WorldWideScience

Sample records for normal munitions disposal

  1. Disposal of chemical agents and munitions stored at Pine Bluff Arsenal, Pine Bluff, Arkansas

    Energy Technology Data Exchange (ETDEWEB)

    Ensminger, J.T.; Hillsman, E.L.; Johnson, R.D.; Morrisey, J.A.; Staub, W.P.; Boston, C.R.; Hunsaker, D.B.; Leibsch, E.; Rickert, L.W.; Tolbert, V.R.; Zimmerman, G.P.

    1991-09-01

    The Pine Bluff Arsenal (PBA) near Pine Bluff, Arkansas, is one of eight continental United States (CONUS) Army installations where lethal unitary chemical agents and munitions are stored and where destruction of agents and munitions is proposed under the Chemical Stockpile Disposal Program (CSDP). The chemical agent inventory at PBA consists of approximately 12%, by weight, of the total US stockpile. The destruction of the stockpile is necessary to eliminate the risk to the public from continued storage and to dispose of obsolete and leaking munitions. In 1988 the US Army issued a Final Programmatic Environmental Impact Statement (FPEIS) for the CSDP that identified on-site disposal of agents and munitions as the environmentally preferred alternative (i.e., the alternative with the least potential to cause significant adverse impacts). The purpose of this report is to examine the proposed implementation of on-site disposal at PBA in light of more recent and more detailed data than those on which the FPEIS is based. New population data were used to compute fatalities using the same computation methods and values for all other parameters as in the FPEIS. Results indicate that all alternatives are indistinguishable when the potential health impacts to the PBA community are considered. However, risks from on-site disposal are in all cases equal to or less than risks from other alternatives. Furthermore, no unique resources with the potential to prevent or delay implementation of on-site disposal at PBA have been identified.

  2. Disposal of chemical agents and munitions stored at Umatilla Depot Activity, Hermiston, Oregon

    Energy Technology Data Exchange (ETDEWEB)

    Zimmerman, G.P.; Hillsman, E.L.; Johnson, R.O.; Miller, R.L.; Patton, T.G.; Schoepfle, G.M.; Tolbert, V.R.; Feldman, D.L.; Hunsaker, D.B. Jr.; Kroodsma, R.L.; Morrissey, J.; Rickert, L.W.; Staub, W.P.; West, D.C.

    1993-02-01

    The Umatilla Depot Activity (UMDA) near Hermiston, Oregon, is one of eight US Army installations in the continental United States where lethal unitary chemical agents and munitions are stored, and where destruction of agents and munitions is proposed under the Chemical Stockpile Disposal Program (CSDP). The chemical agent inventory at UMDA consists of 11.6%, by weight, of the total US stockpile. The destruction of the stockpile is necessary to eliminate the risk to the public from continued storage and to dispose of obsolete and leaking munitions. In 1988 the US Army issued a Final Programmatic Environmental Impact Statement (FPEIS) for the CSDP that identified on-site disposal of agents and munitions as the environmentally preferred alternative (i.e., the alternative with the least potential to cause significant adverse impacts), using a method based on five measures of risk for potential human health and ecosystem/environmental effects; the effectiveness and adequacy of emergency preparedness capabilities also played a key role in the FPEIS selection methodology. In some instances, the FPEIS included generic data and assumptions that were developed to allow a consistent comparison of potential impacts among programmatic alternatives and did not include detailed conditions at each of the eight installations. The purpose of this Phase 1 report is to examine the proposed implementation of on-site disposal at UMDA in light of more recent and more detailed data than those included in the FPEIS. Specifically, this Phase 1 report is intended to either confirm or reject the validity of on-site disposal for the UMDA stockpile. Using the same computation methods as in the FPEIS, new population data were used to compute potential fatalities from hypothetical disposal accidents. Results indicate that onsite disposal is clearly preferable to either continued storage at UMDA or transportation of the UMDA stockpile to another depot for disposal.

  3. Disposal of chemical agents and munitions stored at Pine Bluff Arsenal, Pine Bluff, Arkansas. Final phase 1, Environmental report

    Energy Technology Data Exchange (ETDEWEB)

    Ensminger, J.T.; Hillsman, E.L.; Johnson, R.D.; Morrisey, J.A.; Staub, W.P.; Boston, C.R.; Hunsaker, D.B.; Leibsch, E.; Rickert, L.W.; Tolbert, V.R.; Zimmerman, G.P.

    1991-09-01

    The Pine Bluff Arsenal (PBA) near Pine Bluff, Arkansas, is one of eight continental United States (CONUS) Army installations where lethal unitary chemical agents and munitions are stored and where destruction of agents and munitions is proposed under the Chemical Stockpile Disposal Program (CSDP). The chemical agent inventory at PBA consists of approximately 12%, by weight, of the total US stockpile. The destruction of the stockpile is necessary to eliminate the risk to the public from continued storage and to dispose of obsolete and leaking munitions. In 1988 the US Army issued a Final Programmatic Environmental Impact Statement (FPEIS) for the CSDP that identified on-site disposal of agents and munitions as the environmentally preferred alternative (i.e., the alternative with the least potential to cause significant adverse impacts). The purpose of this report is to examine the proposed implementation of on-site disposal at PBA in light of more recent and more detailed data than those on which the FPEIS is based. New population data were used to compute fatalities using the same computation methods and values for all other parameters as in the FPEIS. Results indicate that all alternatives are indistinguishable when the potential health impacts to the PBA community are considered. However, risks from on-site disposal are in all cases equal to or less than risks from other alternatives. Furthermore, no unique resources with the potential to prevent or delay implementation of on-site disposal at PBA have been identified.

  4. Disposal of chemical agents and munitions stored at Umatilla Depot Activity, Hermiston, Oregon. Final Phase 1 environmental report

    Energy Technology Data Exchange (ETDEWEB)

    Zimmerman, G.P.; Hillsman, E.L.; Johnson, R.O.; Miller, R.L.; Patton, T.G.; Schoepfle, G.M.; Tolbert, V.R.; Feldman, D.L.; Hunsaker, D.B. Jr.; Kroodsma, R.L.; Morrissey, J.; Rickert, L.W.; Staub, W.P.; West, D.C.

    1993-02-01

    The Umatilla Depot Activity (UMDA) near Hermiston, Oregon, is one of eight US Army installations in the continental United States where lethal unitary chemical agents and munitions are stored, and where destruction of agents and munitions is proposed under the Chemical Stockpile Disposal Program (CSDP). The chemical agent inventory at UMDA consists of 11.6%, by weight, of the total US stockpile. The destruction of the stockpile is necessary to eliminate the risk to the public from continued storage and to dispose of obsolete and leaking munitions. In 1988 the US Army issued a Final Programmatic Environmental Impact Statement (FPEIS) for the CSDP that identified on-site disposal of agents and munitions as the environmentally preferred alternative (i.e., the alternative with the least potential to cause significant adverse impacts), using a method based on five measures of risk for potential human health and ecosystem/environmental effects; the effectiveness and adequacy of emergency preparedness capabilities also played a key role in the FPEIS selection methodology. In some instances, the FPEIS included generic data and assumptions that were developed to allow a consistent comparison of potential impacts among programmatic alternatives and did not include detailed conditions at each of the eight installations. The purpose of this Phase 1 report is to examine the proposed implementation of on-site disposal at UMDA in light of more recent and more detailed data than those included in the FPEIS. Specifically, this Phase 1 report is intended to either confirm or reject the validity of on-site disposal for the UMDA stockpile. Using the same computation methods as in the FPEIS, new population data were used to compute potential fatalities from hypothetical disposal accidents. Results indicate that onsite disposal is clearly preferable to either continued storage at UMDA or transportation of the UMDA stockpile to another depot for disposal.

  5. Analysis of Biota to Evaluate the Risks Associated with Chemical Warfare Materiel Present in Sea-Disposed Military Munitions to Human Health and the Environment

    Science.gov (United States)

    Briggs, C. W.; Bissonnette, M. C.; Edwards, M.; Shjegstad, S. M.

    2016-12-01

    Thousands of 100-lb M47A series bombs containing sulfur mustard were disposed in the ocean following World War II yet few studies have been conducted at sites in excess of 250 m, the depth where most discarded military munitions (DMM) were disposed. The Hawai`i Undersea Military Munitions Assessment (HUMMA) project was conducted to evaluate the risk from chemical warfare materiel (CWM) in DMM to human health, measuring ecological differences between the disposal area and nearby but otherwise similar areas, and evaluating the most efficient platforms for surveying DMM sea-disposal sites located at depths between 400-650 m. During the 2014 HUMMA Sampling Survey, the Jason 2 remotely operated vehicle was used to collect data. Shrimp were collected and analyzed to assess the potential for bioaccumulation of CWM, energetics and metals from munitions. No CWM was detected in H. ensifer tissue samples, indicating bioaccumulation is not occurring. Low levels of 2,4,6-trinitrotoluene, 4-amino-2,6-­dinitrotoluene, 1,3,5-trinitrobenzene, nitrobenzene, arsenic, copper, and lead were detected and the concentrations were not significantly different at DMM and control sites. No visible deformities, eroded fins, lesions, or tumors were observed on the shrimp living in the vicinity of M47A bombs. Given these results and under current and potential future uses of the HUMMA study area, health risks to likely receptors are within EPA acceptable levels. Photographic data and benthic infauna analysis were used to study benthic organisms that lived on or near munitions. There was no statistically distinguishable difference between organism distributions in dense and sparse munitions fields. Conventional munitions were found to have the greatest number of benthic infauna individuals, with control sites generally having the least number of individuals. This is consistent with the benthic macro-fauna analysis, which shows that munitions provide habitat.

  6. Disposal of chemical agents and munitions stored at Pueblo Depot Activity, Colorado. Final, Phase 1: Environmental report

    Energy Technology Data Exchange (ETDEWEB)

    Terry, J.W.; Blasing, T.J.; Ensminger, J.T.; Johnson, R.O.; Schexnayder, S.M.; Shor, J.T.; Staub, W.P.; Tolbert, V.R.; Zimmerman, G.P.

    1995-04-01

    Under the Chemical Stockpile Disposal Program (CSDP), the US Army proposes to dispose of lethal chemical agents and munitions stored at eight existing Army installations in the continental United States. In 1988, the US Army issued the final programmatic environmental impact statement (FPEIS) for the CSDP. The FPEIS and the subsequent Record of Decision (ROD) identified an on-site disposal process as the preferred method for destruction of the stockpile. That is, the FPEIS determined the environmentally preferred alternative to be on-site disposal in high-temperature incinerators, while the ROD selected this alternative for implementation as the preferred method for destruction of the stockpile. In this Phase I report, the overall CSDP decision regarding disposal of the PUDA Stockpile is subjected to further analyses, and its validity at PUDA is reviewed with newer, more detailed data than those providing the basis for the conclusions in the FPEIS. The findings of this Phase I report will be factored into the scope of a site-specific environmental impact statement to be prepared for the destruction of the PUDA stockpile. The focus of this Phase I report is on those data identified as having the potential to alter the Army`s previous decision regarding disposal of the PUDA stockpile; however, several other factors beyond the scope of this Phase I report must also be acknowledged to have the potential to change or modify the Army`s decisions regarding PUDA.

  7. Disposal of chemical agents and munitions stored at Anniston Army Depot, Anniston, Alabama

    Energy Technology Data Exchange (ETDEWEB)

    Hunsaker, D.B. Jr.; Zimmerman, G.P.; Hillsman, E.L.; Miller, R.L.; Schoepfle, G.M.; Johnson, R.O.; Tolbert, V.R.; Kroodsma, R.L.; Rickert, L.W.; Rogers, G.O.; Staub, W.P.

    1990-09-01

    The purpose of this Phase I report is to examined the proposed implementation of on-site disposal at Anniston Army Depot (ANAD) in light of more detailed and more recent data than those included in the Final Programmatic Environmental Impact Statement (EPEIS). Two principal issues are addressed: (1) whether or not the new data would result in identification of on-site disposal at ANAD as the environmentally preferred alternative (using the same selection method and data analysis tools as in the FPEIS), and (2) whether or not the new data indicate the presence of significant environmental resources that could be affected by on-site disposal at ANAD. In addition, a status report is presented on the maturity of the disposal technology (and now it could affect on-site disposal at ANAD). Inclusion of these more recent data into the FPEIS decision method resulted in confirmation of on-site disposal for ANAD. No unique resources with the potential to prevent or delay implementation of on-site disposal at ANAD have been identified. A review of the technology status identified four principal technology developments that have occurred since publication of the FPEIS and should be of value in the implementation of on-site disposal at ANAD: the disposal of nonlethal agent at Pine Bluff Arsenal, located near Pine Bluff, Arkansas; construction and testing of facilities for disposal of stored lethal agent at Johnston Atoll, located about 1300 km (800 miles) southwest of Hawaii in the Pacific Ocean; lethal agent disposal tests at the chemical agent pilot plant operations at Tooele Army Depot, located near Salt Lake City, Utah; and equipment advances. 18 references, 13 figs., 10 tabs.

  8. Chemical Munitions Dumped at Sea near the Hawaiian Islands

    Science.gov (United States)

    Edwards, M.; Bissonnette, M. C.; Briggs, C. W.; Shjegstad, S. M.

    2016-12-01

    Sea disposal was once internationally accepted as an appropriate method for disposal of excess, obsolete, and unserviceable conventional and chemical munitions. The past decade has seen an increase in the number and complexity of studies to assess the effects of historical munitions disposal in the oceans. The Hawai`i Undersea Military Munitions Assessment (HUMMA) is a comprehensive deep-water (300-600 meter) investigation designed to determine the potential impact of sea-disposed munitions on the ocean environment, and vice versa, at a disposal site south of Pearl Harbor, Oahu, Hawaii. Historical records indicated that as many as 16,000 mustard-filled bombs were disposed in this area following World War II. A secondary objective of HUMMA is to determine best practices and technologies for mapping and sampling sea-disposed munitions. The overarching result from five HUMMA field programs conducted over a decade is that the greatest risk from munitions derives from direct contact; there is little evidence that leakage from munitions into the surrounding environment has a direct pathway to affect human health and the impact on the surrounding environment in Hawaii is detectable only at trace levels. This finding should be modulated based on the quantity of physical samples, which were collected around detected at control sites. Both findings support a hypothesis that the impacts of sea-disposed munitions change over time. This presentation will describe the technical approach and results of the 2014 HUMMA field program using Jason 2.

  9. Military Munitions Waste Working Group report

    International Nuclear Information System (INIS)

    1993-01-01

    This report presents the findings of the Military Munitions Waste Working Group in its effort to achieve the goals directed under the Federal Advisory Committee to Develop On-Site Innovative Technologies (DOIT Committee) for environmental restoration and waste management. The Military Munitions Waste Working Group identified the following seven areas of concern associated with the ordnance (energetics) waste stream: unexploded ordnance; stockpiled; disposed -- at known locations, i.e., disposal pits; discharged -- impact areas, unknown disposal sites; contaminated media; chemical sureties/weapons; biological weapons; munitions production; depleted uranium; and rocket motor and fuel disposal (open burn/open detonation). Because of time constraints, the Military Munitions Waste Working Group has focused on unexploded ordnance and contaminated media with the understanding that remaining waste streams will be considered as time permits. Contents of this report are as follows: executive summary; introduction; Military Munitions Waste Working Group charter; description of priority waste stream problems; shortcomings of existing approaches, processes and technologies; innovative approaches, processes and technologies, work force planning, training, and education issues relative to technology development and cleanup; criteria used to identify and screen potential demonstration projects; list of potential candidate demonstration projects for the DOIT committee decision/recommendation and appendices

  10. Military Munitions Waste Working Group report

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-30

    This report presents the findings of the Military Munitions Waste Working Group in its effort to achieve the goals directed under the Federal Advisory Committee to Develop On-Site Innovative Technologies (DOIT Committee) for environmental restoration and waste management. The Military Munitions Waste Working Group identified the following seven areas of concern associated with the ordnance (energetics) waste stream: unexploded ordnance; stockpiled; disposed -- at known locations, i.e., disposal pits; discharged -- impact areas, unknown disposal sites; contaminated media; chemical sureties/weapons; biological weapons; munitions production; depleted uranium; and rocket motor and fuel disposal (open burn/open detonation). Because of time constraints, the Military Munitions Waste Working Group has focused on unexploded ordnance and contaminated media with the understanding that remaining waste streams will be considered as time permits. Contents of this report are as follows: executive summary; introduction; Military Munitions Waste Working Group charter; description of priority waste stream problems; shortcomings of existing approaches, processes and technologies; innovative approaches, processes and technologies, work force planning, training, and education issues relative to technology development and cleanup; criteria used to identify and screen potential demonstration projects; list of potential candidate demonstration projects for the DOIT committee decision/recommendation and appendices.

  11. Hawaii Munitions Monitoring Station and Natural Laboratory

    Science.gov (United States)

    Edwards, M.; Trimble, A. Z.; Rognstad, M. R.

    2017-12-01

    Hundreds of thousands of tons of conventional munitions were fired into the ocean at military ranges or deliberately disposed at sea during the twentieth century. Potential contaminants from munitions and explosives of concern (MEC) affect virtually every coast in the United States, including Alaska, the Hawaiian Islands, Guam, American Samoa and other U.S. territories as well as inland waterways. It is necessary to develop methods to assess the concentrations of munitions constituents present at a site to address concerns about the presence of environmentally relevant concentrations and their potential impacts. Having a well-characterized site to test instruments and methods is important for continued development and refinement of technology. Most sites are too big to characterize comprehensively in three dimensions over time periods lasting days or longer. We are working to develop a monitoring station and natural laboratory near Oahu, Hawaii to create a cost-effective demonstration and validation natural laboratory where emerging technologies can be evaluated and compared. Ordnance Reef (OR) is an ideal location to establish a munitions monitoring station for historical, logistical and environmental reasons. OR is an area of shallow fringing reef measuring approximately 4.2 km by 2.2 km along the Waianae coast of Oahu that was used as a disposal area for military munitions following World War II. OR has been the subject of multiple investigations including an inventory of munitions conducted by the U.S. Army Corps of Engineers in 2002 and a screening-level risk investigation conducted by the National Oceanic and Atmospheric Administration and the University of Hawaii in 2006. As a result, there are multiple datasets collected over the past fifteen years that can be leveraged to serve as a baseline for the natural laboratory. These extant datasets are being supplemented with data from integrated unmanned systems deployed at OR to characterize and visualize the

  12. Occupational and Public Exposure During Normal Operation of Radioactive Waste Disposal Facilities

    Directory of Open Access Journals (Sweden)

    M. V. Vedernikova

    2017-01-01

    Full Text Available This paper focuses on occupational and public exposure during operation of disposal facilities receiving liquid and solid radioactive waste of various classes and provides a comparative analysis of the relevant doses: actual and calculated at the design stage. Occupational and public exposure study presented in this paper covers normal operations of a radioactive waste disposal facility receiving waste. Results: Analysis of individual and collective occupational doses was performed based on data collected during operation of near-surface disposal facilities for short-lived intermediate-, lowand very low-level waste in France, as well as nearsurface disposal facilities for long-lived waste in Russia. Further analysis of occupational and public doses calculated at the design stage was completed covering a near-surface disposal facility in Belgium and deep disposal facilities in the United Kingdom and the Nizhne-Kansk rock massive (Russia. The results show that engineering and technical solutions enable almost complete elimination of internal occupational exposure, whereas external exposure doses would fall within the range of values typical for a basic nuclear facility. Conclusion: radioactive waste disposal facilities being developed, constructed and operated meet the safety requirements effective in the Russian Federation and consistent with relevant international recommendations. It has been found that individual occupational exposure doses commensurate with those received by personnel of similar facilities abroad. Furthermore, according to the forecasts, mean individual doses for personnel during radioactive waste disposal would be an order of magnitude lower than the dose limit of 20 mSv/year. As for the public exposure, during normal operation, potential impact is virtually impossible by delaminating boundaries of a nuclear facility sanitary protection zone inside which the disposal facility is located and can be solely attributed to the use

  13. Occupational and Public Exposure During Normal Operation of Radioactive Waste Disposal Facilities

    OpenAIRE

    M. V. Vedernikova; I. A. Pron; M. N. Savkin; N. S. Cebakovskaya

    2017-01-01

    This paper focuses on occupational and public exposure during operation of disposal facilities receiving liquid and solid radioactive waste of various classes and provides a comparative analysis of the relevant doses: actual and calculated at the design stage. Occupational and public exposure study presented in this paper covers normal operations of a radioactive waste disposal facility receiving waste. Results: Analysis of individual and collective occupational doses was performed based on d...

  14. 2008 Munitions Executive Summit

    Science.gov (United States)

    2008-02-21

    Improvement Initiative • Problem : • Ballistic performance • Parts Obsolescence • Producibility Issues • Solution: • Flight telemetry • Results...Reduced Manufacturing Costs, Increased reliability, Better understanding, Reduced complexity, Reduced touch labor, Reduced material costs • SATISFIED...Rocket Motor Demil R&D Technology •Munitions parts make-up: Munitions Items Disposition Action System ( MIDAS ) Training Directorate •Ammunition

  15. Validation of Passive Sampling Devices for Monitoring of Munitions Constituents in Underwater Environments

    Science.gov (United States)

    2017-06-30

    Research and Development Program [SERDP] project #ER-2542) into the canister would provide enhancement of the quantitative estimation of the TWA...Department of Defense EOD Explosive Ordnance Disposal EPA United States Environmental Protection Agency EQL Environmental Quantitation Limit EST...Laboratory Quantitation Limit MC Munitions Constituents mL Milliliter MR Munitions Response NESDI Navy’s Environmental Security Development to

  16. Physical Properties Of Acupuncture Needles: Do Disposable Acupuncture Needles Break With Normal Use

    Science.gov (United States)

    2016-06-01

    Orofacial Pain Graduate...JOURNAL PHYSICAL PROPERTIES OF ACUPUNCTURE NEEDLES: DO DISPOSABLE ACUPUNCTURE NEEDLES BREAK WITH NORMAL USE? James Kyle Vick DDS, Orofacial Pain ...MS CAPT, DC, USN Orofacial Pain Department Head Naval Postgraduate Dental School vi    TABLE OF CONTENTS GUIDELINE I. TITLE

  17. Assessment of Radionuclides Release from Inshas LILW Disposal Facility Under Normal and Unusual Operational Conditions

    International Nuclear Information System (INIS)

    Zaki, A.A.

    2008-01-01

    Disposing of low and intermediate radioactive waste (LILW) is a big concern for Egypt due to the accumulated waste as a result of past fifty years of peaceful nuclear applications. Assessment of radionuclides release from Inshas LILW disposal facility under normal and unusual operational conditions is very important in order to apply for operation license of the facility. Aqueous release of radionuclides from this disposal facility is controlled by water flow, access of the water to the wasteform, release of the radionuclides from the wasteform, and transport to the disposal facility boundary. In this work, the release of 137 Cs , 6C o, and 90 Sr radionuclides from the Inshas disposal facility was studied under the change of operational conditions. The release of these radio contaminants from the source term to the unsaturated and saturated zones , to groundwater were studied. It was found that the concentration of radionuclides in a groundwater well located 150 m away from the Inshas disposal facility is less than the maximum permissible concentration in groundwater in both cases

  18. Insensitive Munitions Testing

    Data.gov (United States)

    Federal Laboratory Consortium — Insensitive Munitions Testing at RTC is conducted (IAW MILSTD-2105) at Test Area 4. Our engineers and technicians obtain data for hazards classification and safety...

  19. Optimization of Munitions Storage.

    Science.gov (United States)

    1979-12-01

    zones of land around each facility place a significant economic cost on the storage of munitions (Schreyer, 1970: 1). Munitions storage is a subject...ADDTOT, BTOTAL 353 REAL MPH,MW ,MPD, MPU ,4,MPNEW,MCD 354 IF (SW2.NE.0) GO TO 1 355 SW2 - 1 356 WRITE (6,2) 357 GO TO 3 358 1 IF (REC.EQ.0) GO TO 4 359 IF

  20. A Wide Area Risk Assessment Framework for Underwater Military Munitions Response

    Science.gov (United States)

    Holland, K. T.; Calantoni, J.

    2017-12-01

    Our objective was to develop a prototype statistical framework supporting Wide Area Assessment and Remedial Investigation decisions relating to the risk of unexploded ordnance and other military munitions concentrated in underwater environments. Decision making involving underwater munitions is inherently complex due to the high degree of uncertainty in the environmental conditions that force munitions responses (burial, decay, migration, etc.) and associated risks to the public. The prototype framework provides a consistent approach to accurately delineating contaminated areas at underwater munitions sites through the estimation of most probable concentrations. We adapted existing deterministic models and environmental data services for use within statistical modules that allowed the estimation of munition concentration given historic site information and environmental attributes. Ultimately this risk surface can be used to evaluate costs associated with various remediation approaches (e.g. removal, monitoring, etc.). Unfortunately, evaluation of the assessment framework was limited due to the lack of enduser data services from munition site managers. Of the 450 U.S. sites identified as having potential contamination with underwater munitions, assessment of available munitions information (including historic firing or disposal records, and recent ground-truth munitions samples) indicated very limited information in the databases. Example data types include the most probable munition types, approximate firing / disposal dates and locations, and any supportive munition survey or sampling results. However the overall technical goal to integrate trained statistical belief networks with detailed geophysical knowledge of sites, of sensors and of the underwater environment was demonstrated and should allow probabilistic estimates of the most likely outcomes and tradeoffs while managing uncertainty associated with military munitions response.

  1. Munitions Classification Library

    Science.gov (United States)

    2016-04-04

    members of the community to make their own additions to any, or all, of the classification libraries . The next phase entailed data collection over less......Include area code) 04/04/2016 Final Report August 2014 - August 2015 MUNITIONS CLASSIFICATION LIBRARY Mr. Craig Murray, Parsons Dr. Thomas H. Bell, Leidos

  2. Missile/Munition Integration Facility

    Data.gov (United States)

    Federal Laboratory Consortium — A large complex contained within approximately 600 acres with security fencing, controlled access gates, and a munitions convoy access road. The complex is capable...

  3. Assessment of radiation doses due to normal operation, incidents and accidents of the final disposal facility

    International Nuclear Information System (INIS)

    Rossi, J.; Raiko, H.; Suolanen, V.; Ilvonen, M.

    1999-03-01

    Radiation doses for workers of the encapsulation and disposal facility and for inhabitants in the environment caused by the facility during its operation were considered. The study covers both the normal operation of the plant and some hypothetical incidents and accidents. Occupational radiation doses inside the plant during normal operation are based on the design basis, assuming that highest permitted dose levels are prevailing in control rooms during fuel transfer and encapsulation processes. Release through the ventilation stack is assumed to be filtered both in normal operation and in hypothetical incident and accident cases. Calculation of the offsite doses from normal operation is based on the hypothesis that one fuel pin per 100 fuel bundles for all batches of spent fuel transported to the encapsulation facility is leaking. The release magnitude in incidents and accidents is based on the event chains, which lead to loss of fuel pin tightness followed by a discharge of radionuclides into the handling chamber and to some degree through the ventilation stack into atmosphere. The weather data measured at the Olkiluoto meteorological mast was employed for calculating of offsite doses. Therefore doses could be calculated in a large amount of different dispersion conditions, the statistical frequencies of which have, been measured. Finally doses were combined into cumulative distributions, from which a dose value representing the 99.5 % confidence level, is presented. The dose values represent the exposure of a critical group, which is assumed to live at the distance of 200 meters from the encapsulation and disposal plant and thus it will receive the largest doses in most dispersion conditions. Exposure pathways considered were: cloudsnine, inhalation, groundshine and nutrition (milk of cow, meat of cow, green vegetables, grain and root vegetables). Nordic seasonal variation is included in ingestion dose models. The results obtained indicate that offsite doses

  4. Comparison normal composting with composting using effective microorganisms for poultry carcasses disposal in poultry farms

    Directory of Open Access Journals (Sweden)

    D. M. Taher

    2009-01-01

    Full Text Available Composting offers a convenient and environmentally acceptable safe, effective method for the disposal of carcasses as an alternative method to burning, burial and rendering. This study was conducted to evaluate the effects of a natural biological products containing an effective microorganisms namily; Lactic acid bacill (Lactobacillus plantarum; L. casei Streptococcus Lactis., Photosynthetic bacteria (Rhodopseudomonas palustris; Rhodobacter sphaeroides,Yeast (Saccharomyces cerevisiae; Candida utilis Toula, Pichia Jadinii, Actinomycetes (Streptomyces albus; S. griseus., and Fermenting fungi (Aspergillus oryzae; Mucor hiemalis in the composting activity of poultry carcasses. The composting stacks constitute multi alternative layers of wood shaves, hay, poultry carcasses and then wood shaves and so on. The layers have been bypassed with plastic tubes for oxygen supply. Moreover, a petri dishes of salmonella and E. coli colonies were introduced within poultry carcasses layer. After 8 days of the experimental period this study follows the physical properties of the composting process according to its odor intesity, color and pH level as well as the bacterial reisolation from the stored colonies. Results indicate that the biological products increase the temperature of the composting stack (66-68° C with a minimal odors as the pH meters recording 5.4 as compared to the control composting stack (52-64° C and pH 6.8 with offender odors. On the other hand ,the biological product inhibit the bacterial reisolation offers since the 10the day of the experiment, however, in the normal composting stack that periods will prolonged till the 17 days of the experiment. Interestingly, the biological product induce high and rapid digestable rate for the poultry carcasses which shown within 25 days of the experiment, in comparison to the normal composting stack which induce that effects in 60 days. In conclusion, the addition of effective microorganism to the

  5. Chemical Warfare Materiel in Sediment at a Deep-Water Discarded Military Munitions Site

    Science.gov (United States)

    Briggs, C. W.; Bissonnette, M. C.; Edwards, M.; Shjegstad, S. M.

    2016-12-01

    Understanding the release and transformation of chemical agent (CA) at underwater discarded military munitions (DMM) sites is essential to determine the potential risk to human health and impact on the ocean environment; yet few studies have been conducted at sites in excess of 250 m, the depth at which most U.S. CA munitions were disposed. Maritime construction workers installing cables or pipelines at a CA DMM site, as well as fishermen and scientific researchers deploying bottom-contact gear, represent possible exposure pathways to human receptors. The Hawai`i Undersea Military Munitions Assessment (HUMMA) sought to characterize a historic munitions sea-disposal site at depths between 400-650 m. During the 2014 HUMMA Sampling Survey, the Jason 2 remotely operated vehicle was used to collect sediments within two meters of suspected World War II chemical munitions, confirmed to be 100-lb M47 series bombs containing sulfur mustard. When environmental media was brought to the surface, samples were screened for distilled sulfur mustard (HD) and related agent breakdown products (ABP) (collectively referred to as chemical warfare materiel [CWM]). Detectable concentrations of HD and/or its ABP 1,4-dithiane were found in sediments collected at all CA DMM sites; HD was also detected at two control sites. The location and extent of munitions casing deterioration strongly influenced the distribution and level of CWM in sediment. The interior of the casing contained levels of CWM orders of magnitudes higher than that observed in the surrounding sediment at one meter distance, indicating the majority of the CWM is hydrolyzed as it is released from the munitions casing and a fraction of the fill materiel persists in the environment for decades following disposal. Although the potential for future site users to become exposed to CWA in recovered sediments and debris exists, the level of risk is significantly mitigated by the depth and location of the sea-disposal site.

  6. Spread, Behavior, and Ecosystem Consequences of Conventional Munitions Compounds in Coastal Marine Waters

    Directory of Open Access Journals (Sweden)

    Aaron J. Beck

    2018-04-01

    Full Text Available Coastal marine environments are contaminated globally with a vast quantity of unexploded ordnance and munitions from intentional disposal. These munitions contain organic explosive compounds as well as a variety of metals, and represent point sources of chemical pollution to marine waters. Most underwater munitions originate from World Wars at the beginning of the twentieth century, and metal munitions housings have been impacted by extensive corrosion over the course of the following decades. As a result, the risk of munitions-related contaminant release to the water column is increasing. The behavior of munitions compounds is well-characterized in terrestrial systems and groundwater, but is only poorly understood in marine systems. Organic explosive compounds, primarily nitroaromatics and nitramines, can be degraded or transformed by a variety of biotic and abiotic mechanisms. These reaction products exhibit a range in biogeochemical characteristics such as sorption by particles and sediments, and variable environmental behavior as a result. The reaction products often exhibit increased toxicity to biological receptors and geochemical controls like sorption can limit this exposure. Environmental samples typically show low concentrations of munitions compounds in water and sediments (on the order of ng/L and μg/kg, respectively, and ecological risk appears generally low. Nonetheless, recent work demonstrates the possibility of sub-lethal genetic and metabolic effects. This review evaluates the state of knowledge on the occurrence, fate, and effect of munition-related chemical contaminants in the marine environment. There remain a number of knowledge gaps that limit our understanding of munitions-related contaminant spread and effect, and the need for additional work is made all the more urgent by increasing risk of release to the environment.

  7. Distribution of chemical warfare agent, energetics, and metals in sediments at a deep-water discarded military munitions site

    Science.gov (United States)

    Briggs, Christian; Shjegstad, Sonia M.; Silva, Jeff A. K.; Edwards, Margo H.

    2016-06-01

    There is a strong need to understand the behavior of chemical warfare agent (CWA) at underwater discarded military munitions (DMM) sites to determine the potential threat to human health or the environment, yet few studies have been conducted at sites in excess of 250 m, the depth at which most U.S. chemical munitions were disposed. As part of the Hawai'i Undersea Military Munitions Assessment (HUMMA), sediments adjacent to chemical and conventional DMM at depths of 400-650 m were sampled using human occupied vehicles (HOVs) in order to quantify the distribution of CWA, energetics, and select metals. Sites in the same general area, with no munitions within 50 m in any direction were sampled as a control. Sulfur mustard (HD) and its degradation product 1,4-dithiane were detected at each CWA DMM site, as well as a single sample with the HD degradation product 1,4-thioxane. An energetic compound was detected in sediment to a limited extent at one CWA DMM site. Metals common in munitions casings (i.e., Fe, Cu, and Pb) showed similar trends at the regional and site-wide scales, likely reflecting changes in marine sediment deposition and composition. This study shows HD and its degradation products can persist in the deep-marine environment for decades following munitions disposal.

  8. Normal and Abnormal Scenario Modeling with GoldSim for Radioactive Waste Disposal System

    International Nuclear Information System (INIS)

    Lee, Youn Myoung; Jeong, Jong Tae

    2010-08-01

    A modeling study and development of a total system performance assessment (TSPA) template program, by which an assessment of safety and performance for the radioactive waste repository with normal and/or abnormal nuclide release cases could be assessed has been carried out by utilizing a commercial development tool program, GoldSim. Scenarios associated with the various FEPs and involved in the performance of the proposed repository in view of nuclide transport and transfer both in the geosphere and biosphere has been also carried out. Selected normal and abnormal scenarios that could alter groundwater flow scheme and then nuclide transport are modeled with the template program. To this end in-depth system models for the normal and abnormal well and earthquake scenarios that are conceptually and rather practically described and then ready for implementing into a GoldSim TSPA template program are introduced with conceptual schemes for each repository system. Illustrative evaluations with data currently available are also shown

  9. Sup(13)C NMR studies of glucose disposal in normal and non-insulin-dependent diabetic humans

    International Nuclear Information System (INIS)

    Shulman, G.I.; Rothman, D.L.; Shulman, R.G.

    1990-01-01

    To examine the extent to which the defect in insulin action in subjects with non-insulin-dependent diabetes mellitus (NIDDM) can be accounted for by impairment of muscle glycogen synthesis, we performed combined hyperglycemic-hyperinsulinemic clamp studies with [ 13 C]glucose in five subjects with NIDDM and in six age- and weight-matched healthy subjects. The rate of incorporation of intravenously infused [1- 13 C]glucose into muscle glycogen was measured directly in the gastrocnemius muscle by means of a nuclear magnetic resonance (NMR) spectrometer with a 15.5 min time resolution and a 13 C surface coil. The steady-state plasma concentrations of insulin and glucose were similar in both study groups. The mean (±SE) rate of glycogen synthesis, as determined by 13 C NMR, was 78±28 and 183±39 μmol-glucosyl units (kg muscle tissue (wet mass)) -1 min -1 in the diabetic and normal subjects, respectively. The mean glucose uptake was markedly reduced in the diabetic as compared with the normal subjects. The mean rate of non-oxidative glucose metabolism was 22±4 μmol kg -1 min -1 in the diabetic subjects and 42±4 μmol kg -1 min -1 in the normal subjects. When these rates are extrapolated to apply to the whole body, the synthesis of muscle glycogen would account for most of the total-body glucose uptake and all of the non-oxidative glucose metabolism in both normal and diabetic subjects. We conclude that muscle glycogen synthesis is the principal pathway of glucose disposal in both normal and diabetic subjects and that defects in muscle glycogen synthesis have a dominant role in the insulin resistance that occurs in persons with NIDDM. (author)

  10. Bioaccumulation of chemical warfare agents, energetic materials, and metals in deep-sea shrimp from discarded military munitions sites off Pearl Harbor

    Science.gov (United States)

    Koide, Shelby; Silva, Jeff A. K.; Dupra, Vilma; Edwards, Margo

    2016-06-01

    The bioaccumulation of munitions-related chemicals at former military deep-water disposal sites is poorly understood. This paper presents the results of human-food-item biota sampling to assess the potential for bioaccumulation of chemical warfare agents, energetic materials, arsenic, and additional munitions-related metals in deep-sea shrimp tissue samples collected during the Hawai'i Undersea Military Munitions Assessment (HUMMA) project to date. The HUMMA investigation area is located within a former munitions sea-disposal site located south of Pearl Harbor on the island of O'ahu, Hawai'i, designated site Hawaii-05 (HI-05) by the United States Department of Defense. Indigenous deep-sea shrimp (Heterocarpus ensifer) were caught adjacent to discarded military munitions (DMM) and at control sites where munitions were absent. Tissue analysis results showed that chemical warfare agents and their degradation products were not present within the edible portions of these samples at detectable concentrations, and energetic materials and their degradation products were detected in only a few samples at concentrations below the laboratory reporting limits. Likewise, arsenic, copper, and lead concentrations were below the United States Food and Drug Administration's permitted concentrations of metals in marine biota tissue (if defined), and their presence within these samples could not be attributed to the presence of DMM within the study area based on a comparative analysis of munitions-adjacent and control samples collected. Based on this current dataset, it can be concluded that DMM existing within the HUMMA study area is not contributing to the bioaccumulation of munitions-related chemicals for the biota species investigated to date.

  11. The Environmental Challenge of Military Munitions and Federal Facilities

    Science.gov (United States)

    EPA and the Department of Defense (DoD) must address the contamination legacy left by military munitions and explosives of concern (MEC) and other hazardous munitions materials from military live-fire training or testing.

  12. 19 CFR 145.53 - Firearms and munitions of war.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 2 2010-04-01 2010-04-01 false Firearms and munitions of war. 145.53 Section 145.53 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF... munitions of war. Importations of firearms, munitions of war, and related articles are subject to the import...

  13. Defense Industrial Base (DIB): Munitions Realignment for 2020

    Science.gov (United States)

    2013-03-01

    munitions DIB by companies like Coca Cola , Quaker Oats, and Eastman Kodak. As industrial mobilization quickly increased, the requirements decreased...industry and the munitions DIB. This report documented the volatility associated with the production of munitions and financial risks to which

  14. Munitions having an insensitive detonator system for initiating large failure diameter explosives

    Science.gov (United States)

    Perry, III, William Leroy

    2015-08-04

    A munition according to a preferred embodiment can include a detonator system having a detonator that is selectively coupled to a microwave source that functions to selectively prime, activate, initiate, and/or sensitize an insensitive explosive material for detonation. The preferred detonator can include an explosive cavity having a barrier within which an insensitive explosive material is disposed and a waveguide coupled to the explosive cavity. The preferred system can further include a microwave source coupled to the waveguide such that microwaves enter the explosive cavity and impinge on the insensitive explosive material to sensitize the explosive material for detonation. In use the preferred embodiments permit the deployment and use of munitions that are maintained in an insensitive state until the actual time of use, thereby substantially preventing unauthorized or unintended detonation thereof.

  15. Innovative permeable cover system to reduce risks at a chemical munitions burial site

    International Nuclear Information System (INIS)

    Powels, C.C.; Bon, I.; Okusu, N.M.

    1997-01-01

    An innovative permeable sand cover with various integrated systems has been designed to contain and treat the Old O-Field chemical munitions landfill at Aberdeen Proving Ground, Maryland. The 18,200 m 2 (4.5 acre) landfill was used from the mid 1930s to the mid 1950s for the disposal of chemical, incendiary, and explosive munitions from domestic and foreign origins, together with contaminated wastes associated with the development and production of chemical warfare agents (CWA). The site is suspected to be contaminated with white phosphorous (WP) (which when dry, spontaneously burns when exposed to air), shock sensitive picric acid fuses and has the potential to contain large quantities of CWA-filled munitions. Historically, one to three explosions or fires occurred per ten-year period at the landfill. Such events have the potential to cause a CWA release to the environment, which could potentially affect densely populated areas. Recovery and decontamination projects conducted at the site in the late 1940s and early 1950s used large amounts of decontamination chemicals (containing solvents) and fuels which further contaminated the area. The groundwater downgradient of the landfill is contaminated with volatile organic compounds, metals, explosives and CWA degradation compounds and is currently being contained by a groundwater extraction and treatment system. This report describes a remedial action program for the site

  16. Proceedings of the technical committee meeting on sodium removal and disposal from LMFRs in normal operation and in the framework of decommissioning

    International Nuclear Information System (INIS)

    Latge, C.

    1997-11-01

    This publication summarizes discussions and presented papers from the Technical Committee meeting on sodium removal and disposal from liquid metal fast reactors in normal operation and in the framework of decommissioning, organised by IAEA. The objective of this meeting was to provide a forum to review and exchange information on the international developments in technologies of sodium removal and disposal from liquid metal fast reactor components and systems in operation and maintenance conditions, and in framework of decommissioning. The technical parts of the meeting covered the three major subjects: sodium removal (cleaning) process, decontamination process and bulk disposal of sodium in the framework of decommissioning. These technologies were reviewed with regard to their implementation into current plants to improve operation and maintenance, and to develop an effective decommissioning program. Further, design for future Liquid metal fast reactors were reviewed in the context how they can accommodate today's technologies. The meeting resulted in an effective information exchange with the Member States sharing their needs as well as experiences in the mentioned topics

  17. Proceedings of the technical committee meeting on sodium removal and disposal from LMFRs in normal operation and in the framework of decommissioning

    Energy Technology Data Exchange (ETDEWEB)

    Latge, C [ed.; CEA, Direction des Reacteurs Nucleaires, Departement d' Etudes des Reacteurs, CEA-Cadarache, Saint-Paul-lez-Durance (France)

    1997-11-01

    This publication summarizes discussions and presented papers from the Technical Committee meeting on sodium removal and disposal from liquid metal fast reactorsin normal operation and in the framework of decommissioning, organised by IAEA. The objective of this meeting was to provide a forum to review and exchange information on the international developments in technologies of sodium removal and disposal from liquid metal fast reactor components and systems in operation and maintenance conditions, and in framework of decommissioning. The technical parts of the meeting covered the three major subjects: sodium removal (cleaning) process, decontamination process and bulk disposal of sodium in the framework of decommissioning. These technologies were reviewed with regard to their implementation into current plants to improve operation and maintenance, and to develop an effective decommissioning program. Further, design for future Liquid metal fast reactors were reviewed in the context how they can accommodate today's technologies. The meeting resulted in an effective information exchange with the Member States sharing their needs as well as experiences in the mentioned topics.

  18. Remote Machining and Evaluation of Explosively Filled Munitions

    Data.gov (United States)

    Federal Laboratory Consortium — This facility is used for remote machining of explosively loaded ammunition. Munition sizes from small arms through 8-inch artillery can be accommodated. Sectioning,...

  19. High-power VCSELs for smart munitions

    Science.gov (United States)

    Geske, Jon; MacDougal, Michael; Cole, Garrett; Snyder, Donald

    2006-08-01

    The next generation of low-cost smart munitions will be capable of autonomously detecting and identifying targets aided partly by the ability to image targets with compact and robust scanning rangefinder and LADAR capabilities. These imaging systems will utilize arrays of high performance, low-cost semiconductor diode lasers capable of achieving high peak powers in pulses ranging from 5 to 25 nanoseconds in duration. Aerius Photonics is developing high-power Vertical-Cavity Surface-Emitting Lasers (VCSELs) to meet the needs of these smart munitions applications. The authors will report the results of Aerius' development program in which peak pulsed powers exceeding 60 Watts were demonstrated from single VCSEL emitters. These compact packaged emitters achieved pulse energies in excess of 1.5 micro-joules with multi kilo-hertz pulse repetition frequencies. The progress of the ongoing effort toward extending this performance to arrays of VCSEL emitters and toward further improving laser slope efficiency will be reported.

  20. Investigation of a new passive sampler for the detection of munitions compounds in marine and freshwater systems.

    Science.gov (United States)

    Warren, Joseph K; Vlahos, Penny; Smith, Richard; Tobias, Craig

    2018-07-01

    Over the last century, unexploded ordnances have been disposed of in marine shelf systems because of a lack of cost-effective alternatives. Underwater unexploded ordnances have the potential to leak 2,4,6-trinitrotoluene (TNT) and 1,3,5-trinitro-1,3,5-triazine (RDX), commonly used chemical munitions, and contaminate local waters, biota, and sediments. The rate at which this contamination occurs in the environment is relatively unknown, and the cost- and time-prohibitive nature of sampling across sites makes mapping difficult. In the present study we assessed the efficacy of ethylene-vinyl acetate (EVA) for sampling relatively soluble munitions compounds over a range of environmental conditions (i.e., changes in temperature and salinity) and optimized the composition of the passive sampling polymer. The EVA sampler was able to successfully detect ambient concentrations of lingering munitions compounds from field sites containing unexploded ordnances. The sampler affinity for the munitions in terms of an EVA-water partition coefficient was greater than the standard octanol water values for each target compound. Partitioning of compounds onto EVA over the natural ranges of salinity did not change significantly, although uptake varied consistently and predictably with temperature. Increasing the vinyl acetate to ethylene ratio of the polymer corresponded to an increase in uptake capacity, consistent with enhanced dipole-dipole interactions between the munitions and the polymer. This sampler provides a cost-effective means to map and track leakage of unexploded ordnances both spatially and temporally. Environ Toxicol Chem 2018;37:1990-1997. © 2018 SETAC. © 2018 SETAC.

  1. Underwater Munitions Expert System: Preliminary Design Report

    Science.gov (United States)

    2015-08-21

    analysis  would  usually  be  performed,   where  separation  by   sieving  results  in  the  PMF  of  sand  grain...locations  they  might  potentially   aggregate .    Furthermore,  given  knowledge  of  the  types  of   munitions...feature  that   Netica  provides  is  the  ability  to  do  sensitivity   analysis ,

  2. Optimal Control of Sensor Threshold for Autonomous Wide Area Search Munitions

    National Research Council Canada - National Science Library

    Kish, Brian A; Jacques, David R; Pachter, Meir

    2005-01-01

    The optimal employment of autonomous wide area search munitions is addressed. The scenario considered involves an airborne munition searching a battle space for stationary targets in the presence of false targets...

  3. NDIA 2018 IM and EM Technology Symposium: Innovative Insensitive Munition Solutions for Enhanced Warfighter Effectiveness

    Science.gov (United States)

    2018-04-26

    2018 IM & EM TECHNOLOGY SYMPOSIUM INNOVATIVE INSENSITIVE MUNITION SOLUTIONS FOR ENHANCED WARFIGHTER EFFECTIVENESS April 23 – 26, 2018 Doubletree by...IM & EM TECHNOLOGY SYMPOSIUM On behalf of the Insensitive Munitions and Energetic Materials Committee and our MSIAC partner, I would like to...welcome you to the 2018 Insensitive Munitions and Energetic Materials Technology Symposium. This international gathering of the top chemists, system

  4. Sea-dumped CW munitions - the European component

    International Nuclear Information System (INIS)

    Hart, J.; Stock, T.

    2009-01-01

    The purpose of this contribution is to outline the European magnitude of sea-dumped CW munitions. Hereby the paper attempts to provide an overview on historical dumping activities, both for conventional and chemical munitions. The potential dangers which might result from these dumping activities are discussed in brief. Among others the differences in deep sea dumping and dumping in shallow waters are evaluated. Further, the presentation will outline and discuss the different technology steps: (a) identification, (b) recovery, (c) transportation and (d) destruction (on- or off-shore), necessary for possible cleaning of dumping sites. Thereafter an evaluation of the different technologies available/applied is performed, in particular on the destruction part. Hereby the already practised experience is displayed. Based upon existing treaty regimes an actual judgment of possible application of treaty provisions for demanding cleaning up operations is discussed. The question if treaty obligations can be used to force cleaning operations is debated. A possible match of the technology package available with the scope/magnitude of the munitions dumping problem is discussed. Hereby the gaps between the size of the problem and the most suitable technologies for recovery and destruction are illustrated. The resulting answers should be regarded as possible technical guidelines for future development activities as well existing limitations to solve the problems. The papers will result in some general guidelines for future prospect on the issues of dumped munitions, in particular chemical munitions under the European context.(author)

  5. Environmental Impact of Munition and Propellant Disposal (Impact Environnemental de l’Elimination des Munitions et des Combustibles)

    Science.gov (United States)

    2010-02-01

    the Future of Demil 3-29 3.4.2 Poster Session 3-32 3.4.2.1 The Situation in Lithuania: The Studies on the Explosive Contamination, 3-32 Their Toxic...Presentations and Documents Supporting Capability Assessments A-1 Annex B – Presentations, Paper/ Posters and Videos from the Sofia Meeting B-1 Annex C...sur l’environnement. La réunion a inclus des participants provenant de l’OTAN et des partenaires dont la Russie et la Géorgie. Les sessions étaient

  6. Observations of Munitions Mobility During a Nor'easter at Wallops Island

    Science.gov (United States)

    Swann, C.; Frank, D. P.; Braithwaite, E. F., III; Hagg, R. K.; Calantoni, J.

    2017-12-01

    Unexploded ordnance (or munitions) may migrate, bury, or become exposed over time, and may pose a hazard to both humans and environment. Understanding the behavior of munitions under various wave and current conditions is central to management and remediation of contaminated underwater sites. We embedded Inertial Measurement Units (IMUs) into inert replicas of large caliber munitions (81 mm - 155 mm), herein referred to as `smart munitions'. Several smart munitions were deployed in the field with IMUs logging at 16 Hz continuously. Simultaneously the local hydrodynamic conditions were monitored to correlate any resulting munitions mobility. Here, we present the response of the smart munitions to wave and current conditions observed during a nor'easter off the coast of Wallops Island, Virginia USA in about 10 m water depth. During the nor'easter, peak significant wave heights of 2.8 m were observed in 10 m water depth. Over a roughly 10-hour period, an 81 mm smart munition migrated approximately 206 ft in a net onshore direction. Displacement and heading of the migrated smart munition were estimated by divers during the recovery. Integration of the trajectory of motion for the smart munition using a custom signal processing algorithm was in good agreement with the diver measurements. Discussion will focus on the relationship of the local sediment type and the potential for munitions mobility.

  7. Cluster munitions: public health and international humanitarian law perspectives.

    Science.gov (United States)

    Freckelton, Ian

    2008-02-01

    As a result of civilian deaths in Vietnam, Cambodia, Laos, Chechnya, Kosovo, Afghanistan, Iraq and Lebanon, cluster munitions have been recognised to pose a grave threat to civilian populations because of their limited precision and problematically high rate of initial failure to explode. Efforts are intensifying to ban cluster munitions and to mandate those who have discharged them to defuse them effectively so as to reduce the risks to civilians. This editorial reviews these efforts and identifies a need for them to be actively supported by both the legal and medical communities.

  8. Hybrid analysis of multiaxis electromagnetic data for discrimination of munitions and explosives of concern

    Science.gov (United States)

    Friedel, M. J.; Asch, T. H.; Oden, C.

    2012-08-01

    The remediation of land containing munitions and explosives of concern, otherwise known as unexploded ordnance, is an ongoing problem facing the U.S. Department of Defense and similar agencies worldwide that have used or are transferring training ranges or munitions disposal areas to civilian control. The expense associated with cleanup of land previously used for military training and war provides impetus for research towards enhanced discrimination of buried unexploded ordnance. Towards reducing that expense, a multiaxis electromagnetic induction data collection and software system, called ALLTEM, was designed and tested with support from the U.S. Department of Defense Environmental Security Technology Certification Program. ALLTEM is an on-time time-domain system that uses a continuous triangle-wave excitation to measure the target-step response rather than traditional impulse response. The system cycles through three orthogonal transmitting loops and records a total of 19 different transmitting and receiving loop combinations with a nominal spatial data sampling interval of 20 cm. Recorded data are pre-processed and then used in a hybrid discrimination scheme involving both data-driven and numerical classification techniques. The data-driven classification scheme is accomplished in three steps. First, field observations are used to train a type of unsupervised artificial neural network, a self-organizing map (SOM). Second, the SOM is used to simultaneously estimate target parameters (depth, azimuth, inclination, item type and weight) by iterative minimization of the topographic error vectors. Third, the target classification is accomplished by evaluating histograms of the estimated parameters. The numerical classification scheme is also accomplished in three steps. First, the Biot-Savart law is used to model the primary magnetic fields from the transmitter coils and the secondary magnetic fields generated by currents induced in the target materials in the

  9. Hybrid analysis of multiaxis electromagnetic data for discrimination of munitions and explosives of concern

    Science.gov (United States)

    Friedel, M.J.; Asch, T.H.; Oden, C.

    2012-01-01

    The remediation of land containing munitions and explosives of concern, otherwise known as unexploded ordnance, is an ongoing problem facing the U.S. Department of Defense and similar agencies worldwide that have used or are transferring training ranges or munitions disposal areas to civilian control. The expense associated with cleanup of land previously used for military training and war provides impetus for research towards enhanced discrimination of buried unexploded ordnance. Towards reducing that expense, a multiaxis electromagnetic induction data collection and software system, called ALLTEM, was designed and tested with support from the U.S. Department of Defense Environmental Security Technology Certification Program. ALLTEM is an on-time time-domain system that uses a continuous triangle-wave excitation to measure the target-step response rather than traditional impulse response. The system cycles through three orthogonal transmitting loops and records a total of 19 different transmitting and receiving loop combinations with a nominal spatial data sampling interval of 20 cm. Recorded data are pre-processed and then used in a hybrid discrimination scheme involving both data-driven and numerical classification techniques. The data-driven classification scheme is accomplished in three steps. First, field observations are used to train a type of unsupervised artificial neural network, a self-organizing map (SOM). Second, the SOM is used to simultaneously estimate target parameters (depth, azimuth, inclination, item type and weight) by iterative minimization of the topographic error vectors. Third, the target classification is accomplished by evaluating histograms of the estimated parameters. The numerical classification scheme is also accomplished in three steps. First, the Biot–Savart law is used to model the primary magnetic fields from the transmitter coils and the secondary magnetic fields generated by currents induced in the target materials in the

  10. Using waterjet in reverse logistic operations in discarded munitions processing

    Czech Academy of Sciences Publication Activity Database

    Hloch, S.; Tozan, H.; Yagimli, M.; Valíček, Jan; Rokosz, K.

