in BLCAP-editing level in astrocytomas, bladder cancer and colorectal cancer when compared with the related normal tissues. The newly identified editing events, found to be downregulated in cancers, could be useful for future studies as a diagnostic tool to distinguish malignancies or epigenetic changes in different tumors.

  16. Identification of the boundary between normal breast tissue and invasive ductal carcinoma during breast-conserving surgery using multiphoton microscopy

    Science.gov (United States)

    Deng, Tongxin; Nie, Yuting; Lian, Yuane; Wu, Yan; Fu, Fangmeng; Wang, Chuan; Zhuo, Shuangmu; Chen, Jianxin

    2014-11-01

    Breast-conserving surgery has become an important way of surgical treatment for breast cancer worldwide nowadays. Multiphoton microscopy (MPM) has the ability to noninvasively visualize tissue architectures at the cellular level using intrinsic fluorescent molecules in biological tissues without the need for fluorescent dye. In this study, MPM is used to image the microstructures of terminal duct lobular unit (TDLU), invasive ductal carcinoma and the boundary region between normal and cancerous breast tissues. Our study demonstrates that MPM has the ability to not only reveal the morphological changes of the cuboidal epithelium, basement membrane and interlobular stroma but also identify the boundary between normal breast tissue and invasive ductal carcinoma, which correspond well to the Hematoxylin and Eosin (H and E) images. Predictably, MPM can monitor surgical margins in real time and provide considerable accuracy for resection of breast cancerous tissues intraoperatively. With the development of miniature, real-time MPM imaging technology, MPM should have great application prospects during breast-conserving surgery.

  17. Hypothyroidism after primary radiotherapy for head and neck squamous cell carcinoma: Normal tissue complication probability modeling with latent time correction

    DEFF Research Database (Denmark)

    Rønjom, Marianne Feen; Brink, Carsten; Bentzen, Søren

    2013-01-01

    To develop a normal tissue complication probability (NTCP) model of radiation-induced biochemical hypothyroidism (HT) after primary radiotherapy for head and neck squamous cell carcinoma (HNSCC) with adjustment for latency and clinical risk factors.......To develop a normal tissue complication probability (NTCP) model of radiation-induced biochemical hypothyroidism (HT) after primary radiotherapy for head and neck squamous cell carcinoma (HNSCC) with adjustment for latency and clinical risk factors....

  18. Effects of warm ischemic time on gene expression profiling in colorectal cancer tissues and normal mucosa.

    Directory of Open Access Journals (Sweden)

    Valeria Musella

    Full Text Available BACKGROUND: Genome-wide gene expression analyses of tumors are a powerful tool to identify gene signatures associated with biologically and clinically relevant characteristics and for several tumor types are under clinical validation by prospective trials. However, handling and processing of clinical specimens may significantly affect the molecular data obtained from their analysis. We studied the effects of tissue handling time on gene expression in human normal and tumor colon tissues undergoing routine surgical procedures. METHODS: RNA extracted from specimens of 15 patients at four time points (for a total of 180 samples after surgery was analyzed for gene expression on high-density oligonucleotide microarrays. A mixed-effects model was used to identify probes with different expression means across the four different time points. The p-values of the model were adjusted with the Bonferroni method. RESULTS: Thirty-two probe sets associated with tissue handling time in the tumor specimens, and thirty-one in the normal tissues, were identified. Most genes exhibited moderate changes in expression over the time points analyzed; however four of them were oncogenes, and two confirmed the effect of tissue handling by independent validation. CONCLUSIONS: Our results suggest that a critical time point for tissue handling in colon seems to be 60 minutes at room temperature. Although the number of time-dependent genes we identified was low, the three genes that already showed changes at this time point in tumor samples were all oncogenes, hence recommending standardization of tissue-handling protocols and effort to reduce the time from specimen removal to snap freezing accounting for warm ischemia in this tumor type.

  19. The measurement of intrinsic cellular radiosensitivity in human tumours and normal tissues

    International Nuclear Information System (INIS)

    Lawton, P.A.

    1995-01-01

    Human tumour and normal cell radiosensitivity are thought to be important factors determining the response of tumour and normal tissues to radiotherapy, respectively. Clonogenic assays are the standard method for measuring radiosensitivity but they are of limited applicability for clinical use with fresh human tumours. The main aim of this work was to evaluate the Adhesive Tumour Cell Culture System (ATCCS), as a method for measuring the radiosensitivity of human tumours. A soft agar clonogenic assay, the modified Courtenay-Mills assay, was used as a standard to compare with the ATCCS. The demonstration that fibroblast contamination could occur with both assay methods led to the investigation of a new technique for removing unwanted fibroblasts from tumour cell suspensions and to the use of a multiwell assay for measuring fibroblast radiosensitivity. (author)

  20. The measurement of intrinsic cellular radiosensitivity in human tumours and normal tissues

    Energy Technology Data Exchange (ETDEWEB)

    Lawton, P.A.

    1995-12-31

    Human tumour and normal cell radiosensitivity are thought to be important factors determining the response of tumour and normal tissues to radiotherapy, respectively. Clonogenic assays are the standard method for measuring radiosensitivity but they are of limited applicability for clinical use with fresh human tumours. The main aim of this work was to evaluate the Adhesive Tumour Cell Culture System (ATCCS), as a method for measuring the radiosensitivity of human tumours. A soft agar clonogenic assay, the modified Courtenay-Mills assay, was used as a standard to compare with the ATCCS. The demonstration that fibroblast contamination could occur with both assay methods led to the investigation of a new technique for removing unwanted fibroblasts from tumour cell suspensions and to the use of a multiwell assay for measuring fibroblast radiosensitivity. (author).

  1. Large animal normal tissue tolerance with boron neutron capture.

    Science.gov (United States)

    Gavin, P R; Kraft, S L; DeHaan, C E; Swartz, C D; Griebenow, M L

    1994-03-30

    Normal tissue tolerance of boron neutron capture irradiation using borocaptate sodium (NA2B12H11SH) in an epithermal neutron beam was studied. Large retriever-type dogs were used and the irradiations were performed by single dose, 5 x 10 dorsal portal. Fourteen dogs were irradiated with the epithermal neutron beam alone and 35 dogs were irradiated following intravenous administration of borocaptate sodium. Total body irradiation effect could be seen from the decreased leukocytes and platelets following irradiation. Most values returned to normal within 40 days postirradiation. Severe dermal necrosis occurred in animals given 15 Gy epithermal neutrons alone and in animals irradiated to a total peak physical dose greater than 64 Gy in animals following borocaptate sodium infusion. Lethal brain necrosis was seen in animals receiving between 27 and 39 Gy. Lethal brain necrosis occurred at 22-36 weeks postirradiation. A total peak physical dose of approximately 27 Gy and blood-boron concentrations of 25-50 ppm resulted in abnormal magnetic resonance imaging results in 6 months postexamination. Seven of eight of these animals remained normal and the lesions were not detected at the 12-month postirradiation examination. The bimodal therapy presents a complex challenge in attempting to achieve dose response assays. The resultant total radiation dose is a composite of low and high LET components. The short track length of the boron fission fragments and the geometric effect of the vessels causes much of the intravascular dose to miss the presumed critical target of the endothelial cells. The results indicate a large dose-sparing effect from the boron capture reactions within the blood.

  2. Large animal normal tissue tolerance with boron neutron capture

    International Nuclear Information System (INIS)

    Gavin, P.R.; Swartz, C.D.; Kraft, S.L.; Briebenow, M.L.; DeHaan, C.E.

    1994-01-01

    Normal tissue tolerance of boron neutron capture irradiation using borocaptate sodium (NA 2 B 12 H 11 SH) in an epithermal neutron beam was studied. Large retriever-type dogs were used and the irradiations were performed by single dose, 5 x 10 dorsal portal. Fourteen dogs were irradiated with the epithermal neutron beam alone and 35 dogs were irradiated following intravenous administration of borocaptate sodium. Total body irradiation effect could be seen from the decreased leukocytes and platelets following irradiation. Most values returned to normal within 40 days postirradiation. Severe dermal necrosis occurred in animals given 15 Gy epithermal neutrons alone and in animals irradiated to a total peak physical dose greater than 64 Gy in animals following borocaptate sodium infusion. Lethal brain necrosis was seen in animals receiving between 27 and 39 Gy. Lethal brain necrosis occurred at 22-36 weeks postirradiation. A total peak physical dose of approximately 27 Gy and blood-boron concentrations of 25-50 ppm resulted in abnormal magnetic resonance imaging results in 6 months postexamination. Seven of eight of these animals remained normal and the lesions were not detected at the 12-month postirradiation examination. The bimodal therapy presents a complex challenge in attempting to achieve dose response assays. The resultant total radiation dose is a composite of low and high LET components. The short track length of the boron fission fragments and the geometric effect of the vessels causes much of the intravascular dose to miss the presumed critical target of the endothelial cells. The results indicate a large dose-sparing effect from the boron capture reactions within the blood. 23 refs., 6 figs., 2 tabs

  3. Modelling the induction of cell death and chromosome damage by therapeutic protons

    CERN Document Server

    Carante, M P

    2015-01-01

    A two-parameter biophysical model cal led BIANCA (BIophysical ANalysis of Cell death and chromosome Aberrations), which assumes a pivotal role for DNA cluster damage and for “lethal” chromosome aberrations, was applied to calculate cell death and chromosome aberrations for normal and radio-resistant cells along a 62-MeV eye melanoma proton beam. The yield of DNA “Cluster Lesions” and the probability for a chromosome fragment of not being rejoined with any partne r were adjustable parameters. In line with other works, the beam effectiveness at inducing both biological endpoints was found to increase with increasing depth, and high levels of damage were found also beyond the dose fall-off, due to the higher biological effectiveness of low-energy protons. This implies that assuming a constant RBE along the whole SOBP, as is currently done in clinical practice, may be sub-optimal, also implying a possible underestimation of normal tissue damage. Furthermore, the calculations suggested that fo...

  4. Antiandrogenic actions of medroxyprogesterone acetate on epithelial cells within normal human breast tissues cultured ex vivo.

    Science.gov (United States)

    Ochnik, Aleksandra M; Moore, Nicole L; Jankovic-Karasoulos, Tanja; Bianco-Miotto, Tina; Ryan, Natalie K; Thomas, Mervyn R; Birrell, Stephen N; Butler, Lisa M; Tilley, Wayne D; Hickey, Theresa E

    2014-01-01

    Medroxyprogesterone acetate (MPA), a component of combined estrogen-progestin therapy (EPT), has been associated with increased breast cancer risk in EPT users. MPA can bind to the androgen receptor (AR), and AR signaling inhibits cell growth in breast tissues. Therefore, the aim of this study was to investigate the potential of MPA to disrupt AR signaling in an ex vivo culture model of normal human breast tissue. Histologically normal breast tissues from women undergoing breast surgical operation were cultured in the presence or in the absence of the native AR ligand 5α-dihydrotestosterone (DHT), MPA, or the AR antagonist bicalutamide. Ki67, bromodeoxyuridine, B-cell CLL/lymphoma 2 (BCL2), AR, estrogen receptor α, and progesterone receptor were detected by immunohistochemistry. DHT inhibited the proliferation of breast epithelial cells in an AR-dependent manner within tissues from postmenopausal women, and MPA significantly antagonized this androgenic effect. These hormonal responses were not commonly observed in cultured tissues from premenopausal women. In tissues from postmenopausal women, DHT either induced or repressed BCL2 expression, and the antiandrogenic effect of MPA on BCL2 was variable. MPA significantly opposed the positive effect of DHT on AR stabilization, but these hormones had no significant effect on estrogen receptor α or progesterone receptor levels. In a subset of postmenopausal women, MPA exerts an antiandrogenic effect on breast epithelial cells that is associated with increased proliferation and destabilization of AR protein. This activity may contribute mechanistically to the increased risk of breast cancer in women taking MPA-containing EPT.

  5. Exogenous normal lymph reduces liver injury induced by lipopolysaccharides in rats

    Directory of Open Access Journals (Sweden)

    Z.G. Zhao

    2014-02-01

    Full Text Available The liver is one of the target organs damaged by septic shock, wherein the spread of endotoxins begins. This study aimed to investigate the effects of exogenous normal lymph (ENL on lipopolysaccharide (LPS-induced liver injury in rats. Male Wistar rats were randomly divided into sham, LPS, and LPS+ENL groups. LPS (15 mg/kg was administered intravenously via the left jugular vein to the LPS and LPS+ENL groups. At 15 min after the LPS injection, saline or ENL without cell components (5 mL/kg was administered to the LPS and LPS+ENL groups, respectively, at a rate of 0.5 mL/min. Hepatocellular injury indices and hepatic histomorphology, as well as levels of P-selectin, intercellular adhesion molecule 1 (ICAM-1, myeloperoxidase (MPO, and Na+-K+-ATPase, were assessed in hepatic tissues. Liver tissue damage occurred after LPS injection. All levels of alanine aminotransferase (ALT and aspartate aminotransferase (AST in plasma as well as the wet/dry weight ratio of hepatic tissue in plasma increased. Similarly, P-selectin, ICAM-1, and MPO levels in hepatic tissues were elevated, whereas Na+-K+-ATPase activity in hepatocytes decreased. ENL treatment lessened hepatic tissue damage and decreased levels of AST, ALT, ICAM-1, and MPO. Meanwhile, the treatment increased the activity of Na+-K+-ATPase. These results indicated that ENL could alleviate LPS-induced liver injury, thereby suggesting an alternative therapeutic strategy for the treatment of liver injury accompanied by severe infection or sepsis.

  6. Exogenous normal lymph reduces liver injury induced by lipopolysaccharides in rats

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Z.G.; Zhang, L.L.; Niu, C.Y.; Zhang, J. [Institute of Microcirculation, Hebei North University, Zhangjiakou, China, Institute of Microcirculation, Hebei North University, Zhangjiakou, Hebei (China)

    2014-02-17

    The liver is one of the target organs damaged by septic shock, wherein the spread of endotoxins begins. This study aimed to investigate the effects of exogenous normal lymph (ENL) on lipopolysaccharide (LPS)-induced liver injury in rats. Male Wistar rats were randomly divided into sham, LPS, and LPS+ENL groups. LPS (15 mg/kg) was administered intravenously via the left jugular vein to the LPS and LPS+ENL groups. At 15 min after the LPS injection, saline or ENL without cell components (5 mL/kg) was administered to the LPS and LPS+ENL groups, respectively, at a rate of 0.5 mL/min. Hepatocellular injury indices and hepatic histomorphology, as well as levels of P-selectin, intercellular adhesion molecule 1 (ICAM-1), myeloperoxidase (MPO), and Na{sup +}-K{sup +}-ATPase, were assessed in hepatic tissues. Liver tissue damage occurred after LPS injection. All levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in plasma as well as the wet/dry weight ratio of hepatic tissue in plasma increased. Similarly, P-selectin, ICAM-1, and MPO levels in hepatic tissues were elevated, whereas Na{sup +}-K{sup +}-ATPase activity in hepatocytes decreased. ENL treatment lessened hepatic tissue damage and decreased levels of AST, ALT, ICAM-1, and MPO. Meanwhile, the treatment increased the activity of Na{sup +}-K{sup +}-ATPase. These results indicated that ENL could alleviate LPS-induced liver injury, thereby suggesting an alternative therapeutic strategy for the treatment of liver injury accompanied by severe infection or sepsis.

  7. Pesquisa da prevalência do papilomavírus humano em amostras de tecido endometrial normal e com carcinoma pela técnica de PCR Search for human papillomavirus in samples of normal endometrial tissue and tissue with carcinoma by the PCR technique

    Directory of Open Access Journals (Sweden)

    Edison Natal Fedrizzi

    2004-05-01

    tissue, and tissue with endometrial carcinoma of women submitted to surgical treatment (hysterectomy, or between endometrial carcinoma and benign disease, through the PCR technique. METHODS: this is an observational control-case study where 100 women (50 with endometrial carcinoma and 50 with normal endometrial tissue were analyzed for the detection of HPV DNA in samples of endometrial tissue kept in paraffin blocks by the PCR technique. The cases of endometrial carcinoma with uncertain primary site of the lesion as well as the cases with previous or current history of pre-neoplasic lesions or carcinoma of the lower genital tract were excluded. Variables as age, smoking habit, endometrial trophism, squamous differentiation and degree of tumor differentiation were also evaluated. RESULTS: the estimated relative risk of the presence of HPV in the endometrial carcinoma and in the normal endometrial tissue was the same. HPV was detected in 8% of the cases of carcinoma and 10% in the normal endometrial tissue. In spite of HPV having been 3.5 times more detected in women with smoking habit in the group without carcinoma, there was no statistical difference. The presence of HPV was also not correlated with the women's age, endometrial trophism, squamous differentiation and degree of tumor differentiation. The HPV types 16 (5 cases and 18 (4 cases were the viruses most frequently found both in the normal endometrial tissue or in the tissue with carcinoma. No oncogenic low risk virus was detected in the samples. CONCLUSION: The same proportion of HPV is present in the endometrial tissue of women with endometrial cancer and with normal endometrium. It could not be demonstrated a possible correlation of DNA of HPV with the development of endometrial carcinoma.

  8. Response of cultured normal human mammary epithelial cells to X rays

    International Nuclear Information System (INIS)

    Yang, T.C.; Stampfer, M.R.; Smith, H.S.

    1983-01-01

    The effect of X rays on the reproductive death of cultured normal human mammary epithelial cells was examined. Techniques were developed for isolating and culturing normal human mammary epithelial cells which provide sufficient cells at second passage for radiation studies, and an efficient clonogenic assay suitable for measuring radiation survival curves. It was found that the survival curves for epithelial cells from normal breast tissue were exponential and had D 0 values of about 109-148 rad for 225 kVp X rays. No consistent change in cell radiosensitivity with the age of donor was observed, and no sublethal damage repair in these cells could be detected with the split-dose technique

  9. Which markers of subclinical organ damage to measure in individuals with high normal blood pressure?

    DEFF Research Database (Denmark)

    Sehestedt, Thomas; Jeppesen, Jørgen; Hansen, Tine W

    2009-01-01

    plaques or urine albumin/creatinine ratio of at least the 90th percentile did not produce significantly worse results. Seventy-five percent of individuals with three or more traditional risk factors had SOD. CONCLUSION: In healthy individuals with high normal BP, measuring two of pulse wave velocities......OBJECTIVE: Medical treatment of healthy individuals with high normal blood pressure (BP) is recommended if there is subclinical organ damage (SOD). We examined which markers of SOD to use based on their supplementary prognostic value. METHODS: In a population sample of 1968 individuals, aged 41, 51......, 61 and 71 years, without diabetes, prior stroke or myocardial infarction, not receiving any cardiovascular, antidiabetic or lipid-lowering medications, we measured urine albumin/creatinine ratio, carotid atherosclerotic plaques, carotid/femoral pulse wave velocity and left ventricular mass index...

  10. Impact of Insulin Resistance on Silent and Ongoing Myocardial Damage in Normal Subjects: The Takahata Study

    Directory of Open Access Journals (Sweden)

    Taro Narumi

    2012-01-01

    Full Text Available Background. Insulin resistance (IR is part of the metabolic syndrome (Mets that develops after lifestyle changes and obesity. Although the association between Mets and myocardial injury is well known, the effect of IR on myocardial damage remains unclear. Methods and Results. We studied 2200 normal subjects who participated in a community-based health check in the town of Takahata in northern Japan. The presence of IR was assessed by homeostasis model assessment ratio, and the serum level of heart-type fatty acid binding protein (H-FABP was measured as a maker of silent and ongoing myocardial damage. H-FABP levels were significantly higher in subjects with IR and Mets than in those without metabolic disorder regardless of gender. Multivariate logistic analysis showed that the presence of IR was independently associated with latent myocardial damage (odds ratio: 1.574, 95% confidence interval 1.1–2.3 similar to the presence of Mets. Conclusions. In a screening of healthy subjects, IR and Mets were similarly related to higher H-FABP levels, suggesting that there may be an asymptomatic population in the early stages of metabolic disorder that is exposed to myocardial damage and might be susceptible to silent heart failure.

  11. Determination and correlation of spatial distribution of trace elements in normal and neoplastic breast tissues evaluated by μ-XRF

    International Nuclear Information System (INIS)

    Silva, M.P.; Oliveira, M.A.; Poletti, M.E.

    2012-01-01

    Full text: Some trace elements, naturally present in breast tissues, participate in a large number of biological processes, which include among others, activation or inhibition of enzymatic reactions and changes on cell membranes permeability, suggesting that these elements may influence carcinogenic processes. Thus, knowledge of the amounts of these elements and their spatial distribution in normal and neoplastic tissues may help in understanding the role of these elements in the carcinogenic process and tumor progression of breast cancers. Concentrations of trace elements like Ca, Fe, Cu and Zn, previously studied at LNLS using TXRF and conventional XRF, were elevated in neoplastic breast tissues compared to normal tissues. In this study we determined the spatial distribution of these elements in normal and neoplastic breast tissues using μ-XRF technique. We analyzed 22 samples of normal and neoplastic breast tissues (malignant and benign) obtained from paraffin blocks available for study at the Department of Pathology HC-FMRP/USP. From the blocks, a small fraction of material was removed and subjected to histological sections of 60 μm thick made with a microtome. The slices where placed in holder samples and covered with ultralen film. Tissue samples were irradiated with a white beam of synchrotron radiation. The samples were positioned at 45 degrees with respect to the incident beam on a table with 3 freedom degrees (x, y and z), allowing independent positioning of the sample in these directions. The white beam was collimated by a 20 μm microcapillary and samples were fully scanned. At each step, a spectrum was detected for 10 s. The fluorescence emitted by elements present in the sample was detected by a Si (Li) detector with 165 eV at 5.9 keV energy resolution, placed at 90 deg with respect to the incident beam. Results reveal that trace elements Ca-Zn and Fe-Cu could to be correlated in malignant breast tissues. Quantitative results, achieved by Spearman

  12. Tissue-selective effects of nucleolar stress and rDNA damage in developmental disorders.

    Science.gov (United States)

    Calo, Eliezer; Gu, Bo; Bowen, Margot E; Aryan, Fardin; Zalc, Antoine; Liang, Jialiang; Flynn, Ryan A; Swigut, Tomek; Chang, Howard Y; Attardi, Laura D; Wysocka, Joanna

    2018-02-01

    Many craniofacial disorders are caused by heterozygous mutations in general regulators of housekeeping cellular functions such as transcription or ribosome biogenesis. Although it is understood that many of these malformations are a consequence of defects in cranial neural crest cells, a cell type that gives rise to most of the facial structures during embryogenesis, the mechanism underlying cell-type selectivity of these defects remains largely unknown. By exploring molecular functions of DDX21, a DEAD-box RNA helicase involved in control of both RNA polymerase (Pol) I- and II-dependent transcriptional arms of ribosome biogenesis, we uncovered a previously unappreciated mechanism linking nucleolar dysfunction, ribosomal DNA (rDNA) damage, and craniofacial malformations. Here we demonstrate that genetic perturbations associated with Treacher Collins syndrome, a craniofacial disorder caused by heterozygous mutations in components of the Pol I transcriptional machinery or its cofactor TCOF1 (ref. 1), lead to relocalization of DDX21 from the nucleolus to the nucleoplasm, its loss from the chromatin targets, as well as inhibition of rRNA processing and downregulation of ribosomal protein gene transcription. These effects are cell-type-selective, cell-autonomous, and involve activation of p53 tumour-suppressor protein. We further show that cranial neural crest cells are sensitized to p53-mediated apoptosis, but blocking DDX21 loss from the nucleolus and chromatin rescues both the susceptibility to apoptosis and the craniofacial phenotypes associated with Treacher Collins syndrome. This mechanism is not restricted to cranial neural crest cells, as blood formation is also hypersensitive to loss of DDX21 functions. Accordingly, ribosomal gene perturbations associated with Diamond-Blackfan anaemia disrupt DDX21 localization. At the molecular level, we demonstrate that impaired rRNA synthesis elicits a DNA damage response, and that rDNA damage results in tissue-selective and

  13. Gefarnate stimulates mucin-like glycoprotein secretion in conjunctival tissue and ameliorates corneal epithelial damage in animal dry-eye models

    Directory of Open Access Journals (Sweden)

    Dota A

    2013-01-01

    Full Text Available Atsuyoshi Dota, Yuko Takaoka-Shichijo, Masatsugu NakamuraOphthalmic Research and Development Center, Santen Pharmaceutical Co, Ltd, Ikoma-shi, Nara, JapanPurpose: The aim of this study was to evaluate the effect of gefarnate on mucin-like glycoprotein secretion in isolated rabbit conjunctival tissue, and on corneal epithelial damage in rabbit and cat dry-eye models.Methods: Conjunctival tissue isolated from rabbits was treated with gefarnate. Mucin-like glycoprotein was detected in the culture supernatant by an enzyme-linked lectin assay. Gefarnate ointment was topically applied to eyes once daily for 7 days in the rabbit dry-eye model, in which the lacrimal glands, Harderian gland, and nictitating membrane were removed, or for 4 weeks in the cat dry-eye model, in which the lacrimal gland and nictitating membrane were removed. Corneal epithelial damage was evaluated by measurement of corneal permeability by rose bengal in the rabbit model or by fluorescein staining in the cat model.Results: Gefarnate stimulated mucin-like glycoprotein secretion in conjunctival tissue in a dose-dependent manner. In the rabbit dry-eye model, application of gefarnate ointment to the eyes resulted in a dose-dependent decrease in rose bengal permeability in the cornea, with the effect being significant at concentrations of ≥0.3%. In the cat dry-eye model, application of gefarnate ointment resulted in a significant decrease in the corneal fluorescein staining score.Conclusion: These results suggest that gefarnate stimulates in vitro secretion of mucin-like glycoprotein in conjunctival tissue and ameliorates corneal epithelial damage in animal dry-eye models. Gefarnate may therefore be effective for treating dry eye.Keywords: gefarnate, fluorescein staining, rose bengal permeability, rabbit, cat, dry eye

  14. Improvement of oxygen supply by an artificial carrier in combination with normobaric oxygenation decreases the volume of tissue hypoxia and tissue damage from transient focal cerebral ischemia

    NARCIS (Netherlands)

    Seiffge, David J.; Lapina, Natalia E.; Tsagogiorgas, Charalambos; Theisinger, Bastian; Henning, Robert H.; Schilling, Lothar

    Tissue hypoxia may play an important role in the development of ischemic brain damage. In the present study we investigated in a rat model of transient focal brain ischemia the neuroprotective effects of increasing the blood oxygen transport capacity by applying a semifluorinated alkane

  15. The application of the linear-quadratic model to fractionated radiotherapy when there is incomplete normal tissue recovery between fractions, and possible implications for treatments involving multiple fractions per day

    International Nuclear Information System (INIS)

    Dale, R.G.

    1986-01-01

    By extending a previously developed mathematical model based on the linear-quadratic dose-effect relationship, it is possible to examine the consequences of performing fractionated treatments for which there is insufficient time between fractions to allow complete damage repair. Equations are derived which give the relative effectiveness of such treatments in terms of tissue-repair constants (μ values) and α/β ratios, and these are then applied to some examples of treatments involving multiple fractions per day. The interplay of the various mechanisms involved (including repopulation effects) and their possible influence on treatments involving closely spaced fractions are examined. If current indications of the differences in recovery rates between early- and late-reacting normal tissues are representative, then it is shown that such differences may limit the clinical potential of accelerated fractionation regimes, where several fractions per day are given in a relatively short overall time. (author)

  16. Comparison of telomere length and insulin-like growth factor-binding protein 7 promoter methylation between breast cancer tissues and adjacent normal tissues in Turkish women.

