WorldWideScience

Sample records for normal motor coordination

  1. Normalized Index of Synergy for Evaluating the Coordination of Motor Commands

    Science.gov (United States)

    Togo, Shunta; Imamizu, Hiroshi

    2015-01-01

    Humans perform various motor tasks by coordinating the redundant motor elements in their bodies. The coordination of motor outputs is produced by motor commands, as well properties of the musculoskeletal system. The aim of this study was to dissociate the coordination of motor commands from motor outputs. First, we conducted simulation experiments where the total elbow torque was generated by a model of a simple human right and left elbow with redundant muscles. The results demonstrated that muscle tension with signal-dependent noise formed a coordinated structure of trial-to-trial variability of muscle tension. Therefore, the removal of signal-dependent noise effects was required to evaluate the coordination of motor commands. We proposed a method to evaluate the coordination of motor commands, which removed signal-dependent noise from the measured variability of muscle tension. We used uncontrolled manifold analysis to calculate a normalized index of synergy. Simulation experiments confirmed that the proposed method could appropriately represent the coordinated structure of the variability of motor commands. We also conducted experiments in which subjects performed the same task as in the simulation experiments. The normalized index of synergy revealed that the subjects coordinated their motor commands to achieve the task. Finally, the normalized index of synergy was applied to a motor learning task to determine the utility of the proposed method. We hypothesized that a large part of the change in the coordination of motor outputs through learning was because of changes in motor commands. In a motor learning task, subjects tracked a target trajectory of the total torque. The change in the coordination of muscle tension through learning was dominated by that of motor commands, which supported the hypothesis. We conclude that the normalized index of synergy can be used to evaluate the coordination of motor commands independently from the properties of the

  2. Comparison of Motor Skills in Children with Developmental Coordination Disorder and Normal Peers

    Directory of Open Access Journals (Sweden)

    Sahel Hemmati

    2008-09-01

    Full Text Available Objectives: Developmental Coordination Disorder (DCD is a motor skill disorder which impacts upon a child, s ability to perform age-appropriate activity of daily living and academic performance. They have problems in gross & fine motors, their upper limb coordination are impaired, too. In this way, we decided to compare motors skills with BOTMP test in children with DCD and their normal peers. Methods: In this study 30 children with DCD (age range is 6/5-8/5 have studied and compared with their normal peers. Bruininks-Oseretsky Test of Motor Proficiency (BOTMP was used. Results: The study showed Motor skills in DCD children are significantly poorer than their normal peers. (P<0/001 Gross motor, Fine motor skills and the upper limb coordination are significant impaired in DCD children. Discussion: In the process of evaluation Children with DCD, standard instrument, like BOTMP can be used.BOTMP detected deficiency in gross & fine motor and other area like, upper limb coordination. We need accurate in formations for better treatment. BOTMP can be used in the process of evaluation for every DCD child, after that goals of treatment will be clearer.

  3. Effect of hippotherapy in the global motor coordination in individuals with Down Syndrome

    Directory of Open Access Journals (Sweden)

    Valéria Sovat de Freitas Costa

    Full Text Available Abstract Introduction: Down syndrome (DS of all genetic syndromes is the most common. In Hippotherapy, three-dimensional movements, provided by horse walking, awaken in the body of children with DS a large amount of sensory and neuromuscular stimuli, which directly interfere with overall development and the acquisition of motor skills. Objective: To analyze the effects of an Hippotherapy program on global motor coordination variables in individuals with DS of both genders and to compare individuals with the same syndrome who do not practice Hippotherapy. Methods: 41 individuals participated in the study, 20 of them practicing Hippotherapy (EG and 21 who did not practice Hippotherapy (CG. The Körperkoordinations test für Kinder (KTK test was used, consisting of four tasks: Balance on beams, Single-lever jump, Side-jump and Transfer on platform for analysis of motor coordination for individuals. Results: Comparing the groups, a significant difference (p < 0.01 was observed for the Lateral Leap Motor Quotient, the EG presented a better score (114.10 than the CG (88.47, and also in the Total Motor Ratio (EG = 115.10, GC = 102.47. The individuals that practice Hippotherapy presented better results in the global motor coordination, with significant difference (p < 0.05. In EG, 5% had high global motor coordination, 40% good and 55% normal, whereas in CG only 10% had good global motor coordination and 90% normal global motor coordination. Conclusion: It can be emphasized that equine therapy presents benefits of improvement in global motor coordination. Specifically in tasks such as the balance beam, single jump and side jump, besides global motor coordination.

  4. Correlation between BMI and motor coordination in children.

    Science.gov (United States)

    Lopes, Vítor P; Stodden, David F; Bianchi, Mafalda M; Maia, Jose A R; Rodrigues, Luis P

    2012-01-01

    To analyze the association between motor coordination (MC) and body mass index (BMI) across childhood and early adolescence. This study is cross-sectional. Data were collected in 7175 children (boys n=3616, girls n=3559), ages 6-14 years. BMI was calculated from measured height and weight [body mass (kg)/height (m(2))]. Motor coordination was evaluated using Kiphard-Schilling's body coordination test (KTK). Spearman's rank correlation was used to study the association between BMI and MC. A Kruskal-Wallis test was used to analyze the differences in MC between children of normal weight, overweight and obese children. Correlations between MC and BMI were negative and varied between 0.05 and 0.49. The highest negative correlations for both boys and girls was at 11 years of age. There was a general pattern of increasing negative correlations in both genders from 6 to 11 years of age and then a decrease in correlation strengths through 14 years of age. In both boys (χ(2)((2))=324.01; p<0.001) and girls (χ(2)((2))=291.20; p<0.001) there were significant differences in MC between the three groups' weight status. Normal weight children of both sexes demonstrated significantly higher MC scores than overweight. Obese children in both sexes had the lowest MC scores among all three groups. Motor coordination demonstrated an inverse relationship with BMI across childhood and into early adolescence. The strength of the inverse relation increased during childhood, but decreased through early adolescence. Overweight and obese children of both sexes demonstrated significantly lower MC than normal weight children. Copyright © 2011 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  5. Skeletal maturation, fundamental motor skills and motor coordination in children 7-10 years.

    Science.gov (United States)

    Freitas, Duarte L; Lausen, Berthold; Maia, José António; Lefevre, Johan; Gouveia, Élvio Rúbio; Thomis, Martine; Antunes, António Manuel; Claessens, Albrecht L; Beunen, Gaston; Malina, Robert M

    2015-01-01

    Relationships between skeletal maturation and fundamental motor skills and gross motor coordination were evaluated in 429 children (213 boys and 216 girls) 7-10 years. Skeletal age was assessed (Tanner-Whitehouse 2 method), and stature, body mass, motor coordination (Körperkoordinations Test für Kinder, KTK) and fundamental motor skills (Test of Gross Motor Development, TGMD-2) were measured. Relationships among chronological age, skeletal age (expressed as the standardised residual of skeletal age on chronological age) and body size and fundamental motor skills and motor coordination were analysed with hierarchical multiple regression. Standardised residual of skeletal age on chronological age interacting with stature and body mass explained a maximum of 7.0% of the variance in fundamental motor skills and motor coordination over that attributed to body size per se. Standardised residual of skeletal age on chronological age alone accounted for a maximum of 9.0% of variance in fundamental motor skills, and motor coordination over that attributed to body size per se and interactions between standardised residual of skeletal age on chronological age and body size. In conclusion, skeletal age alone or interacting with body size has a negligible influence on fundamental motor skills and motor coordination in children 7-10 years.

  6. Motor coordination and visual information processing in high school students at risk of developmental coordination disorder: Two year follow-up study

    Directory of Open Access Journals (Sweden)

    Rudolf Psotta

    2014-03-01

    risk of DCD was revealed in 16 adolescents. In the adolescent men and women with the reduction of motor difficulties over time the clinically significant (effect size and/or statistically significant differences and the changes in some measures of visual information processing were found in comparison to the adolescents with the persistence of motor difficulties. CONCLUSIONS: This study is the first one which tried to reveal possible motor coordination development in the adolescents at risk of DCD in a short term developmental interval. The impaired motor coordination can progress to a normal level till during the adolescence stage. It seems that persistence of motor coordination deficit can be linked to less efficient motor response selection rather than the deficit in the sensory registration of stimuli.

  7. Motor hypertonia and lack of locomotor coordination in mutant mice lacking DSCAM.

    Science.gov (United States)

    Lemieux, Maxime; Laflamme, Olivier D; Thiry, Louise; Boulanger-Piette, Antoine; Frenette, Jérôme; Bretzner, Frédéric

    2016-03-01

    Down syndrome cell adherence molecule (DSCAM) contributes to the normal establishment and maintenance of neural circuits. Whereas there is abundant literature regarding the role of DSCAM in the neural patterning of the mammalian retina, less is known about motor circuits. Recently, DSCAM mutation has been shown to impair bilateral motor coordination during respiration, thus causing death at birth. DSCAM mutants that survive through adulthood display a lack of locomotor endurance and coordination in the rotarod test, thus suggesting that the DSCAM mutation impairs motor control. We investigated the motor and locomotor functions of DSCAM(2J) mutant mice through a combination of anatomical, kinematic, force, and electromyographic recordings. With respect to wild-type mice, DSCAM(2J) mice displayed a longer swing phase with a limb hyperflexion at the expense of a shorter stance phase during locomotion. Furthermore, electromyographic activity in the flexor and extensor muscles was increased and coactivated over 20% of the step cycle over a wide range of walking speeds. In contrast to wild-type mice, which used lateral walk and trot at walking speed, DSCAM(2J) mice used preferentially less coordinated gaits, such as out-of-phase walk and pace. The neuromuscular junction and the contractile properties of muscles, as well as their muscle spindles, were normal, and no signs of motor rigidity or spasticity were observed during passive limb movements. Our study demonstrates that the DSCAM mutation induces dystonic hypertonia and a disruption of locomotor gaits. Copyright © 2016 the American Physiological Society.

  8. Low motor performance scores among overweight children: poor coordination or morphological constraints?

    Science.gov (United States)

    Chivers, Paola; Larkin, Dawne; Rose, Elizabeth; Beilin, Lawrence; Hands, Beth

    2013-10-01

    This study examined whether lower motor performance scores can be full attributed to poor coordination, or whether weight related morphological constraints may also affect motor performance. Data for 666 children and adolescents from the longitudinal Western Australian Pregnancy Cohort (Raine) Study were grouped into normal weight, overweight and obese categories based on the International Obesity Task Force cut points. Participants completed the 10-item McCarron Assessment of Neuromuscular Development (MAND) at the 10 and 14 year follow-up. The prevalence of overweight and obese participants classified with mild or moderate motor difficulties was not different from the normal weight group at 10 years (χ2 = 5.8 p = .215), but higher at 14 years (χ2 = 11.3 p = .023). There were no significant differences in overall motor performance scores between weight status groups at 10 years, but at 14 years, the normal weight group achieved better scores than the obese group (pobese groups on the jump task at 10 (pmotor competence are appropriate for an increasingly overweight and obese population. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. The influence of gymnastics in motor coordination and reaction time in urban public bus drivers

    Directory of Open Access Journals (Sweden)

    Stela Paula Mezzomo

    2014-12-01

    Full Text Available This study investigated the influence of labour gymnastics (LG on bus drivers' basic skills such as reaction time and gross motor coordination. Sixty male bus drivers (37.06 ± 7.66 years old from two bus lines in the city of Santa Maria (RS took part of this study. The participants were split into two groups, experimental group (EG and control group (CG. Subjects that were part of the EG took part in a LG intervention program, 2-3 times a week, over a year. Gross motor coordination was assessed by BURPEE Protocol (Johnson & Nelson, 1979, whereas reaction time by software providing a visual stimulus. Data normality was checked through Shapiro-Wilk test, which pointed to normal distribution only for the variables simple reaction time (SRT and choice reaction time (CRT in the EG. Therefore the non-parametric Mann-Whitney U test was selected to compare differences between groups. A statistically significant difference for gross motor coordination was found (z= −2.525, p= 0.012, suggesting the effectiveness of LG to improve motor skills. As regards SRT and CRT, no significant difference was found, in spite of better outcomes having been recorded after the LG program.

  10. Physical fitness of primary school children in the reflection of different levels of gross motor coordination

    Directory of Open Access Journals (Sweden)

    Ingrid Ružbarská

    2016-12-01

    Full Text Available Background: Lower level of motor competences may result in unsuccessful engaging of children in physical activities as early as pre-school age and also prepubescent ages. This may subsequently lead to a spiral of forming negative attitudes towards an active lifestyle and may be accompanied by a negative trend in weight status and physical fitness outcomes. Objective: The aim of the study was to identify and analyze differences in physical fitness and somatic parameters of primary school-aged children according to level of their gross motor coordination. Methods:  A sample of 436 children aged 7 to 10 years, of which were 222 girls and 214 boys, performed physical fitness tests - Eurofit test battery. The level of motor coordination was assessed using the test battery Körperkoordination-Test-für-Kinder (KTK. The anthropometric data (body mass, body height, sum of five skinfolds were measured. The one-way ANOVA was used to assess differences in physical fitness test items and anthropometry parameters between children with normal motor quotient (MQ ≥ 86 and decreased levels of gross motor coordination (MQ ≤ 85. Results: Research findings indicate a strongly negative trend in physical development of children with motor deficits (MQ ≤ 85. The results of ANOVA revealed significantly less favourable level of most of the assessed physical fitness parameters in children with decreased level of motor coordination. Conclusions: The findings suggest that physical fitness outcomes of primary school-aged children are associated with a lower level of motor coordination. Motor coordination probably plays an important role in preventing, or moderating the so-called negative trajectory leading to childhood overweight or obesity.

  11. DEVELOPMENT OF FINE MOTOR COORDINATION AND VISUAL-MOTOR INTEGRATION IN PRESCHOOL CHILDREN

    Directory of Open Access Journals (Sweden)

    Haris MEMISEVIC

    2013-03-01

    Full Text Available Fine motor skills are prerequisite for many everyday activities and they are a good predictor of a child's later academic outcome. The goal of the present study was to assess the effects of age on the development of fine motor coordination and visual-motor integration in preschool children. The sample for this study consisted of 276 preschool children from Canton Sara­jevo, Bosnia and Herzegovina. We assessed children's motor skills with Beery Visual Motor Integration Test and Lafayette Pegboard Test. Data were analyzed with one-way ANOVA, followed by planned com­parisons between the age groups. We also performed a regression analysis to assess the influence of age and motor coordination on visual-motor integration. The results showed that age has a great effect on the development of fine motor skills. Furthermore, the results indicated that there are possible sensitive periods at preschool age in which the development of fine motor skills is accelerated. Early intervention specialists should make a thorough evaluations of fine motor skills in preschool children and make motor (rehabilitation programs for children at risk of fine motor delays.

  12. Motor coordination and balance in rodents.

    Science.gov (United States)

    Carter, R J; Morton, J; Dunnett, S B

    2001-08-01

    Measurement of motor coordination and balance can be used not only to assess the effect of drugs or other experimental manipulations on mice and rats, but also to characterize the motor phenotype of transgenic or knock-out animals. Three well established and widely used protocols for measuring motor coordination and balance in mice and rats (rotarod, beam walking and footprint analysis) are described in this unit. The tests can be used equally well for rats and mice, and have been used both for the phenotypic characterization of transgenic mice and for evaluating the effects of lesions and aging in rats. The protocols are described in the primary context of testing mice, but modifications of the test apparatus or variations in the test parameters for assessment of rats are noted.

  13. Motor coordination defects in mice deficient for the Sam68 RNA-binding protein.

    Science.gov (United States)

    Lukong, Kiven E; Richard, Stéphane

    2008-06-03

    The role of RNA-binding proteins in the central nervous system and more specifically their role in motor coordination and learning are poorly understood. We previously reported that ablation of RNA-binding protein Sam68 in mice results in male sterility and delayed mammary gland development and protection against osteoporosis in females. Sam68 however is highly expressed in most regions of the brain especially the cerebellum and thus we investigated the cerebellar-related manifestations in Sam68-null mice. We analyzed the mice for motor function, sensory function, and learning and memory abilities. Herein, we report that Sam68-null mice have motor coordination defects as assessed by beam walking and rotorod performance. Forty-week-old Sam68-null mice (n=12) were compared to their wild-type littermates (n=12). The Sam68-null mice exhibited more hindpaw faults in beam walking tests and fell from the rotating drum at lower speeds and prematurely compared to the wild-type controls. The Sam68-null mice were, however, normal for forelimb strength, tail-hang reflex, balance test, grid walking, the Morris water task, recognition memory, visual discrimination, auditory stimulation and conditional taste aversion. Our findings support a role for Sam68 in the central nervous system in the regulation of motor coordination.

  14. Interlimb Coordination: An Important Facet of Gross-Motor Ability

    Science.gov (United States)

    Bobbio, Tatiana; Gabbard, Carl; Cacola, Priscila

    2009-01-01

    Motor development attains landmark significance during early childhood. Although early childhood educators may be familiar with the gross-motor skill category, the subcategory of interlimb coordination needs greater attention than it typically receives from teachers of young children. Interlimb coordination primarily involves movements requiring…

  15. GPR55, a G-protein coupled receptor for lysophosphatidylinositol, plays a role in motor coordination.

    Directory of Open Access Journals (Sweden)

    Chia-Shan Wu

    Full Text Available The G-protein coupled receptor 55 (GPR55 is activated by lysophosphatidylinositols and some cannabinoids. Recent studies found prominent roles for GPR55 in neuropathic/inflammatory pain, cancer and bone physiology. However, little is known about the role of GPR55 in CNS development and function. To address this question, we performed a detailed characterization of GPR55 knockout mice using molecular, anatomical, electrophysiological, and behavioral assays. Quantitative PCR studies found that GPR55 mRNA was expressed (in order of decreasing abundance in the striatum, hippocampus, forebrain, cortex, and cerebellum. GPR55 deficiency did not affect the concentrations of endocannabinoids and related lipids or mRNA levels for several components of the endocannabinoid system in the hippocampus. Normal synaptic transmission and short-term as well as long-term synaptic plasticity were found in GPR55 knockout CA1 pyramidal neurons. Deleting GPR55 function did not affect behavioral assays assessing muscle strength, gross motor skills, sensory-motor integration, motor learning, anxiety or depressive behaviors. In addition, GPR55 null mutant mice exhibited normal contextual and auditory-cue conditioned fear learning and memory in a Pavlovian conditioned fear test. In contrast, when presented with tasks requiring more challenging motor responses, GPR55 knockout mice showed impaired movement coordination. Taken together, these results suggest that GPR55 plays a role in motor coordination, but does not strongly regulate CNS development, gross motor movement or several types of learned behavior.

  16. GPR55, a G-protein coupled receptor for lysophosphatidylinositol, plays a role in motor coordination.

    Science.gov (United States)

    Wu, Chia-Shan; Chen, Hongmei; Sun, Hao; Zhu, Jie; Jew, Chris P; Wager-Miller, James; Straiker, Alex; Spencer, Corinne; Bradshaw, Heather; Mackie, Ken; Lu, Hui-Chen

    2013-01-01

    The G-protein coupled receptor 55 (GPR55) is activated by lysophosphatidylinositols and some cannabinoids. Recent studies found prominent roles for GPR55 in neuropathic/inflammatory pain, cancer and bone physiology. However, little is known about the role of GPR55 in CNS development and function. To address this question, we performed a detailed characterization of GPR55 knockout mice using molecular, anatomical, electrophysiological, and behavioral assays. Quantitative PCR studies found that GPR55 mRNA was expressed (in order of decreasing abundance) in the striatum, hippocampus, forebrain, cortex, and cerebellum. GPR55 deficiency did not affect the concentrations of endocannabinoids and related lipids or mRNA levels for several components of the endocannabinoid system in the hippocampus. Normal synaptic transmission and short-term as well as long-term synaptic plasticity were found in GPR55 knockout CA1 pyramidal neurons. Deleting GPR55 function did not affect behavioral assays assessing muscle strength, gross motor skills, sensory-motor integration, motor learning, anxiety or depressive behaviors. In addition, GPR55 null mutant mice exhibited normal contextual and auditory-cue conditioned fear learning and memory in a Pavlovian conditioned fear test. In contrast, when presented with tasks requiring more challenging motor responses, GPR55 knockout mice showed impaired movement coordination. Taken together, these results suggest that GPR55 plays a role in motor coordination, but does not strongly regulate CNS development, gross motor movement or several types of learned behavior.

  17. DEVELOPMENT OF FINE MOTOR COORDINATION AND VISUAL-MOTOR INTEGRATION IN PRESCHOOL CHILDREN

    OpenAIRE

    MEMISEVIC Haris; HADZIC Selmir

    2015-01-01

    Fine motor skills are prerequisite for many everyday activities and they are a good predictor of a child's later academic outcome. The goal of the present study was to assess the effects of age on the development of fine motor coordination and visual-motor integration in preschool children. The sample for this study consisted of 276 preschool children from Canton Sara­jevo, Bosnia and Herzegovina. We assessed children's motor skills with Beery Visual Motor Integration Test and Lafayette Pegbo...

  18. A bipedal DNA Brownian motor with coordinated legs.

    Science.gov (United States)

    Omabegho, Tosan; Sha, Ruojie; Seeman, Nadrian C

    2009-04-03

    A substantial challenge in engineering molecular motors is designing mechanisms to coordinate the motion between multiple domains of the motor so as to bias random thermal motion. For bipedal motors, this challenge takes the form of coordinating the movement of the biped's legs so that they can move in a synchronized fashion. To address this problem, we have constructed an autonomous DNA bipedal walker that coordinates the action of its two legs by cyclically catalyzing the hybridization of metastable DNA fuel strands. This process leads to a chemically ratcheted walk along a directionally polar DNA track. By covalently cross-linking aliquots of the walker to its track in successive walking states, we demonstrate that this Brownian motor can complete a full walking cycle on a track whose length could be extended for longer walks. We believe that this study helps to uncover principles behind the design of unidirectional devices that can function without intervention. This device should be able to fulfill roles that entail the performance of useful mechanical work on the nanometer scale.

  19. Bimanual motor coordination controlled by cooperative interactions in intrinsic and extrinsic coordinates.

    Science.gov (United States)

    Sakurada, Takeshi; Ito, Koji; Gomi, Hiroaki

    2016-01-01

    Although strong motor coordination in intrinsic muscle coordinates has frequently been reported for bimanual movements, coordination in extrinsic visual coordinates is also crucial in various bimanual tasks. To explore the bimanual coordination mechanisms in terms of the frame of reference, here we characterized implicit bilateral interactions in visuomotor tasks. Visual perturbations (finger-cursor gain change) were applied while participants performed a rhythmic tracking task with both index fingers under an in-phase or anti-phase relationship in extrinsic coordinates. When they corrected the right finger's amplitude, the left finger's amplitude unintentionally also changed [motor interference (MI)], despite the instruction to keep its amplitude constant. Notably, we observed two specificities: one was large MI and low relative-phase variability (PV) under the intrinsic in-phase condition, and the other was large MI and high PV under the extrinsic in-phase condition. Additionally, using a multiple-interaction model, we successfully decomposed MI into intrinsic components caused by motor correction and extrinsic components caused by visual-cursor mismatch of the right finger's movements. This analysis revealed that the central nervous system facilitates MI by combining intrinsic and extrinsic components in the condition with in-phases in both intrinsic and extrinsic coordinates, and that under-additivity of the effects is explained by the brain's preference for the intrinsic interaction over extrinsic interaction. In contrast, the PV was significantly correlated with the intrinsic component, suggesting that the intrinsic interaction dominantly contributed to bimanual movement stabilization. The inconsistent features of MI and PV suggest that the central nervous system regulates multiple levels of bilateral interactions for various bimanual tasks. © 2015 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and

  20. Dopamine D1 receptor activation maintains motor coordination and balance in rats.

    Science.gov (United States)

    Avila-Luna, Alberto; Gálvez-Rosas, Arturo; Durand-Rivera, Alfredo; Ramos-Languren, Laura-Elisa; Ríos, Camilo; Arias-Montaño, José-Antonio; Bueno-Nava, Antonio

    2018-02-01

    Dopamine (DA) modulates motor coordination, and its depletion, as in Parkinson's disease, produces motor impairment. The basal ganglia, cerebellum and cerebral cortex are interconnected, have functional roles in motor coordination, and possess dopamine D 1 receptors (D 1 Rs), which are expressed at a particularly high density in the basal ganglia. In this study, we examined whether the activation of D 1 Rs modulates motor coordination and balance in the rat using a beam-walking test that has previously been used to detect motor coordination deficits. The systemic administration of the D 1 R agonist SKF-38393 at 2, 3, or 4 mg/kg did not alter the beam-walking scores, but the subsequent administration of the D 1 R antagonist SCH-23390 at 1 mg/kg did produce deficits in motor coordination, which were reversed by the full agonist SKF-82958. The co-administration of SKF-38393 and SCH-23390 did not alter the beam-walking scores compared with the control group, but significantly prevented the increase in beam-walking scores induced by SCH-23390. The effect of the D 1 R agonist to prevent and reverse the effect of the D 1 R antagonist in beam-walking scores is an indicator that the function of D 1 Rs is necessary to maintain motor coordination and balance in rats. Our results support that D 1 Rs mediate the SCH-23390-induced deficit in motor coordination.

  1. Motor Coordination and Body Mass Index in Primary School Children

    OpenAIRE

    Ingrid Ruzbarska; Martin Zvonar; Piotr Oleśniewicz; Julita Markiewicz-Patkowska; Krzysztof Widawski; Daniel Puciato

    2016-01-01

    Obese children will probably become obese adults, consequently exposed to an increased risk of comorbidity and premature mortality. Body weight may be indirectly determined by continuous development of coordination and motor skills. The level of motor skills and abilities is an important factor that promotes physical activity since early childhood. The aim of the study is to thoroughly understand the internal relations between motor coordination abilities and the somatic development of prepub...

  2. The relationships between gross motor coordination and sport-specific skills in adolescent non-athletes

    Directory of Open Access Journals (Sweden)

    Chagas Daniel V

    2017-12-01

    Full Text Available Purpose. While the usefulness of gross motor coordination score as predictor of sports performance in young athletes has been demonstrated, practical applications in the settings where the focus is not on elite performance is limited. Further, little is known about the extent to which gross motor coordination score is associated with sport-specific skills among adolescent nonathletes. The aim of this study was to analyse the relationship between the degree of gross motor coordination and execution in specific volleyball tests among adolescent non-athletes. Methods. The total of 34 students (27 females and 7 males aged 13-14 years who regularly participated in volleyball during physical education classes were randomly recruited. Gross motor coordination was assessed with the Körperkoordinationstest für Kinder. Motor performance on volley-specific skills was indicated by two product-oriented tasks: volleyball under service and service reception. Correlation and linear regression analyses were applied to examine the associations between motor coordination scores and motor performance in volley-specific skills. Results. Motor coordination score was positively correlated with motor performance on specific skills (r = 0.503, p = 0.02. Linear regression analysis revealed that motor coordination score accounted for 23% of the variance in the motor performance on volleyball skills (R2 = 0.253, R2 adjusted = 0.230, F = 10.836, p = 0.02. Conclusions. The degree of gross motor coordination seems to play a significant role in the execution of specific volleyball tasks.

  3. The potential roles of T-type Ca2+ channels in motor coordination

    Directory of Open Access Journals (Sweden)

    Young-Gyun ePark

    2013-10-01

    Full Text Available Specific behavioral patterns are expressed by complex combinations of muscle coordination. Tremors are simple behavioral patterns and are the focus of studies investigating motor coordination mechanisms in the brain. T-type Ca2+ channels mediate intrinsic neuronal oscillations and rhythmic burst spiking, and facilitate the generation of tremor rhythms in motor circuits. Despite substantial evidence that T-type Ca2+ channels mediate pathological tremors, their roles in physiological motor coordination and behavior remain unknown. Here, we review recent progress in understanding the roles that T-type Ca2+ channels play under pathological conditions, and discuss the potential relevance of these channels in mediating physiological motor coordination.

  4. Impaired Visual Motor Coordination in Obese Adults.

    LENUS (Irish Health Repository)

    Gaul, David

    2016-09-01

    Objective. To investigate whether obesity alters the sensory motor integration process and movement outcome during a visual rhythmic coordination task. Methods. 88 participants (44 obese and 44 matched control) sat on a chair equipped with a wrist pendulum oscillating in the sagittal plane. The task was to swing the pendulum in synchrony with a moving visual stimulus displayed on a screen. Results. Obese participants demonstrated significantly (p < 0.01) higher values for continuous relative phase (CRP) indicating poorer level of coordination, increased movement variability (p < 0.05), and a larger amplitude (p < 0.05) than their healthy weight counterparts. Conclusion. These results highlight the existence of visual sensory integration deficiencies for obese participants. The obese group have greater difficulty in synchronizing their movement with a visual stimulus. Considering that visual motor coordination is an essential component of many activities of daily living, any impairment could significantly affect quality of life.

  5. Biocultural Predictors of Motor Coordination Among Prepubertal Boys and Girls.

    Science.gov (United States)

    Luz, Leonardo G O; Valente-Dos-Santos, João; Luz, Tatiana D D; Sousa-E-Silva, Paulo; Duarte, João P; Machado-Rodrigues, Aristides; Seabra, André; Santos, Rute; Cumming, Sean P; Coelho-E-Silva, Manuel J

    2018-02-01

    This study aimed to predict motor coordination from a matrix of biocultural factors for 173 children (89 boys, 84 girls) aged 7-9 years who were assessed with the Körperkoordinationtest für Kinder test battery. Socioeconomic variables included built environment, area of residence, mother's educational level, and mother's physical activity level (using the International Physical Activity Questionnaire [short version]). The behavioral domain was marked by participation in organized sports and habitual physical activity measured by accelerometers ( ActiGraph GT1M). Indicators of biological development included somatic maturation and body mass index. Among males, the best logistic regression model to explain motor coordination (Nagelkerke R 2   = 50.8; χ 2  = 41.166; p girls, the best logistic regression to explain motor coordination (Nagelkerke R 2   = 40.8; χ 2  = 29.933; p physical activity level (OR = 0.183). This sex-specific, ecological approach to motor coordination proficiency may help promote physical activity during prepubertal years through familiar determinants.

  6. Relationship of ocular accommodation and motor skills performance in developmental coordination disorder.

    Science.gov (United States)

    Rafique, Sara A; Northway, Nadia

    2015-08-01

    Ocular accommodation provides a well-focussed image, feedback for accurate eye movement control, and cues for depth perception. To accurately perform visually guided motor tasks, integration of ocular motor systems is essential. Children with motor coordination impairment are established to be at higher risk of accommodation anomalies. The aim of the present study was to examine the relationship between ocular accommodation and motor tasks, which are often overlooked, in order to better understand the problems experienced by children with motor coordination impairment. Visual function, gross and fine motor skills were assessed in children with developmental coordination disorder (DCD) and typically developing control children. Children with DCD had significantly poorer accommodation facility and amplitude dynamics compared to controls. Results indicate a relationship between impaired accommodation and motor skills. Specifically, accommodation anomalies correlated with visual motor, upper limb and fine dexterity task performance. Consequently, we argue accommodation anomalies influence the ineffective coordination of action and perception in DCD. Furthermore, reading disabilities were related to poorer motor performance. We postulate the role of the fastigial nucleus as a common pathway for accommodation and motor deficits. Implications of the findings and recommended visual screening protocols are discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Dual motor drive vehicle speed synchronization and coordination control strategy

    Science.gov (United States)

    Huang, Hao; Tu, Qunzhang; Jiang, Chenming; Ma, Limin; Li, Pei; Zhang, Hongxing

    2018-04-01

    Multi-motor driven systems are more and more widely used in the field of electric engineering vehicles, as a result of the road conditions and the variable load of engineering vehicles, makes multi-motors synchronization coordinated control system as a key point of the development of the electric vehicle drive system. This paper based on electrical machinery transmission speed in the process of engineering vehicles headed for coordinated control problem, summarized control strategies at home and abroad in recent years, made analysis and comparison of the characteristics, finally discussed the trend of development of the multi-motor coordination control, provided a reference for synchronized control system research of electric drive engineering vehicles.

  8. Association between physical activity and motor skills and coordination in Portuguese children. DOI: 10.5007/1980-0037.2011v13n1p15

    Directory of Open Access Journals (Sweden)

    Beatriz Pereira

    2011-01-01

    Full Text Available Nowadays, there is growing evidence in literature that Health benefits from regular physical activity (PA. The variance in PA among children is caused by a number of factors including their motor abilities and coordination. The aim of the study was to analyse the relation between usual PA and gross motor abilities and motor coordination in children aged 6 to 7 years. The sample comprised 21 children, aged in average 6,38±0,50 years. Physical activity was accessed by accelerometry, gross motor abilities by using the Test of Gross Motor Development (TGMD-2 and motor coordination by using the Körperkoordination Test für Kinder (KTK. Subjects met the international recommendations for daily PA; in motor coordination 47,6% of children met normal coordination, nobody reach good or very good coordination, the majority (52,4% revelled disturbances or insufficiencies of coordination; in locomotion TGMD-2 76,2% of the children met percentile 50 or superior (P50, in object control TGMD-2 28,6% of the children reach P50 or superior, in total TGMD-2 38,1% of the children met P50 or superior. PA was positively correlated with TGMD-2 object control. Low performance attributed to the children in TGMD-2 and KTK tests could be an indicative of insufficient in the development of coordination and gross motor abilities; therefore we believe that this kind of intervention should be targeted at school children mainly in Physical Education classes.

  9. The Knockout of Secretin in Cerebellar Purkinje Cells Impairs Mouse Motor Coordination and Motor Learning

    Science.gov (United States)

    Zhang, Li; Chung, Sookja Kim; Chow, Billy Kwok Chong

    2014-01-01

    Secretin (SCT) was first considered to be a gut hormone regulating gastrointestinal functions when discovered. Recently, however, central actions of SCT have drawn intense research interest and are supported by the broad distribution of SCT in specific neuronal populations and by in vivo physiological studies regarding its role in water homeostasis and food intake. The direct action of SCT on a central neuron was first discovered in cerebellar Purkinje cells in which SCT from cerebellar Purkinje cells was found to potentiate GABAergic inhibitory transmission from presynaptic basket cells. Because Purkinje neurons have a major role in motor coordination and learning functions, we hypothesize a behavioral modulatory function for SCT. In this study, we successfully generated a mouse model in which the SCT gene was deleted specifically in Purkinje cells. This mouse line was tested together with SCT knockout and SCT receptor knockout mice in a full battery of behavioral tasks. We found that the knockout of SCT in Purkinje neurons did not affect general motor ability or the anxiety level in open field tests. However, knockout mice did exhibit impairments in neuromuscular strength, motor coordination, and motor learning abilities, as shown by wire hanging, vertical climbing, and rotarod tests. In addition, SCT knockout in Purkinje cells possibly led to the delayed development of motor neurons, as supported by the later occurrence of key neural reflexes. In summary, our data suggest a role in motor coordination and motor learning for SCT expressed in cerebellar Purkinje cells. PMID:24356714

  10. Attentional Demands on Motor-Respiratory Coordination

    Science.gov (United States)

    Hessler, Eric E.; Amazeen, Polemnia G.

    2009-01-01

    Athletic performance requires the pacing of breathing with exercise, known as motor-respiratory coordination (MRC). In this study, we added cognitive and physical constraints while participants intentionally controlled their breathing locations during rhythmic arm movement. This is the first study to examine a cognitive constraint on MRC.…

  11. Obesity and Motor Coordination Ability in Taiwanese Children with and without Developmental Coordination Disorder

    Science.gov (United States)

    Zhu, Yi-Ching; Wu, Sheng K.; Cairney, John

    2011-01-01

    The purpose of this study was to investigate the associations between obesity and motor coordination ability in Taiwanese children with and without developmental coordination disorder (DCD). 2029 children (1078 boys, 951 girls) aged nine to ten years were chosen randomly from 14 elementary schools across Taiwan. We used bioelectrical impedance…

  12. Coordinate Representations for Interference Reduction in Motor Learning.

    Directory of Open Access Journals (Sweden)

    Sang-Hoon Yeo

    Full Text Available When opposing force fields are presented alternately or randomly across trials for identical reaching movements, subjects learn neither force field, a behavior termed 'interference'. Studies have shown that a small difference in the endpoint posture of the limb reduces this interference. However, any difference in the limb's endpoint location typically changes the hand position, joint angles and the hand orientation making it ambiguous as to which of these changes underlies the ability to learn dynamics that normally interfere. Here we examine the extent to which each of these three possible coordinate systems--Cartesian hand position, shoulder and elbow joint angles, or hand orientation--underlies the reduction in interference. Subjects performed goal-directed reaching movements in five different limb configurations designed so that different pairs of these configurations involved a change in only one coordinate system. By specifically assigning clockwise and counter-clockwise force fields to the configurations we could create three different conditions in which the direction of the force field could only be uniquely distinguished in one of the three coordinate systems. We examined the ability to learn the two fields based on each of the coordinate systems. The largest reduction of interference was observed when the field direction was linked to the hand orientation with smaller reductions in the other two conditions. This result demonstrates that the strongest reduction in interference occurred with changes in the hand orientation, suggesting that hand orientation may have a privileged role in reducing motor interference for changes in the endpoint posture of the limb.

  13. Balance Training Enhances Motor Coordination During a Perturbed Sidestep Cutting Task.

    Science.gov (United States)

    Oliveira, Anderson Souza; Silva, Priscila Brito; Lund, Morten Enemark; Farina, Dario; Kersting, Uwe Gustav

    2017-11-01

    Study Design Controlled laboratory study. Background Balance training may improve motor coordination. However, little is known about the changes in motor coordination during unexpected perturbations to postural control following balance training. Objectives To study the effects of balance training on motor coordination and knee mechanics during perturbed sidestep cutting maneuvers in healthy adults. Methods Twenty-six healthy men were randomly assigned to a training group or a control group. Before balance training, subjects performed unperturbed, 90° sidestep cutting maneuvers and 1 unexpected perturbed cut (10-cm translation of a movable platform). Participants in the training group participated in a 6-week balance training program, while those in the control group followed their regular activity schedule. Both groups were retested after a 6-week period. Surface electromyography was recorded from 16 muscles of the supporting limb and trunk, as well as kinematics and ground reaction forces. Motor modules were extracted from electromyography by nonnegative matrix factorization. External knee abduction moments were calculated using inverse dynamics equations. Results Balance training reduced the external knee abduction moment (33% ± 25%, PBalance training also increased burst duration for the motor module related to landing early in the perturbation phase (23% ± 11%, PBalance training resulted in altered motor coordination and a reduction in knee abduction moment during an unexpected perturbation. The previously reported reduction in injury incidence following balance training may be linked to changes in dynamic postural stability and modular neuromuscular control. J Orthop Sports Phys Ther 2017;47(11):853-862. Epub 23 Sep 2017. doi:10.2519/jospt.2017.6980.

  14. Two-phase strategy of controlling motor coordination determined by task performance optimality.

    Science.gov (United States)

    Shimansky, Yury P; Rand, Miya K

    2013-02-01

    A quantitative model of optimal coordination between hand transport and grip aperture has been derived in our previous studies of reach-to-grasp movements without utilizing explicit knowledge of the optimality criterion or motor plant dynamics. The model's utility for experimental data analysis has been demonstrated. Here we show how to generalize this model for a broad class of reaching-type, goal-directed movements. The model allows for measuring the variability of motor coordination and studying its dependence on movement phase. The experimentally found characteristics of that dependence imply that execution noise is low and does not affect motor coordination significantly. From those characteristics it is inferred that the cost of neural computations required for information acquisition and processing is included in the criterion of task performance optimality as a function of precision demand for state estimation and decision making. The precision demand is an additional optimized control variable that regulates the amount of neurocomputational resources activated dynamically. It is shown that an optimal control strategy in this case comprises two different phases. During the initial phase, the cost of neural computations is significantly reduced at the expense of reducing the demand for their precision, which results in speed-accuracy tradeoff violation and significant inter-trial variability of motor coordination. During the final phase, neural computations and thus motor coordination are considerably more precise to reduce the cost of errors in making a contact with the target object. The generality of the optimal coordination model and the two-phase control strategy is illustrated on several diverse examples.

  15. An Examination of the Relationship between Motor Coordination and Executive Functions in Adolescents

    Science.gov (United States)

    Rigoli, Daniela; Piek, Jan P.; Kane, Robert; Oosterlaan, Jaap

    2012-01-01

    Aim: Research suggests important links between motor coordination and executive functions. The current study examined whether motor coordination predicts working memory, inhibition, and switching performance, extending previous research by accounting for attention-deficit-hyperactivity disorder (ADHD) symptomatology and other confounding factors,…

  16. Reliability of a New Lower-Extremity Motor Coordination Test

    Directory of Open Access Journals (Sweden)

    Antosiak-Cyrak Katarzyna

    2015-12-01

    Full Text Available Introduction. Motor coordination is a basic motor ability necessary for daily life, which also allows athletes to win a sports rivalry and patients to assess their recovery progress after therapy and rehabilitation. The aim of the present study was to assess the reliability of a new lower-extremity rate of movements test and testing apparatus.

  17. Dopamine D1 receptor activation maintains motor coordination in injured rats but does not accelerate the recovery of the motor coordination deficit.

    Science.gov (United States)

    Avila-Luna, Alberto; Gálvez-Rosas, Arturo; Alfaro-Rodríguez, Alfonso; Reyes-Legorreta, Celia; Garza-Montaño, Paloma; González-Piña, Rigoberto; Bueno-Nava, Antonio

    2018-01-15

    The sensorimotor cortex and the striatum are interconnected by the corticostriatal pathway, suggesting that cortical injury alters the striatal function that is associated with skilled movements and motor learning, which are functions that may be modulated by dopamine (DA). In this study, we explored motor coordination and balance in order to investigate whether the activation of D 1 receptors (D 1 Rs) modulates functional recovery after cortical injury. The results of the beam-walking test showed motor deficit in the injured group at 24, 48 and 96h post-injury, and the recovery time was observed at 192h after cortical injury. In the sham and injured rats, systemic administration of the D 1 R antagonist SCH-23390 (1mg/kg) alone at 24, 48, 96 and 192h significantly (Pmotor deficit, while administration of the D 1 R agonist SKF-38393 alone (2, 3 and 4mg/kg) at 24, 48, 96 and 192h post-injury did not produce a significant difference; however, the co-administration of SKF-38393 and SCH-23390 prevented the antagonist-induced increase in the motor deficit. The cortical+striatal injury showed significantly increased the motor deficit at 24, 48, 96 and 192h post-injury (Pmotor recovery, but the activation of D 1 Rs maintained motor coordination, confirming that an intact striatum may be necessary for achieving recovery. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. THE INFLUENCE OF THE EXERCISES OF GROSS AND FINE MOTOR SKILLS ON VISUO-MOTOR COORDINATION OF THE CEREBRAL PALSY CHILDREN

    Directory of Open Access Journals (Sweden)

    Almira Mujkić

    2013-09-01

    Full Text Available Visuomotor coordination is reffered to eye coordination and to various parts of the body in different activities and games. The aim of the research was to establish the influence of the exercises of gross and fine motor skills on visuomotor coordination of the cerebral palsy children. The sample was the case study where a male person of 3 and a half years old was an examinee. Measuring instrument used was the Test of visuomotor coordination of the gross motor skills of the dominant hand. Data were analyzed by t-test.

  19. Motor learning as a criterion for evaluating coordination motor abilities

    Directory of Open Access Journals (Sweden)

    Boraczynski Tomasz

    2011-10-01

    Full Text Available The aim of the study was to evaluate the ability of motor learning based on objective, metric criteria, in terms of pedagogical process aimed at improving the accuracy of hits a golf ball to the target. A group of 77 students of physical education participated in the study. Within 8 months there were performed 11 measurement sessions. In each session, subjects performed 10 hits a golf ball to the target from a distance of 9 m. Accuracy of hits was recorded. Effect of motor learning has been demonstrated in the progress of 10 consecutive hits a golf ball to the target in each session (operational control; in the dynamics of performance improvement between sessions (current control; as well as in the total result of eight-month experiment (stage control. There were developed norms for quantitative and qualitative assessment of accuracy of hits a golf ball to the target. Developed quantitative and qualitative criteria for assessing the speed of motor learning in various conditions of the educational process creates the possibility of organization the operational, current and stage control of the level of human coordination motor abilities, as required by leading process.

  20. Associations of motor co-ordination and attention with motor-perceptual development in 3-year-old preterm and full-term children who needed neonatal intensive care.

    Science.gov (United States)

    Hemgren, E; Persson, K

    2007-01-01

    Children who have needed neonatal intensive care (NIC) are considered to be at risk for deficits such as developmental co-ordination disorder and attention-deficit/hyperactivity disorder. By assessing motor-perceptual development, motor co-ordination and attention already at 3 years of age, it might be possible to identify such deficits earlier than they are today. To investigate the motor-perceptual development in a group of 202 NIC children but had no major impairments, to describe associations of deficits in co-ordination and attention with motor-perceptual delays, and to estimate the prevalence of NIC children with combined deficits together with a motor-perceptual delay. Co-ordination and attention in children born very preterm (n = 57), moderately preterm (n = 75) and full-term (n = 70) were observed according to a model for Combined Assessment of Motor Performance and Behaviour while they were assessed using a developmental scale, Motor-Perceptual Development, 0-7 years, MPU. In two out of 14 MPU areas, a larger proportion of very preterm than of moderately preterm and full-term children had marked developmental delay. Overall, the proportion of NIC children having a motor-perceptual delay increased with increasing incoordination and especially increasing lack of attention. Twenty-one (11%) of the NIC children had different motor-perceptual delays combined with pronounced incoordination and pronounced lack of attention. Deficits in co-ordination and attention were associated with motor-perceptual delays in areas important for daily living and development of academic skills. Therefore, to find children at risk for developmental co-ordination disorder and attention-deficit/hyperactivity disorder, assessments of co-ordination and attention should be added to assessments of motor-perceptual development in 3-year-old NIC children.

  1. Wavefield extrapolation in caustic-free normal ray coordinates

    KAUST Repository

    Ma, Xuxin

    2012-11-04

    Normal ray coordinates are conventionally constructed from ray tracing, which inherently requires smooth velocity profiles. To use rays as coordinates, the velocities have to be smoothed further to avoid caustics, which is detrimental to the mapping process. Solving the eikonal equation numerically for a line source at the surface provides a platform to map normal rays in complex unsmoothed velocity models and avoid caustics. We implement reverse-time migration (RTM) and downward continuation in the new ray coordinate system, which allows us to obtain efficient images and avoid some of the dip limitations of downward continuation.

  2. Postural Coordination during Socio-motor Improvisation.

    Science.gov (United States)

    Gueugnon, Mathieu; Salesse, Robin N; Coste, Alexandre; Zhao, Zhong; Bardy, Benoît G; Marin, Ludovic

    2016-01-01

    Human interaction often relies on socio-motor improvisation. Creating unprepared movements during social interaction is not a random process but relies on rules of synchronization. These situations do not only involve people to be coordinated, but also require the adjustment of their posture in order to maintain balance and support movements. The present study investigated posture in such a context. More precisely, we first evaluated the impact of amplitude and complexity of arm movements on posture in solo situation. Then, we assessed the impact of interpersonal coordination on posture using the mirror game in which dyads performed improvised and synchronized movements (i.e., duo situation). Posture was measured through ankle-hip coordination in medio-lateral and antero-posterior directions (ML and AP respectively). Our results revealed the spontaneous emergence of in-phase pattern in ML direction and antiphase pattern in AP direction for solo and duo situations. These two patterns respectively refer to the simultaneous flexion/extension of the ankles and the hips in the same or opposite direction. It suggests different functional roles of postural coordination patterns in each direction, with in-phase supporting task performance in ML (dynamical stability) and antiphase supporting postural control in AP (mechanical stability). Although amplitude of movement did not influence posture, movement complexity disturbed postural stability in both directions. Conversely, interpersonal coordination promoted postural stability in ML but not in AP direction. These results are discussed in terms of the difference in coupling strength between ankle-hip coordination and interpersonal coordination.

  3. Postural coordination during socio-motor improvisation

    Directory of Open Access Journals (Sweden)

    Mathieu Gueugnon

    2016-08-01

    Full Text Available Human interaction often relies on socio-motor improvisation. Creating unprepared movements during social interaction is not a random process but relies on rules of synchronization. These situations do not only involve people to be coordinated, but also require the adjustment of their posture in order to maintain balance and support movements. The present study investigated posture in such a context. More precisely, we first evaluated the impact of amplitude and complexity of arm movements on posture in solo situation. Then, we assessed the impact of interpersonal coordination on posture using the mirror game in which dyads performed improvised and synchronized movements (i.e., duo situation. Posture was measured through ankle-hip coordination in medio-lateral and antero-posterior directions (ML and AP respectively. Our results revealed the spontaneous emergence of in-phase pattern in ML direction and anti-phase pattern in AP direction for solo and duo situations. These two patterns respectively refer to the simultaneous flexion/extension of the ankles and the hips in the same or opposite direction. It suggests different functional roles of postural coordination patterns in each direction, with in-phase supporting task performance in ML (dynamical stability and antiphase supporting postural control in AP (mechanical stability. Although amplitude of movement did not influence posture, movement complexity disturbed postural stability in both directions. Conversely, interpersonal coordination promoted postural stability in ML but not in AP direction. These results are discussed in terms of the difference in coupling strength between ankle-hip coordination and interpersonal coordination.

  4. Relationship between motor coordination, cognitive abilities, and academic achievement in Japanese children with neurodevelopmental disorders

    Directory of Open Access Journals (Sweden)

    Takuya Higashionna

    2017-12-01

    Conclusion: These findings stress that it is essential to accurately identify motor coordination impairments and the interventions that would consider motor coordination problems related to cognitive abilities and academic achievement in Japanese children with neurodevelopmental disorders.

  5. Prospective association between objective measures of childhood motor coordination and sedentary behaviour in adolescence and adulthood.

    Science.gov (United States)

    Smith, Lee; Fisher, Abigail; Hamer, Mark

    2015-06-10

    Higher levels of gross motor coordination are positively associated with physical activity in childhood, but little is known about how they relate to sedentary behaviour. The aim of this study was to investigate the longitudinal association between gross motor coordination at childhood and sedentary behaviour in adolescence and adulthood. Data were from the 1970 British Cohort Study (the age 10, 16, and 42-year surveys). At age 10 the participant's mother provided information on how often participants watched TV and played sports and a health visitor administered several tests to assess gross motor coordination. At aged 16 and 42-years participants reported their daily screen and TV time, respectively, and physical activity status. We examined associations between gross motor coordination at age 10 with sedentary behaviour and physical activity at age 16 and 42, using logistic regression. In multivariable models, higher levels of gross motor coordination were associated with lower odds of high screen time (n = 3073; OR 0.79, 95% CI 0.64, 0.98) at 16-years although no associations with physical activity were observed (OR 1.16, 95% CI 0.93, 1.44). Similar associations were observed with TV time in adulthood when participants were aged 42, and in addition high gross motor coordination was also associated with physical activity participation (n = 4879; OR 1.18, 95 % CI 1.02, 1.36). Intervention efforts to increase physical activity participation and reduce sedentary behaviour over the life course may be best targeted towards children with low gross motor coordination.

  6. Wavefield extrapolation in caustic-free normal ray coordinates

    KAUST Repository

    Ma, Xuxin; Alkhalifah, Tariq Ali

    2012-01-01

    Normal ray coordinates are conventionally constructed from ray tracing, which inherently requires smooth velocity profiles. To use rays as coordinates, the velocities have to be smoothed further to avoid caustics, which is detrimental to the mapping

  7. Coordination of fictive motor activity in the larval zebrafish is generated by non-segmental mechanisms.

    Directory of Open Access Journals (Sweden)

    Timothy D Wiggin

    Full Text Available The cellular and network basis for most vertebrate locomotor central pattern generators (CPGs is incompletely characterized, but organizational models based on known CPG architectures have been proposed. Segmental models propose that each spinal segment contains a circuit that controls local coordination and sends longer projections to coordinate activity between segments. Unsegmented/continuous models propose that patterned motor output is driven by gradients of neurons and synapses that do not have segmental boundaries. We tested these ideas in the larval zebrafish, an animal that swims in discrete episodes, each of which is composed of coordinated motor bursts that progress rostrocaudally and alternate from side to side. We perturbed the spinal cord using spinal transections or strychnine application and measured the effect on fictive motor output. Spinal transections eliminated episode structure, and reduced both rostrocaudal and side-to-side coordination. Preparations with fewer intact segments were more severely affected, and preparations consisting of midbody and caudal segments were more severely affected than those consisting of rostral segments. In reduced preparations with the same number of intact spinal segments, side-to-side coordination was more severely disrupted than rostrocaudal coordination. Reducing glycine receptor signaling with strychnine reversibly disrupted both rostrocaudal and side-to-side coordination in spinalized larvae without disrupting episodic structure. Both spinal transection and strychnine decreased the stability of the motor rhythm, but this effect was not causal in reducing coordination. These results are inconsistent with a segmented model of the spinal cord and are better explained by a continuous model in which motor neuron coordination is controlled by segment-spanning microcircuits.

  8. Structural and Molecular Basis for Coordination in a Viral DNA Packaging Motor

    Directory of Open Access Journals (Sweden)

    Huzhang Mao

    2016-03-01

    Full Text Available Ring NTPases are a class of ubiquitous molecular motors involved in basic biological partitioning processes. dsDNA viruses encode ring ATPases that translocate their genomes to near-crystalline densities within pre-assembled viral capsids. Here, X-ray crystallography, cryoEM, and biochemical analyses of the dsDNA packaging motor in bacteriophage phi29 show how individual subunits are arranged in a pentameric ATPase ring and suggest how their activities are coordinated to translocate dsDNA. The resulting pseudo-atomic structure of the motor and accompanying functional analyses show how ATP is bound in the ATPase active site; identify two DNA contacts, including a potential DNA translocating loop; demonstrate that a trans-acting arginine finger is involved in coordinating hydrolysis around the ring; and suggest a functional coupling between the arginine finger and the DNA translocating loop. The ability to visualize the motor in action illuminates how the different motor components interact with each other and with their DNA substrate.

  9. A crossover randomised and controlled trial of the impact of active video games on motor coordination and perceptions of physical ability in children at risk of Developmental Coordination Disorder.

    Science.gov (United States)

    Straker, L; Howie, E; Smith, A; Jensen, L; Piek, J; Campbell, A

    2015-08-01

    Impaired motor development can significantly affect a child's life and may result in an increased risk of a range of physical and psychological disorders. Active video game (AVG) interventions have been demonstrated to enhance motor skills in children with Developmental Coordination Disorder (DCD); however a home-based intervention has not been assessed. The primary aim of this study was to compare the changes in motor coordination between a 16 week period of AVG use, with 16 weeks of normal activities (NAG). The secondary aim was to compare the child and parent perceptions of their physical performance between the AVG and NAG conditions. Twenty-one 9-12 year olds (10 males) were confirmed to be at risk of DCD (⩽ 16th percentile Movement Assessment Battery for Children-2nd edition (MABC-2) and ⩽ 15th percentile Developmental Coordination Disorder Questionnaire (DCDQ)) and participated in this crossover randomised and controlled trial. Data was collected at study entry, after the first 16 week condition and following the final 16 week condition, including; (1) the MABC-2, (2) three-dimensional motion analysis of single leg balance and finger-nose tasks, and (3) parent perception of physical skills. Participant perception of physical skills was collected only after the first and second conditions. There was no significant difference between AVG and NAG for any of the primary variables including the MABC-2, balance centre-of-mass path distance and finger-nose path distance. There was no significant intervention effect for secondary measures of motor coordination; however the children perceived their motor skills to be significantly enhanced as a result of the AVG intervention in comparison to the period of no intervention. A 16 week home based AVG intervention did not enhance motor skills in children with DCD, although they perceived their physical skills to be significantly improved. Australia and New Zealand Clinical trials Registry (ACTRN 12611000400965

  10. Structural and Molecular Basis for Coordination in a Viral DNA Packaging Motor.

    Science.gov (United States)

    Mao, Huzhang; Saha, Mitul; Reyes-Aldrete, Emilio; Sherman, Michael B; Woodson, Michael; Atz, Rockney; Grimes, Shelley; Jardine, Paul J; Morais, Marc C

    2016-03-01

    Ring NTPases are a class of ubiquitous molecular motors involved in basic biological partitioning processes. dsDNA viruses encode ring ATPases that translocate their genomes to near-crystalline densities within pre-assembled viral capsids. Here, X-ray crystallography, cryoEM, and biochemical analyses of the dsDNA packaging motor in bacteriophage phi29 show how individual subunits are arranged in a pentameric ATPase ring and suggest how their activities are coordinated to translocate dsDNA. The resulting pseudo-atomic structure of the motor and accompanying functional analyses show how ATP is bound in the ATPase active site; identify two DNA contacts, including a potential DNA translocating loop; demonstrate that a trans-acting arginine finger is involved in coordinating hydrolysis around the ring; and suggest a functional coupling between the arginine finger and the DNA translocating loop. The ability to visualize the motor in action illuminates how the different motor components interact with each other and with their DNA substrate. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Risk factors affecting visual-motor coordination deficit among children residing near a petrochemical industrial estate.

    Science.gov (United States)

    Aungudornpukdee, P; Vichit-Vadakan, N

    2009-12-01

    Thailand has been changed to rapid urbanization and industrialization since 1980s. During 1992 through 1996, the number of industrial factories in Rayong province increased very sharply. The major types of industries are petrol-chemical and plastic production. However, after the petrochemical industry boomed, the higher demand led to an industrial area expansion. The establishment of factories in this area leads to serious environmental and health impacts. The study aims to investigate the factors that affect visual-motor coordination deficit among children, 6-13 years of age, residing near the Petrochemical Industrial Estate, Map Ta Phut, Rayong province. A population-based cross-sectional study was employed for collecting data on neurobehavioral effects using the Digit Symbol Test. The study found one-third of 2,956 children presented with visual-motor coordination deficits. Three factors were identified that caused children to have a higher risk of visual-motor coordination deficits: gender (adjusted OR 1.934), monthly parental income (range of adjusted OR 1.977 - 2.612), and household environmental tobacco smoke (adjusted OR 1.284), while age (adjusted OR 0.874) and living period (adjusted OR 0.954) in study areas were reversed effects on visual-motor coordination deficit among children. The finding indicated that children with visual-motor coordination deficit were affected by gender, monthly parental income, age of children, length of living period, and household environmental tobacco smoke.

  12. Lack of connexin43-mediated Bergmann glial gap junctional coupling does not affect cerebellar long-term depression, motor coordination, or eyeblink conditioning

    Directory of Open Access Journals (Sweden)

    Mika Tanaka

    2008-04-01

    Full Text Available Bergmann glial cells are specialized astrocytes in the cerebellum. In the mature cerebellar molecular layer, Bergmann glial processes are closely associated with Purkinje cells, enclosing Purkinje cell dendritic synapses with a glial sheath. There is intensive gap junctional coupling between Bergmann glial processes, but their significance in cerebellar functions is not known. Connexin43 (Cx43, a major component of astrocytic gap junction channels, is abundantly expressed in Bergmann glial cells. To examine the role of Cx43-mediated gap junctions between Bergmann glial cells in cerebellar functions, we generated Cx43 conditional knockout mice with the S100b-Cre transgenic line (Cx43fl/fl:S100b-Cre, which exhibited a significant loss of Cx43 in the Bergmann glial cells and astrocytes in the cerebellum with a postnatal onset. The Cx43fl/fl:S100b-Cre mice had normal cerebellar architecture. Although gap junctional coupling between the Bergmann glial cells measured by spreading of microinjected Lucifer yellow was virtually abolished in Cx43fl/fl:S100b-Cre mice, electrophysiologic analysis revealed that cerebellar long-term depression could be induced and maintained normally in thier cerebellar slices. In addition, at the behavioral level, Cx43fl/fl:S100b-Cre mice had normal motor coordination in the rotarod task and normal conditioned eyelid response. Our findings suggest that Cx43-mediated gap junctional coupling between Bergmann glial cells is not necessary for the neuron-glia interactions required for cerebellum-dependent motor coordination and motor learning.

  13. Arm coordination in octopus crawling involves unique motor control strategies.

    Science.gov (United States)

    Levy, Guy; Flash, Tamar; Hochner, Binyamin

    2015-05-04

    To cope with the exceptional computational complexity that is involved in the control of its hyper-redundant arms [1], the octopus has adopted unique motor control strategies in which the central brain activates rather autonomous motor programs in the elaborated peripheral nervous system of the arms [2, 3]. How octopuses coordinate their eight long and flexible arms in locomotion is still unknown. Here, we present the first detailed kinematic analysis of octopus arm coordination in crawling. The results are surprising in several respects: (1) despite its bilaterally symmetrical body, the octopus can crawl in any direction relative to its body orientation; (2) body and crawling orientation are monotonically and independently controlled; and (3) contrasting known animal locomotion, octopus crawling lacks any apparent rhythmical patterns in limb coordination, suggesting a unique non-rhythmical output of the octopus central controller. We show that this uncommon maneuverability is derived from the radial symmetry of the arms around the body and the simple pushing-by-elongation mechanism by which the arms create the crawling thrust. These two together enable a mechanism whereby the central controller chooses in a moment-to-moment fashion which arms to recruit for pushing the body in an instantaneous direction. Our findings suggest that the soft molluscan body has affected in an embodied way [4, 5] the emergence of the adaptive motor behavior of the octopus. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Normal range of facial asymmetry in spherical coordinates: a CBCT study

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Suk Ja [Dept. of Oral and Maxillofacial Radiology, School of Dentistry, Dental Science Research Institute, Chonnam National University, Gwangju (Korea, Republic of); Wang, Rui Feng [Research Laboratory Specialist Intermediate, Department of Biologic and Material Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI (United States); Na, Hee Ja [Dept. ofDental Hygiene, Honam University, Gwangju (Korea, Republic of); Palomo, Juan Matin [Dept. of Orthodontics, School of Dental Medicine, Case Western Reserve University, Cleveland (United States)

    2013-03-15

    This study aimed to measure the bilateral differences of facial lines in spherical coordinates from faces within a normal range of asymmetry utilizing cone-beam computed tomography (CBCT). CBCT scans from 22 females with normal symmetric-looking faces (mean age 24 years and 8 months) were selected for the study. The average menton deviation was 1.01{+-}0.66 mm. The spherical coordinates, length, and midsagittal and coronal inclination angles of the ramal and mandibular lines were calculated from CBCT. The bilateral differences in the facial lines were determined. All of the study subjects had minimal bilateral differences of facial lines. The normal range of facial asymmetry of the ramal and mandibular lines was obtained in spherical coordinates. The normal range of facial asymmetry in the spherical coordinate system in this study should be useful as a reference for diagnosing facial asymmetry.

  15. Weight loss and improved gross motor coordination in children as a result of multidisciplinary residential obesity treatment.

    Science.gov (United States)

    D'Hondt, Eva; Gentier, Ilse; Deforche, Benedicte; Tanghe, Ann; De Bourdeaudhuij, Ilse; Lenoir, Matthieu

    2011-10-01

    This study evaluated the short-term effectiveness of a multidisciplinary residential obesity treatment program by describing changes in body weight, related measures, and gross motor co-ordination. Secondarily, it was examined to what extent the amount of relative weight loss achieved by overweight and obese (OW/OB) participants explained the projected improvement in gross motor co-ordination. Thirty-six OW/OB children (aged 10.5 ± 1.4 years, 12 girls and 24 boys) were recruited at the Zeepreventorium VZW (De Haan, Belgium), where they followed a specific program consisting of moderate dietary restriction, psychological support, and physical activity. For reference purposes, an additional group of 36 age- and gender-matched healthy-weight (HW) children was included in the study. Anthropometric measures were recorded and gross motor co-ordination was assessed using the Körperkoordinationstest für Kinder (KTK) on two occasions with an interval of 4 months. Regardless of the test moment, OW/OB participants displayed significantly poorer KTK performances (P motor co-ordination performance, with a greater increase in KTK score(s) from baseline to re-test as compared to HW peers (P motor co-ordination, which in turn may promote physical activity participation.

  16. Multiple Sensory-Motor Pathways Lead to Coordinated Visual Attention

    Science.gov (United States)

    Yu, Chen; Smith, Linda B.

    2017-01-01

    Joint attention has been extensively studied in the developmental literature because of overwhelming evidence that the ability to socially coordinate visual attention to an object is essential to healthy developmental outcomes, including language learning. The goal of this study was to understand the complex system of sensory-motor behaviors that…

  17. Development of motor imagery and anticipatory action planning in children with developmental coordination disorder: A longitudinal approach

    NARCIS (Netherlands)

    Adams, I.L.J.; Lust, J.M.; Wilson, P.H.; Steenbergen, B.

    2017-01-01

    Children with impaired motor coordination (or Development Coordination Disorder - DCD) have difficulty with the predictive control of movements, evidenced by cross-sectional studies that show impaired motor imagery and action planning abilities. What remains unclear is whether this deficit in

  18. Physical self-perception and motor performance in normal-weight, overweight and obese children.

    Science.gov (United States)

    Morano, M; Colella, D; Robazza, C; Bortoli, L; Capranica, L

    2011-06-01

    The aim of this study was to examine the relationships among physical self-perception, body image and motor performance in Italian middle school students. Two hundred and sixty children were categorized into normal-weight (n=103), overweight (n=86) or obese (n=71) groups. Perceived coordination, body fat and sports competence were assessed using the Physical Self-Description Questionnaire, while body image was measured using Collins' Child Figure Drawings. Individuals' perceptions of strength, speed and agility were assessed using the Perceived Physical Ability Scale. Tests involving the standing long jump, 2 kg medicine-ball throw, 10 × 5 m shuttle-run and 20 and 30 m sprints were also administered. Girls, when compared with boys, and overweight and obese participants, when compared with normal-weight peers, reported lower perceived and actual physical competence, higher perceived body fat and greater body dissatisfaction. Body dissatisfaction mediated all the associations between body mass index (BMI) and the different aspects of physical self-perception in boys, but not in girls. The same pattern of results was found for physical self-perception as a mediator of the relationship between BMI and body dissatisfaction. In conclusion, obesity proved to have adverse effects on both motor performance and physical self-perception. © 2010 John Wiley & Sons A/S.

  19. A Test of Motor (Not Executive) Planning in Developmental Coordination Disorder and Autism

    NARCIS (Netherlands)

    van Swieten, Lisa M.; van Bergen, Elsje; Williams, Justin H G; Wilson, Andrew D.; Plumb, Mandy S.; Kent, Samuel W.; Mon-Williams, Mark A.

    Grip selection tasks have been used to test "planning" in both autism and developmental coordination disorder (DCD). We differentiate between motor and executive planning and present a modified motor planning task. Participants grasped a cylinder in 1 of 2 orientations before turning it clockwise or

  20. A test of motor (not executive) planning in developmental coordination disorder and autism

    NARCIS (Netherlands)

    van Swieten, L.M.; van Bergen, E.; Williams, J.H.G.; Wilson, A.D.; Plumb, M.S.; Kent, S.W.; Mon-Williams, M.A.

    2010-01-01

    Grip selection tasks have been used to test "planning" in both autism and developmental coordination disorder (DCD). We differentiate between motor and executive planning and present a modified motor planning task. Participants grasped a cylinder in 1 of 2 orientations before turning it clockwise or

  1. Effect of the Level of Coordinated Motor Abilities on Performance in Junior Judokas

    Science.gov (United States)

    Lech, Grzegorz; Jaworski, Janusz; Lyakh, Vladimir; Krawczyk, Robert

    2011-01-01

    The main focus of this study was to identify coordinated motor abilities that affect fighting methods and performance in junior judokas. Subjects were selected for the study in consideration of their age, competition experience, body mass and prior sports level. Subjects’ competition history was taken into consideration when analysing the effectiveness of current fight actions, and individual sports level was determined with consideration to rank in the analysed competitions. The study sought to determine the level of coordinated motor abilities of competitors. The scope of this analysis covered the following aspects: kinaesthetic differentiation, movement frequency, simple and selective reaction time (evoked by a visual or auditory stimulus), spatial orientation, visual-motor coordination, rhythmization, speed, accuracy and precision of movements and the ability to adapt movements and balance. A set of computer tests was employed for the analysis of all of the coordination abilities, while balance examinations were based on the Flamingo Balance Test. Finally, all relationships were determined based on the Spearman’s rank correlation coefficient. It was observed that the activity of the contestants during the fight correlated with the ability to differentiate movements and speed, accuracy and precision of movement, whereas the achievement level during competition was connected with reaction time. PMID:23486723

  2. Normal motor milestone development for use to promote child care

    Directory of Open Access Journals (Sweden)

    Mahdin A. Husaini

    2016-10-01

    Full Text Available Background Motor behavior is an essential aspect of child development, and usually assessed in terms of age of achievement of motor milestone. The early detection of infants experiencing subtle delays in motor maturation can allow early intervention in developmental problems. Intervention can be more effective if delays are identified early. In order to facilitate the identification of early delays, the Center of Nutrition and Foods Research and Development in Bogor has designed a simple tool to monitor the child (aged 3 to 18 months motor development. Objective To develop an observable of normal gross motor maturation for use to detect deviance or motor delay. Methods A total of 2100 healthy children, aged 3-18 months, from high socio-economic group, in urban and suburban areas, were studied. Body length, weight and motor development were measured on all children. Gross motor development was measured 17 pre selected milestones: lie, sit, crawl, creep, stand Mth assistance, walk with assistance, stand alone, walk alone, and run. Results There were no differences between males and females in the comparison of attainment motor maturation therefore a sex combined curve was developed. Conclusion The curve of normal motor milestone development can be used as a tool to evaluate motor development over time, and/or as a child development card for use in primary health care.

  3. Coordination Motor Skills of Military Pilots Subjected to Survival Training.

    Science.gov (United States)

    Tomczak, Andrzej

    2015-09-01

    Survival training of military pilots in the Polish Army gains significance because polish pilots have taken part in more and more military missions. Prolonged exercise of moderate intensity with restricted sleep or sleep deprivation is known to deteriorate performance. The aim of the study was thus to determine the effects of a strenuous 36-hour exercise with restricted sleep on selected motor coordination and psychomotor indices. Thirteen military pilots aged 30-56 years were examined twice: pretraining and posttraining. The following tests were applied: running motor adjustment (15-m sprint, 3 × 5-m shuttle run, 15-m slalom, and 15-m squat), divided attention, dynamic body balance, handgrip strength differentiation. Survival training resulted in significant decreases in maximum handgrip strength (from 672 to 630 N), corrected 50% max handgrip (from 427 to 367 N), error 50% max (from 26 to 17%), 15-m sprint (from 5.01 to 4.64 m·s), and 15-m squat (2.20 to 1.98 m·s). The training improvements took place in divided attention test (from 48.2 to 57.2%). The survival training applied to pilots only moderately affected some of their motor adjustment skills, the divided attention, and dynamic body balance remaining unaffected or even improved. Further studies aimed at designing a set of tests for coordination motor skills and of soldiers' capacity to fight for survival under conditions of isolation are needed.

  4. PAIR MOTOR COORDINATION ACTION IN SPORTSMEN (ON THE EXAMPLE OF BALLROOM DANCING

    Directory of Open Access Journals (Sweden)

    L. V. Kapilevich

    2013-01-01

    Full Text Available Learn a special coordinating pair of motor actions in athletes engaged sport ballroom dancing, depending on gender and sportsmanship. The results suggest that beginners dominated coordination, performed individually, while the highly skilled dancers better developed coordination, carried out in pairs. Athletes average individual coordination disturbed by the emergence of sex differences build movements and coordination pair is not formed. The asymmetry of the coordination abilities manifested in the predominance of the deviation from equilibrium (to the right of men and to the left – in women. In this case, the athletes of low and medium level of skill to maintain the leading element of balance and coordination is the visual analyzer, while the skilled dancers defining role goes to the vestibular apparatus.