    2011-01-01

    Roč. 18, č. 2 (2011), s. 267-271 ISSN 1330-3651 Institutional research plan: CEZ:AV0Z30860518 Keywords : abrasive waterjet * anti tank bullet * automatic line Subject RIV: JQ - Machines ; Tools Impact factor: 0.347, year: 2011 http://hrcak.srce.hr/search/?q=Using+waterjet+in+reverse+logistic+operations+in+discarded+munitions+processing

  11. REMOTE SENSING IN DETECTING BURIED MUNITIONS FROM WORLD WAR I

    Science.gov (United States)

    During World War I, The American University in Washington D.C. was used by the U.S. Army as an experiment station for the development and testing of a variety of battlefield munitions including chemical weapons such as Mustard Gas, Phosgene, Ricin and Lewisite, among othe...

  12. Underwater Munitions Expert System to Predict Mobility and Burial

    Science.gov (United States)

    2017-11-14

    for predicting the location and possible burial of underwater munitions is required to advise site managers as they plan...that region above the given UXO relative density, which is defined as the UXO density divided by the sand grain density, ( nominally 2650 g...0.0 + 2.5*dsed ; % nominal bed roughness if no burial % (Potentially in future version, ripple height

  13. Computational Modeling of Hydrodynamics and Scour around Underwater Munitions

    Science.gov (United States)

    Liu, X.; Xu, Y.

    2017-12-01

    Munitions deposited in water bodies are a big threat to human health, safety, and environment. It is thus imperative to predict the motion and the resting status of the underwater munitions. A multitude of physical processes are involved, which include turbulent flows, sediment transport, granular material mechanics, 6 degree-of-freedom motion of the munition, and potential liquefaction. A clear understanding of this unique physical setting is currently lacking. Consequently, it is extremely hard to make reliable predictions. In this work, we present the computational modeling of two importance processes, i.e., hydrodynamics and scour, around munition objects. Other physical processes are also considered in our comprehensive model. However, they are not shown in this talk. To properly model the dynamics of the deforming bed and the motion of the object, an immersed boundary method is implemented in the open source CFD package OpenFOAM. Fixed bed and scour cases are simulated and compared with laboratory experiments. The future work of this project will implement the coupling between all the physical processes.

  14. Service life determination of munition during expeditionary missions

    NARCIS (Netherlands)

    Klerk, W.P.C. de; Heijden, A.E.D.M. van der

    2012-01-01

    For a more in-depth understanding of the aging processes of munitions in expeditionary operations, research is performed with respect to the influence of transport, storage and use on the safety of ammunition. Within this programme the influences of parameters like temperature, humidity, vibrations,

  15. Depleted uranium munitions - where are we now?

    International Nuclear Information System (INIS)

    Spratt, Brian G.

    2002-01-01

    There are very different views on the health hazards of DU munitions. Most of the concerns of veterans and their advisors focus on the radiological effects of DU and consequently these are the focus of this editorial. Effects on the kidney and environmental consequences are, however, considered in the second of the Royal Society reports and the main conclusions of both of the reports are outlined in the summary document published in this issue of the journal. The main radiological concerns focus on the irradiation of lung tissues from inhaled DU particles and irradiation resulting from the translocation of inhaled particles to the thoracic lymph nodes.The overwhelming scientific view, presented in the two Royal Society reports and in other independent reviews, is that the main risks of exposure to DU aerosols are an increase in lung cancer and (from chemical toxicity) damage to the kidney, although these are likely to be evident only following substantial intakes. The equivalent doses to the thoracic lymph nodes following inhalation of DU particles are about ten times greater than those to the lung, but the former tissue is considered to be relatively insensitive to radiation-induced cancers. So far, large-scale epidemiological studies of UK and US Gulf War veterans have shown no increase in mortality from cancer, or kidney disease, but these studies need to be continued to see if any significant excess mortality from these causes appears. As mentioned previously, more sensitive epidemiological studies should be possible if groups of soldiers who have known exposures to DU can be identified. Adverse reproductive effects have been observed in rodents exposed to uranium although most of these effects are evident after relatively large daily intakes of uranium. The possibility of effects on reproductive health (from DU or other toxic exposures) is being studied in both UK and US Gulf War veterans. Results from the UK epidemiological study are not yet available but

  16. Disposal safety

    International Nuclear Information System (INIS)

    Bartlett, J.W.

    International consensus does not seem to be necessary or appropriate for many of the issues concerned with the safety of nuclear waste disposal. International interaction on the technical aspects of disposal has been extensive, and this interaction has contributed greatly to development of a consensus technical infrastructure for disposal. This infrastructure provides a common and firm base for regulatory, political, and social actions in each nation

  17. Waste disposal

    International Nuclear Information System (INIS)

    Neerdael, B.; Marivoet, J.; Put, M.; Verstricht, J.; Van Iseghem, P.; Buyens, M.

    1998-01-01

    The primary mission of the Waste Disposal programme at the Belgian Nuclear Research Centre SCK/CEN is to propose, develop, and assess solutions for the safe disposal of radioactive waste. In Belgium, deep geological burial in clay is the primary option for the disposal of High-Level Waste and spent nuclear fuel. The main achievements during 1997 in the following domains are described: performance assessment, characterization of the geosphere, characterization of the waste, migration processes, underground infrastructure

  18. Validation of Passive Sampling Devices for Monitoring of Munitions Constituents in Underwater Environments

    Science.gov (United States)

    2017-09-01

    TNT TOC TSS Low Order Detonation Munitions constituents Munitions Debris Method Detection Limit Munitions and explosives of concern Mean low...Total organic carbon ( TOC ) and grain size distribution from stations A1, T10, T11, and T12 at BSS...16 syringes/stn) TNT, ADNTs, DNTs, RDX 4 locations in BSS based on positive POCIS results Sediment 5 TOC , grain size 4, co-located with sediment

  19. Munitions in the Underwater Environment: State of the Science and Knowledge Gaps

    Science.gov (United States)

    2010-06-01

    the Munitions Items Disposition Action System ( MIDAS ). Munitions constituents (MCs) can be identified through the known munitions type. The MIDAS and...physical damage to the casing, adjacent or touching metals, and water or substrate qualities such as temperature, pH, or Redox potential. The...environments, little is known on modeling the fate of MCs in the underwater environment. One of the anticipated problems in predicting the fate and

  20. Safety and vulnerability simulation of munitions; Modelisation du comportement de munitions en securite et vulnerabilite

    Energy Technology Data Exchange (ETDEWEB)

    Desailly, D.; Briquet, B.; Brunet, P.; Guegant, Y.; Houdusse, D.; Prost, M. [Groupe SNPE Propulsion/ Centre de Recherches du Boucher, 91 - Vert le Petit (France)

    2002-09-01

    Vulnerability of new weapon systems to accidental and hostile environments is a major concern for military operations and many research programs have been so investigated of SNPE Propulsion. Before they were accepted as being safe and suitable for introduction into military inventories systems underwent a wide range of expensive type qualification trials. There was a need therefore, to develop a greater understanding of the reaction mechanisms that affect the behaviour of confined energetic materials when subjected to external stimuli and computer models to control the resulting hazard. As part of this program SNPE Propulsion has developed a method for modelling Cook-off response in order to master the design of insensitive munitions (IM). The behavior of energetic materials when they are submitted to a thermal threat is complex and follows two different time scales: thermochemical processes, counted in minutes even hours whereas pyrotechnic reaction may require a few microseconds. It was shown that the reaction level is ruled by the competition between pressure generated from the cook-off reaction and stress release resulting from break-up confinement. After self-ignition phenomenon and under some confinement and thermal conditions burning can accelerate to deflagration and lead to a deflagration to detonation transition (DDT) event. The method requires'modular tools describing each physical phenomenon. Works have been first focused on the development of experimental facilities to characterise thermal chemical properties and reactivity of thermally damaged energetic material. Consequently the first part of the model describing self-heating and pyrolysis processes has been implemented in an implicit solver. Simulations have shown quite accurate predictions (ignition temperature, time to event) and proved the effectiveness of this approach. Recent developments are.thus concentrated on the numerical modelling of the reaction violence level prediction hence a

  1. Argentina's radioactive waste disposal policy

    International Nuclear Information System (INIS)

    Palacios, E.

    1986-01-01

    The Argentina policy for radioactive waste disposal from nuclear facilities is presented. The radioactive wastes are treated and disposed in confinement systems which ensure the isolation of the radionucles for an appropriate period. The safety criteria adopted by Argentina Authorities in case of the release of radioactive materials under normal conditions and in case of accidents are analysed. (M.C.K.) [pt

  2. Strategic Munitions Planning in Non-Conventional Asymmetric Operations

    Science.gov (United States)

    2010-04-01

    Conventional Asymmetric Operations RTO-MP-SAS-081 16 - 3 with a clearly structured, sized and located military force. The principles of Lanchester ...stockpiles and calculated munitions requirements. REFERENCES [1] Prague Summit Declaration, November 2002. [2] J. Fletcher, The Lanchester Legacy... Lanchester battles, Journal of the Operational Research Society, Vol. 50 No. 3, March 1999. [13] W. Freeman, A Study of Ammunition Consumption, Master of

  3. The Political Economy of the Munitions Supply Program

    Science.gov (United States)

    2014-05-01

    advantage in production, and further identified which munitions products can be procured offshore with only limited effects on operational liabilities...comparative advantage and access to global supply chains. A few options exist: fixed-price contracts may be indexed to exogenously-given input prices and... franchisees bid their true costs.47 Third, once supply is forthcoming, the franchisee has an incentive to minimize costs unless the franchiser is known

  4. Disposing of fluid wastes

    International Nuclear Information System (INIS)

    Bradley, J.S.

    1984-01-01

    Toxic liquid waste, eg liquid radioactive waste, is disposed of by locating a sub-surface stratum which, before removal of any fluid, has a fluid pressure in the pores thereof which is less than the hydrostatic pressure which is normal for a stratum at that depth in the chosen area, and then feeding the toxic liquid into the stratum at a rate such that the fluid pressure in the stratum never exceeds the said normal hydrostatic pressure. (author)

  5. Trauma-related infections due to cluster munitions.

    Science.gov (United States)

    Fares, Youssef; El-Zaatari, Mohamad; Fares, Jawad; Bedrosian, Nora; Yared, Nadine

    2013-12-01

    Trauma-related infections remain a concerning and potentially avoidable complication of conflict-related injuries. During the Israeli conflict in South Lebanon, more than four million sub-munitions were dropped over South Lebanese soil. In this study, we will explore the different types of infection caused by sub-munitions and penetrating agents. This prospective study took place from 2006 to 2012 at the Lebanese University within the Faculty of Medical Sciences' departments. This study sample consisted of 350 injured casualties. Patients suffered from blast injuries with fragmentations targeting the head, face, torso, abdomen, pelvis and extremities. Of the 350 causalities studied, 326 (93.1%) were males, and 24 (6.9%) were females. Ages varied between 10 and 70 years, with the average age being 27 years. Of the 350 patients studied, 68 (19.4%) developed infections. Infections varied between pseudomonas, Escherichia coli, Candida and fungus and sometimes led to necrosis. Vaccinations, antibiotic therapies and proper wound irrigation must be performed at appropriate emergency units. Excision and complete debridement of necrotic and contaminated tissue should also be performed. The Convention on Cluster Munitions of 2008 should be adhered to, as these weapons indiscriminately and disproportionately harm civilians, thereby violating the well-established international principles governing conflict. Copyright © 2013 King Saud Bin Abdulaziz University for Health Sciences. Published by Elsevier Ltd. All rights reserved.

  6. 40 CFR 266.203 - Standards applicable to the transportation of solid waste military munitions.

    Science.gov (United States)

    2010-07-01

    ... transportation of solid waste military munitions. 266.203 Section 266.203 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF SPECIFIC HAZARDOUS... applicable to the transportation of solid waste military munitions. (a) Criteria for hazardous waste...

  7. 40 CFR 266.205 - Standards applicable to the storage of solid waste military munitions.

    Science.gov (United States)

    2010-07-01

    ... solid waste military munitions. 266.205 Section 266.205 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF SPECIFIC HAZARDOUS... applicable to the storage of solid waste military munitions. (a) Criteria for hazardous waste regulation of...

  8. 28 CFR 0.89 - Authority to seize arms and munitions of war.

    Science.gov (United States)

    2010-07-01

    ... war. 0.89 Section 0.89 Judicial Administration DEPARTMENT OF JUSTICE ORGANIZATION OF THE DEPARTMENT OF JUSTICE Federal Bureau of Investigation § 0.89 Authority to seize arms and munitions of war. The Director... arms and munitions of war, and other articles, pursuant to section 1 of title VI of the act of June 15...

  9. Munitions and Explosives of Concern Survey Methodology and In-field Testing for Wind Energy Areas on the Atlantic Outer Continental Shelf

    Science.gov (United States)

    DuVal, C.; Carton, G.; Trembanis, A. C.; Edwards, M.; Miller, J. K.

    2017-12-01

    Munitions and explosives of concern (MEC) are present in U.S. waters as a result of past and ongoing live-fire testing and training, combat operations, and sea disposal. To identify MEC that may pose a risk to human safety during development of offshore wind facilities on the Atlantic Outer Continental Shelf (OCS), the Bureau of Ocean Energy Management (BOEM) is preparing to develop guidance on risk analysis and selection processes for methods and technologies to identify MEC in Wind Energy Areas (WEA). This study developed a process for selecting appropriate technologies and methodologies for MEC detection using a synthesis of historical research, physical site characterization, remote sensing technology review, and in-field trials. Personnel were tasked with seeding a portion of the Delaware WEA with munitions surrogates, while a second group of researchers not privy to the surrogate locations tested and optimized the selected methodology to find and identify the placed targets. This in-field trial, conducted in July 2016, emphasized the use of multiple sensors for MEC detection, and led to further guidance for future MEC detection efforts on the Atlantic OCS. An April 2017 follow on study determined the fate of the munitions surrogates after the Atlantic storm season had passed. Using regional hydrodynamic models and incorporating the recommendations from the 2016 field trial, the follow on study examined the fate of the MEC and compared the findings to existing research on munitions mobility, as well as models developed as part of the Office of Naval Research Mine-Burial Program. Focus was given to characterizing the influence of sediment type on surrogate munitions behavior and the influence of mophodynamics and object burial on MEC detection. Supporting Mine-Burial models, ripple bedforms were observed to impede surrogate scour and burial in coarse sediments, while surrogate burial was both predicted and observed in finer sediments. Further, incorporation of

  10. Waste disposal

    International Nuclear Information System (INIS)

    2005-01-01

    Radioactive waste, as a unavoidable remnant from the use of radioactive substances and nuclear technology. It is potentially hazardous to health and must therefore be managed to protect humans and the environment. The main bulk of radioactive waste must be permanently disposed in engineered repositories. Appropriate safety standards for repository design and construction are required along with the development and implementation of appropriate technologies for the design, construction, operation and closure of the waste disposal systems. As backend of the fuel cycle, resolving the issue of waste disposal is often considered as a prerequisite to the (further) development of nuclear energy programmes. Waste disposal is therefore an essential part of the waste management strategy that contributes largely to build confidence and helps decision-making when appropriately managed. The International Atomic Energy Agency provides assistance to Member States to enable safe and secure disposal of RW related to the development of national RWM strategies, including planning and long-term project management, the organisation of international peer-reviews for research and demonstration programmes, the improvement of the long-term safety of existing Near Surface Disposal facilities including capacity extension, the selection of potential candidate sites for different waste types and disposal options, the characterisation of potential host formations for waste facilities and the conduct of preliminary safety assessment, the establishment and transfer of suitable technologies for the management of RW, the development of technological solutions for some specific waste, the building of confidence through training courses, scientific visits and fellowships, the provision of training, expertise, software or hardware, and laboratory equipment, and the assessment of waste management costs and the provision of advice on cost minimisation aspects

  11. Waste Disposal

    International Nuclear Information System (INIS)

    Neerdael, B.; Marivoet, J.; Put, M.; B-Verstricht, J.; Van Iseghem, P.; Buyens, M.

    1998-01-01

    This contribution describes the main activities of the Waste and Disposal Department of the Belgian Nuclear Research Center SCK-CEN. Achievements in 1997 in three topical areas are reported on: performance assessments, waste forms/packages and near-and far field studies

  12. Chemical Stockpile Disposal Program. Risk Analysis of the Disposal of Chemical Munitions at Regional or National Sites.

    Science.gov (United States)

    1987-08-01

    4-4i = I7-75 IA A uj11 wj M 2 i w bo 1o. P2 ari *fa3 IL L z - = a 2 1.- I 24 -~ 2 z 2 2 ~ o~t 0 I, I ’" a a c .3 0 5 , C., ZZ ~C -) ZZ 4 cc 4cc acca ...IN C I N - I CL- 0.0 0 00 C61. IA f6 .4 Q 0 0 0 0 0 C o 3 OF-- 04- 0 .0 0 0 u 0 0 0 W 0 -’ - 000 ’. 4-3 .0-4 0 0 04 0 41. . 11 . ,. ~ :!~r 0. 19 000 0

  13. Chemical Stockpile Disposal Program. Risk Analysis of the Continued Storage of Chemical Munitions

    Science.gov (United States)

    1987-08-01

    assessment. has been utilized in various industries for some time. Insurance companies have long used actuarial data for statistical eva- luations to justify...hand, are examples of major industry efforts to quantify risks of low-frequency events for which no good actuarial data exist. The nuclear power...not all the components exhibit the asm reliability. Intrinsic variations can N be caused, for example, by different ianupacturers, mrinten.c prac- tices

  14. Depleted uranium instead of lead in munitions: the lesser evil.

    Science.gov (United States)

    Jargin, Sergei V

    2014-03-01

    Uranium has many similarities to lead in its exposure mechanisms, metabolism and target organs. However, lead is more toxic, which is reflected in the threshold limit values. The main potential hazard associated with depleted uranium is inhalation of the aerosols created when a projectile hits an armoured target. A person can be exposed to lead in similar ways. Accidental dangerous exposures can result from contact with both substances. Encountering uranium fragments is of minor significance because of the low penetration depth of alpha particles emitted by uranium: they are unable to penetrate even the superficial keratin layer of human skin. An additional cancer risk attributable to the uranium exposure might be significant only in case of prolonged contact of the contaminant with susceptible tissues. Lead intoxication can be observed in the wounded, in workers manufacturing munitions etc; moreover, lead has been documented to have a negative impact on the intellectual function of children at very low blood concentrations. It is concluded on the basis of the literature overview that replacement of lead by depleted uranium in munitions would be environmentally beneficial or largely insignificant because both lead and uranium are present in the environment.

  15. Depleted uranium instead of lead in munitions: the lesser evil

    International Nuclear Information System (INIS)

    Jargin, Sergei V

    2014-01-01

    Uranium has many similarities to lead in its exposure mechanisms, metabolism and target organs. However, lead is more toxic, which is reflected in the threshold limit values. The main potential hazard associated with depleted uranium is inhalation of the aerosols created when a projectile hits an armoured target. A person can be exposed to lead in similar ways. Accidental dangerous exposures can result from contact with both substances. Encountering uranium fragments is of minor significance because of the low penetration depth of alpha particles emitted by uranium: they are unable to penetrate even the superficial keratin layer of human skin. An additional cancer risk attributable to the uranium exposure might be significant only in case of prolonged contact of the contaminant with susceptible tissues. Lead intoxication can be observed in the wounded, in workers manufacturing munitions etc; moreover, lead has been documented to have a negative impact on the intellectual function of children at very low blood concentrations. It is concluded on the basis of the literature overview that replacement of lead by depleted uranium in munitions would be environmentally beneficial or largely insignificant because both lead and uranium are present in the environment. (opinion)

  16. 20000G shock energy harvesters for gun-fired munition

    International Nuclear Information System (INIS)

    Willemin, J.; Boisseau, S.; Olmos, L.; Gallardo, M.; Despesse, G.; Robert, T.

    2016-01-01

    This paper presents a 20000G shock energy harvester dedicated to gun-fired munitions and based on a mass-spring resonant structure coupled to a coil-magnet electromagnetic converter. The 20000G shock energy is firstly stored in the spring as elastic potential energy, released as mass-spring mechanical oscillations right after the shock and finally converted into electricity thanks to the coil-magnet transducer. The device has been modeled, sized to generate 200mJ in 150ms, manufactured and tested in a gun-fired munition. The prototype sizes 117cm 3 and weighs 370g. 210mJ have been generated in a test bench and 140mJ in real conditions; this corresponds to a mean output power of 0.93W (7.9mW/cm 3 ) and a maximum output power of 4.83W (41.3mW/cm 3 ) right after the shock. (paper)

  17. 20000G shock energy harvesters for gun-fired munition

    Science.gov (United States)

    Willemin, J.; Boisseau, S.; Olmos, L.; Gallardo, M.; Despesse, G.; Robert, T.

    2016-11-01

    This paper presents a 20000G shock energy harvester dedicated to gun-fired munitions and based on a mass-spring resonant structure coupled to a coil-magnet electromagnetic converter. The 20000G shock energy is firstly stored in the spring as elastic potential energy, released as mass-spring mechanical oscillations right after the shock and finally converted into electricity thanks to the coil-magnet transducer. The device has been modeled, sized to generate 200mJ in 150ms, manufactured and tested in a gun-fired munition. The prototype sizes 117cm3 and weighs 370g. 210mJ have been generated in a test bench and 140mJ in real conditions; this corresponds to a mean output power of 0.93W (7.9mW/cm3) and a maximum output power of 4.83W (41.3mW/cm3) right after the shock.

  18. Waste disposal

    CERN Multimedia

    2006-01-01

    We should like to remind you that you can have all commonplace, conventional waste (combustible, inert, wood, etc.) disposed of by the TS-FM Group. Requests for the removal of such waste should be made by contacting FM Support on tel. 77777 or by e-mail (Fm.Support@cern.ch). For requests to be acted upon, the following information must be communicated to FM Support: budget code to be debited for the provision and removal of the skip / container. type of skip required (1m3, 4 m3, 7 m3, 15 m3, 20 m3, 30 m3). nature of the waste to be disposed of (bulky objects, cardboard boxes, etc.). building concerned. details of requestor (name, phone number, department, group, etc.). We should also like to inform you that the TS-FM Group can arrange for waste to be removed from work-sites for firms under contract to CERN, provided that the prior authorisation of the CERN Staff Member in charge of the contract is obtained and the relevant disposal/handling charges are paid. You are reminded that the selective sorting o...

  19. Waste disposal

    CERN Multimedia

    2006-01-01

    We should like to remind you that you can have all commonplace, conventional waste (combustible, inert, wood, etc.) disposed of by the TS-FM Group. Requests for the removal of such waste should be made by contacting FM Support on tel. 77777 or by e-mail (Fm.Support@cern.ch). For requests to be acted upon, the following information must be communicated to FM Support: budget code to be debited for the provision and removal of the skip / container; type of skip required (1m3, 4 m3, 7 m3, 15 m3, 20 m3, 30 m3); nature of the waste to be disposed of (bulky objects, cardboard boxes, etc.); building concerned; details of requestor (name, phone number, department, group, etc.). We should also like to inform you that the TS-FM Group can arrange for waste to be removed from work-sites for firms under contract to CERN, provided that the prior authorisation of the CERN Staff Member in charge of the contract is obtained and the relevant disposal/handling charges are paid. You are reminded that the selective sorting...

  20. Optimization of Intelligent Munition Warfare Using Agent-Based Simulation Software and Design of Experiments Methodology

    National Research Council Canada - National Science Library

    Floersheim, Bruce; Hou, Gene

    2006-01-01

    ... mechanism for a number of vehicles caught in the killzone. Thus, it is useful to study and attempt to model through equations and simulation the interaction between enemy agents and these new munitions...

  1. National Security Strategy and the Munitions' Paradox: Self-Sufficiency or Maximum Efficiency

    National Research Council Canada - National Science Library

    McChesney, Michael

    1998-01-01

    ... that the United States military strategy may not be credible to likely regional aggressors. Conversely, DoD acquisition leadership believes industry consolidation should continue and the munitions base should be expanded to include US allies...

  2. U.S. Army Training and Testing Area Carrying Capacity (ATTACC) for Munitions (AFM)

    Science.gov (United States)

    2006-11-01

    Army Training Support Center USDA United States Department of Agriculture USGS United States Geological Survey USLE Universal Soil Loss Equation...Range condition is a function of climate, soil , and hydrology. The munitions impact, constituent load, and range condition are modeled using AFM...For ArcGIS v2 to attain expected concentrations of munitions constituents and corresponding risk due to exposure through soil - and water-related

  3. Bioinspired polarization navigation sensor for autonomous munitions systems

    Science.gov (United States)

    Giakos, G. C.; Quang, T.; Farrahi, T.; Deshpande, A.; Narayan, C.; Shrestha, S.; Li, Y.; Agarwal, M.

    2013-05-01

    Small unmanned aerial vehicles UAVs (SUAVs), micro air vehicles (MAVs), Automated Target Recognition (ATR), and munitions guidance, require extreme operational agility and robustness which can be partially offset by efficient bioinspired imaging sensor designs capable to provide enhanced guidance, navigation and control capabilities (GNC). Bioinspired-based imaging technology can be proved useful either for long-distance surveillance of targets in a cluttered environment, or at close distances limited by space surroundings and obstructions. The purpose of this study is to explore the phenomenology of image formation by different insect eye architectures, which would directly benefit the areas of defense and security, on the following four distinct areas: a) fabrication of the bioinspired sensor b) optical architecture, c) topology, and d) artificial intelligence. The outcome of this study indicates that bioinspired imaging can impact the areas of defense and security significantly by dedicated designs fitting into different combat scenarios and applications.

  4. The health hazards of depleted uranium munitions. Part 1

    International Nuclear Information System (INIS)

    2001-01-01

    Depleted uranium is a toxic and weakly radioactive metal used for a variety of purposes. Perhaps its most controversial use is in battlefield munitions, where it can be widely dispersed in the form of fine particles and shrapnel that may enter the bodies of combatants and others through inhalation, ingestion or wounding. It is a matter of legitimate public concern whether the use of this material in this way could create unacceptable health hazards or damage to the environment. The objective of our study has been to provide the best scientific understanding of the ways in which the material may be distributed, how it may be taken up by humans, and the potential implications for health. For politicians, any hazards to health have to be balanced against the military advantages that the use of these munitions confers. We have not tried to reach a judgment on these political issues, but we believe that a better scientific understanding of the extent of the hazards will make it easier for these wider questions to be addressed in a more objective way. This report is the first of two, and addresses the likely levels of exposure to depleted uranium, the resulting radiological risks, and the lessons to be learned from epidemiological studies. Our second report will address toxicological risks and environmental issues. So far, we conclude that risks from radiation are low for most soldiers on the battlefield, and for civilians who later return to the area. However, there are uncertainties about the maximal levels of exposure to depleted uranium on the battlefield, and there may be circumstances in which a few soldiers are exposed to levels of depleted uranium that result in a significant risk to health. Further studies are needed to determine the levels of exposure to depleted uranium that might occur on the battlefield and to judge whether such higher risks are likely to occur in practice

  5. Ocean Disposal Site Monitoring

    Science.gov (United States)

    EPA is responsible for managing all designated ocean disposal sites. Surveys are conducted to identify appropriate locations for ocean disposal sites and to monitor the impacts of regulated dumping at the disposal sites.

  6. Waste disposal: preliminary studies

    International Nuclear Information System (INIS)

    Carvalho, J.F. de.

    1983-01-01

    The problem of high level radioactive waste disposal is analyzed, suggesting an alternative for the final waste disposal from irradiated fuel elements. A methodology for determining the temperature field around an underground disposal facility is presented. (E.G.) [pt

  7. 48 CFR 225.770 - Prohibition on acquisition of United States Munitions List items from Communist Chinese military...

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Prohibition on acquisition of United States Munitions List items from Communist Chinese military companies. 225.770 Section 225... of United States Munitions List items from Communist Chinese military companies. This section...

  8. 48 CFR 252.225-7007 - Prohibition on Acquisition of United States Munitions List Items from Communist Chinese Military...

    Science.gov (United States)

    2010-10-01

    ... of United States Munitions List Items from Communist Chinese Military Companies. 252.225-7007 Section... Chinese Military Companies. As prescribed in 225.1103(4), use the following clause: Prohibition On Acquisition of United States Munitions List Items From Communist Chinese Military Companies (SEP 2006) (a...

  9. Resolving the Role of the Dynamic Pressure in the Burial, Exposure, Scour, and Mobility of Underwater Munitions

    Science.gov (United States)

    Gilooly, S.; Foster, D. L.

    2017-12-01

    In nearshore environments, the motion of munitions results from a mixture of sediment transport conditions including sheet flow, scour, bedform migration, and momentary liquefaction. Incipient motion can be caused by disruptive shear stresses and pressure gradients. Foster et al. (2006) incorporated both processes into a single parameter, indicating incipient motion as a function of the bed state. This research looks to evaluate the role of the pressure gradient in positional state changes such as burial, exposure, and mobility. In the case of munitions, this may include pressure gradients induced by vortex shedding or the passing wave. Pressure-mapped model munitions are being developed to measure the orientation, rotation, and surface pressure of the munitions during threshold events leading to a new positional state. These munitions will be deployed in inner surf zone and estuary environments along with acoustic Doppler velocimeters (ADVs), pore water pressure sensors, a laser grid, and a pencil beam sonar with an azimuth drive. The additional instruments allow for near bed and far field water column and sediment bed sampling. Currently preliminary assessments of various pressure sensors and munition designs are underway. Two pressure sensors were selected; the thin FlexiForce A201 sensors will be used to indicate munition rolling during threshold events and diaphragm sensors will be used to understand changes in surrounding pore water pressure as the munition begins to bury/unbury. Both sensors are expected to give quantitative measurements of dynamic pressure gradients in the flow field surrounding the munition. Resolving the role of this process will give insight to an improved incipient motion parameter and allow for better munition motion predictions.

  10. Optimal path planning for video-guided smart munitions via multitarget tracking

    Science.gov (United States)

    Borkowski, Jeffrey M.; Vasquez, Juan R.

    2006-05-01

    An advent in the development of smart munitions entails autonomously modifying target selection during flight in order to maximize the value of the target being destroyed. A unique guidance law can be constructed that exploits both attribute and kinematic data obtained from an onboard video sensor. An optimal path planning algorithm has been developed with the goals of obstacle avoidance and maximizing the value of the target impacted by the munition. Target identification and classification provides a basis for target value which is used in conjunction with multi-target tracks to determine an optimal waypoint for the munition. A dynamically feasible trajectory is computed to provide constraints on the waypoint selection. Results demonstrate the ability of the autonomous system to avoid moving obstacles and revise target selection in flight.

  11. Eksplozivne materije za neosetljiva ubojna sredstva / Explosive substances for insensitive munitions

    Directory of Open Access Journals (Sweden)

    Radun Jeremić

    2005-03-01

    Full Text Available U skladu sa sve strožim zahtevima za očuvanje životne sredine i većom bezbednošću, tendencije u razvoju suvremenih ubojnih sredstava (UbS, pored povećanja pouzdanosti i efikasnosti, usmerene su i na povećanje sigurnosti pri njihovoj proizvodnji, skladištenju, manipulaciji i upotrebi. Na taj način dobijena je nova kategorija UbS, tzv. neosetljiva UbS, kod kojih je verovatnoća neželjenog aktiviranja pod dejstvom spoljnih impulsa svedena na minimum. Suština rešavanja ovog problema je primena eksplozivnih materija koje su mnogo manje osetljive na spoljne uticaje u odnosu na standardne. Osnovni zahtev koji se pri tome postavlja je da taktičko-tehničke karakteristike ostanu na nivou ili budu bolje u odnosu na postojeća UbS. U radu je ukratko objašnjen koncept razvoja neosetljivih UbS i dat pregled najznačajnijih rezultata istraživanja u oblasti eksplozivnih materija koje zadovoljavaju zahteve za primenu u neosetljivim UbS. / According to severe environment protection and safety requirements, tendencies in development of modern munitions, besides of increasing reliability and efficiency, are directed to decreasing of danger during their processing, storing, handling and operating. In that manner the new category of munitions has been obtained, named insensitive munitions, with a minimum probability of unplanned activating. The best method for solving this problem is using of explosive substances that are more insensitive according to standard ones. The main requirement is the tactical and technical characteristics stay at the level or to be better according to the existing munitions. In this paper the developing concept of insensitive munitions is shortly explained and presented a review of most important research results of explosive materials that fulfill requirements for applying in insensitive munitions.

  12. Observation of Burial and Migration of Instrumented Surrogate Munitions Deployed in the Swash Zone

    Science.gov (United States)

    Cristaudo, D.; Puleo, J. A.; Bruder, B. L.

    2017-12-01

    Munitions (also known as unexploded ordnance; UXO) in the nearshore environment due to past military activities, may be found on the beach, constituting a risk for beach users. Munitions may be transported from offshore to shallower water and/or migrate along the coast. In addition, munitions may bury in place or be exhumed due to hydrodynamic forcing. Observations on munitions mobility have generally been collected offshore, while observations in the swash zone are scarce. The swash zone is the region of the beach alternately covered by wave runup where hydrodynamic processes may be intense. Studies of munitions mobility require the use of realistic surrogates to quantify mobility/burial and hydrodynamic forcing conditions. Four surrogates (BLU-61 Cluster Bomb, 81 mm Mortar, M151-70 Hydra Rocket and M107 155 mm High Explosive Howitzer) were developed and tested during large-scale laboratory and field studies. Surrogates house sensors that measure different components of motion. Errors between real munitions and surrogate parameters (mass, center of gravity and axial moment of inertia) are all within an absolute error of 20%. Internal munitions sensors consist of inertial motion units (for acceleration and angular velocity in and around the three directions and orientation), pressure transducers (for water depth above surrogate), shock recorders (for high frequency acceleration to detect wave impact on the surrogate), and an in-house designed array of optical sensors (for burial/exposure and rolling). An in situ array of sensors to measure hydrodynamics, bed morphology and sediment concentrations, was deployed in the swash zone, aligned with the surrogate deployment. Data collected during the studies will be shown highlighting surrogate sensor capabilities. Sensors response will be compared with GPS measurements and imagery from cameras overlooking the study sites of surrogate position as a function of time. Examples of burial/exposure and migration of surrogates

  13. Municipal sludge disposal economics

    Energy Technology Data Exchange (ETDEWEB)

    Jones, J L [SRI International, Menlo Park, CA; Bomberger, Jr, D C; Lewis, F M

    1977-10-01

    Costs for disposal of sludges from a municipal wastewater treatment plant normally represents greater than or equal to 25% of the total plant operating cost. The following 5 sludge handling options are considered: chemical conditioning followed by vacuum filtration, and incineration; high-pressure wet-air oxidation and vacuum filtration or filter press prior to incineration; thermal conditioning, vacuum filtraton, and incineration; high-pressure wet-air oxidation and vacuum filtration, with ash to landfill; aerobic or anaerobic digestion, followed by chemical conditioning, vacuum filtration, and disposal on land; and chemical conditioning, followed by a filter press, flash dryer, and sale as fertilizer. The 1st 2 options result in the ultimate disposal of small amounts of ash in a landfill; the digestion options require a significant landfill; the fertilizer option requires a successful marketing and sales effort. To compare the economies of scale for the options, analyses were performed for 3 plant capacities - 10, 100, and 500 mgd; as plant size increases, the economies of scale for incineration system are quite favorable. The anaerobic digestion system has a poorer capital cost-scaling factor. The incinerator options which start with chemical conditioning consume much less electrical power at all treatment plant sizes; incinerator after thermal conditioning uses more electricity but less fuel. Digestion requires no direct external fossil fuel input. The relative use of fuel is constant at all plant sizes for other options. The incinerator options can produce a significant amount of steam which may be used. The anaerobic digestion process can be a significant net producer of fuel gas.

  14. Arsenic and Old Mustard: Chemical Problems of Old Arsenical and 'Mustard' Munitions (Joseph F. Bunnett and Marian Mikotajczyk, Eds.)

    Science.gov (United States)

    Garrett, Benjamin

    1999-10-01

    What do Knute Rockne, Notre Dame's famed football coach, and Lewisite, a chemical warfare agent dubbed "the dew of death", have in common? Both owe their discovery to Father Julius Arthur Nieuwland.1 Rockne's legacy lives on in the Fighting Irish and their tradition of excellence on the gridiron. Lewisite, together with other arsenical- and mustard-type chemical warfare agents, provide a legacy that lives on, too, but with less cheerful consequences. The book Arsenic and Old Mustard: Chemical Problems of Old Arsenical and 'Mustard' Munitions makes clear the challenges faced in dealing with those consequences. This book documents the proceedings of a workshop devoted to arsenical- and mustard-type chemical warfare agents and their associated munitions. The workshop, held in Poland in 1996, included nine lectures, eight posters, and three discussion groups; and the contents of all these are presented. Major support for the workshop came from the Scientific Affairs Division of NATO as part of on ongoing series of meetings, cooperative research projects, and related efforts dealing with problems leftover from the Cold War and, in the case of the arsenicals and mustards, from conflicts dating to World War I. These problems can be seen in contemporary accounts, including a January 1999 news report that the U.S. Department of Defense intends to survey Washington, DC, areas near both American University and the Catholic University of America (CUA), site of the original synthesis of Lewisite, for chemical warfare agents and other materials disposed at the end of World War I.2 The first nine chapters of the book present the workshop's lectures. Of these, readers interested in chemical weapon destruction might find especially useful the first chapter, in which Ron Mansley of the Organisation for the Prohibition of Chemical Weapons presents a scholarly overview covering historical aspects of the arsenicals and mustards; their production and use; prospective destruction

  15. Acoustic Resonance Spectroscopy (ARS) Munition Classification System enhancements. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Vela, O.A.; Huggard, J.C.

    1997-09-18

    Acoustic Resonance Spectroscopy (ARS) is a non-destructive evaluation technology developed at the Los Alamos National Laboratory (LANL). This technology has resulted in three generations of instrumentation, funded by the Defense Special Weapons Agency (DSWA), specifically designed for field identification of chemical weapon (CW) munitions. Each generation of ARS instrumentation was developed with a specific user in mind. The ARS1OO was built for use by the U.N. Inspection Teams going into Iraq immediately after the Persian Gulf War. The ARS200 was built for use in the US-Russia Bilateral Chemical Weapons Treaty (the primary users for this system are the US Onsite Inspection Agency (OSIA) and their Russian counterparts). The ARS300 was built with the requirements of the Organization for the Prohibition of Chemical Weapons (OPCW) in mind. Each successive system is an improved version of the previous system based on learning the weaknesses of each and, coincidentally, on the fact that more time was available to do a requirements analysis and the necessary engineering development. The ARS300 is at a level of development that warrants transferring the technology to a commercial vendor. Since LANL will supply the computer software to the selected vendor, it is possible for LANL to continue to improve the decision algorithms, add features where necessary, and adjust the user interface before the final transfer occurs. This paper describes the current system, ARS system enhancements, and software enhancements. Appendices contain the Operations Manual (software Version 3.01), and two earlier reports on enhancements.

  16. The health hazards of depleted uranium munitions. Part 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-05-01

    There has been a substantial amount of public discussion on the health effects of the use of depleted uranium (DU), especially on the battlefield. The RoyaI Society therefore convened an independent expert Working Group to review the present state of scientific knowledge about the health and environmental effects of DU, in order to inform public debate. This is the first of two reports. It deals with the amounts of DU to which soldiers could be exposed on the battlefield, the risks from radiation, and what we know from epidemiological studies. We consider past and potential future exposures, the most likely exposures and the 'worst-case' exposures that cannot be excluded. Our second report, to be published later this year, will address the risks from toxic poisoning and environmental issues including risks to civilian populations. The group has consulted widely. It has focused on what is known scientifically about aspects that are relevant to health and has not considered the merits of using DU in munitions. Nor does this report analyse Gulf War syndrome, which has been the subject of other reports. DU is a toxic and weakly radioactive heavy metal that may have adverse consequences to human health, particularly if it enters the body through inhalation, ingestion or wounding. On the battlefield it is used in kinetic energy weapons designed to penetrate the armour of tanks and other vehicles. On impact substantial amounts of DU may be dispersed as particles that can be inhaled and as shrapnel. Our approach has been to estimate the typical levels of exposure on the battlefield over a wide range of scenarios, and the worst-case exposures that individuals are unlikely to exceed. From these we calculate the potential health risks from radiation. We have also considered epidemiological studies of occupational exposures to uranium in other situations as an independent source of information on the risks of inhaling DU particles, although we recognise that the

  17. The health hazards of depleted uranium munitions. Part 1

    International Nuclear Information System (INIS)

    2001-01-01

    There has been a substantial amount of public discussion on the health effects of the use of depleted uranium (DU), especially on the battlefield. The RoyaI Society therefore convened an independent expert Working Group to review the present state of scientific knowledge about the health and environmental effects of DU, in order to inform public debate. This is the first of two reports. It deals with the amounts of DU to which soldiers could be exposed on the battlefield, the risks from radiation, and what we know from epidemiological studies. We consider past and potential future exposures, the most likely exposures and the 'worst-case' exposures that cannot be excluded. Our second report, to be published later this year, will address the risks from toxic poisoning and environmental issues including risks to civilian populations. The group has consulted widely. It has focused on what is known scientifically about aspects that are relevant to health and has not considered the merits of using DU in munitions. Nor does this report analyse Gulf War syndrome, which has been the subject of other reports. DU is a toxic and weakly radioactive heavy metal that may have adverse consequences to human health, particularly if it enters the body through inhalation, ingestion or wounding. On the battlefield it is used in kinetic energy weapons designed to penetrate the armour of tanks and other vehicles. On impact substantial amounts of DU may be dispersed as particles that can be inhaled and as shrapnel. Our approach has been to estimate the typical levels of exposure on the battlefield over a wide range of scenarios, and the worst-case exposures that individuals are unlikely to exceed. From these we calculate the potential health risks from radiation. We have also considered epidemiological studies of occupational exposures to uranium in other situations as an independent source of information on the risks of inhaling DU particles, although we recognise that the parallels may

  18. Radwaste Disposal Safety Analysis

    International Nuclear Information System (INIS)

    Hwang, Yong Soo; Kang, C. H.; Lee, Y. M.; Lee, S. H.; Jeong, J. T.; Choi, J. W.; Park, S. W.; Lee, H. S.; Kim, J. H.; Jeong, M. S.

    2010-02-01

    For the purpose of evaluating annual individual doses from a potential repository disposing of radioactive wastes from the operation of the prospective advanced nuclear fuel cycle facilities in Korea, the new safety assessment approaches are developed such as PID methods. The existing KAERI FEP list was reviewed. Based on these new reference and alternative scenarios are developed along with a new code based on the Goldsim. The code based on the compartment theory can be applied to assess both normal and what if scenarios. In addition detailed studies on THRC coupling is studied. The oriental biosphere study ends with great success over the completion of code V and V with JAEA. The further development of quality assurance, in the form of the CYPRUS+ enables handy use of it for information management

  19. HLW Disposal System Development

    Energy Technology Data Exchange (ETDEWEB)

    Choi, J. W.; Choi, H. J.; Lee, J. Y. (and others)

    2007-06-15

    A KRS is suggested through design requirement analysis of the buffer and the canister which are the constituent of disposal system engineered barrier and HLW management plans are proposed. In the aspect of radionuclide retention capacity, the thickness of the buffer is determined 0.5m, the shape to be disc and ring and the dry density to be 1.6 g/cm{sup 3}. The maximum temperature of the buffer is below 100 .deg. which meets the design requirement. And bentonite blocks with 5 wt% of graphite showed more than 1.0 W/mK of thermal conductivity without the addition of sand. The result of the thermal analysis for proposed double-layered buffer shows that decrease of 7 .deg. C in maximum temperature of the buffer. For the disposal canister, the copper for the outer shell material and cast iron for the inner structure material is recommended considering the results analyzed in terms of performance of the canisters and manufacturability and the geochemical properties of deep groundwater sampled from the research area with granite, salt water intrusion, and the heavy weight of the canister. The results of safety analysis for the canister shows that the criticality for the normal case including uncertainty is the value of 0.816 which meets subcritical condition. Considering nation's 'Basic Plan for Electric Power Demand and Supply' and based on the scenario of disposing CANDU spent fuels in the first phase, the disposal system that the repository will be excavated in eight phases with the construction of the Underground Research Laboratory (URL) beginning in 2020 and commissioning in 2040 until the closure of the repository is proposed. Since there is close correlation between domestic HLW management plans and front-end/back-end fuel cycle plans causing such a great sensitivity of international environment factor, items related to assuring the non-proliferation and observing the international standard are showed to be the influential factor and acceptability

  20. Low level waste disposal

    International Nuclear Information System (INIS)

    Barthoux, A.

    1985-01-01

    Final disposal of low level wastes has been carried out for 15 years on the shallow land disposal of the Manche in the north west of France. Final participant in the nuclear energy cycle, ANDRA has set up a new waste management system from the production center (organization of the waste collection) to the disposal site including the setting up of a transport network, the development of assessment, additional conditioning, interim storage, the management of the disposal center, records of the location and characteristics of the disposed wastes, site selection surveys for future disposals and a public information Department. 80 000 waste packages representing a volume of 20 000 m 3 are thus managed and disposed of each year on the shallow land disposal. The disposal of low level wastes is carried out according to their category and activity level: - in tumuli for very low level wastes, - in monoliths, a concrete structure, of the packaging does not provide enough protection against radioactivity [fr

  1. Decision Support Tools for Munitions Response Performance Prediction and Risk Assessment

    Science.gov (United States)

    2016-09-01

    Oldenburg. A discrimination algorithm for UXO using time domain electromagnetic induction . Journal of Environmental and Engineering Geophysics, 6:91...the course of a munitions response project. Unexploded ordnance (UXO), electromagnetic (EM), sensors, electromagnetic induction (EMI), data...approach defines a detection channel that is a linear combination of received channels. The weightings of received channels comprising the optimized

  2. A two-stage extraction procedure for insensitive munition (IM) explosive compounds in soils.

    Science.gov (United States)

    Felt, Deborah; Gurtowski, Luke; Nestler, Catherine C; Johnson, Jared; Larson, Steven

    2016-12-01

    The Department of Defense (DoD) is developing a new category of insensitive munitions (IMs) that are more resistant to detonation or promulgation from external stimuli than traditional munition formulations. The new explosive constituent compounds are 2,4-dinitroanisole (DNAN), nitroguanidine (NQ), and nitrotriazolone (NTO). The production and use of IM formulations may result in interaction of IM component compounds with soil. The chemical properties of these IM compounds present unique challenges for extraction from environmental matrices such as soil. A two-stage extraction procedure was developed and tested using several soil types amended with known concentrations of IM compounds. This procedure incorporates both an acidified phase and an organic phase to account for the chemical properties of the IM compounds. The method detection limits (MDLs) for all IM compounds in all soil types were regulatory risk-based Regional Screening Level (RSL) criteria for soil proposed by the U.S. Army Public Health Center. At defined environmentally relevant concentrations, the average recovery of each IM compound in each soil type was consistent and greater than 85%. The two-stage extraction method decreased the influence of soil composition on IM compound recovery. UV analysis of NTO established an isosbestic point based on varied pH at a detection wavelength of 341 nm. The two-stage soil extraction method is equally effective for traditional munition compounds, a potentially important point when examining soils exposed to both traditional and insensitive munitions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Progressing Insensitive Munitions: Benefits and Techniques for Proactively Addressing Environmental Regulations

    Science.gov (United States)

    2012-05-01

    X Worm Tubifex tubifex X X X Black worm Lumbriculus X Asiatic clam Corbicula fluminea X Estuarine/marine water column Mysid shrimp Americamysis...Objective: Characterize traditional and insensitive munitions (IMs) impacts on amphibian larvae to manage a candidate for T&E status that inhabit

  4. Dissolution of NTO, DNAN, and Insensitive Munitions Formulations and Their Fates in Soils

    Science.gov (United States)

    2014-09-01

    plastic bags to save the (a) (b) ERDC/CRREL TR-14-23 10 sample even if the bottle should break from ice formation. During each collection, we...Bacillus sp. Biodegradation 23 (2): 287–295. Prak, D.L., and D. O’Sullivan. 2012. Photochemical Transformation of Munitions Constituents in Marine

  5. Acute toxicity of sea-dumped chemical munitions: Luminating the environmental toxicity of legacy compounds

    DEFF Research Database (Denmark)

    Mohammed Abdullah Christensen, Ilias; Sanderson, Hans; Baatrup, Erik

    2016-01-01

    As a result of the disarmament of Germany after the Second World War, 65,000 tons of chemical munitions were dumped in the Baltic Sea. Approximately 13,000 tons containing chemical warfare agents (CWAs) of which 11,000 tons were dumped in the Bornholm Basin east of Bornholm. This paper addresses...

  6. Acoustic Scattering from Munitions in the Underwater Environment: Measurements and Modeling

    Science.gov (United States)

    Williams, K.; Kargl, S. G.; Espana, A.

    2017-12-01

    Acoustical scattering from elastic targets has been a subject of research for several decades. However, the introduction of those targets into the ocean environment brings new complexities to quantitative prediction of that scattering. The goal of our work has been to retain as much of the target physics as possible while also handling the propagation to and from the target in the multi-path ocean environment. Testing of the resulting predictions has been carried out via ocean experiments in which munitions are deployed on and within the sediment. We will present the overall philosophy used in the modeling and then compare model results to measurements. A 60 cm long 30 cd diameter aluminum cylinder will be used as a canonical example and then a sample of results for a variety of munitions will be shown. Finally, we will discuss the use of both the models and measurements in assessing the ability of sonar to discriminate munitions from other man-made targets. The difficulty of this challenge will be made apparent via results from a recent experiment in which both munitions and man-made "clutter" were deployed on a rippled sand interface.

  7. Treated Effluent Disposal Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Treated non-hazardous and non-radioactive liquid wastes are collected and then disposed of through the systems at the Treated Effluent Disposal Facility (TEDF). More...

  8. Screening Level Ecological Risk Assessments of Some Military Munitions and Obscurant-related Compounds for Selected Threatened and Endangered Species

    National Research Council Canada - National Science Library

    Von Stackleberg, Katherine; Amos, Craig; Butler, C; Smith, Thomas; Famely, J; McArdle, M; Southworth, B; Steevens, Jeffrey

    2006-01-01

    ...) associated with munitions. This study evaluates the potential long-term impacts on selected threatened and endangered species resulting from dispersion and deposition of vapors and particles found in the fog oils...

  9. Research and development of technologies for safe and environmentally optimal recovery and disposal of explosive wastes. Task 10, Impact assessment for environment, health and safety (EIA)

    Energy Technology Data Exchange (ETDEWEB)

    Duijm, N.J.; Markert, F. [Forskningscenter Risoe (Denmark)

    2000-03-01

    Modern technologies like high-pressure water washout and Fluidised Bed Combustion provide safe and environmentally acceptable solutions for demilitarisation. The environmental impact from the traditional techniques Open Burning and Open Detonation can be drastically reduced. High-pressure water washout in combination with Fluidised Bed Combustion and NO{sub x}-reduction using urea-injection is the best well-demonstrated technology considered in this study. This technology can be used for large/medium sized calibre munitions, but additional removal of NO{sub x} from the flue gases is required in order to comply with European emission standards. It has been made credible at existing Rotary Kilns used for hazardous waste in general can be used also for incineration of de-sensitised, down sized munitions (slurries), with a similar performance with respect to environmental and safety aspects as Fluidised Bed Combustion. Using a Closed Detonation chamber with flue-gas cleaning has important environmental advantages compared to Open Burning and Open Detonation, especially for small munitions (e.g. fuzes, antipersonnel mines, pyrotechnics). However, because Closed Detonation is labour-intensive and requires operation of complex, pressurised systems, it poses more risk on the personnel. For that reason, it is recommended to develop other systems to demilitarise small munitions. It appears that the air pollution emissions from transport of munitions to disposal facilities is significant compared to the process emissions of the 'cleanest' technologies. Similarly, risks related to transport (due to ordinary accidents involving trucks) are not dominating, but cannot be ignored compared to process risks. These considerations need to be included when comparing less sophisticated local or mobile facilities with central facilities having advanced flue gas cleaning. (au)

  10. Munition Burial by Local Scour and Sandwaves: large-scale laboratory experiments

    Science.gov (United States)

    Garcia, M. H.

    2017-12-01

    Our effort has been the direct observation and monitoring of the burial process of munitions induced by the combined action of waves, currents and pure oscillatory flows. The experimental conditions have made it possible to observe the burial process due to both local scour around model munitions as well as the passage of sandwaves. One experimental facility is the Large Oscillating Water Sediment Tunnel (LOWST) constructed with DURIP support. LOWST can reproduce field-like conditions near the sea bed. The second facility is a multipurpose wave-current flume which is 4 feet (1.20 m) deep, 6 feet (1.8 m) wide, and 161 feet (49.2 m) long. More than two hundred experiments were carried out in the wave-current flume. The main task completed within this effort has been the characterization of the burial process induced by local scour as well in the presence of dynamic sandwaves with superimposed ripples. It is found that the burial of a finite-length model munition (cylinder) is determined by local scour around the cylinder and by a more global process associated with the formation and evolution of sandwaves having superimposed ripples on them. Depending on the ratio of the amplitude of these features and the body's diameter (D), a model munition can progressively get partially or totally buried as such bedforms migrate. Analysis of the experimental data indicates that existing semi-empirical formulae for prediction of equilibrium-burial-depth, geometry of the scour hole around a cylinder, and time-scales developed for pipelines are not suitable for the case of a cylinder of finite length. Relative burial depth (Bd / D) is found to be mainly a function of two parameters. One is the Keulegan-Carpenter number, KC, and the Shields parameter, θ. Munition burial under either waves or combined flow, is influenced by two different processes. One is related to the local scour around the object, which takes place within the first few hundred minutes of flow action (i.e. short

  11. Disposal of Radioactive Waste

    International Nuclear Information System (INIS)

    2011-01-01

    This Safety Requirements publication applies to the disposal of radioactive waste of all types by means of emplacement in designed disposal facilities, subject to the necessary limitations and controls being placed on the disposal of the waste and on the development, operation and closure of facilities. The classification of radioactive waste is discussed. This Safety Requirements publication establishes requirements to provide assurance of the radiation safety of the disposal of radioactive waste, in the operation of a disposal facility and especially after its closure. The fundamental safety objective is to protect people and the environment from harmful effects of ionizing radiation. This is achieved by setting requirements on the site selection and evaluation and design of a disposal facility, and on its construction, operation and closure, including organizational and regulatory requirements.