    Science.gov (United States)

    Kaya, Zehra; Akkiprik, Mustafa; Karabulut, Sevgi; Peker, Irem; Gullu Amuran, Gokce; Ozmen, Tolga; Gulluoglu, Bahadır M; Kaya, Handan; Ozer, Ayse

    2017-09-01

    Both insulin-like growth factor-binding protein 7 (IGFBP7) and telomere length (TL) are associated with proliferation and senescence of human breast cancer. This study assessed the clinical significance of both TL and IGFBP7 methylation status in breast cancer tissues compared with adjacent normal tissues. We also investigated whether IGFBP7 methylation status could be affecting TL. Telomere length was measured by quantitative PCR to compare tumors with their adjacent normal tissues. The IGFBP7 promoter methylation status was evaluated by methylation-specific PCR and its expression levels were determined by western blotting. Telomeres were shorter in tumor tissues compared to controls (Pbreast cancer with invasive ductal carcinoma (IDC; n=72; P=.014) compared with other histological type (n=29), and TL in IDC with HER2 negative (n=53; P=.017) was higher than TL in IDC with HER2 positive (n=19). However, telomeres were shortened in advanced stages and growing tumors. IGFBP7 methylation was observed in 90% of tumor tissues and 59% of controls (P=.0002). Its frequency was significantly higher in IDC compared with invasive mixed carcinoma (IMC; P=.002) and it was not correlated either with protein expression or the other clinicopathological parameters. These results suggest that IGFBP7 promoter methylation and shorter TL in tumor compared with adjacent tissues may be predictive biomarkers for breast cancer. Telomere maintenance may be indicative of IDC and IDC with HER2 (-) of breast cancer. Further studies with larger number of cases are necessary to verify this association. © 2016 Wiley Periodicals, Inc.

  17. Binding of (/sup 3/H) progesterone to normal and neoplastic tissue samples from tumour bearing breasts

    Energy Technology Data Exchange (ETDEWEB)

    Pollow, K; Sinnecker, R; Schmidt-Gollwitzer, M; Boquoi, E; Pollow, B [Institut fuer Molekularbiologie und Biochemie, Frauenklinik Charlottenburg der Freien Universitat, Berlin (G.F.R.)

    1977-01-01

    Macromolecular components of normal human mammary cytosol (obtained from 'non-malignant tissue samples' from cancer bearing breasts) which bind (/sup 3/H)progesterone in vitro were characterized by sucrose gradient centrifugation, gel filtration on Agarose, ion exchange chromatography, isoelectric focusing, competition studies and kinetic parameters. The size of the cytoplasmic binding components vary with the concentration of KCl. In the absence of KCl, the major components are characterized by sedimentation coefficients of about 4 S and 8 S. In solutions containing 0.3M KCl, the cytoplasmic components sediment at 4 S in sucrose gradient. The corticosteroid-binding component of normal human mammary cytosol both sediment at about the same rate in the presence of 0.3M KCl and chromatograph as a single component on Agarose. The isoelectric point of the progesterone-binding component of normal human mammary cytosol was located around pH 5.0. The progesterone-binding component was more thermo-labile than serum CBG. CBG was inactivated at temperatures above 45 deg C but temperature above 20 deg C destroyed specific progesterone receptor binding. Progesterone receptor concentrations in normal mammary cytosol of premenopausal women depended on the menstrual cycle. The binding of progesterone was highest around the time of ovulation. In breast tumor tissue samples the progesterone receptor concentration was lower than in the normal mammary cytosol (obtained in each case from the same tumor-bearing breast). In 5 out of 37 breast tumor samples progesterone binding activity could not be detected.

  18. Comparison of incidences of normal tissue complications with tumor response in a phase III trial comparing heat plus radiation to radiation alone

    International Nuclear Information System (INIS)

    Dewhirst, M.W.; Sim, D.A.; Grochowski, K.J.

    1984-01-01

    The success of hyperthermia (/sup Δ/) as an adjuvant to radiation (XRT) will depend on whether the increase in tumor control is greater than that for normal tissue reactions. One hundred and thirty dogs and cats were stratified by histology and randomized to receive XRT (460 rads per fraction, two fractions per week, for eight fractions) or /sup Δ/ + XRT (30 min. at 44 +-2 0 C; one fraction per week, four fractions; immediately prior to XRT). Heat induced changes in tumor and normal tissue responses were made by comparing ratios of incidence for /sup Δ/ + XRT and XRT alone (TRR; Thermal Relative Risk). Change in tumor response duration was calculated from statistical analysis of response duration curves (RRR; Relative Relapse Rate). Heat increased early normal tissue reactions (moist desquamation and mucositis by a factor of 1.08. Tumor complete response, by comparison, was significantly improved (TRR = 2.12, p < .001). Late skin fibrosis was also increased (TRR = 1.51), but the prolongation in tumor response was greater (RRR 1.85). The degree of thermal enhancement for all tissues was dependent on the minimum temperature achieved on the first treatment, but the values for tumor were consistently greater than those achieved for normal tissues

  19. Normal Values of Tissue-Muscle Perfusion Indexes of Lower Limbs Obtained with a Scintigraphic Method.

    Science.gov (United States)

    Manevska, Nevena; Stojanoski, Sinisa; Pop Gjorceva, Daniela; Todorovska, Lidija; Miladinova, Daniela; Zafirova, Beti

    2017-09-01

    Introduction Muscle perfusion is a physiologic process that can undergo quantitative assessment and thus define the range of normal values of perfusion indexes and perfusion reserve. The investigation of the microcirculation has a crucial role in determining the muscle perfusion. Materials and method The study included 30 examinees, 24-74 years of age, without a history of confirmed peripheral artery disease and all had normal findings on Doppler ultrasonography and pedo-brachial index of lower extremity (PBI). 99mTc-MIBI tissue muscle perfusion scintigraphy of lower limbs evaluates tissue perfusion in resting condition "rest study" and after workload "stress study", through quantitative parameters: Inter-extremity index (for both studies), left thigh/right thigh (LT/RT) left calf/right calf (LC/RC) and perfusion reserve (PR) for both thighs and calves. Results In our investigated group we assessed the normal values of quantitative parameters of perfusion indexes. Indexes ranged for LT/RT in rest study 0.91-1.05, in stress study 0.92-1.04. LC/RC in rest 0.93-1.07 and in stress study 0.93-1.09. The examinees older than 50 years had insignificantly lower perfusion reserve of these parameters compared with those younger than 50, LC (p=0.98), and RC (p=0.6). Conclusion This non-invasive scintigraphic method allows in individuals without peripheral artery disease to determine the range of normal values of muscle perfusion at rest and stress condition and to clinically implement them in evaluation of patients with peripheral artery disease for differentiating patients with normal from those with impaired lower limbs circulation.

  20. Effect of dental restoration with epoxy and bioceramic paste on periodontal tissue damage

    Directory of Open Access Journals (Sweden)

    Nan-Lin Meng

    2017-05-01

    Full Text Available Objective: To study the effect of dental restoration with epoxy and bioceramic paste on periodontal tissue damage. Methods: Patients with pulpal and periapical diseases who received root canal therapy in our hospital between May 2013 and October 2016 were retrospectively analyzed, and according to the different root canal filling materials they used, they were divided into epoxy group and bioceramic group who used epoxy paste and bioceramic paste as root canal filling materials respectively. Before and after treatment, gingival crevicular fluid was collected respectively to determine the levels of inflammatory factors, oxidative stress products, cell apoptosis molecules and protease-related molecules. Results: 2 weeks after treatment, IL-1β, IL-6, CRP, ROS, MDA, AOPP, Bcl-2, Bax, Cyt-C, caspase-3, Smac, EMMPRIN, MMP-1, MMP-2, TIMP-1 and TIMP-2 levels in gingival crevicular fluid of epoxy group were not significantly different from those before treatment; IL-1β, IL-6, CRP, ROS, MDA, AOPP, Bax, Cyt-C, caspase-3, Smac, EMMPRIN, MMP-1 and MMP-2 levels in gingival crevicular fluid of bioceramic group were significantly higher than those before treatment while Bcl-2, TIMP-1 and TIMP-2 levels were significantly lower than those before treatment; IL-1β, IL-6, CRP, ROS, MDA, AOPP, Bcl-2, Bax, Cyt-C, caspase-3, Smac, EMMPRIN, MMP-1, MMP-2, TIMP-1 and TIMP-2 levels in gingival crevicular fluid were significantly different between two groups of patients after treatment. Conclusion: Epoxy paste for dental restoration causes less damage to periodontal tissue than bioceramic paste.

  1. Effect of dental restoration with epoxy and bioceramic paste on periodontal tissue damage

    Institute of Scientific and Technical Information of China (English)

    Nan-Lin Meng

    2017-01-01

    Objective:To study the effect of dental restoration with epoxy and bioceramic paste on periodontal tissue damage.Methods: Patients with pulpal and periapical diseases who received root canal therapy in our hospital between May 2013 and October 2016 were retrospectively analyzed, and according to the different root canal filling materials they used, they were divided into epoxy group and bioceramic group who used epoxy paste and bioceramic paste as root canal filling materials respectively. Before and after treatment, gingival crevicular fluid was collected respectively to determine the levels of inflammatory factors, oxidative stress products, cell apoptosis molecules and protease-related molecules.Results: 2 weeks after treatment, IL-1β, IL-6, CRP, ROS, MDA, AOPP, Bcl-2, Bax, Cyt-C, caspase-3, Smac, EMMPRIN, MMP-1, MMP-2, TIMP-1 and TIMP-2 levels in gingival crevicular fluid of epoxy group were not significantly different from those before treatment; IL-1β, IL-6, CRP, ROS, MDA, AOPP, Bax, Cyt-C, caspase-3, Smac, EMMPRIN, MMP-1 and MMP-2 levels in gingival crevicular fluid of bioceramic group were significantly higher than those before treatment while Bcl-2, TIMP-1 and TIMP-2 levels were significantly lower than those before treatment; IL-1β, IL-6, CRP, ROS, MDA, AOPP, Bcl-2, Bax, Cyt-C, caspase-3, Smac, EMMPRIN, MMP-1, MMP-2, TIMP-1 and TIMP-2 levels in gingival crevicular fluid were significantly different between two groups of patients after treatment.Conclusion:Epoxy paste for dental restoration causes less damage to periodontal tissue than bioceramic paste.

  2. Nonlinear optical microscopy for histology of fresh normal and cancerous pancreatic tissues.

    Directory of Open Access Journals (Sweden)

    Wenyan Hu

    Full Text Available BACKGROUND: Pancreatic cancer is a lethal disease with a 5-year survival rate of only 1-5%. The acceleration of intraoperative histological examination would be beneficial for better management of pancreatic cancer, suggesting an improved survival. Nonlinear optical methods based on two-photon excited fluorescence (TPEF and second harmonic generation (SHG of intrinsic optical biomarkers show the ability to visualize the morphology of fresh tissues associated with histology, which is promising for real-time intraoperative evaluation of pancreatic cancer. METHODOLOGY/PRINCIPAL FINDINGS: In order to investigate whether the nonlinear optical imaging methods have the ability to characterize pancreatic histology at cellular resolution, we studied different types of pancreatic tissues by using label-free TPEF and SHG. Compared with other routine methods for the preparation of specimens, fresh tissues without processing were found to be most suitable for nonlinear optical imaging of pancreatic tissues. The detailed morphology of the normal rat pancreas was observed and related with the standard histological images. Comparatively speaking, the preliminary images of a small number of chemical-induced pancreatic cancer tissues showed visible neoplastic differences in the morphology of cells and extracellular matrix. The subcutaneous pancreatic tumor xenografts were further observed using the nonlinear optical microscopy, showing that most cells are leucocytes at 5 days after implantation, the tumor cells begin to proliferate at 10 days after implantation, and the extracellular collagen fibers become disordered as the xenografts grow. CONCLUSIONS/SIGNIFICANCE: In this study, nonlinear optical imaging was used to characterize the morphological details of fresh pancreatic tissues for the first time. We demonstrate that it is possible to provide real-time histological evaluation of pancreatic cancer by the nonlinear optical methods, which present an

  3. Fracture mechanics model of stone comminution in ESWL and implications for tissue damage

    Science.gov (United States)

    Lokhandwalla, Murtuza; Sturtevant, Bradford

    2000-07-01

    Focused shock waves administered during extracorporeal shock-wave lithotripsy (ESWL) cause stone fragmentation. The process of stone fragmentation is described in terms of a dynamic fracture process. As is characteristic of all brittle materials, fragmentation requires nucleation, growth and coalescence of flaws, caused by a tensile or shear stress. The mechanisms, operative in the stone, inducing these stresses have been identified as spall and compression-induced tensile microcracks, nucleating at pre-existing flaws. These mechanisms are driven by the lithotripter-generated shock wave and possibly also by cavitation effects in the surrounding fluid. In this paper, the spall mechanism has been analysed, using a cohesive-zone model for the material. The influence of shock wave parameters, and physical properties of stone, on stone comminution is described. The analysis suggests a potential means to exploit the difference between the stone and tissue physical properties, so as to make stone comminution more effective, without increasing tissue damage.

  4. The effects of vitamin E on brain derived neurotrophic factor, tissues oxidative damage and learning and memory of juvenile hypothyroid rats.

    Science.gov (United States)

    Baghcheghi, Yousef; Beheshti, Farimah; Shafei, Mohammad Naser; Salmani, Hossein; Sadeghnia, Hamid Reza; Soukhtanloo, Mohammad; Anaeigoudari, Akbar; Hosseini, Mahmoud

    2018-06-01

    The effects of vitamin E (Vit E) on brain derived neurotrophic factor (BDNF) and brain tissues oxidative damage as well as on learning and memory impairments in juvenile hypothyroid rats were examined. The rats were grouped as: (1) Control; (2) Propylthiouracil (PTU); (3) PTU-Vit E and (4) Vit E. PTU was added to their drinking water (0.05%) during 6 weeks. Vit E (20 mg/kg) was daily injected (IP). Morris water maze (MWM) and passive avoidance (PA) were carried out. The animals were deeply anesthetized and the brain tissues were removed for biochemical measurements. PTU increased the escape latency and traveled path in MWM (P E (P E improved BDNF, thiol, SOD and CAT while diminished MDA. The results of the present study showed that Vit E improved BDNF and prevented from brain tissues oxidative damage as well as learning and memory impairments in juvenile hypothyroid rats.

  5. Impact of statistical learning methods on the predictive power of multivariate normal tissue complication probability models

    NARCIS (Netherlands)

    Xu, Cheng-Jian; van der Schaaf, Arjen; Schilstra, Cornelis; Langendijk, Johannes A.; van t Veld, Aart A.

    2012-01-01

    PURPOSE: To study the impact of different statistical learning methods on the prediction performance of multivariate normal tissue complication probability (NTCP) models. METHODS AND MATERIALS: In this study, three learning methods, stepwise selection, least absolute shrinkage and selection operator

  6. Thermal distribution in biological tissue at laser induced fluorescence and photodynamic therapy

    Science.gov (United States)

    Krasnikov, I. V.; Seteikin, A. Yu.; Drakaki, E.; Makropoulou, M.

    2012-03-01

    Laser induced fluorescence spectroscopy and photodynamic therapy (PDT) are techniques currently introduced in clinical applications for visualization and local destruction of malignant tumours as well as premalignant lesions. During the laser irradiation of tissues for the diagnostic and therapeutic purposes, the absorbed optical energy generates heat, although the power density of the treatment light for surface illumination is normally low enough not to cause any significantly increased tissue temperature. In this work we tried to evaluate the utility of Monte Carlo modeling for simulating the temperature fields and the dynamics of heat conduction into the skin tissue under several laser irradiation conditions with both a pulsed UV laser and a continuous wave visible laser beam. The analysis of the results showed that heat is not localized on the surface, but it is collected inside the tissue. By varying the boundary conditions on the surface and the type of the laser radiation (continuous or pulsed) we can reach higher than normal temperature inside the tissue without simultaneous formation of thermally damaged tissue (e.g. coagulation or necrosis zone).

  7. The composition of engineered cartilage at the time of implantation determines the likelihood of regenerating tissue with a normal collagen architecture.

    Science.gov (United States)

    Nagel, Thomas; Kelly, Daniel J

    2013-04-01

    The biomechanical functionality of articular cartilage is derived from both its biochemical composition and the architecture of the collagen network. Failure to replicate this normal Benninghoff architecture in regenerating articular cartilage may in turn predispose the tissue to failure. In this article, the influence of the maturity (or functionality) of a tissue-engineered construct at the time of implantation into a tibial chondral defect on the likelihood of recapitulating a normal Benninghoff architecture was investigated using a computational model featuring a collagen remodeling algorithm. Such a normal tissue architecture was predicted to form in the intact tibial plateau due to the interplay between the depth-dependent extracellular matrix properties, foremost swelling pressures, and external mechanical loading. In the presence of even small empty defects in the articular surface, the collagen architecture in the surrounding cartilage was predicted to deviate significantly from the native state, indicating a possible predisposition for osteoarthritic changes. These negative alterations were alleviated by the implantation of tissue-engineered cartilage, where a mature implant was predicted to result in the formation of a more native-like collagen architecture than immature implants. The results of this study highlight the importance of cartilage graft functionality to maintain and/or re-establish joint function and suggest that engineering a tissue with a native depth-dependent composition may facilitate the establishment of a normal Benninghoff collagen architecture after implantation into load-bearing defects.

  8. Damaging and protective bystander cross-talk between human lung cancer and normal cells after proton microbeam irradiation

    International Nuclear Information System (INIS)

    Desai, Sejal; Kobayashi, Alisa; Konishi, Teruaki; Oikawa, Masakazu; Pandey, Badri N.

    2014-01-01

    Graphical abstract: - Highlights: • Proton-microbeam irradiated A549 cells send damaging signals to bystander A549 cells. • Irradiated A549–A549 bystander response is through gap junctional communication. • Bystander WI38 cells exert protective signalling in irradiated A549 cells. • Rescue of irradiated A549 cells by WI38 cells is independent of gap junctions. - Abstract: Most of the studies of radiation-induced bystander effects (RIBE) have been focused on understanding the radiobiological changes observed in bystander cells in response to the signals from irradiated cells in a normal cell population with implications to radiation risk assessment. However, reports on RIBE with relevance to cancer radiotherapy especially investigating the bidirectional and criss-cross bystander communications between cancer and normal cells are limited. Hence, in present study employing co-culture approach, we have investigated the bystander cross-talk between lung cancer (A549) and normal (WI38) cells after proton-microbeam irradiation using γ-H2AX foci fluorescence as a measure of DNA double-strand breaks (DSBs). We observed that in A549–A549 co-cultures, irradiated A549 cells exert damaging effects in bystander A549 cells, which were found to be mediated through gap junctional intercellular communication (GJIC). However, in A549–WI38 co-cultures, irradiated A549 did not affect bystander WI38 cells. Rather, bystander WI38 cells induced inverse protective signalling (rescue effect) in irradiated A549 cells, which was independent of GJIC. On the other hand, in response to irradiated WI38 cells neither of the bystander cells (A549 or WI38) showed significant increase in γ-H2AX foci. The observed bystander signalling between tumour and normal cells may have potential implications in therapeutic outcome of cancer radiotherapy

  9. Damaging and protective bystander cross-talk between human lung cancer and normal cells after proton microbeam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Desai, Sejal [Radiation Signalling and Cancer Biology Section, Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Kobayashi, Alisa; Konishi, Teruaki; Oikawa, Masakazu [Radiation System and Engineering Section, Department of Technical Support and Development, Research, Development and Support Center, National Institute of Radiological Sciences, Chiba 263-8555 (Japan); Pandey, Badri N., E-mail: badrinarain@yahoo.co.in [Radiation Signalling and Cancer Biology Section, Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India)

    2014-05-15

    Graphical abstract: - Highlights: • Proton-microbeam irradiated A549 cells send damaging signals to bystander A549 cells. • Irradiated A549–A549 bystander response is through gap junctional communication. • Bystander WI38 cells exert protective signalling in irradiated A549 cells. • Rescue of irradiated A549 cells by WI38 cells is independent of gap junctions. - Abstract: Most of the studies of radiation-induced bystander effects (RIBE) have been focused on understanding the radiobiological changes observed in bystander cells in response to the signals from irradiated cells in a normal cell population with implications to radiation risk assessment. However, reports on RIBE with relevance to cancer radiotherapy especially investigating the bidirectional and criss-cross bystander communications between cancer and normal cells are limited. Hence, in present study employing co-culture approach, we have investigated the bystander cross-talk between lung cancer (A549) and normal (WI38) cells after proton-microbeam irradiation using γ-H2AX foci fluorescence as a measure of DNA double-strand breaks (DSBs). We observed that in A549–A549 co-cultures, irradiated A549 cells exert damaging effects in bystander A549 cells, which were found to be mediated through gap junctional intercellular communication (GJIC). However, in A549–WI38 co-cultures, irradiated A549 did not affect bystander WI38 cells. Rather, bystander WI38 cells induced inverse protective signalling (rescue effect) in irradiated A549 cells, which was independent of GJIC. On the other hand, in response to irradiated WI38 cells neither of the bystander cells (A549 or WI38) showed significant increase in γ-H2AX foci. The observed bystander signalling between tumour and normal cells may have potential implications in therapeutic outcome of cancer radiotherapy.

  10. The normal tissue sparing obtained with simultaneous treatment of pelvic lymph nodes and bladder using intensity-modulated radiotherapy

    International Nuclear Information System (INIS)

    Soendergaard, Jimmi; Hoeyer, Morten; Wright, Pauliina; Grau, Cai; Muren, Ludvig Paul; Petersen, Joergen B.

    2009-01-01

    We have implemented an intensity-modulated radiotherapy (IMRT) protocol for simultaneous irradiation of bladder and lymph nodes. In this report, doses to normal tissue from IMRT and our previous conformal sequential boost technique are compared. Material and methods. Sixteen patients with urinary bladder cancer were treated using a six-field dynamic IMRT beam arrangement delivering 60 Gy to the bladder and 48 Gy to the pelvic lymph nodes. Dose-volume histogram (DVH) parameters for relevant normal tissues (bowel, bowel cavity, rectum and femoral heads) for the IMRT plans were compared with corresponding DVHs from our previous conformal sequential boost technique. Calculations of the generalized Equivalent Uniform Dose (gEUD) were performed for the bowel, with a reference volume of 200 cm 3 and a volume effect parameter k = 4, as well as for the rectum, using k = 12. Acute gastrointestinal (GI) and genitourinary (GU) RTOG toxicity was recorded. Results. Statistical significant normal tissue sparing was obtained by IMRT. For the bowel, a significant reduction was obtained at all dose levels between 20 and 50 Gy (p 3 at 50 Gy, while the gEUD was reduced from 58 to 53 Gy (p 3 at 50 Gy. The rectum gEUD was reduced from 55 to 53 Gy (p < 0.05). For the femoral heads, IMRT reduced the maximum dose as well as the volumes above all dose levels. The rate of acute peak Grade 2 GI RTOG complications was 38% after IMRT. Conclusion. IMRT to the urinary bladder and elective lymph nodes result in considerable normal tissue sparing compared to conformal sequential boost technique. This has paved the way for further studies combining IMRT with image-guided radiotherapy (IGRT) in bladder cancer

  11. MRI in diagnostic of soft tissue damages by fractures of lateral tibial plate

    International Nuclear Information System (INIS)

    Dimitrova, D.; Proichev, V.; Popov, I.

    2015-01-01

    Full text: The knee is one of the most often injured joint. Fractures of tibial condyles are the most common articular damages. Koton and Berg call them „bumper“ fractures the tibia plateau is vulnerable to both high- and low-energy injury mechanisms due to its vulnerable position in the lower extremity. It must bear significant weight and sustain significant impact and deceleration forces with little skeletal constraint, and has scant surrounding soft tissue and a tethered medial and lateral integument. Furthermore, the tibial plateau has relatively forgiving ligamentous attachments that must allow for a large range of motion in a single plane. Not surprisingly, given the diversity of injury, management of these fractures has come to include a wide variety of treatment strategies. traditionally, ligament injury associated with plateau fractures has been diagnosed indirectly with stress radiographs and physical examination. With increasing use of more sensitive MRI and arthroscopy, associated ligament and meniscus injuries have been found in significant percentages of plateau fractures. these soft tissue injuries consist primarily of MCL lesions, meniscal injuries, and ACL disruptions. However, studies addressing associated soft tissue injuries all agree that neither the type of plateau fracture nor the presence or absence of ligament injury correlates with the incidence of meniscal tears

  12. Quality of life in glaucoma patients and normal subjects related to the severity of damage in each eye.

    Science.gov (United States)

    Pujol Carreras, O; Anton, A; Mora, C; Pastor, L; Gudiña, S; Maull, R; Vega, Z; Castilla, M

    2017-11-01

    To assess the quality of life in glaucoma patients and normal subjects, and to assess its relationship with the severity of damage in each eye. A cross-sectional study was conducted with prospective selection of cases. The study included 464 subjects and were distributed into 4categories. Subjects included in group 1 had both eyes normal, that is with a normal intraocular pressure (IOP), optic disk and visual fields (VF), or mild glaucoma, defined as untreated IOP>21mmHg and abnormal VF with mean defect (MD) over -6dB. Group 2 consisted of patients with both eyes with mild or moderate glaucoma, defined as untreated IOP>21mmHg and abnormal VF with MD between -6 and -12dB. Group 3 included patients with moderate to severe glaucoma, that is, untreated IOP>21mmHg and abnormal VF with MD of less than -12dB in both eyes. Group 4 consisted of patients with asymmetric glaucoma damage, that is, they had one eye with severe glaucoma and the other eye normal or with mild glaucoma. All subjects completed 3 different questionnaires. Global quality of life was evaluated with EuroQol-5D (EQ-5D). Vision related quality of life was assessed with Visual Function Questionnaire (VFQ-25). Quality of life related to ocular surface disease was measured with Ocular Surface Disease Index (OSDI). VFQ-25 showed that group 3 had significantly lower scores than group 1 in mental health (P=.006), dependence (P=.006), colour vision (P=.002), and peripheral vision (P=.002). EQ-5D showed no significant differences between any group, but a trend was found to greater difficulty in group 3 than in groups 1 and 2, and in all dimensions. OSDI showed a higher score, or which was the same as a major disability, in groups 2 and 3 than group 1 (P=.021 and P=.014, respectively). VFQ-25 only found significant differences between group 1 and group 4. Dimensions with significant differences were found between group 1 and 3 (both eyes with advanced or moderate glaucoma). These were not found between group 1 and

  13. Repair of radiation damage in mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Setlow, R.B.

    1981-01-01

    The responses, such as survival, mutation, and carcinogenesis, of mammalian cells and tissues to radiation are dependent not only on the magnitude of the damage to macromolecular structures - DNA, RNA, protein, and membranes - but on the rates of macromolecular syntheses of cells relative to the half-lives of the damages. Cells possess a number of mechanisms for repairing damage to DNA. If the repair systems are rapid and error free, cells can tolerate much larger doses than if repair is slow or error prone. It is important to understand the effects of radiation and the repair of radiation damage because there exist reasonable amounts of epidemiological data that permits the construction of dose-response curves for humans. The shapes of such curves or the magnitude of the response will depend on repair. Radiation damage is emphasized because: (a) radiation dosimetry, with all its uncertainties for populations, is excellent compared to chemical dosimetry; (b) a number of cancer-prone diseases are known in which there are defects in DNA repair and radiation results in more chromosomal damage in cells from such individuals than in cells from normal individuals; (c) in some cases, specific radiation products in DNA have been correlated with biological effects, and (d) many chemical effects seem to mimic radiation effects. A further reason for emphasizing damage to DNA is the wealth of experimental evidence indicating that damages to DNA can be initiating events in carcinogenesis.