  5. Age-Dependent Relationship between Socio-Adaptability and Motor Coordination in High Functioning Children with Autism Spectrum Disorder

    Science.gov (United States)

    Kostrubiec, Viviane; Huys, Raoul; Jas, Brunhilde; Kruck, Jeanne

    2018-01-01

    Abnormal perceptual-motor coordination is hypothesized here to be involved in social deficits of autism spectrum disorder (ASD). To test this hypothesis, high functioning children with ASD and typical controls, similar in age as well as verbal and perceptive performance, performed perceptual-motor coordination tasks and several social competence…

  6. Neurotoxicity induced by alkyl nitrites: Impairment in learning/memory and motor coordination.

    Science.gov (United States)

    Cha, Hye Jin; Kim, Yun Ji; Jeon, Seo Young; Kim, Young-Hoon; Shin, Jisoon; Yun, Jaesuk; Han, Kyoungmoon; Park, Hye-Kyung; Kim, Hyung Soo

    2016-04-21

    Although alkyl nitrites are used as recreational drugs, there is only little research data regarding their effects on the central nervous system including their neurotoxicity. This study investigated the neurotoxicity of three representative alkyl nitrites (isobutyl nitrite, isoamyl nitrite, and butyl nitrite), and whether it affected learning/memory function and motor coordination in rodents. Morris water maze test was performed in mice after administrating the mice with varying doses of the substances in two different injection schedules of memory acquisition and memory retention. A rota-rod test was then performed in rats. All tested alkyl nitrites lowered the rodents' capacity for learning and memory, as assessed by both the acquisition and retention tests. The results of the rota-rod test showed that isobutyl nitrite in particular impaired motor coordination in chronically treated rats. The mice chronically injected with isoamyl nitrite also showed impaired function, while butyl nitrite had no significant effect. The results of the water maze test suggest that alkyl nitrites may impair learning and memory. Additionally, isoamyl nitrite affected the rodents' motor coordination ability. Collectively, our findings suggest that alkyl nitrites may induce neurotoxicity, especially on the aspect of learning and memory function. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. DISTURBANCE OF NORMAL MOTOR DEVELOPMENT IN THE FIRST YEAR OF LIFE

    Directory of Open Access Journals (Sweden)

    Lidija Dimitrijević

    2005-07-01

    Full Text Available The adoption of the basic motor skills in the first year of life (postural head control, lateral transfers into a lying position, sitting, standing, walking, crawling, grasping... goes on quite spontaneously. A child learns all the motor actions by itself and that is why it is not necessary to “teach” a child to seat, grasp, stand, walk... Teaching a child the basic motor skills stands for a rough, unnecessary and undesirable involvement into spontaneous motor development, and, due to this, the normal adoption of motor skills is slowed down. For the normal motor development, children do not need helping devices (baby buggy, baby jump.... Helping devices suppress in children their natural urge to walk, complicate its development and may have harmful effects like equinus feet, deformed feet and spine and so on.

  8. Jump Rope Training: Balance and Motor Coordination in Preadolescent Soccer Players

    Directory of Open Access Journals (Sweden)

    Athos Trecroci, Luca Cavaggioni, Riccardo Caccia, Giampietro Alberti

    2015-12-01

    Full Text Available General physical practice and multidimensional exercises are essential elements that allow young athletes to enhance their coordinative traits, balance, and strength and power levels, which are linked to the learning soccer-specific skills. Jumping rope is a widely-used and non-specific practical method for the development of athletic conditioning, balance and coordination in several disciplines. Thus, the aim of this study was to investigate the effects of a short-term training protocol including jumping rope (JR exercises on motor abilities and body balance in young soccer players. Twenty-four preadolescent soccer players were recruited and placed in two different groups. In the Experimental group (EG, children performed JR training at the beginning of the training session. The control group (CG, executed soccer specific drills. Harre circuit test (HCT and Lower Quarter Y balance test (YBT-LQ were selected to evaluate participant’s motor ability (e.g. ability to perform rapidly a course with different physical tasks such as somersault and passages above/below obstacles and to assess unilateral dynamic lower limb balance after 8 weeks of training. Statistical analysis consisted of paired t-test and mixed analysis of variance scores to determine any significant interactions. Children who performed jumping rope exercises showed a significant decrease of 9% (p 0.05, ES = 0.05-0.2 from pre- to post-training. A training-by-group interaction was found for the composite score in both legs (p 0.14. Our findings demonstrated that JR practice within regular soccer training enhanced general motor coordination and balance in preadolescent soccer players. Therefore, the inclusion of JR practice within regular soccer training session should encouraged to improve children’s motor skills.

  9. Normal co-ordinate analysis of 1, 8-dibromooctane

    Science.gov (United States)

    Singh, Devinder; Jaggi, Neena; Singh, Nafa

    2010-02-01

    The organic compound 1,8-dibromooctane (1,8-DBO) exists in liquid phase at ambient temperatures and has versatile synthetic applications. In its liquid phase 1,8-DBO has been expected to exist in four most probable conformations, with all its carbon atoms in the same plane, having symmetries C 2h , C i , C 2 and C 1 . In the present study a detailed vibrational analysis in terms of assignment of Fourier transform infrared (FT-IR) and Raman bands of this molecule using normal co-ordinate calculations has been done. A systematic set of symmetry co-ordinates has been constructed for this molecule and normal co-ordinate analysis is carried out using the computer program MOLVIB. The force-field transferred from already studied lower chain bromo-alkanes is subjected to refinement so as to fit the observed infrared and Raman frequencies with those of calculated ones. The potential energy distribution (PED) has also been calculated for each mode of vibration of the molecule for the assumed conformations.

  10. Motor Coordination Dynamics Underlying Graphic Motion in 7- to 11-Year-Old Children

    Science.gov (United States)

    Danna, Jeremy; Enderli, Fabienne; Athenes, Sylvie; Zanone, Pier-Giorgio

    2012-01-01

    Using concepts and tools of a dynamical system approach in order to understand motor coordination underlying graphomotor skills, the aim of the current study was to establish whether the basic coordination dynamics found in adults is already established in children at elementary school, when handwriting is trained and eventually acquired. In the…

  11. Deficits in Visuo-Motor Temporal Integration Impacts Manual Dexterity in Probable Developmental Coordination Disorder.

    Science.gov (United States)

    Nobusako, Satoshi; Sakai, Ayami; Tsujimoto, Taeko; Shuto, Takashi; Nishi, Yuki; Asano, Daiki; Furukawa, Emi; Zama, Takuro; Osumi, Michihiro; Shimada, Sotaro; Morioka, Shu; Nakai, Akio

    2018-01-01

    The neurological basis of developmental coordination disorder (DCD) is thought to be deficits in the internal model and mirror-neuron system (MNS) in the parietal lobe and cerebellum. However, it is not clear if the visuo-motor temporal integration in the internal model and automatic-imitation function in the MNS differs between children with DCD and those with typical development (TD). The current study aimed to investigate these differences. Using the manual dexterity test of the Movement Assessment Battery for Children (second edition), the participants were either assigned to the probable DCD (pDCD) group or TD group. The former was comprised of 29 children with clumsy manual dexterity, while the latter consisted of 42 children with normal manual dexterity. Visuo-motor temporal integration ability and automatic-imitation function were measured using the delayed visual feedback detection task and motor interference task, respectively. Further, the current study investigated whether autism-spectrum disorder (ASD) traits, attention-deficit hyperactivity disorder (ADHD) traits, and depressive symptoms differed among the two groups, since these symptoms are frequent comorbidities of DCD. In addition, correlation and multiple regression analyses were performed to extract factors affecting clumsy manual dexterity. In the results, the delay-detection threshold (DDT) and steepness of the delay-detection probability curve, which indicated visuo-motor temporal integration ability, were significantly prolonged and decreased, respectively, in children with pDCD. The interference effect, which indicated automatic-imitation function, was also significantly reduced in this group. These results highlighted that children with clumsy manual dexterity have deficits in visuo-motor temporal integration and automatic-imitation function. There was a significant correlation between manual dexterity, and measures of visuo-motor temporal integration, and ASD traits and ADHD traits and

  12. JNK1 Controls Dendritic Field Size in L2/3 and L5 of the Motor Cortex, Constrains Soma Size and Influences Fine Motor Coordination

    Directory of Open Access Journals (Sweden)

    Emilia eKomulainen

    2014-09-01

    Full Text Available Genetic anomalies on the JNK pathway confer susceptibility to autism spectrum disorders, schizophrenia and intellectual disability. The mechanism whereby a gain or loss of function in JNK signaling predisposes to these prevalent dendrite disorders, with associated motor dysfunction, remains unclear. Here we find that JNK1 regulates the dendritic field of L2/3 and L5 pyramidal neurons of the mouse motor cortex (M1, the main excitatory pathway controlling voluntary movement. In Jnk1-/- mice, basal dendrite branching of L5 pyramidal neurons is increased in M1, as is cell soma size, whereas in L2/3, dendritic arborization is decreased. We show that JNK1 phosphorylates rat HMW-MAP2 on T1619, T1622 and T1625 (Uniprot P15146 corresponding to mouse T1617, T1620, T1623, to create a binding motif, that is critical for MAP2 interaction with and stabilization of microtubules, and dendrite growth control. Targeted expression in M1 of GFP-HMW-MAP2 that is pseudo-phosphorylated on T1619, T1622 and T1625 increases dendrite complexity in L2/3 indicating that JNK1 phosphorylation of HMW-MAP2 regulates the dendritic field. Consistent with the morphological changes observed in L2/3 and L5, Jnk1-/- mice exhibit deficits in limb placement and motor coordination, while stride length is reduced in older animals. In summary, JNK1 phosphorylates HMW-MAP2 to increase its stabilization of microtubules while at the same time controlling dendritic fields in the main excitatory pathway of M1. Moreover, JNK1 contributes to normal functioning of fine motor coordination. We report for the first time, a quantitative sholl analysis of dendrite architecture, and of motor behavior in Jnk1-/- mice. Our results illustrate the molecular and behavioral consequences of interrupted JNK1 signaling and provide new ground for mechanistic understanding of those prevalent neuropyschiatric disorders where genetic disruption of the JNK pathway is central.

  13. Influence of Methylphenidate on Motor Performance and Attention in Children with Developmental Coordination Disorder and Attention Deficit Hyperactive Disorder

    Science.gov (United States)

    Bart, Orit; Daniel, Liron; Dan, Orrie; Bar-Haim, Yair

    2013-01-01

    Individuals with attention deficit hyperactive disorder (ADHD) often have coexisting developmental coordination disorder (DCD). The positive therapeutic effect of methylphenidate on ADHD symptoms is well documented, but its effects on motor coordination are less studied. We assessed the influence of methylphenidate on motor performance in children…

  14. Body mass index and motor coordination: Non-linear relationships in children 6-10 years.

    Science.gov (United States)

    Lopes, V P; Malina, R M; Maia, J A R; Rodrigues, L P

    2018-05-01

    Given the concern for health-related consequences of an elevated body mass index (BMI; obesity), the potential consequences of a low BMI in children are often overlooked. The purpose was to evaluate the relationship between the BMI across its entire spectrum and motor coordination (MC) in children 6-10 years. Height, weight, and MC (Körperkoordinationstest für Kinder, KTK test battery) were measured in 1,912 boys and 1,826 girls of 6-10 years of age. BMI (kg/m 2 ) was calculated. KTK scores for each of the four tests were also converted to a motor quotient (MQ). One-way ANOVA was used to test differences in the BMI, individual test items, and MQ among boys and girls within age groups. Sex-specific quadratic regressions of individual KTK items and the MQ on the BMI were calculated. Girls and boys were also classified into four weight status groups using International Obesity Task Force criteria: thin, normal, overweight, and obese. Differences in specific test items and MQ between weight status groups were evaluated by age group in each sex. Thirty-one percent of the sample was overweight or obese, whereas 5% was thin. On average, normal weight children had the highest MQ in both sexes across the age range with few exceptions. Overweight/obese children had a lower MQ than normal weight and thin children. The quadratic regression lines generally presented an inverted parabolic relationship between the BMI and MC and suggested a decrease in MC with an increase in the BMI. In general, BMI shows a curvilinear, inverted parabolic relationship with MC in children 6-10 years. © 2018 John Wiley & Sons Ltd.

  15. Speech motor coordination in Dutch-speaking children with DAS studied with EMMA

    NARCIS (Netherlands)

    Nijland, L.; Maassen, B.A.M.; Hulstijn, W.; Peters, H.F.M.

    2004-01-01

    Developmental apraxia of speech (DAS) is generally classified as a 'speech motor' disorder. Direct measurement of articulatory movement is, however, virtually non-existent. In the present study we investigated the coordination between articulators in children with DAS using kinematic measurements.

  16. Comparing motor performance, praxis, coordination, and interpersonal synchrony between children with and without Autism Spectrum Disorder (ASD).

    Science.gov (United States)

    Kaur, Maninderjit; M Srinivasan, Sudha; N Bhat, Anjana

    2018-01-01

    Children with Autism Spectrum Disorder (ASD) have basic motor impairments in balance, gait, and coordination as well as autism-specific impairments in praxis/motor planning and interpersonal synchrony. Majority of the current literature focuses on isolated motor behaviors or domains. Additionally, the relationship between cognition, symptom severity, and motor performance in ASD is unclear. We used a comprehensive set of measures to compare gross and fine motor, praxis/imitation, motor coordination, and interpersonal synchrony skills across three groups of children between 5 and 12 years of age: children with ASD with high IQ (HASD), children with ASD with low IQ (LASD), and typically developing (TD) children. We used the Bruininks-Oseretsky Test of Motor Proficiency and the Bilateral Motor Coordination subtest of the Sensory Integration and Praxis Tests to assess motor performance and praxis skills respectively. Children were also examined while performing simple and complex rhythmic upper and lower limb actions on their own (solo context) and with a social partner (social context). Both ASD groups had lower gross and fine motor scores, greater praxis errors in total and within various error types, lower movement rates, greater movement variability, and weaker interpersonal synchrony compared to the TD group. In addition, the LASD group had lower gross motor scores and greater mirroring errors compared to the HASD group. Overall, a variety of motor impairments are present across the entire spectrum of children with ASD, regardless of their IQ scores. Both, fine and gross motor performance significantly correlated with IQ but not with autism severity; however, praxis errors (mainly, total, overflow, and rhythmicity) strongly correlated with autism severity and not IQ. Our study findings highlight the need for clinicians and therapists to include motor evaluations and interventions in the standard-of-care of children with ASD and for the broader autism community to

  17. Assessment of Motor Balance and Coordination in Mice using the Balance Beam

    OpenAIRE

    Luong, Tinh N.; Carlisle, Holly J.; Southwell, Amber; Patterson, Paul H.

    2011-01-01

    Brain injury, genetic manipulations, and pharmacological treatments can result in alterations of motor skills in mice. Fine motor coordination and balance can be assessed by the beam walking assay. The goal of this test is for the mouse to stay upright and walk across an elevated narrow beam to a safe platform. This test takes place over 3 consecutive days: 2 days of training and 1 day of testing. Performance on the beam is quantified by measuring the time it takes for the mouse to travers...

  18. Is severity of motor coordination difficulties related to co-morbidity in children at risk for developmental coordination disorder?

    Science.gov (United States)

    Schoemaker, Marina M; Lingam, Raghu; Jongmans, Marian J; van Heuvelen, Marieke J G; Emond, Alan

    2013-10-01

    Aim of the study was to investigate whether 7-9 year old children with severe motor difficulties are more at risk of additional difficulties in activities in daily living, academic skills, attention and social skills than children with moderate motor difficulties. Children (N=6959) from a population based cohort, the Avon Longitudinal Study of Parents and Children (ALSPAC), were divided into three groups based on their scores on the ALSPAC Coordination Test at age 7: control children (scores above 15th centile; N=5719 [82.1%]); children with moderate (between 5th and 15th centile; N=951 [13.7%]); and children with severe motor difficulties (below 5th centile N=289 [4.2%]). Children with neurological disorders or an IQactivities of daily living (ADL); academic skills (reading, spelling and handwriting); attention; social skills (social cognition and nonverbal skills). Children with severe motor difficulties demonstrated a higher risk of difficulties in ADL, handwriting, attention, reading, and social cognition than children with moderate motor difficulties, who in turn had a higher risk of difficulties than control children in five out of seven domains. Screening and intervention of co-morbid problems is recommended for children with both moderate and severe motor difficulties. Copyright © 2013. Published by Elsevier Ltd.

  19. Assessment of motor balance and coordination in mice using the balance beam.

    Science.gov (United States)

    Luong, Tinh N; Carlisle, Holly J; Southwell, Amber; Patterson, Paul H

    2011-03-10

    Brain injury, genetic manipulations, and pharmacological treatments can result in alterations of motor skills in mice. Fine motor coordination and balance can be assessed by the beam walking assay. The goal of this test is for the mouse to stay upright and walk across an elevated narrow beam to a safe platform. This test takes place over 3 consecutive days: 2 days of training and 1 day of testing. Performance on the beam is quantified by measuring the time it takes for the mouse to traverse the beam and the number of paw slips that occur in the process. Here we report the protocol used in our laboratory, and representative results from a cohort of C57BL/6 mice. This task is particularly useful for detecting subtle deficits in motor skills and balance that may not be detected by other motor tests, such as the Rotarod.

  20. Motor Control Abnormalities in Parkinson’s Disease

    Science.gov (United States)

    Mazzoni, Pietro; Shabbott, Britne; Cortés, Juan Camilo

    2012-01-01

    The primary manifestations of Parkinson’s disease are abnormalities of movement, including movement slowness, difficulties with gait and balance, and tremor. We know a considerable amount about the abnormalities of neuronal and muscle activity that correlate with these symptoms. Motor symptoms can also be described in terms of motor control, a level of description that explains how movement variables, such as a limb’s position and speed, are controlled and coordinated. Understanding motor symptoms as motor control abnormalities means to identify how the disease disrupts normal control processes. In the case of Parkinson’s disease, movement slowness, for example, would be explained by a disruption of the control processes that determine normal movement speed. Two long-term benefits of understanding the motor control basis of motor symptoms include the future design of neural prostheses to replace the function of damaged basal ganglia circuits, and the rational design of rehabilitation strategies. This type of understanding, however, remains limited, partly because of limitations in our knowledge of normal motor control. In this article, we review the concept of motor control and describe a few motor symptoms that illustrate the challenges in understanding such symptoms as motor control abnormalities. PMID:22675667

  1. Overweight and obese infants present lower cognitive and motor development scores than normal-weight peers.

    Science.gov (United States)

    Camargos, Ana Cristina Resende; Mendonça, Vanessa Amaral; Andrade, Camila Alves de; Oliveira, Katherine Simone Caires; Lacerda, Ana Cristina Rodrigues

    2016-12-01

    Compare the cognitive and motor development in overweight/obese infants versus normal-weight peers and investigate the correlation of body weight, body length and body mass index with cognitive and motor development. We conducted a cross-sectional study with 28 overweight/obese infants and 28 normal-weight peers between 6 and 24 months of age. Both groups were evaluated with cognitive and motor scales of the Bayley-III infant development test. The t-test for independent samples was performed to compare the groups, and the Spearman correlation was used to verify the association between variables. Overweight/obese infants showed lower cognitive and motor composite scores than their normal-weight peers. A significant negative association was found of body weight and body length with cognitive development and of body mass index with motor development. This is the first study that found an effect on both cognitive and motor development in overweight/obese infants when compared with normal-weight peers between 6 and 24 months of age. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Interactive metronome training for a 9-year-old boy with attention and motor coordination difficulties.

    Science.gov (United States)

    Bartscherer, Melinda L; Dole, Robin L

    2005-01-01

    The purpose of this case report is to describe a new intervention, the Interactive Metronome, for improving timing and coordination. A nine-year-old boy, with difficulties in attention and developmental delay of unspecified origin underwent a seven-week training program with the Interactive Metronome. Before, during, and after training timing, accuracy was assessed with testing procedures consistent with the Interactive Metronome training protocol. Before and after training, his gross and fine motor skills were examined with the Bruininiks-Oseretsky Test of Motor Proficiency (BOTMP). The child exhibited marked change in scores on both timing accuracy and several BOTMP subtests. Additionally his mother relayed anecdotal reports of changes in behavior at home. This child's participation in a new intervention for improving timing and coordination was associated with changes in timing accuracy, gross and fine motor abilities, and parent reported behaviors. These findings warrant further study.

  3. Motor coordination during gait after anterior cruciate ligament injury: a systematic review of the literature

    Directory of Open Access Journals (Sweden)

    Gustavo Leporace

    2013-08-01

    Full Text Available To investigate the state of art about motor coordination during gait in patients with anterior cruciate ligament (ACL injury. Searches were carried out, limited from 1980 to 2010, in various databases with keywords related to motor coordination, gait and ACL injury. From the analysis of titles and applying the inclusion/exclusion criteria 24 studies were initially selected and, after reading the abstract, eight studies remained in the final analysis. ACL deficient patients tend to have a more rigid and less variable gait, while injured patients with ACL reconstruction have less rigid and more variable gait with respect to healthy individuals. The overall results suggest the existence of differences in motor coordination between the segments with intact and those with injured knee, regardless of ligament reconstruction. ACL injured patients present aspects related to the impairment of the capability to adapt the gait pattern to different environmental conditions, possibly leading to premature knee degeneration. However, the techniques used for biomechanical gait data processing are limited with respect to obtaining information that leads to the development of intervention strategies aimed at the rehabilitation of that injury, since it is not possible to identify the location within the gait cycle where the differences could be explained.

  4. Effects of Individual and School-Level Characteristics on a Child’s Gross Motor Coordination Development

    Directory of Open Access Journals (Sweden)

    Raquel Chaves

    2015-07-01

    Full Text Available The aim of this study was to identify child and school-level characteristics that explained inter-individual differences in gross motor coordination (GMC. Participants (n = 390, recruited from 18 Portuguese primary schools, were aged 6 to 10 years of age. Birth weight, body fat (BF, physical activity (PA, physical fitness (PF and GMC were assessed. School size, setting, infrastructure and physical education classes were considered as school context markers. A multilevel modeling approach was used to identify hierarchical effects (child and school levels. It was found that children-level variables (sex, PF, and BF significantly explained 63% of the 90% variance fraction at the individual level; boys outperformed girls (p < 0.05, individuals with higher BF were less coordinated (p < 0.05, and those with higher PF were more coordinated (p < 0.05. School-variables (e.g. school size and playing surface explained 84% of the 10% variation fraction. These findings confirm the roles of sex, PFS and BF. Interestingly they also suggest that the school environment plays a minor but significant role in GMC development. However, it is important to stress that the school context and conditions can also play an important role in a child’s motor development, providing adequate and enriching motor opportunities.

  5. Developmental Coordination Disorder, an umbrella term for motor impairments in children: nature and co-morbid disorders

    Directory of Open Access Journals (Sweden)

    Laurence eVaivre-Douret

    2016-04-01

    Full Text Available Background:Developmental Coordination Disorder (DCD defines a heterogeneous class of children exhibiting marked impairment in motor coordination as a general group of deficits in fine and gross motricity (subtype mixed group common to all research studies, and with a variety of other motor disorders that have been little investigated. No consensus about symptoms and aetiology has been established. Methods: Data from 58 children aged 6 to 13 years with DCD were collected on DSM-IV criteria, similar to DSM- 5 criteria. They had no other medical condition and inclusion criteria were strict (born full-term, no medication, no occupational /physical therapy. Multivariate statistical methods were used to evidence relevant interactions between discriminant features in a general DCD subtype group and to highlight specific co-morbidities. The study examined age-calibrated standardized scores from completed assessments of psychological, neuropsychological and neuropsychomotor functions, and more specifically the presence of minor neurological dysfunctions (MND including neurological soft signs (NSS, without evidence of focal neurological brain involvement. These were not considered in most previous studies. Results: Findings show the salient DCD markers for the mixed subtype (imitation of gestures, digital perception, digital praxia, manual dexterity, upper and lower limb coordination, versus surprising co-morbidities, with 33% of MND with mild spasticity from phasic stretch reflex (PSR, not associated with the above impairments but rather with sitting tone (p= .004 and dysdiadochokinesia (p= .011. PSR was not specific to a DCD subtype but was related to increased impairment of coordination between upper and lower limbs and manual dexterity. Our results highlight the major contribution of an extensive neuro-developmental assessment (mental and physical. Discussion: The present study provides important new evidence in favour of a complete physical

  6. iPad applications that required a range of motor skills promoted motor coordination in children commencing primary school.

    Science.gov (United States)

    Axford, Caitlin; Joosten, Annette V; Harris, Courtenay

    2018-04-01

    Children are reported to spend less time engaged in outdoor activity and object-related play than in the past. The increased use and mobility of technology, and the ease of use of tablet devices are some of the factors that have contributed to these changes. Concern has been raised that the use of such screen and surface devices in very young children is reducing their fine motor skill development. We examined the effectiveness of iPad applications that required specific motor skills designed to improve fine motor skills. We conducted a two-group non-randomised controlled trial with two pre-primary classrooms (53 children; 5-6 years) in an Australian co-educational school, using a pre- and post-test design. The effectiveness of 30 minutes daily use of specific iPad applications for 9 weeks was compared with a control class. Children completed the Beery Developmental Test of Visual Motor Integration (VMI) and observation checklist, the Shore Handwriting Screen, and self-care items from the Hawaii Early Learning Profile. On post testing, the experimental group made a statistically and clinically significant improvement on the VMI motor coordination standard scores with a moderate clinical effect size (P motor skill-specific applications as an intervention in occupational therapy practice and as part of at home or school play. © 2018 Occupational Therapy Australia.

  7. Cognitive Motor Coordination Training Improves Mental Rotation Performance in Primary School-Aged Children

    Science.gov (United States)

    Pietsch, Stefanie; Böttcher, Caroline; Jansen, Petra

    2017-01-01

    The long-term physical activity in specific sport activities can change the quality of mental rotation performance. This study investigates the influence of "Life Kinetik"--a motion program with tasks of cognition and motor coordination--on mental rotation performance of 44 primary school-aged children. While the experimental group…

  8. Attainment of gross motor milestones by preterm children with normal development upon school entry

    NARCIS (Netherlands)

    van Dokkum, Nienke H; de Kroon, Marlou L A; Bos, Arend F; Reijneveld, Sijmen A; Kerstjens, Jorien M

    BACKGROUND: Little is known on the motor development of moderately preterm born (MPT) children, in comparison with early preterm born (EPT) children and fullterm born (FT), for children with normal motor outcomes at school entry. AIMS: To compare attainment rates of gross motor milestones reached

  9. Evaluating fine motor coordination in children who are not ready for handwriting : which test should we take?

    NARCIS (Netherlands)

    de Vries, Liesbeth; van Hartingsveldt, Margo J.; Cup, Edith H.C.; Nijhuis-van der Sanden, Maria W.G.; de Groot, Imelda J.M.

    2015-01-01

    When children are not ready to write, assessment of fine motor coordination may be indicated. The purpose of this study was to evaluate which fine motor test, the Nine-Hole Peg Test (9-HPT) or the newly developed Timed Test of In-Hand Manipulation (Timed-TIHM), correlates best with handwriting

  10. Evaluating fine motor coordination in children who are not ready for handwriting: which test should we take?

    NARCIS (Netherlands)

    Vries, L. de; Hartingsveldt, M.J. van; Cup, E.H.C.; Nijhuis-Van der Sanden, M.W.G.; Groot, I.J.M. de

    2015-01-01

    When children are not ready to write, assessment of fine motor coordination may be indicated. The purpose of this study was to evaluate which fine motor test, the Nine-Hole Peg Test (9-HPT) or the newly developed Timed Test of In-Hand Manipulation (Timed-TIHM), correlates best with handwriting

  11. Sinusoidal error perturbation reveals multiple coordinate systems for sensorymotor adaptation.

    Science.gov (United States)

    Hudson, Todd E; Landy, Michael S

    2016-02-01

    A coordinate system is composed of an encoding, defining the dimensions of the space, and an origin. We examine the coordinate encoding used to update motor plans during sensory-motor adaptation to center-out reaches. Adaptation is induced using a novel paradigm in which feedback of reach endpoints is perturbed following a sinewave pattern over trials; the perturbed dimensions of the feedback were the axes of a Cartesian coordinate system in one session and a polar coordinate system in another session. For center-out reaches to randomly chosen target locations, reach errors observed at one target will require different corrections at other targets within Cartesian- and polar-coded systems. The sinewave adaptation technique allowed us to simultaneously adapt both dimensions of each coordinate system (x-y, or reach gain and angle), and identify the contributions of each perturbed dimension by adapting each at a distinct temporal frequency. The efficiency of this technique further allowed us to employ perturbations that were a fraction the size normally used, which avoids confounding automatic adaptive processes with deliberate adjustments made in response to obvious experimental manipulations. Subjects independently corrected errors in each coordinate in both sessions, suggesting that the nervous system encodes both a Cartesian- and polar-coordinate-based internal representation for motor adaptation. The gains and phase lags of the adaptive responses are not readily explained by current theories of sensory-motor adaptation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Effectiveness of exercise intervention on improving fundamental movement skills and motor coordination in overweight/obese children and adolescents: A systematic review.

    Science.gov (United States)

    Han, Ahreum; Fu, Allan; Cobley, Stephen; Sanders, Ross H

    2018-01-01

    Childhood obesity is negatively associated with fundamental movement skill and motor coordination, which in turn constrains physical activity participation and adherence thereby forming a 'vicious cycle'. However, developing motor skill and coordination in childhood could help to break the vicious cycle to reduce childhood obesity. The objective of this systematic review was to determine the effectiveness of exercise and physical activity interventions on improving fundamental movement skill and motor coordination in overweight/obese children and adolescents. A systematic review with quality assessment. A comprehensive systematic search was conducted from MEDLINE, SPORTDiscus, CINAHL, Scopus, Web of Science, EMBASE without date restriction for randomized control trials, interventions or longitudinal studies of movement skill/motor skill/motor coordination in overweight/obese participants between 0-18 years of age. A total of 3944 publications were screened, and 17 published studies were included. Altogether 38 tests for locomotor, object-control, balance and complex task tests were examined in selected studies, with 33 reporting increases after interventions, while only five tests indicated no change. The evidence strongly suggests that exercise/physical activity interventions were effective in improving locomotor skill, object-control skill and complex tasks in overweight/obese peers. However, the results for balance were equivocal. Results from existing studies suggest overweight/obese peers have lower levels of fundamental movement skill than their healthy weight peers. However, exercise/physical activity interventions are effective in improving their skills. To maximize skill improvement, we recommend focused fundamental movement skill and motor coordination activities for skill development. These progressions in interventions may help break the vicious cycle of childhood obesity. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All

  13. [Simple and useful evaluation of motor difficulty in childhood (9-12 years old children ) by interview score on motor skills and soft neurological signs--aim for the diagnosis of developmental coordination disorder].

    Science.gov (United States)

    Kashiwagi, Mitsuru; Suzuki, Shuhei

    2009-09-01

    Many children with developmental disorders are known to have motor impairment such as clumsiness and poor physical ability;however, the objective evaluation of such difficulties is not easy in routine clinical practice. In this study, we aimed to establish a simple method for evaluating motor difficulty of childhood. This method employs a scored interview and examination for detecting soft neurological signs (SNSs). After a preliminary survey with 22 normal children, we set the items and the cutoffs for the interview and SNSs. The interview consisted of questions pertaining to 12 items related to a child's motor skills in his/her past and current life, such as skipping, jumping a rope, ball sports, origami, and using chopsticks. The SNS evaluation included 5 tests, namely, standing on one leg with eyes closed, diadochokinesia, associated movements during diadochokinesia, finger opposition test, and laterally fixed gaze. We applied this method to 43 children, including 25 cases of developmental disorders. Children showing significantly high scores in both the interview and SNS were assigned to the "with motor difficulty" group, while those with low scores in both the tests were assigned to the "without motor difficulty" group. The remaining children were assigned to the "with suspicious motor difficulty" group. More than 90% of the children in the "with motor difficulty" group had high impairment scores in Movement Assessment Battery for Children (M-ABC), a standardized motor test, whereas 82% of the children in the "without motor difficulty" group revealed no motor impairment. Thus, we conclude that our simple method and criteria would be useful for the evaluation of motor difficulty of childhood. Further, we have discussed the diagnostic process for developmental coordination disorder using our evaluation method.

  14. Motor and Cognitive Performance Differences between Children with and without Developmental Coordination Disorder (DCD)

    Science.gov (United States)

    Asonitou, Katerina; Koutsouki, Dimitra; Kourtessis, Thomas; Charitou, Sofia

    2012-01-01

    The current study adopts the PASS theory of information processing to investigate the probable differences in specific motor and cognitive abilities between children with and without developmental coordination disorder (DCD). Participants were 108 5- and 6-year-old preschoolers (54 children with DCD and 54 children without DCD). The Movement…

  15. Executive functions, visual-motor coordination, physical fitness and academic achievement: Longitudinal relations in typically developing children.

    Science.gov (United States)

    Oberer, Nicole; Gashaj, Venera; Roebers, Claudia M

    2018-04-01

    The present longitudinal study included different school readiness factors measured in kindergarten with the aim to predict later academic achievement in second grade. Based on data of N = 134 children, the predictive power of executive functions, visual-motor coordination and physical fitness on later academic achievement was estimated using a latent variable approach. By entering all three predictors simultaneously into the model to predict later academic achievement, significant effects of executive functions and visual-motor coordination on later academic achievement were found. The influence of physical fitness was found to be substantial but indirect via executive functions. The cognitive stimulation hypothesis as well as the automaticity hypothesis are discussed as an explanation for the reported relations. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Visuo-motor coordination and internal models for object interception.

    Science.gov (United States)

    Zago, Myrka; McIntyre, Joseph; Senot, Patrice; Lacquaniti, Francesco

    2009-02-01

    Intercepting and avoiding collisions with moving objects are fundamental skills in daily life. Anticipatory behavior is required because of significant delays in transforming sensory information about target and body motion into a timed motor response. The ability to predict the kinematics and kinetics of interception or avoidance hundreds of milliseconds before the event may depend on several different sources of information and on different strategies of sensory-motor coordination. What are exactly the sources of spatio-temporal information and what are the control strategies remain controversial issues. Indeed, these topics have been the battlefield of contrasting views on how the brain interprets visual information to guide movement. Here we attempt a synthetic overview of the vast literature on interception. We discuss in detail the behavioral and neurophysiological aspects of interception of targets falling under gravity, as this topic has received special attention in recent years. We show that visual cues alone are insufficient to predict the time and place of interception or avoidance, and they need to be supplemented by prior knowledge (or internal models) about several features of the dynamic interaction with the moving object.

  17. Impact of normal weight obesity on fundamental motor skills in pre-school children aged 3 to 6 years.

    Science.gov (United States)

    Musalek, Martin; Kokstejn, Jakub; Papez, Pavel; Scheffler, Christiane; Mumm, Rebekka; Czernitzki, Anna-Franziska; Koziel, Slawomir

    2017-09-01

    Normal weight obesity is defined as having excessive body fat, but normal BMI. Even though previous research revealed that excessive body fat in children inhibited their physical activity and decreased motor performance, there has been only little evidence about motor performance of normal weight obese children. This study aims to establish whether normal weight obese pre-school children aged 3-6 years will have a significantly worse level of fundamental motor skills compared to normal weight non-obese counterparts. The research sample consisted of 152 pre-schoolers selected from a specific district of Prague, the Czech Republic. According to values from four skinfolds: triceps, subscapula, suprailiaca, calf, and BMI three categories of children aged 3-6 years were determined: A) normal weight obese n = 51; B) normal weight non-obese n = 52; C) overweight and obese n = 49. The Movement Assessment Battery for Children (MABC-2) was used for the assessment of fundamental motor skills. Normal weight obese children had significantly higher amount of adipose tissue p < 0.001 than normal weight non-obese children but the same average BMI. Moreover, normal weight obese children did not have significantly less amount of subcutaneous fat on triceps and calf compared to their overweight and obese peers. In majority of MABC-2 tests, normal weight obese pre-schoolers showed the poorest performance. Moreover, normal weight obese children had significantly worse total standard score = 38.82 compared to normal weight non-obese peers = 52.27; p < 0.05. In addition, normal weight obese children had a more than three times higher frequency OR = 3.69 CI95% (1.10; 12.35) of severe motor deficit performance ≤ 5 th centile of the MABC-2 norm. These findings are strongly alarming since indices like BMI are not able to identify normal weight obese individual. We recommend verifying real portion of normal weight obese children as they are probably in higher risk of health and motor

  18. Effect of α7 nicotinic acetylcholine receptor agonists and antagonists on motor function in mice

    International Nuclear Information System (INIS)

    Welch, Kevin D.; Pfister, James A.; Lima, Flavia G.; Green, Benedict T.; Gardner, Dale R.

    2013-01-01

    Nicotinic acetylcholine receptors (nAChRs) are ligand-gated cation channels found throughout the body, and serve to mediate diverse physiological functions. Muscle-type nAChRs located in the motor endplate region of muscle fibers play an integral role in muscle contraction and thus motor function. The toxicity and teratogenicity of many plants (which results in millions of dollars in losses annually to the livestock industry) are due to various toxins that bind to nAChRs including deltaline and methyllycaconitine (MLA) from larkspur (Delphinium) species, and nicotine and anabasine from tobacco (Nicotiana) species. The primary result of the actions of these alkaloids at nAChRs is neuromuscular paralysis and respiratory failure. The objective of this study was to further characterize the motor coordination deficiencies that occur upon exposure to a non-lethal dose of nAChR antagonists MLA and deltaline as well as nAChR agonists nicotine and anabasine. We evaluated the effect of nAChR agonists and antagonists on the motor function and coordination in mice using a balance beam, grip strength meter, rotarod, open field analysis and tremor monitor. These analyses demonstrated that within seconds after treatment the mice had significant loss of motor function and coordination that lasted up to 1 min, followed by a short period of quiescence. Recovery to normal muscle coordination was rapid, typically within approximately 10 min post-dosing. However, mice treated with the nAChR agonist nicotine and anabasine required a slightly longer time to recover some aspects of normal muscle function in comparison to mice treated with the nAChR antagonist MLA or deltaline. -- Highlights: ► Mice treated with nAChR agonists and antagonists have a loss in motor function. ► These deficits are temporary as near normal motor function returns within 10 min. ► There are compound-specific differences in the effects on motor function.

  19. Selected Coordination Motor Abilities of Students of the University of Physical Education During Survival Training

    Directory of Open Access Journals (Sweden)

    Tomczak Andrzej

    2017-06-01

    Full Text Available Introduction. Taking up emergency actions when fighting various types of natural disasters requires appropriate psychophysical preparation. Thanks to the development of technique, coordination motor abilities have gained greater importance than physical strength and endurance in such activities. The purpose of the present work was to assess the impact of 36 hours of survival activities and sleep deprivation on selected coordination motor abilities in students of the University of Physical Education. Material and methods. The study involved 12 male students of the University of Physical Education in Warsaw, specialising in “Physical Education in Uniformed Services”. The age of the participants was 21.0 ± 0.74 years, their body height was 179.5 ± 5.6 cm, and their body mass was 74.6 ± 8.0 kg. The assessment was performed based on the following coordination motor ability tests: a test measuring the differentiation of the use of forearm muscle strength, a running motor adjustment test, and a measurement of divided attention. A test involving shooting from a pneumatic gun and a measurement of the maximal force of the forearm were also carried out. Tests and trials were conducted before training (P1, after 24 hours of training (P2, after completing the training - that is after 36 hours of training (P3, and after 12 hours of rest (P4. During the training, the participants completed 12 km on foot, paddled for approximately 6 hours, rowed kayaks for about 4 hours, and performed survival tasks. Results. The analysis of the results of the study of maximal force and the ability to differentiate forearm muscle strength showed that the forearm muscle strength remained at the same level during the entire training. The ability to differentiate forearm muscle strength deteriorated after night training. There were no statistically significant differences in the results of the running motor adjustment tests and in shooting performance between individual

  20. Rationale, design and methods for a randomised and controlled trial of the impact of virtual reality games on motor competence, physical activity, and mental health in children with developmental coordination disorder.

    Science.gov (United States)

    Straker, Leon M; Campbell, Amity C; Jensen, Lyn M; Metcalf, Deborah R; Smith, Anne J; Abbott, Rebecca A; Pollock, Clare M; Piek, Jan P

    2011-08-18

    A healthy start to life requires adequate motor development and physical activity participation. Currently 5-15% of children have impaired motor development without any obvious disorder. These children are at greater risk of obesity, musculoskeletal disorders, low social confidence and poor mental health. Traditional electronic game use may impact on motor development and physical activity creating a vicious cycle. However new virtual reality (VR) game interfaces may provide motor experiences that enhance motor development and lead to an increase in motor coordination and better physical activity and mental health outcomes. VR games are beginning to be used for rehabilitation, however there is no reported trial of the impact of these games on motor coordination in children with developmental coordination disorder. This cross-over randomised and controlled trial will examine whether motor coordination is enhanced by access to active electronic games and whether daily activity, attitudes to physical activity and mental health are also enhanced. Thirty children aged 10-12 years with poor motor coordination (≤ 15th percentile) will be recruited and randomised to a balanced ordering of 'no active electronic games' and 'active electronic games'. Each child will participate in both conditions for 16 weeks, and be assessed prior to participation and at the end of each condition. The primary outcome is motor coordination, assessed by kinematic and kinetic motion analysis laboratory measures. Physical activity and sedentary behaviour will be assessed by accelerometry, coordination in daily life by parent report questionnaire and attitudes to physical activity, self-confidence, anxiety and depressed mood will be assessed by self report questionnaire. A sample of 30 will provide a power of > 0.9 for detecting a 5 point difference in motor coordination on the MABC-2 TIS scale (mean 17, sd = 5). This is the first trial to examine the impact of new virtual reality games on

  1. Rationale, design and methods for a randomised and controlled trial of the impact of virtual reality games on motor competence, physical activity, and mental health in children with developmental coordination disorder

    Directory of Open Access Journals (Sweden)

    Straker Leon M

    2011-08-01

    Full Text Available Abstract Background A healthy start to life requires adequate motor development and physical activity participation. Currently 5-15% of children have impaired motor development without any obvious disorder. These children are at greater risk of obesity, musculoskeletal disorders, low social confidence and poor mental health. Traditional electronic game use may impact on motor development and physical activity creating a vicious cycle. However new virtual reality (VR game interfaces may provide motor experiences that enhance motor development and lead to an increase in motor coordination and better physical activity and mental health outcomes. VR games are beginning to be used for rehabilitation, however there is no reported trial of the impact of these games on motor coordination in children with developmental coordination disorder. Methods This cross-over randomised and controlled trial will examine whether motor coordination is enhanced by access to active electronic games and whether daily activity, attitudes to physical activity and mental health are also enhanced. Thirty children aged 10-12 years with poor motor coordination (≤ 15th percentile will be recruited and randomised to a balanced ordering of 'no active electronic games' and 'active electronic games'. Each child will participate in both conditions for 16 weeks, and be assessed prior to participation and at the end of each condition. The primary outcome is motor coordination, assessed by kinematic and kinetic motion analysis laboratory measures. Physical activity and sedentary behaviour will be assessed by accelerometry, coordination in daily life by parent report questionnaire and attitudes to physical activity, self-confidence, anxiety and depressed mood will be assessed by self report questionnaire. A sample of 30 will provide a power of > 0.9 for detecting a 5 point difference in motor coordination on the MABC-2 TIS scale (mean 17, sd = 5. Discussion This is the first trial to

  2. An induction/synchronous motor with high temperature superconductor/normal conductor hybrid double-cage rotor windings

    International Nuclear Information System (INIS)

    Nakamura, T; Nagao, K; Nishimura, T; Matsumura, K

    2009-01-01

    We propose hybrid double-cage rotor windings that consist of a high temperature superconductor (HTS) and a normal conductor, which are introduced into an HTS induction/synchronous motor (HTS-ISM). The motor rotates as a conventional induction motor when the operating temperature of the hybrid rotor is above the critical temperature of the HTS bars, i.e., in the normal conducting state. On the other hand, the HTS-ISM rotates as a synchronous motor when the temperature is below the critical temperature, i.e., in the superconducting (zero resistance) state. In other words, we do not always need to take care of the cooling conditions, if the HTS-ISM is automatically, as well as appropriately, controlled, depending upon the rotation mode. Namely, the above-mentioned hybrid double-cage HTS-ISM is possibly a breakthrough in solving the cooling problems of HTS rotating machines, especially for industrial applications. The experimental results of the aforementioned motor are reported. An example of an operation flowchart of the motor is also presented and discussed.

  3. Relationships between levels of motor coordination, attention and physical activity in children: The mediation model

    Directory of Open Access Journals (Sweden)

    Jakub Kokštejn

    2012-12-01

    Full Text Available BACKGROUND: Current findings suggest that physical activity of children with developmental difficulties may be limited by low level of motor coordination. Motor difficulties are often connected with children suffering from attention deficit disorder. OBJECTIVE: The aim of the study was to find out the level of physical activity (PA in older school-age children with motor difficulties (MD in comparison with children without MD and to reveal possible mediate impact on attention between the level of motor skills and PA in children of this age. METHODS: Participants were divided into two groups: 15 children with MD (age 13.7 ± 1.6 years and 27 children without MD (age 13.3 ± 1.4 years. Motor functions were assessed by means of test battery MABC-2, weekly physical activity by means of Actigraph accelerometer and attention by both d2 and numeric square tests. To estimate the mediation of the attention level we have used Baron's & Kenny's (1986 analysis. RESULTS: In most of the indicators of PA, children with MD reached lower value than those without MD. The differences of statistical significance were found in the number of steps per week and weekdays (d = 0.50 and 0.64 respectively and in PA of a very high intensity (d =2 .00 in boys with and without MD. In girls with MD we have found out significantly less time spent in vigorous intensity PA (d = 0.86. The study results support the hypothesis of developmental motor deficits to be a risk factor for PA in older school-age children. Significant mediation effect of concentration of attention in the relationship between the level of motor skills and PA was observed in three cases - in the relationship between gross motor skills on the one hand, and energy expenditure per week and weekdays, and vigorous intensity PA per week on the other. The amount of mediation effect of attention concentration ranged between 12-22%. CONCLUSION: The study has indicated that children's participation in PA can be

  4. The algebra of observables in Gaußian normal spacetime coordinates

    Energy Technology Data Exchange (ETDEWEB)

    Bodendorfer, Norbert [Faculty of Physics, University of Warsaw,Pasteura 5, 02-093, Warsaw (Poland); Duch, Paweł [Institute of Physics, Jagiellonian University,Łojasiewicza 11, 30-348 Kraków (Poland); Lewandowski, Jerzy; Świeżewski, Jędrzej [Faculty of Physics, University of Warsaw,Pasteura 5, 02-093, Warsaw (Poland)

    2016-01-11

    We discuss the canonical structure of a spacetime version of the radial gauge, i.e. Gaußian normal spacetime coordinates. While it was found for the spatial version of the radial gauge that a “local” algebra of observables can be constructed, it turns out that this is not possible for the spacetime version. The technical reason for this observation is that the new gauge condition needed to upgrade the spatial to a spacetime radial gauge does not Poisson-commute with the previous gauge conditions. It follows that the involved Dirac bracket is inherently non-local in the sense that no complete set of observables can be found which is constructed locally and at the same time has local Dirac brackets. A locally constructed observable here is defined as a finite polynomial of the canonical variables at a given physical point specified by the Gaußian normal spacetime coordinates.

  5. Increase in impaired motor coordination in six-year-old German children between 1990 and 2007

    NARCIS (Netherlands)

    Seelaender, J.; Fidler, V.; Hadders-Algra, M.

    Aim To evaluate changes in prevalence of impaired motor coordination among 6-year-olds of a geographically defined area in Germany between the years 1990 and 2007. Methods Data from the obligatory school entrance examinations in the German state of North Rhine Westphalia between the years 1990 and

  6. Effect of α{sub 7} nicotinic acetylcholine receptor agonists and antagonists on motor function in mice

    Energy Technology Data Exchange (ETDEWEB)

    Welch, Kevin D., E-mail: kevin.welch@ars.usda.gov [USDA/ARS Poisonous Plant Research Laboratory, 1150 E. 1400N., Logan, UT 84341 (United States); Pfister, James A. [USDA/ARS Poisonous Plant Research Laboratory, 1150 E. 1400N., Logan, UT 84341 (United States); Lima, Flavia G. [Federal University of Goías, School of Veterinary Medicine, Goiânia, Goías (Brazil); Green, Benedict T.; Gardner, Dale R. [USDA/ARS Poisonous Plant Research Laboratory, 1150 E. 1400N., Logan, UT 84341 (United States)

    2013-02-01

    Nicotinic acetylcholine receptors (nAChRs) are ligand-gated cation channels found throughout the body, and serve to mediate diverse physiological functions. Muscle-type nAChRs located in the motor endplate region of muscle fibers play an integral role in muscle contraction and thus motor function. The toxicity and teratogenicity of many plants (which results in millions of dollars in losses annually to the livestock industry) are due to various toxins that bind to nAChRs including deltaline and methyllycaconitine (MLA) from larkspur (Delphinium) species, and nicotine and anabasine from tobacco (Nicotiana) species. The primary result of the actions of these alkaloids at nAChRs is neuromuscular paralysis and respiratory failure. The objective of this study was to further characterize the motor coordination deficiencies that occur upon exposure to a non-lethal dose of nAChR antagonists MLA and deltaline as well as nAChR agonists nicotine and anabasine. We evaluated the effect of nAChR agonists and antagonists on the motor function and coordination in mice using a balance beam, grip strength meter, rotarod, open field analysis and tremor monitor. These analyses demonstrated that within seconds after treatment the mice had significant loss of motor function and coordination that lasted up to 1 min, followed by a short period of quiescence. Recovery to normal muscle coordination was rapid, typically within approximately 10 min post-dosing. However, mice treated with the nAChR agonist nicotine and anabasine required a slightly longer time to recover some aspects of normal muscle function in comparison to mice treated with the nAChR antagonist MLA or deltaline. -- Highlights: ► Mice treated with nAChR agonists and antagonists have a loss in motor function. ► These deficits are temporary as near normal motor function returns within 10 min. ► There are compound-specific differences in the effects on motor function.

  7. The Percentage of Body Fat in Children and the Level of their Motor Skills.

    Science.gov (United States)

    Prskalo, Ivan; Badrić, Marko; Kunješić, Mateja

    2015-07-01

    The aim of this study was to determine the prevalence of overweight and obesity among primary education pupils and to identify differences in motor skills between normal weight, excessive and obese pupils. Partial aim was to determine differences in motor status of girls and boys and their anthropometric characteristics (Body Mass Index, body fat percentage). The study was conducted in two primary schools in Zagreb, Ivan Goran Kovačić and Davorin Trstenjak. Total of 333 pupils, aged 7-11, were measured (178 boys and 155 girls). Four anthropometric and seven motor variables were used to analyze differences in motor abilities of children. Children were divided into three groups within gender based on their body fat measures. We established a statistically significant difference in motor abilities between groups of subjects in three subsamples (1st-2nd class girls and 3rd-4th boys and girls). Children with normal weight have better results in explosive strength, coordination, static strength of arm and shoulder than children who are overweight and obese. The differences are not observed in motor variables where body weight is not a requisite for efficient execution of movement. Differences in motor skills by gender showed that boys are better in coordination, speed of the simple movements, explosive and repetitive strength, and girls are better in flexibility. The conclusion of this study confirmed the existence of differences in the development of motor skills in children with normal body weight compared to children who are overweight or obese. These facts prove that excessive body weight has negative repercussions on motor performance.

  8. Follow-up study of children with cerebral coordination disturbance (CCD, Vojta).

    Science.gov (United States)

    Imamura, S; Sakuma, K; Takahashi, T

    1983-01-01

    713 children (from newborn to 12-month-old) with delayed motor development were carefully examined and classified into normal, very light cerebral coordination disturbance (CCD, Vojta), light CCD, moderate CCD, severe CCD, suspected cerebral palsy (CP) and other diseases at their first visit, and were followed up carefully. Finally, 89.0% of very light CCD, 71.4% of light CCD, 56.0% of moderate CCD and 30.0% of severe CCD developed into normal. 59.5% of moderate CCD and 45.5% of severe CCD among children who were given Vojta's physiotherapy developed into normal. The classification of cases with delayed motor development into very light, light, moderate and severe CCD based on the extent of abnormality in their postural reflexes is useful and well correlated with their prognosis. Treatment by Vojta's method seems to be efficient and helpful for young children with delayed motor development.

  9. Motor coordination, working memory, and academic achievement in a normative adolescent sample: testing a mediation model

    NARCIS (Netherlands)

    Rigoli, D; Piek, J.P.; Kane, R; Oosterlaan, J.

    2012-01-01

    The aim of the present study was to examine whether the relationship between motor coordination and academic achievement is mediated by working memory (WM) in a normative adolescent sample. Participants included 93 adolescents aged 12-16. The Movement Assessment Battery for Children-2 provided three

  10. Motor imagery training for children with developmental coordination disorder - study protocol for a randomized controlled trial

    NARCIS (Netherlands)

    Adams, I.L.; Steenbergen, B.; Lust, J.M.; Smits-Engelsman, B.C.

    2016-01-01

    BACKGROUND: Previous studies have shown that the predictive control of movements is impaired in children with Developmental Coordination Disorder (DCD), most likely due to a deficit in the internal modeling of movements. Motor imagery paradigms have been used to test this internal modeling deficit.

  11. Motor imagery training for children with developmental coordination disorder: Study protocol for a randomized controlled trial

    NARCIS (Netherlands)

    Adams, I.L.J.; Steenbergen, B.; Lust, J.M.; Smits-Engelsman, B.C.M.

    2016-01-01

    Background: Previous studies have shown that the predictive control of movements is impaired in children with Developmental Coordination Disorder (DCD), most likely due to a deficit in the internal modeling of movements. Motor imagery paradigms have been used to test this internal modeling deficit.

  12. What is the evidence of impaired motor skills and motor control among children with attention deficit hyperactivity disorder (ADHD)? Systematic review of the literature.

    Science.gov (United States)

    Kaiser, M-L; Schoemaker, M M; Albaret, J-M; Geuze, R H

    2014-11-06

    This article presents a review of the studies that have analysed the motor skills of ADHD children without medication and the influence of medication on their motor skills. The following two questions guided the study: What is the evidence of impairment of motor skills and aspects of motor control among children with ADHD aged between 6 and 16 years? What are the effects of ADHD medication on motor skills and motor control? The following keywords were introduced in the main databases: attention disorder and/or ADHD, motor skills and/or handwriting, children, medication. Of the 45 articles retrieved, 30 described motor skills of children with ADHD and 15 articles analysed the influence of ADHD medication on motor skills and motor control. More than half of the children with ADHD have difficulties with gross and fine motor skills. The children with ADHD inattentive subtype seem to present more impairment of fine motor skills, slow reaction time, and online motor control during complex tasks. The proportion of children with ADHD who improved their motor skills to the normal range by using medication varied from 28% to 67% between studies. The children who still show motor deficit while on medication might meet the diagnostic criteria of developmental coordination disorder (DCD). It is important to assess motor skills among children with ADHD because of the risk of reduced participation in activities of daily living that require motor coordination and attention. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Dynamic Shift Coordinated Control Based on Motor Active Speed Synchronization with the New Hybrid System

    Directory of Open Access Journals (Sweden)

    Ting Yan

    2017-01-01

    Full Text Available Considering the inherent disadvantages that severely affect driving comfortability during the shift process in HEVs, a dynamic shift coordinated control based on motor active speed synchronization is proposed to improve shift quality by reduction of shift vibration. The whole control scheme is comprised of three phases, preparatory phase, speed regulation phase, and synchronization phase, which are implemented consecutively in order. The key to inhibiting impact and jerk depends on the speed regulation phase, where motor active speed synchronization is utilized to reach the minimum speed difference between the two ends of synchronizer. A new hybrid system with superior performances is applied to present the validity of the adopted control algorithm during upshift or downshift, which can represent planetary gear system and conventional AMT shift procedure, respectively. Bench test, simulation, and road test results show that, compared with other methods, the proposed dynamic coordinated control can achieve shifting control in real time to effectively improve gear-shift comfort and shorten power interruption transients, with robustness in both conventional AMT and planetary gear train.

  14. Interlimb coordination and academic performance in elementary school children.

    Science.gov (United States)

    da Silva Pacheco, Sheila Cristina; Gabbard, Carl; Ries, Lilian Gerdi Kittel; Bobbio, Tatiana Godoy

    2016-10-01

    The specific mechanisms linking motor ability and cognitive performance, especially academic achievement, are still unclear. Whereas the literature provides an abundance of information on fine and visual-motor skill and cognitive attributes, much less has been reported on gross motor ability. This study examined interlimb coordination and its relationship to academic performance in children aged 8-11 years. Motor and academic skills were examined in 100 Brazilian children using the Bruininks-Oseretsky Test of Motor Proficiency and the Academic Performance Test. Participants were grouped into low (75%) academic achievers. There was a significant difference between groups for Total Motor Composite (P academic performance and Body Coordination. Of the subtests of Body Coordination (Bilateral Coordination and Balance), Bilateral Coordination accounted for the highest impact on academic performance. Of interest here, that subtest consists primarily of gross motor tasks involving interlimb coordination. Overall, there was a positive relationship between motor behavior, in particular activities involving interlimb coordination, and academic performance. Application of these findings in the area of early assessment may be useful in the identification of later academic problems. © 2016 Japan Pediatric Society.

  15. Feedforward motor control in developmental dyslexia and developmental coordination disorder: Does comorbidity matter?

    Science.gov (United States)

    Cignetti, Fabien; Vaugoyeau, Marianne; Fontan, Aurelie; Jover, Marianne; Livet, Marie-Odile; Hugonenq, Catherine; Audic, Frédérique; Chabrol, Brigitte; Assaiante, Christine

    2018-05-01

    Feedforward and online controls are two facets of predictive motor control from internal models, which is suspected to be impaired in learning disorders. We examined whether the feedforward component is affected in children (8-12 years) with developmental dyslexia (DD) and/or with developmental coordination disorder (DCD) compared to typically developing (TD) children. Children underwent a bimanual unloading paradigm during which a load supported to one arm, the postural arm, was either unexpectedly unloaded by a computer or voluntary unloaded by the subject with the other arm. All children showed a better stabilization (lower flexion) of the postural arm and an earlier inhibition of the arm flexors during voluntary unloading, indicating anticipation of unloading. Between-group comparisons of kinematics and electromyographic activity of the postural arm revealed that the difference during voluntary unloading was between DD-DCD children and the other groups, with the former showing a delayed inhibition of the flexor muscles. Deficit of the feedforward component of motor control may particularly apply to comorbid subtypes, here the DD-DCD subtype. The development of a comprehensive framework for motor performance deficits in children with learning disorders will be achieved only by dissociating key components of motor prediction and focusing on subtypes and comorbidities. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Team-Teaching in Physical Education for Promoting Coordinative Motor Skills in Children: The More You Invest the More You Get

    Science.gov (United States)

    Bardaglio, Giulia; Marasso, Danilo; Magno, Francesca; Rabaglietti, Emanuela; Ciairano, Silvia

    2015-01-01

    Background: Standard physical education (PE) programs and the team-teaching methodology have rarely been evaluated to investigate their real efficacy in changing children's motor skills. Aims: The aims of this study are two-fold: The first aim is to evaluate the effectiveness of a PE program for improving coordinative motor skills in the team…

  17. A Group Motor Skills Program for Children with Coordination Difficulties: Effect on Fundamental Movement Skills and Physical Activity Participation.

    Science.gov (United States)

    Kane, Kyra J; Staples, Kerri L

    2016-01-01

    Children with coordination difficulties are at risk of low levels of physical activity (PA) participation. This intervention examined the effects of a multidisciplinary program that emphasized parent participation on motor skill performance and PA. Ten boys (5-7 years) completed a group program consisting of conditioning exercises and activities designed to address child-selected goals. Motor proficiency and PA participation were assessed before and after the program using the Test of Gross Motor Development (TGMD-2) and triaxial accelerometers, respectively. Rating scales captured child and parent perceptions of performance for each child's goals. TGMD-2 subtest raw scores, age equivalent and percentile scores improved, along with parent ratings of their child's performance. Six children reported skill improvements. On average, moderate to vigorous PA improved by 10 min per day although these gains were not significant. Time spent in sedentary activities was unchanged. None of the children met the Canadian PA and sedentary behaviour guidelines. The results support effectiveness of a group program to improve gross motor performance and levels of PA in children with coordination difficulties. Gains in both of these domains also have the potential to impact quality of life and reduce health risks associated with inactivity.

  18. Neuromusculoskeletal models based on the muscle synergy hypothesis for the investigation of adaptive motor control in locomotion via sensory-motor coordination.

    Science.gov (United States)

    Aoi, Shinya; Funato, Tetsuro

    2016-03-01

    Humans and animals walk adaptively in diverse situations by skillfully manipulating their complicated and redundant musculoskeletal systems. From an analysis of measured electromyographic (EMG) data, it appears that despite complicated spatiotemporal properties, muscle activation patterns can be explained by a low dimensional spatiotemporal structure. More specifically, they can be accounted for by the combination of a small number of basic activation patterns. The basic patterns and distribution weights indicate temporal and spatial structures, respectively, and the weights show the muscle sets that are activated synchronously. In addition, various locomotor behaviors have similar low dimensional structures and major differences appear in the basic patterns. These analysis results suggest that neural systems use muscle group combinations to solve motor control redundancy problems (muscle synergy hypothesis) and manipulate those basic patterns to create various locomotor functions. However, it remains unclear how the neural system controls such muscle groups and basic patterns through neuromechanical interactions in order to achieve adaptive locomotor behavior. This paper reviews simulation studies that explored adaptive motor control in locomotion via sensory-motor coordination using neuromusculoskeletal models based on the muscle synergy hypothesis. Herein, the neural mechanism in motor control related to the muscle synergy for adaptive locomotion and a potential muscle synergy analysis method including neuromusculoskeletal modeling for motor impairments and rehabilitation are discussed. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  19. Relationship between anthropometry and motor abilities at pre-school age.

    Science.gov (United States)

    De Toia, Daniela; Klein, Daniel; Weber, Sarah; Wessely, Nicolas; Koch, Benjamin; Tokarski, Walter; Dordel, Sigrid; Struder, Heiko; Graf, Christine

    2009-01-01

    Little is known to date about the relationship between poor motor abilities and overweight or obese pre-school children. Thus, this study examined the association between motor abilities and weight status in 1,228 kindergarten children (45.8% female). Anthropometric data were assessed; age 4.7 + or - 1.0 years; height 108.6 + or - 8.0 cm; weight 19.1 + or - 3.6 kg; BMI 16.1 + or - 1.5 kg/m(2). The modified Karlsruher Motor Ability Screening Test was carried out to determine the motor abilities of speed strength, muscular endurance, coordination, flexibility, and speed. Based on the German BMI reference values, 3.5% of the children were obese, 9.6% overweight, 83.4% normal weight, and 3.5% underweight. During various test tasks, below-average motor abilities were discovered in 44.0-47.3%. In all age groups, overweight and obese children did not differ from their normal and underweight counterparts; except for underweight children which fared worse in flexibility. In contrast to former studies with first graders, overweight or obese pre-school children did not possess worse motor abilities than normal weight children. However, the high number of overweight children and motor deficits suggests that preventive measures should start at this early age. Copyright 2009 S. Karger AG, Basel.

  20. Motor-evoked potential amplitudes elicited by transcranial magnetic stimulation do not differentiate between patients and normal controls.

    Science.gov (United States)

    Grunhaus, Leon; Polak, Dana; Amiaz, Revital; Dannon, Pinhas N

    2003-12-01

    Transcranial magnetic stimulation (TMS) applied over the motor cortex depolarizes neurons and leads to motor-evoked potentials (MEP). To assess cortico-spinal excitability we compared the motor threshold (MT) and the averaged MEP amplitude generated by TMS in patients with major depression (MD) and matched controls. Nineteen patients, who where participants in a protocol comparing the antidepressant effects of rTMS with those of ECT, and thirteen age- and gender-matched normal controls were studied. MT was similar between patients and normal controls. The MEP amplitude response was significantly increased by rTMS, however, the magnitude of the response was similar in patients and normal controls. Correlations between the averaged MEP amplitude and age revealed that older subjects demonstrated significantly lower responses at all time-points. We conclude that cortico-spinal excitability is increased following rTMS, however, differences between patients and normal controls were not apparent with the paradigm used.

  1. Analysis of an intervention directed to the development of balance and gross and fine motor coordination

    Directory of Open Access Journals (Sweden)

    Letícia Carrillo Maronesi

    2015-07-01

    Full Text Available Introduction: Children’s motor skills evolve according to age and the continuing influence of intrinsic and extrinsic factors that cause variations from one child to another; this makes the course of development unique in each child. Objective: To develop an intervention for a child with delays in fine motor coordination, gross motor coordination and balance and analyze its impact on the child’s development. Methods: Pre- and post-test quasi-experimental design. The instrument used was the Motor Development Scale applied to a 4 year old child. An intervention plan was developed based on the results obtained throught the tests. The plan consists of activities designed to stimulate the aforementioned acquisitions. The implementation of the intervention plan lasted two months. The child was tested at the beginning and at the end of the intervention to determine whether there was gain in the stimulated acquisitions. The JT method was adopted for data analysis and verification of occurrence of reliable and clinically relevant positive changes. Results: The results of this study demonstrate that reliable positive changes occurred with respect to the psychomotor items that underwent stimulation. Conclusion: It is possible to infer that this intervention had a positive effect on the child’s development . Hence, this study contributes to improve the care provided to children with delayed psychomotor development, illustrating possibilities of strategies and activities. It also allows the recognition of the action of occupational therapists as one of the professionals who compose the multidisciplinary team focused on early intervention.

  2. EEG activation differences in the pre-motor cortex and supplementary motor area between normal individuals with high and low traits of autism.

    Science.gov (United States)

    Puzzo, Ignazio; Cooper, Nicholas R; Vetter, Petra; Russo, Riccardo

    2010-06-25

    The human mirror neuron system (hMNS) is believed to provide a basic mechanism for social cognition. Event-related desynchronization (ERD) in alpha (8-12Hz) and low beta band (12-20Hz) over sensori-motor cortex has been suggested to index mirror neurons' activity. We tested whether autistic traits revealed by high and low scores on the Autistic Quotient (AQ) in the normal population are linked to variations in the electroencephalogram (EEG) over motor, pre-motor cortex and supplementary motor area (SMA) during action observation. Results revealed that in the low AQ group, the pre-motor cortex and SMA were more active during hand action than static hand observation whereas in the high AQ group the same areas were active both during static and hand action observation. In fact participants with high traits of autism showed greater low beta ERD while observing the static hand than those with low traits and this low beta ERD was not significantly different when they watched hand actions. Over primary motor cortex, the classical alpha and low beta ERD during hand actions relative to static hand observation was found across all participants. These findings suggest that the observation-execution matching system works differently according to the degree of autism traits in the normal population and that this is differentiated in terms of the EEG according to scalp site and bandwidth. Copyright 2010 Elsevier B.V. All rights reserved.

  3. A Developmental Study of Static Postural Control and Superimposed Arm Movements in Normal and Slowly Developing Children.

    Science.gov (United States)

    Fisher, Janet M.

    Selected electromyographic parameters underlying static postural control in 4, 6, and 8 year old normally and slowly developing children during performance of selected arm movements were studied. Developmental delays in balance control were assessed by the Cashin Test of Motor Development (1974) and/or the Williams Gross Motor Coordination Test…

  4. Consequences of comorbidity of developmental coordination disorders and learning disabilities for severity and pattern of perceptual-motor dysfunction

    NARCIS (Netherlands)

    Jongmans, MJ; Smits-Engelsman, BCM; Schoemaker, MM

    2003-01-01

    Children with developmental coordination disorder (DCD) have difficulty learning and performing age-appropriate perceptual-motor skills in the absence of diagnosable neurological disorders. Descriptive studies have shown that comorbidity of DCD exists with attention-deficit/hyperactivity disorder

  5. The Effects of Coordination and Movement Education on Pre School Children's Basic Motor Skills Improvement

    Science.gov (United States)

    Altinkök, Mustafa

    2016-01-01

    This research was conducted for the purpose of analyzing the effect of the movement education program through a 12-week-coordination on the development of basic motor movements of pre-school children. A total of 78 students of pre-school period, 38 of whom were in the experimental group and 40 of whom were in the control group, were incorporated…

  6. Motor simulation and the coordination of self and other in real-time joint action.

    Science.gov (United States)

    Novembre, Giacomo; Ticini, Luca F; Schütz-Bosbach, Simone; Keller, Peter E

    2014-08-01

    Joint actions require the integration of simultaneous self- and other-related behaviour. Here, we investigated whether this function is underpinned by motor simulation, that is the capacity to represent a perceived action in terms of the neural resources required to execute it. This was tested in a music performance experiment wherein on-line brain stimulation (double-pulse transcranial magnetic stimulation, dTMS) was employed to interfere with motor simulation. Pianists played the right-hand part of piano pieces in synchrony with a recording of the left-hand part, which had (Trained) or had not (Untrained) been practiced beforehand. Training was assumed to enhance motor simulation. The task required adaptation to tempo changes in the left-hand part that, in critical conditions, were preceded by dTMS delivered over the right primary motor cortex. Accuracy of tempo adaptation following dTMS or sham stimulations was compared across Trained and Untrained conditions. Results indicate that dTMS impaired tempo adaptation accuracy only during the perception of trained actions. The magnitude of this interference was greater in empathic individuals possessing a strong tendency to adopt others' perspectives. These findings suggest that motor simulation provides a functional resource for the temporal coordination of one's own behaviour with others in dynamic social contexts. © The Author (2013). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  7. Motor proficiency in normal children and with learning difficulty: a comparative and correlational study based on the motor proficiency test of Bruininks-Oseretsky

    Directory of Open Access Journals (Sweden)

    Nilson Roberto Moreira

    2008-06-01

    Full Text Available The aim of this investigation is to verify the difference between children with learning disabilities and children without learning disabilities through motor proficiency test of Bruininks and Ozeretsky (1978. The sample was constituted by 30 children, with 8-year average age, 15 males and 15 females, subdivided into two groups of 15 children from both sexes: children without learning disabilities attending 3rd grade and children with learning disabilities attending 2nd grade having failed a term once. All of them came from a middle class background, according to Grafar scale (adapted by Fonseca, 1991. All children presenting any other disabilities were excluded from the sample. Intelligence factor “G” was controlled by using a percentile, higher or equal to 50 (middle and high level, measured by Raven’s (1974 progressive combinations test. In motor proficiency, children with learning disabilities showed significant differences when compared with normal children of the same age, in all components of global, composed and fine motricity. The tests administered showed a strong correlation between the variables of the motor proficiency components. The results lead to the conclusion that there were significant differences in motor proficiency between normal children and children with learning disabilities, who showed specific motor difficulties evincing a more vulnerable motor profile and not the presence of neurological dysfunction signs.

  8. Effects of two distinct group motor skill interventions in psychological and motor skills of children with Developmental Coordination Disorder: A pilot study.

    Science.gov (United States)

    Caçola, Priscila; Romero, Michael; Ibana, Melvin; Chuang, Jennifer

    2016-01-01

    Children with Developmental Coordination Disorder (DCD) have an increased risk for mental health difficulties. The present pilot study aimed to determine whether distinct group intervention programs improved several psychological variables (anxiety; adequacy and predilection for physical activity; participation, preferences, and enjoyment for activities) and motor skills from the perspective of a child with DCD as well as parental perceptions of motor skills, rate of function, and strengths and difficulties. Eleven children participated in Program A and thirteen in Program B. Both involved 10 sessions of 1 h each. Program A focused on task-oriented activities in a large group involving motor skill training and collaboration and cooperation among children, while Program B was composed of three groups with a direct goal-oriented approach for training of skills chosen by the children. Results indicated that children improved motor skills after both programs, but showed distinct results in regards to other variables - after Program A, children showed higher anxiety and lower levels of enjoyment, even though parents detected an improvement in rate of function and a decrease in peer problems. With Program B, children decreased anxiety levels, and parents noted a higher control of movement of their children. Regardless of the group approach, children were able to improve motor skills. However, it is possible that the differences between groups may have influenced parents' perception of their children's motor and psychological skills, as well as children's perception of anxiety. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Reduced cortico-motor facilitation in a normal sample with high traits of autism.