  12. Cost Of Compliance On Munitions Consolidation From Lualualei To West Loch

    Science.gov (United States)

    2017-12-01

    well as the opportunity to drastically reduce the transportation of ordnance to and from the Lualualei Annex through local community roads and areas...single road and the availability of CULT trucks and/or drivers that could impede an expeditious response in a contingency operation. This project...to distribute munitions to the fleet. This consolidation plan will also reduce the infrastructure costs for ordnance storage, maintenance , and

  13. Validation of Passive Sampling Devices for Monitoring of Munitions Constituents in Underwater Environments

    Science.gov (United States)

    2017-09-01

    and explosives of concern (MEC) corroding, breaching, and leaking MC into the water column (Darrach, Chutjian, and Plett, 1998; GMI, 2007; Lewis et...underwater UWMM have the potential to corrode, breach, and leak munitions constituents (MCs) such as 2,4,6-trinitrotoluene (TNT) and hexahydro-1,3,5...Wang et al., 2013), a number of challenges prevent accurate assessment of environmental exposure using traditional water , sediment, and tissue

  14. Environmental Assessment: Demolition of Munitions Storage Area Facilities at Ellsworth AFB, South Dakota

    Science.gov (United States)

    2009-11-01

    CEQ Council on Environmental Quality CFR Code of Federal Regulations CO Carbon Monoxide cpm Counts per Minute CRM Cultural Resource Manager...newspaper advertisement in the Rapid City Journal announcing the availability of the Draft EA for a 30-day public and agency review to facilitate...Ellsworth Air Force Base Munitions Storage Area Environmental Assessment Page 2-5 public involvement in the project. This advertisement was published one

  15. Health and environmental problems of using antiarmour munitions containing depleted uranium core

    International Nuclear Information System (INIS)

    Matousek, J.

    2006-01-01

    In the 1970s, core of depleted uranium commenced to be introduced into the breakthrough antitank munitions of various calibers and types in order to considerably enhance their effectiveness due to extremely high density in comparison with steel. The health and environmental threats of using this munitions and other weaponry where depleted uranium has been utilised as counterbalance stem from the pyrophoric character of uranium, burnt due to material deformation and friction when penetrating armour targets creating thus highly respirable aerosol of uranium oxides that are deposited in alveoli after being inhaled or in other tissues after being ingested. Composition and main properties of depleted uranium are presented. Chronic effects of deposited particles of uranium oxides are due to internal irradiation of sensitive organs at proceeding radioactive decay accompanied with alpha irradiation. Long-term internal irradiation by radionuclides producing alpha-rays leads to proved risk of increased incidence of carcinoma and leukaemia not to speak on chronic chemical toxicity of uranium, independent of its isotopic composition. Environmental impact of extensive use of munitions with depleted uranium in the recent armed conflicts is assessed. (authors)

  16. Waste disposal in the deep ocean: An overview

    International Nuclear Information System (INIS)

    O'Connor, T.P.; Kester, D.R.; Burt, W.V.; Capuzzo, J.M.; Park, P.K.; Duedall, I.W.

    1985-01-01

    Incineration at sea, industrial and sewage waste disposal in the surface mixing zone, and disposal of low-level nuclear wastes, obsolete munitions, and nerve gas onto the seafloor have been the main uses of the deep sea for waste management. In 1981 the wastes disposed of in the deep sea consisted of 48 X 10/sup 4/ t of liquid industrial wastes and 2 X 10/sup 4/ t of sewage sludge by the United States; 1.5 X 10/sup 4/ t (solids) of sewage sludge by the Federal Republic of German; 5300 t of liquid industrial wastes by Denmark; 99 t of solid industrial wastes by the United Kingdom; and 9400 t of low-level radioactive wastes by several European countries. Also in 1981 at-sea incineration of slightly more than 10/sup 5/ t of organic wastes from Belgium, France, the Federal Republic of Germany, the Netherlands, Norway, Sweden, and the United Kingdom was carried out in the North Sea. Unique oceanographic features of the deep sea include its large dilution capacity; the long residence time of deep-sea water (on the order of 10/sup 2/ y); low biological productivity in the surface water of the open ocean (≅50 g m/sup -2/ of carbon per year); the existence of an oxygen minimum zone at several hundred meters deep in the mid-latitudes; and the abyssal-clay regions showing sedimentary records of tens of millions of years of slow, uninterrupted deposition of fine-grained clay. Any deep-sea waste disposal strategy must take into account oceanic processes and current scientific knowledge in order to attain a safe solution that will last for centuries

  17. Trace metal contamination of Beaufort's Dyke, North Channel, Irish Sea: A legacy of ordnance disposal

    International Nuclear Information System (INIS)

    Callaway, Alexander; Quinn, Rory; Brown, Craig J.; Service, Matthew; Benetti, Sara

    2011-01-01

    Highlights: → Our samples are the first trace metal concentrations taken from the valley of Beaufort's Dyke. → There is no clear trend between concentrations of trace metals in Dyke and NMMP sediments. → Particle transport simulations show dispersal of trace metals from Beaufort's Dyke is possible. → Disposed ordnance may also contribute to contamination of surrounding areas. → These methods could help predict areas at risk of future trace metal contamination as a result of ordnance disposal. - Abstract: Beaufort's Dyke is a disused ordnance disposal ground within the North Channel of the Irish Sea. Over 1 million tonnes of ordnance were disposed of in the dyke over a 40 year period representing a substantial volume of trace metal pollutants introduced to the seabed. Utilising particle transport modelling software we simulated the potential transport of metal particles from Beaufort's Dyke over a 3 month period. This demonstrated that Beaufort's Dyke has the potential to act as a source for trace metal contamination to areas beyond the submarine valley. Trace metal analysis of sediments from the Dyke and surrounding National Marine Monitoring Programme areas demonstrate that the Dyke is not the most contaminated site in the region. Particle transport modelling enables the transport pathways of trace metal contaminants to be predicted. Implementation of the technique in other munitions disposal grounds will provide valuable information for the selection of monitoring stations.

  18. Disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Blomeke, J.O.

    1979-01-01

    Radioactive waste management and disposal requirements options available are discussed. The possibility of beneficial utilization of radioactive wastes is covered. Methods of interim storage of transuranium wastes are listed. Methods of shipment of low-level and high-level radioactive wastes are presented. Various methods of radioactive waste disposal are discussed

  19. Geomechanics of clays for radioactive waste disposal

    International Nuclear Information System (INIS)

    Come, B.

    1989-01-01

    Clay formations have been studied for many years in the European Community as potential disposal media for radioactive waste. This document brings together results of on-going research about the geomechanical behaviour of natural clay bodies, at normal and elevated temperatures. The work is carried out within the third Community R and D programme on Management and storage of radioactive waste

  20. Disposal of radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1960-01-15

    The problem of disposal can be tackled in two ways: the waste can be diluted and dispersed so that the radiation to which any single individual would be subjected would be negligible, or it can be concentrated and permanently isolated from man and his immediate environment. A variety of methods for the discharge of radioactive waste into the ground were described at the Monaco conference. They range from letting liquid effluent run into pits or wells at appropriately chosen sites to the permanent storage of high activity material at great depth in geologically suitable strata. Another method discussed consists in the incorporation of high level fission products in glass which is either buried or stored in vaults. Waste disposal into rivers, harbours, outer continental shelves and the open sea as well as air disposal are also discussed. Many of the experts at the Monaco conference were of the view that most of the proposed, or actually applied, methods of waste disposal were compatible with safety requirements. Some experts, felt that certain of these methods might not be harmless. This applied to the possible hazards of disposal in the sea. There seemed to be general agreement, however, that much additional research was needed to devise more effective and economical methods of disposal and to gain a better knowledge of the effects of various types of disposal operations, particularly in view of the increasing amounts of waste material that will be produced as the nuclear energy industry expands

  1. Disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Dlouhy, Z.

    1982-01-01

    This book provides information on the origin, characteristics and methods of processing of radioactive wastes, as well as the philosophy and practice of their storage and disposal. Chapters are devoted to the following topics: radioactive wastes, characteristics of radioactive wastes, processing liquid and solid radioactive wastes, processing wastes from spent fuel reprocessing, processing gaseous radioactive wastes, fixation of radioactive concentrates, solidification of high-level radioactive wastes, use of radioactive wastes as raw material, radioactive waste disposal, transport of radioactive wastes and economic problems of radioactive wastes disposal. (C.F.)

  2. Subseabed disposal safety analysis

    International Nuclear Information System (INIS)

    Koplick, C.M.; Kabele, T.J.

    1982-01-01

    This report summarizes the status of work performed by Analytic Sciences Corporation (TASC) in FY'81 on subseabed disposal safety analysis. Safety analysis for subseabed disposal is divided into two phases: pre-emplacement which includes all transportation, handling, and emplacement activities; and long-term (post-emplacement), which is concerned with the potential hazard after waste is safely emplaced. Details of TASC work in these two areas are provided in two technical reports. The work to date, while preliminary, supports the technical and environmental feasibility of subseabed disposal of HLW

  3. Disposal and reclamation of southwestern coal and uranium wastes

    International Nuclear Information System (INIS)

    Wewerka, E.M.

    1979-01-01

    The types of solid wastes and effluents produced by the southwestern coal and uranium mining and milling industries are considered, and the current methods for the disposal and reclamation of these materials discussed. The major means of disposing of the solid wastes from both industries is by land fill or in some instances ponding. Sludges or aqueous wastes are normally discharged into settling and evaporative ponds. Basic reclamation measures for nearly all coal and uranium waste disposal sites include solids stabilization, compacting, grading, soil preparation, and revegetation. Impermeable liners and caps are beginning to be applied to disposal sites for some of the more harmful coal and uranium waste materials

  4. Nuclear fuel waste disposal

    International Nuclear Information System (INIS)

    Merrett, G.J.; Gillespie, P.A.

    1983-07-01

    This report discusses events and processes that could adversely affect the long-term stability of a nuclear fuel waste disposal vault or the regions of the geosphere and the biosphere to which radionuclides might migrate from such a vault

  5. Disposal leachates treatment

    Energy Technology Data Exchange (ETDEWEB)

    Coulomb, I.; Renaud, P. (SITA, 75 - Paris (France)); Courant, P. (FD Conseil, 78 - Gargenville (France)); Manem, J.; Mandra, V.; Trouve, E. (Lyonnaise des Eaux-Dumez, 78 - Le Pecq (France))

    1993-12-01

    Disposal leachates are complex and variable effluents. The use of a bioreactor with membranes, coupled with a reverse osmosis unit, gives a new solution to the technical burying centers. Two examples are explained here.

  6. Safe Disposal of Pesticides

    Science.gov (United States)

    ... Toxics Environmental Information by Location Greener Living Health Land, Waste, and Cleanup Lead Mold Pesticides Radon Science ... or www.earth911.com . Think before disposing of extra pesticides and containers: Never reuse empty pesticide containers. ...

  7. Disposal of Iodine-129

    International Nuclear Information System (INIS)

    Morgan, M.T.; Moore, J.G.; Devaney, H.E.; Rogers, G.C.; Williams, C.; Newman, E.

    1978-01-01

    One of the problems to be solved in the nuclear waste management field is the disposal of radioactive iodine-129, which is one of the more volatile and long-lived fission products. Studies have shown that fission products can be fixed in concrete for permanent disposal. Current studies have demonstrated that practical cementitious grouts may contain up to 18% iodine as barium iodate. The waste disposal criterion is based on the fact that harmful effects to present or future generations can be avoided by isolation and/or dilution. Long-term isolation is effective in deep, dry repositories; however, since penetration by water is possible, although unlikely, release was calculated based on leach rates into water. Further considerations have indicated that sea disposal on or in the ocean floor may be a more acceptable alternative

  8. Nuclear fuel waste disposal

    International Nuclear Information System (INIS)

    Allan, C.J.

    1993-01-01

    The Canadian concept for nuclear fuel waste disposal is based on disposing of the waste in a vault excavated 500-1000 m deep in intrusive igneous rock of the Canadian Shield. The author believes that, if the concept is accepted following review by a federal environmental assessment panel (probably in 1995), then it is important that implementation should begin without delay. His reasons are listed under the following headings: Environmental leadership and reducing the burden on future generations; Fostering public confidence in nuclear energy; Forestalling inaction by default; Preserving the knowledge base. Although disposal of reprocessing waste is a possible future alternative option, it will still almost certainly include a requirement for geologic disposal

  9. Integrated Disposal Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Located near the center of the 586-square-mile Hanford Site is the Integrated Disposal Facility, also known as the IDF.This facility is a landfill similar in concept...

  10. Shallow land disposal technology

    Energy Technology Data Exchange (ETDEWEB)

    Pillette-Cousin, L. [Nuclear Environment Technology Insitute, Taejon (Korea, Republic of Korea )

    1997-12-31

    This paper covers the radioactive waste management policy and regulatory framework, the characteristics of low and intermediate level radioactive waste, the characteristics of waste package, the waste acceptance criteria, the waste acceptance and related activities, the design of the disposal system, the organization of waste transportation, the operation feature, the safety assessment of the Centre de L`Aube, the post closure measures, the closure of the Centre de la Mache disposal facility, the licensing issues. 3 tabs., 7 figs.

  11. Shallow land disposal technology

    International Nuclear Information System (INIS)

    Pillette-Cousin, L.

    1997-01-01

    This paper covers the radioactive waste management policy and regulatory framework, the characteristics of low and intermediate level radioactive waste, the characteristics of waste package, the waste acceptance criteria, the waste acceptance and related activities, the design of the disposal system, the organization of waste transportation, the operation feature, the safety assessment of the Centre de L'Aube, the post closure measures, the closure of the Centre de la Mache disposal facility, the licensing issues. 3 tabs., 7 figs

  12. Disposal Of Waste Matter

    International Nuclear Information System (INIS)

    Kim, Jeong Hyeon; Lee, Seung Mu

    1989-02-01

    This book deals with disposal of waste matter management of soiled waste matter in city with introduction, definition of waste matter, meaning of management of waste matter, management system of waste matter, current condition in the country, collect and transportation of waste matter disposal liquid waste matter, industrial waste matter like plastic, waste gas sludge, pulp and sulfuric acid, recycling technology of waste matter such as recycling system of Black clawson, Monroe and Rome.

  13. A Biography of the Trousered Munitions Women’s Uniform of World War 1

    OpenAIRE

    Roberts, Jennifer

    2017-01-01

    Ce chapitre fournit une vue d’ensemble de la recherche pour un exemple survivant de l’uniforme de pantalons des « munitionettes », alors que les travailleurs dans les usines de munitions dans la Première Guerre Mondiale étaient reconnus. Si nous examinons la réaction sur les femmes qui portent un vêtement d’homme et les discussions d’émancipation de cet uniforme, ces recherches ont étudié considérablement les archives jadis moins utilisées dans l’histoire des vêtements. Comme il n’existe plus...

  14. Clarifying Normalization

    Science.gov (United States)

    Carpenter, Donald A.

    2008-01-01

    Confusion exists among database textbooks as to the goal of normalization as well as to which normal form a designer should aspire. This article discusses such discrepancies with the intention of simplifying normalization for both teacher and student. This author's industry and classroom experiences indicate such simplification yields quicker…

  15. In-Flight Self-Alignment Method Aided by Geomagnetism for Moving Basement of Guided Munitions

    Directory of Open Access Journals (Sweden)

    Shuang-biao Zhang

    2015-01-01

    Full Text Available Due to power-after-launch mode of guided munitions of high rolling speed, initial attitude of munitions cannot be determined accurately, and this makes it difficult for navigation and control system to work effectively and validly. An in-flight self-alignment method aided by geomagnetism that includes a fast in-flight coarse alignment method and an in-flight alignment model based on Kalman theory is proposed in this paper. Firstly a fast in-flight coarse alignment method is developed by using gyros, magnetic sensors, and trajectory angles. Then, an in-flight alignment model is derived by investigation of the measurement errors and attitude errors, which regards attitude errors as state variables and geomagnetic components in navigation frame as observed variables. Finally, fight data of a spinning projectile is used to verify the performance of the in-flight self-alignment method. The satisfying results show that (1 the precision of coarse alignment can attain below 5°; (2 the attitude errors by in-flight alignment model converge to 24′ at early of the latter half of the flight; (3 the in-flight alignment model based on Kalman theory has better adaptability, and show satisfying performance.

  16. Landfill disposal risk assessment

    International Nuclear Information System (INIS)

    Mininni, G.; Passino, R.; Spinosa, L.

    1993-01-01

    Landfill disposal is the most used waste disposal system in Italy, due to its low costs and also to the great opposition of populations towards new incineration plants and the adjustment of the existing ones. Nevertheless, landfills may present many environmental problems as far as leachate and biogas are concerned directly influencing water, air and soil. This paper shows the most important aspects to be considered for a correct evaluation of environmental impacts caused by a landfill of urban wastes. Moreover, detection systems for on site control of pollution phenomena are presented and some measures for an optimal operation of a landfill are suggested

  17. Disposal of hazardous wastes

    International Nuclear Information System (INIS)

    Barnhart, B.J.

    1978-01-01

    The Fifth Life Sciences Symposium entitled Hazardous Solid Wastes and Their Disposal on October 12 through 14, 1977 was summarized. The topic was the passage of the National Resources Conservation and Recovery Act of 1976 will force some type of action on all hazardous solid wastes. Some major points covered were: the formulation of a definition of a hazardous solid waste, assessment of long-term risk, list of specific materials or general criteria to specify the wastes of concern, Bioethics, sources of hazardous waste, industrial and agricultural wastes, coal wastes, radioactive wastes, and disposal of wastes

  18. Reversible deep disposal

    International Nuclear Information System (INIS)

    2009-10-01

    This presentation, given by the national agency of radioactive waste management (ANDRA) at the meeting of October 8, 2009 of the high committee for the nuclear safety transparency and information (HCTISN), describes the concept of deep reversible disposal for high level/long living radioactive wastes, as considered by the ANDRA in the framework of the program law of June 28, 2006 about the sustainable management of radioactive materials and wastes. The document presents the social and political reasons of reversibility, the technical means considered (containers, disposal cavities, monitoring system, test facilities and industrial prototypes), the decisional process (progressive development and blocked off of the facility, public information and debate). (J.S.)

  19. Radioactive waste (disposal)

    International Nuclear Information System (INIS)

    Jenkin, P.

    1985-01-01

    The disposal of low- and intermediate-level radioactive wastes was discussed. The following aspects were covered: public consultation on the principles for assessing disposal facilities; procedures for dealing with the possible sites which the Nuclear Industry Radioactive Waste Executive (NIREX) had originally identified; geological investigations to be carried out by NIREX to search for alternative sites; announcement that proposal for a site at Billingham is not to proceed further; NIREX membership; storage of radioactive wastes; public inquiries; social and environmental aspects; safety aspects; interest groups; public relations; government policies. (U.K.)

  20. Final disposal of high levels waste and spent nuclear fuel

    International Nuclear Information System (INIS)

    Gelin, R.

    1984-05-01

    Foreign and international activities on the final disposal of high-level waste and spent nuclear fuel have been reviewed. A considerable research effort is devoted to development of acceptable disposal options. The different technical concepts presently under study are described in the report. Numerous studies have been made in many countries of the potential risks to future generations from radioactive wastes in underground disposal repositories. In the report the safety assessment studies and existing performance criteria for geological disposal are briefly discussed. The studies that are being made in Canada, the United States, France and Switzerland are the most interesting for Sweden as these countries also are considering disposal into crystalline rocks. The overall time-tables in different countries for realisation of the final disposal are rather similar. Normally actual large-scale disposal operations for high-level wastes are not foreseen until after year 2000. In the United States the Congress recently passed the important Nuclear Waste Policy Act. It gives a rather firm timetable for site-selection and construction of nuclear waste disposal facilities. According to this act the first repository for disposal of commercial high-level waste must be in operation not later than in January 1998. (Author)

  1. Tracking and Interception of Ground-Based RF Sources Using Autonomous Guided Munitions with Passive Bearings-Only Sensors and Tracking Algorithms

    National Research Council Canada - National Science Library

    Ezal, Kenan; Agate, Craig

    2006-01-01

    This paper considers the problem of tracking and intercepting a potentially moving ground-based RF source with an autonomous guided munition that has a passive bearings-only sensor located on its nose...

  2. Operation Iraqi Freedom: DOD Should Apply Lessons Learned Concerning the Need for Security over Conventional Munitions Storage Sites to Future Operations Planning

    National Research Council Canada - National Science Library

    D'Agostino, Davi M

    2007-01-01

    The Government Accountability Office (GAO) is releasing a report today on lessons learned concerning the need for security over conventional munitions storage sites that provides the basis for this testimony...

  3. Radioactive waste disposal package

    Science.gov (United States)

    Lampe, Robert F.

    1986-11-04

    A radioactive waste disposal package comprising a canister for containing vitrified radioactive waste material and a sealed outer shell encapsulating the canister. A solid block of filler material is supported in said shell and convertible into a liquid state for flow into the space between the canister and outer shell and subsequently hardened to form a solid, impervious layer occupying such space.

  4. Manufacture of disposal canisters

    International Nuclear Information System (INIS)

    Nolvi, L.

    2009-12-01

    The report summarizes the development work carried out in the manufacturing of disposal canister components, and present status, in readiness for manufacturing, of the components for use in assembly of spent nuclear fuel disposal canister. The disposal canister consist of two major components: the nodular graphite cast iron insert and overpack of oxygen-free copper. The manufacturing process for copper components begins with a cylindrical cast copper billet. Three different manufacturing processes i.e. pierce and draw, extrusion and forging are being developed, which produce a seamless copper tube or a tube with an integrated bottom. The pierce and draw process, Posiva's reference method, makes an integrated bottom possible and only the lid requires welding. Inserts for BWR-element are cast with 12 square channels and inserts for VVER 440-element with 12 round channels. Inserts for EPR-elements have four square channels. Casting of BWR insert type has been studied so far. Experience of casting inserts for PWR, which is similar to the EPR-type, has been got in co-operation with SKB. The report describes the processes being developed for manufacture of disposal canister components and some results of the manufacturing experiments are presented. Quality assurance and quality control in manufacture of canister component is described. (orig.)

  5. Oil ''rig'' disposal

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    A comparison of the environmental impacts of disposing of the Brent Spar oil platform on land and at sea is presented, with a view to establishing the best decommissioning option in the light of recent controversy. The document is presented as an aid to comprehension of the scientific and engineering issues involved for Members of Parliament. (UK)

  6. Nuclear waste disposal

    International Nuclear Information System (INIS)

    Lindblom, U.; Gnirk, P.

    1982-01-01

    The subject is discussed under the following headings: the form and final disposal of nuclear wastes; the natural rock and groundwater; the disturbed rock and the groundwater; long-term behavior of the rock and the groundwater; nuclear waste leakage into the groundwater; what does it all mean. (U.K.)

  7. Chemical Stockpile Disposal Program

    Energy Technology Data Exchange (ETDEWEB)

    Krummel, J.R.; Policastro, A.J.; Olshansky, S.J.; McGinnis, L.D.

    1990-10-01

    As part of the Chemical Stockpile Disposal Program mandated by Public Law 99--145 (Department of Defense Authorization Act), an independent review is presented of the US Army Phase I environmental report for the disposal program at the Umatilla Depot Activity (UMDA) in Hermiston, Oregon. The Phase I report addressed new and additional concerns not incorporated in the final programmatic environmental impact statement (FPEIS). Those concerns were addressed by examining site-specific data for the Umatilla Depot Activity and by recommending the scope and content of a more detailed site-specific study. This independent review evaluates whether the new site-specific data presented in the Phase I report would alter the decision in favor of on-site disposal that was reached in the FPEIS, and whether the recommendations for the scope and content of the site-specific study are adequate. Based on the methods and assumptions presented in the FPEIS, the inclusion of more detailed site-specific data in the Phase I report does not change the decision reached in the FPEIS (which favored on-site disposal at UMDA). It is recommended that alternative assumptions about meteorological conditions be considered and that site-specific data on water, ecological, socioeconomic, and cultural resources; seismicity; and emergency planning and preparedness be considered explicitly in the site-specific EIS decision-making process. 7 refs., 1 fig.

  8. Nanomaterial disposal by incineration

    Science.gov (United States)

    As nanotechnology-based products enter into widespread use, nanomaterials will end up in disposal waste streams that are ultimately discharged to the environment. One possible end-of-life scenario is incineration. This review attempts to ascertain the potential pathways by which ...

  9. Geological disposal concept hearings

    International Nuclear Information System (INIS)

    1996-01-01

    The article outlines the progress to date on AECL spent-nuclear fuel geological disposal concept. Hearings for discussion, organised by the federal Environmental Assessment Review Panel, of issues related to this type of disposal method occur in three phases, phase I focuses on broad societal issues related to long term management of nuclear fuel waste; phase II will focus on the technical aspects of this method of disposal; and phase III will consist of community visits in New Brunswick, Quebec, Ontario, Manitoba and Saskatchewan. This article provides the events surrounding the first two weeks of phase I hearings (extracted from UNECAN NEWS). In the first week of hearings, where submissions on general societal issues was the focus, there were 50 presentations including those by Natural Resources Canada, Energy Probe, Ontario Hydro, AECL, Canadian Nuclear Society, Aboriginal groups, environmental activist organizations (Northwatch, Saskatchewan Environmental Society, the Inter-Church Uranium Committee, and the Canadian Coalition for Nuclear responsibility). In the second week of hearings there was 33 presentations in which issues related to siting and implementation of a disposal facility was the focus. Phase II hearings dates are June 10-14, 17-21 and 27-28 in Toronto

  10. Plumbing and Sewage Disposal.

    Science.gov (United States)

    Sutliff, Ronald D.; And Others

    This self-study course is designed to familiarize Marine enlisted personnel with the principles of plumbing and sewage disposal used by Marine Hygiene Equipment Operators to perform their mission. The course contains three study units. Each study unit begins with a general objective, which is a statement of what the student should learn from the…

  11. Radwaste treatment and disposal

    International Nuclear Information System (INIS)

    Ehn, L.; Breza, M.; Pekar, A.

    2000-01-01

    In this lecture is given the basic information, that is concerning on the RAW treatment and long term disposal of the treated RAW in repository at Mochovce. Then here is given the basic technical and technological information, that is concerning bituminization, plant, the vitrification unit, center for the RAW-treatment (BSC) and repository at Mochovce. (authors)

  12. Waste disposal package

    Science.gov (United States)

    Smith, M.J.

    1985-06-19

    This is a claim for a waste disposal package including an inner or primary canister for containing hazardous and/or radioactive wastes. The primary canister is encapsulated by an outer or secondary barrier formed of a porous ceramic material to control ingress of water to the canister and the release rate of wastes upon breach on the canister. 4 figs.

  13. Geological disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Sato, Tsutomu

    2000-01-01

    For disposing method of radioactive wastes, various feasibilities are investigated at every nations and international organizations using atomic energy, various methods such as disposal to cosmic space, disposal to ice sheet at the South Pole and so forth, disposal into ocean bed or its sediments, and disposal into ground have been examined. It is, however, impossible institutionally at present, to have large risk on accident in the disposal to cosmic space, to be prohibited by the South Pole Treaty on the disposal to ice sheet at the South Pole, and to be prohibited by the treaty on prevention of oceanic pollution due to the disposal of wastes and so forth on the disposal into oceanic bed or its sediments (London Treaty). Against them, the ground disposal is thought to be the most powerful method internationally from some reasons shown as follows: no burden to the next generation because of no need in long-term management by human beings; safety based on scientific forecasting; disposal in own nation; application of accumulated technologies on present mining industries, civil engineering, and so forth to construction of a disposal facility; and, possibility to take out wastes again, if required. For the ground disposal, wastes must be buried into the ground and evaluated their safety for long terms. It is a big subject to be taken initiative by engineers on geoscience who have quantified some phenomena in the ground and at ultra long term. (G.K.)

  14. Birkhoff normalization

    NARCIS (Netherlands)

    Broer, H.; Hoveijn, I.; Lunter, G.; Vegter, G.

    2003-01-01

    The Birkhoff normal form procedure is a widely used tool for approximating a Hamiltonian systems by a simpler one. This chapter starts out with an introduction to Hamiltonian mechanics, followed by an explanation of the Birkhoff normal form procedure. Finally we discuss several algorithms for

  15. HLW disposal dilemma

    International Nuclear Information System (INIS)

    Andrei, V.; Glodeanu, F.

    2003-01-01

    The radioactive waste is an inevitable residue from the use of radioactive materials in industry, research and medicine, and from the operation of generating electricity nuclear power stations. The management and disposal of such waste is therefore an issue relevant to almost all countries. Undoubtedly the biggest issue concerning radioactive waste management is that of high level waste. The long-lived nature of some types of radioactive wastes and the associated safety implications of disposal plans have raised concern amongst those who may be affected by such facilities. For these reasons the subject of radioactive waste management has taken on a high profile in many countries. Not one Member State in the European Union can say that their high level waste will be disposed of at a specific site. Nobody can say 'that is where it is going to go'. Now, there is a very broad consensus on the concept of geological disposal. The experts have little, if any doubt that we could safely dispose of the high level wastes. Large sectors of the public continue to oppose to most proposals concerning the siting of repositories. Given this, it is increasingly difficult to get political support, or even political decisions, on such sites. The failure to advance to the next step in the waste management process reinforces the public's initial suspicion and resistance. In turn, this makes the political decisions even harder. In turn, this makes the political decisions even harder. The management of spent fuel from nuclear power plant became a crucial issue, as the cooling pond of the Romanian NPP is reaching saturation. During the autumn of 2000, the plant owner proceeded with an international tendering process for the supply of a dry storage system to be implemented at the Cernavoda station to store the spent fuel from Unit 1 and eventually from Unit 2 for a minimum period of 50 years. The facility is now in operation. As concern the disposal of the spent fuel, the 'wait and see

  16. Salt disposal: Paradox Basin, Utah

    International Nuclear Information System (INIS)

    1983-04-01

    This report presents the findings of a study conducted for the National Waste Terminal Storage (NWTS) Program. Permanent disposal options are examined for salt resulting from the excavation of a waste repository in the bedded salt deposits of the Paradox Basin of southeastern Utah. The study is based on a repository salt backfill compaction of 60% of the original density which leaves a total of 8 million tons of 95% pure salt to be disposed of over a 30-year period. The feasibility, impacts, and mitigation methods are examined for five options: commercial disposal, permanent onsite surface disposal, permanent offsite disposal, deepwell injection, and ocean and Great Salt Lake disposal. The study concludes the following: Commercial marketing of all repository salt would require a subsidy for transportation to major salt markets. Permanent onsite surface storage is both economically and technically feasible. Permanent offsite disposal is technically feasible but would incur additional transportation costs. Selection of an offsite location would provide a means of mitigating impacts associated with surface storage at the repository site. Deepwell injection is an attractive disposal method; however, the large water requirement, high cost of development, and poor performance of similar operating brine disposal wells eliminates this option from consideration as the primary means of disposal for the Paradox Basin. Ocean disposal is expensive because of high transportation cost. Also, regulatory approval is unlikely. Ocean disposal should be eliminated from further consideration in the Paradox Basin. Great Salt Lake disposal appears to be technically feasible. Great Salt Lake disposal would require state approval and would incur substantial costs for salt transportation. Permanent onsite disposal is the least expensive method for disposal of all repository salt

  17. Geological disposal of nuclear waste

    International Nuclear Information System (INIS)

    1979-01-01

    Fourteen papers dealing with disposal of high-level radioactive wastes are presented. These cover disposal in salt deposits, geologic deposits and marine disposal. Also included are papers on nuclear waste characterization, transport, waste processing technology, and safety analysis. All of these papers have been abstracted and indexed

  18. Preliminary disposal limits, plume interaction factors, and final disposal limits

    Energy Technology Data Exchange (ETDEWEB)

    Flach, G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2018-01-11

    In the 2008 E-Area Performance Assessment (PA), each final disposal limit was constructed as the product of a preliminary disposal limit and a plume interaction factor. The following mathematical development demonstrates that performance objectives are generally expected to be satisfied with high confidence under practical PA scenarios using this method. However, radionuclides that experience significant decay between a disposal unit and the 100-meter boundary, such as H-3 and Sr-90, can challenge performance objectives, depending on the disposed-of waste composition, facility geometry, and the significance of the plume interaction factor. Pros and cons of analyzing single disposal units or multiple disposal units as a group in the preliminary disposal limits analysis are also identified.

  19. Disposal of fly ash

    International Nuclear Information System (INIS)

    Singh, B.; Foley, C.

    1991-01-01

    Theoretical arguments and pilot plant results have shown that the transport of fly-furnace ash from the power station to the disposal area as a high concentration slurry is technically viable and economically attractive. Further, lack of free water, when transported as a high concentration slurry, offers significant advantages in environmental management and rehabilitation of the disposal site. This paper gives a basis for the above observations and discusses the plans to exploit the above advantages at the Stanwell Power Station. (4 x 350 MWe). This will be operated by the Queensland Electricity Commission. The first unit is to come into operation in 1992 and other units are to follow progressively on a yearly basis

  20. Nuclear waste disposal

    International Nuclear Information System (INIS)

    Hare, Tony.

    1990-01-01

    The Save Our Earth series has been designed to appeal to the inquiring minds of ''planet-friendly'' young readers. There is now a greater awareness of environmental issues and an increasing concern for a world no longer able to tolerate the onslaught of pollution, the depletion of natural resources and the effects of toxic chemicals. Each book approaches a specific topic in a way that is exciting and thought-provoking, presenting the facts in a style that is concise and appropriate. The series aims to demonstrate how various environmental subjects relate to our lives, and encourages the reader to accept not only responsibility for the planet, but also for its rescue and restoration. This volume, on nuclear waste disposal, explains how nuclear energy is harnessed in a nuclear reactor, what radioactive waste is, what radioactivity is and its effects, and the problems and possible solutions of disposing of nuclear waste. An awareness of the dangers of nuclear waste is sought. (author)

  1. Whither nuclear waste disposal?

    International Nuclear Information System (INIS)

    Cotton, T.A.

    1990-01-01

    With respect to the argument that geologic disposal has failed, I do not believe that the evidence is yet sufficient to support that conclusion. It is certainly true that the repository program is not progressing as hoped when the Nuclear Waste Policy Act of 1982 established a 1998 deadline for initial operation of the first repository. The Department of Energy (DOE) now expects the repository to be available by 2010, and tat date depends upon a finding that the Yucca Mountain site - the only site that DOE is allowed by law to evaluate - is in fact suitable for use. Furthermore, scientific evaluation of the site to determine its suitability is stopped pending resolution of two lawsuits. However, I believe it is premature to conclude that the legal obstacles are insuperable, since DOE just won the first of the two lawsuits, and chances are good it will win the second. The concept of geologic disposal is still broadly supported. A recent report by the Board on Radioactive Waste Management of the National Research Council noted that 'There is a worldwide scientific consensus that deep geological disposal, the approach being followed in the United States, is the best option for disposing of high-level radioactive waste'. The U.S. Nuclear Regulatory Commission (USNRC) recently implicitly endorsed this view in adopting an updated Waste Confidence position that found confidence that a repository could be available in the first quarter of the next century - sufficient time to allow for rejection of Yucca Mountain and evaluation of a new site

  2. Disposal of radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1960-11-15

    A discussion on the disposal of radioactive wastes was held in Vienna on 20 September 1960. The three scientists who participated in the discussion were Mr. Harry Brynielsson (Sweden), Head of the Swedish Atomic Energy Company; Mr. H. J. Dunster (United Kingdom), Health Physics Adviser to the United Kingdom Atomic Energy Authority; and Mr. Leslie Silverman (United States), Professor of Harvard University, and Chairman of the US AEC Advisory Committee on Reactor Safeguards, as well as consultant on air cleaning

  3. Whither nuclear waste disposal?

    Energy Technology Data Exchange (ETDEWEB)

    Cotton, T A [JK Research Associates, Silver Spring, MD (United States)

    1990-07-01

    With respect to the argument that geologic disposal has failed, I do not believe that the evidence is yet sufficient to support that conclusion. It is certainly true that the repository program is not progressing as hoped when the Nuclear Waste Policy Act of 1982 established a 1998 deadline for initial operation of the first repository. The Department of Energy (DOE) now expects the repository to be available by 2010, and tat date depends upon a finding that the Yucca Mountain site - the only site that DOE is allowed by law to evaluate - is in fact suitable for use. Furthermore, scientific evaluation of the site to determine its suitability is stopped pending resolution of two lawsuits. However, I believe it is premature to conclude that the legal obstacles are insuperable, since DOE just won the first of the two lawsuits, and chances are good it will win the second. The concept of geologic disposal is still broadly supported. A recent report by the Board on Radioactive Waste Management of the National Research Council noted that 'There is a worldwide scientific consensus that deep geological disposal, the approach being followed in the United States, is the best option for disposing of high-level radioactive waste'. The U.S. Nuclear Regulatory Commission (USNRC) recently implicitly endorsed this view in adopting an updated Waste Confidence position that found confidence that a repository could be available in the first quarter of the next century - sufficient time to allow for rejection of Yucca Mountain and evaluation of a new site.

  4. Disposal of radioactive waste

    International Nuclear Information System (INIS)

    Critchley, R.J.; Swindells, R.J.

    1984-01-01

    A method and apparatus for charging radioactive waste into a disposable steel drum having a plug type lid. The drum is sealed to a waste dispenser and the dispenser closure and lid are withdrawn into the dispenser in back-to-back manner. Before reclosing the dispenser the drum is urged closer to it so that on restoring the dispenser closure to the closed position the lid is pressed into the drum opening

  5. Radium bearing waste disposal

    International Nuclear Information System (INIS)

    Tope, W.G.; Nixon, D.A.; Smith, M.L.; Stone, T.J.; Vogel, R.A.; Schofield, W.D.

    1995-01-01

    Fernald radium bearing ore residue waste, stored within Silos 1 and 2 (K-65) and Silo 3, will be vitrified for disposal at the Nevada Test Site (NTS). A comprehensive, parametric evaluation of waste form, packaging, and transportation alternatives was completed to identify the most cost-effective approach. The impacts of waste loading, waste form, regulatory requirements, NTS waste acceptance criteria, as-low-as-reasonably-achievable principles, and material handling costs were factored into the recommended approach

  6. Rock disposal problems identified

    Energy Technology Data Exchange (ETDEWEB)

    Knox, R

    1978-06-01

    Mathematical models are the only way of examining the return of radioactivity from nuclear waste to the environment over long periods of time. Work in Britain has helped identify areas where more basic data is required, but initial results look very promising for final disposal of high level waste in hard rock repositories. A report by the National Radiological Protection Board of a recent study, is examined.

  7. Disposal of spent fuel

    International Nuclear Information System (INIS)

    Blomeke, J.O.; Ferguson, D.E.; Croff, A.G.

    1978-01-01

    Based on preliminary analyses, spent fuel assemblies are an acceptable form for waste disposal. The following studies appear necessary to bring our knowledge of spent fuel as a final disposal form to a level comparable with that of the solidified wastes from reprocessing: 1. A complete systems analysis is needed of spent fuel disposition from reactor discharge to final isolation in a repository. 2. Since it appears desirable to encase the spent fuel assembly in a metal canister, candidate materials for this container need to be studied. 3. It is highly likely that some ''filler'' material will be needed between the fuel elements and the can. 4. Leachability, stability, and waste-rock interaction studies should be carried out on the fuels. The major disadvantages of spent fuel as a disposal form are the lower maximum heat loading, 60 kW/acre versus 150 kW/acre for high-level waste from a reprocessing plant; the greater long-term potential hazard due to the larger quantities of plutonium and uranium introduced into a repository; and the possibility of criticality in case the repository is breached. The major advantages are the lower cost and increased near-term safety resulting from eliminating reprocessing and the treatment and handling of the wastes therefrom

  8. Greater-confinement disposal

    International Nuclear Information System (INIS)

    Trevorrow, L.E.; Schubert, J.P.

    1989-01-01

    Greater-confinement disposal (GCD) is a general term for low-level waste (LLW) disposal technologies that employ natural and/or engineered barriers and provide a degree of confinement greater than that of shallow-land burial (SLB) but possibly less than that of a geologic repository. Thus GCD is associated with lower risk/hazard ratios than SLB. Although any number of disposal technologies might satisfy the definition of GCD, eight have been selected for consideration in this discussion. These technologies include: (1) earth-covered tumuli, (2) concrete structures, both above and below grade, (3) deep trenches, (4) augered shafts, (5) rock cavities, (6) abandoned mines, (7) high-integrity containers, and (8) hydrofracture. Each of these technologies employ several operations that are mature,however, some are at more advanced stages of development and demonstration than others. Each is defined and further described by information on design, advantages and disadvantages, special equipment requirements, and characteristic operations such as construction, waste emplacement, and closure

  9. Waste and Disposal: Demonstration

    International Nuclear Information System (INIS)

    Neerdael, B.; Buyens, M.; De Bruyn, D.; Volckaert, G.

    2002-01-01

    Within the Belgian R and D programme on geological disposal, demonstration experiments have become increasingly important. In this contribution to the scientific report 2001, an overview is given of SCK-CEN's activities and achievements in the field of large-scale demonstration experiments. In 2001, main emphasis was on the PRACLAY project, which is a large-scale experiment to demonstrate the construction and the operation of a gallery for the disposal of HLW in a clay formation. The PRACLAY experiment will contribute to enhance understanding of water flow and mass transport in dense clay-based materials as well as to improve the design of the reference disposal concept. In the context of PRACLAY, a surface experiment (OPHELIE) has been developed to prepare and to complement PRACLAY-related experimental work in the HADES Underground Research Laboratory. In 2001, efforts were focussed on the operation of the OPHELIE mock-up. SCK-CEN also contributed to the SELFRAC roject which studies the self-healing of fractures in a clay formation

  10. Evaluation of the metabolic fate of munitions material (TNT & RDX) in plant systems and initial assessment of material interaction with plant genetic material. Validation of the metabolic fate of munitions materials (TNT, RDX) in mature crops

    Energy Technology Data Exchange (ETDEWEB)

    Fellows, R.J.; Harvey, S.D.; Cataldo, D.A.

    1995-09-01

    The goals of this effort were to confirm and expand data related to the behavior and impacts of munitions residues upon human food chain components. Plant species employed included corn (Zea mays), alfalfa (Medicago sativa). spinach (Spinacea oleraceae), and carrot (Daucus carota). Plants were grown from seed to maturity (70 to 120 days) in a low-fertility soil (Burbank) amended with either {sup 14}C-TNT or {sup 14}C-RDX at which time they were harvested and analyzed for munitions uptake, partitioning, and chemical form of the munition or munition-metabolite. All four of the plant species used in this study accumulated the {sup 14}C-TNT- and RDX-derived label. The carrot, alfalfa, and corn demonstrated a higher percentage of label retained in the roots (62, 73, and 83% respectively). The spinach contained less activity in its root (36%) but also contained the highest TNT specific activity observed (>4600 jig TNT equivalents/g dry wt.). The specific uptake values of RDX for the spinach and alfalfa were comparable to those previously reported for wheat and bean (314 to 590 {mu}g RDX-equivalents/g dry wt. respectively). An exception to this may be the carrot where the specific activity was found to exceed 4200 {mu}g RDX-equivalents/g dry wt. in the shoot. The total accumulation of TNT by the plants ranged from 1.24% for the spinach to 2.34% for the carrot. The RDX plants ranging from 15% for the spinach to 37% for the carrot. There was no identifiable TNT or amino dinitrotoluene (ADNT) isomers present in the plants however, the parent RDX compound was found at significant levels in the shoot of alfalfa (> 1 80 {mu}g/g) and corn (>18 {mu}g/g).

  11. Cosmic disposal of radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Y; Morisawa, S [Kyoto Univ. (Japan). Faculty of Engineering

    1975-03-01

    The technical and economical possibility and safety of the disposal of highly radioactive waste into cosmos are reviewed. The disposal of highly radioactive waste is serious problem to be solved in the near future, because it is produced in large amounts by the reprocessing of spent fuel. The promising methods proposed are (i) underground disposal, (ii) ocean disposal, (iii) cosmic disposal and (iv) extinguishing disposal. The final disposal method is not yet decided internationally. The radioactive waste contains very long life nuclides, for example transuranic elements and actinide elements. The author thinks the most perfect and safe disposal method for these very long life nuclides is the disposal into cosmos. The space vehicle carrying radioactive waste will be launched safely into outer space with recent space technology. The selection of orbit for vehicles (earth satellite or orbit around planets) or escape from solar system, selection of launching rocket type pretreatment of waste, launching weight, and the cost of cosmic disposal were investigated roughly and quantitatively. Safety problem of cosmic disposal should be examined from the reliable safety study data in the future.

  12. An integrated theoretical and experimental investigation of insensitive munition compounds adsorption on cellulose, cellulose triacetate, chitin and chitosan surfaces.

    Science.gov (United States)

    Gurtowski, Luke A; Griggs, Chris S; Gude, Veera G; Shukla, Manoj K

    2018-02-01

    This manuscript reports results of combined computational chemistry and batch adsorption investigation of insensitive munition compounds, 2,4-dinitroanisole (DNAN), triaminotrinitrobenzene (TATB), 1,1-diamino-2,2-dinitroethene (FOX-7) and nitroguanidine (NQ), and traditional munition compound 2,4,6-trinitrotoluene (TNT) on the surfaces of cellulose, cellulose triacetate, chitin and chitosan biopolymers. Cellulose, cellulose triacetate, chitin and chitosan were modeled as trimeric form of the linear chain of 4 C 1 chair conformation of β-d-glucopyranos, its triacetate form, β-N-acetylglucosamine and D-glucosamine, respectively, in the 1➔4 linkage. Geometries were optimized at the M062X functional level of the density functional theory (DFT) using the 6-31G(d,p) basis set in the gas phase and in the bulk water solution using the conductor-like polarizable continuum model (CPCM) approach. The nature of potential energy surfaces of the optimized geometries were ascertained through the harmonic vibrational frequency analysis. The basis set superposition error (BSSE) corrected interaction energies were obtained using the 6-311G(d,p) basis set at the same theoretical level. The computed BSSE in the gas phase was used to correct interaction energy in the bulk water solution. Computed and experimental results regarding the ability of considered surfaces in adsorbing the insensitive munitions compounds are discussed. Copyright © 2017. Published by Elsevier B.V.

  13. Nuclear waste disposal site

    International Nuclear Information System (INIS)

    Mallory, C.W.; Watts, R.E.; Sanner, W.S. Jr.; Paladino, J.B.; Lilley, A.W.; Winston, S.J.; Stricklin, B.C.; Razor, J.E.

    1988-01-01

    This patent describes a disposal site for the disposal of toxic or radioactive waste, comprising: (a) a trench in the earth having a substantially flat bottom lined with a layer of solid, fluent, coarse, granular material having a high hydraulic conductivity for obstructing any capillary-type flow of ground water to the interior of the trench; (b) a non-rigid, radiation-blocking cap formed from a first layer of alluvium, a second layer of solid, fluent, coarse, granular material having a high hydraulic conductivity for blocking any capillary-type flow of water between the layer of alluvium and the rest of the cap, a layer of water-shedding silt for directing surface water away from the trench, and a layer of rip-rap over the silt layer for protecting the silt layer from erosion and for providing a radiation barrier; (c) a solidly-packed array of abutting modules of uniform size and shape disposed in the trench and under the cap for both encapsulating the wastes from water and for structurally supporting the cap, wherein each module in the array is slidable movable in the vertical direction in order to allow the array of modules to flexibly conform to variations in the shape of the flat trench bottom caused by seismic disturbances and to facilitate the recoverability of the modules; (d) a layer of solid, fluent, coarse, granular materials having a high hydraulic conductivity in the space between the side of the modules and the walls of the trench for obstructing any capillary-type flow of ground water to the interior of the trench; and (e) a drain and wherein the layer of silt is sloped to direct surface water flowing over the cap into the drain

  14. Radioactive waste disposal

    International Nuclear Information System (INIS)

    Petit, J.C.

    1998-04-01

    A deep gap, reflecting a persisting fear, separates the viewpoints of the experts and that of the public on the issue of the disposal of nuclear WASTES. The history of this field is that of the proliferation with time of spokesmen who pretend to speak in the name of the both humans and non humans involved. Three periods can be distinguished: 1940-1970, an era of contestation and confusion when the experts alone represents the interest of all; 1970-1990, an era of contestation and confusion when spokespersons multiply themselves, generating the controversy and the slowing down of most technological projects; 1990-, an era of negotiation, when viewpoints, both technical and non technical, tend to get closer and, let us be optimistic, leading to the overcome of the crisis. We show that, despite major differences, the options and concepts developed by the different actors are base on two categories of resources, namely Nature and Society, and that the consensus is built up through their 'hydridation'. we show in this part that the perception of nuclear power and, in particular of the underground disposal of nuclear wastes, involves a very deep psychological substrate. Trying to change mentalities in the domain by purely scientific and technical arguments is thus in vain. The practically instinctive fear of radioactivity, far from being due only to lack of information (and education), as often postulated by scientists and engineers, is rooted in archetypical structures. These were, without doubt, reactivated in the 40 s by the traumatizing experience of the atomic bomb. In addition, anthropological-linked considerations allow us to conclude that he underground disposal of wastes is seen as a 'rape' and soiling of Mother Earth. This contributes to explaining, beyond any rationality, the refusal of this technical option by some persons. However, it would naturally be simplistic and counter-productive to limit all controversy in this domain to these psychological aspects

  15. Underground disposal of radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1979-08-15

    Disposal of low- and intermediate-level radioactive wastes by shallow land burial, emplacement in suitable abandoned mines, or by deep well injection and hydraulic fracturing has been practised in various countries for many years. In recent years considerable efforts have been devoted in most countries that have nuclear power programmes to developing and evaluating appropriate disposal systems for high-level and transuranium-bearing waste, and to studying the potential for establishing repositories in geological formations underlaying their territories. The symposium, organized jointly by the IAEA and OECD's Nuclear Energy Agency in cooperation with the Geological Survey of Finland, provided an authoritative account of the status of underground disposal programmes throughout the world in 1979. It was evidence of the experience that has been gained and the comprehensive investigations that have been performed to study various options for the underground disposal of radioactive waste since the last IAEA/NEA symposium on this topic (Disposal of Radioactive Waste into the Ground) was held in 1967 in Vienna. The 10 sessions covered the following topics: National programme and general studies, Disposal of solid waste at shallow depth and in rock caverns, underground disposal of liquid waste by deep well injection and hydraulic fracturing, Disposal in salt formations, Disposal in crystalline rocks and argillaceous sediments, Thermal aspects of disposal in deep geological formations, Radionuclide migration studies, Safety assessment and regulatory aspects.

  16. The psychosocial consequences of spent fuel disposal

    International Nuclear Information System (INIS)

    Paavola, J.; Eraenen, L.

    1999-03-01

    In this report the potential psychosocial consequences of spent fuel disposal to inhabitants of a community are assessed on the basis of earlier research. In studying the situation, different interpretations and meanings given to nuclear power are considered. First, spent fuel disposal is studied as fear-arousing and consequently stressful situation. Psychosomatic effects of stress and coping strategies used by an individual are presented. Stress as a collective phenomenon and coping mechanisms available for a community are also assessed. Stress reactions caused by natural disasters and technological disasters are compared. Consequences of nuclear power plant accidents are reviewed, e.g. research done on the accident at Three Mile Island power plant. Reasons for the disorganising effect on a community caused by a technological disaster are compared to the altruistic community often seen after natural disasters. The potential reactions that a spent fuel disposal plant can arouse in inhabitants are evaluated. Both short-term and long-term reactions are evaluated as well as reactions under normal functioning, after an incident and as a consequence of an accident. Finally an evaluation of how the decision-making system and citizens' opportunity to influence the decision-making affect the experience of threat is expressed. As a conclusion we see that spent fuel disposal can arouse fear and stress in people. However, the level of the stress is probably low. The stress is at strongest at the time of the starting of the spent fuel disposal plant. With time people get used to the presence of the plant and the threat experienced gets smaller. (orig.)

  17. Radioactive waste material disposal

    Science.gov (United States)

    Forsberg, Charles W.; Beahm, Edward C.; Parker, George W.

    1995-01-01

    The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide.

  18. Disposal - practical problems

    International Nuclear Information System (INIS)

    Hycnar, J.; Pinko, L.

    1995-01-01

    Most Polish power plants have stockyards for storage of fly ash and slag. This paper describes the: methods of fly ash and slag storage used, methods of conveying the waste to the stockpiles (by railway cars, trucks, belt conveyors or hydraulically); construction of wet stockyards and dry stockyards and comparison of the ash dumped, development of methods of ash disposal in mine workings; composition and properties of fly ash and slag from hard coal; and the effects of ash storage yards on the environment (by leaching of trace elements, dust, effect on soils, and noise of machinery). 16 refs., 3 figs., 6 tabs

  19. Nuclear fuel waste disposal

    International Nuclear Information System (INIS)

    1982-01-01

    This film for a general audience deals with nuclear fuel waste management in Canada, where research is concentrating on land based geologic disposal of wastes rather than on reprocessing of fuel. The waste management programme is based on cooperation of the AECL, various universities and Ontario Hydro. Findings of research institutes in other countries are taken into account as well. The long-term effects of buried radioactive wastes on humans (ground water, food chain etc.) are carefully studied with the help of computer models. Animated sequences illustrate the behaviour of radionuclides and explain the idea of a multiple barrier system to minimize the danger of radiation hazards

  20. Waste disposal experts meet

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1959-01-15

    Problems connected with the disposal into the sea of radioactive wastes from peaceful uses of atomic energy are being examined by a panel of experts, convened by the International Atomic Energy Agency. These experts from eight different countries held a first meeting at IAEA headquarters in Vienna from 4-9 December 1958, under the chairmanship of Dr. Harry Brynielsson, Director General of the Swedish Atomic Energy Company. The countries represented are: Canada, Czechoslovakia, France, Japan, Netherlands, United Kingdom and United States. The group will meet again in 1959. (author)

  1. 10 CFR 61.52 - Land disposal facility operation and disposal site closure.

    Science.gov (United States)

    2010-01-01

    ... DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.52 Land disposal... wastes by placing in disposal units which are sufficiently separated from disposal units for the other... between any buried waste and the disposal site boundary and beneath the disposed waste. The buffer zone...

  2. Borehole disposal design concept

    International Nuclear Information System (INIS)

    RANDRIAMAROLAHY, J.N.