  14. Repair of radiation damage in mammalian cells

    International Nuclear Information System (INIS)

    Setlow, R.B.

    1981-01-01

    The responses, such as survival, mutation, and carcinogenesis, of mammalian cells and tissues to radiation are dependent not only on the magnitude of the damage to macromolecular structures - DNA, RNA, protein, and membranes - but on the rates of macromolecular syntheses of cells relative to the half-lives of the damages. Cells possess a number of mechanisms for repairing damage to DNA. If the repair systems are rapid and error free, cells can tolerate much larger doses than if repair is slow or error prone. It is important to understand the effects of radiation and the repair of radiation damage because there exist reasonable amounts of epidemiological data that permits the construction of dose-response curves for humans. The shapes of such curves or the magnitude of the response will depend on repair. Radiation damage is emphasized because: (a) radiation dosimetry, with all its uncertainties for populations, is excellent compared to chemical dosimetry; (b) a number of cancer-prone diseases are known in which there are defects in DNA repair and radiation results in more chromosomal damage in cells from such individuals than in cells from normal individuals; (c) in some cases, specific radiation products in DNA have been correlated with biological effects, and (d) many chemical effects seem to mimic radiation effects. A further reason for emphasizing damage to DNA is the wealth of experimental evidence indicating that damages to DNA can be initiating events in carcinogenesis

  15. Comparison of normal tissue pharmacokinetics with 111In/9Y monoclonal antibody m170 for breast and prostate cancer

    International Nuclear Information System (INIS)

    Lehmann, Joerg; DeNardo, Gerald L.; Yuan, Aina; Shen Sui; O'Donnell, Robert T.; Richman, Carol M.; De Nardo, Sally J.

    2006-01-01

    Purpose: Radioactivity deposition in normal tissues limits the dose deliverable by radiopharmaceuticals (RP) in radioimmunotherapy (RIT). This study investigated the absorbed radiation dose in normal tissues for prostate cancer patients in comparison to breast cancer patients for 2 RPs using the monoclonal antibody (MAb) m170. Methods and Materials: 111 In-DOTA-glycylglycylglycyl-L-p-isothiocyanatophenylalanine amide (GGGF)-m170 and 111 In-1,4,7,10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid (DOTA) 2-iminothiolane (2IT)-m170, representing the same MAb and chelate with and without a cleavable linkage, were studied in 13 breast cancer and 26 prostate cancer patients. Dosimetry for 9 Y was calculated using 111 In MAb pharmacokinetics from the initial imaging study for each patient, using reference man- and patient-specific masses. Results: The reference man-specific radiation doses (cGy/MBq) were not significantly different for the breast and the prostate cancer patients for both RPs in all but one tissue-RP combination (liver, DOTA-2IT). The patient-specific doses had differences between the groups most of which can be related to weight differences. Conclusions: Similar normal tissue doses were calculated for two groups of patients having different cancers and genders. This similarity combined with continued careful analysis of the imaging data might allow the use of higher starting doses in early phase RIT studies

  16. Endocrine factors influencing radiation injury to central nervous tissue

    International Nuclear Information System (INIS)

    Aristizabal, S.A.; Boone, M.L.; Laguna, J.F.

    1979-01-01

    Corticosteroids have been shown experimentally to lower the tolerance of various normal tissues (lung, kidney, intestine) to irradiation. Pre-existing hypertension also modified the effect of irradiation on the rat spinal cord and brain. Hypercorticism and hypertension co-exist in patients with Cushing's disease. Although these patients are often approached therapeutically by irradiation, no reports concerning differences in the radiation sensitivity of nervous tissue between normal subjects (non-functioning pituitary adenomas) and those with hormonal imbalance and/or hypertension appear to be available. A comprehensive review of the literature revealed 14 patients with radiation damage to brain or to optic pathways following moderate doses for pituitary adenomas. Seven of the 14 patients (50%) had Cushing's disease. This apparent higher incidence of radiation injury is significant if we consider that less than 5% of all patients receiving irradiation for pituitary adenomas have Cushing's disease

  17. Dynamic contrast-enhanced magnetic resonance imaging: a non-invasive method to evaluate significant differences between malignant and normal tissue

    International Nuclear Information System (INIS)

    Rudisch, Ansgar; Kremser, Christian; Judmaier, Werner; Zunterer, Hildegard; DeVries, Alexander F.

    2005-01-01

    Purpose: An ever recurring challenge in diagnostic radiology is the differentiation between non-malignant and malignant tissue. Based on evidence that microcirculation of normal, non-malignant tissue differs from that of malignant tissue, the goal of this study was to assess the reliability of dynamic contrast-enhanced Magnetic Resonance Imaging (dcMRI) for differentiating these two entities. Materials and methods: DcMRI data of rectum carcinoma and gluteus maximus muscles were acquired in 41 patients. Using an fast T1-mapping sequence on a 1.5-T whole body scanner, T1-maps were dynamically retrieved before, during and after constant rate i.v. infusion of a contrast medium (CM). On the basis of the acquired data sets, PI-values were calculated on a pixel-by-pixel basis. The relevance of spatial heterogeneities of microcirculation was investigated by relative frequency histograms of the PI-values. Results: A statistically significant difference between malignant and normal tissue was found for the mean PI-value (P < 0.001; 8.95 ml/min/100 g ± 2.45 versus 3.56 ml/min/100 g ± 1.20). Additionally relative frequency distributions of PI-values with equal class intervals of 2.5 ml/min/100 g revealed significant differences between the histograms of muscles and rectum carcinoma. Conclusion: We could show that microcirculation differences between malignant and normal, non-malignant tissue can be reliably assessed by non-invasive dcMRI. Therefore, dcMRI holds great promise in the aid of cancer assessment, especially in patients where biopsy is contraindicated

  18. Transplantation of Normal Adipose Tissue Improves Blood Flow and Reduces Inflammation in High Fat Fed Mice With Hindlimb Ischemia

    Directory of Open Access Journals (Sweden)

    Liyuan Chen

    2018-03-01

    Full Text Available Background: Fat deposition is associated with peripheral arterial disease. Adipose tissue has recently been implicated in vascular remodeling and angiogenic activity. We hypothesized that the transplantation of adipose tissues from normal mice improves blood flow perfusion and neovascularization in high-fat diet fed mice.Methods: After 14 weeks of high-fat diet (HFD-fed mice, unilateral hind limb ischemia was performed. Subcutaneous white adipose tissue (WAT and brown adipose tissue (BAT fat pads were harvested from normal EGFP mice, and subcutaneously transplanted over the region of the adductor muscles of HFD mice. Blood flow was measured using Laser Doppler Scanner. Vascular density, macrophages infiltration, and macrophage polarization were examined by RT-qPCR, and immunohistochemistry.Results: We found that the transplantation of WAT derived from normal mice improved functional blood flow in HFD-fed mice compared to mice transplanted with BAT and sham-treated mice. WAT transplantation increased the recruitment of pericytes associated with nascent blood vessels, but did not affect capillary formation. Furthermore, transplantation of WAT ameliorated HFD-induced insulin resistance, M2 macrophage predominance and the release of arteriogenic factors in ischemic muscles. Mice receiving WAT also displayed a marked reduction in several proinflammatory cytokines. In contrast, mice transplanted with BAT were glucose intolerant and demonstrated increased IL-6 levels in ischemic muscles.Conclusion: These results indicate that transplantation of adipose tissue elicits improvements in blood perfusion and beneficial effects on systemic glucose homeostasis and could be a promising therapeutic option for the treatment of diabetic peripheral arterial disease.

  19. Oxidative stress damage as a detrimental factor in preterm birth pathology.

    Science.gov (United States)

    Menon, Ramkumar

    2014-01-01

    Normal term and spontaneous preterm births (PTB) are documented to be associated with oxidative stress (OS), and imbalances in the redox system (balance between pro- and antioxidant) have been reported in the maternal-fetal intrauterine compartments. The exact mechanism of labor initiation either at term or preterm by OS is still unclear, and this lack of understanding can partially be blamed for failure of antioxidant supplementation trials in PTB prevention. Based on recent findings from our laboratory, we postulate heterogeneity in host OS response. The physiologic (at term) and pathophysiologic (preterm) pathways of labor are not mediated by OS alone but by OS-induced damage to intrauterine tissues, especially fetal membranes of the placenta. OS damage affects all major cellular elements in the fetal cells, and this damage promotes fetal cell senescence (aging). The aging of the fetal cells is predominated by p38 mitogen activated kinase (p38MAPK) pathways. Senescing cells generate biomolecular signals that are uterotonic, triggering labor process. The aging of fetal cells is normal at term. However, aging is premature in PTB, especially in those PTBs complicated by preterm premature rupture of the membranes, where elements of redox imbalances and OS damage are more dominant. We postulate that fetal cell senescence signals generated by OS damage are likely triggers for labor. This review highlights the mechanisms involved in senescence development at term and preterm by OS damage and provides insight into novel fetal signals of labor initiation pathways.

  20. Non-invasive characterization of normal and pathological tissues through dynamic infrared imaging in the hamster cheek pouch oral cancer model

    Science.gov (United States)

    Herrera, María. S.; Monti Hughes, Andrea; Salva, Natalia; Padra, Claudio; Schwint, Amanda; Santa Cruz, Gustavo A.

    2017-05-01

    Biomedical infrared thermography, a non-invasive and functional imaging method, provides information on the normal and abnormal status and response of tissues in terms of spatial and temporal variations in body infrared radiance. It is especially attractive in cancer research due to the hypervascular and hypermetabolic activity of solid tumors. Moreover, healthy tissues like skin or mucosa exposed to radiation can be examined since inflammation, changes in water content, exudation, desquamation, erosion and necrosis, between others, are factors that modify their thermal properties. In this work we performed Dynamic Infrared Imaging (DIRI) to contribute to the understanding and evaluation of normal tissue, tumor and precancerous tissue response and radiotoxicity in an in vivo model, the hamster cheek pouch, exposed to Boron Neutron Capture Therapy. In this study, we particularly focused on the observation of temperature changes under forced transient conditions associated with mass moisture transfer in the tissue-air interface, in each tissue with or without treatment. We proposed a simple mathematical procedure that considerers the heat transfer from tissue to ambient through convection and evaporation to model the transient (exponential decay o recover) thermal study. The data was fitted to determined the characteristic decay and recovery time constants of the temperature as a function of time. Also this model allowed to explore the mass flux of moisture, as a degree of evaporation occurring on the tissue surface. Tissue thermal responses under provocation tests could be used as a non-invasive method to characterize tissue physiology.

  1. Neuroprotection and enhanced neurogenesis by extract from the tropical plant Knema laurina after inflammatory damage in living brain tissue.

    Science.gov (United States)

    Häke, Ines; Schönenberger, Silvia; Neumann, Jens; Franke, Katrin; Paulsen-Merker, Katrin; Reymann, Klaus; Ismail, Ghazally; Bin Din, Laily; Said, Ikram M; Latiff, A; Wessjohann, Ludger; Zipp, Frauke; Ullrich, Oliver

    2009-01-03

    Inflammatory reactions in the CNS, resulting from a loss of control and involving a network of non-neuronal and neuronal cells, are major contributors to the onset and progress of several major neurodegenerative diseases. Therapeutic strategies should therefore keep or restore the well-controlled and finely-tuned balance of immune reactions, and protect neurons from inflammatory damage. In our study, we selected plants of the Malaysian rain forest by an ethnobotanic survey, and investigated them in cell-based-assay-systems and in living brain tissue cultures in order to identify anti-inflammatory and neuroprotective effects. We found that alcoholic extracts from the tropical plant Knema laurina (Black wild nutmeg) exhibited highly anti-inflammatory and neuroprotective effects in cell culture experiments, reduced NO- and IL-6-release from activated microglia cells dose-dependently, and protected living brain tissue from microglia-mediated inflammatory damage at a concentration of 30 microg/ml. On the intracellular level, the extract inhibited ERK-1/2-phosphorylation, IkB-phosphorylation and subsequently NF-kB-translocation in microglia cells. K. laurina belongs to the family of Myristicaceae, which have been used for centuries for treatment of digestive and inflammatory diseases and is also a major food plant of the Giant Hornbill. Moreover, extract from K. laurina promotes also neurogenesis in living brain tissue after oxygen-glucose deprivation. In conclusion, extract from K. laurina not only controls and limits inflammatory reaction after primary neuronal damage, it promotes moreover neurogenesis if given hours until days after stroke-like injury.

  2. Using autopsy brain tissue to study alcohol-related brain damage in the genomic age.

    Science.gov (United States)

    Sutherland, Greg T; Sheedy, Donna; Kril, Jillian J

    2014-01-01

    The New South Wales Tissue Resource Centre at the University of Sydney, Australia, is one of the few human brain banks dedicated to the study of the effects of chronic alcoholism. The bank was affiliated in 1994 as a member of the National Network of Brain Banks and also focuses on schizophrenia and healthy control tissue. Alcohol abuse is a major problem worldwide, manifesting in such conditions as fetal alcohol syndrome, adolescent binge drinking, alcohol dependency, and alcoholic neurodegeneration. The latter is also referred to as alcohol-related brain damage (ARBD). The study of postmortem brain tissue is ideally suited to determining the effects of long-term alcohol abuse, but it also makes an important contribution to understanding pathogenesis across the spectrum of alcohol misuse disorders and potentially other neurodegenerative diseases. Tissue from the bank has contributed to 330 peer-reviewed journal articles including 120 related to alcohol research. Using the results of these articles, this review chronicles advances in alcohol-related brain research since 2003, the so-called genomic age. In particular, it concentrates on transcriptomic approaches to the pathogenesis of ARBD and builds on earlier reviews of structural changes (Harper et al. Prog Neuropsychopharmacol Biol Psychiatry 2003;27:951) and proteomics (Matsumoto et al. Expert Rev Proteomics 2007;4:539). Copyright © 2013 by the Research Society on Alcoholism.

  3. Tissue-specific increases in 11beta-hydroxysteroid dehydrogenase type 1 in normal weight postmenopausal women.

    Directory of Open Access Journals (Sweden)

    Therése Andersson

    Full Text Available With age and menopause there is a shift in adipose distribution from gluteo-femoral to abdominal depots in women. Associated with this redistribution of fat are increased risks of type 2 diabetes and cardiovascular disease. Glucocorticoids influence body composition, and 11beta-hydroxysteroid dehydrogenase type 1 (11betaHSD1 which converts inert cortisone to active cortisol is a putative key mediator of metabolic complications in obesity. Increased 11betaHSD1 in adipose tissue may contribute to postmenopausal central obesity. We hypothesized that tissue-specific 11betaHSD1 gene expression and activity are up-regulated in the older, postmenopausal women compared to young, premenopausal women. Twenty-three pre- and 23 postmenopausal, healthy, normal weight women were recruited. The participants underwent a urine collection, a subcutaneous adipose tissue biopsy and the hepatic 11betaHSD1 activity was estimated by the serum cortisol response after an oral dose of cortisone. Urinary (5alpha-tetrahydrocortisol+5beta-tetrahydrocortisol/tetrahydrocortisone ratios were higher in postmenopausal women versus premenopausal women in luteal phase (P<0.05, indicating an increased whole-body 11betaHSD1 activity. Postmenopausal women had higher 11betaHSD1 gene expression in subcutaneous fat (P<0.05. Hepatic first pass conversion of oral cortisone to cortisol was also increased in postmenopausal women versus premenopausal women in follicular phase of the menstrual cycle (P<0.01, at 30 min post cortisone ingestion, suggesting higher hepatic 11betaHSD1 activity. In conclusion, our results indicate that postmenopausal normal weight women have increased 11betaHSD1 activity in adipose tissue and liver. This may contribute to metabolic dysfunctions with menopause and ageing in women.

  4. Abdominal Adipose Tissue was Associated with Glomerular Hyperfiltration among Non- Diabetic and Normotensive Adults with a Normal Body Mass Index.

    Directory of Open Access Journals (Sweden)

    Jeonghwan Lee

    Full Text Available Glomerular hyperfiltration is recognized as an early marker of progressive kidney dysfunction in the obese population. This study aimed to identify the relationship between glomerular hyperfiltration and body fat distribution measured by computed tomography (CT in healthy Korean adults. The study population included individuals aged 20-64 years who went a routine health check-up including an abdominal CT scan. We selected 4,378 individuals without diabetes and hypertension. Glomerular filtration rate was estimated using the CKD-EPI equation, and glomerular hyperfiltration was defined as the highest quintile of glomerular filtration rate. Abdominal adipose tissue areas were measured at the level of the umbilicus using a 16-detector CT scanner, and the cross-sectional area was calculated using Rapidia 2.8 CT software. The prevalence of glomerular hyperfiltration increased significantly according to the subcutaneous adipose tissue area in men (OR = 1.74 (1.16-2.61, P for trend 0.016, for the comparisons of lowest vs. highest quartile and visceral adipose tissue area in women (OR = 2.34 (1.46-3.75, P for trend < 0.001 in multivariate analysis. After stratification by body mass index (normal < 23 kg/m2, overweight ≥ 23 kg/m2, male subjects with greater subcutaneous adipose tissue, even those in the normal BMI group, had a higher prevalence of glomerular hyperfiltration (OR = 2.11 (1.17-3.80, P for trend = 0.009. Among women, the significance of visceral adipose tissue area on glomerular hyperfiltration resulted from the normal BMI group (OR = 2.14 (1.31-3.49, P for trend = 0.002. After menopause, the odds ratio of the association of glomerular hyperfiltration with subcutaneous abdominal adipose tissue increased (OR = 2.96 (1.21-7.25, P for trend = 0.013. Subcutaneous adipose tissue areas and visceral adipose tissue areas are positively associated with glomerular hyperfiltration in healthy Korean adult men and women, respectively. In post

  5. Antibodies trap tissue migrating helminth larvae and prevent tissue damage by driving IL-4Rα-independent alternative differentiation of macrophages.

    Directory of Open Access Journals (Sweden)

    Julia Esser-von Bieren

    Full Text Available Approximately one-third of the world's population suffers from chronic helminth infections with no effective vaccines currently available. Antibodies and alternatively activated macrophages (AAM form crucial components of protective immunity against challenge infections with intestinal helminths. However, the mechanisms by which antibodies target these large multi-cellular parasites remain obscure. Alternative activation of macrophages during helminth infection has been linked to signaling through the IL-4 receptor alpha chain (IL-4Rα, but the potential effects of antibodies on macrophage differentiation have not been explored. We demonstrate that helminth-specific antibodies induce the rapid trapping of tissue migrating helminth larvae and prevent tissue necrosis following challenge infection with the natural murine parasite Heligmosomoides polygyrus bakeri (Hp. Mice lacking antibodies (JH (-/- or activating Fc receptors (FcRγ(-/- harbored highly motile larvae, developed extensive tissue damage and accumulated less Arginase-1 expressing macrophages around the larvae. Moreover, Hp-specific antibodies induced FcRγ- and complement-dependent adherence of macrophages to larvae in vitro, resulting in complete larval immobilization. Antibodies together with helminth larvae reprogrammed macrophages to express wound-healing associated genes, including Arginase-1, and the Arginase-1 product L-ornithine directly impaired larval motility. Antibody-induced expression of Arginase-1 in vitro and in vivo occurred independently of IL-4Rα signaling. In summary, we present a novel IL-4Rα-independent mechanism of alternative macrophage activation that is antibody-dependent and which both mediates anti-helminth immunity and prevents tissue disruption caused by migrating larvae.

  6. DNA damage in oral cancer and normal cells induced by nitrogen atmospheric pressure plasma jets

    Science.gov (United States)

    Han, Xu; Kapaldo, James; Liu, Yueying; Stack, M. Sharon; Ptasinska, Sylwia

    2015-09-01

    Nitrogen atmospheric pressure plasma jets (APPJs) have been shown to effectively induce DNA double strand breaks in SCC25 oral cancer cells. The APPJ source constructed in our laboratory operates based on dielectric barrier discharge. It consists of two copper electrodes alternatively wrapping around a fused silica tube with nitrogen as a feed gas. It is generally more challenging to ignite plasma in N2 atmosphere than in noble gases. However, N2 provides additional advantages such as lower costs compared to noble gases, thus this design can be beneficial for the future long-term clinical use. To compare the effects of plasma on cancer cells (SCC25) and normal cells (OKF), the cells from both types were treated at the same experimental condition for various treatment times. The effective area with different damage levels after the treatment was visualized as 3D maps. The delayed damage effects were also explored by varying the incubation times after the treatment. All of these studies are critical for a better understanding of the damage responses of cellular systems exposed to the plasma radiation, thus are useful for the development of the advanced plasma cancer therapy. The research described herein was supported by the Division of Chemical Sciences, Geosciences and Biosciences, Basic Energy Sciences, Office of Science, United States Department of Energy through Grant No. DE-FC02-04ER15533.

  7. The Protective Effects of Vitamins C and E on The Oxidative Stress Induced by Sodium Metabisulfite on The Kidney Tissue in Adult Rats

    Directory of Open Access Journals (Sweden)

    Abdolnabi Peyravi

    2016-09-01

    Full Text Available Background & Objective: Sodium metabisulfite which is used as a food preservative in the food industry, has adverse effects on body organs such as kidney and body grouth rate. In this research we have studied the protective effect of Vitamin C and E as antioxidants, on the kidney tissue damage after the consumption of Sodium metabisulfite. Materials & methods: Forty-eight Adult male Wistar rats of 150-200 grams were divided into 6 groups of 8 each. Rats in the experimental groups received Sodium metabisulfite (520 mg / kg body weight by gavage feeding for 30 consecutive days. Also during this period, the experimental groups 2 and 3 received a daily dose of 100 mg / kg vitamins C and E, Respectively. The experimental group 4 received 50 mg / kg vitamin C plus 50 mg / kg of vitamin E by the same root. Control group received only normal diet and water. The placebo received vehicle (drug solvent as well as normal diet and water. At the end of the exprimental period the body growth rate was measured between the groups. The histhopatological examination was performed on the kidney tissue sections. by light microscope Results: The results showed sodium metabisulfite in daily dietary could lead to the kidney tissue damage and reduced body weight in rats (p <0.05. However, vitamins C and E can reduce the kidney tissue damage and allow a normal growth weight (p <0.05. Conclusion: With this study we could conclude that the antioxidant effect of that vitamins C and E have a protective effect on renal damage induced by sodium metabisulfite consumption

  8. The effects of simultaneous application of ultrasound and ionizing radiation on cultured mammalian cells and normal tissues

    International Nuclear Information System (INIS)

    Fujita, Shozo

    1976-01-01

    The influence of therapeutic ultrasound on ionizing radiation effects was studied. Cultured mammalian cells, FM3A, and normal tissues, auricle and kidney of rabbits, were irradiated with ionizing radiation alone, ultrasound alone and both simultaneously. The biological experiments were conducted on the basis of the investigations about the physical and the chemical aspects of ultrasound. The results obtained from such a systematic study were as follows. It was considered that so called ''cavitation'' with bubble formation played an important role on the chemical effects of ultrasound. The chemical effect showed an intensity threshold in the range from 0.5 to 1 W/cm 2 . In the biological studies of ultrasound, the following must be considered; (1) the inhomogeneity of ultrasound intensity on the same plane (2) the distance between ultrasound transducer and sample. At a distance of 3 cm, the radiosensitizing effect due to simultaneous irradiation of x-rays and ultrasound on cells in suspension was detected at intensities above 2 W/cm 2 . The KI starch system in solution also showed a similar tendency. The irreversible tissue destruction was observed in the auricle irradiated with 690 R of 60 Co gamma-rays with simultaneous ultrasound at an intensity of 3 W/cm 2 for 15 minutes. However, no irreversible damage was recognized in the separate treatments with a dose four times of the combined irradiation. The interstitial nephritis was found in the kidney irradiated with 200 R of gamma-rays with simultaneous ultrasound for 5 minutes. No histological change was detectable in the separate treatments with a dose three times of the combined irradiation. The results seem to indicate that the ionizing radiation effects are enhanced by therapeutic ultrasound. (auth.)

  9. Mammary stem cell and macrophage markers are enriched in normal tissue adjacent to inflammatory breast cancer.

    Science.gov (United States)

    Reddy, Jay P; Atkinson, Rachel L; Larson, Richard; Burks, Jared K; Smith, Daniel; Debeb, Bisrat G; Ruffell, Brian; Creighton, Chad J; Bambhroliya, Arvind; Reuben, James M; Van Laere, Steven J; Krishnamurthy, Savitri; Symmans, William F; Brewster, Abenaa M; Woodward, Wendy A

    2018-06-01

    We hypothesized that breast tissue not involved by tumor in inflammatory breast cancer (IBC) patients contains intrinsic differences, including increased mammary stem cells and macrophage infiltration, which may promote the IBC phenotype. Normal breast parenchyma ≥ 5 cm away from primary tumors was obtained from mastectomy specimens. This included an initial cohort of 8 IBC patients and 60 non-IBC patients followed by a validation cohort of 19 IBC patients and 25 non-IBC patients. Samples were immunostained for either CD44 + CD49f + CD133/2 + mammary stem cell markers or the CD68 macrophage marker and correlated with IBC status. Quantitation of positive cells was determined using inForm software from PerkinElmer. We also examined the association between IBC status and previously published tumorigenic stem cell and IBC tumor signatures in the validation cohort samples. 8 of 8 IBC samples expressed isolated CD44 + CD49f + CD133/2 + stem cell marked cells in the initial cohort as opposed to 0/60 non-IBC samples (p = 0.001). Similarly, the median number of CD44 + CD49f + CD133/2 + cells was significantly higher in the IBC validation cohort as opposed to the non-IBC validation cohort (25.7 vs. 14.2, p = 0.007). 7 of 8 IBC samples expressed CD68 + histologically confirmed macrophages in initial cohort as opposed to 12/48 non-IBC samples (p = 0.001). In the validation cohort, the median number of CD68 + cells in IBC was 3.7 versus 1.0 in the non-IBC cohort (p = 0.06). IBC normal tissue was positively associated with a tumorigenic stem cell signature (p = 0.02) and with a 79-gene IBC signature (p stem cell signature and IBC-specific tumor signature. Collectively, these data suggest that IBC normal tissue differs from non-IBC tissue. Whether these changes occur before the tumor develops or is induced by tumor warrants further investigation.