    Science.gov (United States)

    Puzzo, Ignazio; Cooper, Nicholas R; Vetter, Petra; Russo, Riccardo; Fitzgerald, Paul B

    2009-12-25

    Recent research in social neuroscience proposes a link between mirror neuron system (MNS) and social cognition. The MNS has been proposed to be the neural mechanism underlying action recognition and intention understanding and more broadly social cognition. Pre-motor MNS has been suggested to modulate the motor cortex during action observation. This modulation results in an enhanced cortico-motor excitability reflected in increased motor evoked potentials (MEPs) at the muscle of interest during action observation. Anomalous MNS activity has been reported in the autistic population whose social skills are notably impaired. It is still an open question whether traits of autism in the normal population are linked to the MNS functioning. We measured TMS-induced MEPs in normal individuals with high and low traits of autism as measured by the autistic quotient (AQ), while observing videos of hand or mouth actions, static images of a hand or mouth or a blank screen. No differences were observed between the two while they observed a blank screen. However participants with low traits of autism showed significantly greater MEP amplitudes during observation of hand/mouth actions relative to static hand/mouth stimuli. In contrast, participants with high traits of autism did not show such a MEP amplitude difference between observation of actions and static stimuli. These results are discussed with reference to MNS functioning.

  10. The Effect of Coordinated Teaching Method Practices on Some Motor Skills of 6-Year-Old Children

    Science.gov (United States)

    Altinkok, Mustafa

    2017-01-01

    Purpose: This study was designed to examine the effects of Coordinated Teaching Method activities applied for 10 weeks on 6-year-old children, and to examine the effects of these activities on the development of some motor skills in children. Research Methods: The "Experimental Research Model with Pre-test and Post-test Control Group"…

  11. Evaluar la Coordinación Motriz Global en Educación Secundaria: El Test Motor SportComp. [Motor co-ordination assessment in Secondary Education: The SportComp Test].

    Directory of Open Access Journals (Sweden)

    Luis Miguel Ruiz-Perez

    2017-07-01

    coordination of adolescents. There are currently no valid tools to assess motor coordination in physical education classes useful for teachers. Many instruments are very expensive, time consuming and difficult to apply in P.E. contexts. The SportComp test was developed based in a review of motor tests for children 12 to 17 years old, Content validity was evaluated by experts and motor tasks selected was applied to 5732 students of this age range. Principal components analysis yielded one component relating to gross motor function. Findings suggested satisfactory criterial validity with the MABC-2 Test and test-retest reliability (ICC 0,91 [95% CI 0,88-0,94]. Psychometric properties of this test were good and its possibilities to be applied in P.E. context high cause its low cost, low time consuming, norms and its possibilities to detect students with low motor coordination. This motor test has the potential to aid P.E. teachers in their assessment of student’s motor coordination and therefore contribute to improved P.E. programs.

  12. Pressure-flow characteristics of normal and disordered esophageal motor patterns.

    Science.gov (United States)

    Singendonk, Maartje M J; Kritas, Stamatiki; Cock, Charles; Ferris, Lara F; McCall, Lisa; Rommel, Nathalie; van Wijk, Michiel P; Benninga, Marc A; Moore, David; Omari, Taher I

    2015-03-01

    To perform pressure-flow analysis (PFA) in a cohort of pediatric patients who were referred for diagnostic manometric investigation. PFA was performed using purpose designed Matlab-based software. The pressure-flow index (PFI), a composite measure of bolus pressurization relative to flow and the impedance ratio, a measure of the extent of bolus clearance failure were calculated. Tracings of 76 pediatric patients (32 males; 9.1 ± 0.7 years) and 25 healthy adult controls (7 males; 36.1 ± 2.2 years) were analyzed. Patients mostly had normal motility (50%) or a category 4 disorder and usually weak peristalsis (31.5%) according to the Chicago Classification. PFA of healthy controls defined reference ranges for PFI ≤142 and impedance ratio ≤0.49. Pediatric patients with pressure-flow (PF) characteristics within these limits had normal motility (62%), most patients with PF characteristics outside these limits also had an abnormal Chicago Classification (61%). Patients with high PFI and disordered motor patterns all had esophagogastric junction outflow obstruction. Disordered PF characteristics are associated with disordered esophageal motor patterns. By defining the degree of over-pressurization and/or extent of clearance failure, PFA may be a useful adjunct to esophageal pressure topography-based classification. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Variation in motor output and motor performance in a centrally generated motor pattern

    Science.gov (United States)

    Norris, Brian J.; Doloc-Mihu, Anca; Calabrese, Ronald L.

    2014-01-01

    Central pattern generators (CPGs) produce motor patterns that ultimately drive motor outputs. We studied how functional motor performance is achieved, specifically, whether the variation seen in motor patterns is reflected in motor performance and whether fictive motor patterns differ from those in vivo. We used the leech heartbeat system in which a bilaterally symmetrical CPG coordinates segmental heart motor neurons and two segmented heart tubes into two mutually exclusive coordination modes: rear-to-front peristaltic on one side and nearly synchronous on the other, with regular side-to-side switches. We assessed individual variability of the motor pattern and the beat pattern in vivo. To quantify the beat pattern we imaged intact adults. To quantify the phase relations between motor neurons and heart constrictions we recorded extracellularly from two heart motor neurons and movement from the corresponding heart segments in minimally dissected leeches. Variation in the motor pattern was reflected in motor performance only in the peristaltic mode, where larger intersegmental phase differences in the motor neurons resulted in larger phase differences between heart constrictions. Fictive motor patterns differed from those in vivo only in the synchronous mode, where intersegmental phase differences in vivo had a larger front-to-rear bias and were more constrained. Additionally, load-influenced constriction timing might explain the amplification of the phase differences between heart segments in the peristaltic mode and the higher variability in motor output due to body shape assumed in this soft-bodied animal. The motor pattern determines the beat pattern, peristaltic or synchronous, but heart mechanics influence the phase relations achieved. PMID:24717348

  14. Gap junctions and motor behavior

    DEFF Research Database (Denmark)

    Kiehn, Ole; Tresch, Matthew C.

    2002-01-01

    The production of any motor behavior requires coordinated activity in motor neurons and premotor networks. In vertebrates, this coordination is often assumed to take place through chemical synapses. Here we review recent data suggesting that electrical gap-junction coupling plays an important role...... in coordinating and generating motor outputs in embryonic and early postnatal life. Considering the recent demonstration of a prevalent expression of gap-junction proteins and gap-junction structures in the adult mammalian spinal cord, we suggest that neuronal gap-junction coupling might also contribute...... to the production of motor behavior in adult mammals....

  15. Motor coordination uses external spatial coordinates independent of developmental vision.

    Science.gov (United States)

    Heed, Tobias; Röder, Brigitte

    2014-07-01

    The constraints that guide bimanual movement coordination are informative about the processing principles underlying movement planning in humans. For example, symmetry relative to the body midline benefits finger and hand movements independent of hand posture. This symmetry constraint has been interpreted to indicate that movement coordination is guided by a perceptual code. Although it has been assumed implicitly that the perceptual system at the heart of this constraint is vision, this relationship has not been tested. Here, congenitally blind and sighted participants made symmetrical and non-symmetrical (that is, parallel) bimanual tapping and finger oscillation movements. For both groups, symmetrical movements were executed more correctly than parallel movements, independent of anatomical constraints like finger homology and hand posture. For the blind, the reliance on external spatial factors in movement coordination stands in stark contrast to their use of an anatomical reference frame in perceptual processing. Thus, the externally coded symmetry constraint evident in bimanual coordination can develop in the absence of the visual system, suggesting that the visual system is not critical for the establishment of an external-spatial reference frame in movement coordination. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. A conveyor belt task for assessing visuo-motor coordination in the marmoset (Callithrix jacchus): effects of diazepam, chlorpromazine, pentobarbital and d-amphetamine.

    Science.gov (United States)

    D'Mello, G D; Duffy, E A; Miles, S S

    1985-01-01

    A conveyor belt task for assessing visuo-motor coordination in the marmoset is described. Animals are motivated by apple, a preferred food, under a state of minimal food deprivation. The apparatus used was designed to test animals within their home cages and not restrained in any way, thus avoiding possible confounding factors associated with restraint stress. Stable baseline levels of performance were reached by all animals in a median of 24 sessions. Performance was shown to be differentially sensitive to the effects of four psychoactive drugs. Moderate doses of diazepam, chlorpromazine and pentobarbital disrupted visuo-motor coordination in a dose-related manner. The possibility that disruption of performance observed at higher doses may have resulted from non-specific actions of these drugs such as decreases in feeding motivation were not supported by results from ancillary experiments. Changes in performance characteristic of high dose effects were similar in nature to changes observed when the degree of task difficulty was increased. Doses of d-amphetamine up to and including those reported to produce signs of stereotypy failed to influence performance. The potential of the conveyor belt task for measuring visuo-motor coordination in both primate and rodent species is discussed.

  17. A Lag in Speech Motor Coordination during Sentence Production Is Associated with Stuttering Persistence in Young Children

    Science.gov (United States)

    Usler, Evan; Smith, Anne; Weber, Christine

    2017-01-01

    Purpose: The purpose of this study was to determine if indices of speech motor coordination during the production of sentences varying in sentence length and syntactic complexity were associated with stuttering persistence versus recovery in 5- to 7-year-old children. Methods: We compared children with persistent stuttering (CWS-Per) with children…

  18. Tractography of the corticospinal tracts in infants with focal perinatal injury: comparison with normal controls and to motor development

    International Nuclear Information System (INIS)

    Roze, Elise; Harris, Polly A.; Ball, Gareth; Braga, Rodrigo M.; Allsop, Joanna M.; Counsell, Serena J.; Elorza, Leire Zubiaurre; Merchant, Nazakat; Arichi, Tomoki; Edwards, A.D.; Cowan, Frances M.; Porter, Emma; Rutherford, Mary A.

    2012-01-01

    Our aims were to (1) assess the corticospinal tracts (CSTs) in infants with focal injury and healthy term controls using probabilistic tractography and (2) to correlate the conventional magnetic resonance imaging (MRI) and tractography findings in infants with focal injury with their later motor function. We studied 20 infants with focal lesions and 23 controls using MRI and diffusion tensor imaging. Tract volume, fractional anisotropy (FA), apparent diffusion coefficient (ADC) values, axial diffusivity and radial diffusivity (RD) of the CSTs were determined. Asymmetry indices (AIs) were calculated by comparing ipsilateral to contralateral CSTs. Motor outcome was assessed using a standardized neurological examination. Conventional MRI was able to predict normal motor development (n = 9) or hemiplegia (n = 6). In children who developed a mild motor asymmetry (n = 5), conventional MRI predicted a hemiplegia in two and normal motor development in three infants. The AIs for tract volume, FA, ADC and RD showed a significant difference between controls and infants who developed a hemiplegia, and RD also showed a significant difference in AI between controls and infants who developed a mild asymmetry. Conventional MRI was able to predict subsequent normal motor development or hemiplegia following focal injury in newborn infants. Measures of RD obtained from diffusion tractography may offer additional information for predicting a subsequent asymmetry in motor function. (orig.)

  19. Moving attractive virtual agent improves interpersonal coordination stability.

    Science.gov (United States)

    Zhao, Zhong; Salesse, Robin N; Gueugnon, Mathieu; Schmidt, Richard C; Marin, Ludovic; Bardy, Benoît G

    2015-06-01

    Interpersonal motor coordination is influenced not only by biomechanical factors such as coordination pattern, oscillating frequency, and individual differences, but also by psychosocial factor such as likability and social competences. Based on the social stereotype of "what is beautiful is good", the present study aimed at investigating whether people coordinate differently with physically attractive people compared to less attractive people. 34 participants were engaged in an interpersonal coordination task with different looking (virtual) agents while performing at the same time a reaction time task. Results showed that participants had more stable motor coordination with the moving attractive than with the less attractive agent, and that the difference in motor coordination could not be interpreted by a specific attention allocation strategy. Our findings provide the evidence that physical attractiveness genuinely affects how people interact with another person, and that the temporal-spatial coordinated movement varies with the partner's psychosocial characteristics. The study broadens the perspective of exploring the effect of additional psychosocial factors on social motor coordination. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Coordenação motora fina de escolares com dislexia e transtorno do déficit de atenção e hiperatividade Fine motor coordination of students with dyslexia and attention deficit disorder with hiperactivity

    Directory of Open Access Journals (Sweden)

    Paola Matiko Martins Okuda

    2011-10-01

    Full Text Available OBJETIVOS: descrever e comparar o desempenho da coordenação motora fina em escolares com dislexia e com transtorno do déficit de atenção e hiperatividade utilizando parâmetros de desempenho motor e idade cronológica da Escala de Desenvolvimento Motor. MÉTODO: participaram 22 escolaresdo ensino fundamental, de ambos os gêneros, na faixa etária de 6 a 11 anos de idade distribuídos em: GI: 11 escolares com transtorno do déficit de atenção e hiperatividade e GII: 11 com dislexia. Como procedimento, provas de motricidade fina da Escala de Desenvolvimento Motor foram aplicadas. RESULTADOS: os resultados revelaram diferença estatisticamente significante entre a idade motora fina e a idade cronológica de GI e GII. Conforme a classificação da Escala do Desenvolvimento Motor, 90% dos escolares de GI e GII apresentaram desenvolvimento motor fino muito inferior ao esperado para a idade e 10% dos escolares com dislexia apresentam desenvolvimento normal baixo ao esperado para a idade e 10% dos escolares com transtorno do déficit de atenção e hiperatividade apresentaram desenvolvimento inferior ao esperado para a idade. CONCLUSÃO: concluímos que tanto os escolares com dislexia como os com TDAH deste estudo apresentam atrasos na coordenação motora fina, demonstrando que os participantes desta pesquisa apresentam dificuldades em atividades que exijam destreza, quadro característico do transtorno do desenvolvimento da coordenação. Estudos complementares estão sendo conduzidos pelos autores deste estudo para poder verificar e comprovar se o perfil motor fino dos escolares encontrados neste estudo se assemelham ou se diferem de acordo com o quadro apresentado pelos mesmos.PURPOSE: to describe and compare the fine motor coordination performance of students with dyslexia and with Attention Deficit and Hyperactivity Disorder. METHOD: the study included 22 elementary school students of both genders, aged from 6 to 11-year old, divided into

  1. The level of selected coordinative motor abilities of basketball players aged 16-18.

    Science.gov (United States)

    Popowczak, M; Struzik, A; Rokita, A; Pietraszewski, B

    2015-10-01

    Coordinative abilities play a very important role in sport. Unfortunately, researchers do not confine appropriate attention to this issue. Therefore, the aim of this study was an attempt at analysing results of the selected coordinative motor abilities: kinesthetic differentiation, quick reaction and spatial orientation. It was intended to find out whether the results of trials determining manifestations of the particular coordinative abilities exhibit any mutual relationships. Forasmuch as a static torque is a parameter determining the level of force components of the ability of kinaesthetic differentiation, it would like to find out whether its maximum level influences the final result. Research was carried out on 20 young basketball players with the use of a torque meter and Fusion Smart Speed System. It was noticed a lack of statistically significant relationships between the results of trials assessing manifestations of the ability of kinaesthetic differentiation, quick reaction and spatial orientation. However, it was noted statistically significant correlation between the maximum static torque and the accuracy of releasing a particular value of a static torque. The accuracy of releasing a particular value of a static torque ought to be classified as a comprehensive ability that comprises manifestations of strength abilities and kinaesthetic differentiation. Presented trials to evaluation manifestations of the selected coordinative abilities could be used by coaches during a training process. Coaches should also focus on the development of muscle strength of the upper body and upper limbs of basketball players.

  2. Goal scoring in soccer: A polar coordinate analysis of motor skills used by Lionel Messi

    Directory of Open Access Journals (Sweden)

    Marta eCastañer

    2016-05-01

    Full Text Available Soccer research has traditionally focused on technical and tactical aspects of team play, but few studies have analyzed motor skills in individual actions, such as goal scoring. The objective of this study was to investigate how Lionel Messi, one of the world’s top soccer players, uses his motor skills and laterality in individual attacking actions resulting in a goal. We analyzed 103 goals scored by Messi between over a decade in three competitions: La Liga (n = 74, Copa del Rey (n = 8, and the UEFA Champions League (n = 21. We used an ad hoc observation instrument (OSMOS-soccer player comprising 10 criteria and 50 categories; polar coordinate analysis, a powerful data reduction technique, revealed significant associations for body part and orientation, foot contact zone, turn direction, and locomotion. No significant associations were observed for pitch area or interaction with opponents. Our analysis confirms significant associations between different aspects of motor skill use by Messi immediately before scoring, namely use of lower limbs, foot contact zones, turn direction, use of wings, and orientation of body to move towards the goal. Studies of motor skills in soccer could shed light on the qualities that make certain players unique.

  3. The relationship between joint mobility and motor performance in children with and without the diagnosis of developmental coordination disorder

    NARCIS (Netherlands)

    Jelsma, Dorothee; Geuze, Reint; Klerks, M.; Niemeijer, Anuschka; Smits-Engelsman, B.C.M.

    2013-01-01

    Background: The purpose of this study was to determine whether joint mobility is associated with motor performance in children referred for Developmental Coordination Disorder (DCD-group) in contrast to a randomly selected group of children between 3-16 years of age (Random-Group). Methods: 36

  4. Genetic inactivation of mGlu5 receptor improves motor coordination in the Grm1crv4 mouse model of SCAR13 ataxia.

    Science.gov (United States)

    Bossi, Simone; Musante, Ilaria; Bonfiglio, Tommaso; Bonifacino, Tiziana; Emionite, Laura; Cerminara, Maria; Cervetto, Chiara; Marcoli, Manuela; Bonanno, Giambattista; Ravazzolo, Roberto; Pittaluga, Anna; Puliti, Aldamaria

    2018-01-01

    Deleterious mutations in the glutamate receptor metabotropic 1 gene (GRM1) cause a recessive form of cerebellar ataxia, SCAR13. GRM1 and GRM5 code for the metabotropic glutamate type 1 (mGlu1) and type 5 (mGlu5) receptors, respectively. Their different expression profiles suggest they could have distinct functional roles. In a previous study, homozygous mice lacking mGlu1 receptors (Grm1 crv4/crv4 ) and exhibiting ataxia presented cerebellar overexpression of mGlu5 receptors, that was proposed to contribute to the mouse phenotype. To test this hypothesis, we here crossed Grm1 crv4 and Grm5 ko mice to generate double mutants (Grm1 crv4/crv4 Grm5 ko/ko ) lacking both mGlu1 and mGlu5 receptors. Double mutants and control mice were analyzed for spontaneous behavior and for motor activity by rotarod and footprint analyses. In the same mice, the release of glutamate from cerebellar nerve endings (synaptosomes) elicited by 12mM KCl or by α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) was also evaluated. Motor coordination resulted improved in double mutants when compared to Grm1 crv4/crv4 mice. Furthermore, in in vitro studies, glutamate release elicited by both KCl depolarization and activation of AMPA autoreceptors resulted reduced in Grm1 crv4/crv4 mice compared to wild type mice, while it presented normal levels in double mutants. Moreover, we found that Grm1 crv4/crv4 mice showed reduced expression of GluA2/3 AMPA receptor subunits in cerebellar synaptosomes, while it resulted restored to wild type level in double mutants. To conclude, blocking of mGlu5 receptor reduced the dysregulation of glutamate transmission and improved motor coordination in the Grm1 crv4 mouse model of SCAR13, thus suggesting the possible usefulness of pharmacological therapies based on modulation of mGlu5 receptor activity for the treatment of this type of ataxia. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Can balance trampoline training promote motor coordination and balance performance in children with developmental coordination disorder?

    Science.gov (United States)

    Giagazoglou, Paraskevi; Sidiropoulou, Maria; Mitsiou, Maria; Arabatzi, Fotini; Kellis, Eleftherios

    2015-01-01

    The present study aimed to examine movement difficulties among typically developing 8- to 9-year-old elementary students in Greece and to investigate the possible effects of a balance training program to those children assessed with Developmental Coordination Disorder (DCD). The Body Coordination Test for Children (BCTC; Körperkoordinationstest fur Kinder, KTK, Kiphard & Schilling, 1974) was chosen for the purposes of this study and 20 children out of the total number of 200, exhibited motor difficulties indicating a probable DCD disorder. The 20 students diagnosed with DCD were equally separated into two groups where each individual of the experimental group was paired with an individual of the control group. The intervention group attended a 12-week balance training program while students of the second - control group followed the regular school schedule. All participants were tested prior to the start and after the end of the 12-week period by performing static balance control tasks while standing on an EPS pressure platform and structured observation of trampoline exercises while videotaping. The results indicated that after a 12-week balance training circuit including a trampoline station program, the intervention group improved both factors that were examined. In conclusion, balance training with the use of attractive equipment such as trampoline can be an effective intervention for improving functional outcomes and can be recommended as an alternative mode of physical activity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Shared and differentiated motor skill impairments in children with dyslexia and/or attention deficit disorder: From simple to complex sequential coordination.

    Directory of Open Access Journals (Sweden)

    Marie-Ève Marchand-Krynski

    Full Text Available Dyslexia and Attention deficit disorder (AD are prevalent neurodevelopmental conditions in children and adolescents. They have high comorbidity rates and have both been associated with motor difficulties. Little is known, however, about what is shared or differentiated in dyslexia and AD in terms of motor abilities. Even when motor skill problems are identified, few studies have used the same measurement tools, resulting in inconstant findings. The present study assessed increasingly complex gross motor skills in children and adolescents with dyslexia, AD, and with both Dyslexia and AD. Our results suggest normal performance on simple motor-speed tests, whereas all three groups share a common impairment on unimanual and bimanual sequential motor tasks. Children in these groups generally improve with practice to the same level as normal subjects, though they make more errors. In addition, children with AD are the most impaired on complex bimanual out-of-phase movements and with manual dexterity. These latter findings are examined in light of the Multiple Deficit Model.

  7. Motor and sensory alalia: diagnostic difficulties

    Directory of Open Access Journals (Sweden)

    M. Yu. Bobylova

    2017-01-01

    Full Text Available Alalia is a speech disorder that develops due to organic brain damage in children with normal hearing and intelligence during the first three year of life. Systemic speech underdevelopment in alalia is characterized by violations in the phonetic, phonemic, lexical, and grammatical structure. Patients with alalia can also have non-speech related impairments, including motor (impaired movement and coordination, sensory (impaired sensitivity and perception, and psychopathological disorders. There are three types of alalia: motor, sensory, and mixed. Children with motor alalia have expressive language disorders, speech praxis, poor speech fluency, impaired articulation, and other focal neurological symptoms; however, they understand speech directed to them. Patients with motor alalia are often left-handed. Regional slowing and epileptiform activity are often detected on their electroencephalogram.  Children with sensory alalia are characterized by poor speech understanding (despite normal hearing resulting in secondary underdevelopment of their own speech. These patients have problems with the analysis of sounds, including speech sounds (impaired speech gnosis, which prevents the development of association between the sound image and the object. Therefore, the child hears, but does not understand the speech directed at him/her (auditory agnosia. Differential diagnosis of alalia is challenging and may require several months of observation. It also implies the exclusion of hearing loss and mental disorders.

  8. Deafness and motor abilities level

    Directory of Open Access Journals (Sweden)

    A Zwierzchowska

    2008-09-01

    Full Text Available The audition injury hinders some motor motions and the organised coordination at the higher level and may be a cause of disturbances and disorder in some motor abilities adoption. It was assumed that deafness including its aetiology and injury mechanism may significantly influence the motor development of human being. The study aimed in checking if the deafness, as a result of various unfavourable factors, determines the motor development of children and youngsters. Consequently the dependency between qualitative features i.e.: signed motor level and aetiology, audition injury mechanism and the deafness degree was examined. The mechanism and aetiology of hearing correlated with the motor abilities displayed statistically significant dependencies in few motor trials only. Revealed correlations regarded mostly the coordination trials excluding the flexibility one. Statistically significant dependencies between the audition diminution and the motor abilities level were not found.

  9. Longitudinal motor development of "apparently normal" high-risk infants at 18 months, 3 and 5 years.

    Science.gov (United States)

    Goyen, Traci Anne; Lui, Kei

    2002-12-01

    Motor development appears to be more affected by premature birth than other developmental domains, however few studies have specifically investigated the development of gross and fine motor skills in this population. To examine longitudinal motor development in a group of "apparently normal" high-risk infants. Developmental follow-up clinic in a perinatal centre. Longitudinal observational cohort study. Fifty-eight infants born less than 29 weeks gestation and/or 1000 g and without disabilities detected at 12 months. Longitudinal gross and fine motor skills at 18 months, 3 and 5 years using the Peabody Developmental Motor Scales. The HOME scale provided information of the home environment as a stimulus for development. A large proportion (54% at 18 months, 47% at 3 years and 64% at 5 years) of children continued to have fine motor deficits from 18 months to 5 years. The proportion of infants with gross motor deficits significantly increased over this period (14%, 33% and 81%, pmotor development was positively influenced by the quality of the home environment. A large proportion of high-risk infants continued to have fine motor deficits, reflecting an underlying problem with fine motor skills. The proportion of infants with gross motor deficits significantly increased, as test demands became more challenging. In addition, the development of gross and fine motor skills appears to be influenced differently by the home environment.

  10. Copying you copying me: interpersonal motor co-ordination influences automatic imitation.

    Directory of Open Access Journals (Sweden)

    Daniel Joel Shaw

    Full Text Available Moving in a co-ordinated fashion with another individual changes our behaviour towards them; we tend to like them more, find them more attractive, and are more willing to co-operate with them. It is generally assumed that this effect on behaviour results from alterations in representations of self and others. Specifically, through neurophysiological perception-action matching mechanisms, interpersonal motor co-ordination (IMC is believed to forge a neural coupling between actor and observer, which serves to blur boundaries in conceptual self-other representations and causes positive views of the self to be projected onto others. An investigation into this potential neural mechanism is lacking, however. Moreover, the specific components of IMC that might influence this mechanism have not yet been specified. In the present study we exploited a robust behavioural phenomenon--automatic imitation--to assess the degree to which IMC influences neural action observation-execution matching mechanisms. This revealed that automatic imitation is reduced when the actions of another individual are perceived to be synchronised in time, but are spatially incongruent, with our own. We interpret our findings as evidence that IMC does indeed exert an effect on neural perception-action matching mechanisms, but this serves to promote better self-other distinction. Our findings demonstrate that further investigation is required to understand the complex relationship between neural perception-action coupling, conceptual self-other representations, and social behaviour.

  11. Promotion and co-ordination in Switzerland within the framework of the EU Motor Challenge Program - Final report; Promotion und Koordination in der Schweiz zum Motor Challenge Programm der EU - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Nipkow, J. [Arena, Zuerich (Switzerland); Tanner, R. [Semafor, Basel (Switzerland); Gloor, R. [Gloor Engineering, Sufers (Switzerland)

    2008-07-01

    The goal of the Motor Challenge Promotion project was to establish information on the European Motor Challenge Programme to users of electric motor driven systems, and to encourage them to start activities on energy efficient drives in their plants and sites. The promotion project served also as National Contact Point of the European Motor Challenge Programme in Switzerland and coordinated information transfer of national activities on drives efficiency. Dissemination of Motor Challenge information and know-how was achieved mainly by these means: Internet (www.motorchallenge.ch), electronic newsletter twice a year, articles in technical publications, presentations at events on energy efficiency and in training courses at technical universities. Communication with the EU-Motor Challenge Programme was provided by e-mail exchange and by attending conferences and workshops, e.g. EEMODS 2005 (Heidelberg), Motor Challenge Workshop 2007 (Paris). Queries and the attendance at information events showed a growing interest in efficiency of electric drives. The Swiss Motor Challenge team was involved in the preparation of the SwissEnergy implementation programme on drives efficiency. The Swiss agency for efficient energy use S.A.F.E. launched the programme named 'Topmotors' in autumn 2007. The Motor Challenge activities will pass over to Topmotors; the web site will be linked to www.topmotors.ch and a Topmotors newsletter will be launched. (author)

  12. Methodology for the motor coordination through the adapted table tennis in boys and girl with Down´s Syndrome

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Govea Macía

    2014-12-01

    Full Text Available The present research approaches the application of a pre experiment with the objective of elaborating a methodology that stimulates the development of the motor coordination, adapting the table tennis to the necessities and characteristics of the boys and girls with Downs Syndrome diagnose. To elaborate it was started from the deficiencies and contradictions found in the adapted sport for patients with Down’s Syndrome, as well as the potentialities and deficiencies in their motor coordination; there are used methods and techniques of theoretical character (analysis, synthesis, induction, deduction, hypothetical, deductive, systemic structural functional and modeling; of empiric-experimental character (observation, measurement, documental analysis, experts' approach, pre pedagogic experiment, study case; and as techniques: the survey and instruments; and of mathematical-statistical character, descriptive statistic and inferential. The use of the experts’ criterion is used to verify the theoretical validity elements of the designed methodology. The results analysis allows accepting the proposal as valid after having obtained the theoretical and practical results validation with a case study implementation.

  13. Does motor expertise facilitate amplitude differentiation of lower limb-movements in an asymmetrical bipedal coordination task?

    Science.gov (United States)

    Roelofsen, Eefje G J; Brown, Derrick D; Nijhuis-van der Sanden, Maria W G; Staal, J Bart; Meulenbroek, Ruud G J

    2018-04-30

    The motor system's natural tendency is to move the limbs over equal amplitudes, for example in walking. However, in many situations in which people must perform complex movements, a certain degree of amplitude differentiation of the limbs is required. Visual and haptic feedback have recently been shown to facilitate such independence of limb movements. However, it is unknown whether motor expertise moderates the extent to which individuals are able to differentiate the amplitudes of their limb-movements while being supported with visual and haptic feedback. To answer this question 14 pre-professional dancers were compared to 14 non-dancers on simultaneously generating a small displacement with one foot, and a larger one with the other foot, in four different feedback conditions. In two conditions, haptic guidance was offered, either in a passive or active mode. In the other two conditions, veridical and enhanced visual feedback were provided. Surprisingly, no group differences were found regarding the degree to which the visual or haptic feedback assisted the generation of the different target amplitudes of the feet (mean amplitude difference between the feet). The correlation between the displacements of the feet and the standard deviation of the continuous relative phase between the feet, reflecting the degree of independence of the feet movements, also failed to show between-group differences. Sample entropy measures, indicating the predictability of the foot movements, did show a group difference. In the haptically-assisted conditions, the dancers demonstrated more predictable coordination patterns than the non-dancers as reflected by lower sample entropy values whereas the reverse was true in the visual-feedback conditions. The results demonstrate that motor expertise does not moderate the extent to which haptic tracking facilitates the differentiation of the amplitudes of the lower limb movements in an asymmetrical bipedal coordination task. Copyright © 2018

  14. Stature and jumping height are required in female volleyball, but motor coordination is a key factor for future elite success.

    Science.gov (United States)

    Pion, Johan A; Fransen, Job; Deprez, Dieter N; Segers, Veerle I; Vaeyens, Roel; Philippaerts, Renaat M; Lenoir, Matthieu

    2015-06-01

    It was hypothesized that differences in anthropometry, physical performance, and motor coordination would be found between Belgian elite and sub-elite level female volleyball players using a retrospective analysis of test results gathered over a 5-year period. The test sample in this study consisted of 21 young female volleyball players (15.3 ± 1.5 years) who were selected to train at the Flemish Top Sports Academy for Volleyball in 2008. All players (elite, n = 13; sub-elite, n = 8) were included in the same talent development program, and the elite-level athletes were of a high to very high performance levels according to European competition level in 2013. Five multivariate analyses of variance were used. There was no significant effect of playing level on measures of anthropometry (F = 0.455, p = 0.718, (Equation is included in full-text article.)= 0.07), flexibility (F = 1.861, p = 0.188, (Equation is included in full-text article.)= 0.19), strength (F = 1.218, p = 0.355, (Equation is included in full-text article.)= 0.32); and speed and agility (F = 1.176, p = 0.350, (Equation is included in full-text article.)= 0.18). Multivariate analyses of variance revealed significant multivariate effects between playing levels for motor coordination (F = 3.470, p = 0.036, (Equation is included in full-text article.)= 0.59). A Mann-Whitney U test and a sequential discriminant analysis confirmed these results. Previous research revealed that stature and jump height are prerequisites for talent identification in female volleyball. In addition, the results show that motor coordination is an important factor in determining inclusion into the elite level in female volleyball.

  15. Overlapping Phenotypes in Autism Spectrum Disorder and Developmental Coordination Disorder: A Cross-Syndrome Comparison of Motor and Social Skills

    Science.gov (United States)

    Sumner, Emma; Leonard, Hayley C.; Hill, Elisabeth L.

    2016-01-01

    Motor and social difficulties are often found in children with an autism spectrum disorder (ASD) and with developmental coordination disorder (DCD), to varying degrees. This study investigated the extent of overlap of these problems in children aged 7-10 years who had a diagnosis of either ASD or DCD, compared to typically-developing controls.…

  16. Recent developments in esophageal motor disorders.

    Science.gov (United States)

    Beaumont, Hanneke; Boeckxstaens, Guy

    2007-07-01

    Every year more insight into the pathogenesis and treatment of esophageal motor disorders is obtained. This review highlights some interesting literature published in this area during the last year. Longitudinal and circular muscle contractions act in a well coordinated fashion to allow normal peristalsis. Techniques such as intraluminal impedance, high-resolution manometry and intraluminal ultrasound provide useful additional information on esophageal function both in the normal and abnormal situation. The dynamics of the gastroesophageal junction can be studied with a newly developed probe, and the mechanism behind transient lower esophageal sphincter relaxations is still being unravelled. New manometric criteria for nutcracker esophagus have been proposed, whereas further evidence is reported supporting an association between diabetes mellitus and cardiovascular disease and esophageal dysmotility and spasm, respectively. Finally, several long-term follow-up results of surgical myotomy and pneumodilatation have been reported. Due to the perfection of esophageal measuring techniques, our knowledge of esophageal function continues to increase. The studies reviewed here provide interesting information on the pathogenesis and treatment of several esophageal motor disorders.

  17. Core stability exercise is as effective as task-oriented motor training in improving motor proficiency in children with developmental coordination disorder: a randomized controlled pilot study.

    Science.gov (United States)

    Au, Mei K; Chan, Wai M; Lee, Lin; Chen, Tracy Mk; Chau, Rosanna Mw; Pang, Marco Yc

    2014-10-01

    To compare the effectiveness of a core stability program with a task-oriented motor training program in improving motor proficiency in children with developmental coordination disorder (DCD). Randomized controlled pilot trial. Outpatient unit in a hospital. Twenty-two children diagnosed with DCD aged 6-9 years were randomly allocated to the core stability program or the task-oriented motor program. Both groups underwent their respective face-to-face training session once per week for eight consecutive weeks. They were also instructed to carry out home exercises on a daily basis during the intervention period. Short Form of the Bruininks-Oseretsky Test of Motor Proficiency (Second Edition) and Sensory Organization Test at pre- and post-intervention. Intention-to-treat analysis revealed no significant between-group difference in the change of motor proficiency standard score (P=0.717), and composite equilibrium score derived from the Sensory Organization Test (P=0.100). Further analysis showed significant improvement in motor proficiency in both the core stability (mean change (SD)=6.3(5.4); p=0.008) and task-oriented training groups (mean change(SD)=5.1(4.0); P=0.007). The composite equilibrium score was significantly increased in the task-oriented training group (mean change (SD)=6.0(5.5); P=0.009), but not in the core stability group (mean change(SD) =0.0(9.6); P=0.812). In the task-oriented training group, compliance with the home program was positively correlated with change in motor proficiency (ρ=0.680, P=0.030) and composite equilibrium score (ρ=0.638, P=0.047). The core stability exercise program is as effective as task-oriented training in improving motor proficiency among children with DCD. © The Author(s) 2014.

  18. Age-Related Differences in Motor Coordination during Simultaneous Leg Flexion and Finger Extension: Influence of Temporal Pressure

    OpenAIRE

    Hussein, Tarek; Yiou, Eric; Larue, Jacques

    2013-01-01

    Although the effect of temporal pressure on spatio-temporal aspects of motor coordination and posture is well established in young adults, there is a clear lack of data on elderly subjects. This work examined the aging-related effects of temporal pressure on movement synchronization and dynamic stability. Sixteen young and eleven elderly subjects performed series of simultaneous rapid leg flexions in an erect posture paired with ipsilateral index-finger extensions, minimizing the difference b...

  19. A cholinergic-regulated circuit coordinates the maintenance and bi-stable states of a sensory-motor behavior during Caenorhabditis elegans male copulation.

    Directory of Open Access Journals (Sweden)

    Yishi Liu

    2011-03-01

    Full Text Available Penetration of a male copulatory organ into a suitable mate is a conserved and necessary behavioral step for most terrestrial matings; however, the detailed molecular and cellular mechanisms for this distinct social interaction have not been elucidated in any animal. During mating, the Caenorhabditis elegans male cloaca is maintained over the hermaphrodite's vulva as he attempts to insert his copulatory spicules. Rhythmic spicule thrusts cease when insertion is sensed. Circuit components consisting of sensory/motor neurons and sex muscles for these steps have been previously identified, but it was unclear how their outputs are integrated to generate a coordinated behavior pattern. Here, we show that cholinergic signaling between the cloacal sensory/motor neurons and the posterior sex muscles sustains genital contact between the sexes. Simultaneously, via gap junctions, signaling from these muscles is transmitted to the spicule muscles, thus coupling repeated spicule thrusts with vulval contact. To transit from rhythmic to sustained muscle contraction during penetration, the SPC sensory-motor neurons integrate the signal of spicule's position in the vulva with inputs from the hook and cloacal sensilla. The UNC-103 K(+ channel maintains a high excitability threshold in the circuit, so that sustained spicule muscle contraction is not stimulated by fewer inputs. We demonstrate that coordination of sensory inputs and motor outputs used to initiate, maintain, self-monitor, and complete an innate behavior is accomplished via the coupling of a few circuit components.

  20. [Binocular coordination during reading].

    Science.gov (United States)

    Bassou, L; Granié, M; Pugh, A K; Morucci, J P

    1992-01-01

    Is there an effect on binocular coordination during reading of oculomotor imbalance (heterophoria, strabismus and inadequate convergence) and of functional lateral characteristics (eye preference and perceptually privileged visual laterality)? Recordings of the binocular eye-movements of ten-year-old children show that oculomotor imbalances occur most often among children whose left visual perceptual channel is privileged, and that these subjects can present optomotor dissociation and manifest lack of motor coordination. Close binocular motor coordination is far from being the norm in reading. The faster reader displays saccades of differing spatial amplitude and the slower reader an oculomotor hyperactivity, especially during fixations. The recording of binocular movements in reading appears to be an excellent means of diagnosing difficulties related to visual laterality and to problems associated with oculomotor imbalance.

  1. Anthropometric Characteristics, Physical Fitness and Motor Coordination of 9 to 11 Year Old Children Participating in a Wide Range of Sports

    NARCIS (Netherlands)

    Opstoel, Katrijn; Pion, Johan; Elferink-Gemser, Marije; Hartman, Esther; Willemse, Bas; Philippaerts, Renaat; Visscher, Chris; Lenoir, Matthieu

    2015-01-01

    Objectives The aim of this study was to investigate to what extent 9 to 11 year old children participating in a specific sport already exhibit a specific anthropometric, physical fitness and motor coordination profile, in line with the requirements of that particular sport. In addition, the profiles

  2. SUPERVISED PHYSICAL TRAINING IMPROVES FINE MOTOR SKILLS OF 5-YEAR-OLD CHILDREN

    Directory of Open Access Journals (Sweden)

    Yugang Qi

    Full Text Available ABSTRACT Introduction: Fine motor skills are important for children not only in the activities of daily living, but also for learning activities. In the present study, the effects of supervised physical training were investigated in normal children. Objective: To evaluate the effects of supervised training by combining full-body exercise and the eye-hand coordination activities to improve fine motor skills in a group of five-year-old normal children. Methods: Fifty-two children were selected and randomized in exercise and control groups. The exercise group participated in three 30-minute training sessions per week for 24 weeks. Results: The fine motor skills and hand grip strength of the exercise group were significantly increased, while there was no significant change in the control group during the experimental period. Conclusion: The results indicate that the current exercise training program is effective and can be applied to 5-year-old normal children to improve their fine motor skills. In addition, this program has simple physical activities that are appropriate to the physical and mental level of child development. The 30-minute training session would be easily implemented in the kindergarten program. Level of Evidence I; High quality randomized trial with statistically significant difference or no statistically significant difference but narrow confidence intervals.

  3. Cerebellar influence on motor cortex plasticity: behavioral implications for Parkinson’s disease

    Directory of Open Access Journals (Sweden)

    Asha eKishore

    2014-05-01

    Full Text Available Normal motor behavior involves the creation of appropriate activity patterns across motor networks, enabling firing synchrony, synaptic integration and normal functioning of these net works. Strong topography-specific connections among the basal ganglia, cerebellum and their projections to overlapping areas in the motor cortices suggest that these networks could influence each other’s plastic responses and functions. The defective striatal signaling in Parkinson’s disease (PD could therefore lead to abnormal oscillatory activity and aberrant plasticity at multiple levels within the interlinked motor networks. Normal striatal dopaminergic signaling and cerebellar sensory processing functions influence the scaling and topographic specificity of M1 plasticity. Both these functions are abnormal in PD and appear to contribute to the abnormal M1 plasticity. Defective motor map plasticity and topographic specificity within M1 could lead to incorrect muscle synergies, which could manifest as abnormal or undesired movements, and as abnormal motor learning in PD. We propose that the loss of M1 plasticity in PD reflects a loss of co-ordination among the basal ganglia, cerebellar and cortical inputs which translates to an abnormal plasticity of motor maps within M1 and eventually to some of the motor signs of PD. The initial benefits of dopamine replacement therapy on M1 plasticity and motor signs are lost during the progressive course of disease. Levodopa-induced dyskinesias in patients with advanced PD is linked to a loss of M1 sensorimotor plasticity and the attenuation of dyskinesias by cerebellar inhibitory stimulation is associated with restoration of M1 plasticity. Complimentary interventions should target reestablishing physiological communication between the striatal and cerebellar circuits, and within striato-cerebellar loop. This may facilitate correct motor synergies and reduce abnormal movements in PD.

  4. Brain imaging study of the acute effects of Delta9-tetrahydrocannabinol (THC) on attention and motor coordination in regular users of marijuana.

    Science.gov (United States)

    Weinstein, Aviv; Brickner, Orit; Lerman, Hedva; Greemland, Mazal; Bloch, Miki; Lester, Hava; Chisin, Roland; Mechoulam, Raphael; Bar-Hamburger, Rachel; Freedman, Nanette; Even-Sapir, Einat

    2008-01-01

    Twelve regular users of marijuana underwent two positron emission tomography (PET) scans using [18F] Fluorodeoxyglucose (FDG), one while subject to the effects of 17 mg THC, the other without THC. In both sessions, a virtual reality maze task was performed during the FDG uptake period. When subject to the effects of 17 mg THC, regular marijuana smokers hit the walls more often on the virtual maze task than without THC. Compared to results without THC, 17 mg THC increased brain metabolism during task performance in areas that are associated with motor coordination and attention in the middle and medial frontal cortices and anterior cingulate, and reduced metabolism in areas that are related to visual integration of motion in the occipital lobes. These findings suggest that in regular marijuana users, the immediate effects of marijuana may impact on cognitive-motor skills and brain mechanisms that modulate coordinated movement and driving.

  5. Effect of methanol extract of Trigonella foenum-graecum L. seeds on anxiety, sedation and motor coordination.

    Science.gov (United States)

    Assad, Tahira; Khan, Rafeeq Alam

    2017-04-01

    Currently available anxiolytics cause numerous adverse effects and show craving and tolerance during long term treatment. Currently traditional medicines have been re-evaluated widely through work on various plant species. Numerous plants in traditional system show pharmacological activity with unlimited prospective for therapeutic use. Hence we planned to evaluate the effect of methanol extract of T. foenum-graecum L. seeds on anxiety, sedation and motor coordination in mice at different doses following 15 days of oral feeding. Effect on anxiety was assessed by Hole board test and Light and Dark transition models.Phenobarbitone induced sleeping time and Rota rod test were performed to assess effect on sedation and motor coordination. In Hole board test, T. foenum-graecum L. seeds decreased the number of head dips in mice at all the three doses. In Light and Dark transition model, T. foenum-graecum L. seeds increased the period spent in the light box and the number of moves among the two compartments at 100 and 200 mg/kg as compared to control animals. In phenobarbitone induced sleeping time, T. foenum-graecum L. seeds did not reveal any sedative effect. In Rota rod test, extract exhibited significant skeletal muscle relaxant effect at 200 mg/kg (at 90 min) as compared to the control animals. Results of our study shows significant antianxiety effects of T. foenum-graecum L. seeds and may also recommend improved adverse effect profile as compared to diazepam.

  6. Exploring the Link between Visual Perception, Visual-Motor Integration, and Reading in Normal Developing and Impaired Children using DTVP-2.

    Science.gov (United States)

    Bellocchi, Stéphanie; Muneaux, Mathilde; Huau, Andréa; Lévêque, Yohana; Jover, Marianne; Ducrot, Stéphanie

    2017-08-01

    Reading is known to be primarily a linguistic task. However, to successfully decode written words, children also need to develop good visual-perception skills. Furthermore, motor skills are implicated in letter recognition and reading acquisition. Three studies have been designed to determine the link between reading, visual perception, and visual-motor integration using the Developmental Test of Visual Perception version 2 (DTVP-2). Study 1 tests how visual perception and visual-motor integration in kindergarten predict reading outcomes in Grade 1, in typical developing children. Study 2 is aimed at finding out if these skills can be seen as clinical markers in dyslexic children (DD). Study 3 determines if visual-motor integration and motor-reduced visual perception can distinguish DD children according to whether they exhibit or not developmental coordination disorder (DCD). Results showed that phonological awareness and visual-motor integration predicted reading outcomes one year later. DTVP-2 demonstrated similarities and differences in visual-motor integration and motor-reduced visual perception between children with DD, DCD, and both of these deficits. DTVP-2 is a suitable tool to investigate links between visual perception, visual-motor integration and reading, and to differentiate cognitive profiles of children with developmental disabilities (i.e. DD, DCD, and comorbid children). Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  7. Analysis of activity and motor coordination in rats undergoing stereotactic surgery and implantation of a cannula into the dorsal hippocampus.

    Science.gov (United States)

    Hernández-López, F; Rodríguez-Landa, J F; Puga-Olguín, A; Germán-Ponciano, L J; Rivadeneyra-Domínguez, E; Bernal-Morales, B

    Stereotactic surgery is used to place electrodes or cannulas in the brain in order to study the function of several brain structures in preclinical research. The hippocampus has been extensively studied with this methodology due to its involvement in a wide range of neurological, cognitive, emotional, and affective disorders. However, the effects of stereotactic surgery on coordination and motor activity should be evaluated in order to determine whether this surgical procedure causes any neurological alterations that may bias the results of studies incorporating this technique. We evaluated the effects of stereotactic surgery and implantation of a cannula into the hippocampus of female Wistar rats on the motor activity, forced swim, and rotarod tests. The stage of the oestrous cycle was included in the statistical analysis. Stereotactic surgery had no impact on any of the motor activity variables assessed in the open field (squares crossed, time spent in grooming, and rearing), forced swim (turning behaviour, lateral swimming, latency to first immobility, and time spent immobile), and rotarod (latency to fall) tests, compared with intact rats. Regardless of surgical manipulation, rats in the metestrus and diestrus stages crossed a greater number of squares and displayed longer immobility times than those in the proestrus and estrus stages. Stereotactic surgery for cannula placement in the dorsal hippocampus does not affect coordination and motor activity in rats. We can therefore conclude that this procedure has no neurological complications that may interfere in the interpretation of results of studies applying this technique. Copyright © 2016 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  8. Fundamental Principles underlying Motor Reflexes

    NARCIS (Netherlands)

    K. Zhou (Kuikui)

    2017-01-01

    markdownabstractThe cerebellum has been suggested to be involved in motor control ever since the early 19th century. The motor control ranges from timing and strength of simple reflexes to multiple joint/limb coordination and complex motor sequence acquisition. The current thesis discusses the

  9. Potentiation of motor sub-networks for motor control but not working memory: Interaction of dACC and SMA revealed by resting-state directed functional connectivity

    Science.gov (United States)

    Diwadkar, Vaibhav A.; Asemi, Avisa; Burgess, Ashley; Chowdury, Asadur; Bressler, Steven L.

    2017-01-01

    The dorsal Anterior Cingulate Cortex (dACC) and the Supplementary Motor Area (SMA) are known to interact during motor coordination behavior. We previously discovered that the directional influences underlying this interaction in a visuo-motor coordination task are asymmetric, with the dACC→SMA influence being significantly greater than that in the reverse direction. To assess the specificity of this effect, here we undertook an analysis of the interaction between dACC and SMA in two distinct contexts. In addition to the motor coordination task, we also assessed these effects during a (n-back) working memory task. We applied directed functional connectivity analysis to these two task paradigms, and also to the rest condition of each paradigm, in which rest blocks were interspersed with task blocks. We report here that the previously known asymmetric interaction between dACC and SMA, with dACC→SMA dominating, was significantly larger in the motor coordination task than the memory task. Moreover the asymmetry between dACC and SMA was reversed during the rest condition of the motor coordination task, but not of the working memory task. In sum, the dACC→SMA influence was significantly greater in the motor task than the memory task condition, and the SMA→dACC influence was significantly greater in the motor rest than the memory rest condition. We interpret these results as suggesting that the potentiation of motor sub-networks during the motor rest condition supports the motor control of SMA by dACC during the active motor task condition. PMID:28278267

  10. Motor Learning as Young Gymnast's Talent Indicator.

    Science.gov (United States)

    di Cagno, Alessandra; Battaglia, Claudia; Fiorilli, Giovanni; Piazza, Marina; Giombini, Arrigo; Fagnani, Federica; Borrione, Paolo; Calcagno, Giuseppe; Pigozzi, Fabio

    2014-12-01

    Talent identification plans are designed to select young athletes with the ability to achieve future success in sports. The aim of the study was to verify the predictive value of coordination and precision in skill acquisition during motor learning, as indicators of talent. One hundred gymnasts, both cadets (aged 11.5 ± 0.5 yr.) and juniors (aged 13.3 ± 0.5 years), competing at the national level, were enrolled in the study. The assessment of motor coordination involved three tests of the validated Hirtz's battery (1985), and motor skill learning involved four technical tests, specific of rhythmic gymnastics. All the tests were correlated with ranking and performance scores reached by each gymnast in the 2011, 2012, and 2013 National Championships. Coordination tests were significantly correlated to 2013 Championships scores (p talent identification and selection procedures it is better to include the evaluation of coordination and motor learning ability.Motor learning assessment concerns performance improvement and the ability to develop it, rather than evaluating the athlete's current performance.In this manner talent identification processes should be focused on the future performance capabilities of athletes.

  11. Strength training for a child with suspected developmental coordination disorder.

    Science.gov (United States)

    Menz, Stacy M; Hatten, Kristin; Grant-Beuttler, Marybeth

    2013-01-01

    Children with developmental coordination disorder (DCD) demonstrate difficulty with feedforward motor control and use varied compensatory strategies. To examine gross motor function changes following strength training in a child with motor control difficulties. A girl aged 6 years 11 months, with apraxia and hypotonia, and demonstrating motor delays consistent with DCD. Twenty-four strength training sessions were completed using a universal exercise unit. Postintervention scores significantly improved on the Bruininks-Oseretsky test of motor proficiency, second edition, and the Canadian occupational performance measure scores and raised the developmental coordination disorder questionnaire, revised 2007, scores above the range where DCD is suspected. Nonsignificant changes in strength were observed. Improved function and significant gains in manual coordination were observed following blocked practice of isolated, simple joint movements during strength training. Improved motor skills may be because of effective use of feedforward control and improved stabilization. Strength training does not rehearse skills using momentum, explaining nonsignificant changes in locomotor or locomotion areas.

  12. Research and simulation of the decoupling transformation in AC motor vector control

    Science.gov (United States)

    He, Jiaojiao; Zhao, Zhongjie; Liu, Ken; Zhang, Yongping; Yao, Tuozhong

    2018-04-01

    Permanent magnet synchronous motor (PMSM) is a nonlinear, strong coupling, multivariable complex object, and transformation decoupling can solve the coupling problem of permanent magnet synchronous motor. This paper gives a permanent magnet synchronous motor (PMSM) mathematical model, introduces the permanent magnet synchronous motor vector control coordinate transformation in the process of modal matrix inductance matrix transform through the matrix related knowledge of different coordinates of diagonalization, which makes the coupling between the independent, realize the control of motor current and excitation the torque current coupling separation, and derived the coordinate transformation matrix, the thought to solve the coupling problem of AC motor. Finally, in the Matlab/Simulink environment, through the establishment and combination between the PMSM ontology, coordinate conversion module, built the simulation model of permanent magnet synchronous motor vector control, introduces the model of each part, and analyzed the simulation results.

  13. Evaluation of freshmen coordination abilities on practical training in gymnastics

    Directory of Open Access Journals (Sweden)

    I.A. Tereschenko

    2013-06-01

    Full Text Available Measured coordination abilities (baseline to the static and dynamic equilibrium of the body, the space-time orientation on the support and in unsupported position, proprioception sense, vestibular stability, vestibular sensitivity, coordination limbs symmetrical and asymmetrical. Coordination abilities were also measured under difficult conditions. The study involved 238 students aged 17 - 18 years. Registered a positive trend of improving performance motor tests, development of educational material. Students who specialize in difficult to coordinate sports had significantly better performance. Found that the content of the material work programs of sports and educational disciplines helps improve sensorimotor coordination tasks students. It is noted that the content of the training material is the basis for efficient formation of motor skills and motor skills development of gymnastic exercises. Recommended ways to increase sports and technical and professional skills of students.

  14. Assessment of gait in toddlers with normal motor development and in hemiplegic children with mild motor impairment: a validity study

    Directory of Open Access Journals (Sweden)

    Priscilla R. P. Figueiredo

    2013-08-01

    Full Text Available BACKGROUND: The optimization of gait performance is an important goal in the rehabilitation of children with cerebral palsy (CP who present a prognosis associated with locomotion. Gait analysis using videos captured by digital cameras requires validation. OBJECTIVE: To evaluate the validity of a method that involves the analysis of videos captured using a digital camera for quantifying the temporal parameters of gait in toddlers with normal motor development and children with CP. METHOD: Eleven toddlers with normal motor development and eight children with spastic hemiplegia who were able to walk without assistive devices were asked to walk through a space contained in the visual field of two instruments: a digital camera and a three-dimensional motion analysis system, Qualisys Pro-Reflex. The duration of the stance and swing phases of gait and of the entire gait cycle were calculated by analyzing videos captured by a digital camera and compared to those obtained by Qualisys Pro-Reflex, which is considered a highly accurate system. RESULTS: The Intraclass Correlation Coefficient (ICC demonstrated excellent agreement (ICC>0.90 between the two procedures for all measurements, except for the swing phase of the normal toddlers (ICC=0.35. The standard error of measurement was less than 0.02 seconds for all measures. CONCLUSIONS: The results reveal similarities between the two instruments, suggesting that digital cameras can be valid instruments for quantifying two temporal parameters of gait. This congruence is of clinical and scientific relevance and validates the use of digital cameras as a resource for helping the assessment and documentation of the therapeutic effects of interventions targeted at the gait of children with CP.

  15. Anthropometric characteristics, physical fitness and motor coordination of 9 to 11 year old children participating in a wide range of sports.

    Science.gov (United States)

    Opstoel, Katrijn; Pion, Johan; Elferink-Gemser, Marije; Hartman, Esther; Willemse, Bas; Philippaerts, Renaat; Visscher, Chris; Lenoir, Matthieu

    2015-01-01

    The aim of this study was to investigate to what extent 9 to 11 year old children participating in a specific sport already exhibit a specific anthropometric, physical fitness and motor coordination profile, in line with the requirements of that particular sport. In addition, the profiles in children with a different training volume were compared and possible differences in training hours per week between children from a low, moderate, and high level of physical fitness and motor coordination were investigated. Data of 620 children, 347 boys and 273 girls, who participated in the Flemish Sports Compass were used. Only the primary sport of each child was considered and six groups of sports (Ball sports, Dance, Gymnastics, Martial arts, Racquet sports and Swimming) were formed based on common characteristics. Measurements consisted of 17 tests. Independent T-tests and Mann-Whitney U-tests revealed few differences between the groups of sports and the discriminant analyses with the moderate and low active group did not show any significant results (p > .05). However, when discriminating among the high active children, a 85.2 % correct classification between six groups of sports was found (Wilks' Λ = .137 and p sport per week (2.50 ± 1.84 hours) compared to the children performing best (3.25 ± 2.60 hours) (p = .016) and the children performing above average (2.90 ± 1.96 hours) (p = .029) on physical fitness and motor coordination. The study showed that in general, children at a young age do not exhibit sport-specific characteristics, except in children with a high training volume. It is possible that on the one hand, children have not spent enough time yet in their sport to develop sport-specific qualities. On the other hand, it could be possible that they do not take individual qualities into account when choosing a sport.

  16. Can the Movement Assessment Battery for Children-Test Be the "Gold Standard" for the Motor Assessment of Children with Developmental Coordination Disorder?

    Science.gov (United States)

    Venetsanou, Fotini; Kambas, Antonis; Ellinoudis, Theodoros; Fatouros, Ioannis; Giannakidou, Dimitra; Kourtessis, Thomas

    2011-01-01

    Developmental Coordination Disorder (DCD) is an important risk factor in the development of children that can have a significant academic and social impact. This reinforces the need for its timely identification using appropriate assessment methods and accurate screening tests. The commonly used standardized motor test for the DCD identification…

  17. Atypical within- and between-hemisphere motor network functional connections in children with developmental coordination disorder and attention-deficit/hyperactivity disorder

    Directory of Open Access Journals (Sweden)

    Kevin R. McLeod

    2016-01-01

    Full Text Available Developmental coordination disorder (DCD and attention-deficit hyperactivity disorder (ADHD are highly comorbid neurodevelopmental disorders; however, the neural mechanisms of this comorbidity are poorly understood. Previous research has demonstrated that children with DCD and ADHD have altered brain region communication, particularly within the motor network. The structure and function of the motor network in a typically developing brain exhibits hemispheric dominance. It is plausible that functional deficits observed in children with DCD and ADHD are associated with neurodevelopmental alterations in within- and between-hemisphere motor network functional connection strength that disrupt this hemispheric dominance. We used resting-state functional magnetic resonance imaging to examine functional connections of the left and right primary and sensory motor (SM1 cortices in children with DCD, ADHD and DCD + ADHD, relative to typically developing children. Our findings revealed that children with DCD, ADHD and DCD + ADHD exhibit atypical within- and between-hemisphere functional connection strength between SM1 and regions of the basal ganglia, as well as the cerebellum. Our findings further support the assertion that development of atypical motor network connections represents common and distinct neural mechanisms underlying DCD and ADHD. In children with DCD and DCD + ADHD (but not ADHD, a significant correlation was observed between clinical assessment of motor function and the strength of functional connections between right SM1 and anterior cingulate cortex, supplementary motor area, and regions involved in visuospatial processing. This latter finding suggests that behavioral phenotypes associated with atypical motor network development differ between individuals with DCD and those with ADHD.

  18. Drawing from Memory: Hand-Eye Coordination at Multiple Scales

    Science.gov (United States)

    Spivey, Michael J.

    2013-01-01

    Eyes move to gather visual information for the purpose of guiding behavior. This guidance takes the form of perceptual-motor interactions on short timescales for behaviors like locomotion and hand-eye coordination. More complex behaviors require perceptual-motor interactions on longer timescales mediated by memory, such as navigation, or designing and building artifacts. In the present study, the task of sketching images of natural scenes from memory was used to examine and compare perceptual-motor interactions on shorter and longer timescales. Eye and pen trajectories were found to be coordinated in time on shorter timescales during drawing, and also on longer timescales spanning study and drawing periods. The latter type of coordination was found by developing a purely spatial analysis that yielded measures of similarity between images, eye trajectories, and pen trajectories. These results challenge the notion that coordination only unfolds on short timescales. Rather, the task of drawing from memory evokes perceptual-motor encodings of visual images that preserve coarse-grained spatial information over relatively long timescales as well. PMID:23554894

  19. Sensory-motor relationships in speech production in post-lingually deaf cochlear-implanted adults and normal-hearing seniors: Evidence from phonetic convergence and speech imitation.

    Science.gov (United States)

    Scarbel, Lucie; Beautemps, Denis; Schwartz, Jean-Luc; Sato, Marc

    2017-07-01

    Speech communication can be viewed as an interactive process involving a functional coupling between sensory and motor systems. One striking example comes from phonetic convergence, when speakers automatically tend to mimic their interlocutor's speech during communicative interaction. The goal of this study was to investigate sensory-motor linkage in speech production in postlingually deaf cochlear implanted participants and normal hearing elderly adults through phonetic convergence and imitation. To this aim, two vowel production tasks, with or without instruction to imitate an acoustic vowel, were proposed to three groups of young adults with normal hearing, elderly adults with normal hearing and post-lingually deaf cochlear-implanted patients. Measure of the deviation of each participant's f 0 from their own mean f 0 was measured to evaluate the ability to converge to each acoustic target. showed that cochlear-implanted participants have the ability to converge to an acoustic target, both intentionally and unintentionally, albeit with a lower degree than young and elderly participants with normal hearing. By providing evidence for phonetic convergence and speech imitation, these results suggest that, as in young adults, perceptuo-motor relationships are efficient in elderly adults with normal hearing and that cochlear-implanted adults recovered significant perceptuo-motor abilities following cochlear implantation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Motor Cortex and Motor Cortical Interhemispheric Communication in Walking After Stroke: The Roles of Transcranial Magnetic Stimulation and Animal Models in Our Current and Future Understanding.

    Science.gov (United States)

    Charalambous, Charalambos C; Bowden, Mark G; Adkins, DeAnna L

    2016-01-01

    Despite the plethora of human neurophysiological research, the bilateral involvement of the leg motor cortical areas and their interhemispheric interaction during both normal and impaired human walking is poorly understood. Using transcranial magnetic stimulation (TMS), we have expanded our understanding of the role upper-extremity motor cortical areas play in normal movements and how stroke alters this role, and probed the efficacy of interventions to improve post-stroke arm function. However, similar investigations of the legs have lagged behind, in part, due to the anatomical difficulty in using TMS to stimulate the leg motor cortical areas. Additionally, leg movements are predominately bilaterally controlled and require interlimb coordination that may involve both hemispheres. The sensitive, but invasive, tools used in animal models of locomotion hold great potential for increasing our understanding of the bihemispheric motor cortical control of walking. In this review, we discuss 3 themes associated with the bihemispheric motor cortical control of walking after stroke: (a) what is known about the role of the bihemispheric motor cortical control in healthy and poststroke leg movements, (b) how the neural remodeling of the contralesional hemisphere can affect walking recovery after a stroke, and (c) what is the effect of behavioral rehabilitation training of walking on the neural remodeling of the motor cortical areas bilaterally. For each theme, we discuss how rodent models can enhance the present knowledge on human walking by testing hypotheses that cannot be investigated in humans, and how these findings can then be back-translated into the neurorehabilitation of poststroke walking. © The Author(s) 2015.

  1. The Assessment of Postural Control, Reflex Integration, and Bilateral Motor Coordination of Young Handicapped Children. Final Report.

    Science.gov (United States)

    DeGangi, Georgia; Larsen, Lawrence A.

    A measurement device, Assessment of Sensorimotor Integration in Preschool Children, was developed to assess postural control, reflex integration and bilateral motor integration in developmentally delayed children (3 to 5 years old). The test was administered to 113 normal children and results were compared with data collected on 23 developmentally…

  2. DIFFERENCES IN THE MOTORIC ABILITIES OF STUDENTS DUE TO THE BODY MASS INDEX (BMI

    Directory of Open Access Journals (Sweden)

    Arben Osmani

    2014-06-01

    Full Text Available Introduction:The research has been conducted in order to establish differences in motoric abilities due to the body mass index (BMI with the tested students at the eighth grade (Barlow, & the Expert Committee, 2007. Methods: During the research 160 male students aged 14 were tested. On the base of (BMI they were divided into 3 groups (normal, overweight, and with obesity. They were tested with 6 motor tests for: explosive power, repetitive power, coordination, equilibrium, precision, and flexibility. Along with basic statistic parameters, the differences between the groups are established through: ANOVA, MANOVA and LSD-tests. Results: The obtained results are presented in 5 tables. On the base of the results, a statistically significant difference in favor of the group of normal body mass index is recorded in the following tests: standing a long jump, agility on the ground and keeping balance on one leg. Discussion: The results obtained in this research indicate that obesity and overweight cause a negative effect and result in lower performances concerning some motoric abilities. On the base of the obtained results, it is concluded that the group of students of normal body mass index achieved the best results in the motoric abilities with assessing the following: explosive power, coordination, and equilibrium. As for the motoric ability concerning: precision, repetitive power, and flexibility, there are no established statistically significant differences between the three groups. The obtained results correspond with some former researches (Milanese, et al., 2010; Zhu, Sheng, Wu, & Cairney, 2010, and some do not (De Toia, et al., 2009. References: Barlow SE et al. (2007. Pediatrics, 120, 164–92. De Toia D, Klein D, Weber S, Wessely N, Koch B, Tokarski W, Dordel S, Strüder H, Graf C (2009. European Journal of Obesity, 2(4, 221–5. Zhu YC, Sheng K, Wu SK, Cairney J (2011. Research in Developmental Disabilities, 32(2, 801–7. Milanese C

  3. Synchronous motor with soft start element formed between the motor rotor and motor output shaft to successfully synchronize loads that have high inertia and/or high torque

    Science.gov (United States)

    Umans, Stephen D; Nisley, Donald L; Melfi, Michael J

    2014-10-28

    A line-start synchronous motor has a housing, a rotor shaft, and an output shaft. A soft-start coupling portion is operatively coupled to the output shaft and the rotor shaft. The soft-start coupling portion is configurable to enable the synchronous motor to obtain synchronous operation and to drive, at least near synchronous speed during normal steady state operation of the motor, a load having characteristics sufficient to prevent obtaining normal synchronous operation of the motor when the motor is operatively connected to the load in the absence of the soft-start coupling. The synchronous motor is sufficiently rated to obtain synchronous operation and to drive, at least near synchronous speed during normal steady state operation of the motor, a load having characteristics sufficient to prevent obtaining normal synchronous operation of the motor when the motor is operatively connected to the load in the absence of the soft-start coupling.

  4. Method of normal coordinates in the formulation of a system with dissipation: The harmonic oscillator

    International Nuclear Information System (INIS)

    Mshelia, E.D.

    1994-07-01

    The method of normal coordinates of the theory of vibrations is used in decoupling the motion of n oscillators (1 ≤ n ≤4) representing intrinsic degrees of freedom coupled to collective motion in a quantum mechanical model that allows the determination of the probability for energy transfer from collective to intrinsic excitations in a dissipative system. (author). 21 refs

  5. [Statistical (Poisson) motor unit number estimation. Methodological aspects and normal results in the extensor digitorum brevis muscle of healthy subjects].

    Science.gov (United States)

    Murga Oporto, L; Menéndez-de León, C; Bauzano Poley, E; Núñez-Castaín, M J

    Among the differents techniques for motor unit number estimation (MUNE) there is the statistical one (Poisson), in which the activation of motor units is carried out by electrical stimulation and the estimation performed by means of a statistical analysis based on the Poisson s distribution. The study was undertaken in order to realize an approximation to the MUNE Poisson technique showing a coprehensible view of its methodology and also to obtain normal results in the extensor digitorum brevis muscle (EDB) from a healthy population. One hundred fourteen normal volunteers with age ranging from 10 to 88 years were studied using the MUNE software contained in a Viking IV system. The normal subjects were divided into two age groups (10 59 and 60 88 years). The EDB MUNE from all them was 184 49. Both, the MUNE and the amplitude of the compound muscle action potential (CMAP) were significantly lower in the older age group (page than CMAP amplitude ( 0.5002 and 0.4142, respectively pphisiology of the motor unit. The value of MUNE correlates better with the neuromuscular aging process than CMAP amplitude does.

  6. Coordination of hand shape.

    Science.gov (United States)

    Pesyna, Colin; Pundi, Krishna; Flanders, Martha

    2011-03-09

    The neural control of hand movement involves coordination of the sensory, motor, and memory systems. Recent studies have documented the motor coordinates for hand shape, but less is known about the corresponding patterns of somatosensory activity. To initiate this line of investigation, the present study characterized the sense of hand shape by evaluating the influence of differences in the amount of grasping or twisting force, and differences in forearm orientation. Human subjects were asked to use the left hand to report the perceived shape of the right hand. In the first experiment, six commonly grasped items were arranged on the table in front of the subject: bottle, doorknob, egg, notebook, carton, and pan. With eyes closed, subjects used the right hand to lightly touch, forcefully support, or imagine holding each object, while 15 joint angles were measured in each hand with a pair of wired gloves. The forces introduced by supporting or twisting did not influence the perceptual report of hand shape, but for most objects, the report was distorted in a consistent manner by differences in forearm orientation. Subjects appeared to adjust the intrinsic joint angles of the left hand, as well as the left wrist posture, so as to maintain the imagined object in its proper spatial orientation. In a second experiment, this result was largely replicated with unfamiliar objects. Thus, somatosensory and motor information appear to be coordinated in an object-based, spatial-coordinate system, sensitive to orientation relative to gravitational forces, but invariant to grasp forcefulness.

  7. Vibrational spectra and normal co-ordinate analysis of 2-aminopyridine and 2-amino picoline.

    Science.gov (United States)

    Jose, Sujin P; Mohan, S

    2006-05-01

    The Fourier transform infrared (FT-IR) and Raman (FT-R) spectra of 2-aminopyridine and 2-amino picoline were recorded and the observed frequencies were assigned to various modes of vibration in terms of fundamentals by assuming Cs point group symmetry. A normal co-ordinate analysis was also carried out for the proper assignment of the vibrational frequencies using simple valence force field. A complete vibrational analysis is presented here for the molecules and the results are briefly discussed.

  8. Experimental substantiation of methodic of 11-13 years old boxers’ coordination development

    Directory of Open Access Journals (Sweden)

    Yong Qiang Liu

    2015-06-01

    Full Text Available Purpose: experimental substantiation of methodic of junior boxers’ coordination training. Material: in the research 18 boxers of 11-13 year old age participated. In total, during 4 months 42 trainings were conducted. Total time of coordination load’s fulfillment at each training was 15-45 minutes. Results: dynamic of results in control tests was statistically confident in the tested parameters of movements. It proves effectiveness of usage the tasks with complex-coordination orientation, accented on impact on sensor-informational and motor systems of movements in junior boxers’ trainings. Conclusions: coordination training in boxing at initial stage shall include specialized varied means and methods, which would facilitate formation of motor condition and skills’ basis. Motor condition and skills are a reserve for further rising of coordination abilities’ level of junior sportsmen.

  9. Split-phase motor running as capacitor starts motor and as capacitor run motor

    OpenAIRE

    Yahaya Asizehi ENESI; Jacob TSADO; Mark NWOHU; Usman Abraham USMAN; Odu Ayo IMORU

    2016-01-01

    In this paper, the input parameters of a single phase split-phase induction motor is taken to investigate and to study the output performance characteristics of capacitor start and capacitor run induction motor. The value of these input parameters are used in the design characteristics of capacitor run and capacitor start motor with each motor connected to rated or standard capacitor in series with auxiliary winding or starting winding respectively for the normal operational condition. The ma...

  10. Evaluating the evidence for motor-based interventions in developmental coordination disorder: A systematic review and meta-analysis.

    Science.gov (United States)

    Smits-Engelsman, Bouwien; Vinçon, Sabine; Blank, Rainer; Quadrado, Virgínia H; Polatajko, Helene; Wilson, Peter H

    2018-03-01

    As part of the process of creating an update of the clinical practice guidelines for developmental coordination disorder (DCD) (Blank, Smits-Engelsman, Polatajko, & Wilson, 2012), a systematic review of intervention studies, published since the last guidelines statement was conducted. The aim of this study was to 1) systematically review the evidence published from January 2012 to February 2017 regarding the effectiveness of motor based interventions in individuals with DCD, 2) quantify treatment effects using a meta-analysis, 3) examine the available information on different aspects of delivery including use of group intervention, duration and frequency of therapy, and 4) identify gaps in the literature and make recommendations for future intervention research. An electronic search of 5 databases (PubMed, Embase, Pedro, Scopus and Cochrane) was conducted for studies that evaluated motor-based interventions to improve performance for individuals with DCD. Thirty studies covering 25 datasets were included, 19 of which provided outcomes on standardized measures of motor performance. The overall effect size (Cohen's d) across intervention studies was large (1.06), but the range was wide: for 11 interventions, the observed effect was large (>0.80), in eight studies moderate (>0.50), and in five it was small or negligible (video games, and small group programs. Results showed that activity-oriented and body function oriented interventions can have a positive effect on motor function and skills. However, given the varied methodological quality and the large confidence intervals of some studies, the results should be interpreted with caution. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Conservative nature of oestradiol signalling pathways in the brain lobes of octopus vulgaris involved in reproduction, learning and motor coordination.