    2007-01-01

    In Madagascar, the sealed radioactive sources are used in several socioeconomic sectors such as medicine, industry, research and agriculture. At the end of their useful lives, these radioactive sources become radioactive waste and can be still dangerous because they can cause harmful effects to the public and the environment. This work entitled 'Borehole disposal design concept' consists in putting in place a site of sure storage of the radioactive waste, in particular, sealed radioactive sources. Several technical aspects must be respected to carry out such a site like the geological, geomorphologic, hydrogeologic, geochemical, meteorological and demographic conditions. This type of storage is favorable for the developing countries because it is technologically simple and economic. The cost of construction depends on the volume of waste to store and the depth of the Borehole. The Borehole disposal concept provides a good level of safety to avoid the human intrusion. The future protection of the generations against the propagation of the radiations ionizing is then assured. [fr

  3. Research on geological disposal

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    The aims of this research are to develop criteria for reviewing reliability and suitability of the result from Preliminary Investigations to be submitted by the implementer, and to establish a basic policy for safety review. For development of reliability and suitability criteria for reviewing the result of Preliminary Investigations, we evaluated the uncertainties and their influence from limited amount of investigations, as well as we identified important procedures during investigations and constructions of models, as follows: (1) uncertainties after limited amount of geological exploration and drilling, (2) influence of uncertainties in regional groundwater flow model, (3) uncertainties of DFN (Discrete Fracture Network) models in the fractured rock, (4) analyzed investigation methods described in implementer's report, and (5) identified important aspects in investigation which need to be reviewed and follow QA (Quality Assurance). For development of reliability and suitability criteria for reviewing the result of Detailed Investigations, we analyzed important aspects in investigation which supplies data to design and safety assessment, as well as studied the applicability of pressure interference data during excavation to verify hydrogeological model. Regarding the research for safety review, uncertainties of geologic process in long time-scale was studied. In FY2012, we started to evaluate the structural stabilities of concrete and bentonite in disposal environment. Finally, we continued to accumulate the knowledge on geological disposal into the database system. (author)

  4. Geoenvironment and waste disposal

    International Nuclear Information System (INIS)

    1983-07-01

    Within the activities planned by UNESCO in its Water and Earth Science programme, an interdisciplinary meeting on geology and environment was scheduled by this organization to be held by the beginning of 1983. At this meeting it was intended to consider geological processes in the light of their interaction and influence on the environment with special emphasis on the impact of various means of waste disposal on geological environment and on man-induced changes in the geological environment by mining, human settlements, etc. Considering the increasing interest shown by the IAEA in the field, through environmental studies, site studies, and impact studies for nuclear facilities and particularly nuclear waste disposal, UNESCO expressed the wish to organize the meeting jointly so as to take into account the experience gained by the Agency, and in order to avoid any duplication in the activities of the two organizations. This request was agreed to by the IAEA Secretariat and as a result, the meeting was organized by both organizations and held at IAEA Headquarters in Vienna from 21-23 March 1983. The report of this meeting is herewith presented

  5. Mine tailings disposal

    International Nuclear Information System (INIS)

    Gonzales, P.A.; Adams, B.J.

    1980-06-01

    The hydrologic evaluation of mine tailings disposal sites after they are abandoned is considered in relation to their potential environmental impact on a long term basis. There is a direct relation between the amounts and types of water leaving a disposal site and the severity of the potential damage to the environment. The evaluation of the relative distribution of the precipitation reaching the ground into evaporation, runoff and infiltration is obtained for a selected site and type of tailings material whose characteristics and physical properties were determined in the soils laboratory. A conceptual model of the hydrologic processes involved and the corresponding mathematical model were developed to simulate the physical system. A computer program was written to solve the set of equations forming the mathematical model, considering the physical properties of the tailings and the rainfall data selected. The results indicate that the relative distribution of the precipitation depends on the surface and upper layer of the tailings and that the position of the groundwater table is governed by the flow through the bottom of the profile considered. The slope of the surface of the mass of tailings was found to be one of the principal factors affecting the relative distribution of precipitation and, therefore, the potential pollution of the environment

  6. Disposal of radioactive waste material

    International Nuclear Information System (INIS)

    Cairns, W.J.; Burton, W.R.

    1984-01-01

    A method of disposal of radioactive waste consists in disposing the waste in trenches dredged in the sea bed beneath shallow coastal waters. Advantageously selection of the sites for the trenches is governed by the ability of the trenches naturally to fill with silt after disposal. Furthermore, this natural filling can be supplemented by physical filling of the trenches with a blend of absorber for radionuclides and natural boulders. (author)

  7. Malware Normalization

    OpenAIRE

    Christodorescu, Mihai; Kinder, Johannes; Jha, Somesh; Katzenbeisser, Stefan; Veith, Helmut

    2005-01-01

    Malware is code designed for a malicious purpose, such as obtaining root privilege on a host. A malware detector identifies malware and thus prevents it from adversely affecting a host. In order to evade detection by malware detectors, malware writers use various obfuscation techniques to transform their malware. There is strong evidence that commercial malware detectors are susceptible to these evasion tactics. In this paper, we describe the design and implementation of a malware normalizer ...

  8. Report on radioactive waste disposal

    International Nuclear Information System (INIS)

    1993-01-01

    The safe management of radioactive wastes constitutes an essential part of the IAEA programme. A large number of reports and conference proceedings covering various aspects of the subject have been issued. The Technical Review Committee on Underground Disposal (February 1988) recommended that the Secretariat issue a report on the state of the art of underground disposal of radioactive wastes. The Committee recommended the need for a report that provided an overview of the present knowledge in the field. This report covers the basic principles associated with the state of the art of near surface and deep geological radioactive waste disposal, including examples of prudent practice, and basic information on performance assessment methods. It does not include a comprehensive description of the waste management programmes in different countries nor provide a textbook on waste disposal. Such books are available elsewhere. Reviewing all the concepts and practices of safe radioactive waste disposal in a document of reasonable size is not possible; therefore, the scope of this report has been limited to cover essential parts of the subject. Exotic disposal techniques and techniques for disposing of uranium mill tailings are not covered, and only brief coverage is provided for disposal at sea and in the sea-bed. The present report provides a list of references to more specialized reports on disposal published by the IAEA as well as by other bodies, which may be consulted if additional information is sought. 108 refs, 22 figs, 2 tabs

  9. Photochemical transformation of the insensitive munitions compound 2,4-dinitroanisole

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Balaji, E-mail: anandharaob@ornl.gov [Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN (United States); Wang, Wei [Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN (United States); Cai, Qingsong; Anderson, Todd [Department of Environmental Toxicology, The Institute of Environment and Human Health, Texas Tech University, Lubbock, TX (United States); Gu, Baohua, E-mail: gub1@ornl.gov [Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN (United States)

    2013-01-15

    The insensitive munitions compound 2,4-dinitroanisole (DNAN) is increasingly being used as a replacement for traditional, sensitive munitions compounds (e.g., trinitrotoluene [TNT]), but the environmental fate and photo-transformation of DNAN in natural water systems are currently unknown. In this study, we investigated the photo-transformation rates of DNAN with both ultraviolet (UV) and sunlight irradiation under different environmentally relevant conditions. Sunlight photo-transformation of DNAN in water was found to follow predominantly pseudo-first-order decay kinetics with an average half-life (t{sub 1/2}) of approximately 0.70 d and activation energy (E{sub a}) of 53 kJ mol{sup −1}. Photo-transformation rates of DNAN were dependent on the wavelength of the light source: irradiation with UV-B light (280–315 nm) resulted in a greater quantum yield of transformation (ϕ{sub UV-B} = 3.7 × 10{sup −4}) than rates obtained with UV-A light (ϕ{sub UV-A} = 2.9 × 10{sup −4} at 316–400 nm) and sunlight (ϕ{sub sun} = 1.1 × 10{sup −4}). Photo-oxidation was the dominant mechanism for DNAN photo-transformation, based on the formation of nitrite (NO{sub 2}{sup −}) and nitrate (NO{sub 3}{sup −}) as major N species and 2,4-dinitrophenol as the minor species. Environmental factors (e.g., temperature, pH, and the presence or absence of naturally dissolved organic matter) displayed modest to little effects on the rate of DNAN photo-transformation. These observations indicate that sunlight-induced photo-transformation of DNAN may represent a significant abiotic degradation pathway in surface water, which may have important implications in evaluating the potential impacts and risks of DNAN in the environment. - Highlights: ► DNAN photo-transformation kinetics was dependent on light source and temperature. ► Photolysis produced harmful by-products that included dinitrophenol and nitrate. ► Photo-oxidation was determined to be the likely pathway of DNAN

  10. Bioconcentration factors and plant-water partition coefficients of munitions compounds in barley.

    Science.gov (United States)

    Torralba-Sanchez, Tifany L; Kuo, Dave T F; Allen, Herbert E; Di Toro, Dominic M

    2017-12-01

    Plants growing in the soils at military ranges and surrounding locations are exposed, and potentially able to uptake, munitions compounds (MCs). The extent to which a compound is transferred from the environment into organisms such as plants, referred to as bioconcentration, is conventionally measured through uptake experiments with field/synthetic soils. Multiple components/phases that vary among different soil types and affect the bioavailability of the MC, however, hinder the ability to separate the effects of soil characteristics from the MC chemical properties on the resulting plant bioconcentration. To circumvent the problem, this work presents a protocol to measure steady state bioconcentration factors (BCFs) for MCs in barley (Hordeum vulgare L.) using inert laboratory sand rather than field/synthetic soils. Three MCs: 2,4,6-trinitrotoluene (TNT), 2,4-dinitrotoluene (2,4-DNT), and 2,4-dinitroanisole (2,4-DNAN), and two munition-like compounds (MLCs): 4-nitroanisole (4-NAN) and 2-methoxy-5-nitropyridine (2-M-5-NPYNE) were evaluated. Approximately constant plant biomass and exposure concentrations were achieved within a one-month period that produced steady state log BCF values: 0.62 ± 0.02, 0.70 ± 0.03, 1.30 ± 0.06, 0.52 ± 0.03, and 0.40 ± 0.05 L kg plant dwt -1 for TNT, 2,4-DNT, 2,4-DNAN, 4-NAN, and 2-M-5-NPYNE, respectively. Furthermore, results suggest that the upper-bounds of the BCFs can be estimated within an order of magnitude by measuring the partitioning of the compounds between barley biomass and water. This highlights the importance of partition equilibrium as a mechanism for the uptake of MCs and MLCs by barley from interstitial water. The results from this work provide chemically meaningful data for prediction models able to estimate the bioconcentration of these contaminants in plants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Radiation dose evaluation based on exposure scenario during the operation of radioactive waste disposal facility

    International Nuclear Information System (INIS)

    Yoon, Jeong Hyoun; Kim Chang Lak; Choi, Heui Joo; Park, Joo Wan

    1999-01-01

    Radiation dose to worker in disposal facility was calculated by using point kernel MICROSHIELD V5.02 computer code based on exposure scenarios. An conceptual design model for disposal vaults in disposal facility was used for object of shielding calculation model. Selected radionuclides and their activities among radioactive wastes from nuclear power plants were assumed as radiation sources for the exposure calculation. Annual radiation doses to crane workers and to people working on disposal vaults were calculated according to exposure time and distance from the sources with conservative operation scenarios. The scenarios used for this study were based on assumption for representing disposal activities in a future Korean near surface disposal facility. Calculated exposure rates to worker during normal disposal work were very low comparing with annual allowable limit for radiation worker

  12. Radioactive mixed waste disposal

    International Nuclear Information System (INIS)

    Jasen, W.G.; Erpenbeck, E.G.

    1993-02-01

    Various types of waste have been generated during the 50-year history of the Hanford Site. Regulatory changes in the last 20 years have provided the emphasis for better management of these wastes. Interpretations of the Atomic Energy Act of 1954 (AEA), the Resource Conservation and Recovery Act of 1976 (RCRA), and the Hazardous and Solid Waste Amendments (HSWA) have led to the definition of radioactive mixed wastes (RMW). The radioactive and hazardous properties of these wastes have resulted in the initiation of special projects for the management of these wastes. Other solid wastes at the Hanford Site include low-level wastes, transuranic (TRU), and nonradioactive hazardous wastes. This paper describes a system for the treatment, storage, and disposal (TSD) of solid radioactive waste

  13. Radioactive waste disposal

    International Nuclear Information System (INIS)

    Bohm, H.; Closs, K.D.; Kuhn, K.

    1981-01-01

    The solutions to the technical problem of the disposal of radioactive waste are limited by a) the state of knowledge of reprocessing possibilites, b) public acceptance of the use of those techniques which are known, c) legislative procedures linking licensing of new nuclear power plants to the solution of waste problems, and d) other political constraints. Wastes are generated in the mining and enriching of radioactive elements, and in the operation of nuclear power plants as well as in all fields where radioactive substances may be used. Waste management will depend on the stability and concentration of radioactive materials which must be stored, and a resolution of the tension between numerous small storage sites and a few large ones, which again face problems of public acceptability

  14. Disposal of tritiated effluents

    International Nuclear Information System (INIS)

    Hartmann, K.; Bruecher, H.

    1981-06-01

    After some introductory remarks on the origin of tritium, its properties and its behaviour in a reprocessing plant three alternative methods for the disposal of tritiated effluents produced during reprocessing are described (deep well injection, in-situ solidification, deep-sea dumping) and compared with each other under various aspects. The study is based on the concept of a 1400 t/a reprocessing plant for LWR fuel, which annually produces 3000 m 3 of tritiated waste water with a tritium content of 6.5 x 10 12 Bq/m 3 as well as a residual fission product and actinide content. An assessment of the three methods under the aspects of simplicity, reliability, safety, costs, state of development and materials handling revealed advantages in favour of 'injection', followed by 'dumping' and 'in-situ solidification'. (orig./HP) [de

  15. Toxic waste liquor disposal

    International Nuclear Information System (INIS)

    Burton, W.R.

    1985-01-01

    Toxic waste liquors, especially radio active liquors, are disposed in a sub-zone by feeding down a bore hole a first liquid, then a buffer liquid (e.g. water), then the toxic liquors. Pressure variations are applied to the sub-zone to mix the first liquid and liquors to form gels or solids which inhibit further mixing and form a barrier between the sub-zone and the natural waters in the environment of the sub-zone. In another example the location of the sub-zone is selected so that the environement reacts with the liquors to produce a barrier around the zone. Blind bore holes are used to monitor the sub-zone profile. Materials may be added to the liquor to enhance barrier formation. (author)

  16. Normal accidents

    International Nuclear Information System (INIS)

    Perrow, C.

    1989-01-01

    The author has chosen numerous concrete examples to illustrate the hazardousness inherent in high-risk technologies. Starting with the TMI reactor accident in 1979, he shows that it is not only the nuclear energy sector that bears the risk of 'normal accidents', but also quite a number of other technologies and industrial sectors, or research fields. The author refers to the petrochemical industry, shipping, air traffic, large dams, mining activities, and genetic engineering, showing that due to the complexity of the systems and their manifold, rapidly interacting processes, accidents happen that cannot be thoroughly calculated, and hence are unavoidable. (orig./HP) [de

  17. Cost effective disposal of whey

    Energy Technology Data Exchange (ETDEWEB)

    Zall, R R

    1980-01-01

    Means of reducing the problem of whey disposal are dealt with, covering inter alia the pre-treatment of cheese milk e.g., by ultrafiltration to lower the whey output, utilization of whey constituents, use of liquid whey for feeding, fermenting whey to produce methane and alcohol, and disposal of whey by irrigation of land or by purification in sewage treatment plants.

  18. Melter Disposal Strategic Planning Document

    Energy Technology Data Exchange (ETDEWEB)

    BURBANK, D.A.

    2000-09-25

    This document describes the proposed strategy for disposal of spent and failed melters from the tank waste treatment plant to be built by the Office of River Protection at the Hanford site in Washington. It describes program management activities, disposal and transportation systems, leachate management, permitting, and safety authorization basis approvals needed to execute the strategy.

  19. Korean Reference HLW Disposal System

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Heui Joo; Lee, J. Y.; Kim, S. S. (and others)

    2008-03-15

    This report outlines the results related to the development of Korean Reference Disposal System for High-level radioactive wastes. The research has been supported around for 10 years through a long-term research plan by MOST. The reference disposal method was selected via the first stage of the research during which the technical guidelines for the geological disposal of HLW were determined too. At the second stage of the research, the conceptual design of the reference disposal system was made. For this purpose the characteristics of the reference spent fuels from PWR and CANDU reactors were specified, and the material and specifications of the canisters were determined in term of structural analysis and manufacturing capability in Korea. Also, the mechanical and chemical characteristics of the domestic Ca-bentonite were analyzed in order to supply the basic design parameters of the buffer. Based on these parameters the thermal and mechanical analysis of the near-field was carried out. Thermal-Hydraulic-Mechanical behavior of the disposal system was analyzed. The reference disposal system was proposed through the second year research. At the final third stage of the research, the Korean Reference disposal System including the engineered barrier, surface facilities, and underground facilities was proposed through the performance analysis of the disposal system.

  20. Disposal options for radioactive waste

    International Nuclear Information System (INIS)

    Olivier, J.P.

    1991-01-01

    On the basis of the radionuclide composition and the relative toxicity of radioactive wastes, a range of different options are available for their disposal. Practically all disposal options rely on confinement of radioactive materials and isolation from the biosphere. Dilution and dispersion into the environment are only used for slightly contaminated gaseous and liquid effluents produced during the routine operation of nuclear facilities, such as power plants. For the bulk of solid radioactive waste, whatever the contamination level and decay of radiotoxicity with time are, isolation from the biosphere is the objective of waste disposal policies. The paper describes disposal approaches and the various techniques used in this respect, such as shallow land burial with minimum engineered barriers, engineered facilities built at/near the surface, rock cavities at great depth and finally deep geologic repositories for long-lived waste. The concept of disposing long-lived waste into seabed sediment layers is also discussed, as well as more remote possibilities, such as disposal in outer space or transmutation. For each of these disposal methods, the measures to be adopted at institutional level to reinforce technical isolation concepts are described. To the extent possible, some comments are made with regard to the applicability of such disposal methods to other hazardous wastes. (au)

  1. Underground disposal of radioactive wastes

    International Nuclear Information System (INIS)

    1981-01-01

    This report is an overview document for the series of IAEA reports dealing with underground waste disposal to be prepared in the next few years. It provides an introduction to the general considerations involved in implementing underground disposal of radioactive wastes. It suggests factors to be taken into account for developing and assessing waste disposal concepts, including the conditioned waste form, the geological containment and possible additional engineered barriers. These guidelines are general so as to cover a broad range of conditions. They are generally applicable to all types of underground disposal, but the emphasis is on disposal in deep geological formations. Some information presented here may require slight modifications when applied to shallow ground disposal or other types of underground disposal. Modifications may also be needed to reflect local conditions. In some specific cases it may be that not all the considerations dealt with in this book are necessary; on the other hand, while most major considerations are believed to be included, they are not meant to be all-inclusive. The book primarily concerns only underground disposal of the wastes from nuclear fuel cycle operations and those which arise from the use of isotopes for medical and research activities

  2. Nuclear waste disposal in space

    Science.gov (United States)

    Burns, R. E.; Causey, W. E.; Galloway, W. E.; Nelson, R. W.

    1978-01-01

    Work on nuclear waste disposal in space conducted by the George C. Marshall Space Flight Center, National Aeronautics and Space Administration, and contractors are reported. From the aggregate studies, it is concluded that space disposal of nuclear waste is technically feasible.

  3. Chemical Waste Management and Disposal.

    Science.gov (United States)

    Armour, Margaret-Ann

    1988-01-01

    Describes simple, efficient techniques for treating hazardous chemicals so that nontoxic and nonhazardous residues are formed. Discusses general rules for management of waste chemicals from school laboratories and general techniques for the disposal of waste or surplus chemicals. Lists specific disposal reactions. (CW)

  4. Safe disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Hooker, P.; Metcalfe, R.; Milodowski, T.; Holliday, D.

    1997-01-01

    A high degree of international cooperation has characterized the two studies reported here which aim to address whether radioactive waste can be disposed of safely. Using hydrogeochemical and mineralogical surveying techniques earth scientists from the British Geological Survey have sought to identify and characterise suitable disposal sites. Aspects of the studies are explored emphasising their cooperative nature. (UK)

  5. Marine disposal of radioactive wastes - the debate

    International Nuclear Information System (INIS)

    Blair, I.

    1985-01-01

    The paper defends the case for marine disposal of radioactive wastes. The amount of packaged waste disposed; the site for marine disposal; the method of disposal; the radioactivity arising from the disposal; and safety factors; are all briefly discussed. (U.K.)

  6. Formulation development and characterization of cellulose acetate nitrate based propellants for improved insensitive munitions properties

    Directory of Open Access Journals (Sweden)

    Thelma Manning

    2014-06-01

    Full Text Available Cellulose acetate nitrate (CAN was used as an insensitive energetic binder to improve the insensitive munitions (IM properties of gun propellants to replace the M1 propellant used in 105 mm artillery charges. CAN contains the energetic nitro groups found in nitrocellulose (NC, but also acetyl functionalities, which lowered the polymer's sensitivity to heat and shock, and therefore improved its IM properties relative to NC. The formulation, development and small-scale characterization testing of several CAN-based propellants were done. The formulations, using insensitive energetic solid fillers and high-nitrogen modifiers in place of nitramine were completed. The small scale characterization testing, such as closed bomb testing, small scale sensitivity, thermal stability, and chemical compatibility were done. The mechanical response of the propellants under high-rate uni-axial compression at, hot, cold, and ambient temperatures were also completed. Critical diameter testing, hot fragment conductive ignition (HFCI tests were done to evaluate the propellants' responses to thermal and shock stimuli. Utilizing the propellant chemical composition, theoretical predictions of erosivity were completed. All the small scale test results were utilized to down-select the promising CAN based formulations for large scale demonstration testing such as the ballistic performance and fragment impact testing in the 105 mm M67 artillery charge configurations. The test results completed in the small and large scale testing are discussed.

  7. Digital Device Architecture and the Safe Use of Flash Devices in Munitions

    Science.gov (United States)

    Katz, Richard B.; Flowers, David; Bergevin, Keith

    2017-01-01

    Flash technology is being utilized in fuzed munition applications and, based on the development of digital logic devices in the commercial world, usage of flash technology will increase. Digital devices of interest to designers include flash-based microcontrollers and field programmable gate arrays (FPGAs). Almost a decade ago, a study was undertaken to determine if flash-based microcontrollers could be safely used in fuzes and, if so, how should such devices be applied. The results were documented in the Technical Manual for the Use of Logic Devices in Safety Features. This paper will first review the Technical Manual and discuss the rationale behind the suggested architectures for microcontrollers and a brief review of the concern about data retention in flash cells. An architectural feature in the microcontroller under study will be discussed and its use will show how to screen for weak or failed cells during manufacture, storage, or immediately prior to use. As was done for microcontrollers a decade ago, architectures for a flash-based FPGA will be discussed, showing how it can be safely used in fuzes. Additionally, architectures for using non-volatile (including flash-based) storage will be discussed for SRAM-based FPGAs.

  8. Status of disposal techniques for spent fuel in Germany: Results of demonstration tests for direct disposal

    International Nuclear Information System (INIS)

    Engelmann, H.J.; Filbert, W.

    1993-01-01

    According to the Atomic Energy Act (1985) the Federal Government is responsible for establishing facilities to indemnify and dispose radioactive waste. According to Art. 9b of the Atomic Energy Act (1986) the construction and operation of such a repository requires approval of a plan. According to safety criteria applicable for disposing radioactive waste in mines, construction and operation of repository mines require application of acknowledged rules of technology, laws, ordinances and other regulations to protect operating staff and population from radiation damages. Shaft hoisting equipment for the transportation of radioactive waste in a repository mine must satisfy normal operational tasks and meet special safety-requirements. Its failure may result in danger for persons, release of radioactive substances into the plant and environment. That means, shaft hoisting equipment must be designed to satisfy the necessary safety requirements and be state of the art of science and technology. The aim of these demonstration tests is verification of technical feasibility of a shaft hoisting equipment with a payload of 85 t, underground for drift disposal of POLLUX-casks, and essential machine and mine-technical systems and components. The demonstration also includes safe radiation protection during transport and disposal operations. Investigations assume that radioactive waste is transported in containers that satisfy transport requirements for dangerous goods and have a type-B-certificate

  9. radioactive waste disposal standards abroad

    International Nuclear Information System (INIS)

    Lu Yan; Xin Pingping; Wu Jian; Zhang Xue

    2012-01-01

    With the world focus on human health and environmental protection, the problem of radioactive waste disposal has gradually become a global issue, and the focus of attention of public. The safety of radioactive waste disposal, is not only related to human health and environmental safety, but also an important factor of affecting the sustainable development of nuclear energy. In recent years the formulation of the radioactive waste disposal standards has been generally paid attention to at home and abroad, and it has made great progress. In China, radioactive waste management standards are being improved, and there are many new standards need to be developed. The revised task of implement standards is very arduous, and there are many areas for improvement about methods and procedures of the preparation of standards. This paper studies the current situation of radioactive waste disposal standards of the International Atomic Energy Agency, USA, France, Britain, Russia, Japan, and give some corresponding recommendations of our radioactive waste disposal standards. (authors)

  10. Engineering geology of waste disposal

    International Nuclear Information System (INIS)

    Bentley, S.P.

    1996-01-01

    This volume covers a wide spectrum of activities in the field of waste disposal. These activities range from design of new landfills and containment properties of natural clays to investigation, hazard assessment and remediation of existing landfills. Consideration is given to design criteria for hard rock quarries when used for waste disposal. In addition, an entire section concerns the geotechnics of underground repositories. This covers such topics as deep drilling, in situ stress measurement, rock mass characterization, groundwater flows and barrier design. Engineering Geology of Waste Disposal examines, in detail, the active role of engineering geologists in the design of waste disposal facilities on UK and international projects. The book provides an authoritative mix of overviews and detailed case histories. The extensive spectrum of papers will be of practical value to those geologists, engineers and environmental scientists who are directly involved with waste disposal. (UK)

  11. Reconstructing Normality

    DEFF Research Database (Denmark)

    Gildberg, Frederik Alkier; Bradley, Stephen K.; Fristed, Peter Billeskov

    2012-01-01

    Forensic psychiatry is an area of priority for the Danish Government. As the field expands, this calls for increased knowledge about mental health nursing practice, as this is part of the forensic psychiatry treatment offered. However, only sparse research exists in this area. The aim of this study...... was to investigate the characteristics of forensic mental health nursing staff interaction with forensic mental health inpatients and to explore how staff give meaning to these interactions. The project included 32 forensic mental health staff members, with over 307 hours of participant observations, 48 informal....... The intention is to establish a trusting relationship to form behaviour and perceptual-corrective care, which is characterized by staff's endeavours to change, halt, or support the patient's behaviour or perception in relation to staff's perception of normality. The intention is to support and teach the patient...

  12. Pursuing Normality

    DEFF Research Database (Denmark)

    Madsen, Louise Sofia; Handberg, Charlotte

    2018-01-01

    implying an influence on whether to participate in cancer survivorship care programs. Because of "pursuing normality," 8 of 9 participants opted out of cancer survivorship care programming due to prospects of "being cured" and perceptions of cancer survivorship care as "a continuation of the disease......BACKGROUND: The present study explored the reflections on cancer survivorship care of lymphoma survivors in active treatment. Lymphoma survivors have survivorship care needs, yet their participation in cancer survivorship care programs is still reported as low. OBJECTIVE: The aim of this study...... was to understand the reflections on cancer survivorship care of lymphoma survivors to aid the future planning of cancer survivorship care and overcome barriers to participation. METHODS: Data were generated in a hematological ward during 4 months of ethnographic fieldwork, including participant observation and 46...

  13. Thermal loading effects on geological disposal

    International Nuclear Information System (INIS)

    Come, B.; Venet, P.

    1984-01-01

    A joint study on the thermal loading effects on geological disposal was carried out within the European Community Programme on Management and Storage of Radioactive Waste by several laboratories in Belgium, France and the Federal Republic of Germany. The purpose of the work was to review the thermal effects induced by the geological disposal of high-level wastes and to assess their consequences on the 'admissible thermal loading' and on waste management in general. Three parallel studies dealt separately with the three geological media being considered for HLW disposal within the CEC programme: granite (leadership: Commissariat a l'energie atomique (CEA), France), salt (leadership: Gesellschaft fuer Strahlen- und Umweltforschung (GSF), Federal Republic of Germany), and clay (leadership: Centre d'etude de l'energie nucleaire (CEN/SCK), Belgium). The studies were based on the following items: only vitrified high-level radioactive waste was considered; the multi-barrier confinement concept was assumed (waste glass, container (with or without overpack), buffer material, rock formation); the disposal was foreseen in a deep mined repository, in an 'in-land' geological formation; only normal situations and processes were covered, no 'accident' scenario being taken into account. Although reasonably representative of a wide variety of situations, the data collected and the results obtained are generic for granite, formation-specific for salt (i.e. related to the north German Zechstein salt formation), and site-specific for clay (i.e. concentrated on the Boom clay layer at the Mol site, Belgium). For each rock type, realistic temperature limits were set, taking into account heat propagation, thermo-mechanical effects inside the rock formations, induced or modified groundwater or brine movement, effects on the buffer material as well as effects on the waste glass and canister, and finally, nuclide transport

  14. Unreviewed Disposal Question Evaluation: Waste Disposal In Engineered Trench #3

    Energy Technology Data Exchange (ETDEWEB)

    Hamm, L. L.; Smith, F. G. III; Flach, G. P.; Hiergesell, R. A.; Butcher, B. T.

    2013-07-29

    Because Engineered Trench #3 (ET#3) will be placed in the location previously designated for Slit Trench #12 (ST#12), Solid Waste Management (SWM) requested that the Savannah River National Laboratory (SRNL) determine if the ST#12 limits could be employed as surrogate disposal limits for ET#3 operations. SRNL documented in this Unreviewed Disposal Question Evaluation (UDQE) that the use of ST#12 limits as surrogates for the new ET#3 disposal unit will provide reasonable assurance that Department of Energy (DOE) 435.1 performance objectives and measures (USDOE, 1999) will be protected. Therefore new ET#3 inventory limits as determined by a Special Analysis (SA) are not required.

  15. Penetrating injury to the chest by an attenuated energy projectile: a case report and literature review of thoracic injuries caused by "less-lethal" munitions

    Directory of Open Access Journals (Sweden)

    Porto Leonardo BO

    2009-06-01

    Full Text Available Abstract We present the case of a patient who sustained a penetrating injury to the chest caused by an attenuated energy rubber bullet and review the literature on thoracic injuries caused by plastic and rubber "less-lethal" munitions. The patient of this report underwent a right thoracotomy to extract the projectile as well as a wedge resection of the injured lung parenchyma. This case demonstrates that even supposedly safe riot control munition fired at close range, at the torso, can provoke serious injury. Therefore a thorough investigation and close clinical supervision are justified.

  16. Penetrating injury to the chest by an attenuated energy projectile: a case report and literature review of thoracic injuries caused by "less-lethal" munitions.

    Science.gov (United States)

    Rezende-Neto, Joao; Silva, Fabriccio Df; Porto, Leonardo Bo; Teixeira, Luiz C; Tien, Homer; Rizoli, Sandro B

    2009-06-26

    We present the case of a patient who sustained a penetrating injury to the chest caused by an attenuated energy rubber bullet and review the literature on thoracic injuries caused by plastic and rubber "less-lethal" munitions. The patient of this report underwent a right thoracotomy to extract the projectile as well as a wedge resection of the injured lung parenchyma. This case demonstrates that even supposedly safe riot control munition fired at close range, at the torso, can provoke serious injury. Therefore a thorough investigation and close clinical supervision are justified.

  17. Geological disposal system development

    International Nuclear Information System (INIS)

    Kang, Chul Hyung; Kuh, J. E.; Kim, S. K. and others

    2000-04-01

    Spent fuel inventories to be disposed of finally and design base spent fuel were determined. Technical and safety criteria for a geological repository system in Korea were established. Based on the properties of spent PWR and CANDU fuels, seven repository alternatives were developed and the most promising repository option was selected by the pair-wise comparison method from the technology point of view. With this option preliminary conceptual design studies were carried out. Several module, e.g., gap module, congruent release module were developed for the overall assessment code MASCOT-K. The prominent overseas databases such as OECD/NEA FEP list were are fully reviewed and then screened to identify the feasible ones to reflect the Korean geo-hydrological conditions. In addition to this the well known scenario development methods such as PID, RES were reviewed. To confirm the radiological safety of the proposed KAERI repository concept the preliminary PA was pursued. Thermo-hydro-mechanical analysis for the near field of repository were performed to verify thermal and mechanical stability for KAERI repository system. The requirements of buffer material were analyzed, and based on the results, the quantitative functional criteria for buffer material were established. The hydraulic and swelling property, mechanical properties, and thermal conductivity, the organic carbon content, and the evolution of pore water chemistry were investigated. Based on the results, the candidate buffer material was selected

  18. Research on geological disposal

    International Nuclear Information System (INIS)

    Uchida, Masahiro

    2011-01-01

    The aims of this research are to develop criteria for reviewing acceptability of the adequacy of the result of Preliminary and Detailed Investigations submitted by the implementor, and to establish a basic policy to secure safety for safety review. In FY 2010, 13 geology/climate related events for development of acceptance criteria for reviewing the adequacy of the result of Preliminary and Detailed Investigations were extracted. And the accuracy of geophysical exploration methods necessary for the Preliminary Investigation was evaluated. Regarding the research for safety review, we developed an idea of safety concept of Japanese geological disposal, and analyzed basic safety functions to secure safety. In order to verify the groundwater flow evaluation methods developed in regulatory research, the hydrological and geochemical data at Horonobe, northern Hokkaido were obtained, and simulated result of regional groundwater flow were compared with measured data. And we developed the safety scenario of geology/climate related events categorized by geological and geomorphological properties. Also we created a system to check the quality of research results in Japan and other countries in order to utilize for safety regulation, and developed a database system to compile them. (author)

  19. Researching radioactive waste disposal

    International Nuclear Information System (INIS)

    Feates, F.; Keen, N.

    1976-01-01

    At present it is planned to use the vitrification process to convert highly radioactive liquid wastes, arising from nuclear power programme, into glass which will be contained in steel cylinders for storage. The UKAEA in collaboration with other European countries is currently assessing the relative suitability of various natural geological structures as final repositories for the vitrified material. The Institute of Geological Sciences has been commissioned to specify the geological criteria that should be met by a rock structure if it is to be used for the construction of a repository though at this stage disposal sites are not being sought. The current research programme aims to obtain basic geological data about the structure of the rocks well below the surface and is expected to continue for at least three years. The results in all the European countries will then be considered so that the United Kingdom can choose a preferred method for isolating their wastes. It is only at that stage that a firm commitment may be made to select a site for a potential repository, when a far more detailed scientific research study will be instituted. Heat transfer problems and chemical effects which may occur within and around repositories are being investigated and a conceptual design study for an underground repository is being prepared. (U.K.)

  20. Geological disposal system development

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Chul Hyung; Kuh, J. E.; Kim, S. K. and others

    2000-04-01

    Spent fuel inventories to be disposed of finally and design base spent fuel were determined. Technical and safety criteria for a geological repository system in Korea were established. Based on the properties of spent PWR and CANDU fuels, seven repository alternatives were developed and the most promising repository option was selected by the pair-wise comparison method from the technology point of view. With this option preliminary conceptual design studies were carried out. Several module, e.g., gap module, congruent release module were developed for the overall assessment code MASCOT-K. The prominent overseas databases such as OECD/NEA FEP list were are fully reviewed and then screened to identify the feasible ones to reflect the Korean geo-hydrological conditions. In addition to this the well known scenario development methods such as PID, RES were reviewed. To confirm the radiological safety of the proposed KAERI repository concept the preliminary PA was pursued. Thermo-hydro-mechanical analysis for the near field of repository were performed to verify thermal and mechanical stability for KAERI repository system. The requirements of buffer material were analyzed, and based on the results, the quantitative functional criteria for buffer material were established. The hydraulic and swelling property, mechanical properties, and thermal conductivity, the organic carbon content, and the evolution of pore water chemistry were investigated. Based on the results, the candidate buffer material was selected.

  1. Radioactive waste disposal

    International Nuclear Information System (INIS)

    Cluchet, J.; Roger, B.

    1975-10-01

    After mentioning the importance of the problem of the disposal of wastes produced in the electro-nuclear industry, a short reminder on a few laws of radioactivity (nature and energy of radiations, half-life) and on some basic dosimetry is given. The conditioning and storage procedures are then indicated for solid wastes. The more active fractions of liquid wastes are incorporated into blocks of glass, whereas the less active are first concentrated by chemical treatments or by evaporation. The concentrates are then embedded into concrete, asphalt or resins. Storage is done according to the nature of each type of wastes: on a hard-surfaced area or inside concrete-lined trenches for the lowest radioactivity, in pits for the others. Transuranium elements with very long half-lives are buried in very deep natural cavities which can shelter them for centuries. From the investigations conducted so far and from the experience already gained, it can be concluded that safe solutions are within our reach [fr

  2. Radwaste disposal drum centrifuge

    International Nuclear Information System (INIS)

    Rubin, L.S.; Deltete, C.P.; Crook, M.R.

    1988-01-01

    The drum or processing bowl of the DDC becomes the disposal container when the filling operation is completed. Rehandling of the processed resin is eliminated. By allowing the centrifugally compacted resin to remain in the processing container, extremely efficient waste packaging can be achieved. The dewatering results and volume reductions reported during 1986 were based upon laboratory scale testing sponsored by the Electric Power Research Institute (EPRI) and the Department of Energy (DOE). Since the publication of these preliminary results, additional testing using a full-scale prototype DDC has been completed, again under the auspices of the DOE. Full-scale testing has substantiated the results of earlier testing and has formed the basis for preliminary discussions with the U.S. Nuclear Regulatory Commission (NRC) regarding DDC licensing for radioactive applications. A comprehensive Topical Report and Process Control Program is currently being prepared for submittal to the NRC for review under a utility licensing action. Detailed cost-benefit analyses for actual plant operations have been prepared to substantiate the attractiveness of the DDC. Several methods to physically integrate a DDC into a nuclear power plant have also been developed

  3. Recycling And Disposal Of Waste

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Ui So

    1987-01-15

    This book introduces sewage disposal sludge including properties of sludge and production amount, stabilization of sludge by anaerobic digestion stabilization of sludge by aerobic digestion, stabilization of sludge by chemical method, and dewatering, water process sludge, human waste and waste fluid of septic tank such as disposal of waste fluid and injection into the land, urban waste like definition of urban waste, collection of urban waste, recycling, properties and generation amount, and disposal method and possibility of injection of industrial waste into the ground.

  4. FFTF disposable solid waste cask

    Energy Technology Data Exchange (ETDEWEB)

    Thomson, J. D.; Goetsch, S. D.

    1983-01-01

    Disposal of radioactive waste from the Fast Flux Test Facility (FFTF) will utilize a Disposable Solid Waste Cask (DSWC) for the transport and burial of irradiated stainless steel and inconel materials. Retrievability coupled with the desire for minimal facilities and labor costs at the disposal site identified the need for the DSWC. Design requirements for this system were patterned after Type B packages as outlined in 10 CFR 71 with a few exceptions based on site and payload requirements. A summary of the design basis, supporting analytical methods and fabrication practices developed to deploy the DSWC is provided in this paper.

  5. FFTF disposable solid waste cask

    International Nuclear Information System (INIS)

    Thomson, J.D.; Goetsch, S.D.

    1983-01-01

    Disposal of radioactive waste from the Fast Flux Test Facility (FFTF) will utilize a Disposable Solid Waste Cask (DSWC) for the transport and burial of irradiated stainless steel and inconel materials. Retrievability coupled with the desire for minimal facilities and labor costs at the disposal site identified the need for the DSWC. Design requirements for this system were patterned after Type B packages as outlined in 10 CFR 71 with a few exceptions based on site and payload requirements. A summary of the design basis, supporting analytical methods and fabrication practices developed to deploy the DSWC is provided in this paper

  6. Mammalian Toxicity of Munition Compounds. Phase II. Effects of Multiple Doses. Part III. 2,6-Dinitrotoluene

    Science.gov (United States)

    1976-07-01

    and the neuromuscular effects in these dogs were not due to hypocalcemia . The lowest serum calcium concen- tration in these dogs was 4.2 meq/liter...motor end plate might produce a local hypocalcemia . Such a mechanism is purely speculative. Qualitatively and quantitavely, most of the effects of 2,6...I ýNw,- -MIM I/ MIDWEST RESEARCH INS14ITUTE H0q .3L I LU -_ MAMMALIAN TOXICITY OF MUNITIONS COMPOUlNDSPHASE II: EFFECTS OF MiULTIPLE DOSES C* •PART

  7. Post-traumatic stress disorder in adult victims of cluster munitions in Lebanon: a 10-year longitudinal study.

    Science.gov (United States)

    Fares, Jawad; Gebeily, Souheil; Saad, Mohamad; Harati, Hayat; Nabha, Sanaa; Said, Najwane; Kanso, Mohamad; Abdel Rassoul, Ronza; Fares, Youssef

    2017-08-18

    This study aims to explore the short-term and long-term prevalence and effects of post-traumatic stress disorder (PTSD) among victims of cluster munitions. A prospective 10-year longitudinal study that took place in Lebanon. Two-hundred-and-forty-four Lebanese civilian victims of submunition blasts, who were injured in 2006 and were over 18 years old, were interviewed. Included were participants who had been diagnosed with PTSD according to the Diagnostic and Statistical Manual of Mental Disorders, 5th Edition (DSM-5) and the PTSD Checklist - Civilian Version in 2006. Interviewees were present for the 10-year follow-up. PTSD prevalence rates of participants in 2006 and 2016 were compared. Analysis of the demographical data pertaining to the association of long-term PTSD with other variables was performed. p Values <0.05 were considered statistically significant for all analyses (95% CI). All the 244 civilians injured by cluster munitions in 2006 responded, and were present for long-term follow-up in 2016. The prevalence of PTSD decreased significantly from 98% to 43% after 10 years (p<0.001). A lower long-term prevalence was significantly associated with male sex (p<0.001), family support (p<0.001) and religion (p<0.001). Hospitalisation (p=0.005) and severe functional impairment (p<0.001) post-trauma were significantly associated with increased prevalence of long-term PTSD. Symptoms of negative cognition and mood were more common in the long run. In addition, job instability was the most frequent socioeconomic repercussion among the participants (88%). Psychological symptoms, especially PTSD, remain high in war-affected populations many years after the war; this is particularly evident for Lebanese civilians who were victimised by cluster munitions. Screening programmes and psychological interventions need to be implemented in vulnerable populations exposed to war traumas. Officials and public health advocates should consider the socioeconomic implications, and

  8. Computer-based test system for the Tactical Airfield Attack Munition (TAAM) safing, arming, and fuzing system

    International Nuclear Information System (INIS)

    Warhus, J.; Castleton, R.; Lanning, S.

    1981-12-01

    Testing and quality assurance of large numbers of firing systems are an essential part of the development of the Tactical Airfield Attack Munition (TAAM). A computerized test and data acquisition system has been developed to make the testing and quality assurance workload manageable. The system hardware utilizes an LSI-11/23 computer, a Tektronix 7612 transient digitizer, and various other programmable instruments and power supplies. The system is capable of measuring and analyzing mechanical shock and fireset transient waveforms, automating testing sequences, and making records and comparisons of the test results. The system architecture is flexible for general purpose firing system development work

  9. French surface disposal experience. The disposal of large waste

    International Nuclear Information System (INIS)

    Dutzer, Michel; Lecoq, Pascal; Duret, Franck; Mandoki, Robert

    2006-01-01

    More than 90 percent of the volume of radioactive waste that are generated in France can be managed in surface disposal facilities. Two facilities are presently operated by ANDRA: the Centre de l'Aube disposal facility that is dedicated to low and intermediate short lived waste and the Morvilliers facility for very low level waste. The Centre de l'Aube facility was designed at the end of the years 1980 to replace the Centre de la Manche facility that ended operation in 1994. In order to achieve as low external exposure as possible for workers it was decided to use remote handling systems as much as possible. Therefore it was necessary to standardize the types of waste containers. But taking into account the fact that these waste were conditioned in existing facilities, it was not possible to change a major part of existing packages. As a consequence, 6 mobile roofs were constructed to handle 12 different types of waste packages in the disposal vaults. The scope of Centre de l'Aube was mainly to dispose operational waste. However some packages, as 5 or 10 m 3 metallic boxes, could be used for larger waste generated by decommissioning activities. The corresponding flow was supposed to be small. After the first years of operations, it appeared interesting to develop special procedures to dispose specific large waste in order to avoid external exposure costly cutting works in the generating facilities. A 40 m 3 box and a large remote handling device were disposed in vaults that were currently used for other types of packages. Such a technique could not be used for the disposal of vessel heads that were replaced in 55 pressurised water power reactors. The duration of disposal and conditioning operation was not compatible with the flow of standard packages that were delivered in the vaults. Therefore a specific type of vault was designed, including handling and conditioning equipment. The first pressure vessel head was delivered on the 29 of July 2004, 6 heads have been

  10. Disposal Site Information Management System

    International Nuclear Information System (INIS)

    Larson, R.A.; Jouse, C.A.; Esparza, V.

    1986-01-01

    An information management system for low-level waste shipped for disposal has been developed for the Nuclear Regulatory Commission (NRC). The Disposal Site Information Management System (DSIMS) was developed to provide a user friendly computerized system, accessible through NRC on a nationwide network, for persons needing information to facilitate management decisions. This system has been developed on NOMAD VP/CSS, and the data obtained from the operators of commercial disposal sites are transferred to DSIMS semiannually. Capabilities are provided in DSIMS to allow the user to select and sort data for use in analysis and reporting low-level waste. The system also provides means for describing sources and quantities of low-level waste exceeding the limits of NRC 10 CFR Part 61 Class C. Information contained in DSIMS is intended to aid in future waste projections and economic analysis for new disposal sites

  11. Disposal of old printed journals

    Indian Academy of Sciences (India)

    2018-02-21

    Feb 21, 2018 ... Notice inviting Tender for Disposal of Old Printed Journals & Old News Papers. Indian Academy of ... The competent authority also reserves the right to reject any or all the tenders without assigning any reason thereof. 19.

  12. Radioactive waste processing and disposal

    International Nuclear Information System (INIS)

    1980-01-01

    This compilation contains 4144 citations of foreign and domestic reports, journal articles, patents, conference proceedings, and books pertaining to radioactive waste processing and disposal. Five indexes are provided: Corporate Author, Personal Author, Subject, Contract Number, and Report Number

  13. Modeling midwave infrared muzzle flash spectra from unsuppressed and flash-suppressed large caliber munitions

    Science.gov (United States)

    Steward, Bryan J.; Perram, Glen P.; Gross, Kevin C.

    2012-07-01

    Time-resolved infrared spectra of firings from a 152 mm howitzer were acquired over an 1800-6000 cm-1 spectral range using a Fourier-transform spectrometer. The instrument collected primarily at 32 cm-1 spectral and 100 Hz temporal resolutions. Munitions included unsuppressed and chemically flash suppressed propellants. Secondary combustion occurred with unsuppressed propellants resulting in flash emissions lasting ˜100 ms and dominated by H2O and CO2 spectral structure. Non-combusting plume emissions were one-tenth as intense and approached background levels within 20-40 ms. A low-dimensional phenomenological model was used to reduce the data to temperatures, soot absorbances, and column densities of H2O, CO2, CH4, and CO. The combusting plumes exhibit peak temperatures of ˜1400 K, areas of greater than 32 m2, low soot emissivity of ˜0.04, with nearly all the CO converted to CO2. The non-combusting plumes exhibit lower temperatures of ˜1000 K, areas of ˜5 m2, soot emissivity of greater than 0.38 and CO as the primary product. Maximum fit residual relative to peak intensity are 14% and 8.9% for combusting and non-combusting plumes, respectively. The model was generalized to account for turbulence-induced variations in the muzzle plumes. Distributions of temperature and concentration in 1-2 spatial regions demonstrate a reduction in maximum residuals by 40%. A two-region model of combusting plumes provides a plausible interpretation as a ˜1550 K, optically thick plume core and ˜2550 K, thin, surface-layer flame-front. Temperature rate of change was used to characterize timescales and energy release for plume emissions. Heat of combustion was estimated to be ˜5 MJ/kg.

  14. Disposal phase experimental program plan

    International Nuclear Information System (INIS)

    1997-01-01

    The Waste Isolation Pilot Plant (WIPP) facility comprises surface and subsurface facilities, including a repository mined in a bedded salt formation at a depth of 2,150 feet. It has been developed to safely and permanently isolate transuranic (TRU) radioactive wastes in a deep geological disposal site. On April 12, 1996, the DOE submitted a revised Resource Conservation and Recovery Act (RCRA) Part B permit application to the New Mexico Environment Department (NMED). The DOE anticipates receiving an operating permit from the NMED; this permit is required prior to the start of disposal operations. On October 29, 1996, the DOE submitted a Compliance Certification Application (CCA) to the US Environmental Protection Agency (EPA) in accordance with the WIPP land Withdrawal Act (LWA) of 1992 (Public Law 102-579) as amended, and the requirements of Title 40 of the Code of Federal Regulations (40 CFR) Parts 191 and 194. The DOE plans to begin disposal operations at the WIPP in November 1997 following receipt of certification by the EPA. The disposal phase is expected to last for 35 years, and will include recertification activities no less than once every five years. This Disposal Phase Experimental Program (DPEP) Plan outlines the experimental program to be conducted during the first 5-year recertification period. It also forms the basis for longer-term activities to be carried out throughout the 35-year disposal phase. Once the WIPP has been shown to be in compliance with regulatory requirements, the disposal phase gives an opportunity to affirm the compliance status of the WIPP, enhance the operations of the WIPP and the national TRU system, and contribute to the resolution of national and international nuclear waste management technical needs. The WIPP is the first facility of its kind in the world. As such, it provides a unique opportunity to advance the technical state of the art for permanent disposal of long-lived radioactive wastes

  15. Americium product solidification and disposal

    International Nuclear Information System (INIS)

    Mailen, J.C.; Campbell, D.O.; Bell, J.T.; Collins, E.D.

    1987-01-01

    The americium product from the TRUEX processing plant needs to be converted into a form suitable for ultimate disposal. An evaluation of the disposal based on safety, number of process steps, demonstrated operability of the processes, production of low-level alpha waste streams, and simplicity of maintenance with low radiation exposures to personnel during maintenance, has been made. The best process is to load the americium on a cation exchange resin followed by calcination or oxidation of the resin after loading

  16. Waste disposal into the sea

    International Nuclear Information System (INIS)

    Ehlers, P.; Kunig, P.

    1987-01-01

    The waste disposal at sea is regulated for the most part by national administrative law, which mainly is based on international law rules supplemented by EC-law. The dumping of low-level radioactive waste into the sea is more and more called into question. The disposal of high-level radioactive waste into the subsoil of the sea does not correspond to the London Convention. (WG) [de

  17. Methodology of safety assessment for radioactive waste disposal

    International Nuclear Information System (INIS)

    Matsuzuru, Hideo; Kimura, Hideo

    1991-01-01

    The Japan Atomic Energy Research Institute (JAERI) is conducting an extensive R and D program to develop a safety assessment methodology to evaluate environmental consequences associated with geological disposal of a high-level radioactive waste, and also to elucidate a generic feasibility of the geological disposal in Japan. The paper describes the current R and D activities in the JAERI to develop an interim version of the methodology based on a normal evolution scenario, and also to validate models used in the methodology. (author)

  18. Iodine-129 Dose in LLW Disposal Facility Performance Assessments

    International Nuclear Information System (INIS)

    Wilhite, E.L.

    1999-01-01

    Iodine-129 has the lowest Performance Assessment derived inventory limit in SRS disposal facilities. Because iodine is concentrated in the body to one organ, the thyroid, it has been thought that dilution with stable iodine would reduce the dose effects of 129I.Examination of the dose model used to establish the Dose conversion factor for 129I shows that, at the levels considered in performance assessments of low-level waste disposal facilities, the calculated 129I dose already accounts for ingestion of stable iodine. At higher than normal iodine ingestion rates, the uptake of iodine by the thyroid itself decrease, which effectively cancels out the isotopic dilution effect

  19. Disposal of radioactive waste. An overview of the principles involved

    International Nuclear Information System (INIS)

    1982-01-01

    Radioactive waste management strategies and practices have been reviewed in many publications. By and large these documents are technical in nature and they do not normally discuss the motives that determine which course of action should be taken. The present document concentrates on these less well defined aspects and is intended to provide a review of the philosophy underlying the current technical approach to the disposal of radioactive waste. Disposal is the final step in waste management and may be simply defined as a method of dealing with wastes for which there is no intention of retrieval

  20. Financing of radioactive waste disposal

    International Nuclear Information System (INIS)

    Reich, J.

    1989-01-01

    Waste disposal is modelled as a financial calculus. In this connection the particularity is not primarily the dimension to be expected of financial requirement but above all the uncertainty of financial requirement as well as the ecological, socio-economic and especially also the temporal dimension of the Nuclear Waste Disposal project (disposal of spent fuel elements from light-water reactors with and without reprocessing, decommissioning = safe containment and disposal of nuclear power plants, permanent isolation of radioactive waste from the biosphere, intermediate storage). Based on the above mentioned factors the author analyses alternative approaches of financing or financial planning. He points out the decisive significance of the perception of risks or the evaluation of risks by involved or affected persons - i.e. the social acceptance of planned and designed waste disposal concepts - for the achievement and assessment of alternative solutions. With the help of an acceptance-specific risk measure developed on the basis of a mathematical chaos theory he illustrates, in a model, the social influence on the financing of nuclear waste disposal. (orig./HP) [de

  1. Near-surface land disposal

    International Nuclear Information System (INIS)

    Kittel, J.H.

    1989-01-01

    The Radioactive Waste Management Handbook provides a comprehensive, systematic treatment of nuclear waste management. Near-Surface Land Disposal, the first volume, is a primary and secondary reference for the technical community. To those unfamiliar with the field, it provides a bridge to a wealth of technical information, presenting the technology associated with the near-surface disposal of low or intermediate level wastes. Coverage ranges from incipient planning to site closure and subsequent monitoring. The book discusses the importance of a systems approach during the design of new disposal facilities so that performance objectives can be achieved; gives an overview of the radioactive wastes cosigned to near-surface disposal; addresses procedures for screening and selecting sites; and emphasizes the importance of characterizing sites and obtaining reliable geologic and hydrologic data. The planning essential to the development of particular sites (land acquisition, access, layout, surface water management, capital costs, etc.) is considered, and site operations (waste receiving, inspection, emplacement, closure, stabilization, etc.) are reviewed. In addition, the book presents concepts for improved confinement of waste, important aspects of establishing a monitoring program at the disposal facility, and corrective actions available after closure to minimize release. Two analytical techniques for evaluating alternative technologies are presented. Nontechnical issues surrounding disposal, including the difficulties of public acceptance are discussed. A glossary of technical terms is included

  2. The disposal of radioactive waste

    International Nuclear Information System (INIS)

    Ormai, P.