  10. Indirect Low-Intensity Ultrasonic Stimulation for Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Hyoungshin Park

    2010-01-01

    Full Text Available Low-intensity ultrasound (LIUS treatment has been shown to increase mass transport, which could benefit tissue grafts during the immediate postimplant period, when blood supply to the implanted tissue is suboptimal. In this in vitro study, we investigated effects of LIUS stimulation on dye diffusion, proliferation, metabolism, and tropomyosin expression of muscle cells (C2C12 and on tissue viability and gene expression of human adipose tissue organoids. We found that LIUS increased dye diffusion within adjacent tissue culture wells and caused anisotropic diffusion patterns. This effect was confirmed by a hydrophone measurement resulting in acoustic pressure 150–341 Pa in wells. Cellular studies showed that LIUS significantly increased proliferation, metabolic activity, and expression of tropomyosin. Adipose tissue treated with LIUS showed significantly increased metabolic activity and the cells had similar morphology to normal unilocular adipocytes. Gene analysis showed that tumor necrosis factor-alpha expression (a marker for tissue damage was significantly lower for stimulated organoids than for control groups. Our data suggests that LIUS could be a useful modality for improving graft survival in vivo.

  11. DNA double strand break repair pathway plays a significant role in determining the radiotherapy induced normal tissue toxicity among head-and-neck and breast cancer

    International Nuclear Information System (INIS)

    Sadashiva, Satish Rao Bola; Mumbrekar, Kamalesh Dattaram; Venkatesh, Goutham Hassan; Fernandes, Donald Jerard; Bejadi, Vadhiraja Manjunath; Kapaettu, Satyamoorthy

    2014-01-01

    The ability to predict individual risk of radiotherapy induced normal tissue complications prior to the therapy may give an opportunity to personalize the treatment aiming improved therapeutic effect and quality of life. Therefore, predicting the risk of developing acute reactions before the initiation of radiation therapy may serve as a potential biomarker. DNA double-strand break (DSB) induction and its repair kinetics in lymphocytes of Head-and-Neck (n = 183) and Breast cancer (n = 132) patients undergoing chemoradiation or radiation therapy alone were analyzed by performing γ-H2AX foci, neutral comet and a modified neutral filter elution assay. Candidate radioresponsive genes like DNA repair, antioxidant pathway, profibrotic cytokine genes were screened for the common variants for their association with normal tissue toxicity outcome. Patients were stratified as non-over responders (NOR) and over responders (OR) based on their Radiation Therapy Oncology Group grading for normal tissue adverse reactions. Our results suggest that DSB repair plays a major role in the development of normal tissue adverse reactions in H and N and Breast cancer patients. The cellular (γ-H2AX analysis) and SNP analysis may have the potential to be developed into a clinically useful predictive assay for identifying the normal tissue over reactors

  12. Hypoxyradiotherapy: lack of experimental evidence for a preferential radioprotective effect on normal versus tumor tissue as shown by direct oxygenation measurements in experimental sarcomas

    International Nuclear Information System (INIS)

    Kelleher, Debra K.; Thews, Oliver; Vaupel, Peter

    1997-01-01

    Aim: In order to investigate possible pathophysiological mechanisms underlying the postulated preferential protective effect of hypoxia on normal tissue during radiotherapy, the impact of acute respiratory hypoxia (8.2% O 2 + 91.8% N 2 ) on tissue oxygenation was assessed. Methods: Tumor and normal tissue oxygenation was directly determined using O 2 -sensitive electrodes in two experimental rat tumors (DS and Yoshida sarcomas) and in the normal subcutis of the hind foot dorsum. Results: During respiratory hypoxia, arterial blood O 2 tension (pO 2 ), oxyhemoglobin saturation and mean arterial blood pressure decreased. Changes in the arterial blood gas status were accompanied by a reflex hyperventilation leading to hypocapnia and respiratory alkalosis. In the subcutis, tissue oxygenation worsened during acute hypoxia, with decreases in the mean and median pO 2 . Significant increases in the hypoxic fractions were, however, not seen. In tumor tissues, oxygenation also worsened upon hypoxic hypoxia with significant decreases in the mean and median pO 2 and increases in the size of the hypoxic fractions for both sarcomas. Conclusion: These results suggest that during respiratory hypoxia, radiobiologically relevant reductions in the oxygenation (and a subsequent selective radioprotection) of normal tissue may not be achieved. In addition, in the tumor models studied, a worsening of tumor oxygenation was seen which could result in an increased radioresistance

  13. Incorporation of tritiated thymidine and uridine in normal and endopolyploid nuclei of differentiated tissue

    International Nuclear Information System (INIS)

    Bansal, Y.K.; Sen, Sumitra

    1987-01-01

    Rate of replication and transcription between normal and giant endopolyploid nuclei of differentiated tissue of Hordeum vulgare L. (2n=14) roots and Phlox drummondii Hook. (2n=14) and Zea mays L. (2n=20) endosperms were studied by labelling experiments with tritiated thymidine and uridine. The incorporation of thymidine and uridine was identical in both diploid and giant endopolyploid nuclei of the roots of H. vulgare. The endosperm cells of P. drummondii and Z. mays, however, exhibit markedly different labelling pattern in normal (i.e. triploid) and endopolyploid nuclei where both replication and transcription were rather high. The nutritive function of the endosperm is probably responsible for this high degree of activity. (author). 14 refs., 10 figs., 3 tables

  14. Comparison of radiosensitivity between tumor and normal tissue in terms of cell population kinetics

    International Nuclear Information System (INIS)

    Sugahara, Tsutomu; Utsumi, Hiroshi

    1975-01-01

    Puck and Marcus in 1956 established the in vitro colony formation of mammalian cells and demonstrated a dose-survival curve of mammalian cells well fitted to the target theory. Since then almost all of the work on the radiosensitivity of malignant and normal cells has been based on the reproductive integrity of cells. However, in the author's laboratory, a recent work was done on the effect of ionizing radiation on the differentiative trait, using clonal cell cultures developed by Coon (1966) in chick embryonic cartilage cells. This work demonstrated clearly that the differentiative trait is more radiosensitive than is reproduction. Based on this finding a new compartment model is proposed for a cell renewal system which demonstrates the difference between normal and malignant tissue. (author)

  15. Comparison of SUVs normalized by lean body mass determined by CT with those normalized by lean body mass estimated by predictive equations in normal tissues

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Woo Hyoung; Kim, Chang Guhn; Kim, Dae Weung [Wonkwang Univ. School of Medicine, Iksan (Korea, Republic of)

    2012-09-15

    Standardized uptake values (SUVs)normalized by lean body mass (LBM)determined by CT were compared with those normalized by LBM estimated using predictive equations (PEs)in normal liver, spleen, and aorta using {sup 18}F FDG PET/CT. Fluorine 18 fluorodeoxyglucose (F FDG)positron emission tomography/computed tomography (PET/CT)was conducted on 453 patients. LBM determined by CT was defined in 3 ways (LBM{sup CT1}-3). Five PEs were used for comparison (LBM{sup PE1}-5). Tissue SUV normalized by LBM (SUL) was calculated using LBM from each method (SUL{sup CT1}-3, SUL{sup PE1}-5). Agreement between methods was assessed by Bland Altman analysis. Percentage difference and percentage error were also calculated. For all liver SUL{sup CTS} vs. liver SUL{sup PES} except liver SUL{sup PE3}, the range of biases, SDs of percentage difference and percentage errors were -0.17-0.24 SUL, 6.15-10.17%, and 25.07-38.91%, respectively. For liver SUL{sup CTs} vs. liver SUL{sup PE3}, the corresponding figures were 0.47-0.69 SUL, 10.90-11.25%, and 50.85-51.55%, respectively, showing the largest percentage errors and positive biases. Irrespective of magnitudes of the biases, large percentage errors of 25.07-51.55% were observed between liver SUL{sup CT1}-3 and liver SUL{sup PE1}-5. The results of spleen and aorta SUL{sup CTs} and SUL{sup PEs} comparison were almost identical to those for liver. The present study demonstrated substantial errors in individual SUL{sup PEs} compared with SUL{sup CTs} as a reference value. Normalization of SUV by LBM determined by CT rather than PEs may be a useful approach to reduce errors in individual SUL{sup PEs}.

  16. Comparison of SUVs normalized by lean body mass determined by CT with those normalized by lean body mass estimated by predictive equations in normal tissues

    International Nuclear Information System (INIS)

    Kim, Woo Hyoung; Kim, Chang Guhn; Kim, Dae Weung

    2012-01-01

    Standardized uptake values (SUVs)normalized by lean body mass (LBM)determined by CT were compared with those normalized by LBM estimated using predictive equations (PEs)in normal liver, spleen, and aorta using 18 F FDG PET/CT. Fluorine 18 fluorodeoxyglucose (F FDG)positron emission tomography/computed tomography (PET/CT)was conducted on 453 patients. LBM determined by CT was defined in 3 ways (LBM CT1 -3). Five PEs were used for comparison (LBM PE1 -5). Tissue SUV normalized by LBM (SUL) was calculated using LBM from each method (SUL CT1 -3, SUL PE1 -5). Agreement between methods was assessed by Bland Altman analysis. Percentage difference and percentage error were also calculated. For all liver SUL CTS vs. liver SUL PES except liver SUL PE3 , the range of biases, SDs of percentage difference and percentage errors were -0.17-0.24 SUL, 6.15-10.17%, and 25.07-38.91%, respectively. For liver SUL CTs vs. liver SUL PE3 , the corresponding figures were 0.47-0.69 SUL, 10.90-11.25%, and 50.85-51.55%, respectively, showing the largest percentage errors and positive biases. Irrespective of magnitudes of the biases, large percentage errors of 25.07-51.55% were observed between liver SUL CT1 -3 and liver SUL PE1 -5. The results of spleen and aorta SUL CTs and SUL PEs comparison were almost identical to those for liver. The present study demonstrated substantial errors in individual SUL PEs compared with SUL CTs as a reference value. Normalization of SUV by LBM determined by CT rather than PEs may be a useful approach to reduce errors in individual SUL PEs

  17. Proton pump inhibitors suppress iNOS-dependent DNA damage in Barrett's esophagus by increasing Mn-SOD expression

    Energy Technology Data Exchange (ETDEWEB)

    Thanan, Raynoo [Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie 513-8670 (Japan); Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie 514-8507 (Japan); Ma, Ning [Faculty of Health Science, Suzuka University of Medical Science, Suzuka, Mie 513-0293 (Japan); Iijima, Katsunori; Abe, Yasuhiko; Koike, Tomoyuki; Shimosegawa, Tooru [Division of Gastroenterology, Tohoku University Hospital, Sendai, Miyaki 980-8574 (Japan); Pinlaor, Somchai [Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002 (Thailand); Hiraku, Yusuke; Oikawa, Shinji; Murata, Mariko [Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie 514-8507 (Japan); Kawanishi, Shosuke, E-mail: kawanisi@suzuka-u.ac.jp [Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie 513-8670 (Japan)

    2012-05-04

    Highlights: Black-Right-Pointing-Pointer Inflammation by Barrett's esophagus (BE) is a risk factor of its adenocarcinoma (BEA). Black-Right-Pointing-Pointer 8-Nitroguanine and 8-oxodG are inflammation-related DNA lesions. Black-Right-Pointing-Pointer DNA lesions and iNOS expression were higher in the order, BEA > BE > normal tissues. Black-Right-Pointing-Pointer Proton pump inhibitors suppress DNA damage by increasing Mn-SOD via Nrf2 activation. Black-Right-Pointing-Pointer DNA lesions can be useful biomarkers to predict risk of BEA in BE patients. -- Abstract: Barrett's esophagus (BE), an inflammatory disease, is a risk factor for Barrett's esophageal adenocarcinoma (BEA). Treatment of BE patients with proton pump inhibitors (PPIs) is expected to reduce the risk of BEA. We performed an immunohistochemical study to examine the formation of nitrative and oxidative DNA lesions, 8-nitroguanine and 8-oxo-7,8-dihydro-2 Prime -deoxygaunosine (8-oxodG), in normal esophageal, BE with pre- and post-treatment by PPIs and BEA tissues. We also observed the expression of an oxidant-generating enzyme (iNOS) and its transcription factor NF-{kappa}B, an antioxidant enzyme (Mn-SOD), its transcription factor (Nrf2) and an Nrf2 inhibitor (Keap1). The immunoreactivity of DNA lesions was significantly higher in the order of BEA > BE > normal tissues. iNOS expression was significantly higher in the order of BEA > BE > normal tissues, while Mn-SOD expression was significantly lower in the order of BEA < BE < normal tissues. Interestingly, Mn-SOD expression and the nuclear localization of Nrf2 were significantly increased, and the formation of DNA lesions was significantly decreased in BE tissues after PPIs treatment for 3-6 months. Keap1 and iNOS expression was not significantly changed by the PPIs treatment in BE tissues. These results indicate that 8-nitroguanine and 8-oxodG play a role in BE-derived BEA. Additionally, PPIs treatment may trigger the activation and

  18. Classification of mass and normal breast tissue: A convolution neural network classifier with spatial domain and texture images

    International Nuclear Information System (INIS)

    Sahiner, B.; Chan, H.P.; Petrick, N.; Helvie, M.A.; Adler, D.D.; Goodsitt, M.M.; Wei, D.

    1996-01-01

    The authors investigated the classification of regions of interest (ROI's) on mammograms as either mass or normal tissue using a convolution neural network (CNN). A CNN is a back-propagation neural network with two-dimensional (2-D) weight kernels that operate on images. A generalized, fast and stable implementation of the CNN was developed. The input images to the CNN were obtained form the ROI's using two techniques. The first technique employed averaging and subsampling. The second technique employed texture feature extraction methods applied to small subregions inside the ROI. Features computed over different subregions were arranged as texture images, which were subsequently used as CNN inputs. The effects of CNN architecture and texture feature parameters on classification accuracy were studied. Receiver operating characteristic (ROC) methodology was used to evaluate the classification accuracy. A data set consisting of 168 ROI's containing biopsy-proven masses and 504 ROI's containing normal breast tissue was extracted from 168 mammograms by radiologists experienced in mammography. This data set was used for training and testing the CNN. With the best combination of CNN architecture and texture feature parameters, the area under the test ROC curve reached 0.87, which corresponded to a true-positive fraction of 90% at a false positive fraction of 31%. The results demonstrate the feasibility of using a CNN for classification of masses and normal tissue on mammograms

  19. Reirradiation of normal tissues: Preclinical radiobiological data; Reirradiation des tissus sains: donnees radiobiologiques precliniques

    Energy Technology Data Exchange (ETDEWEB)

    Bourgier, C.; Vozenin, M.C.; Deutsch, E. [Departement de radiotherapie et laboratoire Upres EA2710, institut Gustave-Roussy, 94 - Villejuif (France)

    2010-10-15

    Reirradiation represent an unfrequent particular clinical situation. The risk/benefit ratio assessment must be taken into account, considering both clinical and dosimetric aspects. There is a relatively limited amount of preclinical data available to date and clinicians should cautiously perform re-irradiations in selected indications. This review summarizes the experimental data available on reirradiation of normal tissues, the consequences on early and late toxicities as well as the intrinsic limitations of these models. (authors)

  20. Oxidative Stress in Horseradish (Armoracia lapathifolia Gilib. Tissues Grown in vitro

    Directory of Open Access Journals (Sweden)

    Petra Peharec

    2011-01-01

    Full Text Available In a previous study it was reported that transformed tissue of horseradish (Armoracia lapathifolia Gilib., obtained by infection of leaf explants with A. tumefaciens, developed two tumour lines with different morphology. One line grew as a completely unorganized tissue (TN – tumour tissue, while the other line grew as a partially organized teratogenous tumour with malformed hyperhydric shoots (TM – teratoma tissue, but did not regenerate the whole plant of normal morphology. The factor responsible for this problem could be the increased production of reactive oxygen species (ROS. Therefore, in this study a possible involvement of activated oxygen metabolism in dedifferentiation and hyperhydricity in TM and TN tissues is investigated. Elevated values of malondialdehyde and protein carbonyl contents found in TM and TN, in comparison with plantlet leaf, confirm the presence of oxidative stress. However, lower H2O2 content was measured in TM and TN. Lipoxygenase (LOX activity was more pronounced in TM and especially in TN compared to leaf, which suggests that the LOX-dependent peroxidation of fatty acids might be one of the causes of oxidative damage. Moreover, significantly higher peroxidase (PRX and ascorbate peroxidase (APX activity as well as the increased number of their isoforms was found in transformed TM and TN in comparison with leaf. On the other hand, significantly lower superoxide dismutase (SOD activity was found in TM and TN, which correlates with lower H2O2 content. High catalase (CAT activity measured in leaf and partially organized TM is consistent with the role of CAT in growth and differentiation. In conclusion, in horseradish transformed tissues that underwent dedifferentiation and hyperhydricity, prominent oxidative damage was found. This result suggests that oxidative stress could be associated with the inability of partially organized teratogenous TM to regenerate plantlets with normal morphology.

  1. CNS bioavailability and radiation protection of normal hippocampal neurogenesis by a lipophilic Mn porphyrin-based superoxide dismutase mimic, MnTnBuOE-2-PyP5+

    Directory of Open Access Journals (Sweden)

    David Leu

    2017-08-01

    Full Text Available Although radiation therapy can be effective against cancer, potential damage to normal tissues limits the amount that can be safely administered. In central nervous system (CNS, radiation damage to normal tissues is presented, in part, as suppressed hippocampal neurogenesis and impaired cognitive functions. Mn porphyrin (MnP-based redox active drugs have demonstrated differential effects on cancer and normal tissues in experimental animals that lead to protection of normal tissues and radio- and chemo-sensitization of cancers. To test the efficacy of MnPs in CNS radioprotection, we first examined the tissue levels of three different MnPs – MnTE-2-PyP5+(MnE, MnTnHex-2-PyP5+(MnHex, and MnTnBuOE-2-PyP5+(MnBuOE. Nanomolar concentrations of MnHex and MnBuOE were detected in various brain regions after daily subcutaneous administration, and MnBuOE was well tolerated at a daily dose of 3 mg/kg. Administration of MnBuOE for one week before cranial irradiation and continued for one week afterwards supported production and long-term survival of newborn neurons in the hippocampal dentate gyrus. MnP-driven S-glutathionylation in cortex and hippocampus showed differential responses to MnP administration and radiation in these two brain regions. A better understanding of how preserved hippocampal neurogenesis correlates with cognitive functions following cranial irradiation will be helpful in designing better MnP-based radioprotection strategies. Keywords: Mn porphyrin, Bioavailability, BMX-001, Hippocampus, Neurogenesis, Radioprotection

  2. Elemental composition of 'normal' and Alzheimer brain tissue by INA and PIXE analyses

    International Nuclear Information System (INIS)

    Stedman, J.D.; Spyrou, N.M.

    1997-01-01

    Instrumental methods based on the nuclear and atomic properties of the elements have been used for many years to determine elemental concentrations in a variety of materials for biomedical, industrial and environmental applications. These methods offer high sensitivity for accurate trace element measurements, suffer few interfering or competing effects. Present no blank problems and are convenient for both research and routine analyses. The present article describes the use of two trace element techniques. Firstly the use of activation of stable nuclei irradiated by neutrons in the core of a low power research reactor as a means of detection of elements through the resulting gamma-rays emitted. Secondly, the observations of the interactions of energetic ion beams with the material in order to identify elemental species. Over recent years there has been some interest in determining the elemental composition of 'normal' and Alzheimer affected brain tissue, however literature findings are inconsistent. Possible reasons for discrepancies need to be identified for further progress to be made. Here, post-mortem tissue samples, provided by the Alzheimer's Disease Brain Bank, Institute of Psychiatry, London, were taken from the frontal, occipital, parietal and temporal lobes of both hemispheres of brains from 13 'normal' and 19 Alzheimer subjects. The elemental composition of the samples was determined using the analytical techniques of INAA (instrumental neutron activation analysis), RBS (Rutherford back-scattering) and PIXE (particle induced x-ray emission). The principal findings are summarised here. (author)

  3. Comparative pharmacokinetic and tissue distribution profiles of four major bioactive components in normal and hepatic fibrosis rats after oral administration of Fuzheng Huayu recipe.

    Science.gov (United States)

    Yang, Tao; Liu, Shan; Wang, Chang-Hong; Tao, Yan-Yan; Zhou, Hua; Liu, Cheng-Hai

    2015-10-10

    Fuzheng Huayu recipe (FZHY) is a herbal product for the treatment of liver fibrosis approved by the Chinese State Food and Drug Administration (SFDA), but its pharmacokinetics and tissue distribution had not been investigated. In this study, the liver fibrotic model was induced with intraperitoneal injection of dimethylnitrosamine (DMN), and FZHY was given orally to the model and normal rats. The plasma pharmacokinetics and tissue distribution profiles of four major bioactive components from FZHY were analyzed in the normal and fibrotic rat groups using an ultrahigh performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method. Results revealed that the bioavailabilities of danshensu (DSS), salvianolic acid B (SAB) and rosmarinic acid (ROS) in liver fibrotic rats increased 1.49, 3.31 and 2.37-fold, respectively, compared to normal rats. There was no obvious difference in the pharmacokinetics of amygdalin (AMY) between the normal and fibrotic rats. The tissue distribution of DSS, SAB, and AMY trended to be mostly in the kidney and lung. The distribution of DSS, SAB, and AMY in liver tissue of the model rats was significantly decreased compared to the normal rats. Significant differences in the pharmacokinetics and tissue distribution profiles of DSS, ROS, SAB and AMY were observed in rats with hepatic fibrosis after oral administration of FZHY. These results provide a meaningful basis for developing a clinical dosage regimen in the treatment of hepatic fibrosis by FZHY. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Real-time optoacoustic monitoring of temperature in tissues

    International Nuclear Information System (INIS)

    Larina, Irina V; Larin, Kirill V; Esenaliev, Rinat O

    2005-01-01

    To improve the safety and efficacy of thermal therapy, it is necessary to map tissue temperature in real time with submillimetre spatial resolution. Accurate temperature maps may provide the necessary control of the boundaries of the heated regions and minimize thermal damage to surrounding normal tissues. Current imaging modalities fail to monitor tissue temperature in real time with high resolution and accuracy. We investigated a non-invasive optoacoustic method for accurate, real-time monitoring of tissue temperature during thermotherapy. In this study, we induced temperature gradients in tissue and tissue-like samples and monitored the temperature distribution using the optoacoustic technique. The fundamental harmonic of a Q-switched Nd : YAG laser (λ = 1064 nm) was used for optoacoustic wave generation and probing of tissue temperature. The tissue temperature was also monitored with a multi-sensor temperature probe inserted in the samples. Good agreement between optoacoustically measured and actual tissue temperatures was obtained. The accuracy of temperature monitoring was better than 1 0 C, while the spatial resolution was about 1 mm. These data suggest that the optoacoustic technique has the potential to be used for non-invasive, real-time temperature monitoring during thermotherapy

  5. Mesenchymal Stem Cells From Bone Marrow, Adipose Tissue, and Lung Tissue Differentially Mitigate Lung and Distal Organ Damage in Experimental Acute Respiratory Distress Syndrome.

    Science.gov (United States)

    Silva, Johnatas D; Lopes-Pacheco, Miquéias; Paz, Ana H R; Cruz, Fernanda F; Melo, Elga B; de Oliveira, Milena V; Xisto, Débora G; Capelozzi, Vera L; Morales, Marcelo M; Pelosi, Paolo; Cirne-Lima, Elizabeth; Rocco, Patricia R M

    2018-02-01

    Mesenchymal stem cells-based therapies have shown promising effects in experimental acute respiratory distress syndrome. Different mesenchymal stem cells sources may result in diverse effects in respiratory diseases; however, there is no information regarding the best source of mesenchymal stem cells to treat pulmonary acute respiratory distress syndrome. We tested the hypothesis that mesenchymal stem cells derived from bone marrow, adipose tissue, and lung tissue would lead to different beneficial effects on lung and distal organ damage in experimental pulmonary acute respiratory distress syndrome. Animal study and primary cell culture. Laboratory investigation. Seventy-five Wistar rats. Wistar rats received saline (control) or Escherichia coli lipopolysaccharide (acute respiratory distress syndrome) intratracheally. On day 2, acute respiratory distress syndrome animals were further randomized to receive saline or bone marrow, adipose tissue, or lung tissue mesenchymal stem cells (1 × 10 cells) IV. Lung mechanics, histology, and protein levels of inflammatory mediators and growth factors were analyzed 5 days after mesenchymal stem cells administration. RAW 264.7 cells (a macrophage cell line) were incubated with lipopolysaccharide followed by coculture or not with bone marrow, adipose tissue, and lung tissue mesenchymal stem cells (10 cells/mL medium). Regardless of mesenchymal stem cells source, cells administration improved lung function and reduced alveolar collapse, tissue cellularity, collagen, and elastic fiber content in lung tissue, as well as decreased apoptotic cell counts in liver. Bone marrow and adipose tissue mesenchymal stem cells administration also reduced levels of tumor necrosis factor-α, interleukin-1β, keratinocyte-derived chemokine, transforming growth factor-β, and vascular endothelial growth factor, as well as apoptotic cell counts in lung and kidney, while increasing expression of keratinocyte growth factor in lung tissue

  6. Comparison of multiple assays for detecting human antibodies directed against antigens on normal and malignant tissue culture cells

    International Nuclear Information System (INIS)

    Rosenberg, S.A.; Schwarz, S.; Anding, H.; Hyatt, C.; Williams, G.M.; Johns Hopkins Univ., Baltimore, Md.