    Science.gov (United States)

    De Lisa, E; Paolucci, M; Di Cosmo, A

    2012-02-01

    Oestradiol plays crucial roles in the mammalian brain by modulating reproductive behaviour, neural plasticity and pain perception. The cephalopod Octopus vulgaris is considered, along with its relatives, to be the most behaviourally advanced invertebrate, although the neurophysiological basis of its behaviours, including pain perception, remain largely unknown. In the present study, using a combination of molecular and imaging techniques, we found that oestradiol up-regulated O. vulgaris gonadotrophin-releasing hormone (Oct-GnRH) and O. vulgaris oestrogen receptor (Oct-ER) mRNA levels in the olfactory lobes; in turn, Oct-ER mRNA was regulated by NMDA in lobes involved in learning and motor coordination. Fluorescence resonance energy transfer analysis revealed that oestradiol binds Oct-ER causing conformational modifications and nuclear translocation consistent with the classical genomic mechanism of the oestrogen receptor. Moreover, oestradiol triggered a calcium influx and cyclic AMP response element binding protein phosphorylation via membrane receptors, providing evidence for a rapid nongenomic action of oestradiol in O. vulgaris. In the present study, we demonstrate, for the first time, the physiological role of oestradiol in the brain lobes of O. vulgaris involved in reproduction, learning and motor coordination. © 2011 The Authors. Journal of Neuroendocrinology © 2011 Blackwell Publishing Ltd.

  12. Dynamical Methods for Evaluating the Time-Dependent Unfolding of Social Coordination in Children with Autism

    Directory of Open Access Journals (Sweden)

    Paula eFitzpatrick

    2013-04-01

    Full Text Available Children with Autism Spectrum Disorder (ASD suffer from numerous impairments in social interaction that affect both their mental and bodily coordination with others. We explored here whether interpersonal motor coordination may be an important key for understanding the profound social problems of children with ASD. We employed a set of experimental techniques to evaluate not only traditional cognitive measures of social competence but also the dynamical structure of social coordination by using dynamical measures of social motor coordination and analyzing the time series records of behavior. Preliminary findings suggest that children with ASD were equivalent to typically developing children on many social performance outcome measures. However, significant relationships were found between cognitive social measures (e.g., intentionality and dynamical social motor measures. In addition, we found that more perceptually-based measures of social coordination were not associated with social motor coordination. These findings suggest that social coordination may not be a unitary construct and point to the promise of this multi-method and process-oriented approach to analyzing social coordination as an important pathway for understanding ASD-specific social deficits.

  13. Disorganization of Oligodendrocyte Development in the Layer II/III of the Sensorimotor Cortex Causes Motor Coordination Dysfunction in a Model of White Matter Injury in Neonatal Rats.

    Science.gov (United States)

    Ueda, Yoshitomo; Misumi, Sachiyo; Suzuki, Mina; Ogawa, Shino; Nishigaki, Ruriko; Ishida, Akimasa; Jung, Cha-Gyun; Hida, Hideki

    2018-01-01

    We previously established neonatal white matter injury (WMI) model rat that is made by right common carotid artery dissection at postnatal day 3, followed by 6% hypoxia for 60 min. This model has fewer oligodendrocyte progenitor cells and reduced myelin basic protein (MBP) positive areas in the sensorimotor cortex, but shows no apparent neuronal loss. However, how motor deficits are induced in this model is unclear. To elucidate the relationship between myelination disturbance and concomitant motor deficits, we first performed motor function tests (gait analysis, grip test, horizontal ladder test) and then analyzed myelination patterns in the sensorimotor cortex using transmission electron microscopy (TEM) and Contactin associated protein 1 (Caspr) staining in the neonatal WMI rats in adulthood. Behavioral tests revealed imbalanced motor coordination in this model. Motor deficit scores were higher in the neonatal WMI model, while hindlimb ladder stepping scores and forelimb grasping force were comparable to controls. Prolonged forelimb swing times and decreased hindlimb paw angles on the injured side were revealed by gait analysis. TEM revealed no change in myelinated axon number and the area g-ratio in the layer II/III of the cortex. Electromyographical durations and latencies in the gluteus maximus in response to electrical stimulation of the brain area were unchanged in the model. Caspr staining revealed fewer positive dots in layers II/III of the WMI cortex, indicating fewer and/or longer myelin sheath. These data suggest that disorganization of oligodendrocyte development in layers II/III of the sensorimotor cortex relates to imbalanced motor coordination in the neonatal WMI model rat.

  14. Anthropometric Characteristics, Physical Fitness and Motor Coordination of 9 to 11 Year Old Children Participating in a Wide Range of Sports

    Science.gov (United States)

    Elferink-Gemser, Marije; Hartman, Esther; Willemse, Bas; Philippaerts, Renaat; Visscher, Chris; Lenoir, Matthieu

    2015-01-01

    Objectives The aim of this study was to investigate to what extent 9 to 11 year old children participating in a specific sport already exhibit a specific anthropometric, physical fitness and motor coordination profile, in line with the requirements of that particular sport. In addition, the profiles in children with a different training volume were compared and possible differences in training hours per week between children from a low, moderate, and high level of physical fitness and motor coordination were investigated. Methods and Results Data of 620 children, 347 boys and 273 girls, who participated in the Flemish Sports Compass were used. Only the primary sport of each child was considered and six groups of sports (Ball sports, Dance, Gymnastics, Martial arts, Racquet sports and Swimming) were formed based on common characteristics. Measurements consisted of 17 tests. Independent T-tests and Mann-Whitney U-tests revealed few differences between the groups of sports and the discriminant analyses with the moderate and low active group did not show any significant results (p > .05). However, when discriminating among the high active children, a 85.2 % correct classification between six groups of sports was found (Wilks’ Λ = .137 and p sport per week (2.50 ± 1.84 hours) compared to the children performing best (3.25 ± 2.60 hours) (p = .016) and the children performing above average (2.90 ± 1.96 hours) (p = .029) on physical fitness and motor coordination. Discussion The study showed that in general, children at a young age do not exhibit sport-specific characteristics, except in children with a high training volume. It is possible that on the one hand, children have not spent enough time yet in their sport to develop sport-specific qualities. On the other hand, it could be possible that they do not take individual qualities into account when choosing a sport. PMID:25978313

  15. Trunk lean gait decreases multi-segmental coordination in the vertical direction.

    Science.gov (United States)

    Tokuda, Kazuki; Anan, Masaya; Sawada, Tomonori; Tanimoto, Kenji; Takeda, Takuya; Ogata, Yuta; Takahashi, Makoto; Kito, Nobuhiro; Shinkoda, Koichi

    2017-11-01

    [Purpose] The strategy of trunk lean gait to reduce external knee adduction moment (KAM) may affect multi-segmental synergy control of center of mass (COM) displacement. Uncontrolled manifold (UCM) analysis is an evaluation index to understand motor variability. The purpose of this study was to investigate how motor variability is affected by using UCM analysis on adjustment of the trunk lean angle. [Subjects and Methods] Fifteen healthy young adults walked at their preferred speed under two conditions: normal and trunk lean gait. UCM analysis was performed with respect to the COM displacement during the stance phase. The KAM data were analyzed at the points of the first KAM peak during the stance phase. [Results] The KAM during trunk lean gait was smaller than during normal gait. Despite a greater segmental configuration variance with respect to mediolateral COM displacement during trunk lean gait, the synergy index was not significantly different between the two conditions. The synergy index with respect to vertical COM displacement during trunk lean gait was smaller than that during normal gait. [Conclusion] These results suggest that trunk lean gait is effective in reducing KAM; however, it may decrease multi-segmental movement coordination of COM control in the vertical direction.

  16. Dissociating variability and effort as determinants of coordination.

    Directory of Open Access Journals (Sweden)

    Ian O'Sullivan

    2009-04-01

    Full Text Available When coordinating movements, the nervous system often has to decide how to distribute work across a number of redundant effectors. Here, we show that humans solve this problem by trying to minimize both the variability of motor output and the effort involved. In previous studies that investigated the temporal shape of movements, these two selective pressures, despite having very different theoretical implications, could not be distinguished; because noise in the motor system increases with the motor commands, minimization of effort or variability leads to very similar predictions. When multiple effectors with different noise and effort characteristics have to be combined, however, these two cost terms can be dissociated. Here, we measure the importance of variability and effort in coordination by studying how humans share force production between two fingers. To capture variability, we identified the coefficient of variation of the index and little fingers. For effort, we used the sum of squared forces and the sum of squared forces normalized by the maximum strength of each effector. These terms were then used to predict the optimal force distribution for a task in which participants had to produce a target total force of 4-16 N, by pressing onto two isometric transducers using different combinations of fingers. By comparing the predicted distribution across fingers to the actual distribution chosen by participants, we were able to estimate the relative importance of variability and effort of 1:7, with the unnormalized effort being most important. Our results indicate that the nervous system uses multi-effector redundancy to minimize both the variability of the produced output and effort, although effort costs clearly outweighed variability costs.

  17. Cognitive-motor interference during fine and gross motor tasks in children with Developmental Coordination Disorder (DCD).

    Science.gov (United States)

    Schott, Nadja; El-Rajab, Inaam; Klotzbier, Thomas

    2016-10-01

    While typically developing children produce relatively automatized postural control processes, children with DCD seem to exhibit an automatization deficit. Dual tasks with various cognitive loads seem to be an effective way to assess the automatic deficit hypothesis. The aims of the study were: (1) to examine the effect of a concurrent cognitive task on fine and gross motor tasks in children with DCD, and (2) to determine whether the effect varied with different difficulty levels of the concurrent task. We examined dual-task performance (Trail-Making-Test, Trail-Walking-Test) in 20 children with DCD and 39 typically developing children. Based on the idea of the Trail-Making-Test, participants walked along a fixed pathway, following a prescribed path, delineated by target markers of (1) increasing sequential numbers, and (2) increasing sequential numbers and letters. The motor and cognitive dual-task effects (DTE) were calculated for each task. Regardless of the cognitive task, children with DCD performed equally well in fine and gross motor tasks, and were slower in the dual task conditions than under single task-conditions, compared with children without DCD. Increased cognitive task complexity resulted in slow trail walking as well as slower trail tracing. The motor interference for the gross motor tasks was least for the simplest conditions and greatest for the complex conditions and was more pronounced in children with DCD. Cognitive interference was low irrespective of the motor task. Children with DCD show a different approach to allocation of cognitive resources, and have difficulties making motor skills automatic. The latter notion is consistent with impaired cerebellar function and the "automatization deficit hypothesis", suggesting that any deficit in the automatization process will appear if conscious monitoring of the motor skill is made more difficult by integrating another task requiring attentional resources. Copyright © 2016 Elsevier Ltd. All

  18. A new neural net approach to robot 3D perception and visuo-motor coordination

    Science.gov (United States)

    Lee, Sukhan

    1992-01-01

    A novel neural network approach to robot hand-eye coordination is presented. The approach provides a true sense of visual error servoing, redundant arm configuration control for collision avoidance, and invariant visuo-motor learning under gazing control. A 3-D perception network is introduced to represent the robot internal 3-D metric space in which visual error servoing and arm configuration control are performed. The arm kinematic network performs the bidirectional association between 3-D space arm configurations and joint angles, and enforces the legitimate arm configurations. The arm kinematic net is structured by a radial-based competitive and cooperative network with hierarchical self-organizing learning. The main goal of the present work is to demonstrate that the neural net representation of the robot 3-D perception net serves as an important intermediate functional block connecting robot eyes and arms.

  19. Functional brain correlates of motor response inhibition in children with developmental coordination disorder and attention deficit/hyperactivity disorder.

    Science.gov (United States)

    Thornton, Siobhan; Bray, Signe; Langevin, Lisa Marie; Dewey, Deborah

    2018-06-01

    Motor impairment is associated with developmental coordination disorder (DCD), and to a lesser extent with attention-deficit/hyperactivity disorder (ADHD). Previous functional imaging studies investigated children with DCD or ADHD only; however, these two disorders co-occur in up to 50% of cases, suggesting that similar neural correlates are associated with these disorders. This study compared functional brain activation in children and adolescents (age range 8-17, M = 11.73, SD = 2.88) with DCD (n = 9), ADHD (n = 20), co-occurring DCD and ADHD (n = 18) and typically developing (TD) controls (n = 20). When compared to TD controls, children with co-occurring DCD/ADHD showed decreased activation during response inhibition in primary motor and sensory cortices. These findings suggest that children with co-occurring DCD and ADHD display significant functional changes in brain activation that could interfere with inhibition of erroneous motor responses. In contrast to previous studies, significant alterations in brain activation relative to TD controls, were not found in children with isolated DCD or ADHD. These findings highlight the importance of considering co-occurring disorders when investigating brain function in children with neurodevelopmental disorders. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Daytime sleep enhances consolidation of the spatial but not motoric representation of motor sequence memory.

    Directory of Open Access Journals (Sweden)

    Geneviève Albouy

    Full Text Available Motor sequence learning is known to rely on more than a single process. As the skill develops with practice, two different representations of the sequence are formed: a goal representation built under spatial allocentric coordinates and a movement representation mediated through egocentric motor coordinates. This study aimed to explore the influence of daytime sleep (nap on consolidation of these two representations. Through the manipulation of an explicit finger sequence learning task and a transfer protocol, we show that both allocentric (spatial and egocentric (motor representations of the sequence can be isolated after initial training. Our results also demonstrate that nap favors the emergence of offline gains in performance for the allocentric, but not the egocentric representation, even after accounting for fatigue effects. Furthermore, sleep-dependent gains in performance observed for the allocentric representation are correlated with spindle density during non-rapid eye movement (NREM sleep of the post-training nap. In contrast, performance on the egocentric representation is only maintained, but not improved, regardless of the sleep/wake condition. These results suggest that motor sequence memory acquisition and consolidation involve distinct mechanisms that rely on sleep (and specifically, spindle or simple passage of time, depending respectively on whether the sequence is performed under allocentric or egocentric coordinates.

  1. Strategies to Accommodate Children with Developmental Coordination Disorder in Physical Education Lessons

    Science.gov (United States)

    Caçola, Priscila; Romero, Michael

    2015-01-01

    Developmental coordination disorder (DCD) affects 2-7 percent of school-age children and is characterized by low motor proficiency associated with poor balance, coordination and handwriting skills. Because of their motor difficulties, children with DCD suffer from anxiety, low self-esteem and are often less sociable than typically developing…

  2. Bidirectional transport of organelles: unity and struggle of opposing motors.

    Science.gov (United States)

    Bryantseva, Sofiya A; Zhapparova, Olga N

    2012-01-01

    Bidirectional transport along microtubules is ensured by opposing motor proteins: cytoplasmic dynein that drives cargo to the minus-ends and various kinesins that generally move to the plus-ends of microtubules. Regulation of motor proteins that are simultaneously bound to the same organelle is required to maintain directional transport and prevent pausing of cargo pulled away by motors of opposite polarity. Debates of the recent decade have been focused on two possible mechanisms of such regulation: (i) coordination, which implies that only one type of motors is active at a given time, and (ii) tug-of-war, which assumes that both motors are active at the same time and that direction of transport depends on the outcome of motor's confrontation. The initial idea of coordination has been challenged by observations of simultaneous activity of plus- and minus-end-directed motors applied to the same cargo. Analysis of the available data indicates that coordination and tug-of-war theories rather complement than contradict each other: cargo interacts with two teams of active motors, the resulting direction and the winner team are determined by coordination complexes, but the activity of the loser team is never completely inhibited and remains at some background level. Such persisting activity might enhance the overall efficiency of transport by increasing processivity or helping to overcome the obstacles on microtubule track. © The Author(s) Journal compilation © 2012 Portland Press Limited

  3. MPORTANCE OF PHYSICAL ACTIVITY IN OBESE CHILDREN IN RELATION TO MOTOR SKILLS A SYSTEMATIC REVIEW

    Directory of Open Access Journals (Sweden)

    Ganesh Sundaram Subramanian

    2014-12-01

    Full Text Available Background: Childhood obesity has reached epidemic proportions worldwide and is associated with increased cardio vascular mortality and morbidity in adult life. In children, obesity correlates strongly with a progressive reduction in the level of physical activity and changes in food habits. Methods: This study is a qualitative research study. A secondary data collection technique was utilized and conducted through a search of articles published between 2005 and 2014 in PubMed and Google scholar databases. The objective of the present study is to provide a systemic review of the available literature and outline the factors in early life that are associated with an increased risk of obesity in children there by leading to poor gross motor skill performance with the help of Anthropometric assessment, Body composition and Motor skills proficiency. Results: Importantly recent studies have demonstrated that exercise training improves vascular endothelial function and stimulation of pressure receptors leading to increased vagal activity in obese children. The current literature highlights the importance of adding exercise programs to clinics, schools and families for the physical and psychological wellbeing of children. Conclusion: Overall findings from the present review showed that normal children with physical exercise are more superior in motor skills compared to other peers. Results of the previous studies indicated that normal children’s are more efficient in bilateral coordination in greater balancing, efficient upper limb coordination and greater strength

  4. Split-phase motor running as capacitor starts motor and as capacitor run motor

    Directory of Open Access Journals (Sweden)

    Yahaya Asizehi ENESI

    2016-07-01

    Full Text Available In this paper, the input parameters of a single phase split-phase induction motor is taken to investigate and to study the output performance characteristics of capacitor start and capacitor run induction motor. The value of these input parameters are used in the design characteristics of capacitor run and capacitor start motor with each motor connected to rated or standard capacitor in series with auxiliary winding or starting winding respectively for the normal operational condition. The magnitude of capacitor that will develop maximum torque in capacitor start motor and capacitor run motor are investigated and determined by simulation. Each of these capacitors is connected to the auxiliary winding of split-phase motor thereby transforming it into capacitor start or capacitor run motor. The starting current and starting torque of the split-phase motor (SPM, capacitor run motor (CRM and capacitor star motor (CSM are compared for their suitability in their operational performance and applications.

  5. Motor Learning as Young Gymnast’s Talent Indicator

    Directory of Open Access Journals (Sweden)

    Alessandra di Cagno

    2014-12-01

    Full Text Available Talent identification plans are designed to select young athletes with the ability to achieve future success in sports. The aim of the study was to verify the predictive value of coordination and precision in skill acquisition during motor learning, as indicators of talent. One hundred gymnasts, both cadets (aged 11.5 ± 0.5 yr. and juniors (aged 13.3 ± 0.5 years, competing at the national level, were enrolled in the study. The assessment of motor coordination involved three tests of the validated Hirtz’s battery (1985, and motor skill learning involved four technical tests, specific of rhythmic gymnastics. All the tests were correlated with ranking and performance scores reached by each gymnast in the 2011, 2012, and 2013 National Championships. Coordination tests were significantly correlated to 2013 Championships scores (p < 0.01 and ranking (p < 0.05 of elite cadet athletes. Precision, in skill acquisition test results, was positively and significantly associated with scores in 2013 (adj. R2 = 0.26, p < 0.01. Gymnasts with the best results in coordination and motor learning tests went on to achieve better competition results in three- year time.

  6. Physical fitness in children with probable developmental coordination disorder and normal body mass index

    Directory of Open Access Journals (Sweden)

    Cynthia Yukiko Hiraga

    2014-01-01

    Full Text Available DOI: http://dx.doi.org/10.5007/1980-0037.2014v16n2p182   Changes in body mass index (BMI due to various factors, such as a low level of physical activity, are often associated with poor physical fitness in children with prob-able developmental coordination disorder (pDCD. This study examined whether children with pDCD would show poorer performance in terms of physical fitness when compared with their typically developing (TD peers. Thirty two children with pDCD and normal BMI and other 32 children with TD and normal BMI, matched by gender, age and BMI, performed the sit and reach, standing long jump, curl-up, modified pull-up and 9-min run tests. The children in the pDCD group showed lower explosive power, muscle strength and endurance, and cardiorespiratory fitness than children in the TD group. Overall, children with pDCD had lower levels of physical fitness, even with normal BMI.

  7. Motor-operated valve (MOV) actuator motor and gearbox testing

    International Nuclear Information System (INIS)

    DeWall, K.; Watkins, J.C.; Bramwell, D.

    1997-07-01

    Researchers at the Idaho National Engineering and Environmental Laboratory tested the performance of electric motors and actuator gearboxes typical of the equipment installed on motor-operated valves used in nuclear power plants. Using a test stand that simulates valve closure loads against flow and pressure, the authors tested five electric motors (four ac and one dc) and three gearboxes at conditions a motor might experience in a power plant, including such off-normal conditions as operation at high temperature and reduced voltage. They also monitored the efficiency of the actuator gearbox. All five motors operated at or above their rated starting torque during tests at normal voltages and temperatures. For all five motors, actual torque losses due to voltage degradation were greater than the losses calculated by methods typically used for predicting motor torque at degraded voltage conditions. For the dc motor the actual torque losses due to elevated operating temperatures were greater than the losses calculated by the typical predictive method. The actual efficiencies of the actuator gearboxes were generally lower than the running efficiencies published by the manufacturer and were generally nearer the published pull-out efficiencies. Operation of the gearbox at elevated temperature did not affect the operating efficiency

  8. Compensatory molecular and functional mechanisms in nervous system of the Grm1(crv4) mouse lacking the mGlu1 receptor: a model for motor coordination deficits.

    Science.gov (United States)

    Rossi, Pia Irene Anna; Musante, Ilaria; Summa, Maria; Pittaluga, Anna; Emionite, Laura; Ikehata, Masami; Rastaldi, Maria Pia; Ravazzolo, Roberto; Puliti, Aldamaria

    2013-09-01

    The metabotropic glutamate type 1 (mGlu1) and type 5 (mGlu5) receptors, the only members of group I mGlu receptors, are implicated in synaptic plasticity and mechanisms of feedback control of glutamate release. They exhibit nearly complementary distributions throughout the central nervous system, well evident in the cerebellum, where mGlu1 receptor is most intensely expressed while mGlu5 receptor is not. Despite their different distribution, they show a similar subcellular localization and use common transducing pathways. We recently described the Grm1(crv4) mouse with motor coordination deficits and renal anomalies caused by a spontaneous mutation inactivating the mGlu1 receptor. To define the neuropathological mechanisms in these mice, we evaluated expression and function of the mGlu5 receptor in cerebral and cerebellar cortices. Western blot and immunofluorescence analyses showed mGlu5 receptor overexpression. Quantitative reverse transcriptase-polymerase chain reaction results indicated that the up-regulation is already evident at RNA level. Functional studies confirmed an enhanced glutamate release from cortical cerebral and cerebellar synaptosomes when compared with wild-type that is abolished by the mGlu5 receptor-specific inhibitor, 2-methyl-6-(phenylethynyl) pyridine hydrochloride (MPEP). Finally, acute MPEP treatment of Grm1(crv4/crv4) mice induced an evident although incomplete improvement of motor coordination, suggesting that mGlu5 receptors enhanced activity worsens, instead of improving, the motor-coordination defects in the Grm1(crv4/crv4) mice.

  9. Regional variation in interhemispheric coordination of intrinsic hemodynamic fluctuations.

    Science.gov (United States)

    Stark, David E; Margulies, Daniel S; Shehzad, Zarrar E; Reiss, Philip; Kelly, A M Clare; Uddin, Lucina Q; Gee, Dylan G; Roy, Amy K; Banich, Marie T; Castellanos, F Xavier; Milham, Michael P

    2008-12-17

    Electrophysiological studies have long demonstrated a high degree of correlated activity between the left and right hemispheres, however little is known about regional variation in this interhemispheric coordination. Whereas cognitive models and neuroanatomical evidence suggest differences in coordination across primary sensory-motor cortices versus higher-order association areas, these have not been characterized. Here, we used resting-state functional magnetic resonance imaging data acquired from 62 healthy volunteers to examine interregional correlation in spontaneous low-frequency hemodynamic fluctuations. Using a probabilistic atlas, we correlated probability-weighted time series from 112 regions comprising the entire cerebrum. We then examined regional variation in correlated activity between homotopic regions, contrasting primary sensory-motor cortices, unimodal association areas, and heteromodal association areas. Consistent with previous studies, robustly correlated spontaneous activity was noted between all homotopic regions, which was significantly higher than that between nonhomotopic (heterotopic and intrahemispheric) regions. We further demonstrated substantial regional variation in homotopic interhemispheric correlations that was highly consistent across subjects. Specifically, there was a gradient of interhemispheric correlation, with highest correlations across primary sensory-motor cortices (0.758, SD=0.152), significantly lower correlations across unimodal association areas (0.597, SD=0.230) and still lower correlations across heteromodal association areas (0.517, SD=0.226). These results demonstrate functional differences in interhemispheric coordination related to the brain's hierarchical subdivisions. Synchrony across primary cortices may reflect networks engaged in bilateral sensory integration and motor coordination, whereas lower coordination across heteromodal association areas is consistent with functional lateralization of these regions

  10. Differential neurotoxic effects of in utero and lactational exposure to hydroxylated polychlorinated biphenyl (OH-PCB 106) on spontaneous locomotor activity and motor coordination in young adult male mice.

    Science.gov (United States)

    Haijima, Asahi; Lesmana, Ronny; Shimokawa, Noriaki; Amano, Izuki; Takatsuru, Yusuke; Koibuchi, Noriyuki

    2017-01-01

    We investigated whether in utero or lactational exposure to 4-hydroxy-2',3,3',4',5'-pentachlorobiphenyl (OH-PCB 106) affects spontaneous locomotor activity and motor coordination in young adult male mice. For in utero exposure, pregnant C57BL/6J mice received 0.05 or 0.5 mg/kg body weight of OH-PCB 106 or corn oil vehicle via gavage every second day from gestational day 10 to 18. For lactational exposure, the different groups of dams received 0.05 or 0.5 mg/kg body weight of OH-PCB 106 or corn oil vehicle via gavage every second day from postpartum day 3 to 13. At 6-7 weeks of age, the spontaneous locomotor activities of male offspring were evaluated for a 24-hr continuous session in a home cage and in an open field for 30-min. Motor coordination function on an accelerating rotarod was also measured. Mice exposed prenatally to OH-PCB 106 showed increased spontaneous locomotor activities during the dark phase in the home cage and during the first 10-min in the open field compared with control mice. Mice exposed lactationally to OH-PCB 106, however, did not show a time-dependent decrease in locomotor activity in the open field. Instead, their locomotor activity increased significantly during the second 10-min block. In addition, mice exposed lactationally to OH-PCB 106 displayed impairments in motor coordination in the rotarod test. These results suggest that perinatal exposure to OH-PCB 106 affects motor behaviors in young adult male mice. Depending on the period of exposure, OH-PCB 106 may have different effects on neurobehavioral development.

  11. Difficulty leading interpersonal coordination: Towards an embodied signature of social anxiety disorder

    Directory of Open Access Journals (Sweden)

    Manuel eVarlet

    2014-02-01

    Full Text Available Defined by a persistent fear of embarrassment or negative evaluation while engaged in social interaction or public performance, social anxiety disorder (SAD is one of the most common psychiatric syndromes. Previous research has made a considerable effort to better understand and assess this mental disorder. However, little attention has been paid to social motor behavior of patients with SAD despite its crucial importance in daily social interactions. Previous research has shown that the coordination of arm, head or postural movements of interacting people can reflect their mental states or feelings such as social connectedness and social motives, suggesting that interpersonal movement coordination may be impaired in patients suffering from SAD. The current study was specifically aimed at determining whether SAD affects the dynamics of social motor coordination. We compared the unintentional and intentional rhythmic coordination of a SAD group (19 patients paired with control participants with the rhythmic coordination of a control group (19 control pairs in an interpersonal pendulum coordination task. The results demonstrated that unintentional social motor coordination was preserved with SAD while intentional coordination was impaired. More specifically, intentional coordination became impaired when patients with SAD had to lead the coordination as indicated by poorer (i.e., more variable coordination. These differences between intentional and unintentional coordination as well as between follower and leader roles reveal an impaired coordination dynamics that is specific to SAD, and thus, opens promising research directions to better understand, assess and treat this mental disorder.

  12. Structure of Coordination Motor Abilities in Male Basketball Players at Different Levels of Competition

    Directory of Open Access Journals (Sweden)

    Jerzy Sadowski

    2015-03-01

    Full Text Available Introduction. The purpose of this investigation was to examine the structure of coordination motor abilities (CMA in male basketball players at different levels of competition. Material and methods. The study included 183 male basketball players from 10 Polish sports clubs. The examined groups consisted of seniors (n=42 aged 24.5 (± 3.3, juniors (n=37 aged 16.8 (± 0.6, cadets (n=54 aged 14.5 (± 0.1 and children (n=50 aged 13.4 (± 0.2. A battery of motor tests was administered to assess the following CMA: kinesthetic differentiation of movements, spatio-temporal orientation, reaction time, movement coupling, sense of balance, sense of rhythm and adjustment of movements. The structure of CMA under investigation was determined based on the results of Hotelling's principal component analysis in Tucker's modification, completed with Kaiser's Varimax rotation [1, 2]. Results. The CMA structure of basketball players was composed of three or four factors. Most often these included rhythm, movement differentiation, movement coupling and adjustment of movements. Less frequently the structure consisted of spatio-temporal orientation, balance and reaction time. An in-depth analysis of the CMA structure revealed that factors ranged from heterogeneous (children and cadets to homogeneous ones (juniors and seniors. The distribution of identified factors in the common variance was the smallest in children and cadets (58.9% and 62.9%, respectively and the biggest in juniors and seniors (69.3% and 68.48%, respectively.

  13. Weight status is associated with cross-sectional trajectories of motor co-ordination across childhood.

    Science.gov (United States)

    Lopes, V P; Stodden, D F; Rodrigues, L P

    2014-11-01

    Research indicates the development of motor co-ordination (MC) may be an important contributing factor to positive or negative weight trajectories across childhood. To analyse cross-sectional associations between MC and weight status in children (boys n = 3344 - girls n = 3281), aged 6-11 years and assess overweight/obese risk across different ages. Body mass index (BMI) was calculated [body mass (kg)/height (m(2))]. MC was evaluated using the Körperkoordination Test für Kinder (KTK) and a motor quotient (MQ) was calculated. MQ distribution data were split into tertiles. The effect of age, sex and MQ tertiles on BMI and MC was tested with a factorial anova. A logistic regression also was performed to calculate odd ratios (OR) for being overweight/obese at each age. Children with higher MQ demonstrated lower BMI levels (F(2,6224) = 222.09; P < 0.001). Differences in BMI among MQ tertiles became larger across age (F(10,6224) = 4.53; P < 0.001). The OR of being overweight/obese in both sexes within the lowest MQ tertile increased in each age group from 6 to 11 years. Specifically, OR increased from 2.26 to 27.77 and from 1.87 to 6.81 in boys and girls respectively. Children with low levels of MC have a higher risk of being overweight/obese and this risk increases with age. © 2013 John Wiley & Sons Ltd.

  14. Prospective associations between measures of gross and fine motor coordination in infants and objectively measured physical activity and sedentary behavior in childhood.

    Science.gov (United States)

    Sánchez, Guillermo F López; Williams, Genevieve; Aggio, Daniel; Vicinanza, Domenico; Stubbs, Brendon; Kerr, Catherine; Johnstone, James; Roberts, Justin; Smith, Lee

    2017-11-01

    One important determinant of childhood physical activity and sedentary behavior may be that of motor development in infancy. The present analyses aimed to investigate whether gross and fine motor delays in infants were associated with objective and self-reported activity in childhood. Data were from the UK Millennium Cohort Study, a prospective cohort study, involving UK children born on or around the millennium (September 2000 and January 2002). When children were 9 months old, parents reported children's fine and gross motor-coordination, and at 7 years, sports club attendance and daily TV viewing time. Children's physical activity was measured using accelerometers at 7 years. Adjusted regression models were used to examine associations between delayed motor development and accelerometry measured moderate-to-vigorous physical activity and sedentary behavior, and parent-reported sport club attendance and TV viewing time. In this sample (n = 13,021), gross motor delay in infancy was associated with less time in moderate-to-vigorous physical activity (B -5.0 95% confidence interval [CI] -6.8, -3.2) and more time sedentary (B 13.5 95% CI 9.3, 17.8) in childhood. Gross and fine motor delays during infancy were associated with a reduced risk of having high attendance at sports clubs in childhood (both relative risk [RR] 0.7, 95% CI 0.6, 0.9). Fine motor delays, but not gross delays, were also associated with an increased risk of having high TV viewing time (RR 1.3 95% CI 1.0, 1.6). Findings from the present study suggest that delays in motor development in infancy are associated with physical activity and sedentary time in childhood.

  15. Aberrant supplementary motor complex and limbic activity during motor preparation in motor conversion disorder.

    Science.gov (United States)

    Voon, Valerie; Brezing, Christina; Gallea, Cecile; Hallett, Mark

    2011-11-01

    Conversion disorder (CD) is characterized by unexplained neurological symptoms presumed related to psychological issues. The main hypotheses to explain conversion paralysis, characterized by a lack of movement, include impairments in either motor intention or disruption of motor execution, and further, that hyperactive self-monitoring, limbic processing or top-down regulation from higher order frontal regions may interfere with motor execution. We have recently shown that CD with positive abnormal or excessive motor symptoms was associated with greater amygdala activity to arousing stimuli along with greater functional connectivity between the amygdala and supplementary motor area. Here we studied patients with such symptoms focusing on motor initiation. Subjects performed either an internally or externally generated 2-button action selection task in a functional MRI study. Eleven CD patients without major depression and 11 age- and gender-matched normal volunteers were assessed. During both internally and externally generated movement, conversion disorder patients relative to normal volunteers had lower left supplementary motor area (SMA) (implicated in motor initiation) and higher right amygdala, left anterior insula, and bilateral posterior cingulate activity (implicated in assigning emotional salience). These findings were confirmed in a subgroup analysis of patients with tremor symptoms. During internally versus externally generated action in CD patients, the left SMA had lower functional connectivity with bilateral dorsolateral prefrontal cortices. We propose a theory in which previously mapped conversion motor representations may in an arousing context hijack the voluntary action selection system, which is both hypoactive and functionally disconnected from prefrontal top-down regulation. Copyright © 2011 Movement Disorder Society.

  16. Aberrant supplementary motor complex and limbic activity during motor preparation in motor conversion disorder

    Science.gov (United States)

    Voon, V; Brezing, C; Gallea, C; Hallett, M

    2014-01-01

    Background Conversion disorder is characterized by unexplained neurological symptoms presumed related to psychological issues. The main hypotheses to explain conversion paralysis, characterized by a lack of movement, include impairments in either motor intention or disruption of motor execution, and further, that hyperactive self-monitoring, limbic processing or top-down regulation from higher order frontal regions may interfere with motor execution. We have recently shown that conversion disorder with positive abnormal or excessive motor symptoms was associated with greater amygdala activity to arousing stimuli along with greater functional connectivity between the amgydala and supplementary motor area. Here we studied patients with such symptoms focusing on motor initiation. Methods Subjects performed either an internally or externally generated two-button action selection task in a functional MRI study. Results Eleven conversion disorder patients without major depression and 11 age- and gender-matched normal volunteers were assessed. During both internally and externally generated movement, conversion disorder patients relative to normal volunteers had lower left supplementary motor area (SMA) (implicated in motor initiation) and higher right amygdala, left anterior insula and bilateral posterior cingulate activity (implicated in assigning emotional salience). These findings were confirmed in a subgroup analysis of patients with tremor symptoms. During internally versus externally generated action in CD patients, the left SMA had lower functional connectivity with bilateral dorsolateral prefrontal cortices. Conclusion We propose a theory in which previously mapped conversion motor representations may in an arousing context hijack the voluntary action selection system which is both hypoactive and functionally disconnected from prefrontal top-down regulation. PMID:21935985

  17. Cognitive Orientation to daily Occupational Performance (CO-OP) as group therapy for children living with motor coordination difficulties: An integrated literature review.

    Science.gov (United States)

    Anderson, Leanne; Wilson, Jessie; Williams, Gary

    2017-04-01

    Children with Developmental Coordination Disorder (DCD) demonstrate limited participation in daily occupations which negatively impacts their physical and psycho-social wellbeing. The CO-OP approach is strongly supported within the literature as an effective treatment for DCD when delivered as a one-on-one therapy. Group interventions have proven to be effective in increasing self-esteem, decreasing feelings of isolation and are a cost effective way of delivering therapy. The purpose of this review was to explore the evidence for the use of the CO-OP approach in a group format for children with motor coordination difficulties. Searches of CINAHL, MEDLINE, Scopus, Proquest, PsycINFO, ERIC and OTDBase, were conducted from 2000 through until September 30, 2015. Articles included were in English, peer reviewed articles, followed principals of CO-OP and were delivered through a group therapy approach. All articles were critically reviewed and thematically analysed. 192 studies were retrieved with a final number of six articles included in the review. Six themes were highlighted: achieving a new level of perceived competence; feeling a sense of belonging; children learning how the condition affected them and strategies to overcome these challenges; careful formation of intervention groups; the value of following the CO-OP protocols; and the significance of parental involvement. The findings of this review suggest that the CO-OP approach, when administered in a group format, has the potential to benefit children living with motor coordination difficulties in both physical and psycho-social domains. More research is required to confirm these findings and contribute to evidence-based practice. © 2016 Occupational Therapy Australia.

  18. Ivermectin reduces motor coordination, serum testosterone, and central neurotransmitter levels but does not affect sexual motivation in male rats.

    Science.gov (United States)

    Moreira, N; Sandini, T M; Reis-Silva, T M; Navas-Suáresz, P; Auada, A V V; Lebrun, I; Flório, J C; Bernardi, M M; Spinosa, H S

    2017-12-01

    Ivermectin (IVM) is a macrocyclic lactone used for the treatment of parasitic infections and widely used in veterinary medicine as endectocide. In mammals, evidence indicates that IVM interacts with γ-aminobutyric acid (GABA)-mediated chloride channels. GABAergic system is involved in the manifestation of sexual behavior. We previously found that IVM at therapeutic doses did not alter sexual behavior in male rats, but at a higher dose, the appetitive phase of sexual behavior was impaired. Thus, we investigated whether the reduction of sexual behavior that was previously observed was a consequence of motor or motivational deficits that are induced by IVM. Data showed significant decrease in striatal dopaminergic system activity and lower testosterone levels but no effects on sexual motivation or penile erection. These findings suggest IVM may activate the GABAergic system and reduce testosterone levels, resulting in a reduction of motor coordination as consequence of the inhibition of striatal dopamine release. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Comparison of Motor Skills in Boys and Girls First Grade Student in Tehran

    Directory of Open Access Journals (Sweden)

    Sepideh Nazi

    2006-07-01

    Full Text Available Objective: The purpose of this study was to determine the motor skills differences between girls and boys (aged 7 in Tehran in 2004. Materials & Methods: This research was analytical descriptive The subjects were 120 children includes 60 girls and 60 boys. those were selected by simple random sampling at the first grade of primary School. Each subject was individually assessed by Lincoln Oseretsky motor developmental scale. Results: The findings of this research after data analysis by spss soft ware and sample t Test indicated that: There is not any significant differences between total score of motor skills, total balance score, static and dynamic balance with open eyes, bilateral motor coordination, upper limbs coordination, upper and lower limbs coordination, velocity and dexterity of hand movements in boys and girls (P>0/005. The only Significant differences between boys and girls motor skills is eye hand coordination (P<0/03. Conclusion: The findings of this research is used to better planning and defining the theraputic and educational programs in the field of motor development.

  20. Impacts of Perinatal Dioxin Exposure on Motor Coordination and Higher Cognitive Development in Vietnamese Preschool Children: A Five-Year Follow-Up.

    Directory of Open Access Journals (Sweden)

    Nghi Ngoc Tran

    Full Text Available Dioxin concentrations remain elevated in the environment and in humans residing near former US Air Force bases in South Vietnam. Our previous epidemiological studies showed adverse effects of dioxin exposure on neurodevelopment for the first 3 years of life. Subsequently, we extended the follow-up period and investigated the influence of perinatal dioxin exposure on neurodevelopment, including motor coordination and higher cognitive ability, in preschool children. Presently, we investigated 176 children in a hot spot of dioxin contamination who were followed up from birth until 5 years old. Perinatal dioxin exposure levels were estimated by measuring dioxin levels in maternal breast milk. Dioxin toxicity was evaluated using two indices; toxic equivalent (TEQ-polychlorinated dibenzo-p-dioxins/furans (PCDDs/Fs and concentration of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD. Coordinated movements, including manual dexterity, aiming and catching, and balance, were assessed using the Movement Assessment Battery for Children, Second Edition (Movement ABC-2. Cognitive ability was assessed using the nonverbal index (NVI of the Kaufman Assessment Battery for Children, Second Edition (KABC-II. In boys, total test and balance scores of Movement ABC-2 were significantly lower in the high TEQ- PCDDs/Fs group compared with the moderate and low exposure groups. NVI scores and the pattern reasoning subscale of the KABC-II indicating planning ability were also significantly lower in the high TCDD exposure group compared with the low exposure group of boys. However, in girls, no significant differences in Movement ABC-2 and KABC-II scores were found among the different TEQ-PCDDs/Fs and TCDD exposure groups. Furthermore, in high risk cases, five boys and one girl highly exposed to TEQ-PCDDs/Fs and TCDD had double the risk for difficulties in both neurodevelopmental skills. These results suggest differential impacts of TEQ-PCDDs/Fs and TCDD exposure on motor

  1. Impacts of Perinatal Dioxin Exposure on Motor Coordination and Higher Cognitive Development in Vietnamese Preschool Children: A Five-Year Follow-Up.

    Science.gov (United States)

    Tran, Nghi Ngoc; Pham, Tai The; Ozawa, Kyoko; Nishijo, Muneko; Nguyen, Anh Thi Nguyet; Tran, Tuong Quy; Hoang, Luong Van; Tran, Anh Hai; Phan, Vu Huy Anh; Nakai, Akio; Nishino, Yoshikazu; Nishijo, Hisao

    2016-01-01

    Dioxin concentrations remain elevated in the environment and in humans residing near former US Air Force bases in South Vietnam. Our previous epidemiological studies showed adverse effects of dioxin exposure on neurodevelopment for the first 3 years of life. Subsequently, we extended the follow-up period and investigated the influence of perinatal dioxin exposure on neurodevelopment, including motor coordination and higher cognitive ability, in preschool children. Presently, we investigated 176 children in a hot spot of dioxin contamination who were followed up from birth until 5 years old. Perinatal dioxin exposure levels were estimated by measuring dioxin levels in maternal breast milk. Dioxin toxicity was evaluated using two indices; toxic equivalent (TEQ)-polychlorinated dibenzo-p-dioxins/furans (PCDDs/Fs) and concentration of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Coordinated movements, including manual dexterity, aiming and catching, and balance, were assessed using the Movement Assessment Battery for Children, Second Edition (Movement ABC-2). Cognitive ability was assessed using the nonverbal index (NVI) of the Kaufman Assessment Battery for Children, Second Edition (KABC-II). In boys, total test and balance scores of Movement ABC-2 were significantly lower in the high TEQ- PCDDs/Fs group compared with the moderate and low exposure groups. NVI scores and the pattern reasoning subscale of the KABC-II indicating planning ability were also significantly lower in the high TCDD exposure group compared with the low exposure group of boys. However, in girls, no significant differences in Movement ABC-2 and KABC-II scores were found among the different TEQ-PCDDs/Fs and TCDD exposure groups. Furthermore, in high risk cases, five boys and one girl highly exposed to TEQ-PCDDs/Fs and TCDD had double the risk for difficulties in both neurodevelopmental skills. These results suggest differential impacts of TEQ-PCDDs/Fs and TCDD exposure on motor coordination and

  2. DEVELOPMENT OF COORDINATION ABILITIES OF SPECIAL MEDICAL GROUPS STUDENTS IN PHYSICAL EDUCATION PROCESS

    Directory of Open Access Journals (Sweden)

    E. N. Dotsenko

    2013-08-01

    Full Text Available Purpose. To analyze the problem of motor abilities development and health of students of special medical group in the process of physical education in technical universities. Determine the major factors, characteristics, and the relationship of physical development, physical fitness and coordination abilities of female students in special medical group. Establish regularities in precise movements mastering of different coordination structure and develop model characteristics of the relationship of coordination abilities and motor characteristics of students in special medical group. To substantiate and verify efficiency of coordination abilities development method of female students with regard to their functional status in the course of physical education in higher school. Methodology. Theoretical and methodological argument, characteristic of the experimental program in physical education teaching process of students in special medical group was shown. Findings. Research is to develop the training content in special medical groups with the use of coordinating elements and exercises to enhance the motor abilities of female students. Their influence on the level of physical development, functional training, as well as regularities in mastering and movement control of different coordinating structure at the female students of special medical group was studied. The comparative characteristic of female students athletic ability in the dynamics of the educational process, differentiated into groups according to nosology was presented. The criterion of spare capacities upgrade of the motor system in controlling the movements of different coordination structure was determined. Originality. The method of coordination abilities development of female students in special medical group, that aims on the formation and correction of motor control system of different coordination structure, a sense of body position and its individual parts in space, improving

  3. Advanced dc-Traction-Motor Control System

    Science.gov (United States)

    Vittone, O.

    1985-01-01

    Motor-control concept for battery-powered vehicles includes stateof-the-art power-transistor switching and separate excitation of motor windings in traction and regenerative braking. Switching transistors and other components of power-conditioning subsystem operate under control of computer that coordinates traction, braking, and protective functions.

  4. Anthropometric and motor development profiles of street children ...

    African Journals Online (AJOL)

    With regard to the gross motor development, deficits were found with regard to running speed and agility, bilateral coordination and strength. Fine motor deficits were found in upper limb speed and dexterity, response speed and visual motor control. The neuromotor development of street children also showed deficits, ...

  5. CANONICAL RELATIONS BETWEEN BASIC AND MOTOR - SITUATIONAL-MOTOR SKILLS IN SPORT GAMES

    Directory of Open Access Journals (Sweden)

    Bećir Šabotić

    2013-07-01

    Full Text Available The aim of this study was to establish the correlation between the predictor-basic motor and situational-motor tests in sports games. On the sample of 62 subjects of the first year of high school was carried out measurements which covered 12 basic and 6 motor variables and situational tests in volleyball and basketball.Based on the results of the canonical correlation analysis, it can be concluded that there is a significant relationship between the predictor variables and a set of criterion variables, situational-motor tests basketball and volleyball. These results are logical given the structure of movements from basketball and volleyball that require a high level of coordination and speed.

  6. Motor coordination and balance measurements reveal differential pathogenicity of currently spreading enterovirus 71 strains in human SCARB2 transgenic mice.

    Science.gov (United States)

    Chen, Mei-Feng; Shih, Shin-Ru

    2016-12-01

    Enterovirus 71 (EV71) has caused large-scale epidemics with neurological complications in the Asia-Pacific region. The C4a and B5 strains are the two major genotypes circulating in many countries recently. This study used a new protocol, a motor coordination task, to assess the differential pathogenicity of C4a and B5 strains in human SCARB2 transgenic mice. We found that the pathogenicity of C4a viruses was more severe than that of B5 viruses. Moreover, we discovered that an increased level of monocyte chemoattractant protein-1 was positively correlated with severely deficient motor function. This study provides a new method for evaluating EV71 infection in mice and distinguishing the severity of the symptoms caused by different clinical strains, which would contribute to studies of pathogenesis and development of vaccines and antivirals in EV71 infections.

  7. Electro-acupuncture stimulation acts on the basal ganglia output pathway to ameliorate motor impairment in Parkinsonian model rats.

    Science.gov (United States)

    Jia, Jun; Li, Bo; Sun, Zuo-Li; Yu, Fen; Wang, Xuan; Wang, Xiao-Min

    2010-04-01

    The role of electro-acupuncture (EA) stimulation on motor symptoms in Parkinson's disease (PD) has not been well studied. In a rat hemiparkinsonian model induced by unilateral transection of the medial forebrain bundle (MFB), EA stimulation improved motor impairment in a frequency-dependent manner. Whereas EA stimulation at a low frequency (2 Hz) had no effect, EA stimulation at a high frequency (100 Hz) significantly improved motor coordination. However, neither low nor high EA stimulation could significantly enhance dopamine levels in the striatum. EA stimulation at 100 Hz normalized the MFB lesion-induced increase in midbrain GABA content, but it had no effect on GABA content in the globus pallidus. These results suggest that high-frequency EA stimulation improves motor impairment in MFB-lesioned rats by increasing GABAergic inhibition in the output structure of the basal ganglia.

  8. DISTURBANCE OF NORMAL MOTOR DEVELOPMENT IN THE FIRST YEAR OF LIFE

    OpenAIRE

    Lidija Dimitrijević; Hristina Čolović

    2005-01-01

    The adoption of the basic motor skills in the first year of life (postural head control, lateral transfers into a lying position, sitting, standing, walking, crawling, grasping...) goes on quite spontaneously. A child learns all the motor actions by itself and that is why it is not necessary to “teach” a child to seat, grasp, stand, walk... Teaching a child the basic motor skills stands for a rough, unnecessary and undesirable involvement into spontaneous motor development, and, due to this, ...

  9. Quantitative assessment of finger motor performance: Normative data.

    Directory of Open Access Journals (Sweden)

    Alessio Signori

    Full Text Available Finger opposition movements are the basis of many daily living activities and are essential in general for manipulating objects; an engineered glove quantitatively assessing motor performance during sequences of finger opposition movements has been shown to be useful to provide reliable measures of finger motor impairment, even subtle, in subjects affected by neurological diseases. However, the obtained behavioral parameters lack published reference values.To determine mean values for different motor behavioral parameters describing the strategy adopted by healthy people in performing repeated sequences of finger opposition movements, examining associations with gender and age.Normative values for finger motor performance parameters were obtained on a sample of 255 healthy volunteers executing sequences of finger-to-thumb opposition movements, stratified by gender and over a wide range of ages. Touch duration, inter-tapping interval, movement rate, correct sequences (%, movements in advance compared with a metronome (% and inter-hand interval were assessed.Increasing age resulted in decreased movement speed, advance movements with respect to a cue, correctness of sequences, and bimanual coordination. No significant performance differences were found between male and female subjects except for the duration of the finger touch, the interval between two successive touches and their ratio.We report age- and gender-specific normal mean values and ranges for different parameters objectively describing the performance of finger opposition movement sequences, which may serve as useful references for clinicians to identify possible deficits in subjects affected by diseases altering fine hand motor skills.

  10. Somatostatin receptor 2 knockout/lacZ knockin mice show impaired motor coordination and reveal sites of somatostatin action within the striatum.

    Science.gov (United States)

    Allen, Jeremy P; Hathway, Gareth J; Clarke, Neil J; Jowett, Mike I; Topps, Stephanie; Kendrick, Keith M; Humphrey, Patrick P A; Wilkinson, Lawrence S; Emson, Piers C

    2003-05-01

    The peptide somatostatin can modulate the functional output of the basal ganglia. The exact sites and mechanisms of this action, however, are poorly understood, and the physiological context in which somatostatin acts is unknown. Somatostatin acts as a neuromodulator via a family of five 7-transmembrane G protein-coupled receptors, SSTR1-5, one of which, SSTR2, is known to be functional in the striatum. We have investigated the role of SSTR2 in basal ganglia function using mice in which Sstr2 has been inactivated and replaced by the lacZ reporter gene. Analysis of Sstr2lacZ expression in the brain by beta-galactosidase histochemistry demonstrated a widespread pattern of expression. By comparison to previously published in situ hybridization and immunohistochemical data, Sstr2lacZ expression was shown to accurately recapitulate that of Sstr2 and thus provided a highly sensitive model to investigate cell-type-specific expression of Sstr2. In the striatum, Sstr2 expression was identified in medium spiny projection neurons restricted to the matrix compartment and in cholinergic interneurons. Sstr2 expression was not detected in any other nuclei of the basal ganglia except for a sparse number of nondopaminergic neurons in the substantia nigra. Microdialysis in the striatum showed Sstr2-null mice were selectively refractory to somatostatin-induced dopamine and glutamate release. In behavioural tests, Sstr2-null mice showed normal levels of locomotor activity and normal coordination in undemanding tasks. However, in beam-walking, a test of fine motor control, Sstr2-null mice were severely impaired. Together these data implicate an important neuromodulatory role for SSTR2 in the striatum.

  11. Assessment of Body Composition Using Whole Body Air-Displacement Plethysmography in Children with and without Developmental Coordination Disorder

    Science.gov (United States)

    Cairney, John; Hay, John; Veldhuizen, Scott; Faught, Brent

    2011-01-01

    Developmental coordination disorder (DCD) is a neuro-developmental disorder characterized by poor fine and/or gross motor coordination. Children with DCD are hypothesized to be at increased risk for overweight and obesity from inactivity due to their motor coordination problems. Although previous studies have found evidence to support this…

  12. Differential motor alterations in children with three types of attention deficit hyperactivity disorder

    Directory of Open Access Journals (Sweden)

    Adrián Poblano

    2014-11-01

    Full Text Available Objective To determine frequency of motor alterations in children with attention deficit hyperactivity disorder (ADHD. Method We evaluated 19 children aged 7-12 years with ADHD classified in three sub-types: Combined (ADHD-C, with Inattention (ADHD-I, and with Hyperactivity (ADHD-H. Controls were age- and gender matched healthy children. We utilized Bruininks-Oseretsky Test of Motor Proficiency (BOTMP for measuring motor skills. Results We observed differences between children with ADHD and controls in BOTMP general score and in static coordination, dynamic general- and hand- coordination, and in synkinetic movements. We also found differences in dynamic hand coordination between controls and children with ADHD-C; in dynamic general coordination between controls and children with ADHD-H; and in frequency of synkinetic movements between controls and children with ADHD-H. Conclusion Children with ADHD with a major degree of hyperactivity showed greater frequency of motor alterations.

  13. Perfection of coordination with the help of jump exercises on trampoline

    Directory of Open Access Journals (Sweden)

    V.N. Boloban

    2016-12-01

    Full Text Available Purpose: to work out methodic of sportsmen’s coordination perfection with the help of jumps on trampoline. Material: in the research 259 1st and 2nd year students (age 17-19 years participated. The students were representatives of game and cyclic kinds of sports, sport gymnastic and martial arts. Among them there were 99 sportsmen with sport degrees. Results: we gave the definition of the term - coordination training. The students’ sensor-motor coordination was confidently improved by means of the worked out methodic realization. The methodic included program of jump exercises on trampoline. We achieved positive dynamic of static-kinetic and static-dynamic balance as well as increased the quality of mastering of exercises with complex coordination. Conclusions: the methodic of sportsmen’s coordination training with the help of jump exercises on trampoline was worked out, considering specificity of kinds of sports and sportsmen’s qualification. This methodic improves sensor-motor coordination and is the basis of technical training and technical fitness.

  14. Linear magnetic spring and spring/motor combination

    Science.gov (United States)

    Patt, Paul J. (Inventor); Stolfi, Fred R. (Inventor)

    1991-01-01

    A magnetic spring, or a spring and motor combination, providing a linear spring force characteristic in each direction from a neutral position, in which the spring action may occur for any desired coordinate of a typical orthogonal coordinate system. A set of magnets are disposed, preferably symmetrically about a coordinate axis, poled orthogonally to the desired force direction. A second set of magnets, respectively poled opposite the first set, are arranged on the sprung article. The magnets of one of the sets are spaced a greater distance apart than those of the other, such that an end magnet from each set forms a pair having preferably planar faces parallel to the direction of spring force, the faces being offset so that in a neutral position the outer edge of the closer spaced magnet set is aligned with the inner edge of the greater spaced magnet set. For use as a motor, a coil can be arranged with conductors orthogonal to both the magnet pole directions and the direction of desired spring force, located across from the magnets of one set and fixed with respect to the magnets of the other set. In a cylindrical coordinate system having axial spring force, the magnets are radially poled and motor coils are concentric with the cylinder axis.

  15. Performance in normal subjects on a novel battery of driving-related sensory-motor and cognitive tests.

    Science.gov (United States)

    Innes, Carrie R H; Jones, Richard D; Anderson, Tim J; Hollobon, Susan G; Dalrymple-Alford, John C

    2009-05-01

    Currently, there is no international standard for the assessment of fitness to drive for cognitively or physically impaired persons. A computerized battery of driving-related sensory-motor and cognitive tests (SMCTests) has been developed, comprising tests of visuoperception, visuomotor ability, complex attention, visual search, decision making, impulse control, planning, and divided attention. Construct validity analysis was conducted in 60 normal, healthy subjects and showed that, overall, the novel cognitive tests assessed cognitive functions similar to a set of standard neuropsychological tests. The novel tests were found to have greater perceived face validity for predicting on-road driving ability than was found in the equivalent standard tests. Test-retest stability and reliability of SMCTests measures, as well as correlations between SMCTests and on-road driving, were determined in a subset of 12 subjects. The majority of test measures were stable and reliable across two sessions, and significant correlations were found between on-road driving scores and measures from ballistic movement, footbrake reaction, hand-control reaction, and complex attention. The substantial face validity, construct validity, stability, and reliability of SMCTests, together with the battery's level of correlation with on-road driving in normal subjects, strengthen our confidence in the ability of SMCTests to detect and identify sensory-motor and cognitive deficits related to unsafe driving and increased risk of accidents.

  16. Universal adaptive torque control for PM motors for field-weakening region operation

    Science.gov (United States)

    Royak, Semyon [Beachwood, OH; Harbaugh, Mark M [Richfield, OH; Breitzmann, Robert J [South Russel, OH; Nondahl, Thomas A [Wauwatosa, WI; Schmidt, Peter B [Franklin, WI; Liu, Jingbo [Milwaukee, WI

    2011-03-29

    The invention includes a motor controller and method for controlling a permanent magnet motor. In accordance with one aspect of the present technique, a permanent magnet motor is controlled by, among other things, receiving a torque command, determining a normalized torque command by normalizing the torque command to a characteristic current of the motor, determining a normalized maximum available voltage, determining an inductance ratio of the motor, and determining a direct-axis current based upon the normalized torque command, the normalized maximum available voltage, and the inductance ratio of the motor.

  17. Prenatal smoking exposure, measured as maternal serum cotinine, and children's motor developmental milestones and motor function: a follow-up study

    DEFF Research Database (Denmark)

    Christensen, Line Høgenhof; Bjerre Høyer, Birgit; Pedersen, Henning Sloth

    2016-01-01

    and duration of breastfeeding. Data were stratified by country.ResultsNo statistically significant difference in age at motor milestones was found comparing children of smokers with children of non-smokers. Also, there was no statistically significant difference in motor score (Developmental Coordination...

  18. Cryogenic Electric Motor Tested

    Science.gov (United States)

    Brown, Gerald V.

    2004-01-01

    Technology for pollution-free "electric flight" is being evaluated in a number of NASA Glenn Research Center programs. One approach is to drive propulsive fans or propellers with electric motors powered by fuel cells running on hydrogen. For large transport aircraft, conventional electric motors are far too heavy to be feasible. However, since hydrogen fuel would almost surely be carried as liquid, a propulsive electric motor could be cooled to near liquid hydrogen temperature (-423 F) by using the fuel for cooling before it goes to the fuel cells. Motor windings could be either superconducting or high purity normal copper or aluminum. The electrical resistance of pure metals can drop to 1/100th or less of their room-temperature resistance at liquid hydrogen temperature. In either case, super or normal, much higher current density is possible in motor windings. This leads to more compact motors that are projected to produce 20 hp/lb or more in large sizes, in comparison to on the order of 2 hp/lb for large conventional motors. High power density is the major goal. To support cryogenic motor development, we have designed and built in-house a small motor (7-in. outside diameter) for operation in liquid nitrogen.

  19. Relationship between children's performance-based motor skills and child, parent, and teacher perceptions of children's motor abilities using self/informant-report questionnaires.

    Science.gov (United States)

    Lalor, Aislinn; Brown, Ted; Murdolo, Yuki

    2016-04-01

    Occupational therapists often assess the motor skill performance of children referred to them as part of the assessment process. This study investigated whether children's, parents' and teachers' perceptions of children's motor skills using valid and reliable self/informant-report questionnaires were associated with and predictive of children's actual motor performance, as measured by a standardised performance-based motor skill assessment. Fifty-five typically developing children (8-12 years of age), their parents and classroom teachers were recruited to participate in the study. The children completed the Physical Self-Description Questionnaire (PSDQ) and the Self-Perception Profile for Children. The parents completed the Developmental Profile III (DP-III) and the Developmental Coordination Disorder Questionnaire, whereas the teachers completed the Developmental Coordination Disorder Questionnaire and the Teacher's Rating Scale of Child's Actual Behavior. Children's motor performance composite scores were determined using the Bruininks-Oseretsky Test of Motor Proficiency, Second Edition (BOT-2). Spearman's rho correlation coefficients were calculated to identify if significant correlations existed and multiple linear regression was used to identify whether self/informant report data were significant predictors of children's motor skill performance. The child self-report scores had the largest number of significant correlations with the BOT-2 composites. Regression analysis found that the parent report DP-III Physical subscale was a significant predictor of the BOT-2 Manual Coordination composite and the child-report questionnaire PSDQ. Endurance subscale was a significant predictor of the BOT-2 Strength and Agility composite. The findings support the use of top-down assessment methods from a variety of sources when evaluating children's motor abilities. © 2016 Occupational Therapy Australia.

  20. TECHNICAL COORDINATION

    CERN Multimedia

    A. Ball

    Overview From a technical perspective, CMS has been in “beam operation” state since 6th November. The detector is fully closed with all components operational and the magnetic field is normally at the nominal 3.8T. The UXC cavern is normally closed with the radiation veto set. Access to UXC is now only possible during downtimes of LHC. Such accesses must be carefully planned, documented and carried out in agreement with CMS Technical Coordination, Experimental Area Management, LHC programme coordination and the CCC. Material flow in and out of UXC is now strictly controlled. Access to USC remains possible at any time, although, for safety reasons, it is necessary to register with the shift crew in the control room before going down.It is obligatory for all material leaving UXC to pass through the underground buffer zone for RP scanning, database entry and appropriate labeling for traceability. Technical coordination (notably Stephane Bally and Christoph Schaefer), the shift crew and run ...

  1. The mouse beam walking assay offers improved sensitivity over the mouse rotarod in determining motor coordination deficits induced by benzodiazepines.

    Science.gov (United States)

    Stanley, Joanna L; Lincoln, Rachael J; Brown, Terry A; McDonald, Louise M; Dawson, Gerard R; Reynolds, David S

    2005-05-01

    The mouse rotarod test of motor coordination/sedation is commonly used to predict clinical sedation caused by novel drugs. However, past experience suggests that it lacks the desired degree of sensitivity to be predictive of effects in humans. For example, the benzodiazepine, bretazenil, showed little impairment of mouse rotarod performance, but marked sedation in humans. The aim of the present study was to assess whether the mouse beam walking assay demonstrates: (i) an increased sensitivity over the rotarod and (ii) an increased ability to predict clinically sedative doses of benzodiazepines. The study compared the effects of the full benzodiazepine agonists, diazepam and lorazepam, and the partial agonist, bretazenil, on the mouse rotarod and beam walking assays. Diazepam and lorazepam significantly impaired rotarod performance, although relatively high GABA-A receptor occupancy was required (72% and 93%, respectively), whereas beam walking performance was significantly affected at approximately 30% receptor occupancy. Bretazenil produced significant deficits at 90% and 53% receptor occupancy on the rotarod and beam walking assays, respectively. The results suggest that the mouse beam walking assay is a more sensitive tool for determining benzodiazepine-induced motor coordination deficits than the rotarod. Furthermore, the GABA-A receptor occupancy values at which significant deficits were determined in the beam walking assay are comparable with those observed in clinical positron emission tomography studies using sedative doses of benzodiazepines. These data suggest that the beam walking assay may be able to more accurately predict the clinically sedative doses of novel benzodiazepine-like drugs.

  2. Effect of Spark Motor Program on the development of gross motor skills in intellectually disabled educable boys

    Directory of Open Access Journals (Sweden)

    Hashem Faal Moganloo

    2013-11-01

    Results: Spark Program caused significant changes in all the variables of the study, except speed and agility, in the experimental group after 24 sessions. The changes included: agility and speed (P=0.731, balance (P=0, strength (P=0.002, and bilateral coordination (P=0. Conclusion: Spark Motor Program can improve gross motor skills in intellectually disabled educable students.

  3. Motor and Coordination Difficulties in Children with Emotional and Behavioural Difficulties

    Science.gov (United States)

    Hill, Elisabeth; Pratt, Michelle L; Kanji, Zara; Bartoli, Alice Jones

    2017-01-01

    To date, very few studies have explored the incidence of motor impairment amongst children with social, emotional and behavioural difficulties (social, emotional and mental health (SEMH); formerly SEBD in England). Following research that suggests an increase in motor difficulties in young children and adolescents with SEMH difficulties, this…

  4. Fever during pregnancy and motor development in children

    DEFF Research Database (Denmark)

    Holst, Charlotte; Jørgensen, Sanne Ellegaard; Wohlfahrt, Jan

    2015-01-01

    AIM: The aim of this study was to examine how fever during pregnancy is associated with motor development in the child. METHOD: This cohort study was based on data from females and their children, from the Danish National Birth Cohort, who took part in an 18-month and/or 7-year follow-up study....... Information regarding fever (number of episodes, temperature, duration, and pregnancy week) was obtained around gestation week 12 and at the end of pregnancy. Assessments of motor development in early childhood were based on the ages at which the motor milestones 'sitting unsupported' (n=44 256) and 'walking...... unassisted' (n=53 959) were attained. The Developmental Coordination Disorder Questionnaire 2007 (DCDQ'07) was used to identify children with indication of developmental coordination disorder (DCD) at age 7 years (n=29 401). Any associations between the exposure to fever during pregnancy and motor...

  5. Is severity of motor coordination difficulties related to co-morbidity in children at risk for developmental coordination disorder?

    NARCIS (Netherlands)

    Schoemaker, Marina M.; Lingam, Raghu; Jongmans, Marian J.; van Heuvelen, Marieke J. G.; Emond, Alan

    2013-01-01

    Aim of the study was to investigate whether 7-9 year old children with severe motor difficulties are more at risk of additional difficulties in activities in daily living, academic skills, attention and social skills than children with moderate motor difficulties. Children (N = 6959) from a

  6. A central pattern generator producing alternative outputs: phase relations of leech heart motor neurons with respect to premotor synaptic input.

    Science.gov (United States)

    Norris, Brian J; Weaver, Adam L; Wenning, Angela; García, Paul S; Calabrese, Ronald L

    2007-11-01

    The central pattern generator (CPG) for heartbeat in leeches consists of seven identified pairs of segmental heart interneurons and one unidentified pair. Four of the identified pairs and the unidentified pair of interneurons make inhibitory synaptic connections with segmental heart motor neurons. The CPG produces a side-to-side asymmetric pattern of intersegmental coordination among ipsilateral premotor interneurons corresponding to a similarly asymmetric fictive motor pattern in heart motor neurons, and asymmetric constriction pattern of the two tubular hearts: synchronous and peristaltic. Using extracellular techniques, we recorded, in 61 isolated nerve cords, the activity of motor neurons in conjunction with the phase reference premotor heart interneuron, HN(4), and another premotor interneuron that allowed us to assess the coordination mode. These data were then coupled with a previous description of the temporal pattern of premotor interneuron activity in the two coordination modes to synthesize a global phase diagram for the known elements of the CPG and the entire motor neuron ensemble. These average data reveal the stereotypical side-to-side asymmetric patterns of intersegmental coordination among the motor neurons and show how this pattern meshes with the activity pattern of premotor interneurons. Analysis of animal-to-animal variability in this coordination indicates that the intersegmental phase progression of motor neuron activity in the midbody in the peristaltic coordination mode is the most stereotypical feature of the fictive motor pattern. Bilateral recordings from motor neurons corroborate the main features of the asymmetric motor pattern.

  7. CORRELATION BETWEEN COORDINATION AND PERSONALITY TRAITS OF SOLDIERS IN BATTLE UNIT OF SLOVENIAN ARMED FORCES

    Directory of Open Access Journals (Sweden)

    Maja Pori

    2009-11-01

    Full Text Available The aim of the study was to investigate the correlation between motor ability of coordination and personality traits of Slovenian soldiers. The subject sample consisted of 94 soldiers in a battle unit of Slovenian Armed Forces (SAF who were serving in the first brigade (age 26,5 ± 3,4 years. Motor ability of coordination was assessed with two motor tasks (polygon bac- kwards and figure 8 duck test. The structure of personality traits was measured with a FPI (Freiburg Personality Inventory included 114 items and measured 9 personality traits of order I (neuroticism, impulsivity, depression, irritability, sociability, calmness, dominance, suppression, sincerity and 3 personality traits of order II (extroversion, emotional istability, masculinity. The correlation between coordination and personality traits was estimated by the Pearson’s correlation coefficient. The results show that soldiers who did worse in motor test polygon backwards were more neurotic, suppressed, and impulsive. They also tend to be more sociable. The correlation between second test of coordination shows that better soldiers in this test are more extrovert or less introvert.

  8. Inter-limb coupling in bimanual rhythmic coordination in Parkinson's disease

    NARCIS (Netherlands)

    Verheul, M.H.G.; Geuze, RH

    2004-01-01

    Recently, it has been shown that rhythmic inter-limb coordination is disturbed in patients with Parkinson's disease (PD). The present study aims to investigate whether this coordination deficit is primarily the result of an impaired coupling, related to hypoactivation of the supplementary motor area

  9. Individualistic Aptitude and Biofeedback on Improvement of Coordination in Young Athletes

    Directory of Open Access Journals (Sweden)

    Saha Srilekha

    2015-01-01

    Full Text Available Sports cognition encompasses the primary affective-motivational aspect related to primordial fight-or flight responses, which are essentially the precursors for both the BAS (behavioural activation system - the reward system and BIS (behavioural inhibition system- the punishment or fear-eliciting system. In Asian and especially South-Asian perspective, impulsivity and aggressive out-bursts are by and large considered as conduct disorders, thus more acceptable docile tendency in children and pre-adolescent lead them to a cognitive-motivational make-up of BIS orientation. With such a background the present study was carried out to identify the extent of cognitive-affective competence of the skilled competitive players in enhancing bilateral motor coordination required for high sport performance. Eighty-one high performing female ball game players matched with their performance-specific motor coordination ability, were categorised into three differential groups based on their psychobiological competence, viz; Group A- consisted of twenty-seven players diagnosed with moderate level of sympathovagal balance; Group B (N = 27 – consisted of twenty-seven players diagnosed with discordant sympathovagal balance, while Group C (n = 27 were identified as having high sympathovagal balance. Thereafter, players of Group B & C were introduced to training of skin-conductance biofeedback tailored for musculoskeletal enhancement (20 min.s/ day; three days/ week for twelve weeks. Mid-term analyses of motor coordination as well as the post-intervention analyses (carried out after the twelfth week revealed that players having higher sympathovagal balance had higher efficiency in modulation of muscle tension as well as in perceptual –motor adaptation, which have prompted them to have enhanced bilateral and visual-motor coordination compared to their counterparts.

  10. Induction of Neuron-Specific Degradation of Coenzyme A Models Pantothenate Kinase-Associated Neurodegeneration by Reducing Motor Coordination in Mice.

    Directory of Open Access Journals (Sweden)

    Stephanie A Shumar

    Full Text Available Pantothenate kinase-associated neurodegeneration, PKAN, is an inherited disorder characterized by progressive impairment in motor coordination and caused by mutations in PANK2, a human gene that encodes one of four pantothenate kinase (PanK isoforms. PanK initiates the synthesis of coenzyme A (CoA, an essential cofactor that plays a key role in energy metabolism and lipid synthesis. Most of the mutations in PANK2 reduce or abolish the activity of the enzyme. This evidence has led to the hypothesis that lower CoA might be the underlying cause of the neurodegeneration in PKAN patients; however, no mouse model of the disease is currently available to investigate the connection between neuronal CoA levels and neurodegeneration. Indeed, genetic and/or dietary manipulations aimed at reducing whole-body CoA synthesis have not produced a desirable PKAN model, and this has greatly hindered the discovery of a treatment for the disease.Cellular CoA levels are tightly regulated by a balance between synthesis and degradation. CoA degradation is catalyzed by two peroxisomal nudix hydrolases, Nudt7 and Nudt19. In this study we sought to reduce neuronal CoA in mice through the alternative approach of increasing Nudt7-mediated CoA degradation. This was achieved by combining the use of an adeno-associated virus-based expression system with the synapsin (Syn promoter. We show that mice with neuronal overexpression of a cytosolic version of Nudt7 (scAAV9-Syn-Nudt7cyt exhibit a significant decrease in brain CoA levels in conjunction with a reduction in motor coordination. These results strongly support the existence of a link between CoA levels and neuronal function and show that scAAV9-Syn-Nudt7cyt mice can be used to model PKAN.