    2006-01-01

    The first part shows different ways of 'producing' radioactive wastes, defines the wastes of small, medium and high activity and gives estimation on the quantity of the necessary capacities of waste disposal facilities. The modern radioactive waste disposal that is the integrated processing of the form of waste, the package, the technical facility and the embedding geological environment that guarantee the isolation together. Another factor is the lifetime of radioactive waste which means that any waste containing long lifetime waste in higher concentration than 400-4000 kBq/kg should be disposed geologically. Today the centre of debate disposal of radioactive waste is more social than technical. For this reason not only geological conditions and technical preparations, but social discussions and accepting communities are needed in selecting place of facilities. Now, the focus is on long term temporary disposal of high activity wastes, like burnt out heating elements. The final part of the paper summarizes the current Hungarian situation of disposal of radioactive wastes. (T-R.A.)

  3. GENE EXPRESSION CHANGES IN ARABIDOPSIS THALIANA SEEDLING ROOTS EXPOSED TO THE MUNITION HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE

    Science.gov (United States)

    Arabidopsis thaliana root transcriptome responses to the munition, hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), were assessed using serial analysis of gene expression (SAGE). Comparison of the transcriptional profile for the RDX response to a profile previously described for Ar...

  4. Sub-seabed disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Sivintsaev, Yu.V.

    1990-01-01

    The first stage of investigations of possibility of sub-seabed disposal of long-living intermediate-level radioactive wastes carried out by NIREX (UK) is described. Advantages and disadvantages of sub-seabed disposal of radioactive wastes are considered; regions suitable for disposal, transport means for marine disposal are described. Three types of sub-seabed burials are characterized

  5. High activity waste disposal

    International Nuclear Information System (INIS)

    Gaul, W.C.

    1990-01-01

    Chem-Nuclear Environmental Services (CNES) has developed a container that is capable of containing high activity waste and can be shipped as a regular DOT Type A shipment. By making the container special form the amount of activity that can be transported in a Type A shipment is greatly enhanced. Special form material presents an extra degree of protection to the environment by requiring the package to be destroyed to get access to the radioactive material and must undergo specific testing requirements, whereas normal form material can allow access to the radioactive material. With the special form container up to 10 caries of radium can be transported in a single package. This paper will describe the considerations that were taken to develop these products

  6. Waste Water Disposal Design And Management I

    International Nuclear Information System (INIS)

    Yang, Sang Hyeon; Lee, Jung Su

    2004-04-01

    This book gives descriptions of waste water disposal, design and management, which includes design of waterworks and sewerage facility such as preparatory work and building plan, used waste water disposal facilities, waste water disposal plant and industrial waste water disposal facilities, water use of waste water disposal plant and design of pump and pump facilities such as type and characteristic, selection and plan, screening and grit.

  7. Remote controlled mover for disposal canister transfer

    Energy Technology Data Exchange (ETDEWEB)

    Suikki, M. [Optimik Oy, Turku (Finland)

    2013-10-15

    This working report is an update for an earlier automatic guided vehicle design (Pietikaeinen 2003). The short horizontal transfers of disposal canisters manufactured in the encapsulation process are conducted with remote controlled movers both in the encapsulation plant and in the underground areas at the canister loading station of the disposal facility. The canister mover is a remote controlled transfer vehicle mobile on wheels. The handling of canisters is conducted with the assistance of transport platforms (pallets). The very small automatic guided vehicle of the earlier design was replaced with a commercial type mover. The most important reasons for this being the increased loadbearing requirement and the simpler, proven technology of the vehicle. The larger size of the vehicle induced changes to the plant layouts and in the principles for dealing with fault conditions. The selected mover is a vehicle, which is normally operated from alongside. In this application, the vehicle steering technology must be remote controlled. In addition, the area utilization must be as efficient as possible. This is why the vehicle was downsized in its outer dimensions and supplemented with certain auxiliary equipment and structures. This enables both remote controlled operation and improves the vehicle in terms of its failure tolerance. Operation of the vehicle was subjected to a risk analysis (PFMEA) and to a separate additional calculation conserning possible canister toppling risks. The total cost estimate, without value added tax for manufacturing the system amounts to 730 000 euros. (orig.)

  8. Remote controlled mover for disposal canister transfer

    International Nuclear Information System (INIS)

    Suikki, M.

    2013-10-01

    This working report is an update for an earlier automatic guided vehicle design (Pietikaeinen 2003). The short horizontal transfers of disposal canisters manufactured in the encapsulation process are conducted with remote controlled movers both in the encapsulation plant and in the underground areas at the canister loading station of the disposal facility. The canister mover is a remote controlled transfer vehicle mobile on wheels. The handling of canisters is conducted with the assistance of transport platforms (pallets). The very small automatic guided vehicle of the earlier design was replaced with a commercial type mover. The most important reasons for this being the increased loadbearing requirement and the simpler, proven technology of the vehicle. The larger size of the vehicle induced changes to the plant layouts and in the principles for dealing with fault conditions. The selected mover is a vehicle, which is normally operated from alongside. In this application, the vehicle steering technology must be remote controlled. In addition, the area utilization must be as efficient as possible. This is why the vehicle was downsized in its outer dimensions and supplemented with certain auxiliary equipment and structures. This enables both remote controlled operation and improves the vehicle in terms of its failure tolerance. Operation of the vehicle was subjected to a risk analysis (PFMEA) and to a separate additional calculation conserning possible canister toppling risks. The total cost estimate, without value added tax for manufacturing the system amounts to 730 000 euros. (orig.)

  9. Depleted uranium disposal options evaluation

    International Nuclear Information System (INIS)

    Hertzler, T.J.; Nishimoto, D.D.; Otis, M.D.

    1994-05-01

    The Department of Energy (DOE), Office of Environmental Restoration and Waste Management, has chartered a study to evaluate alternative management strategies for depleted uranium (DU) currently stored throughout the DOE complex. Historically, DU has been maintained as a strategic resource because of uses for DU metal and potential uses for further enrichment or for uranium oxide as breeder reactor blanket fuel. This study has focused on evaluating the disposal options for DU if it were considered a waste. This report is in no way declaring these DU reserves a ''waste,'' but is intended to provide baseline data for comparison with other management options for use of DU. To PICS considered in this report include: Retrievable disposal; permanent disposal; health hazards; radiation toxicity and chemical toxicity

  10. Waste disposal into the ground

    Energy Technology Data Exchange (ETDEWEB)

    Mawson, C A

    1955-07-01

    The establishment of an atomic energy project is soon followed by the production of a variety of radioactive wastes which must be disposed of safely, quickly and cheaply. Experience has shown that much more thought has been devoted to the design of plant and laboratories than to the apparently dull problem of what to do with the wastes, but the nature of the wastes which will arise from nuclear power production calls for a change in this situation. We shall not be concerned here with power pile wastes, but disposal problems which have occurred in operation of experimental reactors have been serious enough to show that waste disposal should be considered during the early planning stages. (author)

  11. Deep borehole disposal of plutonium

    International Nuclear Information System (INIS)

    Gibb, F. G. F.; Taylor, K. J.; Burakov, B. E.

    2008-01-01

    Excess plutonium not destined for burning as MOX or in Generation IV reactors is both a long-term waste management problem and a security threat. Immobilisation in mineral and ceramic-based waste forms for interim safe storage and eventual disposal is a widely proposed first step. The safest and most secure form of geological disposal for Pu yet suggested is in very deep boreholes and we propose here that the key to successful combination of these immobilisation and disposal concepts is the encapsulation of the waste form in small cylinders of recrystallized granite. The underlying science is discussed and the results of high pressure and temperature experiments on zircon, depleted UO 2 and Ce-doped cubic zirconia enclosed in granitic melts are presented. The outcomes of these experiments demonstrate the viability of the proposed solution and that Pu could be successfully isolated from its environment for many millions of years. (authors)

  12. Disposal facility for radioactive wastes

    International Nuclear Information System (INIS)

    Utsunomiya, Toru.

    1985-01-01

    Purpose: To remove heat generated from radioactive wastes thereby prevent the working circumstances from being worsened in a disposal-facility for radioactive wastes. Constitution: The disposal-facility comprises a plurality of holes dug out into the ground inside a tunnel excavated for the storage of radioactive wastes. After placing radioactive wastes into the shafts, re-filling materials are directly filled with a purpose of reducing the dosage. Further, a plurality of heat pipes are inserted into the holes and embedded within the re-filling materials so as to gather heat from the radioactive wastes. The heat pipes are connected to a heat exchanger disposed within the tunnel. As a result, heating of the solidified radioactive wastes itself or the containing vessel to high temperature can be avoided, as well as thermal degradation of the re-filling materials and the worsening in the working circumstance within the tunnel can be overcome. (Moriyama, K.)

  13. Underground radioactive waste disposal concept

    International Nuclear Information System (INIS)

    Frgic, L.; Tor, K.; Hudec, M.

    2002-01-01

    The paper presents some solutions for radioactive waste disposal. An underground disposal of radioactive waste is proposed in deep boreholes of greater diameter, fitted with containers. In northern part of Croatia, the geological data are available on numerous boreholes. The boreholes were drilled during investigations and prospecting of petroleum and gas fields. The available data may prove useful in defining safe deep layers suitable for waste repositories. The paper describes a Russian disposal design, execution and verification procedure. The aim of the paper is to discuss some earlier proposed solutions, and present a solution that has not yet been considered - lowering of containers with high level radioactive waste (HLW) to at least 500 m under the ground surface.(author)

  14. Waste disposal developments within BNFL

    International Nuclear Information System (INIS)

    Johnson, L.F.

    1989-01-01

    British Nuclear Fuels plc has broad involvement in topics of radioactive waste generation, treatment, storage and disposal. The Company's site at Drigg has been used since 1959 for the disposal of low level waste and its facilities are now being upgraded and extended for that purpose. Since September 1987, BNFL on behalf of UK Nirex Limited has been managing an investigation of the Sellafield area to assess its suitability for deep underground emplacement of low and intermediate level radioactive wastes. An approach will be described to establish a partnership with the local community to work towards a concept of monitored, underground emplacement appropriate for each waste category. (author)

  15. Radioactive waste disposal and constitution

    International Nuclear Information System (INIS)

    Stober, R.

    1983-01-01

    The radioactive waste disposal has many dimensions with regard to the constitutional law. The central problem is the corret delimitation between adequate governmental precautions against risks and or the permitted risk which the state can impose on the citizen, and the illegal danger which nobody has to accept. The solution requires to consider all aspects which are relevant to the constitutional law. Therefore, the following analysis deals not only with the constitutional risks and the risks of the nuclear energy, but also with the liberal, overall-economic, social, legal, and democratic aspects of radioactive waste disposal. (HSCH) [de

  16. TMI abnormal wastes disposal options

    International Nuclear Information System (INIS)

    Ayers, A.L. Jr.

    1984-03-01

    A substantial quantity of high beta-gamma/high-TRU contaminated wastes are expected from cleanup activities of Unit 2 of the Three Mile Island Nuclear Power Station. Those wastes are not disposable because of present regulatory constraints. Therefore, they must be stored temporarily. This paper discusses three options for storage of those wastes at the Idaho National Engineering Laboratory: (1) storage in temporary storage casks; (2) underground storage in vaults; and (3) storage in silos at a hot shop. Each option is analyzed and evaluated. Also included is a discussion of future disposal strategies, which might be pursued when a suitable federal or commercial repository is built

  17. Sewage sludge disposal in Austria

    International Nuclear Information System (INIS)

    Koch, F.

    1997-01-01

    Sewage systems serve about 70% of the Austrian population, producing 6 million m 3 of sewage sludge per year with a dry matter content of 4-5%. At present about 52% of this sludge is disposed of in land fills, 33% is incinerated, and only about 15 % is used in agriculture. Although agricultural utilization is becoming increasingly important, several problems, especially those related to public opinion, need to be resolved before increased use will be possible. In this paper, wastewater treatment and sewage-sludge production in Austria, and problems associated with sludge disposal are discussed. (author)

  18. Final disposal of radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    Kroebel, R [Kernforschungszentrum Karlsruhe G.m.b.H. (Germany, F.R.). Projekt Wiederaufarbeitung und Abfallbehandlung; Krause, H [Kernforschungszentrum Karlsruhe G.m.b.H. (Germany, F.R.). Abt. zur Behandlung Radioaktiver Abfaelle

    1978-08-01

    This paper discusses the final disposal possibilities for radioactive wastes in the Federal Republic of Germany and the related questions of waste conditioning, storage methods and safety. The programs in progress in neighbouring CEC countries and in the USA are also mentioned briefly. The autors conclude that the existing final disposal possibilities are sufficiently well known and safe, but that they could be improved still further by future development work. The residual hazard potential of radioactive wastes from fuel reprocessing after about 1000 years of storage is lower that of known inorganic core deposits.

  19. Disposal of Hanford defense waste

    International Nuclear Information System (INIS)

    Holten, R.A.; Burnham, J.B.; Nelson, I.C.

    1986-01-01

    An Environmental Impact Statement (EIS) on the disposal of Hanford Defense Waste is scheduled to be released near the end of March, 1986. This EIS will evaluate the impacts of alternatives for disposal of high-level, tank, and transuranic wastes which are now stored at the Department of Energy's Hanford Site or will be produced there in the future. In addition to releasing the EIS, the Department of Energy is conducting an extensive public participation process aimed at providing information to the public and receiving comments on the EIS

  20. Salt formations offer disposal alternative

    International Nuclear Information System (INIS)

    Funderburk, R.

    1990-01-01

    This paper discusses how three U.S. firms are spending millions to permit and build underground disposal sites in salt formations. These companies claim salt is the ideal geological medium for holding hazardous wastes. Two Texas locations and one in Michigan have been targeted as future sites for hazardous waste disposal. The Michigan site, outside Detroit, is a former salt mine 2,000 feet beneath the Ford Motor Co. (Detroit) assembly works in Dearborn. Both Texas sites are atop salt domes---one east and one west of Houston

  1. Radiation protection aspects of waste disposal

    International Nuclear Information System (INIS)

    Beninson, D.

    1992-01-01

    Waste disposal, particularly of high level waste and some alpha-waste, involves very long times of isolation from the biosphere. The basic radiation protection requirements of 'optimisation of protection' and 'limitation of individual risk' must be complemented with policy decisions regarding the level of ambition of protection for future individuals and populations. Decisions are also necessary for the risk assessments applicable to different time periods. These assessments include considerable uncertainty and determinations of compliance with regulatory requirements must contemplate a policy for taking account of such uncertainties. The paper deals with 'normal' scenarios and with disruptive events as mechanisms for the return of nuclides to the biosphere, in the framework of the Recommendations of the ICRP. (author)

  2. The disposal of radioactive solvent waste

    International Nuclear Information System (INIS)

    Dean, B.; Baker, W.T.

    1976-01-01

    As the use of radioisotope techniques increases, laboratories are faced with the problem of disposing of considerable quantities of organic solvent and aqueous liquid wastes. Incineration or collection by a waste contractor both raise problems. Since most of the radiochemicals are preferentially water soluble, an apparatus for washing the radiochemicals out into water and discharging into the normal drainage system in a high diluted form is described. Despite the disadvantages (low efficiency, high water usuage, loss of solvent in presence of surface active agents, precipitation of phosphors from dioxan based liquids) it is felt that the method has some merit if a suitably improved apparatus can be designed at reasonable cost. (U.K.)

  3. Safe disposal of surplus plutonium

    Science.gov (United States)

    Gong, W. L.; Naz, S.; Lutze, W.; Busch, R.; Prinja, A.; Stoll, W.

    2001-06-01

    About 150 tons of weapons grade and weapons usable plutonium (metal, oxide, and in residues) have been declared surplus in the USA and Russia. Both countries plan to convert the metal and oxide into mixed oxide fuel for nuclear power reactors. Russia has not yet decided what to do with the residues. The US will convert residues into a ceramic, which will then be over-poured with highly radioactive borosilicate glass. The radioactive glass is meant to provide a deterrent to recovery of plutonium, as required by a US standard. Here we show a waste form for plutonium residues, zirconia/boron carbide (ZrO 2/B 4C), with an unprecedented combination of properties: a single, radiation-resistant, and chemically durable phase contains the residues; billion-year-old natural analogs are available; and criticality safety is given under all conceivable disposal conditions. ZrO 2/B 4C can be disposed of directly, without further processing, making it attractive to all countries facing the task of plutonium disposal. The US standard for protection against recovery can be met by disposal of the waste form together with used reactor fuel.

  4. General Instructions for Disposable Respirators

    Centers for Disease Control (CDC) Podcasts

    2009-04-09

    This podcast, intended for the general public, demonstrates how to put on and take off disposable respirators that are to be used in areas affected by the influenza outbreak.  Created: 4/9/2009 by CDC, National Institute for Occupational Safety and Health (NIOSH).   Date Released: 4/29/2009.

  5. Ocean Disposal of Dredged Material

    Science.gov (United States)

    Permits and authorizations for the ocean dumping of dredged material is issued by U.S. Army Corps of Engineers. Information is provided about where to dispose dredged material and the process for obtaining an ocean dumping permit for dredged material.

  6. Final disposal of nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    Anon,

    1995-10-01

    The nuclear industry argues that high level radioactive waste can be safely disposed of in deep underground repositories. As yet, however, no such repositories are in use and the amount of spent nuclear fuel in ponds and dry storage is steadily increasing. Although the nuclear industry further argues that storage is a safe option for up to 50 years and has the merit of allowing the radioactivity of the fuel to decay to a more manageable level, the situation seems to be far from ideal. The real reasons for procrastination over deep disposal seem to have as much to do with politics as safe technology. The progress of different countries in finding a solution to the final disposal of high level waste is examined. In some, notably the countries of the former Soviet Union, cost is a barrier; in others, the problem has not yet been faced. In these countries undertaking serious research into deep disposal there has been a tendency, in the face of opposition from environmental groups, to retreat to sites close to existing nuclear installations and to set up rock laboratories to characterize them. These sites are not necessarily the best geologically, but the laboratories may end up being converted into actual repositories because of the considerable financial investment they represent. (UK).

  7. Final disposal of nuclear waste

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    The nuclear industry argues that high level radioactive waste can be safely disposed of in deep underground repositories. As yet, however, no such repositories are in use and the amount of spent nuclear fuel in ponds and dry storage is steadily increasing. Although the nuclear industry further argues that storage is a safe option for up to 50 years and has the merit of allowing the radioactivity of the fuel to decay to a more manageable level, the situation seems to be far from ideal. The real reasons for procrastination over deep disposal seem to have as much to do with politics as safe technology. The progress of different countries in finding a solution to the final disposal of high level waste is examined. In some, notably the countries of the former Soviet Union, cost is a barrier; in others, the problem has not yet been faced. In these countries undertaking serious research into deep disposal there has been a tendency, in the face of opposition from environmental groups, to retreat to sites close to existing nuclear installations and to set up rock laboratories to characterize them. These sites are not necessarily the best geologically, but the laboratories may end up being converted into actual repositories because of the considerable financial investment they represent. (UK)

  8. Evaluation of Proposed New LLW Disposal Activity: Disposal of Aqueous PUREX Waste Stream in the Saltstone Disposal Facility

    International Nuclear Information System (INIS)

    Cook, J.R.

    2003-01-01

    The Aqueous PUREX waste stream from Tanks 33 and 35, which have been blended in Tank 34, has been identified for possible processing through the Saltstone Processing Facility for disposal in the Saltstone Disposal Facility

  9. Low level radioactive waste disposal

    International Nuclear Information System (INIS)

    Balaz, J.; Chren, O.

    2015-01-01

    The Mochovce National Radwaste Repository is a near surface multi-barrier disposal facility for disposal of processed low and very low level radioactive wastes (radwastes) resulting from the operation and decommissioning of nuclear facilities situated in the territory of the Slovak Republic and from research institutes, laboratories, hospitals and other institutions (institutional RAW) which are in compliance with the acceptance criteria. The basic safety requirement of the Repository is to avoid a radioactive release to the environment during its operation and institutional inspection. This commitment is covered by the protection barrier system. The method of solution designed and implemented at the Repository construction complies with the latest knowledge and practice of the repository developments all over the world and meets requirements for the safe radwaste disposal with minimum environmental consequences. All wastes are solidified and have to meet the acceptance criteria before disposal into the Repository. They are processed and treated at the Bohunice RAW Treatment Centre and Liquid RAW Final Treatment Facility at Mochovce. The disposal facility for low level radwastes consists of two double-rows of reinforced concrete vaults with total capacity 7 200 fibre reinforced concrete containers (FCCs) with RAW. One double-row contains 40 The operation of the Repository was started in year 2001 and after ten years, in 2011 was conducted the periodic assessment of nuclear safety with positive results. Till the end of year 2014 was disposed to the Repository 11 514 m 3 RAW. The analysis of total RAW production from operation and decommissioning of all nuclear installation in SR, which has been carried out in frame of the BIDSF project C9.1, has showed that the total volume estimation of conditioned waste is 108 thousand m 3 of which 45.5 % are low level waste (LLW) and 54,5 % very low level waste (VLLW). On the base of this fact there is the need to build 7

  10. Estimation of the potential leakage of the chemical munitions based on two hydrodynamical models implemented for the Baltic Sea

    Science.gov (United States)

    Jakacki, Jaromir; Golenko, Mariya

    2014-05-01

    Two hydrodynamical models (Princeton Ocean Model (POM) and Parallel Ocean Program (POP)) have been implemented for the Baltic Sea area that consists of locations of the dumped chemical munitions during II War World. The models have been configured based on similar data source - bathymetry, initial conditions and external forces were implemented based on identical data. The horizontal resolutions of the models are also very similar. Several simulations with different initial conditions have been done. Comparison and analysis of the bottom currents from both models have been performed. Based on it estimating of the dangerous area and critical time have been done. Also lagrangian particle tracking and passive tracer were implemented and based on these results probability of the appearing dangerous doses and its time evolution have been presented. This work has been performed in the frame of the MODUM project financially supported by NATO.

  11. Optimizing High Level Waste Disposal

    International Nuclear Information System (INIS)

    Dirk Gombert

    2005-01-01

    If society is ever to reap the potential benefits of nuclear energy, technologists must close the fuel-cycle completely. A closed cycle equates to a continued supply of fuel and safe reactors, but also reliable and comprehensive closure of waste issues. High level waste (HLW) disposal in borosilicate glass (BSG) is based on 1970s era evaluations. This host matrix is very adaptable to sequestering a wide variety of radionuclides found in raffinates from spent fuel reprocessing. However, it is now known that the current system is far from optimal for disposal of the diverse HLW streams, and proven alternatives are available to reduce costs by billions of dollars. The basis for HLW disposal should be reassessed to consider extensive waste form and process technology research and development efforts, which have been conducted by the United States Department of Energy (USDOE), international agencies and the private sector. Matching the waste form to the waste chemistry and using currently available technology could increase the waste content in waste forms to 50% or more and double processing rates. Optimization of the HLW disposal system would accelerate HLW disposition and increase repository capacity. This does not necessarily require developing new waste forms, the emphasis should be on qualifying existing matrices to demonstrate protection equal to or better than the baseline glass performance. Also, this proposed effort does not necessarily require developing new technology concepts. The emphasis is on demonstrating existing technology that is clearly better (reliability, productivity, cost) than current technology, and justifying its use in future facilities or retrofitted facilities. Higher waste processing and disposal efficiency can be realized by performing the engineering analyses and trade-studies necessary to select the most efficient methods for processing the full spectrum of wastes across the nuclear complex. This paper will describe technologies being

  12. Normal Pressure Hydrocephalus (NPH)

    Science.gov (United States)

    ... local chapter Join our online community Normal Pressure Hydrocephalus (NPH) Normal pressure hydrocephalus is a brain disorder ... Symptoms Diagnosis Causes & risks Treatments About Normal Pressure Hydrocephalus Normal pressure hydrocephalus occurs when excess cerebrospinal fluid ...

  13. Radioactive waste disposal and political aspects

    International Nuclear Information System (INIS)

    Blanc, M.

    1992-01-01

    The difficulties presented by the current atomic energy law for the nuclear waste disposal in Switzerland are shown. It is emphasised how important scientific information is in the political solutions for nuclear disposal

  14. 48 CFR 245.603 - Disposal methods.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Disposal methods. 245.603 Section 245.603 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT... Contractor Inventory 245.603 Disposal methods. ...

  15. Disposable products in the hospital waste stream.

    OpenAIRE

    Gilden, D. J.; Scissors, K. N.; Reuler, J. B.

    1992-01-01

    Use of disposable products in hospitals continues to increase despite limited landfill space and dwindling natural resources. We analyzed the use and disposal patterns of disposable hospital products to identify means of reducing noninfectious, nonhazardous hospital waste. In a 385-bed private teaching hospital, the 20 disposable products of which the greatest amounts (by weight) were purchased, were identified, and total hospital waste was tabulated. Samples of trash from three areas were so...

  16. Waste disposal options report. Volume 1

    International Nuclear Information System (INIS)

    Russell, N.E.; McDonald, T.G.; Banaee, J.; Barnes, C.M.; Fish, L.W.; Losinski, S.J.; Peterson, H.K.; Sterbentz, J.W.; Wenzel, D.R.

    1998-02-01

    This report summarizes the potential options for the processing and disposal of mixed waste generated by reprocessing spent nuclear fuel at the Idaho Chemical Processing Plant. It compares the proposed waste-immobilization processes, quantifies and characterizes the resulting waste forms, identifies potential disposal sites and their primary acceptance criteria, and addresses disposal issues for hazardous waste

  17. Oil statistics 1976: supply and disposal

    Energy Technology Data Exchange (ETDEWEB)

    1976-01-01

    Summary tables are included for the period 1960 to 1976. The detailed tables for 1976 cover production, supply and disposal; supply and disposal by product; imports by sources; imports from member countries; exports by destination; exports to member countries; consumption by end-use sectors; and supply and disposal of finished products by country (1975 and 1976). (DLC)

  18. Disposal of radioactive wastes. Chapter 11

    International Nuclear Information System (INIS)

    Skitt, J.

    1979-01-01

    An account is given of the history and present position of legislation in the United Kingdom on the disposal of radioactive wastes. The sections are headed: introduction and definitions; history; the Radioactive Substances Act 1960; disposal of solid radioactive wastes through Local Authority services; function of Local Authorities; exemptions; national radioactive waste disposal service; incidents involving radioactivity. (U.K.)

  19. 7 CFR 2902.21 - Disposable containers.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Disposable containers. 2902.21 Section 2902.21... Items § 2902.21 Disposable containers. (a) Definition. Products designed to be used for temporary... paragraph (d): Disposable containers can include boxes and packaging made from paper. Under the Resource...

  20. Solid waste disposal into salt mines

    International Nuclear Information System (INIS)

    Repke, W.

    1981-01-01

    The subject is discussed as follows: general introduction to disposal of radioactive waste; handling of solid nuclear waste; technology of final disposal, with specific reference to salt domes; conditioning of radioactive waste; safety barriers for radioactive waste; practice of final disposal in other countries. (U.K.)

  1. Concept for Underground Disposal of Nuclear Waste

    Science.gov (United States)

    Bowyer, J. M.

    1987-01-01

    Packaged waste placed in empty oil-shale mines. Concept for disposal of nuclear waste economically synergistic with earlier proposal concerning backfilling of oil-shale mines. New disposal concept superior to earlier schemes for disposal in hard-rock and salt mines because less uncertainty about ability of oil-shale mine to contain waste safely for millenium.

  2. Radioactive wastes storage and disposal. Chapter 8

    International Nuclear Information System (INIS)

    2002-01-01

    The Chapter 8 is essentially dedicated to radioactive waste management - storage and disposal. The management safety is being provided due to packages and facilities of waste disposal and storage. It is noted that at selection of sites for waste disposal it is necessary account rock properties and ways of the wastes delivery pathways

  3. 48 CFR 2845.603 - Disposal methods.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Disposal methods. 2845.603 Section 2845.603 Federal Acquisition Regulations System DEPARTMENT OF JUSTICE Contract Management GOVERNMENT PROPERTY Reporting, Redistribution, and Disposal of Contractor Inventory 2845.603 Disposal methods...

  4. 48 CFR 945.603 - Disposal methods.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Disposal methods. 945.603 Section 945.603 Federal Acquisition Regulations System DEPARTMENT OF ENERGY CONTRACT MANAGEMENT GOVERNMENT PROPERTY Reporting, Redistribution, and Disposal of Contractor Inventory 945.603 Disposal methods. ...

  5. Nuclear waste management: storage and disposal aspects

    International Nuclear Information System (INIS)

    Patterson, B.D.; Dave, S.A.; O'Connell, W.J.

    1980-01-01

    Long-term disposal of nuclear wastes must resolve difficulties arising chiefly from the potential for contamination of the environment and the risk of misuse. Alternatives available for storage and disposal of wastes are examined in this overview paper. Guidelines and criteria which may govern in the development of methods of disposal are discussed

  6. Arsenal of democracy in the face of change: Precision Guided Munitions (PGMs), their evolution and some economic considerations, Working Paper No. 4

    Energy Technology Data Exchange (ETDEWEB)

    Chester, C.V.

    1990-08-01

    A brief study was made of some of the forces driving the move to Precision Guided Munitions (PGMs), including the quest for military effectiveness, combat experience, and logistic compression. PGMs cost from a few hundred to a few thousand dollars per Kg but are tens to hundreds of times more effective than conventional munitions. A year's peacetime plateau production of each US PGM can be carried by a few C-5 aircraft. Surge quantities of PGMs are within US airlift capabilities, taking some of the risk out of off-shore procurement. The improving capability of antiaircraft PGMs and the escalating cost of combat aircraft (50 to 100-fold in constant dollars since WW II) may bring into question the economic viability of manned attack aircraft. The same may be true to a slightly lesser degree for heavy armored vehicles. 14 refs., 5 tabs.

  7. Investigation of initial contamination for disposal medical infusion items and determination of sterilization dose

    International Nuclear Information System (INIS)

    Hu Jinhui; Xu Ziyan; Sun Naifeng; Yan Aoshuang; Gao Wei; Wang Binglin

    1993-01-01

    Statistical analyses on initial contamination of 624 disposal medical infusion items are made. The normal distribution of the initial contamination, the relation of initial contamination of inner and outer walls of disposal medical infusion items and the changes of initial contamination before irradiation are shown. The sterilized dose for disposal infusion is determined as 17.2 kGy using bioburden information. The SAL (sterility assurance level) dose is 10 6 . The SIP (device sample item proportion) is 1 and the average initial contamination is 7 CFU/item

  8. Final disposal of radioactive waste

    Directory of Open Access Journals (Sweden)

    Freiesleben H.

    2013-06-01

    Full Text Available In this paper the origin and properties of radioactive waste as well as its classification scheme (low-level waste – LLW, intermediate-level waste – ILW, high-level waste – HLW are presented. The various options for conditioning of waste of different levels of radioactivity are reviewed. The composition, radiotoxicity and reprocessing of spent fuel and their effect on storage and options for final disposal are discussed. The current situation of final waste disposal in a selected number of countries is mentioned. Also, the role of the International Atomic Energy Agency with regard to the development and monitoring of international safety standards for both spent nuclear fuel and radioactive waste management is described.

  9. Disposal method of radioactive wastes

    International Nuclear Information System (INIS)

    Uetake, Naoto; Fukazawa, Tetsuo.

    1986-01-01

    Purpose: To improve the safety of underground disposal of radioactive wastes for a long period of time by surrounding the periphery of the radioactive wastes with materials that can inhibit the migration of radioactive nuclides and are physically and chemically stable. Method: Hardening products prepared from a water-hardenable calcium silicate compound and an aqueous solution of alkali silicate have compression strength as comparable with that of concretes, high water tightness and adsorbing property to radioactive isotopes such as cobalt similar to that of concretes and they also show adsorption to cesium which is not adsorbed to concretes. Further, the kneaded slurry thereof is excellent in the workability and can be poured even into narrow gaps. Accordingly, by alternately charging granular radioactive wastes and this slurry before hardening into the ground, the radioactive wastes can be put to underground disposal stably with simple procedures. (Kamimura, M.)

  10. Radioactive waste management and disposal

    International Nuclear Information System (INIS)

    Simon, R.; Orlowski, S.

    1980-01-01

    The first European Community conference on Radioactive Waste Management and Disposal was held in Luxembourg, where twenty-five papers were presented by scientists involved in European Community contract studies and by members of the Commission's scientific staff. The following topics were covered: treatment and conditioning technology of solid intermediate level wastes, alpha-contaminated combustible wastes, gaseous wastes, hulls and dissolver residues and plutonium recovery; waste product evaluation which involves testing of solidified high level wastes and other waste products; engineering storage of vitrified high level wastes and gas storage; and geological disposal in salt, granite and clay formations which includes site characterization, conceptual repository design, waste/formation interactions, migration of radionuclides, safety analysis, mathematical modelling and risk assessment

  11. Equity and nuclear waste disposal

    International Nuclear Information System (INIS)

    Shrader-Frechette, K.

    1994-01-01

    Following the recommendations of the US National Academy of Sciences and the mandates of the 1987 Nuclear Waste Policy Amendments Act, the US Department of Energy has proposed Yucca Mountain, Nevada as the site of the world's first permanent repository for high-level nuclear waste. The main justification for permanent disposal (as opposed to above-ground storage) is that it guarantees safety by means of waste isolation. This essay argues, however, that considerations of equity (safer for whom?) undercut the safety rationale. The article surveys some prima facie arguments for equity in the distribution of radwaste risks and then evaluates four objections that are based, respectively, on practicality, compensation for risks, scepticism about duties to future generations, and the uranium criterion. The conclusion is that, at least under existing regulations and policies, permanent waste disposal is highly questionable, in part, because it fails to distribute risk equitably or to compensate, in full, for this inequity

  12. Effluent treatment and waste disposal

    International Nuclear Information System (INIS)

    1990-01-01

    In recent years there has been a great increase in the attention given to environmental matters by the public, media and Government. This has been reflected in the increased stature of environmental pressure groups and the introduction of new regulatory bodies and procedures. However, the satisfactory treatment and disposal of waste depends ultimately upon the development and employment of efficient low cost processes, and the enforcement of effective legislation. This Conference organised by the Yorkshire Branch of IChemE in association with the Institution's Environmental Protection Subject Group, will address the areas of waste monitoring, developments in pollution control processes and process economics and will look forward to future trends in waste disposal. It will also consider the impact of recent legislation upon the process industries. (author)

  13. Geological Disposal of Radioactive Waste

    International Nuclear Information System (INIS)

    Dody, A.; Klein, Ben; David, O.

    2014-01-01

    Disposal of radioactive waste imposes complicated constrains on the regulator to ensure the isolation of radioactive elements from the biosphere. The IAEA (1995) states that T he objective of radioactive waste management is to deal with radioactive waste in a manner that protects human health and the environment now and the future without imposing undue burdens on future generation . The meaning of this statement is that the operator of the waste disposal facilities must prove to the regulator that in routine time and in different scenarios the dose rate to the public will not exceed 0.3 mSv/y in the present and in the future up to 10,000 years

  14. Siting of geological disposal facilities

    International Nuclear Information System (INIS)

    1994-01-01

    Radioactive waste is generated from the production of nuclear energy and from the use of radioactive materials in industrial applications, research and medicine. The importance of safe management of radioactive waste for the protection of human health and the environment has long been recognized and considerable experience has been gained in this field. The Radioactive Waste Safety Standards (RADWASS) programme is the IAEA's contribution to establishing and promoting the basic safety philosophy for radioactive waste management and the steps necessary to ensure its implementation. This Safety Guide defines the process to be used and guidelines to be considered in selecting sites for deep geological disposal of radioactive wastes. It reflects the collective experience of eleven Member States having programmes to dispose of spent fuel, high level and long lived radioactive waste. In addition to the technical factors important to site performance, the Safety Guide also addresses the social, economic and environmental factors to be considered in site selection. 3 refs

  15. Shallow disposal of radioactive waste

    International Nuclear Information System (INIS)

    1985-02-01

    A review and evaluation of computer codes capable of simulating the various processes that are instrumental in determining the dose rate to individuals resulting from the shallow disposal of radioactive waste was conducted. Possible pathways of contamination, as well as the mechanisms controlling radionuclide movement along these pathways have been identified. Potential transport pathways include the unsaturated and saturated ground water systems, surface water bodies, atmospheric transport and movement (and accumulation) in the food chain. Contributions to dose may occur as a result of ingestion of contaminated water and food, inhalation of contaminated air and immersion in contaminated air/water. Specific recommendations were developed regarding the selection and modification of a model to meet the needs associated with the prediction of dose rates to individuals as a consequence of shallow radioactive waste disposal. Specific technical requirements with regards to risk, sensitivity and uncertainty analyses have been addressed

  16. Wastewater Characteristics, Treatment and Disposal

    OpenAIRE

    Von Sperling, Marcos

    2007-01-01

    "Wastewater Characteristics, Treatment and Disposal is the first volume in the series Biological Wastewater Treatment, presenting an integrated view of water quality and wastewater treatment. The book covers the following topics: wastewater characteristics (flow and major constituents) impact of wastewater discharges to rivers and lakes overview of wastewater treatment systems complementary items in planning studies. This book, with its clear and practical approach, lays the foundations f...

  17. Differing approaches to waste disposal

    International Nuclear Information System (INIS)

    Greenhalgh, G.

    1983-01-01

    The social, political, and economic problems of radioactive waste management, which are discussed at a scientific afternoon meeting held during the IAEA general conference on 12 October, with speakers from Argentina, West Germany, France, India, Japan, Sweden, Britain and the United States, are described. An OECD Nuclear Energy Agency report on the demonstration of long-term safety of deep underground disposal of high level radioactive waste is discussed. (U.K.)

  18. Normalization: A Preprocessing Stage

    OpenAIRE

    Patro, S. Gopal Krishna; Sahu, Kishore Kumar

    2015-01-01

    As we know that the normalization is a pre-processing stage of any type problem statement. Especially normalization takes important role in the field of soft computing, cloud computing etc. for manipulation of data like scale down or scale up the range of data before it becomes used for further stage. There are so many normalization techniques are there namely Min-Max normalization, Z-score normalization and Decimal scaling normalization. So by referring these normalization techniques we are ...

  19. Disposal of spent nuclear fuel

    International Nuclear Information System (INIS)

    1979-12-01

    This report addresses the topic of the mined geologic disposal of spent nuclear fuel from Pressurized Water Reactors (PWR) and Boiling Water Reactors (BWR). Although some fuel processing options are identified, most of the information in this report relates to the isolation of spent fuel in the form it is removed from the reactor. The characteristics of the waste management system and research which relate to spent fuel isolation are discussed. The differences between spent fuel and processed HLW which impact the waste isolation system are defined and evaluated for the nature and extent of that impact. What is known and what needs to be determined about spent fuel as a waste form to design a viable waste isolation system is presented. Other waste forms and programs such as geologic exploration, site characterization and licensing which are generic to all waste forms are also discussed. R and D is being carried out to establish the technical information to develop the methods used for disposal of spent fuel. All evidence to date indicates that there is no reason, based on safety considerations, that spent fuel should not be disposed of as a waste

  20. The use and disposal of household pesticides

    International Nuclear Information System (INIS)

    Grey, Charlotte N.B.; Nieuwenhuijsen, Mark J.; Golding, Jean

    2005-01-01

    Most pesticides are synthetic chemicals manufactured specifically for their toxic properties to the target species, and widely used globally. Several epidemiological studies in the United States have suggested health concerns arising from the chronic exposure of young children to pesticides in the domestic environment. In the UK very little is currently known about how nonoccupational pesticides are being used or disposed of. Any use of pesticides is a potential risk factor for children's exposure, and any potential exposure is likely to be reduced by the parents' adopting precautionary behaviour when using these pesticide products. This was investigated using a sample of 147 parents from the Avon Longitudinal Study of Parents and Children cohort in and around Bristol, through an in-depth interview between August and November 2001. The results of this study add to the understanding of the underlying behaviour of parents applying pesticide products in the home environment in the UK. Pesticides are readily available, and are normally purchased in do-it-yourself shops and supermarkets and mostly disposed of in domestic waste. Safety was stated by 45% of parents to be the most important factor to consider when buying a pesticide. When buying pesticide products, labels were stated to be the most important source of information about pesticides. However, a third of parents stated they would not follow the product label exactly when using a product, just under half felt labels were both inadequate and hard to understand, and about 10% of parents would not take notice of warnings on the pesticide label. Less than half of parents would use gloves when applying a pesticide, although the use of protective equipment such as gloves during the application of pesticides could greatly reduce the exposure. It is a public health concern that the instructions on the labels of products may not always be understood or followed, and further understanding of user behaviour is needed

  1. Chemical Stockpile Disposal Program: Review and comment on the Phase 1 environmental report for the Pueblo Depot Activity, Pueblo, Colorado

    International Nuclear Information System (INIS)

    Olshansky, S.J.; Krummel, J.R.; Policastro, A.J.; McGinnis, L.D.

    1994-03-01

    As part of the Chemical Stockpile Disposal Program, an independent review is presented of the US Army Phase I environmental report for the disposal of chemical agents and munitions stored at the Pueblo Depot Activity (PUDA) in Pueblo, Colorado. The Phase I report addresses new and additional concerns not incorporated in the final programmatic environmental impact statement (FPEIS). These concerns are addressed by examining site-specific data for the PUDA. On the basis of our review of the Phase I report, we concluded that on-site meteorological data from December 1988 to June 1992 appear to be of insufficient quality to have been used instead of the off-site Pueblo airport data. No additional meteorological data have been collected since June 1992. The Phase I report briefly mentions problems with the air pollution control system. These problems will likely require the systems to be upgraded at the Johnston Atoll site and at each of the other depots in the continental United States. Without such improvements, the probability of accidents during start-up and shutdown would likely increase. The Army has a lessons-learned program to incorporate improvements into the design of future facilities. The Phase I report does not make any design change commitments. These issues need to be fully evaluated and resolved before any final conclusion concerning the adequacy of the decision in the FPEIS can be made with respect to the PUDA. With the exception of this issue, the inclusion of other more detailed site-specific data in the Phase I report does not change the decision reached in the FPEIS (which favored on-site disposal at the PUDA). We recommend that site-specific data on water, ecological, socioeconomic, and cultural resources and emergency planning and preparedness be considered explicitly in the site-specific EIS decision-making process

  2. Social dimensions of nuclear waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Grunwald, Armin [Karlsruhe Institute of Technology, Karlsruhe (Germany). Inst. for Technology Assessment and Systems Analysis

    2015-07-01

    Nuclear waste disposal is a two-faceted challenge: a scientific and technological endeavour, on the one hand, and confronted with social dimensions, on the other. In this paper I will sketch the respective social dimensions and will give a plea for interdisciplinary research approaches. Relevant social dimensions of nuclear waste disposal are concerning safety standards, the disposal 'philosophy', the process of determining the disposal site, and the operation of a waste disposal facility. Overall, cross-cutting issues of justice, responsibility, and fairness are of major importance in all of these fields.

  3. Waste management, final waste disposal, fuel cycle

    International Nuclear Information System (INIS)

    Rengeling, H.W.

    1991-01-01

    Out of the legal poblems that are currently at issue, individual questions from four areas are dealt with: privatization of ultimate waste disposal; distribution of responsibilities for tasks in the field of waste disposal; harmonization and systematization of regulations; waste disposal - principles for making provisions for waste disposal - proof of having made provisions for waste disposal; financing and fees. A distinction has to be made between that which is legally and in particular constitutionally imperative or, as the case may be, permissible, and issues where there is room for political decision-making. Ultimately, the deliberations on the amendment are completely confined to the sphere of politics. (orig./HSCH) [de

  4. Phytoextraction crop disposal--an unsolved problem

    International Nuclear Information System (INIS)

    Sas-Nowosielska, A.; Kucharski, R.; Malkowski, E.; Pogrzeba, M.; Kuperberg, J.M.; Krynski, K.

    2004-01-01

    Several methods of contaminated crop disposal after phytoextraction process (composting, compaction, incineration, ashing, pyrolysis, direct disposal, liquid extraction) have been described. Advantages and disadvantages of methods are presented and discussed. Composting, compaction and pyrolysis are the pretreatment steps, since significant amount of contaminated biomass will still exist after each of the process. Four methods of final disposal were distinguished: incineration, direct disposal, ashing and liquid extraction. Among them, incineration (smelting) is proposed as the most feasible, economically acceptable and environmentally sound. - Methods of contaminated crop disposal are described and evaluated

  5. Social dimensions of nuclear waste disposal

    International Nuclear Information System (INIS)

    Grunwald, Armin

    2015-01-01

    Nuclear waste disposal is a two-faceted challenge: a scientific and technological endeavour, on the one hand, and confronted with social dimensions, on the other. In this paper I will sketch the respective social dimensions and will give a plea for interdisciplinary research approaches. Relevant social dimensions of nuclear waste disposal are concerning safety standards, the disposal 'philosophy', the process of determining the disposal site, and the operation of a waste disposal facility. Overall, cross-cutting issues of justice, responsibility, and fairness are of major importance in all of these fields.

  6. Development of technical information database for high level waste disposal

    International Nuclear Information System (INIS)

    Kudo, Koji; Takada, Susumu; Kawanishi, Motoi

    2005-01-01

    A concept design of the high level waste disposal information database and the disposal technologies information database are explained. The high level waste disposal information database contains information on technologies, waste, management and rules, R and D, each step of disposal site selection, characteristics of sites, demonstration of disposal technology, design of disposal site, application for disposal permit, construction of disposal site, operation and closing. Construction of the disposal technologies information system and the geological disposal technologies information system is described. The screen image of the geological disposal technologies information system is shown. User is able to search the full text retrieval and attribute retrieval in the image. (S.Y. )

  7. Overview of nuclear waste disposal in space

    International Nuclear Information System (INIS)

    Rice, E.E.; Priest, C.C.

    1981-01-01

    One option receiving consideration by the Department of Energy (DOE) is the space disposal of certain high-level nuclear wastes. The National Aeronautics and Space Administration is assessing the space disposal option in support of DOE studies on alternatives for nuclear waste management. The space disposal option is viewed as a complement, since total disposal of fuel rods from commercial power plants is not considered to be economically practical with Space Shuttle technology. The space disposal of certain high-level wastes may, however, provide reduced calculated and perceived risks. The space disposal option in conjunction with terrestrial disposal may offer a more flexible and lower risk overall waste management system. For the space disposal option to be viable, it must be demonstrated that the overall long-term risks associated with this activity, as a complement to the mined geologic repository, would be significantly less than the long-term risk associated with disposing of all the high-level waste. The long-term risk benefit must be achieved within an acceptable short-term and overall program cost. This paper briefly describes space disposal alternatives, the space disposal destination, possible waste mixes and forms, systems and typical operations, and the energy and cost analysis

  8. Interim report on reference biospheres for radioactive waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Dorp, F. van [NAGRA (Switzerland)] [and others

    1994-10-01

    significant effect on biosphere modelling, for normal and accidental releases from nuclear installations, and also for waste disposal. For example, increased attention is being given to natural and semi-natural environments. Against this background, the primary objective of the BIOMOVS II Reference Biospheres Working Group is to establish a consensus on the development and application of a Reference Biosphere approach to the evaluation of long-term radiological consequences of solid radioactive waste disposal systems. The Working Group is expecting to provide: 1. A recommended methodology for biosphere analysis within the assessment of radioactive waste disposal, which is consistent for different types of radioactive waste and disposal concepts. This should include the justification, arguments and documentation for all the steps in the recommended methodology. A preliminary illustration of the approach is shown in the figure opposite. 2. An internationally developed and structured list of Features, Events and Processes (FEPs), which can be used to support the development of biosphere models for specific assessments. 3. Example(s) of how to apply the methodology. If these examples are developed in a suitably generic assessment context, they can be defined as generic 'Reference Biospheres' and their applicability and limitations should be identified. Such 'Reference Biospheres' could then be used e.g: (a) for generic site independent evaluation of disposal plans; (b) to provide sets of factors to convert geosphere release into doses or risks; (c) as 'stylised biospheres' (which might be defined as a biosphere which contains only the most essential FEPs); (d) as benchmarks for comparisons with other assessments, and (e) as sources of detailed information on biosphere modelling for waste disposal assessments. In order to complete an assessment of a particular site, there will not only be a need to take account of site specific issues, such as the

  9. Interim report on reference biospheres for radioactive waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Dorp, F van [NAGRA (Switzerland); and others

    1994-10-01

    significant effect on biosphere modelling, for normal and accidental releases from nuclear installations, and also for waste disposal. For example, increased attention is being given to natural and semi-natural environments. Against this background, the primary objective of the BIOMOVS II Reference Biospheres Working Group is to establish a consensus on the development and application of a Reference Biosphere approach to the evaluation of long-term radiological consequences of solid radioactive waste disposal systems. The Working Group is expecting to provide: 1. A recommended methodology for biosphere analysis within the assessment of radioactive waste disposal, which is consistent for different types of radioactive waste and disposal concepts. This should include the justification, arguments and documentation for all the steps in the recommended methodology. A preliminary illustration of the approach is shown in the figure opposite. 2. An internationally developed and structured list of Features, Events and Processes (FEPs), which can be used to support the development of biosphere models for specific assessments. 3. Example(s) of how to apply the methodology. If these examples are developed in a suitably generic assessment context, they can be defined as generic 'Reference Biospheres' and their applicability and limitations should be identified. Such 'Reference Biospheres' could then be used e.g: (a) for generic site independent evaluation of disposal plans; (b) to provide sets of factors to convert geosphere release into doses or risks; (c) as 'stylised biospheres' (which might be defined as a biosphere which contains only the most essential FEPs); (d) as benchmarks for comparisons with other assessments, and (e) as sources of detailed information on biosphere modelling for waste disposal assessments. In order to complete an assessment of a particular site, there will not only be a need to take account of site specific issues, such as the geosphere-biosphere interface and

  10. 2005 dossier: clay. Tome: safety evaluation of the geologic disposal

    International Nuclear Information System (INIS)

    2005-01-01

    This document makes a status of the researches carried out by the French national agency of radioactive wastes (ANDRA) about the safety aspects of an argilite-type geologic disposal facility for high-level and long-lived (HLLL) radioactive wastes. Content: 1 - safety approach: context and general goals, general safety principles, specificity of the argilite repository safety approach, general approach; 2 - general description: HLLL wastes, geologic context of the Meuse/Haute-Marne site, repository architecture; 3 - safety functions and disposal design: time and space scales, safety approach by functions, functional analysis methodology, analysis of safety functions during the construction, exploitation and observation phases, safety functions analysis during post-closure phase; 4 - operational safety: dosimetric evaluation, risk analysis (explosible gases, fire hazards, lift cage drop, container drop); 5 - long-term efficiency of the disposal facility: normal evolution scenario, from conceptual models to the safety calculation model, description of the safety model, quantitative evaluation of the normal evolution scenario, main lessons learnt from the efficiency analysis; 6 - management of uncertainties: identification, building up of altered situations, mastery of uncertainties; 7 - evaluation of altered evolution scenarios: sealing defect scenario, container defect scenario, drilling scenario, strongly degraded operation scenario; 8 - conclusions: lessons learnt, possible improvements. (J.S.)

  11. Generic Crystalline Disposal Reference Case

    Energy Technology Data Exchange (ETDEWEB)

    Painter, Scott Leroy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chu, Shaoping [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Harp, Dylan Robert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Perry, Frank Vinton [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wang, Yifeng [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-02-20

    A generic reference case for disposal of spent nuclear fuel and high-level radioactive waste in crystalline rock is outlined. The generic cases are intended to support development of disposal system modeling capability by establishing relevant baseline conditions and parameters. Establishment of a generic reference case requires that the emplacement concept, waste inventory, waste form, waste package, backfill/buffer properties, EBS failure scenarios, host rock properties, and biosphere be specified. The focus in this report is on those elements that are unique to crystalline disposal, especially the geosphere representation. Three emplacement concepts are suggested for further analyses: a waste packages containing 4 PWR assemblies emplaced in boreholes in the floors of tunnels (KBS-3 concept), a 12-assembly waste package emplaced in tunnels, and a 32-assembly dual purpose canister emplaced in tunnels. In addition, three failure scenarios were suggested for future use: a nominal scenario involving corrosion of the waste package in the tunnel emplacement concepts, a manufacturing defect scenario applicable to the KBS-3 concept, and a disruptive glaciation scenario applicable to both emplacement concepts. The computational approaches required to analyze EBS failure and transport processes in a crystalline rock repository are similar to those of argillite/shale, with the most significant difference being that the EBS in a crystalline rock repository will likely experience highly heterogeneous flow rates, which should be represented in the model. The computational approaches required to analyze radionuclide transport in the natural system are very different because of the highly channelized nature of fracture flow. Computational workflows tailored to crystalline rock based on discrete transport pathways extracted from discrete fracture network models are recommended.

  12. Waste-Mixes Study for space disposal

    International Nuclear Information System (INIS)

    McCallum, R.F.; Blair, H.T.; McKee, R.W.; Silviera, D.J.; Swanson, J.L.

    1983-01-01

    The Wastes Mixes Study is a component of Cy-1981 and 1982 research activities to determine if space disposal could be a feasible complement to geologic disposal for certain high-level (HLW) and transuranic wastes (TRU). The objectives of the study are: to determine if removal of radionuclides from HLW and TRU significantly reduces the long-term radiological risks of geologic disposal; to determine if chemical partitioning of the waste for space disposal is technically feasible; to identify acceptable waste forms for space disposal; and to compare improvements in geologic disposal system performance to impacts of additional treatment, storage, and transportation necessary for space disposal. To compare radiological effects, five system alternatives are defined: Reference case - All HLW and TRU to a repository. Alternative A - Iodine to space, the balance to a repository. Alternative B - Technetium to space, the balance to a repository. Alternative C - 95% of cesium and strontium to a repository; the balance of HLW aged first, then to space; plutonium separated from TRU for recycle; the balance of the TRU to a repository. Alternative D - HLW aged first, then to space, plutonium separated from TRU for recycle; the balance of the TRU to a repository. The conclusions of this study are: the incentive for space disposal is that it offers a perception of reduced risks rather than significant reduction. Suitable waste forms for space disposal are cermet for HLW, metallic technetium, and lead iodide. Space disposal of HLW appears to offer insignificant safety enhancements when compared to geologic disposal; the disposal of iodine and technetium wastes in space does not offer risk advantages. Increases in short-term doses for the alternatives are minimal; however, incremental costs of treating, storing and transporting wastes for space disposal are substantial

  13. Principles for disposal of radioactive and chemical hazardous wastes

    International Nuclear Information System (INIS)

    Merz, E. R.