    1977-01-01

    Four separate assays of human antibody reactivity to four separate normal and malignant human tissue culture cells lines from two patients have been evaluated using a single highly-reactive allogeneic serum. The visual end-point cytolysis assay and the chromium-51 release assay were equally sensitive in measuring complement mediated antibody cytotoxicity and both were far more sensitive than a trypan blue dye exclusion assay. The assay of antibody reactivity by hemadsorption technique was about 10 times more sensitive than any of the cytotoxicity assays. This latter assay measures only IgG antibody however. These assays showed that cell lines from different patients may differ greatly in 'reactivity' to an allogeneic serum and emphasized the importance of utilizing tumor and normal cells from the same patient when using tissue culture cells to search for tumor specific reactivity. These observations emphasize the importance of utilizing multiple assays against paired normal and malignant cells from the same patient to be certain of the specificity and magnitude of the measured antibody

  7. Clinical evaluation of normal tissue toxicity induced by ionizing radiation in cases of laryngeal carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, Adriano de Paula; Marques, Gustavo Inacio de Gomes; Soares, Renata da Bastos Ascenco; Dourado, Juliana Castro Dourado [Pontificia Universidade Catolica de Goias (PUCGO), Goiania, GO (Brazil). Dept. of Medicine; Mendonca, Yuri de Abreu, E-mail: renata.soares@pucgoias.edu.br [Goias Association Against Cancer, Goiania, GO (Brazil). Lab. of Radiobiology and Oncogenetics

    2012-07-01

    Laryngeal cancer is the second most frequent head and neck cancer in the Brazilian male population. For treatment, radiotherapy combined with chemotherapy is now used in substitution for total laryngectomy, becoming the standard treatment for advanced larynx cancer cases, with the aim of organ preservation. However, this method needs assessment of the side effects caused to normal tissue and organ functionality after treatment and the relation of these clinical factors to the individual characteristics of patients. Thus, the clinical characteristics of 229 patients with laryngeal cancer treated with radiotherapy were evaluated by medical records analysis in relation to normal tissue radiosensibility. Significant relations between smoking (p = 0.018) and combined chemoradiotherapy assistance (p = 0.03) were identified with high frequency of treatment suspension cases. The application of combined chemoradiotherapy also resulted in a higher incidence of oral mucositis (p = 0.04), xerostomia (p = 0.001) and treatment side effects to GIT (p = 0.04). Advanced clinical staging was associated with worse prognosis (p = 0.002) and a higher occurrence of treatment failure (p < 0.001). Radiotherapy was also less effective depending on the primary tumor location (p = 0.001). (author)

  8. Gene expression profile of the cartilage tissue spontaneously regenerated in vivo by using a novel double-network gel: Comparisons with the normal articular cartilage

    Directory of Open Access Journals (Sweden)

    Kurokawa Takayuki

    2011-09-01

    Full Text Available Abstract Background We have recently found a phenomenon that spontaneous regeneration of a hyaline cartilage-like tissue can be induced in a large osteochondral defect by implanting a double-network (DN hydrogel plug, which was composed of poly-(2-Acrylamido-2-methylpropanesulfonic acid and poly-(N, N'-Dimetyl acrylamide, at the bottom of the defect. The purpose of this study was to clarify gene expression profile of the regenerated tissue in comparison with that of the normal articular cartilage. Methods We created a cylindrical osteochondral defect in the rabbit femoral grooves. Then, we implanted the DN gel plug at the bottom of the defect. At 2 and 4 weeks after surgery, the regenerated tissue was analyzed using DNA microarray and immunohistochemical examinations. Results The gene expression profiles of the regenerated tissues were macroscopically similar to the normal cartilage, but showed some minor differences. The expression degree of COL2A1, COL1A2, COL10A1, DCN, FMOD, SPARC, FLOD2, CHAD, CTGF, and COMP genes was greater in the regenerated tissue than in the normal cartilage. The top 30 genes that expressed 5 times or more in the regenerated tissue as compared with the normal cartilage included type-2 collagen, type-10 collagen, FN, vimentin, COMP, EF1alpha, TFCP2, and GAPDH genes. Conclusions The tissue regenerated by using the DN gel was genetically similar but not completely identical to articular cartilage. The genetic data shown in this study are useful for future studies to identify specific genes involved in spontaneous cartilage regeneration.

  9. Oxidative stress damage as a detrimental factor in preterm birth pathology

    Directory of Open Access Journals (Sweden)

    Ramkumar eMenon

    2014-11-01

    Full Text Available Normal term and spontaneous preterm births (PTB are documented to be associated with oxidative stress (OS, and imbalances in the redox system (balance between pro- and antioxidant have been reported in the maternal-fetal intrauterine compartments. The exact mechanism of labor initiation either at term or preterm by OS is still unclear, and this lack of understanding can partially be blamed for failure of antioxidant supplementation trials in PTB prevention. Based on recent findings from our laboratory, we postulate heterogeneity in host OS response. The physiologic (at term and pathophysiologic (preterm pathways of labor are not mediated by OS alone but by OS-induced damage to intrauterine tissues, especially fetal membranes of the placenta. OS damage affects all major cellular elements in the fetal cells, and this damage promotes fetal cell senescence (aging. The aging of the fetal cells are predominated by p38 mitogen activated kinase (p38MAPK pathways. Senescing cells generate biomolecular signals that are uterotonic, triggering labor process. The aging of fetal cells is normal at term. However, aging is premature in PTB, especially in those PTBs complicated by preterm premature rupture of the membranes (pPROM, where elements of redox imbalances and OS damage are more dominant. We postulate that fetal cell senescence signals generated by OS damage are likely triggers for labor. This review highlights the mechanisms involved in senescence development at term and preterm by OS damage and provides insight into novel fetal signals of labor initiation pathways.

  10. DNA damage in plant herbarium tissue.

    NARCIS (Netherlands)

    Staats, M.; Cuenca, A.; Richardson, J.E.; Ginkel, R.V.; Petersen, G.; Seberg, O.; Bakker, F.T.

    2011-01-01

    Dried plant herbarium specimens are potentially a valuable source of DNA. Efforts to obtain genetic information from this source are often hindered by an inability to obtain amplifiable DNA as herbarium DNA is typically highly degraded. DNA post-mortem damage may not only reduce the number of

  11. Radiation therapy and late reactions in normal tissues

    International Nuclear Information System (INIS)

    Aoyama, Takashi; Kuroda, Yasumasa

    1998-01-01

    Recent developments in cancer therapy have made us increasingly aware that the quality of life of a patient is as valuable as other benefits received from therapy. This awareness leads to an emphasis on organ and/or function preservation in the course of therapy. In line with this new thinking, greater consideration is placed on radiation therapy as an appropriate modality of cancer therapy. Possible complications in normal tissues, especially those of late reaction type after the therapy must be overcome. This review, therefore, focuses on recent progress of studies on mechanisms of the complications of the late reaction type. An observation of a clinical case concerning a late reaction of spinal cord (radiation myelopathy) and surveys of experimental studies on the mechanisms of late reactions (including radiation pneumonitis and lung fibrosis, and radiation response of vascular endothelial cells) provide a hypothesis that apoptosis through the pathway starting with radiation-induced sphingomyelin hydrolysis may play an important role in causing a variety of late reactions. This insight is based on the fact that radiation also activates protein kinase C which appears to block apoptosis. The mechanisms of late reactions, therefore, may involve a balance between radiation-induced apoptotic death and its down regulation by suppressor mechanisms through protein kinase C. (author)

  12. Normal liver tissue sparing by intensity-modulated proton stereotactic body radiotherapy for solitary liver tumours

    International Nuclear Information System (INIS)

    Petersen, Joergen B. B.; Hansen, Anders T.; Lassen, Yasmin; Grau, Cai; Hoeyer, Morten; Muren, Ludvig P.

    2011-01-01

    Background. Stereotactic body radiotherapy (SBRT) is often the preferred treatment for the advanced liver tumours which owing to tumour distribution, size and multi-focality are out of range of surgical resection or radiofrequency ablation. However, only a minority of patients with liver tumours may be candidates for conventional SBRT because of the limited radiation tolerance of normal liver, intestine and other normal tissues. Due to the favourable depth-dose characteristics of protons, intensity-modulated proton therapy (IMPT) may be a superior alternative to photon-based SBRT. The purpose of this treatment planning study was therefore to investigate the potential sparing of normal liver by IMPT compared to photon-based intensity-modulated radiotherapy (IMRT) for solitary liver tumours. Material and methods. Ten patients with solitary liver metastasis treated at our institution with multi-field SBRT were retrospectively re-planned with IMRT and proton pencil beam scanning techniques. For the proton plans, two to three coplanar fields were used in contrast to five to six coplanar and non-coplanar photon fields. The same planning objectives were used for both techniques. A risk adapted dose prescription to the PTV surface of 12.5-16.75 Gy x 3 was used. Results. The spared liver volume for IMPT was higher compared to IMRT in all 10 patients. At the highest prescription dose level, the median liver volume receiving less than 15 Gy was 1411 cm 3 for IMPT and 955 cm 3 for IMRT (p D 15 Gy > 700 cm 3 constraint. For the D mean = 15 Gy constraint, nine of 10 cases could be treated at the highest dose level using IMPT whereas with IMRT, only two cases met this constraint at the highest dose level and six at the lowest dose level. Conclusion. A considerable sparing of normal liver tissue can be obtained using proton-based SBRT for solitary liver tumours

  13. B cell attracting chemokine 1 (CXCL13) and its receptor CXCR5 are expressed in normal and aberrant gut associated lymphoid tissue

    OpenAIRE

    Carlsen, H S; Baekkevold, E S; Johansen, F-E; Haraldsen, G; Brandtzaeg, P

    2002-01-01

    Background and aims: In mice, the B lymphocyte chemoattractant (BLC) CXC chemokine ligand 13 (CXCL13) is sufficient to induce a series of events leading to the formation of organised lymphoid tissue. Its receptor, CXCR5, is required for normal development of secondary lymphoid tissue. However, the human counterpart, B cell attracting chemokine 1 (BCA-1) has only been detected in the stomach and appendix and not in other parts of normal or diseased gut. Hence to elucidate the potential role of...

  14. Magnetization transfer ratio relates to cognitive impairment in normal elderly

    Directory of Open Access Journals (Sweden)

    Stephan eSeiler

    2014-09-01

    Full Text Available Magnetization transfer imaging (MTI can detect microstructural brain tissue changes and may be helpful in determining age-related cerebral damage. We investigated the association between the magnetization transfer ratio (MTR in gray and white matter and cognitive functioning in 355 participants of the Austrian Stroke Prevention Family Study (ASPS-Fam aged 38 to 86 years. MTR maps were generated for the neocortex, deep gray matter structures, white matter hyperintensities, and normal appearing white matter. Adjusted mixed models determined whole brain and lobar cortical MTR to be directly and significantly related to performance on tests of memory, executive function and motor skills. There existed an almost linear dose-effect relationship. MTR of deep gray matter structures and normal appearing white matter correlated to executive functioning. All associations were independent of demographics, vascular risk factors, focal brain lesions and cortex volume.Further research is needed to understand the basis of this association at the tissue level, and to determine the role of MTR in predicting cognitive decline and dementia.

  15. Quantification of Estrogen Receptor Expression in Normal Breast Tissue in Postmenopausal Women With Breast Cancer and Association With Tumor Subtypes.

    Science.gov (United States)

    Gulbahce, H Evin; Blair, Cindy K; Sweeney, Carol; Salama, Mohamed E

    2017-09-01

    Estrogen exposure is important in the pathogenesis of breast cancer and is a contributing risk factor. In this study we quantified estrogen receptor (ER) alpha expression in normal breast epithelium (NBR) in women with breast cancer and correlated it with breast cancer subtypes. Tissue microarrays were constructed from 204 breast cancer patients for whom normal breast tissue away from tumor was available. Slides stained with ER were scanned and expression in normal terminal duct lobular epithelium was quantitated using computer-assisted image analysis. ER expression in normal terminal duct lobular epithelium of postmenopausal women with breast cancer was significantly associated with estrogen and triple (estrogen, progesterone receptors, and HER2) negative phenotypes. Also increased age at diagnosis was significantly associated with ER expression in NBR. ER positivity in normal epithelium did not vary by tumor size, lymph node status, tumor grade, or stage. On the basis of quantitative image analysis, we confirm that ER expression in NBR increases with age in women with breast cancer, and report for the first time, a significant association between ER expression in NBR with ER-negative and triple-negative cancers in postmenopausal women.

  16. Modification of radiation damage by naturally occurring substances

    International Nuclear Information System (INIS)

    Prasad, K.N.

    1984-01-01

    The major objectives of studying the modification of radiation sensitivity have been (1) to identify a compound that will produce a differential protection or sensitization of the effect of irradiation on normal and tumor tissue, and (2) to understand more about the mechanisms of radiation damage. In spite of massive research on this particular problem since World War II, the first objective remains elusive. During this period, numerous radioprotective and radiosensitizing agents have been identified. These agents have served as important biologic tools for increasing our understanding of radiation injuries. Most of these substances are synthetic compounds and are very toxic to humans. In addition, very few of the compounds provide differential modifications of the effect of radiation on tumor and normal cells. This chapter presents objectives for identifying naturally occurring substances that modify the effect of x-radiation on mammalian cells and discusses the role of physiologic substances in modifying radiation injuries on mammalian normal and tumor cells

  17. A System for Continual Quality Improvement of Normal Tissue Delineation for Radiation Therapy Treatment Planning

    Energy Technology Data Exchange (ETDEWEB)

    Breunig, Jennifer; Hernandez, Sophy; Lin, Jeffrey; Alsager, Stacy; Dumstorf, Christine; Price, Jennifer; Steber, Jennifer; Garza, Richard; Nagda, Suneel; Melian, Edward; Emami, Bahman [Department of Radiation Oncology, Loyola University Medical Center, Maywood, Illinois (United States); Roeske, John C., E-mail: jroeske@lumc.edu [Department of Radiation Oncology, Loyola University Medical Center, Maywood, Illinois (United States)

    2012-08-01

    Purpose: To implement the 'plan-do-check-act' (PDCA) cycle for the continual quality improvement of normal tissue contours used for radiation therapy treatment planning. Methods and Materials: The CT scans of patients treated for tumors of the brain, head and neck, thorax, pancreas and prostate were selected for this study. For each scan, a radiation oncologist and a diagnostic radiologist, outlined the normal tissues ('gold' contours) using Radiation Therapy Oncology Group (RTOG) guidelines. A total of 30 organs were delineated. Independently, 5 board-certified dosimetrists and 1 trainee then outlined the same organs. Metrics used to compare the agreement between the dosimetrists' contours and the gold contours included the Dice Similarity Coefficient (DSC), and a penalty function using distance to agreement. Based on these scores, dosimetrists were re-trained on those organs in which they did not receive a passing score, and they were subsequently re-tested. Results: Passing scores were achieved on 19 of 30 organs evaluated. These scores were correlated to organ volume. For organ volumes <8 cc, the average DSC was 0.61 vs organ volumes {>=}8 cc, for which the average DSC was 0.91 (P=.005). Normal tissues that had the lowest scores included the lenses, optic nerves, chiasm, cochlea, and esophagus. Of the 11 organs that were considered for re-testing, 10 showed improvement in the average score, and statistically significant improvement was noted in more than half of these organs after education and re-assessment. Conclusions: The results of this study indicate the feasibility of applying the PDCA cycle to assess competence in the delineation of individual organs, and to identify areas for improvement. With testing, guidance, and re-evaluation, contouring consistency can be obtained across multiple dosimetrists. Our expectation is that continual quality improvement using the PDCA approach will ensure more accurate treatments and dose

  18. A System for Continual Quality Improvement of Normal Tissue Delineation for Radiation Therapy Treatment Planning

    International Nuclear Information System (INIS)

    Breunig, Jennifer; Hernandez, Sophy; Lin, Jeffrey; Alsager, Stacy; Dumstorf, Christine; Price, Jennifer; Steber, Jennifer; Garza, Richard; Nagda, Suneel; Melian, Edward; Emami, Bahman; Roeske, John C.

    2012-01-01

    Purpose: To implement the “plan-do-check-act” (PDCA) cycle for the continual quality improvement of normal tissue contours used for radiation therapy treatment planning. Methods and Materials: The CT scans of patients treated for tumors of the brain, head and neck, thorax, pancreas and prostate were selected for this study. For each scan, a radiation oncologist and a diagnostic radiologist, outlined the normal tissues (“gold” contours) using Radiation Therapy Oncology Group (RTOG) guidelines. A total of 30 organs were delineated. Independently, 5 board-certified dosimetrists and 1 trainee then outlined the same organs. Metrics used to compare the agreement between the dosimetrists' contours and the gold contours included the Dice Similarity Coefficient (DSC), and a penalty function using distance to agreement. Based on these scores, dosimetrists were re-trained on those organs in which they did not receive a passing score, and they were subsequently re-tested. Results: Passing scores were achieved on 19 of 30 organs evaluated. These scores were correlated to organ volume. For organ volumes <8 cc, the average DSC was 0.61 vs organ volumes ≥8 cc, for which the average DSC was 0.91 (P=.005). Normal tissues that had the lowest scores included the lenses, optic nerves, chiasm, cochlea, and esophagus. Of the 11 organs that were considered for re-testing, 10 showed improvement in the average score, and statistically significant improvement was noted in more than half of these organs after education and re-assessment. Conclusions: The results of this study indicate the feasibility of applying the PDCA cycle to assess competence in the delineation of individual organs, and to identify areas for improvement. With testing, guidance, and re-evaluation, contouring consistency can be obtained across multiple dosimetrists. Our expectation is that continual quality improvement using the PDCA approach will ensure more accurate treatments and dose assessment in

  19. Renal deterioration caused by carcinogens as a consequence of free radical mediated tissue damage: a review of the protective action of melatonin

    Energy Technology Data Exchange (ETDEWEB)

    Gultekin, Fatih; Hicyilmaz, Hicran [Suleyman Demirel University, School of Medicine, Department of Biochemistry, Isparta (Turkey)

    2007-10-15

    This brief review summarizes some of the publications that document the preventive role of melatonin in kidney damage caused by carcinogens such as 2-nitropropane, arsenic, carbon tetrachloride, nitrilotriacetic acid and potassium bromate. Numerous chemicals generate excessive free radicals that eventually induce renal worsening. Melatonin partially or totally prevents free radical mediated tissue damages induced by many carcinogens. Protective actions of melatonin against the harmful effects of carcinogens are believed to stem from its direct free radical scavenging and indirect antioxidant activities. Dietary or pharmacologically given melatonin may attenuate the oxidative stress, thereby mitigating the subsequent renal damage. (orig.)

  20. Calculation of normal tissue complication probability and dose-volume histogram reduction schemes for tissues with a critical element architecture

    International Nuclear Information System (INIS)

    Niemierko, Andrzej; Goitein, Michael

    1991-01-01

    The authors investigate a model of normal tissue complication probability for tissues that may be represented by a critical element architecture. They derive formulas for complication probability that apply to both a partial volume irradiation and to an arbitrary inhomogeneous dose distribution. The dose-volume isoeffect relationship which is a consequence of a critical element architecture is discussed and compared to the empirical power law relationship. A dose-volume histogram reduction scheme for a 'pure' critical element model is derived. In addition, a point-based algorithm which does not require precomputation of a dose-volume histogram is derived. The existing published dose-volume histogram reduction algorithms are analyzed. The authors show that the existing algorithms, developed empirically without an explicit biophysical model, have a close relationship to the critical element model at low levels of complication probability. However, it is also showed that they have aspects which are not compatible with a critical element model and the authors propose a modification to one of them to circumvent its restriction to low complication probabilities. (author). 26 refs.; 7 figs

  1. Extensive tissue damage of bovine ovaries after bipolar ovarian drilling compared to monopolar electrocoagulation or carbon dioxide laser.

    Science.gov (United States)

    Hendriks, Marja-Liisa; van der Valk, Paul; Lambalk, Cornelis B; Broeckaert, Mark A M; Homburg, Roy; Hompes, Peter G A

    2010-02-01

    To evaluate the size of ovarian damage caused by ovarian drilling in polycystic ovary syndrome, the amount of inflicted damage was assessed for the most frequently used ovarian drilling techniques. Experimental prospective design. University clinic. Six fresh bovine ovaries per technique. Carbon dioxide (CO(2)) laser, monopolar electrocoagulation, and bipolar electrocoagulation were used for in vitro ovarian drilling. Amount of inflicted ovarian damage per procedure. Bipolar electrocoagulation resulted in significantly more destruction per burn than the CO(2) laser and monopolar electrocoagulation (287.6 versus 24.0 and 70.0 mm(3), respectively). The damage found per lesion was multiplied by the regularly applied number of punctures per procedure in daily practice (based on the literature). Again, the bipolar electrocoagulation resulted in significantly more tissue damage than the CO(2) laser and monopolar coagulation (2,876 versus 599 and 700 mm(3), respectively). Ovarian drilling, especially bipolar electrocoagulation, causes extensive destruction of the ovary. Given the same clinical effectiveness of the various procedures, it is essential to use the lowest possible dose that works; thus, the first choice should be CO(2) laser or monopolar electrocoagulation. Copyright 2010 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  2. Influence of low-energy laser radiation on normal skin and certain tumor tissues

    Energy Technology Data Exchange (ETDEWEB)

    Pletnev, S.D.; Karpenko, O.M.

    For some years, the authors' Institute has studied the influence of various types of low-energy laser radiation on normal tissue and the growth of tumors. Radiation at 3 and 30 J/cm/sup 2/ causes an increase in biological activity of various cell elements, manifested as an increase in mitotic activity of the cells in the basal layer of the epidermis, conglomeration of chromatin in the cell nuclei and an increase in degranulation of fat cells in the process of their migration to the reticular layer. Also noted was an increase in content of fibroblastic and lymphohistocytic elements in the dermis, as well as an increase in collagenization of connective tissue. It was found that irradiation of the skin by helium-neon, cadmium-helium and nitrogen lasers before and after grafting of the cells of various tumors modifies the course of the tumor process. This effect is apparently related to the fact that systematic irradiation results in changes creating a favorable background for survival and proliferation of tumor cells in the skin tissue medium. The changes facilitate an increase in survival and growth of both pigmented and nonpigmented tumors. Low power radiation stimulates the activity of the cells or cell structures; medium power stimulates their activity; high power suppresses activity.

  3. Sarcoglycans in the normal and pathological breast tissue of humans: an immunohistochemical and molecular study.

    Science.gov (United States)

    Arco, Alba; Favaloro, Angelo; Gioffrè, Mara; Santoro, Giuseppe; Speciale, Francesco; Vermiglio, Giovanna; Cutroneo, Giuseppina

    2012-01-01

    The sarcoglycan complex, consisting of α-, β-, γ-, δ- and ε-sarcoglycans, is a multimember transmembrane system providing a mechanosignaling connection from the cytoskeleton to the extracellular matrix. Whereas the expression of α- and γ-sarcoglycan is restricted to striated muscle, other sarcoglycans are widely expressed. Although many studies have investigated sarcoglycans in all muscle types, insufficient data are available on the distribution of the sarcoglycan complex in nonmuscle tissue. On this basis, we used immunohistochemical and RT-PCR techniques to study preliminarily the sarcoglycans in normal glandular breast tissue (which has never been studied in the literature on these proteins) to verify the effective wider distribution of this complex. Moreover, to understand the role of sarcoglycans, we also tested samples obtained from patients affected by fibrocystic mastopathy and breast fibroadenoma. Our data showed, for the first time, that all sarcoglycans are always detectable in all normal samples both in epithelial and myoepithelial cells; in pathological breast tissue, all sarcoglycans appeared severely reduced. These data demonstrated that all sarcoglycans, not only β-, δ-, and ε-sarcoglycans, have a wider distribution, implying a new unknown role for these proteins. Moreover, in breast diseases, sarcoglycans containing cadherin domain homologs could provoke a loss of strong adhesion between epithelial cells, permitting and facilitating the degeneration of these benign breast tumors into malignant tumors. Consequently, sarcoglycans could play an important and intriguing role in many breast diseases and in particular in tumor progression from benign to malignant. Copyright © 2011 S. Karger AG, Basel.

  4. Impact of margin on tumour and normal tissue dosimetry in patients treated with IMRT using an endorectal balloon for prostate immobilization

    International Nuclear Information System (INIS)

    Ahmad, S.

    2004-01-01

    Full text: In treatment of prostate cancer with IMRT (Intensity Modulated Radiation Therapy), clinical target volume margin is determined by organ motion and set-up error. However, the margin width that achieves the desired dose escalation while minimizing normal tissue exposure is dependent upon the patient immobilization and/or organ localization techniques. In this study, we compare the impact of margin width on the dosimetry of tumour and normal tissues using the endorectal balloon for prostate immobilization. IMRT plans were generated for ten patients using margin widths of 0, 3, 5, 8 and 10 mm. Patients had a planning CT scan in the prone position with an endorectal balloon filled with 100 cc of air for prostate immobilization. The Corvus version 3.0.11 was used for treatment planning. The dose for the prostate and seminal vesicles was 70 Gy in 2 Gy per fractions, prescribed at the 83% isodose line. Dose restrictions to normal tissues were as follows: 33% of bladder was allowed to receive above 65 Gy, 15% of rectum above 68 Gy and 10% of femurs above 45 Gy. Analysis of Variance was used to compare the target and normal tissue doses. Tumour control probability and normal tissue complication probability calculations are currently being performed and will be presented. The mean doses ranged from 73.93 to 75.31 Gy for the prostate and from 73.71 to 75.31 Gy for the seminal vesicles. A 10 mm margin produced significantly lower mean doses compared to 0 or 5 mm for both targets (prostate p 0.062). For bladder and rectum the mean doses ranged from 18.49 to 22.30 Gy (p=0.605) and from 29.34 to 31.33 Gy (p=0.135), respectively, while the percent rectal volumes above 68 Gy were significantly higher for margins of 5, 8 and 10 mm (p<0.006) ranging from 10.72% to 15.81%. Mean doses to the femurs and pelvis were significantly higher for 8 and 10 mm margins, ranging from 20.9 to 29.39 Gy for femurs (p<0.015) and from 15.05 to 19.98 Gy for pelvis (p<0.0005). Also the percent

  5. Human Colors-The Rainbow Garden of Pathology: What Gives Normal and Pathologic Tissues Their Color?

    Science.gov (United States)

    Piña-Oviedo, Sergio; Ortiz-Hidalgo, Carlos; Ayala, Alberto G

    2017-03-01

    - Colors are important to all living organisms because they are crucial for camouflage and protection, metabolism, sexual behavior, and communication. Human organs obviously have color, but the underlying biologic processes that dictate the specific colors of organs and tissues are not completely understood. A literature search on the determinants of color in human organs yielded scant information. - To address 2 specific questions: (1) why do human organs have color, and (2) what gives normal and pathologic tissues their distinctive colors? - Endogenous colors are the result of complex biochemical reactions that produce biologic pigments: red-brown cytochromes and porphyrins (blood, liver, spleen, kidneys, striated muscle), brown-black melanins (skin, appendages, brain nuclei), dark-brown lipochromes (aging organs), and colors that result from tissue structure (tendons, aponeurosis, muscles). Yellow-orange carotenes that deposit in lipid-rich tissues are only produced by plants and are acquired from the diet. However, there is lack of information about the cause of color in other organs, such as the gray and white matter, neuroendocrine organs, and white tissues (epithelia, soft tissues). Neoplastic tissues usually retain the color of their nonneoplastic counterpart. - Most available information on the function of pigments comes from studies in plants, microorganisms, cephalopods, and vertebrates, not humans. Biologic pigments have antioxidant and cytoprotective properties and should be considered as potential future therapies for disease and cancer. We discuss the bioproducts that may be responsible for organ coloration and invite pathologists and pathology residents to look at a "routine grossing day" with a different perspective.