  11. Coordination failure caused by sunspots

    DEFF Research Database (Denmark)

    Beugnot, Julie; Gürgüç, Zeynep; Øvlisen, Frederik Roose

    2012-01-01

    on the efficient equilibrium, we consider sunspots as a potential reason for coordination failure. We conduct an experiment with a three player 2x2x2 game in which coordination on the efficient equilibrium is easy and should normally occur. In the control session, we find almost perfect coordination on the payoff......-dominant equilibrium, but in the sunspot treatment, dis-coordination is frequent. Sunspots lead to significant inefficiency, and we conclude that sunspots can indeed cause coordination failure....

  12. Obesity and motor skills among 4 to 6-year-old children in the United States: nationally-representative surveys.

    Science.gov (United States)

    Castetbon, Katia; Andreyeva, Tatiana

    2012-03-15

    Few population-based studies have assessed relationships between body weight and motor skills in young children. Our objective was to estimate the association between obesity and motor skills at 4 years and 5-6 years of age in the United States. We used repeated cross-sectional assessments of the national sample from the Early Childhood Longitudinal Survey-Birth Cohort (ECLS-B) of preschool 4-year-old children (2005-2006; n = 5 100) and 5-6-year-old kindergarteners (2006-2007; n = 4 700). Height, weight, and fine and gross motor skills were assessed objectively via direct standardized procedures. We used categorical and continuous measures of body weight status, including obesity (Body Mass Index (BMI) ≥ 95th percentile) and BMI z-scores. Multivariate logistic and linear models estimated the association between obesity and gross and fine motor skills in very young children adjusting for individual, social, and economic characteristics and parental involvement. The prevalence of obesity was about 15%. The relationship between motor skills and obesity varied across types of skills. For hopping, obese boys and girls had significantly lower scores, 20% lower in obese preschoolers and 10% lower in obese kindergarteners than normal weight counterparts, p Obese girls could jump 1.6-1.7 inches shorter than normal weight peers (p motor skills and fine motor skills of young children were not consistently related to BMI z-scores and obesity. Based on objective assessment of children's motor skills and body weight and a full adjustment for confounding covariates, we find no reduction in overall coordination and fine motor skills in obese young children. Motor skills are adversely associated with childhood obesity only for skills most directly related to body weight.

  13. Visuo-motor coordination ability predicts performance with brain-computer interfaces controlled by modulation of sensorimotor rhythms (SMR

    Directory of Open Access Journals (Sweden)

    Eva Maria Hammer

    2014-08-01

    Full Text Available Modulation of sensorimotor rhythms (SMR was suggested as a control signal for brain-computer interfaces (BCI. Yet, there is a population of users estimated between 10 to 50% not able to achieve reliable control and only about 20% of users achieve high (80-100% performance. Predicting performance prior to BCI use would facilitate selection of the most feasible system for an individual, thus constitute a practical benefit for the user, and increase our knowledge about the correlates of BCI control. In a recent study, we predicted SMR-BCI performance from psychological variables that were assessed prior to the BCI sessions and BCI control was supported with machine-learning techniques. We described two significant psychological predictors, namely the visuo-motor coordination ability and the ability to concentrate on the task. The purpose of the current study was to replicate these results thereby validating these predictors within a neurofeedback based SMR-BCI that involved no machine learning. Thirty-three healthy BCI novices participated in a calibration session and three further neurofeedback training sessions. Two variables were related with mean SMR-BCI performance: (1 A measure for the accuracy of fine motor skills, i.e. a trade for a person’s visuo-motor control ability and (2 subject’s attentional impulsivity. In a linear regression they accounted for almost 20% in variance of SMR-BCI performance, but predictor (1 failed significance. Nevertheless, on the basis of our prior regression model for sensorimotor control ability we could predict current SMR-BCI performance with an average prediction error of M = 12.07%. In more than 50% of the participants, the prediction error was smaller than 10%. Hence, psychological variables played a moderate role in predicting SMR-BCI performance in a neurofeedback approach that involved no machine learning. Future studies are needed to further consolidate (or reject the present predictors.

  14. Rapid reorganization of adult rat motor cortex somatic representation patterns after motor nerve injury.

    OpenAIRE

    Sanes, J N; Suner, S; Lando, J F; Donoghue, J P

    1988-01-01

    The potential for peripheral nerve injury to reorganize motor cortical representations was investigated in adult rats. Maps reflecting functional connections between the motor cortex and somatic musculature were generated with intracortical electrical stimulation techniques. Comparison of cortical somatotopic maps obtained in normal rats with maps generated from rats with a facial nerve lesion indicated that the forelimb and eye/eyelid representations expanded into the normal vibrissa area. R...

  15. Advanced AC Motor Control

    Energy Technology Data Exchange (ETDEWEB)

    Kazmierkowski, M.P. [Institute of Control and Industrial Electronics, Warsaw University of Technology, Warszawa (Poland)

    1997-12-31

    In this paper a review of control methods for high performance PWM inverter-fed induction motor drives is presented. Starting from the description of an induction motor by the help of the space vectors, three basic control strategic are discussed. As first, the most popular Field Oriented Control (FOC) is described. Secondly, the Direct Torque and Flux vector Control (DTFC) method, which - in contrast to FOC - depart from idea of coordinate transformation and analogy with DC motor, is briefly characterized. The last group is based on Feedback Linearization Control (FLC) and can be easy combined with sliding mode control. The simulation and experimental oscillograms that illustrate the performance of the discussed control strategies are shown. (orig.) 35 refs.

  16. Preservation of perceptual integration improves temporal stability of bimanual coordination in the elderly: an evidence of age-related brain plasticity.

    Science.gov (United States)

    Blais, Mélody; Martin, Elodie; Albaret, Jean-Michel; Tallet, Jessica

    2014-12-15

    Despite the apparent age-related decline in perceptual-motor performance, recent studies suggest that the elderly people can improve their reaction time when relevant sensory information are available. However, little is known about which sensory information may improve motor behaviour itself. Using a synchronization task, the present study investigates how visual and/or auditory stimulations could increase accuracy and stability of three bimanual coordination modes produced by elderly and young adults. Neurophysiological activations are recorded with ElectroEncephaloGraphy (EEG) to explore neural mechanisms underlying behavioural effects. Results reveal that the elderly stabilize all coordination modes when auditory or audio-visual stimulations are available, compared to visual stimulation alone. This suggests that auditory stimulations are sufficient to improve temporal stability of rhythmic coordination, even more in the elderly. This behavioural effect is primarily associated with increased attentional and sensorimotor-related neural activations in the elderly but similar perceptual-related activations in elderly and young adults. This suggests that, despite a degradation of attentional and sensorimotor neural processes, perceptual integration of auditory stimulations is preserved in the elderly. These results suggest that perceptual-related brain plasticity is, at least partially, conserved in normal aging. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Physiological targets of artificial gravity: the sensory-motor system

    NARCIS (Netherlands)

    Groen, E.L.; Clarke, A.; Bles, W.; Wuyts, F.; Paloski, W.; Clément, G.

    2007-01-01

    This chapter describes the pros and cons of artificial gravity applications in relation to human sensory-motor functioning in space. Spaceflight creates a challenge for sensory-motor functions that depend on gravity, which include postural balance, locomotion, eye-hand coordination, and spatial

  18. The correlation between motor proficiency and physical activity in Senior Phase learners in the Potchefstroom area

    Directory of Open Access Journals (Sweden)

    Lizl-Louise van Niekerk

    2016-10-01

    Objectives: To determine the relationship between motor proficiency and physical activity levels in adolescent Senior Phase learners in Potchefstroom, South Africa. No literature exists on the relationship between motor proficiency and physical activity levels among South African adolescents. Method: A total of 239 13- to 14-year-old learners were assessed using the Bruininkse Oseretsky Test of Motor Proficiency 2 (BOT-2 for motor proficiency, and the International Physical Activity Questionnaire (IPAQ for physical activity levels. Data analysis included descriptive statistics, Spearman correlation coefficients and effect sizes. Results: Statistically and practically significant correlations were found between the total BOT-2 score and the physical activity levels of the total group, as well as the boys and the girls respectively. Fine motor coordination correlated with physical activity levels in the girls, while manipulation coordination correlated with the physical activity levels of the total group and the boys. The body coordination skill of jumping in place and the strength test items showed strong correlations with physical activity in all the groups. Conclusion: The motor skills of Senior Phase learners, especially coordination and strength skills, should be developed and maintained in the Physical Education curriculum to enhance physical activity levels.

  19. Low levels of Survival Motor Neuron protein are sufficient for normal muscle function in the SMNΔ7 mouse model of SMA.

    Science.gov (United States)

    Iyer, Chitra C; McGovern, Vicki L; Murray, Jason D; Gombash, Sara E; Zaworski, Phillip G; Foust, Kevin D; Janssen, Paul M L; Burghes, Arthur H M

    2015-11-01

    Spinal Muscular Atrophy (SMA) is an autosomal recessive disorder characterized by loss of lower motor neurons. SMA is caused by deletion or mutation of the Survival Motor Neuron 1 (SMN1) gene and retention of the SMN2 gene. The loss of SMN1 results in reduced levels of the SMN protein. SMN levels appear to be particularly important in motor neurons; however SMN levels above that produced by two copies of SMN2 have been suggested to be important in muscle. Studying the spatial requirement of SMN is important in both understanding how SMN deficiency causes SMA and in the development of effective therapies. Using Myf5-Cre, a muscle-specific Cre driver, and the Cre-loxP recombination system, we deleted mouse Smn in the muscle of mice with SMN2 and SMNΔ7 transgenes in the background, thus providing low level of SMN in the muscle. As a reciprocal experiment, we restored normal levels of SMN in the muscle with low SMN levels in all other tissues. We observed that decreasing SMN in the muscle has no phenotypic effect. This was corroborated by muscle physiology studies with twitch force, tetanic and eccentric contraction all being normal. In addition, electrocardiogram and muscle fiber size distribution were also normal. Replacement of Smn in muscle did not rescue SMA mice. Thus the muscle does not appear to require high levels of SMN above what is produced by two copies of SMN2 (and SMNΔ7). © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Developmental coordination disorder: evaluation and treatment.

    NARCIS (Netherlands)

    Leemrijse, C.

    2003-01-01

    A child's popularity is often related to his or her proficiency in sports and games, and children value physical competence highly. The movement difficulties of children with developmental coordination disorder (DCD) often invite ridicule from their peers. Children with DCD have a poor motor

  1. Augmented effects of EMG biofeedback interfaced with virtual reality on neuromuscular control and movement coordination during reaching in children with cerebral palsy.

    Science.gov (United States)

    Yoo, Ji Won; Lee, Dong Ryul; Cha, Young Joo; You, Sung Hyun

    2017-01-01

    The purpose of the present study was to compare therapeutic effects of an electromyography (EMG) biofeedback augmented by virtual reality (VR) and EMG biofeedback alone on the triceps and biceps (T:B) muscle activity imbalance and elbow joint movement coordination during a reaching motor taskOBJECTIVE: To compare therapeutic effects of an electromyography (EMG) biofeedback augmented by virtual reality (VR) and EMG biofeedback alone on the triceps and biceps muscle activity imbalance and elbow joint movement coordination during a reaching motor task in normal children and children with spastic cerebral palsy (CP). 18 children with spastic CP (2 females; mean±standard deviation = 9.5 ± 1.96 years) and 8 normal children (3 females; mean ± standard deviation = 9.75 ± 2.55 years) were recruited from a local community center. All children with CP first underwent one intensive session of EMG feedback (30 minutes), followed by one session of the EMG-VR feedback (30 minutes) after a 1-week washout period. Clinical tests included elbow extension range of motion (ROM), biceps muscle strength, and box and block test. EMG triceps and biceps (T:B) muscle activity imbalance and reaching movement acceleration coordination were concurrently determined by EMG and 3-axis accelerometer measurements respectively. Independent t-test and one-way repeated analysis of variance (ANOVA) were performed at p augmented by virtual reality exercise games in children with spastic CP. The augmented EMG and VR feedback produced better neuromuscular balance control in the elbow joint than the EMG biofeedback alone.

  2. Multifractal fluctuations in joint angles during infant spontaneous kicking reveal multiplicativity-driven coordination

    International Nuclear Information System (INIS)

    Stephen, Damian G.; Hsu, Wen-Hao; Young, Diana; Saltzman, Elliot L.; Holt, Kenneth G.; Newman, Dava J.; Weinberg, Marc; Wood, Robert J.; Nagpal, Radhika; Goldfield, Eugene C.

    2012-01-01

    Previous research has considered infant spontaneous kicking as a form of exploration. According to this view, spontaneous kicking provides information about motor degrees of freedom and may shape multijoint coordinations for more complex movement patterns such as gait. Recent work has demonstrated that multifractal, multiplicative fluctuations in exploratory movements index energy flows underlying perceptual-motor information. If infant spontaneous kicking is exploratory and occasions an upstream flow of information from the motor periphery, we expected not only that multiplicativity of fluctuations at the hip should promote multiplicativity of fluctuations at more distal joints (i.e., reflecting downstream effects of neural control) but also that multiplicativity at more distal joints should promote multiplicativity at the hip. Multifractal analysis demonstrated that infant spontaneous kicking in four typically developing infants for evidence of multiplicative fluctuations in multiple joint angles along the leg (i.e., hip, knee, and ankle) exhibited multiplicativity. Vector autoregressive modeling demonstrated that only one leg exhibited downstream effects but that both legs exhibited upstream effects. These results confirm the exploratory aspect of infant spontaneous kicking and suggest chaotic dynamics in motor coordination. They also resonate with existing models of chaos-controlled robotics and noise-based interventions for rehabilitating motor coordination in atypically developing patients.

  3. IQ discrepancy differentiates levels of fine motor skills and their relationship in children with autism spectrum disorders.

    Science.gov (United States)

    Yu, Tzu-Ying; Chou, Willy; Chow, Julie Chi; Lin, Chien-Ho; Tung, Li-Chen; Chen, Kuan-Lin

    2018-01-01

    We investigated 1) the impact of differences in intelligence quotient discrepancy (IQD) on motor skills of preschool-aged children with autism spectrum disorders (ASD); 2) the relationships between IQD and motor skills in preschool-aged children with ASD. A total of 127 ASD preschool-aged children were divided into three groups according to the size of the IQD: IQD within 1 standard deviation (1SD; EVENIQ; n=81), discrepantly higher verbal intelligence quotient (VIQ; n=22; VIQ>performance intelligence quotient [PIQ] above 1SD [≥15 points]), and discrepantly higher PIQ (n=24; PIQ>VIQ above 1SD [≥15 points]). Children's IQD and motor skills were determined with the Wechsler Preschool and Primary Scale of Intelligence™ - Fourth Edition and the motor subtests of the Comprehensive Developmental Inventory for Infants and Toddlers (CDIIT), respectively. One-way analysis of variance revealed significant group differences for the fine motor domain of the CDIIT and the visual-motor coordination subtest ( F =3.37-4.38, p motor skills than were children with even IQD and those with discrepantly higher VIQ, and vice versa. IQD (PIQ - VIQ) had significant positive correlations with the fine motor domain and fine motor subtests of the CDIIT ( r =0.18-0.29, p motor skills in preschool-aged children with ASD. This study suggests important implications for clinicians, therapists, and researchers: discrepantly higher PIQ could be related to better visual-motor coordination, and discrepantly higher VIQ could be related to poor visual-motor coordination. Furthermore, the results support that when therapists are working with preschool-aged children with ASD who are developing fine motor skills or undertaking fine motor tasks related to visual-motor coordination, they may need to pay attention to the children's IQD.

  4. The relationship between the behavior problems and motor skills of students with intellectual disability.

    Science.gov (United States)

    Lee, Yangchool; Jeoung, Bogja

    2016-12-01

    The purpose of this study was to determine the relationship between the motor skills and the behavior problems of students with intellectual disabilities. The study participants were 117 students with intellectual disabilities who were between 7 and 25 years old (male, n=79; female, n=38) and attending special education schools in South Korea. Motor skill abilities were assessed by using the second version of the Bruininks-Oseretsky test of motor proficiency, which includes subtests in fine motor control, manual coordination, body coordination, strength, and agility. Data were analyzed with SPSS IBM 21 by using correlation and regression analyses, and the significance level was set at P Manual dexterity showed a statistically significant influence on somatic complaint and anxiety/depression, and bilateral coordination had a statistically significant influence on social problems, attention problem, and aggressive behavior. Our results showed that balance had a statistically significant influence on social problems and aggressive behavior, and speed and agility had a statistically significant influence on social problems and aggressive behavior. Upper limb coordination and strength had a statistically significant influence on social problems.

  5. Associação entre o índice de massa corporal e a coordenação motora em crianças The association between body mass index and motor coordination in children

    Directory of Open Access Journals (Sweden)

    Maria Mafalda Melo

    2013-03-01

    Full Text Available O propósito do estudo foi analisar a associação entre o índice de massa corporal (IMC e a coordenação motora (CM. Foram avaliadas 794 crianças (seis a nove anos de ambos sexos na CM, com a bateria de testes KTK. O IMC foi calculado a partir das medidas de peso e estatura [Peso(kg/Estatura (cm²]. Quer nas meninas (χ² = 93,96; p The purpose of this study was to analyze the association between body mass index (BMI and motor coordination (MC in children. Data were collected in 794 children, ages 6-9 years. BMI was calculated from measured height and weight [Body mass (kg/Height (m²]. MC was evaluated using KTK. In both girls (χ² = 93.96; p < 0.001 and boys (χ² = 46.98; p < 0.001. There were significant differences in MC between the three groups of BMI (normal weight, overweight, obese. Normal weight children of both sexes have better outcomes than those who are overweight, and these in turn have better results than the obese. MC is moderately and negatively associated with BMI and the association increases during childhood (-0.16 to -0.50. In both boys and girls overweight and obese have lower levels of MC than normal weight children.

  6. Evidence that a Motor Timing Deficit Is a Factor in the Development of Stuttering

    Science.gov (United States)

    Olander, Lindsey; Smith, Anne; Zelaznik, Howard N.

    2010-01-01

    Purpose: To determine whether young children who stutter have a basic motor timing and/or a coordination deficit. Method: Between-hands coordination and variability of rhythmic motor timing were assessed in 17 children who stutter (4-6 years of age) and 13 age-matched controls. Children clapped in rhythm with a metronome with a 600-ms interbeat…

  7. Motor Learning: An Analysis of 100 Trials of a Ski Slalom Game in Children with and without Developmental Coordination Disorder.

    Science.gov (United States)

    Smits-Engelsman, Bouwien C M; Jelsma, Lemke Dorothee; Ferguson, Gillian D; Geuze, Reint H

    2015-01-01

    Although Developmental Coordination Disorder (DCD) is often characterized as a skill acquisition deficit disorder, few studies have addressed the process of motor learning. This study examined learning of a novel motor task; the Wii Fit ski slalom game. The main objectives were to determine: 1) whether learning occurs over 100 trial runs of the game, 2) if the learning curve is different between children with and without DCD, 3) if learning is different in an easier or harder version of the task, 4) if learning transfers to other balance tasks. 17 children with DCD (6-10 years) and a matched control group of 17 typically developing (TD) children engaged in 20 minutes of gaming, twice a week for five weeks. Each training session comprised of alternating trial runs, with five runs at an easy level and five runs at a difficult level. Wii scores, which combine speed and accuracy per run, were recorded. Standardized balance tasks were used to measure transfer. Significant differences in initial performance were found between groups on the Wii score and balance tasks. Both groups improved their Wii score over the five weeks. Improvement in the easy and in the hard task did not differ between groups. Retention in the time between training sessions was not different between TD and DCD groups either. The DCD group improved significantly on all balance tasks. The findings in this study give a fairly coherent picture of the learning process over a medium time scale (5 weeks) in children novice to active computer games; they learn, retain and there is evidence of transfer to other balance tasks. The rate of motor learning is similar for those with and without DCD. Our results raise a number of questions about motor learning that need to be addressed in future research.

  8. The dentate nucleus in children: normal development and patterns of disease

    Energy Technology Data Exchange (ETDEWEB)

    McErlean, Aoife; Abdalla, Khaled; Donoghue, Veronica; Ryan, Stephanie [Children' s University Hospital, Radiology Department, Dublin (Ireland)

    2010-03-15

    The dentate nuclei lie deep within the cerebellum and play a vital role in the pathways involved in fine motor control and coordination. They are susceptible to a variety of diseases. Some pathological processes preferentially affect the dentate nuclei, while concomitant basal ganglia or white matter involvement can be a striking finding in others. A familiarity with the normal appearance of the dentate nuclei at different ages in combination with the radiological distribution of pathology in the brain allows the paediatric radiologist to develop a logical approach to the interpretation of MR imaging of these deep cerebellar nuclei. In this article we review the normal appearance and MR features of the dentate nuclei, including changes that are seen with myelination. We describe the specific imaging characteristics of childhood diseases that involve the dentate nuclei, and develop a systematic approach to the differential diagnosis of dentate nucleus abnormalities on MR imaging. (orig.)

  9. The dentate nucleus in children: normal development and patterns of disease

    International Nuclear Information System (INIS)

    McErlean, Aoife; Abdalla, Khaled; Donoghue, Veronica; Ryan, Stephanie

    2010-01-01

    The dentate nuclei lie deep within the cerebellum and play a vital role in the pathways involved in fine motor control and coordination. They are susceptible to a variety of diseases. Some pathological processes preferentially affect the dentate nuclei, while concomitant basal ganglia or white matter involvement can be a striking finding in others. A familiarity with the normal appearance of the dentate nuclei at different ages in combination with the radiological distribution of pathology in the brain allows the paediatric radiologist to develop a logical approach to the interpretation of MR imaging of these deep cerebellar nuclei. In this article we review the normal appearance and MR features of the dentate nuclei, including changes that are seen with myelination. We describe the specific imaging characteristics of childhood diseases that involve the dentate nuclei, and develop a systematic approach to the differential diagnosis of dentate nucleus abnormalities on MR imaging. (orig.)

  10. Torque limit of PM motors for field-weakening region operation

    Science.gov (United States)

    Royak, Semyon [Beachwood, OH; Harbaugh, Mark M [Richfield, OH

    2012-02-14

    The invention includes a motor controller and technique for controlling a permanent magnet motor. In accordance with one aspect of the present technique, a permanent magnet motor is controlled by receiving a torque command, determining a physical torque limit based on a stator frequency, determining a theoretical torque limit based on a maximum available voltage and motor inductance ratio, and limiting the torque command to the smaller of the physical torque limit and the theoretical torque limit. Receiving the torque command may include normalizing the torque command to obtain a normalized torque command, determining the physical torque limit may include determining a normalized physical torque limit, determining a theoretical torque limit may include determining a normalized theoretical torque limit, and limiting the torque command may include limiting the normalized torque command to the smaller of the normalized physical torque limit and the normalized theoretical torque limit.

  11. Deliberate play and preparation jointly benefit motor and cognitive development: mediated and moderated effects

    Directory of Open Access Journals (Sweden)

    Caterina ePesce

    2016-03-01

    Full Text Available In light of the interrelation between motor and cognitive development and the predictive value of the former for the latter, the secular decline observed in motor coordination ability as early as preschool urges identification of interventions that may jointly impact motor and cognitive efficiency.The aim of this study was twofold. It (1 explored the outcomes of enriched physical education, centered on deliberate play and cognitively challenging variability of practice, on motor coordination and cognitive processing; (2 examined whether motor coordination outcomes mediate intervention effects on children’s cognition, while controlling for moderation by lifestyle factors as outdoor play habits and weight status. Four hundred and sixty children aged 5-10 years participated in a 6-month group randomized intervention in physical education, with or without playful coordinative and cognitive enrichment. The weight status and spontaneous outdoor play habits of children (parental report of outdoor play were evaluated at baseline. Before and after the intervention, motor developmental level (Movement Assessment Battery for Children was evaluated in all children, who were then assessed either with a test of working memory (Random Number Generation task, or with a test of attention (from the Cognitive Assessment System, CAS.Children assigned to the ‘enriched’ intervention showed more pronounced improvements in all motor coordination assessments (manual dexterity, ball skills, static/dynamic balance. The beneficial effect on ball skills was amplified by the level of spontaneous outdoor play and weight status. Among indices of executive function and attention, only that of inhibition showed a differential effect of intervention type. Moderated mediation showed that the better outcome of the enriched physical education on ball skills mediated the better inhibition outcome, but only when the enrichment intervention was paralleled by a medium

  12. 24-h actigraphic monitoring of motor activity, sleeping and eating behaviors in underweight, normal weight, overweight and obese children.

    Science.gov (United States)

    Martoni, Monica; Carissimi, Alicia; Fabbri, Marco; Filardi, Marco; Tonetti, Lorenzo; Natale, Vincenzo

    2016-12-01

    Within a chronobiological perspective, the present study aimed to describe 24 h of sleep-wake cycle, motor activity, and food intake patterns in different body mass index (BMI) categories of children through 7 days of actigraphic recording. Height and weight were objectively measured for BMI calculation in a sample of 115 Italian primary schoolchildren (10.21 ± 0.48 years, 62.61 % females). According to BMI values, 2.60 % were underweight, 61.70 % were of normal weight, 29.60 % were overweight and 6.10 % were obese. Participants wore a wrist actigraph continuously for 7 days to record motor activity and describe sleep-wake patterns. In addition, participants were requested to push the event-marker button of the actigraph each time they consumed food to describe their circadian eating patterns. BMI group differences were found for sleep quantity (i.e. midpoint of sleep and amplitude), while sleep quality, 24-h motor activity and food intake patterns were similar between groups. Regression analyses showed that BMI was negatively predicted by sleep duration on schooldays. BMI was also predicted by motor activity and by food intake frequencies recorded at particular times of day during schooldays and at the weekend. The circadian perspective seems to provide promising insight into childhood obesity, but this aspect needs to be further explored.

  13. Information for Parents and Teachers on the European Academy for Childhood Disability (EACD) Recommendations on Developmental Coordination Disorder

    Science.gov (United States)

    Blank, Rainer

    2012-01-01

    Developmental coordination disorder (DCD) is a condition characterized by difficulty in the development of motor coordination and learning new motor skills. It impacts on a child's ability to carry out everyday tasks such as getting dressed, using cutlery, writing or drawing, running, and playing sport. It is not due to any intellectual difficulty…

  14. Associations of Body Mass Index, Motor Performance, and Perceived Athletic Competence with Physical Activity in Normal Weight and Overweight Children.

    Science.gov (United States)

    Morrison, Kyle M; Cairney, John; Eisenmann, Joe; Pfeiffer, Karin; Gould, Dan

    2018-01-01

    Children who are overweight and obese display lower physical activity levels than normal weight peers. Measures of weight status, perceived motor competence, and motor skill performance have been identified as potential correlates explaining this discrepancy. 1881 children (955 males; 926 females; 9.9 years) were assessed as part of the Physical Health Activity Study Team project. The age, habitual physical activity participation (PAP), body mass index (BMI), socioeconomic status (SES), motor performance (MP), and perceived athletic competence (PAC) of each child included were assessed. Gender-specific linear regression analyses (main effects model) were conducted to identify the percent variance in PAP explained by the following variables: BMI, MP, and PAC. For males, 18.3% of the variance in PAP was explained by BMI, MP, and PAC. PAC explained 17% of the variance, while MP, BMI, and SES only accounted for 0.6%, 0.7%, and 0.5%, respectively. PAC explained 17.5% of PAP variance in females; MP explained 0.8%. BMI, SES, and chronological age were not significant correlates of PAP in girls. An established repertoire of motor skill performance has been seen as a vehicle to PAP in children; however, this study indicates that PAC should not be overlooked in intervention strategies to promote increased PAP.

  15. Associations of Body Mass Index, Motor Performance, and Perceived Athletic Competence with Physical Activity in Normal Weight and Overweight Children

    Directory of Open Access Journals (Sweden)

    Kyle M. Morrison

    2018-01-01

    Full Text Available Children who are overweight and obese display lower physical activity levels than normal weight peers. Measures of weight status, perceived motor competence, and motor skill performance have been identified as potential correlates explaining this discrepancy. 1881 children (955 males; 926 females; 9.9 years were assessed as part of the Physical Health Activity Study Team project. The age, habitual physical activity participation (PAP, body mass index (BMI, socioeconomic status (SES, motor performance (MP, and perceived athletic competence (PAC of each child included were assessed. Gender-specific linear regression analyses (main effects model were conducted to identify the percent variance in PAP explained by the following variables: BMI, MP, and PAC. For males, 18.3% of the variance in PAP was explained by BMI, MP, and PAC. PAC explained 17% of the variance, while MP, BMI, and SES only accounted for 0.6%, 0.7%, and 0.5%, respectively. PAC explained 17.5% of PAP variance in females; MP explained 0.8%. BMI, SES, and chronological age were not significant correlates of PAP in girls. An established repertoire of motor skill performance has been seen as a vehicle to PAP in children; however, this study indicates that PAC should not be overlooked in intervention strategies to promote increased PAP.

  16. Impaired Interlimb Coordination of Voluntary Leg Movements in Poststroke Hemiparesis

    Science.gov (United States)

    Tseng, Shih-Chiao

    2010-01-01

    Appropriate interlimb coordination of the lower extremities is particularly important for a variety of functional human motor behaviors such as jumping, kicking a ball, or simply walking. Specific interlimb coordination patterns may be especially impaired after a lesion to the motor system such as stroke, yet this has not been thoroughly examined to date. The purpose of this study was to investigate the motor deficits in individuals with chronic stroke and hemiparesis when performing unilateral versus bilateral inphase versus bilateral antiphase voluntary cyclic ankle movements. We recorded ankle angular trajectories and muscle activity from the dorsiflexors and plantarflexors and compared these between subjects with stroke and a group of healthy age-matched control subjects. Results showed clear abnormalities in both the kinematics and EMG of the stroke subjects, with significant movement degradation during the antiphase task compared with either the unilateral or the inphase task. The abnormalities included prolonged cycle durations, reduced ankle excursions, decreased agonist EMG bursts, and reduced EMG modulation across movement phases. By comparison, the control group showed nearly identical performance across all task conditions. These findings suggest that stroke involving the corticospinal system projection to the leg specifically impairs one or more components of the neural circuitry involved in lower extremity interlimb coordination. The express susceptibility of the antiphase pattern to exaggerated motor deficits could contribute to functional deficits in a number of antiphase leg movement tasks, including walking. PMID:20463199

  17. THE EFFECTIVENESS OF CONDUCTIVE EDUCATION ON MOTOR SKILLS IN CHILDREN WITH CEREBRAL PALSY

    Directory of Open Access Journals (Sweden)

    Negin Khoshvaght

    2017-12-01

    Full Text Available Background: Cerebral palsy is a nonprogressive neuro-developmental disorders that are caused by damage to the developing brain and affect movement and posture. Children with cerebral palsy suffer difficulty in motor function (coordination and control.The present inquiry investigated the impact of conductive education on motor skills in children having cerebral palsy. Methods: A quasi-experimental research was done using pretest-posttest and control group design. The study subjects consisted of all children with cerebral palsy in Shiraz. A sample of 30 subjects was randomly chosen to employ convenience sampling procedure and classified to two groups of treatment (15 subjects and control (15 subjects. The pretest was performed for both groups, and the experimental group received conductive education in 20 sessions. While the control subjects did not have this education, finally, the post-test was performed for both groups. The Lincoln-Oseretsky test was used to measure motor skills. The data were analyzed using ANCOVA and MANCOVA. Results: The results showed that conductive education had a significant effect on motor skills (P<0.001 and its subscales such as speed of movement (P<0.001, general static coordination (P<0.001, general dynamic coordination (P<0.001, dynamic manual coordination (P<0.001, synchronous-asymmetrical voluntary movements (P<0.001, and asynchronous-asymmetrical voluntary movements (P<0.001 in children with cerebral palsy. Conclusion: The findings indicated the effectiveness of conductive education on cerebral palsy children’s motor skills. Therefore, it is recommended to design and implement a conductive education program to improve motor skills of cerebral palsy children.

  18. Disentangling Fine Motor Skills' Relations to Academic Achievement: The Relative Contributions of Visual-Spatial Integration and Visual-Motor Coordination

    Science.gov (United States)

    Carlson, Abby G.; Rowe, Ellen; Curby, Timothy W.

    2013-01-01

    Recent research has established a connection between children's fine motor skills and their academic performance. Previous research has focused on fine motor skills measured prior to elementary school, while the present sample included children ages 5-18 years old, making it possible to examine whether this link remains relevant throughout…

  19. EFFECTS OF A SCHOOL-BASED INTERVENTION ON BMI AND MOTOR ABILITIES IN CHILDHOOD

    Directory of Open Access Journals (Sweden)

    Christine Graf

    2005-09-01

    Full Text Available Obesity in childhood is increasing worldwide. To combat overweight and obesity in childhood, the school-based Children's Health InterventionaL Trial (CHILT project combines health education and physical activity. This paper examines the effect of intervention on the body mass index (BMI and motor abilities after 20.8 ± 1.0 months in 12 randomly selected primary schools compared with 5 randomly selected control schools. The anthropometric data were assessed, BMI was calculated. Coordination was determined by lateral jumping and endurance performance by a 6-minute run. No difference in the prevalence of overweight and obesity was found between the intervention (IS and control schools (CS either at baseline or following intervention (each p > 0.05. The increase in the number of lateral jumps was significantly higher in the IS than in the CS (p < 0.001. For the 6-minute run the increase in distance run was significantly improved in IS (p = 0.020. All variables were controlled for gender and age. Overweight and obese children in both IS and CS produced significantly lower scores in coordination and endurance tasks than normal and underweight children during both examinations (each p < 0.001, adjusted for gender and age. Preventive intervention in primary schools offers an effective means to improve motor skills in childhood and to break through the vicious circle of physical inactivity - motor deficits - frustration - increasing inactivity possibly combined with an excess energy intake and weight gain. To prevent overweight and obesity these measures have to be intensified

  20. A finite element code for electric motor design

    Science.gov (United States)

    Campbell, C. Warren

    1994-01-01

    FEMOT is a finite element program for solving the nonlinear magnetostatic problem. This version uses nonlinear, Newton first order elements. The code can be used for electric motor design and analysis. FEMOT can be embedded within an optimization code that will vary nodal coordinates to optimize the motor design. The output from FEMOT can be used to determine motor back EMF, torque, cogging, and magnet saturation. It will run on a PC and will be available to anyone who wants to use it.

  1. Correlates of Gross Motor Competence in Children and Adolescents: A Systematic Review and Meta-Analysis.

    Science.gov (United States)

    Barnett, Lisa M; Lai, Samuel K; Veldman, Sanne L C; Hardy, Louise L; Cliff, Dylan P; Morgan, Philip J; Zask, Avigdor; Lubans, David R; Shultz, Sarah P; Ridgers, Nicola D; Rush, Elaine; Brown, Helen L; Okely, Anthony D

    2016-11-01

    Gross motor competence confers health benefits, but levels in children and adolescents are low. While interventions can improve gross motor competence, it remains unclear which correlates should be targeted to ensure interventions are most effective, and for whom targeted and tailored interventions should be developed. The aim of this systematic review was to identify the potential correlates of gross motor competence in typically developing children and adolescents (aged 3-18 years) using an ecological approach. Motor competence was defined as gross motor skill competency, encompassing fundamental movement skills and motor coordination, but excluding motor fitness. Studies needed to assess a summary score of at least one aspect of motor competence (i.e., object control, locomotor, stability, or motor coordination). A structured electronic literature search was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement. Six electronic databases (CINAHL Complete, ERIC, MEDLINE Complete, PsycINFO ® , Scopus and SPORTDiscus with Full Text) were searched from 1994 to 5 August 2014. Meta-analyses were conducted to determine the relationship between potential correlates and motor competency if at least three individual studies investigated the same correlate and also reported standardized regression coefficients. A total of 59 studies were identified from 22 different countries, published between 1995 and 2014. Studies reflected the full range of age groups. The most examined correlates were biological and demographic factors. Age (increasing) was a correlate of children's motor competence. Weight status (healthy), sex (male) and socioeconomic background (higher) were consistent correlates for certain aspects of motor competence only. Physical activity and sport participation constituted the majority of investigations in the behavioral attributes and skills category. Whilst we found physical activity to be a positive

  2. Motor skills training promotes motor functional recovery and induces synaptogenesis in the motor cortex and striatum after intracerebral hemorrhage in rats.

    Science.gov (United States)

    Tamakoshi, Keigo; Ishida, Akimasa; Takamatsu, Yasuyuki; Hamakawa, Michiru; Nakashima, Hiroki; Shimada, Haruka; Ishida, Kazuto

    2014-03-01

    We investigated the effects of motor skills training on several types of motor function and synaptic plasticity following intracerebral hemorrhage (ICH) in rats. Male Wistar rats were injected with collagenase into the left striatum to induce ICH, and they were randomly assigned to the ICH or sham groups. Each group was divided into the motor skills training (acrobatic training) and control (no exercise) groups. The acrobatic group performed acrobatic training from 4 to 28 days after surgery. Motor functions were assessed by motor deficit score, the horizontal ladder test and the wide or narrow beam walking test at several time points after ICH. The number of ΔFosB-positive cells was counted using immunohistochemistry to examine neuronal activation, and the PSD95 protein levels were analyzed by Western blotting to examine synaptic plasticity in the bilateral sensorimotor cortices and striata at 14 and 29 days after ICH. Motor skills training following ICH significantly improved gross motor function in the early phase after ICH and skilled motor coordinated function in the late phase. The number of ΔFosB-positive cells in the contralateral sensorimotor cortex in the acrobatic group significantly increased compared to the control group. PSD95 protein expression in the motor cortex significantly increased in the late phase, and in the striatum, the protein level significantly increased in the early phase by motor skills training after ICH compared to no training after ICH. We demonstrated that motor skills training improved motor function after ICH in rats and enhanced the neural activity and synaptic plasticity in the striatum and sensorimotor cortex. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Functional aging impairs the role of feedback in motor learning.

    Science.gov (United States)

    Liu, Yu; Cao, Chunmei; Yan, Jin H

    2013-10-01

    Optimal motor skill acquisition frequently requires augmented feedback or knowledge of results (KR). However, the effect of functional declines on the benefits of KR remains to be determined. The objective of this research was to examine how cognitive and motor deficits of older adults influence the use of KR for motor skill learning. A total of 57 older adults (mean 73.1 years; SD 4.2) received both cognitive and eye-hand coordination assessments, whereas 55 young controls (mean 25.8 years; SD 3.8) took only the eye-hand coordination test. All young and older participants learned a time-constrained arm movement through KR in three pre-KR and post-KR intervals. In the subsequent no-KR skill retests, absolute and variable time errors were not significantly reduced for the older learners who had KR during skill practice, especially for those with cognitive and motor dysfunctions. The finding suggests that KR results in no measureable improvement for older adults with cognitive and motor functional deficiencies. More importantly, for the older adults, longer post-KR intervals showed greater detrimental effects on feedback-based motor learning than shorter pauses after KR delivery. The findings support the hypothesis about the effects of cognitive and motor deficits on KR in motor skill learning of older adults. The dynamics of cognitive and motor aging, external feedback and internal control mechanisms collectively explain the deterioration in the sensory-motor learning of older adults. The theoretical implications and practical relevance of functional aging for motor skill learning are discussed. © 2013 Japan Geriatrics Society.

  4. A central pattern generator producing alternative outputs: pattern, strength, and dynamics of premotor synaptic input to leech heart motor neurons.

    Science.gov (United States)

    Norris, Brian J; Weaver, Adam L; Wenning, Angela; García, Paul S; Calabrese, Ronald L

    2007-11-01

    The central pattern generator (CPG) for heartbeat in medicinal leeches consists of seven identified pairs of segmental heart interneurons and one unidentified pair. Four of the identified pairs and the unidentified pair of interneurons make inhibitory synaptic connections with segmental heart motor neurons. The CPG produces a side-to-side asymmetric pattern of intersegmental coordination among ipsilateral premotor interneurons corresponding to a similarly asymmetric fictive motor pattern in heart motor neurons, and asymmetric constriction pattern of the two tubular hearts, synchronous and peristaltic. Using extracellular recordings from premotor interneurons and voltage-clamp recordings of ipsilateral segmental motor neurons in 69 isolated nerve cords, we assessed the strength and dynamics of premotor inhibitory synaptic output onto the entire ensemble of heart motor neurons and the associated conduction delays in both coordination modes. We conclude that premotor interneurons establish a stereotypical pattern of intersegmental synaptic connectivity, strengths, and dynamics that is invariant across coordination modes, despite wide variations among preparations. These data coupled with a previous description of the temporal pattern of premotor interneuron activity and relative phasing of motor neuron activity in the two coordination modes enable a direct assessment of how premotor interneurons through their temporal pattern of activity and their spatial pattern of synaptic connectivity, strengths, and dynamics coordinate segmental motor neurons into a functional pattern of activity.

  5. Interactive Metronome Training in Children with Attention Deficit and Developmental Coordination Disorders

    Science.gov (United States)

    Cosper, Sharon M.; Lee, Gregory P.; Peters, Susan Beth; Bishop, Elizabeth

    2009-01-01

    The objective of this study was to examine the efficacy of Interactive Metronome (Interactive Metronome, Sunrise, Florida, USA) training in a group of children with mixed attentional and motor coordination disorders to further explore which subcomponents of attentional control and motor functioning the training influences. Twelve children who had…

  6. Features of structure of motor nerve endings in the tongue of normal and dehydrated rats

    Directory of Open Access Journals (Sweden)

    S. L. Popel’

    2017-07-01

    Full Text Available This study aims at an analytical review of scientific literature on the structure of the tongue of different animals and humans, and also at studying the features of the structure of motor nerve endings in the tongue muscles of healthy rats and rats that have undergone prolonged dehydration. Over 14 days, using histological methods we studied neuromuscular endings and peculiarities of their distribution in the tongue muscles of 25 mature rats, both in normal condition and under dehydration. The analysis of the results showed different structures of differentiated motor nerve endings among the rats in normal condition, and also revealed the peculiarities and quantitative characteristics of the components of the neuromuscular endings in relation to the duration of dehydration. The type of neuromuscular ending reflects the morphologically interdependent structure of efferent neuromediators in relation to a part of the tongue. This may determine the nature of the processes of prehension and chewing of food. The structure of neuromuscular endings of the muscles of the tip of the tongue is the most differentiated, they are more numerous and larger. The tip of the tongue of rats had a higher number of nuclei and larger size of the neuromuscular endings of the muscles than the other parts. This, perhaps, is determined by the speed of the movements of the tongue due to eating different foods. The number of nuclei and the size of neuromuscular endings are characterized by significant variations in the pattern of axon branching, which is determined by the anatomical, physiological and biomechanical conditions of functioning of the rats’ tongue muscles. The quantitative analysis of structural peculiarities of axomycin synapses showed that muscle fibers of the tongue have neuroumuscular endings with regulated synaptoarchitectonics which is characterized by the sprouting of the motor axon, a certain length and width of the active zones, number and size of

  7. Motor Importance of motor assessment in school children: analysis of the reliability of the motor development scale

    Directory of Open Access Journals (Sweden)

    Kassandra Nunes Amaro

    2010-09-01

    Full Text Available The objective of this study was to investigate the motor performance of school chil-dren aged 6 to 10 years without learning difficulties (n=101, and to analyze the reliability of the Motor Development Scale (MDS (Rosa Neto, 2002. Descriptive statistics with calculation of the mean, standard deviation, and range was used for data analysis. The internal consistency of the MDS was assessed using Cronbach’s alpha coefficient, and the correlation between variables was determined by Pearson’s linear correlation, with p<0.05. The results showed (1 that motor development was within normal limits in 96% of the children, and (2 a high correlation betwe-en chronological age and general motor age, indicating good internal consistency. These data demonstrate the logic and structured design of the MDS, confirming its reliability.

  8. A coaches' perspective on the contribution of anthropometry, physical performance, and motor coordination in racquet sports.

    Science.gov (United States)

    Robertson, Kamasha; Pion, Johan; Mostaert, Mireille; Norjali Wazir, Mohd Rozilee Wazir; Kramer, Tamara; Faber, Irene Renate; Vansteenkiste, Pieter; Lenoir, Matthieu

    2018-02-21

    Differences and similarities between table tennis and other racquet sports exist, but are not well documented in the literature, in spite of the relevance for talent identification. In this study we aimed at identifying the key characteristics of table tennis in comparison with tennis and badminton based upon a survey in coaches. A total of 177 licensed coaches from all across the world and with diverse professional backgrounds completed a survey on anthropometric measures, physical performance, and motor coordination skills. On a scale from 1 to 10, coaches indicated to what extent a talent characteristic was important for their sport. MANOVA identified key differences as well as similarities between all three racquet sports and a subsequent discriminant analysis allocated coaches correctly for table tennis, tennis, and badminton 81.01%, 55.6%, and 71.4% respectively. Our results show that table tennis and other racquet sport coaches are well aware of differences between the racquet sports and also the importance and value of testing and assortment of skill components. These findings can assist coaches in future talent orientation and transfer in racquet sports.

  9. Energy-saving motor; Energiesparmotor

    Energy Technology Data Exchange (ETDEWEB)

    Lindegger, M.

    2002-07-01

    This report for the Swiss Federal Office of Energy (SFOE) describes the development and testing of an advanced electrical motor using a permanent-magnet rotor. The aims of the project - to study the technical feasibility and market potential of the Eco-Motor - are discussed and the three phases of the project described. These include the calculation and realisation of a 250-watt prototype operating at 230 V, the measurement of the motor's characteristics as well as those of a comparable asynchronous motor on the test bed at the University of Applied Science in Lucerne, Switzerland, and a market study to establish if the Eco-Motor and its controller can compete against normal asynchronous motors. Also, the results of an analysis of the energy-savings potential is made, should such Eco-Motors be used. Detailed results of the three phases of the project are presented and the prospects of producing such motors in Switzerland for home use as well as for export are examined.

  10. SDRE control strategy applied to a nonlinear robotic including drive motor

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Jeferson J. de, E-mail: jefersonjl82@gmail.com, E-mail: tusset@utfpr.edu.br, E-mail: fcjanzen@utfpr.edu.br, E-mail: piccirillo@utfpr.edu.br, E-mail: claudinor@utfpr.edu.br; Tusset, Angelo M., E-mail: jefersonjl82@gmail.com, E-mail: tusset@utfpr.edu.br, E-mail: fcjanzen@utfpr.edu.br, E-mail: piccirillo@utfpr.edu.br, E-mail: claudinor@utfpr.edu.br; Janzen, Frederic C., E-mail: jefersonjl82@gmail.com, E-mail: tusset@utfpr.edu.br, E-mail: fcjanzen@utfpr.edu.br, E-mail: piccirillo@utfpr.edu.br, E-mail: claudinor@utfpr.edu.br; Piccirillo, Vinicius, E-mail: jefersonjl82@gmail.com, E-mail: tusset@utfpr.edu.br, E-mail: fcjanzen@utfpr.edu.br, E-mail: piccirillo@utfpr.edu.br, E-mail: claudinor@utfpr.edu.br; Nascimento, Claudinor B., E-mail: jefersonjl82@gmail.com, E-mail: tusset@utfpr.edu.br, E-mail: fcjanzen@utfpr.edu.br, E-mail: piccirillo@utfpr.edu.br, E-mail: claudinor@utfpr.edu.br [UTFPR-PONTA GROSSA, PR (Brazil); Balthazar, José M., E-mail: jmbaltha@rc.unesp.br [UNESP-BAURU, SP (Brazil); Brasil, Reyolando M. L. R. da Fonseca, E-mail: reyolando.brasil@ufabc.edu.br [UFABC-SANTO ANDRE, SP (Brazil)

    2014-12-10

    A robotic control design considering all the inherent nonlinearities of the robot-engine configuration is developed. The interactions between the robot and joint motor drive mechanism are considered. The proposed control combines two strategies, one feedforward control in order to maintain the system in the desired coordinate, and feedback control system to take the system into a desired coordinate. The feedback control is obtained using State-Dependent Riccati Equation (SDRE). For link positioning two cases are considered. Case I: For control positioning, it is only used motor voltage; Case II: For control positioning, it is used both motor voltage and torque between the links. Simulation results, including parametric uncertainties in control shows the feasibility of the proposed control for the considered system.

  11. Eye Gaze Correlates of Motor Impairment in VR Observation of Motor Actions.

    Science.gov (United States)

    Alves, J; Vourvopoulos, A; Bernardino, A; Bermúdez I Badia, S

    2016-01-01

    This article is part of the Focus Theme of Methods of Information in Medicine on "Methodologies, Models and Algorithms for Patients Rehabilitation". Identify eye gaze correlates of motor impairment in a virtual reality motor observation task in a study with healthy participants and stroke patients. Participants consisted of a group of healthy subjects (N = 20) and a group of stroke survivors (N = 10). Both groups were required to observe a simple reach-and-grab and place-and-release task in a virtual environment. Additionally, healthy subjects were required to observe the task in a normal condition and a constrained movement condition. Eye movements were recorded during the observation task for later analysis. For healthy participants, results showed differences in gaze metrics when comparing the normal and arm-constrained conditions. Differences in gaze metrics were also found when comparing dominant and non-dominant arm for saccades and smooth pursuit events. For stroke patients, results showed longer smooth pursuit segments in action observation when observing the paretic arm, thus providing evidence that the affected circuitry may be activated for eye gaze control during observation of the simulated motor action. This study suggests that neural motor circuits are involved, at multiple levels, in observation of motor actions displayed in a virtual reality environment. Thus, eye tracking combined with action observation tasks in a virtual reality display can be used to monitor motor deficits derived from stroke, and consequently can also be used for rehabilitation of stroke patients.

  12. Interhemispheric Cortical Inhibition Is Reduced in Young Adults With Developmental Coordination Disorder

    OpenAIRE

    Jason L. He; Ian Fuelscher; Peter G. Enticott; Wei-peng Teo; Pamela Barhoun; Christian Hyde

    2018-01-01

    IntroductionWhile the etiology of developmental coordination disorder (DCD) is yet to be established, brain-behavior modeling provides a cogent argument that neuropathology may subserve the motor difficulties typical of DCD. We argue that a number of the core behavioral features of the DCD profile (such as poor surround inhibition, compromised motor inhibition, and the presence of mirror movements) are consistent with difficulties regulating inhibition within the primary motor cortex (M1). Th...

  13. The effects of virtual reality-based bilateral arm training on hemiplegic children's upper limb motor skills.

    Science.gov (United States)

    Do, Ji-Hye; Yoo, Eun-Young; Jung, Min-Ye; Park, Hae Yean

    2016-01-01

    Hemiplegic cerebral palsy is a neurological symptom appearing on the unilateral arm and leg of the body that causes affected upper/lower limb muscle weakening and dysesthesia and accompanies tetany and difficulties in postural control due to abnormal muscle tone, and difficulties in body coordination. The purpose of this study was to examine the impact of virtual reality-based bilateral arm training on the motor skills of children with hemiplegic cerebral palsy, in terms of their upper limb motor skills on the affected side, as well as their bilateral coordination ability. The research subjects were three children who were diagnosed with hemiplegic cerebral palsy. The research followed an ABA design, which was a single-subject experimental design. The procedure consisted of a total of 20 sessions, including four during the baseline period (A1), 12 during the intervention period (B), and four during the baseline regression period (A2), For the independent variable bilateral arm training based on virtual reality, Nintendo Wii game was played for 30 minutes in each of the 12 sessions. For the dependent variables of upper limb motor skills on the affected side and bilateral coordination ability, a Wolf Motor Function Test (WMFT) was carried out for each session and the Pediatric Motor Activity Log (PMAL) was measured before and after the intervention, as well as after the baseline regression period. To test bilateral coordination ability, shooting baskets in basketball with both hands and moving large light boxes were carried out under operational definitions, with the number of shots and time needed to move boxes measured. The results were presented using visual graphs and bar graphs. The study's results indicated that after virtual reality-based bilateral arm training, improvement occurred in upper limb motor skills on the affected sides, and in bilateral coordination ability, for all of the research subjects. Measurements of the effects of sustained therapy after

  14. Age-Related Differences in Motor Coordination during Simultaneous Leg Flexion and Finger Extension: Influence of Temporal Pressure

    Science.gov (United States)

    Hussein, Tarek; Yiou, Eric; Larue, Jacques

    2013-01-01

    Although the effect of temporal pressure on spatio-temporal aspects of motor coordination and posture is well established in young adults, there is a clear lack of data on elderly subjects. This work examined the aging-related effects of temporal pressure on movement synchronization and dynamic stability. Sixteen young and eleven elderly subjects performed series of simultaneous rapid leg flexions in an erect posture paired with ipsilateral index-finger extensions, minimizing the difference between heel and finger movement onsets. This task was repeated ten times under two temporal conditions (self-initiated [SI] vs. reaction-time [RT]). Results showed that, first, temporal pressure modified movement synchronization; the finger extension preceded swing heel-off in RT, and inversely in SI. Synchronization error and associated standard deviation were significantly greater in elderly than in young adults in SI only, i.e. in the condition where proprioception is thought to be crucial for temporal coordination. Secondly, both groups developed a significantly shorter mediolateral (ML) anticipatory postural adjustment duration in RT (high temporal pressure) than in SI. In both groups, this shortening was compensated by an increase in the anticipatory peak of centre-of-gravity (CoG) acceleration towards the stance-leg so that ML dynamic stability at foot-off, quantified with the “extrapolated centre-of-mass”, remained unchanged across temporal conditions. This increased CoG acceleration was associated with an increased anticipatory peak of ML centre-of-pressure shift towards the swing-leg in young adults only. This suggested that the ability to accelerate the CoG with the centre-of-pressure shift was degraded in elderly, probably due to weakness in the lower limb muscles. Dynamic stability at foot-off was also degraded in elderly, with a consequent increased risk of ML imbalance and falling. The present study provides new insights into the ability of elderly adults to

  15. Age-related differences in motor coordination during simultaneous leg flexion and finger extension: influence of temporal pressure.

    Directory of Open Access Journals (Sweden)

    Tarek Hussein

    Full Text Available Although the effect of temporal pressure on spatio-temporal aspects of motor coordination and posture is well established in young adults, there is a clear lack of data on elderly subjects. This work examined the aging-related effects of temporal pressure on movement synchronization and dynamic stability. Sixteen young and eleven elderly subjects performed series of simultaneous rapid leg flexions in an erect posture paired with ipsilateral index-finger extensions, minimizing the difference between heel and finger movement onsets. This task was repeated ten times under two temporal conditions (self-initiated [SI] vs. reaction-time [RT]. Results showed that, first, temporal pressure modified movement synchronization; the finger extension preceded swing heel-off in RT, and inversely in SI. Synchronization error and associated standard deviation were significantly greater in elderly than in young adults in SI only, i.e. in the condition where proprioception is thought to be crucial for temporal coordination. Secondly, both groups developed a significantly shorter mediolateral (ML anticipatory postural adjustment duration in RT (high temporal pressure than in SI. In both groups, this shortening was compensated by an increase in the anticipatory peak of centre-of-gravity (CoG acceleration towards the stance-leg so that ML dynamic stability at foot-off, quantified with the "extrapolated centre-of-mass", remained unchanged across temporal conditions. This increased CoG acceleration was associated with an increased anticipatory peak of ML centre-of-pressure shift towards the swing-leg in young adults only. This suggested that the ability to accelerate the CoG with the centre-of-pressure shift was degraded in elderly, probably due to weakness in the lower limb muscles. Dynamic stability at foot-off was also degraded in elderly, with a consequent increased risk of ML imbalance and falling. The present study provides new insights into the ability of

  16. Age-related differences in motor coordination during simultaneous leg flexion and finger extension: influence of temporal pressure.

    Science.gov (United States)

    Hussein, Tarek; Yiou, Eric; Larue, Jacques

    2013-01-01

    Although the effect of temporal pressure on spatio-temporal aspects of motor coordination and posture is well established in young adults, there is a clear lack of data on elderly subjects. This work examined the aging-related effects of temporal pressure on movement synchronization and dynamic stability. Sixteen young and eleven elderly subjects performed series of simultaneous rapid leg flexions in an erect posture paired with ipsilateral index-finger extensions, minimizing the difference between heel and finger movement onsets. This task was repeated ten times under two temporal conditions (self-initiated [SI] vs. reaction-time [RT]). Results showed that, first, temporal pressure modified movement synchronization; the finger extension preceded swing heel-off in RT, and inversely in SI. Synchronization error and associated standard deviation were significantly greater in elderly than in young adults in SI only, i.e. in the condition where proprioception is thought to be crucial for temporal coordination. Secondly, both groups developed a significantly shorter mediolateral (ML) anticipatory postural adjustment duration in RT (high temporal pressure) than in SI. In both groups, this shortening was compensated by an increase in the anticipatory peak of centre-of-gravity (CoG) acceleration towards the stance-leg so that ML dynamic stability at foot-off, quantified with the "extrapolated centre-of-mass", remained unchanged across temporal conditions. This increased CoG acceleration was associated with an increased anticipatory peak of ML centre-of-pressure shift towards the swing-leg in young adults only. This suggested that the ability to accelerate the CoG with the centre-of-pressure shift was degraded in elderly, probably due to weakness in the lower limb muscles. Dynamic stability at foot-off was also degraded in elderly, with a consequent increased risk of ML imbalance and falling. The present study provides new insights into the ability of elderly adults to deal

  17. Motor cortex synchronization influences the rhythm of motor performance in premanifest huntington's disease.

    Science.gov (United States)

    Casula, Elias P; Mayer, Isabella M S; Desikan, Mahalekshmi; Tabrizi, Sarah J; Rothwell, John C; Orth, Michael

    2018-03-01

    In Huntington's disease there is evidence of structural damage in the motor system, but it is still unclear how to link this to the behavioral disorder of movement. One feature of choreic movement is variable timing and coordination between sequences of actions. We postulate this results from desynchronization of neural activity in cortical motor areas. The objective of this study was to explore the ability to synchronize activity in a motor network using transcranial magnetic stimulation and to relate this to timing of motor performance. We examined synchronization in oscillatory activity of cortical motor areas in response to an external input produced by a pulse of transcranial magnetic stimulation. We combined this with EEG to compare the response of 16 presymptomatic Huntington's disease participants with 16 age-matched healthy volunteers to test whether the strength of synchronization relates to the variability of motor performance at the following 2 tasks: a grip force task and a speeded-tapping task. Phase synchronization in response to M1 stimulation was lower in Huntington's disease than healthy volunteers (P synchronization (r = -0.356; P synchronization and desynchronization could be a physiological basis for some key clinical features of Huntington's disease. © 2018 International Parkinson and Movement Disorder Society. © 2018 International Parkinson and Movement Disorder Society.

  18. Evaluating the importance of social motor synchronization and motor skill for understanding autism.

    Science.gov (United States)

    Fitzpatrick, Paula; Romero, Veronica; Amaral, Joseph L; Duncan, Amie; Barnard, Holly; Richardson, Michael J; Schmidt, R C

    2017-10-01

    Impairments in social interaction and communicating with others are core features of autism spectrum disorder (ASD), but the specific processes underlying such social competence impairments are not well understood. An important key for increasing our understanding of ASD-specific social deficits may lie with the social motor synchronization that takes place when we implicitly coordinate our bodies with others. Here, we tested whether dynamical measures of synchronization differentiate children with ASD from controls and further explored the relationships between synchronization ability and motor control problems. We found (a) that children with ASD exhibited different and less stable patterns of social synchronization ability than controls; (b) children with ASD performed motor movements that were slower and more variable in both spacing and timing; and (c) some social synchronization that involved motor timing was related to motor ability but less rhythmic synchronization was not. These findings raise the possibility that objective dynamical measures of synchronization ability and motor skill could provide new insights into understanding the social deficits in ASD that could ultimately aid clinical diagnosis and prognosis. Autism Res 2017, 10: 1687-1699. © 2017 International Society for Autism Research, Wiley Periodicals, Inc. © 2017 International Society for Autism Research, Wiley Periodicals, Inc.

  19. Robotic set-up to quantify hand-eye behavior in motor execution and learning of children with autism spectrum disorder.

    Science.gov (United States)

    Casellato, Claudia; Gandolla, Marta; Crippa, Alessandro; Pedrocchi, Alessandra

    2017-07-01

    Autism spectrum disorder (ASD) is a multifaceted neurodevelopmental disorder characterized by a persistence of social and communication impairment, and restricted and repetitive behaviors. However, motor disorders have also been described, but not objectively assessed. Most studies showed inefficient eye-hand coordination and motor learning in children with ASD; in other experiments, mechanisms of acquisition of internal models in self-generated movements appeared to be normal in autism. In this framework, we have developed a robotic protocol, recording gaze and hand data during upper limb tasks, in which a haptic pen-like handle is moved along specific trajectories displayed on the screen. The protocol includes trials of reaching under a perturbing force field and catching moving targets, with or without visual availability of the whole path. We acquired 16 typically-developing scholar-age children and one child with ASD as a case study. Speed-accuracy tradeoff, motor performance, and gaze-hand spatial coordination have been evaluated. Compared to typically developing peers, in the force field sequence, the child with ASD showed an intact but delayed learning, and more variable gazehand patterns. In the catching trials, he showed less efficient movements, but an intact capability of exploiting the available a-priori plan. The proposed protocol represents a powerful tool, easily tunable, for quantitative (longitudinal) assessment, and for subject-tailored training in ASD.

  20. CORRELATION BETWEEN MOTOR DIMENSIONS AND NEUROTICISM OF BOYS 7 TO 11 YEARS OF AGE

    Directory of Open Access Journals (Sweden)

    Maja Pori

    2009-11-01

    Full Text Available The objective of this investigation was to establish the correlation between selected motor dimensions and personal dimension of neuroticism of children between seven and eleven years of age. The subject sample consisted of 92 schoolboys, attending the first five grades of the elementary school Kette-Murn in Ljubljana. Motor abilities were measured with a battery of 20 motor tasks (flexibility, speed, balance, strength and co-ordination and neuroticism with the Big Five Questionnaire. The association between variables was analysed with correlation analysis. Personal dimension of neuroticism showed high correlation with the tests of coordination and speed in case of the children in lower classes and with the motor tests of flexibility in case of the children in higher classes of primary school.

  1. Comparison the Impact of Spark Motor Program and Basketball Techniques on Improving Gross Motor Skills in Educable Intellectually Disabled Boys

    Directory of Open Access Journals (Sweden)

    Hashem Faal Moghanlo

    2014-09-01

    Full Text Available Background & objectives : Different types of practises are known for improving motor skills in intellectually disabled boys. The purpose of this study was to compar e the impact of spark motor program and basketball on improving of gross motor skills in this people.   Methods: In this semi-experimental study , from 98 educable intellectually disabled students who studied in special school in Urmia, 30 children ( age range of 9 to 13 years and IQ mean 64.4 were selected objectively and divided in three groups (2 experimental and 1 control based on pre - test. BOTMP was used as a measurement of motor ability. Selected motor program (Spark motor program including strengthening training, games, sports and basketball techniques was performed for 24 sessions. T-tests (dependent and co-variance were used to comparison of results.   Results: In Spark group after 24 sessions, there were significant effects on balance (p= 0.000, bilateral coordination (p=0.000 and strength (p=0.001. There was no significant effect in agility and speed (p= 0.343 in basketball techniques group after 24 sessions, there were significant effects in agility and speed (p= 0.001, balance (p= 0.000, bilateral coordination (p= 0.013 and strength (p= 0.007.   Conclusion: Based on the results of this study, it can be claimed that the Spark program and basketball techniques improve gross motor skills in educable intellectually disabled students. We also found a significant difference between the Spark program and basketball techniques efficacy on the improved skills. Furthermore, the efficacy of Spark program was significantly higher than basketball techniques (p<0.05.

  2. In vivo control mechanisms of motor-cargo movement on microtubules

    Science.gov (United States)

    Gunawardena, Shermali

    2014-03-01

    Within axons, molecular motors transport essential components required for neuronal growth and viability. Although many levels of regulation must exist for proper anterograde and retrograde transport of vital proteins, little is known about these mechanisms. Previous work suggested that the amyloid precursor protein (APP) functions as a kinesin-1 receptor during transport. However, how APP vesicle motility is regulated is unclear. Using genetics and in vivo imaging in Drosophila we showed that reduction of presenilin (PS) substantially increased anterograde and retrograde APP vesicle velocities. Strikingly, PS deficiency had no effect on an unrelated cargo vesicle containing synaptotagmin, which is powered by a different kinesin motor. Increased PS-mediated velocities required functional kinesin-1 and dynein motors. We also found that these PS-mediated effects on motor protein function were mediated via a pathway that involves glycogen synthase kinase-3 β (GSK-3 β) . PS genetically interacted with GSK-3 β in an activity dependent manner. Excess of active GSK-3 β perturbed transport by causing axonal blockages, which were enhanced by reduction of kinesin-1 or dynein, while excess of non-functional GSK-3 β had no effect. Strikingly, GSK-3 β-activity dependent transport defects were enhanced by reduction of PS. Collectively, our findings suggest that PS and GSK-3 β are required for normal motor protein function, and we propose a model in which PS likely regulates GSK-3 β activity during transport. These findings have important implications for our understanding of the complex regulatory machinery that must exist in vivo and how this system is coordinated during vesicle motility on microtubules.

  3. Motor and cognitive growth following a Football Training Program

    Directory of Open Access Journals (Sweden)

    Marianna eAlesi

    2015-10-01

    Full Text Available Football may be a physical and sport activities able to improve motor and cognitive growth in children. Therefore the aim of this study was to assess whether a Football Training Program taken over 6 months would improve motor and cognitive performances in children. Motor skills concerned coordinative skills, running and explosive legs strength. Cognitive abilities involved visual discrimination times and visual selective attention times.Forty-six children with chronological age of ~9.10 years, were divided into two groups: Group 1 (n=24 attended a Football Exercise Program and Group 2 (n=22 was composed of sedentary children.Their abilities were measured by a battery of tests including motor and cognitive tasks. Football Exercise Program resulted in improved running, coordination and explosive leg strength performances as well as shorter visual discrimination times in children regularly attending football courses compared with their sedentary peers. On the whole these results support the thesis that the improvement of motor and cognitive abilities is related not only to general physical activity but also to specific ability related to the ball. Football Exercise Programs is assumed to be a natural and enjoyable tool to enhance cognitive resources as well as promoting and encouraging the participation in sport activities from early development.

  4. Motor and cognitive growth following a Football Training Program.

    Science.gov (United States)

    Alesi, Marianna; Bianco, Antonino; Padulo, Johnny; Luppina, Giorgio; Petrucci, Marco; Paoli, Antonio; Palma, Antonio; Pepi, Annamaria

    2015-01-01

    Motor and cognitive growth in children may be influenced by football practice. Therefore the aim of this study was to assess whether a Football Training Program taken over 6 months would improve motor and cognitive performances in children. Motor skills concerned coordinative skills, running, and explosive legs strength. Cognitive abilities involved visual discrimination times and visual selective attention times. Forty-six children with chronological age of ∼9.10 years, were divided into two groups: Group 1 (n = 24) attended a Football Exercise Program and Group 2 (n = 22) was composed of sedentary children. Their abilities were measured by a battery of tests including motor and cognitive tasks. Football Exercise Program resulted in improved running, coordination, and explosive leg strength performances as well as shorter visual discrimination times in children regularly attending football courses compared with their sedentary peers. On the whole these results support the thesis that the improvement of motor and cognitive abilities is related not only to general physical activity but also to specific ability related to the ball. Football Exercise Programs is assumed to be a "natural and enjoyable tool" to enhance cognitive resources as well as promoting and encouraging the participation in sport activities from early development.

  5. Comparison of Health Outcomes Among Children with Different Levels of Motor Competence

    Directory of Open Access Journals (Sweden)

    Chagas Daniel V.

    2017-06-01

    Full Text Available Purpose. While evidence suggests that children with the developmental coordination disorder (DCD have worse health outcomes than their typically developing peers, it remains unclear whether children with low motor competence but without DCD are also characterized by worse health outcomes than those with average motor competence. The main purpose of this study was to compare health outcomes between children with low motor competence without DCD and those with average motor competence.

  6. MOTOR STRUCTURE AND BASIC MOVEMENT COMPETENCES IN EARLY CHILD DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Rado Pišot

    2010-12-01

    Full Text Available Motor development consists of dynamic and continuous development in motor behaviour and is reflected in motor competences (on the locomotive, manipulative and postural level and motor abilities (coordination, strength, speed, balance, flexibility, precision and endurance. This is a complex process in which a child acquires motor abilities and knowledge in interaction with inherited and environmental factors. A sample of 603 boys and girls, of which 263 were aged five (age deviation +/- 3 days; 18,5 ± 3,1kg body weight; 109,4 ± 4,3 cm body height and 340 were aged six and a half (age deviation +/- 3 days; 23, 7 ± 4, 3 kg body weight; 121 ± 4,8 cm body height, were involved in this study after written consent was obtained from their parents. The children's motor structure was established through the application of 28 tests that had been verified on the Slovene population and established as adequate for the study of motor abilities in the sample children. The factor analysis was applied to uncover the latent structure of motor space, and PB (Štalec Momirović criteria were used to establish the number of significant basic components. The analysis of the motor space structure revealed certain particularities for each age period. In the sample of 5 year old children, the use of PB criterion revealed four latent motor dimensions, in 6.5 year old children, the latent motor space structure was described with four (boys and five (girls factors. Despite the existence of gender differences in motor space structure and certain particularities in each age period mostly related to the factors which influence movement coordination, several very similar dimensions were discovered in both sexes.

  7. Equivalent Circuit Modeling of Hysteresis Motors

    Energy Technology Data Exchange (ETDEWEB)

    Nitao, J J; Scharlemann, E T; Kirkendall, B A

    2009-08-31

    We performed a literature review and found that many equivalent circuit models of hysteresis motors in use today are incorrect. The model by Miyairi and Kataoka (1965) is the correct one. We extended the model by transforming it to quadrature coordinates, amenable to circuit or digital simulation. 'Hunting' is an oscillatory phenomenon often observed in hysteresis motors. While several works have attempted to model the phenomenon with some partial success, we present a new complete model that predicts hunting from first principles.

  8. Effects of Bilateral Electrolytic Lesions of the Dorsomedial Striatum on Motor Behavior and Instrumental Learning in Rats

    Directory of Open Access Journals (Sweden)

    Pamphyle Abedi Mukutenga

    2012-08-01

    Full Text Available Introduction: The dorsal striatum plays an important role in the control of motor activity and learning processes within the basal ganglia circuitry. Furthermore, recent works have suggested functional differentiation between subregions of the dorsal striatum Methods: The present study examined the effects of bilateral electrolytic lesions of the dorsomedial striatum on motor behavior and learning ability in rats using a series of behavioral tests. 20 male wistar rats were used in the experiment and behavioral assessment were conducted using open field test, rotarod test and 8-arm radial maze. Results: In the open field test, rats with bilateral electrolytic lesions of the dorsomedial striatum showed a normal motor function in the horizontal locomotor activity, while in rearing activity they displayed a statistically significant motor impairment when compared to sham operated group. In the rotarod test, a deficit in motor coordination and acquisition of skilled behavior was observed in rats with bilateral electrolytic lesions of the dorsomedial striatum compared to sham. However, radial maze performance revealed similar capacity in the acquisition of learning task between experimental groups. Discussion: Our results support the premise of the existence of functional dissociation between the dorsomedial and the dorsolateral regions of the dorsal striatum. In addition, our data suggest that the associative dorsomedial striatum may be as critical in striatum-based motor control.