    1991-01-01

    The double hazard of mixed wastes is characterized by several criteria: radioactivity on the one hand, and chemical toxicity, flammability, corrosiveness as well as chemical reactivity on the other hand. Chemotoxic waste normally has a much more complex composition than radioactive waste and appears in much larger quantities. However, the two types of waste have some properties in common when it comes to their long-term impact on health and the environment. In order to minimize the risk associated with mixed waste management, the material assigned for ultimate disposal should be thoroughly detoxified, inertized, or mineralized prior to conditioning and packaging. Good control over the environmental consequence of waste disposal requires that detailed criteria for tolerable contamination should be established, and that compliance with these criteria can be demonstrated. For radioactive waste, there has been an extensive international development of criteria to protect human health. For non-radioactive waste, derived criteria exist only for a limited number of substances

  14. Waste Disposal: The PRACLAY Programme

    Energy Technology Data Exchange (ETDEWEB)

    De Bruyn, D

    2000-07-01

    Principal achievements in 2000 with regard to the PRACLAY programme are presented. The PRACLAY project has been conceived: (1) to demonstrate the construction and the operation of a gallery for the disposal of HLW in a clay formation; (2) to improve knowledge on deep excavations in clay through modelling and monitoring; (3) to design, install and operate a complementary mock-up test (OPHELIE) on the surface. In 1999, efforts were focussed on the operation of the OPHELIE mock-up and the CLIPEX project to monitor the evolution of hydro-mechanical parameters of the Boom Clay Formation near the face of a gallery during excavation.

  15. Waste Disposal: The PRACLAY Programme

    International Nuclear Information System (INIS)

    De Bruyn, D.

    2000-01-01

    Principal achievements in 2000 with regard to the PRACLAY programme are presented. The PRACLAY project has been conceived: (1) to demonstrate the construction and the operation of a gallery for the disposal of HLW in a clay formation; (2) to improve knowledge on deep excavations in clay through modelling and monitoring; (3) to design, install and operate a complementary mock-up test (OPHELIE) on the surface. In 1999, efforts were focussed on the operation of the OPHELIE mock-up and the CLIPEX project to monitor the evolution of hydro-mechanical parameters of the Boom Clay Formation near the face of a gallery during excavation

  16. Classification and disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Kocher, D.C.

    1990-01-01

    This paper reviews the historical development in the U.S. of definitions and requirements for permanent disposal of different classes of radioactive waste. We first consider the descriptions of different waste classes that were developed prior to definitions in laws and regulations. These descriptions usually were not based on requirements for permanent disposal but, rather, on the source of the waste and requirements for safe handling and storage. We then discuss existing laws and regulations for disposal of different waste classes. Current definitions of waste classes are largely qualitative, and thus somewhat ambiguous, and are based primarily on the source of the waste rather than the properties of its radioactive constituents. Furthermore, even though permanent disposal is clearly recognized as the ultimate goal of radioactive water management, current laws and regulations do not associated the definitions of different waste classes with requirement for particular disposal systems. Thus, requirements for waste disposal essentially are unaffected by ambiguities in the present waste classification system

  17. Disposal of tritium-exposed metal hydrides

    International Nuclear Information System (INIS)

    Nobile, A.; Motyka, T.

    1991-01-01

    A plan has been established for disposal of tritium-exposed metal hydrides used in Savannah River Site (SRS) tritium production or Materials Test Facility (MTF) R ampersand D operations. The recommended plan assumes that the first tritium-exposed metal hydrides will be disposed of after startup of the Solid Waste Disposal Facility (SWDF) Expansion Project in 1992, and thus the plan is consistent with the new disposal requiremkents that will be in effect for the SWDF Expansion Project. Process beds containing tritium-exposed metal hydride powder will be disposed of without removal of the powder from the bed; however, disposal of tritium-exposed metal hydride powder that has been removed from its process vessel is also addressed

  18. Shallow ground disposal of radioactive wastes

    International Nuclear Information System (INIS)

    1981-01-01

    This guidebook outlines the factors to be considered in site selection, design, operation, shut-down and surveillance as well as the regulatory requirements of repositories for safe disposal of radioactive waste in shallow ground. No attempt is made to summarize the existing voluminous literature on the many facets of radioactive waste disposal. In the context of this guidebook, shallow ground disposal refers to the emplacement of radioactive waste, with or without engineered barriers, above or below the ground surface, where the final protective covering is of the order of a few metres thick. Deep geological disposal and other underground disposal methods, management of mill tailings and disposal into the sea have been or will be considered in other IAEA publications. These guidelines have been made sufficiently general to cover a broad variety of climatic, hydrogeological and biological conditions. They may need to be interpreted or modified to reflect local conditions and national regulations

  19. Disposal of Radioactive Waste. Specific Safety Requirements

    International Nuclear Information System (INIS)

    2011-01-01

    This publication establishes requirements applicable to all types of radioactive waste disposal facility. It is linked to the fundamental safety principles for each disposal option and establishes a set of strategic requirements that must be in place before facilities are developed. Consideration is also given to the safety of existing facilities developed prior to the establishment of present day standards. The requirements will be complemented by Safety Guides that will provide guidance on good practice for meeting the requirements for different types of waste disposal facility. Contents: 1. Introduction; 2. Protection of people and the environment; 3. Safety requirements for planning for the disposal of radioactive waste; 4. Requirements for the development, operation and closure of a disposal facility; 5. Assurance of safety; 6. Existing disposal facilities; Appendices.

  20. Geochemistry of radioactive waste disposal

    International Nuclear Information System (INIS)

    Bird, G.W.

    1979-01-01

    Safe, permanent disposal of radioactive wastes requires isolation of a number of elements including Se, Tc, I, Sr, Cs, Pd, u, Np, Pu and Cm from the environment for a long period of time. The aquatic chemistry of these elements ranges from simple anionic (I - ,IO 3 - ) and cationic (Cs + ,Sr ++ ) forms to multivalent hydrolyzed complexes which can be anionic or cationic (Pu(OH) 2 + ,Pu(OH) 3 + , PuO 2 (CO 3 )(OH) - ,PuO 2 Cl - ,etc.) depending on the chemical environment. The parameters which can affect repository safety are rate of access and composition of grounwater, stability of the waste container, stability of the waste form, rock-water-waste interactons, and dilution and dispersion as the waste moves away from the repository site. Our overall research program on radioactive waste disposal includes corrosion studies of containment systems hydrothermal stability of various waste forms, and geochemical behaviour of various nuclides including solubilities, redox equilibria, hydrolysis, colloid fomation and transport ion exchange equilibria and adsorption on mineral surfaces and irreversible precipitation reactions. This paper discusses the geochemistry of I, Se, Tc, Cs, Sr and the actinide elements and potential mechanisms by which the mobility could be retarded if necessary

  1. Landfill disposal of very low level waste

    International Nuclear Information System (INIS)

    Luo Shanggeng

    2009-01-01

    The radioactivities of very low level wastes are very low. VLLW can be disposed by simple and economic burial process. This paper describes the significance of segregation of very low level waste (VLLW), the VLLW-definition and its limit value, and presents an introduction of VLLW-disposing approaches operated world wide. The disposal of VLLW in China is also briefly discussed and suggested here. (author)

  2. A Comparison of Distillery Stillage Disposal Methods

    OpenAIRE

    V. Sajbrt; M. Rosol; P. Ditl

    2010-01-01

    This paper compares the main stillage disposal methods from the point of view of technology, economics and energetics. Attention is paid to the disposal of both solid and liquid phase. Specifically, the following methods are considered: a) livestock feeding, b) combustion of granulated stillages, c) fertilizer production, d) anaerobic digestion with biogas production and e) chemical pretreatment and subsequent secondary treatment. Other disposal techniques mentioned in the literature (electro...

  3. Shallow land disposal of radioactive waste

    International Nuclear Information System (INIS)

    1987-01-01

    The application of basic radiation protection concepts and objectives to the disposal of radioactive wastes requires the development of specific reference levels or criteria for the radiological acceptance of each type of waste in each disposal option. This report suggests a methodology for the establishment of acceptance criteria for the disposal of low-level radioactive waste containing long-lived radionuclides in shallow land burial facilities

  4. General criteria for radioactive waste disposal

    International Nuclear Information System (INIS)

    Maxey, M.N.; Musgrave, B.C.; Watkins, G.B.

    1979-01-01

    Techniques are being developed for conversion of radioactive wastes to solids and their placement into repositories. Criteria for such disposal are needed to assure protection of the biosphere. The ALARA (as low as reasonably achievable) principle should be applicable at all times during the disposal period. Radioactive wastes can be categorized into three classes, depending on the activity. Three approaches were developed for judging the adequacy of disposal concepts: acceptable risk, ore body comparison, and three-stage ore body comparison

  5. Verification and validation for waste disposal models

    International Nuclear Information System (INIS)

    1987-07-01

    A set of evaluation criteria has been developed to assess the suitability of current verification and validation techniques for waste disposal methods. A survey of current practices and techniques was undertaken and evaluated using these criteria with the items most relevant to waste disposal models being identified. Recommendations regarding the most suitable verification and validation practices for nuclear waste disposal modelling software have been made

  6. Commercial mixed waste treatment and disposal

    International Nuclear Information System (INIS)

    Vance, J.K.

    1994-01-01

    At the South Clive, Utah, site, Envirocare of Utah, Inc., (Envirocare), currently operates a commercial low-activity, low-level radioactive waste facility, a mixed waste RCRA Part B storage and disposal facility, and an 11e.(2) disposal facility. Envirocare is also in the process of constructing a Mixed Waste Treatment Facility. As the nation's first and only commercial treatment and disposal facility for such waste, the information presented in this segment will provide insight into their current and prospective operations

  7. Specified radioactive waste final disposal act

    International Nuclear Information System (INIS)

    Yasui, Masaya

    2001-01-01

    Radioactive wastes must be finally and safely disposed far from human activities. Disposal act is a long-range task and needs to be understood and accepted by public for site selection. This paper explains basic policy of Japanese Government for final disposal act of specified radioactive wastes, examination for site selection guidelines to promote residential understanding, general concept of multi-barrier system for isolating the specific radioactive wastes, and research and technical development for radioactive waste management. (S. Ohno)

  8. Geohydrology of industrial waste disposal site

    International Nuclear Information System (INIS)

    Gaynor, R.K.

    1984-01-01

    An existing desert site for hazardous chemical and low-level radioactive waste disposal is evaluated for suitability. This site is characterized using geologic, geohydrologic, geochemical, and other considerations. Design and operation of the disposal facility is considered. Site characteristics are also evaluated with respect to new and proposed regulatory requirements under the Resource Conservation and Recovery Act (1976) regulations, 40 CFR Part 264, and the ''Licensing Requirements for Landfill Disposal of Radioactive Waste,'' 10 CRF Part 61. The advantages and disadvantages of siting new disposal facilities in similar desert areas are reviewed and contrasted to siting in humid locations

  9. Post-disposal safety assessment of toxic and radioactive waste: waste types, disposal practices, disposal criteria, assessment methods and post-disposal impacts

    International Nuclear Information System (INIS)

    Torres, C.; Simon, I.; Little, R.H.; Charles, D.; Grogan, H.A.; Smith, G.M.; Sumerling, T.J.; Watkins, B.M.

    1993-01-01

    The need for safety assessments of waste disposal stems not only from the implementation of regulations requiring the assessment of environmental effects, but also from the more general need to justify decisions on protection requirements. As waste-disposal methods have become more technologically based, through the application of more highly engineered design concepts and through more rigorous and specific limitations on the types and quantities of the waste disposed, it follows that assessment procedures also must become more sophisticated. It is the overall aim of this study to improve the predictive modelling capacity for post-disposal safety assessments of land-based disposal facilities through the development and testing of a comprehensive, yet practicable, assessment framework. This report records all the work which has been undertaken during Phase 1 of the study. Waste types, disposal practices, disposal criteria and assessment methods for both toxic and radioactive waste are reviewed with the purpose of identifying those features relevant to assessment methodology development. Difference and similarities in waste types, disposal practices, criteria and assessment methods between countries, and between toxic and radioactive wastes are highlighted and discussed. Finally, an approach to identify post-disposal impacts, how they arise and their effects on humans and the environment is described

  10. ICRP guidance on radioactive waste disposal

    International Nuclear Information System (INIS)

    Cooper, J.R.

    2002-01-01

    The International Commission on Radiological Protection (ICRP) issued recommendations for a system of radiological protection in 1991 as the 1990 Recommendations. Guidance on the application of these recommendations in the general area of waste disposal was issued in 1997 as Publication 77 and guidance specific to disposal of solid long-lived radioactive waste was issued as Publication 81. This paper summarises ICRP guidance in radiological protection requirements for waste disposal concentrating on the ones of relevance to the geological disposal of solid radioactive waste. Suggestions are made for areas where further work is required to apply the ICRP guidance. (author)

  11. Penetration Evaluation of Explosively Formed Projectiles Through Air and Water Using Insensitive Munition: Simulative and Experimental Studies

    Directory of Open Access Journals (Sweden)

    M. Ahmed

    2016-02-01

    Full Text Available The process of formation, flying, penetration of explosively-formed projectiles (EFP and the effect of water on performance of the charge for underwater applications is simulated by Ansysis Autodyn 2D-Hydro code. The main objective of an explosively formed projectile designed for underwater applications is to disintegrate the target at longer standoff distances. In this paper we have simulated the explosively formed projectile from OFHC-Copper liner for 1200 conical angle. The Affect of water on the penetration of EFP is determined by simulations from Ansysis Autodyn 2-D Hydrocode and by varying depth of water from 1CD-5CD. The depth of penetration against steel target is measured experimentally. Flash X-Ray Radiography (FXR is used to capture EFP jet formation and its penetration against target is measured by depth of penetration experiments. Simulation results are compared with experimental results. The difference in simulated and experimental results for depth of penetration is about 7 mm, which lies within favorable range of error. The jet formation captured from FXR is quite clear and jet velocity determined from Flash X-ray radiography is the same as the ones obtained by using other high explosives. Therefore, it is indicated that Insensitive Munition (8701 can be utilized instead of Polymer Bonded Explosives (PBX for air and underwater environments with great reliability and without any hazard.

  12. Benthic communities in chemical munitions dumping site areas within the Baltic deeps with special focus on nematodes

    Science.gov (United States)

    Kotwicki, Lech; Grzelak, Katarzyna; Bełdowski, Jacek

    2016-06-01

    Assessment of biological effects of chemical warfare agents (CWAs) dumped in the Baltic Sea has been one of the tasks of the Chemical Munitions Search & Assessment (CHEMSEA) project. Three sites have been selected for investigation: Bornholm Deep, Gotland Deep and Gdansk Deep. Fauna collected from these locations were compared with the reference area located between the studied regions at similar depths below 70 m. In total, four scientific cruises occurred in different seasons between 2011 and 2013. The total lack of any representatives of macrozoobenthos in all of the investigated dumping sites was noted. As a practical matter, the Baltic deeps were inhabited by nematodes as the only meiofauna representatives. Therefore, nematodes were used as a key group to explore the faunal communities inhabiting chemical dumping sites in the Baltic deeps. In total, 42 nematode genera belonging to 18 families were identified, and the dominant genus was Sabatieria (Comesomatidae), which constituted 37.6% of the overall nematode community. There were significant differences in nematode community structure (abundance and taxa composition) between the dumping areas and the reference site (Kruskal-Wallis H=30.96, pnematode assemblages could mirror the environmental conditions.

  13. Normalized modes at selected points without normalization

    Science.gov (United States)

    Kausel, Eduardo

    2018-04-01

    As every textbook on linear algebra demonstrates, the eigenvectors for the general eigenvalue problem | K - λM | = 0 involving two real, symmetric, positive definite matrices K , M satisfy some well-defined orthogonality conditions. Equally well-known is the fact that those eigenvectors can be normalized so that their modal mass μ =ϕT Mϕ is unity: it suffices to divide each unscaled mode by the square root of the modal mass. Thus, the normalization is the result of an explicit calculation applied to the modes after they were obtained by some means. However, we show herein that the normalized modes are not merely convenient forms of scaling, but that they are actually intrinsic properties of the pair of matrices K , M, that is, the matrices already "know" about normalization even before the modes have been obtained. This means that we can obtain individual components of the normalized modes directly from the eigenvalue problem, and without needing to obtain either all of the modes or for that matter, any one complete mode. These results are achieved by means of the residue theorem of operational calculus, a finding that is rather remarkable inasmuch as the residues themselves do not make use of any orthogonality conditions or normalization in the first place. It appears that this obscure property connecting the general eigenvalue problem of modal analysis with the residue theorem of operational calculus may have been overlooked up until now, but which has in turn interesting theoretical implications.Á

  14. Alternative Concept to Enhance the Disposal Efficiency for CANDU Spent Fuel Disposal System

    International Nuclear Information System (INIS)

    Lee, Jong Youl; Cho, Dong Geun; Kook, Dong Hak; Lee, Min Soo; Choi, Heui Joo

    2011-01-01

    There are two types of nuclear reactors in Korea and they are PWR type and CANDU type. The safe management of the spent fuels from these reactors is very important factor to maintain the sustainable energy supply with nuclear power plant. In Korea, a reference disposal system for the spent fuels has been developed through a study on the direct disposal of the PWR and CANDU spent fuel. Recently, the research on the demonstration and the efficiency analyses of the disposal system has been performed to make the disposal system safer and more economic. PWR spent fuels which include a lot of reusable material can be considered being recycled and a study on the disposal of HLW from this recycling process is being performed. CANDU spent fuels are considered being disposed of directly in deep geological formation, since they have little reusable material. In this study, based on the Korean Reference spent fuel disposal System (KRS) which was to dispose of both PWR type and CANDU type, the more effective CANDU spent fuel disposal systems were developed. To do this, the disposal canister for CANDU spent fuels was modified to hold the storage basket for 60 bundles which is used in nuclear power plant. With these modified disposal canister concepts, the disposal concepts to meet the thermal requirement that the temperature of the buffer materials should not be over 100 .deg. C were developed. These disposal concepts were reviewed and analyzed in terms of disposal effective factors which were thermal effectiveness, U-density, disposal area, excavation volume, material volume etc. and the most effective concept was proposed. The results of this study will be used in the development of various wastes disposal system together with the HLW wastes from the PWR spent fuel recycling process.

  15. Toxic and hazardous waste disposal. Volume 4. New and promising ultimate disposal options

    International Nuclear Information System (INIS)

    Pojasek, R.B.

    1980-01-01

    Separate abstrats were prepared for four of the eighteen chapters of this book which reviews several disposal options available to the generators of hazardous wastes. The chapters not abstracted deal with land disposal of hazardous wastes, the solidification/fixation processes, waste disposal by incineration and molten salt combustion and the use of stabilized industrial waste for land reclamation and land farming

  16. Program for responsible and safe disposal of spent fuel elements and radioactive wastes (National disposal program)

    International Nuclear Information System (INIS)

    2015-01-01

    The contribution covers the following topics: fundamentals of the disposal policy; amount of radioactive wastes and prognosis; disposal of radioactive wastes - spent fuel elements and wastes from waste processing, radioactive wastes with low heat production; legal framework of the nuclear waste disposal in Germany; public participation, cost and financing.

  17. Ultimate disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Roethemeyer, H.

    1991-01-01

    The activities developed by the Federal Institution of Physical Engineering PTB and by the Federal Office for Radiation Protection (BfS) concentrated, among others, on work to implement ultimate storage facilities for radioactive wastes. The book illuminates this development from site designation to the preliminary evaluation of the Gorleben salt dome, to the preparation of planning documents proving that the Konrad ore mine is suitable for a repository. The paper shows the legal provisions involved; research and development tasks; collection of radioactive wastes ready for ultimate disposal; safety analysis in the commissioning and post-operational stages, and product control. The historical development of waste management in the Federal Republic of Germany and international cooperation in this area are outlined. (DG) [de

  18. Nuclear Waste Disposal Program 2016

    International Nuclear Information System (INIS)

    2016-12-01

    This comprehensive brochure published by the Swiss National Cooperative for the Disposal of Radioactive Waste (NAGRA) discusses the many important steps in the management of radioactive waste that have already been implemented in Switzerland. The handling and packaging of waste, its characterisation and inventorying, as well as its interim storage and transport are examined. The many important steps in Swiss management of radioactive waste already implemented and wide experience gained in carrying out the associated activities are discussed. The legal framework and organisational measures that will allow the selection of repository sites are looked at. The various aspects examined include the origin, type and volume of radioactive wastes, along with concepts and designs for deep geological repositories and the types of waste to be stored therein. Also, an implementation plan for the deep geological repositories, the required capacities and the financing of waste management activities are discussed as is NAGRA’s information concept. Several diagrams and tables illustrate the program

  19. Nuclear waste disposal educational forum

    International Nuclear Information System (INIS)

    1982-01-01

    In keeping with a mandate from the US Congress to provide opportunities for consumer education and information and to seek consumer input on national issues, the Department of Energy's Office of Consumer Affairs held a three-hour educational forum on the proposed nuclear waste disposal legislation. Nearly one hundred representatives of consumer, public interest, civic and environmental organizations were invited to attend. Consumer affairs professionals of utility companies across the country were also invited to attend the forum. The following six papers were presented: historical perspectives; status of legislation (Senate); status of legislation (House of Representatives); impact on the legislation on electric utilities; impact of the legislation on consumers; implementing the legislation. All six papers have been abstracted and indexed for the Energy Data Base

  20. Instructive for disposal of fluorescent

    International Nuclear Information System (INIS)

    Salazar Vargas, Gerlin

    2014-01-01

    An instructive is established for the management system of waste fluorescent lamps, ensuring the storage, collection, transportation, and final disposal. The lamp is changed by an official of the Seccion de Matenimiento Construccion of the Oficina de Servicios Generales or is produced with the support of an official of the unit. The fluorescent should be deposited in stock of materials of the building maintenance section or unit specified with the help of a staff and in appropriate conditions. The fluorescent lamp is transported according to the guidelines in the manual. A responsible company is contracted by la Vicerrectoria de Administracion of the Universidad de Costa Rica dedicated to the transport and proper handling of fluorescent lamps [es

  1. Chemistry of nuclear waste disposal

    International Nuclear Information System (INIS)

    Zimmer, E.

    1981-01-01

    In extractive purification of the low-enriched uranium fuel element (UO 2 -particle fuel element with SiC coating) no problems arise in the PUREX-process which have not already been solved when reprocessing LWR-type reactor and breeder fuel elements. Concerning the HTR-type reactor fuel elements containing thorium, there are two process cycles behind the head end; the pure U-235 is reprocessed in the same manner as the low-enriched uranium fuel, and the thorium, which is the bigger fraction, is reprocessed together with U-233 in the same manner as the mixed oxides. Only the CO 2 -off gas system, which contains krypton and carbon 14, leads to difficulties in nuclear waste disposal. (DG) [de

  2. Radioactive wastes and their disposal

    International Nuclear Information System (INIS)

    Neumann, L.

    1984-01-01

    The classification of radioactive wastes is given and the achievements evaluated in the disposal of radioactive wastes from nuclear power plants. An experimental pilot unit was installed at the Jaslovske Bohunice nuclear power plant for the bituminization of liquid radioactive wastes. UJV has developed a mobile automated high-output unit for cementation. In 1985 the unit will be tested at the Jaslovske Bohunice and the Dukovany nuclear power plants. A prototype press for processing solid wastes was manufactured which is in operation at the Jaslovske Bohunice plant. A solidification process for atypical wastes from long-term storage of spent fuel elements has been developed to be used for the period of nuclear power plant decommissioning. (E.S.)

  3. National guideline of TENORM disposal

    International Nuclear Information System (INIS)

    Hamrah Mohd Ali

    1999-01-01

    Naturally Occurring Radioactive Material is a substance contain radioactive elements from uranium ( 238 U) and thorium ( 232 Th) series which have been present in the earth's crust since its formation. Meanwhile TENORM is produced from the NORM enhancement activities which has contributed radiation hazards to members of public, workers and the environment. In this situation the existing of Atomic Energy Licensing Board (AELB) is to protect public, workers and the environment from TENORM waste created from related industries. What ever methods of disposal, a proper waste management systems should be in placed to ensure the protection of human health and the environment now and in the future, without imposing undue burden on future generations should be taken into account. In comply with that philosophy, it is important for industries to comply with the Atomic Energy Licensing Act which has been enforced since 1985. (Author)

  4. Packages for radiactive waste disposal

    International Nuclear Information System (INIS)

    Oliveira, R. de.

    1983-01-01

    The development of multi-stage type package for sea disposal of compactable nuclear wastes, is presented. The basic requirements for the project followed the NEA and IAEA recommendations and observations of the solutions adopted by others countries. The packages of preliminary design was analysed, by computer, under several conditions arising out of its nature, as well as their conditions descent, dumping and durability in the deep of sea. The designed pressure equalization mechanic and the effect compacting on the package, by prototypes and specific tests, were studied. These prototypes were also submitted to the transport tests of the 'Regulament for the Safe Transport of Radioactive Materials'. Based on results of the testes and the re-evaluation of the preliminary design, final indications and specifications for excuting the package design, are presented. (M.C.K.) [pt

  5. Deep Borehole Disposal Safety Analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Freeze, Geoffrey A. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Stein, Emily [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Price, Laura L. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); MacKinnon, Robert J. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Tillman, Jack Bruce [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2016-10-01

    This report presents a preliminary safety analysis for the deep borehole disposal (DBD) concept, using a safety case framework. A safety case is an integrated collection of qualitative and quantitative arguments, evidence, and analyses that substantiate the safety, and the level of confidence in the safety, of a geologic repository. This safety case framework for DBD follows the outline of the elements of a safety case, and identifies the types of information that will be required to satisfy these elements. At this very preliminary phase of development, the DBD safety case focuses on the generic feasibility of the DBD concept. It is based on potential system designs, waste forms, engineering, and geologic conditions; however, no specific site or regulatory framework exists. It will progress to a site-specific safety case as the DBD concept advances into a site-specific phase, progressing through consent-based site selection and site investigation and characterization.

  6. Planning for greater confinement disposal

    International Nuclear Information System (INIS)

    Gilbert, T.L.; Luner, C.; Meshkov, N.K.; Trevorrow, L.E.; Yu, C.

    1985-01-01

    A report that provides guidance for planning for greater-confinement disposal (GCD) of low-level radioactive waste is being prepared. The report addresses procedures for selecting a GCD technology and provides information for implementing these procedures. The focus is on GCD; planning aspects common to GCD and shallow-land burial are covered by reference. Planning procedure topics covered include regulatory requirements, waste characterization, benefit-cost-risk assessment and pathway analysis methodologies, determination of need, waste-acceptance criteria, performance objectives, and comparative assessment of attributes that support these objectives. The major technologies covered include augered shafts, deep trenches, engineered structures, hydrofracture, improved waste forms, and high-integrity containers. Descriptive information is provided, and attributes that are relevant for risk assessment and operational requirements are given. 10 refs., 3 figs., 2 tabs

  7. The politics of nuclear-waste disposal

    International Nuclear Information System (INIS)

    Tarricone, P.

    1994-01-01

    After 72 days of public hearings and testimony from more than 100 witnesses, the first commission of its kind in the US found that politics--not science and engineering--led to the selection of Martinsville, Ill. as the host site for a nuclear-waste-disposal facility. This article examines how the plan to dispose of nuclear waste in Martinsville ultimately unraveled

  8. Safety assessment for radiactive waste disposal

    International Nuclear Information System (INIS)

    Lewi, J.; Izabel, C.

    1989-11-01

    Whatever their type may be, radioactive waste disposals obey to the following principle: to isolate radioactive substances as long as their potential nocivity is significant. The isolation is obtained by confining barriers. The present paper recalls the role and the limits of the different barriers, for each type of disposal. It presents and comments site selection criteria and waste packages requirements [fr

  9. Sewage Disposal in Port Harcourt, Nigeria.

    Science.gov (United States)

    Ayotamuno, M. J.

    1993-01-01

    This survey of the Port Harcourt, Nigeria, sewage disposal system exemplifies sewage disposal in the developing world. Results reveal that some well-constructed and maintained drains, as well as many open drains and septic tanks, expose women and children to the possibility of direct contact with parasitic organisms and threaten water resources.…

  10. Probabilistic safety assessment in radioactive waste disposal

    International Nuclear Information System (INIS)

    Robinson, P.C.

    1987-07-01

    Probabilistic safety assessment codes are now widely used in radioactive waste disposal assessments. This report gives an overview of the current state of the field. The relationship between the codes and the regulations covering radioactive waste disposal is discussed and the characteristics of current codes is described. The problems of verification and validation are considered. (author)

  11. Crystalline and Crystalline International Disposal Activities

    Energy Technology Data Exchange (ETDEWEB)

    Viswanathan, Hari S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chu, Shaoping [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Reimus, Paul William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Makedonska, Nataliia [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hyman, Jeffrey De' Haven [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Karra, Satish [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dittrich, Timothy M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-12-21

    This report presents the results of work conducted between September 2014 and July 2015 at Los Alamos National Laboratory in the crystalline disposal and crystalline international disposal work packages of the Used Fuel Disposition Campaign (UFDC) for DOE-NE’s Fuel Cycle Research and Development program.

  12. Evaluation of waste disposal by shale fracturing

    International Nuclear Information System (INIS)

    Weeren, H.O.

    1976-02-01

    The shale fracturing process is evaluated as a means for permanent disposal of radioactive intermediate level liquid waste generated at the Oak Ridge National Laboratory. The estimated capital operating and development costs of a proposed disposal facility are compared with equivalent estimated costs for alternative methods of waste fixation

  13. Retrievable disposal - opposing views on ethics

    International Nuclear Information System (INIS)

    Selling, H.A.

    2000-01-01

    In the previous decades many research programmes on the disposal of radioactive waste have been completed in the Netherlands. The experts involved have reconfirmed their view that deep underground disposal in suitable geological formations would ensure a safe and prolonged isolation of the waste from the biosphere. Both rock salt and clay formations are considered to qualify as a suitable host rock. In 1993 the government in a position paper stated that such a repository should be designed in a way that the waste can be retrieved from it, should the need arise. In an attempt to involve stakeholders in the decision-making process, a research contract was awarded to an environmental group to study the ethical aspects related to retrievable disposal of radioactive waste. In their report which was published in its final form in January 2000 the authors concluded that retrievable disposal is acceptable from an ethical point of view. However, this conclusion was reached in the understanding that this situation of retrievability would be permanent. From the concept of equity between generations, each successive generation should be offered equal opportunities to decide for itself how to dispose of the radioactive waste. Consequently, the preferred disposal option is retrievable disposal (or long term storage) in a surface facility. Although this view is not in conformity with the ''official'' position on radioactive waste disposal, there is a benefit of having established a dialogue between interested parties in a broad sense. (author)

  14. 23 CFR 710.409 - Disposals.

    Science.gov (United States)

    2010-04-01

    ... 23 Highways 1 2010-04-01 2010-04-01 false Disposals. 710.409 Section 710.409 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RIGHT-OF-WAY AND ENVIRONMENT RIGHT-OF-WAY AND REAL ESTATE Real Property Management § 710.409 Disposals. (a) Real property interests determined to be excess...

  15. Medications at School: Disposing of Pharmaceutical Waste

    Science.gov (United States)

    Taras, Howard; Haste, Nina M.; Berry, Angela T.; Tran, Jennifer; Singh, Renu F.

    2014-01-01

    Background: This project quantified and categorized medications left unclaimed by students at the end of the school year. It determined the feasibility of a model medication disposal program and assessed school nurses' perceptions of environmentally responsible medication disposal. Methods: At a large urban school district all unclaimed…

  16. 50 CFR 12.33 - Disposal.

    Science.gov (United States)

    2010-10-01

    ... other equipment), except wildlife or plants, in accordance with current Federal Property Management..., TRANSPORTATION, SALE, PURCHASE, BARTER, EXPORTATION, AND IMPORTATION OF WILDLIFE AND PLANTS SEIZURE AND FORFEITURE PROCEDURES Disposal of Forfeited or Abandoned Property § 12.33 Disposal. (a) The Director shall...

  17. Disposal options for disused radioactive sources

    International Nuclear Information System (INIS)

    2005-01-01

    This report presents a review of relevant information on the various technical factors and issues, as well as approaches and relevant technologies, leading to the identification of potential disposal options for disused radioactive sources. The report attempts to provide a logical 'road map' for the disposal of disused radioactive sources, taking into consideration the high degree of variability in the radiological properties of such types of radioactive waste. The use of borehole or shaft type repositories is highlighted as a potential disposal option, particularly for those countries that have limited resources and are looking for a simple, safe and cost effective solution for the disposal of their radioactive source inventories. It offers information about usage and characteristics of radioactive sources, disposal considerations, identification and screening of disposal options as well as waste packaging and acceptance criteria for disposal. The information provided in the report could be adapted or adopted to identify and develop specific disposal options suitable for the type and inventory of radioactive sources kept in storage in a given Member State

  18. Disposal of high-activity nuclear wastes

    International Nuclear Information System (INIS)

    Hamilton, E.I.

    1983-01-01

    A discussion is presented on the deep sea ocean disposal for high-activity nuclear wastes. The following topics are covered: effect of ionizing radiation on marine ecosystems; pathways by which radionuclides are transferred to man from the marine environment; information about releases of radioactivity to the sea; radiological protection; storage and disposal of radioactive wastes and information needs. (U.K.)

  19. Radioactive waste products - suitability for final disposal

    International Nuclear Information System (INIS)

    Merz, E.; Odoj, R.; Warnecke, E.

    1985-06-01

    48 papers were read at the conference. Separate records are available for all of them. The main problem in radioactive waste disposal was the long-term sealing to prevent pollution of the biosphere. Problems of conditioning, acceptance, and safety measures were discussed. Final disposal models and repositories were presented. (PW) [de

  20. Tritium waste disposal technology in the US

    International Nuclear Information System (INIS)

    Albenesius, E.L.; Towler, O.A.

    1983-01-01

    Tritium waste disposal methods in the US range from disposal of low specific activity waste along with other low-level waste in shallow land burial facilities, to disposal of kilocurie amounts in specially designed triple containers in 65' deep augered holes located in an aird region of the US. Total estimated curies disposed of are 500,000 in commercial burial sites and 10 million curies in defense related sites. At three disposal sites in humid areas, tritium has migrated into the ground water, and at one arid site tritium vapor has been detected emerging from the soil above the disposal area. Leaching tests on tritium containing waste show that tritium in the form of HTO leaches readily from most waste forms, but that leaching rates of tritiated water into polymer impregnated concrete are reduced by as much as a factor of ten. Tests on improved tritium containment are ongoing. Disposal costs for tritium waste are 7 to 10 dollars per cubic foot for shallow land burial of low specific activity tritium waste, and 10 to 20 dollars per cubic foot for disposal of high specific activity waste. The cost of packaging the high specific activity waste is 150 to 300 dollars per cubic foot. 18 references

  1. Deep Borehole Disposal as an Alternative Concept to Deep Geological Disposal

    International Nuclear Information System (INIS)

    Lee, Jongyoul; Lee, Minsoo; Choi, Heuijoo; Kim, Kyungsu

    2016-01-01

    In this paper, the general concept and key technologies for deep borehole disposal of spent fuels or HLW, as an alternative method to the mined geological disposal method, were reviewed. After then an analysis on the distance between boreholes for the disposal of HLW was carried out. Based on the results, a disposal area were calculated approximately and compared with that of mined geological disposal. These results will be used as an input for the analyses of applicability for DBD in Korea. The disposal safety of this system has been demonstrated with underground research laboratory and some advanced countries such as Finland and Sweden are implementing their disposal project on commercial stage. However, if the spent fuels or the high-level radioactive wastes can be disposed of in the depth of 3-5 km and more stable rock formation, it has several advantages. Therefore, as an alternative disposal concept to the mined deep geological disposal concept (DGD), very deep borehole disposal (DBD) technology is under consideration in number of countries in terms of its outstanding safety and cost effectiveness. In this paper, the general concept of deep borehole disposal for spent fuels or high level radioactive wastes was reviewed. And the key technologies, such as drilling technology of large diameter borehole, packaging and emplacement technology, sealing technology and performance/safety analyses technologies, and their challenges in development of deep borehole disposal system were analyzed. Also, very preliminary deep borehole disposal concept including disposal canister concept was developed according to the nuclear environment in Korea

  2. Deep Borehole Disposal as an Alternative Concept to Deep Geological Disposal

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jongyoul; Lee, Minsoo; Choi, Heuijoo; Kim, Kyungsu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    In this paper, the general concept and key technologies for deep borehole disposal of spent fuels or HLW, as an alternative method to the mined geological disposal method, were reviewed. After then an analysis on the distance between boreholes for the disposal of HLW was carried out. Based on the results, a disposal area were calculated approximately and compared with that of mined geological disposal. These results will be used as an input for the analyses of applicability for DBD in Korea. The disposal safety of this system has been demonstrated with underground research laboratory and some advanced countries such as Finland and Sweden are implementing their disposal project on commercial stage. However, if the spent fuels or the high-level radioactive wastes can be disposed of in the depth of 3-5 km and more stable rock formation, it has several advantages. Therefore, as an alternative disposal concept to the mined deep geological disposal concept (DGD), very deep borehole disposal (DBD) technology is under consideration in number of countries in terms of its outstanding safety and cost effectiveness. In this paper, the general concept of deep borehole disposal for spent fuels or high level radioactive wastes was reviewed. And the key technologies, such as drilling technology of large diameter borehole, packaging and emplacement technology, sealing technology and performance/safety analyses technologies, and their challenges in development of deep borehole disposal system were analyzed. Also, very preliminary deep borehole disposal concept including disposal canister concept was developed according to the nuclear environment in Korea.

  3. Normal foot and ankle

    International Nuclear Information System (INIS)

    Weissman, S.D.

    1989-01-01

    The foot may be thought of as a bag of bones tied tightly together and functioning as a unit. The bones re expected to maintain their alignment without causing symptomatology to the patient. The author discusses a normal radiograph. The bones must have normal shape and normal alignment. The density of the soft tissues should be normal and there should be no fractures, tumors, or foreign bodies

  4. User's guide to the 'DISPOSALS' model

    International Nuclear Information System (INIS)

    Groom, M.S.; James, A.R.; Laundy, R.S.

    1984-03-01

    This report provides a User's Guide to the 'DISPOSALS' computer model and includes instructions on how to set up and run a specific problem together with details of the scope, theoretical basis, data requirements and capabilities of the model. The function of the 'DISPOSALS' model is to make assignments of nuclear waste material in an optimum manner to a number of disposal sites each subject to a number of constraints such as limits on the volume and activity. The user is able to vary the number of disposal sites, the range and limits of the constraints to be applied to each disposal site and the objective function for optimisation. The model is based on the Linear Programming technique and uses CAP Scientific's LAMPS and MAGIC packages. Currently the model has been implemented on CAP Scientific's VAX 11/750 minicomputer. (author)

  5. Recent activity on disposal of uranium waste

    International Nuclear Information System (INIS)

    Fujiwara, Noboru

    1999-01-01

    The concept on the disposal of uranium waste has not been discussed in the Atomic Energy Commission of Japan, but the research and development of it are carried out in the company and agency which are related to uranium waste. In this paper, the present condition and problems on disposal of uranium waste were shown in aspect of the nuclear fuel manufacturing companies' activity. As main contents, the past circumstances on the disposal of uranium waste, the past activity of nuclear fuel manufacturing companies, outline and properties of uranium waste were shown, and ideas of nuclear fuel manufacturing companies on the disposal of uranium waste were reported with disposal idea in the long-term program for development and utilization of nuclear energy. (author)

  6. Revised user's guide to the 'DISPOSALS' model

    International Nuclear Information System (INIS)

    Laundy, R.S.; James, A.R.; Groom, M.S.; LeJeune, S.R.

    1985-04-01

    This report provides a User's Guide to the 'DISPOSALS' computer model and includes instructions on how to set up and run a specific problem together with details of the scope, theoretical basis, data requirements and capabilities of the model. The function of the 'DISPOSALS' model is to make assignments of nuclear waste material in an optimum manner to a number of disposal sites each subject to a number of constraints such as limits on the volume and activity. The user is able to vary the number of disposal sites, the range and limits of the constraints to be applied to each disposal site and the objective function for optimisation. The model is based on the Linear Programming technique and uses CAP Scientific's LAMPS and MAGIC packages. Currently the model has been implemented on CAP Scientific's VAX 11/750 minicomputer. (author)

  7. Radioactive waste disposal in W.A

    International Nuclear Information System (INIS)

    Hartley, B.M.

    1983-01-01

    Radioactive waste in Western Australia arises primarily from medical diagnosis and treatment and from scientific research mainly with a medical orientation. Waste is classified before disposal depending on its level and type of radioactivity and then disposed of either to municipal land fill sites, to the sewerage system or by incineration. The amounts of radioactive materials which may be disposed of to the sewers and air are set by the Radiation Safety Act (1975) Regulations, and the land fill operations are controlled to ensure isolation of the material. Other waste such as unwanted sources used in industrial applications are stored for future disposal. Discussions are being held between officers of the State and Australian Governments aimed at providing suitable disposal methods for sources of this kind

  8. Disposable Electronic Cigarettes and Electronic Hookahs: Evaluation of Performance

    Science.gov (United States)

    Williams, Monique; Ghai, Sanjay

    2015-01-01

    Introduction: The purpose of this study was to characterize the performance of disposable button-activated and disposable airflow-activated electronic cigarettes (EC) and electronic hookahs (EH). Methods: The airflow rate required to produce aerosol, pressure drop, and the aerosol absorbance at 420nm were measured during smoke-outs of 9 disposable products. Three units of each product were tested in these experiments. Results: The airflow rates required to produce aerosol and the aerosol absorbances were lower for button-activated models (3mL/s; 0.41–0.55 absorbance) than for airflow-activated models (7–17mL/s; 0.48–0.84 absorbance). Pressure drop was also lower across button-activated products (range = 6–12mm H2O) than airflow-activated products (range = 15–67mm H20). For 25 of 27 units tested, airflow did not have to be increased during smoke-out to maintain aerosol production, unlike earlier generation models. Two brands had uniform performance characteristics for all parameters, while 3 had at least 1 product that did not function normally. While button-activated models lasted 200 puffs or less and EH airflow-activated models often lasted 400 puffs, none of the models produced as many puffs as advertised. Puff number was limited by battery life, which was shorter in button-activated models. Conclusion: The performance of disposable products was differentiated mainly by the way the aerosol was produced (button vs airflow-activated) rather than by product type (EC vs EH). Users needed to take harder drags on airflow-activated models. Performance varied within models, and battery life limited the number of puffs. Data suggest quality control in manufacturing varies among brands. PMID:25104117

  9. The design analysis of ACP-canister for nuclear waste disposal

    International Nuclear Information System (INIS)

    Raiko, H.

    1992-05-01

    The design basis, dimensioning and some manufacturing aspects of the Advanced Cold Process Canister (ACPC) for the nuclear waste disposal is summarized in the report. The strength of the canister has been evaluated in normal design load condition and in extreme high hydrostatic pressure load condition possibly caused by ice age (orig.)

  10. DISPOSAL CONTAINER HANDLING SYSTEM DESCRIPTION DOCUMENT

    Energy Technology Data Exchange (ETDEWEB)

    E. F. Loros

    2000-06-30

    The Disposal Container Handling System receives and prepares new disposal containers (DCs) and transfers them to the Assembly Transfer System (ATS) or Canister Transfer System (CTS) for loading. The system receives the loaded DCs from ATS or CTS and welds the lids. When the welds are accepted the DCs are termed waste packages (WPs). The system may stage the WP for later transfer or transfer the WP directly to the Waste Emplacement/Retrieval System. The system can also transfer DCs/WPs to/from the Waste Package Remediation System. The Disposal Container Handling System begins with new DC preparation, which includes installing collars, tilting the DC upright, and outfitting the container for the specific fuel it is to receive. DCs and their lids are staged in the receipt area for transfer to the needed location. When called for, a DC is put on a cart and sent through an airlock into a hot cell. From this point on, all processes are done remotely. The DC transfer operation moves the DC to the ATS or CTS for loading and then receives the DC for welding. The DC welding operation receives loaded DCs directly from the waste handling lines or from interim lag storage for welding of the lids. The welding operation includes mounting the DC on a turntable, removing lid seals, and installing and welding the inner and outer lids. After the weld process and non-destructive examination are successfully completed, the WP is either staged or transferred to a tilting station. At the tilting station, the WP is tilted horizontally onto a cart and the collars removed. The cart is taken through an air lock where the WP is lifted, surveyed, decontaminated if required, and then moved into the Waste Emplacement/Retrieval System. DCs that do not meet the welding non-destructive examination criteria are transferred to the Waste Package Remediation System for weld preparation or removal of the lids. The Disposal Container Handling System is contained within the Waste Handling Building System

  11. Disposal configuration options for future uses of greater confinement disposal at the Nevada Test Site

    International Nuclear Information System (INIS)

    Price, L.

    1994-09-01

    The US Department of Energy (DOE) is responsible for disposing of a variety of radioactive and mixed wastes, some of which are considered special-case waste because they do not currently have a clear disposal option. The DOE's Nevada Field Office contracted with Sandia National Laboratories to investigate the possibility of disposing of some of this special-case waste at the Nevada Test Site (NTS). As part of this investigation, a review of a near-surface and subsurface disposal options that was performed to develop alternative disposal configurations for special-case waste disposal at the NTS. The criteria for the review included (1) configurations appropriate for disposal at the NTS; (2) configurations for disposal of waste at least 100 ft below the ground surface; (3) configurations for which equipment and technology currently exist; and (4) configurations that meet the special requirements imposed by the nature of special-case waste. Four options for subsurface disposal of special-case waste are proposed: mined consolidated rock, mined alluvium, deep pits or trenches, and deep boreholes. Six different methods for near-surface disposal are also presented: earth-covered tumuli, above-grade concrete structures, trenches, below-grade concrete structures, shallow boreholes, and hydrofracture. Greater confinement disposal (GCD) in boreholes at least 100 ft deep, similar to that currently practiced at the GCD facility at the Area 5 Radioactive Waste Management Site at the NTS, was retained as the option that met the criteria for the review. Four borehole disposal configurations are proposed with engineered barriers that range from the native alluvium to a combination of gravel and concrete. The configurations identified will be used for system analysis that will be performed to determine the disposal configurations and wastes that may be suitable candidates for disposal of special-case wastes at the NTS

  12. Transport and nuclear waste disposal

    International Nuclear Information System (INIS)

    Wild, E.

    1999-01-01

    The author assesses both past and future of nuclear waste disposal in Germany. The failure of the disposal concept is, he believes, mainly the fault of the Federal Government. On the basis of the Nuclear Energy Act, the government is obliged to ensure that ultimate-storage sites are established and operated. Up to the present, however, the government has failed - apart from the episode in Asse and Morsleben and espite existing feasible proposals in Konrad and Gorleben - to achieve this objective. This negative development is particularly evident from the projects which have had to be prematurely abandoned. The costs of such 'investment follies' meanwhile amount to several billion DM. At least 92% of the capacity in the intermediate-storage sites are at present unused. Following the closure of the ultimate-storage site in Morsleben, action must be taken to change over to long-term intermediate-storage of operational waste. The government has extensive intermediate-storage capacity at the intermediate-storage site Nord in Greifswald. There, the wate originally planned for storage in Morsleben could be intermediately stored at ERAM-rates. Nuclear waste transportation, too, could long ago have been resumed, in the author's view. For the purpose of improving the transport organisation, a new company was founded which represents exclusively the interests of the reprocessing firms at the nuclear power stations. The author's conclusion: The EVU have done their homework properly and implemented all necessary measures in order to be able to resume transport of fuel elements as soon as possible. The generating station operators favour a solution based upon agreement with the Federal Government. The EVU have already declared their willingness - in the event of unanimous agreement - to set up intermediate-storage sites near the power stations. The ponds in the generating stations, however, are unsuitable for use as intermediate-storage areas. If intermediate-storage areas for

  13. Peristaltic pumps for waste disposal

    International Nuclear Information System (INIS)

    Griffith, G.W.

    1992-09-01

    Laboratory robots are capable of generating large volumes of hazardous liquid wastes when they are used to perform chemical analyses of metal finishing solutions. A robot at Allied-Signal Inc., Kansas City Division, generates 30 gallons of acid waste each month. This waste contains mineral acids, heavy metals, metal fluorides, and other materials. The waste must be contained in special drums that are closed to the atmosphere. The initial disposal method was to have the robot pour the waste into a collecting funnel, which contained a liquid-sensing valve to admit the waste into the drum. Spills were inevitable, splashing occurred, and the special valve often didn't work well. The device also occupied a large amount of premium bench space. Peristaltic pumps are made to handle hazardous liquids quickly and efficiently. A variable-speed pump, equipped with a quick-loading pump head, was mounted below the robot bench near the waste barrel. The pump inlet tube was mounted above the bench within easy reach of the robot, while the outlet tube was connected directly to the barrel. During operation, the robot brings the waste liquid up to the pump inlet tube and activates the pump. When the waste has been removed, the pump stops. The procedure is quick, simple, inexpensive, safe, and reliable

  14. Mine waste disposal and managements

    Energy Technology Data Exchange (ETDEWEB)

    Cheong, Young Wook; Min, Jeong Sik; Kwon, Kwang Soo; Kim, Ok Hwan; Kim, In Kee; Song, Won Kyong; Lee, Hyun Joo [Korea Institute of Geology Mining and Materials, Taejon (Korea)

    1998-12-01

    Acid Rock Drainage (ARD) is the product formed by the atmospheric oxidation of the relatively common pyrite and pyrrhotite. Waste rock dumps and tailings containing sulfide mineral have been reported at toxic materials producing ARD. Mining in sulphide bearing rock is one of activity which may lead to generation and release of ARD. ARD has had some major detrimental affects on mining areas. The purpose of this study was carried out to develop disposal method for preventing contamination of water and soil environment by waste rocks dump and tailings, which could discharge the acid drainage with high level of metals. Scope of this study was as following: environmental impacts by mine wastes, geochemical characteristics such as metal speciation, acid potential and paste pH of mine wastes, interpretation of occurrence of ARD underneath tailings impoundment, analysis of slope stability of tailings dam etc. The following procedures were used as part of ARD evaluation and prediction to determine the nature and quantities of soluble constituents that may be washed from mine wastes under natural precipitation: analysis of water and mine wastes, Acid-Base accounting, sequential extraction technique and measurement of lime requirement etc. In addition, computer modelling was applied for interpretation of slope stability od tailings dam. (author). 44 refs., 33 tabs., 86 figs.

  15. Method of disposing radioactive wastes

    International Nuclear Information System (INIS)

    Isozaki, Kei.

    1983-01-01

    Purpose : To enable safety ocean disposal of radioactive wastes by decreasing the leaching rate of radioactive nucleides, improving the quick-curing nature and increasing the durability. Method : A mixture comprising 2 - 20 parts by weight of alkali metal hydroxide and 100 parts by weight of finely powdered aqueous slags from a blast furnace is added to radioactive wastes to solidify them. In the case of medium or low level radioactive wastes, the solidification agent is added by 200 parts by weight to 100 parts by weight of the wastes and, in the case of high level wastes, the solidification agent is added in such an amount that the wastes occupy about 20% by weight in the total of the wastes and the solidification agent. Sodium hydroxide used as the alkali metal hydroxide is partially replaced with sodium carbonate, a water-reducing agent such as lignin sulfonate is added to improve the fluidity and suppress the leaching rate and the wastes are solidified in a drum can. In this way, corrosions of the vessel can be suppressed by the alkaline nature and the compression strength, heat stability and the like of the product also become excellent. (Sekiya, K.)

  16. Inspection of disposal canisters components

    International Nuclear Information System (INIS)

    Pitkaenen, J.

    2013-12-01

    This report presents the inspection techniques of disposal canister components. Manufacturing methods and a description of the defects related to different manufacturing methods are described briefly. The defect types form a basis for the design of non-destructive testing because the defect types, which occur in the inspected components, affect to choice of inspection methods. The canister components are to nodular cast iron insert, steel lid, lid screw, metal gasket, copper tube with integrated or separate bottom, and copper lid. The inspection of copper material is challenging due to the anisotropic properties of the material and local changes in the grain size of the copper material. The cast iron insert has some acoustical material property variation (attenuation, velocity changes, scattering properties), which make the ultrasonic inspection demanding from calibration point of view. Mainly three different methods are used for inspection. Ultrasonic testing technique is used for inspection of volume, eddy current technique, for copper components only, and visual testing technique are used for inspection of the surface and near surface area

  17. From fundamentals to waste disposal

    International Nuclear Information System (INIS)

    Barbalat, O.

    1991-01-01

    Today the particle accelerator is widely used in nearly every field of physics and is also essential to study structures in chemistry and biology or to perform sensitive trace element analysis. Its application range is being extended considerably by the capability to generate synchrotron radiation. Progress in nuclear and particle physics that originated from studies with accelerators is now playing a determining role in astrophysics and cosmology. Important industrial applications include ion implantation in the semiconductor industry and the modification of surface properties of materials. Microlithography using synchrotron radiation is used to produce high-density integrated electronic circuits. Radiation is being used in a variety of processes to preserve food, sterilise toxic waste or polymerise plastics. Activation methods using neutrons from compact accelerators can be applied in geophysics and are also being developed to detect explosives. It is probably in medicine that accelerators have found their widest field of application: isotope production for diagnostic/treatment purposes or for radiation therapy. Accelerators may also play a key role in power engineering. Studies of inertial confinement fusion by heavy ions are actively under way in several countries. Accelerators are essential for providing the additional heating needed for plasma ignition in a tokamak. Research is also being carried out on the use of accelerators to incinerate long-life nuclear waste which could perhaps lead to an acceptable long-term disposal solution. (author)

  18. Spent nuclear fuel disposal liability insurance

    International Nuclear Information System (INIS)

    Martin, D.W.

    1984-01-01

    This thesis examines the social efficiency of nuclear power when the risks of accidental releases of spent fuel radionuclides from a spent fuel disposal facility are considered. The analysis consists of two major parts. First, a theoretical economic model of the use of nuclear power including the risks associated with releases of radionuclides from a disposal facility is developed. Second, the costs of nuclear power, including the risks associated with a radionuclide release, are empirically compared to the costs of fossil fuel-fired generation of electricity. Under the provisions of the Nuclear Waste Policy Act of 1982, the federally owned and operated spent nuclear fuel disposal facility is not required to maintain a reserve fund to cover damages from an accidental radionuclide release. Thus, the risks of a harmful radionuclide release are not included in the spent nuclear fuel disposal fee charged to the electric utilities. Since the electric utilities do not pay the full, social costs of spent fuel disposal, they use nuclear fuel in excess of the social optimum. An insurance mechanism is proposed to internalize the risks associated with spent fueled disposal. Under this proposal, the Federal government is required to insure the disposal facility against any liabilities arising from accidental releases of spent fuel radionuclides

  19. Review of the nuclear waste disposal problem

    International Nuclear Information System (INIS)

    Poch, L.A.; Wolsko, T.D.