  6. Serum estradiol levels associated with specific gene expression patterns in normal breast tissue and in breast carcinomas

    International Nuclear Information System (INIS)

    Haakensen, Vilde D; Børresen-Dale, Anne-Lise; Helland, Åslaug; Bjøro, Trine; Lüders, Torben; Riis, Margit; Bukholm, Ida K; Kristensen, Vessela N; Troester, Melissa A; Homen, Marit M; Ursin, Giske

    2011-01-01

    High serum levels of estradiol are associated with increased risk of postmenopausal breast cancer. Little is known about the gene expression in normal breast tissue in relation to levels of circulating serum estradiol. We compared whole genome expression data of breast tissue samples with serum hormone levels using data from 79 healthy women and 64 breast cancer patients. Significance analysis of microarrays (SAM) was used to identify differentially expressed genes and multivariate linear regression was used to identify independent associations. Six genes (SCGB3A1, RSPO1, TLN2, SLITRK4, DCLK1, PTGS1) were found differentially expressed according to serum estradiol levels (FDR = 0). Three of these independently predicted estradiol levels in a multivariate model, as SCGB3A1 (HIN1) and TLN2 were up-regulated and PTGS1 (COX1) was down-regulated in breast samples from women with high serum estradiol. Serum estradiol, but none of the differentially expressed genes were significantly associated with mammographic density, another strong breast cancer risk factor. In breast carcinomas, expression of GREB1 and AREG was associated with serum estradiol in all cancers and in the subgroup of estrogen receptor positive cases. We have identified genes associated with serum estradiol levels in normal breast tissue and in breast carcinomas. SCGB3A1 is a suggested tumor suppressor gene that inhibits cell growth and invasion and is methylated and down-regulated in many epithelial cancers. Our findings indicate this gene as an important inhibitor of breast cell proliferation in healthy women with high estradiol levels. In the breast, this gene is expressed in luminal cells only and is methylated in non-BRCA-related breast cancers. The possibility of a carcinogenic contribution of silencing of this gene for luminal, but not basal-like cancers should be further explored. PTGS1 induces prostaglandin E2 (PGE2) production which in turn stimulates aromatase expression and hence increases the

  7. In-vivo optical imaging of hsp70 expression to assess collateral tissue damage associated with infrared laser ablation of skin

    Science.gov (United States)

    Wilmink, Gerald J.; Opalenik, Susan R.; Beckham, Joshua T.; Mackanos, Mark A.; Nanney, Lillian B.; Contag, Christopher H.; Davidson, Jeffrey M.; Jansen, E. Duco

    2013-01-01

    Laser surgical ablation is achieved by selecting laser parameters that remove confined volumes of target tissue and cause minimal collateral damage. Previous studies have measured the effects of wavelength on ablation, but neglected to measure the cellular impact of ablation on cells outside the lethal zone. In this study, we use optical imaging in addition to conventional assessment techniques to evaluate lethal and sublethal collateral damage after ablative surgery with a free-electron laser (FEL). Heat shock protein (HSP) expression is used as a sensitive quantitative marker of sublethal damage in a transgenic mouse strain, with the hsp70 promoter driving luciferase and green fluorescent protein (GFP) expression (hsp70A1-L2G). To examine the wavelength dependence in the mid-IR, laser surgery is conducted on the hsp70A1-L2G mouse using wavelengths targeting water (OH stretch mode, 2.94 μm), protein (amide-II band, 6.45 μm), and both water and protein (amide-I band, 6.10 μm). For all wavelengths tested, the magnitude of hsp70 expression is dose-dependent and maximal 5 to 12 h after surgery. Tissues treated at 6.45 μm have approximately 4× higher hsp70 expression than 6.10 μm. Histology shows that under comparable fluences, tissue injury at the 2.94-μm wavelength was 2× and 3× deeper than 6.45 and 6.10 μm, respectively. The 6.10-μm wavelength generates the least amount of epidermal hyperplasia. Taken together, this data suggests that the 6.10-μm wavelength is a superior wavelength for laser ablation of skin. PMID:19021444

  8. Photodynamic therapy in prostate cancer: optical dosimetry and response of normal tissue

    Science.gov (United States)

    Chen, Qun; Shetty, Sugandh D.; Heads, Larry; Bolin, Frank; Wilson, Brian C.; Patterson, Michael S.; Sirls, Larry T., II; Schultz, Daniel; Cerny, Joseph C.; Hetzel, Fred W.

    1993-06-01

    The present study explores the possibility of utilizing photodynamic therapy (PDT) in treating localized prostate carcinoma. Optical properties of ex vivo human prostatectomy specimens, and in vivo and ex vivo dog prostate glands were studied. The size of the PDT induced lesion in dog prostate was pathologically evaluated as a biological endpoint. The data indicate that the human normal and carcinoma prostate tissues have similar optical properties. The average effective attenuation depth is less in vivo than that of ex vivo. The PDT treatment generated a lesion size of up to 16 mm in diameter. The data suggest that PDT is a promising modality in prostate cancer treatment. Multiple fiber system may be required for clinical treatment.

  9. Subepidermal moisture (SEM) and bioimpedance: a literature review of a novel method for early detection of pressure-induced tissue damage (pressure ulcers).

    Science.gov (United States)

    Moore, Zena; Patton, Declan; Rhodes, Shannon L; O'Connor, Tom

    2017-04-01

    Current detection of pressure ulcers relies on visual and tactile changes at the skin surface, but physiological changes below the skin precede surface changes and have a significant impact on tissue health. Inflammatory and apoptotic/necrotic changes in the epidermal and dermal layers of the skin, such as changes in interstitial fluid (also known as subepidermal moisture (SEM)), may precede surface changes by 3-10 days. Those same epidermal and subepidermal changes result in changes in the electrical properties (bioimpedance) of the tissue, thereby presenting an objective, non-invasive method for assessing tissue damage. Clinical studies of bioimpedance for the detection of pressure ulcers have demonstrated that changes in bioimpedance correlate with increasing severity of pressure ulcer stages. Studies have also demonstrated that at anatomical locations with pressure ulcers, bioimpedance varies with distance from the centre of the pressure ulcers. The SEM Scanner, a handheld medical device, offers an objective and reliable method for the assessment of local bioimpedance, and therefore, assessment of tissue damage before signs become visible to the unaided eye. This literature review summarises pressure ulcer pathophysiology, principles of bioimpedance and clinical research using bioimpedance technology to assess pressure ulcers. © 2016 The Authors. International Wound Journal published by Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  10. Similar distributions of repaired sites in chromatin of normal and xeroderma pigmentosum variant cells damaged by ultraviolet light

    International Nuclear Information System (INIS)

    Cleaver, J.E.

    1979-01-01

    Excision repair of damage from ultraviolet light in both normal and xeroderma pigmentosum variant fibroblasts at early times after irradiation occurred preferentially in regions of DNA accessible to micrococcal nuclease digestion. These regions are predominantly the linker regions between nucleosomes in chromatin. The alterations reported at polymerization and ligation steps of excision repair in the variant are therefore not associated with changes in the relative distributions of repair sites in linker and core particle regions of DNA. (Auth.)

  11. Clinical light damage to the eye

    International Nuclear Information System (INIS)

    Miller, D.

    1987-01-01

    This book contains four sections: The Nature of Light and of Light Damage to Biological Tissues; Light Damage to the Eye; Protecting the Eye from Light Damage; and Overview of Light Damage to the Eye. Some of the paper titles are: Ultraviolet-Absorbing Intraocular Lens Implants; Phototoxic Changes in the Retina; Light Damage to the Lens; and Radiation, Light, and Sight

  12. Nuclear oxidative damage correlates with poor survival in colorectal cancer.

    LENUS (Irish Health Repository)

    Sheridan, J

    2012-02-01

    Oxidative DNA damage results from DNA adducts such as 8-oxo-7, 8 dihydro-2\\'-deoxyguanosine (8-oxo-dG), which is a pro-mutagenic lesion. No known association between 8-oxo-dG, disease progression and survival exists in colorectal cancer (CRC). We examined levels of 8-oxo-dG in sporadic CRC to determine its relationship with pathological stage and outcome. A total of 143 CRC patients and 105 non-cancer patients were studied. Nuclear and cytoplasmic 8-oxo-dG was assessed using immunohistochemistry. Double immunofluorescence using 8-oxo-dG and manganese superoxide dismutase (MnSOD) antibodies localised cytoplasmic 8-oxo-dG. Apoptosis was detected using TUNEL. Nuclear staining levels were similar in tumour tissue and matched normal mucosa in both epithelial (P=0.22) and stromal (P=0.85) cells. Epithelial cytoplasmic staining was greater in tumour tissue (P<0.001). Double immunofluorescence localised cytoplasmic 8-oxo-dG to mitochondria. Epithelial and stromal nuclear 8-oxo-dG decreased with local disease spread, but highest levels were found in distant disease (P<0.01). Survival was related to epithelial nuclear and stromal staining in normal mucosa (P<0.001) and tumour (P<0.01) but was unrelated to cytoplasmic staining. Normal control cells in tissue from cancer patients with high levels of 8-oxo-dG failed to undergo cell death. 8-oxo-dG may be an important biomarker of disease risk, progression and survival for CRC patients.

  13. Expression of IL-18, IL-18 Binding Protein, and IL-18 Receptor by Normal and Cancerous Human Ovarian Tissues: Possible Implication of IL-18 in the Pathogenesis of Ovarian Carcinoma

    Directory of Open Access Journals (Sweden)

    Liat Medina

    2014-01-01

    Full Text Available Proinflammatory cytokine IL-18 has been shown to be elevated in the sera of ovarian carcinoma patients. The aim of the study was to examine the levels and cellular origin of IL-18, IL-18 binding protein, and IL-18 receptor in normal and cancerous ovarian tissues. Ovarian tissue samples were examined by immunohistochemical staining for IL-18, IL-18BP, and IL-18R and mRNA of these cytokines was analyzed with semiquantitative PT-PCR. IL-18 levels were significantly higher in cancerous ovarian tissues (P=0.0007, IL-18BP levels were significantly higher in normal ovarian tissues (P=0.04, and the ratio of IL-18/IL-18BP was significantly higher in cancerous ovarian tissues (P=0.036. Cancerous ovarian tissues expressed significantly higher IL-18 mRNA levels (P=0.025, while there was no difference in the expression of IL-18BP mRNA and IL-18R mRNA between cancerous and normal ovarian tissues. IL-18 and IL-18BP were expressed dominantly in the epithelial cells of both cancerous and normal ovarian tissues, while IL-18R was expressed dominantly in the epithelial cells of cancerous ovarian tissues but expressed similarly in the epithelial and stromal cells of normal cancerous tissues. This study indicates a possible role of IL-18, IL-18BP, and IL-18R in the pathogenesis of epithelial ovarian carcinoma.

  14. Differentiating the two main histologic categories of fibroadenoma tissue from normal breast tissue by using multiphoton microscopy.

    Science.gov (United States)

    Nie, Y T; Wu, Y; Fu, F M; Lian, Y E; Zhuo, S M; Wang, C; Chen, J X

    2015-04-01

    Multiphoton microscopy has become a novel biological imaging technique that allows cellular and subcellular microstructure imaging based on two-photon excited fluorescence and second harmonic generation. In this work, we used multiphoton microscopy to obtain the high-contrast images of human normal breast tissue and two main histologic types of fibroadenoma (intracanalicular, pericanalicular). Moreover, quantitative image analysis was performed to characterize the changes of collagen morphology (collagen content, collagen orientation). The results show that multiphoton microscopy combined with quantitative method has the ability to identify the characteristics of fibroadenoma including changes of the duct architecture and collagen morphology in stroma. With the advancement of multiphoton microscopy, we believe that the technique has great potential to be a real-time histopathological diagnostic tool for intraoperative detection of fibroadenoma in the future. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  15. Monoclonal antibodies to murine thrombospondin-1 and thrombospondin-2 reveal differential expression patterns in cancer and low antigen expression in normal tissues

    International Nuclear Information System (INIS)

    Bujak, Emil; Pretto, Francesca; Ritz, Danilo; Gualandi, Laura; Wulhfard, Sarah; Neri, Dario

    2014-01-01

    There is a considerable interest for the discovery and characterization of tumor-associated antigens, which may facilitate antibody-based pharmacodelivery strategies. Thrombospondin-1 and thrombospondin-2 are homologous secreted proteins, which have previously been reported to be overexpressed during remodeling typical for wound healing and tumor progression and to possibly play a functional role in cell proliferation, migration and apoptosis. To our knowledge, a complete immunohistochemical characterization of thrombospondins levels in normal rodent tissues has not been reported so far. Using antibody phage technology, we have generated and characterized monoclonal antibodies specific to murine thrombospondin-1 and thrombospondin-2, two antigens which share 62% aminoacid identity. An immunofluorescence analysis revealed that both antigens are virtually undetectable in normal mouse tissues, except for a weak staining of heart tissue by antibodies specific to thrombospondin-1. The analysis also showed that thrombospondin-1 was strongly expressed in 5/7 human tumors xenografted in nude mice, while it was only barely detectable in 3/8 murine tumors grafted in immunocompetent mice. By contrast, a high-affinity antibody to thrombospondin-2 revealed a much lower level of expression of this antigen in cancer specimens. Our analysis resolves ambiguities related to conflicting reports on thrombosponding expression in health and disease. Based on our findings, thrombospondin-1 (and not thrombospondin-2) may be considered as a target for antibody-based pharmacodelivery strategies, in consideration of its low expression in normal tissues and its upregulation in cancer. - Highlights: • High affinity monoclonal antibodies to murine and human TSP1 and 2 were raised. • Both antigens are virtually undetectable in normal mouse tissues. • Strong positivity of human tumor xenografts for TSP1 was detected. • Study revealed much lower level of TSP2 expression in cancer specimens

  16. Monoclonal antibodies to murine thrombospondin-1 and thrombospondin-2 reveal differential expression patterns in cancer and low antigen expression in normal tissues

    Energy Technology Data Exchange (ETDEWEB)

    Bujak, Emil [Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 2, CH-8093 Zurich (Switzerland); Pretto, Francesca; Ritz, Danilo; Gualandi, Laura; Wulhfard, Sarah [Philochem AG, Libernstrasse 3, CH-8112 Otelfingen (Switzerland); Neri, Dario, E-mail: neri@pharma.ethz.ch [Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 2, CH-8093 Zurich (Switzerland)

    2014-09-10

    There is a considerable interest for the discovery and characterization of tumor-associated antigens, which may facilitate antibody-based pharmacodelivery strategies. Thrombospondin-1 and thrombospondin-2 are homologous secreted proteins, which have previously been reported to be overexpressed during remodeling typical for wound healing and tumor progression and to possibly play a functional role in cell proliferation, migration and apoptosis. To our knowledge, a complete immunohistochemical characterization of thrombospondins levels in normal rodent tissues has not been reported so far. Using antibody phage technology, we have generated and characterized monoclonal antibodies specific to murine thrombospondin-1 and thrombospondin-2, two antigens which share 62% aminoacid identity. An immunofluorescence analysis revealed that both antigens are virtually undetectable in normal mouse tissues, except for a weak staining of heart tissue by antibodies specific to thrombospondin-1. The analysis also showed that thrombospondin-1 was strongly expressed in 5/7 human tumors xenografted in nude mice, while it was only barely detectable in 3/8 murine tumors grafted in immunocompetent mice. By contrast, a high-affinity antibody to thrombospondin-2 revealed a much lower level of expression of this antigen in cancer specimens. Our analysis resolves ambiguities related to conflicting reports on thrombosponding expression in health and disease. Based on our findings, thrombospondin-1 (and not thrombospondin-2) may be considered as a target for antibody-based pharmacodelivery strategies, in consideration of its low expression in normal tissues and its upregulation in cancer. - Highlights: • High affinity monoclonal antibodies to murine and human TSP1 and 2 were raised. • Both antigens are virtually undetectable in normal mouse tissues. • Strong positivity of human tumor xenografts for TSP1 was detected. • Study revealed much lower level of TSP2 expression in cancer specimens

  17. Liposomal Antioxidants for Protection against Oxidant-Induced Damage

    Directory of Open Access Journals (Sweden)

    Zacharias E. Suntres

    2011-01-01

    Full Text Available Reactive oxygen species (ROS, including superoxide anion, hydrogen peroxide, and hydroxyl radical, can be formed as normal products of aerobic metabolism and can be produced at elevated rates under pathophysiological conditions. Overproduction and/or insufficient removal of ROS result in significant damage to cell structure and functions. In vitro studies showed that antioxidants, when applied directly and at relatively high concentrations to cellular systems, are effective in conferring protection against the damaging actions of ROS, but results from animal and human studies showed that several antioxidants provide only modest benefit and even possible harm. Antioxidants have yet to be rendered into reliable and safe therapies because of their poor solubility, inability to cross membrane barriers, extensive first-pass metabolism, and rapid clearance from cells. There is considerable interest towards the development of drug-delivery systems that would result in the selective delivery of antioxidants to tissues in sufficient concentrations to ameliorate oxidant-induced tissue injuries. Liposomes are biocompatible, biodegradable, and nontoxic artificial phospholipid vesicles that offer the possibility of carrying hydrophilic, hydrophobic, and amphiphilic molecules. This paper focus on the use of liposomes for the delivery of antioxidants in the prevention or treatment of pathological conditions related to oxidative stress.

  18. Effects of argon plasma coagulation on human stomach tissue: An ex vivo study.

    Science.gov (United States)

    Gong, Eun Jeong; Ahn, Ji Yong; Jung, Hwoon-Yong; Park, Young Soo; Na, Hee Kyong; Jung, Kee Wook; Kim, Do Hoon; Lee, Jeong Hoon; Choi, Kee Don; Song, Ho June; Lee, Gin Hyug; Kim, Jin-Ho

    2017-05-01

    Argon plasma coagulation (APC) is a safe alternative treatment for gastrointestinal neoplasms and precancerous lesions. However, the extent of thermal damage after APC is difficult to predict. We investigated the effects of APC on human stomach tissue. Argon plasma coagulation was performed on 10 freshly resected human stomachs that were obtained after total gastrectomy. The effects on tissue were compared across power settings (40, 60, and 80 W), durations (5, 10, 15, 20, and 25 s), and between injection (submucosal injection of normal saline) and control (without injection) groups. Success was defined as complete mucosal necrosis without damaging the muscularis propria. Without submucosal injection, the incidence of damaging the muscularis propria increased as the power and duration increased. Tissue damage in the injection group was mostly confined to the submucosa, even when using the high-power setting. In the injection group, ablations at 40 W for 20 s, 60 W for 15 s, and 80 W for 15 or 20 s produced success rates ≥80%. In the control group, ablations at 60 W for 10 s, and 80 W for 5, or 10 s produced success rates ≥80%. The optimal energy levels to achieve complete mucosal and submucosal necrosis without damaging the muscularis propria were 800-1600 and 600-800 J in the injection and control groups, respectively. Application of APC produces good results with a low risk of perforation. © 2016 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.

  19. SU-E-J-212: MR Diffusion Tensor Imaging for Assessment of Tumor and Normal Brain Tissue Responses of Juvenile Pilocytic Astrocytoma Treated by Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Hou, P; Park, P; Li, H; Zhu, X; Mahajan, A; Grosshans, D [M.D. Anderson Cancer Center, Houston, TX (United States)

    2015-06-15

    Purpose: Diffusion tensor imaging (DTI) can measure molecular mobility at the cellular level, quantified by the apparent diffusion coefficient (ADC). DTI may also reveal axonal fiber directional information in the white matter, quantified by the fractional anisotropy (FA). Juvenile pilocytic astrocytoma (JPA) is a rare brain tumor that occurs in children and young adults. Proton therapy (PT) is increasingly used in the treatment of pediatric brain tumors including JPA. However, the response of both tumors and normal tissues to PT is currently under investigation. We report tumor and normal brain tissue responses for a pediatric case of JPA treated with PT assessed using DTI. Methods: A ten year old male with JPA of the left thalamus received passive scattered PT to a dose of 50.4 Gy (RBE) in 28 fractions. Post PT, the patient has been followed up in seven years. At each follow up, MRI imaging including DTI was performed to assess response. MR images were registered to the treatment planning CT and the GTV mapped onto each MRI. The GTV contour was then mirrored to the right side of brain through the patient’s middle line to represent normal brain tissue. ADC and FA were measured within the ROIs. Results: Proton therapy can completely spare contra lateral brain while the target volume received full prescribed dose. From a series of MRI ADC images before and after PT at different follow ups, the enhancement corresponding to GTV had nearly disappeared more than 2 years after PT. Both ADC and FA demonstrate that contralateral normal brain tissue were not affect by PT and the tumor volume reverted to normal ADC and FA values. Conclusion: DTI allowed quantitative evaluation of tumor and normal brain tissue responses to PT. Further study in a larger cohort is warranted.

  20. SU-E-J-212: MR Diffusion Tensor Imaging for Assessment of Tumor and Normal Brain Tissue Responses of Juvenile Pilocytic Astrocytoma Treated by Proton Therapy

    International Nuclear Information System (INIS)

    Hou, P; Park, P; Li, H; Zhu, X; Mahajan, A; Grosshans, D

    2015-01-01

    Purpose: Diffusion tensor imaging (DTI) can measure molecular mobility at the cellular level, quantified by the apparent diffusion coefficient (ADC). DTI may also reveal axonal fiber directional information in the white matter, quantified by the fractional anisotropy (FA). Juvenile pilocytic astrocytoma (JPA) is a rare brain tumor that occurs in children and young adults. Proton therapy (PT) is increasingly used in the treatment of pediatric brain tumors including JPA. However, the response of both tumors and normal tissues to PT is currently under investigation. We report tumor and normal brain tissue responses for a pediatric case of JPA treated with PT assessed using DTI. Methods: A ten year old male with JPA of the left thalamus received passive scattered PT to a dose of 50.4 Gy (RBE) in 28 fractions. Post PT, the patient has been followed up in seven years. At each follow up, MRI imaging including DTI was performed to assess response. MR images were registered to the treatment planning CT and the GTV mapped onto each MRI. The GTV contour was then mirrored to the right side of brain through the patient’s middle line to represent normal brain tissue. ADC and FA were measured within the ROIs. Results: Proton therapy can completely spare contra lateral brain while the target volume received full prescribed dose. From a series of MRI ADC images before and after PT at different follow ups, the enhancement corresponding to GTV had nearly disappeared more than 2 years after PT. Both ADC and FA demonstrate that contralateral normal brain tissue were not affect by PT and the tumor volume reverted to normal ADC and FA values. Conclusion: DTI allowed quantitative evaluation of tumor and normal brain tissue responses to PT. Further study in a larger cohort is warranted

  1. Protons Offer Reduced Normal-Tissue Exposure for Patients Receiving Postoperative Radiotherapy for Resected Pancreatic Head Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, Romaine C., E-mail: rnichols@floridaproton.org [University of Florida Proton Therapy Institute, Jacksonsville, FL (United States); Huh, Soon N. [University of Florida Proton Therapy Institute, Jacksonsville, FL (United States); Prado, Karl L.; Yi, Byong Y.; Sharma, Navesh K. [Department of Radiation Oncology, University of Maryland, Baltimore, MD (United States); Ho, Meng W.; Hoppe, Bradford S.; Mendenhall, Nancy P.; Li, Zuofeng [University of Florida Proton Therapy Institute, Jacksonsville, FL (United States); Regine, William F. [Department of Radiation Oncology, University of Maryland, Baltimore, MD (United States)

    2012-05-01

    Purpose: To determine the potential role for adjuvant proton-based radiotherapy (PT) for resected pancreatic head cancer. Methods and Materials: Between June 2008 and November 2008, 8 consecutive patients with resected pancreatic head cancers underwent optimized intensity-modulated radiotherapy (IMRT) treatment planning. IMRT plans used between 10 and 18 fields and delivered 45 Gy to the initial planning target volume (PTV) and a 5.4 Gy boost to a reduced PTV. PTVs were defined according to the Radiation Therapy Oncology Group 9704 radiotherapy guidelines. Ninety-five percent of PTVs received 100% of the target dose and 100% of the PTVs received 95% of the target dose. Normal tissue constraints were as follows: right kidney V18 Gy to <70%; left kidney V18 Gy to <30%; small bowel/stomach V20 Gy to <50%, V45 Gy to <15%, V50 Gy to <10%, and V54 Gy to <5%; liver V30 Gy to <60%; and spinal cord maximum to 46 Gy. Optimized two- to three-field three-dimensional conformal proton plans were retrospectively generated on the same patients. The team generating the proton plans was blinded to the dose distributions achieved by the IMRT plans. The IMRT and proton plans were then compared. A Wilcoxon paired t-test was performed to compare various dosimetric points between the two plans for each patient. Results: All proton plans met all normal tissue constraints and were isoeffective with the corresponding IMRT plans in terms of PTV coverage. The proton plans offered significantly reduced normal-tissue exposure over the IMRT plans with respect to the following: median small bowel V20 Gy, 15.4% with protons versus 47.0% with IMRT (p = 0.0156); median gastric V20 Gy, 2.3% with protons versus 20.0% with IMRT (p = 0.0313); and median right kidney V18 Gy, 27.3% with protons versus 50.5% with IMRT (p = 0.0156). Conclusions: By reducing small bowel and stomach exposure, protons have the potential to reduce the acute and late toxicities of postoperative chemoradiation in this setting.

  2. On Predicting lung cancer subtypes using ‘omic’ data from tumor and tumor-adjacent histologically-normal tissue

    International Nuclear Information System (INIS)

    Pineda, Arturo López; Ogoe, Henry Ato; Balasubramanian, Jeya Balaji; Rangel Escareño, Claudia; Visweswaran, Shyam; Herman, James Gordon; Gopalakrishnan, Vanathi

    2016-01-01

    Adenocarcinoma (ADC) and squamous cell carcinoma (SCC) are the most prevalent histological types among lung cancers. Distinguishing between these subtypes is critically important because they have different implications for prognosis and treatment. Normally, histopathological analyses are used to distinguish between the two, where the tissue samples are collected based on small endoscopic samples or needle aspirations. However, the lack of cell architecture in these small tissue samples hampers the process of distinguishing between the two subtypes. Molecular profiling can also be used to discriminate between the two lung cancer subtypes, on condition that the biopsy is composed of at least 50 % of tumor cells. However, for some cases, the tissue composition of a biopsy might be a mix of tumor and tumor-adjacent histologically normal tissue (TAHN). When this happens, a new biopsy is required, with associated cost, risks and discomfort to the patient. To avoid this problem, we hypothesize that a computational method can distinguish between lung cancer subtypes given tumor and TAHN tissue. Using publicly available datasets for gene expression and DNA methylation, we applied four classification tasks, depending on the possible combinations of tumor and TAHN tissue. First, we used a feature selector (ReliefF/Limma) to select relevant variables, which were then used to build a simple naïve Bayes classification model. Then, we evaluated the classification performance of our models by measuring the area under the receiver operating characteristic curve (AUC). Finally, we analyzed the relevance of the selected genes using hierarchical clustering and IPA® software for gene functional analysis. All Bayesian models achieved high classification performance (AUC > 0.94), which were confirmed by hierarchical cluster analysis. From the genes selected, 25 (93 %) were found to be related to cancer (19 were associated with ADC or SCC), confirming the biological relevance of our

  3. THE PRESENCE OF ENDOGENOUS PYROGEN IN NORMAL RABBIT TISSUES.

    Science.gov (United States)

    SNELL, E S; ATKINS, E

    1965-06-01

    Saline extracts of homogenized, uninfected, rabbit tissues produced febrile responses when injected intravenously into rabbits. Extracts of muscle, lung, and heart evoked fevers that were similar to those induced by leucocyte pyrogen; extracts of spleen, liver, and kidney caused more sustained fevers. The minimal pyrogenic dose appeared to be between 1.5 and 3 gm wet weight of tissue. Evidence is presented that neither Gram-negative bacterial endotoxin nor polymorphonuclear leucocytes (circulating or sequestered in the tissues) can be implicated as the source of pyrogen in tissue extracts. It seems likely, therefore, that a pyrogenic material of truly endogenous origin is widely distributed in tissues. Tissue pyrogen appears to be a large molecule which is relatively resistant to treatment with acid but not with alkali. Possible pathological roles for this endogenous agent (or agents) are briefly indicated.

  4. Activity of pyrimidine degradation enzymes in normal tissues

    NARCIS (Netherlands)

    van Kuilenburg, A. B. P.; van Lenthe, H.; van Gennip, A. H.