  9. Social Motor Synchronization: Insights for Understanding Social Behavior in Autism.

    Science.gov (United States)

    Fitzpatrick, Paula; Romero, Veronica; Amaral, Joseph L; Duncan, Amie; Barnard, Holly; Richardson, Michael J; Schmidt, R C

    2017-07-01

    Impairments in social interaction and communication are critical features of ASD but the underlying processes are poorly understood. An under-explored area is the social motor synchronization that happens when we coordinate our bodies with others. Here, we explored the relationships between dynamical measures of social motor synchronization and assessments of ASD traits. We found (a) spontaneous social motor synchronization was associated with responding to joint attention, cooperation, and theory of mind while intentional social motor synchronization was associated with initiating joint attention and theory of mind; and (b) social motor synchronization was associated with ASD severity but not fully explained by motor problems. Findings suggest that objective measures of social motor synchronization may provide insights into understanding ASD traits.

  10. Optimized connectome architecture for sensory-motor integration

    Directory of Open Access Journals (Sweden)

    Jacob C. Worrell

    2017-12-01

    Full Text Available The intricate connectivity patterns of neural circuits support a wide repertoire of communication processes and functional interactions. Here we systematically investigate how neural signaling is constrained by anatomical connectivity in the mesoscale Drosophila (fruit fly brain network. We use a spreading model that describes how local perturbations, such as external stimuli, trigger global signaling cascades that spread through the network. Through a series of simple biological scenarios we demonstrate that anatomical embedding potentiates sensory-motor integration. We find that signal spreading is faster from nodes associated with sensory transduction (sensors to nodes associated with motor output (effectors. Signal propagation was accelerated if sensor nodes were activated simultaneously, suggesting a topologically mediated synergy among sensors. In addition, the organization of the network increases the likelihood of convergence of multiple cascades towards effector nodes, thereby facilitating integration prior to motor output. Moreover, effector nodes tend to coactivate more frequently than other pairs of nodes, suggesting an anatomically enhanced coordination of motor output. Altogether, our results show that the organization of the mesoscale Drosophila connectome imparts privileged, behaviorally relevant communication patterns among sensors and effectors, shaping their capacity to collectively integrate information. The complex network spanned by neurons and their axonal projections promotes a diverse set of functions. In the present report, we study how the topological organization of the fruit fly brain supports sensory-motor integration. Using a simple communication model, we demonstrate that the topology of this network allows efficient coordination among sensory and motor neurons. Our results suggest that brain network organization may profoundly shape the functional repertoire of this simple organism.

  11. Effect of Hfe Deficiency on Memory Capacity and Motor Coordination after Manganese Exposure by Drinking Water in Mice.

    Science.gov (United States)

    Alsulimani, Helal Hussain; Ye, Qi; Kim, Jonghan

    2015-12-01

    Excess manganese (Mn) is neurotoxic. Increased manganese stores in the brain are associated with a number of behavioral problems, including motor dysfunction, memory loss and psychiatric disorders. We previously showed that the transport and neurotoxicity of manganese after intranasal instillation of the metal are altered in Hfe-deficient mice, a mouse model of the iron overload disorder hereditary hemochromatosis (HH). However, it is not fully understood whether loss of Hfe function modifies Mn neurotoxicity after ingestion. To investigate the role of Hfe in oral Mn toxicity, we exposed Hfe-knockout (Hfe (-/-)) and their control wild-type (Hfe (+/+)) mice to MnCl2 in drinking water (5 mg/mL) for 5 weeks. Motor coordination and spatial memory capacity were determined by the rotarod test and the Barnes maze test, respectively. Brain and liver metal levels were analyzed by inductively coupled plasma mass spectrometry. Compared with the water-drinking group, mice drinking Mn significantly increased Mn concentrations in the liver and brain of both genotypes. Mn exposure decreased iron levels in the liver, but not in the brain. Neither Mn nor Hfe deficiency altered tissue concentrations of copper or zinc. The rotarod test showed that Mn exposure decreased motor skills in Hfe (+/+) mice, but not in Hfe (-/-) mice (p = 0.023). In the Barns maze test, latency to find the target hole was not altered in Mn-exposed Hfe (+/+) compared with water-drinking Hfe (+/+) mice. However, Mn-exposed Hfe (-/-) mice spent more time to find the target hole than Mn-drinking Hfe (+/+) mice (p = 0.028). These data indicate that loss of Hfe function impairs spatial memory upon Mn exposure in drinking water. Our results suggest that individuals with hemochromatosis could be more vulnerable to memory deficits induced by Mn ingestion from our environment. The pathophysiological role of HFE in manganese neurotoxicity should be carefully examined in patients with HFE-associated hemochromatosis and

  12. Normalized Excited Squeezed Vacuum State and Its Applications

    International Nuclear Information System (INIS)

    Meng Xiangguo; Wang Jisuo; Liang Baolong

    2007-01-01

    By using the intermediate coordinate-momentum representation in quantum optics and generating function for the normalization of the excited squeezed vacuum state (ESVS), the normalized ESVS is obtained. We find that its normalization constants obtained via two new methods are uniform and a new form which is different from the result obtained by Zhang and Fan [Phys. Lett. A 165 (1992) 14]. By virtue of the normalization constant of the ESVS and the intermediate coordinate-momentum representation, the tomogram of the normalized ESVS and some useful formulae are derived.

  13. Fault tolerant vector control of induction motor drive

    International Nuclear Information System (INIS)

    Odnokopylov, G; Bragin, A

    2014-01-01

    For electric composed of technical objects hazardous industries, such as nuclear, military, chemical, etc. an urgent task is to increase their resiliency and survivability. The construction principle of vector control system fault-tolerant asynchronous electric. Displaying recovery efficiency three-phase induction motor drive in emergency mode using two-phase vector control system. The process of formation of a simulation model of the asynchronous electric unbalance in emergency mode. When modeling used coordinate transformation, providing emergency operation electric unbalance work. The results of modeling transient phase loss motor stator. During a power failure phase induction motor cannot save circular rotating field in the air gap of the motor and ensure the restoration of its efficiency at rated torque and speed

  14. Assessment of motor function, sensory motor gating and recognition memory in a novel BACHD transgenic rat model for huntington disease.

    Science.gov (United States)

    Abada, Yah-Se K; Nguyen, Huu Phuc; Schreiber, Rudy; Ellenbroek, Bart

    2013-01-01

    Huntington disease (HD) is frequently first diagnosed by the appearance of motor symptoms; the diagnosis is subsequently confirmed by the presence of expanded CAG repeats (> 35) in the HUNTINGTIN (HTT) gene. A BACHD rat model for HD carrying the human full length mutated HTT with 97 CAG-CAA repeats has been established recently. Behavioral phenotyping of BACHD rats will help to determine the validity of this model and its potential use in preclinical drug discovery studies. The present study seeks to characterize the progressive emergence of motor, sensorimotor and cognitive deficits in BACHD rats. Wild type and transgenic rats were tested from 1 till 12 months of age. Motor tests were selected to measure spontaneous locomotor activity (open field) and gait coordination. Sensorimotor gating was assessed in acoustic startle response paradigms and recognition memory was evaluated in an object recognition test. Transgenic rats showed hyperactivity at 1 month and hypoactivity starting at 4 months of age. Motor coordination imbalance in a Rotarod test was present at 2 months and gait abnormalities were seen in a Catwalk test at 12 months. Subtle sensorimotor changes were observed, whereas object recognition was unimpaired in BACHD rats up to 12 months of age. The current BACHD rat model recapitulates certain symptoms from HD patients, especially the marked motor deficits. A subtle neuropsychological phenotype was found and further studies are needed to fully address the sensorimotor phenotype and the potential use of BACHD rats for drug discovery purposes.

  15. Motor modules during adaptation to walking in a powered ankle exoskeleton.

    Science.gov (United States)

    Jacobs, Daniel A; Koller, Jeffrey R; Steele, Katherine M; Ferris, Daniel P

    2018-01-03

    Modules of muscle recruitment can be extracted from electromyography (EMG) during motions, such as walking, running, and swimming, to identify key features of muscle coordination. These features may provide insight into gait adaptation as a result of powered assistance. The aim of this study was to investigate the changes (module size, module timing and weighting patterns) of surface EMG data during assisted and unassisted walking in an powered, myoelectric, ankle-foot orthosis (ankle exoskeleton). Eight healthy subjects wore bilateral ankle exoskeletons and walked at 1.2 m/s on a treadmill. In three training sessions, subjects walked for 40 min in two conditions: unpowered (10 min) and powered (30 min). During each session, we extracted modules of muscle recruitment via nonnegative matrix factorization (NNMF) from the surface EMG signals of ten muscles in the lower limb. We evaluated reconstruction quality for each muscle individually using R 2 and normalized root mean squared error (NRMSE). We hypothesized that the number of modules needed to reconstruct muscle data would be the same between conditions and that there would be greater similarity in module timings than weightings. Across subjects, we found that six modules were sufficient to reconstruct the muscle data for both conditions, suggesting that the number of modules was preserved. The similarity of module timings and weightings between conditions was greater then random chance, indicating that muscle coordination was also preserved. Motor adaptation during walking in the exoskeleton was dominated by changes in the module timings rather than module weightings. The segment number and the session number were significant fixed effects in a linear mixed-effect model for the increase in R 2 with time. Our results show that subjects walking in a exoskeleton preserved the number of modules and the coordination of muscles within the modules across conditions. Training (motor adaptation within the session and

  16. Actual motor performance and self-perceived motor competence in children with attention-deficit hyperactivity disorder compared with healthy siblings and peers.

    Science.gov (United States)

    Fliers, Ellen A; de Hoog, Marieke L A; Franke, Barbara; Faraone, Stephen V; Rommelse, Nanda N J; Buitelaar, Jan K; Nijhuis-van der Sanden, Maria W G

    2010-01-01

    : Children with attention-deficit hyperactivity disorder (ADHD) frequently experience comorbid motor problems, developmental coordination disorder. Also, children with ADHD are said to overestimate their abilities in the cognitive and social domain, the so-called "Positive Illusory Bias." In this cross-sectional study, the relationship between actual motor performance and perceived motor competence was examined. Motor performance was assessed using the Movement Assessment Battery for Children in 100 children and adolescents (age 6-17 years), including 32 children with ADHD combined type, 18 unaffected siblings, and 50 healthy control children. ADHD was diagnosed using Parent and Teacher questionnaires and a clinical interview. Perceived motor competence and interest in the motor domain were rated with the Dutch supplement scale to Harters' Self-Perception Profile for Children, especially focusing on the motor domain (m-CBSK). Children with ADHD had poorer motor performance than unaffected siblings and control children, especially in the field of manual dexterity. However, no relationship was found between motor performance and perceived motor competence. Only children with the very lowest motor performance had a significantly lowered perception of their motor competence. Interest in the motor domain and motor self-perception was positively correlated. Children with ADHD performed poorer on the Movement Assessment Battery for Children, but generally overestimated their own motor competence.

  17. Movement Induces the Use of External Spatial Coordinates for Tactile Localization in Congenitally Blind Humans.

    Science.gov (United States)

    Heed, Tobias; Möller, Johanna; Röder, Brigitte

    2015-01-01

    To localize touch, the brain integrates spatial information coded in anatomically based and external spatial reference frames. Sighted humans, by default, use both reference frames in tactile localization. In contrast, congenitally blind individuals have been reported to rely exclusively on anatomical coordinates, suggesting a crucial role of the visual system for tactile spatial processing. We tested whether the use of external spatial information in touch can, alternatively, be induced by a movement context. Sighted and congenitally blind humans performed a tactile temporal order judgment task that indexes the use of external coordinates for tactile localization, while they executed bimanual arm movements with uncrossed and crossed start and end postures. In the sighted, start posture and planned end posture of the arm movement modulated tactile localization for stimuli presented before and during movement, indicating automatic, external recoding of touch. Contrary to previous findings, tactile localization of congenitally blind participants, too, was affected by external coordinates, though only for stimuli presented before movement start. Furthermore, only the movement's start posture, but not the planned end posture affected blind individuals' tactile performance. Thus, integration of external coordinates in touch is established without vision, though more selectively than when vision has developed normally, and possibly restricted to movement contexts. The lack of modulation by the planned posture in congenitally blind participants suggests that external coordinates in this group are not mediated by motor efference copy. Instead the task-related frequent posture changes, that is, movement consequences rather than planning, appear to have induced their use of external coordinates.

  18. Improved ADRC for a Maglev planar motor with a concentric winding structure

    NARCIS (Netherlands)

    Kou, Baoquan; Xing, Feng; Zhang, Chaoning; Zhang, L.; Zhou, Yiheng; Wang, Tiecheng

    2016-01-01

    In the semiconductor industry, positioning accuracy and acceleration are critical parameters. To improve the acceleration speed of a motor, this paper proposes the moving-coil maglev planar motor with a concentric winding structure. The coordinate system has been built for the multiple degrees of

  19. The Influence of Motor Skills on Measurement Accuracy

    Science.gov (United States)

    Brychta, Petr; Sadílek, Marek; Brychta, Josef

    2016-10-01

    This innovative study trying to do interdisciplinary interface at first view different ways fields: kinantropology and mechanical engineering. A motor skill is described as an action which involves the movement of muscles in a body. Gross motor skills permit functions as a running, jumping, walking, punching, lifting and throwing a ball, maintaining a body balance, coordinating etc. Fine motor skills captures smaller neuromuscular actions, such as holding an object between the thumb and a finger. In mechanical inspection, the accuracy of measurement is most important aspect. The accuracy of measurement to some extent is also dependent upon the sense of sight or sense of touch associated with fine motor skills. It is therefore clear that the level of motor skills will affect the precision and accuracy of measurement in metrology. Aim of this study is literature review to find out fine motor skills level of individuals and determine the potential effect of different fine motor skill performance on precision and accuracy of mechanical engineering measuring.

  20. Sequence for the Training of Eye-Hand Coordination Needed for the Organization of Handwriting Tasks

    Science.gov (United States)

    Trester, Mary Fran

    1971-01-01

    Suggested is a sequence of 11 class activities, progressing from gross to fine motor skills, to assist the development of skills required to perform handwriting tasks successfully, for use particularly with children who lack fine motor control and eye-hand coordination. (KW)

  1. Motor of Lift RSG-GAS Performance Analysis after Repair

    International Nuclear Information System (INIS)

    Asep-Saepuloh; Yayan-Andriyanto; Yuyut-Suraniyanto

    2006-01-01

    The out of order an equipment is ordinary natural process happened, above all the equipment be used continually with very old time, as for as out of order can be resulted from kinds of cause. Lift motor out of order can be result by motor is broken or happened the body shorten then affected do not function it the lift, so until done rewinding process. The rewinding is furl to repeat at motor coils. Motor of Lift represent main activator machine turning around shares pulley. Lift Motor will work if there is called in normal operation condition or the moment manual switch if done maintenance. Motor used at lift is motor three phases with two speeds that is low speed and high speed. Rewinding process must be done removed the motor from Lift machine and have to be done by professional workshop. In during function test take place, temperature at coil reach 70 o C (exceeding boundary permitted). After done installation addition thermal at motor coil hence his temperature become normal that is only reach 50 o C. (author)

  2. RELATIONS BETWEEN MOTORIC ABILITIES AND SPECIFIC MOTORIC BASKETBALL SKILLS IN PHYSICAL EDUCATION CLASSES

    Directory of Open Access Journals (Sweden)

    Dejan Milenković

    2014-06-01

    Full Text Available The aim of this study was to determine the relation between motoric and specific motoric basketball skills in physical education classes for elementary school students. The sample was taken from a population of boys and girls in four elementary schools in Niš. Boys (66 and girls (58, have been students of elementary school, 10 years old and all of them have been attending regular physical education classes three times a week. For the assessment of motoric abilities, a set of 12 motoric tests was applied: Explosive strength: squat jump, squat jump arms swing and drop jump; Speed: 20m running from a low start, orbiting hand and orbiting leg; Coordination: jumping over the horizontal rope, envelope test and figure „8“ with bending; Accuracy: darts, shooting with the ball at horizontal target and stiletto. For the assessment of specific motoric basketball skills a set of six tests was applied: elevations precision of ball passing with two hands, horizontal precision of  ball passing with two hands, orbiting ball around the body, orbiting ball through the legs (figure „8“, dribble around a central circle of the basketball court and dribble two "small eights" around two adjacent circles of basketball court. In data processing canonical correlation and regression analysis were used. The results showed that motoric abilities significantly contributed to success of specific motoric tests performance both with boys and also with girls.

  3. Generation of novel motor sequences: the neural correlates of musical improvisation.

    Science.gov (United States)

    Berkowitz, Aaron L; Ansari, Daniel

    2008-06-01

    While some motor behavior is instinctive and stereotyped or learned and re-executed, much action is a spontaneous response to a novel set of environmental conditions. The neural correlates of both pre-learned and cued motor sequences have been previously studied, but novel motor behavior has thus far not been examined through brain imaging. In this paper, we report a study of musical improvisation in trained pianists with functional magnetic resonance imaging (fMRI), using improvisation as a case study of novel action generation. We demonstrate that both rhythmic (temporal) and melodic (ordinal) motor sequence creation modulate activity in a network of brain regions comprised of the dorsal premotor cortex, the rostral cingulate zone of the anterior cingulate cortex, and the inferior frontal gyrus. These findings are consistent with a role for the dorsal premotor cortex in movement coordination, the rostral cingulate zone in voluntary selection, and the inferior frontal gyrus in sequence generation. Thus, the invention of novel motor sequences in musical improvisation recruits a network of brain regions coordinated to generate possible sequences, select among them, and execute the decided-upon sequence.

  4. Flexibility is associated with motor competence in schoolchildren

    OpenAIRE

    Lopes, Luís; Póvoas, S.; Mota, Jorge; Okely, A.D.; Coelho-e-Silva, M.J.; Cliff, D.P.; Lopes, Vítor P.; Santos, Rute

    2017-01-01

    Available data on the associations between motor competence (MC) and flexibility are limited and result inconclusive. This study aims to examine the relationship between flexibility and MC in children. The sample comprised 596 Portuguese children (47.1% girls) aged 9.7± 0.6 years. Motor competence was evaluated with the body coordination test, Korperkoordination Test fur Kinder. Cardiorespiratory fitness (20-m shuttle run), muscular strength (curl-up and push-up tests)...

  5. RELATIONS BETWEEN ANTHROPOMETRIC CHARACTERISTICS AND COORDINATION IN PEOPLE WITH ABOVE-AVERAGE MOTOR ABILITIES

    Directory of Open Access Journals (Sweden)

    Milan Cvetković

    2011-09-01

    Full Text Available The sample of 149 male persons whose average age is 20.15 in decimal years (±0.83, and all of whom are students at the Faculty of Sport and Physical Education, underwent a battery of tests consisting of 17 anthropometric measures taken from the measures index of the International Biological Program and 4 tests designed to assess coordination as follows: Coordination with stick, Hand and leg drumming, Nonrhythmic drumming and Slalom with three balls. One statistically significant canonical correlation was determined by means of the canonical correlation analysis. The isolated canonical correlation from the space of coordination variables, was the one used for assessment of coordination of the whole body – Coordination with stick. On the other hand, out of the variables from the right array, the ones which covered longinality were singled out – Body height and Arm length, circular dimensionality – Circumference of stretched upper arm, Circumference of bent upper arm and Circumference of upper leg, as well as subcutaneous fat tissue – Skin fold of the back.

  6. Relationships between physical activity, physical fitness, somatic fitness, and coordination along childhood and adolescence

    Directory of Open Access Journals (Sweden)

    João Paulo Saraiva

    2010-12-01

    Full Text Available The two main goals of this review were to understand how the relationships between physical activity, physical fitness, somatic fitness, and coordination are established along the motor development of children and adolescents, and how they would influence their future lives. The web based bibliographic database B-On was searched for peer-reviewed publications during the last decade (2000 to 2009. Search criteria included all articles on relationships between any two of the above named factors. Although different methodological designs and variables were found as markers for the same factor, overall results suggested the existence of a clear positive relationship among physical activity, physical fitness, somatic fitness, and coordination from childhood to adolescence, with a special relevance for the relationship between physical activity and coordination. It was also noted a renewed interest on physical activity and motor coordination developmental characteristics and relationships as well as on their lifelong health effects.

  7. Relationships between physical activity, physical fitness, somatic fitness, and coordination along childhood and adolescence

    Directory of Open Access Journals (Sweden)

    J.P. Saraiva

    2010-01-01

    Full Text Available The two main goals of this review were to understand how the relationships between physical activity, physical fitness, somatic fitness, and coordination are established along the motor development of children and adolescents, and how they would influence their future lives. The web based bibliographic database B-On was searched for peer-reviewed publications during the last decade (2000 to 2009. Search criteria included all articles on relationships between any two of the above named factors. Although different methodological designs and variables were found as markers for the same factor, overall results suggested the existence of a clear positive relationship among physical activity, physical fitness, somatic fitness, and coordination from childhood to adolescence, with a special relevance for the relationship between physical activity and coordination. It was also noted a renewed interest on physical activity and motor coordination developmental characteristics and relationships as well as on their lifelong health effects.

  8. Body Mass Index in the Early Years in Relation to Motor Coordination at the Age of 5–7 Years

    Directory of Open Access Journals (Sweden)

    Arto Laukkanen

    2017-07-01

    Full Text Available Physical activity (PA and body mass index (BMI are consistently associated with motor coordination (MC in children. However, we know very little how BMI in early childhood associates with MC later in childhood. This study investigated associations between BMI in early childhood and BMI, PA, and MC in middle childhood. Children aged 5 to 7 years (n = 64, 32 girls were measured for MC using Körperkoordinationstest für Kinder (KTK and for moderate-to-vigorous PA (MVPA using triaxial accelerometers. Prevailing body weight and height were measured, and information on weight and height in early years was based on parental report of child health care report cards. Age-adjusted BMIz scores were calculated on the basis of international growth curve references. Associations and the explained variability of MC were investigated by Pearson correlations and a hierarchical multiple regression analysis. Age and MVPA were found to be significantly associated with MC at middle childhood, in general. BMIz at middle childhood and at ages 4 and 5 years inversely explained 12% (p < 0.05, 6% (p > 0.05, and 7% (p > 0.05 of the variation in MC in girls after adjusting for covariates, respectively. In boys, BMIz scores did not show any trend of association with MC. This study suggests sex-specific mechanisms in the interplay between BMI and motor development in childhood.

  9. Disentangling the relationship between children's motor ability, executive function and academic achievement.

    Directory of Open Access Journals (Sweden)

    Mirko Schmidt

    Full Text Available Even though positive relations between children's motor ability and their academic achievement are frequently reported, the underlying mechanisms are still unclear. Executive function has indeed been proposed, but hardly tested as a potential mediator. The aim of the present study was therefore to examine the mediating role of executive function in the relationship between motor ability and academic achievement, also investigating the individual contribution of specific motor abilities to the hypothesized mediated linkage to academic achievement. At intervals of ten weeks, 236 children aged between 10 and 12 years were tested in terms of their motor ability (t1: cardiovascular endurance, muscular strength, motor coordination, core executive functions (t2: updating, inhibition, shifting, and academic achievement (t3: mathematics, reading, spelling. Structural equation modelling revealed executive function to be a mediator in the relation between motor ability and academic achievement, represented by a significant indirect effect. In separate analyses, each of the three motor abilities were positively related to children's academic achievement. However, only in the case of children's motor coordination, the mediation by executive function accounted for a significance percentage of variance of academic achievement data. The results provide evidence in support of models that conceive executive function as a mechanism explaining the relationship that links children's physical activity-related outcomes to academic achievement and strengthen the advocacy for quality physical activity not merely focused on health-related physical fitness outcomes, but also on motor skill development and learning.

  10. Bimanual coordination positively predicts episodic memory: A combined behavioral and MRI investigation.

    Science.gov (United States)

    Lyle, Keith B; Dombroski, Brynn A; Faul, Leonard; Hopkins, Robin F; Naaz, Farah; Switala, Andrew E; Depue, Brendan E

    2017-11-01

    Some people remember events more completely and accurately than other people, but the origins of individual differences in episodic memory are poorly understood. One way to advance understanding is by identifying characteristics of individuals that reliably covary with memory performance. Recent research suggests motor behavior is related to memory performance, with individuals who consistently use a single preferred hand for unimanual actions performing worse than individuals who make greater use of both hands. This research has relied on self-reports of behavior. It is unknown whether objective measures of motor behavior also predict memory performance. Here, we tested the predictive power of bimanual coordination, an important form of manual dexterity. Bimanual coordination, as measured objectively on the Purdue Pegboard Test, was positively related to correct recall on the California Verbal Learning Test-II and negatively related to false recall. Furthermore, MRI data revealed that cortical surface area in right lateral prefrontal regions was positively related to correct recall. In one of these regions, cortical thickness was negatively related to bimanual coordination. These results suggest that individual differences in episodic memory may partially reflect morphological variation in right lateral prefrontal cortex and suggest a relationship between neural correlates of episodic memory and motor behavior. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Peripheral nerve injury in developing rats reorganizes representation pattern in motor cortex.

    OpenAIRE

    Donoghue, J P; Sanes, J N

    1987-01-01

    We investigated the effect of neonatal nerve lesions on cerebral motor cortex organization by comparing the cortical motor representation of normal adult rats with adult rats that had one forelimb removed on the day of birth. Mapping of cerebral neocortex with electrical stimulation revealed an altered relationship between the motor cortex and the remaining muscles. Whereas distal forelimb movements are normally elicited at the lowest threshold in the motor cortex forelimb area, the same stim...

  12. Anthropometry, Physical Fitness and Coordination of Young Figure Skaters of Different Levels.

    Science.gov (United States)

    Mostaert, M; Deconinck, F; Pion, J; Lenoir, M

    2016-06-01

    The aim of the present study was to identify anthropometric, physical, coordinative and ice-skating specific characteristics that discriminate young elite ice skaters from non-elite skaters and their non-skating peers. 32 skaters aged 9-12 years old (11 elites and 21 non-elites) voluntarily participated in the study. They were submitted to 5 anthropometric, 7 physical, 3 coordination and 5 ice-skating specific tests. Reference values of a representative healthy non-skating sample were taken from the Flemish Sports Compass dataset. Figure skaters appeared to be predominantly average mature (93.8%), were lighter and leaner than the reference sample, and demonstrated better physical characteristics and motor coordination. There was no difference between the elite and non-elite group regarding maturity status and anthropometric or physical parameters. Still, elite skaters scored better than non-elites on the coordination tests jumping sideways and tended to do so on the moving sideways test. Profiles of figure skaters differ clearly from a reference population, while non-sport-specific motor coordination tests allow discrimination between elite and non-elite skaters. The relevance of these findings with respect to talent detection and identification in young ice skaters are discussed. © Georg Thieme Verlag KG Stuttgart · New York.

  13. Examination of muscle composition and motor unit behavior of the first dorsal interosseous of normal and overweight children.

    Science.gov (United States)

    Miller, Jonathan D; Sterczala, Adam J; Trevino, Michael A; Herda, Trent J

    2018-05-01

    We examined differences between normal weight (NW) and overweight (OW) children aged 8-10 yr in strength, muscle composition, and motor unit (MU) behavior of the first dorsal interosseous. Ultrasonography was used to determine muscle cross-sectional area (CSA), subcutaneous fat (sFAT), and echo intensity (EI). MU behavior was assessed during isometric muscle actions at 20% and 50% of maximal voluntary contraction (MVC) by analyzing electromyography amplitude (EMG RMS ) and relationships between mean firing rates (MFR), recruitment thresholds (RT), and MU action potential amplitudes (MUAP size ) and durations (MUAP time ). The OW group had significantly greater EI than the NW group ( P = 0.002; NW, 47.99 ± 6.01 AU; OW, 58.90 ± 10.63 AU, where AU is arbitrary units) with no differences between groups for CSA ( P = 0.688) or MVC force ( P = 0.790). MUAP size was larger for NW than OW in relation to RT ( P = 0.002) and for MUs expressing similar MFRs ( P = 0.011). There were no significant differences ( P = 0.279-0.969) between groups for slopes or y-intercepts from the MFR vs. RT relationships. MUAP time was larger in OW ( P = 0.015) and EMG RMS was attenuated in OW compared with NW ( P = 0.034); however, there were no significant correlations ( P = 0.133-0.164, r = 0.270-0.291) between sFAT and EMG RMS . In a muscle that does not support body mass, the OW children had smaller MUAP size as well as greater EI, although anatomical CSA was similar. This contradicts previous studies examining larger limb muscles. Despite evidence of smaller MUs, the OW children had similar isometric strength compared with NW children. NEW & NOTEWORTHY Ultrasound data and motor unit action potential sizes suggest that overweight children have poorer muscle composition and smaller motor units in the first dorsal interosseous than normal weight children. Evidence is presented that suggests differences in action potential size cannot be explained

  14. DC Brushless Motor Control Design and Preliminary Testing for Independent 4-Wheel Drive Rev-11 Robotic Platform

    Directory of Open Access Journals (Sweden)

    Roni Permana Saputra

    2012-03-01

    Full Text Available This paper discusses the design of control system for brushless DC motor using microcontroller ATMega 16 that will be applied to an independent 4-wheel drive Mobile Robot LIPI version 2 (REV-11. The control system consists of two parts which are brushless DC motor control module and supervisory control module that coordinates the desired command to the motor control module. To control the REV-11 platform, supervisory control transmit the reference data of speed and direction of motor to control the speed and direction of each actuator on the platform REV-11. From the test results it is concluded that the designed control system work properly to coordinate and control the speed and direction of motion of the actuator motor REV-11 platform. 

  15. Temporary Nerve Block at Selected Digits Revealed Hand Motor Deficits in Grasping Tasks

    Directory of Open Access Journals (Sweden)

    Aude Carteron

    2016-11-01

    Full Text Available Peripheral sensory feedback plays a crucial role in ensuring correct motor execution throughout hand grasp control. Previous studies utilized local anesthesia to deprive somatosensory feedback in the digits or hand, observations included sensorimotor deficits at both corticospinal and peripheral levels. However, the questions of how the disturbed and intact sensory input integrate and interact with each other to assist the motor program execution, and whether the motor coordination based on motor output variability between affected and non-affected elements (e.g., digits becomes interfered by the local sensory deficiency, have not been answered. The current study aims to investigate the effect of peripheral deafferentation through digital nerve blocks at selective digits on motor performance and motor coordination in grasp control. Our results suggested that the absence of somatosensory information induced motor deficits in hand grasp control, as evidenced by reduced maximal force production ability in both local and non-local digits, impairment of force and moment control during object lift and hold, and attenuated motor synergies in stabilizing task performance variables, namely the tangential force and moment of force. These findings implied that individual sensory input is shared across all the digits and the disturbed signal from local sensory channel(s has a more comprehensive impact on the process of the motor output execution in the sensorimotor integration process. Additionally, a feedback control mechanism with a sensation-based component resides in the formation process for the motor covariation structure.

  16. Increasing Mud Pump Motor Reliability against Malfunctions of DC Motor Excitation System

    Science.gov (United States)

    Nikulin, O. V.; Shabanov, V. A.

    2017-10-01

    The most widely used drilling machinery, such as mud pumps, draw-works, and rotors, use direct-current (DC) motors with independent excitation as the electric drive. Drilling machinery drives operate in harsh ambient conditions, including those with the presence of moisture, dust and vibration, which increases the malfunction rate of both drilling equipment and their electric drives. One of the frequently encountered malfunctions are DC motor excitation coil faults, which disrupt the normal functioning of electric drives, often leading to shutdown of the drilling process. In a four-pole DC motor, the malfunction of one coil leads to lack of excitation current in just one coil pair, while the other pair remains functional. In this case, DC motors and drilling equipment can remain operational, which would allow for continuing the drilling process. This paper considers the possibility of operation of a DC motor on a drilling rig in those cases when one pair of excitation coils is non-functional, and describes the device for switching between the excitation coils and the auxiliary winding in a DC motor with independent excitation.

  17. Evaluating rodent motor functions: Which tests to choose?

    Science.gov (United States)

    Schönfeld, Lisa-Maria; Dooley, Dearbhaile; Jahanshahi, Ali; Temel, Yasin; Hendrix, Sven

    2017-12-01

    Damage to the motor cortex induced by stroke or traumatic brain injury (TBI) can result in chronic motor deficits. For the development and improvement of therapies, animal models which possess symptoms comparable to the clinical population are used. However, the use of experimental animals raises valid ethical and methodological concerns. To decrease discomfort by experimental procedures and to increase the quality of results, non-invasive and sensitive rodent motor tests are needed. A broad variety of rodent motor tests are available to determine deficits after stroke or TBI. The current review describes and evaluates motor tests that fall into three categories: Tests to evaluate fine motor skills and grip strength, tests for gait and inter-limb coordination and neurological deficit scores. In this review, we share our thoughts on standardized data presentation to increase data comparability between studies. We also critically evaluate current methods and provide recommendations for choosing the best behavioral test for a new research line. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Obesity and motor skills among 4 to 6-year-old children in the united states: nationally-representative surveys

    Science.gov (United States)

    2012-01-01

    Background Few population-based studies have assessed relationships between body weight and motor skills in young children. Our objective was to estimate the association between obesity and motor skills at 4 years and 5-6 years of age in the United States. We used repeated cross-sectional assessments of the national sample from the Early Childhood Longitudinal Survey-Birth Cohort (ECLS-B) of preschool 4-year-old children (2005-2006; n = 5 100) and 5-6-year-old kindergarteners (2006-2007; n = 4 700). Height, weight, and fine and gross motor skills were assessed objectively via direct standardized procedures. We used categorical and continuous measures of body weight status, including obesity (Body Mass Index (BMI) ≥ 95th percentile) and BMI z-scores. Multivariate logistic and linear models estimated the association between obesity and gross and fine motor skills in very young children adjusting for individual, social, and economic characteristics and parental involvement. Results The prevalence of obesity was about 15%. The relationship between motor skills and obesity varied across types of skills. For hopping, obese boys and girls had significantly lower scores, 20% lower in obese preschoolers and 10% lower in obese kindergarteners than normal weight counterparts, p motor skills and fine motor skills of young children were not consistently related to BMI z-scores and obesity. Conclusions Based on objective assessment of children's motor skills and body weight and a full adjustment for confounding covariates, we find no reduction in overall coordination and fine motor skills in obese young children. Motor skills are adversely associated with childhood obesity only for skills most directly related to body weight. PMID:22420636

  19. Torque control for electric motors

    Science.gov (United States)

    Bernard, C. A.

    1980-01-01

    Method for adjusting electric-motor torque output to accomodate various loads utilizes phase-lock loop to control relay connected to starting circuit. As load is imposed, motor slows down, and phase lock is lost. Phase-lock signal triggers relay to power starting coil and generate additional torque. Once phase lock is recoverd, relay restores starting circuit to its normal operating mode.

  20. Obesity and motor skills among 4 to 6-year-old children in the united states: nationally-representative surveys

    Directory of Open Access Journals (Sweden)

    Castetbon Katia

    2012-03-01

    Full Text Available Abstract Background Few population-based studies have assessed relationships between body weight and motor skills in young children. Our objective was to estimate the association between obesity and motor skills at 4 years and 5-6 years of age in the United States. We used repeated cross-sectional assessments of the national sample from the Early Childhood Longitudinal Survey-Birth Cohort (ECLS-B of preschool 4-year-old children (2005-2006; n = 5 100 and 5-6-year-old kindergarteners (2006-2007; n = 4 700. Height, weight, and fine and gross motor skills were assessed objectively via direct standardized procedures. We used categorical and continuous measures of body weight status, including obesity (Body Mass Index (BMI ≥ 95th percentile and BMI z-scores. Multivariate logistic and linear models estimated the association between obesity and gross and fine motor skills in very young children adjusting for individual, social, and economic characteristics and parental involvement. Results The prevalence of obesity was about 15%. The relationship between motor skills and obesity varied across types of skills. For hopping, obese boys and girls had significantly lower scores, 20% lower in obese preschoolers and 10% lower in obese kindergarteners than normal weight counterparts, p p Conclusions Based on objective assessment of children's motor skills and body weight and a full adjustment for confounding covariates, we find no reduction in overall coordination and fine motor skills in obese young children. Motor skills are adversely associated with childhood obesity only for skills most directly related to body weight.

  1. Fine and gross motor skills differ between healthy-weight and obese children.

    Science.gov (United States)

    Gentier, Ilse; D'Hondt, Eva; Shultz, Sarah; Deforche, Benedicte; Augustijn, Mireille; Hoorne, Sofie; Verlaecke, Katja; De Bourdeaudhuij, Ilse; Lenoir, Matthieu

    2013-11-01

    Within the obesity literature, focus is put on the link between weight status and gross motor skills. However, research on fine motor skills in the obese (OB) childhood population is limited. Therefore, the present study focused on possible weight related differences in gross as well as fine motor skill tasks. Thirty-four OB children (12 ♀ and 22 ♂, aged 7-13 years) were recruited prior to participating in a multidisciplinary treatment program at the Zeepreventorium (De Haan, Belgium). Additionally, a control group of 34 age and gender-matched healthy-weight (HW) children was included in the study. Anthropometric measures were recorded and gross and fine motor skills were assessed using the Bruininks-Oseretsky Test of Motor Proficiency, second edition (BOT-2). Results were analyzed by independent samples t-tests, multivariate analysis of variance, and a chi-squared test. Being OB was detrimental for all subtests evaluating gross motor skill performance (i.e., upper-limb coordination, bilateral coordination, balance, running speed and agility, and strength). Furthermore, OB children performed worse in fine motor precision and a manual dexterity task, when compared to their HW peers. No group differences existed for the fine motor integration task. Our study provides evidence that lower motor competence in OB children is not limited to gross motor skills alone; OB children are also affected by fine motor skill problems. Further investigation is warranted to provide possible explanations for these differences. It is tentatively suggested that OB children experience difficulties with the integration and processing of sensory information. Future research is needed to explore whether this assumption is correct and what the underlying mechanism(s) could be. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Actual motor performance and self-perceived motor competence in children with attention-deficit hyperactivity disorder compared with healthy siblings and peers.

    NARCIS (Netherlands)

    Fliers, E.A.; Hoog, M.L.A. de; Franke, B.; Faraone, S.V.; Lambregts-Rommelse, N.N.J.; Buitelaar, J.K.; Nijhuis-Van der Sanden, M.W.G.

    2010-01-01

    OBJECTIVE: : Children with attention-deficit hyperactivity disorder (ADHD) frequently experience comorbid motor problems, developmental coordination disorder. Also, children with ADHD are said to overestimate their abilities in the cognitive and social domain, the so-called "Positive Illusory Bias."

  3. Deficits in fine motor skills in a genetic animal model of ADHD

    Directory of Open Access Journals (Sweden)

    Qian Yu

    2010-09-01

    Full Text Available Abstract Background In an attempt to model some behavioral aspects of Attention Deficit/Hyperactivity Disorder (ADHD, we examined whether an existing genetic animal model of ADHD is valid for investigating not only locomotor hyperactivity, but also more complex motor coordination problems displayed by the majority of children with ADHD. Methods We subjected young adolescent Spontaneously Hypertensive Rats (SHRs, the most commonly used genetic animal model of ADHD, to a battery of tests for motor activity, gross motor coordination, and skilled reaching. Wistar (WIS rats were used as controls. Results Similar to children with ADHD, young adolescent SHRs displayed locomotor hyperactivity in a familiar, but not in a novel environment. They also had lower performance scores in a complex skilled reaching task when compared to WIS rats, especially in the most sensitive measure of skilled performance (i.e., single attempt success. In contrast, their gross motor performance on a Rota-Rod test was similar to that of WIS rats. Conclusion The results support the notion that the SHR strain is a useful animal model system to investigate potential molecular mechanisms underlying fine motor skill problems in children with ADHD.

  4. Using the motor to monitor pump conditions

    International Nuclear Information System (INIS)

    Casada, D.

    1996-01-01

    When the load of a mechanical device being driven by a motor changes, whether in response to changes in the overall process or changes in the performance of the driven device, the motor inherently responds. For induction motors, the current amplitude and phase angle change as the shaft load changes. By examining the details of these changes in amplitude and phase, load fluctuations of the driven device can be observed. The usefulness of the motor as a transducer to improve the understanding of devices with high torque fluctuations, such as positive displacement compressors and motor-operated valves, has been recognized and demonstrated for a number of years. On such devices as these, the spectrum of the motor current amplitude, phase, or power normally has certain characteristic peaks associated with various load components, such as the piston stroke or gear tooth meshing frequencies. Comparison and trending of the amplitudes of these peaks has been shown to provide some indication of their mechanical condition. For most centrifugal pumps, the load fluctuations are normally low in torque amplitude, and as a result, the motor experiences a correspondingly lower level of load fluctuation. However, both laboratory and field test data have demonstrated that the motor does provide insight into some important pump performance conditions, such as hydraulic stability and pump-to-motor alignment. Comparisons of other dynamic signals, such as vibration and pressure pulsation, to motor data for centrifugal pumps are provided. The effects of inadequate suction head, misalignment, mechanical and hydraulic unbalance on these signals are presented

  5. Using the motor to monitor pump conditions

    Energy Technology Data Exchange (ETDEWEB)

    Casada, D. [Oak Ridge National Lab., TN (United States)

    1996-12-01

    When the load of a mechanical device being driven by a motor changes, whether in response to changes in the overall process or changes in the performance of the driven device, the motor inherently responds. For induction motors, the current amplitude and phase angle change as the shaft load changes. By examining the details of these changes in amplitude and phase, load fluctuations of the driven device can be observed. The usefulness of the motor as a transducer to improve the understanding of devices with high torque fluctuations, such as positive displacement compressors and motor-operated valves, has been recognized and demonstrated for a number of years. On such devices as these, the spectrum of the motor current amplitude, phase, or power normally has certain characteristic peaks associated with various load components, such as the piston stroke or gear tooth meshing frequencies. Comparison and trending of the amplitudes of these peaks has been shown to provide some indication of their mechanical condition. For most centrifugal pumps, the load fluctuations are normally low in torque amplitude, and as a result, the motor experiences a correspondingly lower level of load fluctuation. However, both laboratory and field test data have demonstrated that the motor does provide insight into some important pump performance conditions, such as hydraulic stability and pump-to-motor alignment. Comparisons of other dynamic signals, such as vibration and pressure pulsation, to motor data for centrifugal pumps are provided. The effects of inadequate suction head, misalignment, mechanical and hydraulic unbalance on these signals are presented.

  6. Actual motor performance and self-perceived motor competence in children with attention-deficit hyperactivity disorder compared with healthy siblings and peers

    NARCIS (Netherlands)

    Fliers, Ellen A.; de Hoog, Marieke L. A.; Franke, Barbara; Faraone, Stephen V.; Rommelse, Nanda N. J.; Buitelaar, Jan K.; Nijhuis-van der Sanden, Maria W. G.

    2010-01-01

    : Children with attention-deficit hyperactivity disorder (ADHD) frequently experience comorbid motor problems, developmental coordination disorder. Also, children with ADHD are said to overestimate their abilities in the cognitive and social domain, the so-called "Positive Illusory Bias." In this

  7. Model predictive control-based dynamic coordinate strategy for hydraulic hub-motor auxiliary system of a heavy commercial vehicle

    Science.gov (United States)

    Zeng, Xiaohua; Li, Guanghan; Yin, Guodong; Song, Dafeng; Li, Sheng; Yang, Nannan

    2018-02-01

    Equipping a hydraulic hub-motor auxiliary system (HHMAS), which mainly consists of a hydraulic variable pump, a hydraulic hub-motor, a hydraulic valve block and hydraulic accumulators, with part-time all-wheel-drive functions improves the power performance and fuel economy of heavy commercial vehicles. The coordinated control problem that occurs when HHMAS operates in the auxiliary drive mode is addressed in this paper; the solution to this problem is the key to the maximization of HHMAS. To achieve a reasonable distribution of the engine power between mechanical and hydraulic paths, a nonlinear control scheme based on model predictive control (MPC) is investigated. First, a nonlinear model of HHMAS with vehicle dynamics and tire slip characteristics is built, and a controller-design-oriented model is simplified. Then, a steady-state feedforward + dynamic MPC feedback controller (FMPC) is designed to calculate the control input sequence of engine torque and hydraulic variable pump displacement. Finally, the controller is tested in the MATLAB/Simulink and AMESim co-simulation platform and the hardware-in-the-loop experiment platform, and its performance is compared with that of the existing proportional-integral-derivative controller and the feedforward controller under the same conditions. Simulation results show that the designed FMPC has the best performance, and control performance can be guaranteed in a real-time environment. Compared with the tracking control error of the feedforward controller, that of the designed FMPC is decreased by 85% and the traction efficiency performance is improved by 23% under a low-friction-surface condition. Moreover, under common road conditions for heavy commercial vehicles, the traction force can increase up to 13.4-15.6%.

  8. Does relative body fat influence the Movement ABC-2 assessment in children with and without developmental coordination disorder?

    Science.gov (United States)

    Faught, Brent E; Demetriades, Stephen; Hay, John; Cairney, John

    2013-12-01

    Developmental coordination disorder (DCD) is a condition that results in an impairment of gross and/or fine motor coordination. Compromised motor coordination contributes to lower levels of physical activity, which is associated with elevated body fat. The impact of elevated body fat on motor coordination diagnostic assessments in children with DCD has not been established. The purpose of this study was to determine if relative body fat influences performance on the Movement Assessment Battery for Children, 2nd Edition (MABC-2) test items in children with and without DCD. A nested case-control, design was conducted within the Physical Health Activity Study Team longitudinal cohort study. The MABC-2 was used to assess motor coordination to categorize cases and matched controls. Relative body fat was assessed using whole body air displacement plethysmography. Relative body fat was negatively associated with the MABC-2 "balance" subcategory after adjusting for physical activity and DCD status. Relative body fat did not influence the subcategories of "manual dexterity" or "aiming and catching". Item analysis of the three balance tasks indicated that relative body fat significantly influences both "2-board balance" and "zig-zag hopping", but not "walking heel-toe backwards". Children with higher levels of relative body fat do not perform as well on the MABC-2, regardless of whether the have DCD or not. Dynamic balance test items are most negatively influenced by body fat. Health practitioners and researchers should be aware that body fat can influence results when interpreting MABC-2 test scores. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  9. Evaluation of esophageal motor function in clinical practice

    NARCIS (Netherlands)

    Gyawali, C. P.; Bredenoord, A. J.; Conklin, J. L.; Fox, M.; Pandolfino, J. E.; Peters, J. H.; Roman, S.; Staiano, A.; Vaezi, M. F.

    2013-01-01

    Esophageal motor function is highly coordinated between central and enteric nervous systems and the esophageal musculature, which consists of proximal skeletal and distal smooth muscle in three functional regions, the upper and lower esophageal sphincters, and the esophageal body. While upper

  10. Reorganization of finger coordination patterns through motor exploration in individuals after stroke.

    Science.gov (United States)

    Ranganathan, Rajiv

    2017-09-11

    Impairment of hand and finger function after stroke is common and affects the ability to perform activities of daily living. Even though many of these coordination deficits such as finger individuation have been well characterized, it is critical to understand how stroke survivors learn to explore and reorganize their finger coordination patterns for optimizing rehabilitation. In this study, I examine the use of a body-machine interface to assess how participants explore their movement repertoire, and how this changes with continued practice. Ten participants with chronic stroke wore a data glove and the finger joint angles were mapped on to the position of a cursor on a screen. The task of the participants was to move the cursor back and forth between two specified targets on a screen. Critically, the map between the finger movements and cursor motion was altered so that participants sometimes had to generate coordination patterns that required finger individuation. There were two phases to the experiment - an initial assessment phase on day 1, followed by a learning phase (days 2-5) where participants trained to reorganize their coordination patterns. Participants showed difficulty in performing tasks which had maps that required finger individuation, and the degree to which they explored their movement repertoire was directly related to clinical tests of hand function. However, over four sessions of practice, participants were able to learn to reorganize their finger movement coordination pattern and improve their performance. Moreover, training also resulted in improvements in movement repertoire outside of the context of the specific task during free exploration. Stroke survivors show deficits in movement repertoire in their paretic hand, but facilitating movement exploration during training can increase the movement repertoire. This suggests that exploration may be an important element of rehabilitation to regain optimal function.

  11. Self-Regulatory Skill Among Children with and without Developmental Coordination Disorder: An Exploratory Study.

    Science.gov (United States)

    Sangster Jokić, Claire A; Whitebread, David

    2016-11-01

    Children with developmental coordination disorder (DCD) experience difficulty learning and performing everyday motor tasks due to poor motor coordination. Recent research applying a cognitive learning paradigm has argued that children with DCD have less effective cognitive and metacognitive skills with which to effectively acquire motor skills. However, there is currently limited research examining individual differences in children's use of self-regulatory and metacognitive skill during motor learning. This exploratory study aimed to compare the self-regulatory performance of children with and without DCD. Using a mixed methods approach, this study observed and compared the self-regulatory behavior of 15 children with and without DCD, aged between 7 and 9 years, during socially mediated motor practice. Observation was conducted using a quantitative coding scheme and qualitative analysis of video-recorded sessions. This paper will focus on the results of quantitative analysis, while data arising from the qualitative analysis will be used to support quantitative findings. In general, findings indicate that children with DCD exhibit less independent and more ineffective self-regulatory skill during motor learning than their typically developing peers. In addition, children with DCD rely more heavily on external support for effective regulation and are more likely to exhibit negative patterns of motivational regulation. These findings provide further support for the notion that children with DCD experience difficulty effectively self-regulating motor learning. Implications for practice and directions for future research are discussed.

  12. Analysis of a hysteresis motor on asynchronous speed using complex permeability

    International Nuclear Information System (INIS)

    Horii, T.; Yuge, N.; Wakui, G.

    1994-01-01

    Although hysteresis motors have a comparatively small output for their mechanical dimensions compared with other types of motor, they offer the advantages of extremely low vibration and noise levels, and so are widely used as driving motors in acoustic equipment and uranium gas centrifuges. This paper deals with a method for determining the complex permeability in analysis of hysteresis motors. The method assumes that the magnetic intensity distribution is sinusoidal in the direction of rotation. Analysis of the asynchronous speed of a hysteresis motor is then performed for cylindrical coordinates, using modified Bessel functions. The results of calculations are in good agreement with experimental results, confirming the effectiveness of the proposed model and method for determining the complex permeability

  13. Definition and classification of negative motor signs in childhood.

    Science.gov (United States)

    Sanger, Terence D; Chen, Daofen; Delgado, Mauricio R; Gaebler-Spira, Deborah; Hallett, Mark; Mink, Jonathan W

    2006-11-01

    In this report we describe the outcome of a consensus meeting that occurred at the National Institutes of Health in Bethesda, Maryland, March 12 through 14, 2005. The meeting brought together 39 specialists from multiple clinical and research disciplines including developmental pediatrics, neurology, neurosurgery, orthopedic surgery, physical therapy, occupational therapy, physical medicine and rehabilitation, neurophysiology, muscle physiology, motor control, and biomechanics. The purpose of the meeting was to establish terminology and definitions for 4 aspects of motor disorders that occur in children: weakness, reduced selective motor control, ataxia, and deficits of praxis. The purpose of the definitions is to assist communication between clinicians, select homogeneous groups of children for clinical research trials, facilitate the development of rating scales to assess improvement or deterioration with time, and eventually to better match individual children with specific therapies. "Weakness" is defined as the inability to generate normal voluntary force in a muscle or normal voluntary torque about a joint. "Reduced selective motor control" is defined as the impaired ability to isolate the activation of muscles in a selected pattern in response to demands of a voluntary posture or movement. "Ataxia" is defined as an inability to generate a normal or expected voluntary movement trajectory that cannot be attributed to weakness or involuntary muscle activity about the affected joints. "Apraxia" is defined as an impairment in the ability to accomplish previously learned and performed complex motor actions that is not explained by ataxia, reduced selective motor control, weakness, or involuntary motor activity. "Developmental dyspraxia" is defined as a failure to have ever acquired the ability to perform age-appropriate complex motor actions that is not explained by the presence of inadequate demonstration or practice, ataxia, reduced selective motor control

  14. Roadside Judgments in Children with Developmental Co-ordination Disorder

    Science.gov (United States)

    Purcell, Catherine; Wann, John P.; Wilmut, Kate; Poulter, Damian

    2011-01-01

    As pedestrians, the perceptual ability to accurately judge the relative rate of approaching vehicles and select a suitable crossing gap requires sensitivity to looming. It also requires that crossing judgments are synchronized with motoric capabilities. Previous research has suggested that children with Developmental Co-ordination Disorder (DCD)…

  15. Health-Related Physical Fitness in Dutch Children With Developmental Coordination Disorder

    NARCIS (Netherlands)

    van der Hoek, Frouwien D.; Stuive, Ilse; Reinders-Messelink, Heleen A.; Holty, Lian; de Blecourt, Alida C. E.; Maathuis, Carel G. B.; van Weert, Ellen

    2012-01-01

    Objective: To compare components of health-related physical fitness between Dutch children with clinically diagnosed developmental coordination disorder (DCD) and typically developing children (TDC), and to examine associations between motor performance problems and components of health-related

  16. Language and motor abilities of preschool children who stutter: Evidence from behavioral and kinematic indices of nonword repetition performance

    Science.gov (United States)

    Smith, Anne; Goffman, Lisa; Sasisekaran, Jayanthi; Weber-Fox, Christine

    2012-01-01

    Stuttering is a disorder of speech production that typically arises in the preschool years, and many accounts of its onset and development implicate language and motor processes as critical underlying factors. There have, however, been very few studies of speech motor control processes in preschool children who stutter. Hearing novel nonwords and reproducing them engages multiple neural networks, including those involved in phonological analysis and storage and speech motor programming and execution. We used this task to explore speech motor and language abilities of 31 children aged 4–5 years who were diagnosed as stuttering. We also used sensitive and specific standardized tests of speech and language abilities to determine which of the children who stutter had concomitant language and/or phonological disorders. Approximately half of our sample of stuttering children had language and/or phonological disorders. As previous investigations would suggest, the stuttering children with concomitant language or speech sound disorders produced significantly more errors on the nonword repetition task compared to typically developing children. In contrast, the children who were diagnosed as stuttering, but who had normal speech sound and language abilities, performed the nonword repetition task with equal accuracy compared to their normally fluent peers. Analyses of interarticulator motions during accurate and fluent productions of the nonwords revealed that the children who stutter (without concomitant disorders) showed higher variability in oral motor coordination indices. These results provide new evidence that preschool children diagnosed as stuttering lag their typically developing peers in maturation of speech motor control processes. Educational objectives The reader will be able to: (a) discuss why performance on nonword repetition tasks has been investigated in children who stutter; (b) discuss why children who stutter in the current study had a higher incidence

  17. MECHANICAL CHARACTERISTICS OF THREE-PHASE INDUCTION MOTORS WITH SINGLE-PHASE POWER SUPPLY

    Directory of Open Access Journals (Sweden)

    V.S. Malyar

    2016-06-01

    Full Text Available Aim. Development of a method for calculating mechanical characteristics of three-phase induction motors with single-phase power supply. Methods. The developed algorithm is based on the high-adequacy mathematical model of motor and projection method for solving the boundary problem for equations of electrical circuits balance presented in the three-phase coordinate system. As a result of asymmetry of power supply to the stator windings, in steady state, flux-linkage and current change according to the periodic law. They are determined by solving the boundary problem. Results. The developed mathematical model allows determining periodic dependence of coordinates as a function of slip and, based on them, mechanical characteristics of motors. Academic novelty. The developed method relies on a completely new mathematical approach to calculation of stationary modes of nonlinear electromagnetic circuits, which allows obtaining periodic solution in a timeless domain. Practical value. Using the developed calculation algorithm, one can select capacitance required to start an induction motor with single-phase power supply and calculate static mechanical characteristics at a given capacitance.

  18. Fine motor skills in a population of children in remote Australia with high levels of prenatal alcohol exposure and Fetal Alcohol Spectrum Disorder.

    Science.gov (United States)

    Doney, Robyn; Lucas, Barbara R; Watkins, Rochelle E; Tsang, Tracey W; Sauer, Kay; Howat, Peter; Latimer, Jane; Fitzpatrick, James P; Oscar, June; Carter, Maureen; Elliott, Elizabeth J

    2017-11-21

    Many children in the remote Fitzroy Valley region of Western Australia have prenatal alcohol exposure (PAE). Individuals with PAE can have neurodevelopmental impairments and be diagnosed with one of several types of Fetal Alcohol Spectrum Disorder (FASD). Fine motor skills can be impaired by PAE, but no studies have developed a comprehensive profile of fine motor skills in a population-based cohort of children with FASD. We aimed to develop a comprehensive profile of fine motor skills in a cohort of Western Australian children; determine whether these differed in children with PAE or FASD; and establish the prevalence of impairment. Children (n = 108, 7 to 9 years) were participants in a population-prevalence study of FASD in Western Australia. Fine motor skills were assessed using the Bruininks-Oseretsky Test of Motor Proficiency, which provided a Fine Motor Composite score, and evaluated Fine Manual Control (Fine Motor Precision; Fine Motor Integration) and Manual Coordination (Manual Dexterity; Upper-Limb Coordination). Descriptive statistics were reported for the overall cohort; and comparisons made between children with and without PAE and/or FASD. The prevalence of severe (≤ 2nd percentile) and moderate (≤16th percentile) impairments was determined. Overall, Fine Motor Composite scores were 'average' (M = 48.6 ± 7.4), as were Manual Coordination (M = 55.7 ± 7.9) and Fine Manual Control scores (M = 42.5 ± 6.2). Children with FASD had significantly lower Fine Motor Composite (M = 45.2 ± 7.7 p = 0.046) and Manual Coordination scores (M = 51.8 ± 7.3, p = 0.027) than children without PAE (Fine Motor Composite M = 49.8 ± 7.2; Manual Coordination M = 57.0 ± 7.7). Few children had severe impairment, but rates of moderate impairment were very high. Different types of fine motor skills should be evaluated in children with PAE or FASD. The high prevalence of fine motor impairment in our

  19. The Factor Structure of Coordination Abilities Development in 5th-7th Grade Boys

    Directory of Open Access Journals (Sweden)

    В. В. Приходько

    2017-12-01

    Full Text Available The objective is to determine the structure of coordination abilities development in 5th-7th grade boys. Materials and methods. The participants in the study were boys of the 5th grade (n=21, 6th grade (n=20, and 7th grade (n=19. The paper used analysis and generalization of the scientific and methodological literature data, general scientific methods of theoretical level, namely: analogy, analysis, synthesis, abstracting, induction, as well as general scientific methods of empirical level: observation, testing, experiment. To evaluate of the motor preparedness, the results of motor tests, height and body weight were recorded. The materials of the study were processed in the statistical analysis program IBM SPSS 20. Factor analysis was carried out using a model of the principal components with the rotation method: Variamax with Kaiser normalization. Results. Analysis of the similarities shows that the most informative in the structure of the 5th grade boys’ motor preparedness are Test 9 “Static Equilibrium Evaluation by E. Ya. Bondarevsky’s Method” (,999, Test 2 “Standing Long Jump (cm” (,998, Test 10 “Dynamic Equilibrium Evaluation by Bess Method” (,916; for the 6th grade boys such are Test 9 “Static Equilibrium Evaluation by E. Ya. Bondarevsky’s Method” (1.0, Test 2 “Standing Long Jump (cm” (,999, Test 5 “Sit-Up for 30 sec.” (,968, Test 10 “Dynamic Equilibrium Evaluation by Bess Method” (,918; for the 7th grade boys such are Test 2 “Standing Long Jump (cm” (,994, Test 9 “Static Equilibrium Evaluation by E. Ya. Bondarevsky’s Method” (,987, Test 10 “Dynamic Equilibrium Evaluation by Bess Method” (,945. Conclusions. The most informative in the structure of 5th-7th grade boys’ coordination abilities is vestibular tolerance. For pedagogical control of 5th-7th grade boys’ motor preparedness the following can be recommended: Test 2 “Standing Long Jump (cm”, Test 9 “Static Equilibrium

  20. The Impact of Methylphenidate on Motor Performance in Children with both Attention Deficit Hyperactivity Disorder and Developmental Coordination Disorder: A Randomized Double-Blind Crossover Clinical Trial

    Directory of Open Access Journals (Sweden)

    Robabeh Soleimani

    2017-07-01

    Full Text Available Background: Children with attention deficit hyperactivity disorder/developmental coordination disorder (ADHD/DCD suffer from problems associated with gross and fine motor skills. There is no effective pharmacological therapy for such patients. We aimed to assess the impact of methylphenidate (MPH on motor performance of children with ADHD/DCD. Methods: In this double-blind placebo-controlled, 17 children (12 boys with ADHD/DCD with a mean age of 7 years 6 months were recruited in Shafa Hospital, Rasht, Iran. The response was defined as ≥25% reduction in the total score of ADHD rating scale-IV from the baseline. Sixteen boys entered phase 2 of the study in which the impact of MPH on motor function was determined through a crossover randomized clinical trial. Eligible individuals were scheduled for baseline and two assessment visits after a one-week period of intervention. We used the short form of Bruininks-Oseretsky test (BOT-2 to identify the disability of motor function. Children were randomly assigned to receive MPH or inert ingredients (placebo. In the second period, medication (MPH/placebo was crossed over. The effects of MPH were analyzed using χ2 test for related samples to compare the performance during baseline, placebo, and MPH trials. The results were analyzed using the SPSS software version 16.0. Results: The mean minimal effective dose of MPH per day was 17.3 mg (0.85 mg/kg. Children with higher ADHD rating scale had a significantly lower standard score in BOT-2 (P=0.03. Following MPH intake, 26.6% of the children showed clinically significant improvement in motor function. However, the improvement was not statistically different between the MPH and placebo. Conclusion: Although MPH improved ADHD symptoms, problems with motor performance still remained. Further work is required to determine the probable effects of MPH in a higher dosage or in different subtypes of ADHD. Trial Registration Number: IRCT201107071483N2

  1. Ebselen protects against behavioral and biochemical toxicities induced by 3-nitropropionic acid in rats: correlations between motor coordination, reactive species levels, and succinate dehydrogenase activity.

    Science.gov (United States)

    Wilhelm, Ethel A; Bortolatto, Cristiani F; Jesse, Cristiano R; Luchese, Cristiane

    2014-12-01

    The protective effect of ebselen was investigated against 3-nitropropionic acid (3-NP)-induced behavioral and biochemical toxicities in rats. Ebselen (10 or 25 mg/kg, intragastrically) was administered to rats 30 min before 3-NP (20 mg/kg, intraperitoneally) once a day for a period of 4 days. Locomotor activity, motor coordination, and body weight gain were determined. The striatal content of reactive oxygen species (ROS), reduced glutathione (GSH), ascorbic acid (AA), and protein carbonyl as well as catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), and glutathione-S-transferase (GST) activities was determined 24 h after the last dose of 3-NP. Na(+)/ K(+)-ATPase, succinate dehydrogenase (SDH), and δ-aminolevulinic dehydratase (δ-ALA-D) activities were also determined. The results demonstrated that ebselen at a dose of 25 mg/kg, but not at 10 mg/kg, protected against (1) a decrease in locomotor activity, motor coordination impairment, and body weight loss; (2) striatal oxidative damage, which was characterized by an increase in ROS levels, protein carbonyl content, and GR activity, an inhibition of CAT and GPx activities, and a decrease in GSH levels; and (3) an inhibition of SDH and Na(+)/K(+)-ATPase activities, induced by 3-NP. GST activity and AA levels were not modified by ebselen or 3-NP. Ebselen was not effective against the inhibition of δ-ALA-D activity induced by 3-NP. The results revealed a significant correlation between SDH activity and ROS levels, and SDH activity and latency to fall (rotarod test). The present study highlighted the protective effect of ebselen against 3-NP-induced toxicity in rats.

  2. Desempenho coordenativo de crianças: construção de cartas percentílicas baseadas no método LMS de Cole e Green Motor coordination of children: construction of centiles charts with LMS method by Cole and Green

    Directory of Open Access Journals (Sweden)

    Raquel Nichele de Chaves

    2013-03-01

    Full Text Available Os propósitos do estudo foram: 1 apresentar valores de referência percentílica às quatro provas da bateria de testes KTK; 2 comparar o desempenho coordenativo entre crianças vouzelenses e de outros estudos do país e exterior; e 3 apresentar pseudo-curvas de velocidade para cada prova. Foram avaliadas 811 crianças com idades entre os seis e os 10 anos. O desempenho coordenativo foi estimado por meio da bateria KTK. Cartas percentílicas e pseudo-curvas de velocidade foram construídas com base no método LMS, implementado no "software" LMSchartmarker Pro versão 2.54. Os valores de referência percentílicas expressam forte variabilidade interindividual do desempenho coordenativo. Em geral, os valores médios vouzelenses são inferiores aos belgas e alemães. O comportamento do percentil 50 das quatro provas do KTK é similar entre Vouzela, Peru e Açores. As pseudo-curvas de velocidade sugerem especificidade em cada prova e sexo, bem como diminuição dos ganhos coordenativos ao longo da idade.The purposes of this study were 1 to construct reference values to KTK test battery; 2 to compare Vouzela children’s motor coordination with those from other Portuguese sites and international references; 3 to present pseudo-velocity curves for each KTK test. The sample comprises 811 children aged six to 11 years. Motor coordination was assessed with the four tests of the KTK Battery. Centile charts were constructed using the LMS method implemented in LMSchartmarker Pro software. Pervasive interindividual differences were noted in all coordination tests. Mean values of Vouzela children’s motor coordination were lower than German and Belgian samples. 50th percentile was similar among Vouzela, Peruvian and Azorean samples. Pseudo-velocity curves suggested a marked specificity to each test and sex, as well as decreasing of the coordinative gains per year.

  3. Neuro-motor deficits in six- to eight-year old learners with ADHD and ...

    African Journals Online (AJOL)

    This study investigated the nature of coordination, visual-motor integration and neurological functioning in children diagnosed with ADHD and whether the likelihood of motor impairment will increase with the presence of co-occurring DCD (DAMP). Ninety-five learners (60 boys; 35 girls) with a mean age of 6.9 years ...

  4. Adolescentes com deficiência auditiva: a aprendizagem da dança e a coordenação motora Hearing impaired adolescents: dance learning and motor coordination

    Directory of Open Access Journals (Sweden)

    Maria Augusta L. Montezuma

    2011-08-01

    Full Text Available O objetivo deste estudo foi verificar a ocorrência de modificação da coordenação motora, atenção, participação, interação, autoestima e compreensão em adolescentes com deficiência auditiva, após a realização de aulas de dança do tipo jazz dance. Foi realizado estudo experimental intrassujeito do tipo AB, com cinco sujeitos do gênero feminino, com idade entre 13 e 18 anos, diagnóstico de surdez congênita ou adquirida e estudantes do Instituto Londrinense de Educação de Surdos (ILES. Para avaliação da coordenação motora foi aplicado o teste KTK, composto por quatro tarefas antes e após as aulas e, diário de campo, contendo informações que não foram registradas nos testes formais. Foram realizadas doze aulas de dança como intervenção. O resultado do KTK mostrou média da pontuação total de 171,8 inicialmente e 196,4 após a intervenção. Como resultado final todos os sujeitos do estudo apresentaram melhora da coodernação motora significante (P=0.01 após as aulas de dança. Observou-se também melhor atenção das alunas no decorrer das aulas e maior integração do grupo.The aim of this study was to investigate the occurrence of changes in motor coordination and attention, participation, interaction, self-esteem and understanding in adolescents with hearing loss, after conducting dance classes such as jazz. An experimental study of intra-subject AB, was done, with five female subjects, aged between 13 and 18 years and diagnosis of congenital or acquired deafness, students of the Institute of Deaf Education Londrinense (ILES. The KTK test was conducted to evaluate the motor coordination, consisting of four tasks before and after classes and a diary containing information not recorded in formal tests. Twelve dance classes were proposed as intervention. The result of KTK showed a total score average of 171,8 before the dance and an average of 196,4 after the classes. The results indicated that all subjects of

  5. Task-Dependent Intermuscular Motor Unit Synchronization between Medial and Lateral Vastii Muscles during Dynamic and Isometric Squats.

    Science.gov (United States)

    Mohr, Maurice; Nann, Marius; von Tscharner, Vinzenz; Eskofier, Bjoern; Nigg, Benno Maurus

    2015-01-01

    Motor unit activity is coordinated between many synergistic muscle pairs but the functional role of this coordination for the motor output is unclear. The purpose of this study was to investigate the short-term modality of coordinated motor unit activity-the synchronized discharge of individual motor units across muscles within time intervals of 5ms-for the Vastus Medialis (VM) and Lateralis (VL). Furthermore, we studied the task-dependency of intermuscular motor unit synchronization between VM and VL during static and dynamic squatting tasks to provide insight into its functional role. Sixteen healthy male and female participants completed four tasks: Bipedal squats, single-leg squats, an isometric squat, and single-leg balance. Monopolar surface electromyography (EMG) was used to record motor unit activity of VM and VL. For each task, intermuscular motor unit synchronization was determined using a coherence analysis between the raw EMG signals of VM and VL and compared to a reference coherence calculated from two desynchronized EMG signals. The time shift between VM and VL EMG signals was estimated according to the slope of the coherence phase angle spectrum. For all tasks, except for singe-leg balance, coherence between 15-80Hz significantly exceeded the reference. The corresponding time shift between VM and VL was estimated as 4ms. Coherence between 30-60Hz was highest for the bipedal squat, followed by the single-leg squat and the isometric squat. There is substantial short-term motor unit synchronization between VM and VL. Intermuscular motor unit synchronization is enhanced for contractions during dynamic activities, possibly to facilitate a more accurate control of the joint torque, and reduced during single-leg tasks that require balance control and thus, a more independent muscle function. It is proposed that the central nervous system scales the degree of intermuscular motor unit synchronization according to the requirements of the movement task at hand.

  6. Decoupling control of steering and driving system for in-wheel-motor-drive electric vehicle

    Science.gov (United States)

    Zhang, Han; Zhao, Wanzhong

    2018-02-01

    To improve the maneuverability and stability of in-wheel-motor-drive electric vehicle, a control strategy based on nonlinear decoupling control method is proposed in this paper, realizing the coordinated control of the steering and driving system. At first, the nonlinear models of the in-wheel-motor-drive electric vehicle and its sub-system are constructed. Then the inverse system decoupling theory is applied to decompose the nonlinear system into several independent subsystems, which makes it possible to realize the coordinated control of each subsystem. Next, the μ-Synthesis theory is applied to eliminate the influence of model uncertainty, improving the stability, robustness and tracking performance of in-wheel-motor-drive electric vehicle. Simulation and experiment results and numerical analyses, based on the electric vehicle actuated by in-wheel-motors, prove that the proposed control method is effective to accomplish the decoupling control of the steering and driving system in both simulation and real practice.

  7. Corrective response times in a coordinated eye-head-arm countermanding task.

    Science.gov (United States)

    Tao, Gordon; Khan, Aarlenne Z; Blohm, Gunnar

    2018-06-01

    Inhibition of motor responses has been described as a race between two competing decision processes of motor initiation and inhibition, which manifest as the reaction time (RT) and the stop signal reaction time (SSRT); in the case where motor initiation wins out over inhibition, an erroneous movement occurs that usually needs to be corrected, leading to corrective response times (CRTs). Here we used a combined eye-head-arm movement countermanding task to investigate the mechanisms governing multiple effector coordination and the timing of corrective responses. We found a high degree of correlation between effector response times for RT, SSRT, and CRT, suggesting that decision processes are strongly dependent across effectors. To gain further insight into the mechanisms underlying CRTs, we tested multiple models to describe the distribution of RTs, SSRTs, and CRTs. The best-ranked model (according to 3 information criteria) extends the LATER race model governing RTs and SSRTs, whereby a second motor initiation process triggers the corrective response (CRT) only after the inhibition process completes in an expedited fashion. Our model suggests that the neural processing underpinning a failed decision has a residual effect on subsequent actions. NEW & NOTEWORTHY Failure to inhibit erroneous movements typically results in corrective movements. For coordinated eye-head-hand movements we show that corrective movements are only initiated after the erroneous movement cancellation signal has reached a decision threshold in an accelerated fashion.

  8. Recycling of electrical motors by automatic disassembly

    Science.gov (United States)

    Karlsson, Björn; Järrhed, Jan-Ove

    2000-04-01

    This paper presents a robotized workstation for end-of-life treatment of electrical motors with an electrical effect of about 1 kW. These motors can, for example, be found in washing machines and in industry. There are two main steps in the work. The first step is an inspection whereby the functionality of the motor is checked and classification either for re-use or for disassembly is done. In the second step the motors classified for disassembly are disassembled in a robotized automatic station. In the initial step measurements are performed during a start-up sequence of about 1 s. By measuring the rotation speed and the current and voltage of the three phases of the motor classification for either reuse or disassembly can be done. During the disassembly work, vision data are fused in order to classify the motors according to their type. The vision system also feeds the control system of the robot with various object co-ordinates, to facilitate correct operation of the robot. Finally, tests with a vision system and eddy-current equipment are performed to decide whether all copper has been removed from the stator.