    1979-10-01

    Regardless of future nuclear policy, a nuclear waste disposal problem does exist and must be dealt with. Even a moratorium on new nuclear plants leaves us with the wastes already in existence and wastes yet to be generated by reactors in operation. Thus, technologies to effectively dispose of our current waste problem must be researched and identified and, then, disposal facilities built. The magnitude of the waste disposal problem is a function of future nuclear policy. There are some waste disposal technologies that are suitable for both forms of HLW (spent fuel and reprocessing wastes), whereas others can be used with only reprocessed wastes. Therefore, the sooner a decision on the future of nuclear power is made the more accurately the magnitude of the waste problem will be known, thereby identifying those technologies that deserve more attention and funding. It is shown that there are risks associated with every disposal technology. One technology may afford a higher isolation potential at the expense of increased transportation risks in comparison to a second technology. Establishing the types of risks we are willing to live with must be resolved before any waste disposal technology can be instituted for widespread commercial use

  20. Geological aspects of radioactive waste disposal

    International Nuclear Information System (INIS)

    Kobera, P.

    1985-01-01

    Geological formations suitable for burying various types of radioactive wastes are characterized applying criteria for the evaluation and selection of geological formations for building disposal sites for radioactive wastes issued in IAEA technical recommendations. They are surface disposal sites, disposal sites in medium depths and deep disposal sites. Attention is focused on geological formations usable for injecting self-hardening mixtures into cracks prepared by hydraulic decomposition and for injecting liquid radioactive wastes into permeable rocks. Briefly outlined are current trends of the disposal of radioactive wastes in Czechoslovakia and the possibilities are assessed from the geological point of view of building disposal sites for radioactive wastes on the sites of Czechoslovak nuclear power plants at Jaslovske Bohunice, Mochovce, Dukovany, Temelin, Holice (eastern Bohemia), Blahoutovice (northern Moravia) and Zehna (eastern Slovakia). It is stated that in order to design an optimal method of the burial of radioactive waste it will be necessary to improve knowledge of geological conditions in the potential disposal sites at the said nuclear plants. There is usually no detailed knowledge of geological and hydrological conditions at greater depths than 100 m. (Z.M.)

  1. No nuclear power. No disposal facility?

    Energy Technology Data Exchange (ETDEWEB)

    Feinhals, J. [DMT GmbH und Co.KG, Hamburg (Germany)

    2016-07-01

    Countries with a nuclear power programme are making strong efforts to guarantee the safe disposal of radioactive waste. The solutions in those countries are large disposal facilities near surface or in deep geological layers depending on the activity and half-life of the nuclides in the waste. But what will happen with the radioactive waste in countries that do not have NPPs but have only low amounts of radioactive waste from medical, industrial and research facilities as well as from research reactors? Countries producing only low amounts of radioactive waste need convincing solutions for the safe and affordable disposal of their radioactive waste. As they do not have a fund by an operator of nuclear power plants, those countries need an appropriate and commensurate solution for the disposal of their waste. In a first overview five solutions seem to be appropriate: (i) the development of multinational disposal facilities by using the existing international knowhow; (ii) common disposal with hazardous waste; (iii) permanent storage; (iv) use of an existing mine or tunnel; (v) extension of the borehole disposal concept for all the categories of radioactive wastes.

  2. The Dutch geologic radioactive waste disposal project

    International Nuclear Information System (INIS)

    Hamstra, J.; Verkerk, B.

    1981-01-01

    The Final Report reviews the work on geologic disposal of radioactive waste performed in the Netherlands over the period 1 January 1978 to 31 December 1979. The attached four topical reports cover detailed subjects of this work. The radionuclide release consequences of an accidental flooding of the underground excavations during the operational period was studied by the institute for Atomic Sciences in Agriculture (Italy). The results of the quantitative examples made for different effective cross-sections of the permeable layer connecting the mine excavations with the boundary of the salt dome, are that under all circumstances the concentration of the waste nuclides in drinking water will remain well within the ICRP maximum permissible concentrations. Further analysis work was done on what minima can be achieved for both the maximum local rock salt temperatures at the disposal borehole walls and the maximum global rock salt temperatures halfway between a square of disposal boreholes. Different multi-layer disposal configurations were analysed and compared. A more detailed description is given of specific design and construction details of a waste repository such as the shaft sinking and construction, the disposal mine development, the mine ventilation and the different plugging and sealing procedures for both the disposal boreholes and the shafts. Thanks to the hospitality of the Gesellschaft fuer Strahlenforschung, an underground working area in the Asse mine became available for performing a dry drilling experiment, which resulted successfully in the drilling of a 300 m deep disposal borehole from a mine room at the -750 m level

  3. Geological disposal of radioactive waste. Safety requirements

    International Nuclear Information System (INIS)

    2006-01-01

    This Safety Requirements publication is concerned with providing protection to people and the environment from the hazards associated with waste management activities related to disposal, i.e. hazards that could arise during the operating period and following closure. It sets out the protection objectives and criteria for geological disposal and establishes the requirements that must be met to ensure the safety of this disposal option, consistent with the established principles of safety for radioactive waste management. It is intended for use by those involved in radioactive waste management and in making decisions in relation to the development, operation and closure of geological disposal facilities, especially those concerned with the related regulatory aspects. This publication contains 1. Introduction; 2. Protection of human health and the environment; 3. The safety requirements for geological disposal; 4. Requirements for the development, operation and closure of geological disposal facilities; Appendix: Assurance of compliance with the safety objective and criteria; Annex I: Geological disposal and the principles of radioactive waste management; Annex II: Principles of radioactive waste management

  4. The disposal of radioactive waste on land

    Energy Technology Data Exchange (ETDEWEB)

    None

    1957-09-01

    A committee of geologists and geophysicists was established by the National Academy of Sciences-National Research Council at the request of the Atomic Energy Commission to consider the possibilities of disposing of high level radioactive wastes in quantity within the continental limits of the United States. The group was charged with assembling the existing geologic information pertinent to disposal, delineating the unanswered problems associated with the disposal schemes proposed, and point out areas of research and development meriting first attention; the committee is to serve as continuing adviser on the geological and geophysical aspects of disposal and the research and development program. The Committee with the cooperation of the Johns Hopkins University organized a conference at Princeton in September 1955. After the Princeton Conference members of the committee inspected disposal installations and made individual studies. Two years consideration of the disposal problems leads to-certain general conclusions. Wastes may be disposed of safely at many sites in the United States but, conversely, there are many large areas in which it is unlikely that disposal sites can be found, for example, the Atlantic Seaboard. Disposal in cavities mined in salt beds and salt domes is suggested as the possibility promising the most practical immediate solution of the problem. In the future the injection of large volumes of dilute liquid waste into porous rock strata at depths in excess of 5,000 feet may become feasible but means of rendering, the waste solutions compatible with the mineral and fluid components of the rock must first be developed. The main difficulties, to the injection method recognized at present are to prevent clogging of pore space as the solutions are pumped into the rock and the prediction or control of the rate and direction of movement.

  5. Insensitive Munitions (Les Munitions a Risque Attenue)

    Science.gov (United States)

    1992-07-01

    82176talonnage des tests d’IAD, qui ont U6 calibr~s iium~riquement et exp&imentalement k laide de jauges pi~zo-r~sistives. La figure 1 donne ces courbes d...tests siont instrumnentks avec des jauges de sitions B 2214 et B 3017, malgr6 Vaecroissement ,ýurpression "irienne. des came6ras rapides (500 1 30

  6. Safety and sensitivity analyses of a generic geologic disposal system for high-level radioactive waste

    International Nuclear Information System (INIS)

    Kimura, Hideo; Takahashi, Tomoyuki; Shima, Shigeki; Matsuzuru, Hideo

    1994-11-01

    This report describes safety and sensitivity analyses of a generic geologic disposal system for HLW, using a GSRW code and an automated sensitivity analysis methodology based on the Differential Algebra. An exposure scenario considered here is based on a normal evolution scenario which excludes events attributable to probabilistic alterations in the environment. The results of sensitivity analyses indicate that parameters related to a homogeneous rock surrounding a disposal facility have higher sensitivities to the output analyzed here than those of a fractured zone and engineered barriers. The sensitivity analysis methodology provides technical information which might be bases for the optimization of design of the disposal facility. Safety analyses were performed on the reference disposal system which involve HLW in amounts corresponding to 16,000 MTU of spent fuels. The individual dose equivalent due to the exposure pathway ingesting drinking water was calculated using both the conservative and realistic values of geochemical parameters. In both cases, the committed dose equivalent evaluated here is the order of 10 -7 Sv, and thus geologic disposal of HLW may be feasible if the disposal conditions assumed here remain unchanged throughout the periods assessed here. (author)

  7. Disposal of radioactive waste: can long-term safety be evaluated

    International Nuclear Information System (INIS)

    1991-01-01

    The long-term safety of any hazardous waste disposal system must be convincingly shown prior to its implementation. For radioactive wastes, safety assessments over timescales far beyond the normal horizon of social and technical planning have already been conducted in many countries. These assessments provide the principal means to investigate, quantify, and explain long-term safety of each selected disposal concept and site for the appropriate authorities and the public. Such assessments are based on four main elements: definition of the disposal system and its environment, identification of possible processes and events that may affect the integrity of the disposal system, quantification of the radiological impact by predictive modelling, and description of associated uncertainties. The NEA Radioactive Waste Management Committee and the IAEA International Radioactive Waste Management Advisory Committee have carefully examined the current scientific methods for safety assessments of radioactive waste disposal systems, as briefly summarized in this report. The Committees have also reviewed the experience now available from using safety assessment methods in many countries, for different disposal concepts and formations, and in the framework of both nationally and internationally conducted studies, as referenced in this report [fr

  8. Where to dispose of the sewage sludge?

    International Nuclear Information System (INIS)

    Beurer, P.; Geering, F.

    2001-01-01

    The 'proper' course for the disposal of sewage sludge is a topic that has continually sparked intense discussion for years. New legal regulations have developed which have significantly changed the disposal structure. Nevertheless, the consumer market of agriculture products has an increasing influence on sewage sludge recycling possibilities. In this report, the changes in sewage sludge disposal within the last ten years and the expected development is pointed out. On account of legal guidelines and of political market influences, the thermal recycling of sewage sludge is considered as the future solution, which should, however, be adapted according to marginal situations. (author)

  9. Nuclear fuel waste disposal in Canada

    International Nuclear Information System (INIS)

    Dormuth, K.W.; Gillespie, P.A.

    1990-05-01

    Atomic Energy of Canada Limited (AECL) has developed a concept for disposing of Canada's nuclear fuel waste and is submitting it for review under Federal Environmental Assessment and Review Process. During this review, AECL intends to show that careful, controlled burial 500 to 1000 metres deep in plutonic rock of the Canadian Precambrian Shield is a safe and feasible way to dispose of Canada's nuclear fuel waste. The concept has been assessed without identifying or evaluating any particular site for disposal. AECL is now preparing a comprehensive report based on more than 10 years of research and development

  10. Nuclear fuel waste disposal in Canada

    International Nuclear Information System (INIS)

    Dormuth, K.W.; Gillespie, P.A.

    1990-05-01

    Atomic Energy of Canada Limited (AECL) has developed a concept for disposing of Canada's nuclear fuel waste and is submitting it for review under the Federal Environmental Assessment and Review Process. During this review, AECL intends to show that careful, controlled burial 500 to 1000 metres deep in plutonic rock of the Canadian Precambrian Shield is a safe and feasible way to dispose of Canada's nuclear fuel waste. The concept has been assessed without identifying or evaluating any particular site for disposal. AECL is now preparing a comprehensive report based on more than 10 years of research and development

  11. Shallow land disposal, the french system

    International Nuclear Information System (INIS)

    Barthoux, A.; Marque, Y.

    1986-01-01

    Since 1969, low and medium activity waste are disposed of in France at the Centre Manche. The management system set up covers the whole of the operations, from the sorting of the wastes and their conditioning to the final disposal. Safety standards and technical issues were found satisfactory by the National Safety Authority and they are the basis of the program for the realization of two new disposal sites which should take over from the Centre Manche loaded towards 1990. ANDRA, a National Agency, is responsible for the long term management of radioactive waste, in France [fr

  12. Confidence building in implementation of geological disposal

    International Nuclear Information System (INIS)

    Umeki, Hiroyuki

    2004-01-01

    Long-term safety of the disposal system should be demonstrated to the satisfaction of the stakeholders. Convincing arguments are therefore required that instil in the stakeholders confidence in the safety of a particular concept for the siting and design of a geological disposal, given the uncertainties that inevitably exist in its a priori description and in its evolution. The step-wise approach associated with making safety case at each stage is a key to building confidence in the repository development programme. This paper discusses aspects and issues on confidence building in the implementation of HLW disposal in Japan. (author)

  13. Cost considerations in remediation and disposal

    International Nuclear Information System (INIS)

    Dance, J.T.; Huddleston, R.D.

    1999-01-01

    Opportunities for assessing the costs associated with the reclamation and remediation of sites contaminated by oilfield wastes are discussed. The savings can be maximized by paying close attention to five different aspects of the overall site remediation and disposal process. These are: (1) highly focused site assessment, (2) cost control of treatment and disposal options, (3) value added cost benefits, (4) opportunities to control outside influences during the remedial process, and (5) opportunities for managing long-term liabilities and residual risk remaining after the remedial program is completed. It is claimed that addressing these aspects of the process will ultimately lower the overall cost of site remediation and waste disposal

  14. Evaluations for draft reports on geological disposal

    International Nuclear Information System (INIS)

    Maekawa, Keisuke; Igarashi, Hiroshi

    2002-10-01

    This report summarizes the results of the technical evaluations on two reports which are named as 'Overview of the Geological Disposal Facility' and Considerable Factors on Selection of Potential Sites for Geological Disposal' drafted by NUMO (Nuclear Waste Management Organization of Japan). The review of each draft report has been referred to committee (held on 9th September, 2002) and working group (held on 1st October, 2002) which were organized in order to confirm a progress of implementation of geological disposal by government. (author)

  15. The disposal of Canada's nuclear fuel waste: engineering for a disposal facility

    International Nuclear Information System (INIS)

    Simmons, G.R.; Baumgartner, P.

    1994-01-01

    This report presents some general considerations for engineering a nuclear fuel waste disposal facility, alternative disposal-vault concepts and arrangements, and a conceptual design of a used-fuel disposal centre that was used to assess the technical feasibility, costs and potential effects of disposal. The general considerations and alternative disposal-vault arrangements are presented to show that options are available to allow the design to be adapted to actual site conditions. The conceptual design for a used-fuel disposal centre includes descriptions of the two major components of the disposal facility, the Used-Fuel Packaging Plant and the disposal vault; the ancillary facilities and services needed to carry out the operations are also identified. The development of the disposal facility, its operation, its decommissioning, and the reclamation of the site are discussed. The costs, labour requirements and schedules used to assess socioeconomic effects and that may be used to assess the cost burden of waste disposal to the consumer of nuclear energy are estimated. The Canadian Nuclear Fuel Waste Management Program is funded jointly by AECL and Ontario Hydro under the auspices of the CANDU Owners Group. (author)

  16. Evaluation of the metabolic fate of munitions material (TNT & RDX) in plant systems. Initial assessment of plant DNA mutation spectra as a biomarker

    Energy Technology Data Exchange (ETDEWEB)

    Leung, F.; Cataldo, D.A.; Fellows, R.J.; Jarrell, A.E.; Harvey, S.D.

    1995-09-01

    Munitions material can enter the environment as a result of manufacturing activities and field usage. Predictor methodologies, or biomarkers would enhance evaluation of environmental impacts. The goal of this exploratory study deoxyribonucleic acid (DNA) mutation frequency as a biomarker for munitions exposure. The approach e resolution of an effective repetitive sequence probe for the identification of characteristic mutations, and (2) the development of a testing media [a clonal cell line of carrot (Daucus carota) spension cells]. Commercially available probes demonstrated marginal resolution therefore a low-C{sub o}t library was then constructed. Three colonies from the low-C{sub o}t DNA library were screened and the DNA isolates sequenced. A suspension culture of carrot (Daucus carota) was developed. A mutation spectra experiment was initiated at a 10-mg TNT/L exposure concentration with the attempt to clone over 1500 single TNT-exposed cells. Over the following six months greater than 98% of the initially isolated cells were unable to survive and produce micro calluses. The remaining calli were too few to be statistically significant and the experiment was terminated. The biomarker concept itself remains to be disproved, but the need for large numbers of uniform clones to differentiate true mutations suggest that more direct techniques using whole tissues need to be developed.

  17. Assessment of alternative disposal concepts

    Energy Technology Data Exchange (ETDEWEB)

    Autio, J.; Saanio, T.; Tolppanen, P. [Saanio and Riekkola Consulting Engineers, Helsinki (Finland); Raiko, H.; Vieno, T. [VTT Energy, Espoo (Finland); Salo, J.P. [Posiva Oy, Helsinki (Finland)

    1996-12-01

    Four alternative repository designs for the disposal of spent nuclear in the Finnish crystalline bedrock were assessed in the study. The alternatives were: (1) the basic KBS-3 design in which copper canisters are emplaced in vertical deposition holes bored in the floors of horizontal tunnels, (2) the KBS-3-2C design with two canisters in a deposition hole, (3) Short Horizontal Holes (SHH) in the side walls of the tunnels, and (4) the Medium Long Holes (MLH) concept in which approximately 25 canisters are emplaced in a horizontal deposition hole about 200 metres in length bored between central and side tunnels. In all the alternatives considered, the thickness of the layer of compacted bentonite between copper canister and bedrock is 35 cm. Two different copper canister designs were also assessed. Technical feasibility and flexibility, post-closure safety and repository cost were assessed for each of the alternative canister and repository designs. On the basis of this assessment it is recommended that further development and studies should focus on the vacuum- or inert gas-filled cast insert type copper canister and the basic KBS-3 type repository design with a single canister in a vertical deposition hole. The KBS-3 design is robust and flexible and provides excellent post-closure safety. The transfer, emplacement and sealing operations are technically uncomplicated. The alternative options assessed do not offer any significant benefits in safety or cost over the basic design, but they are technically more complex and also in some respects more vulnerable to malfunction during the emplacement of canisters and buffer, as well as common mode failures. (60 refs.).

  18. DISPOSABLE CANISTER WASTE ACCEPTANCE CRITERIA

    Energy Technology Data Exchange (ETDEWEB)

    R.J. Garrett

    2001-07-30

    The purpose of this calculation is to provide the bases for defining the preclosure limits on radioactive material releases from radioactive waste forms to be received in disposable canisters at the Monitored Geologic Repository (MGR) at Yucca Mountain. Specifically, this calculation will provide the basis for criteria to be included in a forthcoming revision of the Waste Acceptance System Requirements Document (WASRD) that limits releases in terms of non-isotope-specific canister release dose-equivalent source terms. These criteria will be developed for the Department of Energy spent nuclear fuel (DSNF) standard canister, the Multicanister Overpack (MCO), the naval spent fuel canister, the High-Level Waste (HLW) canister, the plutonium can-in-canister, and the large Multipurpose Canister (MPC). The shippers of such canisters will be required to demonstrate that they meet these criteria before the canisters are accepted at the MGR. The Quality Assurance program is applicable to this calculation. The work reported in this document is part of the analysis of DSNF and is performed using procedure AP-3.124, Calculations. The work done for this analysis was evaluated according to procedure QAP-2-0, Control of Activities, which has been superseded by AP-2.21Q, Quality Determinations and Planning for Scientific, Engineering, and Regulatory Compliance Activities. This evaluation determined that such activities are subject to the requirements of DOE/RW/0333P, Quality Assurance Requirements and Description (DOE 2000). This work is also prepared in accordance with the development plan titled Design Basis Event Analyses on DOE SNF and Plutonium Can-In-Canister Waste Forms (CRWMS M&O 1999a) and Technical Work Plan For: Department of Energy Spent Nuclear Fuel Work Packages (CRWMS M&O 2000d). This calculation contains no electronic data applicable to any electronic data management system.

  19. Assessment of alternative disposal concepts

    International Nuclear Information System (INIS)

    Autio, J.; Saanio, T.; Tolppanen, P.; Raiko, H.; Vieno, T.; Salo, J.P.

    1996-12-01

    Four alternative repository designs for the disposal of spent nuclear in the Finnish crystalline bedrock were assessed in the study. The alternatives were: (1) the basic KBS-3 design in which copper canisters are emplaced in vertical deposition holes bored in the floors of horizontal tunnels, (2) the KBS-3-2C design with two canisters in a deposition hole, (3) Short Horizontal Holes (SHH) in the side walls of the tunnels, and (4) the Medium Long Holes (MLH) concept in which approximately 25 canisters are emplaced in a horizontal deposition hole about 200 metres in length bored between central and side tunnels. In all the alternatives considered, the thickness of the layer of compacted bentonite between copper canister and bedrock is 35 cm. Two different copper canister designs were also assessed. Technical feasibility and flexibility, post-closure safety and repository cost were assessed for each of the alternative canister and repository designs. On the basis of this assessment it is recommended that further development and studies should focus on the vacuum- or inert gas-filled cast insert type copper canister and the basic KBS-3 type repository design with a single canister in a vertical deposition hole. The KBS-3 design is robust and flexible and provides excellent post-closure safety. The transfer, emplacement and sealing operations are technically uncomplicated. The alternative options assessed do not offer any significant benefits in safety or cost over the basic design, but they are technically more complex and also in some respects more vulnerable to malfunction during the emplacement of canisters and buffer, as well as common mode failures. (60 refs.)

  20. Marine disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Woodhead, D.S.

    1980-01-01

    In a general sense, the main attraction of the marine environment as a repository for the wastes generated by human activities lies in the degree of dispersion and dilution which is readily attainable. However, the capacity of the oceans to receive wastes without unacceptable consequences is clearly finite and this is even more true of localized marine environments such as estuaries, coastal waters and semi-enclosed seas. Radionuclides have always been present in the marine environment and marine organisms and humans consuming marine foodstuffs have always been exposed, to some degree, to radiation from this source. The hazard associated with ionizing radiations is dependent upon the adsorption of energy from the radiation field within some biological entity. Thus any disposal of radioactive wastes into the marine environment has consequences, the acceptability of which must be assessed in terms of the possible resultant increase in radiation exposure of human and aquatic populations. In the United Kingdom the primary consideration has been and remains the safe-guarding of public health. The control procedures are therefore designed to minimize as far as practicable the degree of human exposure within the overall limits recommended as acceptable by the International Commission on Radiological Protection. There are several approaches through which control could be exercised and the strenghs and weaknesses of each are considered. In this review the detailed application of the critical path technique to the control of the discharge into the north-east Irish Sea from the fuel reprocessing plant at Windscale is given as a practical example. It will be further demonstrated that when human exposure is controlled in this way no significant risk attaches to the increased radiation exposure experienced by populations of marine organisms in the area. (orig.) [de

  1. Alternative disposal technologies for new low-level radioactive waste disposal/storage facilities at the Savannah River Plant

    International Nuclear Information System (INIS)

    Cook, J.R.

    1987-01-01

    A Draft Environmental Impact Statement for Waste Management Activities for groundwater protection has been prepared for the Savannah River Plant. Support documentation for the DEIS included an Environmental Information Document on new radioactive waste disposal and storage facilities in which possible alternative disposal technologies were examined in depth. Six technologies that would meet the needs of the Savannah River Plant that selected for description and analysis include near surface disposal, near surface disposal with exceptions, engineered storage, engineered disposal, vault disposal of untreated waste, and a combination of near surface disposal, engineered disposal, and engineered storage. 2 refs

  2. Concept development for HLW disposal research tunnel

    International Nuclear Information System (INIS)

    Queon, S. K.; Kim, K. S.; Park, J. H.; Jeo, W. J.; Han, P. S.

    2003-01-01

    In order to dispose high-level radioactive waste in a geological formation, it is necessary to assess the safety of a disposal concept by excavating a research tunnel in the same geological formation as the host rock mass. The design concept of a research tunnel depends on the actual disposal concept, repository geometry, experiments to be carried at the tunnel, and geological conditions. In this study, analysis of the characteristics of the disposal research tunnel, which is planned to be constructed at KAERI site, calculation of the influence of basting impact on neighbor facilities, and computer simuation for mechanical stability analysis using a three-dimensional code, FLAC3D, had been carried out to develop the design concept of the research tunnel

  3. Waste disposal options report. Volume 2

    International Nuclear Information System (INIS)

    Russell, N.E.; McDonald, T.G.; Banaee, J.; Barnes, C.M.; Fish, L.W.; Losinski, S.J.; Peterson, H.K.; Sterbentz, J.W.; Wenzel, D.R.

    1998-02-01

    Volume 2 contains the following topical sections: estimates of feed and waste volumes, compositions, and properties; evaluation of radionuclide inventory for Zr calcine; evaluation of radionuclide inventory for Al calcine; determination of k eff for high level waste canisters in various configurations; review of ceramic silicone foam for radioactive waste disposal; epoxides for low-level radioactive waste disposal; evaluation of several neutralization cases in processing calcine and sodium-bearing waste; background information for EFEs, dose rates, watts/canister, and PE-curies; waste disposal options assumptions; update of radiation field definition and thermal generation rates for calcine process packages of various geometries-HKP-26-97; and standard criteria of candidate repositories and environmental regulations for the treatment and disposal of ICPP radioactive mixed wastes

  4. Economic analysis of alternative LLW disposal methods

    International Nuclear Information System (INIS)

    Foutes, C.E.

    1987-01-01

    The Environmental Protection Agency (EPA) has evaluated the costs and benefits of alternative disposal technologies as part of its program to develop generally applicable environmental standards for the land disposal of low-level radioactive waste (LLW). Costs, population health effects and Critical Population Group (CPG) exposures resulting from alternative waste treatment and disposal methods were developed and input into the analysis. The cost-effectiveness analysis took into account a number of waste streams, hydrogeologic and climatic region settings, and waste treatment and disposal methods. Total costs of each level of a standard included costs for packaging, processing, transportation, and burial of waste. Benefits are defined in terms of reductions in the general population health risk (expected fatal cancers and genetic effects) evaluated over 10,000 years. A cost-effectiveness ratio, was calculated for each alternative standard. This paper describes the alternatives considered and preliminary results of the cost-effectiveness analysis

  5. Timing of High-level Waste Disposal

    International Nuclear Information System (INIS)

    2008-01-01

    This study identifies key factors influencing the timing of high-level waste (HLW) disposal and examines how social acceptability, technical soundness, environmental responsibility and economic feasibility impact on national strategies for HLW management and disposal. Based on case study analyses, it also presents the strategic approaches adopted in a number of national policies to address public concerns and civil society requirements regarding long-term stewardship of high-level radioactive waste. The findings and conclusions of the study confirm the importance of informing all stakeholders and involving them in the decision-making process in order to implement HLW disposal strategies successfully. This study will be of considerable interest to nuclear energy policy makers and analysts as well as to experts in the area of radioactive waste management and disposal. (author)

  6. VT Data - Onsite Sewage Disposal Soil Ratings

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) ONSITE is a pre-selected subset of SSURGO certified soil data depicting onsite sewage disposal ratings of Vermont soils. The NRCS Top20 table was...

  7. Ethical aspects of final disposal. Final report

    International Nuclear Information System (INIS)

    Baltes, B.; Leder, W.; Achenbach, G.B.; Spaemann, R.; Gerhardt, V.

    2003-01-01

    In fulfilment of this task the Federal Environmental Ministry has commissioned GRS to summarise the current national and international status of ethical aspects of the final disposal of radioactive wastes as part of the project titled ''Final disposal of radioactive wastes as seen from the viewpoint of ethical objectives''. The questions arising from the opinions, positions and publications presented in the report by GRS were to serve as a basis for an expert discussion or an interdisciplinary discussion forum for all concerned with the ethical aspects of an answerable approach to the final disposal of radioactive wastes. In April 2001 GRS held a one-day seminar at which leading ethicists and philosophers offered statements on the questions referred to above and joined in a discussion with experts on issues of final disposal. This report documents the questions that arose ahead of the workshop, the specialist lectures held there and a summary of the discussion results [de

  8. 45 CFR 671.12 - Waste disposal.

    Science.gov (United States)

    2010-10-01

    ..., laboratory culture of micro-organisms and plant pathogens, and introduced avian products must be removed from... dispose of waste by open burning prior to March 1, 1994, allowance shall be made for the wind direction...

  9. Geotechnical engineering of ocean waste disposal

    National Research Council Canada - National Science Library

    Demars, K. R; Chaney, Ronald C; Demars, Kenneth R

    1990-01-01

    Contents: 15 peer-reviewed papers on geotechnical test methods and procedures used for site evaluation, design, construction, and monitoring of both contaminated areas and waste disposal facilities in the marine environment...

  10. Electromagnetic problems in nuclear waste disposal

    International Nuclear Information System (INIS)

    Eloranta, E.H.

    1998-01-01

    The paper reviews the electromagnetic characterization of fractured rock during various phases of radioactive waste disposal investigations and construction, and also discusses the methods of the electromagnetic safeguards monitoring

  11. Design of the disposal facility 2012

    International Nuclear Information System (INIS)

    Saanio, T.; Ikonen, A.; Keto, P.; Kirkkomaeki, T.; Kukkola, T.; Nieminen, J.; Raiko, H.

    2013-11-01

    The spent nuclear fuel accumulated from the nuclear power plants in Olkiluoto in Eurajoki and in Haestholmen in Loviisa will be disposed of in Olkiluoto. A facility complex will be constructed at Olkiluoto, and it will include two nuclear waste facilities according to Government Degree 736/2008. The nuclear waste facilities are an encapsulation plant, constructed to encapsulate spent nuclear fuel and a disposal facility consisting of an underground repository and other underground rooms and above ground service spaces. The repository is planned to be excavated to a depth of 400 - 450 meters. Access routes to the disposal facility are an inclined access tunnel and vertical shafts. The encapsulated fuel is transferred to the disposal facility in the canister lift. The canisters are transferred from the technical rooms to the disposal area via central tunnel and deposited in the deposition holes which are bored in the floors of the deposition tunnels and are lined beforehand with compacted bentonite blocks. Two parallel central tunnels connect all the deposition tunnels and these central tunnels are inter-connected at regular intervals. The solution improves the fire safety of the underground rooms and allows flexible backfilling and closing of the deposition tunnels in stages during the operational phase of the repository. An underground rock characterization facility, ONKALO, is excavated at the disposal level. ONKALO is designed and constructed so that it can later serve as part of the repository. The goal is that the first part of the disposal facility will be constructed under the building permit phase in the 2010's and operations will start in the 2020's. The fuel from 4 operating reactors as well the fuel from the fifth nuclear power plant under construction, has been taken into account in designing the disposal facility. According to the information from TVO and Fortum, the amount of the spent nuclear fuel is 5,440 tU. The disposal facility is being excavated

  12. Optimization of uranium mill tailings disposal practices

    International Nuclear Information System (INIS)

    Richardson, Allan C.B.; Rowe, William D.

    1984-01-01

    So far as we have been to discern, no uranium mill tailings pile has yet been properly stabilized for long-term disposal. And although considerable effort is now being directed at developing practical solutions and at establishing standards for permanent disposal, the difficulties in application are diverse. They arise from the variety of environments in which milling is conducted, the significant costs associated with disposing of the large volumes of materials involved, the diverse nature of the hazards to be protected against, and uncertainties in both performance of controls and in how to determine societal responsibilities for management of the long term hazards to human populations from uranium tailings. There are 24 uranium tailings piles in the United States which no longer have responsible owners, and must now be disposed of by the U.S. Government in order to protect public health

  13. Disposable bioprocessing: the future has arrived.

    Science.gov (United States)

    Rao, Govind; Moreira, Antonio; Brorson, Kurt

    2009-02-01

    Increasing cost pressures are driving the rapid adoption of disposables in bioprocessing. While well ensconced in lab-scale operations, the lower operating/ validation costs at larger scale and relative ease of use are leading to these systems entering all stages and operations of a typical biopharmaceutical manufacturing process. Here, we focus on progress made in the incorporation of disposable equipment with sensor technology in bioprocessing throughout the development cycle. We note that sensor patch technology is mostly being adapted to disposable cell culture devices, but future adaptation to downstream steps is conceivable. Lastly, regulatory requirements are also briefly assessed in the context of disposables and the Process Analytical Technologies (PAT) and Quality by Design (QbD) initiatives.

  14. Aujeszky's disease virus production in disposable bioreactor

    Indian Academy of Sciences (India)

    Madhu

    1Laboratory for Cell Culture Technology and Biotransformations, 2Laboratory for ... A novel, disposable-bag bioreactor system that uses wave action for mixing and transferring ... consisted of 95% of air + 5% of CO2 using gas mixing module.

  15. Waste disposal options report. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Russell, N.E.; McDonald, T.G.; Banaee, J.; Barnes, C.M.; Fish, L.W.; Losinski, S.J.; Peterson, H.K.; Sterbentz, J.W.; Wenzel, D.R.

    1998-02-01

    Volume 2 contains the following topical sections: estimates of feed and waste volumes, compositions, and properties; evaluation of radionuclide inventory for Zr calcine; evaluation of radionuclide inventory for Al calcine; determination of k{sub eff} for high level waste canisters in various configurations; review of ceramic silicone foam for radioactive waste disposal; epoxides for low-level radioactive waste disposal; evaluation of several neutralization cases in processing calcine and sodium-bearing waste; background information for EFEs, dose rates, watts/canister, and PE-curies; waste disposal options assumptions; update of radiation field definition and thermal generation rates for calcine process packages of various geometries-HKP-26-97; and standard criteria of candidate repositories and environmental regulations for the treatment and disposal of ICPP radioactive mixed wastes.

  16. Process for the disposal of alkali metals

    International Nuclear Information System (INIS)

    Lewis, L.C.

    1979-01-01

    The invention describes a method of disposing of alkali metals by forming a solid waste for storage. The method comprises preparing an aqueous disposal solution of at least 55 weight percent alkali metal hydroxide, heating the alkali metal to melting temperature to form a feed solution, and spraying the molten feed solution into the disposal solution. The alkali metal reacts with the water in the disposal solution in a controlled reaction which produces alkali metal hydroxide, hydrogen and heat and thereby forms a solution of alkali metal hydroxides. Water is added to the solution in amounts sufficient to maintain the concentration of alkali metal hydroxides in the solution at 70 to 90 weight percent, and to maintain the temperature of the solution at about the boiling point. Removing and cooling the alkali metal hydroxide solution thereby forms a solid waste for storage. The method is particularly applicable to radioactive alkali metal reactor coolant. (auth)

  17. Hybrid disposal systems and nitrogen removal in individual sewage disposal systems

    Energy Technology Data Exchange (ETDEWEB)

    Franks, A.L.

    1993-06-01

    The use of individual disposal systems in ground-water basins that have adverse salt balance conditions and/or geologically unsuitable locations, has become a major problem in many areas of the world. There has been much research in design of systems for disposal of domestic sewage. This research includes both hybrid systems for disposal of domestic sewage. This research includes both hybrid systems for disposal of the treated waste in areas with adverse geologic conditions and systems for the removal of nitrogen and phosphorus prior to percolation to the ground water. This paper outlines the history of development and rationale for design and construction of individual sewage disposal systems and describes the designs and limitations of the hybrid and denitrification units. The disposal systems described include Mounds, Evapotranspiration and Evapotranspiration/Infiltration systems. The denitrification units include those using methanol, sulfur and limestone, gray water and secondary treated wastewater for energy sources.

  18. Disposal of radioactive waste in the Atlantic

    International Nuclear Information System (INIS)

    1982-06-01

    An operation to dispose of low-level radioactive waste in the North Atlantic deeps is undertaken each year. This leaflet seeks to answer questions which are sometimes asked about the operation. It deals with origin, composition, quantity, reason for sea- rather than land-disposal, packaging, transport (rail, road), route of transport, safety precautions, radiation protection, personnel, contamination, site of dump, international regulations, neutral observers, safety standards of containers and control of level of radioactivity of wastes. (U.K.)

  19. Radioactive waste disposal: an international law perspective

    International Nuclear Information System (INIS)

    Barrie, G.N.

    1989-01-01

    The question of radioactive waste disposal is the most intractable technical and political problem facing nuclear industry. Environmentalists world-wide demand a nuclear waste policy that must be ecologically acceptable internationally. Radioactive wastes and oil pollution were the first two types of marine pollution to receive international attention and various marine pollution controls were established. Ocean disposal was co-ordinated by the Nuclear Energy Agency and the Organization of Economic Co-operation and Development in 1967. The first treaty was the 1958 Convention on the High Seas (High Seas Convention). In response to its call for national co-operation the International Atomic Energy Agency (IAEA) established its Brynielson panel. The IAEA first issued guidelines on sea dumping in 1961. The London Dumping Convention, written in 1972, is the only global agreement concerned solely with the disposal of wastes in the marine environment by dumping. None of the global agreements make specific reference to sea-bed disposal of high-level radioactive wastes. Negotiations began at the Third UN Conference on the Law of the Sea (UNCLOS III) for the codification of a comprehensive treaty concerned with the protection, conservation, sustainable use and development of the marine environment. Burial in deep geological formations is a method of HLW disposal which decreases the chances of accidental intrusion by mankind and has little likelihood of malicious intrusion. National waste management programmes of different countries differ but there is agreement on the acceptable technical solutions to issues of waste management. The final disposition of HLW - storage or disposal - has not been decisively determined, but there is growing consensus that geological land-based disposal is the most viable alternative. Expanded international technical co-operation could well reduce the time needed to develop effective waste disposal mechanisms

  20. Radioactive waste storage and disposal: the challenge

    International Nuclear Information System (INIS)

    Prince, A.T.

    1978-03-01

    Solutions to waste management problems are available. After radium is removed, tailings from uranium ores can be disposed of safely in well-designed retention areas. Work is being done on the processing of non-fuel reactor wastes through incineration, reverse osmosis, and evaporation. Spent fuels have been stored safely for years in pools; dry storage in concrete cannisters is being investigated. Ultimate disposal of high-level wastes will be in deep, stable geologic formations. (LL)

  1. Nuclear waste disposal: technology and environmental hazards

    International Nuclear Information System (INIS)

    Hare, F.K.; Aikin, A.M.

    1980-01-01

    The subject is discussed under the headings: introduction; the nature and origin of wastes (fuel cycles; character of wastes; mining and milling operations; middle stages; irradiated fuel; reprocessing (waste generation); reactor wastes); disposal techniques and disposal of reprocessing wastes; siting of repositories; potential environmental impacts (impacts after emplacement in a rock repository; catastrophic effects; dispersion processes (by migrating ground water); thermal effects; future security; environmental survey, monitoring and modelling); conclusion. (U.K.)

  2. DSEM, Radioactive Waste Disposal Site Economic Model

    International Nuclear Information System (INIS)

    Smith, P.R.

    2005-01-01

    1 - Description of program or function: The Disposal Site Economic Model calculates the average generator price, or average price per cubic foot charged by a disposal facility to a waste generator, one measure of comparing the economic attractiveness of different waste disposal site and disposal technology combinations. The generator price is calculated to recover all costs necessary to develop, construct, operate, close, and care for a site through the end of the institutional care period and to provide the necessary financial returns to the site developer and lender (when used). Six alternative disposal technologies, based on either private or public financing, can be considered - shallow land disposal, intermediate depth disposal, above or below ground vaults, modular concrete canister disposal, and earth mounded concrete bunkers - based on either private or public development. 2 - Method of solution: The economic models incorporate default cost data from the Conceptual Design Report (DOE/LLW-60T, June 1987), a study by Rodgers Associates Engineering Corporation. Because all costs are in constant 1986 dollars, the figures must be modified to account for inflation. Interest during construction is either capitalized for the private developer or rolled into the loan for the public developer. All capital costs during construction are depreciated over the operation life of the site using straight-line depreciation for the private sector. 3 - Restrictions on the complexity of the problem: Maxima of - 100 years post-operating period, 30 years operating period, 15 years pre-operating period. The model should be used with caution outside the range of 1.8 to 10.5 million cubic feet of total volume. Depreciation is not recognized with public development

  3. Waste Water Disposal Design And Management II

    International Nuclear Information System (INIS)

    Yang, Sang Hyeon; Lee, Jung Su

    2004-04-01

    This book is written about design and management of waste water disposal like settling, floating, aeration and filtration. It explains in detail solo settling, flocculant settling, zone settling, multi-level settling, floating like PPI oil separator, structure of skimming tank and design of skimming tank, water treatment and aeration, aeration device, deaeration like deaeration device for disposal processing of sewage, filtration such as structure and design of Micro-floc filtration, In-line filtration and design of slow sand filter bed.

  4. Baby Poop: What's Normal?

    Science.gov (United States)

    ... I'm breast-feeding my newborn and her bowel movements are yellow and mushy. Is this normal for baby poop? Answers from Jay L. Hoecker, M.D. Yellow, mushy bowel movements are perfectly normal for breast-fed babies. Still, ...

  5. Visual Memories Bypass Normalization.

    Science.gov (United States)

    Bloem, Ilona M; Watanabe, Yurika L; Kibbe, Melissa M; Ling, Sam

    2018-05-01

    How distinct are visual memory representations from visual perception? Although evidence suggests that briefly remembered stimuli are represented within early visual cortices, the degree to which these memory traces resemble true visual representations remains something of a mystery. Here, we tested whether both visual memory and perception succumb to a seemingly ubiquitous neural computation: normalization. Observers were asked to remember the contrast of visual stimuli, which were pitted against each other to promote normalization either in perception or in visual memory. Our results revealed robust normalization between visual representations in perception, yet no signature of normalization occurring between working memory stores-neither between representations in memory nor between memory representations and visual inputs. These results provide unique insight into the nature of visual memory representations, illustrating that visual memory representations follow a different set of computational rules, bypassing normalization, a canonical visual computation.

  6. Disposal facility data for the interim performance

    International Nuclear Information System (INIS)

    Eiholzer, C.R.

    1995-01-01

    The purpose of this report is to identify and provide information on the waste package and disposal facility concepts to be used for the low-level waste tank interim performance assessment. Current concepts for the low-level waste form, canister, and the disposal facility will be used for the interim performance assessment. The concept for the waste form consists of vitrified glass cullet in a sulfur polymer cement matrix material. The waste form will be contained in a 2 x 2 x 8 meter carbon steel container. Two disposal facility concepts will be used for the interim performance assessment. These facility concepts are based on a preliminary disposal facility concept developed for estimating costs for a disposal options configuration study. These disposal concepts are based on vault type structures. None of the concepts given in this report have been approved by a Tank Waste Remediation Systems (TWRS) decision board. These concepts will only be used in th interim performance assessment. Future performance assessments will be based on approved designs

  7. High-level waste processing and disposal

    International Nuclear Information System (INIS)

    Crandall, J.L.; Krause, H.; Sombret, C.; Uematsu, K.

    1984-01-01

    The national high-level waste disposal plans for France, the Federal Republic of Germany, Japan, and the United States are covered. Three conclusions are reached. The first conclusion is that an excellent technology already exists for high-level waste disposal. With appropriate packaging, spent fuel seems to be an acceptable waste form. Borosilicate glass reprocessing waste forms are well understood, in production in France, and scheduled for production in the next few years in a number of other countries. For final disposal, a number of candidate geological repository sites have been identified and several demonstration sites opened. The second conclusion is that adequate financing and a legal basis for waste disposal are in place in most countries. Costs of high-level waste disposal will probably add about 5 to 10% to the costs of nuclear electric power. The third conclusion is less optimistic. Political problems remain formidable in highly conservative regulations, in qualifying a final disposal site, and in securing acceptable transport routes

  8. Alternatives for definse waste-salt disposal

    International Nuclear Information System (INIS)

    Benjamin, R.W.; McDonell, W.R.

    1983-01-01

    Alternatives for disposal of decontaminated high-level waste salt at Savannah River were reviewed to estimate costs and potential environmental impact for several processes. In this review, the reference process utilizing intermediate-depth burial of salt-concrete (saltcrete) monoliths was compared with alternatives including land application of the decontaminated salt as fertilizer for SRP pine stands, ocean disposal with and without containment, and terminal storage as saltcake in existing SRP waste tanks. Discounted total costs for the reference process and its modifications were in the same range as those for most of the alternative processes; uncontained ocean disposal with truck transport to Savannah River barges and storage as saltcake in SRP tanks had lower costs, but presented other difficulties. Environmental impacts could generally be maintained within acceptable limits for all processes except retention of saltcake in waste tanks, which could result in chemical contamination of surrounding areas on tank collapse. Land application would require additional salt decontamination to meet radioactive waste disposal standards, and ocean disposal without containment is not permitted in existing US practice. The reference process was judged to be the only salt disposal option studied which would meet all current requirements at an acceptable cost

  9. Waste disposal technologies: designs and evaluations

    International Nuclear Information System (INIS)

    Shaw, R.A.

    1987-01-01

    Many states and compacts are presently in the throes of considering what technology to select for their low level waste disposal site. Both the technical and economic aspects of disposal technology are important considerations in these decisions. It is also important that they be considered in the context of the entire system. In the case of a nuclear power plant, that system encompasses the various individual waste streams that contain radioactivity, the processing equipment which reduces the volume and/or alters the form in which the radioisotopes are contained, the packaging of the processed wastes in shipment, and finally its disposal. One further part of this is the monitoring that takes place in all stages of this operation. This paper discusses the results of some research that has been sponsored by EPRI with the principal contractor being Rogers and Associates Engineering Corporation. Included is a description of the distinguishing features found in disposal technologies developed in a generic framework, designs for a selected set of these disposal technologies and the costs which have been derived from these designs. In addition, a description of the early efforts towards defining the performance of these various disposal technologies is described. 5 figures, 1 table

  10. High-level nuclear waste disposal

    International Nuclear Information System (INIS)

    Burkholder, H.C.

    1985-01-01

    The meeting was timely because many countries had begun their site selection processes and their engineering designs were becoming well-defined. The technology of nuclear waste disposal was maturing, and the institutional issues arising from the implementation of that technology were being confronted. Accordingly, the program was structured to consider both the technical and institutional aspects of the subject. The meeting started with a review of the status of the disposal programs in eight countries and three international nuclear waste management organizations. These invited presentations allowed listeners to understand the similarities and differences among the various national approaches to solving this very international problem. Then seven invited presentations describing nuclear waste disposal from different perspectives were made. These included: legal and judicial, electric utility, state governor, ethical, and technical perspectives. These invited presentations uncovered several issues that may need to be resolved before high-level nuclear wastes can be emplaced in a geologic repository in the United States. Finally, there were sixty-six contributed technical presentations organized in ten sessions around six general topics: site characterization and selection, repository design and in-situ testing, package design and testing, disposal system performance, disposal and storage system cost, and disposal in the overall waste management system context. These contributed presentations provided listeners with the results of recent applied RandD in each of the subject areas

  11. Stability of disposal rooms during waste retrieval

    International Nuclear Information System (INIS)

    Brandshaug, T.

    1989-03-01

    This report presents the results of a numerical analysis to determine the stability of waste disposal rooms for vertical and horizontal emplacement during the period of waste retrieval. It is assumed that waste retrieval starts 50 years after the initial emplacement of the waste, and that access to and retrieval of the waste containers take place through the disposal rooms. It is further assumed that the disposal rooms are not back-filled. Convective cooling of the disposal rooms in preparation for waste retrieval is included in the analysis. Conditions and parameters used were taken from the Nevada Nuclear Waste Storage Investigation (NNWSI) Project Site Characterization Plan Conceptual Design Report (MacDougall et al., 1987). Thermal results are presented which illustrate the heat transfer response of the rock adjacent to the disposal rooms. Mechanical results are presented which illustrate the predicted distribution of stress, joint slip, and room deformations for the period of time investigated. Under the assumption that the host rock can be classified as ''fair to good'' using the Geomechanics Classification System (Bieniawski, 1974), only light ground support would appear to be necessary for the disposal rooms to remain stable. 23 refs., 28 figs., 2 tabs

  12. Post-closure safety assessment of near surface disposal facilities for disused sealed radioactive sources

    International Nuclear Information System (INIS)

    Lee, Seunghee; Kim, Juyoul

    2017-01-01

    Highlights: • Post-closure safety assessment of near surface disposal facility for DSRS was performed. • Engineered vault and rock-cavern type were considered for normal and well scenario. • 14 C, 226 Ra, 241 Am were primary nuclides contributing large portion of exposure dose. • Near surface disposal of DSRSs containing 14 C, 226 Ra and 241 Am should be restricted. - Abstract: Great attention has been recently paid to the post-closure safety assessment of low- and intermediate-level radioactive waste (LILW) disposal facility for disused sealed radioactive sources (DSRSs) around the world. Although the amount of volume of DSRSs generated from industry, medicine and research and education organization was relatively small compared with radioactive wastes from commercial nuclear power plants, some DSRSs can pose a significant hazard to human health due to their high activities and long half-lives, if not appropriately managed and disposed. In this study, post-closure safety assessment was carried out for DSRSs generated from 1991 to 2014 in Korea in order to ensure long-term safety of near surface disposal facilities. Two kinds of disposal options were considered, i.e., engineered vault type disposal facility and rock-cavern type disposal facility. Rock-cavern type disposal facility has been under operation in Gyeongju city, republic of Korea since August 2015 and engineered vault type disposal facility will be constructed until December 2020 in the vicinity of rock-cavern disposal facility. Assessment endpoint was individual dose to the member of critical group, which was modeled by GoldSim, which has been widely used as probabilistic risk analysis software based on Monte Carlo simulation in the area of safety assessment of radioactive waste facilities. In normal groundwater scenario, the maximum exposure dose was extremely low, approximately 1 × 10 −7 mSv/yr, for both disposal options and satisfied the regulatory limit of 0.1 mSv/yr. However, in the

  13. Post-closure safety assessment of near surface disposal facilities for disused sealed radioactive sources

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seunghee; Kim, Juyoul, E-mail: gracemi@fnctech.com

    2017-03-15

    Highlights: • Post-closure safety assessment of near surface disposal facility for DSRS was performed. • Engineered vault and rock-cavern type were considered for normal and well scenario. • {sup 14}C, {sup 226}Ra, {sup 241}Am were primary nuclides contributing large portion of exposure dose. • Near surface disposal of DSRSs containing {sup 14}C, {sup 226}Ra and {sup 241}Am should be restricted. - Abstract: Great attention has been recently paid to the post-closure safety assessment of low- and intermediate-level radioactive waste (LILW) disposal facility for disused sealed radioactive sources (DSRSs) around the world. Although the amount of volume of DSRSs generated from industry, medicine and research and education organization was relatively small compared with radioactive wastes from commercial nuclear power plants, some DSRSs can pose a significant hazard to human health due to their high activities and long half-lives, if not appropriately managed and disposed. In this study, post-closure safety assessment was carried out for DSRSs generated from 1991 to 2014 in Korea in order to ensure long-term safety of near surface disposal facilities. Two kinds of disposal options were considered, i.e., engineered vault type disposal facility and rock-cavern type disposal facility. Rock-cavern type disposal facility has been under operation in Gyeongju city, republic of Korea since August 2015 and engineered vault type disposal facility will be constructed until December 2020 in the vicinity of rock-cavern disposal facility. Assessment endpoint was individual dose to the member of critical group, which was modeled by GoldSim, which has been widely used as probabilistic risk analysis software based on Monte Carlo simulation in the area of safety assessment of radioactive waste facilities. In normal groundwater scenario, the maximum exposure dose was extremely low, approximately 1 × 10{sup −7} mSv/yr, for both disposal options and satisfied the regulatory limit

  14. Making nuclear 'normal'

    International Nuclear Information System (INIS)

    Haehlen, Peter; Elmiger, Bruno

    2000-01-01

    The mechanics of the Swiss NPPs' 'come and see' programme 1995-1999 were illustrated in our contributions to all PIME workshops since 1996. Now, after four annual 'waves', all the country has been covered by the NPPs' invitation to dialogue. This makes PIME 2000 the right time to shed some light on one particular objective of this initiative: making nuclear 'normal'. The principal aim of the 'come and see' programme, namely to give the Swiss NPPs 'a voice of their own' by the end of the nuclear moratorium 1990-2000, has clearly been attained and was commented on during earlier PIMEs. It is, however, equally important that Swiss nuclear energy not only made progress in terms of public 'presence', but also in terms of being perceived as a normal part of industry, as a normal branch of the economy. The message that Swiss nuclear energy is nothing but a normal business involving normal people, was stressed by several components of the multi-prong campaign: - The speakers in the TV ads were real - 'normal' - visitors' guides and not actors; - The testimonials in the print ads were all real NPP visitors - 'normal' people - and not models; - The mailings inviting a very large number of associations to 'come and see' activated a typical channel of 'normal' Swiss social life; - Spending money on ads (a new activity for Swiss NPPs) appears to have resulted in being perceived by the media as a normal branch of the economy. Today we feel that the 'normality' message has well been received by the media. In the controversy dealing with antinuclear arguments brought forward by environmental organisations journalists nowadays as a rule give nuclear energy a voice - a normal right to be heard. As in a 'normal' controversy, the media again actively ask themselves questions about specific antinuclear claims, much more than before 1990 when the moratorium started. The result is that in many cases such arguments are discarded by journalists, because they are, e.g., found to be

  15. Evaluation on the structural soundness of the package for subsurface disposal by finite element method

    International Nuclear Information System (INIS)

    Itoh, Chihiro

    2009-01-01

    The structural analysis of the disposal package for low-level radioactive wastes with relatively high activities (called L1 waste in Japan) were performed against normal and hypothetical conditions. As a normal condition the external load due to lifting, stacking of the package and filling the space of disposal pit with mortar or something were considered. On the other hand, drop incident during handling and pressure due to some external force were taken up as hypothetical conditions. Using finite element code ABAQUS and three dimensional finite element model, structural analyses were carried out for the normal conditions. The results show that the maximum stresses occurred at the package due to the loads above mentioned were far less than the yield strength for all conditions. Therefore, it is confirmed that the disposal package keeps its integrity under the normal conditions. Analyses for load cases of 9 m drop onto the reinforced concrete slab and 5.9 m drop onto the embedded disposal package were performed by using finite element code LS-DYNA. Both results show that the strains at the impact zone of the package exceeded the fracture strain of the material but the damaged area was limited in the vicinity of impact zone. As a maximum external pressure, 4MPa was applied to the surface of the packages which were piled up in four layered in the disposal tunnel. According to the results of analyses by ABAQUS code the maximum strain occurred at the contact surfaces close to the welding zone between lid and body of the top package. However, the package stays in sound because the value of the maximum strain was less than the fracture strain of the materials. (author)

  16. Are Disposable and Standard Gonioscopy Lenses Comparable?

    Science.gov (United States)

    Lee, Bonny; Szirth, Bernard C; Fechtner, Robert D; Khouri, Albert S

    2017-04-01

    Gonioscopy is important in the evaluation and treatment of glaucoma. With increased scrutiny of acceptable sterilization processes for health care instruments, disposable gonioscopy lenses have recently been introduced. Single-time use lenses are theorized to decrease infection risk and eliminate the issue of wear and tear seen on standard, reusable lenses. However, patient care would be compromised if the quality of images produced by the disposable lens were inferior to those produced by the reusable lens. The purpose of this study was to compare the quality of images produced by disposable versus standard gonioscopy lenses. A disposable single mirror lens (Sensor Medical Technology) and a standard Volk G-1 gonioscopy lens were used to image 21 volunteers who were prospectively recruited for the study. Images of the inferior and temporal angles of each subject's left eye were acquired using a slit-lamp camera through the disposable and standard gonioscopy lens. In total, 74 images were graded using the Spaeth gonioscopic system and for clarity and quality. Clarity was scored as 1 or 2 and defined as either (1) all structures perceived or (2) all structures not perceived. Quality was scored as 1, 2, or 3, and defined as (1) all angle landmarks clear and well focused, (2) some angle landmarks clear, others blurred, or (3) angle landmarks could not be ascertained. The 74 images were divided into images taken with the disposable single mirror lens and images taken with the standard Volk G-1 gonioscopy lens. The clarity and quality scores for each of these 2 image groups were averaged and P-values were calculated. Average quality of images produced with the standard lens was 1.46±0.56 compared with 1.54±0.61 for those produced with the disposable lens (P=0.55). Average clarity of images produced with the standard lens was 1.47±0.51 compared with 1.49±0.51 (P=0.90) with the disposable lens. We conclude that there is no significant difference in quality of images

  17. Disposal of high level radioactive wastes in geological formations

    International Nuclear Information System (INIS)

    Martins, L.A.M.; Carvalho Bastos, J.P. de

    1978-01-01

    The disposal of high-activity radioactive wastes is the most serious problem for the nuclear industry. Among the solutions, the disposal of wastes in approriated geological formations is the most realistic and feasible. In this work the methods used for geological disposal, as well as, the criteria, programs and analysis for selecting a bite for waste disposal are presented [pt

  18. 36 CFR 228.57 - Types of disposal.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 2 2010-07-01 2010-07-01 false Types of disposal. 228.57... Disposal of Mineral Materials Types and Methods of Disposal § 228.57 Types of disposal. Except as provided... qualified bidder after formal advertising and other appropriate public notice; (b) Sale by negotiated...