    2006-01-01

    In this study, we measured the activity of dihydropyrimidine dehydrogenase (DPD), dihydropyrimidinase (DHP) and beta-ureidopropionase (beta-UP), using radiolabeled substrates, in 16 different tissues obtained at autopsy from a single patient. The activity of DPD could be detected in all tissues

  5. Radiosensitization of tumors and normal tissues by combined treatment with misonidazole and heat

    International Nuclear Information System (INIS)

    Hofer, K.G.; MacKinnon, A.R.; Schubert, A.L.; Lehr, J.E.; Grimmett, E.V.

    1981-01-01

    Combination treatment of mice with misonidazole (0.5 mg/g body wt.) and hyperthermia (41.5/sup o/C for 45 mins.) produced dramatic radiosensitization in hypoxic BP-8 murine sarcoma cells. The dose modifying factor (DMF: 4.3) was such that hypoxic BP-8 cells subjected to combination therapy became more radiosensitive than untreated, fully oxygenated cell populations. In contrast, radiosensitization by combination treatment was comparatively minor or completely absent in normal body tissues such as skin (DMF: 1.57), intestine (DMF: 1.0), and bone marrow (DMF: 1.0). These results suggest that simultaneous administration of misonidazole and hyperthermia may prove an effective adjuvant to conventional clinical radiation therapy

  6. The influence of combined treatment of Cd, and γ-irradiation on DNA damage and repair in lymphoid tissues of mice

    International Nuclear Information System (INIS)

    Privezentsev, K.V.; Sirota, N.P.; Gaziev, A.I.

    1996-01-01

    The effect of combined treatment of Cd and γ-irradiation on DNA damage and repair was studied in lymphoid tissues of mice using single-cell gel assay. Single i.p. injection of CdCl 2 (1 mg Cd/kg body wt), 2 h prior to irradiation resulted in increasing of DNA lesions in peripheral blood lymphocytes (PBL) when compared to non-injected animals. However, the same treatment, 48 h prior to irradiation is shown to decrease DNA damage in PBL and splenocytes in comparison with untreated mice. In thymocytes maximal protective effect of Cd was determined when mice were irradiated in 24 h after injection. The protective effect observed is due to decreasing of initial level of DNA damage in thymocytes as well as acceleration of DNA repair in PBL and splenocytes. 28 refs.; 2 figs

  7. Differentiation between chronic hepatitis and normal liver of grayscale ultrasound tissue quantification using adobe photoshop(5.0)

    International Nuclear Information System (INIS)

    Choi, Jong Cheol; Oh, Jong Young; Lim, Jong Uk; Nam, Kyung Jin

    2001-01-01

    To evaluate whether was any difference in the brightness of echogenicity on gray scale ultrasound imaging between the liver with chronic hepatitis and the normal liver using Adobe photoshop 5.0 Seventy-five patients with pathologically proven chronic hepatitis and twenty normal volunteers were included in this study. Adobe photoshop 5.0 histogram was used to measure the brightness of image. The measured brightness of the liver was divided by the brightness of the kidney, and the radio was calculated and compared between patients with chronic hepatitis and the normal control groups. In addition, the degree of fibrosis was also evaluated. The difference in brightness between the normal liver and live with chronic hepatitis was statistically significant, but no statistically significant difference was observed between the brightness of the liver and the degree of fibrosis in the liver. Tissue echo quantification using Adobe Photoshop 5.0 may be a helpful diagnostic methods for the patients with chronic hepatitis.

  8. Delayed repair of radiation induced clustered DNA damage: Friend or foe?

    International Nuclear Information System (INIS)

    Eccles, Laura J.; O'Neill, Peter; Lomax, Martine E.

    2011-01-01

    A signature of ionizing radiation exposure is the induction of DNA clustered damaged sites, defined as two or more lesions within one to two helical turns of DNA by passage of a single radiation track. Clustered damage is made up of double strand breaks (DSB) with associated base lesions or abasic (AP) sites, and non-DSB clusters comprised of base lesions, AP sites and single strand breaks. This review will concentrate on the experimental findings of the processing of non-DSB clustered damaged sites. It has been shown that non-DSB clustered damaged sites compromise the base excision repair pathway leading to the lifetime extension of the lesions within the cluster, compared to isolated lesions, thus the likelihood that the lesions persist to replication and induce mutation is increased. In addition certain non-DSB clustered damaged sites are processed within the cell to form additional DSB. The use of E. coli to demonstrate that clustering of DNA lesions is the major cause of the detrimental consequences of ionizing radiation is also discussed. The delayed repair of non-DSB clustered damaged sites in humans can be seen as a 'friend', leading to cell killing in tumour cells or as a 'foe', resulting in the formation of mutations and genetic instability in normal tissue.

  9. Tissue Damage Caused by Myeloablative, but Not Non-Myeloablative, Conditioning before Allogeneic Stem Cell Transplantation Results in Dermal Macrophage Recruitment without Active T-Cell Interaction

    Directory of Open Access Journals (Sweden)

    Peter van Balen

    2018-02-01

    Full Text Available IntroductionConditioning regimens preceding allogeneic stem cell transplantation (alloSCT can cause tissue damage and acceleration of the development of graft-versus-host disease (GVHD. T-cell-depleted alloSCT with postponed donor lymphocyte infusion (DLI may reduce GVHD, because tissue injury can be restored at the time of DLI. In this study, we investigated the presence of tissue injury and inflammation in skin during the period of hematologic recovery and immune reconstitution after alloSCT.MethodsSkin biopsies were immunohistochemically stained for HLA class II, CD1a, CD11c, CD40, CD54, CD68, CD86, CD206, CD3, and CD8. HLA class II-expressing cells were characterized as activated T-cells, antigen-presenting cells (APCs, or tissue repairing macrophages. In sex-mismatched patient and donor couples, origin of cells was determined by multiplex analysis combining XY-FISH and fluorescent immunohistochemistry.ResultsNo inflammatory environment due to pretransplant conditioning was detected at the time of alloSCT, irrespective of the conditioning regimen. An increase in HLA class II-positive macrophages and CD3 T-cells was observed 12–24 weeks after myeloablative alloSCT, but these macrophages did not show signs of interaction with the co-localized T-cells. In contrast, during GVHD, an increase in HLA class II-expressing cells coinciding with T-cell interaction was observed, resulting in an overt inflammatory reaction with the presence of activated APC, activated donor T-cells, and localized upregulation of HLA class II expression on epidermal cells. In the absence of GVHD, patient derived macrophages were gradually replaced by donor-derived macrophages although patient-derived macrophages were detectable even 24 weeks after alloSCT.ConclusionConditioning regimens cause tissue damage in the skin, but this does not result in a local increase of activated APC. In contrast to the inflamed situation in GVHD, when interaction takes place between

  10. Menadione-Induced DNA Damage Leads to Mitochondrial Dysfunction and Fragmentation During Rosette Formation in Fuchs Endothelial Corneal Dystrophy.

    Science.gov (United States)

    Halilovic, Adna; Schmedt, Thore; Benischke, Anne-Sophie; Hamill, Cecily; Chen, Yuming; Santos, Janine Hertzog; Jurkunas, Ula V

    2016-06-20

    Fuchs endothelial corneal dystrophy (FECD), a leading cause of age-related corneal edema requiring transplantation, is characterized by rosette formation of corneal endothelium with ensuing apoptosis. We sought to determine whether excess of mitochondrial reactive oxygen species leads to chronic accumulation of oxidative DNA damage and mitochondrial dysfunction, instigating cell death. We modeled the pathognomonic rosette formation of postmitotic corneal cells by increasing endogenous cellular oxidative stress with menadione (MN) and performed a temporal analysis of its effect in normal (HCEnC, HCECi) and FECD (FECDi) cells and ex vivo specimens. FECDi and FECD ex vivo specimens exhibited extensive mtDNA and nDNA damage as detected by quantitative PCR. Exposure to MN triggered an increase in mitochondrial superoxide levels and led to mtDNA and nDNA damage, while DNA amplification was restored with NAC pretreatment. Furthermore, MN exposure led to a decrease in ΔΨm and adenosine triphosphate levels in normal cells, while FECDi exhibited mitochondrial dysfunction at baseline. Mitochondrial fragmentation and cytochrome c release were detected in FECD tissue and after MN treatment of HCEnCs. Furthermore, cleavage of caspase-9 and caspase-3 followed MN-induced cytochrome c release in HCEnCs. This study provides the first line of evidence that accumulation of oxidative DNA damage leads to rosette formation, loss of functionally intact mitochondria via fragmentation, and subsequent cell death during postmitotic cell degeneration of ocular tissue. MN induced rosette formation, along with mtDNA and nDNA damage, mitochondrial dysfunction, and fragmentation, leading to activation of the intrinsic apoptosis via caspase cleavage and cytochrome c release. Antioxid. Redox Signal. 24, 1072-1083.

  11. Relationship between opioid therapy, tissue-damaging procedures, and brain metabolites as measured by proton MRS in asphyxiated term neonates.

    Science.gov (United States)

    Angeles, Danilyn M; Ashwal, Stephen; Wycliffe, Nathaniel D; Ebner, Charlotte; Fayard, Elba; Sowers, Lawrence; Holshouser, Barbara A

    2007-05-01

    To examine the effects of opioid and tissue-damaging procedures (TDPs) [i.e. procedures performed in the neonatal intensive care unit (NICU) known to result in pain, stress, and tissue damage] on brain metabolites, we reviewed the medical records of 28 asphyxiated term neonates (eight opioid-treated, 20 non-opioid treated) who had undergone magnetic resonance imaging (MRI) and proton magnetic resonance spectroscopy (MRS) within the first month of life as well as eight newborns with no clinical findings of asphyxial injury. We found that lower creatine (Cr), myoinositol (Ins), and N-acetylaspartate (NAA)/choline (Cho) (p OGM) NAA/Cr was decreased (p = 0.03) and lactate (Lac) was present in a significantly higher amount (40%; p = 0.03) in non-opioid-treated neonates compared with opioid-treated neonates. Compared with controls, untreated neonates showed larger changes in more metabolites in basal ganglia (BG), thalami (TH), and OGM with greater significance than treated neonates. Our data suggest that TDPs affect spectral metabolites and that opioids do not cause harm in asphyxiated term neonates exposed to repetitive TDPs in the first 2-4 DOL and may provide a degree of neuroprotection.

  12. Ultrasonic energy vs monopolar electrosurgery in laparoscopic cholecystectomy: a comparison of tissue damage

    Directory of Open Access Journals (Sweden)

    Mehdi Asgari

    2016-04-01

    Full Text Available Background: Laparoscopic cholecystectomy is a minimally invasive procedure whereby the gallbladder is removed using laparoscopic techniques. Monopolar electerosurgical energy is the method of dissection of gallbladder from liver bed. Ultrasonic energy causes less thermal damage and suggests an alternative to monopolar elevterocautery. Leptin is a tissue factor and C-reactive protein (CRP is an acute phase protein that builds up in surgical damages. In laparoscopy, pneumoperitoneum and thermal damage cause this increase. In this study, after completion of surgery with both methods, plasma leptin and CPR were measured. Next, the complications and benefits of the two methods were compared. Methods: This single blind randomized clinical trial was conducted on 78 patients who were candidate for laparoscopic cholecystectomy in surgery clinic of Razi Teaching Hospital in Ahvaz Jundishapur University of Medical Sciences from March 2013 to March 2015. Patients were divided randomly into two groups of ultrasonic and electerocautery. Then, leptin’s level and CRP’s level were measured at completion of surgery, 30 minutes after completion, 6 and 24 hours after completion of surgery in the two groups. Results: This study shows that the average rate of leptin at completion of surgery, 30 minutes after completion, 6 and 24 hours after completion of surgery in ultrasonic group had less increase than electerocautery group and the difference was statistically significant (P= 0.0001. The average rate of CRP at completion of surgery, 30 minutes after completion, 6 and 24 hours after completion of surgery in ultrasonic group had less increase than electerocautery group and the difference was statistically significant (P= 0.0001. Conclusion: The level of leptin and CRP shows that surgery with ultrasonic method will provoke the immune system less than electerocautery method.

  13. Estrogen signalling and the DNA damage response in hormone dependent breast cancers

    Directory of Open Access Journals (Sweden)

    C Elizabeth Caldon

    2014-05-01

    Full Text Available Estrogen is necessary for the normal growth and development of breast tissue, but high levels of estrogen are a major risk factor for breast cancer. One mechanism by which estrogen could contribute to breast cancer is via the induction of DNA damage. This perspective discusses the mechanisms by which estrogen alters the DNA damage response (DDR and DNA repair through the regulation of key effector proteins including ATM, ATR, CHK1, BRCA1 and p53 and the feedback on estrogen receptor signalling from these proteins. We put forward the hypothesis that estrogen receptor signalling converges to suppress effective DNA repair and apoptosis in favour of proliferation. This is important in hormone-dependent breast cancer as it will affect processing of estrogen-induced DNA damage, as well as other genotoxic insults. DDR and DNA repair proteins are frequently mutated or altered in estrogen responsive breast cancer which will further change the processing of DNA damage. Finally the action of estrogen signalling on DNA damage is also relevant to the therapeutic setting as the suppression of a DNA damage response by estrogen has the potential to alter the response of cancers to anti-hormone treatment or chemotherapy that induces DNA damage.

  14. Radiation-induced damage to normal tissues after radiotherapy in patients treated for gynecologic tumors: Association with single nucleotide polymorphisms in XRCC1, XRCC3, and OGG1 genes and in vitro chromosomal radiosensitivity in lymphocytes

    International Nuclear Information System (INIS)

    Ruyck, Kim de; Eijkeren, Marc van; Claes, Kathleen; Morthier, Rudy; Paepe, Anne de; Vral, Anne; Ridder, Leo de; Thierens, Hubert

    2005-01-01

    Purpose: To examine the association of polymorphisms in XRCC1 (194Arg/Trp, 280Arg/His, 399Arg/Gln, 632Gln/Gln), XRCC3 (5' UTR 4.541A>G, IVS5-14 17.893A>G, 241Thr/Met), and OGG1 (326Ser/Cys) with the development of late radiotherapy (RT) reactions and to assess the correlation between in vitro chromosomal radiosensitivity and clinical radiosensitivity. Methods and Materials: Sixty-two women with cervical or endometrial cancer treated with RT were included in the study. According to the Common Terminology Criteria for Adverse Events, version 3.0, scale, 22 patients showed late adverse RT reactions. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assays were performed to examine polymorphic sites, the G2 assay was used to measure chromosomal radiosensitivity, and patient groups were compared using actuarial methods. Results: The XRCC3 IVS5-14 polymorphic allele was significantly associated with the risk of developing late RT reactions (odds ratio 3.98, p = 0.025), and the XRCC1 codon 194 variant showed a significant protective effect (p = 0.028). Patients with three or more risk alleles in XRCC1 and XRCC3 had a significantly increased risk of developing normal tissue reactions (odds ratio 10.10, p = 0.001). The mean number of chromatid breaks per cell was significantly greater in patients with normal tissue reactions than in patients with no reactions (1.16 and 1.34, respectively; p = 0.002). Patients with high chromosomal radiosensitivity showed a 9.2-fold greater annual risk of complications than patients with intermediate chromosomal radiosensitivity. Combining the G2 analysis with the risk allele model allowed us to identify 23% of the patients with late normal tissue reactions, without false-positive results. Conclusion: The results of the present study showed that clinical radiosensitivity is associated with an enhanced G2 chromosomal radiosensitivity and is significantly associated with a combination of different polymorphisms in

  15. A Protocol for the Comprehensive Flow Cytometric Analysis of Immune Cells in Normal and Inflamed Murine Non-Lymphoid Tissues

    Science.gov (United States)

    Yu, Yen-Rei A.; O’Koren, Emily G.; Hotten, Danielle F.; Kan, Matthew J.; Kopin, David; Nelson, Erik R.; Que, Loretta; Gunn, Michael D.

    2016-01-01

    Flow cytometry is used extensively to examine immune cells in non-lymphoid tissues. However, a method of flow cytometric analysis that is both comprehensive and widely applicable has not been described. We developed a protocol for the flow cytometric analysis of non-lymphoid tissues, including methods of tissue preparation, a 10-fluorochrome panel for cell staining, and a standardized gating strategy, that allows the simultaneous identification and quantification of all major immune cell types in a variety of normal and inflamed non-lymphoid tissues. We demonstrate that our basic protocol minimizes cell loss, reliably distinguishes macrophages from dendritic cells (DC), and identifies all major granulocytic and mononuclear phagocytic cell types. This protocol is able to accurately quantify 11 distinct immune cell types, including T cells, B cells, NK cells, neutrophils, eosinophils, inflammatory monocytes, resident monocytes, alveolar macrophages, resident/interstitial macrophages, CD11b- DC, and CD11b+ DC, in normal lung, heart, liver, kidney, intestine, skin, eyes, and mammary gland. We also characterized the expression patterns of several commonly used myeloid and macrophage markers. This basic protocol can be expanded to identify additional cell types such as mast cells, basophils, and plasmacytoid DC, or perform detailed phenotyping of specific cell types. In examining models of primary and metastatic mammary tumors, this protocol allowed the identification of several distinct tumor associated macrophage phenotypes, the appearance of which was highly specific to individual tumor cell lines. This protocol provides a valuable tool to examine immune cell repertoires and follow immune responses in a wide variety of tissues and experimental conditions. PMID:26938654

  16. Time-resolved spectroscopy and fluorescence resonance energy transfer in the study of excimer laser damage of chromatin

    Energy Technology Data Exchange (ETDEWEB)

    Radu, L. [Department of Molecular Genetics and Radiobiology, Babes National Institute, Bucharest (Romania)], E-mail: lilianajradu@yahoo.fr; Mihailescu, I. [Department of Lasers, Laser, Plasma and Radiation Physics Institute, Bucharest (Romania); Radu, S. [Department of Computer Science, Polytechnics University, Bucharest (Romania); Gazdaru, D. [Department of Biophysics, Bucharest University (Romania)

    2007-09-21

    The analysis of chromatin damage produced by a 248 nm excimer laser radiation, for doses of 0.3-3 MJ/m{sup 2} was carried out by time-resolved spectroscopy and fluorescence resonance energy transfer (FRET). The chromatin was extracted from a normal and a tumoral tissue of Wistar rats. The decrease with laser dose of the relative contribution of the excited state lifetimes of ethidium bromide (EtBr) bounded to chromatin constitutes an evidence of the reduction of chromatin deoxyribonucleic acid (DNA) double-strand structure. FRET was performed from dansyl chloride to acridine orange, both coupled to chromatin. The increase of the average distance between these ligands, under the action of laser radiation, reflects a loosening of the chromatin structure. The radiosensitivity of tumor tissue chromatin is higher than that of a normal tissue. The determination of the chromatin structure modification in an excimer laser field can be of interest in laser therapy.

  17. Time-resolved spectroscopy and fluorescence resonance energy transfer in the study of excimer laser damage of chromatin

    International Nuclear Information System (INIS)

    Radu, L.; Mihailescu, I.; Radu, S.; Gazdaru, D.

    2007-01-01

    The analysis of chromatin damage produced by a 248 nm excimer laser radiation, for doses of 0.3-3 MJ/m 2 was carried out by time-resolved spectroscopy and fluorescence resonance energy transfer (FRET). The chromatin was extracted from a normal and a tumoral tissue of Wistar rats. The decrease with laser dose of the relative contribution of the excited state lifetimes of ethidium bromide (EtBr) bounded to chromatin constitutes an evidence of the reduction of chromatin deoxyribonucleic acid (DNA) double-strand structure. FRET was performed from dansyl chloride to acridine orange, both coupled to chromatin. The increase of the average distance between these ligands, under the action of laser radiation, reflects a loosening of the chromatin structure. The radiosensitivity of tumor tissue chromatin is higher than that of a normal tissue. The determination of the chromatin structure modification in an excimer laser field can be of interest in laser therapy

  18. Effects of cryotherapy combined with therapeutic ultrasound on oxidative stress and tissue damage after musculoskeletal contusion in rats.

    Science.gov (United States)

    Martins, C N; Moraes, M B; Hauck, M; Guerreiro, L F; Rossato, D D; Varela, A S; da Rosa, C E; Signori, L U

    2016-12-01

    To investigate the combined effects of cryotherapy and pulsed ultrasound therapy (PUT) on oxidative stress parameters, tissue damage markers and systemic inflammation after musculoskeletal injury. Experimental animal study. Research laboratory. Seventy male Wistar rats were divided into five groups: control, lesion, cryotherapy, PUT, and cryotherapy+PUT. The gastrocnemius muscle was injured by mechanical crushing. Cryotherapy was applied immediately after injury (immersion in water at 10°C for 20minutes). PUT was commenced 24hours after injury (1MHz, 0.4W/cm 2SPTA , 20% duty cycle, 5minutes). All animals were treated every 8hours for 3 days. Oxidative stress in muscle was evaluated by concentration of reactive oxygen species (ROS), lipid peroxidation (LPO), anti-oxidant capacity against peroxyl radicals (ACAP) and catalase. Plasma levels of creatine kinase (CK), lactate dehydrogenase (LDH) and C-reactive protein (CRP) were assessed. When applied individually, cryotherapy and PUT reduced CK, LDH, CRP and LPO caused by muscle damage. Cryotherapy+PUT in combination maintained the previous results, caused a reduction in ROS [P=0.005, mean difference -0.9×10 -8 relative area, 95% confidence interval (CI) -0.2 to -1.9], and increased ACAP {P=0.007, mean difference 0.34 1/[relative area with/without 2,2-azobis(2-methylpropionamidine)dihydrochloride], 95% CI 0.07 to 0.61} and catalase (P=0.002, mean difference 0.41units/mg protein, 95% CI 0.09 to 0.73) compared with the lesion group. Cryotherapy+PUT in combination reduced oxidative stress in muscle, contributing to a reduction in adjacent damage and tissue repair. Copyright © 2016 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.

  19. Canine tumor and normal tissue response to heat and radiation

    International Nuclear Information System (INIS)

    Gillette, E.L.; McChesney, S.L.

    1985-01-01

    Oral squamous cell carcinomas of dogs were treated with either irradiation alone or combined with hyperthermia. Tumor control was assessed as no evidence of disease one year following treatment. Dogs were randomized to variable radiation doses which were given in ten fractions three times a week for three weeks. Heat was given three hours after the first and third radiation dose each week for seven treatments. The attempt was made to achieve a minimum tumor temperature of 42 0 C for thirty minutes with a maximum normal tissue temperature of 40 0 C. It was usually possible to selectively heat tumors. The TCD 50 for irradiation alone was about 400 rads greater than for heat plus irradiation. The dose response curve for heat plus radiation was much steeper than for radiation alone indicating less heterogeneity of tumor response. That also implies a much greater effectiveness of radiation combined with heat at higher tumor control probabilities. Early necrosis caused by heating healed with conservative management. No increase in late radiation necrosis was observed

  20. The influence of freezing and tissue porosity on the material properties of vegetable tissues

    International Nuclear Information System (INIS)

    Ralfs, Julie D.

    2002-01-01

    Tissue porosity and fluid flow have been shown to be important parameters affecting the mechanical and sensorial behaviour of edible plant tissues. The quantity of fluid and the manner with which it was released on compression of the plant tissue were also important regarding the sensory perception and a good indication of any structural damage resulting from freezing, for example. Potato, carrot and Chinese water chestnut were used to study the effects freezing has on model plant tissues. Mechanical and structural measurements of the plant tissue were correlated with sensory analysis. Conventional freezing was shown to cause severe structural damage predominantly in the form of cavities between or through cells, resulting in decreases in mechanical strength and stiffness, and samples that were perceived in the mouth as 'soft' and 'wet'. The location and size of the cavities formed from ice crystals, depended on the particular plant tissue being frozen, the processing it was subjected to prior to freezing, the size of the sample and the cooling regime employed to freeze the tissue. Cavitation in the tissue resulted in an increase in tissue porosity, which enabled fluid to flow more easily from the tissue on compression, thus affecting the mechanical properties and sensory perception. Freezing damage to plant tissues was shown to be reduced, and sometimes prevented, when active antifreeze proteins (AFPs) were introduced into the tissues by vacuum infiltration or transformation and the tissue was frozen at a suitable cooling rate. Theoretical modelling was applied to the fluid flow and porosity data to test the validity of the models and to subsequently predict the mechanical behaviour of potato from the structural properties of the tissue. (author)

  1. Lung tissue remodeling in the acute respiratory distress syndrome

    Directory of Open Access Journals (Sweden)

    Souza Alba Barros de

    2003-01-01

    Full Text Available Acute respiratory distress syndrome (ARDS is characterized by diffuse alveolar damage, and evolves progressively with three phases: exsudative, fibroproliferative, and fibrotic. In the exudative phase, there are interstitial and alveolar edemas with hyaline membrane. The fibropro­liferative phase is characterized by exudate organization and fibroelastogenesis. There is proliferation of type II pneumocytes to cover the damaged epithelial surface, followed by differentiation into type I pneumocytes. The fibroproliferative phase starts early, and its severity is related to the patient?s prognosis. The alterations observed in the phenotype of the pulmonary parenchyma cells steer the tissue remodeling towards either progressive fibrosis or the restoration of normal alveolar architecture. The fibrotic phase is characterized by abnormal and excessive deposition of extracellular matrix proteins, mainly collagen. The dynamic control of collagen deposition and degradation is regulated by metalloproteinases and their tissular regulators. The deposition of proteoglycans in the extracellular matrix of ARDS patients needs better study. The regulation of extracellular matrix remodeling, in normal conditions or in several pulmonary diseases, such as ARDS, results from a complex mechanism that integrate the transcription of elements that destroy the matrix protein and produce activation/inhibition of several cellular types of lung tissue. This review article will analyze the ECM organization in ARDS, the different pulmonary parenchyma remodeling mechanisms, and the role of cytokines in the regulation of the different matrix components during the remodeling process.

  2. In-vivo tissue uptake and retention of Sn-117m(4+)DTPA in a human subject with metastatic bone pain and in normal mice

    International Nuclear Information System (INIS)

    Swailem, Fayez M.; Krishnamurthy, Gerbail T.; Srivastava, Suresh C.; Aguirre, Maria L.; Ellerson, Dawn L.; Walsh, T. Kent; Simpson, Laura

    1998-01-01

    Organ and tissue uptake and retention of Sn-117m(4+)DTPA were studied in a human subject treated for metastatic bone pain, and the results were compared with the biodistribution studies in five normal mice. The explanted organs from a patient who received a therapy dose of 18.6 mCi (688.2 MBq) Sn-117m(4+)DTPA and who died 47 days later were imaged with a γ-camera, and tissue samples were counted and also autoradiographed. Bone, muscle, liver, fat, lungs, kidneys, spleen, heart and pancreas tissue samples were assayed in a well counter for radioactivity. Regions of interest were drawn over bone and major organs to calculate and quantify clearance times using three in vivo Sn-117m(4+)DTPA whole-body scintigrams acquired at 1, 24 and 168 h after injection. Five normal mice injected with the same batch of Sn-117m(4+)DTPA as used for the human subject were sacrificed at 24 h, and tissue samples were collected and assayed for radioactivity for comparison with the human data. For the human subject, whole-body retention at 47 days postinjection was 81% of the injected dose, and the rest (19%) was excreted in urine. Of the whole-body retained activity at 47 days, 82.4% was in bone, 7.8% in the muscle and 1.5% in the liver, and the rest was distributed among other tissues. γ-Ray scintigrams and electron autoradiographs of coronal slices of the thoracolumbar vertebral body showed heterogenous metastatic involvement with normal bone between metastatic lesions. There was nonuniform distribution of radioactivity even within a single vertebral body, indicating normal bone between metastatic lesions. Lesion-to-nonlesion ratios ranged from 3 to 5. However, the osteoid-to-marrow cavity deposition ratio, from the microautoradiographs, was 11:1. The peak uptake in the human bone was seen at 137 h with no biological clearance. Soft tissues showed peak uptake at 1 h and exhibited three compartmental clearance components. Whole-body retention in normal mice was 38.7% of the injected

  3. Normal and Fibrotic Rat Livers Demonstrate Shear Strain Softening and Compression Stiffening: A Model for Soft Tissue Mechanics.