  9. Two Archetypes of Motor Control Research.

    Science.gov (United States)

    Latash, Mark L

    2010-07-01

    This reply to the Commentaries is focused on two archetypes of motor control research, one based on physics and physiology and the other based on control theory and ideas of neural computations. The former approach, represented by the equilibrium-point hypothesis, strives to discover the physical laws and salient physiological variables that make purposeful coordinated movements possible. The latter approach, represented by the ideas of internal models and optimal control, tries to apply methods of control developed for man-made inanimate systems to the human body. Specific issues related to control with subthreshold membrane depolarization, motor redundancy, and the idea of synergies are briefly discussed.

  10. Peripheral Nerve Injury in Developing Rats Reorganizes Representation Pattern in Motor Cortex

    Science.gov (United States)

    Donoghue, John P.; Sanes, Jerome N.

    1987-02-01

    We investigated the effect of neonatal nerve lesions on cerebral motor cortex organization by comparing the cortical motor representation of normal adult rats with adult rats that had one forelimb removed on the day of birth. Mapping of cerebral neocortex with electrical stimulation revealed an altered relationship between the motor cortex and the remaining muscles. Whereas distal forelimb movements are normally elicited at the lowest threshold in the motor cortex forelimb area, the same stimuli activated shoulder and trunk muscles in experimental animals. In addition, an expanded cortical representation of intact body parts was present and there was an absence of a distinct portion of motor cortex. These data demonstrate that representation patterns in motor cortex can be altered by peripheral nerve injury during development.

  11. iPSC-derived Insights into Motor Neuron Disease and Inflammatory Neuropathies

    NARCIS (Netherlands)

    Härschnitz, O.

    2017-01-01

    The proper function of the motor circuit is essential for normal interaction as a human being with external cues. While the motor circuit consists of a variety of cell types, one of its core components is the motor neuron itself. Dysfunction of motor neurons is a hallmark of many neuromuscular

  12. Revision of the standards in the application of high efficiency induction motors; Revision de la normatividad en la aplicacionon de motores, de induccion, de eficiencia alta

    Energy Technology Data Exchange (ETDEWEB)

    Acoltzi Acoltzi, Higinio [Instituto de Investigaciones Electricas, Temixco, Morelos (Mexico)

    2001-07-01

    In this work the elements contained in the national and international standards to obtain the benefits in the application of high efficiency electrical motors are presented. A table of associated normal and minimum efficiency is presented, and one with values of nominal efficiency at full load for totally enclosed motors of standard efficiency, for opened motors of standard efficiency and high efficiency. Graphs are given where the comparison of nominal efficiencies is shown for AC induction motors to closed and opened poles. [Spanish] En este trabajo se presentan los elementos contenidos en las normas nacionales e internacionales para conseguir los beneficios en la aplicacion de motores electricos de eficiencia alta. Se muestra una tabla de eficiencia normal y minima asociados, y una con valores de eficiencia nominal a plena carga para motores cerrados de eficiencia estandar, para motores abiertos de eficiencia estandar y de eficiencia alta. Se da graficas donde se muestra la comparacion de eficiencias nominales, para motores de CA de induccion, a polos cerrados y a polos abiertos.

  13. Sensorimotor oscillations prior to speech onset reflect altered motor networks in adults who stutter

    Directory of Open Access Journals (Sweden)

    Anna-Maria Mersov

    2016-09-01

    Full Text Available Adults who stutter (AWS have demonstrated atypical coordination of motor and sensory regions during speech production. Yet little is known of the speech-motor network in AWS in the brief time window preceding audible speech onset. The purpose of the current study was to characterize neural oscillations in the speech-motor network during preparation for and execution of overt speech production in AWS using magnetoencephalography (MEG. Twelve AWS and twelve age-matched controls were presented with 220 words, each word embedded in a carrier phrase. Controls were presented with the same word list as their matched AWS participant. Neural oscillatory activity was localized using minimum-variance beamforming during two time periods of interest: speech preparation (prior to speech onset and speech execution (following speech onset. Compared to controls, AWS showed stronger beta (15-25Hz suppression in the speech preparation stage, followed by stronger beta synchronization in the bilateral mouth motor cortex. AWS also recruited the right mouth motor cortex significantly earlier in the speech preparation stage compared to controls. Exaggerated motor preparation is discussed in the context of reduced coordination in the speech-motor network of AWS. It is further proposed that exaggerated beta synchronization may reflect a more strongly inhibited motor system that requires a stronger beta suppression to disengage prior to speech initiation. These novel findings highlight critical differences in the speech-motor network of AWS that occur prior to speech onset and emphasize the need to investigate further the speech-motor assembly in the stuttering population.

  14. High Power Density Motors

    Science.gov (United States)

    Kascak, Daniel J.

    2004-01-01

    With the growing concerns of global warming, the need for pollution-free vehicles is ever increasing. Pollution-free flight is one of NASA's goals for the 21" Century. , One method of approaching that goal is hydrogen-fueled aircraft that use fuel cells or turbo- generators to develop electric power that can drive electric motors that turn the aircraft's propulsive fans or propellers. Hydrogen fuel would likely be carried as a liquid, stored in tanks at its boiling point of 20.5 K (-422.5 F). Conventional electric motors, however, are far too heavy (for a given horsepower) to use on aircraft. Fortunately the liquid hydrogen fuel can provide essentially free refrigeration that can be used to cool the windings of motors before the hydrogen is used for fuel. Either High Temperature Superconductors (HTS) or high purity metals such as copper or aluminum may be used in the motor windings. Superconductors have essentially zero electrical resistance to steady current. The electrical resistance of high purity aluminum or copper near liquid hydrogen temperature can be l/lOO* or less of the room temperature resistance. These conductors could provide higher motor efficiency than normal room-temperature motors achieve. But much more importantly, these conductors can carry ten to a hundred times more current than copper conductors do in normal motors operating at room temperature. This is a consequence of the low electrical resistance and of good heat transfer coefficients in boiling LH2. Thus the conductors can produce higher magnetic field strengths and consequently higher motor torque and power. Designs, analysis and actual cryogenic motor tests show that such cryogenic motors could produce three or more times as much power per unit weight as turbine engines can, whereas conventional motors produce only 1/5 as much power per weight as turbine engines. This summer work has been done with Litz wire to maximize the current density. The current is limited by the amount of heat it

  15. A neural network-based exploratory learning and motor planning system for co-robots

    Directory of Open Access Journals (Sweden)

    Byron V Galbraith

    2015-07-01

    Full Text Available Collaborative robots, or co-robots, are semi-autonomous robotic agents designed to work alongside humans in shared workspaces. To be effective, co-robots require the ability to respond and adapt to dynamic scenarios encountered in natural environments. One way to achieve this is through exploratory learning, or learning by doing, an unsupervised method in which co-robots are able to build an internal model for motor planning and coordination based on real-time sensory inputs. In this paper, we present an adaptive neural network-based system for co-robot control that employs exploratory learning to achieve the coordinated motor planning needed to navigate toward, reach for, and grasp distant objects. To validate this system we used the 11-degrees-of-freedom RoPro Calliope mobile robot. Through motor babbling of its wheels and arm, the Calliope learned how to relate visual and proprioceptive information to achieve hand-eye-body coordination. By continually evaluating sensory inputs and externally provided goal directives, the Calliope was then able to autonomously select the appropriate wheel and joint velocities needed to perform its assigned task, such as following a moving target or retrieving an indicated object.

  16. A neural network-based exploratory learning and motor planning system for co-robots.

    Science.gov (United States)

    Galbraith, Byron V; Guenther, Frank H; Versace, Massimiliano

    2015-01-01

    Collaborative robots, or co-robots, are semi-autonomous robotic agents designed to work alongside humans in shared workspaces. To be effective, co-robots require the ability to respond and adapt to dynamic scenarios encountered in natural environments. One way to achieve this is through exploratory learning, or "learning by doing," an unsupervised method in which co-robots are able to build an internal model for motor planning and coordination based on real-time sensory inputs. In this paper, we present an adaptive neural network-based system for co-robot control that employs exploratory learning to achieve the coordinated motor planning needed to navigate toward, reach for, and grasp distant objects. To validate this system we used the 11-degrees-of-freedom RoPro Calliope mobile robot. Through motor babbling of its wheels and arm, the Calliope learned how to relate visual and proprioceptive information to achieve hand-eye-body coordination. By continually evaluating sensory inputs and externally provided goal directives, the Calliope was then able to autonomously select the appropriate wheel and joint velocities needed to perform its assigned task, such as following a moving target or retrieving an indicated object.

  17. Does Physical Self-Concept Mediate the Relationship between Motor Abilities and Physical Activity in Adolescents and Young Adults?

    Science.gov (United States)

    Jekauc, Darko; Wagner, Matthias Oliver; Herrmann, Christian; Hegazy, Khaled; Woll, Alexander

    2017-01-01

    The purpose of this study is to examine the reciprocal relationship between motor abilities and physical activity and the mediation effects of physical self-concept in this relationship using longitudinal data. We expect that the effects of motor abilities on physical activity are rather indirect via physical self-concept and that the effects of physical activity on motor abilities are rather direct without involvement of the motor ability self-concept. Data was obtained from the Motorik-Modul (MoMo) Longitudinal Study in which 335 boys and 363 girls aged 11–17 years old at Baseline were examined twice in a period of six years. Physical activity was assessed by the MoMo Physical Activity Questionnaire for adolescents, physical self-concept by Physical Self-Description Questionnaire and motor abilities by MoMo Motor Test which comprised of the dimensions strength, endurance, coordination and flexibility. Multiple regression analyses were used to analyse the direct and indirect effects. The results of the multiple regression analyses show that the effects of motor abilities on physical activity were only indirect for the dimensions strength, coordination, and flexibility. For the dimension endurance, neither direct nor indirect effects were significant. In the opposite direction, the effects of physical activity on motor abilities were partially mediated by the self-concept of strength. For the dimensions endurance, coordination and flexibility, only indirect were significant. The results of this study support the assumption that the relationship between motor abilities and physical activity is mediated by physical self-concept in both directions. Physical self-concept seems to be an important determinant of adolescents´ physical activity. PMID:28045914

  18. IQ discrepancy differentiates levels of fine motor skills and their relationship in children with autism spectrum disorders

    Directory of Open Access Journals (Sweden)

    Yu TY

    2018-02-01

    Full Text Available Tzu-Ying Yu,1 Willy Chou,2,3 Julie Chi Chow,4 Chien-Ho Lin,5 Li-Chen Tung,2,6 Kuan-Lin Chen7,8 1Department of Occupational Therapy, College of Medicine, I-Shou University, Kaohsiung, 2Department of Physical Medicine and Rehabilitation, Chi-Mei Medical Center, 3Department of Recreation and Health Care Management, Cha Nan University of Pharmacy and Science, 4Department of Pediatrics, 5Department of Psychiatry, Chi Mei Medical Center, Tainan, 6Department of Physical Medicine and Rehabilitation, Da Chien General Hospital, Miaoli, 7Department of Occupational Therapy, College of Medicine, National Cheng Kung University, 8Department of Physical Medicine and Rehabilitation, National Cheng Kung University Hospital, Tainan, Taiwan Purpose: We investigated 1 the impact of differences in intelligence quotient discrepancy (IQD on motor skills of preschool-aged children with autism spectrum disorders (ASD; 2 the relationships between IQD and motor skills in preschool-aged children with ASD. Methods: A total of 127 ASD preschool-aged children were divided into three groups according to the size of the IQD: IQD within 1 standard deviation (1SD; EVENIQ; n=81, discrepantly higher verbal intelligence quotient (VIQ; n=22; VIQ>performance intelligence quotient [PIQ] above 1SD [≥15 points], and discrepantly higher PIQ (n=24; PIQ>VIQ above 1SD [≥15 points]. Children’s IQD and motor skills were determined with the Wechsler Preschool and Primary Scale of Intelligence™ – Fourth Edition and the motor subtests of the Comprehensive Developmental Inventory for Infants and Toddlers (CDIIT, respectively. Results: One-way analysis of variance revealed significant group differences for the fine motor domain of the CDIIT and the visual–motor coordination subtest (F=3.37–4.38, p<0.05. Children with discrepantly higher PIQ were associated with better fine motor skills than were children with even IQD and those with discrepantly higher VIQ, and vice versa. IQD (PIQ

  19. Fine motor skills in South African children with symptoms of ADHD: influence of subtype, gender, age, and hand dominance

    Directory of Open Access Journals (Sweden)

    Meyer Anneke

    2006-10-01

    Full Text Available Abstract Background Motor problems, often characterised as clumsiness or poor motor coordination, have been associated with ADHD in addition to the main symptom groups of inattention, impulsiveness, and overactivity. The problems addressed in this study were: (1 Are motor problems associated with ADHD symptoms, also in African cultures? (2 Are there differences in motor skills among the subtypes with ADHD symptoms? (3 Are there gender differences? (4 Is there an effect of age? (5 Are there differences in performance between the dominant and non-dominant hand? Method A total of 528 children (264 classified as having symptoms of ADHD and 264 matched comparisons of both genders and from seven different South African ethnic groups participated in the study. They were assessed with three simple, easy to administer instruments which measure various functions of motor speed and eye-hand coordination: The Grooved Pegboard, the Maze Coordination Task, and the Finger Tapping Test. The results were analysed as a function of subtype, gender, age, and hand dominance. Results The findings indicate that children with symptoms of ADHD performed significantly poorer on the Grooved Pegboard and Motor Coordination Task, but not on the Finger Tapping Test than their comparisons without ADHD symptoms. The impairment was most severe for the subtype with symptoms of ADHD-C (combined and less severe for the subtypes with symptoms of ADHD-PI (predominantly inattentive and ADHD-HI (predominantly hyperactive/impulsive. With few exceptions, both genders were equally affected while there were only slight differences in performance between the dominant and non-dominant hand. The deficiencies in motor control were mainly confined to the younger age group (6 – 9 yr. Conclusion An association between the symptoms of ADHD and motor problems was demonstrated in terms of accuracy and speed in fairly complex tasks, but not in simple motor tests of speed. This deficiency is found

  20. Torque Coordination Control during Braking Mode Switch for a Plug-in Hybrid Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Yang Yang

    2017-10-01

    Full Text Available Hybrid vehicles usually have several braking systems, and braking mode switches are significant events during braking. It is difficult to coordinate torque fluctuations caused by mode switches because the dynamic characteristics of braking systems are different. In this study, a new type of plug-in hybrid vehicle is taken as the research object, and braking mode switches are divided into two types. The control strategy of type one is achieved by controlling the change rates of clutch hold-down and motor braking forces. The control strategy of type two is achieved by simultaneously changing the target braking torque during different mode switch stages and controlling the motor to participate in active coordination control. Finally, the torque coordination control strategy is modeled in MATLAB/Simulink, and the results show that the proposed control strategy has a good effect in reducing the braking torque fluctuation and vehicle shocks during braking mode switches.

  1. Forelimb training drives transient map reorganization in ipsilateral motor cortex.

    Science.gov (United States)

    Pruitt, David T; Schmid, Ariel N; Danaphongse, Tanya T; Flanagan, Kate E; Morrison, Robert A; Kilgard, Michael P; Rennaker, Robert L; Hays, Seth A

    2016-10-15

    Skilled motor training results in reorganization of contralateral motor cortex movement representations. The ipsilateral motor cortex is believed to play a role in skilled motor control, but little is known about how training influences reorganization of ipsilateral motor representations of the trained limb. To determine whether training results in reorganization of ipsilateral motor cortex maps, rats were trained to perform the isometric pull task, an automated motor task that requires skilled forelimb use. After either 3 or 6 months of training, intracortical microstimulation (ICMS) mapping was performed to document motor representations of the trained forelimb in the hemisphere ipsilateral to that limb. Motor training for 3 months resulted in a robust expansion of right forelimb representation in the right motor cortex, demonstrating that skilled motor training drives map plasticity ipsilateral to the trained limb. After 6 months of training, the right forelimb representation in the right motor cortex was significantly smaller than the representation observed in rats trained for 3 months and similar to untrained controls, consistent with a normalization of motor cortex maps. Forelimb map area was not correlated with performance on the trained task, suggesting that task performance is maintained despite normalization of cortical maps. This study provides new insights into how the ipsilateral cortex changes in response to skilled learning and may inform rehabilitative strategies to enhance cortical plasticity to support recovery after brain injury. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Modeling speech imitation and ecological learning of auditory-motor maps

    Directory of Open Access Journals (Sweden)

    Claudia eCanevari

    2013-06-01

    Full Text Available Classical models of speech consider an antero-posterior distinction between perceptive and productive functions. However, the selective alteration of neural activity in speech motor centers, via transcranial magnetic stimulation, was shown to affect speech discrimination. On the automatic speech recognition (ASR side, the recognition systems have classically relied solely on acoustic data, achieving rather good performance in optimal listening conditions. The main limitations of current ASR are mainly evident in the realistic use of such systems. These limitations can be partly reduced by using normalization strategies that minimize inter-speaker variability by either explicitly removing speakers’ peculiarities or adapting different speakers to a reference model. In this paper we aim at modeling a motor-based imitation learning mechanism in ASR. We tested the utility of a speaker normalization strategy that uses motor representations of speech and compare it with strategies that ignore the motor domain. Specifically, we first trained a regressor through state-of-the-art machine learning techniques to build an auditory-motor mapping, in a sense mimicking a human learner that tries to reproduce utterances produced by other speakers. This auditory-motor mapping maps the speech acoustics of a speaker into the motor plans of a reference speaker. Since, during recognition, only speech acoustics are available, the mapping is necessary to recover motor information. Subsequently, in a phone classification task, we tested the system on either one of the speakers that was used during training or a new one. Results show that in both cases the motor-based speaker normalization strategy almost always outperforms all other strategies where only acoustics is taken into account.

  3. Synthesis of controllable and normal sublanguages for discrete-event systems using a coordinator

    Czech Academy of Sciences Publication Activity Database

    Komenda, Jan; Masopust, Tomáš; van Schuppen, J. H.

    2011-01-01

    Roč. 60, č. 7 (2011), s. 492-502 ISSN 0167-6911 R&D Projects: GA ČR(CZ) GAP103/11/0517; GA ČR(CZ) GPP202/11/P028 Grant - others:European Commission(XE) EU. ICT .DISC 224498 Institutional research plan: CEZ:AV0Z10190503 Keywords : discrete-event system * coordination control * coordinator Subject RIV: BA - General Mathematics Impact factor: 1.222, year: 2011 http://www.sciencedirect.com/science/article/pii/S0167691111000739

  4. Synthesis of controllable and normal sublanguages for discrete-event systems using a coordinator

    Czech Academy of Sciences Publication Activity Database

    Komenda, Jan; Masopust, Tomáš; van Schuppen, J. H.

    2011-01-01

    Roč. 60, č. 7 (2011), s. 492-502 ISSN 0167-6911 R&D Projects: GA ČR(CZ) GAP103/11/0517; GA ČR(CZ) GPP202/11/P028 Grant - others:European Commission(XE) EU.ICT.DISC 224498 Institutional research plan: CEZ:AV0Z10190503 Keywords : discrete-event system * coordination control * coordinator Subject RIV: BA - General Mathematics Impact factor: 1.222, year: 2011 http://www.sciencedirect.com/science/article/pii/S0167691111000739

  5. Motor Skills of Children Newly Diagnosed with Attention Deficit Hyperactivity Disorder Prior to and Following Treatment with Stimulant Medication

    Science.gov (United States)

    Brossard-Racine, Marie; Shevell, Michael; Snider, Laurie; Belanger, Stacey Ageranioti; Majnemer, Annette

    2012-01-01

    Motor difficulties are common in children with Attention Deficit Hyperactivity Disorder (ADHD). Although preliminary evidence has suggested that methylphenidate can improve the motor skills in children with ADHD and Developmental Coordination Disorder (DCD), the effect of stimulant medication on motor performance in children newly diagnosed with…

  6. Electromyographic activity of hand muscles in a motor coordination game: effect of incentive scheme and its relation with social capital.

    Directory of Open Access Journals (Sweden)

    Roberto Censolo

    Full Text Available BACKGROUND: A vast body of social and cognitive psychology studies in humans reports evidence that external rewards, typically monetary ones, undermine intrinsic motivation. These findings challenge the standard selfish-rationality assumption at the core of economic reasoning. In the present work we aimed at investigating whether the different modulation of a given monetary reward automatically and unconsciously affects effort and performance of participants involved in a game devoid of visual and verbal interaction and without any perspective-taking activity. METHODOLOGY/PRINCIPAL FINDINGS: Twelve pairs of participants were submitted to a simple motor coordination game while recording the electromyographic activity of First Dorsal Interosseus (FDI, the muscle mainly involved in the task. EMG data show a clear effect of alternative rewards strategies on subjects' motor behavior. Moreover, participants' stock of relevant past social experiences, measured by a specifically designed questionnaire, was significantly correlated with EMG activity, showing that only low social capital subjects responded to monetary incentives consistently with a standard rationality prediction. CONCLUSIONS/SIGNIFICANCE: Our findings show that the effect of extrinsic motivations on performance may arise outside social contexts involving complex cognitive processes due to conscious perspective-taking activity. More importantly, the peculiar performance of low social capital individuals, in agreement with standard economic reasoning, adds to the knowledge of the circumstances that makes the crowding out/in of intrinsic motivation likely to occur. This may help in improving the prediction and accuracy of economic models and reconcile this puzzling effect of external incentives with economic theory.

  7. Neural activation and functional connectivity during motor imagery of bimanual everyday actions.

    Directory of Open Access Journals (Sweden)

    André J Szameitat

    Full Text Available Bimanual actions impose intermanual coordination demands not present during unimanual actions. We investigated the functional neuroanatomical correlates of these coordination demands in motor imagery (MI of everyday actions using functional magnetic resonance imaging (fMRI. For this, 17 participants imagined unimanual actions with the left and right hand as well as bimanual actions while undergoing fMRI. A univariate fMRI analysis showed no reliable cortical activations specific to bimanual MI, indicating that intermanual coordination demands in MI are not associated with increased neural processing. A functional connectivity analysis based on psychophysiological interactions (PPI, however, revealed marked increases in connectivity between parietal and premotor areas within and between hemispheres. We conclude that in MI of everyday actions intermanual coordination demands are primarily met by changes in connectivity between areas and only moderately, if at all, by changes in the amount of neural activity. These results are the first characterization of the neuroanatomical correlates of bimanual coordination demands in MI. Our findings support the assumed equivalence of overt and imagined actions and highlight the differences between uni- and bimanual actions. The findings extent our understanding of the motor system and may aid the development of clinical neurorehabilitation approaches based on mental practice.

  8. Flagellar coordination in Chlamydomonas cells held on micropipettes.

    Science.gov (United States)

    Rüffer, U; Nultsch, W

    1998-01-01

    The two flagella of Chlamydomonas are known to beat synchronously: During breaststroke beating they are generally coordinated in a bilateral way while in shock responses during undulatory beating coordination is mostly parallel [Rüffer and Nultsch, 1995: Botanica Acta 108:169-276]. Analysis of a great number of shock responses revealed that in undulatory beats also periods of bilateral coordination are found and that the coordination type may change several times during a shock response, without concomitant changes of the beat envelope and the beat period. In normal wt cells no coordination changes are found during breaststroke beating, but only short temporary asynchronies: During 2 or 3 normal beats of the cis flagellum, the trans flagellum performs 3 or 4 flat beats with a reduced beat envelope and a smaller beat period, resulting in one additional trans beat. Long periods with flat beats of the same shape and beat period are found in both flagella of the non-phototactic mutant ptx1 and in defective wt 622E cells. During these periods, the coordination is parallel, the two flagella beat alternately. A correlation between normal asynchronous trans beats and the parallel-coordinated beats in the presumably cis defective cells and also the undulatory beats is discussed. In the cis defective cells, a perpetual spontaneous change between parallel beats with small beat periods (higher beat frequency) and bilateral beats with greater beat periods (lower beat frequency) are observed and render questionable the existence of two different intrinsic beat frequencies of the two flagella cis and trans. Asynchronies occur spontaneously but may also be induced by light changes, either step-up or step-down, but not by both stimuli in turn as breaststroke flagellar photoresponses (BFPRs). Asynchronies are not involved in phototaxis. They are independent of the BFPRs, which are supposed to be the basis of phototaxis. Both types of coordination must be assumed to be regulated

  9. The effect of vision on walking in children with different levels of motor competency

    Directory of Open Access Journals (Sweden)

    Miriam Palomo Nieto

    2016-11-01

    Full Text Available Background: Motor coordination problems of children with developmental coordination disorder (DCD have been frequently associated with poor visuospatial processing. Objective: The aim this study has been to investigate a role of the vision in the motor control of walking between typical developing children (TD and children at risk of DCD (DCDR. Methods: Participants included 16 TD (mean age 9.1, SD 1.0 years, and 16 DCDR, (mean age 8.7, SD 0.8 years who walked along a 10 meter walkway using the Optojump instrument to assess the spatio-temporal variables of the gait pattern in full vision (FV and non-vision (NV conditions. Data was analyzed in a two-way mixed-effect ANOVA (2 groups - TD vs. DCDR, 2 visual conditions - FV vs. NV with repeated measurement on the last factor (p ≤ .05. Results: The results demonstrated that DCDR children walked slower and with shorter steps than their TD peers. Also, withdrawing the vision affects some parameters of the gait cycle including the stance-phase, single-support, load-response and pre-swing regardless of the level of motor coordination of the children. Conclusions: A higher dependency on visual information or impaired utilization of proprioceptive inputs for execution of simple walk in the stable environment were not confirmed in the children with motor difficulties.

  10. Fine-motor skills testing and prediction of endovascular performance

    DEFF Research Database (Denmark)

    Bech, Bo; Lönn, Lars; Schroeder, Torben V

    2013-01-01

    Performing endovascular procedures requires good control of fine-motor digital movements and hand-eye coordination. Objective assessment of such skills is difficult. Trainees acquire control of catheter/wire movements at various paces. However, little is known to what extent talent plays for novice...

  11. Importance of coordination skills essential psychophysical demonstrated competencies as a military specialists

    Directory of Open Access Journals (Sweden)

    V.O. Lisowski

    2013-12-01

    Full Text Available The aim - to identify the role and importance of coordination abilities in the manifestation of professionally important qualities of psychophysical military experts. It is established that the exercise of general, special and specific coordination abilities provides the most efficient and reliable psychophysical military readiness and suitability to the successful solution of the tasks of combat mission. It is noted that a professionally-applied physical training future military specialist should focus on the development of a certain amount of knowledge and skills. Also - on the formation of professionally important psychophysical qualities that ensure a high degree of readiness of the military to successfully complete the tasks in extreme conditions. Set of system- level structural relationships of mental and physical indicators of the motor and functional fitness, mental processes, and psychomotor ability to control motor actions in different conditions of military occupation.

  12. Motor network efficiency and disability in multiple sclerosis

    Science.gov (United States)

    Yaldizli, Özgür; Sethi, Varun; Muhlert, Nils; Liu, Zheng; Samson, Rebecca S.; Altmann, Daniel R.; Ron, Maria A.; Wheeler-Kingshott, Claudia A.M.; Miller, David H.; Chard, Declan T.

    2015-01-01

    Objective: To develop a composite MRI-based measure of motor network integrity, and determine if it explains disability better than conventional MRI measures in patients with multiple sclerosis (MS). Methods: Tract density imaging and constrained spherical deconvolution tractography were used to identify motor network connections in 22 controls. Fractional anisotropy (FA), magnetization transfer ratio (MTR), and normalized volume were computed in each tract in 71 people with relapse onset MS. Principal component analysis was used to distill the FA, MTR, and tract volume data into a single metric for each tract, which in turn was used to compute a composite measure of motor network efficiency (composite NE) using graph theory. Associations were investigated between the Expanded Disability Status Scale (EDSS) and the following MRI measures: composite motor NE, NE calculated using FA alone, FA averaged in the combined motor network tracts, brain T2 lesion volume, brain parenchymal fraction, normal-appearing white matter MTR, and cervical cord cross-sectional area. Results: In univariable analysis, composite motor NE explained 58% of the variation in EDSS in the whole MS group, more than twice that of the other MRI measures investigated. In a multivariable regression model, only composite NE and disease duration were independently associated with EDSS. Conclusions: A composite MRI measure of motor NE was able to predict disability substantially better than conventional non-network-based MRI measures. PMID:26320199

  13. Piezoelectric/magnetostrictive resonant inchworm motor

    Science.gov (United States)

    Miesner, John E.; Teter, Joseph P.

    1994-05-01

    Magnetostrictive and piezoelectric materials were used to create a linear motor operating on the inchworm principle. This motor operates at an electrical resonance, switching power internally between inductive and capacitive components. Magnetic coils surrounding the two Terfenol-D rods which drive the inchworm's center expanding element form the inductive component. Piezoelectric stacks that control the end clamping action are the capacitive components. The normal electrical phase relationship between these components provides natural drive timing for the inchworm. The motor direction can be easily reversed by changing the magnetic bias on the Terfenol. A prototype motor was built that achieved a stall load of 26 lb and no-load speed of 1 inch/sec vs the design of 30 lb and 1.3 inch/sec. A new type of power supply that switches power from a dc source was built for the motor. This power supply uses a small number of components to exactly supply the energy used in each inchworm cycle. It tracks the motor circuit resonance and is not affected by frequency shifts.

  14. Motor skills in kindergarten: Internal structure, cognitive correlates and relationships to background variables.

    Science.gov (United States)

    Oberer, Nicole; Gashaj, Venera; Roebers, Claudia M

    2017-04-01

    The present study aimed to contribute to the discussion about the relation between motor coordination and executive functions in preschool children. Specifically, the relation between gross and fine motor skills and executive functions as well as the relation to possible background variables (SES, physical activity) were investigated. Based on the data of N=156 kindergarten children the internal structure of motor skills was investigated and confirmed the theoretically assumed subdivision of gross and fine motor skills. Both, gross and fine motor skills correlated significantly with executive functions, whereas the background variables seemed to have no significant impact on the executive functions and motor skills. Higher order control processes are discussed as an explanation of the relation between executive functions and motor skills. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. IE Information No. 87-08: Degraded motor leads in Limitorque dc motor operators

    International Nuclear Information System (INIS)

    Jordan, E.L.

    1992-01-01

    On May 6, 1986 the NRC received from Portland General Electric Company a 10 CFR 21 report concerning a motor failure which occurred at its Trojan Nuclear Power Plant. The failure involved shorting of the motor leads inside a Limitorque motor operator connected to an auxiliary feedwater flow control valve. Upon inspection it was determined that the failure was the result of insulation degradation of the motor leads that had allowed two leads to short together. Recently, the NRC has also learned of a failure at the Turkey Point Nuclear Power Plant in which the steam supply valve for the auxiliary feedwater turbine failed to operate after a Limitorque motor operator experienced a similar motor lead short circuit. The Trojan and the Turkey Point Limitorque operators were found to contain motors manufactured with Nomex-Kapton insulated leads. On January 12--14, 1987, the NRC conducted an inspection at Peerless-Winsmith, Inc., manufacturer of dc motors for Limitorque Co. During this inspection it was determined that the failed Nomex-Kapton leads were different than the leads which were fitted to the motors, tested, and documented in Limitorque Qualification Report B-0009 for dc motor operators. The leads attached to the tested motors were insulated with Nomex plus an epoxy impregnated braided fiberglass sleeve. The NRC knows of no analysis or testing that has been performed to show the Nomex-Kapton leads are acceptable for use in an application requiring environmental qualification. Further, it should be noted that the failures cited above occurred under normal operating conditions, not under the harsh conditions which could occur in areas where environmental qualification is required

  16. Fine Motor Development of Low Birth Weight Infants Corrected Aged 8 to 12 Months

    Directory of Open Access Journals (Sweden)

    Sepideh Nazi

    2012-10-01

    Full Text Available Objectives: The aim of this study was to compare the fine motor development between Low Birth Weight (LBW infants and Normal Birth Weight infants (NBW at the age of 8-12 months by using the Peabody Developmental Motor Scale-2 (PDMS-2 . Methods: This was a non experimental and cross sectional study which was conducted on the 18 LBW infants and 14 normal infants. By referring to the profile of infants in NICU of Aliasghar Hospital, those with defined inclusion criteria was recognized (case group. The normal weight infants, randomly selected from Health Center of that hospital, matched with case group for date of birth. After completing the questionnaire about demographic variables, their gross motor development was assessed with PDMS-2. Finally the scores of the motor quotient were analyzed by independent t-test statistical method. Results: There was a significant difference between Fine motor quotient of groups (P=0.007. Discussion: This study showed that LBW infants are significantly lower than normal weight infants in attaining Fine motor skills. It means that the LBW infants are more prone to developmental difficulties.

  17. Caracterization of the motor profile of students with autistic disorder

    Directory of Open Access Journals (Sweden)

    Paola Matiko Okuda

    2010-12-01

    Full Text Available Thematic focus: The motor abnormalities may be part of so-called comorbidities that can coexist with autistic disorder. Objective: To characterize the motor profile of students with autistic disorder. Method: the study included six children with autistic disorder in elementary school, male, aged 5 years and 5 months and 10 years and 9 months. After signing the consent form by parents or guardians, the students were submitted to the Motor Development Scale for assessment of fine motor, gross motor performance, balance, body scheme, spatial organization, temporal organization and laterality. Results: The results revealed a significant difference between the motor age and chronological age. According to the classification of the Scale of Motor Development, students in this study showed motor development lower than expected for age. Conclusion: The students with autistic disorder in this study presented a profile of Developmental Coordination Disorder in comorbidity, showing that participants of this research presented difficulties in activities that required skills such as handwriting. Thus, motor and psychomotor needs of these students were focused on educational and clinical environment to reduce the impact of behavioral and social manifestations.

  18. Integrated motor drive and non-isolated battery charger based on the split-phase PM motors for plug-in vehicles

    Directory of Open Access Journals (Sweden)

    Saeid Haghbin

    2014-06-01

    Full Text Available A novel integrated motor drive and non-isolated battery charger based on a split-phase permanent magnet (PM motor is presented and described for a plug-in vehicle. The motor windings are reconfigured by a relay for the traction and charging operation. In traction mode, the motor is like a normal three-phase motor, whereas in the charging mode, after windings reconnection, the system is a three-phase Boost rectifier. One important challenge to use the motor as three inductors in charger circuit is to have it in standstill during the battery charging. Based on the presented mathematical model of a split-phase PM motor, the zero-torque condition of the motor is explained which led to a proper windings reconnection for the charging. Simulation and experimental results of two separate practical systems are provided to verify the proposed integrated battery charger. Some practical limitations and design recommendations are provided to achieve a more realistic practical system.

  19. Variable current speed controller for eddy current motors

    Science.gov (United States)

    Gerth, H.L.; Bailey, J.M.; Casstevens, J.M.; Dixon, J.H.; Griffith, B.O.; Igou, R.E.

    1982-03-12

    A speed control system for eddy current motors is provided in which the current to the motor from a constant frequency power source is varied by comparing the actual motor speed signal with a setpoint speed signal to control the motor speed according to the selected setpoint speed. A three-phase variable voltage autotransformer is provided for controlling the voltage from a three-phase power supply. A corresponding plurality of current control resistors is provided in series with each phase of the autotransformer output connected to inputs of a three-phase motor. Each resistor is connected in parallel with a set of normally closed contacts of plurality of relays which are operated by control logic. A logic circuit compares the selected speed with the actual motor speed obtained from a digital tachometer monitoring the motor spindle speed and operated the relays to add or substract resistance equally in each phase of the motor input to vary the motor current to control the motor at the selected speed.

  20. Multiple Concurrent Visual-Motor Mappings: Implications for Models of Adaptation

    Science.gov (United States)

    Cunningham, H. A.; Welch, Robert B.

    1994-01-01

    Previous research on adaptation to visual-motor rearrangement suggests that the central nervous system represents accurately only 1 visual-motor mapping at a time. This idea was examined in 3 experiments where subjects tracked a moving target under repeated alternations between 2 initially interfering mappings (the 'normal' mapping characteristic of computer input devices and a 108' rotation of the normal mapping). Alternation between the 2 mappings led to significant reduction in error under the rotated mapping and significant reduction in the adaptation aftereffect ordinarily caused by switching between mappings. Color as a discriminative cue, interference versus decay in adaptation aftereffect, and intermanual transfer were also examined. The results reveal a capacity for multiple concurrent visual-motor mappings, possibly controlled by a parametric process near the motor output stage of processing.

  1. Task-Dependent Intermuscular Motor Unit Synchronization between Medial and Lateral Vastii Muscles during Dynamic and Isometric Squats.

    Directory of Open Access Journals (Sweden)

    Maurice Mohr

    Full Text Available Motor unit activity is coordinated between many synergistic muscle pairs but the functional role of this coordination for the motor output is unclear. The purpose of this study was to investigate the short-term modality of coordinated motor unit activity-the synchronized discharge of individual motor units across muscles within time intervals of 5ms-for the Vastus Medialis (VM and Lateralis (VL. Furthermore, we studied the task-dependency of intermuscular motor unit synchronization between VM and VL during static and dynamic squatting tasks to provide insight into its functional role.Sixteen healthy male and female participants completed four tasks: Bipedal squats, single-leg squats, an isometric squat, and single-leg balance. Monopolar surface electromyography (EMG was used to record motor unit activity of VM and VL. For each task, intermuscular motor unit synchronization was determined using a coherence analysis between the raw EMG signals of VM and VL and compared to a reference coherence calculated from two desynchronized EMG signals. The time shift between VM and VL EMG signals was estimated according to the slope of the coherence phase angle spectrum.For all tasks, except for singe-leg balance, coherence between 15-80Hz significantly exceeded the reference. The corresponding time shift between VM and VL was estimated as 4ms. Coherence between 30-60Hz was highest for the bipedal squat, followed by the single-leg squat and the isometric squat.There is substantial short-term motor unit synchronization between VM and VL. Intermuscular motor unit synchronization is enhanced for contractions during dynamic activities, possibly to facilitate a more accurate control of the joint torque, and reduced during single-leg tasks that require balance control and thus, a more independent muscle function. It is proposed that the central nervous system scales the degree of intermuscular motor unit synchronization according to the requirements of the movement

  2. Variable training does not lead to better motor learning compared to repetitive training in children with DCD when exposed to video games

    NARCIS (Netherlands)

    Bonney, E.; Jelsma, Lemke; Ferguson, F; Smits-Engelsman, B.C.M.

    Background Little is known about the influence of practice schedules on motor learning and skills transfer in children with and without developmental coordination disorder (DCD). Understanding how practice schedules affect motor learning is necessary for motor skills development and rehabilitation.

  3. ASPECTS OF MOTOR DEVELOPMENT IN CHILDREN WITH CEREBRAL PALSY

    Directory of Open Access Journals (Sweden)

    Erna Žgur

    2017-01-01

    Full Text Available Child’s motor development is not an isolated process but it rather involves numerous other developmental aspects, such as cognitive and conative. The research is focused on defining the developmental principles of motor abilities and skills in children with prominent motor deficits who were diagnosed with cerebral palsy (CP. The research compares the motor maturity between two groups of children with CP; the younger group (up to 10 years of age and the older group (10 – 16 years of age. The research included 78 primary school children with different forms of CP (diplegia, hemiplegia, mixed forms, aged between 6 and 16. The discriminant analysis used in the research showed that there is a statistically significant relationship between age and motor maturity in children with CP. The structural matrix confirmed the different hierarchical representation of the motor components (strength, coordination, precision and graphomotor skills for the selected motor model, in relation to children’s age. The function of explosive strength showed significant differences between younger and older children as regards their motor maturity. We can conclude that there is a significant developmental difference between the groups of younger and older children with CP, in relation to their motor maturity (different hierarchical representation, with the most obvious difference in motor ability of explosive strength.

  4. Effects of overweight and obese body mass on motor planning and motor skills during obstacle crossing in children.

    Science.gov (United States)

    Gill, Simone V; Hung, Ya-Ching

    2014-01-01

    Little is known about how obesity relates to motor planning and skills during functional tasks. We collected 3-D kinematics and kinetics as normal weight (n=10) and overweight/obese (n=12) children walked on flat ground and as they crossed low, medium, and high obstacles. We investigated if motor planning and motor skill impairments were evident during obstacle crossing. Baseline conditions showed no group differences (all ps>.05). Increased toe clearance was found on low obstacles (p=.01) for the overweight/obese group and on high obstacles (p=.01) for the normal weight group. With the crossing leg, the overweight/obese group had larger hip abduction angles (p=.01) and medial ground reaction forces (p=.006) on high obstacles and high anterior ground reaction forces on low obstacles (p=.001). With the trailing leg, overweight/obese children had higher vertical ground reaction forces on high obstacles (p=.005) and higher knee angles (p=.01) and anterior acceleration in the center of mass (p=.01) on low obstacles. These findings suggest that differences in motor planning and skills in overweight/obese children may be more apparent during functional activities. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Obesity leads to declines in motor skills across childhood.

    Science.gov (United States)

    Cheng, J; East, P; Blanco, E; Sim, E Kang; Castillo, M; Lozoff, B; Gahagan, S

    2016-05-01

    Poor motor skills have been consistently linked with a higher body weight in childhood, but the causal direction of this association is not fully understood. This study investigated the temporal ordering between children's motor skills and weight status at 5 and 10 years. Participants were 668 children (54% male) who were studied from infancy as part of an iron deficiency anaemia preventive trial and follow-up study in Santiago, Chile. All were healthy, full-term and weighing 3 kg or more at birth. Cross-lagged panel modelling was conducted to understand the temporal precedence between children's weight status and motor proficiency. Analyses also examined differences in gross and fine motor skills among healthy weight, overweight, and obese children. A higher BMI at 5 years contributed to declines in motor proficiency from 5 to 10 years. There was no support for the reverse, that is, poor motor skills at 5 years did not predict increases in relative weight from 5 to 10 years. Obesity at 5 years also predicted declines in motor proficiency. When compared with normal weight children, obese children had significantly poorer total and gross motor skills at both 5 and 10 years. Overweight children had poorer total and gross motor skills at 10 years only. The differences in total and gross motor skills among normal weight, overweight and obese children appear to increase with age. There were small differences in fine motor skill between obese and non-obese children at 5 years only. Obesity preceded declines in motor skills and not the reverse. Study findings suggest that early childhood obesity intervention efforts might help prevent declines in motor proficiency that, in turn, may positively impact children's physical activity and overall fitness levels. © 2016 John Wiley & Sons Ltd.

  6. Childhood motor coordination and adult schizophrenia spectrum disorders

    DEFF Research Database (Denmark)

    Schiffman, Jason; Sorensen, Holger J; Maeda, Justin

    2009-01-01

    in May 2007. RESULTS: Children who later developed a schizophrenia spectrum disorder (N=32) displayed significantly higher scores on a scale of coordination deficits compared with those who did not develop a mental illness in this category (N=133). CONCLUSIONS: Results from this study provide further......-13 years old. Adult diagnostic information was available for 244 members of the sample. Participants fell into three groups: children whose mothers or fathers had a psychiatric hospital diagnosis of schizophrenia (N=94); children who had at least one parent with a psychiatric record of hospitalization...... for a nonpsychotic disorder (N=84); and children with no parental records of psychiatric hospitalization (N=66). Psychiatric outcomes of the offspring were assessed through psychiatric interviews in 1992 when participants were 31-33 years of age, as well as through a scan of national psychiatric registers completed...

  7. The effect of an integrated perceived competence and motor intervention in children with developmental coordination disorder

    NARCIS (Netherlands)

    Noordstar, Johannes J; van der Net, Janjaap; Voerman, Lia; Helders, Paul J M; Jongmans, Marian J

    BACKGROUND AND AIMS: Children with DCD have lower self-perceptions and are less physically active than typically developing children. The aim of this quasi-experimental study was to investigate whether an integrated perceived competence and motor intervention affects DCD children's motor

  8. Group-level variations in motor representation areas of thenar and anterior tibial muscles: Navigated Transcranial Magnetic Stimulation Study.

    Science.gov (United States)

    Niskanen, Eini; Julkunen, Petro; Säisänen, Laura; Vanninen, Ritva; Karjalainen, Pasi; Könönen, Mervi

    2010-08-01

    Navigated transcranial magnetic stimulation (TMS) can be used to stimulate functional cortical areas at precise anatomical location to induce measurable responses. The stimulation has commonly been focused on anatomically predefined motor areas: TMS of that area elicits a measurable muscle response, the motor evoked potential. In clinical pathologies, however, the well-known homunculus somatotopy theory may not be straightforward, and the representation area of the muscle is not fixed. Traditionally, the anatomical locations of TMS stimulations have not been reported at the group level in standard space. This study describes a methodology for group-level analysis by investigating the normal representation areas of thenar and anterior tibial muscle in the primary motor cortex. The optimal representation area for these muscles was mapped in 59 healthy right-handed subjects using navigated TMS. The coordinates of the optimal stimulation sites were then normalized into standard space to determine the representation areas of these muscles at the group-level in healthy subjects. Furthermore, 95% confidence interval ellipsoids were fitted into the optimal stimulation site clusters to define the variation between subjects in optimal stimulation sites. The variation was found to be highest in the anteroposterior direction along the superior margin of the precentral gyrus. These results provide important normative information for clinical studies assessing changes in the functional cortical areas because of plasticity of the brain. Furthermore, it is proposed that the presented methodology to study TMS locations at the group level on standard space will be a suitable tool for research purposes in population studies. 2010 Wiley-Liss, Inc.

  9. Effects of blueberries on inflammation, motor performance and cognitive function

    Science.gov (United States)

    Motor and cognitive function decrease with age, to include deficits in balance, coordination, gait, processing speed, executive function, memory, and spatial learning. These functional declines may be caused by long term increases in and susceptibility to oxidative stress and inflammation. Research ...

  10. Mapping genetic influences on the corticospinal motor system in humans

    DEFF Research Database (Denmark)

    Cheeran, B J; Ritter, C; Rothwell, J C

    2009-01-01

    of the contribution of single nucleotide polymorphisms (SNP) and variable number tandem repeats. In humans, the corticospinal motor system is essential to the acquisition of fine manual motor skills which require a finely tuned coordination of activity in distal forelimb muscles. Here we review recent brain mapping......It is becoming increasingly clear that genetic variations account for a certain amount of variance in the acquisition and maintenance of different skills. Until now, several levels of genetic influences were examined, ranging from global heritability estimates down to the analysis...... studies that have begun to explore the influence of functional genetic variation as well as mutations on function and structure of the human corticospinal motor system, and also the clinical implications of these studies. Transcranial magnetic stimulation of the primary motor hand area revealed...

  11. The Effect of Physical Exercise on the Development of Gross Motor Skills in Children with Attention Deficit / Hyperactivity Disorder

    Directory of Open Access Journals (Sweden)

    Saeed Kosari

    2013-02-01

    Full Text Available Background: The study is about to examine the effect of the selective physical exercises on gross motor activities of children with attention deficit hyperactivity disorder (ADHD. Materials and Methods: In this quasi-experimental study out of 120 students with ADHD who were studying under supervision of Tehran Department of Education of Exceptional Children, a number of 20 children (8.8±0.7 years old with ADHD were selected randomly and based on pre-test. The measuring tool was the Bruininks-Oseretsky test of motor proficiency. The selected motor program (SPARK physical education program including reinforcement activities, playing and sporting for children was repeated for 18 sessions by our subjects. The Kolmogorov-Smirnov test (KS-test was used to check normal data distribution and the correlative t-test and independent t-test were used to compare mean values. Results: Eighteen sessions of the selected motor activities for the experiment group made significant differences in all variables of the study, but it was not the case for the control group. The experiment group’s differences were running speed and agility (p=0.001, balance (p=0.001, bilateral coordination (p=0.001 and strength (p=0.001.Conclusion: With regard to results of the study, it can be claimed that the selected physical education program which has been inspired by Spark physical education program is able to improve gross motor skills in children with ADHD.

  12. Motor development following in utero exposure to organochlorines

    DEFF Research Database (Denmark)

    Høyer, Birgit Bjerre; Ramlau-Hansen, Cecilia Høst; Pedersen, Henning Sloth

    2015-01-01

    of child age at the first time of crawling, standing-up and walking. RESULTS: We saw no associations between tertiles of CB-153 and p,p'-DDE or log-transformed exposures and retrospective reports of the developmental milestones crawling, standing-up and walking in infancy or the motor skills measured...... as developmental coordination disorder at young school age. CONCLUSIONS: In utero exposure to CB-153 and p,p'-DDE was not associated with parentally retrospectively assessed developmental milestones in infancy or parentally assessed motor skills at young school age. The use of a more sensitive outcome measure may......BACKGROUND: Prior studies on the association between prenatal exposure to polychlorinated biphenyls (PCBs) and dichlorodiphenyldichloroethylene (DDE) and child motor development have found contradicting results. Using data collected in the INUENDO cohort in Kharkiv (Ukraine), Warsaw (Poland...

  13. High-order motor cortex in rats receives somatosensory inputs from the primary motor cortex via cortico-cortical pathways.

    Science.gov (United States)

    Kunori, Nobuo; Takashima, Ichiro

    2016-12-01

    The motor cortex of rats contains two forelimb motor areas; the caudal forelimb area (CFA) and the rostral forelimb area (RFA). Although the RFA is thought to correspond to the premotor and/or supplementary motor cortices of primates, which are higher-order motor areas that receive somatosensory inputs, it is unknown whether the RFA of rats receives somatosensory inputs in the same manner. To investigate this issue, voltage-sensitive dye (VSD) imaging was used to assess the motor cortex in rats following a brief electrical stimulation of the forelimb. This procedure was followed by intracortical microstimulation (ICMS) mapping to identify the motor representations in the imaged cortex. The combined use of VSD imaging and ICMS revealed that both the CFA and RFA received excitatory synaptic inputs after forelimb stimulation. Further evaluation of the sensory input pathway to the RFA revealed that the forelimb-evoked RFA response was abolished either by the pharmacological inactivation of the CFA or a cortical transection between the CFA and RFA. These results suggest that forelimb-related sensory inputs would be transmitted to the RFA from the CFA via the cortico-cortical pathway. Thus, the present findings imply that sensory information processed in the RFA may be used for the generation of coordinated forelimb movements, which would be similar to the function of the higher-order motor cortex in primates. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  14. The effect of an integrated perceived competence and motor intervention in children with developmental coordination disorder

    NARCIS (Netherlands)

    Noordstar, Johannes J.; van der Net, Janjaap; Voerman, Lia; Helders, Paul J M; Jongmans, Marian J.

    2017-01-01

    Background and aims Children with DCD have lower self-perceptions and are less physically active than typically developing children. The aim of this quasi-experimental study was to investigate whether an integrated perceived competence and motor intervention affects DCD children's motor performance,

  15. THE FACTOR STRUCTURE OF MOTOR SKILLS AND KNOWLEDGE OF THE FEMALE STUDENTS OF THE FIRST YEAR OF SECONDARY SCHOOL

    Directory of Open Access Journals (Sweden)

    Said Hasanbegovic

    2012-04-01

    Full Text Available The aim of this research is to determine the latent space of motor skills and knowledge of the female students of the first year of secondary school. This study included 120 girls, and it was conducted at the end of the school year, after the realization of the regular physical education classes. According to nine tests aimed to evaluate motor skills and 16 more to assess motor knowledge, factors that define the latent space of motor skills of the test group were isolated by factor analysis, which shows in what way this program influenced the development of the test area. The agility and frequency of movement factor, as well as the factor of explosive strength were isolated in the motor skills area, which indicates that the standard program does not provide the development of fine motor skills in subjects. There were also isolated factors such as: the factor of average motor skills in the manipulation of the ball, the random factor of motor coordination, manual manipulation factor with the ball and the factor of insufficient movement coordination, from which it can be concluded that there is no logical development dimension in this area, nor proper development of motor skills.

  16. Impairments of Motor Function While Multitasking in HIV.

    Science.gov (United States)

    Kronemer, Sharif I; Mandel, Jordan A; Sacktor, Ned C; Marvel, Cherie L

    2017-01-01

    Human immunodeficiency virus (HIV) became a treatable illness with the introduction of combination antiretroviral therapy (CART). As a result, patients with regular access to CART are expected to live decades with HIV. Long-term HIV infection presents unique challenges, including neurocognitive impairments defined by three major stages of HIV-associated neurocognitive disorders (HAND). The current investigation aimed to study cognitive and motor impairments in HIV using a novel multitasking paradigm. Unlike current standard measures of cognitive and motor performance in HIV, multitasking increases real-world validity by mimicking the dual motor and cognitive demands that are part of daily professional and personal settings (e.g., driving, typing and writing). Moreover, multitask assessments can unmask compensatory mechanisms, normally used under single task conditions, to maintain performance. This investigation revealed that HIV+ participants were impaired on the motor component of the multitask, while cognitive performance was spared. A patient-specific positive interaction between motor performance and working memory recall was driven by poor HIV+ multitaskers. Surprisingly, HAND stage did not correspond with multitask performance and a variety of commonly used assessments indicated normal motor function among HIV+ participants with poor motor performance during the experimental task. These results support the use of multitasks to reveal otherwise hidden impairment in chronic HIV by expanding the sensitivity of clinical assessments used to determine HAND stage. Future studies should examine the capability of multitasks to predict performance in personal, professional and health-related behaviors and prognosis of patients living with chronic HIV.

  17. Language and motor abilities of preschool children who stutter: evidence from behavioral and kinematic indices of nonword repetition performance.

    Science.gov (United States)

    Smith, Anne; Goffman, Lisa; Sasisekaran, Jayanthi; Weber-Fox, Christine

    2012-12-01

    Stuttering is a disorder of speech production that typically arises in the preschool years, and many accounts of its onset and development implicate language and motor processes as critical underlying factors. There have, however, been very few studies of speech motor control processes in preschool children who stutter. Hearing novel nonwords and reproducing them engages multiple neural networks, including those involved in phonological analysis and storage and speech motor programming and execution. We used this task to explore speech motor and language abilities of 31 children aged 4-5 years who were diagnosed as stuttering. We also used sensitive and specific standardized tests of speech and language abilities to determine which of the children who stutter had concomitant language and/or phonological disorders. Approximately half of our sample of stuttering children had language and/or phonological disorders. As previous investigations would suggest, the stuttering children with concomitant language or speech sound disorders produced significantly more errors on the nonword repetition task compared to typically developing children. In contrast, the children who were diagnosed as stuttering, but who had normal speech sound and language abilities, performed the nonword repetition task with equal accuracy compared to their normally fluent peers. Analyses of interarticulator motions during accurate and fluent productions of the nonwords revealed that the children who stutter (without concomitant disorders) showed higher variability in oral motor coordination indices. These results provide new evidence that preschool children diagnosed as stuttering lag their typically developing peers in maturation of speech motor control processes. The reader will be able to: (a) discuss why performance on nonword repetition tasks has been investigated in children who stutter; (b) discuss why children who stutter in the current study had a higher incidence of concomitant language

  18. Movement Coordination: Factor Structure of Development in 5th-7th Grade Girls

    Directory of Open Access Journals (Sweden)

    O. Ivashchenko

    2018-03-01

    Full Text Available The study objective is to determine the structure of coordination abilities development in 5th-7th grade girls. Materials and methods. The participants in the study were 5th grade girls (n = 20, 6th grade girls (n = 23, 7th grade girls (n = 19. The study used the following methods: analysis and collation of scientific and methodological literature, general scientific methods of theoretical level, such as analogy, analysis, synthesis, abstraction, induction, as well as general scientific methods of empirical level: observation, testing, experiment. To evaluate motor preparedness, the study recorded the results of motor tests, body height and weight. The IBM SPSS 20 statistical analysis software was used to process the study materials. A factor analysis was performed, for which the study used principal component analysis with the rotation method: Variamax with Kaiser Normalization. Results. The analysis of similarities shows that the most informative tests in the structure of motor preparedness of the 5th grade girls are the following: test 11 “Evaluation of the ability for vestibular (statokinetic stability. Running with turns” (.884, test 9 “Static equilibrium evaluation by E. Ya. Bondarevsky’s method” (.826, test 6 “Evaluation of the sense of movement speed in sprinting” (.824; of the 6th grade girls — test 11 “Evaluation of the ability for vestibular (statokinetic stability. Running with turns” (0.884, test 9 “Static equilibrium evaluation by E. Ya. Bondarevsky’s method” (.826, test 6 “Evaluation of the sense of movement speed in sprinting” (.824; of the 7th grade girls — test 8 “Evaluation of the ability to differentiate movement speed (reproduction accuracy of running speed at 90% intensity of maximum” (.902, test 11 “Evaluation of the ability for vestibular (statokinetic stability. Running with turns” (.900, test 1 “30 m running (s” (.869. Conclusions. In the structure of

  19. CUILESS2016: a clinical corpus applying compositional normalization of text mentions.

    Science.gov (United States)

    Osborne, John D; Neu, Matthew B; Danila, Maria I; Solorio, Thamar; Bethard, Steven J

    2018-01-10

    Traditionally text mention normalization corpora have normalized concepts to single ontology identifiers ("pre-coordinated concepts"). Less frequently, normalization corpora have used concepts with multiple identifiers ("post-coordinated concepts") but the additional identifiers have been restricted to a defined set of relationships to the core concept. This approach limits the ability of the normalization process to express semantic meaning. We generated a freely available corpus using post-coordinated concepts without a defined set of relationships that we term "compositional concepts" to evaluate their use in clinical text. We annotated 5397 disorder mentions from the ShARe corpus to SNOMED CT that were previously normalized as "CUI-less" in the "SemEval-2015 Task 14" shared task because they lacked a pre-coordinated mapping. Unlike the previous normalization method, we do not restrict concept mappings to a particular set of the Unified Medical Language System (UMLS) semantic types and allow normalization to occur to multiple UMLS Concept Unique Identifiers (CUIs). We computed annotator agreement and assessed semantic coverage with this method. We generated the largest clinical text normalization corpus to date with mappings to multiple identifiers and made it freely available. All but 8 of the 5397 disorder mentions were normalized using this methodology. Annotator agreement ranged from 52.4% using the strictest metric (exact matching) to 78.2% using a hierarchical agreement that measures the overlap of shared ancestral nodes. Our results provide evidence that compositional concepts can increase semantic coverage in clinical text. To our knowledge we provide the first freely available corpus of compositional concept annotation in clinical text.

  20. Prevalence of developmental coordination disorder in children aged 7 to 10 years. http://dx.doi.org/10.5007/1980-0037.2013v15n2p233

    Directory of Open Access Journals (Sweden)

    Viviane Aparecida Pereira dos Santos

    2013-03-01

    Full Text Available Children’s movements are initially characterized by inconsistent and imprecise actions. However, with practice and experience, the motor patterns become more refined and they present better coordination and control. However, it is not rare to observe children that manifest certain movement difficulties that might interfere in the children’s emotional, affectionate, school and social relationships. We investigated the prevalence of Developmental Coordination Disorder (DCD in schoolchildren aged 7 to 10 years and which motor tasks the children with probable DCD and risk of DCD present larger motor difficulty. The evaluation included 581 children registered regularly from the 2nd to the 5th grade of Elementary School of public schools of Maringá-PR was conducted through the battery II and III of the Movement Assessment Battery for Children (MABC test. The results indicated that 78,1% of the children present Typical Development (DT, 10,5% presented risk of Developmental Coordination Disorder (Risk of DCD and 11,4% were diagnosed with potential Developmental Coordination Disorder (Potential DCD. Therefore, the results showed high prevalence of population for Risk of DCD and Potential DCD, predicting unfavorable levels in the acquisition and improvement of fundamental skills, which may harm the continuity of the process of the children’s motor development. Manual skills were the major motor difficulty found in children with DT while ball skills were the major motor difficulty in children with probable DCD and risk of DCD.

  1. Prevalence of motor problems in children with attention deficit hyperactivity disorder in Hong Kong.

    Science.gov (United States)

    Tsui, K W; Lai, Kelly Y C; Lee, Marshall M C; Shea, Caroline K S; Tong, Luke C T

    2016-04-01

    Local data on the occurrence of motor problems in children with attention deficit hyperactivity disorder are not available but an understanding of this important issue may enable better planning of medical services. We aimed to determine the prevalence of motor problems in children with attention deficit hyperactivity disorder in a local population. In this descriptive cross-sectional study, children aged 6 to 9 years diagnosed with attention deficit hyperactivity disorder over a period of 6 months from 1 July to 31 December 2011 were recruited from the Joint Paediatric and Child Psychiatric ADHD Program in New Territories East Cluster in Hong Kong. Movement Assessment Battery for Children and Developmental Coordination Disorder Questionnaire-Chinese version were used to determine the presence of motor problems. Data from 95 participants were included in the final analysis. The number of children who had no, borderline, or definite motor problems was 63, 15, and 17, respectively. It is estimated that up to one third of local children with attention deficit hyperactivity disorder might have developmental coordination disorder. Motor problems are common in local children with attention deficit hyperactivity disorder and figures are comparable with those from other parts of the world. Despite the various limitations of this study, the magnitude of the problem should not be overlooked.

  2. Soft commutated direct current motor [summary of proposed paper

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, John S.

    1998-10-22

    A novel soft commutated direct current (DC) motor is introduced. The current of the commutated coil is intentionally drained before the brush disconnects the coil. This prevents the spark generation that normally occurs in conventional DC motors. A similar principle can be applied for DC generators.

  3. Cognitive process-based subtypes of developmental coordination disorder (DCD).

    Science.gov (United States)

    Asonitou, Katerina; Koutsouki, Dimitra

    2016-06-01

    The purpose of the study was to identify the cognitive subtypes demonstrated by children with developmental coordination disorder (DCD) using the Planning-Attention-Simultaneous-Successive Processing (PASS) theory and the Cognitive Assessment System (D-N CAS). Participants were 108 children aged 5- and 6-years old, 54 with DCD and 54 without DCD, all attending typical kindergartens. They were examined on 31 cognitive-motor variables. Hierarchical-agglomerative and iterative partitioning cluster analyses including 9 motor and 7 cognitive variables revealed the following six subtypes: o C1 = children at risk (having considerable difficulty with jumping and minor difficulty with manual dexterity and simultaneous coding); o C2 = children on the mean (all cognitive-motor scores close to the mean); o C3 = free from cognitive-motor problems (all scores above average); o C4 = manual dexterity, planning and simultaneous coding difficulties; o C5 = manual dexterity, dynamic balance, and planning difficulties; o C6 = generalized cognitive-motor dysfunction (all scores considerably below average). It is well known that DCD is a heterogeneous condition. However, whenever cognitive processes were lower than average, cognitive-motor relationship was evident in subgroups C1, C4, C5 and C6. Early identification of task-specific cognitive-motor difficulties may be essential for early educational intervention practices in order to anticipate and improve learning, academic and performing difficulties. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Developmental Relations Among Motor and Cognitive Processes and Mathematics Skills.

    Science.gov (United States)

    Kim, Helyn; Duran, Chelsea A K; Cameron, Claire E; Grissmer, David

    2018-03-01

    This study explored transactional associations among visuomotor integration, attention, fine motor coordination, and mathematics skills in a diverse sample of one hundred thirty-five 5-year-olds (kindergarteners) and one hundred nineteen 6-year-olds (first graders) in the United States who were followed over the course of 2 school years. Associations were dynamic, with more reciprocal transactions occurring in kindergarten than in the later grades. Specifically, visuomotor integration and mathematics exhibited ongoing reciprocity in kindergarten and first grade, attention contributed to mathematics in kindergarten and first grade, mathematics contributed to attention across the kindergarten year only, and fine motor coordination contributed to mathematics indirectly, through visuomotor integration, across kindergarten and first grade. Implications of examining the hierarchical interrelations among processes underlying the development of children's mathematics skills are discussed. © 2017 The Authors. Child Development © 2017 Society for Research in Child Development, Inc.

  5. Intersegmental coordination of cockroach locomotion: adaptive control of centrally coupled pattern generator circuits

    Directory of Open Access Journals (Sweden)

    Einat eFuchs

    2011-01-01

    Full Text Available Animals’ ability to demonstrate both stereotyped and adaptive locomotor behavior is largely dependent on the interplay between centrally-generated motor patterns and the sensory inputs that shape them. We utilized a combined experimental and theoretical approach to investigate the relative importance of CPG interconnections vs. intersegmental afferents in the cockroach: an animal that is renowned for rapid and stable locomotion. We simultaneously recorded coxal levator and depressor motor neurons (MN in the thoracic ganglia of Periplaneta americana, while sensory feedback was completely blocked or allowed only from one intact stepping leg. In the absence of sensory feedback, we observed a coordination pattern with consistent phase relationship that shares similarities with a double tripod gait, suggesting central, feedforward control. This intersegmental coordination pattern was then reinforced in the presence of sensory feedback from a single stepping leg. Specifically, we report on transient stabilization of phase differences between activity recorded in the middle and hind thoracic MN following individual front-leg steps, suggesting a role for afferent phasic information in the coordination of motor circuits at the different hemiganglia. Data were further analyzed using stochastic models of coupled oscillators and maximum likelihood techniques to estimate underlying physiological parameters, such as uncoupled endogenous frequencies of hemisegmental oscillators and coupling strengths and directions. We found that descending ipsilateral coupling is stronger than ascending coupling, while left-right coupling in both the meso- and meta-thoracic ganglia appear to be symmetrical. We discuss our results in comparison with recent findings in stick insects that share similar neural and body architectures, and argue that the two species may exemplify opposite extremes of a fast-slow locomotion continuum, mediated through different intersegmental

  6. Motor unit firing intervals and other parameters of electrical activity in normal and pathological muscle

    DEFF Research Database (Denmark)

    Fuglsang-Frederiksen, Anders; Smith, T; Høgenhaven, H

    1987-01-01

    The analysis of the firing intervals of motor units has been suggested as a diagnostic tool in patients with neuromuscular disorders. Part of the increase in number of turns seen in patients with myopathy could be secondary to the decrease in motor unit firing intervals at threshold force...

  7. The Effect of Proprioceptive Neuromuscular Facilitation on Learning Fine Motor Skills: A Preliminary Study

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Shahabi Kaseb

    2016-09-01

    Full Text Available Introduction: Preparation of neuromuscular system prior to performing motor skills affects the learning of motor skills. The present study was conducted to investigate the effects of Proprioceptive Neuromuscular Facilitation (PNF on limb coordination and accuracy in dart throwing skill. Methods: Thirty two male students were randomly selected as study sample. Based on the pretest scores, the participants were divided into three groups: experimental (proprioceptive neuromuscular facilitation, first control (without warm-up, and second control (specific warm-up. During the acquisition phase, the participants first performed the preparation training related to their own group, then all groups performed the exercise program of dart throwing consisting of 6 blocks of 9 trials in 4 training sessions. Finally, 20 days following the last exercise session, the subjects took the retention and transfer tests. Results: The results of one-way ANOVA test for coordination variable in acquisition test showed no significant difference between the groups, while there was a statistically significant difference between groups regarding coordination variable in retention and transfer tests. Furthermore, the results of one-way ANOVA for the accuracy variable in acquisition and retention tests showed no statistically significant difference between the three groups, while there was a statistically significant difference between groups for accuracy variable in transfer test. Conclusion: It seems that proprioceptive neuromuscular facilitation, as a preparation method before performance, can enhance the efficacy of training to better learn the coordination pattern of fine motor skills.

  8. Effects of adenosine triphosphate concentration on motor force regulation during skeletal muscle contraction

    Science.gov (United States)

    Wei, J.; Dong, C.; Chen, B.

    2017-04-01

    We employ a mechanical model of sarcomere to quantitatively investigate how adenosine triphosphate (ATP) concentration affects motor force regulation during skeletal muscle contraction. Our simulation indicates that there can be negative cross-bridges resisting contraction within the sarcomere and higher ATP concentration would decrease the resistance force from negative cross-bridges by promoting their timely detachment. It is revealed that the motor force is well regulated only when ATP concentration is above a certain level. These predictions may provide insights into the role of ATP in regulating coordination among multiple motors.

  9. Comparison of 10-11 Years Old Athletes participating in Interscholastic Competitions and Non-Athletes Children’s Fundamental Motor Skills

    Directory of Open Access Journals (Sweden)

    Sinan Akın

    2016-04-01

    Full Text Available Doing regular sports in the sportive competitions may effect motor development of contestant children positively. The aim of research was to investigate the effect of the regular sportive exercise on the development of 10-11 years old children’s motor skills. Participants were chosen from the children competing in interscholastic basketball (n=30 and badminton (n=30 competitions and sedentary children (n=30 in the education year 2012- 2013 in Kutahya. In research, the measurements of children’s motor proficiency was assessed by using the BOTMP-2 Short Form (Bruiniks-Oseretsky Test of Motor Proficiency, Second Edition. The BOTMP2-SF involves only 14 of the 46 items of the full test battery. The evaluation was done in 8 sub-tests (Fine Motor Precision, Fine Motor İntegration, Manual Dexterity, Bilateral Coordination, Balance, Running Speed and Agility, Upper-Limb Coordination, Strength. Collected data was analysed using one way analysis of variance (ANOVA and post doc analysis was performed using Tukey’s multiple range test. According to test results, significant differences were found between the groups in 8 sub-tests. Consequently, it was found that doing regular exercise effects positively motor development of 10-11 years children.

  10. Motor Performance in Relation with Sustained Attention in Children with Attention Deficit Hyperactivity Disorder

    Directory of Open Access Journals (Sweden)

    Solmaz Solouki

    2012-04-01

    Full Text Available Objective: Present study compares relationship between motor performance, sustained attention and impulse control in children with Attention Deficit Hyperactivity Disorder and normal children. Materials & Methods: In this descriptive-analytic study, 21 boys with ADHD and 21 normal boys in the age range of 7- 10 years old were participated. Motor performance by using Bruininks Oseretsky Test of Motor Proficiency and sustained attention and impulse control by using Continuous Performance Test were evaluated. Results: Analysis by T-Test and Mann-Whitney revealed significant difference between ADHD group and normal group in gross, fine and battery motor performance also sustained attention and impulse control (P<0.0001. Analysis by Z-Fisher test indicated no significant difference between Correlation Coefficient of inattention and gross motor performance in two groups (P=0.276 but significant difference between Correlation Coefficient of inattention and fine (P<0.0001 and battery (P<0.0001 motor performance were shown. Correlation Coefficient impulsivity and gross (P=0.379, fine (P=0.92 and battery (P=0.562 motor performance shown no significant difference between two groups. Conclusion: According to study results there was a positive relation between sustained attention and impulse control and most of motor performance in both groups. Therefore these findings help Occupational Therapist to determine rehabilitation priorities and to use exact strategies in order to enhance motor performance in children.

  11. Motor areas of the frontal cortex in patients with motor eloquent brain lesions.

    Science.gov (United States)

    Bulubas, Lucia; Sabih, Jamil; Wohlschlaeger, Afra; Sollmann, Nico; Hauck, Theresa; Ille, Sebastian; Ringel, Florian; Meyer, Bernhard; Krieg, Sandro M

    2016-12-01

    OBJECTIVE Because of its huge clinical potential, the importance of premotor areas for motor function itself and plastic reshaping due to tumors or ischemic brain lesions has received increased attention. Thus, in this study the authors used navigated transcranial magnetic stimulation (nTMS) to investigate whether tumorous brain lesions induce a change in motor cortex localization in the human brain. METHODS Between 2010 and 2013, nTMS motor mapping was performed in a prospective cohort of 100 patients with brain tumors in or adjacent to the rolandic cortex. Spatial data analysis was performed by normalization of the individual motor maps and creation of overlays according to tumor location. Analysis of motor evoked potential (MEP) latencies was performed regarding mean overall latencies and potentially polysynaptic latencies, defined as latencies longer than 1 SD above the mean value. Hemispheric dominance, lesion location, and motor-function deficits were also considered. RESULTS Graphical analysis showed that motor areas were not restricted to the precentral gyrus. Instead, they spread widely in the anterior-posterior direction. An analysis of MEP latency showed that mean MEP latencies were shortest in the precentral gyrus and longest in the superior and middle frontal gyri. The percentage of latencies longer than 1 SD differed widely across gyri. The dominant hemisphere showed a greater number of longer latencies than the nondominant hemisphere (p < 0.0001). Moreover, tumor location-dependent changes in distribution of polysynaptic latencies were observed (p = 0.0002). Motor-function deficit did not show any statistically significant effect. CONCLUSIONS The distribution of primary and polysynaptic motor areas changes in patients with brain tumors and highly depends on tumor location. Thus, these data should be considered for resection planning.