  19. 36 CFR 13.1118 - Solid waste disposal.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal. 13.1118... Provisions § 13.1118 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may...

  20. 36 CFR 13.1008 - Solid waste disposal.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal. 13.1008... § 13.1008 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may be...

  1. 36 CFR 13.1912 - Solid waste disposal.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal. 13.1912....1912 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may be located...

  2. 36 CFR 13.1604 - Solid waste disposal.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal. 13.1604... Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may be located within one...

  3. Bibliography on ocean waste disposal. second edition. Final report 1976

    International Nuclear Information System (INIS)

    Stanley, H.G.; Kaplanek, D.W.

    1976-09-01

    This research bibliography is restricted to documents relevant to the field of ocean waste disposal. It is primarily limited to recent publications in the categories of: ocean waste disposal; criteria; coastal zone management; monitoring; pollution control; dredge spoil; dredge spoin disposal; industrial waste disposal; radioactive waste; oil spills; bioassay; fisheries resources; ocean incineration; water chemistry; and, Water pollution

  4. Public acceptability of risk of radioactive waste disposal

    International Nuclear Information System (INIS)

    Millerd, W.H.

    1977-01-01

    A ''public interest'' viewpoint is presented on the disposal of radioactive wastes. Criteria for the development of disposal methods are needed. The current program to develop disposal sites and methods has become an experiment. The advantages and disadvantages of radwaste disposal as an ongoing experiment are discussed briefly

  5. Advanced MicroObserver UGS integration with and cueing of the BattleHawk squad level loitering munition and UAV

    Science.gov (United States)

    Steadman, Bob; Finklea, John; Kershaw, James; Loughman, Cathy; Shaffner, Patti; Frost, Dean; Deller, Sean

    2014-06-01

    Textron's Advanced MicroObserver(R) is a next generation remote unattended ground sensor system (UGS) for border security, infrastructure protection, and small combat unit security. The original MicroObserver(R) is a sophisticated seismic sensor system with multi-node fusion that supports target tracking. This system has been deployed in combat theaters. The system's seismic sensor nodes are uniquely able to be completely buried (including antennas) for optimal covertness. The advanced version adds a wireless day/night Electro-Optic Infrared (EOIR) system, cued by seismic tracking, with sophisticated target discrimination and automatic frame capture features. Also new is a field deployable Gateway configurable with a variety of radio systems and flexible networking, an important upgrade that enabled the research described herein. BattleHawkTM is a small tube launched Unmanned Air Vehicle (UAV) with a warhead. Using transmitted video from its EOIR subsystem an operator can search for and acquire a target day or night, select a target for attack, and execute terminal dive to destroy the target. It is designed as a lightweight squad level asset carried by an individual infantryman. Although BattleHawk has the best loiter time in its class, it's still relatively short compared to large UAVs. Also it's a one-shot asset in its munition configuration. Therefore Textron Defense Systems conducted research, funded internally, to determine if there was military utility in having the highly persistent MicroObserver(R) system cue BattleHawk's launch and vector it to beyond visual range targets for engagement. This paper describes that research; the system configuration implemented, and the results of field testing that was performed on a government range early in 2013. On the integrated system that was implemented, MicroObserver(R) seismic detections activated that system's camera which then automatically captured images of the target. The geo-referenced and time-tagged Micro

  6. Operational safety analysis of the Olkiluoto disposal site

    International Nuclear Information System (INIS)

    Rossi, J.; Suolanen, V.

    2013-11-01

    Radiation doses for workers of the facilities, for inhabitants in the environment and for terrestrial ecosystem possibly caused by the encapsulation and disposal facilities to be built at Olkiluoto during its operation were considered in the study. First the normal encapsulation process is described and then possible incident and accident cases associated to that are identified for this assessment. The study covers both the normal operation of the plant and some hypothetical incidents and accidents. Radioactive releases and radiation doses are evaluated as a consequence of normal operation and some essential incident and accident cases. Release through the ventilation stack is assumed to be filtered (activated when necessary) both in normal operation and in hypothetical abnormal fault and accident cases. In addition the results for unfiltered releases are also presented e.g. for the emergency planning. During about 30 operation years of our four nuclear power plant units there have been found 58 fuel pins failures. Roughly estimating there has been one fuel leakage per year in a facility (includes two units). Based on this and adopting a conservative approach, it is estimated that one fuel pin per year could leak in normal operation during encapsulation process. The release magnitude in incidents and accidents is based on the event chains, which lead to loss of fuel pin tightness followed by a discharge of radionuclides into the handling space and to some degree to the atmosphere through the ventilation stack equipped with redundant filters. The most exposed group of inhabitants is conservatively assumed to live at the distance of 200 meters from the encapsulation and disposal plant and it will receive the largest doses in most dispersion conditions. The dose value to a member of the most exposed group was calculated on the basis of the weather data in such a way that greater dose than obtained here is caused only in 0.5 percent of dispersion conditions. The

  7. Interim report on reference biospheres for radioactive waste disposal

    International Nuclear Information System (INIS)

    Dorp, F. van

    1994-10-01

    significant effect on biosphere modelling, for normal and accidental releases from nuclear installations, and also for waste disposal. For example, increased attention is being given to natural and semi-natural environments. Against this background, the primary objective of the BIOMOVS II Reference Biospheres Working Group is to establish a consensus on the development and application of a Reference Biosphere approach to the evaluation of long-term radiological consequences of solid radioactive waste disposal systems. The Working Group is expecting to provide: 1. A recommended methodology for biosphere analysis within the assessment of radioactive waste disposal, which is consistent for different types of radioactive waste and disposal concepts. This should include the justification, arguments and documentation for all the steps in the recommended methodology. A preliminary illustration of the approach is shown in the figure opposite. 2. An internationally developed and structured list of Features, Events and Processes (FEPs), which can be used to support the development of biosphere models for specific assessments. 3. Example(s) of how to apply the methodology. If these examples are developed in a suitably generic assessment context, they can be defined as generic 'Reference Biospheres' and their applicability and limitations should be identified. Such 'Reference Biospheres' could then be used e.g: a) for generic site independent evaluation of disposal plans; b) to provide sets of factors to convert geosphere release into doses or risks; c) as 'stylised biospheres' (which might be defined as a biosphere which contains only the most essential FEPs); d) as benchmarks for comparisons with other assessments, and e) as sources of detailed information on biosphere modelling for waste disposal assessments. In order to complete an assessment of a particular site, there will not only be a need to take account of site specific issues, such as the geosphere-biosphere interface and the

  8. Determining the future for irradiated graphite disposal

    International Nuclear Information System (INIS)

    Neighbour, G.B.; Wickham, A.J.; Hacker, P.J.

    2000-01-01

    In recent years, proposals have been made for the long-term treatment of radioactive graphite waste which have ranged from sea dumping through incineration to land-based disposal, sometimes preceded by a variable period of 'safe storage' within the original reactor containment. Nuclear regulators are challenging the proposed length of 'safe storage' on the basis that essential knowledge may be lost. More recently, political constraints have further complicated the issue by eliminating disposal at sea and imposing a 'near-zero release' philosophy, while public opinion is opposed to land-based disposal and has induced a continual drive towards minimizing radioactivity release to the environment from disposal. This paper proposes that, despite various international agreements, it is time to review technically all options for disposal of irradiated graphite waste as a framework for the eventual decision-making process. It is recognized that the socio-economic and political pressures are high and therefore, given that all currently identified options satisfy the present safety limits, the need to minimize the objective risk is shown to be a minor need in comparison to the public's want of demonstrable control, responsiveness and ability to reverse/change the disposal options in the future. Further, it is shown that the eventual decision-making process for a post-dismantling option for graphite waste must optimize the beneficial attributes of subjective risk experienced by the general public. In addition, in advocating and preferred option to the general public, it is recommended that the industry should communicate at a level commensurate with the public understanding and initiate a process of facilitation which enables the public to arrive at their own solution and constituting a social exchange. Otherwise it is concluded that if the indecision over disposal options is allowed to continue then, by default, graphite will remain in long-term supervised storage. (author)

  9. Subseabed Disposal Program Plan. Volume I. Overview

    International Nuclear Information System (INIS)

    1981-07-01

    The primary objective of the Subseabed Disposal Program (SDP) is to assess the scientific, environmental, and engineering feasibility of disposing of processed and packaged high-level nuclear waste in geologic formations beneath the world's oceans. High-level waste (HLW) is considered the most difficult of radioactive wastes to dispose of in oceanic geologic formations because of its heat and radiation output. From a scientific standpoint, the understanding developed for the disposal of such HLW can be used for other nuclear wastes (e.g., transuranic - TRU - or low-level) and materials from decommissioned facilities, since any set of barriers competent to contain the heat and radiation outputs of high-level waste will also contain such outputs from low-level waste. If subseabed disposal is found to be feasible for HLW, then other factors such as cost will become more important in considering subseabed emplacement for other nuclear wastes. A secondary objective of the SDP is to develop and maintain a capability to assess and cooperate with the seabed nuclear waste disposal programs of other nations. There are, of course, a number of nations with nuclear programs, and not all of these nations have convenient access to land-based repositories for nuclear waste. Many are attempting to develop legislative and scientific programs that will avoid potential hazards to man, threats to other ocean uses, and marine pollution, and they work together to such purpose in meetings of the international NEA/Seabed Working Group. The US SDP, as the first and most highly developed R and D program in the area, strongly influences the development of subseabed-disposal-related policy in such nations

  10. Normal Pressure Hydrocephalus

    Science.gov (United States)

    ... improves the chance of a good recovery. Without treatment, symptoms may worsen and cause death. What research is being done? The NINDS conducts and supports research on neurological disorders, including normal pressure hydrocephalus. Research on disorders such ...

  11. Normality in Analytical Psychology

    Science.gov (United States)

    Myers, Steve

    2013-01-01

    Although C.G. Jung’s interest in normality wavered throughout his career, it was one of the areas he identified in later life as worthy of further research. He began his career using a definition of normality which would have been the target of Foucault’s criticism, had Foucault chosen to review Jung’s work. However, Jung then evolved his thinking to a standpoint that was more aligned to Foucault’s own. Thereafter, the post Jungian concept of normality has remained relatively undeveloped by comparison with psychoanalysis and mainstream psychology. Jung’s disjecta membra on the subject suggest that, in contemporary analytical psychology, too much focus is placed on the process of individuation to the neglect of applications that consider collective processes. Also, there is potential for useful research and development into the nature of conflict between individuals and societies, and how normal people typically develop in relation to the spectrum between individuation and collectivity. PMID:25379262

  12. Normal pressure hydrocephalus

    Science.gov (United States)

    Hydrocephalus - occult; Hydrocephalus - idiopathic; Hydrocephalus - adult; Hydrocephalus - communicating; Dementia - hydrocephalus; NPH ... Ferri FF. Normal pressure hydrocephalus. In: Ferri FF, ed. ... Elsevier; 2016:chap 648. Rosenberg GA. Brain edema and disorders ...

  13. Normal Functioning Family

    Science.gov (United States)

    ... Spread the Word Shop AAP Find a Pediatrician Family Life Medical Home Family Dynamics Adoption & Foster Care ... Español Text Size Email Print Share Normal Functioning Family Page Content Article Body Is there any way ...

  14. Normal growth and development

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/002456.htm Normal growth and development To use the sharing features on this page, please enable JavaScript. A child's growth and development can be divided into four periods: ...

  15. 41 CFR 102-75.415 - What happens after the disposal agency receives the FAA's recommendation for disposal of the...

    Science.gov (United States)

    2010-07-01

    ... disposal agency receives the FAA's recommendation for disposal of the property for a public airport? 102-75... receives the FAA's recommendation for disposal of the property for a public airport? The head of the disposal agency, or his or her designee, may convey property approved by the FAA for use as a public...

  16. Treatment and disposal of tyres: Two EU approaches. A review.

    Science.gov (United States)

    Torretta, Vincenzo; Rada, Elena Cristina; Ragazzi, Marco; Trulli, Ettore; Istrate, Irina Aura; Cioca, Lucian Ionel

    2015-11-01

    The treatment and disposal of tyres from vehicles has long been of considerable environmental importance. The main problem lies in the mixed composition of the tyres. Studies have been undertaken to modify the structure of the tyres, especially with reference to the percentage of granulated rubber incorporated, in order to improve their performance, and also to reduce their environmental impact during normal functioning (noise, particulates, etc.) and facilitate recycling and final disposal. The aim of the present study is to review and compare how used tyres are treated and disposed of in two different EU countries. The first is Italy, which has been part of the European Union since its inception, and has important industrial traditions. The second is Romania, an emerging country which recently became part of the EU, and whose economic and industrial development has had a major boost in recent years, with a strong growth in waste production, together with consumption in urban areas. The occasion was useful to consider the situation concerning the evolution of the different aspects related to the management of the end-of-life tyres. In particular, the paper considers the properties of tyre waste and their potential reuse, the enhancement of end-of-life tires and the various types of recovery, such as the reconstruction of tyres and the material recovery. The aspects related to the energy recovery and the use of the life cycle analysis, as a tool to support the choices of the best management system, were also taken into consideration, not forgetting that an adequate end-of-life planning is important when developing a sustainable product, since it can affect considerably its overall life cycle. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. A new procedure for deep sea mining tailings disposal

    OpenAIRE

    Ma, W.; Schott, D.L.; Lodewijks, G.

    2017-01-01

    Deep sea mining tailings disposal is a new environmental challenge related to water pollution, mineral crust waste handling, and ocean biology. The objective of this paper is to propose a new tailings disposal procedure for the deep sea mining industry. Through comparisons of the tailings disposal methods which exist in on-land mining and the coastal mining fields, a new tailings disposal procedure, i.e., the submarine–backfill–dam–reuse (SBDR) tailings disposal procedure, is proposed. It com...

  18. History of geological disposal concept (3). Implementation phase of geological disposal (2000 upward)

    International Nuclear Information System (INIS)

    Masuda, Sumio; Sakuma, Hideki; Umeki, Hiroyuki

    2015-01-01

    Important standards and concept about geological disposal have been arranged as an international common base and are being generalized. The authors overview the concept of geological disposal, and would like this paper to help arouse broad discussions for promoting the implementation plan of geological disposal projects in the future. In recent years, the scientific and technological rationality of geological disposal has been recognized internationally. With the addition of discussions from social viewpoints such as ethics, economy, etc., geological disposal projects are in the stage of starting after establishment of social consensus. As an international common base, the following consolidated and systematized items have been presented as indispensable elements in promoting business projects: (1) step-by-step approach, (2) safety case, (3) reversibility and recovery potential, and (4) trust building and communications. This paper outlines the contents of the following cases, where international common base was reflected on the geological disposal projects in Japan: (1) final disposal method and safety regulations, and (2) impact of the Great East Japan Earthquake and Fukushima Daiichi Nuclear Power Station accident on geological disposal plan. (A.O.)

  19. Method of ground disposal of radioactive waste

    International Nuclear Information System (INIS)

    Harashina, Heihachi.

    1991-01-01

    Rock bases are drilled to form a disposal hole, an overhanging hole and a burying hole each as a shaft. An appropriate number of canisters prepared by vitrification of high level radioactive wastes are charged in the disposal hole with a gap to the inner wall of the hole. Shock absorbers each made of bentonite are filled between each of the canisters and between the canister and the inner wall of the disposal hole, and the canisters are entirely covered with the layer of the shock absorbers. Further, plucking materials having water sealing property such as cement mortar are filled thereover. With such a constitution, in a case if water should intrude into the overhung portion, since the disposal hole is covered with the large flange portion in addition to the water sealing performance of the plucking, the shock absorbers and the canisters undergo no undesirable effects. Further, in a case if water should intrude to the disposal hole, the shock absorber layers are swollen by water absorption, to suppress the intrusion of water. (T.M.)

  20. Radioactive waste management and disposal in Australia

    International Nuclear Information System (INIS)

    Harries, J.R.

    1997-01-01

    A national near-surface repository at a remote and arid location is proposed for the disposal of solid low-level and short-lived intermediate-level radioactive wastes in Australia. The repository will be designed to isolate the radioactive waste from the human environment under controlled conditions and for a period long enough for the radioactivity to decay to low levels. Compared to countries that have nuclear power programs, the amount of waste in Australia is relatively small. Nevertheless, the need for a national disposal facility for solid low-level radioactive and short-lived intermediate-level radioactive wastes is widely recognised and the Federal Government is in the process of selecting a site for a national near-surface disposal facility for low and short-lived intermediate level wastes. Some near surface disposal facilities already exist in Australia, including tailings dams at uranium mines and the Mt Walton East Intractable Waste Disposal Facility in Western Australia which includes a near surface repository for low level wastes originating in Western Australia. 7 refs, 1 fig., 2 tabs

  1. Minimizing generator liability while disposing hazardous waste

    International Nuclear Information System (INIS)

    Canter, L.W.; Lahlou, M.; Pendurthi, R.P.

    1991-01-01

    Potential liabilities associated with hazardous waste disposal are related to waste properties, disposal practices and the potential threat to people and the environment in case of a pollutant release. Based on various regulations, these liabilities are enforceable and longstanding. A methodology which can help hazardous waste generators select a commercial disposal facility with a relatively low risk of potential liability is described in this paper. The methodology has two parts. The first part has 8 categories encompassing 30 factors common to all facilities, and the second part includes one category dealing with 5 factors on specific wastes and treatment/disposal technologies. This two-part evaluation feature enables the user to adapt the methodology to any type of waste disposal. In determining the scores for the factors used in the evaluation. an unranked paired comparison technique with slight modifications was used to weight the relative importance of the individual factors. In the methodology it is possible for the user to redefine the factors and change the scoring system. To make the methodology more efficient, a user-friendly computer program has been developed; the computer program is written so that desired changes in the methodology can be readily implemented

  2. Criteria for high-level waste disposal

    International Nuclear Information System (INIS)

    Sousselier, Y.

    1981-01-01

    Disposal of radioactive wastes is storage without the intention of retrieval. But in such storage, it may be useful and in some cases necessary to have the possibility of retrieval at least for a certain period of time. In order to propose some criteria for HLW disposal, one has to examine how this basic concept is to be applied. HLW is waste separated as a raffinate in the first cycle of solvent extraction in reprocessing. Such waste contains the bulk of fission products which have long half lives, therefore the safety of a disposal site, at least after a certain period of time, must be intrinsic, i.e. not based on human intervention. There is a consensus that such a disposal is feasible in a suitable geological formation in which the integrity of the container will be reinforced by several additional barriers. Criteria for disposal can be proposed for all aspects of the question. The author discusses the aims of the safety analysis, particularly the length of time for this analysis, and the acceptable dose commitments resulting from the release of radionuclides, the number and role of each barrier, and a holistic analysis of safety external factors. (Auth.)

  3. The legal system of nuclear waste disposal

    International Nuclear Information System (INIS)

    Dauk, W.

    1983-01-01

    This doctoral thesis presents solutions to some of the legal problems encountered in the interpretation of the various laws and regulations governing nuclear waste disposal, and reveals the legal system supporting the variety of individual regulations. Proposals are made relating to modifications of problematic or not well defined provisions, in order to contribute to improved juridical security, or inambiguity in terms of law. The author also discusses the question of the constitutionality of the laws for nuclear waste disposal. Apart from the responsibility of private enterprise to contribute to safe treatment or recycling, within the framework of the integrated waste management concept, and apart from the Government's responsibility for interim or final storage of radioactive waste, there is a third possibility included in the legal system for waste management, namely voluntary measures taken by private enterprise for radioactive waste disposal. The licence to be applied for in accordance with section 3, sub-section (1) of the Radiation Protection Ordinance is interpreted to pertain to all measures of radioactive waste disposal, thus including final storage of radioactive waste by private companies. Although the terminology and systematic concept of nuclear waste disposal are difficult to understand, there is a functionable system of legal provisions contained therein. This system fits into the overall concept of laws governing technical safety and safety engineering. (orig./HSCH) [de

  4. Operational technology for greater confinement disposal

    International Nuclear Information System (INIS)

    Dickman, P.T.; Vollmer, A.T.; Hunter, P.H.

    1984-12-01

    Procedures and methods for the design and operation of a greater confinement disposal facility using large-diameter boreholes are discussed. It is assumed that the facility would be located at an operating low-level waste disposal site and that only a small portion of the wastes received at the site would require greater confinement disposal. The document is organized into sections addressing: facility planning process; facility construction; waste loading and handling; radiological safety planning; operations procedures; and engineering cost studies. While primarily written for low-level waste management site operators and managers, a detailed economic assessment section is included that should assist planners in performing cost analyses. Economic assessments for both commercial and US government greater confinement disposal facilities are included. The estimated disposal costs range from $27 to $104 per cubic foot for a commercial facility and from $17 to $60 per cubic foot for a government facility. These costs are based on average site preparation, construction, and waste loading costs for both contact- and remote-handled wastes. 14 figures, 22 tables

  5. Research on geological disposal: R and D concept on geological disposal

    International Nuclear Information System (INIS)

    1993-01-01

    The objective on geological disposal of high-level radioactive wastes are to ensure the long term radiological protection of the human and his environment in accordance with current internationally agreed radiation protection principles. The principle of geological disposal is to settle the high-level wastes in deep underground so as to isolate them from the human and his environment considering the existence of groundwater. Japan is currently in the stage of assessing technical feasibility of geological disposal to the extent practicable. In accordance with the AEC (Atomic Energy Commission) policy in 1989, PNC (Power Reactor and Nuclear Fuel Development Corporation) has conducted the research and development on geological disposal in three areas: 1) studies of geological environment, 2) research and development of disposal technology, and 3) performance assessment study. (author)

  6. ENVIRONMENTALLY SOUND DISPOSAL OF RADIOACTIVE MATERIALS AT A RCRA HAZARDOUS WASTE DISPOSAL FACILITY

    International Nuclear Information System (INIS)

    Romano, Stephen; Welling, Steven; Bell, Simon

    2003-01-01

    The use of hazardous waste disposal facilities permitted under the Resource Conservation and Recovery Act (''RCRA'') to dispose of low concentration and exempt radioactive materials is a cost-effective option for government and industry waste generators. The hazardous and PCB waste disposal facility operated by US Ecology Idaho, Inc. near Grand View, Idaho provides environmentally sound disposal services to both government and private industry waste generators. The Idaho facility is a major recipient of U.S. Army Corps of Engineers FUSRAP program waste and received permit approval to receive an expanded range of radioactive materials in 2001. The site has disposed of more than 300,000 tons of radioactive materials from the federal government during the past five years. This paper presents the capabilities of the Grand View, Idaho hazardous waste facility to accept radioactive materials, site-specific acceptance criteria and performance assessment, radiological safety and environmental monitoring program information

  7. Smooth quantile normalization.

    Science.gov (United States)

    Hicks, Stephanie C; Okrah, Kwame; Paulson, Joseph N; Quackenbush, John; Irizarry, Rafael A; Bravo, Héctor Corrada

    2018-04-01

    Between-sample normalization is a critical step in genomic data analysis to remove systematic bias and unwanted technical variation in high-throughput data. Global normalization methods are based on the assumption that observed variability in global properties is due to technical reasons and are unrelated to the biology of interest. For example, some methods correct for differences in sequencing read counts by scaling features to have similar median values across samples, but these fail to reduce other forms of unwanted technical variation. Methods such as quantile normalization transform the statistical distributions across samples to be the same and assume global differences in the distribution are induced by only technical variation. However, it remains unclear how to proceed with normalization if these assumptions are violated, for example, if there are global differences in the statistical distributions between biological conditions or groups, and external information, such as negative or control features, is not available. Here, we introduce a generalization of quantile normalization, referred to as smooth quantile normalization (qsmooth), which is based on the assumption that the statistical distribution of each sample should be the same (or have the same distributional shape) within biological groups or conditions, but allowing that they may differ between groups. We illustrate the advantages of our method on several high-throughput datasets with global differences in distributions corresponding to different biological conditions. We also perform a Monte Carlo simulation study to illustrate the bias-variance tradeoff and root mean squared error of qsmooth compared to other global normalization methods. A software implementation is available from https://github.com/stephaniehicks/qsmooth.

  8. Proposal of a SiC disposal canister for very deep borehole disposal

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Heui-Joo; Lee, Minsoo; Lee, Jong-Youl; Kim, Kyungsu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    In this paper authors proposed a silicon carbide, SiC, disposal canister for the DBD concept in Korea. A. Kerber et al. first proposed the SiC canister for a geological disposal of HLW, CANDU or HTR spent nuclear fuels. SiC has some drawbacks in welding or manufacturing a large canister. Thus, we designed a double layered disposal canister consisting of a stainless steel outer layer and a SiC inner layer. KAERI has been interested in developing a very deep borehole disposal (DBD) of HLW generated from pyroprocessing of PWR spent nuclear fuel and supported the relevant R and D with very limited its own budget. KAERI team reviewed the DBD concept proposed by Sandia National Laboratories (SNL) and developed its own concept. The SNL concept was based on the steel disposal canister. The authors developed a new technology called cold spray coating method to manufacture a copper-cast iron disposal canister for a geological disposal of high level waste in Korea. With this method, 8 mm thin copper canister with 400 mm in diameter and 1200 mm in height was made. In general, they do not give any credit on the lifetime of a disposal canister in DBD concept unlike the geological disposal. In such case, the expensive copper canister should be replaced with another one. We designed a disposal canister using SiC for DBD. According to an experience in manufacturing a small size canister, the fabrication of a large-size one is a challenge. Also, welding of SiC canister is not easy. Several pathways are being paved to overcome it.

  9. On risk assessment of high level radioactive waste disposal

    International Nuclear Information System (INIS)

    Smith, C.F.; Kastenberg, W.E.

    1976-01-01

    One of the major concerns with the continued growth of the nuclear power industry is the production of the high level radioactive wastes. The risks associated with the disposal of these wastes derives from the potential for release of radioactive materials into the environment. The development of a methodology for risk analysis is carried out. The methodology suggested involves the probabilistic analysis of a general accident consequence distribution. In this analysis, the frequency aspect of the distribution is treated separately from the normalized probability function. In the final stage of the analysis, the frequency and probability characteristics of the distribution are recombined to provide an estimate of the risk. The characterization of the radioactive source term is accomplished using the ORIGEN computer code. Calculations are carried out for various reactor types and fuel cycles, and the overall waste hazard for a projected 35 year nuclear power program is determined. An index of relative nuclide hazard appropriate to problems involving the management of high level radioactive wastes is developed. As an illustration of the methodology, risk analyses are made for two proposed methods for waste management: extraterrestrial disposal and interim surface storage. The results of these analyses indicate that, within the assumptions used, the risks of these management schemes are small compared with natural background radiation doses. (Auth.)

  10. Air-tight disposing device for solid radioactive waste

    International Nuclear Information System (INIS)

    Aoyama, Saburo.

    1976-01-01

    Object: In a construction for air-tightly connecting radioactive material handling equipment with a radioactive waste container through a vinyl bag, to use a multi-stage expansion tube to introduce the radioactive waste into the waste container in safe and positive manner. Structure: During normal operation in the radioactive material handling equipment, a multi-stage expansion cylinder is extended by operation of a remote shaft to suitably throw the waste in a state with a vinyl bag protected, whereas when the waste is disposed away from the equipment, the multi-stage expansion cylinder is contracted and received into a holder, and the vinyl bag is heated and sealed at a given position and cut, after which a cover of an outer container for disposal is closed and carried out. The vinyl bag remained on the side of the holder after sealed and cut is put into the waste container after a fresh vinyl bag, in which another waste container is received, has been secured to the holder. (Taniai, N.)

  11. The management and disposal of radioactive waste

    International Nuclear Information System (INIS)

    Ginniff, M.E.; Blair, I.M.

    1986-01-01

    After an introduction on how radioactivity and radiation can cause damage, the three main types of radioactive wastes (high level (HLW), intermediate level (ILW) and low level (LLW)) are defined and the quantities of each produced, and current disposal method mentioned. The Nuclear Industry Radioactive Waste Executive (NIREX) was set up in 1982 to make proposals for the packaging, transportation and disposal of ILW and, if approved, to manage their implementation. NIREX has also taken over some aspects of the LLW disposal programme, and keeps an inventory of the radioactive waste in the country. The NIREX proposals are considered. For ILW this is that ILW should be immersed in a matrix of concrete, then stored in a repository, the design of which is discussed. The transportation of the concrete blocks is also mentioned. Possible sites for a suitable repository are discussed. Efforts are being made to gain public acceptance of these sites. (U.K.)

  12. Roles of bentonite in radioactive waste disposal

    International Nuclear Information System (INIS)

    Suzuki, Keizo

    1995-01-01

    Bentonite is used in radioactive waste disposal from the following points; (1) properties (2) now utilization fields (3) how to use in radioactive waste disposal (4) how much consumption and deposits as source at the present time. Bentonite is produced as alteration products from pyroclastic rocks such as volcanic ash and ryolite, and is clay composed mainly smectite (montmorillonite in general). Therefore, special properties of bentonite such as swelling potential, rheological property, bonding ability, cation exchange capacity and absorption come mainly from properties of montmorillonite. Bentonite has numerous uses such as iron ore pelleizing, civil engineering, green sand molding, cat litter, agricultural chemicals and drilling mud. Consumption of bentonite is about 600-700 x 10 3 tons in Japan and about 10 x 10 6 tons in the world. Roles of bentonite to be expected in radioactive waste disposal are hydraulic conductivity, swelling potential, absorption, mechanical strength, ion diffusion capacity and long-term durability. These properties come from montmorillonite. (author)

  13. Fluorine disposal processes for nuclear applications

    Energy Technology Data Exchange (ETDEWEB)

    Netzer, W.D.

    1977-04-08

    A study was performed to determine the best method for disposing of waste fluorine in the effluent from a uranium oxide conversion facility. After reviewing the fluorine disposal literature and upon considering the nuclear safety constraints, it was determined that the two most promising processes were the fluidized alumina bed and the caustic scrubber. To obtain more design data for the latter process, a 3-stage, 5-in. I.D. spray tower was constructed and operated. This unit used a 10% potassium hydroxide solution at flows of 1.5 to 3 gpm and achieved a 90% fluorine efficiency at fluorine flowrates as high as 4 scfm. However, two toxic by-products, oxygen difluoride and nitroxy fluoride, were detected in the effluent gases. After considering the relative merits of both disposal processes, it is concluded that the fluidized bed is superior, especially if the contaminated waste material were salable.

  14. Decommissioning and disposal costs in Switzerland

    International Nuclear Information System (INIS)

    Zurkinden, Auguste

    2003-01-01

    Introduction Goal: Secure sufficient financial resources. Question: How much money is needed? Mean: Concrete plans for decommissioning and waste disposal. - It is the task of the operators to elaborate these plans and to evaluate the corresponding costs - Plans and costs are to be reviewed by the authorities Decommissioning Plans and Costs - Comprise decommissioning, dismantling and management (including disposal) of the waste. - New studies 2001 for each Swiss nuclear power plant (KKB 2 x 380 MWe, KKM 370 MWe, KKG 1020 MWe, KKL 1180 MWe). - Studies performed by NIS (D). - Last developments taken into account (Niederaichbach, Gundremmingen, Kahl). Decommissioning: Results and Review Results: Total cost estimates decreasing (billion CHF) 1994 1998 2001 13.7 13.1 11.8 Lower costs for spent fuel conditioning and BE/HAA/LMA repository (Opalinus Clay) Split in 2025: 5.6 bil. CHF paid by NPP 6.2 billion CHF in Fund Review: Concentrates on disposal, ongoing

  15. Fluorine disposal processes for nuclear applications

    International Nuclear Information System (INIS)

    Netzer, W.D.

    1977-01-01

    A study was performed to determine the best method for disposing of waste fluorine in the effluent from a uranium oxide conversion facility. After reviewing the fluorine disposal literature and upon considering the nuclear safety constraints, it was determined that the two most promising processes were the fluidized alumina bed and the caustic scrubber. To obtain more design data for the latter process, a 3-stage, 5-in. I.D. spray tower was constructed and operated. This unit used a 10% potassium hydroxide solution at flows of 1.5 to 3 gpm and achieved a 90% fluorine efficiency at fluorine flowrates as high as 4 scfm. However, two toxic by-products, oxygen difluoride and nitroxy fluoride, were detected in the effluent gases. After considering the relative merits of both disposal processes, it is concluded that the fluidized bed is superior, especially if the contaminated waste material were salable

  16. Management of chemical disposal in BARC

    International Nuclear Information System (INIS)

    Shenoy, K.T.; Deolekar, Shailesh

    2017-01-01

    Most of the activities in BARC are of radiological in nature and are regulated as per Atomic Energy Act 1962. The radioactive waste generated is managed safely as per Atomic Energy (Safe Disposal of Radioactive Waste) Rules, 1987. However, many developmental activities related to nuclear fuel cycle and laboratories, which support the quality control aspects, generate inactive chemical waste. In addition, being multidisciplinary in nature, BARC carries out research in frontiers of chemical science for societal benefit and academic interest. All these scientific activities over the decades have resulted in accumulation of many partially used/surplus laboratory chemicals. These chemicals are in large varieties though small in terms of quantity. Although these chemicals do not have any further utility and commercial value, can add to potential hazards and hence require safe disposal. Considering this, BARC Safety Council(BSC) has re-constituted the 'Advisory Committee for Chemical Disposal (ACCD)' on March 18, 2016

  17. Progress toward disposal of LLRW in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Charlesworth, D. H.

    1989-08-15

    Low-level radioactive wastes are managed in Canada currently by interim storage methods operated by the major generators of the wastes. The potential benefits of permanent disposal have led Atomic Energy of Canada Limited to undertake a development and demonstration program to make the transition from storage to disposal at its Chalk River Nuclear Laboratories. The first stages of the demonstration are based on an enhanced version of shallow land burial for the least hazardous wastes, and a unique design of a belowground concrete vault. The program includes the development and testing of the auxiliary equipment, processes and procedures necessary to support the disposal system, as well as the performance assessment methods and information needed to assure its safety.

  18. Public values associated with nuclear waste disposal

    International Nuclear Information System (INIS)

    Maynard, W.S.; Nealey, S.M.; Hebert, J.A.; Lindell, M.K.

    1976-06-01

    This report presents the major findings from a study designed to assess public attitudes and values associated with nuclear waste disposal. The first objective was to obtain from selected individuals and organizations value and attitude information which would be useful to decision-makers charged with deciding the ultimate disposal of radioactive waste materials. A second research objective was to obtain information that could be structured and quantified for integration with technical data in a computer-assisted decision model. The third general objective of this research was to test several attitude-value measurement procedures for their relevance and applicability to nuclear waste disposal. The results presented in this report are based on questionnaire responses from 465 study participants

  19. Ultimate disposal: a plan for achievement

    International Nuclear Information System (INIS)

    Bartlett, J.W.

    1975-01-01

    Four major topics relevant to R and D plans for disposal were: functions of planning, plans development procedures, R and D program procedures, and R and D plans content. Comments on these topics emphasize four major points: plans and their results support decisions on disposal methods; decisions will winnow options on the basis of comprehensive assessments; the R and D plan for disposal will be comprehensive and maintain options; time frame for the R and D program may be about 20 years. Prior and on-going work has provided a good foundation for this planning effort and the content of the plans. The R and D plans are expected to be developed this year and updated periodically

  20. Mined Geologic Disposal System Requirements Document

    International Nuclear Information System (INIS)

    1993-01-01

    This Mined Geologic Disposal System Requirements document (MGDS-RD) describes the functions to be performed by, and the requirements for, a Mined Geologic Disposal System (MGDS) for the permanent disposal of spent nuclear fuel (SNF) and commercial and defense high level radioactive waste (HLW) in support of the Civilian Radioactive Waste Management System (CRWMS). The development and control of the MGDS-RD is quality-affecting work and is subject to the Department of Energy (DOE) Office of Civilian Radioactive Waste Management (OCRWM) Quality Assurance Requirements Document (QARD). As part of the technical requirements baseline, it is also subject to Baseline Management Plan controls. The MGDS-RD and the other program-level requirements documents have been prepared and managed in accordance with the Technical Document Preparation Plan (TDPP) for the Preparation of System Requirements Documents

  1. Safety assessment for radioactive waste disposal facility

    International Nuclear Information System (INIS)

    Thanaletchumy Karuppiah; Mohd Abdul Wahab Yusof; Nik Marzuki Nik Ibrahim; Nurul Wahida Ahmad Khairuddin

    2008-08-01

    Safety assessments are used to evaluate the performance of a radioactive waste disposal facility and its impact on human health and the environment. This paper presents the overall information and methodology to carry out the safety assessment for a long term performance of a disposal system. A case study was also conducted to gain hands-on experience in the development and justification of scenarios, the formulation and implementation of models and the analysis of results. AMBER code using compartmental modeling approach was used to represent the migration and fate of contaminants in this training. This safety assessment is purely illustrative and it serves as a starting point for each development stage of a disposal facility. This assessment ultimately becomes more detail and specific as the facility evolves. (Author)

  2. Oceanography related to deep sea waste disposal

    International Nuclear Information System (INIS)

    1978-09-01

    In connection with studies on the feasibility of the safe disposal of radioactive waste, from a large scale nuclear power programme, either on the bed of the deep ocean or within the deep ocean bed, preparation of the present document was commissioned by the (United Kingdom) Department of the Environment. It attempts (a) to summarize the present state of knowledge of the deep ocean environment relevant to the disposal options and assess the processes which could aid or hinder dispersal of material released from its container; (b) to identify areas of research in which more work is needed before the safety of disposal on, or beneath, the ocean bed can be assessed; and (c) to indicate which areas of research can or should be undertaken by British scientists. The programmes of international cooperation in this field are discussed. The report is divided into four chapters dealing respectively with geology and geophysics, geochemistry, physical oceanography and marine biology. (U.K.)

  3. Hazardous waste disposal sites: Report 2

    International Nuclear Information System (INIS)

    1979-12-01

    Arkansas, like virtually every other state, is faced with a deluge of hazardous waste. There is a critical need for increased hazardous waste disposal capacity to insure continued industrial development. Additionally, perpetual maintenance of closed hazardous waste disposal sites is essential for the protection of the environment and human health. Brief descriptions of legislative and regulatory action in six other states are provided in this report. A report prepared for the New York State Environmental Facilities Corp. outlines three broad approaches states may take in dealing with their hazardous waste disposal problems. These are described. State assistance in siting and post-closure maintenance, with private ownership of site and facility, appears to be the most advantageous option

  4. Radioactive waste disposal - policy and perspectives

    International Nuclear Information System (INIS)

    Roberts, L.E.J.

    1979-01-01

    Methods are discussed that have been developed and could be used for management and disposal of highly active wastes. The characteristics of such waste are, described and the concept of toxic potential is explained. General principles of waste disposal and the various options which have been considered are discussed. Studies on the incorporation of waste into glass, and on container materials are described. Consideration is also given to the requirements of stores and repositories from the aspect of heat dissipation, design, siting, etc. The advantages and disadvantages of the various types of geological formation ie salt, argillaceous deposits, hardrocks, suitable for containment of highly active wastes are examined. Studies carried out on the safety of repositories and an ocean disposal of the waste are summarised. The review ends with a brief account of the status of the vitrification process in the UK and abroad and of future programmes involving geological and related studies. (UK)

  5. Progress toward disposal of LLRW in Canada

    International Nuclear Information System (INIS)

    Charlesworth, D.H.

    1989-08-01

    Low-level radioactive wastes are managed in Canada currently by interim storage methods operated by the major generators of the wastes. The potential benefits of permanent disposal have led Atomic Energy of Canada Limited to undertake a development and demonstration program to make the transition from storage to disposal at its Chalk River Nuclear Laboratories. The first stages of the demonstration are based on an enhanced version of shallow land burial for the least hazardous wastes, and a unique design of a belowground concrete vault. The program includes the development and testing of the auxiliary equipment, processes and procedures necessary to support the disposal system, as well as the performance assessment methods and information needed to assure its safety

  6. Status of defense radioactive waste disposal activities

    International Nuclear Information System (INIS)

    Wade, T.W.

    1988-01-01

    The Office of Defense Programs, U.S. Department of Energy, is responsible for the production of nuclear weapons and materials for national defense. As a byproduct to their activities, nuclear production facilities have generated, and will continue to generate, certain radioactive, hazardous, or mixed wastes that must be managed and disposed of in a safe and cost-effective manner. Compliance with all applicable Federal and State regulations is required. This paper describes the principal elements that comprise Defense Programs' approach to waste management and disposal. The status of high-level, transuranic, and low-level radioactive waste disposal is set forth. Defense Programs' activities in connection with the environmental restoration of inactive facilities and with the safe transport of waste materials are summarized. Finally, the principal challenges to realizing the goals set for the defense waste program are discussed in terms of regulatory, public acceptance, technical, and budget issues

  7. Radioactive waste disposal - policy and perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, L E.J. [UKAEA, Harwell. Atomic Energy Research Establishment

    1979-04-01

    Methods are discussed that have been developed and could be used for management and disposal of highly active wastes. The characteristics of such waste are, described and the concept of toxic potential is explained. General principles of waste disposal and the various options which have been considered are discussed. Studies on the incorporation of waste into glass, and on container materials are described. Consideration is also given to the requirements of stores and repositories from the aspect of heat dissipation, design, siting, etc. The advantages and disadvantages of the various types of geological formation ie salt, argillaceous deposits, hardrocks, suitable for containment of highly active wastes are examined. Studies carried out on the safety of repositories and an ocean disposal of the waste are summarised. The review ends with a brief account of the status of the vitrification process in the UK and abroad and of future programmes involving geological and related studies.

  8. Derivation of activity limits for the disposal of radioactive waste in near surface disposal facilities

    International Nuclear Information System (INIS)

    2003-12-01

    Radioactive waste must be managed safely, consistent with internationally agreed safety standards. The disposal method chosen for the waste should be commensurate with the hazard and longevity of the waste. Near surface disposal is an option used by many countries for the disposal of radioactive waste containing mainly short lived radionuclides and low concentrations of long lived radionuclides. The term 'near surface disposal' encompasses a wide range of design options, including disposal in engineered structures at or just below ground level, disposal in simple earthen trenches a few metres deep, disposal in engineered concrete vaults, and disposal in rock caverns several tens of metres below the surface. The use of a near surface disposal option requires design and operational measures to provide for the protection of human health and the environment, both during operation of the disposal facility and following its closure. To ensure the safety of both workers and the public (both in the short term and the long term), the operator is required to design a comprehensive waste management system for the safe operation and closure of a near surface disposal facility. Part of such a system is to establish criteria for accepting waste for disposal at the facility. The purpose of the criteria is to limit the consequences of events which could lead to radiation exposures and in addition, to prevent or limit hazards, which could arise from non-radiological causes. Waste acceptance criteria include limits on radionuclide content concentration in waste materials, and radionuclide amounts in packages and in the repository as a whole. They also include limits on quantity of free liquids, requirements for exclusion of chelating agents and pyrophoric materials, and specifications of the characteristics of the waste containers. Largely as a result of problems encountered at some disposal facilities operated in the past, in 1985 the IAEA published guidance on generic acceptance

  9. UK surplus source disposal programme - 16097

    International Nuclear Information System (INIS)

    John, Gordon H.; Reeves, Nigel; Nisbet, Amy C.; Garnett, Andrew; Williams, Clive R.

    2009-01-01

    The UK Surplus Source Disposal Programme (SSDP), managed by the Environment Agency, was designed to remove redundant radioactive sources from the public domain. The UK Government Department for Environment, Food and Rural Affairs (Defra) was concerned that disused sources were being retained by hospitals, universities and businesses, posing a risk to public health and the environment. AMEC provided a range of technical and administrative services to support the SSDP. A questionnaire was issued to registered source holders and the submitted returns compiled to assess the scale of the project. A member of AMEC staff was seconded to the Environment Agency to provide technical support and liaise directly with source holders during funding applications, which would cover disposal costs. Funding for disposal of different sources was partially based on a sliding scale of risk as determined by the IAEA hazard categorisation system. This funding was also sector dependent. The SSDP was subsequently expanded to include the disposal of luminised aircraft instruments from aviation museums across the UK. These museums often hold significant radiological inventories, with many items being unused and in a poor state of repair. These instruments were fully characterised on site by assessing surface dose rate, dimensions, source integrity and potential contamination issues. Calculations using the Microshield computer code allowed gamma radiation measurements to be converted into total activity estimates for each source. More than 11,000 sources were disposed of under the programme from across the medical, industrial, museum and academic sectors. The total activity disposed of was more than 8.5 E+14 Bq, and the project was delivered under budget. (authors)

  10. Monitoring the normal body

    DEFF Research Database (Denmark)

    Nissen, Nina Konstantin; Holm, Lotte; Baarts, Charlotte

    2015-01-01

    of practices for monitoring their bodies based on different kinds of calculations of weight and body size, observations of body shape, and measurements of bodily firmness. Biometric measurements are familiar to them as are health authorities' recommendations. Despite not belonging to an extreme BMI category...... provides us with knowledge about how to prevent future overweight or obesity. This paper investigates body size ideals and monitoring practices among normal-weight and moderately overweight people. Methods : The study is based on in-depth interviews combined with observations. 24 participants were...... recruited by strategic sampling based on self-reported BMI 18.5-29.9 kg/m2 and socio-demographic factors. Inductive analysis was conducted. Results : Normal-weight and moderately overweight people have clear ideals for their body size. Despite being normal weight or close to this, they construct a variety...

  11. Selection of Computer Codes for Shallow Land Waste Disposal in PPTA Serpong

    International Nuclear Information System (INIS)

    Syahrir

    1996-01-01

    Selection of Computer Codes for Shallow Land Waste Disposal in PPTA Serpong. Models and computer codes have been selected for safety assessment of near surface waste disposal facility. This paper provides a summary and overview of the methodology and codes selected. The methodology allows analyses of dose to individuals from offsite releases under normal conditions as well as on-site doses to inadvertent intruders. A demonstration in the case of shallow land waste disposal in Nuclear Research Establishment are in Serpong has been given for normal release scenario. The assessment includes infiltration of rainfall, source-term, ground water (well) and surface water transport, food-chain and dosimetry. The results show dose history of maximally exposed individuals. The codes used are VS2DT, PAGAN and GENII. The application of 1 m silt loam as a moisture barrier cover decreases flow in the disposal unit by a factor of 27. The selected radionuclides show variety of dose histories according to their chemical and physical characteristics and behavior in the environment

  12. A disposal centre for immobilized nuclear waste

    International Nuclear Information System (INIS)

    1980-02-01

    This report describes a conceptual design of a disposal centre for immobilized nuclear waste. The surface facilities consist of plants for the preparation of steel cylinders containing nuclear waste immobilized in glass, shaft headframe buildings and all necessary support facilities. The underground disposal vault is located on one level at a depth of 1000 m. The waste cylinders are emplaced into boreholes in the tunnel floors. All surface and subsurface facilities are described, operations and schedules are summarized, and cost estimates and manpower requirements are given. (auth)

  13. Ocean disposal of heat generating radioactive waste

    International Nuclear Information System (INIS)

    1986-03-01

    The objective of this study was to predict tensile stress levels in thin-walled titanium alloy and thick-walled carbon steel containers designed for the ocean disposal of heat-generating radioactive wastes. Results showed that tensile stresses would be produced in both designs by the expansion of the lead filter, for a temperature rise of 200 0 C. Tensile stress could be reduced if the waste heat output at disposal was reduced. Initial stresses for the titanium-alloy containers could be relieved by heat treatment. (UK)

  14. Co-disposal of mixed waste materials

    International Nuclear Information System (INIS)

    Phillips, S.J.; Alexander, R.G.; Crane, P.J.; England, J.L.; Kemp, C.J.; Stewart, W.E.

    1993-08-01

    Co-disposal of process waste streams with hazardous and radioactive materials in landfills results in large, use-efficiencies waste minimization and considerable cost savings. Wasterock, produced from nuclear and chemical process waste streams, is segregated, treated, tested to ensure regulatory compliance, and then is placed in mixed waste landfills, burial trenches, or existing environmental restoration sites. Large geotechnical unit operations are used to pretreat, stabilize, transport, and emplace wasterock into landfill or equivalent subsurface structures. Prototype system components currently are being developed for demonstration of co-disposal

  15. Disposal of bead ion exchange resin wastes

    International Nuclear Information System (INIS)

    Gay, R.L.; Granthan, L.F.

    1985-01-01

    Bead ion exchange resin wastes are disposed of by a process which involves spray-drying a bead ion exchange resin waste in order to remove substantially all of the water present in such waste, including the water on the surface of the ion exchange resin beads and the water inside the ion exchange resin beads. The resulting dried ion exchange resin beads can then be solidified in a suitable solid matrix-forming material, such as a polymer, which solidifies to contain the dried ion exchange resin beads in a solid monolith suitable for disposal by burial or other conventional means

  16. Radioactive waste disposal into the ground

    International Nuclear Information System (INIS)

    1965-01-01

    Disposal into ground has sometimes proved to be an expedient and simple method. Where ground disposal has become an established practice, the sites have so far been limited to those remote from population centres; but in other respects, such as in climate and soil conditions, their characteristics vary widely. Experience gained at these sites has illustrated the variety of problems in radioactive waste migration and the resulting pollution and environmental radiation levels that may reasonably be anticipated at other sites, whether remote from population centres or otherwise.

  17. Safety assessment of HLW geological disposal system

    International Nuclear Information System (INIS)

    Naito, Morimasa

    2006-01-01

    In accordance with the Japanese nuclear program, the liquid waste with a high level of radioactivity arising from reprocessing is solidified in a stable glass matrix (vitrification) in stainless steel fabrication containers. The vitrified waste is referred to as high-level radioactive waste (HLW), and is characterized by very high initial radioactivity which, even though it decreases with time, presents a potential long-term risk. It is therefore necessary to thoroughly manage HLW from human and his environment. After vitrification, HLW is stored for a period of 30 to 50 years to allow cooling, and finally disposed of in a stable geological environment at depths greater than 300 m below surface. The deep underground environment, in general, is considered to be stable over geological timescales compared with surface environment. By selecting an appropriate disposal site, therefore, it is considered to be feasible to isolate the waste in the repository from man and his environment until such time as radioactivity levels have decayed to insignificance. The concept of geological disposal in Japan is similar to that in other countries, being based on a multibarrier system which combines the natural geological environment with engineered barriers. It should be noted that geological disposal concept is based on a passive safety system that does not require any institutional control for assuring long term environmental safety. To demonstrate feasibility of safe HLW repository concept in Japan, following technical steps are essential. Selection of a geological environment which is sufficiently stable for disposal (site selection). Design and installation of the engineered barrier system in a stable geological environment (engineering measures). Confirmation of the safety of the constructed geological disposal system (safety assessment). For site selection, particular consideration is given to the long-term stability of the geological environment taking into account the fact

  18. Hanford's Radioactive Mixed Waste Disposal Facility

    International Nuclear Information System (INIS)

    McKenney, D.E.

    1995-01-01

    The Radioactive Mixed Waste Disposal Facility, is located in the Hanford Site Low-Level Burial Grounds and is designated as Trench 31 in the 218-W-5 Burial Ground. Trench 31 is a Resource Conservation and Recovery Act compliant landfill and will receive wastes generated from both remediation and waste management activities. On December 30, 1994, Westinghouse Hanford Company declared readiness to operate Trench 31, which is the Hanford Site's (and the Department of Energy complex's) first facility for disposal of low-level radioactive mixed wastes

  19. Environmental restoration waste materials co-disposal

    International Nuclear Information System (INIS)

    Phillips, S.J.; Alexander, R.G.; England, J.L.; Kirdendall, J.R.; Raney, E.A.; Stewart, W.E.; Dagan, E.B.; Holt, R.G.

    1993-09-01

    Co-disposal of radioactive and hazardous waste is a highly efficient and cost-saving technology. The technology used for final treatment of soil-washing size fractionization operations is being demonstrated on simulated waste. Treated material (wasterock) is used to stabilize and isolate retired underground waste disposal structures or is used to construct landfills or equivalent surface or subsurface structures. Prototype equipment is under development as well as undergoing standardized testing protocols to prequalify treated waste materials. Polymer and hydraulic cement solidification agents are currently used for geotechnical demonstration activities

  20. Radioactive metals disposal and recycling impact modelling

    International Nuclear Information System (INIS)

    Kemp, N.W.; Lunn, R.J.; Belton, V.; Kockar, I.

    2014-01-01

    Screening life cycle assessment models developed to investigate hypothetical disposal and recycling options for the Windscale Advanced Gas-cooled Reactor heat exchangers were used to generate more complex models addressing the main UK radioactive metals inventory. Both studies show there are significant environmental advantages in the metals recycling promoted by the current low level waste disposal policies, strategies and plans. Financial benefits from current metals treatment options are supported and offer even greater benefits when applied to the UK radioactive metals inventory as a whole. (authors)