    Directory of Open Access Journals (Sweden)

    Maryna Perepelyuk

    Full Text Available Tissues including liver stiffen and acquire more extracellular matrix with fibrosis. The relationship between matrix content and stiffness, however, is non-linear, and stiffness is only one component of tissue mechanics. The mechanical response of tissues such as liver to physiological stresses is not well described, and models of tissue mechanics are limited. To better understand the mechanics of the normal and fibrotic rat liver, we carried out a series of studies using parallel plate rheometry, measuring the response to compressive, extensional, and shear strains. We found that the shear storage and loss moduli G' and G" and the apparent Young's moduli measured by uniaxial strain orthogonal to the shear direction increased markedly with both progressive fibrosis and increasing compression, that livers shear strain softened, and that significant increases in shear modulus with compressional stress occurred within a range consistent with increased sinusoidal pressures in liver disease. Proteoglycan content and integrin-matrix interactions were significant determinants of liver mechanics, particularly in compression. We propose a new non-linear constitutive model of the liver. A key feature of this model is that, while it assumes overall liver incompressibility, it takes into account water flow and solid phase compressibility. In sum, we report a detailed study of non-linear liver mechanics under physiological strains in the normal state, early fibrosis, and late fibrosis. We propose a constitutive model that captures compression stiffening, tension softening, and shear softening, and can be understood in terms of the cellular and matrix components of the liver.

  4. Magnetic Resonance Imaging Allows the Evaluation of Tissue Damage and Regeneration in a Mouse Model of Critical Limb Ischemia.

    Directory of Open Access Journals (Sweden)

    Germana Zaccagnini

    Full Text Available Magnetic resonance imaging (MRI provides non-invasive, repetitive measures in the same individual, allowing the study of a physio-pathological event over time. In this study, we tested the performance of 7 Tesla multi-parametric MRI to monitor the dynamic changes of mouse skeletal muscle injury and regeneration upon acute ischemia induced by femoral artery dissection. T2-mapping (T2 relaxation time, diffusion-tensor imaging (Fractional Anisotropy and perfusion by Dynamic Contrast-Enhanced MRI (K-trans were measured and imaging results were correlated with histological morphometric analysis in both Gastrocnemius and Tibialis anterior muscles. We found that tissue damage positively correlated with T2-relaxation time, while myofiber regeneration and capillary density positively correlated with Fractional Anisotropy. Interestingly, K-trans positively correlated with capillary density. Accordingly, repeated MRI measurements between day 1 and day 28 after surgery in ischemic muscles showed that: 1 T2-relaxation time rapidly increased upon ischemia and then gradually declined, returning almost to basal level in the last phases of the regeneration process; 2 Fractional Anisotropy dropped upon ischemic damage induction and then recovered along with muscle regeneration and neoangiogenesis; 3 K-trans reached a minimum upon ischemia, then progressively recovered. Overall, Gastrocnemius and Tibialis anterior muscles displayed similar patterns of MRI parameters dynamic, with more marked responses and less variability in Tibialis anterior. We conclude that MRI provides quantitative information about both tissue damage after ischemia and the subsequent vascular and muscle regeneration, accounting for the differences between subjects and, within the same individual, between different muscles.

  5. Magnetic Resonance Imaging Allows the Evaluation of Tissue Damage and Regeneration in a Mouse Model of Critical Limb Ischemia.

    Science.gov (United States)

    Zaccagnini, Germana; Palmisano, Anna; Canu, Tamara; Maimone, Biagina; Lo Russo, Francesco M; Ambrogi, Federico; Gaetano, Carlo; De Cobelli, Francesco; Del Maschio, Alessandro; Esposito, Antonio; Martelli, Fabio

    2015-01-01

    Magnetic resonance imaging (MRI) provides non-invasive, repetitive measures in the same individual, allowing the study of a physio-pathological event over time. In this study, we tested the performance of 7 Tesla multi-parametric MRI to monitor the dynamic changes of mouse skeletal muscle injury and regeneration upon acute ischemia induced by femoral artery dissection. T2-mapping (T2 relaxation time), diffusion-tensor imaging (Fractional Anisotropy) and perfusion by Dynamic Contrast-Enhanced MRI (K-trans) were measured and imaging results were correlated with histological morphometric analysis in both Gastrocnemius and Tibialis anterior muscles. We found that tissue damage positively correlated with T2-relaxation time, while myofiber regeneration and capillary density positively correlated with Fractional Anisotropy. Interestingly, K-trans positively correlated with capillary density. Accordingly, repeated MRI measurements between day 1 and day 28 after surgery in ischemic muscles showed that: 1) T2-relaxation time rapidly increased upon ischemia and then gradually declined, returning almost to basal level in the last phases of the regeneration process; 2) Fractional Anisotropy dropped upon ischemic damage induction and then recovered along with muscle regeneration and neoangiogenesis; 3) K-trans reached a minimum upon ischemia, then progressively recovered. Overall, Gastrocnemius and Tibialis anterior muscles displayed similar patterns of MRI parameters dynamic, with more marked responses and less variability in Tibialis anterior. We conclude that MRI provides quantitative information about both tissue damage after ischemia and the subsequent vascular and muscle regeneration, accounting for the differences between subjects and, within the same individual, between different muscles.

  6. High-risk human papilloma virus in archival tissues of oral pathosis and normal oral mucosa

    Directory of Open Access Journals (Sweden)

    Raghu Dhanapal

    2015-01-01

    Full Text Available Objectives: Oral cancer ranks third among all cancers in the Indian population. Human papilloma virus (HPV plays a significant role in oral carcinogenesis. Population-based subtype variations are present in the HPV prevalence. This study gives an emphasis on the parameters to be considered in formalin fixed paraffin embedded tissues for polymerase chain reaction (PCR-based research work. Materials and Methods: Cross-sectional study on archival paraffin-embedded tissue samples of oral squamous cell carcinoma (OSCC, epithelial dysplasia, and normal oral mucosa surrounding impacted tooth was amplified by PCR for the E6 gene of HPV type 16 and E1 gene of HPV type 18. Results: HPV 18 was positive in three OSCC cases. There was no statistically significant association of the positivity of HPV with the age, gender or habit. The HPV positive patients had a tobacco habit and were of a younger age group. Conclusion: The presence of HPV in carcinomatous tissue highlights the possible role of HPV in carcinogenesis and archival paraffin embedded tissue specimen can be used for this analysis. Recent studies on genomic analyses have highlighted that the HPV positive tumors are a separate subgroup based on genomic sequencing. The results of a larger retrospective study will help further in our understanding of the role of HPV in carcinogenesis, this study could form the baseline for such follow-up studies.

  7. High-risk human papilloma virus in archival tissues of oral pathosis and normal oral mucosa.

    Science.gov (United States)

    Dhanapal, Raghu; Ranganathan, K; Kondaiah, Paturu; Devi, R Uma; Joshua, Elizabeth; Saraswathi, T R

    2015-01-01

    Oral cancer ranks third among all cancers in the Indian population. Human papilloma virus (HPV) plays a significant role in oral carcinogenesis. Population-based subtype variations are present in the HPV prevalence. This study gives an emphasis on the parameters to be considered in formalin fixed paraffin embedded tissues for polymerase chain reaction (PCR)-based research work. Cross-sectional study on archival paraffin-embedded tissue samples of oral squamous cell carcinoma (OSCC), epithelial dysplasia, and normal oral mucosa surrounding impacted tooth was amplified by PCR for the E6 gene of HPV type 16 and E1 gene of HPV type 18. HPV 18 was positive in three OSCC cases. There was no statistically significant association of the positivity of HPV with the age, gender or habit. The HPV positive patients had a tobacco habit and were of a younger age group. The presence of HPV in carcinomatous tissue highlights the possible role of HPV in carcinogenesis and archival paraffin embedded tissue specimen can be used for this analysis. Recent studies on genomic analyses have highlighted that the HPV positive tumors are a separate subgroup based on genomic sequencing. The results of a larger retrospective study will help further in our understanding of the role of HPV in carcinogenesis, this study could form the baseline for such follow-up studies.

  8. Relaxation time of normal breast tissues. Changes with age and variations during the menstrual cycle

    International Nuclear Information System (INIS)

    Dean, K.I.; Majurin, M.L.; Komu, M.

    1994-01-01

    The influence of age on the relaxation times of normal breast parenchyma and its surrounding fatty tissue were evaluated, and the variations during a normal menstrual cycle were analyzed using an ultra low field 0.02 T imager. Thirty-nine healthy volunteers aged 21 to 59 years were examined to determine T1 and T2 relaxation times, and 8 of these volunteers were studied once weekly during one menstrual cycle. The only significant trend was an increase in the T2 of breast parenchyma with increasing age. During the menstrual cycle there was a slight but insignificant (p=0.10) increase in T1 of the breast parenchyma values during the latter half of the menstrual cycle, and a corresponding increase in T2 values between the 2nd and 3rd weeks of the menstrual cycle, which was significant. (orig.)

  9. Relaxation time of normal breast tissues. Changes with age and variations during the menstrual cycle

    Energy Technology Data Exchange (ETDEWEB)

    Dean, K.I. (University Central Hospital, Turku (Finland). Dept. of Diagnostic Radiology); Majurin, M.L. (University Central Hospital, Turku (Finland). Dept. of Diagnostic Radiology); Komu, M. (University Central Hospital, Turku (Finland). Dept. of Diagnostic Radiology)

    1994-05-01

    The influence of age on the relaxation times of normal breast parenchyma and its surrounding fatty tissue were evaluated, and the variations during a normal menstrual cycle were analyzed using an ultra low field 0.02 T imager. Thirty-nine healthy volunteers aged 21 to 59 years were examined to determine T1 and T2 relaxation times, and 8 of these volunteers were studied once weekly during one menstrual cycle. The only significant trend was an increase in the T2 of breast parenchyma with increasing age. During the menstrual cycle there was a slight but insignificant (p=0.10) increase in T1 of the breast parenchyma values during the latter half of the menstrual cycle, and a corresponding increase in T2 values between the 2nd and 3rd weeks of the menstrual cycle, which was significant. (orig.).

  10. Solar radiation and mitochondrial DNA damage

    International Nuclear Information System (INIS)

    Hill, H.Z.; Locitzer, J.; Nassrin, E.; Ogbonnaya, A.; Hubbard, K.

    2003-01-01

    The 16.6 kB human mitochondrial DNA contains two homologous 13 base pair direct repeats separated by about 5 kB. During asynchronous mitochondrial DNA replication, the distant repeat sequences are thought to anneal, resulting in the looping out of a portion of the non-template strand which is subsequently deleted as a result of interaction with reactive oxygen species (ROS). A normal daughter and a deleted daughter mitochondrion result from such insults. This deletion has been termed the common deletion as it is the most frequent of the known mitochondrial DNA deletions. The common deletion is present in high frequency in several mitochondrial disorders, accumulates with age in slow turnover tissues and is increased in sun-exposed skin. Berneburg, et al. (Photochem. Photobiol. 66: 271, 1997) induced the common deletion in normal human fibroblasts after repeated exposures to UVA. In this study, the common deletion has been shown to be induced by repeated non-lethal exposures to FS20 sunlamp irradiation. Increases in the common deletion were demonstrated using nested PCR which produced a 303 bp product that was compared to a 324 bp product that required the presence of the undeleted 5 kB region. The cells were exposed to 10 repeated doses ranging from 0.5 (UVB) - 0.24 (UVA) J/sq m to 14.4 (UVB) - 5.8 J/sq m (UVA) measured using a UVX digital radiometer and UVB and UVA detectors respectively. Comparison with the earlier study by Berneberg, et al. suggests that this type of simulated solar damage is considerably more effective in fewer exposures than UVA radiation alone. The common deletion provides a cytoplasmic end-point for ROS damage produced by low dose chronic irradiations and other low level toxic exposures and should prove useful in evaluating cytoplasmic damage produced by ionizing radiation as well

  11. Study on radioprotection of alliin and damage mechanism in hepatocyte after irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Tae Jeong; Kim, Won Tae [Dept, of Radiological Science, Kaya University, Kimhae (Korea, Republic of)

    2016-12-15

    Liver tissue damage by a radiation exposure caused a jaundice and ascitic fluid e form harden atrophy. The reason for this lies in morphological damage of a liver cells. This study tried that observe damage mechanism of the cell organelles. It was especially observed mitochondria, endoplasmic reticulum and nuclear membrane associated with energy metabolizable. also, This study had with a radio-protector development research at the same time. Radio-protector was used to alliin that has an blood flow increase. Cell observation make used of transmission electron microscope(TEM). The result of an experiment, 7Gy of whole body irradiation was caused an inflammation in cell organelles and hypertrophy of the nucleus membrane. After 20 days, The hepatocyte has been observed in a damaged membrane on peroxisome, mitochondria and vacuole of the cell organelles. After 30 days, The hepatocyte has been observed in disconnected ribosomes on a rough endoplasmic reticulum. There was looked a giant lipoblast. There was clearly normal observed a mitochondria and nucleus membrane in the hepatocyte after alliin injection. aslo, It was no damaged the nucleus membrane. Therefore, It was identified portion a radio-protector effect from alliin.

  12. of the stomach (ID 345), neutralisation of gastric acid (ID 345), contribution to normal formation of collagen and connective tissue (ID 287, 288, 333, 334, 335, 1405, 1652, 1718, 1719, 1945), maintenance of normal bone (ID 287, 335, 1652, 1718, 1945), maintenance of normal joints (ID 1405, 1652, 1945

    DEFF Research Database (Denmark)

    Tetens, Inge

    claims in relation to silicon and protection against aluminium accumulation in the brain, cardiovascular health, forming a protective coat on the mucous membrane of the stomach, neutralisation of gastric acid, contribution to normal formation of collagen and connective tissue, maintenance of normal bone...

  13. Discrimination of prostate cancer from normal peripheral zone and central gland tissue by using dynamic contrast-enhanced MR imaging

    NARCIS (Netherlands)

    Engelbrecht, Marc R.; Huisman, Henkjan J.; Laheij, Robert J. F.; Jager, Gerrit J.; van Leenders, Geert J. L. H.; Hulsbergen-van de Kaa, Christina A.; de La Rosette, Jean J. M. C. H.; Blickman, Johan G.; Barentsz, Jelle O.

    2003-01-01

    PURPOSE: To evaluate which parameters of dynamic magnetic resonance (MR) imaging and T2 relaxation rate would result in optimal discrimination of prostatic carcinoma from normal peripheral zone (PZ) and central gland (CG) tissues and to correlate these parameters with tumor stage, Gleason score,

  14. Hair cell counts in a rat model of sound damage: Effects of tissue preparation & identification of regions of hair cell loss.

    Science.gov (United States)

    Neal, Christopher; Kennon-McGill, Stefanie; Freemyer, Andrea; Shum, Axel; Staecker, Hinrich; Durham, Dianne

    2015-10-01

    Exposure to intense sound can damage or kill cochlear hair cells (HC). This loss of input typically manifests as noise induced hearing loss, but it can also be involved in the initiation of other auditory disorders such as tinnitus or hyperacusis. In this study we quantify changes in HC number following exposure to one of four sound damage paradigms. We exposed adult, anesthetized Long-Evans rats to a unilateral 16 kHz pure tone that varied in intensity (114 dB or 118 dB) and duration (1, 2, or 4 h) and sacrificed animals 2-4 weeks later. We compared two different methods of tissue preparation, plastic embedding/sectioning and whole mount dissection, for quantifying hair cell loss as a function of frequency. We found that the two methods of tissue preparation produced largely comparable cochleograms, with whole mount dissections allowing a more rapid evaluation of hair cell number. Both inner and outer hair cell loss was observed throughout the length of the cochlea irrespective of sound damage paradigm. Inner HC loss was either equal to or greater than outer HC loss. Increasing the duration of sound exposures resulted in more severe HC loss, which included all HC lesions observed in an analogous shorter duration exposure. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. The comparison of thermal tissue injuries caused by ultrasonic scalpel and electrocautery use in rabbit tongue tissue

    Science.gov (United States)

    Beriat, Guclu Kaan; Akmansu, Sefik Halit; Ezerarslan, Hande; Dogan, Cem; Han, Unsal; Saglam, Mehmet; Senel, Oytun Okan; Kocaturk, Sinan

    2012-01-01

    The aim of this study compares to the increase in tissue temperature and the thermal histological effects of ultrasonic scalpel, bipolar and unipolar electrosurgery incisions in the tongue tissue of rabbits. This study evaluates the histopathological changes related to thermal change and the maximum temperature values in the peripheral tissue brought about by the incisions carried out by the three methods in a comparative way. To assess thermal tissue damage induced by the three instruments, maximum tissue temperatures were measured during the surgical procedure and tongue tissue samples were examined histopathologically following the surgery. The mean maximum temperature values of the groups were 93.93±2.76 C° for the unipolar electrocautery group, whereas 85.07±5.95 C° for the bipolar electrocautery group, and 108.23±7.64 C° for the ultrasonic scalpel group. There was a statistically significant relationship between the increase in maximum temperature values and the separation among tissue layers, edema, congestion, necrosis, hemorrhage, destruction in blood vessel walls and fibrin accumulation, and between the existence of fibrin thrombus and tissue damage depth (pelectrocautery use gives way to less temperature increase in the tissues and less thermal tissue damage in comparison to the other methods. PMID:22938541

  16. Is NAA reduction in normal contralateral cerebral tissue in stroke patients dependent on underlying risk factors?

    Science.gov (United States)

    Walker, P M; Ben Salem, D; Giroud, M; Brunotte, F

    2006-05-01

    This retrospective study investigated the dependence of N-acetyl aspartate (NAA) ratios on risk factors for cerebral vasculopathy such as sex, age, hypertension, diabetes mellitus, carotid stenosis, and dyslipidaemia, which may have affected brain vessels and induced metabolic brain abnormalities prior to stroke. We hypothesise that in stroke patients metabolic alterations in the apparently normal contralateral brain are dependent on the presence or not of such risk factors. Fifty nine patients (31 male, 28 female: 58.8+/-16.1 years old) with cortical middle cerebral artery (MCA) territory infarction were included. Long echo time chemical shift imaging spectroscopy was carried out on a Siemens 1.5 T Magnetom Vision scanner using a multi-voxel PRESS technique. Metabolite ratios (NAA/choline, NAA/creatine, lactate/choline, etc) were studied using uni- and multivariate analyses with respect to common risk factors. The influence of age, stroke lesion size, and time since stroke was studied using a linear regression approach. Age, sex, and hypertension all appeared to individually influence metabolite ratios, although only hypertension was significant after multivariate analysis. In both basal ganglia and periventricular white matter regions in apparently normal contralateral brain, the NAA/choline ratio was significantly lower in hypertensive (1.37+/-0.16 and 1.50+/-0.19, respectively) than in normotensive patients (1.72+/-0.19 and 1.85+/-0.15, respectively). Regarding MCA infarction, contralateral tissue remote from the lesion behaves abnormally in the presence of hypertension, the NAA ratios in hypertensive patients being significantly lower. These data suggest that hypertension may compromise the use of contralateral tissue data as a reference for comparison with ischaemic tissue.

  17. Synchrotron X-ray CT of rose peduncles. Evaluation of tissue damage by radiation

    International Nuclear Information System (INIS)

    Herppich, Werner B.; Zabler, Simon; Dawson, Martin; Choinka, Gerard; Manke, Ingo

    2015-01-01

    ''Bent-neck'' syndrome, an important postharvest problem of cut roses, is probably caused by water supply limitations and/or the structural weakness of vascular bundles of the peduncle tissue. For this reason, advanced knowledge about the microstructures of rose peduncles and their cultivar specific variations may lead to a better understanding of the underlying mechanisms. Synchrotron X-ray computed tomography (SXCT), especially phase-based CT, is a highly suitable technique to nondestructively investigate plants' micro anatomy. SXCT with monochromatic X-ray beams of 30, 40 and 50 keV photon energy was used to evaluate the three-dimensional inner structures of the peduncles of 3 rose cultivars that differ greatly in their bent-neck susceptibility. Results indicated that this technique achieves sufficiently high spatial resolution to investigate complex tissues. However, further investigations with chlorophyll fluorescence analysis (CFA) and optical microscope imagery reveal different kinds of heavy damage of the irradiated regions induced by synchrotron X-rays; in a cultivar-specific manner, partial destruction of cell walls occurred a few hours after X-ray irradiation. Furthermore, a delayed inhibition of photosynthesis accompanied by the degradation of chlorophyll was obvious from CFA within hours and days after the end of CT measurements. Although SXCT is certainly well suited for three-dimensional anatomical analysis of rose peduncles, the applied technique is not nondestructive.

  18. Synchrotron X-ray CT of rose peduncles. Evaluation of tissue damage by radiation

    Energy Technology Data Exchange (ETDEWEB)

    Herppich, Werner B. [Leibniz-Institut fuer Agrartechnik Potsdam-Bornim e.V., Potsdam (Germany). Abt. Technik im Gartenbau; Matsushima, Uzuki [Iwate Univ., Morioka (Japan). Faculty of Agriculture; Graf, Wolfgang [Association for Technology and Structures in Agriculture (KTBL), Darmstadt (Germany); Zabler, Simon [Fraunhofer-Institut fuer Integrierte Schaltungen (IIS), Wuerzburg (Germany). Project group NanoCT Systems (NCTS); Dawson, Martin [Salford Univ., Greater Manchester (United Kingdom); Choinka, Gerard; Manke, Ingo [Helmholtz Center Berlin for Materials and Energy (HZB), Berlin (Germany)

    2015-02-01

    ''Bent-neck'' syndrome, an important postharvest problem of cut roses, is probably caused by water supply limitations and/or the structural weakness of vascular bundles of the peduncle tissue. For this reason, advanced knowledge about the microstructures of rose peduncles and their cultivar specific variations may lead to a better understanding of the underlying mechanisms. Synchrotron X-ray computed tomography (SXCT), especially phase-based CT, is a highly suitable technique to nondestructively investigate plants' micro anatomy. SXCT with monochromatic X-ray beams of 30, 40 and 50 keV photon energy was used to evaluate the three-dimensional inner structures of the peduncles of 3 rose cultivars that differ greatly in their bent-neck susceptibility. Results indicated that this technique achieves sufficiently high spatial resolution to investigate complex tissues. However, further investigations with chlorophyll fluorescence analysis (CFA) and optical microscope imagery reveal different kinds of heavy damage of the irradiated regions induced by synchrotron X-rays; in a cultivar-specific manner, partial destruction of cell walls occurred a few hours after X-ray irradiation. Furthermore, a delayed inhibition of photosynthesis accompanied by the degradation of chlorophyll was obvious from CFA within hours and days after the end of CT measurements. Although SXCT is certainly well suited for three-dimensional anatomical analysis of rose peduncles, the applied technique is not nondestructive.

  19. SU-F-T-150: Comparing Normal Tissue Irradiated Volumes for Proton Vs. Photon Treatment Plans On Lung Patients

    Energy Technology Data Exchange (ETDEWEB)

    Liu, A; Mohan, R; Liao, Z [UT MD Anderson Cancer Center, Houston, TX (United States)

    2016-06-15

    Purpose: The aim of this work is to compare the “irradiated volume” (IRV) of normal tissues receiving 5, 20, 50, 80 and 90% or higher of the prescription dose with passively scattered proton therapy (PSPT) vs. IMRT of lung cancer patients. The overall goal of this research is to understand the factors affecting outcomes of a randomized PSPT vs. IMRT lung trial. Methods: Thirteen lung cancer patients, selected randomly, were analyzed. Each patient had PSPT and IMRT 74 Gy (RBE) plans meeting the same normal tissue constraints generated. IRVs were created for pairs of IMRT and PSPT plans on each patient. The volume of iGTV, (respiratory motion-incorporated GTV) was subtracted from each IRV to create normal tissue irradiated volume IRVNT. The average of IRVNT DVHs over all patients was also calculated for both modalities and inter-compared as were the selected dose-volume indices. Probability (p value) curves were calculated based on the Wilcoxon matched-paired signed-rank test to determine the dose regions where the statistically significant differences existed. Results: As expected, the average 5, 20 and 50% IRVNT’s for PSPT was found to be significantly smaller than for IMRT (p < 0.001, 0.01, and 0.001 respectively). However, the average 90% IRVNT for PSPT was greater than for IMRT (p = 0.003) presumably due to larger penumbra of protons and the long range of protons in lower density media. The 80% IRVNT for PSPT was also larger but not statistically distinguishable (p = .224). Conclusion: PSPT modality has smaller irradiated volume at lower doses, but larger volume at high doses. A larger cohort of lung patients will be analyzed in the future and IRVNT of patients treated with PSPT and IMRT will be compared to determine if the irradiated volumes (the magnitude of “dose bath”) correlate with outcomes.

  20. The Relationship Between Intestinal Iron Absorption and Hepatic Parenchymal Cell Damage

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Mok Hyun; Hahn, Shin Suck [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    1971-09-15

    Since the iron balance is maintained by regulated intestinal absorption rather than regulated excretion, there have been many reports concerning the factors which may influence the intestinal iron absorption. As the liver is the largest iron storage organ of the body, any hepatocellular damage may result in disturbances in iron metabolism, e,g., frequent co-existence of haemochromatosis and liver cirrhosis, or elevated serum iron level and increased iron absorption rate in patients with infectious hepatitis or cirrhosis. In one effort to demonstrate the influence of hepatocellular damage on intestinal iron absorption, the iron absorption rate was measured in the rabbits whose livers were injured by a single subcutaneous injection of carbon tetrachloride (doses ranging from 0.15 to 0.5 cc per kg of body weight) or by a single irradiation of 2, 000 to 16, 000 rads with Co on the liver locally. A single oral dose of 1muCi of Fe-citrate with 0.5 mg of ferrous citrate was fed in the fasting state, 24 hours after hepatic damage had been induced, without any reducing or chelating agents, and stool was collected for one week thereafter. Serum iron levels, together with conventional liver function teats, were measured at 24, 48, 72, 120 and 168 hours after liver damage had been induced. All animals were sacrificed upon the completing of the one week's test period and tissue specimens were prepared for H-E and Gomori's iron stain. Following are the results. 1. Normal iron absorption rate of the rabbit was 41.72+-3.61% when 0.5 mg of iron was given in the fasting state, as measured by subtracting the amount recovered in stool collected for 7 days from the amount given. The test period of 7 days is adequate, for only 1% of the iron given was excreted thereafter. 2. The intestinal iron absorption rate and serum iron level were significantly increased when the animal was poisoned by a single subcutaneous injection of 0.15 cc, per kg. of body weight of carbon tetrachloride or