  12. The Movement Assessment Battery in Greek Preschoolers: The Impact of Age, Gender, Birth Order, and Physical Activity on Motor Outcome

    Science.gov (United States)

    Giagazoglou, Paraskevi; Kabitsis, Nikolaos; Kokaridas, Dimitrios; Zaragas, Charilaos; Katartzi, Ermioni; Kabitsis, Chris

    2011-01-01

    Early identification of possible risk factors that could impair the motor development is crucial, since poor motor performance may have long-term negative consequences for a child's overall development. The aim of the current study was the examination of disorders in motor coordination in Greek pre-school aged children and the detection of…

  13. Mechanochemical coupling in the myosin motor domain. I. Insights from equilibrium active-site simulations.

    Directory of Open Access Journals (Sweden)

    Haibo Yu

    2007-02-01

    Full Text Available Although the major structural transitions in molecular motors are often argued to couple to the binding of Adenosine triphosphate (ATP, the recovery stroke in the conventional myosin has been shown to be dependent on the hydrolysis of ATP. To obtain a clearer mechanistic picture for such "mechanochemical coupling" in myosin, equilibrium active-site simulations with explicit solvent have been carried out to probe the behavior of the motor domain as functions of the nucleotide chemical state and conformation of the converter/relay helix. In conjunction with previous studies of ATP hydrolysis with different active-site conformations and normal mode analysis of structural flexibility, the results help establish an energetics-based framework for understanding the mechanochemical coupling. It is proposed that the activation of hydrolysis does not require the rotation of the lever arm per se, but the two processes are tightly coordinated because both strongly couple to the open/close transition of the active site. The underlying picture involves shifts in the dominant population of different structural motifs as a consequence of changes elsewhere in the motor domain. The contribution of this work and the accompanying paper [] is to propose the actual mechanism behind these "population shifts" and residues that play important roles in the process. It is suggested that structural flexibilities at both the small and large scales inherent to the motor domain make it possible to implement tight couplings between different structural motifs while maintaining small free-energy drops for processes that occur in the detached states, which is likely a feature shared among many molecular motors. The significantly different flexibility of the active site in different X-ray structures with variable level arm orientations supports the notation that external force sensed by the lever arm may transmit into the active site and influence the chemical steps (nucleotide

  14. Metabolic Syndrome in Children with and without Developmental Coordination Disorder

    Science.gov (United States)

    Wahi, Gita; LeBlanc, Paul J.; Hay, John A.; Faught, Brent E.; O'Leary, Debra; Cairney, John

    2011-01-01

    Children with developmental coordination disorder (DCD) have higher rates of obesity compared to children with typical motor development, and, as a result may be at increased risk for developing metabolic syndrome (MetS). The purpose of this study was to determine the presence of MetS and its components among children with and without DCD. This…

  15. Auditory-motor learning influences auditory memory for music.

    Science.gov (United States)

    Brown, Rachel M; Palmer, Caroline

    2012-05-01

    In two experiments, we investigated how auditory-motor learning influences performers' memory for music. Skilled pianists learned novel melodies in four conditions: auditory only (listening), motor only (performing without sound), strongly coupled auditory-motor (normal performance), and weakly coupled auditory-motor (performing along with auditory recordings). Pianists' recognition of the learned melodies was better following auditory-only or auditory-motor (weakly coupled and strongly coupled) learning than following motor-only learning, and better following strongly coupled auditory-motor learning than following auditory-only learning. Auditory and motor imagery abilities modulated the learning effects: Pianists with high auditory imagery scores had better recognition following motor-only learning, suggesting that auditory imagery compensated for missing auditory feedback at the learning stage. Experiment 2 replicated the findings of Experiment 1 with melodies that contained greater variation in acoustic features. Melodies that were slower and less variable in tempo and intensity were remembered better following weakly coupled auditory-motor learning. These findings suggest that motor learning can aid performers' auditory recognition of music beyond auditory learning alone, and that motor learning is influenced by individual abilities in mental imagery and by variation in acoustic features.

  16. Motor competence in Czech children aged 11-15: What is the incidence of a risk of developmental coordination disorder?

    Directory of Open Access Journals (Sweden)

    Jakub Kokštejn

    2015-06-01

    Full Text Available Background: Current findings suggest that the prevalence of developmental coordination disorder (DCD ranges widely between countries. A major reason for this wide range of prevalence is how cases of DCD are identified. Gender differences in level of motor competence in children with movement difficulties may play a key role in the choice of type of intervention. Objective: The aim of the study was to reveal the prevalence of significant movement difficulties with high probability of presence of DCD in Czech children aged 11 to 15. At the same time we wanted to assess possible gender differences in different types of the movement difficulties. Methods: A total sample of 507 children (age 11-15 years, 262 boys, 245 girls from all Czech regions was included. The MABC-2 test was used for the identification of movement difficulties with different severity. Children whose total test score (TTS was ≤ 15th percentile were considered at risk for having DCD (children with rDCD. Children whose TTS was ≤ 5th percentile were considered as having significant movement difficulties with high probability of presence of DCD. An analysis of gender differences of children with rDCD in MABC-2 motor components and tests were carried out. Results: From the entire sample, 33 participants (22 boys, 11 girls were identified as at risk of having DCD (rDCD. 1.4% of the total sample met the criterion for significant movement difficulties with high probability of presence of DCD. 5.1% of the total sample met the criterion for identification of the risk for having movement difficulties. Almost twice as high predisposition for the occurrence of movement difficulties was revealed in boys as compared to girls in a population of children with rDCD (OR = 1.95, 95% CI: 1.16-2.74. Girls with rDCD performed better in manual dexterity with a medium effect of the gender (Cohen's d = 0.58, whereas boys with rDCD achieved better results in aiming and catching also with a

  17. Comparison of two anisotropic layer models applied to induction motors

    NARCIS (Netherlands)

    Sprangers, R.L.J.; Paulides, J.J.H.; Boynov, K.O.; Waarma, J.; Lomonova, E.

    2013-01-01

    A general description of the Anisotropic Layer Theory, derived in the polar coordinate system, and applied to the analysis of squirrel-cage induction motors (IMs), is presented. The theory considers non-conductive layers, layer with predefined current density and layers with induced current density.

  18. Comparison of two anisotropic layer models applied to induction motors

    NARCIS (Netherlands)

    Sprangers, R.L.J.; Paulides, J.J.H.; Boynov, K.O.; Lomonova, E.A.; Waarma, J.

    2014-01-01

    A general description of the Anisotropic Layer Theory, derived in the polar coordinate system, and applied to the analysis of squirrel-cage induction motors (IMs), is presented. The theory considers non-conductive layers, layer with predefined current density and layers with induced current density.

  19. Positron computed tomography studies of cerebral metabolic responses to complex motor tasks

    International Nuclear Information System (INIS)

    Phelps, M.E.; Mazziotta, J.C.

    1984-01-01

    Human motor system organization was explored in 8 right-handed male subjects using /sup 18/F-fluorodeoxyglucose and positron computed tomography to measure cerebral glucose metabolism. Five subjects had triple studies (eyes closed) including: control (hold pen in right hand without moving), normal size writing (subject repeatedly writes name) and large (10-15 X normal) name writing. In these studies normal and large size writing had a similar distribution of metabolic responses when compared to control studies. Activations (percent change from control) were in the range of 12-20% and occurred in the striatum bilaterally > contralateral Rolandic cortex > contralateral thalamus. No significant activations were observed in the ipsilateral thalamus, Rolandic cortex or cerebellum (supplementary motor cortex was not examined). The magnitude of the metabolic response in the striatum was greater with the large versus normal sized writing. This differential response may be due to an increased number and topographic distribution of neurons responding with the same average activity between tasks or an increase in the functional activity of the same neuronal population between the two tasks (present spatial resolution inadequate to differentiate). When subjects (N=3) performed novel sequential finger movements, the maximal metabolic response was in the contralateral Rolandic cortex > striatum. Such studies provide a means of exploring human motor system organization, motor learning and provide a basis for examining patients with motor system disorders

  20. Creative Motor Actions As Emerging from Movement Variability.

    Science.gov (United States)

    Orth, Dominic; van der Kamp, John; Memmert, Daniel; Savelsbergh, Geert J P

    2017-01-01

    In cognitive science, creative ideas are defined as original and feasible solutions in response to problems. A common proposal is that creative ideas are generated across dedicated cognitive pathways. Only after creative ideas have emerged, they can be enacted to solve the problem. We present an alternative viewpoint, based upon the dynamic systems approach to perception and action, that creative solutions emerge in the act rather than before . Creative actions, thus, are as much a product of individual constraints as they are of the task and environment constraints. Accordingly, we understand creative motor actions as functional movement patterns that are new to the individual and/or group and adapted to satisfy the constraints on the motor problem at hand. We argue that creative motor actions are promoted by practice interventions that promote exploration by manipulating constraints. Exploration enhances variability of functional movement patterns in terms of either coordination or control solutions. At both levels, creative motor actions can emerge from finding new and degenerate adaptive motor solutions. Generally speaking, we anticipate that in most cases, when exposed to variation in constraints, people are not looking for creative motor actions, but discover them while doing an effort to satisfy constraints. For future research, this paper achieves two important aspects: it delineates how adaptive (movement) variability is at the heart of (motor) creativity, and it sets out methodologies toward stimulating adaptive variability.

  1. Common Input to Motor Units of Intrinsic and Extrinsic Hand Muscles During Two-Digit Object Hold

    OpenAIRE

    Winges, Sara A.; Kornatz, Kurt W.; Santello, Marco

    2008-01-01

    Anatomical and physiological evidence suggests that common input to motor neurons of hand muscles is an important neural mechanism for hand control. To gain insight into the synaptic input underlying the coordination of hand muscles, significant effort has been devoted to describing the distribution of common input across motor units of extrinsic muscles. Much less is known, however, about the distribution of common input to motor units belonging to different intrinsic muscles and to intrinsi...

  2. Stability of bimanual coordination in Parkinson's disease and cognitive modulation of intention

    NARCIS (Netherlands)

    Geuze, RH

    2001-01-01

    The functional integrity of the bimanual neuro-motor system of Parkinson's disease (PD) subjects (stage II) compared to controls (2 X n = 16) was evaluated by measures of coordination stability of tapping in in-phase, anti-phase, and 90 degrees -phase. Recently, intentional influence was modeled as

  3. The need for a coordinated development of electromobility and renewable energies

    International Nuclear Information System (INIS)

    Herzog, Helmut

    2017-01-01

    It is a declared goal of the Federal Government and almost all German parties to implement e-mobility by 2050 and to achieve the decarbonisation of the energy industry by the end of the century. Starting from these two premises, the motor vehicle industry and the electricity market will develop very dynamically. However, they must be coordinated by legal frameworks and, as far as possible, driven by market incentives for producers and purchasers of motor vehicles, electricity producers and consumers as well as network and storage system operators. Various approaches can be developed for this. [de

  4. Fine motor deficiencies in children diagnosed as DCD based on poor grapho-motor ability

    NARCIS (Netherlands)

    Smits-Engelsman, BCM; Niemeijer, AS; van Galen, GP

    A sample of 125 children from grades 4 and 5 of two normal Dutch primary schools were investigated regarding the incidence of handwriting problems and other fine motor disabilities. Handwriting quality was assessed with the concise assessment method for children's handwriting (BHK) and the school

  5. Is Treating Motor Problems in DCD Just a Matter of Practice and More Practice?

    Science.gov (United States)

    Schoemaker, Marina M; Smits-Engelsman, Bouwien C M

    Developmental coordination disorder (DCD) is often called a motor learning deficit. The question addressed in this paper is whether improvement of motor skills is just a matter of mere practice. Without any kind of intervention, children with DCD do not improve their motor skills generally, whereas they do improve after task-oriented intervention. Merely offering children the opportunity to practice motor skills, for instance by playing active video games, did lead to improved motor performance according to recent research findings, but to a lesser extent than task-oriented intervention. We argue that children with DCD lack the required motor problem-solving skills necessary to further improve their performance. Explicit motor teaching with an emphasis on developing these problem-solving skills is a necessary ingredient of intervention in DCD, leveraging the effectiveness of intervention above that of mere practicing.

  6. Bringing up the rear: new premotor interneurons add regional complexity to a segmentally distributed motor pattern

    Science.gov (United States)

    Norris, Brian J.; Doloc-Mihu, Anca; Calabrese, Ronald L.

    2011-01-01

    Central pattern generators (CPGs) pace and pattern many rhythmic activities. We have uncovered a new module in the heartbeat CPG of leeches that creates a regional difference in this segmentally distributed motor pattern. The core CPG consists of seven identified pairs and one unidentified pair of heart interneurons of which 5 pairs are premotor and inhibit 16 pairs of heart motor neurons. The heartbeat CPG produces a side-to-side asymmetric pattern of activity of the premotor heart interneurons corresponding to an asymmetric fictive motor pattern and an asymmetric constriction pattern of the hearts with regular switches between the two sides. The premotor pattern progresses from rear to front on one side and nearly synchronously on the other; the motor pattern shows corresponding intersegmental coordination, but only from segment 15 forward. In the rearmost segments the fictive motor pattern and the constriction pattern progress from front to rear on both sides and converge in phase. Modeling studies suggested that the known inhibitory inputs to the rearmost heart motor neurons were insufficient to account for this activity. We therefore reexamined the constriction pattern of intact leeches. We also identified electrophysiologically two additional pairs of heart interneurons in the rear. These new heart interneurons make inhibitory connections with the rear heart motor neurons, are coordinated with the core heartbeat CPG, and are dye-coupled to their contralateral homologs. Their strong inhibitory connections with the rearmost heart motor neurons and the small side-to-side phase difference of their bursting contribute to the different motor and beating pattern observed in the animal's rear. PMID:21775711

  7. Graphomotor skills in children with developmental coordination disorder (DCD): Handwriting and learning a new letter.

    Science.gov (United States)

    Huau, Andréa; Velay, Jean-Luc; Jover, Marianne

    2015-08-01

    The aim of the present study was to analyze handwriting difficulties in children with developmental coordination disorder (DCD) and investigate the hypothesis that a deficit in procedural learning could help to explain them. The experimental set-up was designed to compare the performances of children with DCD with those of a non-DCD group on tasks that rely on motor learning in different ways, namely handwriting and learning a new letter. Ten children with DCD and 10 non-DCD children, aged 8-10 years, were asked to perform handwriting tasks (letter/word/sentence; normal/fast), and a learning task (new letter) on a graphic tablet. The BHK concise assessment scale for children's handwriting was used to evaluate their handwriting quality. Results showed that both the handwriting and learning tasks differentiated between the groups. Furthermore, when speed or length constraints were added, handwriting was more impaired in children with DCD than in non-DCD children. Greater intra-individual variability was observed in the group of children with DCD, arguing in favor of a deficit in motor pattern stabilization. The results of this study could support both the hypothesis of a deficit in procedural learning and the hypothesis of neuromotor noise in DCD. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. The efficacy of two task-orientated interventions for children with Developmental Coordination Disorder : Neuromotor Task Training and Nintendo Wii Fit training

    NARCIS (Netherlands)

    Ferguson, G. D.; Jelsma, D.; Jelsma, J.; Smits-Engelsman, B. C. M.

    Neuromotor Task Training (NTT) and Nintendo Wii Fit Training (Wii training) are both task-based interventions used to improve performance in children with motor coordination problems. The aim of this study was to compare the efficacy of these two interventions on the motor performance, isometric

  9. Psychiatric aspects of deafness and language disorder : related to motor disorder?

    NARCIS (Netherlands)

    Flapper, B.C.; Schoemaker, M.

    Children with “pure” receptive hearing impairment (RHI) and with specific language impairment (SLI) are not supposed to have additional developmental disabilities. However, mental health problems (MHP) may be associated with communicative disorders, and should be detected. Also motor coordination

  10. Children show limited movement repertoire when learning a novel motor skill.

    Science.gov (United States)

    Lee, Mei-Hua; Farshchiansadegh, Ali; Ranganathan, Rajiv

    2017-09-27

    Examining age differences in motor learning using real-world tasks is often problematic due to task novelty and biomechanical confounds. Here, we investigated how children and adults acquire a novel motor skill in a virtual environment. Participants of three different age groups (9-year-olds, 12-year-olds, and adults) learned to use their upper body movements to control a cursor on a computer screen. Results showed that 9-year-old and 12-year-old children showed poorer ability to control the cursor at the end of practice. Critically, when we investigated the movement coordination, we found that the lower task performance of children was associated with limited exploration of their movement repertoire. These results reveal the critical role of motor exploration in understanding developmental differences in motor learning. © 2017 John Wiley & Sons Ltd.

  11. Speech-Like and Non-Speech Lip Kinematics and Coordination in Aphasia

    Science.gov (United States)

    Bose, Arpita; van Lieshout, Pascal

    2012-01-01

    Background: In addition to the well-known linguistic processing impairments in aphasia, oro-motor skills and articulatory implementation of speech segments are reported to be compromised to some degree in most types of aphasia. Aims: This study aimed to identify differences in the characteristics and coordination of lip movements in the production…

  12. Impairments of Motor Function While Multitasking in HIV

    Directory of Open Access Journals (Sweden)

    Cherie L. Marvel

    2017-04-01

    Full Text Available Human immunodeficiency virus (HIV became a treatable illness with the introduction of combination antiretroviral therapy (CART. As a result, patients with regular access to CART are expected to live decades with HIV. Long-term HIV infection presents unique challenges, including neurocognitive impairments defined by three major stages of HIV-associated neurocognitive disorders (HAND. The current investigation aimed to study cognitive and motor impairments in HIV using a novel multitasking paradigm. Unlike current standard measures of cognitive and motor performance in HIV, multitasking increases real-world validity by mimicking the dual motor and cognitive demands that are part of daily professional and personal settings (e.g., driving, typing and writing. Moreover, multitask assessments can unmask compensatory mechanisms, normally used under single task conditions, to maintain performance. This investigation revealed that HIV+ participants were impaired on the motor component of the multitask, while cognitive performance was spared. A patient-specific positive interaction between motor performance and working memory recall was driven by poor HIV+ multitaskers. Surprisingly, HAND stage did not correspond with multitask performance and a variety of commonly used assessments indicated normal motor function among HIV+ participants with poor motor performance during the experimental task. These results support the use of multitasks to reveal otherwise hidden impairment in chronic HIV by expanding the sensitivity of clinical assessments used to determine HAND stage. Future studies should examine the capability of multitasks to predict performance in personal, professional and health-related behaviors and prognosis of patients living with chronic HIV.

  13. Normal Language Skills and Normal Intelligence in a Child with de Lange Syndrome.

    Science.gov (United States)

    Cameron, Thomas H.; Kelly, Desmond P.

    1988-01-01

    The subject of this case report is a two-year, seven-month-old girl with de Lange syndrome, normal intelligence, and age-appropriate language skills. She demonstrated initial delays in gross motor skills and in receptive and expressive language but responded well to intensive speech and language intervention, as well as to physical therapy.…

  14. Development and Psychometric Properties of A Screening Tool for Assessing Developmental Coordination Disorder in Adults

    OpenAIRE

    Clark, Carol J.

    2013-01-01

    Background: Developmental Coordination Disorder (DCD) is a neurodevelopmental disorder affecting motor coordination. Evidence suggests this disorder persists into adulthood and may be associated with biomechanical dysfunction and pain. We report on the development and initial validation of a questionnaire to assess for DCD in adults. Methods: An initial item pool (13 items) was derived from the American Psychiatric Association criteria and World Health Organisation definition for DCD. An expe...

  15. Artificial gravity reveals that economy of action determines the stability of sensorimotor coordination.

    Directory of Open Access Journals (Sweden)

    Richard G Carson

    Full Text Available BACKGROUND: When we move along in time with a piece of music, we synchronise the downward phase of our gesture with the beat. While it is easy to demonstrate this tendency, there is considerable debate as to its neural origins. It may have a structural basis, whereby the gravitational field acts as an orientation reference that biases the formulation of motor commands. Alternatively, it may be functional, and related to the economy with which motion assisted by gravity can be generated by the motor system. METHODOLOGY/PRINCIPAL FINDINGS: We used a robotic system to generate a mathematical model of the gravitational forces acting upon the hand, and then to reverse the effect of gravity, and invert the weight of the limb. In these circumstances, patterns of coordination in which the upward phase of rhythmic hand movements coincided with the beat of a metronome were more stable than those in which downward movements were made on the beat. When a normal gravitational force was present, movements made down-on-the-beat were more stable than those made up-on-the-beat. CONCLUSIONS/SIGNIFICANCE: The ubiquitous tendency to make a downward movement on a musical beat arises not from the perception of gravity, but as a result of the economy of action that derives from its exploitation.

  16. Lithographic linear motor, lithographic apparatus, and device manufacturing method

    NARCIS (Netherlands)

    2006-01-01

    A linear motor having a high driving force, high efficiency and low normal force comprises two opposed magnet tracks and an armature comprising three open coil sets. The linear motor may be used to drive a stage, such as, for example, a mask or wafer stage, in a lithographic apparatus.

  17. Catch-slip bonds can be dispensable for motor force regulation during skeletal muscle contraction

    Science.gov (United States)

    Dong, Chenling; Chen, Bin

    2015-07-01

    It is intriguing how multiple molecular motors can perform coordinated and synchronous functions, which is essential in various cellular processes. Recent studies on skeletal muscle might have shed light on this issue, where rather precise motor force regulation was partly attributed to the specific stochastic features of a single attached myosin motor. Though attached motors can randomly detach from actin filaments either through an adenosine triphosphate (ATP) hydrolysis cycle or through "catch-slip bond" breaking, their respective contribution in motor force regulation has not been clarified. Here, through simulating a mechanical model of sarcomere with a coupled Monte Carlo method and finite element method, we find that the stochastic features of an ATP hydrolysis cycle can be sufficient while those of catch-slip bonds can be dispensable for motor force regulation.

  18. Evaluation of Esophageal Motor Function With High-resolution Manometry

    Science.gov (United States)

    2013-01-01

    For several decades esophageal manometry has been the test of choice to evaluate disorders of esophageal motor function. The recent introduction of high-resolution manometry for the study of esophageal motor function simplified performance of esophageal manometry, and revealed previously unidentified patterns of normal and abnormal esophageal motor function. Presentation of pressure data as color contour plots or esophageal pressure topography led to the development of new tools for analyzing and classifying esophageal motor patterns. The current standard and still developing approach to do this is the Chicago classification. While this methodical approach is improving our diagnosis of esophageal motor disorders, it currently does not address all motor abnormalities. We will explore the Chicago classification and disorders that it does not address. PMID:23875094

  19. Geometric Form Drawing: A Perceptual-Motor Approach to Preventive Remediation (The Steiner Approach)

    Science.gov (United States)

    Ogletree, Earl J.

    1975-01-01

    Provided is a rationale for geometric form drawing developed by Rudolf Steiner as a tool to develop motor coordination, perceptual skills, and cognition for mentally retarded and perceptually handicapped children. (Author/CL)

  20. Coordenadas cartesianas moleculares a partir da geometria dos modos normais de vibração Molecular cartesian coordinates from vibrational normal modes geometry

    Directory of Open Access Journals (Sweden)

    Emílio Borges

    2007-04-01

    Full Text Available A simple method to obtain molecular Cartesian coordinates as a function of vibrational normal modes is presented in this work. The method does not require the definition of special matrices, like the F and G of Wilson, neither of group theory. The Eckart's conditions together with the diagonalization of kinetic and potential energy are the only required expressions. This makes the present approach appropriate to be used as a preliminary study for more advanced concepts concerning vibrational analysis. Examples are given for diatomic and triatomic molecules.

  1. Neural mirroring and social interaction: Motor system involvement during action observation relates to early peer cooperation.

    Science.gov (United States)

    Endedijk, H M; Meyer, M; Bekkering, H; Cillessen, A H N; Hunnius, S

    2017-04-01

    Whether we hand over objects to someone, play a team sport, or make music together, social interaction often involves interpersonal action coordination, both during instances of cooperation and entrainment. Neural mirroring is thought to play a crucial role in processing other's actions and is therefore considered important for social interaction. Still, to date, it is unknown whether interindividual differences in neural mirroring play a role in interpersonal coordination during different instances of social interaction. A relation between neural mirroring and interpersonal coordination has particularly relevant implications for early childhood, since successful early interaction with peers is predictive of a more favorable social development. We examined the relation between neural mirroring and children's interpersonal coordination during peer interaction using EEG and longitudinal behavioral data. Results showed that 4-year-old children with higher levels of motor system involvement during action observation (as indicated by lower beta-power) were more successful in early peer cooperation. This is the first evidence for a relation between motor system involvement during action observation and interpersonal coordination during other instances of social interaction. The findings suggest that interindividual differences in neural mirroring are related to interpersonal coordination and thus successful social interaction. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Assessment of global motor performance and gross and fine motor skills of infants attending day care centers.

    Science.gov (United States)

    Souza, Carolina T; Santos, Denise C C; Tolocka, Rute E; Baltieri, Letícia; Gibim, Nathália C; Habechian, Fernanda A P

    2010-01-01

    To analyze the global motor performance and the gross and fine motor skills of infants attending two public child care centers full-time. This was a longitudinal study that included 30 infants assessed at 12 and 17 months of age with the Motor Scale of the Bayley Scales of Infant and Toddler Development, Third Edition (Bayley-III). This scale allows the analysis of global motor performance, fine and gross motor performance, and the discrepancy between them. The Wilcoxon test and Spearman's correlation coefficient were used. Most of the participants showed global motor performance within the normal range, but below the reference mean at 12 and 17 months, with 30% classified as having "suspected delays" in at least one of the assessments. Gross motor development was poorer than fine motor development at 12 and at 17 months of age, with great discrepancy between these two subtests in the second assessment. A clear individual variability was observed in fine motor skills, with weak linear correlation between the first and the second assessment of this subtest. A lower individual variability was found in the gross motor skills and global motor performance with positive moderate correlation between assessments. Considering both performance measurements obtained at 12 and 17 months of age, four infants were identified as having a "possible delay in motor development". The study showed the need for closer attention to the motor development of children who attend day care centers during the first 17 months of life, with special attention to gross motor skills (which are considered an integral part of the child's overall development) and to children with suspected delays in two consecutive assessments.

  3. Motor thalamus integration of cortical, cerebellar and basal ganglia information: implications for normal and parkinsonian conditions

    Directory of Open Access Journals (Sweden)

    Clémentine eBosch-Bouju

    2013-11-01

    Full Text Available Motor thalamus (Mthal is implicated in the control of movement because it is strategically located between motor areas of the cerebral cortex and motor-related subcortical structures, such as the cerebellum and basal ganglia (BG. The role of BG and cerebellum in motor control has been extensively studied but how Mthal processes inputs from these two networks is unclear. Specifically, there is considerable debate about the role of BG inputs on Mthal activity. This review summarises anatomical and physiological knowledge of the Mthal and its afferents and reviews current theories of Mthal function by discussing the impact of cortical, BG and cerebellar inputs on Mthal activity. One view is that Mthal activity in BG and cerebellar-receiving territories is primarily driven by glutamatergic inputs from the cortex or cerebellum, respectively, whereas BG inputs are modulatory and do not strongly determine Mthal activity. This theory is steeped in the assumption that the Mthal processes information in the same way as sensory thalamus, through interactions of modulatory inputs with a single driver input. Another view, from BG models, is that BG exert primary control on the BG-receiving Mthal so it effectively relays information from BG to cortex. We propose a new super-integrator theory where each Mthal territory processes multiple driver or driver-like inputs (cortex and BG, cortex and cerebellum, which are the result of considerable integrative processing. Thus, BG and cerebellar Mthal territories assimilate motivational and proprioceptive motor information previously integrated in cortico-BG and cortico-cerebellar networks, respectively, to develop sophisticated motor signals that are transmitted in parallel pathways to cortical areas for optimal generation of motor programmes. Finally, we briefly review the pathophysiological changes that occur in the BG in parkinsonism and generate testable hypotheses about how these may affect processing of inputs

  4. Motor synergies and the equilibrium-point hypothesis.

    Science.gov (United States)

    Latash, Mark L

    2010-07-01

    The article offers a way to unite three recent developments in the field of motor control and coordination: (1) The notion of synergies is introduced based on the principle of motor abundance; (2) The uncontrolled manifold hypothesis is described as offering a computational framework to identify and quantify synergies; and (3) The equilibrium-point hypothesis is described for a single muscle, single joint, and multijoint systems. Merging these concepts into a single coherent scheme requires focusing on control variables rather than performance variables. The principle of minimal final action is formulated as the guiding principle within the referent configuration hypothesis. Motor actions are associated with setting two types of variables by a controller, those that ultimately define average performance patterns and those that define associated synergies. Predictions of the suggested scheme are reviewed, such as the phenomenon of anticipatory synergy adjustments, quick actions without changes in synergies, atypical synergies, and changes in synergies with practice. A few models are briefly reviewed.

  5. Motor Importance of motor assessment in school children: analysis of the reliability of the motor development scale doi: 10.5007/1980-0037.2010v12n6p422

    Directory of Open Access Journals (Sweden)

    Francisco Rosa Neto

    2010-09-01

    Full Text Available The objective of this study was to investigate the motor performance of school chil-dren aged 6 to 10 years without learning difficulties (n=101, and to analyze the reliability of the Motor Development Scale (MDS (Rosa Neto, 2002. Descriptive statistics with calculation of the mean, standard deviation, and range was used for data analysis. The internal consistency of the MDS was assessed using Cronbach’s alpha coefficient, and the correlation between variables was determined by Pearson’s linear correlation, with p<0.05. The results showed (1 that motor development was within normal limits in 96% of the children, and (2 a high correlation betwe-en chronological age and general motor age, indicating good internal consistency. These data demonstrate the logic and structured design of the MDS, confirming its reliability.

  6. Examination of effects of gymnastics teaching of physical education on coordination of 3rd & 4th grade pupils of elementary schools

    Directory of Open Access Journals (Sweden)

    Aleksić Dragana

    2013-01-01

    Full Text Available Coordination, as the basic motor ability, is very complex, as the level of the movement regulation can change. In addition, the regulation includes energetic mechanisms as well as mechanisms of simple structuring of movement. The battery for the evaluation of coordination consists of the following tests: MPON, MSL3, MONT. During the 2005/06 academic year, a research was conducted so as to determine the effects of current program of physical education teaching on motor abilities coordination of female pupils. The multi-variant procedures were used in this research ant those were: the multi-variant analysis of the variable MANCOVA, MANOVA and the discriminative analysis. Also, the mono-variant procedures were used and those were: the variable analysis ANCOVA, ANOVA and the interval of entrust. After the experimental treatment, i.e. at the final testing, significant differences were found with female pupils in experimental and control groups concerning the all tests for the evaluation of coordination. The basic conclusion is that the female pupils of experimental group achieved significantly higher teaching effects than the control group, in view of partly increased motor abilities, being the result of the effects of the experimental treatment, as well as other external and internal factors.

  7. Activities of Daily Living in Children With Developmental Coordination Disorder : Performance, Learning, and Participation

    NARCIS (Netherlands)

    Van der Linde, Berdien W.; van Netten, Jaap J.; Otten, Bert; Postema, Klaas; Geuze, Reint H.; Schoemaker, Marina M.

    2015-01-01

    Background. Children with developmental coordination disorder (DCD) face evident motor difficulties in daily functioning. Little is known, however, about their difficulties in specific activities of daily living (ADL). Objective. The purposes of this study were: (1) to investigate differences

  8. Activities of daily living in children with developmental coordination disorder : performance, learning, and participation

    NARCIS (Netherlands)

    Moraal-van der Linde, Berdien; Netten, Jaap; Otten, Bert; Postema, Klaas; Geuze, Reint; Schoemaker, Marina

    2015-01-01

    Background. Children with developmental coordination disorder (DCD) face evident motor difficulties in daily functioning. Little is known, however, about their difficulties in specific activities of daily living (ADL). Objective. To (a) investigate differences between children with DCD and their

  9. [CHANGE OF CHARACTER OF INTERSYSTEMIC INTERACTIONS IN NEWBORN RAT PUPS UNDER CONDITIONS OF A DECREASE OF MOTOR ACTIVITY].

    Science.gov (United States)

    Sizonov, V A; Dmitrieva, L E; Kuznetsov, S V

    2015-01-01

    Interaction of slow-wave.rhythmic components of cardiac, respiratory.and motor activity was investigated in newborn rat pups on the first day after birth under normal conditions and after pharmacological depression of spontaneous periodic motor activity (SPMA) produced by injecting myocuran (myanesin) at low (100 mg/pg, i/p) and maximal (235 mg/pg, i/p) dosages. The data obtained allow to infer that in rat pups after birth the intersystemic interactions are realized mainly via slow-wave oscillations of about-one- and many-minute ranges whereas the rhythms of decasecond range do not play a significant role in integrative processes. Injection of miocuran at a dose causing no muscle relaxation and no inhibition of motor activity produces changes of the cardiac and respiratory rhythms as well as a transitory decrease of the magnitude of coordinate relations mediated by the rhythms of about-one- and many-minute ranges. The consequences of muscle relaxant injection were found to be more significant for intersystemic interactions with participation of the respiratory system. An increase of the dosage and, correspondingly, the total inhibition of SPMA is accompanied by reduction of the slow-wave components from the pattern of cardiac and respiratory rhythms. The cardiorespiratory interactions, more expressed in intact rat pups, are reduced in the about-one- and many-minute ranges of modulation whereas in the decasecond range of modulation they are slightly increased. Key words: early ontogenesis, intersystemic interactions, cardiac rhythm, respiration, motor activity, myocuran (myanesin).

  10. Learning alternative movement coordination patterns using reinforcement feedback.

    Science.gov (United States)

    Lin, Tzu-Hsiang; Denomme, Amber; Ranganathan, Rajiv

    2018-05-01

    One of the characteristic features of the human motor system is redundancy-i.e., the ability to achieve a given task outcome using multiple coordination patterns. However, once participants settle on using a specific coordination pattern, the process of learning to use a new alternative coordination pattern to perform the same task is still poorly understood. Here, using two experiments, we examined this process of how participants shift from one coordination pattern to another using different reinforcement schedules. Participants performed a virtual reaching task, where they moved a cursor to different targets positioned on the screen. Our goal was to make participants use a coordination pattern with greater trunk motion, and to this end, we provided reinforcement by making the cursor disappear if the trunk motion during the reach did not cross a specified threshold value. In Experiment 1, we compared two reinforcement schedules in two groups of participants-an abrupt group, where the threshold was introduced immediately at the beginning of practice; and a gradual group, where the threshold was introduced gradually with practice. Results showed that both abrupt and gradual groups were effective in shifting their coordination patterns to involve greater trunk motion, but the abrupt group showed greater retention when the reinforcement was removed. In Experiment 2, we examined the basis of this advantage in the abrupt group using two additional control groups. Results showed that the advantage of the abrupt group was because of a greater number of practice trials with the desired coordination pattern. Overall, these results show that reinforcement can be successfully used to shift coordination patterns, which has potential in the rehabilitation of movement disorders.

  11. The Neural Feedback Response to Error As a Teaching Signal for the Motor Learning System

    Science.gov (United States)

    Shadmehr, Reza

    2016-01-01

    When we experience an error during a movement, we update our motor commands to partially correct for this error on the next trial. How does experience of error produce the improvement in the subsequent motor commands? During the course of an erroneous reaching movement, proprioceptive and visual sensory pathways not only sense the error, but also engage feedback mechanisms, resulting in corrective motor responses that continue until the hand arrives at its goal. One possibility is that this feedback response is co-opted by the learning system and used as a template to improve performance on the next attempt. Here we used electromyography (EMG) to compare neural correlates of learning and feedback to test the hypothesis that the feedback response to error acts as a template for learning. We designed a task in which mixtures of error-clamp and force-field perturbation trials were used to deconstruct EMG time courses into error-feedback and learning components. We observed that the error-feedback response was composed of excitation of some muscles, and inhibition of others, producing a complex activation/deactivation pattern during the reach. Despite this complexity, across muscles the learning response was consistently a scaled version of the error-feedback response, but shifted 125 ms earlier in time. Across people, individuals who produced a greater feedback response to error, also learned more from error. This suggests that the feedback response to error serves as a teaching signal for the brain. Individuals who learn faster have a better teacher in their feedback control system. SIGNIFICANCE STATEMENT Our sensory organs transduce errors in behavior. To improve performance, we must generate better motor commands. How does the nervous system transform an error in sensory coordinates into better motor commands in muscle coordinates? Here we show that when an error occurs during a movement, the reflexes transform the sensory representation of error into motor

  12. Motor-Enriched Learning Activities Can Improve Mathematical Performance in Preadolescent Children

    Science.gov (United States)

    Beck, Mikkel M.; Lind, Rune R.; Geertsen, Svend S.; Ritz, Christian; Lundbye-Jensen, Jesper; Wienecke, Jacob

    2016-01-01

    Objective: An emerging field of research indicates that physical activity can benefit cognitive functions and academic achievements in children. However, less is known about how academic achievements can benefit from specific types of motor activities (e.g., fine and gross) integrated into learning activities. Thus, the aim of this study was to investigate whether fine or gross motor activity integrated into math lessons (i.e., motor-enrichment) could improve children's mathematical performance. Methods: A 6-week within school cluster-randomized intervention study investigated the effects of motor-enriched mathematical teaching in Danish preadolescent children (n = 165, age = 7.5 ± 0.02 years). Three groups were included: a control group (CON), which received non-motor enriched conventional mathematical teaching, a fine motor math group (FMM) and a gross motor math group (GMM), which received mathematical teaching enriched with fine and gross motor activity, respectively. The children were tested before (T0), immediately after (T1) and 8 weeks after the intervention (T2). A standardized mathematical test (50 tasks) was used to evaluate mathematical performance. Furthermore, it was investigated whether motor-enriched math was accompanied by different effects in low and normal math performers. Additionally, the study investigated the potential contribution of cognitive functions and motor skills on mathematical performance. Results: All groups improved their mathematical performance from T0 to T1. However, from T0 to T1, the improvement was significantly greater in GMM compared to FMM (1.87 ± 0.71 correct answers) (p = 0.02). At T2 no significant differences in mathematical performance were observed. A subgroup analysis revealed that normal math-performers benefitted from GMM compared to both CON 1.78 ± 0.73 correct answers (p = 0.04) and FMM 2.14 ± 0.72 correct answers (p = 0.008). These effects were not observed in low math-performers. The effects were partly

  13. Score of Fine Motor Skill in Children with Down Syndrome using Nintendo Wii

    Directory of Open Access Journals (Sweden)

    Puspasari Sinaga

    2016-09-01

    Full Text Available Background: Down syndrome occurs due to an extra chromosome 21, known as Trisomy 21. In addition to delayed cognitive and speech development, children with Down syndrome may also experience delayed gross and fine motor development. Virtual Reality Therapy, such as Nintendo Wii is a computer-based technology that allows users to interact with a virtual three-dimensional scenario and the most innovative physical rehabilitation method. High scores indicate that the player has a good motor skill. This study aimed to examine the difference between the score of fine motor skill in children with and without Down syndrome. Methods: An analytic cross-sectional study was conducted from August to November 2015 to 40 children aged between 9–12 years old who came from public primary schools and special needs schools in Bandung, West Java. They were divided into 2 groups using random gender and age pairing; one group was children with Down syndrome and another other group was normal children. The children’ scores of Nintendo Wii game were collected three times. The collected data were statistically analyzed by Chi-Square test. Results: The proportion of children with low-grade fine motor skill in Down syndrome group was larger than those with high-grade fine motor skill. In the other hand, in normal children group, the proportion was reversed compared to Down syndrome group. There was a significant difference in score of fine motor skill between children with Down syndrome and normal children (p=0.000. Conclusions: The fine motor skill of children with Down syndrome is poorer than normal children’s.

  14. Motor cortex electrical stimulation augments sprouting of the corticospinal tract and promotes recovery of motor function

    Science.gov (United States)

    Carmel, Jason B.; Martin, John H.

    2014-01-01

    The corticospinal system—with its direct spinal pathway, the corticospinal tract (CST) – is the primary system for controlling voluntary movement. Our approach to CST repair after injury in mature animals was informed by our finding that activity drives establishment of connections with spinal cord circuits during postnatal development. After incomplete injury in maturity, spared CST circuits sprout, and partially restore lost function. Our approach harnesses activity to augment this injury-dependent CST sprouting and to promote function. Lesion of the medullary pyramid unilaterally eliminates all CST axons from one hemisphere and allows examination of CST sprouting from the unaffected hemisphere. We discovered that 10 days of electrical stimulation of either the spared CST or motor cortex induces CST axon sprouting that partially reconstructs the lost CST. Stimulation also leads to sprouting of the cortical projection to the magnocellular red nucleus, where the rubrospinal tract originates. Coordinated outgrowth of the CST and cortical projections to the red nucleus could support partial re-establishment of motor systems connections to the denervated spinal motor circuits. Stimulation restores skilled motor function in our animal model. Lesioned animals have a persistent forelimb deficit contralateral to pyramidotomy in the horizontal ladder task. Rats that received motor cortex stimulation either after acute or chronic injury showed a significant functional improvement that brought error rate to pre-lesion control levels. Reversible inactivation of the stimulated motor cortex reinstated the impairment demonstrating the importance of the stimulated system to recovery. Motor cortex electrical stimulation is an effective approach to promote spouting of spared CST axons. By optimizing activity-dependent sprouting in animals, we could have an approach that can be translated to the human for evaluation with minimal delay. PMID:24994971

  15. Coordination in fast repetitive violin-bowing patterns.

    Science.gov (United States)

    Schoonderwaldt, Erwin; Altenmüller, Eckart

    2014-01-01

    We present a study of coordination behavior in complex violin-bowing patterns involving simultaneous bow changes (reversal of bowing direction) and string crossings (changing from one string to another). Twenty-two violinists (8 advanced amateurs, 8 students with violin as major subject, and 6 elite professionals) participated in the experiment. We investigated the influence of a variety of performance conditions (specific bowing patterns, dynamic level, tempo, and transposition) and level of expertise on coordination behavior (a.o., relative phase and amplitude) and stability. It was found that the general coordination behavior was highly consistent, characterized by a systematic phase lead of bow inclination over bow velocity of about 15° (i.e., string crossings were consistently timed earlier than bow changes). Within similar conditions, a high individual consistency was found, whereas the inter-individual agreement was considerably less. Furthermore, systematic influences of performance conditions on coordination behavior and stability were found, which could be partly explained in terms of particular performance constraints. Concerning level of expertise, only subtle differences were found, the student and professional groups (higher level of expertise) showing a slightly higher stability than the amateur group (lower level of expertise). The general coordination behavior as observed in the current study showed a high agreement with perceptual preferences reported in an earlier study to similar bowing patterns, implying that complex bowing trajectories for an important part emerge from auditory-motor interaction.

  16. Coordination in fast repetitive violin-bowing patterns.

    Directory of Open Access Journals (Sweden)

    Erwin Schoonderwaldt

    Full Text Available We present a study of coordination behavior in complex violin-bowing patterns involving simultaneous bow changes (reversal of bowing direction and string crossings (changing from one string to another. Twenty-two violinists (8 advanced amateurs, 8 students with violin as major subject, and 6 elite professionals participated in the experiment. We investigated the influence of a variety of performance conditions (specific bowing patterns, dynamic level, tempo, and transposition and level of expertise on coordination behavior (a.o., relative phase and amplitude and stability. It was found that the general coordination behavior was highly consistent, characterized by a systematic phase lead of bow inclination over bow velocity of about 15° (i.e., string crossings were consistently timed earlier than bow changes. Within similar conditions, a high individual consistency was found, whereas the inter-individual agreement was considerably less. Furthermore, systematic influences of performance conditions on coordination behavior and stability were found, which could be partly explained in terms of particular performance constraints. Concerning level of expertise, only subtle differences were found, the student and professional groups (higher level of expertise showing a slightly higher stability than the amateur group (lower level of expertise. The general coordination behavior as observed in the current study showed a high agreement with perceptual preferences reported in an earlier study to similar bowing patterns, implying that complex bowing trajectories for an important part emerge from auditory-motor interaction.

  17. Fine motor skills in South African children with symptoms of ADHD: influence of subtype, gender, age, and hand dominance

    OpenAIRE

    Meyer, Anneke; Sagvolden, Terje

    2006-01-01

    Abstract Background Motor problems, often characterised as clumsiness or poor motor coordination, have been associated with ADHD in addition to the main symptom groups of inattention, impulsiveness, and overactivity. The problems addressed in this study were: (1) Are motor problems associated with ADHD symptoms, also in African cultures? (2) Are there differences in motor skills among the subtypes with ADHD symptoms? (3) Are there gender differences? (4) Is there an effect of age? (5) Are the...

  18. Does the Coordination of Verbal and Motor Information Explain the Development of Counting in Children?

    Science.gov (United States)

    Camos, Valerie; Barrouillet, Pierre; Fayol, Michel

    2001-01-01

    Tested in three experiments hypothesis that coordinating saying number-words and pointing to each object to count requires use of the central executive and that cost of coordination decreases with age. Found that for 5- and 9-year-olds and adults, manipulating difficulty of each component affected counting performance but did not make coordination…

  19. Analysis of Valve Requirements for High-Efficiency Digital Displacement Fluid Power Motors

    DEFF Research Database (Denmark)

    Rømer, Daniel; Johansen, Per; Pedersen, Henrik C.

    2013-01-01

    Digital displacement fluid power motors have been shown to enable high-efficiency operation in a wide operation range, including the part load range where conventional fluid power motors suffers from poor efficiencies. The use of these digital displacement motors set new requirements for the valve...... transition time and flow-pressure coefficient are normalized, leading to a presentation of the general efficiency map of the digital displacement motor. Finally the performance of existing commercial valves with respect to digital motors is commented....

  20. Simulation of three-phase induction motor drives using indirect field oriented control in PSIM environment

    Science.gov (United States)

    Aziri, Hasif; Patakor, Fizatul Aini; Sulaiman, Marizan; Salleh, Zulhisyam

    2017-09-01

    This paper presents the simulation of three-phase induction motor drives using Indirect Field Oriented Control (IFOC) in PSIM environment. The asynchronous machine is well known about natural limitations fact of highly nonlinearity and complexity of motor model. In order to resolve these problems, the IFOC is applied to control the instantaneous electrical quantities such as torque and flux component. As FOC is controlling the stator current that represented by a vector, the torque component is aligned with d coordinate while the flux component is aligned with q coordinate. There are five levels of the incremental system are gradually built up to verify and testing the software module in the system. Indeed, all of system build levels are verified and successfully tested in PSIM environment. Moreover, the corresponding system of five build levels are simulated in PSIM environment which is user-friendly for simulation studies in order to explore the performance of speed responses based on IFOC algorithm for three-phase induction motor drives.

  1. Influences of gender and socioeconomic status on the motor proficiency of children in the UK.

    Science.gov (United States)

    Morley, David; Till, Kevin; Ogilvie, Paul; Turner, Graham

    2015-12-01

    As the development of movement skills are so crucial to a child's involvement in lifelong physical activity and sport, the purpose of this study was to assess the motor proficiency of children aged 4-7 years (range=4.3-7.2 years), whilst considering gender and socioeconomic status. 369 children (176 females, 193 males, aged=5.96 ± 0.57 years) were assessed for fine motor precision, fine motor integration, manual dexterity, bilateral co-ordination, balance, speed and agility, upper-limb co-ordination and strength. The average standard score for all participants was 44.4 ± 8.9, classifying the participants towards the lower end of the average score. Multivariate analysis of covariance identified significant effects for gender (pdifferences evident between gender and socioeconomic status. Teachers and sport coaches working with primary aged children should concentrate on the development of movement skills, whilst considering differences between genders and socioeconomic status. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  2. Association between vestibular function and motor performance in hearing-impaired children.

    Science.gov (United States)

    Maes, Leen; De Kegel, Alexandra; Van Waelvelde, Hilde; Dhooge, Ingeborg

    2014-12-01

    The clinical balance performance of normal-hearing (NH) children was compared with the balance performance of hearing-impaired (HI) children with and without vestibular dysfunction to identify an association between vestibular function and motor performance. Prospective study. Tertiary referral center. Thirty-six children (mean age, 7 yr 5 mo; range, 3 yr 8 mo-12 yr 11 mo) divided into three groups: NH children with normal vestibular responses, HI children with normal vestibular responses, and HI children with abnormal vestibular function. A vestibular test protocol (rotatory and collic vestibular evoked myogenic potential testing) in combination with three clinical balance tests (balance beam walking, one-leg hopping, one-leg stance). Clinical balance performance. HI children with abnormal vestibular test results obtained the lowest quotients of motor performance, which were significantly lower compared with the NH group (p beam walking and one-leg stance; p = 0.003 for one-leg hopping). The balance performance of the HI group with normal vestibular responses was better in comparison with the vestibular impaired group but still significantly lower compared with the NH group (p = 0.020 for balance beam walking; p = 0.001 for one-leg stance; not significant for one-leg hopping). These results indicate an association between vestibular function and motor performance in HI children, with a more distinct motor deterioration if a vestibular impairment is superimposed to the auditory dysfunction.

  3. Bimanual coordination of bowing and fingering in violinists--effects of position changes and string changes.

    Science.gov (United States)

    Kazennikov, Oleg; Wiesendanger, Mario

    2009-07-01

    Music performance is based on demanding motor control with much practice from young age onward. We have chosen to investigate basic bimanual movements played by violin amateurs and professionals. We posed the question whether position and string changes, two frequent mechanisms, may influence the time interval bowing (right)-fingering (left) coordination. The objective was to measure bimanual coordination, i.e., with or without position changes and string changes. The tendency was that the bimanual coordination was statistically only slightly increased or even unchanged but not perceptible. We conclude that the coordination index is limited up to 100 ms intervals, without any erroneous perception. Although the mentioned position changes and string changes are movements with their timing, they are executed in parallel rather than in series with the bow-fingering coordination.

  4. 2D co-ordinate transformation based on a spike timing-dependent plasticity learning mechanism.

    Science.gov (United States)

    Wu, QingXiang; McGinnity, Thomas Martin; Maguire, Liam; Belatreche, Ammar; Glackin, Brendan

    2008-11-01

    In order to plan accurate motor actions, the brain needs to build an integrated spatial representation associated with visual stimuli and haptic stimuli. Since visual stimuli are represented in retina-centered co-ordinates and haptic stimuli are represented in body-centered co-ordinates, co-ordinate transformations must occur between the retina-centered co-ordinates and body-centered co-ordinates. A spiking neural network (SNN) model, which is trained with spike-timing-dependent-plasticity (STDP), is proposed to perform a 2D co-ordinate transformation of the polar representation of an arm position to a Cartesian representation, to create a virtual image map of a haptic input. Through the visual pathway, a position signal corresponding to the haptic input is used to train the SNN with STDP synapses such that after learning the SNN can perform the co-ordinate transformation to generate a representation of the haptic input with the same co-ordinates as a visual image. The model can be applied to explain co-ordinate transformation in spiking neuron based systems. The principle can be used in artificial intelligent systems to process complex co-ordinate transformations represented by biological stimuli.

  5. Linear ultrasonic motor for absolute gravimeter.

    Science.gov (United States)

    Jian, Yue; Yao, Zhiyuan; Silberschmidt, Vadim V

    2017-05-01

    Thanks to their compactness and suitability for vacuum applications, linear ultrasonic motors are considered as substitutes for classical electromagnetic motors as driving elements in absolute gravimeters. Still, their application is prevented by relatively low power output. To overcome this limitation and provide better stability, a V-type linear ultrasonic motor with a new clamping method is proposed for a gravimeter. In this paper, a mechanical model of stators with flexible clamping components is suggested, according to a design criterion for clamps of linear ultrasonic motors. After that, an effect of tangential and normal rigidity of the clamping components on mechanical output is studied. It is followed by discussion of a new clamping method with sufficient tangential rigidity and a capability to facilitate pre-load. Additionally, a prototype of the motor with the proposed clamping method was fabricated and the performance tests in vertical direction were implemented. Experimental results show that the suggested motor has structural stability and high dynamic performance, such as no-load speed of 1.4m/s and maximal thrust of 43N, meeting the requirements for absolute gravimeters. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Factors of successful movement coordination in students with mild intellectual disability

    Directory of Open Access Journals (Sweden)

    Japundža-Milisavljević Mirjana

    2016-01-01

    Full Text Available There are many studies on the assessment of factors which determine the quality of making movements, including coordination and precision. Basic and complex motor activities directly depend on neuropsychological abilities. Researchers in this field point to significant factors which indicate successful coordination of movements, however, only few tried to single out the most important one. The main aim of this research was to determine whether there was a relation between spatial orientation, attention, and verbal memory in movement coordination, and which of the mentioned functions had the greatest influence on coordination and precision of movements in students with mild intellectual disability. Seventy three participants, aged between 7 and 12, were assessed by Ball-Foot-Wall Test for the assessment of coordination and precision of movements, Cancellation Task for attention vigilance assessment, Beter-Cragin Test for spatial orientation, and Rey Auditory Verbal Learning Test for the assessment of verbal memory and forced recognition. The obtained results showed that the most significant factors of movement coordination were forced recognition β=0.269; p=0.046, attention vigilance β=0.256; p=0.051 and spatial orientation (β=0.246; p=0.057. Practical implications point out the necessity of designing educational coordination training with the aim to increase students' potential to make movements.

  7. Creative Motor Actions As Emerging from Movement Variability

    Directory of Open Access Journals (Sweden)

    Dominic Orth

    2017-10-01

    Full Text Available In cognitive science, creative ideas are defined as original and feasible solutions in response to problems. A common proposal is that creative ideas are generated across dedicated cognitive pathways. Only after creative ideas have emerged, they can be enacted to solve the problem. We present an alternative viewpoint, based upon the dynamic systems approach to perception and action, that creative solutions emerge in the act rather than before. Creative actions, thus, are as much a product of individual constraints as they are of the task and environment constraints. Accordingly, we understand creative motor actions as functional movement patterns that are new to the individual and/or group and adapted to satisfy the constraints on the motor problem at hand. We argue that creative motor actions are promoted by practice interventions that promote exploration by manipulating constraints. Exploration enhances variability of functional movement patterns in terms of either coordination or control solutions. At both levels, creative motor actions can emerge from finding new and degenerate adaptive motor solutions. Generally speaking, we anticipate that in most cases, when exposed to variation in constraints, people are not looking for creative motor actions, but discover them while doing an effort to satisfy constraints. For future research, this paper achieves two important aspects: it delineates how adaptive (movement variability is at the heart of (motor creativity, and it sets out methodologies toward stimulating adaptive variability.

  8. The impact of reorienting cone-beam computed tomographic images in varied head positions on the coordinates of anatomical landmarks

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Hun; Jeong, Ho Gul; Hwang, Jae Joon; Lee, Jung Hee; Han, Sang Sun [Dept. of Oral and Maxillofacial Radiology, Yonsei University, College of Dentistry, Seoul (Korea, Republic of)

    2016-06-15

    The aim of this study was to compare the coordinates of anatomical landmarks on cone-beam computed tomographic (CBCT) images in varied head positions before and after reorientation using image analysis software. CBCT images were taken in a normal position and four varied head positions using a dry skull marked with 3 points where gutta percha was fixed. In each of the five radiographic images, reference points were set, 20 anatomical landmarks were identified, and each set of coordinates was calculated. Coordinates in the images from the normally positioned head were compared with those in the images obtained from varied head positions using statistical methods. Post-reorientation coordinates calculated using a three-dimensional image analysis program were also compared to the reference coordinates. In the original images, statistically significant differences were found between coordinates in the normal-position and varied-position images. However, post-reorientation, no statistically significant differences were found between coordinates in the normal-position and varied-position images. The changes in head position impacted the coordinates of the anatomical landmarks in three-dimensional images. However, reorientation using image analysis software allowed accurate superimposition onto the reference positions.

  9. Distribution of networks generating and coordinating locomotor activity in the neonatal rat spinal cord in vitro: a lesion study

    DEFF Research Database (Denmark)

    Kjaerulff, O; Kiehn, O

    1996-01-01

    The isolated spinal cord of the newborn rat contains networks that are able to create a patterned motor output resembling normal locomotor movements. In this study, we sought to localize the regions of primary importance for rhythm and pattern generation using specific mechanical lesions. We used...... ventral root recordings to monitor neuronal activity and tested the ability of various isolated parts of the caudal thoraciclumbar cord to generate rhythmic bursting in a combination of 5-HT and NMDA. In addition, pathways mediating left/right and rostrocaudal burst alternation were localized. We found......, these pathways were distributed along the lumbar enlargement. Both lateral and ventral funiculi were sufficient to coordinate activity in the rostral and caudal regions. We conclude that the networks organizing locomotor-related activity in the spinal cord of the newborn rat are distributed....

  10. Brain Oscillatory and Hemodynamic Activity in a Bimanual Coordination Task Following Transcranial Alternating Current Stimulation (tACS: A Combined EEG-fNIRS Study

    Directory of Open Access Journals (Sweden)

    Alisa Berger

    2018-04-01

    Full Text Available Motor control is associated with synchronized oscillatory activity at alpha (8–12 Hz and beta (12–30 Hz frequencies in a cerebello-thalamo-cortical network. Previous studies demonstrated that transcranial alternating current stimulation (tACS is capable of entraining ongoing oscillatory activity while also modulating motor control. However, the modulatory effects of tACS on both motor control and its underlying electro- and neurophysiological mechanisms remain ambiguous. Thus, the purpose of this study was to contribute to gathering neurophysiological knowledge regarding tACS effects by investigating the after-effects of 10 Hz tACS and 20 Hz tACS at parietal brain areas on bimanual coordination and its concurrent oscillatory and hemodynamic activity. Twenty-four right-handed healthy volunteers (12 females aged between 18 and 30 (M = 22.35 ± 3.62 participated in the study and performed a coordination task requiring bimanual movements. Concurrent to bimanual motor training, participants received either 10 Hz tACS, 20 Hz tACS or a sham stimulation over the parietal cortex (at P3/P4 electrode positions for 20 min via small gel electrodes (3,14 cm2 Ag/AgCl, amperage = 1 mA. Before and three time-points after tACS (immediately, 30 min and 1 day, bimanual coordination performance was assessed. Oscillatory activities were measured by electroencephalography (EEG and hemodynamic changes were examined using functional near-infrared spectroscopy (fNIRS. Improvements of bimanual coordination performance were not differently between groups, thus, no tACS-specific effect on bimanual coordination performance emerged. However, physiological measures during the task revealed significant increases in parietal alpha activity immediately following 10 Hz tACS and 20 Hz tACS which were accompanied by significant decreases of Hboxy concentration in the right hemispheric motor cortex compared to the sham group. Based on the physiological responses, we conclude that

  11. Brain Oscillatory and Hemodynamic Activity in a Bimanual Coordination Task Following Transcranial Alternating Current Stimulation (tACS): A Combined EEG-fNIRS Study.

    Science.gov (United States)

    Berger, Alisa; Pixa, Nils H; Steinberg, Fabian; Doppelmayr, Michael

    2018-01-01

    Motor control is associated with synchronized oscillatory activity at alpha (8-12 Hz) and beta (12-30 Hz) frequencies in a cerebello-thalamo-cortical network. Previous studies demonstrated that transcranial alternating current stimulation (tACS) is capable of entraining ongoing oscillatory activity while also modulating motor control. However, the modulatory effects of tACS on both motor control and its underlying electro- and neurophysiological mechanisms remain ambiguous. Thus, the purpose of this study was to contribute to gathering neurophysiological knowledge regarding tACS effects by investigating the after-effects of 10 Hz tACS and 20 Hz tACS at parietal brain areas on bimanual coordination and its concurrent oscillatory and hemodynamic activity. Twenty-four right-handed healthy volunteers (12 females) aged between 18 and 30 ( M = 22.35 ± 3.62) participated in the study and performed a coordination task requiring bimanual movements. Concurrent to bimanual motor training, participants received either 10 Hz tACS, 20 Hz tACS or a sham stimulation over the parietal cortex (at P3/P4 electrode positions) for 20 min via small gel electrodes (3,14 cm 2 Ag/AgCl, amperage = 1 mA). Before and three time-points after tACS (immediately, 30 min and 1 day), bimanual coordination performance was assessed. Oscillatory activities were measured by electroencephalography (EEG) and hemodynamic changes were examined using functional near-infrared spectroscopy (fNIRS). Improvements of bimanual coordination performance were not differently between groups, thus, no tACS-specific effect on bimanual coordination performance emerged. However, physiological measures during the task revealed significant increases in parietal alpha activity immediately following 10 Hz tACS and 20 Hz tACS which were accompanied by significant decreases of Hboxy concentration in the right hemispheric motor cortex compared to the sham group. Based on the physiological responses, we conclude that t

  12. Mechanism of gastrointestinal abnormal motor activity induced by cisplatin in conscious dogs.

    Science.gov (United States)

    Ando, Hiroyuki; Mochiki, Erito; Ohno, Tetsuro; Yanai, Mitsuhiro; Toyomasu, Yoshitaka; Ogata, Kyoichi; Tabe, Yuichi; Aihara, Ryuusuke; Nakabayashi, Toshihiro; Asao, Takayuki; Kuwano, Hiroyuki

    2014-11-14

    To investigate whether 5-hydroxytryptamine (serotonin; 5-HT) is involved in mediating abnormal motor activity in dogs after cisplatin administration. After the dogs had been given a 2-wk recovery period, all of them were administered cisplatin, and the motor activity was recorded using strain gauge force transducers. Blood and intestinal fluid samples were collected to measure 5-HT for 24 h. To determine whether 5-HT in plasma or that in intestinal fluids is more closely related to abnormal motor activity we injected 5-HT into the bloodstream and the intestinal tract of the dogs. Cisplatin given intravenously produced abnormal motor activity that lasted up to 5 h. From 3 to 4 h after cisplatin administration, normal intact dogs exhibited retropropagation of motor activity accompanied by emesis. The concentration of 5-HT in plasma reached the peak at 4 h, and that in intestinal fluids reached the peak at 3 h. In normal intact dogs with resection of the vagus nerve that were administered kytril, cisplatin given intravenously did not produce abnormal motor activity. Intestinal serotonin administration did not produce abnormal motor activity, but intravenous serotonin administration did. After the intravenous administration of cisplatin, abnormal motor activity was produced in the involved vagus nerve and in the involved serotonergic neurons via another pathway. This study was the first to determine the relationship between 5-HT and emesis-induced motor activity.

  13. Motor and cognitive performance of overweight preschool children.

    Science.gov (United States)

    Krombholz, Heinz

    2013-02-01

    Gross and fine motor skills and cognitive performance in obese and overweight children were compared to healthy weight children. Participants were 1,543 children (797 boys and 746 girls) ages 43 to 84 months, attending childcare centers in Munich, Germany. According to German Body Mass Index (BMI) standards for age and sex, 4.6% of the children were classified as obese (percentile greater or equal 97), 6.8% as overweight (percentile greater or equal 90 and less than 97), 5.9% as underweight (percentile less than 10), and 83.1% as being of healthy weight. Dependent variables were physical characteristics (height, weight, skinfold thickness), physical fitness (standing broad jump, shuttle run, hanging), body coordination (balancing forward, balancing backward, lateral jump, hopping), manual dexterity (right and left hand), and cognitive performance (intelligence, verbal ability, concentration). Higher proportions of children from lower socioeconomic and immigrant backgrounds were overweight. There was no association between weight and sex. Overweight children showed lower performance on gross motor skills (coordination and fitness), manual dexterity, and intelligence compared to healthy weight children, even after controlling for the effects of social class and immigration status.

  14. Motor Deficits of Girls with Down Syndrome in Comparing with Girls with Intellectual Disability in the School Ages Children

    Directory of Open Access Journals (Sweden)

    Tahereh Daftari-Anbardan

    2014-03-01

    Full Text Available Objective: Motor function in children with Down syndrome is similar to mentally retarded children. But the movements are slower and have lower quality. The purpose of this study was to identify weaknesses in motor function in children with Down syndrome, by using Bruininks Oseretsky Test of Motor Proficiency (BOTMP. Materials & Methods: In this cross-sectional study, thirty six children with intellectual disability, 18 girls with Down syndrome and 18 girls without Down syndrome, with chronological aged 8-13 years were investigated. The subjects of Down syndrome were selected by available sampling. The subjects of intellectual disability were selected by simple random sampling. Two groups of participants were matched for chronological age and IQ level. The measurement was BOTMP. Statistical analysis was performed using the Mann-Whitney U rank sum test and t-test. Results: The children with Down syndrome scored significantly lower than the mentally retarded children in the areas of gross motor skill composite (P<0.014 balance (P<0.029, response time (P<0.034 and visual motor control (P<0.048, but the fine motor and overlay motor skill composite, and subtests of bilateral coordination, strength, upper limb coordination scores were no significantly different between two groups. Conclusion: Motor rehabilitation is appropriate for children with intellectual disability, especially for children with Down syndrome, in throughout their adolescence. Key words: Motor skill/ Intellectual Disability/ Down syndrome/ BOTMP

  15. WHICH MOTOR ABILITIES HAVE THE HIGHEST IMPACT ON WORKING PERFORMANCE OF SLOVENIAN SOLDIERS?

    Directory of Open Access Journals (Sweden)

    Maja Pori

    2010-09-01

    Full Text Available The objective of the research was to find a correlation between motor abilities and working efficiency of soldiers in a battle unit of Slovenia Armed Forces (SAF. The subject consisted of 115 soldiers (age = 27,1 ± 3,7 years who were serving in the first brigade of the SAF. Motor abilities were measured with 11 motor tests, assessing the level of flexibility, speed, strength and coordination. To evaluate working efficiency of soldiers a special questionnaire was used, which consisted of 19 statements. Superior officer was asked to fill a questionnaire for each inferior soldier with values from 1 to 5. The correlation between motor abilities and working efficiency was assessed with the Pearson’s correlation coefficient. We have found 5 statistically significant correlations. Motor tests correlating most with working performance were tests of arm strength.

  16. Neurological Soft Signs In Psychoses A Comparison Between Schizophrenia & Other Psychotic Disorders

    Directory of Open Access Journals (Sweden)

    Shahsavand. E. Noroozian. M

    2002-07-01

    Full Text Available Schizophrenia is one of the most important and disabling mental disorders in the world. Males and females are equally affected. Diagnosis is a very difficult problem in this disorder. Because the diagnostic systems such as ICD-10 and DSM-IV are mainly subjective, they are not valid and reliable. Essentially, in the future, we will need to more objective criteria in psychiatry especially in diagnosis of schizophrenia. Neurological soft signs are an example of these objective criteria. In this study we evaluated the prevalence of neurological soft signs in schizophrenic patients and compared it with the prevalence of these signs in other psychotic patients (except mood disorders with psychotic features and normal subjects."nMethods: We compared the neurological soft signs (sensory motor integration, motor. Coordination, consequent complex motor acts, primary reflexes, and eye movements in 30 schizophrenic patients, 30 other psychotic patients (other than mood disorders with psychotic features and 30 normal subjects. Diagnosis of schizophrenia and also other psychoses were based on DSM-IN criteria. Normal subjects have been selected form the staff of Roozbeh hospital randomly."nResults: The difference between the means of motor coordination subscale of neurological soft signs in schizophrenia and other psychotic disorders (other than mood disorders with psychotic features were significant (P value < 0.04. There were no significant differences between the means of other subscales of neurological soft signs in two groups of patients."nConclusion: There are some disturbances of motor coordination subscale of neurological soft signs in patients with schizophrenia. It seems that, these disturbances are evidence of involvements of basal ganglia, motor cerebral cortex, and cerebellum. So it may be suggested that motor coordination as a marker can be used in differentiation between the schizophrenia and other psychotic disorders.

  17. Relationship between motor proficiency and body composition in 6- to 10-year-old children.

    Science.gov (United States)

    Marmeleira, José; Veiga, Guida; Cansado, Hugo; Raimundo, Armando

    2017-04-01

    The aim of this study is to examine the relationship between motor skill competence and body composition of 6- to 10-year-old children. Seventy girls and 86 boys participated. Body composition was measured by body mass index and skinfold thickness. Motor proficiency was evaluated through the Bruininks-Oseretsky Test of Motor Proficiency-Short Form, which included measures of gross motor skills and fine motor skills. Significant associations were found for both sexes between the percentage of body fat and (i) the performance in each gross motor task, (ii) the composite score for gross motor skills and (iii) the motor proficiency score. The percentage of body fat was not significantly associated with the majority of the fine motor skills items and with the respective composite score. Considering body weigh categories, children with normal weight had significantly higher scores than their peers with overweight or with obesity in gross motor skills and in overall motor proficiency. Children's motor proficiency is negatively associated with body fat, and normal weight children show better motor competence than those who are overweight or obese. The negative impact of excessive body weight is stronger for gross motor skills that involve dynamic body movements than for stationary object control skills; fine motor skills appear to be relatively independent of the constraints imposed by excessive body weight. © 2017 Paediatrics and Child Health Division (The Royal Australasian College of Physicians).

  18. Numerical investigation of refrigeration machine compressor operation considering single-phase electric motor dynamic characteristics

    Science.gov (United States)

    Baidak, Y.; Smyk, V.

    2017-08-01

    Using as the base the differential equations system which was presented in relative units for generalized electric motor of hermetic refrigeration compressor, mathematical model of the software for dynamic performance calculation of refrigeration machine compressors drive low-power asynchronous motors was developed. Performed on its ground calculations of the basic model of two-phase electric motor drive of hermetic compressor and the proposed newly developed model of the motor with single-phase stator winding, which is an alternative to the industrial motor winding, have confirmed the benefits of the motor with innovative stator winding over the base engine. Given calculations of the dynamic characteristics of compressor drive motor have permitted to determine the value of electromagnetic torque swinging for coordinating compressor and motor mechanical characteristics, and for taking them into consideration in choosing compressor elements construction materials. Developed and used in the process of investigation of refrigeration compressor drive asynchronous single-phase motor mathematical and software can be considered as an element of computer-aided design system for design of the aggregate of refrigeration compression unit refrigerating machine.

  19. Patterned-string tasks: relation between fine motor skills and visual-spatial abilities in parrots.

    Directory of Open Access Journals (Sweden)

    Anastasia Krasheninnikova

    Full Text Available String-pulling and patterned-string tasks are often used to analyse perceptual and cognitive abilities in animals. In addition, the paradigm can be used to test the interrelation between visual-spatial and motor performance. Two Australian parrot species, the galah (Eolophus roseicapilla and the cockatiel (Nymphicus hollandicus, forage on the ground, but only the galah uses its feet to manipulate food. I used a set of string pulling and patterned-string tasks to test whether usage of the feet during foraging is a prerequisite for solving the vertical string pulling problem. Indeed, the two species used techniques that clearly differed in the extent of beak-foot coordination but did not differ in terms of their success in solving the string pulling task. However, when the visual-spatial skills of the subjects were tested, the galahs outperformed the cockatiels. This supports the hypothesis that the fine motor skills needed for advanced beak-foot coordination may be interrelated with certain visual-spatial abilities needed for solving patterned-string tasks. This pattern was also found within each of the two species on the individual level: higher motor abilities positively correlated with performance in patterned-string tasks. This is the first evidence of an interrelation between visual-spatial and motor abilities in non-mammalian animals.

  20. Generalized motor abilities and timing behavior in children with specific language impairment.

    Science.gov (United States)

    Zelaznik, Howard N; Goffman, Lisa

    2010-04-01

    To examine whether children with specific language impairment (SLI) differ from normally developing peers in motor skills, especially those skills related to timing. Standard measures of gross and fine motor development were obtained. Furthermore, finger and hand movements were recorded while children engaged in 4 different timing tasks, including tapping and drawing circles in time with a metronome or a visual target. Fourteen children with SLI (age 6 to 8 years) and 14 age-matched peers who were typically developing participated. As expected, children with SLI showed poorer performance on a standardized test of gross and fine motor skill than did their normally developing peers. However, timing skill in the manual domain was equivalent to that seen in typically developing children. Consistent with earlier findings, relatively poor gross and fine motor performance is observed in children with SLI. Surprisingly, rhythmic timing is spared.